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Summary 

Chronic lymphocytic leukaemia (CLL) is the most common leukaemia in the 

western world, and remains incurable with current chemotherapy.  Although CLL 

was long-regarded as an autonomous accumulation of functionally incompetent 

lymphocytes that escape apoptosis, significant rates of clonal proliferation and 

death have now been elegantly demonstrated in CLL patients in vivo.  This, 

coupled with the high rates of spontaneous apoptosis observed on ex-vivo culture, 

confirms that CLL is a dynamic disorder, in which the tumour microenvironment is 

central to leukemic cell survival.  Recent advances in CLL cell biology implicate 

signalling through the B cell antigen receptor (BCR) in the pathogenesis and 

progression of the disease.  The absence of significant somatic hypermutation of 

the immunoglobulin heavy chain variable region (IgVH), which largely correlates 

with the expression of ZAP-70, in CLL cells is a significant adverse prognostic 

marker.  CLL cases expressing an unmutated IgVH gene generally retain the ability 

to signal through the BCR.  Components of the BCR signalling pathway are 

therefore attractive novel therapeutic targets, with potential selectivity for adverse 

prognostic groups.  The non-receptor tyrosine kinases Lyn (a Src kinase) and c-

Abl are both required for effective BCR signalling.  Both are over-expressed, and 

constitutively active in CLL, and inhibition of either induces a degree of apoptosis.  

Dasatinib is a Src/c-Abl tyrosine kinase inhibitor in clinical use in chronic myeloid 

leukaemia.  The main objective of this project was to conduct translational studies 

to determine the anti-leukaemic effects of dasatinib on CLL cells in vitro. 

 

While the Src kinase inhibitor PP2, and the c-Abl inhibitor imatinib induced 

apoptosis of CLL cells at micromolar concentrations, dasatinib induced apoptosis 

of CLL cells at clinically achievable nanomolar concentrations, with an EC50 in the 

region of 10-30 nM, and plateau in effect above 100 nM.  CLL cell treatment with 

100 nM dasatinib for 48 hr led to a mean reduction in viability of 33.7%, but with 

significant inter-sample variability.  No correlation was observed between dasatinib 

sensitivity and the established prognostic factors clinical stage, ZAP-70 status, or 

cytogenetic subgroup.  Notably, CLL cells known to contain the 17p deletion, 

resulting in p53 dysfunction, responded similarly to other samples.  Apoptosis 

induced by dasatinib involved loss of mitochondrial membrane potential and was 

caspase-dependent.  Although dasatinib treatment alone rarely induced apoptosis 

of over 50% of CLL cells, synergy was observed between dasatinib and the 
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current first-line chemotherapeutic agents fludarabine and chlorambucil.  

Moreover, dasatinib exhibited synergy with a novel Bcl-2 inhibitor, and the HSP90 

inhibitor 17-DMAG. 

 

Recently, antigen-independent ‘tonic’ BCR signalling has been linked to the 

pathogenesis of B cell lymphomas.  Tonic signalling is proposed to be mediated by 

basal activity of Lyn and Syk kinases recruited to the BCR.  As Syk is also over-

expressed in CLL, we hypothesised that dasatinib sensitivity may correlate with 

inhibition of components of tonic BCR signal transduction.  Indeed, CLL cells 

contained constitutively phosphorylated SykY348.  Furthermore, a significant 

inverse correlation was observed between basal SykY348 phosphorylation and 

dasatinib sensitivity in individual samples, suggesting its’ utility as a biomarker of 

response.  Dasatinib consistently inhibited an increase in SykY348 phosphorylation 

on BCR crosslinking.  In addition, dasatinib inhibited calcium flux, and prevented 

Akt and MAPK phosphorylation on BCR stimulation.  Moreover, dasatinib 

prevented up-regulation of Mcl-1 and blocked the increase in CLL cell survival 

observed on prolonged BCR stimulation, confirming inhibition of BCR signalling as 

a functionally relevant treatment strategy in CLL.  Although dasatinib prevented 

CXCR4 down-regulation following BCR stimulation of CLL cells, dasatinib also 

specifically inhibited PI-3K/Akt activation upon CXCR4 stimulation by SDF-1, 

resulting in reduced actin polymerization and migration following SDF-1 

stimulation.  While the full translational implications of these observations remain 

to be determined, these data demonstrate that the anti-leukaemic effects of 

dasatinib extend beyond direct inhibition of BCR signal transduction. 

 

It is well recognised that bone marrow (BM) stromal cells and blood-derived 

‘nurse-like’ cells protect CLL cells from spontaneous apoptosis in vitro.  More 

recently, proliferating CLL cells have been identified within specialised 

‘proliferation centres’, admixed with appreciable numbers of T lymphocytes, 

predominantly activated CD4+ T cells expressing CD40 ligand (CD154), and 

interleukin 4 (IL-4).  CD40/IL-4 stimulation of CLL cells in vitro leads to up-

regulation of the anti-apoptotic Bcl-2 family proteins Bcl-xL and Mcl-1, and the pro-

proliferative protein survivin, mimicking the expression profile of CLL cells isolated 

from patient lymph nodes (LNs).  We were interested to determine whether the 

effects of dasatinib on CLL cells were modulated by these microenvironmental 

factors.  To achieve this, CLL cells were co-cultured with either the murine BM 
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stromal cell line NT-L, or NT-L cells stably transfected to express CD154, the latter 

with IL-4 added to the culture medium (154L/IL-4 system).  The pro-apoptotic 

effect of dasatinib in CLL cells was abrogated by stromal cell co-culture, with or 

without CD154 and IL-4.  Stromal cell-mediated resistance to dasatinib involved 

Akt and MAPK signalling, as evidenced by the ability of both the PI-3K inhibitor 

LY294002, and the MEK inhibitor PD98059 to restore dasatinib sensitivity of cells 

in NT-L co-culture.  154L/IL-4 co-culture activated multiple MAPK, associated with 

up-regulation of Bcl-xL, Mcl-1, and survivin, which was not inhibited by dasatinib.  

Dasatinib also failed to inhibit CLL cell proliferation in the 154L/IL-4 system.  While 

dasatinib retained the ability to sensitise CLL cells to both fludarabine and 

chlorambucil in NT-L co-culture, the addition of CD154 and IL-4 rendered cells 

resistant to all drug combinations.  Dasatinib did however retain the ability to 

sensitise CLL cells to the HSP90 inhibitor 17-DMAG in both NT-L and 154L/IL-4 

co-culture.   

 

In conclusion, these studies demonstrate that dasatinib offers much as a novel 

therapeutic strategy for CLL, overcoming pro-survival signalling through the BCR.  

However, our data suggest that dasatinib may be best utilised in combination 

treatment strategies with agents that can target antigen-independent signalling 

networks within the microenvironment.  Collectively, this work provides valuable 

information that will inform future clinical trials of Src/c-Abl inhibitors in CLL. 
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1.1 B lymphocyte development and function 

1.1.1 Overview of B lymphocyte development 

B lymphocytes are key cells of the adaptive immune system, with the main role of 

mature B lymphocytes to recognise pathogens via the B cell antigen receptor 

(BCR).  Following recognition, B lymphocytes are also key effector cells in the 

immune response, both by producing specific antibodies, and in activating cognate 

CD4+ T lymphocytes.  A subset of B cells also retains immunological memory, in 

order to react to re-infection.  At all stages of life, B cells require strict control in 

order to prevent the development of autoimmunity and malignancy.   

B lymphocytes develop from pluripotent haematopoietic stem cells, and 

development is governed by the successful formation of a unique cell surface 

antigen receptor through the recombination of variable (V), diversity (D), and 

joining (J) genes in the immunoglobulin (Ig) loci (1).  The key stages of B 

lymphocyte development, which occur within the bone marrow (BM) and 

peripheral lymphoid organs, are illustrated in Figure 1.1, and described below.   

 

Figure 1.1 Overview of B lymphocyte development 

Adapted from Janeway et al. (1) 

During the early pro-B cell stage, transcription factors such as E2A and EBF 

regulate the expression of the recombination-activating gene-1 (RAG-1) and RAG-

2, which form part of the enzymatic complex responsible for V(D)J recombination.  

The Ig heavy chain gene recombines first, and D to JH recombination marks the 
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transition to the late pro-B stage.  Progression to the pre-B cell stage is dependent 

upon successful VH to DJH recombination.  At this stage, terminal deoxynucleotidyl 

transferase inserts additional nucleotides between the rearranged gene segments, 

to enhance the diversity of the resulting Ig µ heavy chain.  The heavy chain 

associates with invariant surrogate light chain proteins to form the pre-BCR.  

Signalling through the pre-BCR is essential for survival and development past this 

stage; pre-B cells with non-functional pre-BCRs are deleted by apoptosis.  On 

successful pre-BCR signalling, a process termed allelic exclusion prevents further 

Ig heavy chain recombination, pre-B cells then proliferate and rearrange Ig light 

chain genes.  On successful VL to JL recombination, surface IgM is expressed, and 

the B cell termed an immature B lymphocyte (1). 

The BCR comprises membrane-associated Ig heavy and light chains non-

covalently associated with a heterodimer of Igα and Igβ proteins (2), and is shown 

diagrammatically in Figure 1.2.  The Igα and Igβ chains contain immunoreceptor 

tyrosine activation motifs (ITAMs), which are essential for signal transduction 

during B cell development and in response to antigenic stimulation of mature B 

cells (3).  The BCR signal transduction pathway is described in detail in Section 

1.5. 

 

Figure 1.2  Structure of the B cell antigen receptor 
 

Prior to egress of immature B lymphocytes from the BM, assessment of self-

reactivity occurs.  There are three main fates for B cells which are able to generate 

a BCR signal on interaction with self antigen; elimination by apoptosis, alteration of 

the BCR to change reactivity (receptor editing), or survival with inactivation of BCR 

reactivity (anergy) (4).  Should developing B cells survive these hurdles they are 
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released into the circulation as mature B lymphocytes, which can express both 

surface IgM and IgD. 

1.1.2 The humoral immune response 

The humoral immune response refers to the eradication of extracellular pathogens 

by the production of antibodies by activated B lymphocytes which have 

differentiated to plasma cells.  In the majority of instances, plasma cell 

differentiation requires a process of interaction of activated B and T lymphocytes 

that recognise the same antigen.  On antigen recognition by the BCR, antigen is 

internalised, processed, and presented on the surface of the B cell associated with 

major histocompatability complex (MHC) class II (1).  In response to interaction 

with antigen-MHC II complexes, antigen-specific CD4+ ‘helper’ T lymphocytes 

secrete cytokines that promote the proliferation and differentiation of B cells 

towards antibody-secreting plasma cells.  A limited range of antigens, including 

bacterial polysaccharides, may activate B cells without T cell co-stimulation, 

termed T-independent antigens (1).  However, in most cases, B and T lymphocyte 

interaction occurs within specialised secondary lymphoid tissue, and leads to a 

germinal centre (GC) reaction (5). 

1.1.2.1 The germinal centre reaction 

Initial antigen-specific B-T lymphocyte interaction occurs at the margin between 

the T cell zone and B cell follicle within lymph nodes (LN) (6).  Although a few 

activated B cells differentiate into plasma cells in the primary immune follicle, the 

majority of antigen-specific B cells form a GC, in which the processes of class 

switch recombination (CSR), somatic hypermutation (SHM), and affinity maturation 

occur in order to generate plasma cells which produce antibody with increased 

ability to eradicate the invading pathogen, and produce long-lived memory B cells 

(5).  

Activated B lymphocytes migrate along chemokine gradients towards areas of the 

LN rich in T lymphocytes and follicular dendritic cells (FDCs) (7).  FDCs can 

immobilise immune complexes, and are efficient antigen presenting cells (7).  

Activated B lymphocytes up-regulate MHC class II and compete for interaction 

with cognate CD4+ T cells which provide co-stimulatory signals.  Signalling through 

CD40 expressed on the activated B cell membrane induced by interaction with the 

CD40-ligand (CD154) expressed on activated CD4+ T cells is essential for GC 

function and memory B cell genesis (8).  Within a few days, a classical GC 
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becomes evident by histology, comprising a light zone, rich in FDCs, and a dark 

zone, filled with densely packed proliferating B cells, termed centroblasts (5).  A 

schematic representation of the GC is shown in Figure 1.3. 

 

 

Figure 1.3  The germinal centre reaction 
 

Fully activated B cells in the light zone migrate towards the chemokine stromal-cell 

derived factor-1 (SDF-1; CXCL12) expressed by stromal cells within the dark 

zone, which signals through the receptor CXCR4 expressed by B lymphocytes (9).  

Within the dark zone, in addition to intense proliferation, SHM occurs, as a result 

of the enzymatic action of activation-induced cytidine deaminase (AID) (10).  

Although debated, current evidence suggests AID acts directly on DNA, 

specifically deaminating deoxycytidine residues within IgVH genes, which trigger 

DNA repair mechanisms that introduce single nucleotide substitutions (11) at a 

rate of around 10-3 per base pair per generation (12).  Centroblasts tolerate this 

significant amount of DNA mutation in part due to Bcl-6-mediated suppression of 

p53-mediated DNA damage response pathways (13).  Following proliferation and 

SHM, the B cells are termed centrocytes.  Centrocytes are believed to down-

regulate CXCR4, and in turn become more sensitive to the attraction of the 

chemokine CXCL13 in the light zone due to continued expression of the CXCL13 

receptor CXCR5 on the B cell surface (9).  Within the light zone, CSR occurs, 

again under the control of AID.  During CSR DNA double-strand breaks are 

introduced, which enable the unique VDJ region to associate with a different class 
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of Ig constant gene, changing the Ig isotype from IgM to IgG, IgA, or IgE (10).  The 

function of the centrocyte BCR is stringently tested during the process of affinity 

maturation.  GC B cells are primed to die by apoptosis unless they are successful 

in again securing T cell co-stimulation delivered by CD154, the ligand for CD40 

expressed on the B cell surface.  The intense ongoing B cell competition for T cell 

support ensures that only centrocytes bearing a BCR with high specificity for 

antigen differentiate into antibody-secreting plasma cells, while the majority of 

centrocytes are lost by apoptosis (8).  Given the significant level of DNA editing 

and proliferation that occurs during the GC reaction, it is easy to appreciate that a 

failure of selection and regulation may lead to both autoimmunity and malignancy.  

Indeed, many B cell lymphoproliferative disorders are believed to arise as the B 

cell transits the GC (14).  In follicular lymphoma, the vast majority of cases are 

characterised by translocation of the anti-apoptotic protein Bcl-2 to the IgH gene 

locus t(14;18)(q32;q21) (15).  Although the malignant lymphocytes in chronic 

lymphocytic leukaemia (CLL) also over-express Bcl-2, such translocations 

involving Ig genes are exceptionally rare (16).  Evidence to suggest the normal 

counterpart of the CLL cell is presented in Section 1.4. 

1.2 Chronic Lymphocytic Leukaemia 

1.2.1 Epidemiology and diagnosis of CLL 

CLL is a malignant B cell lymphoproliferative disorder characterised by variable 

accumulation of mature CD5+ lymphocytes within the blood, BM, and LN (17).  

CLL is the most common adult leukaemia in the western world, with an incidence 

of 2-6 per 100,000 individuals per year.  There is a male preponderance for CLL, 

with a male:female ratio of 1.5-2:2, and a mean age of diagnosis of 65 years (18).  

Although predominantly a disease of the elderly, a third of patients are diagnosed 

before the age of 55 (19).  Unlike other B cell lymphoproliferative disorders, there 

is strong evidence of genetic predisposition to CLL.  Whilst common in western 

countries, CLL is much less frequent in Asian countries, and exceptionally rare in 

Japan (20).  In addition, familial CLL occurs in around 5% of cases, with evidence 

of anticipation and aggressive disease in successive generations (21). 

The diagnosis of CLL requires the identification of at least 5 x 109/L clonal B-

lymphocytes in the peripheral blood, present for at least 3 months, and 

demonstration of a characteristic immunophenotype by flow cytometry (FCM) (22).  

CLL cells co-express surface CD5, CD19, and CD23, while expression of CD20, 
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CD79b, and surface Ig is weak.  A scoring system has been developed (Table 

1.1), which has a specificity of 96.8% for the diagnosis of CLL in patients scoring 

3-5 points (23).  Morphologically, the malignant lymphocytes in CLL resemble 

mature small lymphocytes, however frequently demonstrate membrane fragility 

which results in the generation of ‘smudge cells’ during blood film preparation (20). 

 

Marker Expression Score Expression Score 
Surface Ig weak 1 mod/strong 0 
CD5 positive 1 negative 0 
CD23 positive 1 negative 0 
FMC7 negative 1 positive 0 
CD79b weak 1 strong 0 

Table 1.1  Immunophenotypic scoring system for CLL (23) 

 

With the availability of FCM, it has been increasingly recognised that clonal B cell 

populations with a CLL phenotype are present at levels below 5 x 109/L in around 

3% of unselected populations (24).  This led to the development of a new 

diagnostic entity, termed monoclonal B cell lymphocytosis (MBL) (25), and the 

suggestion that, akin to multiple myeloma, there may be a precursor disorder to 

CLL.  MBL is sub-classified as to whether a typical CLL phenotype is present or 

not.  In longitudinal studies, individuals with CLL-type MBL have been shown to 

have a low rate of progression to CLL, with a likelihood of requiring CLL therapy of 

1-2% per year, however additional oncogenic events are believed to be required 

for progression (26). 

1.2.2 Clinical features of CLL 

With the routine availability of diagnostic FCM, CLL is now frequently diagnosed 

incidentally on blood samples analysed for unrelated reasons.  Although CLL may 

lead to significant peripheral blood lymphocytosis, this rarely directly causes 

significant organ dysfunction.  Symptoms are caused by the accumulation of 

malignant lymphocytes in LN and BM, leading to painful lymphadenopathy and BM 

failure.  Patients with LN and BM involvement and minimal circulating CLL cells 

are considered to have the related disorder of small lymphocytic lymphoma (22).  

CLL is also particularly characterised by pathologies that occur as a result of the 

secondary immune dysregulation induced by the malignant clone.  Over 65% of 
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patients develop hypogammaglobulinaemia during the course of the disease (27), 

leading to recurrent infections which are the most common cause of death in CLL 

(20).  In addition, autoimmune disorders, almost exclusively directed towards the 

haematopoietic system, are common.  The incidence of autoimmune haemolytic 

anaemia has been reported as 10-20%, immune thrombocytopenia occurs in 

around 2% of patients, and pure red cell aplasia has been reported (28).  

Importantly, autoantibodies in CLL have been demonstrated to be polyclonal, and 

of different isotype to the CLL clone, demonstrating that autoimmunity occurs due 

to a breach in self-tolerance in the residual normal immune system, rather than 

being directly produced by CLL cells (29).  Immune incompetence is also believed 

to underlie the significantly increased risk of other malignancies in patients with 

CLL (30). 

1.2.3 Prognostic factors in CLL 

1.2.3.1 Clinical prognostic factors 

Over thirty years ago, two clinical staging systems (Rai and Binet) based on 

measures of the extent of LN and BM involvement with CLL were described (31, 

32).  The Binet staging system is detailed in Table 1.2.  These simply assessable 

clinical staging systems remain central to guiding treatment decisions in CLL. 

Stage Clinical Features Median Survival 
A No anaemia, no thrombocytopenia 

Less than 3 lymphoid regions enlarged 
14 years 

B No anaemia, no thrombocytopenia 
3 or more lymphoid areas enlarged 

5 years 

C Anaemia (Hb < 10 g/dl) 
Thrombocytopenia (platelet count < 100 x 109/L) 

2 years 

Table 1.2  Binet clinical staging system for CLL 
 

The lymphocyte doubling time (LDT; projected or actual length of time for 

peripheral blood lymphocyte count to double) is another established clinical 

prognostic factor (33), still used to guide treatment decisions.  Although the pattern 

of BM infiltration has been reported to have prognostic significance (34), this 

invasive measure has been rendered obsolete with the identification of powerful 

biological prognostic factors. 
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1.2.3.2 IgVH mutation status  

Just over a decade ago, it was identified that CLL cells in around half of all 

patients show evidence of SHM in their IgVH genes (mutated CLL) whilst the rest 

use IgVH genes with a near-germline sequence (unmutated CLL) (35).  Several 

groups subsequently reported that patients with unmutated IgVH genes had a 

significantly poorer prognosis that those with evidence of mutated IgVH genes (36-

38).  Most groups used a cut-off of 2% variance from germline sequence as a 

threshold for considering IgVH genes to be mutated.  In one study that followed the 

course of stage A patients, the median survival for those with unmutated CLL was 

95 months, compared with 293 months for those with mutated CLL (38). 

1.2.3.3 ZAP-70 

Assessment of IgVH mutation analysis requires access to DNA sequencing 

technology, not available in most clinical centres.  Much attention was thus 

focussed on identifying surrogate markers for IgVH status that may be assessed in 

routine diagnostic laboratories.  The most successful candidate that has emerged 

is zeta-chain-associated protein kinase 70 (ZAP-70), which has been reported to 

correlate with U-CLL in around 93% of cases (39, 40).  ZAP-70 is a non-receptor 

tyrosine kinase that has a key role in propagating signals downstream of the T cell 

antigen receptor (TCR).  Briefly, following TCR engagement ZAP-70 associates 

with phosphorylated ITAM sequences in the ζ-chains of the TCR, and in turn 

recruits and activates key downstream signalling kinases (41).  Although not 

normally expressed in naïve mature B lymphocytes, ZAP-70 is transiently 

expressed during B cell development at the pro-B to pre-B cell transition stage 

(42), and has been shown to be expressed by activated mature tonsillar B 

lymphocytes (43).  ZAP-70 can be measured by numerous methods including 

immunohistochemistry and FCM (39, 40), and optimised FCM protocols have been 

developed in order to standardise assessment (44, 45).  ZAP-70 expression 

largely remains stable over time (39), strengthening its’ utility as a prognostic 

marker.  In addition, ZAP-70 expression has recently been established as an 

independent negative prognostic indicator, regardless of Ig mutational status (46), 

and is now a standard part of the clinical prognostic assessment of CLL patients. 
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1.2.3.4 CD38 

Another recently identified biological prognostic marker in CLL is surface 

expression of CD38, which was again initially investigated as a surrogate marker 

for IgVH mutational status.  An initial report found that CD38 expression by over 

30% of the CLL clone to be strongly predictive of unmutated IgVH CLL (37).  

Subsequent studies failed to reproduce the correlation between CD38 expression 

and IgVH mutational status (47, 48); rather, CD38 has also been confirmed as an 

independent poor prognostic marker, unrelated to IgVH mutational status (47, 49, 

50).  Recent studies have confirmed that combined analysis of IgVH mutations, 

CD38, and ZAP-70 expression together have greater prognostic power than each 

alone, and provided evidence that discordant results in analysis of these 

prognostic markers explain at least part of the clinical heterogeneity of CLL (51, 

52). 

1.2.3.5 Cytogenetic abnormalities 

The low mitotic rate of peripheral blood CLL cells is a hindrance for traditional 

cytogenetic techniques.  Despite this, cytogenetic abnormalities were detected by 

conventional methods in 55% of patients in a large study, with the most common 

abnormalities detected being trisomy of chromosome 12 and deletion of 

chromosome 13q (53).  With the advent of techniques not reliant on cell cycle 

entry, in particular, interphase fluorescence in-situ hybridisation (FISH), 

abnormalities have been detected in over 80% of all cases (54, 55), as shown in 

Table 1.3. 

Abnormality Gene(s) affected    
(if known) 

% of Patients Median Survival 
(months) 

13q deletion miR15a, miR16-1 55 133 
11q deletion ATM 18 79 
12q trisomy  16 114 
17p deletion p53 7 32 
6q deletion  6 n/a 
Others  12 n/a 
Normal karyotype  18 111 

Table 1.3  Cytogenetic abnormalities identified in CLL (55) 
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The most frequently identified recurrent abnormality is a deletion of chromosome 

13q14, detected in over 50% of all cases (55), and isolated 13q14 deletion is 

associated with slowly progressive disease (53).  Detailed analysis of the deleted 

region on chromosome 13q identified a 30 kb commonly deleted segment of DNA, 

present in 68% of patients (56).  The conserved region contains DNA encoding 

two micro-RNAs, miR15 and miR16, suggesting that dysregulation of miRNA 

function may be involved in the pathogenesis of CLL in these patients (56).  

Supporting this hypothesis, miR15a and miR16-1 have been demonstrated to 

negatively regulate Bcl-2 expression, and an inverse correlation between miR15a 

and miR16-1 expression and Bcl-2 expression has been demonstrated in primary 

CLL cells (57).  Very recently, deletion of this region, including the genes encoding 

DLEU2, miR-15a, and miR16-1, in mice has been shown to result in a clonal B-

lymphoproliferative disorder (58), strengthening the evidence that these genes are 

involved in the pathogenesis of CLL. 

The most adverse cytogenetic abnormality is mono-allelic deletion of chromosome 

17p13, which includes the p53 gene locus (55).  In the vast majority of cases with 

17p13 deletion, p53 function is lost through inactivating mutations of the remaining 

allele (59-61).  These studies also identified single p53 gene mutations, in the 

absence of 17p deletion in up to an additional 5% of patients, which also predicted 

for an adverse prognosis (60).  The commonly deleted region on chromosome 

11q23 spans the ataxia telangiectasia mutated (ATM) gene locus (62).  ATM 

functions in the DNA damage response pathway, activating p53 (63), therefore 

deletion can lead indirectly to p53 dysfunction.  Mutation of ATM has also been 

reported in CLL at a similar frequency to deletions (64).  11q23 deletion is 

associated with bulky lymphadenopathy and rapid progression (65).  Deletion of 

chromosome 6q21 and trisomy of chromosome 12q13 have both been reported to 

be associated with atypical lymphocyte morphology, high white cell counts, 

progressive disease, and an intermediate prognosis (66-68). 

1.2.3.6 Other biological prognostic indicators 

A number of additional adverse prognostic indicators have been reported in the 

literature, including finding over 10% of prolymphocytes in the peripheral blood, 

raised levels of β2-microglobulin, serum thymidine kinase, or soluble CD23 in 

serum (20), however these have also largely been superceded by the assessment 

of the new biological indicators. 
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1.2.4 Treatment of CLL 

1.2.4.1 A history of developments in CLL therapy 

As CLL is predominantly a disease of the elderly, with an extremely 

heterogeneous clinical course, many patients may never develop symptoms of, or 

require treatment for their CLL.  However, the majority of patients diagnosed below 

sixty years of age will require treatment, and many will die of CLL-related causes 

(69).  With progressive improvements in chemotherapy, the aim of treatment has 

changed for most from palliating symptoms of painful lymphadenopathy towards 

aiming to produce durable complete remissions. 

Historical studies have addressed the question of treating stage A patients at 

diagnosis.  Several groups demonstrated that treatment with chlorambucil at 

diagnosis did not improve overall survival (OS) compared to treatment on 

progression to stage B or C disease (70-72).  These studies form the basis for the 

current recommendation in the 2008 IWCLL guidelines that stage A patients may 

be managed by observation until clinical progression (22).  A current area of 

intense debate and research centres upon how to incorporate biological prognostic 

factors into treatment decisions in this patient group, in particular patients with 

adverse cytogenetic features such as 17p deletion or mutation.  Current IWCLL 

indications for treatment are listed in Table 1.3. 

 Indication 
1 Evidence of progressive BM failure, worsening anaemia or 

thrombocytopenia. 
2 Massive (>6 cm below costal margin) progressive splenomegaly. 
3 Massive lymphadenopathy (>10 cm) or progressive symptomatic 

lymphadenopathy. 
4 Progressive lymphocytosis with an increase of > 50% in 2 months, 

or doubling time < 6 months. 
5 Autoimmune anaemia and or thrombocytopenia poorly responsive 

to immunosuppressive therapy. 
6 One or more constitutional symptoms: 

Unintentional weight loss > 10% in 6 months 
Significant fatigue 
Unexplained fevers of over 38°C for over 3 weeks 
Night sweats for over 1 month without evidence of infection 

Table 1.4  2008 IWCLL guideline indications for treatment of CLL 
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Historically, the sensitivity of CLL cells to steroid therapy has been recognised 

(73), however durable responses are not achieved, and frequent infectious 

complications limit the benefit of this approach.  For several decades, treatment 

with alkylating agents such as chlorambucil was the gold standard approach to 

treatment.  Although overall response rates (ORR) of over 70% were typically 

seen, complete response (CR), defined by the National Cancer Institute-Working 

Group (NCI-WG) as eradication of clonal lymphocytes from blood, with 

normalisation of physical examination and blood counts, three months from the 

end of therapy (22), was very rarely achieved.  During the 1970’s and 1980’s 

several combination chemotherapy regimes including COP (cyclophosphamide, 

vincristine, and prednisolone), chlorambucil and epirubicin, CHOP 

(cyclophosphamide, doxorubicin, vincristine, and prednisolone), were compared to 

chlorambucil alone, however none were found superior (72).  The 1990’s heralded 

a turning point in the treatment of CLL, with the recognition that purine analogues 

such as fludarabine were highly effective against CLL (74).  A large randomised 

controlled trial of single-agent fludarabine or chlorambucil in previously untreated 

CLL patients demonstrated the superiority of fludarabine in first-line treatment, with 

CR rates of 20% compared to 4% for fludarabine and chlorambucil respectively 

(75).  However, as chlorambucil causes less net myelo- and immuno-suppression 

than fludarabine, it remains a recommended first-line agent in elderly patients with 

comorbidities, who may benefit greatly from symptomatic control, and would be at 

great risk of infection with purine analogues (76). 

With the recognition that purine analogues may achieve durable remissions, 

research focussed on assessing purine analogue combination regimens to 

improve CR rates.  Phase II trials of fludarabine in combination with the alkylating 

agent cyclophosphamide (FC) suggested a higher CR rate than historical controls 

treated with fludarabine alone (77, 78).  The superiority of FC was confirmed in the 

pivotal UK CLL4 trial, a phase III randomised controlled trial that compared FC to 

either single agent chlorambucil or fludarabine, with CR rates of 38%, 15%, and 

7% respectively (79).  This trial also reported a significantly increased progression-

free survival (PFS) with FC compared to single agent therapy, leading to the 

recommendation of FC as first-line therapy for fit patients.   

Combination regimens combining FC with additional cytotoxic agents have been 

performed in patients with relapsed CLL.  FC in combination with mitoxantrone 

produced CR in 50% of patients, however with appreciable toxicity (80).  
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Undoubtedly the most significant advance in combination therapy in this setting 

has been the development of chemo-immunotherapy.  Rituximab is a chimaeric 

monoclonal antibody with specificity to the CD20 antigen expressed on the surface 

of mature B cells (81).  Initial trials of single-agent rituximab in relapsed CLL were 

disappointing, with ORR in the region of 40%, suggested to be due to the relatively 

low CD20 expression on the surface of CLL cells, and raised soluble CD20 in the 

plasma of CLL patients (82-84).  However, studies of rituximab in combination with 

fludarabine were more promising (22), and a non-randomised trial of rituximab in 

combination with FC (FCR) reported an ORR of 73% and CR rate of 25% in 

previously treated patients (85).  Given these data in the relapse setting, FCR was 

assessed in untreated CLL patients requiring therapy, and reported to achieve CR 

in 70% of patients (86).  The German CLL Study Group CLL8 trial compared FC 

with FCR in a randomised study, and reported a significantly higher CR rate with 

FCR (44.5%) than with FC (22.9%), leading to FCR replacing FC as the 

recommended initial treatment in biologically fit patients (76). 

The monoclonal antibody alemtuzumab (Campath-1H) is a fully humanised 

monoclonal antibody with specificity for CD52, an antigen expressed on the 

surface of both B and T lymphocytes (76).  Alemtuzumab has been demonstrated 

to induce responses in pre-treated patients, including those with p53 dysfunction, 

in 30-50% of patients, and has also been approved by the US Food and Drug 

Administration (FDA) for front-line therapy of CLL (76).   

With advances in molecular haematology, techniques to assess low levels of 

minimal residual disease (MRD) have been assessed in acute leukaemias and 

chronic myeloid leukaemia (CML), and found to predict for relapse and OS (87-

89).  With increasingly intensive chemo-immunotherapy regimes achieving higher 

CR rates in CLL, research focussed on the value of monitoring MRD in CLL.  

Sensitive methods to monitor MRD in CLL using PCR or multi-parameter FCM 

have been developed, the latter has a sensitivity of 1 in 104-105 cells (90).  Studies 

in relapsed CLL patients treated with FCM or alemtuzumab identified an 

improvement in OS in those reaching an MRD negative remission (80, 91).  

Alemtuzumab has been investigated as an agent to eradicate MRD following 

conventional chemotherapy, however has been complicated by significant infective 

toxicity in some studies (76).  The role of MRD monitoring in guiding treatment 

decisions in CLL remains a subject of current clinical trials. 
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Allogeneic stem cell transplantation remains the only curative option for CLL, 

however due to the epidemiology of the disease, the associated transplant-related 

mortality outweighs benefit in the large majority.  Current European Group for 

Bone Marrow Transplantation (EBMT) guidelines currently recommend allogeneic 

transplantation in a limited number of settings, specifically in young patients either 

with 17p deletion, or those refractory to purine analogue containing therapy (92).  

As early trials of reduced-intensity conditioning (RIC) allogeneic transplantation 

provided evidence to support a graft-versus-leukaemia effect in CLL (93), RIC 

transplantation has received more attention, and can extend a transplantation 

option to an older patient population.  Allogeneic transplantation carries significant 

long-term risks of complications such as graft-versus host disease, and the overall 

benefit of allotransplantation is still under active investigation in randomised trials 

(93).  Autologous transplantation in CLL has been extensively studied over the last 

two decades, however significant relapse rates, and also frequent late 

complications including secondary myelodysplasia, have led to the wide 

acceptance that autologous transplantation has no place in routine clinical practice 

(94).   

1.2.4.2 Limitations of current therapy 

A major clinical problem in the management of CLL is the treatment of patients 

who are refractory to purine analogues, largely due to p53 dysfunction (95).  This 

group of patients has a median survival in the region of 12 months (96, 97).  As 

fludarabine induces a p53-dependent gene-expression response in CLL cells (98), 

there is concern that purine analogues may select for p53 dysfunctional clones.  

Recent studies confirming acquired p53 dysfunction following treatment suggest 

this is a substantiated concern (60).   

The only conventional agent with noted activity in p53 dysfunctional patients is 

high-dose methylprednisolone, which produces responses in around 50% of 

patients, but is complicated by a significant rate of infection (99).  As a single 

agent in purine analogue refractory patients, alemtuzumab induces responses in 

30-40% of patients, however the median time to progression in these studies was 

only 4-8 months (100, 101).  Alemtuzumab is markedly less efficacious in patients 

with significant lymphadenopathy (over 5 cm) (91), therefore often requires initial 

steroid therapy to reduce initial LN bulk.  There is some evidence that fludarabine 

used in chemoimmunotherapy combinations with rituximab such as FCR with or 
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without mitoxantrone may induce responses in patients refractory to fludarabine 

alone (102), again accepting significant risks of toxicity.  As more patients are 

receiving chemo-immunotherapy with FCR as initial treatment, an emerging 

problem will be the lack of additional second-line agents for those who relapse 

early following treatment. 

Other patient groups in which fludarabine is contra-indicated include those with a 

history of autoimmune haemolytic anaemia and the elderly with co-morbidities.  In 

summary, although CLL therapy has evolved significantly over the decades, the 

leukaemia remains incurable, and clinical management problems remain.  Recent 

advances in our knowledge of the biology of CLL have however revealed novel 

therapeutic targets, investigation of which forms the basis for this thesis. 

1.3 Overview of CLL biology 

1.3.1 Historical understanding of CLL biology 

CLL has been historically considered a leukaemia characterised by a relentless 

accumulation of long-lived, functionally incompetent lymphocytes that escape 

apoptosis.  In 1967, Dameshek described CLL as follows: 

“The continued increase in lymphocytes of a similar type year after year 
suggest an increased proliferation of these cells, but a number of 
studies, including very low levels of RNA synthesis, and the failure to 
detect evidence of increased DNA replication and mitotic activity 
suggest that accumulation of poorly reactive lymphocytes, rather than 
increased proliferation, may be fundamental to the disease.  It is likely 
that the lifespan of the small lymphocytes of the disorder may be 
considerably lengthened with the consequence that they remain and 
accumulate in lymph nodes, spleen, bone marrow, liver and blood” (73).  

Dameshek proposed that the morphology of malignant lymphocytes, resembling 

small resting lymphocytes, and the non-responsiveness of CLL cells to mitogenic 

stimulation, supported this view (73).  With the advent of FCM, this view was 

perpetuated by the analysis of CLL cell RNA and DNA content, which established 

definitively that over 99% of circulating CLL cells were in G0 or early G1 phases of 

cell cycle (103).  Moreover, the demonstration that the prototype anti-apoptotic 

protein Bcl-2 is consistently over-expressed in CLL cells (104), demonstrated a 

mechanism by which CLL cells may evade apoptosis. 
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1.3.2 Current understanding of CLL biology 

The traditional understanding of CLL biology has been challenged over the last 

decade by a number of lines of evidence, which have transformed the 

conventional view, and established that CLL represents a far more dynamic 

malignant process than previously considered.  Several groups have reported 

evidence of clonal evolution of CLL cells, identified by repeated analysis of 

cytogenetic abnormalities (105, 106), and demonstration of oligoclonality of IgVH 

genes (107, 108), which would be acquired through proliferation.  The 

observations that telomere regions in CLL lymphocytes are uniformly shorter than 

those of normal B cells, are shorter in unmutated CLL than mutated CLL (109), 

and that telomere length shows an inverse correlation with advancing disease 

(110, 111), suggest that the rate of proliferation of the malignant clone may be 

higher than previously thought.  This has now been confirmed by elegant in vivo 

studies in CLL patients.  Messmer et al. used a an in vivo cell labelling technique 

in which patients drank deuterated water (2H20) for 12 weeks, followed by analysis 

of 2H incorporation into CLL cell DNA (112).  This study confirmed significant rates 

of renewal CLL cells within the clone, with cell ‘birth rates’ ranging from 0.1 to over 

1% of the total clone size per day.  Patients with CLL birth rates of greater than 

0.35% of the clone per day were significantly more likely to have progressive 

clinical disease than those with lower rates.  Foci of proliferating CLL cells have 

been demonstrated histologically within patient LN biopsies, termed proliferation 

centres (PC) (113).  In contrast to normal GCs, proliferating CLL cells lack CD10 

and Bcl-6 expression, and express Bcl-2 (114), however CLL PCs are similar to 

GCs in that FDCs and T lymphocytes are seen interspersed with the malignant 

clone (113).  Using in vitro co-culture models, heterogeneous levels of CLL cell 

proliferation have been observed, with proliferation more marked in ZAP-70 

positive and progressive CLL cases (115, 116), highlighting the importance of 

proliferation, in addition to accumulation, in the progression of CLL.  Importantly, 

the mathematical models employed by Messmer et al. calculated significant CLL 

cell death rates, demonstrating that CLL cells are not as refractory to apoptosis as 

initially believed (112). 

While elements of the traditional model of CLL have been validated over time, in 

that there is undoubtedly an accumulative component to the disease, this 

circulating pool has been established to be populated by proliferating cells within 

the BM and LN.  The evidence of significant clonal turnover in CLL confirms that 
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the malignant cells are not fundamentally resistant to apoptosis, but rather 

suggests that CLL cells may need to compete for survival signals.  A number of 

lines of evidence suggest this is the case, and these are discussed in detail below. 

1.4 The role of antigen in the pathogenesis of CLL 

Although the cell of origin of CLL remains uncertain, a wealth of studies over the 

last decade analysing the surface Ig expressed by CLL cells has led to progress in 

this field.  Prior to the analysis of Ig gene mutation status, a widely-held view was 

that CLL most likely arises from malignant transformation of a marginal-zone (MZ) 

B lymphocyte, based on the similarity of these cells to murine CD5+ B1 B cells 

(117).  The identification of subgroups of CLL patients with different prognoses, 

based on IgVH mutation status, raised the possibility that CLL may encompass two 

separate but related malignancies, with unmutated CLL arising from a pre-GC 

naïve B cell, and mutated CLL arising from an antigen-experienced post-GC 

memory B lymphocyte (38).  However, this view has been challenged by the 

observation that all CLL cells express cell-surface proteins consistent with 

activation through the BCR, including CD23, CD25, CD69, and CD71, with 

reduced expression of CD22, and CD79b, although differences in expression 

levels of CD69 and CD71 between mutational subgroups suggested differences in 

time since antigen exposure (118).  In addition, all CLL cells express a wide range 

of genes consistent with antigenic stimulation (119, 120).  Furthermore, the 

universal gene expression signature of CLL cells most resembles that of normal 

memory B cells, rather than naïve or GC subtypes (120).   

Further evidence that CLL cells have encountered antigen comes from the 

observation that CLL cells express a very restricted set of Ig genes compared to 

normal B lymphocytes, with one study demonstrating frequent use of VH4-34, VH3-

07, and VH1-69 genes (35).  On meta-analysis, a significant over-representation of 

VH1, and under-representation of VH3 genes compared to normal CD5+ B 

lymphocytes was reported (35).  Studies of VH1-69 gene usage in healthy 

individuals over 75 years of age found no increased use of this allele, arguing 

against the CLL-associated repertoire simply reflecting normal age-related 

changes in the Ig repertoire (121).  Furthermore, VH1-69 expressing CLL cells 

were noted particularly use specific DH and JH gene segments, that significantly 

differ from those used by normal B cells (122).  This group also identified that the 

VH gene third complementarity determining region (CDR3) in these cases was 

significantly longer than that of normal B cells.  CDR regions are specific 
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hypervariable regions of the VH and VL chain genes which associate to form the 

antigen binding site at the tip of the antibody molecule (1), thus conservation in the 

expression of these gene segments strongly implicates interaction with specific 

antigen.  Studies of VH3-21 expressing CLL cases, frequently associated with 

mutated Ig genes, identified the use of a conserved short CDR3 gene segment in 

this subgroup (123).  In addition, the CDR3 gene segment in a number of VH3-21 

cases associated with particular lambda light chain genes, specifically Vλ2-14 and 

Jλ3 genes (123).  These Ig molecules formed from the non-random pairing of 

heavy and light chain genes are referred to as stereotyped.  A study of 1220 non-

familial CLL cases found that 1.3% of cases expressed a stereotyped unmutated 

BCR with virtually identical Ig, VH1-69 with a CDR3 using the second reading 

frame of D3-16 and JH3, in association with the kappa light chain gene A27 (124).  

Several groups have now reported over one hundred CLL-associated stereotyped 

BCRs, with a reported incidence of BCR stereotypy in over 20% of all cases (125-

128).  Patient subgroup analysis in these studies revealed BCR stereotypy to be 

significantly more frequent in unmutated CLL (around 40%) than mutated CLL 

(around 10%), suggesting a link with prognosis.  Recurrent amino acid changes 

have been characterised in the VH genes of CLL patients with stereotyped BCRs, 

particularly in cases expressing VH3-21 and VH4-34 genes (128), providing 

evidence for stereotypy in SHM patterns in addition to Ig gene usage.  Stereotyped 

amino acid changes have also been identified in light chain genes in CLL cases 

expressing stereotyped BCRs, particularly those expressing VH3-21/ VL3-21 and 

VH4-34/ VL2-30 subgroups (129).  The functional significance of stereotyped BCRs 

in CLL is underscored by the observation that the expression of a stereotyped 

VH3-21 BCR is a negative prognostic marker, independent of Ig mutational status 

(123, 130).  In addition, the expression of a stereotyped BCR has been associated 

with an increased risk of transformation of CLL to high-grade lymphoma (131). 

Although CLL cells are now recognised to have arisen from antigen-experienced B 

lymphocytes, a number of unresolved issues remain.  Intense research continues 

into determining the nature of the antigen(s) recognised by the BCR of CLL cells.  

Since the late 1980s, it has been recognised that CLL B cells may secrete 

antibodies with auto-reactive specificity, capable of binding human Ig, or single- or 

double-stranded DNA (132, 133).  With the advent of Ig mutational analysis, it was 

established that the majority (around 80%) of unmutated CLL cases produce 

antibodies that demonstrate poly-reactivity to a number of auto-antigens, while 
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poly-reactivity was observed in only 15% of mutated CLL (134).  Recent studies 

using phage libraries to screen for potential ligands of CLL cell antibodies 

confirmed significant differences between mutational subsets; antibodies produced 

by unmutated CLL cells demonstrated low-affinity, low-specificity interactions on 

screening, while mutated CLL cell antibodies demonstrated more selective higher-

affinity interactions, consistent with SHM (135).  These data remain consistent with 

different antigenic encounters and/or cell of origin of the mutational subgroups.  

However, Herve et al. went on to revert the antibodies of mutated CLL cells to their 

germline sequences, and demonstrated the majority of these to regain poly- and 

auto-reactivity, suggesting that both unmutated and mutated CLL arises from auto-

reactive B cells, raising the possibility of a common cell of origin (134).  Recent 

studies of antibodies expressed by CLL cells from both mutational subgroups, with 

or without stereotyped BCRs, have identified common antibody reactivity to a 

number of self antigens, predominantly cytoskeletal proteins (vimentin, filamin B, 

and colifin-1), cardiolipin, and oxidised low-density lipoprotein (136, 137).  These 

antigens are exposed on cell membranes during cellular apoptosis, and both 

groups demonstrated CLL antibodies to bind apoptotic B and T cell lines cells in 

vitro.  Furthermore, the BCR of one stereotyped unmutated VH1-69 CLL subset 

was shown to bind non-muscle myosin heavy chain IIA (MYHIIA), which is also 

exposed on the surface of apoptotic cells (138).   

In addition to auto-antigens, a number of CLL antibodies have also been 

demonstrated to exhibit specificity for bacterial antigens including streptococcus 

pneumoniae polysaccharides (136).  It is interesting to note that a 2.5 fold relative 

risk of CLL has been reported in individuals who have had three or more episodes 

of pneumonia (139).  In addition, in some cases of CLL lacking expression of a 

stereotyped BCR, there is evidence of antigenic stimulation by bacterial 

superantigens.  Superantigens are able to bind IgV regions outwith CDR regions, 

thus are less restricted by IgV region sequence (140).  In a recent study of 

mutated CLL cases which use the VH3-23 gene, in which stereotypy has not been 

described, the vast majority expressed conserved binding sites for the 

staphylococcus aureus protein A (SpA) superantigen (141).  Of note, this group 

demonstrated mutated VH3-23 gene use to be an independent poor prognostic 

marker within the mutated CLL cohort as a whole.   

These data have led to the hypothesis that both mutated and unmutated CLL may 

arise from a common population of B cells which produce low-avidity, poly-
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reactive, “natural antibodies” that may participate in a housekeeping function to 

remove apoptotic cells, and contribute to the initial stages of the adaptive immune 

response to foreign pathogens (17, 136).  In support of this hypothesis is the 

recent finding that naïve B cells expressing identical stereotyped VH1-69 BCRs to 

those found in CLL have been demonstrated in the peripheral blood of healthy 

individuals (142).  The currently considered candidate normal counterparts of CLL 

cells include CD5+ B-1 lymphocytes or MZ B cells, both of which express BCRs 

with specificity for both self and bacterial antigens (17).  Although mutated CLL 

may yet arise from a B cell which has transited through a GC and undergone SHM 

in a T cell dependent process, it is also possible that both mutational groups may 

arise from MZ B cells without a GC reaction.  MZ B cells may be activated to 

differentiate to plasma cells or memory B cells in a T cell-independent manner, in 

a process which may or may not result in SHM (17).   

It is interesting to note that a population of circulating IgM+, IgD+, CD27+ B cells, 

termed ‘IgM memory cells’ have been identified in peripheral blood, thought to be 

the circulating counterpart of MZ B cells, and have been demonstrated to undergo 

SHM through a T-cell independent process (143).  Of note, the human IgM 

memory B cell compartment is enriched in VH3 expressing cells, with some 

demonstrating SpA reactivity (144).  In a recent study 94.7% of IgM memory B 

cells in normal individuals were found to contain SHM consistent with antigen 

encounter, and to display markedly less self-reactivity than naïve B cells (144).  

The authors proposed that a third checkpoint for B cell tolerance exists between 

naïve and memory IgM B cell compartments, prior to SHM, in order to prevent the 

possibility of rapid expansion of potentially autoreactive IgM memory cells (144).  It 

is tempting to speculate that subversion of such a tolerogenic process may lead to 

the potential expansion of somatically mutated antigen-experienced IgM 

expressing B cells, and potentially represent a cell of origin of some mutated CLL 

cases.  Some interesting observations from VH4-34 expressing cells support such 

a hypothesis.  The VH4-34 gene is commonly used by CLL cells (35), most 

frequently the mutated subset, with 79% of cases in one study showing evidence 

of SHM, and is associated with indolent disease (128).  Of note, the germline VH4-

34 gene encodes auto-reactive antibodies which recognise the N-

acetyllactosamine (NAL) antigenic determinant of the I/i blood group antigen and 

has features of anti-DNA binding antibodies (128).  In healthy individuals, VH4-34 

expressing B cells are present in appreciable numbers, however VH4-34 
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antibodies are not seen, leading to the suggestion that SHM and possibly 

additional tolerance measures must occur to enable these cells to remain in the 

circulating B cell pool (145).  It is interesting to note that while VH4-34 cases show 

evidence of SHM predicted to negate anti-DNA reactivity, amino acid residues for 

the I blood group antigen remain conserved, suggesting these CLL cells may still 

be capable of stimulation by auto- or exogenous antigens (128).  Of note, a recent 

study demonstrated significant intraclonal diversity in some mutated VH4-34 

expressing CLL cases, which suggests ongoing antigenic stimulation (146). 

Whatever the precise cell of origin of CLL cells, the emerging model suggests that 

an initiating mutation occurs at an early point in an auto-reactive B cell that favours 

clonal expansion on antigen encounter (17).  The subsequent course of events 

leading to leukaemic transformation has been proposed to be shaped depending 

on whether SHM occurs, and this model is presented in Figure 1.4.  In the 

absence of IgVH gene mutations, antigen-driven clonal expansion may continue, 

raising the probability of a leukaemia initiating mutation being acquired, leading to 

unmutated CLL.  SHM may either result in increased BCR affinity for antigen 

leading to anergy, or reduced binding specificity leading to clonal ignorance.  The 

role of antigenic stimulation in inducing leukaemic transformation in mutated CLL, 

and in the progression of CLL after leukaemic transformation remains under 

investigation.  An emerging hypothesis suggests that the progressive course of 

unmutated CLL, and some mutated CLL cases, may be determined by the ability 

of CLL cells to continue to be stimulated by antigenic exposure (134, 145).  This 

hypothesis, and the combined data implicating antigenic stimulation in the 

pathogenesis of CLL has led to significant research into BCR signal transduction 

in CLL cells.  These data are presented in Section 1.6, preceded by an overview of 

BCR signal transduction in normal B lymphocytes. 
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Figure 1.4  Proposed model of antigen stimulation in the pathogenesis of 

CLL, adapted from Chiorazzi (17) 

This model suggests that within the normal B lymphocyte population (blue cells) a 

predisposing lesion occurs within a single cell (pink cell), providing it with a 

proliferative advantage in response to antigen (yellow).  Cells which have 

undergone SHM are shown in grey.  This model proposes that additional genomic 

aberrations are required for transformation to CLL (purple cells).  Stages where 

the continued role of antigenic stimulation has yet to be fully determined are 

indicated by blue question marks.  With continued proliferation CLL cells may 

acquire further genetic lesions (for example 13q, 11q, or 17p deletion) in the 

process of clonal evolution (green cells), largely confined to unmutated CLL. 
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1.5 B cell receptor signal transduction 

1.5.1 Early events following BCR engagement by antigen 

As outlined in Section 1.1.1, the BCR consists of membrane Ig, non-covalently 

associated with ITAM-containing Igα and Igβ chains.  Antigens presented to the 

BCR may be soluble or associated with cell membranes.  Current evidence 

suggests the most relevant mechanism of BCR stimulation in vivo is through 

antigen associated with membranes of FDCs and macrophages, which can retain 

significant amounts of antigen on the cell surface bound to Fc and complement 

receptors (147-149).  Following B cell engagement by membrane-bound antigen, 

many BCR units are redistributed within the cell membrane to cluster at the site of 

antigen binding (150).  This process is dependent on signalling through the BCR, 

and involves extensive cytoskeletal reorganisation, involving an initial phase of B 

cell cytoplasmic spreading across the antigen-presenting cell membrane, followed 

by a phase of cytoplasmic retraction, as shown diagrammatically in Figure 1.5 

(151).  In addition to increasing antigen density, cytoskeletal reorganisation greatly 

increases the recruitment of kinases involved in proximal BCR signal transduction 

and co-receptors such as CD19 to the BCR cluster, forming the microsignalosome 

(147, 152). This clustering of the BCR occurs predominantly within specialised 

lipid-rich membrane areas termed ‘lipid-rafts’, which also facilitate association of 

key signalling components (153). 

 

Figure 1.5  B cell cytoplasmic spreading and contraction response on 
antigen stimulation 
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1.5.2 Signal transduction 

A schematic overview of BCR signal transduction is shown in Figure 1.6.  

Following antigen engagement of the BCR, the Src family of non-receptor tyrosine 

kinases, in particular Lyn, Fyn, Blk, or Lck, phosphorylate ITAM regions of the Igα 

and Igβ chains (154, 155).  Each ITAM sequence contains two tyrosine residues, 

and double phosphorylation of both ITAMs allows the recruitment and activation of 

spleen tyrosine kinase (Syk), which binds to the ITAM sequences via its Src 

homology 2 (SH2) domains (154).  Activated Syk phosphorylates the B cell linker 

protein (BLNK), which acts as an adaptor molecule, allowing the assembly of a 

multi-protein complex, including the TEC-family tyrosine kinase Bruton’s tyrosine 

kinase (Btk), phospholipase Cγ2 (PLCγ2), and the VAV family of Rho GTPases (3, 

156).  Concurrently, Lyn phosphorylates the BCR co-receptor CD19, resulting in 

the recruitment of the enzyme phosphatidylinositol-3-kinase (PI-3K).  PI-3K in turn 

phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to convert it to 

phosphatidylinositol-3,4,5-triphosphate (PIP3) (155).  PIP3 results in membrane 

localisation of Btk and PLCγ2, enabling them to bind BLNK through their 

pleckstrin-homology (PH) domains (157).  PIP3 also recruits another adaptor 

protein, B lymphocyte adaptor molecule of 32 kDa (Bam32), which further tethers 

PLCγ2 to the plasma membrane.  Btk and Syk can then effectively phosphorylate 

and activate PLCγ2, which converts PI(4,5)P2 to inositol triphosphate I(1,4,5)P3 

and diacylglycerol (DAG).  I(1,4,5)P3 formation results in the release of calcium 

from intra-cellular stores, and activation of extra-cellular calcium channels (155).  

The magnitude and duration of flux in cytoplasmic calcium concentration controls 

activation of the transcription factors nuclear factor of activated T cells (NFAT), 

activated directly through calcium-calmodulin complexes, and nuclear factor 

kappa-light-chain enhancer of activated B cells (NF-κB), activated indirectly 

through Ca2+-dependent activation of atypical protein kinase C (PKC) isoforms (ζ 

and ι/λ) (158, 159).  DAG meanwhile activates classical PKC isoforms (α, β, and γ) 

which in turn activated mitogen activated protein kinases (MAPK) (160).  MAPK 

are also activated through the activation of Vav, and the adaptor complex 

Grb2/SOS, which associate with phosphorylated BLNK.  Key downstream 

signalling pathways are described in further detail below. 
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Figure 1.6  An overview of the B cell antigen receptor signalling pathway 
 

1.5.2.1 MAPK signalling pathway 

There are three main classes of MAPK; c-Jun NH2-terminal kinase (JNK) family, 

the p38 MAPK family, and the extra-cellular signal-related kinase (ERK) family 

(161).  MAPK are serine-threonine protein kinases which control a wide range of 

biological effects, and are essential for normal haemopoiesis.  The ERK pathway 

predominantly mediates anti-apoptotic and mitogenic gene expression in response 

to cytokines and growth factors.  The p38 and JNK MAPKs are activated by stress 

and growth factors, and control predominantly apoptosis and cell-cycle 

progression (161).  MAPK require dual phosphorylation on tyrosine and threonine 

residues for activity, and phosphorylation on these residues is controlled by a 

complex series of regulatory kinases, outlined in Figure 1.7.  MAPK kinases 

(MAPKKs or MEKs) may phosphorylate MAPK on both tyrosine and threonine 

residues.  Specificity is achieved in MAPK activation as specific MEKs 
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phosphorylate specific MAPK; in outline, MEKs 1 and 2 phosphorylate ERK, MEKs 

3, 4, and 6 phosphorylate p38, and MEKs 4 and 7 activate JNK.  MEKs are in turn 

regulated by the activity of MAPK kinase kinases (MAPKKKs), which are a family 

of serine kinases.  MAPKKKs are furthermore activated by small G proteins, 

including Ras for the ERK pathway, and Rho proteins for the p38 and JNK 

pathways (161).  The transcription factors regulated by MAPK include Elk-1 and c-

myc by ERK, c-Jun and ATF-2 by JNK, and ATF-2 and MAX by p38 MAPK, and 

the functional outcome of activation is dependent on the developmental stage of 

the B cell (155). 

 

Figure 1.7  Regulation of MAPK activation 
 

1.5.2.2 PI-3K/Akt signalling pathway 

There are four classes of PI-3K, named IA, IB, II, and III, differentiated by structural 

and substrate specificity characteristics (162).  Class IA PI-3K is involved in 

signalling downstream of the BCR.  This class of PI-3K are heterodimers of a 

regulatory subunit (p85α, p85β, p55α, p50α, or p55γ) and a p110 catalytic subunit 

(p110α, p110β, or p110δ) (162).  The p85 regulatory PI-3K subunit associates with 

phosphorylated CD19, via its’ SH2 domains, and this in turn activates the catalytic 

p110 subunit (155).  In addition to converting PI(4,5)P2 to PIP3 following BCR 

activation, PI-3K also recruits the serine/threonine kinase Akt (protein kinase B) to 

the lipid membrane (163).  A conformational change in Akt allows full activation 

through phosphorylation on Thr308 (catalysed by PDK1) and Ser473, resulting in the 

release of active Akt from the membrane to exert cytoplasmic effects (155, 164).  
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Key signalling targets of Akt are shown in Figure 1.8.  Akt phosphorylates the pro-

apoptotic Bcl-2 family protein Bad, preventing it from interacting with anti-apoptotic 

Bcl-xL, resulting in a net anti-apoptotic effect (165).  Akt  also regulates a number 

of nuclear transcription factors, including E2F, NF-κB, Ca2+/cAMP response 

element binding protein (CREB), and forkhead transcription factors (155).  Akt 

negative regulation of forkhead transcription factors results in the degradation of 

additional pro-apoptotic proteins, including Fas-ligand and Bim (155).  Akt also 

directly phosphorylates and inactivates caspase 9, an effector of the intrinsic 

apoptotic pathway (166, 167).  PI-3K/Akt signalling following BCR stimulation also 

results in phosphorylation of components of the mammalian target of rapamycin 

(mTOR) complex, which in turn phosphorylates the p70 s6 kinase (168).  P70 s6 

kinase phosphorylates the s6 protein, resulting in protein synthesis (169).  In 

summary, PI-3K/Akt targets following BCR signalling broadly prevent apoptosis, 

and promote cell cycle progression. 

 

Figure 1.8  An outline of the PI-3K/Akt signalling pathway 

1.5.2.3 NF-κB signalling 

The NF-κB family of transcription factors comprises NF-κB1 (p50), NF-κB2 (p52) 

RelA (p65), RelB, and c-Rel, which bind to DNA as heterodimers (170). NF-κB 

heterodimers are held within the cytoplasm in the resting state, through interaction 

with inhibitory IκB proteins.  On activating stimuli such as BCR stimulation, IκB is 

phosphorylated by IκB kinases, which target IκB for proteasomal degradation, and 
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allow NF-κB heterodimers to translocate to the nucleus and direct gene 

expression (170).  Activity of NF-κB transcription factors is essential for the 

survival and function of mature B cells (171), and following BCR engagement, NF-

κB increases the expression of anti-apoptotic Bcl-2 family proteins, including Bcl-2, 

Bcl-xL, and A1, and cell-cycle related proteins including cyclin D2 (3). 

1.5.3 Tonic BCR signalling 

As outlined in Section 1.1.1, expression of a functional pre-BCR or BCR is 

essential for normal lymphocyte development.  In addition, it is now understood 

that mature B cells also depend on expression of a functional BCR for survival, as 

conditional ablation of BCR expression results in rapid B cell apoptosis (172, 173), 

suggesting that a basal level of signalling may occur independently of antigen.  

Three models for the generation of antigen-independent ‘tonic’ signals through the 

BCR complex have been proposed (174).  The homeotypic model proposes that a 

basal level of signalling may occur due to a degree of self-aggregation of pre-B 

and B cell receptors, while the lipid raft model suggests that basal signals may be 

determined by the fraction of membrane-associated BCR complexes within these 

specialised lipid-rich membrane domains.  The currently favoured model of tonic 

signalling is the equilibrium model, which states that the level of basal signal 

transduction results from a dynamic balance of activities of Src family kinases 

capable of phosphorylating ITAMs, and the activity of negative regulatory tyrosine 

phosphatases, including SH2-associated protein-1 (SHP-1), which is activated by 

the BCR co-receptor CD22 (174).  This model is supported by a study showing 

that mice lacking the Src family kinases Blk, Fyn, and Lyn are deficient in pre-BCR 

function (175).  An indication that the tyrosine kinase c-Abl may participate in tonic 

signalling in B cells came from a study in Abelson murine leukaemia virus 

transformed cell lines, which exhibit maturation arrest at the pre-B cell stage (176).  

In these cells, inhibition of c-Abl activity with the ATP-competitive tyrosine kinase 

inhibitor (TKI) imatinib induced expression of RAG-1 and RAG-2, and allowed Ig 

light chain rearrangement to occur (176), confirming c-Abl to block cellular 

differentiation, which may be relevant to leukaemogenesis.  Notably, a similar role 

for c-Abl kinase, in conjunction with ERK MAPK, in the repression of RAG gene 

transcription has also been identified in T lymphocytes (177).   
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1.6 BCR signalling in CLL cells 

1.6.1 BCR signal transduction in CLL cells 

All CLL cases are characterised by low surface Ig expression, usually IgM and 

IgD, usually expressed on mature, antigen-experienced B cells (178), therefore it 

may be supposed that the ability of CLL cells to signal through the BCR is limited.  

However, it has long been appreciated that a subset of CLL cells show evidence of 

activation following in vitro BCR stimulation (179, 180).  Shortly after the 

appreciation of the prognostic impact of IgVH mutational status, came the 

realisation that the response of CLL cells to BCR ligation correlated significantly 

with IgVH mutational status, with 80% of unmutated CLL cases responding and 

only 20% of mutated CLL cases responding in one series (181).  Further evidence 

that ongoing signalling through the BCR may be involved in the progression of 

CLL after leukaemic transformation comes from analysis of CLL gene expression 

signatures.  Despite a broadly similar gene expression profile between Ig 

mutational subtypes, of the several hundred differentially expressed genes, 

several genes expressed in the unmutated subgroup are involved in mitogenic 

BCR signalling, leading the authors to speculate that these cases may continually 

respond to (auto)-antigen in vivo (119). 

Although Allsup et al. identified that a cut-off of less than 5% difference from 

germline IgVH sequence was more predictive of BCR signalling competency than 

the conventional 2% variation from germline sequence, some unmutated cells 

were again non-responsive and a few mutated CLL cases were responsive to IgM 

stimulation, confirming that additional regulation of BCR signal transduction exists 

in CLL (182).  In this study, differences in the level of surface IgM between 

samples did not account for the observed differences in signalling.  Expression of 

ZAP-70 has been demonstrated to correlate with the phosphorylation of Syk 

following BCR ligation in CLL cells (183).  Although ZAP-70 expression largely 

correlated with Ig mutational status, mutated CLL cells expressing ZAP-70 also 

showed enhanced Syk phosphorylation following BCR stimulation (183).  This 

group also demonstrated that ZAP-70 becomes tyrosine phosphorylated and 

associates with the BCR following stimulation, suggesting an active role in BCR 

signalling, analogous to its’ role in T lymphocytes.  Further studies in which ZAP-

70 negative CLL cells were transfected with either wild-type or mutated ZAP-70 

constructs identified that enhancement of BCR signalling by ZAP-70 is dependent 
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on the integrity of the SH2 region, but not the kinase domain, suggesting that ZAP-

70 acts as an adaptor protein regulating BCR signalling in CLL cells (184), which 

may well account for the negative prognostic impact of ZAP-70 expression.  

However, Deglesne et al. reported a number of ZAP-70 expressing CLL cases to 

be non-responsive to BCR stimulation, and some ZAP-70 positive cases showing 

little response to BCR ligation, suggesting yet further regulation exists (185).  An 

association between CD38 expression in CLL cells and an intact Ca2+ flux in 

response to BCR ligation has been described (186), and CD38 was proposed to 

be a receptor which may prolong signalling generated through the BCR, however 

this has not been demonstrated in a recent study (187).  Furthermore, expression 

of the proto-oncogene T-cell leukaemia 1 (Tcl-1), a positive regulator of Akt 

activation, in CLL cells has been reported to correlate with increased signalling 

response and metabolic activity following BCR stimulation (188).  Of note, high 

Tcl-1 expression was an independent predictor for short PFS in this study.  In 

contrast to these proteins that promote BCR signal transduction in CLL cells, over-

expression of protein kinase CβII (PKCβII) has been shown to negatively regulate 

Ca2+ flux following BCR stimulation, proposed to maintain BCR signalling below 

the level that may trigger apoptosis following encounter with antigen (189).  The 

observation that high PKCβII expression in CLL patient samples correlated with 

both a high white cell count, and advanced stage of disease (189), indicates that 

the regulation of BCR signalling by PKCβII is functionally relevant in vivo. 

According to the model of CLL outlined in Figure 1.4, the majority of mutated CLL 

cells are predicted to persist as anergic or unresponsive B cells.  Analysis of CLL 

cells in which poor Ca2+ flux was observed following IgM stimulation in vitro 

revealed defective Syk phosphorylation despite normal Syk expression, 

suggesting altered regulation of proximal components of the BCR signalling 

pathway (190).  Allsup et al. compared CD79a phosphorylation on BCR 

stimulation between Ig mutational subgroups of CLL; while in unmutated CLL cells 

CD79a was phosphorylated on BCR stimulation, CD79a was constitutively 

phosphorylated in mutated CLL cells, suggesting previous antigenic stimulation 

(182).  Moreover, in BCR non-responsive CLL cells from both mutational 

subgroups, the BCR was prevented from translocating to lipid rafts following IgM 

stimulation, through a mechanism involving Src kinases, a similar phenomenon to 

that observed in non-malignant anergic B lymphocytes (182).  In murine B 

lymphocytes, an anergic tolerised state is molecularly characterised by constitutive 
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ERK activation and nuclear NF-AT localisation (191).  It is of great interest 

therefore that 49% (25/51) of CLL samples in one study showed evidence of 

constitutive ERK phosphorylation and NF-AT activity in the absence of Akt 

phosphorylation (191).  The same subset of CLL samples were also significantly 

less responsive to in vitro BCR stimulation compared to those lacking constitutive 

ERK phosphorylation, leading the authors to conclude that the molecular features 

observed also reflect an anergic state (191).  The anergic molecular phenotype 

significantly correlated with an early stage of disease at patient diagnosis, but no 

associations with other clinical or biological parameters (including IgVH mutational 

status) were identified (191).  Another study of the signalling response to BCR 

stimulation with soluble anti-IgM antibodies has suggested that all CLL cells may 

have signalling features reminiscent of anergic B cells (192). In this study, 

incomplete MAPK activation following BCR stimulation was observed; 

phosphorylation of  ERK occurred in 100% of unmutated and 75% of mutated CLL 

samples, while JNK or p38 phosphorylation was rarely observed (192).  However, 

stimulation of CLL cells with immobilised anti-IgM antibodies resulted in more 

sustained activation of ERK and Akt in both subgroups (192).  As B cell stimulation 

by immobilised anti-IgM antibodies has been proposed to model T-independent 

antigenic stimulation, the authors concluded that T-dependent and T-independent 

antigens may induce different signalling responses in CLL cells.  Murine anergic B 

lymphocytes require continuous BCR engagement by antigen to retain tolerance, 

and regain responsiveness to antigen stimulation on antigen removal (193).  Of 

interest, CLL cells initially unresponsive to in vitro BCR stimulation regain surface 

IgM expression and BCR-responsiveness following in vitro culture, strengthening 

the case that CLL cells encounter antigen in vivo (187).  

In order to investigate the functional consequences of BCR signal transduction 

observed in CLL cells, a number of groups have assessed the effect of BCR 

stimulation on CLL cell survival and proliferation.  One of the first studies was that 

of Bernal et al., who stimulated CLL cells in vitro with F(ab’)2 antibody fragments 

to human IgM, which resulted in a significant reduction in spontaneous apoptosis, 

associated with activation of NF-κB, and increased expression of anti-apoptotic 

proteins including Bcl-2 and Mcl-1 (194).  These pro-survival effects were 

completely blocked by the PI-3K inhibitor LY294002, implicating PI-3K as the 

predominant mediator of anti-apoptotic signalling (194).  Many other groups have 

since confirmed the anti-apoptotic effect of prolonged BCR stimulation of CLL cells 
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in vitro, either using soluble F(ab’)2 anti-IgM fragments or anti-IgM antibodies 

immobilised on beads or tissue culture plates (182, 185, 192, 195).  Two of these 

groups observed a pro-survival effect on stimulation with immobilised anti-IgM 

only, while soluble anti-IgM resulted in increased spontaneous apoptosis (185, 

192).  Introduction of constitutively active Akt into primary CLL cells recapitulated 

the anti-apoptotic profile of Bcl-2 proteins observed on BCR stimulation, with up-

regulation of Bcl-xL, XIAP, and Mcl-1 (196).  Furthermore, this group demonstrated 

down-regulation of Mcl-1 using siRNA blocked the anti-apoptotic effect of 

prolonged BCR stimulation and induced apoptosis.  While transfection of CLL cells 

with constitutively active MEK2 led to up-regulation of XIAP, no significant 

increase in viability was observed, leading the authors to conclude that Akt-

mediated Mcl-1 up-regulation is the major anti-apoptotic signalling pathway 

downstream of the BCR in CLL cells (196).  Of note, immobilised anti-IgM 

stimulation of CLL cells significantly reduced the level of apoptosis observed on 

fludarabine treatment in vitro, and correlated with retained Mcl-1 expression and 

reduced poly ADP ribose polymerase (PARP) cleavage (192).  High Mcl-1 

expression in freshly isolated peripheral blood CLL cells has been shown to 

significantly predict for a reduced likelihood of achieving a CR following 

chemotherapy (chlorambucil or fludarabine) (197), suggesting that this signalling 

pathway may play a role in chemoresistance in vivo.   

The demonstration that clonal evolution, characterised by the acquisition of new 

chromosomal abnormalities on FISH, predominantly occurs in unmutated CLL 

cases (198), suggests that BCR signalling may drive leukaemic cell proliferation.  

Although in vitro studies have failed to demonstrate S-phase cell cycle entry or cell 

division following anti-IgM stimulation of CLL cells (185, 186), Deglesne et al. 

reported BCR responsive CLL cells to increase in size and metabolic activity, with 

concurrent up-regulation of cyclin D2 and the cyclin-dependent kinase (cdk) 4.  

Despite changes in expression of genes involved in cell cycle entry, expression of 

the cell cycle inhibitor p27kip1 remained high in all cases, leading the authors to 

suggest that the ability of CLL cells to respond to antigenic stimulation in vivo is 

likely to prime them for proliferation on the receipt of further costimulation from T 

cells (CD154 or IL-4) or stromal cells (185).  In this study, 84% of the patients 

whose CLL cells responded to BCR stimulation in vitro showed evidence of 

progressive disease, measured by LDT or Binet stage B or C disease, while all 

BCR unresponsive cases were stable stage A patients.  These data have been 
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corroborated by the results of a recent gene expression study in CLL cells 

following BCR stimulation.  In unmutated CLL cells only, BCR crosslinking led to 

up-regulation of several genes involved in signal transduction (including MAPK 

pathway genes), and cell cycle progression (including cdk4) (199).  Furthermore, 

this group demonstrated IgM stimulation of these unmutated CLL samples to 

induce a 2.7-fold increase in the percentage of cells in G1 after 24 hr of stimulation 

(199). 

Collectively, these data strongly implicate a role for BCR signal transduction in 

response to antigenic stimulation in the maintenance and progression of CLL, 

identifying BCR signal transduction as a rational novel therapeutic target.  In 

addition, the data linking BCR signalling to chemoresistance in vitro suggests that 

BCR stimulation may play a role in in vivo chemoresistance. 

1.6.2 Evidence for dysregulated tonic BCR signalling in CLL 

In addition to the evidence that antigen-induced BCR signal transduction is central 

to CLL pathogenesis, recent research has identified that tyrosine kinases involved 

in BCR signal transduction are over-expressed and constitutively active in CLL, 

namely Lyn and c-Abl, raising the possibility that dysregulated antigen-

independent signals downstream of the BCR also contribute to CLL pathogenesis. 

1.6.2.1 Lyn kinase 

Lyn is a member of the Src kinase family, which comprises Lyn, Hck, Blk, Src, 

Fyn, Lck, Yrk, Yes, and Fgr (200).  Lyn is the predominant Src kinase expressed in 

normal B lymphocytes, and exists in two functionally-identical isoforms, of 53 and 

56 kDa (201).  In addition to promoting proximal BCR signal transduction, Lyn is 

believed to also exert a negative regulatory effect on signalling, as Lyn-/- mice 

develop B cell hyper-reactivity and autoimmune glomerulonephritis (202).  All Src 

kinases are structurally conserved, containing three SH domains, of which the C 

terminal SH1 domain is responsible for the kinase activity (200).  The structure of 

Lyn kinase is shown in Figure 1.9.  Lyn activity is regulated by phosphorylation of 

the C terminal Tyr507.  Tyr507 phosphorylation by Csk retains Lyn in an inactive 

conformation, in which the C terminal associates with the SH2 domain.  

Dephosphorylation of Tyr507 by CD45 releases the C terminal from SH2 domain, 

and allows autophosphorylation of Tyr396 in the kinase domain to occur, resulting 

in kinase activation (200).   
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Figure 1.9  Diagram of the regulation of Lyn kinase activity 
 

Lyn has been reported to be uniformly over-expressed 2.5-5 fold at the protein 

level in CLL cells, while expression of other Src kinases including Src, Fyn, Fgr, 

and Lck were expressed at levels comparable to normal B lymphocytes (203).  

Kinase assays confirmed Lyn to be constitutively active, with little increase in 

activity following BCR stimulation (203).  The mechanism for Lyn over-expression 

in CLL remains to be determined, however down-regulation of microRNA-337-5p 

has been proposed as a potential factor (204).  A potential mechanism for 

constitutive Lyn activity has been proposed to be due to the level of Lyn expressed 

exceeding the level of inhibitory Csk kinase (203).  In addition to expression within 

the plasma membrane, Contri et al. demonstrated Lyn to be abnormally located 

within the cytoplasm of CLL cells (203).  A potential role for Lyn in CLL 

pathogenesis was suggested by the demonstration that in a screen of kinase 

inhibitors, only Src kinase inhibitors such as PP2 reduced the global tyrosine 

phosphorylation characteristic of CLL cells, and induced apoptosis (203). 

Lyn has also been implicated as an oncogenic kinase in a number of other 

haematopoietic malignancies.  In acute myeloid leukaemia (AML), Lyn is 

constitutively active, and abnormally located within the plasma membrane and 

cytoplasm, and associated with an increase in global tyrosine phosphorylation 

(205).  Similarly to CLL, the tyrosine phosphorylation pattern was inhibited by PP2, 

and moreover, specific Lyn inhibition using siRNA significantly reduced the colony 

forming potential of primary AML cells (205).  Lyn kinase activity is also well 

established as a mechanism of resistance to imatinib in CML and Philadelphia-

chromosome positive acute lymphoblastic leukaemia (ALL) (206, 207).  A novel 

TEL-Lyn fusion gene has recently been reported in primary myelofibrosis (208).  

Lyn has also been implicated in the pathogenesis of lymphoid malignancies.  In B-

cell non-Hodgkin’s lymphomas, Lyn associates with a Cbp/PAG adaptor protein 

within lipid rafts, to form a signalosome linking Lyn to Signal Transducer and 
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Activator of Transcription (STAT)-3 (209).  Src inhibitors dissociated the 

Lyn/Cbp/PAG complex, inhibited proliferation, and induced apoptosis in NHL cell 

lines (209).  

1.6.2.2 c-Abl kinase 

c-Abl is a homologue of the v-Abl oncogene encoded by the Abelson murine 

leukaemia virus (210).  An essential role for c-Abl in normal lymphopoiesis has 

been established following the observation that mice homozygous for inactivating 

c-Abl mutations have severe B and T lymphopenia and thymic and splenic atrophy 

(210).  Following BCR stimulation, c-Abl phosphorylates the BCR co-receptor 

CD19, ultimately resulting in PI-3K activation (211).  Additionally, c-Abl has been 

implicated in tonic BCR signalling as described in Section 1.5.3.   

The 1b splice variant of c-Abl has been demonstrated to be heterogeneously over-

expressed in CLL, and constitutively active (212).  Furthermore, significant 

associations were observed between high c-Abl protein expression and, 

unmutated IgVH genes, ZAP-70 expression, Binet stage B or C disease, and a high 

circulating white cell count (212).  In addition, inhibition of c-Abl using imatinib 

induced apoptosis, with the sensitivity of CLL cells to imatinib-induced apoptosis 

correlating positively with c-Abl expression.  The induction of apoptosis correlated 

with the inhibition of NF-κB activity, suggesting a molecular mechanism for 

apoptosis (212).  Moreover, imatinib also sensitised CLL cells to chlorambucil in 

vitro (213). 

Although further work is required to fully determine the roles of dysregulated Lyn 

and c-Abl kinases in CLL, these combined data further support inhibition of BCR 

signal transduction as an attractive novel therapeutic approach in CLL. 

1.7 The role of the microenvironment in CLL 
Increasingly, it is being appreciated that few malignant disorders are defined by 

truly autonomous neoplastic cells, rather, most cancers depend, to varying 

extents, on a wide array of accessory cells within the tumour microenvironment 

(214).  In haematopoietic malignancies, including acute leukaemias and CML, the 

BM microenvironment is exploited by a subpopulation of the leukaemic clone 

which have acquired the properties of self-renewal (215).  Such leukaemia stem 

cells (LSCs) within the microenvironmental niche may escape chemotherapy, and 

lead to disease relapse.  The issue of whether LSCs exist in CLL remains an area 

under active investigation, however, it is now firmly established that CLL cells, 
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similar to many other B cell malignancies, retain the dependence of normal B 

lymphocytes on a number of interactions with the BM and LN microenvironment 

(216).  The importance of the microenvironment CLL is underscored by the 

observation that CLL cells undergo variable rates of spontaneous apoptosis on in 

vitro culture (217).  In addition, the extent and pattern of BM infiltration in CLL has 

prognostic value (218).  Although the normal BM and LN microenvironments differ 

in composition and function, supporting normal B lymphocyte development and 

differentiation in response to antigen respectively (216), both tissue compartments 

are sites of CLL cell proliferation (219).  On examination of BM and LN biopsies 

from CLL patients, a proportion of malignant lymphocytes are located within PC, in 

close association with a number of accessory cells, including stromal cells, 

dendrtitic cells, T lymphocytes, and macrophages (219).  It is within such PCs that 

CLL cell interaction with antigen is proposed to occur (145).  The close association 

of CLL cells within this specialised microenvironment also brings the malignant 

cells into contact with a number of cell associated and secreted factors which 

promote CLL cell survival and proliferation.  A summary of the key interactions 

between CLL cells and microenvironmental stimuli are shown in Figure 1.10, and 

described in detail below.  It is becoming increasingly appreciated that the 

interaction of CLL cells with the microenvironment is a dynamic two-way process, 

in which the malignant lymphocytes play a key role both in recruiting supporting 

cells and directing expression of favourable signalling proteins by accessory cells. 

1.7.1 The role of stromal cells in CLL 

Co-culture of CLL cells with primary human BM-derived stromal cells has been 

demonstrated to significantly reduce apoptosis of CLL cells in vitro, and can 

maintain CLL cell viability for several weeks (220).  The protective effect of stromal 

co-culture is largely dependent on direct contact between CLL and stromal cells, 

as it was not observed on CLL cell culture in transwell inserts above stromal cells, 

or with stromal cell conditioned medium (220, 221).  In addition to stromal cells, 

CLL cell survival in vitro can also be increased by co-culture with a dendritic cell 

line (222).  Many secreted cytokines including IL-2, IL-4, IL-10, vascular 

endothelial growth factor (VEGF), and interferon (IFN) -α and -γ are known to 

support CLL cell viability in vitro, and culture of CLL cells in transwells above 

primary BM cultures provided a degree of protection from apoptosis, less so than 

direct contact, suggesting that secreted cytokines also contribute to promoting CLL 

cell survival (223). 
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Figure 1.10  Key interactions between CLL cells and the microenvironment 
 

Adhesion to BM stromal cells has been shown to induce resistance to 

chemotherapy in a number of haematological malignancies, including ALL (224), 

CML (225), and multiple myeloma (226).  Stromal cell co-culture in vitro has been 

demonstrated to significantly protect CLL cells from apoptosis induced by 

hydrocortisone (220), chlorambucil (223), and fludarabine (227).  These studies 

raise the possibility that chemoresistant CLL cells located within stromal-rich 

microenvironments in the BM and possibly LN may be responsible for the 

persistence of MRD and eventual relapse.  In support of this, in studies assessing 

MRD using sensitive FCM techniques, patients with detectable MRD in the 

peripheral blood all had greater than 5% BM involvement (228).  It is now clear 

that a multitude of inter-related signalling pathways are involved in stromal-

mediated protection of CLL cells from apoptosis, and the key pathways are 

described in detail below. 
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1.7.1.1 SDF-1/CXCR4 axis 

Stromal cell-derived factor-1 (SDF-1; CXCL12), is a member of the CXC 

chemokine family, with a number of essential functions including the retention of 

haematopoietic progenitor cells within the bone marrow, and homing of mature 

lymphocytes to secondary lymphoid organs (229).  SDF-1 has been demonstrated 

to play a major role in attraction and retention of CLL cells to stromal 

microenvironments (230).  SDF-1 is predominantly expressed by BM and LN 

fibroblasts, and although a number of splice variants have been identified, SDF-1α 

is the main secreted form (231).  SDF-1 may be secreted to stimulate cells in a 

cell-free manner, however SDF-1 has been well characterised to bind 

glycosaminoglycans in cell membranes such as heparan sulphate, and it is the 

latter immobilised form that is believed to account for biologically relevant 

signalling in vivo (232).  The sole receptor for SDF-1 is CXCR4, a 352 amino acid 

G protein linked receptor (231), and an overview of CXCR4 signalling is shown in 

Figure 1.11.  Binding of SDF-1 to CXCR4 activates the PI-3K/Akt, NF-κB, 

MEK/ERK, and Janus kinase (JAK)/STAT pathways (233, 234).  In addition, Src 

kinases including Src, Lyn, and Fyn are phosphorylated (231, 235), and regulate 

activation of downstream kinases including focal adhesion kinase (FAK) (233).  

FAK has an important role in regulating cytoskeletal reorganisation and cell 

migration, through phosphorylation of downstream kinases including paxillin and 

p130CAS (236).  A positive feedback loop exists between activated Src and FAK in 

which both increase the activating phosphorylation of the other (236).  Termination 

of CXCR4 signalling is largely dependent upon SDF-1-induced internalisation of 

CXCR4, in a mechanism dependent upon PKC (231).   

CXCR4 signalling is essential for retention of developing B lymphocyte progenitors 

within the BM (237), as evidenced by defective B but not T lymphopoiesis in mice 

lacking SDF-1 or CXCR4 (238).  The mechanism by which SDF-1 retains 

haematopoietic progenitors within the BM involves activation of β1 integrins (239).  

Mature B lymphocytes also express CXCR4, and although some in vitro studies 

have shown only naïve and memory B cells are responsive to SDF-1 stimulation 

(240), there is evidence to suggest that dynamic regulation of CXCR4 signalling is 

central to the transit of activated B cells through the GC (9). 
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Figure 1.11  CXCR4 signalling pathway 
 

CLL cells express high levels of surface CXCR4, around four-fold that of normal B 

lymphocytes (241).  CXCR4 receptors are functional in CLL cells, as evidenced by 

induction of ERK phosphorylation, calcium mobilisation and actin polymerisation 

following SDF-1 stimulation, and migration toward SDF-1 in transwell culture 

experiments (230, 241).  In addition, culture of CLL cells with the SDF-1-

expressing murine BM stromal cell line M2-10B4 resulted in spontaneous 

migration of over five percent of CLL cells beneath the stromal cell layer 

(pseudoemperipolesis), which was confirmed to be dependent on SDF-1/CXCR4 

interaction as it was inhibited by anti-CXCR4 antibodies (230).  Moreover, culture 

of CLL cells in vitro with recombinant SDF-1 significantly reduced spontaneous 

apoptosis rates, demonstrating that SDF-1 exerts a pro-survival effect (242).  

Small molecule inhibitors of CXCR4 have been shown to inhibit SDF-1 signalling 

in CLL cells, and resensitise CLL cells co-cultured with stromal cells to 

chemotherapy (393). 

1.7.1.2 Integrins 

Integrins are key cell surface receptors which mediate attachment of cells to 

endothelial and stromal cells, and integrin function is central to co-ordinating the 

immune response to infection (243).  Integrins are each composed of an α and β 

chain heterodimer (243).  CLL cells frequently express β1 (CD29), β2 (CD18) 

chains, with variable expression of α3 (CD49c), α4 (CD49d), and α5 (CD49e) 



   

 41 

(244).  Key integrins which may be expressed by CLL cells include Very Late 

Antigen-4 (VLA-4; α4β1), which binds vascular cell adhesion molecule-1 (VCAM-

1) and fibronectin, and Lymphocyte Function-associated Antigen-1 (LFA-1; αLβ2), 

which interacts with intercellular adhesion molecules (ICAMs) (243, 245).  In 

addition to expressing integrins, CLL cells may also express the also express the 

integrin ligands ICAM-1 (CD54), ICAM-2, and ICAM-3 (245).  Adhesion of CLL 

cells to stromal cells, and associated protection from apoptosis, has been 

demonstrated to involve both β1 and β2 integrins (221).  Notably, an association 

between β-integrin expression and poor prognostic subsets has been reported 

(246).  CLL cells have been reported to bind to GCs of tonsillar sections through 

interaction of VLA-4 with VCAM-1 (247).  In addition, in vitro adhesion of CLL cells 

expressing VLA-4 to fibronectin increases expression of Bcl-2 and Bcl-xL, and 

inhibits both spontaneous and fludarabine-induced apoptosis (248, 249).  

Recently, culture of CLL cells with primary BM stromal cells has been shown to 

induce up-regulation of CD49d and CD54, suggesting that initial interactions 

between CLL cells and stromal cells may modulate the microenvironment in such 

a way as to favour retention of CLL cells (115).  Pseudoemperipolesis of CLL cells 

into a stromal cell layer in response to SDF-1 has been shown to induce up-

regulation of CD49d on the CLL cell surface, highlighting co-operation between 

chemokine and integrin signalling in the retention of CLL cells within tissues (230).  

Several studies have demonstrated that CD49d expression is an independent 

adverse prognostic indicator in CLL (250-252), implicating integrin-mediated 

adhesion as an important factor in both disease progression and possibly 

chemoresistance. 

1.7.1.3 Angiogenic cytokines 

CLL cells have been shown to constitutively express angiogenic cytokines 

including VEGF, basic fibroblast growth factor (bFGF), and the negative regulator 

thrombospondin 1 (TSP-1), in addition to the VEGF receptor (253), raising the 

possibility of autocrine VEGF signalling in CLL cells.  In addition to basal autocrine 

VEGF signalling, there is evidence to suggest that CLL cell interaction with BM 

stromal elements may alter cytokine expression in favour of a pro-angiogenic 

state.  Kay et al. demonstrated that CLL cell co-culture with primary BM cultures 

resulted in a significant increase in pro-angiogenic bFGF, with a reduction in anti-

angiogenic TSP-1 (223).  In this study, co-culture resulted in a reduced level of 

secreted VEGF.  These results contrast with a more recent report, in which direct 
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co-culture of CLL cells with the stromal cell line M2-10B4 resulted in a significant 

increase in VEGF secretion compared to that observed on CLL culture in 

transwells above stromal cells (254).  VEGF stimulation of CLL cells results in 

induction of Mcl-1 and XIAP, and protects cells against apoptosis on chlorambucil 

treatment (255).  Therefore, in addition to stimulating angiogenesis, stromal-

induced VEGF expression may also contribute to cell adhesion-mediated 

chemoresistance in CLL.  In support of this hypothesis, high serum VEGF levels 

have been significantly correlated with Mcl-1 expression in CLL cells (256), and 

also correlate with risk of progression in stage A CLL (257).  

1.7.2 Nurse-like cells 

Cells capable of differentiating in vitro into large, adherent cells which support CLL 

cell survival have been identified in the blood of CLL patients, and are referred to 

as nurse-like cells (NLC) (242).  FISH analysis has confirmed that NLCs do not 

arise from the CLL clone (242).  Phenotypically, NLCs resemble BM stromal cells, 

expressing vimentin and STRO-1 (242), but also express surface CD45, CD14, 

and CD68, leading to the conclusion that NLCs differentiate from haematopoietic 

precursors related to the monocytic lineage (258).  It has been proposed that NLC 

may differentiate within extramedullary lymphoid compartments to both attract and 

support the survival of CLL cells within the lymphoid microenvironment (242).  In 

agreement with this hypothesis, CD14+ splenocytes isolated from CLL patients 

demonstrated a phenotype consistent with NLCs, and differentiated rapidly in vitro 

into cells with a NLC morphology (258).  NLCs have been shown express SDF-1, 

and maintain viability of CLL cells through activation of ERK-MAPK (242).  In 

addition, it is now appreciated that NLCs regulate CLL cell survival via a number of 

additional signalling pathways, which are described below. 

1.7.2.1 BAFF and APRIL 

NLCs also express both B cell activation factor (BAFF, also known as BLyS) and a 

proliferation-inducing ligand (APRIL), members of the tumour necrosis factor 

(TNF) family of ligands (259).  BAFF may bind BAFF receptor (BAFF-R), and both 

BAFF and APRIL can additionally interact with the receptors B-cell maturation 

antigen (BCMA) and transmembrane activator and calcium modulator and 

cyclophilin ligand-interactor (TACI) (260).  BAFF and APRIL regulate B lymphocyte 

development, notably BAFF over-expression leads to B cell proliferation and 

autoimmunity in mouse models (260), while APRIL transgenic mice develop a B-1 
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lymphoproliferative disorder (261).  The receptors for BAFF and APRIL are 

expressed on CLL cells, as they are on normal B lymphocytes (262, 263).  

Furthermore, these studies and others have confirmed that BAFF and APRIL 

protect CLL cells from spontaneous and drug-induced apoptosis in vitro, in a 

mechanism involving activation of NF-κB (259).  Unlike the signalling observed in 

normal B lymphocytes, BAFF and APRIL activate the canonical NF-κB pathway in 

CLL cells (264).  Co-culture of CLL cells with NLC in the presence of soluble 

BCMA significantly inhibited the protective effects of NLCs, confirming the 

contribution of BAFF and APRIL signalling to the anti-apoptotic effect of NLC co-

culture (259).   

Also in contrast to normal B lymphocytes, CLL cells themselves variably express 

BAFF and APRIL, raising the possibility of autocrine survival signalling in addition 

to paracrine stimulation from NLCs (262, 263).  Of note, high serum levels of 

APRIL, and to a lesser extent BAFF, have been identified as negative prognostic 

indicators of survival in CLL (265, 266).  Moreover, serum BAFF levels have 

recently been reported to be elevated in cases of familial CLL compared to 

sporadic CLL, suggesting a role in CLL pathogenesis (267). 

1.7.2.2 CD31/CD38 axis 

NLCs have been demonstrated to express high levels of CD31, the ligand for 

CD38 (268).  CD38 is expressed by normal lymphocytes, and associates with the 

BCR and TCR in B and T lymphocytes respectively (269).  CD38 expressing CLL 

cells are induced to proliferate on co-culture with murine fibroblasts transfected to 

express CD31 (268).  Further investigation by this group of the mechanism 

responsible for this observation revealed that CD38/CD31 interaction results in co-

ordinated up-regulation of the survival receptor CD100 and down-regulation of the 

inhibitory receptor CD72 on the CLL cell surface.  Deaglio et al. also demonstrated 

NLCs to express significant plexin-B1, the ligand for CD100 (268), strengthening 

the hypothesis that interaction of CD38+ CLL cells with CD31+/plexin-B1+ NLCs is 

mechanistically linked to the aggressive disease course of this patient subgroup. 

1.7.3 T lymphocytes in CLL 

Over the last decade, accumulating evidence has amassed to confirm that there is 

significant dysregulation of T lymphocyte function in CLL, and it has been 

proposed to underlie clinical features of CLL, including hypogammaglobulinaemia 
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and autoimmune haemolytic anaemia (270).   While normal B lymphocyte 

numbers progressively fall during the course of CLL, circulating T lymphocyte 

counts, both CD4+ and CD8+ subsets, are significantly elevated above normal 

ranges (270), and demonstrate oligoclonality (271).  The contribution of direct 

antigenic stimulation of the TCR by CLL cells in driving the expansion of T 

lymphocytes remains uncertain.  The CD4+ T cells in the peripheral blood of CLL 

patients are CD45RO positive, suggesting antigen exposure, however lack 

additional activation markers such as CD69 and HLA-DR (272).  A significant 

association between an increased frequency of activated CD4+ lymphocytes 

expressing the activation marker CD54 and disease progression has been 

reported, however, a corresponding decrease in expression of the T cell co-

receptor CD28 was seen, again suggesting incomplete T cell activation (273).  

CLL cells are poor antigen presenting cells, in part due to low expression of 

surface T cell co-stimulatory molecules CD80 and CD86 (274).  Moreover, 

impaired immune synapse formation is observed between CLL cells and 

autologous CD4+ and CD8+ T lymphocytes, and in addition, CLL cells have been 

demonstrated to induce defects in immune synapse formation on contact with 

allogeneic T lymphocytes from healthy donors (275).  These observations may 

explain the difficulties in generating autologous T-cell responses in the pre-clinical 

development of immunotherapy in CLL (276). 

In vitro CD40 stimulation of CLL cells has been shown to increase expression of 

CD80 and CD86 (274), and allow induction of T cell proliferation (276), however 

the available evidence suggests that T lymphocytes may favour the expansion of 

the malignant CLL clone rather than promote eradication.  Co-culture of CLL cells 

with CD4+ T lymphocytes has been demonstrated to increase CLL cell survival in 

vitro, mediated at least partly through IL-4 signalling (277).  In addition, the 

observation that T lymphocyte telomeres are significantly shorter in patients with 

ZAP-70+/CD38+ progressive CLL compared to those with stable disease suggests 

a pathologic role for T lymphocytes in the clinical progression of CLL (278).  Within 

LN and BM PCs, a large number of T lymphocytes are seen interspersed with the 

CLL cells (219, 279).  The T cells are predominantly CD4+ T cells (280), many of 

which express CD154 (279).  Adding weight to the argument that T cells promote 

proliferation of CLL cells, a recent study demonstrated that within PCs in primary 

CLL patient LN samples, Ki67+ CLL cells were significantly more likely to be 

directly associated with an adjacent CD4+ T cell than Ki67- CLL cells (281).  T cells 
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from CLL patients with progressive disease have been demonstrated to show 

increased spontaneous and induced secretion of many cytokines, including IL-2, 

IL-4, and TNFα (282).  Of note, with advancing stage CLL, the predominant CD4+ 

T cell subset shifts from a T helper 1 (Th1) to IL-4-producing Th2 population (283).  

The shift in CD4+ repertoire has been demonstrated to be driven by the CLL clone 

itself, as co-culture of CLL cells with allogeneic CD4+ T lymphocytes led to down-

regulation of T cell p38- and JNK-MAPK activity, required for Th1 differentiation 

(284).  Further supporting the case that CD4+ T cells promote CLL progression, 

the percentage of peripheral blood CD4+ memory T lymphocytes in the CD4+ T cell 

pool has been reported to be significantly greater in unmutated as compared to 

mutated CLL, and was shown to be an independent predictor for short treatment-

free survival on multivariate analysis (277).  

1.7.3.1 CD40 signalling in CLL 

CD40 is a 45 kDa member of the TNF receptor superfamily, expressed on normal 

and malignant B cells, monocytes, and dendritic cells, and has a key role in 

promoting effective antigen presentation to T lymphocytes (285).  CD154 is one of 

the main co-stimulatory molecules expressed by activated CD4+ T cells, and CD40 

stimulation of B lymphocytes leads to up-regulation of MHC II and the T cell co-

stimulatory molecules CD80 and CD86 (285).  Upon stimulation, CD40 clusters 

within lipid rafts and associates with TNF receptor-associated factor proteins 

(TRAFs), that mediate the recruitment and activation of several signalling kinases, 

including PI-3K, PLCγ, ERK-, p38-, and JNK-MAPK (286).  A schematic 

representation of downstream signalling pathways is shown in Figure 1.12.  

Activation of NF-κB leads to increased transcription of Bcl-2 family anti-apoptotic 

genes, including and Bcl-xL and A1.  In addition to promoting cellular survival, 

CD40 signalling also promotes proliferation, through increasing expression of 

cyclin-D dependent kinases cdk4 and cdk6, at the same time as decreasing 

expression of the cell cycle inhibitory kinase p27kip1 (286). 
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Figure 1.12  Overview of CD40 signalling 

 

CLL cells variably express both CD40 and CD154, raising the possibility of yet 

another autocrine signalling pathway (287), in addition to paracrine signalling 

through interaction with adjacent CD154-expressing T lymphocytes within the PC.  

CD40 stimulation of CLL cells in vitro inhibits spontaneous apoptosis (288).  The 

anti-apoptotic effect of CD40 stimulation has been demonstrated to involve NF-κB 

activation (288), resulting in up-regulation of the anti-apoptotic Bcl-2 family 

proteins Mcl-1, Bcl-xL, and Bfl-1 (289, 290).  Although alterations in pro-apoptotic 

Bcl-2 family proteins also occur following CD154 stimulation of CLL cells, in 

particular increased expression of Bid (290, 291), and down-regulation of Noxa 

(292), the balance of Bcl-2 proteins favours cell survival.  Furthermore, the Fas-

antagonist Flip is up-regulated on CD154 stimulation of CLL cells (289), and 

CD154-stimulated CLL cells have been shown to be resistant to Fas ligand-

induced apoptosis (290).  In addition to maintaining CLL cell survival, CD40 

signalling has been shown in many studies to induce proliferation of CLL cells in 

vitro (293, 294).  CD40 signalling also contributes to chemoresistance in CLL, as 

CD154 stimulation significantly reduces the sensitivity of CLL cells to apoptosis on 

treatment with fludarabine in vitro (289, 290). 

Another example of CLL cells shaping the microenvironment comes from the 

observation that in vitro CD154 stimulation induces CLL cells to express CCL17 
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and CCL22, and secrete CCL22, a potent CD4+ T lymphocyte chemoattractant, 

which binds the receptor CCR4 on activated T cells (279).  Culture supernatants 

from CD154 stimulated CLL cells stimulated migration of CD4+CD154+ T 

lymphocytes in transwell assays (279), suggesting that CD40 stimulated CLL cells 

within PCs may actively recruit additional T lymphocytes, which in turn could 

promote survival and proliferation of a larger CLL clone. 

1.7.3.2 IL-4 signalling in CLL 

Binding of IL-4 to the IL-4 receptor on normal B lymphocytes leads to activation of 

JAK kinases, which recruit signalling components to the receptor, including STAT 

proteins and insulin-receptor substrate 1 (IRS-1) and IRS-2 (295), as shown in 

Figure 1.13.  IRS-1 and -2 recruit the p85 subunit of PI-3K, which activates Akt, 

and STAT homodimers translocate to the nucleus to direct gene transcription.  IL-4 

signalling prevents apoptosis of B cells through stabilisation of Bcl-2, protection 

from Fas-induced apoptosis (295).   

 

Figure 1.13  Overview of IL-4 signalling 
 

CLL cells express higher levels of IL-4 receptors than normal B cells (296), and 

correspondingly, T lymphocytes isolated from CLL patients secrete greater 

amounts of IL-4 in response to phytohaemagglutinin (PHA) than T cells from 

healthy donors (297).  IL-4 receptors are functional on CLL cells, as IL-4 

stimulation has been shown to induce STAT1, STAT5, and STAT6 activation 

(295), in addition to phosphorylation of PKC and Akt (298).  In vitro culture of CLL 

cells with IL-4 reduces spontaneous apoptosis (296); this pro-survival effect was 
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blocked on incubation with IL-4 and a blocking antibody to IL-4R (299).  Akin to 

normal B lymphocytes, IL-4 stimulated CLL cells are resistant to Fas-mediated 

apoptosis (298).  In addition, CLL cells stimulated with IL-4 in vitro were 

significantly less sensitive to the apoptotic effects of dexamethasone and 

fludarabine, through a PI-3K dependent mechanism (300).  IL-4 represents yet 

another potential autocrine signalling pathway in CLL, as CLL cells also express 

IL-4 (299). 

1.8 Potential novel therapeutic strategies based on knowledge of CLL 

biology 
The identification of numerous signalling pathways that govern CLL cell survival, 

proliferation, and chemoresistance in vitro have provided translational researchers 

with a wealth of novel targets against which to design therapeutic agents, as 

evidenced by the wealth of targeted small molecule inhibitors and monoclonal 

antibodies currently in pre-clinical development or phase I/II clinical trials (301).  

However, the multitude of potential targets also raises the problem of identifying 

the key, non-redundant, signalling pathways to which the malignant cells are 

‘addicted’.  Given the heterogeneity of CLL, these pathways may differ between 

prognostic groups, and furthermore, in the knowledge that CLL cells circulate 

between blood and lymphoid tissues, may also differ depending on the anatomical 

location of cells within individual patients.  To be informative, future translational 

studies must address the efficacy of potential novel therapeutic agents not only on 

CLL cells themselves, but also on malignant cells within the context of the 

supportive microenvironment.  While targeted chemotherapy remains a goal, the 

question remains as to whether in the context of the CLL microenvironment single 

targeted therapies will be sufficient to induce CLL cell apoptosis, or whether 

combinations of targeted agents may be necessary to induce apoptosis directly, or 

overcome resistance to conventional chemotherapy.  This project aims to address 

these issues, utilising investigational agents based on advances in CLL biology. 

1.8.1 Rationale for investigation of the Src/c-Abl TKI dasatinib 

As outlined in Section 1.6, both basal and stimulated signalling through the BCR is 

heavily implicated in the pathogenesis of CLL, therefore inhibition of BCR signal 

transduction is a rational novel therapeutic approach.  In view of the data 

demonstrating that inhibition of either c-Abl or Src kinases induces apoptosis of 
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CLL cells in vitro (203, 212), we were interested to examine the anti-leukaemic 

effects of dual Src/c-Abl TKIs in CLL.  

Dasatinib (Srycel formerly BMS-354825, Figure 1.14) is a potent dual Src and c-

Abl TKI, developed by the pharmaceutical company Bristol-Myers Squibb, for the 

treatment of CML.  CML is characterised by a reciprocal translocation between 

chromosomes 9 and 22, creating the Philadelphia chromosome, a product of 

which is the fusion protein Bcr-Abl, a constitutively active tyrosine kinase (302).  

The Bcr-Abl TKI imatinib revolutionised the treatment of CML, however some 

patients are resistant to therapy due to Src-family kinase activity (206).  Dasatinib 

was selected for further investigation from a panel of thiazole-based dual Src/Abl 

kinase inhibitors on the basis of potency and favourable pharmacokinetic and 

pharmacodynamic profile in vivo on pre-clinical testing (303), and the chemical 

structure is shown in Figure 1.14. 

 

 

Figure 1.14  The chemical structure of dasatinib 

 

Dasatinib binds with subnanomolar affinity to the ATP-binding site of Bcr-Abl (and 

wild-type c-Abl) with a 325-fold greater affinity than imatinib (303).  Part of the 

greater potency of dasatinib for binding to Bcr-Abl is due to the ability of dasatinib 

to bind to both active and inactive conformations of the kinase (304).  An IC50 

below 1 nM was also observed for dasatinib binding to all Src-family tyrosine 

kinases assessed, including c-Src, Lck, and Yes (303).  In this study, dasatinib 

also bound c-kit (IC50 5nM), platelet-derived growth factor receptor β (PDGFRβ; 

IC50 28 nM), and VEGF receptor (VEGFR; IC50 2000 M).  Recent studies have 

identified additional significant kinase targets for dasatinib, including the Tec family 

kinases Btk (IC50 5 nM) and Tec (IC50 297 nM), which are essential for normal 

antigen receptor signalling in B and T lymphocytes (305).  Chemical proteomic 

approaches using CML cell lines and primary cells have now identified over thirty 

kinase targets of dasatinib (306, 307).  Dasatinib has been extensively shown to 

exert potent antitumour activity in xenograft mouse models of CML, using the 
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K562 cell line (303, 308).  In these studies dasatinib was administered once or 

twice daily, with similar efficacy.   

Pharmacokinetic and pharmacodynamic studies in mouse models informed 

dasatinib dosing in early clinical trials, with dasatinib used as a dose of 140 mg 

daily, either as a once daily dose, or twice-daily split dose (308).  Dasatinib used at 

these doses induced significant haematological and cytogenetic responses in CML 

patients resistant or refractory to imatinib (309). Dasatinib was approved by the 

United States FDA in 2006 for the treatment of CML and Philadelphia 

chromosome positive ALL (310).  The pivotal phase II study of dasatinib 70 mg 

twice daily in imatinib-resistant or intolerant patients with chronic phase CML 

reported 90% patients to achieve complete haematological remission, and 52% 

major cytogenetic remission (310).  Side effects noted included headache, 

diarrhoea, peripheral oedema, and pleural effusions, which were rarely severe, 

however grade 3 to 4 cytopenias were frequent, specifically, neutropenia (49%), 

thrombocytopenia (47%), and anaemia (22%).  A subsequent dose and scheduling 

trial demonstrated a dose of 100 mg once daily to be as efficacious as 70 mg 

twice-daily, and to significantly reduce the incidence of side effects, including 

pleural effusion (311).  The incidence of grade 3 to 4 neutropenia fell from 42 to 

33%, and thrombocytopenia from 37 to 22%, and 100 mg once daily dosing is now 

standard practice in CML.  In addition to inducing apoptosis of CML cells, dasatinib 

has been demonstrated to induce apoptosis of lung cancer and head and neck 

cancer cell lines (312, 313). 

1.8.2 The rationale for inhibition of Bcl-2 family proteins in CLL 

Apoptosis, or programmed cell death, is central to normal tissue homeostasis.  

Normal regulation of apoptosis plays a major role in prevention of autoimmunity 

and malignancy, and also describes the mechanism of cell death induced by the 

majority of chemotherapeutic agents (314).  There are two main routes to 

apoptosis; the extrinsic pathway is activated by the binding of cell surface ‘death 

receptors’, while the intrinsic pathway is generally activated by intracellular stress 

due to cytotoxic agents, radiation, or lack of growth factor stimulation (315).  Both 

pathways lead to activation of a succession of cysteine proteases termed 

caspases, of which initiator caspases sequentially activate effector caspases that 

sequentially cleave essential intracellular proteins.  The two apoptotic pathways 

are outlined in Figure 1.15.   
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Figure 1.15  Outline of intrinsic and extrinsic apoptotic pathways 

 

The extrinsic pathway is activated on engagement of the TNF-family receptor Fas 

(CD95) or TNF-related apoptosis-inducing ligand (TRAIL) receptors on the cell 

surface, recruiting Fas-associated death domain (FADD), leading to activation of 

caspase 8.  In outline, the intrinsic pathway is activated by the release of 

cyctochrome c from the mitochondrial intermembrane space.  Cytoplasmic 

cytochrome c induces a structural change in the apoptosis protease activating 

factor-1 (Apaf-1), which can then bind pro-caspase 9 via caspase recruitment 

domains (CARDs), leading to formation termed the apoptosome complex, which 

activates caspase 9 (315).  Bcl-2 family proteins are central to the regulation of 

this pathway by controlling the integrity of the mitochondrial membrane.  Activated 

caspase 8 or 9 then activate the effector caspases, caspases 3, 6, and 7, which 

effect DNA and protein degradation (315).  Although largely independent, cross-

activation of the intrinsic pathway by external pathway apoptotic signals can occur, 

as caspase 8 cleaves Bid to its’ pro-apoptotic form, truncated Bid (tBid), which 

then antagonises anti-apoptotic Bcl-2 proteins (315).  

As the Bcl-2 family of proteins are implicated in the intrinsic resistance of CLL cells 

to chemotherapy, and in resistance induced by external signals from the 
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microenvironment, this pathway has received much interest as a novel therapeutic 

target in CLL.  The Bcl-2 family of proteins comprises three groups of proteins, the 

pro-apoptotic members Bax and Bak, the anti-apoptotic group including Bcl-2, Bcl-

xL, Mcl-1, Bcl-w, Bcl-2A1, and Bcl-B, and the final group of small proteins 

containing only the third Bcl-2 homology domain (BH3) in common with the others, 

which comprises Bim, Bad, Bid, Bik, Noxa, Puma, Bmf, and Hrk (316).  Upon 

activation, Bax and Bak form oligomeric pores in the outer mitochondrial 

membrane, resulting in cytochrome c release (316).  This process is accompanied 

by a reduction in mitochondrial inner membrane potential (MMP) (317).  Two 

opposing models concerning the control of Bak and Bax activity continue to be 

debated (318, 319).  The indirect activation model states that anti-apoptotic Bcl-2 

proteins bind Bak and Bax, preventing their oligomerisation.  In this model, BH3 

proteins may activate apoptosis by competing with Bak and Bax for binding to anti-

apoptotic Bcl-2 proteins, resulting in any displaced Bak and Bax becoming free to 

heterodimerise.  The alternative direct activation model proposes that Bak and Bax 

require direct activation, by interaction with BH3 proteins, and proposes that the 

main role of anti-apoptotic Bcl-2 proteins may be to sequester such BH3 

‘activators’ (including Bim, tBid, and Puma).  This model suggests apoptosis may 

be initiated on displacement of these activator BH3 proteins by ‘sensitiser’ BH3 

proteins including Bad (314).   

The observation that a high Bcl-2/Bax ratio correlated with resistance to 

chemotherapy-induced apoptosis of CLL cells in vitro (320), led to investigation of 

the effect of specific inhibition of Bcl-2 with siRNA.  Down-regulation of Bcl-2 using 

antisense RNA in CLL cells in vitro led to increased apoptosis (321), and 

chemosensitised CLL cells to chlorambucil (322).  Phase I and II trials of 

oblimersen sodium, a clinical-grade Bcl-2 antisense oligonucleotide, in 

fludarabine-refractory patients however proved disappointing with partial 

responses seen in only two of twenty-six evaluable patients (323).  More recently, 

a phase III randomised controlled trial of fludarabine and cyclophosphamide, with 

or without oblimersen, reported an increase in CR rate from 8 to 17%, and a 

significant increase in PFS and OS with the addition of oblimersen in heavily pre-

treated patients (324). 

One proposed explanation for the limited results observed with targeted Bcl-2 

down-regulation was that the approach may in fact be too narrowly targeted, given 

the demonstration that in addition to Bcl-2, Mcl-1 and Bcl-xL are induced by a 
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number of microenvironmental stimuli and implicated in chemoresistance.  Several 

small molecule inhibitors have subsequently been identified and developed which 

are structurally similar to the BH3-only Bcl-2 proteins, termed ‘BH3 mimetics’, 

which are able to compete with native BH3 proteins and/or Bax and Bak for 

binding to several anti-apoptotic Bcl-2 proteins (325, 326).  The BH3-mimetic ABT-

737 binds Bcl-2, Bcl-xL, and Bcl-w, and induces apoptosis of CLL cells at low 

nanomolar concentrations in vitro (327, 328).  ABT-737 induces significantly less 

apoptosis of CLL cells co-cultured with stromal cells (329), leading to the 

conclusion that even agents demonstrated to have potent apoptosis-inducing 

effects in vitro may need to be studied in combination with agents targeting non-

overlapping survival pathways. 

1.8.3 Rationale for inhibition of heat shock protein 90 

Heat shock proteins function as chaperone proteins, regulating the stability of 

client proteins through direct association.  Heat shock protein 90 (HSP90) exists in 

two conformations, a resting state with low ATPase activity, which is the 

predominant form found in normal cells, however on ATP-binding HSP90 

undergoes a conformational change to become highly active and able to form 

multi-protein complexes (330).  In an ATP-bound state, HSP90 may interact with a 

number of potential client proteins, including growth factor receptors (eg, VEGFR), 

proteins involved in survival signalling pathways (eg, Src kinases, Akt and Raf-1), 

and cell cycle control (eg, survivin, cdk2, and cdk4) (330).  HSP90 is over-

expressed in CLL cells compared to normal B cells, with expression level 

correlating with advanced disease (331). Recently, ZAP-70 was shown to be a 

novel conditional HSP90 client protein within CLL cells (332).  Although ZAP-70 

positive and negative CLL cells express similar amounts of HSP90, only in ZAP-70 

positive cases has HSP90 been found in the highly active ATP-bound 

conformation (332). 

The prototype HSP90 inhibitor is the ansamycin antibiotic geldanamycin (GA), 

which competes with ATP for the ATP-binding domain of HSP90 (333).  GA has 

limited therapeutic potential due to frequent hepatotoxicity and poor stability (333).  

Analogues of GA have been developed, including 17-allylamino derivative (17-

AAG), and the more potent and orally bioavailable 17-desmethoxy-17-N,N-

dimethylaminoethylamino-geldanamycin (17-DMAG), and are currently undergoing 

investigation in a number of cancers, including haematological malignancies (330, 
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333).  GA has been demonstrated to induce apoptosis of CLL cells in vitro, and 

sensitise CLL cells to chemotherapy and rituximab (334, 335).  Notably, HSP90 

inhibition with 17-AAG has been demonstrated to lead to degradation of ZAP-70 

and impair BCR signal transduction in CLL cells (332).  In this study, a significant 

linear relationship was observed between ZAP-70 expression and apoptosis 

induced by 17-AAG (and similar greater response in unmutated compared to 

mutated CLL), suggesting HSP90 inhibition may be of particular benefit to high-

risk patients (332).  Of note, a recent study also reported that GA down-regulated 

mutated p53 whilst up-regulating wild-type p53 (336).   

The effects of HSP90 inhibitors on CLL cells exposed to microenvironmental 

stimuli have not been investigated.  In view of this class of inhibitors potentially 

inhibiting a number of pro-survival signalling pathways, and reducing ZAP-70 

expression, HSP90 inhibitors are attractive agents to study in combination with 

agents aimed at targeting BCR signalling. 
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1.9 Aims and objectives 

The primary aim of this project was to thoroughly investigate the potential of the 

Src/c-Abl TKI dasatinib as a novel therapeutic agent for the treatment of CLL, both 

as a single agent, and in rationally designed combination strategies.  In addition, 

the effect of dasatinib on BCR signal transduction was assessed. 

Experiments were designed to address the following specific aims: 

i. To assess the ability of dasatinib to induce apoptosis of CLL cells in vitro, 

and determine whether response correlates with established prognostic 

parameters. 

ii. To investigate whether dasatinib exhibits synergy with established 

chemotherapeutic agents fludarabine and chlorambucil, and also with BH3-

mimetic Bcl-2 inhibitors and the HSP-90 inhibitor 17-DMAG. 

iii. To establish whether dasatinib inhibits B cell antigen receptor signalling in 

CLL cells. 

iv. To test dasatinib, alone and in promising combinations, in stromal co-culture 

models which reproduce signalling networks encountered in the 

microenvironment. 

 

 

 



 

 56 

 

 
 
 

 

 

 

 

 

 

 

 

 

Chapter 2: 

Materials and Methods 

 

 
 
 
 
 
 
 
 
 
 
 



   

 57 

2.1 Cells and Reagents 

Addresses of suppliers of the materials and reagents used during this project are 

listed in Table 2.1 

2.1.1 CLL patient samples  

Peripheral blood samples were obtained after written informed consent with the 

approval of the Local Research and Ethics Committee, from patients with a 

clinically confirmed diagnosis of B cell CLL.  Samples were accepted from patients 

at all points of the disease course, with the only exclusion being patients that had 

received chemotherapy for CLL within the preceding three months.  Linked clinical 

data on clinical stage (Binet), treatment history, ZAP-70 expression, and 

cytogenetic abnormalities by FISH where available were stored.  Details of the 

samples collected are listed in Table 2.2. 

2.1.2 Normal blood samples 

Buffy coat components from normal healthy blood donors were obtained from the 

Scottish National Blood Transfusion Service, with approval of the organisation’s 

ethical review committee.  Buffy coat components contain a high concentration of 

leucocytes and platelets, and were used as a source of normal B lymphocytes for 

experiments (see Section 2.2.6).  Buffy coat components were received 24 hr after 

bleeding of the donor, once results of routine virology screening were available. 

2.1.3 Drugs and Inhibitors 

Details of the stock concentrations, diluents, and storage conditions of all drugs 

and inhibitors used are listed in Table 2.3.  The chemotherapeutic drugs 

chlorambucil and fludarabine were purchased from Sigma Aldrich Ltd.  Further 

details of the properties of individual inhibitors are detailed below.   

PP2 is an ATP-competitive inhibitor of all Src family kinases, while the related 

inhibitor PP3 has no Src kinase inhibitory activity, and is a recommended negative 

control for PP2.  Both PP2 and PP3 were purchased from Merck Chemicals Ltd.  

Dasatinib was initially supplied by Bristol-Myers Squibb under a Materials Transfer 

Agreement, and later purchased from LC Laboratories.  Imatinib mesylate was 

also purchased from LC Laboratories.   

Bcl-2 inhibitor I, Bcl-2 inhibitor III, the HSP90 inhibitor 17-DMAG, PI-3K and MAPK 

inhibitors were all obtained from Merck Chemicals Ltd.  Bcl-2 inhibitor I comprises 

a mixture of two tautomers, which compete with Bak BH3 peptide for binding to 
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both Bcl-2 (IC50 = 10 µM) and Bcl-xL (IC50 = 7 µM) (325).  Bcl-2 inhibitor III (EM20-

25) binds Bcl-2, leading to disruption of interaction of Bcl-2 with Bax (337).  17-

DMAG is a potent ATP-competitive HSP-90 inhibitor (IC50 = 51 nM for HSP-90α). 

LY294002 is a selective PI-3K inhibitor (IC50 = 1.4 µM), which binds the ATP-

binding site of the enzyme.  PD98059 is a cell-permeable MEK kinase inhibitor, 

with an IC50 of 4 µM for MEK1.  SB203580 is an inhibitor of p38 MAPK (IC50 = 34 

nM in vitro, 600 nM in cells), with little inhibition of JNK and p42 MAP kinase.  

InsolutionTM JNK inhibitor II is a selective, reversible JNK inhibitor (IC50 = 40 nM for 

JNK-1 and JNK-2, and 90 nM for JNK-3). 

The pan-caspase inhibitor Z-Val-Ala-DL-Asp(OMe)-fluoromethylketone (Z-VAD-

fmk) was purchased from Bachem.  Z-VAD-fmk was used at a final concentration 

of 25 µM, and was added to CLL cells 2 hours prior to the addition of dasatinib, to 

allow full caspase inhibition prior to drug treatment.  

2.1.4 Chemokines and cytokines 

Recombinant human SDF-1α (CXCL12) was purchased from R&D Systems as a 

lyophilised powder.  The powder was reconstituted at 10 µg/ml in phosphate 

buffered saline (PBS) supplemented with 0.1% bovine serum albumin (BSA) and 

stored at -20°C.  Recombinant human IL-4 was purchased from Peprotech EC Ltd. 

as a lyophilised powder, which was reconstituted to 10 µg/ml in sterile water and 

stored at -20°C until required. 

2.1.5 Antibodies 

Biotinylated mouse anti-human IgM, and purified mouse IgG1 κ isotype control 

were purchased from BD Biosciences.  Goat F(ab’)2 fragments to human IgM 

were purchased from MP Biomedicals as a lyophilised powder, which was 

reconstituted with distilled water to a final antibody concentration of 3.5 mg/ml, and 

stored at 4°C until used.  

All antibodies used in FCM were purchased from BD Biosciences, and are listed in 

Table 2.4.  Antibodies used for western blotting are detailed in Table 2.5. 

2.2 Tissue culture 

All procedures were performed using sterile technique in a laminar air flow hood.  

All tissue culture consumables (tissue culture plates, tubes, and pipettes) were 
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purchased from Fisher Scientific U.K. or Greiner Bio-One Ltd. unless otherwise 

stated. 

2.2.1 Purification of CLL cells from patient samples 

CLL cells were isolated from whole blood using RosettesepTM human B cell 

enrichment cocktail (StemCell Technologies), following manufacturers’ instructions 

as follows.  RosettesepTM was added to whole blood at 50 µl/ml and incubated at 

room temperature (RT) for 20 min.  The blood was then diluted with an equal 

volume of sterile PBS, layered onto Histopaque®-1077 density separation medium 

(Sigma Aldrich Ltd.), and centrifuged at 850 g for 20 min.  The cells at the 

Histopaque®:plasma interface were removed and washed twice in sterile PBS by 

centrifugation at 300 g for 5 min.  CLL cell separation efficiency was assessed by 

FCM, using the following fluorochrome conjugated antibodies - CD19-FITC, CD5-

PE, and CD23-APC, as described in Section 2.3.1.  The CD19+/CD5+ population 

was over 95% in all cases, and a representative example of purification is shown 

in Figure 2.1.  Prior to cryopreservation, 2 x 107 cells were transferred to a fresh 

tube for preparation of protein lysates. 

2.2.2 Cell counting using a haemocytometer 

To determine cell counts prior to cryopreservation of cells and when setting up 

experiments, cells were counted using the trypan blue exclusion method.  Briefly, 

trypan blue (Sigma Aldrich Ltd.) was diluted 1:10 (v/v) in PBS to a working stock.  

Cells were diluted in trypan blue solution to enable at least 100 viable cells (able to 

exclude trypan blue dye) to be counted over two 1 mm2 squares of a 

haemocytometer chamber (Hawksley).  The absolute cell count was determined 

by multiplying the number of cells per mm2 by first the dilution factor from the 

starting cell concentration, then multiplying again by 104 to determine the cell 

count per ml. 

2.2.3 Cryopreservation of cells 

CLL cells were prepared as above, then resuspended in freezing media (90% fetal 

bovine serum (FBS; Invitrogen Ltd.) and 10% dimethylsulphoxide (DMSO)) at a 

concentration of 2-4 x 107 cells/ml.  The resulting cell suspension was transferred 

to 2 ml cryovials (Greiner BioOne Ltd.) in 1 ml aliquots.  Cryovials were frozen 

slowly at around 1°C per hour by transferring to polystyrene containers and 

placing in a freezer at -80°C overnight.  Cryovials were subsequently transferred to 

a -150°C freezer for long-term storage. 
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2.2.4 Recovery of cryopreseved samples 

Cells were thawed at 37°C by suspending the cryovial in a waterbath, with gentle 

agitation, until the ice crystals had melted, then transferred to a 15 ml sterile tube.  

To ensure slow rehydration of cells, and removal of cell debris, 10 ml ‘DAMP’ 

solution (DNAse I 10000 units/L (Stemcell Technologies), MgCl2 2.5 mM, trisodium 

citrate 16 mM (both Sigma Aldrich Ltd.), 1% Human Serum Albumin (SNBTS) in 

PBS) was added dropwise over 20 min, with gentle agitation, and then centrifuged 

at 300 g for 5 min. 

2.2.5 Culture of CLL cells  

Following recovery, CLL cells were washed once in 10 ml RPMI-1640 containing 

10% FBS, 50 U/ml penicillin, 50 µg/ml streptomycin, and 2 mM L-glutamine 

(Invitrogen Ltd.) (complete media), resuspended in 10 ml complete media and 

incubated overnight in a 25 cm2 flask in a humidified atmosphere containing 5% 

CO2 prior to treatment.  Unless otherwise specified, CLL cells were cultured at 1 x 

106/ml in complete media during experiments. 

2.2.6 Isolation of B lymphocytes from buffy coats 

2.2.6.1 Mononuclear cell preparation 

The individual buffy coats (approximately 50 ml) were diluted with an equal volume 

of sterile PBS.  The diluted sample was divided into 25 ml aliquots, which were 

layered over 15 ml Histopaque®-1077 density separation medium in a 50 ml 

Leucosep® tube (Greiner Bio-One Ltd.) and centrifuged at 400 g for 20 min.  The 

mononuclear cell (MNC) layer was transferred using a Pasteur pipette to a 15 ml 

sterile tube, and washed twice with PBS by centrifugation (300 g for 5 min).  MNCs 

were sometimes cryopreserved at this stage for later B cell selection. 

2.2.6.2 CD19 selection using magnetic cell sorting 

This protocol was used to enrich B lymphocytes from buffy coat MNC 

preparations.  The mononuclear cell sample was diluted in MACS buffer (PBS 

supplemented with 2mM EDTA and 0.5% BSA (both Sigma Aldrich Ltd.)) at 4°C.  

Cells were counted using a haemocytometer, and 1 x 108 cells were transferred to 

a fresh tube and washed in MACS buffer by centrifugation at 300 g for 10 min.  

Cells were resuspended in 800 µl MACS buffer, following which 200 µl (20 µl per 1 

x 107 cells) human CD19 MicroBeads (Miltenyi Biotech) were then added, and 

cells incubated at 4°C for 15 min.  After incubation, cells were washed in 10 ml 
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MACS buffer as above, and resuspended in 3 ml MACS buffer prior to magnetic 

separation.  Concurrently, an LS positive selection column (Miltenyi Biotech) was 

prepared by inserting the column into a MidiMACS®  magnet (Miltenyi Biotech) and 

rinsing with 3 ml MACS buffer.  The labelled cell suspension was then added to 

the column, followed by three washes each with 3 ml MACS buffer to remove 

trapped unlabelled cells.  The flow-through solution was retained for later analysis.  

Next, the column was removed from the magnet and transferred to a fresh 15 ml 

collection tube.  The cells were removed from the column by adding 5 ml MACS 

buffer to the column and flushing briskly with the plunger supplied.  Cells were 

washed twice in MACS buffer (300 g for 5 min) then resuspended in 10 ml 

complete medium, counted, and cultured in a 25 cm2 tissue culture flask overnight.   

In each case, to confirm the efficacy of CD19+ enrichment, samples of the cell 

suspension before and after MACS separation were stained with anti-CD19 PE.  A 

typical FCM plot is shown in Figure 2.2. 

2.2.7 Cell Lines 

2.2.7.1 NT-L and CD154L cells 

Mouse fibroblast L-cells (NT-L) and L-cells stably transfected with CD154 (CD40 

ligand; CD154L cells) were a gift of Professor J. Gordon (University of 

Birmingham, UK).  Both cell lines were maintained in complete medium at 37°C in 

a humidified atmosphere containing 5% CO2.  Every 3-5 days, when the cell 

density approached confluency, cells were detached from the plate with trypsin, 

final concentration 0.05% in PBS (Invitrogen Ltd.), washed and re-cultured at a 

1/10 dilution.  Expression of CD154 by CD154L cells was confirmed by FCM (Fig. 

2.3). 

2.2.7.2 M2-10B4 cells 

The murine fibroblast cell line M2-10B4 was sourced from stocks held within our 

laboratory.  M2-10B4 cells are known to express SDF-1 (230)  This cell line was 

maintained in complete medium as above. 

2.2.7.3 Ramos cells 

The Burkitt lymphoma cell line Ramos was a kind gift of Professor M. Harnett 

(University of Glasgow, UK).  Ramos cells were maintained in complete media, 

with 4/5 media change every 72 hr to maintain an optimal cell density.   
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2.2.7.4 HT29 cells 

The colon carcinoma cell line HT29, which is known to express high levels of 

constitutively phosphorylated Src and FAK kinases, was a gift of Dr. V. Brunton 

(University of Edinburgh, UK).  HT29 cells were cultured in Dulbecco’s Modified 

Eagle Medium (DMEM; Invitrogen, U.K.), supplemented with 10% FBS, 50 U/ml 

penicillin, 50 µg/ml streptomycin, and 2 mM L-glutamine.  

2.2.8 CLL cell stimulation 

2.2.8.1 Short term BCR stimulation using biotinylated anti-IgM 

CLL cells were incubated in RPMI-1640 containing 0.5% BSA for 2 hr prior to BCR 

stimulation.  Cells (3 x 106/condition) were incubated in 1.5 ml eppendorf tubes at 

4°C in 100 µl 0.5% BSA media supplemented with 10 µg/ml biotinylated anti-IgM ± 

100 nM dasatinib for 30 min.  Cells were then washed in 1 ml ice-cold PBS and 

resuspended in 100 µl 0.5% BSA media ± 100 nM dasatinib as appropriate.  For 

stimulated cells, 100 µl avidin (Sigma Aldrich) at a concentration of 50 µg/ml was 

added (final concentration 25 µg/ml), and cells incubated at 37°C in a waterbath 

for 10 or 30 min.  Avidin was not added to unstimulated control cells.  At the end of 

incubation times, tubes were placed on ice and 1 ml PBS supplemented with 

PhosStop Phosphatase Inhibitor Cocktail Tablets (Roche Diagnostics Ltd.) was 

added.  Cells were pelleted by centrifugation (600 g for 5 min) and protein lysates 

prepared. 

2.2.8.2 Long term BCR stimulation with anti-IgM F(ab’)2 fragments 

The addition of soluble anti-IgM F(ab’)2 fragments to culture media has been 

widely employed to mimic continuous antigen exposure of CLL cells in vitro (192, 

195).  CLL cells were incubated in complete medium and treated as follows: 

untreated control, 100 nM dasatinib; 10 µg/ml anti-IgM F(ab’)2 fragments, or; both 

dasatinib and anti-IgM F(ab’)2 fragments.  After 48 hr culture, cells were harvested 

and an aliquot of one-tenth of the cells assessed for viability using Annexin 

V/Viaprobe, and the remainder used to prepare protein lysates. 

2.2.8.3 Long term BCR stimulation with immobilised anti-IgM 

Anti-IgM antibodies immobilised on tissue culture plates or microbeads has been 

proposed to allow more persistent BCR stimulation of CLL cells in vitro than 

soluble anti-IgM due to both higher ligand valency and the prevention of BCR 

downregulation, and suggested as a model for T cell-independent antigenic 
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stimulation (192).  Therefore, in some experiments, the effects of BCR stimulation 

with soluble or immobilised anti-IgM were compared.  On the day prior to the 

experiment, wells of a 24-well tissue culture plate were incubated with 1 ml 

biotinylated anti-IgM (10 µg/ml) or 10 µg/ml purified isotype control (both in PBS) 

for 3 hr at 37°C.  This incubation period enabled the antibody to adhere to the 

tissue culture plate. Following this, wells were incubated with complete media for 

15 min as a blocking solution to prevent non-specific binding of CLL cells to tissue 

culture plastic, and washed a further two times with 1 ml complete media, then 

stored at 4°C overnight.  The following day, CLL cells (2 x 106/ml) were added to 

the plates with or without 100 nM dasatinib, and cells incubated for 48 hr.  

Following this, an aliquot of one-tenth of the cells was analysed by FCM for 

Annexin V/Viaprobe, and the remainder used to prepare a protein lysate.  

2.2.8.4 Short-term stimulation with SDF-1 

CLL cells were incubated in RPMI-1640 supplemented with 0.5% BSA for 2 hr 

prior to the assay.  Cells were then plated at 3 x 106 cells/ml in 0.5% BSA media 

with or without 100 nM dasatinib in wells of a 48 well tissue culture plate.  Cells 

were then either untreated, or incubated with 100 ng/ml SDF-1 for 3 or 10 min at 

37°C.  Cells were then transferred to 1.5 ml eppendorf tubes, pelleted by 

centrifugation (600 g for 3 min), and washed in 1 ml PBS containing 1 µM 

microcystin LR (BioMol), prior to preparation of protein lysates for western blotting.  

2.2.8.5 Long term SDF-1 stimulation 

CLL cells were incubated in complete medium with or without 100 nM dasatinib for 

30 min prior to the addition of 100 ng/ml SDF-1.  Following 48 hr culture, cells 

were harvested for viability assessment using Annexin V/Viaprobe FCM. 

2.2.8.6 Co-culture with stromal cells 

Prior to use in co-culture experiments, stromal cells were irradiated to prevent 

proliferation during the culture period.  Briefly, NT-L cells and CD154L cells were 

grown to near confluency, harvested with trypsin, and pelleted by centrifugation in 

a 15 ml sterile tube after washing in complete media.  The cell pellets were 

irradiated to 30 Gy using an X-RAD 225 cabinet irradiator (RPS Services Limited), 

and cryopreserved in 90% FBS/ 10% DMSO.  On the day prior to the beginning of 

the experiment, stromal cells were thawed using DAMP, as described in Section 

2.2.4, and counted using a haemocytometer.  To ensure consistency in co-culture 

conditions between experiments, stromal cells were plated at constant densities as 
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follows: 1 x 104 cells/well in 96 well plates; 4 x 104 cells/well in 48-well plates; and 

1 x 105 cells/well in 12 or 24 well plates.  Stromal cells were allowed to adhere to 

the tissue culture plate for at least 6 hr, following which the media was removed 

and replaced with media containing CLL cells at 1 x 106/ml.  When CLL cells were 

co-cultured with CD154L cells, complete media was supplemented with 10 ng/ml 

IL-4.  CLL cells were co-cultured overnight (approximately 12 hr) prior to drug 

treatments.  On the day of experiments, CLL cells were treated as described whilst 

remaining in co-culture for the duration of the experiment.  At the end of 

experiments, CLL cells were detached from the stromal cell layer by pipetting.  

Adequate harvesting of CLL cells was confirmed by microscopy of the culture 

plate.  Counting of the harvested cells using a haemocytometer confirmed that 

stromal cell contamination of CLL cells was consistently less than 1%.  

2.2.8.7 Co-culture with soluble CD154 and IL-4 

CLL cells were incubated in 1 ml complete media at 3 x 106 /ml in the presence or 

absence of the drug treatments to be tested for 30 min prior to the addition of 

CD154 and IL-4.  Concurrently, recombinant CD154 was mixed with Enhancer for 

Ligands (both Axxora (UK) Ltd.) for 30 min.  The mixture was then added to the 

cell suspension at final concentrations of 100 ng/ml for CD154 and 1 µg/ml 

Enhancer for Ligands, in addition to 10 ng/ml IL-4.  Following 2 or 48 hr incubation, 

cells were harvested for FCM or protein lysate preparation. 

2.2.9   CLL cell proliferation assay 

2.2.9.1 CFSE staining of CLL cells 

Carboxyfluorescein diacetate succinimidyl ester (CFSE) is an intracellular dye 

which has been used to monitor lymphocyte proliferation (338).  CFSE is taken up 

into the cell cytoplasm where esterases remove acetate groups, which retains the 

dye within the cell cytoplasm, where it may become covalently coupled to 

intracellular molecules via its’ succinimidyl groups.  As cells divide, the CFSE (and 

hence fluorescence) halves, allowing assessment of several cell divisions by FCM, 

recording in the FL-1 channel of a flow cytometer.  CFSE was obtained from 

Invitrogen Ltd., and stored in aliquots of 5 mM in DMSO at -20°C.  

CLL cells were stained with CFSE immediately after recovery from frozen.  

Following rehydration with DAMP, cells (3-5 x 107) were washed twice in PBS, and 

resuspended in 10 ml PBS supplemented with 5% FBS.  One tenth (1 ml) of the 

cell solution was removed and placed in culture in a 25 ml flask in complete media 
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to be used for unstained controls.  The remainder of the cells were pelleted by 

centrifugation (300 g for 5 min) and resuspended in 5 ml PBS / 5% FBS.  To this, 

CFSE was added to a final concentration of 1 µM, cells were thoroughly mixed by 

pipetting, and incubated at 37°C in a waterbath for 8 min.  The cells were then 

removed and 50 ml of ice-cold quenching solution (PBS supplemented with 20% 

FBS) was added immediately.  Cells were centrifuged (300 g for 10 min), and 

washed once more in PBS / 5% FBS.  Cells were then resuspended in 10 ml 

complete media and incubated overnight in a 25 ml flask at 37°C.  

2.2.9.2 12 day 154L/IL-4 co-culture 

This co-culture experiment was designed to assess the effect of dasatinib on 

proliferation of CLL cells in 154L/IL-4 co-culture over a 12 day period, assessing 

proliferation at days 0, 3, 6, 9, and 12.  For each time point, four wells containing 1 

x 105 CD154L cells were prepared as described (20 wells in total; Section 2.2.8.6).  

To three of these, 5 x 105 CFSE stained CLL cells were added in 1 ml complete 

media supplemented with 10 ng/ml IL-4, and an aliquot of unstained CLL cells 

from the same sample added to the fourth well.  One well containing CFSE-

stained CLL cells was left as an untreated control, the second treated with 100 nM 

dasatinib, and the third treated with 50 ng/ml colcemid (Invitrogen Ltd.).  Cells 

were incubated at 37°C in a humidified atmosphere.  Media and drugs were 

replaced every 72 hr as follows – supernatant media and cells were aspirated into 

sterile tubes and centrifuged at 300 g for 5 min.  During this time, 500 µl fresh 

complete media plus IL-4 was pipetted into the stroma-containing wells to prevent 

drying of the wells.  The pelleted cells were resuspended in 500 µl fresh complete 

media plus IL-4, transferred back to the original well, and drugs added fresh at the 

original concentrations above.  At day 6 of co-culture 0.5 x 105 fresh CD154L cells 

were added per well, to compensate for a degree of stromal cell death throughout 

the culture.  To harvest cells for analysis at appropriate time points, supernatant 

media was transferred to a 5 ml FACS tube.  The stromal layer was then detached 

by incubation with trypsin for 2 min, and also transferred to the FACS tube.  Cells 

were then analysed by FCM as described in Section 2.3.9. 

2.3 Flow cytometry 

2.3.1 Assessment of surface antigen expression 

Cells were harvested and washed in FACS buffer (HBSS supplemented with 1% 

BSA and 0.05% sodium azide (Sigma Aldrich Ltd.)) prior to FCM analysis.  Cells 
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were then incubated with fluorochrome-conjugated antibodies diluted as indicated 

in Table 2.4 in 100 µl FACS buffer at 4°C in the dark for 30 min.  Appropriate 

isotype controls were included in all experiments.  Cells were then washed twice in 

FACS buffer, and resuspended in FACS buffer prior to analysis.  When assessing 

CLL cell purity following processing, propidium iodide (PI) at a final concentration 

of 25 µg/ml was added at this stage to exclude dead cells from analysis in some 

cases.  As PI exclusion gating correlated well with results obtained gating on 

forward-scatter (FSC) and side-scatter (SSC), subsequent analysis was performed 

gating cells on FSC/SSC only.  FCM analysis was performed using either a 

FACSCalibur, or FACSCanto II flow cytometer (both BD Biosciences).  Unless 

otherwise stated, 10, 000 events were recorded per sample.  Data was acquired 

using BD FACSDiva (BD Biosciences) software, and analysed using BD 

FACSDiva or FlowJo (Tree Star, Inc.) software. 

2.3.2 Analysis of intracellular proteins  

Caspase 3 activation was measured by intracellular FCM using an antibody to the 

active form of caspase 3 (BD Biosciences).  Following treatments as indicated, 

CLL cells (1-5 x 105 cells) were washed in ice-cold PBS in 5 ml FACS tubes.  Cells 

were resuspended in 150 µl Fixation/Permeabilisation solution (BD Biosciences) 

and incubated at 4°C for 20 min.  Cells were washed in 2 ml BD Perm/WashTM 

buffer (BD Biosciences), then incubated with anti-active caspase 3 antibody, or 

rabbit IgG isotype control antibody (5 µl per test, both BD Biosciences) in 

Perm/WashTM buffer at 4°C for 30 min.  Cells were washed in Perm/WashTM 

buffer, then analysed.  Cells with a fluorescence intensity greater than that of the 

isotype-matched control were considered positive, as shown in Figure 2.4. 

2.3.3 Measurement of SykY348 phosphorylation by intracellular 
phosphospecific flow cytometry 

CLL cells were incubated in RPMI containing 0.5% BSA for 2 hr prior to the 

experiment.  2 x 106 cells were transferred to each 5 ml FACS tube and washed in 

PBS.  Cells were resuspended in 100 µl media containing 10 µg/ml biotinylated 

anti-IgM ± 100 nM dasatinib, and incubated for 30 min on ice.  Cells were then 

washed in PBS and resuspended in media with or without 100 nM dasatinib (100 

µl for samples to be stimulated with avidin, and 200 µl for controls).  To IgM 

stimulated samples, 100 µl avidin solution was added to achieve a final 

concentration of 25 µg/ml, and tubes incubated at 37°C in a waterbath for 10 min.  
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At the end of the experiment, 200 µl of pre-warmed 3.6% formaldehyde (Sigma 

Aldrich) in PBS (final concentration 1.8%) was added to each tube in order to fix 

the cells, and incubated at RT for 10 min.  Tubes were then centrifuged (300 g for 

5 min) and cell pellets resuspended in 1 ml ice-cold 100% methanol (Sigma 

Aldrich), vortexed briefly, and incubated on ice for 15 min.  Cells were then 

pelleted and washed in 1x BD Perm/WashTM buffer, then stained with anti-SykY348 

–PE or PE-labelled isotype control antibody at a 1/20 dilution in Perm/WashTM 

buffer.  Cells were washed twice in Perm/WashTM buffer, and resuspended in 500 

µλ Perm/WashTM buffer for FCM analysis.  Cells were live-gated by FSC/SSC, and 

10, 000 events recorded per sample, and the PE-channel mean fluorescence 

intensity (MFI) recorded. 

2.3.4 Annexin V / Viaprobe Staining 

Following treatments, CLL cells (1-5 x 105) were washed once in ice-cold PBS, 

and resuspended in 100 µl 1 x Annexin V binding buffer (BD Biosciences) 

containing 3 µl Annexin V-FITC and 3 µl Viaprobe (both BD Biosciences) per test, 

and incubated at RT for 15 min in the dark.  The reaction was terminated by 

adding 400 µl Annexin V binding buffer, and cells analysed on a FACS Canto II 

flow cytometer.  Tubes containing unstained cells, or Annexin V or Viaprobe 

single-stained cells were recorded to set FSC/SSC voltages and set 

compensation.  Annexin V-/Viaprobe- cells were considered viable, and Annexin 

V+/Viaprobe- cells considered early apoptotic, as demonstrated in Figure 2.5. 

2.3.5 Assessment of Mitochondrial Membrane Potential 

As described in Section 1.8.2, loss of MMP is a key early event in apoptosis, 

controlled by the Bcl-2 family of proteins.  A number of methods have been 

developed to quantitate MMP within cells, as a marker of apoptosis, reviewed in 

(317).  In this study, MMP was measured using the lipophilic cationic indicator 

tetramethylrhodaminemethylester (TMRM) (Invitrogen Molecular Probes), which 

exhibits fluorescence in the FL-2 channel on a flow cytometer.  In viable cells with 

an normal MMP, TMRM accumulates in the mitochondrial intermembrane space, 

leading to high recorded fluorescence.  On loss of mitochondrial membrane 

integrity, the ability of TMRM to accumulate is lost, resulting in a marked decrease 

in measurable fluorescence (317).   

TMRM stock solution (10 mM) was prepared in DMSO and stored at -20°C.  

Following treatments as indicated, CLL cells (1-10 x 105) were stained with 150 
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nM TMRM in PBS, incubated at 37°C for 15 min, then placed on ice.  Analysis by 

FCM was then performed within 10 min.  For each sample, 10, 000 ungated 

events were recorded, and fluorescence analysed in the FL-2 channel.  As CLL 

cells undergo a degree of spontaneous apoptosis in vitro (Figs. 2.4 and 2.5), cells 

with high and low fluorescence were observed in all samples analysed.  During 

analysis, consistent gates were set on FL-2 fluorescence in order to compare 

treated and control cells within each experiment. 

2.3.6 Chemotaxis assay 

In this assay, the ability of CLL cells to migrate along an SDF-1 concentration 

gradient through a polycarbonate membrane was assessed.  CLL cells were 

cultured in RPMI-1640 supplemented with 0.5% BSA for 2 hr prior to the assay, 

and this media was used throughout.  A total of 5 x 105 CLL cells in 100 µl 0.5% 

BSA media was plated into round-bottomed 96 well plates.  Cells were either 

untreated, or treated with 1, 10, or 100 nM dasatinib for 30 min.  Additionally, cells 

were treated with 10 µg/ml of the CXCR4 antagonist AMD3100 as a positive 

control expected to inhibit chemotaxis toward SDF-1.  All treatments were 

performed in duplicate wells.  After pre-incubation with drugs, the 100 µl cell 

suspension was transferred to the upper chamber of a 6.5 mm diameter transwell 

culture insert (Costar) with a pore-size 5 µm.  The transwell inserts were then 

placed into wells containing 600 µl media supplemented with 150 ng/ml SDF-1.  

Transwells containing untreated CLL cells placed above media containing no SDF-

1 were included as a negative control to account for non-specific migration.  The 

transwell chamber plates were incubated at 37°C in 5% CO2 for 4 hr.  Following 

this, transwell inserts were removed and the media in the lower chamber mixed 

thoroughly by pipetting.  From each well, three 150 µl aliquots were directly 

transferred to 5 ml FACS tubes for analysis.  Transmigrated cells were assessed 

by counting the number of acquired events recorded on high flow for 30 s.   

2.3.7 Actin polymerisation assay 

CLL cells were incubated in RPMI-1640 supplemented with 0.5% BSA for 2 hr 

prior to the assay, and this media used in all steps throughout.  CLL cells were 

plated at 2 x 106 cells/ml in wells of a 24 well plate, and treated as follows: 

untreated; 100 nM dasatinib; 40 µg/ml AMD3100, or; both 100 nM dasatinib and 

40 µg/ml AMD3100 for 30 min.  Before addition of SDF-1, 100 µl aliquots were 

removed from each well and transferred to 5 ml FACS tubes containing 250 µl BD 
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Fix/Perm solution.  SDF-1 was then added to wells at 100 ng/ml, and 100 µl 

aliquots from each well removed into BD Fix/Perm solution as above at the 

following time points, 15, 60, 300, and 600 s.  At the end of the experiment, tubes 

were incubated at 4°C for 20 min to fix and permeabilise the cells.  Cells were then 

washed in 2 ml Perm/WashTM buffer and stained with Alexa Fluor® 488-conjugated 

phalloidin (Invitrogen Ltd.) at a 1/100 dilution in Perm/WashTM buffer at 4°C for 10 

min.  Cells were again washed and resuspended in Perm/WashTM buffer prior to 

FACS analysis.  Data were acquired on a FACSCanto II flow cytometer, gated on 

live lymphocytes by FSC/SSC, recording fluorescence in the FITC channel from 

10, 000 gated events. 

2.3.8 Pseudoemperipolesis assay 

This assay assesses the ability of CLL cells to spontaneously migrate beneath a 

layer of stromal cells (pseudoemperipolesis).  Firstly, tissue culture plates were 

coated with collagen I (Invitrogen Ltd.) at 50 µg/ml in PBS supplemented with 0.02 

M acetic acid (Sigma Aldrich Ltd.) for 1 hr at RT, followed by washing three times 

with PBS.  Two days prior to the assay, M2-10B4 cells in complete media were 

plated at 1.5 x 105 cells/well in a collagen-coated 24-well tissue culture plate.  The 

cells were cultured for 48 hr until the cells were confluent.  On the day of the 

assay, CLL cells were plated at 2 x 106 cells/ml in a fresh 24-well plate (8 wells).  

Cells in three wells were treated with 100 nM dasatinib for 30 min.  Following this, 

supernatant media was removed from 6 wells containing M2-10B4 cells, and 1 ml 

of CLL cells (from 3 untreated wells and 3 dasatinib-treated wells) were transferred 

onto stromal containing wells.  The plate was cultured at 37°C in 5% CO2 for 5 hr, 

then each well was washed thoroughly three times with complete media.  To 

ensure the adequacy of the washing process, 1 ml CLL cells was added to a 

further stromal layer, incubated 5 min, and thereafter washed and treated as other 

wells.  An additional well containing stroma only was also washed and analysed, 

as a negative control.  After washing, wells were analysed and photographed 

using phase-contrast microscopy, to document pseudoemperipolesis and ensure 

complete removal of non-migrated cells.  CLL cells which have migrated beneath 

the stromal layer appear dark and non-refractile, in contrast to cells above the 

stromal layer (230), as shown in Figure 2.6.  The stromal cell layer was detached 

by incubating wells with 1 ml trypsin at 37°C for 1 min, harvested by pipetting into 

5 ml FACS tubes, and washed in PBS.  To an additional tube, 100 µl of the input 

CLL cell suspension was added, as a positive control and allow enumeration of 
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transmigrated cells.  Each cell pellet was stained with anti-CD19 APC at 4°C for 20 

min, washed twice in FACS buffer, then resuspended in 500 µl FACS buffer for 

flow cytometric analysis.  Cells were analysed using a FACSCanto II flow 

cytometer, and FSC and SSC voltages set so that both lymphocytes and stromal 

cells were visible and clearly separated.  Gates were set around the location of the 

lymphocyte population, and on this gate cells were further gated on CD19+ events 

to exclude stromal cell debris from the count.  Using this gating strategy, samples 

were counted, in triplicate, by recording the number of positive events obtained by 

accumulating on high flow for 30 s. To quantitate pseudoemperipolesis, the count 

recorded in each test sample was determined as a percentage of the input cell 

count (10 x the recorded input cell count to allow for dilution factor).  Negative 

control samples containing stromal cells alone, or CLL cells washed after 5 min 

consistently gave values of less than 0.05% migrated cells, confirming minimal 

background counts. 

2.3.9 FACS for CFSE proliferation experiments 

2.3.9.1 Cell counting by flow cytometry 

CLL cells co-cultured in the 12-day 154L/IL-4 proliferation co-culture model (as 

described in Section 2.2.9) were transferred to FACS tubes, washed in PBS, and 

then incubated with an anti-CD19 APC-conjugated antibody for 30 min at 4°C.  

Cells were subsequently washed in FACS buffer (300 g for 5 min), and each cell 

pellet resuspended in 450 µl FACS buffer.  To each tube, 50 µl CountBrightTM 

absolute counting beads (Invitrogen Ltd.), warmed to RT and vortexed, was added 

and samples mixed thoroughly.  CountBrightTM beads are a suspension of 

microspheres of known concentration which are FSClow/SSChigh and have high 

fluorescence across wavelengths up to 635 nM, allowing determination of accurate 

cell counts by FCM.  Data was acquired on a FACSCanto II flow cytometer, using 

FSC/SSC voltages set to allow clear identification of both the CLL cell and  

counting bead populations.  CountBrightTM beads were gated first on FSC/SSC, 

and further on high fluorescence in the FL-5 (APC-Cy7) channel, to exclude non-

bead events falling into the size-gated population.  CLL cells were differentiated 

from stromal cells by gating first on FSC/SSC, and furthermore on CD19 

expression.  An example of the gating strategy used is shown in Figure 2.7.  For 

each sample, 5000 bead events were acquired, and the number of recorded CLL 

cell events noted.  From these data, the CLL cell concentration (cells/µl) was 
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calculated using Equation 2.1, where A = number of cell events, B = number of 

bead events, C = assigned bead count of the lot (beads/50 µl), and D = volume of 

the sample.  As the sample volume was 500 µl, the cell concentration/ µl was 

multiplied by 500 to give the absolute cell count. 

 concentration of cells/µl 

Equation 2.1  Equation to determine cell number by FCM 

  

2.3.9.2 Analysis of cell division using CFSE 

After assessment of cell counts, each sample was further analysed by FCM to 

assess cell division using the method of CFSE dilution.  CLL cells were again 

identified by gating on FSC/SSC then CD19 expression and 10, 000 gated events 

recorded per sample.  First, the colcemid control tube was recorded; as cells in 

this tube were inhibited from undergoing cell division, the FL-1 MFI was taken as 

the MFI of the undivided cell population.  As the CFSE dye is split equally on cell 

division, each daughter cell will have half the fluorescence of the parent cell.  The 

gate to encompass cells that had divided once was set by including an area with 

approximately half the MFI of the undivided population.  Gates to include cells in 

subsequent cell divisions were set similarly, as shown in Figure 2.8.  This allowed 

the determination of the percentage of total CLL cells within each cell division. 

 
2.3.9.3 Calculation of percentage recovery of input cells 

This analysis was performed in order to determine the percentage of the starting 

cell population that could be accounted for given the total cell count and number of 

cell divisions, in order to assess whether net cell death had occurred during the 

culture period.  At each time point, the absolute number of cells in each division 

was calculated by dividing the total cell count by the percentage of cells within the 

cell division.  The cell recovery number was then calculated for each sample using 

Equation 2.2, where R = recovery number, n0 = number of undivided cells, n1 = 

number of cells in division 2, n3 = number of cells in division 3 and so on. 

 

Equation 2.2  Equation to calculate cell recovery 
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The recovery number of each sample was then expressed as a percentage of the 

input cell number at day 0, as assessed by FCM, to calculate the recovery 

percentage. 

2.4 Assessment of calcium flux following BCR stimulation by fluorescence 

spectrophotometry 

Calcium flux following BCR stimulation was measured using Fura-2 AM.  Fura-2 

AM is a cell permeable fluorescent calcium indicator (339).  Following uptake into 

the cell, the AM ester groups of Fura-2 are hydrolysed by non-specific esterases, 

which renders Fura-2 membrane-impermeant, therefore trapped within the 

cytoplasm, in a similar way to CFSE.  On binding intracellular calcium the 

fluorescent excitation wavelength of Fura-2 shortens.  This property allows the 

calculation of calcium concentration [Ca2+] from the ratio of the dye’s fluorescence 

intensities (F1 and F2), measured at 510 nM using two excitation wavelengths (λ1 

and λ2; 340 and 380 nM) as described in (339), using Equation 2.3, where Kd 

represents the dissociation constant of Fura-2, Q the ratio of Fmin to Fmax at λ2, R 

represents the fluorescence intensity ratio Fλ1/Fλ2.    

  

Equation 2.3  Equation to calculate calcium concentration 
 

Fura-2 AM was prepared as a 2.5 mM stock solution in DMSO and stored at -20 

°C until use.  CLL cells were incubated in RPMI-1640 containing 0.5% BSA for 2 

hr prior to experiments.  Cells were then pelleted and re-suspended at 5 x 106/ml 

in HEPES Ca2+-supplemented buffer (145 mM NaCl, 5 mM KCl, 1 mM MgSO4, 1 

mM CaCl2, 10 mM HEPES, 0.18% glucose, and 0.2% BSA, adjusted to pH 7.4).  

Fura-2 AM was added to the cell suspension at a final concentration of 1 µM, and 

cells incubated at 37°C for 30 min in the dark.  Cells were washed twice in 5 ml 

buffer, then re-suspended in buffer containing 10 µg/ml biotinylated anti-IgM with 

or without 100 nM dasatinib for a further 30 min at 4°C.  After washing as before, 

cells were re-suspended at 2 x 106/ml in buffer.  Calcium flux was measured using 

a Hitachi F-7000 Fluorescence Spectrophotometer (Hitachi High Technologies 

America, Inc.).  For each recording, 1.5 ml of the cell suspension was transferred 

to the fluorimeter cuvette and allowed to warm to 37°C for 3 min, with continuous 
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stirring, prior to data acquisition.  Fluorescence was measured at 340 and 380 nM 

every 1.7s during recording, to detect calcium-bound and calcium-free Fura-2 

respectively.  After recording basal fluorescence, 50 µl of a 250 µM avidin stock 

was injected into the cuvette to crosslink bound surface IgM, and recording 

continued for up to 300 s.  At this time, 50 µl 1% Triton was injected to lyse cells in 

order to determine an Rmax, following which 50 µl 0.5 M EDTA was injected to give 

Rmin, and [Ca2+] at each time point calculated by the spectrophotometer software 

(FL solutions), using Equation 2.3.  The [Ca2+] was then plotted against time for all 

experimental conditions.  Prior to analysis of CLL cells, the experimental protocol 

was optimised using Ramos B cells, a human mature B cell lymphoma cell line.  A 

representative recording is shown in Figure 2.9. 

2.5 Assessment of actin polymerisation using confocal fluorescence 

microscopy 

Multispot microscope slides (C. A. Hendley (Essex) Ltd.) were coated in 0.01% 

Poly-L-Lysine (Sigma Aldrich) in distilled water for 10 min and allowed to air dry.  

On the day before the experiment, slides were coated with anti-IgM or isotype 

control by pipetting 30 µl of PBS containing either 10 µg/ml biotinylated anti-IgM or 

10 µg/ml IgG1 κ isotype control onto each spot and incubating at 4°C overnight.  

On the day of experiment, antibody solution was aspirated from the slides which 

were then blocked with complete media for 30 min.  Meanwhile, CLL cells were 

counted using Trypan blue exclusion and diluted to 5 x 105 per ml, then treated ± 

100 nM dasatinib for 30 min at 37°C.  Following this, 30 µl of control or dasatinib 

treated cells was transferred to spots coated with anti-IgM or isotype control, and 

the slides incubated at 37°C for 30 min in a humidified chamber.  Media was then 

aspirated from slides using a tissue, and 30 µl of 3.7% formaldehyde (Sigma 

Aldrich Ltd.) in PBS was added per spot and slides incubated at RT for 15 min to 

fix cells.  Slides were washed twice in PBS in a Coplin jar (5 min), lightly dried, 

then 30 µl 0.5% Triton (Sigma Aldrich Ltd.) in PBS was added per spot for 10 min 

to permeabilise the cells.  Excess liquid was aspirated, and slides incubated with 

5% BSA in PBS for 30 min at room temperature to block non-specific staining.  

Spots were then incubated with 30 µl Alexa Flour® 488 phalloidin at a 1/200 

dilution in PBS containing 1% BSA for 30 min at 4°C in the dark.  A slide was left 

unstained as a negative control.  Slides were washed twice in PBS then once in 

distilled water and left to air-dry in the dark before mounting.  Slides were mounted 
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with Vectashield® mounting medium for fluorescence with DAPI (Vector 

Laboratories Ltd.) and incubated at 4°C for 20 min prior to assessment.  Slides 

were viewed and photographed using an AxioImager M1 fluorescence microscope 

(Carl Zeiss Ltd.) and images analysed using AxioVision 5.2 software (Carl Zeiss 

Ltd.).  To quantitate the percentage of cells with evidence of spreading following 

BCR stimulation, 200 cells from each sample were viewed and scored  either 

positive or negative. 

2.6 Western Blotting 

2.6.1 Cell Lysate Preparation 

Following treatments described, cells were pelleted and washed twice in cold PBS 

(300 g for 5 min), then resuspended in lysis buffer containing 1% NP-40, 10% 

glycerol, 20 mM Tris (pH 7.5), and 137 mM NaCl (all Sigma Aldrich Ltd.) 

supplemented with Complete Protease Inhibitor Cocktail and PhosStop 

phosphatase inhibitor tablets (both Roche Diagnostics Ltd.) at a volume of 1 x 106 

cells per 10 µl buffer.  Cells were mixed by pipetting and incubated on ice for 20 

min.  Following incubation, cell lysates were clarified by centrifugation at 10, 000 g 

for 10 min.  Lysates were subsequently stored at -20°C prior to electrophoretic 

separation.  

2.6.2 Protein Quantification 

Protein concentration in lysates was determined using the bicinchoninic acid 

(BCA) method (Pierce).  The manufacturers instructions were modified as follows 

to allow quantitation of the small volumes of protein lysate (20-40 µl total) obtained 

from CLL samples.  BSA protein standards of the following concentrations were 

prepared in sterile water: 2000, 1500, 1000, 750, 500, 250, 125, 25, and 0 µg/ml 

and stored at -20°C until required.  For each assay, the kit solutions A and B were 

first mixed at a ratio of 50:1, and 100 µl of the resulting solution pipetted per well 

into a 96-well flat-bottomed tissue culture plate.  To this, 2 µl of protein standard or 

test lysate was added per well.  Protein standards were assayed in duplicate and 

test samples once due to the small sample volume.  The plate was incubated at 

37°C for 30 min and then absorbance read at 562 nM on a Spectramax M5 plate 

reader (MDS Analytical Technologies).  SoftMax Pro 5.2 software (MDS Analytical 

Technologies) was used to generate a standard curve and calculate protein 

concentration of test samples.  
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2.6.3 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE) and transfer  

Protein electrophoresis was carried out using the Invitrogen Xcell SureLockTM Mini 

cell system with NuPAGE® Novex® pre-cast 4-12% Bis-Tris gels and buffers all 

obtained from Invitrogen Ltd.  Equal amounts of protein (typically 10-30 µg) were 

diluted with 4 x NUPAGE LDS sample buffer (10 % (w/v) Glycerol, 1.7% (w/v) Tris-

Base, 1.7% Tris-HCl, 2% (w/v) lithium dodecyl sulfate (LDL), 0.15% (w/v) EDTA, 

0.019% Serva Blue G250 and 0.063% Phenol Red (pH 8.5)), 10 x NuPAGE 

reducing agent with distilled H20 to an equal appropriate final volume.  Samples 

were then heated to 70°C for 10 min in a waterbath, then centrifuged briefly.  

Samples were loaded on the gel alongside 5 µl SeeBlue® Plus2 Pre-Stained 

Standard (Invitrogen Ltd.) and resolved by running at 80V for 15 min, then 150V 

for 60 minutes with NuPAGE MOPS running buffer (50 mM 3-(N-morpholino) 

propane sulfonic acid (MOPS), 50 mM Tris-Base, 3.5 mM SDS and 1.0 mM EDTA 

(pH 7.7)), supplemented with NuPAGE antioxidant.  Gels were subsequently 

transferred to polyvinylidene fluoride (PVDF) membranes (Bio-Rad Laboratories) 

as follows.  20 x NuPAGE transfer buffer (25 mM Bicine, 25 mM Bis-Tris, 1.0 mM 

EDTA, 50 µM Chlorobutanol (pH 7.2)) was diluted with dH20 and supplemented 

with 20% (v/v) methanol (Sigma Aldrich Ltd.) and NuPAGE antioxidant.  The 

PVDF membrane was then activated by incubation in 100% methanol for 30 sec, 

rinsed briefly in dH20, and immersed in transfer buffer until required.  

Gel/membrane sandwiches were assembled using 1.0 mm gel blotting paper 

(Whatman plc), and electrophoretic transfer performed using the Invitrogen XCell 

IITM Blot Module and sponges, as per manufacturer’s instructions, running at 30 V 

for 70 min.           

2.6.4 Immunolabelling and detection 

After transfer, PVDF membranes were washed for 5 min in Tris buffered saline 

(TBS; 0.5 M NaCl and 20 mM Tris pH 7.5) supplemented with 0.1% (v/v) Tween-

20) (TBS-T) then blocked for 1 hr with 5% non-fat milk in TBS-T.  Membranes 

were incubated with primary antibodies as listed in Table 2.5 overnight at 4°C on a 

roller at the indicated dilution.  Primary antibodies were diluted in 5% BSA in TBS-

T or 5% non-fat dried milk in TBS-T as per the manufacturer’s advice.  Membranes 

were subsequently washed three times (15 min per wash) in TBS-T, and 

incubated with the appropriate species horseradish peroxidase (HRP)-conjugated 
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secondary antibody in 1% BSA in TBS-T for 1 hr at RT.  Following this, 

membranes were washed four times (15 min per wash) in TBS-T, and 

immunodetection performed using the Immun-StarTM Western CTM HRP 

chemiluminescent kit and Molecular Imager® ChemiDocTM XRS system (Bio-Rad 

Laboratories). 

For detection of phosphotyrosine only, the following protocol was used.  

Membranes were blocked for overnight in TBS supplemented with 5% BSA, 1% 

ovalbumin, and 0.05% sodium azide (all Sigma Aldrich).  Membranes were then 

incubated overnight at RT with clone 4G10 anti-phosphotyrosine antibody at a 

1:10,000 dilution in blocking solution.  Immunoblots were then washed (4 x 15 min) 

in TBS supplemented with 0.05% NP-40, and incubated with HRP-conjugated anti-

mouse secondary antibody at a dilution of 1:10,000 in a 1:5 dilution of the blocking 

solution in TBS for 1 hr at RT.  Membranes were washed (4 x 15 min) in TBS plus 

0.05% NP-40, then developed by chemiluminescence as above. 

2.6.5 Membrane stripping and re-probing 

Stripping of the PVDF membranes was often required prior to detection of the next 

protein.  Following detection of phospho-proteins, membranes were always 

stripped prior to detection of the total protein.  10 x Re-BlotTM Plus Strong antibody 

stripping solution (Millipore) was diluted in deionised water, and each membrane 

incubated in 10 ml 1 x stripping solution for 15-30 min at RT.  Membranes were 

washed in TBS-T twice, then re-blocked in 5% milk/TBS-T for 1 hr prior to 

incubation with the next primary antibody. 

2.7 Quantitative PCR 

2.7.1 RNA extraction 

Cell lines (M2-10B4, NT-L, and CD154-L) were harvested, washed in ice-cold 

PBS, and pelleted by centrifugation at 500 g for 3 min at 4°C prior to RNA 

extraction.  RNA extraction was then performed using the RNA-Easy mini kit 

according to manufacturer’s instructions (Qiagen).  RNA was stored diluted in 

RNase free H20 at -80°C.  RNA concentration was determined using a NanoDrop 

spectrophotometer (Labtech International Ltd.).  

2.7.2 Reverse Transcription PCR 

cDNA was prepared from 1 µg RNA using the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems).  RNA samples were prepared to a 
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concentration of 1 µg per 10 µl in nuclease-free H20, heated to 65°C for 10 min, 

then placed on ice.  To 10 µl of diluted RNA, 10 µl of a pre-prepared 2 x reverse 

transcription mastermix (in nuclease-free H20) was added, to give a final 

concentration of 1 x RT-buffer, 4 mM dNTP mix, 1 x RT random primers, and 2.5 

IU/ml MultiScribe reverse transcriptase. For each reaction, 10 µl master mix was 

added to a PCR tube containing 1 µg RNA.  The reaction mixture was heated to 

37°C in a Mastercycler™ PCR machine (Eppendorf UK Ltd.) for 2 hr.  The reaction 

was then heated to 85°C for 5 sec to denature the reverse transcriptase, then 

cooled to 4°C.  The resulting cDNA samples were stored at -20°C. 

2.7.3 TaqMan® Real-Time PCR 

Quantitative PCR was performed using a TaqMan® Gene Expression Assay 

(Applied Biosystems), as follows. The TaqMan® Gene Expression Assay probes 

were mouse SDF-1 with a FAM reporter, and mouse GAPDH with a VIC-MGB 

reporter.  In a MicroAmp™ Optical 96-well reaction plate (Applied Biosystems) a 

total volume of 25 µl/reaction was prepared, containing 1 x TaqMan® Gene 

Expression Mastermix (AmpliTaq Gold® DNA Polymerase (Ultra Pure), Uracil-DNA 

glycosylase, dNTPs with deoxyuridine triphosphate, ROX™ Passive Reference, in 

addition to optimised buffer components), 1 x TaqMan® Gene Expression Assay, 1 

µl cDNA diluted in nuclease-free water.  For each sample, each gene was assayed 

in quadruplicate, and a negative control containing nuclease-free water in place of 

cDNA was included.  Plate wells were capped and the plate centrifuged briefly.  

The plate was inserted into an Applied Biosystems 7900 Fast Real-Time PCR 

System thermal cycler, and programmed to complete 40 cycles as follows: 50°C 

for 2 min, 95°C for 10 min, 95°C for 15 sec, and 60°C for 1 min.  Reactions were 

analysed using Sequence Detections Systems software version 2.3 (Applied 

Biosystems).  For each sample, the cycle threshold (Ct) was determined for both 

GAPDH and SDF-1.  Results for each sample were expressed as the delta Ct 

(ΔCT; SDF-1 Ct minus GAPDH Ct). 

2.8 Statistical Analysis 

2.8.1 Software used for statistical analysis 

Results are shown as mean ± SEM.  Statistical analysis was performed using 

GraphPad Prism 4 software (GraphPad Software Inc.), using the Students 

unpaired t-test to compare groups.  The Wilcoxon Signed Ranks test was used to 
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analyse experiments in which data of treated groups were expressed relative to 

the untreated controls (set to 100%). 

2.8.2 Statistical analysis of data generated in drug combination 
experiments 

To assess whether the effect of dasatinib in combination with other 

chemotherapeutic agents or novel inhibitors was synergistic, additive, or 

antagonistic, data from drug combination experiments was analysed using 

Calcusyn® software (Version 2.0; Biosoft), which uses the mathematical model 

developed by Chou (340).  In these experiments, CLL cells at 1 x 106/ml were 

treated with increasing concentrations of single drugs or drug combinations at a 

fixed ratio, as demonstrated in Figure 2.10.  Following 24 hr of treatment, cells 

were harvested and apoptosis assessed by Annexin V/Viaprobe staining by FCM.  

For each drug treatment, the percentage of cells remaining viable (Annexin V-

/Viaprobe-) relative to the untreated control was calculated (viable %).  The viable 

percentage was converted to the fraction affected (fa) using Equation 2.4. 

 

Equation 2.4  Equation to calculate the fraction affected for synergy 
experiments 
 

The fraction affected for each drug treatment was entered into a Calcusyn® 

software worksheet, allowing analysis of the data as follows.  The software 

generated dose and effect curves for each drug treatment, which were further 

related using the median-effect equation of Chou (Equation 2.5 (340)), where D is 

the dose of drug, Dm the median effect dose (or LD50), fu the fraction unaffected (1-

fa), and m an exponent signifying the sigmoidicity of the dose-effect curve. 

 

Equation 2.5  Median effect equation 

 

A linear relationship between dose and effect was constructed by the software by 

plotting x = log(D) against y = log (fa/fu), based on the logarithmic form of the 

median effect equation (Equation 2.6) 
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Equation 2.6  Logarithmic expression of the median effect equation used to 
construct median effect plots 
 

For each drug treatment, a linear correlation coefficient (r) was calculated by the 

software, which depicted the conformity of the data to the median-effect plot.  

Experiments in which r > 0.90 were accepted for analysis.  Synergy or antagonism 

of drug pairings was calculated by the software computing the combination index 

(CI).  The CI equation is based on the multiple drug-effect equation of Chou and 

Talalay (Equation 2.7 (340)), (Dx)1 is the concentration of drug 1 causing x% 

inhibition, and (Dx)2 the concentration of drug 2 causing x% inhibition. 

 

Equation 2.7  Combination index equation 
 

A CI of 1 indicates that the drug pairing has an additive effect, CI < 1 indicates 

synergy (more than additive effect), and CI > 1 indicates an antagonistic effect.  

The degree of synergism or antagonism has been graded as shown in Table 2.6.  

The software plots the calculated CIs on an isobologram plot, illustrated in Figure 

2.11. 
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Table 2.1  Suppliers addresses 

Company Address 
Applied Biosystems Lingley House, 120 Birchwood Boulevard, 

Warrington, WA3 7QH, UK 

Axxora (UK) Ltd. P.O. Box 6757 Bingham, Nottingham NG13 8LS, 
UK 

Bachem Hegenheimer Strasse 5 79576 Weil am Rhein 
Germany 

BD Biosciences The Danby Building, Edmund Halley Road, Oxford 
Science Park, OX4 4DQ, Oxford, UK 

BioMol c/o 
Enzo Life Sciences Ltd. 

Palatine House, Matford Court, Exeter, EX2 8NL, 
UK  

Bio-Rad Laboratories Bio-Rad House, Maxted Road, Hemel Hempstead, 
HP2-7DX, UK 

Biosoft PO Box 1013, Great Shelford, Cambridge, CB22 
5WQ, UK 

Bristol-Myers Squibb Route 206, Provinceline Road, P.O. Box 4000 
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C. A. Hendley (Essex) Ltd. Oakwood Hill Industrial Estate, Oakwood Hill, 
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c/o New England Biolabs  

75-77 Knowl Piece, Wilbury Way, Hitchin, Herts 
SG4 0TY, UK 
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c/o Fisher Scientific UK 

Bishop Meadow Road, Loughborough, LE 1 5RG 
Leicestershire, UK 

Eppendorf UK Ltd. Endurance House, Vision Park, Chivers Way, 
Histon, Cambridge, CB24 9ZR, UK 

Fisher Scientific UK Bishop Meadow Road, Loughborough, LE 1 5RG 
Leicestershire, UK 

Greiner Bio-One Ltd. Unit 5, Stroudwater Business Park, Brunel Way 
Stonehouse, Gloucestershire, GL103SX, U.K. 

GraphPad Software Inc. 2236 Avenida de la Playa, La Jolla, CA 92037, US 

Hawksley Marlborough Road, Lancing Business Park, 
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Invitrogen Ltd. 
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Woburn, MA 01801 
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Merck Chemicals Ltd. Boulevard Industrial Park, Padge Road, Beeston, 
Nottingham, NG9 2JR, UK 

Millipore (U.K.) Limited Suite 3 & 5, Building 6, Croxley Green Business 
Park, Watford, WD18 8YH 

Miltenyi Biotech Almac House, Church Lane, Bisley, Surrey, 
GU24 9DR, UK 
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c/o Perbio Science UK Ltd. 
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RPS Services Limited Unit 1A, The Cottage, 100 Royston Road, Byfleet, 
Surrey, KT14 7NY, UK 
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Tree Star, Inc. 340 A Street #101, Ashland, OR 97520, US 
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Peterborough, PE2 6XS, UK 
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Kent, ME14 2LE, UK 

Carl Zeiss Ltd. 15 - 20 Woodfield Road , Welwyn Garden City, 
Hertfordshire, AL7 1JQ, UK 

 



   

 82 

Table 2.2  Details of CLL samples stored 

Sample 
Number 

Age Sex Binet 
Stage* 

Treated ZAP-70 
Status 

FISH 

1 58 M A no n/a n/a 
2 51 M A no neg nil 
3 56 F A no neg n/a 
4 57 F A no neg n/a 
5 69 M A no neg 13q- 
6 71 M C no neg n/a 
7 74 M C yes pos 11q- 
8 60 F A no neg 11q- 
9 67 F B yes neg n/a 
10 71 M A no n/a n/a 
11 52 M A no neg 11q- and +12 
12 60 F A no neg 13q- 
13 77 M A no neg 13q- 
14 63 M C yes pos 17q- 
15 48 F A no pos nil 
16 77 F A yes pos nil 
17 79 M A no n/a n/a 
18 62 F B Yes pos 11q- 
19 72 M A Yes n/a n/a 
20 80 M A No n/a n/a 
21 66 F C Yes pos nil 
22 77 F A Yes n/a n/a 
23 80 F A No n/a n/a 
24 81 F B Yes pos 13q- 
25 66 M A No n/a n/a 
26 69 M A Yes pos 13q- 
27 88 F C Yes n/a n/a 
28 70 F A No pos 17p- 
29 73 M C Yes pos nil 
30 68 M A No n/a n/a 
31 76 M A No n/a n/a 
32 66 F B + C No pos nil 
33 88 M A No n/a n/a 
34 65 M B Yes pos 11q- 
35 69 M A No pos 11q- 
36 76 M A Yes pos 11q- 
37 69 F A No n/a n/a 
38 67 M B Yes pos nil 
39 75 M A Yes n/a n/a 
40 85 F A No n/a n/a 
41 60 M A No neg nil 
42 75 F B Yes n/a n/a 
43 94 M A No n/a n/a 
44 64 F A No neg nil 
45 79 M B Yes pos 13q- 
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Sample 
Number 

Age Sex Binet 
Stage 

Treated ZAP-70 
Status 

FISH 

46 53 F A No pos nil 
47 59 M B No neg +12 
48 78 F A No n/a n/a 
49† -- -- -- -- -- -- 
50 62 M C Yes pos nil 
51 77 M A + C No neg nil 
52 79 F B Yes neg 11q- 
53 84 F A No n/a n/a 
54 55 F A No neg nil 
55 78 F A No n/a n/a 
56 92 F A + C No n/a n/a 
57 73 M C No pos nil 
58 66 M A No n/a n/a 
59 87 F A No neg n/a 
60 60 F A No pos nil 
61 76 M C Yes n/a n/a 
62 84 F A Yes n/a n/a 
63 64 M A No n/a n/a 
64 65 M C Yes neg nil 
65 70 F C Yes neg nil 
66 79 F A Yes n/a n/a 
67 71 M A No pos nil 
68 59 F C Yes pos nil 
69 45 M A Yes pos nil 
70 75 F C No neg nil 
71 63 M A No n/a n/a 
72 52 F A No pos nil 
73 76 F A Yes pos nil 
74 71 F A Yes neg nil 
75 76 M C No n/a n/a 
76 52 F A No pos 6q- 
77 63 M A No neg nil 
 
neg = ZAP-70 negative,  pos = ZAP-70 positive 
n/a = Not available 
nil = No abnormality detected by FISH 
Chromosomal deletions are indicated by (-) and trisomy denoted by (+) 
*  Where more than one stage is listed, this denotes separate samples collected at 
different stages of disease 
†  This patient was found to have an alternative diagnosis following cell storage 
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Table 2.3  Details of inhibitor preparation and storage 
 
 
Inhibitor 

 
    MW* 

Stock 
Concentration 

 

 
Diluent 

Storage 
Temperature 

AMD3100 794.5 10 mg/ml H20 -20°C 

Bcl-2 inhibitor I 300.3 5 mM DMSO -20°C 

Bcl-2 inhibitor III 376.7 5 mM DMSO -20°C 

Chlorambucil 304.2 100 mM DMSO -20°C 

Dasatinib 488 20 mM DMSO -20°C 

17-DMAG 653.2 1 mM H20 -20°C 

Fludarabine 285.2 5 mM DMSO -20°C 

Imatinib 589.7 100 mM DMSO 4°C 

JNK inhibitor II 220.2 50 mM DMSO -20°C 

LY294002 307.4 10 mM DMSO -20°C 

PD98059 267.3 50 mM DMSO -20°C 

PP2 301.8 5 mM DMSO 4°C 

PP3 211.2 5 mM DMSO 4°C 

SB203580 377.4 10 mM DMSO -20°C 

Z-VAD-fmk 467.5 25 mM DMSO -20°C 

 

* molecular weight 

 



   

 85 

Table 2.4  Antibodies used for FCM 

Description Reactivity Clone Format Isotype 
CD19 Human HIB19 FITC IgG1κ 

CD19 Human HIB19 PE IgG1κ 

CD19 Human HIB19 APC IgG1κ 

CD5 Human UCHT2 PE IgG1κ 

CD23 Human M-L233 APC IgG1κ 

Caspase 3 
(active form) 

Human C92-605 PE IgG1κ 

Syk (Tyr348) Human I120-722 PE IgG1κ 

Isotype control Human MOPC-21 FITC IgG1κ 

Isotype control Human MOPC-21 PE IgG1κ 

Isotype control Human MOPC-21 APC IgG1κ 
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Table 2.5  Antibodies used for western blotting 

Specficity* Species Dilution Manufacturer 
Akt rabbit 1:1000 Cell Signaling 

p-Akt (Thr308) rabbit 1:1000 Cell Signaling 

Bcl-2 mouse 1:1000 Cell Signaling 

Bcl-xL rabbit 1:2000 BD Biosciences 

Bim rabbit 1:1000 Cell Signaling 

β tubulin rabbit 1:1000 Cell Signaling 

Caspase 9 rabbit 1:1000 Cell Signaling 

ERK1/2 rabbit 1:1000 Cell Signaling 

p-ERK1/2 (Thr202/Tyr204) rabbit 1:1000 Cell Signaling 

p-FAK (Tyr576/Tyr577) rabbit 1:1000 Cell Signaling 

GAPDH rabbit 1:1000 Cell Signaling 

HSP90 mouse 1:2000 R&D Systems 

IκBα rabbit 1:1000 Cell Signaling 

p-IκBα (Ser32/36) mouse 1:1000 Cell Signaling 

Lyn rabbit 1:1000 Cell Signaling 

p-Lyn (Tyr396) rabbit 1:5000 Epitomics 

Mcl-1 rabbit 1:1000 Cell Signaling 

PARP rabbit 1:1000 Cell Signaling 

p70 s6 kinase rabbit 1:1000 Cell Signaling 

p-p70 s6 kinase (Thr389) rabbit 1:1000 Cell Signaling 

SAPK/JNK rabbit 1:1000 Cell Signaling 

p-SAPK/JNK (Thr183/Tyr185) mouse 1:500 Cell Signaling 

Src mouse 1:1000 Cell Signaling 

p-Src Family (Tyr416) rabbit 1:1000 Cell Signaling 

p-Syk (Tyr352) rabbit 1:1000 Cell Signaling 

Survivin rabbit 1:1000 Cell Signaling 

p-Tyrosine (clone 4G10) mouse 1:10,000 Millipore 

Anti-rabbit IgG, HRP-linked 
antibody 

goat 1:5000 Cell Signaling 

Anti-mouse IgG, HRP-linked 
antibody 

horse 1:5000 Cell Signaling 

 

* p denotes antibody specificity for the phosphorylated form of the indicated 

protein.  The specific phosphorylation site(s) are denoted in brackets. 
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Table 2.6  Definitions of drug synergism and antagonism 

Range of CI Description Symbol 
< 0.1 Very strong synergism +++++ 

0.1-0.3 Strong synergism ++++ 

0.3-0.7 Synergism +++ 

0.7-0.85 Moderate synergism ++ 

0.85-0.9 Slight synergism + 

0.9-1.1 Nearly additive ± 

1.1-1.2 Slight antagonism - 

1.2-1.45 Moderate antagonism -- 

1.45-3.3 Antagonism --- 

3.3-10 Strong antagonism ---- 

>10 Very strong antagonism ----- 
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Figure 2.1  FCM plot of a representative CLL patient sample following 
RosettesepTM purification 

A whole blood sample from a CLL patient (CLL 41) was processed using 

RosettesepTM negative selection, as described in Section 2.2.1.  Following 

purification, FCM was performed as described in Section 2.3.1 to assess the 

percentage of CLL cells obtained.  Dot plots are live-gated on FSC/SSC, and the 

percentage of cells dual-staining for the antigen combinations as indicated is 

shown in the top-right corner. 
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Figure 2.2  Enrichment of B lymphocytes from buffy coat using MACS 
sorting. 

Normal B lymphocytes were isolated from a buffy coat using Histopaque and 

MACS sorting.  The figure demonstrates the typical efficiency of B cell enrichment.  

Histograms have been live-gated on FSC/SSC, and show relative cell number 

(RCN) against CD19-PE staining. 
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Figure 2.3  Confirmation of CD154 expression on CD154L cells by FCM 

NT-L cells and CD154L cells were stained with a PE-conjugated antibody specific 

for CD154 prior to FCM.  CD154L cells were also stained with an PE-conjugated 

isotype control antibody.  Cells were live-gated on FSC/SSC, and the histograms 

show RCN against PE fluorescence. 
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Figure 2.4  Gating strategy used to determine percentage of CLL cells 

containing activated caspase 3 

CLL cells were analysed for caspase 3 activation as described in Section 2.3.2.  

Cells were not gated on FSC/SSC.  Following FCM, cells were analysed by 

creating a gate which included not more than 1% of cells stained with the isotype 

control antibody.  This gate was then applied to histograms of untreated or 

dasatinib-treated cells to calculate the percentage of total cells containing 

activated caspase 3. 
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Figure 2.5  Example of gating strategy used to assess apoptosis in CLL cells 
stained with Annexin V and Viaprobe 

CLL cells were stained with Annexin V-FITC and Viaprobe as described in Section 

2.3.4.  The dot plot above shows a CLL sample stained following 24 hr in culture in 

complete media.  In experiments, quadrant gates as shown were set in order to 

quantify the percentages of viable (Annexin V-/Viaprobe-), early (Annexin 

V+/Viaprobe-), and late (Annexin V+/Viaprobe+) apoptotic cells.   
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Figure 2.6  Pseudoemperipolesis of CLL cells beneath M2-10B4 stromal cells 

CLL cells from one patient sample (CLL 64) were co-cultured on a prepared M2-

10B4 stromal cell layer for 5 hr.  Non-migrated cells were washed by washing 

wells three times with media, and the stromal cell layer photographed.  The white 

arrows indicate CLL cells which demonstrate pseudoemperipolesis into the 

stromal cell layer, identified by their non-refractile appearance.  Cells were 

subsequently collected and analysed by FCM as described in Section 2.3.8. 
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Figure 2.7  Gating strategy used to perform CLL cell counts using 

CountBrightTM beads 
To count CLL cells cultured in the 12-day proliferation assay by FCM, cells were 

treated as described in Section 1.3.9.1.  In summary, cells were stained with an 

anti-CD19 APC-conjugated antibody, then CountBrightTM beads were added prior 

to FCM.  The dot plot shows gates set around the proliferating CLL cell (P1) and 

counting bead (P2) populations.  As the counting beads fluoresce highly in all 

channels, the P2 gate was further gated on APC-Cy7 fluorescence (P4) to exclude 

any stromal cells falling into the gated population.  The P1 gate was further gated 

on CD19 expression, again to exclude stromal cells falling into the size-gated 

population.  Following the setting of gates, acquisition was started to record 5000 

bead events (P4).  The number of P3 events recorded during the period of 

acquisition was taken as the CLL cell count, for calculation of cell number using 

Equation 2.1. 
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Figure 2.8  Gating strategy used to assess CLL proliferation using CFSE 

The two histogram plots show the analysis of colcemid-treated (upper) and 

untreated (lower) CLL cells from one sample following six days of culture in the 

154L/IL-4 proliferation assay.  The MFI of colcemid-treated cells was used in order 

to set gates to delineate cells within successive cell divisions, as described in 

Section 1.3.9.2 and demonstrated in the table above.  The table also indicates the 

percentage of total CLL cells within each division; D0 represents undivided cells, 

D1 cells in division 1, and so on. 
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Figure 2.9  Example of the determination of calcium flux following BCR 
crosslinking in Ramos B cells by fluorescence spectrophotometry 
Ramos B cells were loaded with 1 µM Fura-2 as described in Section 2.4.  Cells 

were then incubated with 10 µg/ml biotinylated anti-IgM for 30 min prior to BCR 

stimulation.  Cells were transferred to the spectrophotometer cuvette; basal 

calcium concentration was recorded for 40 sec, followed by BCR crosslinking by 

injection of avidin into the cell suspension (arrowed).  Data were recorded for a 

total of 130 sec.  The graph shows the change in [Ca2+] over time in a 

representative experiment. 
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Figure 2.10  Illustration of the constant ratio combination design of drug 

synergy experiments 
The numbers in this Figure refer to the multiple or fraction of the determined EC50, 

with 1 representing the EC50 concentration.  Drug combination treatments 

(diagonal) were planned using drugs at their equipotency ratio (EC50 of each drug), 

and multiples or fractions thereof.  This approach maintained a constant drug ratio 

in combination treatments, which allowed data analysis with Calcusyn® software 

as described in Section 2.8.2. 
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Figure 2.11  Classical isobologram and illustration of synergistic or 
antagonistic effects. 
The graph illustrates the principle of the isobologram plot, in which the dotted line 

is representative of concentrations of drug 1 and drug 2 required to produce an 

additive effect (CI=1).  Points to the left of the line indicate synergy (CI<1) and 

above and to the right indicate antagonism (CI>1). 
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Chapter 3: 

Dasatinib induces apoptosis of CLL cells in vitro, and shows synergy with 
established and novel chemotherapeutic agents. 
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3.1 Introduction 

The rationale for investigating dual Src/c-Abl TKI in CLL stems from the fact that 

inhibition of Src kinases or c-Abl singly induces a degree of apoptosis of CLL cells 

in vitro, raising the possibility that dual Src and c-Abl kinase inhibition may be a 

more effective therapeutic approach.  In this Chapter, the ability of dasatinib to 

induce apoptosis of primary CLL cells is assessed, with the following specific 

objectives. 

 

3.2 Aims and Objectives 

To investigate the ability of dasatinib to induce apoptosis of CLL cells in vitro, the 

specific aims of this chapter were: 

i.  To test the ability of the Src/c-Abl TKI dasatinib to induce apoptosis of CLL 

cells in vitro; 

ii.   To assess whether the apoptotic response to dasatinib varies between 

prognostic groups; 

iii.   To determine the mechanism of apoptosis triggered by dasatinib; 

iv.   To establish whether dasatinib causes preferential apoptosis of CLL cells 

compared to normal B lymphocytes; 

v.   To investigate whether dasatinib exhibits synergy with established current 

chemotherapeutic agents, and with novel Bcl-2 and HSP90 inhibitors. 
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3.3 Results 

3.3.1  The Src/c-Abl TKI dasatinib induces apoptosis of CLL cells in vitro. 

In order to test the hypothesis that dual Src/c-Abl TKI would be an appropriate 

investigational treatment for CLL, preliminary experiments were performed to 

confirm over-expression of Lyn and c-Abl kinases in CLL cells.  The expression of 

Lyn and c-Abl kinases in cell lysates prepared from normal B lymphocytes and 

CLL cells was assessed by immunoblotting, and is shown in Figure 3.1.  Both c-

Abl and Lyn are seen to be over-expressed in CLL samples compared to normal 

lymphocytes.  This was confirmed using densitometry, with Lyn expression 

ranging from 2-3.5 fold that of normal B lymphocytes, and c-Abl over-expression 

ranging from 1.7-3.4 fold.  In order to confirm that inhibition of Src kinases could 

induce apoptosis, primary CLL cells were incubated in vitro with increasing 

concentrations of the Src-family kinase inhibitor PP2 (1-10 µM), or the negative 

control compound PP3, which has no Src kinase inhibitory activity.  Following a 48 

hr incubation, apoptosis was assessed by FCM using Annexin V/Viaprobe 

staining.  As can be seen in Figure 3.2A, PP2 increased the percentage of early 

apoptotic cells in a concentration-dependent manner.  Figure 3.2B shows the IC50 

for PP2 in CLL cells at 48 hr to be in the region of 7 µM, similar to the value of 10 

µM reported previously by Contri et al. (203).  Data is expressed as the 

percentage of viable cells relative to the control in individual experiments, as this 

allows for comparison between samples which show variable rates of spontaneous 

apoptosis on culture in vitro.  To directly compare PP2, imatinib, and dasatinib, 

CLL patient samples were incubated with each of the inhibitors for 48 hr, following 

which apoptosis was assessed by FCM.  As the project aimed to be translational 

to the clinic, emphasis was placed on comparing clinically achievable 

concentrations of imatinib and dasatinib.  Pharmacokinetic studies conducted in 

patients treated with TKIs for CML have determined the maximum tolerated 

plasma concentration (Cmax) of standard dose imatinib (400 mg) to be in the region 

of 4 µM (213) with a mean trough concentration of approximately 1 µM (341).  

Similar studies of CML patients treated with dasatinib have determined a Cmax of 

129 nM (342).  Therefore, CLL cells were treated with imatinib (1 and 10 µM), PP2 

(1, 3, 6, and 10 µM ), or dasatinib (1, 10, 100, and 300 nM) for 48 hr, followed by 

assessment of apoptosis by FCM (Fig. 3.3).  While 10 µM imatinib only achieved a 

modest level of apoptosis (mean cell viability 80.4% of untreated control), 

dasatinib induced a greater level of apoptosis at clinically achievable 
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concentrations (100 nM resulting in a mean cell viability of 55.8% relative to 

control), confirming dasatinib to be worthy of further investigation. 

To determine the optimal time point to assess apoptosis following dasatinib 

treatment, CLL cells from three different samples were treated with increasing 

concentrations of dasatinib and apoptosis assessed at 24, 48, and 72 hr of 

incubation.  Apoptosis was observed after 24 hr of exposure (Fig. 3.4), with a 

slight increase at the later time points which did not reach statistical significance.  

On the basis of these preliminary data, 48 hr of dasatinib treatment was selected 

for analysis of apoptosis in a larger group of patient samples.  Results from the 

assessment of dasatinib exposure in 18 different CLL samples are shown in Fig. 

3.5.  Whilst dasatinib rarely resulted in apoptosis of over 50% of cells relative to 

untreated controls, the half-maximal effect concentration (EC50) concentration is in 

the region of 10 to 30 nM, which is consistent with the known EC50s of dasatinib 

for Src and c-Abl kinases.  In addition, the degree of apoptosis observed on 

dasatinib treatment reaches a peak at 100 nM, with a plateau in response at 

greater concentrations.  In view of this, 100 nM dasatinib was selected for use in 

all further experiments unless otherwise stated. 

3.3.2 Dasatinib-induced apoptosis is independent of established prognostic 
factors. 

To assess whether the level of apoptosis achieved with dasatinib correlated with 

established prognostic factors, a panel of 28 CLL patient samples were treated in 

the presence or absence of 100 nM dasatinib for 48 hr, followed by assessment of 

apoptosis.  Although the mean reduction in viability was 33.7% (p<0.001), 

significant inter-patient variability was observed, with a standard deviation of 

17.9% (Fig. 3.6).  The percentage reduction in viability following 48 hr treatment 

with 100 nM dasatinib for each individual sample was next correlated with ZAP-70 

status (Fig. 3.7A), Binet clinical stage (Fig. 3.7B), and FISH cytogenetic 

abnormalities (Fig 3.7C).  No significant correlation was seen between the level of 

response to dasatinib and any of these prognostic factors.  Significantly, CLL cells 

harbouring deletions of chromosomes 11q or 17p responded similarly to other 

cases, demonstrating that dasatinib induced apoptosis is not p53 dependent.  As 

our CLL samples were obtained from both untreated and previously treated 

patients, it is possible that effects of previous chemotherapy may have confounded 

the results.  However, when the data were correlated with patient treatment history 

(Fig. 3.7D), no significant difference was observed between treated and untreated 
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patients.  In addition, no correlation was observed between the rate of 

spontaneous in vitro apoptosis and sensitivity to dasatinib. 

3.3.3 Dasatinib-induced apoptosis in CLL cells is caspase-dependent. 

Although measurement of the binding of Annexin V to exposed phosphatidylserine 

on the cell surface is a well established method for the assessment of apoptosis in 

B lymphocytes (343), loss of phospholipid asymmetry is an early event in the 

pathway of apoptosis which occurs prior to DNA fragmentation.  Indeed, a study 

investigating apoptosis following crosslinking of surface immunoglobulin in the B 

cell lymphoma cell line BCL13B3 have demonstrated that Annexin V binding cells 

can remain viable following cessation of stimulation, confirming that membrane 

asymmetry occurs prior to commitment to apoptosis (344).  In addition, 

assessment of Annexin V/Viaprobe staining gives no information on the pathway 

of apoptosis triggered within the cell.  Therefore, to assess whether analysis of 

Annexin V binding by FCM is reflective of the percentage of CLL cells committed 

to apoptosis, and to investigate the apoptotic mechanism triggered by dasatinib, 

CLL cells were treated with and without 100 nM dasatinib for 48 hr, followed by 

simultaneous assessment of a number of measures of apoptosis by FCM.  

Aliquots of cells were stained with either Annexin V/Viaprobe, with TMRM to 

assess MMP, or a PE-conjugated antibody specific for the activated form of 

caspase 3. 

In Figure 3.8A, it can be seen that in addition to increasing the percentage of cells 

which bind Annexin V, dasatinib also leads to loss of MMP, and activation of 

caspase 3.  Data generated from assessment of three CLL patient samples 

demonstrated that the percentage of cells which bind Annexin V following 

dasatinib treatment is very similar to the percentages of cells which lose MMP and 

show caspase 3 activation (Fig 3.8B), confirming that at this time point, Annexin V 

staining does accurately reflect the percentage of CLL cells committed to 

apoptosis. 

Although the execution of cell death by apoptosis is conventionally considered to 

be carried out exclusively by the action of effector caspases 3, 6, and 7, it is 

becoming increasingly recognised that apoptosis may occur through caspase-

independent pathways, executed by the release of alternate proteases from 

mitochondria or lysosomes (345, 346).  To determine whether apoptosis induced 

by dasatinib is entirely caspase dependent, CLL cells were treated with the pan-
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caspase inhibitor Z-VAD-fmk 2 hr prior to treatment with and without dasatinib for 

up to 48 hr.  In Figure 3.9A, Z-VAD-fmk is seen to slightly reduce the level of 

spontaneous apoptosis, and completely inhibit apoptosis induced by dasatinib.  At 

48 hr (Fig. 3.9B), Z-VAD-fmk treatment is seen to slightly increase apoptosis, 

suggesting a degree of toxicity, which is likely to explain why Z-VAD-fmk fails to 

completely prevent apoptosis induced by dasatinib at this time point.  These data 

confirm that dasatinib-induced apoptosis of CLL cells is caspase-dependent.   

As loss of MMP and caspase 3 activation may be triggered by both the extrinsic 

and intrinsic pathways of apoptosis (315), western blotting was used to assess the 

cleavage of initiator pro-caspases 8 and 9 in CLL cells treated with dasatinib.  CLL 

cells were treated with increasing concentrations of dasatinib for 48 hr, followed by 

assessment of apoptosis using Annexin V/Viaprobe staining, and assessment of 

caspase 8, caspase 9, and PARP by immunoblotting.  With increasing 

concentrations of dasatinib, the increase of apoptotic cells assessed by FCM was 

accompanied by increased cleavage of full-length 116 kDa PARP to the 89 kDa 

fragment, confirming apoptosis (Fig. 3.10).  Alongside this, a decrease in the 

levels of pro-caspase 8 and pro-caspase 9 was observed, although no cleaved 

active caspase fragments were observed.  As caspase activation is an early event 

in apoptosis, 48 hr may be too late a time point to fully assess caspase activation.  

Therefore, to assess caspase activation at earlier time points, CLL cells from one 

patient were treated with 100 nM dasatinib for time points up to 24 hr, and 

caspases were again assessed by Western blotting.  Prior to 12 hr of treatment, 

both pro-caspase 8 and pro-caspase 9 cleavage products were detectable, and 

preceded the complete cleavage of PARP (Fig 3.11).  These data suggest that 

dasatinib may induce apoptosis through both the extrinsic and intrinsic pathways.  

Experiments assessing the effect of specific caspase inhibitors on apoptosis 

induced by dasatinib would clarify the relative contribution of both pathways. 

3.3.4 Duration of dasatinib exposure required to induce apoptosis of CLL 

cells in vitro. 

In performing translational assessment of novel therapeutic agents, an important 

consideration is the length of exposure time required to commit cells to apoptosis.  

In CML cells, incubation with 100 nM dasatinib for 4 hr followed by drug washout is 

sufficient to induce a degree of apoptosis, measured at 72 hr (347).  To determine 

the length of dasatinib exposure required to induce apoptosis in CLL cells, cells 

were treated with 100 nM dasatinib for 2, 4, 8, 12, and 24 hr, followed by drug 
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washout, and culture in complete medium for a total of 48 hr.  Untreated cells, and 

cells treated continuously with 100 nM dasatinib for 48 hr were also included as 

indicated (Fig. 3.12).  A degree of apoptosis was observed after as little as 2 hr of 

dasatinib exposure, with little difference observed between 2 and 24 hr incubation 

(Fig 3.12), suggesting that a degree of dasatinib-induced apoptosis is induced on 

short-term exposure.  As a greater level of apoptosis was observed on continuous 

drug exposure, a sustained target inhibition may be required for maximum effect. 

3.3.5 Dasatinib also induces a degree of apoptosis in normal B 

lymphocytes. 

Although cytopenias due to generalised myelosuppression are common in patients 

with CML treated with dasatinib (309), the question remains as to whether 

dasatinib shows a selective toxic effect towards CLL cells as opposed to normal 

mature B lymphocytes.  To address this issue, normal B lymphocytes were 

isolated from ‘buffy coat’ components from blood donations using CD19 positive 

magnetic selection.  Following separation, cells were treated with increasing 

concentrations of dasatinib, and apoptosis was assessed at 24 and 48 hr.  At 24 

hr, dasatinib reduced the mean cell viability from 58 to 43% (n=3; Fig. 3.13).  

Normal B lymphocytes did not survive well on in vitro culture, compared with CLL 

cells, as has been reported by others (221), w ith a mean cell viability at 48 hr of 

just 33%, making formal comparison between CLL cells and normal B cells difficult 

at this time point. 

3.3.6 Bcl-2 inhibitors and HSP90 inhibitors induce apoptosis of CLL cells in 
vitro. 

Results thus far indicate that dasatinib alone induces apoptosis of less than fifty 

percent of CLL cells, therefore this agent may be best utilised in combination 

strategies.  Therefore, the next phase of investigation focussed on the assessment 

of drugs which may enhance apoptosis with dasatinib, followed by studies to 

assess the efficacy of dasatinib in combination with both novel agents and 

established chemotherapeutic agents. 

As outlined in Section 1.8.2, small molecule Bcl-2 inhibitors show much promise in 

CLL as novel therapeutic agents in CLL.  In addition to dysregulated tyrosine 

kinases which provide survival signals to CLL cells, the apoptotic machinery is 

also dysregulated, with high level expression of anti-apoptotic Bcl-2.  Therefore, 

combining a TKI such as dasatinib with an agent capable of redressing the 
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balance of apoptosis-regulatory proteins within CLL cells is a rational novel 

therapeutic approach. 

The efficacy of two BH3-mimetic Bcl-2 inhibitors to induce apoptosis of CLL cells 

was first assessed in order to determine appropriate drug concentrations to study 

in combination with dasatinib.  CLL cells were treated with increasing 

concentrations of Bcl-2 inhibitor I and Bcl-2 inhibitor III (both 0-10 µM) for 24 and 

48 hr, followed by assessment of apoptosis using Annexin V/Viaprobe staining.  

Both inhibitors induced concentration-dependent apoptosis of CLL cells, and 

representative experiments are shown in Figure 3.14.  The mean ± SEM IC50 of 

Bcl-2 inhibitor I was 4.6 ± 0.2 µM at 24 hr, and 4.3 ± 0.3 µM at 48 hr (n=5).  The 

mean ± SEM IC50 for Bcl-2 inhibitor III was 4.9 ± 0.3 µM, and at 48 hr was 3.6 ± 

0.4 µM (n=5).  As Bcl-2 inhibitor I induced a more consistent response in CLL 

cells, and binds both Bcl-2 and Bcl-xL (325), it was selected for further study in 

combination studies. 

The rationale for investigating dasatinib in combination with HSP90 inhibitors 

stems from the knowledge that in CLL cells, in addition to increased membrane-

associated Lyn kinase, around 30% of total Lyn is located within the cytoplasm 

(203), where it has been proposed to exert an anti-apoptotic effect.  The catalytic 

domain of cytoplasmic Lyn has been demonstrated to be associated with HSP90, 

maintaining Lyn in an active conformation, preventing degradation of the protein 

by the proteasome (348).  HSP90-associated Lyn forms part of a multi-molecular 

complex, in which Lyn engages additional proteins including haematopoietic 

lineage cell-specific protein-1 (HS1) and SH2-domain-containing tyrosine 

phosphatase (SHP-1L) through its SH3 domains (348).  HS1 is phosphorylated on 

BCR stimulation, and phosphorylated HS1 has been identified as a poor 

prognostic feature in CLL (349).  Treatment of CLL cells with the HSP90 inhibitors 

geldanamycin or 17-AAG resulted in the dissociation of Lyn from HSP90, in a 

timescale correlating with reversal of the global increase in tyrosine 

phosphorylation, and induction of apoptosis (348).  Used in combination, dasatinib 

and HSP90 inhibitors may result in a synergistic effect due to simultaneous 

targeting of Lyn kinase activity and the cytoplasmic HSP90 complex which 

prevents Lyn degradation. 

To confirm that 17-DMAG induces apoptosis of CLL cells in vitro, cells were 

treated with increasing concentrations of 17-DMAG (0.01-3 µM) for 24 and 48 hr, 
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followed by assessment of apoptosis.  Results from a total of five experiments are 

shown in Fig 3.15.  Similar to a previous report (332), 17-DMAG induced apoptosis 

of CLL cells at sub-micromolar concentrations, with an IC50 at 48 hr in the region of 

0.2 µM.   

3.3.7 Dasatinib exhibits synergy with fludarabine, chlorambucil, and novel 
therapeutic agents in vitro. 

Synergy between two drugs describes the situation in which the combination 

results in a more than additive effect on the target or cell viability (340).  In addition 

to increasing the desired toxic effect on malignant cells, synergy between agents 

may prove advantageous in allowing lower concentrations of each individual drug 

to be used to achieve a desired effect, in order to avoid toxicity to normal cells.  

We investigated whether dasatinib exhibited synergy in combination with the 

current standard chemotherapeutic agents chlorambucil and fludarabine, and also 

with the novel Bcl-2 and HSP90 inhibitors. 

Calcusyn software, based on the method of Chou and Talalay(340), was used to 

assess drug synergy, as described in detail in Section 2.8.2.  For all drug 

combination experiments, the diagonal constant ratio combination experimental 

design was used, in which cells are treated with serial dilutions of drugs alone, and 

in combination at multiples and dilutions of their equipotency ratio.  Published 

IC50s for chlorambucil in CLL cells range from 5-80 µM (213), and fludarabine from 

0.4-20 µM (350).  The concentrations of dasatinib used in all cases were 6.25, 

12.5, 25, 50, and 100 nM.  Concentrations of fludarabine used were 1.25, 2.5, 5, 

10, and 20 µM (200:1 ratio to dasatinib), and of chlorambucil used were 3.13, 6.25, 

12.5, 25, and 50 µM (500:1 ratio to dasatinib).  Bcl-2 inhibitor I was used at 0.5, 1, 

2, 4, and 8 µM (80:1 ratio to dasatinib), and 17-DMAG was used at 62.5, 125, 250, 

500, and 1000 nM (10:1 ratio to dasatinib).   

In all combination experiments, CLL cells were treated with drugs alone and in 

combination for 24 hr, followed by assessment of apoptosis by Annexin 

V/Viaprobe using FCM.  Data generated for each drug treatment was expressed 

as the fraction affected using Equation 2.4, following which Calcusyn® software 

was used to calculate CIs.  A representative example of the graphs generated by 

the software for an experiment assessing dasatinib in combination with fludarabine 

is given in Figure 3.16, which shows the dose response curves for each individual 

drug and the combination (Fig. 3.16A), the median effect plot of each dose 
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response curve calculated from the dose-response curve using Equation 2.6 (Fig. 

3.16B), and the classical isobologram, on which the EC50, EC75, and EC90 

isobolograms are shown (Fig. 3.16C).  In the example shown, the EC50 CI is 0.23, 

EC75 CI 0.34, and EC90 CI 0.58 (r=0.90).  The EC50 CI’s for five individual samples 

in which dasatinib was assessed in combination with each of the four drugs are 

shown in Figure 3.17, with a summary in Table 3.1.  Dasatinib exhibited synergy 

with all four drugs tested, most notably with fludarabine, with a mean EC50 CI of 

0.29 (strong synergy).  The mean EC50 CIs for dasatinib in combination with 

chlorambucil, Bcl-2 inhibitor I, and 17-DMAG were 0.62, 0.76, and 0.48 

respectively.  In conclusion, although dasatinib exhibits modest apoptosis as a 

single agent, the demonstrated synergy with both established and novel 

chemotherapeutic agents confirm that dasatinib may be an attractive drug in 

combination studies. 
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3.4 Discussion 

We have demonstrated that the dual Src/c-Abl TKI dasatinib induces apoptosis of 

CLL cells in vitro at clinically achievable concentrations, and is significantly more 

potent than the Abl inhibitor imatinib.  As dasatinib is now appreciated to inhibit a 

significant number of tyrosine kinases, this raises the question of the chief targets 

of the anti-leukaemic effects of the drug in CLL cells.  The EC50 of dasatinib in CLL 

cells of 10-30 nM is consistent with the known inhibitory concentrations of 

dasatinib for Src and c-Abl kinases.  As dasatinib and PP2 inhibit all Src family 

kinases, it is possible that inhibition of Src kinases other than Lyn may be involved 

in the induction of apoptosis.  Although expression of the Src kinases Lck and Fgr 

has been reported in CLL (351, 352), Contri et al. compared expression of the Src 

kinases Lyn, Src, Fyn, Fgr, and Lck at the protein level in ten CLL samples, and 

demonstrated Lyn to be the predominantly expressed Src kinase in all cases 

(203).  Although specific inhibition of individual Src kinases using antisense RNA 

would help to establish the relative contributions of each to the increase in basal 

global tyrosine phosphorylation in CLL cells, recent evidence strongly implicates 

Lyn to be the predominant kinase involved.  Cytoplasmic Lyn is associated with 

HSP90, and disruption of this complex using the HSP90 inhibitor geldanamycin 

inhibited the tyrosine phosphorylation pattern and induced apoptosis (348).  The c-

Abl kinase inhibitors imatinib and nilotinib have been shown to have little effect on 

the global tyrosine phosphorylation pattern in CLL cells (353).  Of note, Lyn 

knockdown with siRNA in a B cell lymphoma cell line significantly inhibited 

proliferation (354). 

As outlined in Section 1.6.2.2, c-Abl expression was reported to correlate with 

adverse prognostic features in CLL.  Moreover, the capacity of unmutated CLL or 

ZAP-70 positive cases to signal through the BCR led to great interest in 

investigation of dual Src/c-Abl TKIs as novel agents to preferentially target BCR-

mediated survival signals key to the biology of high-risk patient groups.  In view of 

this, the anti-leukaemic effects of dasatinib in CLL cells in vitro have now been 

assessed by a number of groups in addition to the present study (350, 353, 355, 

356).  In keeping with our study, Veldurthy et al. reported dasatinib as a single 

agent capable of inducing apoptosis of CLL cells, but to rarely reach an IC50, 

despite high drug concentrations.  This group also reported CLL cells with 

unmutated IgVH genes (or expressing ZAP-70) to be significantly more sensitive to 

dasatinib than those with mutated IgVH genes or lacking ZAP-70 expression (353).  
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In our study, although mutational status of our CLL patient samples was not 

available, no significant difference in the level of apoptosis induced by dasatinib 

was observed between ZAP-70 positive and negative CLL cells.  In comparing the 

two studies, a number of variables require consideration.  Both studies used CLL 

samples obtained from some patients who had received previous treatment.  As 

may be expected, in our study, more ZAP-70 patients had received prior treatment 

than ZAP-70 negative patients (8 of 14 compared to 4 of 14 respectively), however 

as we observed no significant difference in response between treated and 

untreated groups, it is unlikely that this significantly biased our results.  It is 

possible that the different findings between the studies may be partly explained by 

the difference in dasatinib concentrations used, 5 µM was used by Veldurthy et al., 

compared to 100 nM used in our experiments.  As the IC50s of dasatinib for c-Abl 

and Src kinases are in the low nanomolar range (303), these kinases will be 

adequately inhibited using a concentration of 100 nM, supported by our data 

showing a mean EC50 concentration of 10-30 nM for dasatinib.  At a concentration 

of 5 µM, dasatinib is predicted to inhibit additional tyrosine kinases, including MEK 

(IC50 = 1.7 µM) and VEGFR-2 (IC50 > 2 µM) (303), raising the possibility of ‘off-

target’ inhibition of additional kinases which may vary in activity between mutated 

and unmutated CLL.  In support of this hypothesis, a recent study found that a 

significant difference in the level of apoptosis on dasatinib treatment between IgVH 

mutational subgroups (greater in unmutated than mutated CLL) was only observed 

at concentrations of dasatinib of 10 µM and above, whilst levels of cell death were 

similar between mutational subgroups on treatment with 100 nM dasatinib (357).  

Moreover, another published study, using 100 nM dasatinib, reported no 

significant associations between level of apoptotic response and Rai stage, 

mutational status or ZAP-70 expression (350).   

As Lyn over-expression, constitutive activity, and association with the cytoplasmic 

multi-protein complex involving HSP90, are features common to both IgVH 

mutational subgroups (203, 348), the pro-apoptotic effect of Src kinase inhibition 

by dasatinib should be equal between mutational groups.  A recent case report of 

a patient with CML treated with dasatinib, who had co-existent ZAP-70 negative 

CLL, achieved NCI-WG criteria for partial remission (PR)(22) of CLL whilst on 

therapy (358).  Although an isolated case, this suggests that further clinical 

investigation of dasatinib should not be limited to those with ZAP-70 positive or 

unmutated CLL. 
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The role of c-Abl signalling in CLL, and the effect of TKIs on c-Abl signalling in CLL 

requires further clarification.  In a study of 26 CLL patient samples, a significant 

association between basal c-Abl expression and the level of apoptosis induced by 

treatment with 10 µM imatinib for 72 hr has been reported (212), leading to the 

conclusion that CLL cells expressing high levels of constitutively active c-Abl are 

dependent on c-Abl signalling for survival.  It was therefore surprising that CLL 

cells expressing high levels of c-Abl have been reported to be significantly less 

sensitive to dasatinib than those with low c-Abl expression (350).  This study 

suggested that CLL cell sensitivity to dasatinib is dependent on inhibition of c-Abl 

downstream pathways, however both groups demonstrated that in CLL cells 

expressing high levels of c-Abl, significant inhibition of the downstream kinase Dok 

could be achieved by TKI treatment.  Furthermore, using an electrophoretic 

mobility shift assay, Lin et al. confirmed that imatinib inhibits NF-κB transcriptional 

activity (212).  It may be relevant that in the study by Amrein et al. the NF-κB-p65 

levels were significantly higher in the c-Ablhigh group of samples compared to the 

c-Abllow group (350).  Supporting this is the fact that in the three patient samples 

analysed for NF-κB-p65 (Rel A) expression following treatment with dasatinib, 

there is a positive correlation between the ability of dasatinib to inhibit Rel A 

expression and the CLL cell sensitivity to dasatinib.  RelA is an independent 

biomarker of prognosis in CLL (359), and may be regulated by c-Abl-independent 

pathways such as PI-3K/Akt signalling (360), therefore the sensitivity of CLL cells 

to dasatinib may in part depend on inhibition of NF-κB activity, and this may 

explain the apparent contradiction between the two reports.  

In addition, CLL cell sensitivity to TKI with imatinib has been reported to correlate 

positively with expression of the prostate-apoptosis regulatory protein (Par-4) 

(361).  Par-4 has been characterised as a tumour suppressor gene which 

sensitises cells to both the intrinsic and extrinsic pathways of apoptosis, in addition 

to negatively regulating survival signalling pathways such as NF-κB (362).  In the 

Jurkat T-lymphocytic cell line, Par-4 increases caspase 8 cleavage following cell 

exposure to chemotherapeutic agents (363), and sensitise Bcr-Abl positive cells to 

imatinib (364).  Further studies to correlate Par-4 expression, and the effect of 

dasatinib on NF-κB activity may therefore be informative. 

In the present study, no correlation between dasatinib sensitivity and either Binet 

clinical stage or FISH cytogenetic group was found.  Of note, dasatinib induced a 

comparable level of apoptosis in CLL cells with 17p deletions on FISH to that 
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observed in other cases, suggesting that dasatinib triggers apoptosis through a 

p53-independent pathway, as has previously been reported for imatinib in CLL 

(212).  Supporting this conclusion, a high level of apoptosis following dasatinib 

treatment of a CLL sample with a combined 17p deletion and functional mutation 

of the remaining allele has been reported in another study (353).  In fact, recent 

evidence suggests that CLL cells with 17p deletion are more sensitive to the pro-

apoptotic effect of dasatinib than those with functional p53 (365), suggesting that 

p53 signal transduction may actually inhibit apoptosis following dasatinib treatment 

in CLL cells.  Following DNA damage, nuclear p53 promotes transcription of a 

number of genes which promote apoptosis (including Puma and Bax), or cell cycle 

arrest and repair (p21CIP1), whilst cytoplasmic p53 interacts directly with Bcl-2 

proteins on the mitochondrial surface (Bcl-2, Bcl-xL, and Bax); apoptosis occurs if 

the capacity of the cell to repair DNA damage is overwhelmed by pro-apoptotic 

stimuli (366).  In CLL cells, inhibition of p53 transcriptional activity using the 

selective inhibitor pifithrin α actually augmented the level of apoptosis induced by 

fludarabine in vitro (367).  The transcriptional targets mediating the anti-apoptotic 

effects of p53 in CLL cells remain to be elucidated, although p21CIP1 may be 

proposed as a candidate.  In preliminary experiments, Amrein et al. also 

demonstrated that pifithrin α was able to augment apoptosis induced by dasatinib 

alone in CLL cells with wild-type p53 (365).  Collectively, these data suggest that 

dasatinib may benefit patients with p53 deletion or mutation.  A recent case report 

of a near complete remission in a patient with stage B unmutated CLL with 17p 

deletion, who was treated with dasatinib for a co-existent gastro-intestinal stromal 

tumour (368), supports further clinical investigation of dasatinib in this patient 

group. 

Our results confirm that whilst apoptosis induced by dasatinib is p53-independent, 

it is dependent on caspase activation.  Using a concentration of 5 µM dasatinib, 

Veldurthy et al. reported dasatinib to induce loss of MMP, cleavage of both initiator 

caspases 8 and 9, and effector caspases 3, 6, and 7, resulting in PARP cleavage 

(353).  In our study, we also observed cleavage of both caspase 8 and 9, loss of 

MMP, and PARP cleavage, confirming these features are also seen on treatment 

of CLL cells with a clinically attainable concentration of dasatinib, and suggesting 

dasatinib to activate both the extrinsic and intrinsic apoptotic pathways.  Cleavage 

of both caspase 8 and 9 has also been reported on treatment of B-cell lymphoma 

cell lines with a dual Src/c-Abl TKI (369).  Dasatinib decreases expression of the 
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anti-apoptotic Bcl-2 proteins Mcl-1 and Bcl-xL (353), which may explain the 

mechanism for loss of MMP and caspase 9 activation.  It is interesting to note that 

in human neutrophils, direct phosphorylation of caspase 8 by Lyn has been 

reported, and shown to extend neutrophil survival (370); whether such an 

interaction occurs in CLL cells remains to be determined.  As caspase 8 can itself 

activate the mitochondrial apoptotic pathway through the cleavage of Bid (371), 

caspase 8 activation could be the initiating pro-apoptotic event on dasatinib 

treatment of CLL cells.  The relative contribution of the intrinsic and extrinsic 

apoptotic pathways in dasatinib-induced apoptosis may be clarified by the use of 

specific inhibitors of caspase 8 and 9. 

In our experiments, normal B lymphocytes isolated from buffy coat components 

survived poorly on in vitro culture, making formal comparison of the effects of 

dasatinib on normal compared to CLL cells at 48 hr difficult.  At 24 hr, a slight 

concentration-dependent reduction in viability was observed, which did not reach 

statistical significance.  Using the XTT assay to assess cellular respiration, 

Veldurthy et al. reported a significant dose-dependent decrease in metabolic 

activity in CLL cells treated with dasatinib, whilst peripheral blood mononuclear 

cells (PBMC) were unaffected at dasatinib concentrations up to 5 µM (353).  In 

PBMC preparations, T cells will account for the majority of lymphocytes.  T 

lymphocyte viability has been shown to be unaffected by dasatinib (372).  In our 

studies, B lymphocytes were specifically isolated from PBMC preparations by 

positive magnetic selection for CD19, therefore the difference in dasatinib effect 

between the two studies may be explained by the composition of the cell 

population being assessed.  As B lymphocytes are dependent on a basal level of 

BCR signalling, involving Lyn kinase, there is a possibility that Lyn inhibition may 

induce apoptosis of normal B lymphocytes by inhibiting tonic signalling (373).  The 

effect of dasatinib on tonic and ligand-induced BCR signalling is addressed in 

Chapter 4. 

Our data show dasatinib to induce modest apoptosis in most CLL samples tested, 

suggesting its’ clinical utility as a single agent may be limited.  In a recent phase II 

clinical trial of dasatinib, dosed as 140 mg once-daily, in 15 patients with refractory 

or relapsed CLL, NCI-WG-defined PRs were achieved in only two patients, with no 

CRs (374).  We demonstrated dasatinib to exhibit synergy with both established 

and novel chemotherapeutic agents.  Veldurthy et al. found the combination of 5 

µM dasatinib with 5 µM fludarabine to result in approximately 50% greater 
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apoptosis than with either agent alone (353).  Whilst encouraging, these data are 

insufficient for the assessment of synergy between two drugs.  We used the 

established method of Chou and Talalay to assess synergy in drug combinations 

(340), as described in Section 2.8.2, to calculate CIs.  Using this method, the 

combination of dasatinib and fludarabine was confirmed to be strongly synergistic, 

with a mean CI of 0.26.  Dasatinib in combination with chlorambucil was also 

synergistic, however less so than with fludarabine.  Synergy between dasatinib 

and both fludarabine and chlorambucil has also been reported by Amrein et al., 

who used a similar mathematical analysis (350). 

There is evidence to suggest that inhibition of c-Abl is central to the ability of 

dasatinib to sensitise CLL cells to chemotherapeutic agents.  Imatinib has 

previously been reported to sensitise CLL cells to chlorambucil (213).  Alkylating 

agents such as chlorambucil induced apoptosis largely by the introduction of DNA 

interstrand crosslinks (375), and the CLL cells’ ability to repair crosslinked DNA 

correlated with drug sensitivity (376).  Following DNA damage, c-Abl relocates to 

the cell nucleus (377), where it may promote both DNA repair or apoptosis.  Within 

the nucleus, c-Abl becomes phosphorylated by ATM, and subsequently 

phosphorylates and activates the p53-related pro-apoptotic kinase p73 (366).  

Inhibition of c-Abl with imatinib has been shown to inhibit CD154-induced 

expression of p73 in CLL cells (291).  Simultaneously, activated c-Abl also 

phosphorylated Rad51, an enzyme involved in DNA recombination and repair 

(378, 379).  Phosphorylated Rad51 is able to associate with the related enzyme 

Rad52, to promote DNA repair.  In CLL cells, c-Abl inhibition by imatinib inhibited 

the increase in phosphorylation of Rad51 induced by chlorambucil, and this 

mechanism was proposed to account for the sensitisation of CLL cells to 

chlorambucil by imatinib (213).  Amrein et al. demonstrated that dasatinib inhibited 

up-regulation of Rad51 following treatment with chlorambucil or fludarabine, and 

increased the total level of DNA damage, as assessed by the accumulation of the 

histone-family protein γH2AX (350).  In this study, dasatinib also inhibited the up-

regulation of p53 protein levels on treatment of CLL cells with either chlorambucil 

or fludarabine.  As the mechanism of fludarabine-induced apoptosis also involves 

the introduction of DNA strand breaks (380), inhibition of DNA repair through c-Abl 

inhibition may well account for synergy between fludarabine and chlorambucil.  

Although in the present study, stronger synergy was observed between dasatinib 

and fludarabine in 4 of 5 cases, Amrein et al. reported no significant difference 
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between the synergy value reported for dasatinib in combination with fludarabine 

as compared to chlorambucil (350).  Analysis of a larger cohort of patient samples 

is required to draw firm conclusions. 

Synergy between dasatinib and either BH3-mimetic Bcl-2 inhibitors or HSP90 

inhibitors has not previously been reported in CLL cells.  Further work is required 

to determine the mechanism of synergy in each case.  Very recently, the 

sensitivity of DLBCL cell lines to the Src kinase inhibitor PP2 has been shown to 

negatively correlate with both Bcl-2 and Bcl-xL expression (354).  Further analysis 

of the effect of dasatinib on Bcl-2 family protein expression may aid understanding 

of the mechanism of synergy with Bcl-2 inhibitor I.  The synergy between dasatinib 

and 17-DMAG may be due to Lyn-specific effects of inhibition of kinase activity by  

dasatinib combined with increased Lyn degradation following disruption of the 

cytosolic HSP90/Lyn complex, or may be due to inhibition of additional pro-survival 

signalling pathways by 17-DMAG. 

In summary, these data show dasatinib as an attractive candidate for further 

investigation in combination strategies.  Further experiments will aim to assess the 

effect of dasatinib on BCR signalling (Chapter 4), and to determine the efficacy of 

dasatinib combination approaches to induce apoptosis of CLL cells cultured in the 

presence of additional microenvironmental signals (Chapter 5). 
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Table 3.1  Degree of synergy observed in CLL cells treated with dasatinib in 

combination with established and novel therapeutic agents 

 

 

* Definitions of synergy as described in Table 2.6 
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Figure 3.1  Lyn and c-Abl are over-expressed in CLL cells compared to 
normal B lymphocytes 

Protein lysates were prepared from freshly isolated CLL cells, and from normal B 

lymphocytes isolated from blood donations using magnetic positive selection for 

CD19 as described in Section 2.2.6.2.  Proteins were separated by gel 

electrophoresis, followed by immunoblotting for Lyn and c-Abl kinases.  GAPDH 

was included as a protein loading control. 
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Figure 3.2  The Src kinase inhibitor PP2 induces apoptosis of CLL cells 

A  CLL cells were treated with 10 µM PP3 as a negative and vehicle control, and 

with increasing concentrations of the Src kinase inhibitor PP2 as shown for 48 hr, 

and apoptosis assessed using Annexin V/Viaprobe staining by FCM.  Each 

condition was performed in triplicate.  Dot plots from one replicate are shown, with 

numbers representing the percentage of total cells in each quadrant.  B  CLL cells 

from three patients (CLL9, CLL 35, and CLL 44) were treated with 10 µM PP3 or 

increasing concentrations of PP2 for 48 hr, and apoptosis assessed using Annexin 

V/Viaprobe staining by FCM.  Each experiment was performed in at least 

duplicate.  Results represent the mean (± SEM) viabilities of treated cells, relative 

to the PP3 negative control. 
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Figure 3.3  Comparison of imatinib, PP2, and dasatinib on CLL cell viability 

CLL cells from three patients (CLL 35, CLL 44, and CLL 51) were treated with 

increasing concentrations of imatinib, PP2, dasatinib, or vehicle control (DMSO) 

for 48 hr, followed by assessment of apoptosis by FCM using Annexin V/Viaprobe 

staining.  Results show the mean (± SEM) cell viabilities of treated cells, 

expressed as a percentage of the vehicle control. 
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Figure 3.4  Time course of apoptosis induced by dasatinib in CLL cells 

CLL cells from three patients (CLL 9, CLL 28, and CLL 38) were treated with 

increasing concentrations of dasatinib as shown, and apoptosis assessed by FCM 

using Annexin V/Viaprobe at 24, 48, and 72 hr.  Each condition was performed in 

duplicate.  Results represent the mean (± SEM) percentage of viable cells A or 

apoptotic, Annexin V+/Viaprobe-, cells B relative to untreated controls.   
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Figure 3.5  Effect of increasing concentrations of dasatinib on CLL cell 
viability following 48 hr continuous treatment 

CLL cells from eighteen patients were treated for 48 hr with increasing 

concentrations of dasatinib, and apoptosis assessed by Annexin V/Viaprobe 

staining by FCM.  Results represent the mean (± SEM) cell viability A and 

apoptosis B of treated samples relative to untreated controls. Annexin 

V+/Viaprobe- cells were considered apoptotic. 
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Figure 3.6  Effect of 48 hr treatment with 100 nM dasatinib on individual CLL 
sample viability 

CLL cells from 28 patients were treated with 100 nM dasatinib for 48 hr, and 

apoptosis assessed by Annexin V/Viaprobe staining by FCM.  The graphs show 

the percentage of viable A and apoptotic B cells in untreated and dasatinib treated 

samples.  Annexin V+/Viaprobe- cells were considered apoptotic.  The 

interconnecting lines connect paired results from each individual patient sample. 
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Figure 3.7  Correlation of dasatinib response to prognostic factors 

The graphs correlate the individual patient sample responses shown in Fig. 3.6 

with ZAP-70 expression A, Binet clinical stage B, and cytogenetic abnormalities 

detected by FISH C.  In addition, response was correlated with patient treatment 

history D.  Data is expressed for each sample as the percentage reduction in 

viability observed following 48 hr treatment with 100 nM dasatinib, relative to the 

untreated control.
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Figure 3.8A  Dasatinib induces loss of MMP and leads to caspase 3 

activation. 

CLL cells from one patient (CLL 44) were cultured in the presence and absence of 

100 nM dasatinib for 48 hr, then analysed by FCM for Annexin V/Viaprobe 

staining, for MMP using TMRM, and for caspase 3 activation, as described in 

Section 2.3.  The experiment was performed in triplicate, and representative plots 

are shown.  The numbers shown on the dot plots represent the percentage of cells 

within each quadrant.  The gates on the histograms reflect the percentage of cells 

which have lost normal MMP (middle), and the percentage of cells in which 

caspase 3 is in an active conformation (bottom). 
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Figure 3.8B  Annexin V positivity correlates with loss of MMP and caspase 
activation following dasatinib treatment 

The results represent the mean ± SEM values obtained from a total of three 

independent experiments carried out as described in Figure 3.8A.  In this analysis, 

all Annexin V binding cells were considered apoptotic, as were cells which had lost 

normal MMP, and those which contained activated caspase 3. 
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A      24 hr 

 

B      48 hr 

 

 
Figure 3.9  Dasatinib-induced apoptosis is caspase-dependent 

CLL cells from three patients (CLL 12, CLL 44, and CLL 50) were treated with 25 

µM Z-VAD-fmk for 2 hr prior to treatment with 100 nM dasatinib as indicated.  

Apoptosis was assessed by Annexin V/Viaprobe staining by FCM at 24 and 48 hr.  

Annexin V+/Viaprobe- cells were considered apoptotic.  Each condition was 

performed in triplicate in each patient sample.  The results represent the mean (± 

SEM) percentages of apoptotic cells following treatments as indicated at 24 hr A 

and 48 hr B. 
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Figure 3.10  Pro-caspase 8 and pro-caspase 9 are cleaved during dasatinib-

induced apoptosis 

CLL cells from three patients were treated with increasing concentrations of 

dasatinib for 48 hr, then protein lysates prepared for analysis of initiator caspases 

8 and 9, and PARP, by western blotting.  An aliquot of cells from each condition 

was also taken for assessment of apoptosis by FCM using Annexin V/Viaprobe 

staining, and the percentage of viable cells in each treatment condition is shown 

above the immunoblot. 
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Figure 3.11  Caspase cleavage occurs within hours of dasatinib treatment 

CLL cells from one patient (CLL 52) were treated with 100 nM dasatinib for 0, 4, 8, 

12, and 24 hr, then protein lysates prepared for the assessment of caspase 8, 

caspase 9, and PARP by western blotting.  Cleavage of pro-caspase 9 to active 35 

and 37 kDa fragments is seen, as is cleavage of pro-caspase 8 to intermediate 41 

and 43 kDa fragments.   
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Figure 3.12  Comparison of fixed-time versus continuous dasatinib exposure 
on CLL cell viability. 

CLL cells from three patients (CLL 16, CLL 35, and CLL 50) were treated with 100 

nM dasatinib for 2, 4, 8, 24, and 48 hours.  Following incubation for the relevant 

time points up to 24 hr, cells were pelleted and washed twice in PBS to remove 

dasatinib, and resuspended in complete media until 48 hr from the start of the 

experiment.  Cells from all treatment conditions were harvested at 48 hr, and 

apoptosis assessed by Annexin V/Viaprobe staining.   
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Figure 3.13  Dasatinib induces a degree of apoptosis in normal B 
lymphocytes 

Normal B lymphocytes (n=3) were treated with increasing concentrations of 

dasatinib for 24 and 48 hr, and apoptosis was assessed by FCM using Annexin 

V/Viaprobe staining.  Each condition was performed in duplicate for each sample.  

The data are presented as the mean (± SEM) absolute cell viabilities for each 

condition at both time points. 

 
 



 

 131 

 

A       Bcl-2 inhibitor I 

 

B      Bcl-2 inhibitor III 

 

 

Figure 3.14  Bcl-2 inhibitors induce apoptosis of CLL cells in vitro 

A  CLL cells (n=5) were treated with increasing concentrations of Bcl-2 inhibitor I 

for 24 and 48 hr, and apoptosis assessed by FCM for Annexin V/Viaprobe 

staining.  Each condition in each sample was performed in triplicate.  The graph 

shows results from a representative experiment.  Results are expressed as the 

mean (± SEM) cell viabilities of treated cells relative to the untreated control.  B  

CLL cells (n=5) were treated with increasing concentrations of Bcl-2 inhibitor III for 

24 and 48 hr, and apoptosis assessed by FCM for Annexin V/Viaprobe staining.  

Each condition in each sample was performed in triplicate. The graph shows 

results from a representative experiment.  Results are expressed as the mean (± 

SEM) cell viabilities of treated cells relative to the untreated control. 
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Figure 3.15  17-DMAG induces apoptosis of CLL cells in vitro. 

CLL cells (n=5) were treated with increasing concentrations of 17-DMAG, followed 

by assessment of apoptosis by Annexin V/Viaprobe FCM at 24 and 48 hr.  Results 

are expressed as the mean (± SEM) cell viabilities, relative to untreated controls. 
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A      B 

 

C 

 

 

Figure 3.16  An example of graphs generated by Calcusyn software during 
analysis of dasatinib combination experiments 

CLL cells were treated with increasing concentrations of dasatinib (6.25, 12.5, 25, 

50, and 100 nM), fludarabine (1.25, 2.5, 5, 10, and 20 µM), or the combination of 

both at a fixed ratio of 200:1 using the concentrations described for 24 hr, then 

apoptosis assessed by Annexin V/Viaprobe FCM.  For each condition, the 

reduction in viability relative to the vehicle control was converted to the fa, using 

Equation 2.4 and entered into the Calcusyn® software programme, which was 

used to analyse data as described in Section 2.8.2.  A  The dose-response graph 

for drugs used singly and in combination, calculated from the fa data, is shown.  B  

Equations 2.5 and 2.6 enabled the construction of the median effect plot.  C  The 

EC50 (ED50), EC75 (ED75) and EC90 (ED90) CIs are plotted on the classical 

isobologram graph. 
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Figure 3.17  EC50 combination indices for dasatinib in combination with 
established and novel agents 

A:  The results show the EC50 CIs for dasatinib in combination with fludarabine, 

chlorambucil, Bcl-2 inhibitor I, and 17-DMAG.  Experiments were performed on 5 

CLL samples for each combination, and each black circle represents one 

experiment. 
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Chapter 4: 

Dasatinib inhibits BCR signalling in CLL cells, and reduces CLL cell 
migration towards SDF-1. 
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4.1 Introduction 

4.1.1 Evidence for the therapeutic potential of inhibiting tonic signalling in 
B cell malignancies 

Mature B lymphocytes require continued surface expression of Ig for survival 

(381), enabling low-level antigen-independent association of kinases such as Lyn 

and Syk with Ig ITAM sequences, to mediate a degree of tonic signalling (373).  In 

vitro studies on B cell lymphoma cells have provided evidence that tonic signalling 

through the BCR is central to the malignant phenotype.  Inhibition of membrane Ig 

expression by siRNA to Igα inhibited growth and survival of many B cell lymphoma 

cell lines (382).  Furthermore, this group identified constitutive phosphorylation of 

Syk in these cell lines, and as downregulation of surface Igα inhibited 

phosphorylation of both Syk and the downstream target BLNK, it was concluded 

that the antiproliferative effect was mediated by inhibition of tonic signalling.  In 

support of this, Syk inhibition with piceatannol also inhibited lymphoma cell line 

proliferation (382).  Constitutive phosphorylation of Syk and BLNK has also been 

confirmed in primary diffuse large B cell lymphoma (DLBCL) cells in addition to cell 

lines, and Syk inhibition with the novel Syk inhibitor R406 induced apoptosis in a 

number of DLBCL cell lines and primary samples (383).  Syk inhibition has also 

been demonstrated to inhibit tumour growth in an Eµ-MYC mouse model of B cell 

lymphoma (384), and trials of Syk inhibition in B cell lymphoma are ongoing.  

Notably, dasatinib has also been reported to inhibit Syk and PLCγ2 

phosphorylation in DLBCL cell lines, and induce apoptosis (385). 

With the evidence linking tonic BCR signalling to the malignant phenotype of B cell 

lymphoma, the question has been raised as to whether tonic BCR signalling also 

occurs in CLL.  Although CLL cells express low levels of surface membrane Ig 

(22), kinases involved in tonic BCR signalling, including Lyn and c-Abl, are 

overexpressed and constitutively active in CLL (203, 212).  Although inhibition of 

either kinase has been shown to induce apoptosis of CLL cells in vitro, the effects 

of inhibitor on downstream BCR signalling kinases has not been previously 

reported.  Such investigation is important to aid our understanding of the role of 

tonic signalling in CLL. 
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4.1.2 The link between BCR signal transduction and migration of B 
lymphocytes 

In normal B lymphocytes, BCR stimulation results in PKC-dependent 

internalisation of the chemokine receptor CXCR4, resulting in impaired migration 

toward SDF-1 (386).  Inhibition of chemotaxis following BCR signalling has been 

proposed as a mechanism involved in the egress of pre-B cells from stromal cell 

niches following successful IgH gene rearrangement (386).  Alteration of 

chemokine responsiveness following antigen stimulation of mature B lymphocytes 

is also believed to facilitate sequential interaction with T lymphocytes, followed by 

transit to B cell follicles within LN (387). 

The influence of BCR stimulation on CLL cell chemotaxis has been recently 

investigated (195, 388).  Vlad et al. observed that BCR stimulation of CLL cells 

resulted in a variable degree of internalisation of surface CXCR4, and noted 

impaired chemotaxis toward SDF-1 in those with reduced CXCR4 expression 

(388).  Of significance, this group identified a significant association between the 

level of CXCR4 internalisation following BCR stimulation, adverse prognostic 

features, and shorter PFS, leading the authors to propose that CXCR4 down-

regulation may promote CLL cell retention within an antigen rich microenvironment 

where the cells are likely to encounter additional proliferative signals (388).  

Quioroga et al. also observed that BCR stimulation of CLL cells lead to 

internalisation of CXCR4 (195).  However, in contrast to the previous study, this 

group reported that BCR stimulation increased CLL cell migration towards SDF-1.  

In the latter case, chemotaxis experiments were performed following 48 hr 

incubation with and without anti-IgM, and as the authors also demonstrated 

incubation with anti-IgM to significantly increase CLL cell viability at 48 hr 

compared to culture in media alone, this difference in starting cell viability may 

have influenced results in subsequent chemotaxis assays.  It is therefore possible 

that in this study the higher rate of chemotaxis observed following BCR stimulation 

may result from the significantly higher viability of this cell population, which would 

explain the apparent contradiction with previous studies performed in normal and 

malignant B cells.  We were therefore interested in determining whether novel 

therapeutic agents targeting BCR signal transduction may have wider effects on 

CLL cell chemotaxis and homing to the microenvironment. 
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4.2 Aims and Objectives 

As outlined in Chapter 3, apoptosis induced by dasatinib in CLL cells in vitro did 

not correlate with prognostic factors such as clinical stage IgVH mutation status, or 

ZAP-70 expression.  As dasatinib targets Lyn and c-Abl, key kinases associated 

with proximal BCR signalling, we hypothesised that dasatinib sensitivity may be 

determined by its’ effects on BCR-mediated signal transduction.  As the capacity 

to signal through the BCR is highly associated with adverse prognostic features in 

CLL, the effect of dasatinib on signalling following crosslinking of surface IgM was 

assessed. 

The specific aims of this chapter were to: 

i.   Investigate whether dasatinib alters basal levels of BCR signal transduction, 

and whether this correlates with apoptotic response; 

ii.   Establish if dasatinib is able to inhibit BCR signalling induced by 

crosslinking of surface IgM; 

iii.  Determine whether dasatinib inhibits the pro-survival effect of prolonged 

BCR crosslinking in vitro; 

iv.   Assess the effect of dasatinib on CXCR4 expression following BCR 

crosslinking; 

v.   Study CXCR4 signal transduction in CLL cells following SDF-1 stimulation 

in the presence or absence of dasatinib; 

vi.   Investigate whether dasatinib alters CLL cell chemotaxis toward SDF-1. 
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4.3 Results 

4.3.1 Dasatinib inhibits tonic BCR signalling in CLL cells. 

As tonic BCR signalling is largely dependent on ITAM phosphorylation by Src 

family kinases, assessment of phosphorylation levels of the downstream kinase 

Syk can be performed as a measure of tonic signalling.  Key sites of Syk 

phosphorylation following association with phosphorylated ITAMs include Tyr348 

and Tyr352, followed by auto-phosphorylation of Tyr525 and Tyr526, located in the 

activation loop (389).  Recently, the method of single-cell phospho-FCM has been 

described as a sensitive method to assess low-level phosphorylation of Syk, 

BLNK, and PLCγ, as measures of tonic BCR signalling, in DLBCL cell lines (383, 

385).  In order to assess the level of tonic BCR signalling in CLL cells, phospho-

specific FCM using an antibody that recognises phosphorylated SykY348 was used, 

following treatment of CLL cells with or without dasatinib.  Representative FCM 

histograms from one patient are shown in Figure 4.1A.  In unstimulated untreated 

cells, the level of Syk phosphorylation is clearly greater than the isotype control, 

suggesting a degree of tonic BCR signalling.  Addition of dasatinib reduces the 

level of Syk phosphorylation in unstimulated cells (Fig. 4.1A).  In addition, the 

effect of dasatinib on Syk phosphorylation following ligation of CLL cell surface 

IgM was also assessed.  Stimulation of the BCR in vivo involves clustering and 

crosslinking of many molecules of surface Ig by antigen (150).  To mimic such 

BCR crosslinking in vitro, cells were incubated with a biotinylated anti-IgM 

antibody, followed by crosslinking of antibody with avidin.  This experimental 

approach has been previously described to induce effective pre-T cell receptor 

signalling in vitro (390).  Following BCR stimulation, Syk phosphorylation in 

untreated cells increased, whilst a minimal increase in MFI occurred in dasatinib-

treated cells (Fig. 4.1A).  Combined results from experiments on 17 patient 

samples are shown in Fig 4.1B.  Dasatinib significantly inhibited the basal level of 

Syk phosphorylation (p<0.0001) as determined by assessing the MFI of each 

sample, confirming inhibition of tonic BCR signalling.  A significant increase in the 

level of SykY348 phosphorylation was observed on BCR stimulation in untreated 

cells (p=0.004), which was also inhibited by dasatinib, suggesting that dasatinib 

may also inhibit antigen-dependent BCR signalling. 
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4.3.2 CLL sensitivity to dasatinib correlates with basal Syk 
phosphorylation. 

Dasatinib has been investigated as a targeted therapy to BCR signal transduction 

in DLBCL cell lines, which also over-express Src kinases (385).  In this study, 

variable levels of anti-proliferative activity were observed following dasatinib 

treatment, despite full Src kinase inhibition in all cases, prompting the authors to 

search for additional determinants of drug sensitivity.  The ability of dasatinib to 

inhibit phosphorylation of Syk and PLCγ2 on BCR stimulation correlated with drug 

sensitivity, demonstrating that inhibition of components of the BCR signal 

transduction cascade is central to the anti-neoplastic effect of dasatinib in DLBCL 

cells.  Unfortunately, the effect of dasatinib on basal levels of Syk and PLCγ2 

phosphorylation was not assessed, precluding formal analysis of drug effects on 

tonic signalling (385).  Syk has also recently been reported to be over-expressed 

in CLL cells (391).  In view of these data, we hypothesised that the variable CLL 

cell sensitivity to dasatinib (described in Chapter 3, Fig. 3.6) may be determined by 

the ability of the drug to inhibit Syk-dependent tonic BCR signalling in individual 

cases.  To investigate this, the MFI of SykY348 phosphorylation in unstimulated 

cells treated with or without dasatinib was correlated with the percentage reduction 

in viability of the same sample on 48 hr treatment with dasatinib (Fig. 4.2).  A 

significant inverse linear relationship was observed between the basal level of 

SykY348 phosphorylation and dasatinib sensitivity, in that samples with high basal 

SykY348 phosphorylation were less sensitive to dasatinib (Fig. 4.2A).  Importantly, a 

similar significant linear correlation was observed between the remaining level of 

SykY348 phosphorylation following 30 min treatment with dasatinib and the level of 

apoptosis achieved on 48 hr treatment (Fig. 4.2B), supporting the hypothesis that 

failure to fully inhibit Syk phosphorylation correlates with dasatinib resistance.  To 

assess whether dasatinib sensitivity also correlated with the ability to respond to 

BCR stimulation in individual samples, the magnitude of SykY348 increase, defined 

as the MFI ratio of stimulated to unstimulated untreated cells, was correlated with 

dasatinib sensitivity, however no association was observed (data not shown).  

These data suggest that dasatinib sensitivity in CLL cells is indeed determined by 

inhibition of tonic BCR signalling, and raise the possibility that in CLL cells poorly 

responsive to dasatinib, Syk may be activated independently of Src kinases and 

transmit survival signals.   
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To further validate this hypothesis, phosphorylation of both Lyn and Syk was 

assessed by western blotting in CLL cells treated with or without dasatinib.  Eight 

samples, in which Syk phosphorylation had been assessed by FCM, were chosen 

to reflect the spectrum of apoptotic response observed on dasatinib treatment.  

Cells were treated with or without 100 nM dasatinib for 30 min, followed by 

assessment of phosphorylated and total Lyn and Syk in cell lysates by western 

blotting (Fig. 4.3).  Using this approach, 100 nM dasatinib completely inhibited 

LynY396 phosphorylation in all samples as expected.  However, SykY352 

phosphorylation was also completely inhibited in all CLL samples, regardless of 

apoptotic response to dasatinib.  This may reflect the lower sensitivity of 

immunoblotting as compared to phospho-FCM.  Immunoblotting is advantageous 

in that total levels of protein expression can be compared between samples.  

Densitometry was performed on the blots shown in Figure 4.3, to correlate levels 

of both Lyn and Syk expression with dasatinib sensitivity.  A similar analysis was 

performed in order to correlate the ratio of phosphorylated Syk or Lyn to total 

protein expression with dasatinib response.  A significant inverse linear 

relationship between Syk expression and dasatinib sensitivity was observed (Fig. 

4.4A), consistent with the results obtained by phospho-FCM.  However, although 

not reaching significance, a trend toward increasing dasatinib sensitivity with 

increasing percentage of Syk phosphorylation was observed (Fig. 4.4B).  This 

seems incongruous with the preceding data, however when viewed in combination 

with Fig. 4.4A, it can be seen that in this small sample group, the cells with the 

highest percentage of Syk phosphorylation express the lowest absolute levels of 

Syk.  Viewed together, these data suggest that high expression of Syk results in a 

higher absolute level of phosphorylated Syk, even though a lower percentage of 

the total cellular Syk is phosphorylated.  No significant associations were seen 

between the percentage of phosphorylated Lyn, or total Lyn, and dasatinib 

sensitivity (Fig. 4.4C+D).  In summary, these data support the hypothesis that 

dasatinib sensitivity is related to activity of components of the BCR signalling 

cascade, and a potential model for signalling in dasatinib sensitive and resistant 

cells is discussed in Section 4.4. 

4.3.3 Dasatinib inhibits signalling induced by BCR ligation in CLL cells. 

As detailed in Section 1.5.2, following antigen engagement of the BCR, proximal 

signalling events downstream of Syk phosphorylation include the recruitment of 

several adaptor proteins, leading to release of calcium from intracellular stores, 
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and activation of the PI-3K and MAPK signalling pathways.  The fluorescent 

calcium indicator Fura-2 AM was used to measure calcium flux following BCR 

stimulation, as described in Chapter 2.4.  In order to crosslink the BCR after a 

stable basal fluorescence had been recorded, the avidin was injected directly into 

the spectrophotometer cuvette.  BCR stimulation resulted in an increase in 

cytoplasmic calcium concentration of 1.5-2 fold in untreated cells from all three 

samples assessed, whilst dasatinib-treated cells showed minimal calcium flux (Fig. 

4.5), confirming that dasatinib was able to inhibit this key proximal step in BCR 

signal transduction.   

Activation of BCR downstream kinases following IgM crosslinking was assessed 

by western blotting.  CLL cells were incubated in the presence or absence of 100 

nM dasatinib for 30 min prior to BCR stimulation, and protein lysates prepared 

from unstimulated cells, or after 10 or 30 min stimulation.  Representative 

immunoblots from four independent experiments are shown in Figure 4.6.  In 

untreated cells, BCR stimulation resulted in Akt and ERK phosphorylation in both 

ZAP-70 positive (Fig. 4.6A) and ZAP-70 negative (Fig. 4.6B) CLL samples.  The 

increase in Akt and ERK phosphorylation following BCR crosslinking was 

completely inhibited by dasatinib in all cases (Fig. 4.6A+B).  Phosphorylation of 

p38 and JNK MAPK following BCR stimulation was assessed in three samples.  

An increase in p38 phosphorylation on BCR stimulation was observed in untreated 

cells from all three samples, which was inhibited by dasatinib (Fig. 4.6A+B), 

however JNK phosphorylation was not observed following BCR stimulation in 

untreated or dasatinib-treated cells (data not shown).  Dasatinib also inhibited 

phosphorylation of IkBα on BCR stimulation (Fig. 4.6A+B), indicating that dasatinib 

prevents NF-κB pathway activation following BCR stimulation.  

Activation of B lymphocytes through the BCR leads to extensive cytoskeletal 

reorganisation, in which cytoplasmic spreading and subsequent contraction occur 

to aggregate antigen into a focal cluster (151).  To determine whether dasatinib 

affects this key process, actin reorganisation following BCR stimulation was 

assessed by fluorescence microscopy in CLL cells pre-treated with or without 100 

nM dasatinib.  Of the five CLL samples analysed, cell spreading following BCR 

stimulation was observed in the untreated cells in four cases, with representative 

cells shown in Figure 4.7.  No cytoplasmic spreading was seen in untreated cells 

placed onto slides coated with an isotype control antibody.  Less cell spreading 

was observed in dasatinib-treated cells following BCR stimulation (Fig. 4.7).  In 
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order to quantify these observations, in three samples, two hundred cells were 

counted and scored either positive or negative for cytoplasmic spreading, and the 

percentage of cells demonstrating cytoplasmic spreading in untreated and 

dasatinib treated cells from each sample is shown in Fig. 4.7.  Combined analysis 

of all three samples confirmed that dasatinib significantly reduced the percentage 

of cells able to undergo cytoplasmic spreading in response to BCR stimulation 

(untreated vs. treated = 66.3% vs. 12.6% respectively; p=0.02). 

4.3.4 Dasatinib inhibits BCR-mediated up-regulation of Mcl-1 and survival of 

CLL cells. 

Despite the variable effects on CLL cell survival reported on stimulation with 

soluble anti-IgM in vitro, long-term culture of CLL cells with immobilised anti-IgM 

increases CLL cell viability in vitro (192).  To address the functional effect of 

dasatinib on prolonged BCR stimulation of CLL cells, cells were incubated for 48 

hr in the presence or absence of 100 nM dasatinib in each of the following three 

conditions: complete media alone; complete media in wells coated with 10 µg/ml 

anti-IgM (immobilised anti-IgM), and; complete media supplemented with 10 µg/ml 

anti-IgM F(ab’)2 fragments (soluble anti-IgM).  At the end of the experiment, cell 

viability was assessed by Annexin V/Viaprobe staining by FCM, and protein 

lysates prepared from the remainder of cells for immunoblotting.  The morphology 

of CLL cells from one representative patient sample cultured for 48 hr are shown 

(Fig. 4.8).  Incubation of untreated CLL cells with soluble anti-IgM visibly increased 

cell aggregation in suspension, while incubation with immobilised anti-IgM induced 

the CLL cells to adhere to the antibody-coated surface and increase in size, in 

keeping with activated B cells.  Morphological changes induced by soluble or 

immobilised anti-IgM were both inhibited by dasatinib in this sample, as was the 

protective effect of IgM stimulation on cell viability (Fig. 4.8).  In Figure 4.9, the 

mean (± SEM) viabilities of cells treated as described in eleven CLL samples are 

shown.  Incubation of untreated CLL cells with soluble anti-IgM resulted in 

increased, slightly decreased, or unchanged viability in 63%, 27%, and 10% 

respectively, with mean viability of 112% relative to unstimulated cells, which did 

not reach statistical significance.  Incubation of untreated CLL cells with 

immobilised anti-IgM increased cell viability in 82% of samples, resulting in a 

significant increase in mean cell viability of 116% compared to unstimulated cells 

(p<0.01).  Dasatinib completely inhibited the pro-survival effect of prolonged 

stimulation with either soluble or immobilised anti-IgM, with viabilities of cells 
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treated with dasatinib in the presence of IgM stimulation similar to that of cells 

treated with dasatinib in media alone (Fig. 4.9). 

The anti-apoptotic effect of prolonged BCR stimulation has been demonstrated to 

be largely dependent on activation of the PI-3K/Akt pathway, leading to up-

regulation of Bcl-xL, Mcl-1, and XIAP (196).  Using an siRNA approach, Mcl-1 was 

identified to be the key anti-apoptotic effector (196).  Therefore, the effect of 

dasatinib on Mcl-1 expression following 48 hr BCR stimulation was assessed.  

Protein lysates prepared and Mcl-1 expression assessed by western blotting.  

PARP was also assessed as a marker of apoptosis.  Fig. 4.10A shows a western 

blot from one patient sample in which untreated CLL cell viability was increased by 

incubation with either soluble or immobilised anti-IgM.  In this example, Mcl-1 

expression increased on BCR stimulation, and notably the extent of Mcl-1 

upregulation was greater following stimulation with immobilised anti-IgM than 

soluble anti-IgM, and correlated with a higher percentage of viable cells following 

48 hr immobilised as compared to soluble anti-IgM stimulation.  Dasatinib 

completely inhibited Mcl-1 up-regulation induced by either soluble or immobilised 

anti-IgM stimulation, with the protein level reduced to that of cells treated with 

dasatinib in media alone (Fig. 4.10A).  To further assess whether changes in Mcl-1 

expression correlate with the increase in cell viability on IgM stimulation, 

densitometry was performed on this immunoblot, and immunoblots from an 

additional two experiments in which immobilised anti-IgM stimulation protected 

cells from spontaneous apoptosis (Fig. 4.10B).  Combined densitometric analysis 

confirmed both upregulation of Mcl-1 on immobilised anti-IgM stimulation, and 

complete inhibition of Mcl-1 up-regulation by dasatinib (Fig. 4.10B).  Mcl-1 was not 

significantly up-regulated by immobilised anti-IgM in one CLL case in which BCR 

stimulation had no effect on cell viability (data not shown).  Soluble anti-IgM 

stimulation did not consistently up-regulate Mcl-1 expression in untreated cells, 

correlating with the results in Fig 4.9, showing less overall pro-survival effect on 

CLL cells.  Collectively, these data confirm that inhibition of BCR signal 

transduction is a functionally relevant novel therapeutic strategy in CLL.  

4.3.5 Dasatinib prevents CXCR4 down-regulation on BCR stimulation 

To assess the effect of dasatinib on CXCR4 internalisation following BCR 

stimulation, CLL cells were pre-treated with or without 100 nM dasatinib then the 

BCR was crosslinked.  The effect of dasatinib on CXCR4 expression following 

stimulation with SDF-1, or both SDF-1 and immobilised anti-IgM, was also 
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assessed.  Combined results from three independent experiments are shown in 

Fig. 4.11.  In all three samples assessed, IgM crosslinking resulted in down-

regulation of CXCR4, which was prevented by dasatinib.  SDF-1 treatment also 

resulted in significant reduction in CXCR4 expression.  Of interest, although not 

reaching statistical significance (p=0.07), CXCR4 expression was slightly higher in 

dasatinib-treated cells following SDF-1 stimulation.  Although these results 

suggest that dasatinib treatment may retain the ability of CLL cells to respond to 

SDF-1, as Src kinases, including Lyn, are involved in CXCR4 signal transduction 

(235), the question remains whether dasatinib may also alter CLL cell migration 

toward SDF-1 through direct effects on CXCR4 signalling. 

4.3.6 Dasatinib inhibits Akt phosphorylation on CXCR4 stimulation in CLL 
cells. 

The effect of dasatinib on key signalling proteins downstream of CXCR4, namely 

Src kinases, FAK, Akt, and ERK and p38 MAPK, was assessed by Western 

blotting following SDF-1 stimulation.  CLL cells pre-treated with or without 

dasatinib and then stimulated with SDF-1 as indicated.  Protein lysates were also 

prepared from unstimulated CLL cells, and lysates from the colorectal carcinoma 

cell line HT29 served as a positive control, as these cells expresses both 

constitutively phosphorylated Src and FAK (392).  As both Lyn and Src may 

participate in CXCR4 signal transduction, a primary antibody reactive to all 

phosphorylated Src family proteins was used for immunoblotting.  Figure 4.12A 

shows a representative immunoblot probed for Src and FAK phosphorylation.  In 

control CLL cells, two bands were detected with molecular weights in keeping with 

the 53 and 55 kDa isoforms of Lyn, whilst in HT29 cells, a single band at 60 kDa of 

phospho-Src was detected.  No phosphorylation of FAK was observed in control 

CLL cells either unstimulated or following SDF-1 stimulation.  Dasatinib completely 

inhibited Src family kinase phosphorylation in control and stimulated cells as 

expected (Fig. 4.12A).  The effect of dasatinib on SDF-1-induced phosphorylation 

of Akt, and ERK and p38 MAPK was also assessed.  Immunoblots from 

experiments on three patient samples are shown in Figure 4.12B.  In cells not 

treated with dasatinib, SDF-1 stimulation consistently induced phosphorylation of 

Akt and ERK, while variable levels of p38 phosphorylation were observed.  The 

notable effect of dasatinib was complete inhibition of Akt phosphorylation following 

SDF-1 stimulation, while ERK phosphorylation remained largely unaffected.  
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These data suggest that Src kinases, most probably Lyn, are required for Akt 

activation, likely through activation of PI-3K. 

4.3.7 Dasatinib inhibits SDF-1-induced actin polymerisation, chemotaxis, 
and pseudoemperipolesis. 

Experiments were performed to assess the functional consequences of dasatinib 

on SDF-1 signalling in CLL cells.  Stimulation of CLL cells with SDF-1 results in a 

rapid increase in actin polymerisation (230, 393).  Actin polymerisation following 

SDF-1 stimulation was assessed by FCM, assessing four conditions: media alone; 

media supplemented with dasatinib; media supplemented with CXCR4 antagonist 

AMD3100 or; both dasatinib and AMD3100.  After removing an aliquot of cells 

from each well for fixation, SDF-1 was added to each well, and subsequent 

aliquots removed as indicated.  Following fixation and permeabilisation, cells were 

incubated with phalloidin prior to analysis by FCM.  Due to the preferential affinity 

of phalloidin for polymerised as compared to monomeric actin, an increase in actin 

polymerisation can be detected by an increase in MFI on FCM.  Following SDF-1 

stimulation of CLL cells cultured in media alone, a rapid increase in actin 

polymerisation, to over 200% that of unstimulated cells, was observed (Fig. 4.13).  

AMD3100 significantly inhibited actin polymerisation compared to control cells, 

validating the assay methodology.  Incubation of cells with dasatinib for 30 min 

resulted in a small but significant reduction in the basal level of actin 

polymerisation (p=0.03).  At 15 s following SDF-1 stimulation, actin polymerisation 

was also significantly lower in dasatinib treated cells than control cells (p=0.02), 

however at 60 s and thereafter, actin polymerisation was not significantly different 

between control and dasatinib-treated cells.  In summary, dasatinib treated cells 

exhibit a blunted and delayed actin polymerisation response to SDF-1 as 

compared to untreated cells.  No significant additive effect was observed on the 

actin polymerisation response to SDF-1 when dasatinib and AMD3100 were used 

in combination. 

A transwell migration assay was used to assess the effect of dasatinib on 

chemotaxis toward SDF-1.  Briefly, CLL cells were incubated with increasing 

concentrations of dasatinib, with AMD3100, or left untreated as indicated.  Cells 

were then transferred to the upper chamber of a transwell culture insert, 

suspended in media supplemented with SDF-1, and incubated for 4 hr.  At the end 

of the experiment, cells that had migrated were counted by FCM.  In five 

independent experiments, migration rates between 23 - 43% of the total input cells 
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were observed, with rates of spontaneous migration toward a lower chamber 

containing media only less than 0.01% in all cases.  While the CXCR4 antagonist 

AMD3100 inhibited migration relative to control cells, at the dose used, this did not 

reach significance (Fig. 4.14).  Whilst little effect on chemotaxis was seen at a 

concentration of 1 nM dasatinib, both 10 and 100 nM dasatinib significantly 

reduced the percentage of cells migrating to the lower chamber (Fig. 4.14). 

These results suggest that dasatinib may inhibit CLL migration to and retention in 

the stromal microenvironment of the BM and LN.  To further investigate this 

possibility, the ability of dasatinib-treated CLL cells to migrate under a layer of 

SDF-1 expressing stromal cells (pseudoemperipolesis) was assessed.  The 

murine BM fibroblast cell line M2-10B4 has been reported to express SDF-1, and 

induce pseudoemperipolesis of co-cultured CLL cells (230).  The expression of 

SDF-1 by M2-10B4 cells was assessed by quantitative reverse-transcription PCR 

(qRT-PCR) prior to use in experiments.  M2-10B4 cells, but not NT-L cells (also a 

murine BM fibroblast cell line), express appreciable levels of SDF-1 mRNA (Fig. 

4.15).  To assess pseudoemperipolesis, CLL cells were incubated with or without 

dasatinib, then incubated on a confluent layer of M2-10B4 cells.  At the end of the 

experiment, non-migrated cells were removed by thorough washing, and the 

stroma containing pseudoemperipolesed cells documented photographically (Fig. 

4.16).  CLL cells which have undergone pseudoemperipolesis are characterised 

by a dark, non-refractile appearance (230).  The stromal cell layer was then 

detached using trypsin, and the presence of CLL cells was analysed by FCM.  CLL 

cells were counted by acquiring CD19+ events on high flow for 30s for each 

sample, including counting an aliquot from the total starting cell number, in order to 

calculate the percentage of migrated cells in each sample.  In six of the nine 

samples analysed, at least 1% of control cells migrated into the stromal plane (Fig. 

4.17A), with minimal migration observed in the remaining three samples.  In the six 

samples showing evidence of pseudoemperipolesis, dasatinib significantly 

inhibited the mean percentage of transmigrated cells, from 2.4% to 1% (p<0.02; 

Fig. 4.17B).  Although these percentages are small, the greater than 50% 

reduction in migratory capacity achieved by dasatinib may have great clinical 

relevance. 

4.3.8 Dasatinib inhibits pro-survival SDF-1 signalling in CLL cells in vitro. 

Addition of recombinant SDF-1 to culture media has been demonstrated to 

partially inhibit spontaneous apoptosis of CLL cells in vitro.  In view of the partial 
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inhibition of CXCR4 signalling, the effect of dasatinib on the anti-apoptotic effect of 

SDF-1 was assessed.  CLL cells were pre-treated with dasatinib as indicated, then 

incubated in the presence or absence of SDF-1 for 48 hr.  Co-culture of CLL cells 

with SDF-1 alone led to a significant increase in cell viability, with a mean viability 

of 110% compared to cells incubated in media alone (p=0.02; Fig. 4.18).  Cells 

incubated in the presence of dasatinib and SDF-1 had a mean viability similar to 

that of cells treated with dasatinib alone (Fig. 4.18).  The observed effects of 

dasatinib on CLL cell viability in the presence of SDF-1 may also be explained by 

the demonstrated inhibition of Akt phosphorylation. 
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4.4  Discussion 

Using a sensitive FCM technique, we detected a basal level of SykY348 

phosphorylation in CLL cells, suggesting a degree of tonic signalling.  As CLL cells 

were incubated in serum-free media prior to and during the experiment, the basal 

Syk phosphorylation is unlikely to have been induced by other soluble factors 

present in the culture medium.  In addition to studies performed in DLBCL, there is 

now significant published evidence to suggest that Syk-dependent tonic BCR 

signalling is important for CLL cell survival, and a rational therapeutic target in 

CLL.  Gene expression profiling studies in CLL cells have identified over-

expression of several additional proteins in addition to Lyn and c-Abl, involved in 

BCR signal transduction, including Syk, Vav, and PLCγ2, (391).  At the protein 

level, Syk expression in CLL cells was approximately two-fold that of normal B 

lymphocytes, and Syk expression was significantly higher in unmutated cases 

compared with mutated cases (391).  Moreover, using phosphotyrosine 

immunoprecipitation followed by Syk immunoblotting, total basal Syk 

phosphorylation in CLL cells was demonstrated to be around twice that observed 

in normal B lymphocytes (391).  Increased basal Syk phosphorylation in CLL has 

subsequently been confirmed by other groups.  Baudot et al. demonstrated basal 

phosphorylation on both tyrosines Tyr352, and Tyr525/526 in the activation loop (394).  

Gobessi et al. also demonstrated significant basal SykY352 phosphorylation in a 

large proportion of unselected CLL samples by both immunoblotting and confocal 

microscopy, however did not observe a difference between mutational groups 

(395).  Evidence to support specific involvement of Syk kinase activity in the 

survival of CLL cells comes from two studies in which knock-down of Syk by 

siRNA resulted in apoptosis (394, 395).  Syk-dependent tonic signalling has been 

shown to promote CLL cell survival at least partly through preventing proteasome-

mediated degradation of Mcl-1 (394).  A number of pharmacological ATP-

competitive inhibitors of Syk kinase activity have been developed, including 

BAY61-3606, R406, and Syk inhibitor II, which have been demonstrated to induce 

apoptosis of CLL cells in vitro (391, 394, 395).  Using a fixed concentration of 2.5 

µM R406, Gobessi et al. found no difference in level of apoptosis between 

mutational or ZAP-70 subgroups, whereas Buchner et al. found 4 µM R406 to 

induce significantly greater apoptosis in unmutated or ZAP-70 positive cases.  

Buchner et al. also found a significant positive association between the relative 

level of Syk expression in a CLL sample and the percentage cytotoxicity achieved 
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with R406.  A phase I/II clinical trial of fostamatinib disodium, an oral pro-drug of 

the Syk inhibitor R406, in patients with B cell NHL and CLL has recently been 

reported, with responses seen in six of eleven (55%) patients with relapsed or 

refractory CLL or small lymphocytic lymphoma, with a median response duration 

of over 4 months (396).   

In DLBCL cell lines, dasatinib inhibited Src kinase phosphorylation in both 

dasatinib sensitive and resistant cell lines, however the anti-proliferative activity of 

dasatinib correlated with inhibition of Syk and PLCγ2 phosphorylation (385), 

leading the authors to suggest that Syk and PLCγ2 may be clinically useful 

biomarkers.  In our study, the level of SykY348 phosphorylation was predictive of the 

apoptotic response of CLL samples to treatment with dasatinib, with cells more 

resistant to dasatinib retaining a higher level of SykY348 phosphorylation despite 

dasatinib treatment.  Recently, this finding has been confirmed by another group 

(356).  Song et al. found 128 nM dasatinib to completely inhibit phosphorylation of 

Lyn, Src, and Hck kinases (assessed by immunoblotting) in all CLL cells assessed 

in vitro, regardless of apoptotic response.  However, again using phospho-specific 

FCM, significant associations were found between the ability of dasatinib to inhibit 

basal SykY348 and PLCγ2
Y759 phosphorylation and the level of cytotoxicity achieved 

with dasatinib (356). 

These data suggest that Syk activity may not be solely controlled by Lyn activity, 

and that variable Syk activation by non-Src kinase routes may explain the variable 

sensitivity of CLL cells to dasatinib treatment.  Whilst the consensus holds that Lyn 

is the predominant kinase responsible for phosphorylation of ITAM tyrosines, 

leading to recruitment and activation of Syk (155), Syk has been demonstrated to 

associate with ITAM sequences independently of Lyn (397).  The Lyn-independent 

regulation of tonic Syk phosphorylation in CLL cells remains to be fully determined, 

however there is evidence to implicate dysregulation of regulatory phosphatases.  

Recently, phosphorylation of Syk has been shown to be directly controlled by 

protein tyrosine phosphatase receptor-type O truncated (PTPROt), which has 

been implicated as a tumour suppressor gene (398).  PTPROt overexpression 

inhibited Syk phosphorylation and downstream BCR signalling on BCR 

stimulation, and also inhibited proliferation and induced apoptosis in a B cell 

lymphoma cell line, suggesting a regulatory role in tonic BCR signalling (398).  

Recently, the PTPROt promoter has been demonstrated to be methylated in up to 

82% of patients with CLL, with methylation correlating with reduced expression as 
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measured by RT-PCR (399).  Furthermore, introduction of PTPROt into a non-

expressing CLL cell line significantly increased the level of apoptosis achieved by 

fludarabine (399).  This group did not assess Syk phosphorylation following 

introduction of PTPROt, and this would be of interest to study in primary CLL cells.  

Very recently, the target tyrosine substrate for PTPROt on Syk has been 

confirmed as the activating Tyr352 (400).  In our study, the CLL cases with the 

highest levels of Syk protein expression also had the highest levels of SykY348 

phosphorylation, and lowest response to dasatinib.  It may be possible that in such 

cases, the level of Syk protein exceeds the capacity of PTPROt to 

dephosphorylate it, leading to Lyn-independent constitutive activity, and relative 

dasatinib resistance.  In CLL cells with lower total levels of Syk protein, Syk 

phosphorylation may be more under the control of Lyn kinase activity, correlating 

with sensitivity to apoptosis on dasatinib treatment.   

The recent in vitro and clinical trial data for the Syk inhibitor R406 have led some 

to propose that Syk inhibitors may be more effective therapeutic agents in CLL 

than Src/c-Abl kinase inhibitors.  However, Buchner et al. demonstrated that CLL 

cases with low level Syk expression were relatively insensitive to Syk inhibitors.  

Our results suggest that CLL cells with low expression of Syk are dasatinib 

sensitive.  These data suggest that in a subset of CLL cases, Syk-independent 

survival signalling through Src and/or c-Abl kinases is important in maintaining the 

malignant clone.  A better understanding of the heterogeneity in antigen-

independent BCR signalling is central to establishing which patient subgroups may 

benefit from specific TKIs in CLL.  Further experiments using phospho-FCM to 

analyse the activity of downstream BCR signalling proteins in Syk high and low 

expressing CLL cells treated with Src or Syk inhibitors may aid this understanding.  

Also, further experiments to assess whether synergy is observed between 

dasatinib and Syk inhibitors may clarify whether dasatinib resistance is due to Syk 

kinase activity. 

BCR stimulation using our avidin-biotin crosslinking method resulted in calcium 

release, and phosphorylation of downstream kinases in both ZAP-70 positive and 

negative cases.  Little increase in Akt phosphorylation was observed in one ZAP-

70 negative case, consistent with a previous study which identified 

phosphorylation of Akt and ERK in all unmutated and 75% of mutated CLL cells on 

BCR stimulation (192).  Previously, MAPK activation following BCR stimulation 

has been reported to be incomplete, with infrequent activation of JNK and 
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decrease in phosphorylation of p38 MAPK (192).  In our study, an increase in p38 

phosphorylation was observed in all cases, whereas we did not detect JNK 

phosphorylation in any of the samples analysed.  The differences observed may 

reflect the different experimental techniques employed, as it is reasonable to 

suggest that crosslinking the BCR with an avidin-biotin method may result in a 

greater stimulus than the previously reported methods.  Of note, the Syk inhibitor 

R406 has also been confirmed to inhibit intracellular calcium flux, and prevent Akt 

and ERK phosphorylation following BCR stimulation of CLL cells (195). 

In addition to inhibiting BCR signalling in the short term, dasatinib inhibited up-

regulation of Mcl-1 on sustained BCR stimulation, and abrogated the anti-apoptotic 

effect of continued BCR signalling in vitro.  Studies using specific Mcl-1 siRNA 

have confirmed that Mcl-1 is key to the anti-apoptotic effect of prolonged BCR 

stimulation of CLL cells in vitro (196).  Consistent with the reported findings of 

Petlickovski et al., we observed immobilised anti-IgM stimulation, but not soluble 

anti-IgM stimulation to lead to significant up-regulation of Mcl-1 in CLL cells (192).  

Although dasatinib has previously been reported to induce apoptosis through 

down-regulation of Mcl-1 expression in unstimulated CLL cells (353), to our 

knowledge, the present work is the first study to demonstrate dasatinib to inhibit 

the up-regulation of Mcl-1 following prolonged crosslinking of surface IgM.  Of 

interest, although not reaching statistical significance (p=0.11), the mean viability 

of cells incubated with immobilised anti-IgM and dasatinib was 51.9% of control, 

compared to 64.5% of control for CLL cells treated with dasatinib in media alone, 

suggesting that CLL cells may be more sensitive to dasatinib in the presence of 

BCR stimulation.  Scheduling experiments in which CLL cells are stimulated by 

crosslinking of surface IgM prior to the addition of dasatinib would help to further 

address this question.  Notably, the Syk inhibitor R406 has also been reported to 

inhibit the pro-survival effect of prolonged BCR stimulation in vitro (195, 395), also 

blocking Mcl-1 up-regulation (395).  These studies suggest that whilst Src/c-Abl 

and Syk inhibitors appear to exert variable effects on tonic BCR signals and 

viability of unstimulated CLL cells, both classes of inhibitor consistently inhibit pro-

survival signalling induced by active crosslinking of the BCR.   

In agreement with previous reports, IgM stimulation resulted in a reduction of 

surface CXCR4 expression on the surface of CLL cells (195, 388).  Consistent 

with the evidence that dasatinib inhibits BCR signalling, dasatinib blocked the 

downregulation of CXCR4 following IgM crosslinking.  Again, similar to dasatinib, 



   

 153 

Syk inhibition with R406 has also been shown to prevent internalisation of CXCR4 

on BCR stimulation (195).  Dasatinib did not change CXCR4 expression in 

unstimulated CLL cells, and following SDF-1 stimulation, downregulation of 

surface CXCR4 was slightly less in dasatinib treated cells, suggesting a role for 

tyrosine kinases in CXCR4 internalisation.  Despite this, dasatinib inhibited actin 

polymerisation and chemotaxis in response to SDF-1, and reduced 

pseudoemperipolesis of CLL cells on the stromal cell line M2-10B4, similar to the 

findings reported following treatment of CLL cells with small molecule antagonists 

of CXCR4.  Together, these results imply that dasatinib inhibits signalling 

downstream of the CXCR4 receptor.   

Dasatinib has been extensively investigated as a novel therapeutic agent which 

may inhibit metastasis of solid organ malignancies through inhibition of Src and 

FAK signalling pathways.  Prostate cancer cell lines express constitutively active 

Lyn and Src kinases, and inhibition of Src kinase activity by dasatinib resulted in a 

reduction in phosphorylation of the downstream kinases FAK and p130CAS, with no 

effect on ERK or Akt phosphorylation (313).  Inhibition of FAK and p130CAS was 

associated with reduced migration in wound healing assays.  In head and neck 

squamous cell carcinoma and non-small cell lung cancer cell lines, dasatinib also 

inhibited spontaneous migration, with consistent inhibition of phosphorylation of 

FAK, p130CAS, and paxillin, and variable effects on Akt and MAPK (312).  

Moreover, similar findings have been reported in a number of other malignancies, 

including colon carcinoma (392), sarcoma (401), mesothelioma (402), and 

melanoma (403).  Although FAK has been demonstrated to be expressed in a 

number of B cell malignancies, including CLL (404), the level of basal and induced 

FAK phosphorylation in CLL cells has not previously been studied.  In the present 

study, we failed to detect phosphorylated Src or FAK by immunoblotting in either 

unstimulated cells, or following SDF-1 stimulation.  Preliminary experiments 

similarly failed to detect paxillin and p130CAS following stimulation.  

Immunoprecipitation of total FAK followed by phosphotyrosine immunoblotting 

may allow more sensitive detection of low levels of FAK phosphorylation, however 

this approach was limited by the cell numbers required to perform such analysis.  

Alternatively, it may be that FAK is not activated to any extent on SDF-1 

stimulation, and alternative pathways are responsible for mediating CLL 

chemotaxis to SDF-1.  In normal B lymphocytes, FAK phosphorylation following 

CXCR4 engagement is developmentally regulated by at least two mechanisms.  
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Firstly, as progenitor B lymphocytes mature, expression of the GTP-ase activating 

protein regulator of G protein signalling 1 (RGS1) increases, and reduces FAK 

recruitment to the CXCR4 signalosome on SDF-1 stimulation (405).  In addition, 

suppressor of cytokine signalling 3 (SOCS3) expression has been demonstrated 

to increase as B lymphocytes reach maturity, resulting in FAK ubiquitination and 

proteasomal degradation on CXCR4 engagement, preventing efficient CXCR4-

FAK signalling (406).  Although expression of RGS1 and SOCS3 has not been 

examined in CLL cells, it is possible that failure to detect FAK phosphorylation on 

SDF-1 stimulation of CLL cells reflects the normal insensitivity of mature B 

lymphocytes to FAK activation.  In any case, our data suggest that migration of 

CLL cells toward SDF-1 is likely to be regulated by pathways other than the 

Src/FAK axis. 

Using the pan phospho-Src antibody, bands at 53 and 56 kDa were observed by 

immunoblotting in unstimulated and SDF-1 stimulated CLL cells, likely to represent 

mainly phosphorylated Lyn kinase, and these were completely inhibited by 

dasatinib.  Both Lyn and Fyn phosphorylation have been observed following SDF-

1 stimulation of Jurkat T cells and CD34+ haematopoietic progenitor cells (235, 

407).  Furthermore, a specific role for Lyn in SDF-1-induced chemotaxis of 

haematopoietic cells has been proposed on the basis of experiments performed in 

Lyn knock-out mice.  In transwell assays, migration of BM mononuclear cells from 

Lyn-/- mice towards SDF-1 was impaired by over 75 percent compared to wild type 

cells (407).  To further confirm that impaired chemotaxis was a specific effect of 

deficiency of Lyn, siRNA knock-down of Lyn was performed in primary CD34+ 

haematopoietic progenitor cells, and cell lines including HL-60; such specific Lyn 

knock-down significantly inhibited cell migration 3 to 7 fold compared with that 

observed in control siRNA-treated cells (408). 

We found dasatinib specifically inhibited phosphorylation of Akt following SDF-1 

stimulation of CLL cells, suggesting inhibition of PI-3K activity.  There is now 

evidence in many haematopoietic cell types that Lyn kinase activates PI-3K on 

CXCR4 stimulation.  Both Lyn and Fyn kinases interact directly with the p85 

subunit of PI-3K through their SH3 domains in a B cell lymphoma cell line (409), 

and similar interactions have also been described in chemokine stimulated 

neutrophils (410).  In SDF-1-stimulated HL-60 cells, Lyn immunoprecipitates were 

found to contain active PI-3K, confirming a functional interaction between these 

two kinases (407).  Our results suggest that Lyn may similarly regulate PI-3K 
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activity in CLL cells, however immunoprecipitation experiments are needed to 

confirm whether the regulation occurs through direct interaction. 

A number of recent studies implicate PI-3K signalling in chemotaxis toward SDF-1 

in haematopoietic cells.  Selective PI-3K inhibition with the inhibitors LY290024 or 

Wortmannin inhibited SDF-1-induced migration in progenitor B lymphocytes (233), 

whilst murine B lymphocytes containing a mutation of a phosphatase resulting in 

increased Akt activation exhibited increased chemotaxis toward SDF-1 (411).  In 

addition in CLL cells, Burger et al. reported that the PI-3K inhibitor wortmannin 

partially inhibited the migration of CLL cells toward SDF-1 in transwell assays, 

whereas the MEK inhibitor PD98059 had no significant effect (230).  A very recent 

study demonstrated that specific inhibition of the p110α subunit of PI-3K using the 

novel inhibitors PIK-90 and PI-103 resulted in inhibition of SDF-1 induced actin 

polymerisation, chemotaxis and pseudoemperipolesis (412).  Interestingly, 

Niedermeier et al. noted that pre-treatment of CLL cells with PI-3K inhibitors 

reduced the level of basal F-actin measured by FCM, similar to our observations 

with dasatinib.  In conclusion, these studies support the hypothesis that inhibition 

of PI-3K by dasatinib is responsible for the anti-migratory effects observed. 

Although both CML and CLL cells express constitutively phosphorylated Lyn 

kinase, the effects on basal and induced cell motility differ.  In CML cells, Bcr/Abl 

interacts with Lyn kinase, resulting in constitutive activity of the PI-3K cascade 

(407).  In this study, Bcr/Abl positive CML cells showed high rates of spontaneous 

migration in transwell experiments toward media alone, comparable to rates seen 

when SDF-1 was added to the lower chamber (407).  This mechanism has been 

proposed to be involved in the release of CML cells from BM.  Although CLL cells 

also express constitutively active Lyn, we observed little spontaneous migration in 

transwell experiments, and a significant increase in migration of CLL cells towards 

media supplemented with SDF-1, suggesting that a constitutive association of Lyn 

with PI-3K is unlikely to be present in CLL cells.   

Although chemotaxis toward SDF-1 was significantly inhibited by 10 and 100 nM 

dasatinib, inhibition of chemotaxis was not complete with migration of CLL cells in 

the presence of dasatinib remaining over 50% that of controls.  In our experiments, 

the CXCR4 antagonist AMD3100 was also unable to inhibit chemotaxis by over 

50% of controls.  In our transwell experiments, the concentration of SDF-1 used is 

likely to be supra-physiological, and also CLL exposure to SDF-1 is continuous, as 

compared to the likely brief stimulation likely delivered to circulating CLL cells in 
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vivo.  An alternative explanation is that multiple signalling pathways downstream of 

CXCR4 may regulate CLL cell migration towards SDF-1, and not all are inhibited 

by dasatinib.  Of note, in the mouse pro-B cell line BAF3, SDF-1 stimulation 

increased phosphorylation of Syk, which has also been linked to promoting motility 

(413).  In B cell progenitor ALL cells, phosphorylation of p38 was required for 

leukaemic cell to BM in an in vivo model (414), and p38 phosphorylation in 

response to SDF-1 stimulation was not inhibited by dasatinib in CLL cells. 

Whilst all CLL samples assessed exhibited significant chemotaxis along an SDF-1 

gradient in transwell assays, only six of the nine samples assessed in the 

pseudoemperipolesis assay demonstrated significant levels of migration into the 

M2-10B4 stromal layer, suggesting that additional factors are required for 

pseudoemperipolesis to occur.  In a study of 116 CLL samples, only 45 showed 

evidence of pseudoemperipolesis into a BM stromal layer (415).  In this study, 

samples able to migrate into the stromal layer expressed significantly higher levels 

of CD49d and CD38 than cases with little migratory capacity.  CD49d and CD38 

have been confirmed to be physically associated within CLL cell membranes, and 

to provide co-operative survival signals to CLL cells (416).  The CD49d/CD38 

complex has also been demonstrated to associate with ZAP-70 (417).  CD49d and 

CD38 expression was not assessed in our small sample group, however this 

would be interesting to examine.  CLL cell migration into a stromal plane has been 

confirmed to lead to chemoresistance in vitro, and this mechanism is likely to be 

responsible in part for the adverse prognostic significance of CD38 and CD49d 

expression (250).   

In addition to regulating cell migration, SDF-1 signalling through CXCR4 can also 

regulate cell adhesion, which may also influence the ability of CLL cells to be 

retained within protective LN and BM microenvironments.  Chemokine receptor 

signalling can lead to activation of cellular integrins, in a process termed ‘inside-

out’ signalling (243).  In mature lymphocytes, PI-3K has been demonstrated to 

activate the integrin LFA-1 following stimulation with chemokines including SDF-1, 

resulting in increased adhesion to ICAM-1 (418).  It is reasonable to suggest that 

the inhibitory effect of dasatinib on PI-3K signalling downstream of CXCR4 may 

inhibit such inside-out integrin activation, and thus inhibit CLL cell adhesion to 

ICAM-1 expressing cells.  However, Lyn has also been described to exert a 

negative effect on integrin function following chemokine stimulation in some cell 

types.  In CD34+ haematopoietic progenitor cells, and HL-60 cells in which Lyn has 



   

 157 

been knocked-down by siRNA, SDF-1 stimulation resulted in increased adhesion 

to BM stromal cells (408).  Further investigation revealed that within these cell 

types, on SDF-1 stimulation, Lyn down-regulates affinity of β2, but not β1, 

integrins, resulting in impaired interaction of the β2-containing LFA-1 with its’ 

ligand ICAM-1, while interaction of the β1-containing CD49d with VCAM-1 was not 

affected (408).  Such regulation has been proposed to allow cell migration toward 

a SDF-1 gradient within the BM stromal microenvironment.  The net effect of 

dasatinib on integrin function in CLL cells, in the presence and absence of SDF-1, 

may be determined by in vitro cell adhesion assays, for example to ICAM-1, 

VCAM-1, or fibronectin. 

In addition to regulating retention of lymphocytes within the BM and LN, 

chemokines have been implicated in promoting CLL cell entry to LN.  The 

chemokine receptors CXCR4, CCR7, and CXCR5 are highly expressed in CLL 

cells isolated from patients with extensive nodal disease (419).  Both SDF-1 

signalling through CXCR4, and the chemokine CCL21 signalling through its 

receptor CCR7 increase expression and secretion of matrix metallo-protease 9 

(MMP-9), which aids CLL cell transendothelial migration (420, 421).  In prostate 

cancer and melanoma cell lines, dasatinib has been demonstrated to reduce 

secretion of MMP9 and reduce cellular invasion (313, 403).  It is reasonable to 

suggest that dasatinib may interfere with induced MMP-9 expression in CLL cells.  

However, the observation that SDF-1 and CCL21 induced up-regulation of MMP-9 

in CLL cells depends on ERK, rather than PI-3K signalling (421), suggests 

dasatinib may have no inhibitory effect, however further investigations are required 

to determine this. 

In summary, we have demonstrated that dasatinib exerts variable inhibition on 

tonic BCR signalling in CLL cells, which correlated with the ability of dasatinib to 

induce apoptosis of CLL cells in vitro.  Dasatinib inhibited BCR signalling on 

crosslinking of surface IgM, and abrogated the pro-survival effect of prolonged IgM 

stimulation in vitro.  As a result of inhibiting BCR signalling, CXCR4 receptor 

expression was unchanged in dasatinib-treated cells in the presence of anti-IgM.  

Despite this, dasatinib inhibited Akt phosphorylation on CXCR4 stimulation, and 

inhibited chemotaxis towards SDF-1.  Whilst further in vivo analyses are required, 

the collective data suggest that in addition to abrogating BCR signalling, dasatinib 

both directly and indirectly modulates SDF-1 responsiveness, which may inhibit 

CLL cell retention in favourable microenvironments in LN and BM.
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Figure 4.1  Dasatinib inhibits SykY348 phosphorylation in unstimulated and 

BCR-stimulated CLL cells 

CLL cells were incubated in RPMI-1640 containing 0.5% BSA for 2 hr prior to the 

experiment.  Cells were then incubated with 10 µg/ml biotinylated anti-IgM in the 

presence and absence of 100 nM dasatinib for 30 min prior to BCR stimulation.  

Cells were washed, and fixed unstimulated, or following 10 min stimulation with 

avidin.  SykY348 was assessed by intracellular phospho-specific FCM, as described 

in Section 1.3.3.  A  Histogram plots of unstimulated and stimulated cells from a 

representative sample (CLL34).  B  The histogram shows the MFI (± SEM) for 

cells treated as indicated (n=17). 
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Figure 4.2  Relationship between SykY348 phosphorylation and apoptosis 
induced by dasatinib 

A  Linear regression analysis was performed to relate the basal level of Syk 

phosphorylation in untreated CLL cells (expressed as the ratio of the measured 

MFI of the test sample to an isotype matched control; x axis) to the level of 

apoptosis observed on treatment of the sample with 100 nM dasatinib for 48 hr (y 

axis) (n=17).  B  Linear regression analysis was performed as described in A 

between the level of Syk phosphorylation following 30 min treatment with 100 nM 

dasatinib in the same 17 CLL samples. 
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Figure 4.3 Inhibition of LynY396 and SykY352 phosphorylation on 30 min 
treatment with dasatinib 

CLL cells were incubated in RPMI-1640 supplemented with 0.5% BSA for 2hr prior 

to the experiment.  Cells (2 x 106/ml) were subsequently incubated in the presence 

and absence of 100 nM dasatinib for 30 min, then protein lysates prepared.  

Western blotting was performed with antibodies to SykY352, Syk, LynY396, and Lyn, 

with GAPDH assessed as a protein loading control.  CLL samples indicated by red 

brackets are highly sensitive to dasatinib (over 50% reduction in viability on 48 hr 

treatment), those described by blue brackets are low responders (less than 20% 

reduction in viability), and the sample indicated by black brackets was included as 

an average responder (33% reduction in viability). 
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Figure 4.4  Correlation of levels of total and phosphorylated Syk and Lyn 
with dasatinib sensitivity 

Densitometry was performed on the control samples from each sample shown in 

Fig. 4.3, in order to correlate CLL cell response to dasatinib with both the relative 

basal expression of Syk or Lyn, and also with the ratio of phosphorylated Syk/Lyn 

to total protein.  In each graph the sample points are coloured as in Fig. 4.3, with 

red squares indicating high, black square indicating moderate, and blue squares 

indicating low responses to dasatinib.  A  The density (expressed as pixel intensity 

divided by area in mm2) of Syk for each patient sample was normalised to GAPDH 

to account for differences in protein loading, and plotted on the x axis.  The y axis 

shows the percentage reduction in viability (relative to control) of each sample 

treated for 48 hr with 100 nM dasatinib.  Linear regression analysis was performed 

to relate the two parameters, and the p value shown.  B  The x axis shows the 

percentage of total Syk phosphorylated, calculated by dividing the density of 

phosphorylated Syk by that of total Syk.  These values were plotted against 

dasatinib sensitivity, and linear regression performed as in A.  C  Analysis of total 

Lyn was carried out as described for Syk in A.  D  Analysis of Lyn phosphorylation 

was performed as described for Syk in B. 
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Figure 4.5  Dasatinib inhibits calcium flux following BCR stimulation in CLL 
cells 

CLL cells from three patients were incubated with 1 µM Fura-2 AM for 30 min at 

37°C.  Cells were then incubated with 10 µg/ml biotinylated anti-IgM with or 

without 100 nM dasatinib for 30 min prior to BCR stimulation.  BCR stimulation 

with avidin was performed after recording a stable basal reading for 40 s, and the 

graphs show the change in [Ca2+] plotted against time.  Each condition for each 

patient sample was recorded in triplicate, and a representative recording from 

each patient sample shown. 
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Figure 4.6  Effect of dasatinib on Akt and MAPK activation following BCR 
crosslinking 

CLL cells were incubated with 10 µg/ml biotinylated anti-IgM in the presence or 

absence of 100 nM dasatinib for 30 minutes, washed, then lysed unstimulated or 

following incubation with 25 µg/ml avidin at 37°C for 10 or 30 min.  Phosphorylated 

and total proteins were detected by western blotting.  A total of six patient samples 

were analysed.  Akt and ERK phosphorylation were assessed in all samples, and 

p38 and IkBα phosphorylation each assessed in three samples.  Two 

representative ZAP-70 positive cases are shown in A, and two ZAP-70 negative 

cases in B. In the absence of dasatinib, BCR stimulation is seen to induce 

phosphorylation of ERK and p38 MAPK, Akt, and IkBα, all of which are completely 

inhibited by dasatinib treatment. 
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Figure 4.7  Dasatinib inhibits actin reorganisation following BCR 
crosslinking 

CLL cells (n=5) were incubated with or without 100 nM dasatinib for 30 min, then 

transferred to glass slides coated with 10 µg/ml anti-IgM or 10 µg/ml isotype-

matched control for a further 30 min at 37°C.  Actin was visualised within 

permeabilised cells by staining with Alexa Fluor 488 phalloidin and nuclei 

counterstained with DAPI.  Representative photographs of dasatinib-treated and 

control cells from three patients are shown.  For each sample, 200 cells were 

assessed for evidence of cytoplasmic spreading, considered positive or negative.  

The percentage of positive cells in each sample is shown in the lower left-hand 

corner.   
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Figure 4.8  Morphology of CLL cells stimulated with soluble and immobilised 
anti-IgM in the presence or absence of dasatinib 

CLL cells were cultured either in: complete media alone; wells coated with 10 

µg/ml anti-IgM, or; complete media supplemented with 10 µg/ml anti-IgM F(ab’)2 

fragments.  In addition, cells in each condition were cultured in the presence and 

absence of 100 nM dasatinib.  The photographs show the morphology of one CLL 

sample (CLL 52) following 48 hr treatment as indicated.  The cells were then 

harvested for assessment of cell viability by FCM staining with Annexin 

V/Viaprobe.  The percentages shown in the lower left-hand corner of each 

photograph represent the cell viabilities of cells cultured in each condition in this 

patient sample.   
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Figure 4.9  Effect of dasatinib on viability of CLL cells on prolonged BCR 

stimulation in vitro 

CLL cells from 11 patient samples were incubated with or without 100 nM 

dasatinib either in media alone, or with 10 µg/ml soluble or immobilised anti-IgM 

for 48 hr.  Cell viability was assessed by Annexin V/Viaprobe by FCM, and is 

expressed as a percentage of the untreated control for each sample.  Both soluble 

and immobilised anti-IgM increased viability of CLL cells, although this reached 

statistical significance for immobilised IgM only.  Dasatinib completely inhibited the 

BCR-mediated increase in survival, with viability of cells similar to those treated in 

media alone. 
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Figure 4.10  Dasatinib inhibits upregulation of Mcl-1 on prolonged BCR 
stimulation 

CLL cell lysates from cells incubated with or without 100 nM dasatinib either in 

media alone, or with 10 µg/ml soluble (Sol anti-IgM) or immobilised anti-IgM (Imm 

anti-IgM) for 48 hr were analysed by western blotting (n=3).  A  An immunoblot 

from a representative patient sample is shown.  The percentage of viable cells 

measured by Annexin V/Viaprobe FCM is shown above the immunoblot.  B  

Densitometry was performed on all three western blots, and the mean (± SEM) 

fold-change in Mcl-1, relative to untreated cells cultured in media alone, following 

the indicated treatments is shown. 
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Figure 4.11  Dasatinib inhibits down-regulation of CXCR4 expression 
following BCR stimulation 

CLL cells (1 x 106/ml) were incubated with or without 100 nM dasatinib for 30 min, 

followed by incubation with 100 ng/ml SDF-1, 10 µg/ml immobilised anti-IgM, or 

both, as indicated for a further 4 hr, followed by assessment of CXCR4 surface 

expression by FCM.  Results are expressed as the MFI (± SEM) of each sample 

expressed as a percentage of the untreated control. 

 

 



   

 169 

A 

 

B 

 

Figure 4.12  Dasatinib inhibits Akt phosphorylation following SDF-1 
stimulation of CLL cells in vitro 

CLL cells were incubated in RPMI-1640 supplemented with 0.5% BSA for 2 hr 

prior to experiments.  CLL cells (3 x 106/ml) were incubated with or without 100 nM 

dasatinib for 30 min.  Protein lysates were then prepared from cells either 

unstimulated, or following 3 or 10 min incubation with 100 ng/ml SDF-1 at 37°C 

(n=3).  A  Cell lysates prepared following treatments above were analysed by 

Western blotting for phosphorylated and total Src family kinases and FAK.  

Unstimulated cell lysates of HT29 cells, known to express phosphorylated FAK, 

were run alongside as a positive control.  A blot from a representative patient is 

shown.  B  Protein lysates from the same experiments were analysed by western 

blotting, using the following antibodies, p Akt, Akt, p ERK, ERK, p p38 and p38 

kinases, using GAPDH as a loading control. 
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Figure 4.13  Effect of dasatinib on actin polymerisation following SDF-1 
stimulation of CLL cells 

CLL cells were incubated in RPMI-1640 supplemented with 0.5% BSA for 2 hr 

prior to the experiment.  Cells (2 x 106) were then incubated for a further 30 min in 

the following conditions: 0.5% BSA media alone; media containing 100 nM 

dasatinib; media containing 40 µg/ml AMD3100 or; media containing 100 nM 

dasatinib and 40 µg/ml AMD3100.  Cells were then stimulated by the addition of 

100 ng/ml SDF-1 for 10 minutes.  100 µl aliquots from each well were removed 

pre-stimulation, and at 15, 60, 300, and 600 s after addition of SDF-1, and 

transferred to tubes containing 250 µl BD Fix/Perm solution.  Following fixation 

and permeabilisation, cells were washed then stained with a 1/100 dilution of 

AlexaFluor® 488-labelled phalloidin for 10 min, and washed twice prior to FCM 

analysis.  The mean fluorescence of each treatment condition was expressed as a 

percentage of that of the untreated control prior to SDF-1 addition.  The graph 

shows the mean (± SEM) values for five independent experiments on different CLL 

samples.  * indicates p<0.05, and ns denotes not significant. 
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Figure 4.14  Dasatinib inhibits chemotaxis of CLL cells towards SDF-1 

CLL cells were again incubated in RPMI-1640 supplemented with 0.5% BSA for 2 

hr prior to the experiment.  Cells (5 x 105) in 100 µl media were then treated with 1, 

10, or 100 nM dasatinib, 10 µg/ml AMD3100, or left untreated for a further 30 min.  

The cells were then transferred to the upper chamber of a 6.5 mm Transwell 

culture insert, placed into wells containing 600 µl media supplemented with 150 

ng/ml SDF-1, and incubated for 4 hr at 37°C.  Inserts containing untreated CLL 

cells placed into wells containing media alone were included as a negative control 

to account for spontaneous migration.  For each patient sample, each condition 

was set up in duplicate wells.  After 4 hr incubation, transwells were removed, and 

three 150 µl aliquots removed from the lower chamber for counting by FCM.  Cells 

were counted by recording the number of events acquired on high flow setting for 

30 s.  Data are expressed as the percentage of migration of treated cells relative 

to the untreated control, and are the mean (± SEM) of five experiments using 

different patient samples. 
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Figure 4.15  Analysis of SDF-1 RNA expression in the murine BM stromal cell 
lines M2-10B4 and NT-L 

RNA was prepared from M2-10B4 and NT-L cells, and reverse transcribed to 

cDNA.  Quantitative PCR was performed using TaqMan® Gene Expression Assay 

probes for SDF-1 and GAPDH, as described in Section 2.7.3.  Assays were 

performed in quadruplicate.  Results are expressed as the cycle threshold (CT) of 

SDF-1 minus the CT of GAPDH, or ΔCT.  Where the CT of SDF-1 was not 

reached, the result is expressed as zero. 
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Figure 4.16  Appearance of M2-10B4 stromal cell layers following 5 hr co-
culture with CLL cells in the presence or absence of dasatinib 

48 hr prior to the assay, M2-10B4 fibroblasts were plated at 1.5 x 105 per well in 

collagen-coated 24 well tissue culture plates, and allowed to reach confluence.  

On the day of the experiment, CLL cells (2 x 106/ml) were pre-treated with 100 nM 

dasatinib or left untreated, then transferred to stromal-containing wells, and 

incubated for 5 hr at 37°C.  Triplicate wells were set up for each sample.  At the 

end of culture, non-migrated cells were removed by washing three times, and 

pseudoemperipolesed cells photographed.  Cells which have transmigrated into 

the stromal cell layer lose a refractile appearance on phase-contrast microscopy, 

and are indicated by white arrows in the photographs from one representative 

experiment. 
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Figure 4.17  Dasatinib inhibits pseudoemperipolesis of CLL cells under M2-
10B4 cells 

CLL cells were treated as described in Fig. 4.16.  Following removal of non-

migrated cells by washing, the stromal cell layer was trypsinised, and stained with 

an anti-CD19 APC antibody prior to FCM.  A 1/10 dilution of the total starting cell 

population was similarly treated, to allow quantitation of the percentage of 

migrated cells.  Negative controls included a well containing stromal cells only, and 

a well incubated with CLL cells for 5 min only, to validate the washing steps.  

Triplicate test wells, and controls were counted by acquiring CD19 positive events 

on the flow cytometer for 30 s.  A  Each set of points and interconnecting line 

represent the mean percentage of migrated cells with or without dasatinib in an 

individual patient sample (n=9).  B  The six samples showing evidence of greater 

than 1% pseudoemperipolesis in control samples are included in this analysis.  

The box plots show the median (horizontal line within box) percentage of migrated 

cells in both groups.  The upper and lower borders of the box represent the 75th 

and 25th centiles respectively, and the whiskers the highest and lowest values.
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Figure 4.18  The anti-apoptotic effect of SDF-1 is overcome by dasatinib. 

CLL cells (1 x106/ml) were incubated in one of four conditions: complete media 

(Con); 100 nM dasatinib (Das); 100 ng/ml SDF-1 (SDF-1), or; both Das and SDF-1 

for 48 hr, following which apoptosis was assessed by FCM by Annexin V/Viaprobe 

staining.  The graph shows the mean (± SEM) viabilities of cells treated as shown 

(n=6). 
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Chapter 5: 

CLL cell co-culture with stromal cells, in the presence or absence of CD154 
and IL-4, modulates the anti-leukaemic effects of dasatinib. 
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5.1 Introduction 

5.1.1 Modelling the CLL microenvironment in vitro 

Initial studies investigating the effect of the leukaemic microenvironment on 

spontaneous and drug-induced apoptosis of CLL cells have employed primary 

human BM or NLC co-cultures (220, 221, 242).  These techniques require invasive 

collection of patient BM samples and technically demanding tissue culture 

procedures, and therefore are not readily accessible laboratory models to allow 

repeated assessment of novel therapeutics.  Acknowledgement of the role of the 

microenvironment in CLL, and the appreciation that in vitro chemotherapeutic drug 

sensitivity often fails to correlate with clinical patient response (197), has led 

research to focus on developing co-culture systems using stromal cell lines.  

These models are representative of human primary BM or LN stroma and function 

as translational models in which to assess novel therapeutic agents.  Murine BM 

fibroblast cell lines, including L cells (NT-L) (116), and M2-10B4 cells (254), have 

also been demonstrated to protect CLL cells cultured in vitro from spontaneous 

apoptosis.  The pro-survival effect of these stromal cell lines, as with primary BM 

cultures, on CLL cells require cell to cell contact.  Co-culture of CLL cells with such 

stromal cell lines has been proposed to model the peripheral blood CLL cell 

environment, as cells remain viable, and in G0/G1 phases of cell cycle, akin to 

circulating CLL cells in vivo (116). 

CLL cell interactions in peripheral blood are again different from the LN and BM 

microenvironment, where the association of CLL cells with CD4+ T lymphocytes 

drives CLL cell proliferation.  Translational assessment of novel therapies in CLL 

must therefore include assessment of drugs on both non-cycling (blood) and 

proliferative (tissue) compartments.  Co-culture of CLL cells with activated T 

lymphocytes in vitro increased survival and also induced proliferation, dependent 

on signalling through CD154 and secretion of IL-2 and IL-4 (422).  Moreover, co-

culture with soluble recombinant CD154 (sCD154) alone induced CLL cell 

proliferation in 7/18 cases in one study (423), confirming the importance of 

CD154/CD40 signalling in inducing CLL cell proliferation.  In addition, this study 

noted that co-culture with both sCD154 and IL-4 induced proliferation in 16/18 CLL 

samples, suggesting the combination of both signalling pathways may drive CLL 

cell proliferation in vivo.  CLL cell proliferation on co-culture with murine L 

fibroblasts bearing an immobilised anti-CD40 monoclonal antibody was also 
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greatly enhanced by the addition of IL-4 (293), supporting this hypothesis.  

Synergy between CD154 and IL-4 in inducing up-regulation of cyclin D3 and cyclin 

E expression, increasing retinoblastoma (Rb) phosphorylation, and down-

regulating p27kip1 has been described (424), which likely explains the molecular 

mechanism of the observed proliferation.  Recently, CLL cell proliferation has been 

described in a system in which CLL cells were co-cultured with NT-L cells stably 

transfected to express CD154, in culture media supplemented with recombinant 

IL-4 (the 154L/IL-4 system) (116).  As the level of CLL cell proliferation in this 

system, as measured by [3H]-thymidine incorporation, showed a significant 

positive correlation with advanced patient clinical stage, the authors suggested 

that the in vitro model may mimic proliferation occurring within PCs in vivo (116).  

CLL cells isolated from patient LN were found to express higher levels of survivin 

and Bcl-xL than those in peripheral blood, and analysis of patient LN by 

immunohistochemistry confirmed that high expression of both proteins to be 

localised to CLL cells within PCs (425, 426).  Expression of both proteins 

increased in CLL cells cultured in the 154L/IL-4 system compared to cells cultured 

on NT-L cells or media alone, strengthening the evidence that this co-culture 

system simulates the PC microenvironment (426).  Increased Mcl-1 expression 

was also observed on 154L/IL-4 co-culture (426), and high Mcl-1 expression in 

CLL samples has been found to correlate with in vivo chemoresistance (197).  Of 

note, CLL cells cultured in the 154L/IL-4 system were significantly more resistant 

to fludarabine than those cultured in media alone (426). 

It is clear that in vitro assessment of chemotherapeutic agents on CLL cells 

cultured in media alone, many of which are already committed to apoptosis, is 

unlikely to predict the response of patients to the same treatments.  In vitro 

assessment of novel therapeutic approaches remains an important part of pre-

clinical drug assessment, and in vitro co-culture systems which mimic tissue 

microenvironments are important in order to achieve this.  In this chapter, NT-L 

and 154L/IL-4 co-culture systems are utilised to assess whether the pro-apoptotic 

effect of dasatinib, alone or in combination treatments, is modulated by these 

microenvironmental factors. 
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5.2 Aims and Objectives: 

In order to assess how the anti-leukaemic effects of dasatinib are modulated by 

antigen-independent signals within the microenvironment, the aims of this chapter 

were to: 

i.   Compare the ability of dasatinib to induce apoptosis of CLL cells cultured in 

media alone to that of cells co-cultured in either the NT-L or 154L/IL-4 

system; 

ii. Assess the effect of dasatinib on pro-survival and anti-apoptotic signalling 

pathways induced by stromal co-culture, in the presence or absence of 

CD154 and IL-4; 

iii. Investigate whether dasatinib inhibits proliferation of CLL cells co-cultured 

in the 154L/IL-4 system; 

iv.   To determine whether dasatinib retains the ability to chemosensitise CLL 

cells to established and novel chemotherapeutic agents in NT-L and 

154L/IL-4 co-culture. 
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5.3 Results 

5.3.1 Stromal cell or CD154/IL-4 co-culture greatly reduces apoptosis 
induced by dasatinib 

In order to recapitulate supportive microenvironmental conditions in vivo, CLL cells 

were co-cultured with NT-L cells or the 154L/IL-4 system overnight prior to drug 

treatments in all co-culture experiments.  The effect of 48 hr dasatinib treatment on 

the viability CLL cells cultured in media alone was compared to that on cells co-

cultured with NT-L cells.  The mean (± SEM) viabilities of cells treated as 

described in eight independent experiments are shown in Figure 5.1A.  The 

viability of untreated CLL cells in NT-L co-culture was significantly greater than 

that of cells cultured in media alone (95.9% ± 0.7% compared to 63.9% ± 5.3% 

respectively; p<0.001).  However, in addition to a reduction in spontaneous 

apoptosis, NT-L co-culture led to a significant reduction in the pro-apoptotic effect 

of dasatinib, with the mean reduction in viability falling from 35.2% ± 2.2% (in cells 

cultured in media alone) to 3.9% ± 0.4% (p<0.001).  154L/IL-4 system co-culture 

provided similar protection to CLL cells from apoptosis (Fig. 5.1B).  Dasatinib has 

been described to inhibit global tyrosine phosphorylation in CLL cells cultured in 

vitro (353).  In order to assess whether dasatinib retained the ability to inhibit 

tyrosine phosphorylation in CLL cells in co-culture, cells cultured in media alone, in 

NT-L or 154L/IL-4 co-culture, were treated with or without dasatinib for 2 hr, 

followed by western blotting using an antibody specific for phosphotyrosine.  A 

representative immunoblot is shown in Figure 5.2.  The predominant tyrosine 

phosphorylated protein in all three samples assessed corresponded to the 

molecular weight of Lyn.  Dasatinib completely inhibited tyrosine phosphorylation 

in all three culture conditions, demonstrating that additional signalling pathways 

are responsible for the protective effects of co-culture. 

5.3.2 PI-3K/Akt and MAPK activation in NT-L and 154L/IL-4 co-cultured CLL 
cells abrogates the pro-apoptotic effect of dasatinib 

As demonstrated in Chapter 4, dasatinib sensitivity correlated with the ability of the 

drug to inhibit Syk phosphorylation, key to BCR signal transduction.  Veldurthy et 

al. also reported dasatinib-induced apoptosis to correlate with a reduction in both 

Akt and MAPK phosphorylation (353).  As PI-3K and MAPK are activated by a 

number of cytokine and integrin receptors, implicated in promoting leukaemic cell 

survival (427), we hypothesised that these signalling pathways may be responsible 
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for dasatinib resistance in co-culture.  Phosphorylation of Akt and MAPKs was 

assessed by western blotting in CLL cells cultured as follows: in media alone; with 

NT-L cells, or; in the 154L/IL-4 system.  Cells were treated with or without 

dasatinib for 2 hr prior to preparation of protein lysates, and representative 

immunoblots from three patient samples are shown in Fig. 5.3.  In untreated cells 

cultured in media alone, basal phosphorylation of Akt was observed in 5/5 cases, 

of ERK in 2/5 cases, while little or no basal p38, JNK, or p70 s6 kinase 

phosphorylation was observed in any of the five samples.  Dasatinib inhibited 

basal ERK phosphorylation in 2/2 samples, however basal Akt phosphorylation 

was inhibited in only 1/5 cases (Fig. 5.3).  NT-L or 154L/IL-4 co-culture induced 

additional ERK phosphorylation in all samples, which was either completely or 

partially resistant to inhibition with dasatinib.  In untreated co-cultured cells, 

although Akt phosphorylation changed little, phosphorylation of the p70 s6 kinase, 

a downstream kinase in the PI-3K/Akt signalling pathway (outlined in Section 

1.5.2.2) increased in NT-L co-culture, and further increased in 154L/IL-4 co-

cultured cells.  In either co-culture system, dasatinib caused incomplete, or no 

inhibition of p70 s6 kinase phosphorylation.  In addition, 154L/IL-4, but not NT-L, 

co-culture significantly increased phosphorylation of p38 and JNK MAPK, which 

again was not prevented by dasatinib.  Collectively, these data show that dasatinib 

fails to fully inhibit PI-3K/Akt and MAPK activation induced by NT-L or 154L/IL-4 

co-culture, suggesting that these signalling pathways may contribute to dasatinib-

resistance.   

Selective inhibitors of PI-3K and MAPKs were used to investigate this hypothesis, 

specifically the: PI-3K inhibitor LY294002; MEK1/2 inhibitor PD98059; p38 inhibitor 

SB203580, and JNK inhibitor II.  Initial experiments determined minimum 

concentrations of 10 µM LY294002 and 40 µM PD98059 were required to inhibit 

phosphorylation of Akt and ERK respectively in co-cultured CLL cells (data not 

shown).  In Figure 5.4, representative immunoblots demonstrating that these 

concentrations of LY294002 and PD98058 selectively inhibit Akt/p70 s6 kinase 

and ERK phosphorylation respectively in CLL cells co-cultured in the 154L/IL-4 

system are shown.  In order to investigate whether PI-3K inhibition could 

resensitise co-cultured CLL cells to dasatinib, cells in NT-L or 154L/IL-4 co-culture 

were treated with LY294002, dasatinib, or both inhibitors for 48 hr, followed by 

assessment of apoptosis by FCM.  A similar experimental approach was used to 

assess whether PD98059 could restore dasatinib sensitivity in co-cultured cells.  In 
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NT-L co-culture, both LY294002 and PD98059 significantly increased the degree 

of apoptosis induced by dasatinib (Fig. 5.5A).  Although LY294002 and PD98059 

treatment alone reduced the viability of co-cultured CLL cells, the addition of 

dasatinib significantly increased the pro-apoptotic effect of both inhibitors (Fig. 

5.5A).  However, in 154L/IL-4 co-culture, neither LY294002 nor PD98059 were 

able to sensitise CLL cells to dasatinib (Fig. 5.5B).  A preliminary experiment found 

neither 5 µM SB203580 nor 50 µM JNK inhibitor II to resensitise 154L/IL-4 co-

cultured CLL cells to dasatinib (data not shown).  In conclusion, these data 

demonstrate that whilst dasatinib inhibits MAPK and Akt signalling following BCR 

stimulation, these signalling pathways can be activated by antigen-independent 

microenvironmental stimuli, and overcome the pro-apoptotic effect of dasatinib. 

5.3.3 Dasatinib fails to inhibit the up-regulation of anti-apoptotic Bcl-2 
family proteins and survivin on 154L/IL-4 co-culture 

As outlined in Section 5.1.1, 154L/IL-4 co-culture up-regulates anti-apoptotic 

proteins including Mcl-1, Bcl-xL, and A1, and the pro-proliferative protein survivin in 

CLL cells (426).  Using western blotting, the effect of 48 hr dasatinib treatment on 

the expression of Bcl-2 family proteins and survivin was compared between CLL 

cells cultured in media alone, NT-L co-culture, and 154L/IL-4 co-culture, to further 

investigate the mechanism of resistance to dasatinib induced by co-culture.  A 

representative immunoblot is shown in Figure 5.6A.  Considering untreated CLL 

cells, while NT-L co-culture little changes expression of any protein assessed, 

154L/IL-4 co-culture leads to marked up-regulation of Mcl-1, Bcl-xL, and survivin, 

none of which are inhibited by dasatinib.  Densitometric analysis of immunoblots 

from five experiments confirmed up-regulation of Bcl-xL (mean 5.8-fold), Mcl-1 

(mean 2.7-fold), and a significant reduction in Bcl-2 expression (mean 0.8-fold) in 

154L/IL-4 co-cultured cells as compared to untreated cells cultured in media alone 

(Fig. 5.6B).  None of these changes in protein expression were significantly altered 

by dasatinib.  CD40 stimulation of CLL cells has been reported to lead to down-

regulation of the BH3-only Bcl-2 protein Bim, in particular the BimEL isoform, 

through ERK-mediated proteasomal degradation (355).  Three splice variants of 

Bim exist, BimEL (23 kDa), BimL (15 kDa), and BimS (12 kDa), with shorter isoforms 

having greater pro-apoptotic activity than BimEL (428).  We confirmed 154L/IL-4 

co-culture to lead to a reduction in BimEL expression with no change in BimL or 

BimS expression (Fig. 5.6A+B).  Notably, although not reaching statistical 
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significance, a trend toward an increase in BimEL expression in dasatinib-treated 

cells was preserved in 154/IL-4 co-culture (Fig. 5.6B). 

As the level of CD154 expression achieved by stable expression in fibroblasts has 

been proposed to be supraphysiologic (355), the effect of dasatinib on changes in 

Bcl-2 family protein expression induced by culture of CLL cells in media 

supplemented with sCD154 and IL-4 was assessed.  As synergy between CD154 

and IL-4 signalling in the regulation of Bcl-2 protein expression has been 

described in CLL cells (293, 424), cells treated with or without dasatinib were 

cultured for 48 hr in four conditions: complete media alone; media supplemented 

with IL-4; media plus sCD154, or; both IL-4 and sCD154.  At the end of 

experiments, cell viability was measured by Annexin V/Viaprobe FCM, and Bcl-2 

family protein expression assessed by western blotting.  A representative 

immunoblot is shown in Figure 5.7A.  In untreated cells, up-regulation of both Mcl-

1 and Bcl-xL was observed following incubation with both sCD154 and IL-4 (Fig. 

5.7A).  Dasatinib did not inhibit up-regulation of either Mcl-1 or Bcl-xL induced by 

combined sCD154/IL-4 stimulation (Fig. 5.7A), and had no effect on cell viability 

(Fig 5.7B).  Of note, stimulation with either sCD154 or IL-4 alone slightly increased 

Mcl-1 and Bcl-xL expression.  Dasatinib inhibited Mcl-1 expression induced by low-

dose sCD154 alone (Fig. 5.7A), and retained the ability to induce apoptosis of 

these cells.  Mcl-1 expression was unaffected by dasatinib in CLL cells co-cultured 

with IL-4 alone (Fig. 5.7A, and moreover this treatment completely abrogated the 

pro-apoptotic effect of dasatinib (Fig. 5.7B). 

5.3.4 CLL cell proliferation in 154L/IL-4 co-culture is not inhibited by 
dasatinib 

In addition to effects on cell viability and migration, dasatinib has been reported to 

exert antiproliferative effects on CML cells (429), and a number of non-

haematopoietic malignant cell lines (430, 431).  Although cells co-cultured in the 

154L/IL-4 system were resistant to apoptosis on dasatinib treatment, we were 

interested to examine whether dasatinib may yet inhibit CLL cell proliferation in 

this model.  In order to assess CLL cell division, cells were loaded with the 

fluorescent dye CFSE and co-cultured in the 154L/IL-4 proliferation assay, with or 

without dasatinib, as described in Section 2.2.9.  Proliferation was assessed by 

FCM every three days.  On the basis of CFSE dilution, CLL cell proliferation was 

evident from day 6 onwards (Fig. 5.8A), and dasatinib did not significantly inhibit 

proliferation in any sample assessed (n=6; Fig. 5.8A+B).   
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In order to assess whether long-term dasatinib treatment affected CLL cell viability 

in the 154L/IL-4 system, cells were counted by FCM at each time point.  Both total 

cell counts (Fig. 5.9A) and percentage recovery of input cells (Fig. 5.9B) did not 

differ between untreated and dasatinib-treated cells throughout the experiment, 

confirming that 154L/IL-4 co-cultured CLL cells are resistant to dasatinib-induced 

apoptosis, even on prolonged drug exposure.  Of interest, while dasatinib did not 

affect CLL cell viability or proliferation during these experiments, a striking 

difference in morphology of untreated and dasatinib-treated co-cultured was 

evident by the end of the culture period.  Untreated CLL cells generally formed 

large cell aggregates, however dasatinib-treated cells remained more widely 

distributed across the stromal cell layer, suggesting effects of dasatinib on CLL cell 

migration and/or adhesion (Fig. 5.10). 

5.3.5 Dasatinib retains the ability to sensitise CLL cells to fludarabine and 
chlorambucil in NT-L, but not 154L/IL-4 co-culture 

As synergy was observed between dasatinib and both chlorambucil and 

fludarabine (Section 3.3.7), experiments were performed to establish whether 

dasatinib retained the ability to chemosensitise CLL cells in stromal co-culture to 

these drugs.  Rather than the concentrations of chemotherapeutic drugs used in 

combination with 100 nM dasatinib in synergy experiments (based on 4 x IC50 

concentrations), 5 µM fludarabine and 12.5 µM chlorambucil were selected for use 

in these experiments, as they are nearer to the maximum clinically achievable 

concentrations (432, 433).  Four drug treatment conditions were assessed: vehicle 

control; dasatinib; fludarabine (or chlorambucil), or; both dasatinib and fludarabine 

(or chlorambucil).  CLL cells in each co-culture system were treated for 48 hr, 

following which apoptosis was assessed by FCM.  Experiments were performed to 

assess drug treatments in each of five culture conditions as follows: media alone; 

NT-L co-culture; NT-L co-culture plus IL-4; 154L co-culture, or; 154L/IL-4 co-

culture, in order to establish the individual contributions of IL-4 and CD154 to drug 

resistance.  Although the level of apoptosis induced by drug treatments in NT-L 

co-cultured cells was markedly less than that in cells cultured in media alone, a 

trend for dasatinib to potentiate the effect of fludarabine was retained (Fig. 5.11A).  

154L/IL-4 co-cultured cells were confirmed to be resistant to all drug treatments, 

predominantly due to CD154 stimulation, rather than the addition of IL-4 to stromal 

co-cultures (Fig. 5.11A).  The ability of dasatinib to enhance the apoptotic effect of 

chlorambucil was also retained in NT-L co-culture, however CLL cells in 154L/IL-4 
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co-culture were also resistant to all treatments (Fig 5.11B).  No differences in the 

appearance of stromal cell layers were visible following any of the drug treatments 

to suggest direct toxicity to stromal cells.  The effect of dasatinib combinations was 

further assessed in NT-L co-cultured CLL cells only (Fig. 5.12A+B).  Dasatinib 

significantly potentiated the pro-apoptotic effect of fludarabine in NT-L co-culture, 

with cells treated with the drug combination having a mean viability of 58.8% ± 7%, 

compared to 76.5% ± 3.2% in cells treated with fludarabine alone (Fig. 5.12A; 

p<0.01).  Dasatinib also significantly increased apoptosis induced following 

chlorambucil treatment, with the mean viability of cells treated with the 

combination 37% ± 9%, compared with 73.4% ± 8% in cells treated with 

chlorambucil alone (Fig. 5.12B; p=0.01), confirming that dasatinib retains the 

ability to chemosensitise CLL cells in direct contact with stromal cells. 

5.3.6 Synergy between dasatinib and Bcl-2 inhibitor I is lost on NT-L or 
154L/IL-4 co-culture 

As our data demonstrated Bcl-2 protein up-regulation to be involved in the 

chemoresistant phenotype of 154L/IL-4 co-cultured CLL cells, and in view of the 

synergy observed between dasatinib and the BH3-mimetic Bcl-2 inhibitor I 

(Section 3.3.7), the possibility that the combination of dasatinib and Bcl-2 inhibitor I 

may overcome 154L/IL-4-induced chemoresistance was investigated.  CLL cells 

cultured in each of the three culture conditions were treated with either: DMSO 

vehicle control; dasatinib; Bcl-2 inhibitor I, or; both dasatinib and Bcl-2 inhibitor I 

for 48 hr, then apoptosis assessed by FCM.  While significant apoptosis was 

observed in treated cells cultured in media alone, NT-L or 154L/IL-4 co-cultured 

cells were completely resistant to apoptosis with all treatments (Fig. 5.13). 

5.3.7 Dasatinib sensitises CLL cells to the HSP90 inhibitor 17-DMAG 
sensitises in both NT-L and 154L/IL-4 co-culture 

Dasatinib also exhibited synergy with the HSP90 inhibitor 17-DMAG (Section 

3.3.7).  As HSP90 is a chaperone protein involved in stabilising many kinases 

involved in cell signalling, including kinases key to both Akt and ERK MAPK 

signalling (330), the combination of dasatinib and 17-DMAG was assessed in co-

cultured CLL cells, principally in order to assess whether the combination may 

overcome CLL cell chemoresistance in 154L/IL-4 co-culture.  CLL cells are known 

to over-express HSP90 (331), however the influence of stromal co-culture on 

HSP90 expression has not been reported.  In preliminary experiments we 
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observed NT-L co-culture, and moreover 154L/IL-4 co-culture to increase HSP90 

expression in CLL cells (Fig. 5.14), which provided an additional rationale for 

investigation of dasatinib in combination with 17-DMAG in co-cultured CLL cells.  

Following 48 hr treatment 17-DMAG alone induced a degree of apoptosis of CLL 

cells in NT-L co-culture (Fig. 5.15), reducing mean cell viability from 95.5% to 

65.4% (p>0.05), however the pro-apoptotic effect became statistically significant 

on treatment with the combination of dasatinib and 17-DMAG, which reduced the 

mean cell viability to 42.4% (p=0.01).  Importantly, 17-DMAG also induced some 

apoptosis of 154L/IL-4 co-cultured CLL cells, reducing mean cell viability from 

86.2% to 75% (p>0.05; Fig 5.15).  Again, the addition of dasatinib potentiated the 

effect of 17-DMAG alone, reducing mean cell viability to 67.7% (p=0.04). 

In view of these promising data, the effects of 48 hr treatment with 17-DMAG, 

dasatinib, or the inhibitor combination on irradiated NT-L and 154L cells cultured 

alone was assessed to determine whether these treatments caused direct toxicity 

to stromal cells (and therefore reduce the availability of survival signalling).  

Although dasatinib did not affect stromal cell viability, 17-DMAG or the drug 

combination did result in apoptosis of 30-40% of all cells (Fig. 5.16A).  Despite 

this, visually the wells containing 17-DMAG still contained viable adherent stromal 

cells with the morphology of untreated cells (Fig. 5.16B).  In view of the high 

expression of CD154 by transfected stromal cells, significant CD154 is likely to 

remain available to CLL cells.  However, in view of this important potentially 

confounding factor, the effect of 17-DMAG on the protection provided by sCD154 

and IL-4 in a cell-free system was assessed.  CLL cells were treated as described 

above in media alone, or in media supplemented with sCD154 and IL-4 for 48 hr, 

following which apoptosis was assessed by FCM as before, and protein lysates 

also prepared.  Whilst dasatinib-induced apoptosis was completely inhibited by 

sCD154 and IL-4, 17-DMAG induced apoptosis was unaffected, with the viability of 

CLL cells treated with 1 µM 17-DMAG in media alone similar to that of cells treated 

in the presence of sCD154 and IL-4 (14.8 compared to 18.8% respectively; Fig. 

5.17A).  The immunoblot demonstrated that 17-DMAG, unlike dasatinib, 

completely inhibited up-regulation of Mcl-1 and Bcl-xL in the presence of sCD154 

and IL-4 stimulation (Fig. 5.17B).  Induction of apoptosis was confirmed by the 

cleavage of PARP.  To investigate the mechanism responsible for these effects, 

the effect of 17-DMAG on Akt and MAPK signalling was assessed.  CLL cells were 

treated as described above, however, protein lysates were prepared 2 hr after the 
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addition of sCD154 and IL-4 to culture media.  In untreated cells, whilst little 

change in Akt phosphorylation was observed, sCD154/IL-4 stimulation increased 

the phosphorylation of p70 s6 kinase, JNK-, and p38-MAPK (Fig. 5.18).  ERK 

phosphorylation was not seen at this time point using these experimental 

conditions.  17-DMAG inhibited p70 s6 kinase phosphorylation induced by 

sCD154/IL-4, with no effect on Akt, p38, or JNK phosphorylation, or total Akt 

protein expression.  Although these data suggest that 17-DMAG inhibits PI-3K/Akt 

signalling on sCD154/IL-4 stimulation, further studies are required to establish this. 
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5.4 Discussion 

The pro-apoptotic effect of dasatinib in CLL cells was significantly reduced by co-

culture with NT-L stromal cells, in the presence or absence of CD154 and IL-4.  Of 

note, dasatinib retained the ability to inhibit global tyrosine phosphorylation, 

including Lyn phosphorylation, in both co-culture systems, demonstrating that 

alternate signalling pathways are responsible for chemo-resistance in co-culture.  

Given the commonality of PI-3K and MAPKs in relaying anti-apoptotic and 

mitogenic signals downstream of a number of membrane-associated receptors, 

including CD40 and IL-4R, the effect of dasatinib on these kinases was compared 

between our culture conditions.   

Basal ERK phosphorylation was detected in two of the five samples assessed in 

our study, consistent with previous reports demonstrating constitutive ERK 

phosphorylation in a subset of CLL samples only (191, 395).  Although dasatinib 

inhibited basal ERK phosphorylation in both samples in our study, specific ERK 

inhibitors do not induce apoptosis of CLL cells in vitro (300, 434), suggesting that 

inhibition of ERK signalling is not the main pro-apoptotic mechanism of dasatinib.  

In contrast, we detected basal Akt Thr308 phosphorylation in all five CLL samples 

assessed.  Previous studies of Akt phosphorylation and kinase activity in 

unstimulated CLL cells have generated conflicting results.  Ringshausen et al. 

demonstrated constitutive PI-3K activity in freshly isolated CLL cells, however no 

Akt phosphorylation on either Thr308 or Ser473, and no Akt activity in kinase assays 

(434).  In the present study, an attempt was made to assess Akt Ser473 

phosphorylation by immunoblotting, however no signal was detected; further 

optimisation of the antibody used is required.  Barragan et al. also failed to detect 

Akt Ser473 phosphorylation in a small number of CLL patient samples (300).  

However, other groups have both detected both Akt Thr308 and Ser473 

phosphorylation in cultured CLL cells (435, 436), and demonstrated Akt kinase 

activity using a GSK-3 fusion protein substrate (435).  Our experiments were 

performed using cryopreserved CLL cells.  Previous studies have shown that 

cryopreservation does not significantly affect the ability to detect either ERK or Akt 

phosphorylation by immunoblotting (191, 436).  The differences between studies 

of Akt activity in CLL cells may be explained by differences in either cell culture 

conditions or protein lysate preparation.  The addition of albumin to cell culture 

media can activate PI-3K/Akt signalling in CLL cells (437); all studies described 

above used media containing FCS, however differences in albumin and cytokine 
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composition of FCS between laboratories may have led to variable levels of 

exogenous stimulation in culture.  Alternatively, the failure of detection of Akt 

phosphorylation by some groups could be due to inadequate phosphatase 

inhibition during cell lysate preparation.  Akt is rapidly inactivated in vitro by 

phosphatases including protein phosphatase 2A (PP2A) (438).  In our 

experiments, microcystin, an inhibitor of PP1 and PP2A (439), was added to PBS 

used in washing steps prior to lysate preparation, which is likely to have facilitated 

phospho-Akt detection.  The observation that PI-3K inhibitors (300, 434), and 

specific Akt inhibitors (436), induce apoptosis of CLL cells in vitro provides further 

evidence that PI-3K/Akt signalling is active and involved in the survival of cultured 

CLL cells.   

Dasatinib inhibited basal Akt Thr308 phosphorylation in only one of the five samples 

assessed.  Inhibition of Akt phosphorylation by dasatinib would be expected, as a 

result of PI-3K inhibition, as Src kinases are upstream activators of PI-3K in BCR 

signal transduction (Section 1.5.2).  Of note, variable inhibitory effects of PI-3K 

inhibitors on Akt phosphorylation in unstimulated CLL cells have been reported.  

Plate et al. reported LY294002 to induce caspase 8-dependent apoptosis of CLL 

cells, however suggested apoptosis was Akt-independent, as no inhibition of Akt 

phosphorylation or kinase activity was observed (435).  However, two subsequent 

studies have shown that LY294002 inhibited Akt Thr308 phosphorylation in CLL 

cells (436, 440), and one reported inhibition of Akt Ser473 phosphorylation (436).  

In addition to regulation of activity by phosphorylation, Akt activity is also 

determined by intracellular localisation (164).  The phosphorylation of p70 s6 

kinase, a target kinase of the mTOR complex (Fig. 1.8), was therefore also 

assessed by immunoblotting as a further indicator of Akt activity.  No p70 s6 

kinase phosphorylation was seen in untreated CLL cells, suggesting little Akt 

activity. 

In NT-L co-cultured CLL cells, the most striking observation was a significant 

increase in ERK phosphorylation, which was incompletely inhibited by dasatinib.  

Although a pro-survival role for ERK signalling in unstimulated CLL cells has not 

been confirmed, ERK activation has been proposed to account for the pro-survival 

effects of CXCR4 stimulation of CLL cells in vitro (242).  One previous study found 

no inhibitory effect of 10 µM PD98059 on the viability of CLL cells co-cultured with 

murine fibroblasts (360); however we found 40 µM PD98059 to be the minimum 

concentration required to inhibit ERK phosphorylation in NT-L co-cultured CLL 
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cells.  In the current work, PD98059 did slightly reduce CLL cell viability, 

suggesting ERK signalling does contribute to the anti-apoptotic effect of NT-L co-

culture.  Furthermore, PD98059 significantly potentiated the apoptotic effect of 

dasatinib in NT-L co-culture, confirming that ERK signalling contributes to 

dasatinib resistance under these conditions.   

Stromal co-culture has been reported to sustain (360), or increase (254), Akt 

phosphorylation in CLL cells, and PI-3K inhibition abrogated the anti-apoptotic 

effect of co-culture with murine fibroblasts (360).  Although we observed no 

significant change in Akt Thr308 phosphorylation in NT-L co-cultured CLL cells, 

phosphorylation of p70 s6 kinase clearly increased.  The reason for the disparity 

between Akt and p70 s6 kinase phosphorylation in our study is currently not clear.  

Of interest, there is evidence that mTOR activity may additionally be regulated by 

PI-3K/Akt independent mechanisms in certain haematological malignancies.  In 

AML cells, in which Lyn is also over-expressed and constitutively active, a positive 

regulatory role of Lyn in the mTOR pathway downstream of Akt was demonstrated 

(205).  In this study, inhibition of Lyn expression with siRNA significantly inhibited 

p70 s6 kinase phosphorylation, with no effect on Akt phosphorylation (205).  In our 

experiments, dasatinib slightly reduced p70 s6 kinase phosphorylation in NT-L co-

culture.  Due to the upregulation of p70 s6 kinase phosphorylation in co-cultured 

cells, it is possible that the exposure times used in our study were too short to fully 

assess basal p70 s6 kinase phosphorylation in CLL cells cultured in media alone.  

Assessment of dasatinib or PP2 treatment on Akt and p70 s6 kinase 

phosphorylation in CLL cells cultured in media alone would be of interest to further 

assess whether similar regulation of mTOR by Src kinases occurs in CLL.  

Additionally, in follicular lymphoma cells, Syk has been established to contribute to 

mTOR activation, as measured by p70 s6 kinase phosphorylation, in an additional 

pathway independent of PI-3K/Akt signalling (441).  Stromal co-culture has 

recently been demonstrated to increase Syk phosphorylation in CLL cells (442).  

Although p70 s6 kinase was not assessed in this study, it is possible that Syk 

activation may also contribute to p70 s6 kinase phosphorylation in NT-L co-

cultured cells.  The PI-3K inhibitor LY294002 reduced the viability of CLL cells in 

stromal co-culture, confirming previous reports (360, 412).  Furthermore, 

LY294002 significantly increased CLL cell sensitivity to dasatinib, demonstrating 

PI-3K signalling to contribute to stromal cell-mediated resistance to dasatinib.  In 

view of the increase in p70 s6 kinase phosphorylation in NT-L co-culture, it would 
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be interesting to establish whether mTOR inhibition also re-sensitises CLL cells to 

dasatinib, or whether other PI-3K/Akt dependent pathways are responsible.  Whilst 

p38 MAPK has also been implicated in the anti-apoptotic effect of stromal co-

culture in CLL cells (443), the p38 inhibitor SB203580 did not sensitise co-cultured 

cells to dasatinib in the present study.  In conclusion, although dasatinib inhibits 

PI-3K/Akt and MAPK activation following BCR stimulation, activation of these 

kinases by stromal factors, CD154, and IL-4 is unaffected, and abrogates the pro-

apoptotic effect of dasatinib. 

Although this study has identified both PI-3K and ERK activation in CLL cells to be 

involved in the stromal cell adhesion-mediated resistance to dasatinib, the cell 

surface receptors activated by NT-L co-culture remain to be determined.  The 

failure to detect SDF-1 mRNA by qRT-PCR in NT-L cells suggests that SDF-

1/CXCR4 signalling is not responsible, although further assessment of SDF-1 

expression at the protein level by immunoblotting, or enzyme-linked 

immunosorbent assay (ELISA) of NT-L cell culture media would be desirable to 

confirm this.  The anti-apoptotic effect of NT-L cell co-culture on CLL cell viability 

has been demonstrated to be entirely dependent on direct cell contact, suggesting 

surface receptor-ligand interactions, rather than secreted factors, are responsible 

for increased survival (116).  As outlined in Section 1.7.1.2, signalling through 

multiple integrin receptors, particularly VLA-4, has been demonstrated to inhibit 

both spontaneous and drug-induced apoptosis of CLL cells in vitro.  In addition to 

up-regulation of integrin receptors such as CD49d on the surface of CLL cells 

driven by stromal co-culture (115), a number of inflammatory cytokines including 

IL-4 have been demonstrated to induce the expression of the VLA-4 ligand VCAM-

1 on the surface of BM stromal cells (444), raising the possibility of a bi-directional 

positive reinforcement of cell adhesion between CLL cells and stromal cells.  A 

recent study found CD38+/CD49d+ CLL cells were able to attract monocytes via 

secretion of the chemokines CCL3 and CCL4, which in turn induced VCAM-1 

expression on the surface of stromal cells, largely through secretion of TNFα 

(445).  Whether IL-4 secreted by CLL-associated CD4+ T lymphocytes, or by CLL 

cells themselves, can also upregulate VCAM-1 expression on BM stromal cells 

remains to be determined.  It is also of great interest that DLBCL cell lines have 

been demonstrated to induce BAFF mRNA expression and increase BAFF 

secretion from co-cultured stromal cell lines, through a mechanism requiring direct 

cell-cell contact (446).  In view of these data, it would be of great interest to assess 



   

 192 

expression of both integrin receptor ligands such as fibronectin and VCAM-1, and 

also BAFF and APRIL, in NT-L cells, both following culture alone, and also 

following 48 hr co-culture with CLL cells, to assess whether CLL cells may directly 

regulate stromal cell protein expression.  An alternative approach to further 

investigate the key interactions involved in cell adhesion-mediated apoptosis 

resistance would be to repeat NT-L co-culture experiments in the presence of 

blocking antibodies to integrin receptors on the CLL cell surface.  Previous studies 

suggest that simultaneous blockade of several integrin receptors may be required 

to inhibit pro-survival signalling (221).  Of note, a small peptide inhibitor of 

fibronectin/β1 integrin interaction was recently demonstrated to re-sensitise AML 

cell lines cultured in fibronectin-coated plates to chemotherapeutic agents; 

furthermore the inhibitor prolonged survival in an in vivo AML mouse model (447). 

Co-culture of CLL cells in the 154L/IL-4 system resulted in a further increase in 

p70 s6 kinase phosphorylation, accompanied by significant p38 and JNK MAPK 

phosphorylation, and none of the activated kinases were inhibited by dasatinib.  

That ERK or PI-3K inhibition failed to either overcome the protective effect of 

154L/IL-4 co-culture, or sensitise CLL cells to dasatinib in this setting suggests a 

degree of functional overlap of pro-survival signals under these conditions.  

Indeed, this has previously been reported following CD40 stimulation of mature 

murine B lymphocytes (448).  Dasatinib failed to overcome the up-regulation of 

Mcl-1 and Bcl-xL on CLL co-culture in the 154L/IL-4 system.  Our results differ 

from a recent study reported by Hallaert et al, in which both imatinib and dasatinib 

reversed the upregulation of Mcl-1, Bcl-xL, and Al induced by co-culture of CLL 

cells with NIH3T3 fibroblasts stably transfected to express CD154 (355).  A 

number of differences between the experimental approaches employed may 

account for the differing results obtained.  Hallaert et al. co-cultured CLL cells for 

48 hr in the presence or absence of 30 µM dasatinib, a concentration far greater 

than the clinically achievable concentration of 100 nM used in our experiments.  

As described in Section 3.4, dasatinib used at such a concentration is likely to 

have a number of off-target effects.  In the present study, CLL cells were placed in 

co-culture overnight prior to dasatinib treatment, in order to allow signalling 

networks to become established, as would be the case within the CLL 

microenvironment in vivo, whereas Hallaert et al. pre-treated CLL cells with 80 µM 

dasatinib prior to adding cells to co-culture.  It is also possible that the addition of 

IL-4 to the 154L cell co-culture media in our experiments may have contributed to 
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the differing results.  Our observations that dasatinib inhibited Mcl-1 expression 

and induced apoptosis of CLL cells stimulated by low-dose sCD154 alone, while 

having no inhibitory effect on IL-4-induced Mcl-1 expression or survival are in 

support of this hypothesis.  Furthermore, a clear synergistic effect on up-regulation 

of Bcl-xL and Mcl-1 was observed on CLL stimulation with the combination of 

sCD154 and IL-4.  As CLL cells within LN and BM PCs adjacent to CD4+ T 

lymphocytes expressing CD154 will likely also be exposed to IL-4 (219), we 

propose that our model may be more physiologically relevant than models 

studying CD154 stimulation alone. 

Dasatinib did not inhibit the increase in survivin expression induced by 154L/IL-4 

co-culture.  Given these data, it was perhaps not unexpected that dasatinib failed 

to inhibit CLL cell proliferation in the 154L/IL-4 system.  Nevertheless, as 

proliferation of normal B lymphocytes requires co-ordinated signalling through the 

BCR and co-stimulatory receptors such as CD40 (285),  it remains possible that 

dasatinib may exert a net anti-proliferative effect on CLL cells stimulated through 

both receptors within PCs in vivo.  In support of this, in T lymphocytes, proliferation 

induced by TCR engagement is inhibited by dasatinib, whereas proliferation 

stimulated by IL-2 signalling is unaffected (449).  Also, in DLBCL cell lines, 

dasatinib induces a G1-S phase cell cycle arrest, due to inhibition of signalling 

pathways downstream of the BCR (385).  It would be of interest to determine 

whether the addition of anti-IgM to the 154L/IL-4 co-culture system influences the 

kinetics of CLL cell proliferation, and if so, assess each condition in the presence 

or absence of dasatinib.  CLL cell proliferation in vitro can also be induced by 

stimulation with CpG oligodeoxynucleotides (CpG ODN), which resemble 

unmethylated sequences of bacterial DNA (450, 451).  CpG ODN stimulate Toll-

like receptor 9 (TLR9), which activates a number of signalling pathways resulting 

in B cell proliferation and up-regulation of co-stimulatory receptors (451).  It would 

also be interesting to investigate whether dasatinib affects CLL cell proliferation on 

CpG ODN stimulation. 

We observed stromal co-culture to significantly reduce apoptosis induced by both 

fludarabine and chlorambucil, consistent with previous reports (223, 227).  In 

addition to exhibiting synergy with chemotherapeutic agents in CLL cells cultured 

in media alone, dasatinib retained the ability to sensitise NT-L co-cultured CLL 

cells to apoptosis on treatment with fludarabine or chlorambucil.  Although the 

mechanisms responsible for stromal cell adhesion-mediated resistance to 
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chemotherapeutic agents remain to be fully determined, it is interesting to note 

that direct contact between CLL cells and stromal cells has been demonstrated to 

increase expression of RAD51 and DNA ligase IV, involved in the repair of DNA 

damage (254).  As inhibition of DNA repair has been proposed to account for the 

synergistic effects of dasatinib in combination with fludarabine and chlorambucil, 

this mechanism may also account for the chemosensitising effect of dasatinib in 

stromal co-culture.  Further work to assess RAD51 phosphorylation in NT-L co-

cultured CLL cells exposed to our experimental conditions would be informative.  

154L/IL-4 co-cultured CLL cells were resistant to all drug combinations studied, 

demonstrating that whatever the chemosensitising mechanism active in NT-L co-

culture, it is overcome by the pro-survival signalling pathways activated by CD154 

and IL-4 stimulation.  Our results again differ from the recent study by Hallaert et 

al., which reported dasatinib (or imatinib) to sensitise CD154-expressing stromal 

co-cultured cells to fludarabine, and a number of novel therapeutic agents (355).  

In this study, in addition to using a significantly higher concentration of dasatinib 

than in our work (30 µM), cells were co-cultured in the presence of dasatinib for 48 

hr, then removed from the stromal layer, and treated with fludarabine while 

incubated in media alone.  Furthermore, an exceedingly high concentration of 

fludarabine was employed in these experiments (100 µM).  Although further 

scheduling experiments may be performed, we show that CLL cells cultured with 

CD154-expressing cells alone are resistant to concurrent treatment with 

achievable concentrations of dasatinib and fludarabine.  Although within CLL 

patients some recirculation of CLL cells between tissues and bloodstream could 

occur, a proportion of the CLL clone is likely to remain in contact with a supportive 

microenvironment during treatment courses, which was modelled in our 

experiments. 

Our data suggest that CLL cells exposed to CD4+ T lymphocytes within LN and 

BM are likely to be resistant to dasatinib as a single agent, or in combination with 

standard chemotherapy.  Preliminary data from a phase II trial of dasatinib in 

chemo-refractory patients reported dasatinib to reduce patient LN size by over 

50% in two-thirds of patients, often without significantly reducing the circulating 

lymphocyte count (374), suggesting that dasatinib may exert more complex in vivo 

effects on the leukaemic microenvironment than may be predicted from in vitro 

studies.  Given the data presented in Chapter 4, this may be explained by effects 

of dasatinib on the SDF-1/CXCR4 axis, however there is also substantial evidence 
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to suggest that dasatinib may also modulate T cell support of CLL cells in vivo.  It 

is important to consider that in our experimental system, the availability of IL-4 and 

CD154 is fixed, and immutable by dasatinib.  Dasatinib has however been shown 

to inhibit many aspects of T lymphocyte function, without inducing apoptosis (449, 

452).  Dasatinib inhibited Akt and ERK phosphorylation following TCR stimulation 

(449), proposed to be due to inhibition of the Src kinase Lck (303), and prevented 

expression of the early activation markers CD38 and CD69 (449, 452).  In 

addition, dasatinib can inhibit the secretion of IL-4 by stimulated CD4+ T 

lymphocytes (453).  Although not assessed by these groups, it is reasonable to 

suggest that such inhibition of early T cell activation may prevent up-regulation of 

CD154 expression.  Furthermore, dasatinib inhibited the proliferation of murine 

CD4+ T lymphocytes in a murine allogeneic transplantation model (449).  

Therefore, it is possible that by inhibiting proliferation, activation, and cytokine 

secretion of T lymphocytes in vivo, dasatinib may reduce the availability of T 

lymphocyte supportive factors including CD154 and IL-4, and indirectly overcome 

CD154/IL-4-mediated chemo-resistance.  Of interest, inhibition of BCR signalling 

with the Syk inhibitor R406 reduced the secretion of the T cell chemokines CCL3 

and CCL4 by CLL cells (195).  It would be of great interest to confirm whether 

dasatinib also inhibits CCL3/CCL4 secretion following IgM stimulation, as this may 

represent another mechanism by which dasatinib inhibits supportive interactions 

between CLL cells and CD4+ T lymphocytes. 

To try to overcome CLL cell chemoresistance in 154L/IL-4 co-culture, dasatinib 

was assessed in combination with two novel agents, both of which exhibited 

synergy with dasatinib when assessed on culture in media alone.  The pro-

apoptotic effect of Bcl-2 inhibitor I was abrogated on stromal co-culture, and also 

failed to re-sensitise CLL cells to dasatinib.  Given the lack of modulation of Bcl-2 

family protein expression observed in NT-L co-cultured CLL cells, this result was 

surprising.  A study of the potent BH3-mimetic ABT-737, which also binds both 

Bcl-2 and Bcl-xL, reported no significant reduction in activity in CLL cells co-

cultured with stromal cells (329).  ABT-737 has a reported nanomolar IC50 for both 

Bcl-2 and Bcl-xL (328), compared to a low micromolar IC50 reported for Bcl-2 

inhibitor I (325).  It is possible that the differing results may be explained by the 

effects of Bcl-2 inhibitor I being more sensitive to alterations in expression of Bcl-2 

family proteins not assessed in the present body of work, although the findings do 

raise the possibility that the observed apoptosis induced by Bcl-2 inhibitor I in 
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media alone may be due to off-target effects on other signalling pathways.  CLL 

cells co-cultured with stroma, CD154 and IL-4 were resistant to ABT-737, due to 

up-regulation of Bcl-2A1 and Bcl-xL (329).  However, ABT-737 was able to 

sensitise CD154 co-cultured CLL cells to chemotherapy in some, but not all cases, 

suggested to be due to variations in Mcl-1 expression, which is not inhibited by 

ABT-737 (355).  AT-101 is a BH3-mimetic inhibitor that binds to all Bcl-2 family 

anti-apoptotic proteins with high affinity, and has entered clinical trials in CLL 

(454).  In pre-clinical assessment, the pro-apoptotic effect of AT-101 was not 

influenced by CLL co-culture with M2-10B4 stromal cells (454).  Although the 

effect of AT-101 on CLL cells co-cultured in the presence of CD154 and IL-4 has 

not been reported, this agent would be an attractive candidate for investigation as 

an agent that may overcome resistance to dasatinib, and other drugs, in the 

154L/IL-4 system. 

In contrast, more promising results were obtained in experiments assessing the 

combination of dasatinib and 17-DMAG on co-cultured CLL cells.  Our observation 

that NT-L, and more so 154L/IL-4 co-culture increased HSP90 expression in CLL 

cells is extremely interesting as it provides a possible mechanistic explanation for 

the promotion of Akt and MAPK signalling, linked to stromal cell adhesion-

mediated chemoresistance.  Of interest, IL-6 and ERK signalling in multiple 

myeloma cells cultured with BM stromal cells has recently been demonstrated to 

up-regulate HSP90 expression at the RNA and protein levels (455).  Moreover, 17-

DMAG induced apoptosis of myeloma cells in co-culture with stromal cells (455).  

In the present study, while a degree of protection from apoptosis was observed in 

NT-L, and more so in 154L/IL-4 co-culture, 17-DMAG alone induced a degree of 

apoptosis of co-cultured CLL cells.  Notably, apoptosis was potentiated in both co-

culture systems by the addition of dasatinib.  The observation that dasatinib 

treatment slightly reduced HSP90 protein expression (Fig. 5.14) is of interest as it 

is possible that this could contribute to the synergy observed between the two 

drugs.  Further assessment of the effect of dasatinib on both HSP90 RNA and 

protein expression in a larger sample cohort would provide valuable information on 

the potential utility of this drug combination. 

HSP90 inhibition using 17-AAG or 17-DMAG has been shown to result in inhibition 

of Akt phosphorylation in CLL cells (336), and degradation of a number of proteins 

including Akt, ZAP-70, the inhibitor of apoptosis protein XIAP, and the Bcl-2 

protein Mcl-1 (332, 334, 335).  In the present study, 17-DMAG-induced apoptosis 
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of CLL cells cultured in media alone was associated with inhibition of Mcl-1 and 

Bcl-xL protein levels, with little change in Bcl-2 expression.  No change in Akt 

phosphorylation or total Akt protein level was seen in our experiments, however 

the 2 hr time point used in our experiments was shorter than that assessed in 

other studies.  The effect of HSP90 inhibition on protein expression in CLL cells 

stimulated by CD154 and IL-4 has not been previously addressed.  We 

demonstrated that 17-DMAG completely inhibited the up-regulation of Mcl-1 and 

Bcl-xL seen in untreated CLL cells following stimulation with sCD154 and IL-4, and 

induced a similar level of apoptosis as observed on treatment of unstimulated CLL 

cells.  In sCD154/IL-4 stimulated cells, at 2 hr of treatment, 17-DMAG prevented 

the increase in p70 s6 kinase phosphorylation seen in control cells, however no 

effect was seen on Akt or MAPK phosphorylation or protein levels.  As no 

significant activation of ERK was observed in untreated cells on sCD154/IL-4 

stimulation, it is unlikely that ERK inhibition is responsible for the effects of 17-

DMAG in this system.  Although previous studies suggest that 17-DMAG may act 

primarily through inhibition of PI-3K/Akt signalling, further experiments assessing 

Akt and MAPK protein expression and phosphorylation over a longer time course 

are required to establish this. 

As proteins involved in cell cycle regulation, including survivin and cdk4 are also 

HSP90 client proteins (330), it is tempting to speculate that CLL cell proliferation 

may also be inhibited by 17-DMAG.  Notably, 17-DMAG treatment of mantle cell 

lymphoma cells results in down-regulation of cdk4 and c-myc, up-regulation of p21 

and p27, and a G2/M cell cycle arrest (456).  Furthermore, 17-DMAG inhibited 

proliferation of multiple myeloma cell lines in response to either endothelial cell 

contact or VEGF stimulation (457).  Assessment of the effects of 17-DMAG, in the 

presence or absence of dasatinib, on CLL cells in the 154L/IL-4 proliferation assay 

would be of great interest, both to assess effects on proliferation and cell viability.  

If apoptosis were to be observed in these experiments, simultaneous assessment 

of CFSE fluorescence and markers of apoptosis such as Annexin V by FCM would 

allow determination of whether quiescent or proliferating cells were more sensitive 

to drug treatments. 

In summary, the data presented in this chapter demonstrate that the pro-apoptotic 

effects of dasatinib as a single agent are abrogated by contact with stromal cells, 

in the presence or absence of IL-4.  Although dasatinib sensitises CLL cells in 

stromal co-culture to conventional chemotherapeutic agents, cells additionally 



   

 198 

stimulated by CD154 and IL-4 are highly resistant to established therapies.  

Dasatinib offers much as a novel therapeutic strategy for CLL, overcoming pro-

survival signalling through the BCR, however given these data, dasatinib may be 

most effectively utilised in combination with agents that can overcome additional 

important antigen-independent signalling networks within the CLL 

microenvironment.  The ability of targeted HSP90 inhibitors such as 17-DMAG to 

influence numerous signalling pathways that are conserved between several cell 

surface receptors, including antigen, cytokine, integrin, and chemokine receptors, 

make this class of agent an attractive candidate for further study on the effects on 

the CLL microenvironment.  It is of interest that in multiple myeloma cell lines, in 

addition to anti-proliferative and pro-apoptotic effects, 17-DMAG also inhibited 

migration of cells toward both SDF-1 and VEGF (457).  The synergy observed 

between dasatinib and 17-DMAG in vitro, which is retained in co-culture, 

demonstrates that this inhibitor combination has non-overlapping effects in CLL 

cells, and is worthy of further study. 
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Figure 5.1  CLL cells co-cultured with stromal cells are significantly less 

sensitive to dasatinib 

CLL cells were incubated either in complete media alone, or co-cultured with 

irradiated NT-L cells overnight prior to treatment with dasatinib.  Cells were then 

treated ± 100 nM dasatinib for 48 hr, following which apoptosis was assessed 

using Annexin V/Viaprobe staining by FCM.  Each individual experiment was 

performed in triplicate.  A  Results are presented as the mean cell viability (± SEM) 

for cells treated in each condition (n=8).  B  CLL cells from one sample were 

cultured overnight in: media alone; NT-L co-culture, or; the 154L/IL-4 system.  

Cells were treated ± 100 nM dasatinib, in triplicate, for 48 hr.  Apoptosis was 

assessed by Annexin V/Viaprobe staining by FCM, and the mean (± SEM) cell 

viabilities of cells treated as described shown. 
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Figure 5.2  Dasatinib retains the ability to inhibit tyrosine phosphorylation in 
CLL cells in NT-L or 154L/IL-4 co-culture 

CLL cells (2 x 106 per well) were cultured overnight in media alone, or in co-culture 

with NT-L cells, or in the 154L/IL-4 system prior to the experiment.  Cells were 

then treated ± 100 nM dasatinib for 2 hr, then protein lysates prepared.  Western 

blotting was performed with the 4G10 anti-phosphotyrosine antibody, and GAPDH 

assessed as a protein loading control.  Molecular weights of the protein standards 

used are indicated. 
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Figure 5.3  NT-L and 154L/IL-4 co-culture induces activation of MAPK and 
Akt, which is not inhibited by dasatinib 

Cells (2 x 106) were cultured overnight in: complete media alone; NT-L co-culture, 

or; CD154/IL-4 co-culture.  Cells were then treated with or without 100 nM 

dasatinib for 2 hr, and protein lysates prepared.  Immunoblotting was performed 

with antibodies specific for phosphorylated and total Akt, p70 s6 kinase, ERK, p38, 

and JNK, with GAPDH included as a loading control.  Five individual patient 

samples were assessed, and representative immunoblots from three patients are 

shown.
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Figure 5.4  PD98059 and LY294002 specifically inhibit ERK and Akt 
phosphorylation respectively in co-cultured CLL cells 

CLL cells (3 x 106/ml) were co-cultured overnight in the CD154L/IL-4 system prior 

to treatment.  A  Cells were subsequently treated with either DMSO vehicle 

control, 10 µM LY294002, 100 nM dasatinib, or both LY294002 and dasatinib for 2 

hr (n=2).  B  Cells were treated with either DMSO vehicle control, 40 µM PD98059, 

100 nM dasatinib, or both PD98059 and dasatinib for 2 hr (n=2).  At the end of 

experiments, protein lysates were prepared, and phosphorylation of Akt, p70 s6 

kinase, and ERK assessed by western blotting.  Immunobloblots from one 

experiment are shown. 
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A  NT-L co-culture 

 

B  154L/IL-4 co-culture 

 

Figure 5.5  PD98059 and LY294002 resensitise CLL cells to dasatinib in NT-L, 
but not 154L/IL-4 co-culture 

A  CLL cells were co-cultured with NT-L cells overnight prior to treatments.  Cells 

were then treated with 100 nM dasatinib (Das), 10 µM LY294002 (LY) or 40 µM 

PD98059 (PD), both Das and LY or PD, or DMSO vehicle control for 48 hr.  

Apoptosis was assessed by Annexin V/Viaprobe by FCM.  The histogram plots 

show the mean (± SEM) viabilities of cells treated as described (n=5).  B  CLL 

cells were co-cultured in the CD154/IL-4 system overnight prior to treatment with 

inhibitors as described in A.  The histograms show the mean (± SEM) viability of 

cells treated as indicated (n=3). 
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Figure 5.6A  Effects of dasatinib on Bcl-2 family protein and survivin 
expression in CLL cells cultured in media alone, or NT-L or 154L/IL-4 co-
culture 

CLL cells (2 x 106/well) were cultured overnight in media alone, in NT-L, or 

154L/IL-4 co-culture prior to treatment.  Cells were then treated with and without 

100 nM dasatinib for 48 hr, and protein lysates prepared.  Immunoblotting was 

performed to assess the expression of Bcl-2, Mcl-1, Bcl-xL, Bim, and survivin, 

using GAPDH as a protein loading control (n=5).  A representative immunoblot 

from one experiment is shown.   
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Figure 5.6B  Densitometric analysis of Bcl-2 family protein expression in 
CLL cells cultured in media alone, NT-L, and 154L/IL-4 co-culture in the 
presence or absence of dasatinib 

Densitometry was performed to quantitate the change in expression of Bcl-2 family 

proteins in each experimental condition, relative to expression in untreated control 

cells cultured in media alone.  The histogram plots show the mean (± SEM) fold-

change in protein expression (n=5). 
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Figure 5.7  Effect of dasatinib on Bcl-2 family protein expression induced by 
sCD154 and IL-4, alone and in combination 

CLL cells (2 x 106/well) were treated ± 100 nM dasatinib for 30 min, followed by 

the addition of 100 ng/ml sCD154, 10 ng/ml IL-4, or both sCD154 and IL-4 for 48 

hr (n=3).  At the end of experiments, apoptosis was assessed by Annexin 

V/Viaprobe staining by FCM, and protein lysates prepared.  A  Western blotting 

was performed to assess expression of Bcl-2, Mcl-1, Bcl-xL, and GAPDH, and a 

representative immunoblot shown.  B  The histogram plots show the mean (± 

SEM) viabilities of cells treated as indicated in all three experiments.
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Figure 5.8  Effect of dasatinib on CLL cell proliferation in the 154L/IL-4 
system 

CLL cells were stained with CFSE and cultured with or without 100 nM dasatinib in 

the 12-day 154L/IL-4 co-culture system, as described in Section 2.2.9 (n=6).  FCM 

analysis was performed every 3 days as described in Section 2.3.9.  A  Day 6, 9, 

and 12 FACS histogram plots from one experiment are shown, gated on FSC/SSC 

and CD19 expression.  The histogram of the colcemid control is shown in red, the 

untreated control sample in blue, and the dasatinib treated sample in green.  B  
The histogram plots show the mean (± SEM) percentage of cells within each cell 

division at day 6, 9, and 12, calculated as described in Section 2.3.9.2, from 

analysis of all experiments (n=6). 
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Figure 5.9  Assessment of cell counts and percentage recovery of input cells 

in the 12 day 154L/IL-4 co-culture proliferation experiment. 

A  At each time point, untreated and dasatinib-treated cells were counted by FCM, 

as described in Section 2.3.9.1.  The graph depicts the mean (± SEM) cell counts 

determined in all experiments (n=6).  B  The graph shows the mean (± SEM) 

percentage recovery of input cells, as described in Section 2.3.9.3, for all six 

experiments. 
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Figure 5.10  Photographs of CLL cells following 12 days of co-culture in the 
154L/IL-4 system with or without 100 nM dasatinib 

The photographs (4 x magnification) show representative images demonstrating 

the morphology of CLL cells at day 12 of 154L/IL-4 co-culture, in the presence or 

absence of dasatinib, in three representative patient samples.  



   

 210 

A 

 

B 

 
Figure 5.11  Comparison of the effect of dasatinib in combination with 
fludarabine or chlorambucil on CLL cells cultured in media or stromal co-
culture systems 

A  CLL cells were cultured overnight in the following conditions: media alone; NT-L 

co-culture; NTL co-culture with 10 ng/ml IL-4 added to culture media; 154L co-

culture, or; 154L/IL-4 co-culture.  Cells were subsequently treated with DMSO 

vehicle control, 100 nM dasatinib (Das), 5 µM fludarabine (Flu), or both dasatinib 

and fludarabine for 48 hr, then apoptosis assessed by Annexin V/Viaprobe 

staining by FCM.  The histogram plot shows the mean (± SEM) cell viabilities for 

cells treated as indicated (n=3).  B  CLL cells were cultured overnight in: media 

alone; NT-L co-culture, or; the CD154L/IL-4 system, prior to treatment with DMSO 

vehicle control, 100 nM dasatinib, 12.5 µM chlorambucil (Chl), or both dasatinib 

and chlorambucil for 48 hr.  Apoptosis was assessed using Annexin V/Viaprobe 

staining, and results are expressed as the mean (± SEM) cell viabilities in three 

independent experiments.
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Figure 5.12  Dasatinib retains the ability to sensitise CLL cells co-cultured 
with NT-L stromal cells to chlorambucil and fludarabine. 
CLL cells were co-cultured overnight with NT-L cells prior to treatment.  A  Cells 

were subsequently treated with DMSO vehicle control, 100 nM dasatinib (Das), 5 

µM fludarabine (Flu), or both Das and Flu for 48 hr, followed by assessment of 

apoptosis by Annexin V/Viaprobe staining.  Data are presented as the mean (± 

SEM) viabilities of cells treated as indicated (n=7).  B  Cells were treated with 

DMSO vehicle control, 100 nM Das, 12.5 µM chlorambucil (Chl), or both Das and 

Chl for 48 hr, followed by assessment of apoptosis by Annexin V/Viaprobe 

staining.  Data are presented as the mean (± SEM) viabilities of cells treated as 

indicated (n=7). 
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Figure 5.13  Comparison of apoptosis induced by dasatinib in combination 

with Bcl-2 inhibitor I in CLL cells cultured in media alone or stromal co-
culture. 

CLL cells were cultured overnight in media alone or in NT-L or 154L/IL-4 co-

culture prior to treatment.  Cells were subsequently treated with either: DMSO 

vehicle control; 100 nM dasatinib; 8 µM Bcl-2 inhibitor I, or; both dasatinib and Bcl-

2 inhibitor I for 48 hr, followed by assessment of apoptosis by Annexin V/Viaprobe 

staining by FCM.  The histogram plots show the mean (± SEM) viabilities of cells 

treated as indicated (n=3). 
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Figure 5.14  HSP90 expression is increased in co-cultured CLL cells 

Immunoblots from experiments described in Figure 5.6, in which CLL cells in 

culture alone, or in NT-L, or 154L/IL-4 co-culture were treated in the presence or 

absence of 100 nM dasatinib for 48 hr were re-probed for expression of HSP90 

(n=3).  A  One representative immunoblot is shown.  B  Densitometry was 

performed to quantitate HSP90 expression in each experimental condition in each 

experiment.  Results are expressed as the mean (± SEM) fold-change in HSP90 

expression in each condition relative to untreated cells cultured in media alone 

(n=3).  
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Figure 5.15  Comparison of apoptosis induced by dasatinib and 17-DMAG in 
CLL cells cultured in media or stromal co-culture. 

CLL cells were cultured in media alone, or in NT-L or 154L/IL-4 co-culture 

overnight prior to treatment.  Cells were then left untreated, or treated with 100 nM 

dasatinib (Das), 1 µM 17-DMAG, or both dasatinib and 17-DMAG for 48 hr, then 

apoptosis assessed by Annexin V/Viaprobe staining by FCM.  The histogram plots 

show the mean (± SEM) viabilities of cells treated as indicated (n=3).  
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Figure 5.16  Effects of dasatinib and 17-DMAG on viability of NT-L and 154L 
cells 

Irradiated NT-L and CD154L stromal cells (1 x 105) were allowed to adhere to 

wells in a 24-well tissue culture plate overnight prior to treatment.  Cells were then 

left untreated, or treated with 100 nM dasatinib, 1 µM 17-DMAG, or both dasatinib 

and 17-DMAG for 48 hr.  Cells were then photographed, removed from wells using 

trypsin, and apoptosis assessed by Annexin V/Viaprobe staining.  A  The 

histogram plots show the percentages of viable NT-L and CD154L stromal cells 

treated as indicated.  B  Photographs of CD154L cells treated as indicated (20 x 

magnification).
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Figure 5.17  Effect of dasatinib and 17-DMAG, alone and in combination, on 
CLL cells stimulated with sCD154 and IL-4 

CLL cells (3 x 106/ml) were either left untreated, or treated as follows: 100 nM 

dasatinib (Das); 1 µM 17-DMAG, or; both dasatinib and 17-DMAG.  Following 30 

min incubation, cells in each treatment arm were further treated with or without 

100 ng/ml sCD154 and 10 ng/ml IL-4 for 48 hr. Apoptosis was assessed by 

Annexin V/Viaprobe staining, and protein lysates prepared.  A  The histogram plot 

shows the mean (± SEM) viabilities of cells treated as indicated (n=3).  B  

Immunoblotting was used to assess Bcl-2 family protein expression and PARP 

cleavage in treated cells (n=3), and one representative immunoblot is shown.
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 Figure 5.18  17-DMAG selectively inhibits p70 s6 kinase phosphorylation in 
CLL cells following sCD154 and IL-4 stimulation 

CLL cells (3 x 106/well) were either left untreated, or treated as follows: 100 nM 

dasatinib (Das); 1 µM 17-DMAG, or; both Das and 17-DMAG.  After 30 min 

incubation, cells in each treatment arm were further treated with or without 100 

ng/ml sCD154 and 10 ng/ml IL-4 for 2 hr.  Protein lysates were then prepared, 

western blotting performed used to assess phosphorylation of Akt, p70 s6 kinase, 

ERK, JNK, and p38, using GAPDH as a protein loading control.  Total Akt was 

also assessed. 
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6.1 Summary of results 

The Src/c-Abl TKI dasatinib induced apoptosis of CLL cells in vitro, and exhibited 

synergy with established and novel therapeutic agents.  The sensitivity of CLL 

cells to dasatinib correlated with the degree of inhibition of phosphorylation of Syk 

kinase, suggesting inhibition of tonic BCR signalling to account for its’ anti-

leukaemic effects.  Dasatinib consistently inhibited BCR signalling following 

crosslinking of surface IgM, and inhibited the Mcl-1-dependent increase in survival 

on prolonged BCR stimulation.  In addition, Src/c-Abl inhibition also inhibited Akt 

activation on CXCR4 stimulation, and impaired both chemotactic and pro-survival 

effects of SDF-1, demonstrating that the anti-leukaemic effects of dasatinib extend 

beyond direct effects on the BCR.  Although dasatinib failed to inhibit additional 

survival signalling pathways induced by co-culture with stromal cells, the drug 

retained the ability to chemosensitise CLL cells to fludarabine and chlorambucil.  

Moreover, the combination of dasatinib and the HSP90 inhibitor 17-DMAG induced 

apoptosis of CLL cells co-cultured with stromal cells in the presence of CD154 and 

IL-4.  In this chapter, the implications of these data for future pre-clinical 

investigation, and future clinical trials of Src/c-Abl TKI in CLL are discussed. 

6.2 What could dasatinib add to current treatment algorithms in CLL? 

The first clinical testing ground for novel therapies in any malignancy is in patients 

with advanced disease, who have exhausted established treatment modalities.  In 

CLL, this is generally defined as patients refractory to purine analogue therapy 

(458).  Therefore, the first question to address is whether dasatinib may benefit 

these patients, an issue which is currently being addressed in a number of phase 

I/II clinical trials (Table 6.1).  Both studies of single-agent dasatinib, currently 

reported as abstracts (374, 459), have demonstrated a degree of clinical activity, 

in terms of reducing white cell counts and LN size.  However only a minority of 

responding patients achieved the PR criteria as defined by the IWCLL (22).  In 

view of the data suggesting that Syk and PLCγ may serve as clinical biomarkers of 

response to dasatinib (Fig. 4.2 and (356)), incorporation of analysis of these 

proteins in patients treated with dasatinib in future clinical trials is warranted.  As 

CLL cells with a high level of Syk expression, which we demonstrated to be less 

sensitive to dasatinib (Fig 4.4), have been shown to be more sensitive to Syk 

inhibitors in vitro (391), such patients may be best offered trials including clinical 

Syk inhibitors such as fostamatinib disodium (396).  Our data suggest dasatinib 

may potentiate the clinical effects of both alkylating agents and purine analogues.  
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Whether dasatinib retains the ability to chemosensitise fludarabine-refractory CLL 

cells was not established in this study, however is an important clinical question for 

future study.  Of note, a phase II trial assessing dasatinib in combination with 

fludarabine is ongoing (Table 6.1).  

Looking to the future, it is important to consider whether dasatinib could add to 

initial therapy for CLL.  The percentage of patients receiving chemo-

immunotherapy as first-line treatment is set to increase.  In practice, physically fit 

patients will receive FCR, whereas older patients with co-morbidities may be 

treated with combinations such as rituximab and chlorambucil, which 

demonstrated an increase in ORR and acceptable toxicity profile in a recent small 

phase II study (460).  Whether dasatinib exhibits synergy with rituximab is 

currently unknown, however a phase I/II trial of dasatinib in combination with 

rituximab in the relapse setting is currently recruiting (Table 6.1).  Although FCR 

has significantly improved the outcome of first-line treatment, CR is achieved by 

less than 50% of patients, with fewer MRD negative remissions (76).  Given the 

survival benefit of achieving MRD-negativity, there is a rationale for considering 

more intensive combination strategies in selected patients.  Combinations 

investigated to date include FCR in combination with either alemtuzumab (CFAR) 

or mitoxantrone (FCRM) (76).  Both of these regimens increased MRD negative 

remission rates, but resulted in considerable toxicity.  As significant neutropenia 

occurs in around a third of patients treated with single agent dasatinib (311), with 

FCR (76) the combination would likely result in significant BM suppression.  As 

dasatinib induces a p53-independent mechanism of apoptosis, and preliminary 

investigations suggest CLL cells harbouring the 17p deletion are hypersensitive to 

dasatinib (365), the addition of dasatinib to FCR in patients with other high risk 

features (eg., unmutated CLL) could be a strategy to prevent selection of p53 

mutated/deleted clones with therapy.  Patients with 17p deletion or p53 mutation 

identified at diagnosis do not significantly benefit with FCR (76), and are currently 

treated with alemtuzumab, or high-dose methylprednisolone if the patient has 

bulky lymphadenopathy.  As the ORR rate of alemtuzumab in this setting is only 

40% (100), investigation of alemtuzumab combination therapies is also warranted.  

To date, two alemtuzumab combination trials in the relapse setting have been 

reported; the combination of alemtuzumab and fludarabine was effective (ORR 

83%) and well tolerated, however a trial including alemtuzumab in combination 

with FC was terminated in view of excessive toxicity with this regimen (76).  As 
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CD52 is also expressed on T lymphocytes, alemtuzumab causes significant T 

lymphocyte depletion, which has led to the inclusion of alemtuzumab in BM 

transplantation protocols as a strategy to reduce graft-versus host disease (461).  

The combination of agents such as dasatinib that inhibit BCR signalling, and 

alemtuzumab, which will reduce T cell support of CLL cells, may be considered a 

rational combination to assess in future clinical trials. 

The improved PFS and OS observed in patients achieving an MRD negative 

remission has also led to interest in assessing consolidation therapy in patients 

who remain MRD positive at the end of standard chemotherapy (462).  

Alemtuzumab consolidation following fludarabine-based chemotherapy has been 

reported to increase MRD negative CR rates and PFS (76), however significant 

infective toxicity was reported when alemtuzumab consolidation was commenced 

prior to three months from the end of chemotherapy (463).  Failure to eradicate 

MRD in CLL is considered to be due to the failure to eradicate a proportion of the 

clone residing within supportive BM and LN stromal or PC microenvironments with 

chemotherapy (216), a hypothesis supported by our assessment of fludarabine 

and chlorambucil in 154L/IL-4 co-culture (Fig. 5.11).  Novel therapeutic agents that 

disrupt microenvironmental pro-survival signalling pathways are rational drugs for 

investigation as consolidation therapy for patients remaining MRD positive 

following chemotherapy.  Our co-culture data suggest that dasatinib monotherapy 

in this setting is unlikely to eradicate MRD, however the observation that dasatinib 

potentiated the pro-apoptotic effect of 17-DMAG in 154L/IL-4 co-culture (Fig. 

5.14), demonstrates that further investigation of Src/c-Abl TKIs in combination 

approaches for this indication is justified. 

6.3 Is there a potential role for dasatinib as maintenance therapy for CLL? 

Regardless of the quality of remission achieved with therapy, the majority of CLL 

patients still eventually relapse, and many become refractory to standard therapy 

(458).  Prevention of relapse is therefore desirable, however a lack of suitable 

agents for maintenance therapy has limited this approach.  IFNα, which was the 

first reported maintenance therapy trialled in CLL, during the 1990s, demonstrated 

no improvement in PFS or OS on long-term follow-up (464).  During the last 

decade, studies demonstrating a significant increase in PFS with rituximab 

maintenance therapy in follicular lymphoma reignited interest in maintenance 

treatment of CLL (465).  Although initial studies of rituximab maintenance 

administered at six-monthly intervals in CLL were disappointing (465), an increase 
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in PFS was reported with a more intense monthly rituximab maintenance strategy, 

specifically administered to patients remaining MRD positive following fludarabine 

(466).  Similar results have been reported with monthly maintenance alemtuzumab 

in this setting (467).   

As outlined in Section 1.4, a current model of CLL biology suggests that disease 

progression is governed by the ability of malignant cells to respond to antigenic 

stimulation through the BCR, although the culprit antigens remain to be fully 

characterised (145).  According to this model, continuous inhibition of BCR 

signalling could reduce the rate of CLL cell proliferation, and hence the probability 

of clonal evolution and likelihood of relapse.  As dasatinib consistently inhibited 

BCR signal transduction in CLL cells following crosslinking of the BCR, the most 

pertinent outstanding question is perhaps whether all, or indeed any, progressive 

CLL clones continue to depend on antigenic stimulation for proliferation.  An 

alternative view of CLL progression suggests that, although BCR signalling is 

undoubtedly involved in the pathogenesis of CLL, once the malignant clone is 

established, proliferation may be primarily driven by BCR-independent stimuli 

including IL-4, CD154, VEGF, or BAFF (189).  That in vitro CLL cell proliferation 

can be induced by IL-4 and CD154 in the absence of antigenic stimulation is in 

support of this hypothesis.  As the contribution of ongoing BCR stimulation to CLL 

progression remains to be fully determined, it would seem reasonable to consider 

formally assessing dasatinib maintenance therapy in the context of a clinical trial in 

selected patients, for example, those with adverse prognostic features who remain 

MRD positive following chemotherapy. 

6.4 Novel therapeutic agents with the potential to target the leukaemic 

microenvironment in CLL 

The full array of the investigational agents targeting microenvironmental pro-

survival signalling pathways in CLL that are in pre-clinical or early clinical testing is 

too broad to discuss in detail here (reviewed in (301)).  Below, agents that are of 

particular interest for future study in combination with dasatinib are discussed. 

In recent years, lenalidomide, an analogue of thalidomide, has been investigated 

as a novel therapeutic agent in CLL.  Initially investigated in multiple myeloma as 

an anti-angiogenic agent, lenalidomide has now been ascribed numerous potential 

modes of action, including cytokine and immune modulation (468).  Lenalidomide 

has been demonstrated to positively regulate both CD4+ and CD8+ T lymphocyte 
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activation, increase expression of CD154 on T cells, and promote T cell 

proliferation following TCR stimulation (468).  Although these actions may seem 

detrimental for a CLL therapy in view of the established supportive role of CD4+ T 

lymphocytes in CLL pathogenesis, lenalidomide also reversed the defect in 

immune synapse formation between CLL cells and autologous CD4+ and CD8+ T 

cells, both in vitro, and also in vivo in CLL patients (275).  Lenalidomide itself does 

not induce apoptosis of CLL cells in vitro, rather the drug induces an activated B 

cell phenotype in CLL cells, increasing their expression of CD40 and CD86 (469).  

Moreover, lenalidomide up-regulated CLL cell expression of CD154, and 

increased the efficacy of CLL cells to co-stimulate normal B cells to produce 

antibodies, including CLL-directed antibodies, suggesting the drug may reverse 

the defective humoral immunity characteristic of CLL patients (470).  Initial clinical 

trials of lenalidomide in CLL, using dosing schedules optimised in multiple 

myeloma (25 mg daily for 21 days of 28 day cycles), were complicated by frequent 

significant tumour lysis syndrome (TLS) and tumour flare reactions, the latter 

characterised by painful enlarged LN and bone pain (469, 471).  The exact 

mechanism of tumour flare following lenalidomide remains under investigation, but 

has been proposed to occur as a result of B cell activation (469).  Subsequent 

studies using lower dose continuous lenalidomide (starting dose 10 mg daily) 

demonstrated durable (over 12 month) clinical responses in heavily pre-treated 

mainly high-risk patients, with less severe tumour flare reactions (472).  

Furthermore, lenalidomide has recently been reported to achieve an ORR of 38% 

and CR rate of 19% in patients with relapsed CLL and either 11q or 17p deletion 

(473).  A phase I/II trial of dasatinib in combination with lenalidomide has recently 

started recruiting (Table 6.1).  Concurrent inhibition of dysregulated BCR signalling 

in CLL cells with dasatinib, and correction of the acquired immune defects 

characteristic of CLL with lenalidomide is an attractive therapeutic approach.  

However, a reasonable concern is that the inhibitory effects of dasatinib on BCR 

(as shown in CLL cells) and TCR signalling (372), may counteract the positive 

immunomodulatory effects of lenalidomide. 

Another novel class of agent investigated over the last decade are cyclin-

dependent kinase inhibitors (CDKI).  The most extensively investigated agent is 

flavopiridol, an ATP-competitive inhibitor of CDK-1, -2, -4, -6, and -7 (474).  Initial 

in vitro studies demonstrated flavopiridol to induce apoptosis of CLL cells through 

a p53-independent mechanism, and notably, apoptosis was not inhibited by IL-4 
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(475).  The mechanism of toxicity to non-cycling CLL cells has been established to 

be due to transcriptional inhibition of anti-apoptotic proteins, particularly Mcl-1, 

which has a rapid turnover (474).  This effect was mediated by inhibition of CDK7 

and CDK9, which phosphorylate the C terminal domain of a subunit of RNA 

polymerase II (474).  In a phase I study, flavopiridol achieved durable PR in 45% 

of refractory CLL patients.  The notable side effects in this study were neutropenia 

(77%) and TLS (55%).  Similar response rates have been reported in patients with 

11q or 17p deletions and those without high-risk cytogenetic abnormalities (476).  

A number of additional CDKI are in development, including SNS-032, roscovitine, 

and the potent roscovitine analogue CR8 (477, 478).  In addition to inhibition of 

anti-apoptotic proteins, this class of agent may inhibit CLL cell proliferation driven 

by microenvironmental interactions within the PC.  Assessment of CDKI in vitro in 

the 154L/IL-4 system, in the presence or absence of dasatinib would be of great 

interest. 

The HSP90 inhibitor 17-DMAG to induced apoptosis of CLL cells in the 154L/IL-4 

system (Fig. 5.14), and exhibited synergy with dasatinib (Fig. 3.17).  Very recently, 

three phase I clinical trials of 17-DMAG have been reported, notably one trial in 

AML (479-481).  In two of these trials, including the AML study, 17-DMAG was 

administered twice weekly by intravenous infusion, and the maximum tolerated 

dose determined to be 21-24mg/m2.  At this dosing schedule, the plasma Cmax was 

measured as 475-499 ng/ml between studies (0.8 µM), which is above the IC50 in 

CLL cells determined in this study.  In AML, of 17 patients mostly refractory to 

standard induction chemotherapy, four responded, three achieved CR with 

incomplete BM recovery (479).  Using these schedules, toxicities included 

reversible renal dysfunction, peripheral neuropathy, fatigue, nausea, and 

musculoskeletal pain (479, 481).  These side effects are largely non-overlapping 

with those of dasatinib, suggesting the combination may be clinically tolerated. 

In addition to BCR signalling-related genes, genes related to NF-κB signalling are 

differentially expressed in unmutated as compared to mutated CLL (482).  

Moreover, Rel A expression has been identified as an independent prognostic 

marker of survival in CLL (359).  The novel NF-κB inhibitor LC-1 inhibited Rel A 

DNA-binding and induced apoptosis of CLL cells in vitro (483).  In addition, LC-1 

induced apoptosis was not inhibited by either CD154 or IL-4 stimulation (483).  

Given these data, and the importance of both BCR and NF-κB signalling to CLL 
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progression, LC-1 is another rational agent for future study in combination with 

dasatinib. 

6.5 The potential for assessment of novel dasatinib combination therapies 
in mouse models of CLL . 

Although the in vitro co-culture model systems such as those used in this study 

likely reflect in vivo drug efficacy more closely than studies performed on CLL cells 

in media alone, they cannot completely substitute for preclinical assessment in 

animal models.  In co-culture models, cell location is fixed, and the analysis of 

drug effects on purified CLL cells does not allow assessment of the effect of novel 

therapies on the complex signalling networks now known to involve the co-

ordinated regulation of many cell types within the microenvironment, including T 

cells and monocytes.  In vivo animal models are also required to assess drug 

pharmacokinetics, scheduling, and toxicity prior to clinical trial (484).  In contrast to 

other leukaemias, murine xenograft models of CLL using primary cells have been 

very difficult to establish despite injection of high numbers of CLL cells into 

immuno-compromised mice, with the most promising reported model failing to 

sustain stable engraftment over a 12 week period (485).   

A number of transgenic murine models have been developed, reviewed in (486), 

with the most extensively characterised of these being the Tcl-1 model, in which 

Tcl-1 is constitutively expressed in B cells under the control of an IgH Eµ enhancer 

(487).  These mice develop progressive accumulation of CD5+ B lymphocytes in 

the peritoneum by 2 months, spleen by 3-5 months, and BM by 5-8 months (487).  

The BCRs used by Tcl-1 transgenic mice are predominantly unmutated, and of 

note, frequently have specificity for auto-antigens, suggesting this model is 

representative of aggressive CLL (488).  Functional T cell abnormalities have also 

been described to associate with the lymphoproliferative disorder (489).  The 

translational potential of this model was supported by the demonstration of a 

response to fludarabine treatment (490).  Within our laboratory, a novel mouse 

model that bears many of the hallmarks of human CLL has been established 

(491).  Following stable transfection of a dominant-negative PKCα (PKCα-KR) in 

haemopoietic progenitor cells enriched from foetal liver, and subsequent culture in 

B-cell co-culture systems, an outgrowth of cells with the surface phenotype of 

human CLL cells: CD19hi, CD5+, CD23+, IgMlo, was observed, associated with 

increased expression of Bcl-2 (491).  Injection of these cells into RAG-1-/- mice 

resulted in progressive accumulation within lymphoreticular tissues.  Moreover, on 
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ex vivo culture, the cells arrested in G0/G1, akin to human CLL cells (491).  

Although PKCα has not been implicated thus far in the pathogenesis of the human 

leukaemia, initial studies in our laboratory, in addition to a previous report, have 

noted low PKCα expression at the protein level in CLL cells (unpublished 

observations and (189)).  Further studies are ongoing within our laboratory to 

further characterise this model, and develop its’ translational potential.  Future 

extension of this work would certainly involve assessment of novel drug 

combinations, determined on testing in our stromal co-culture systems, in vivo in 

the PKCα-KR model. 

6.6 The future of targeted therapy in CLL 

The work presented here on the Src/Abl TKI dasatinib highlights many salient 

points relevant to the pursuit of any targeted therapy for CLL.  First, the 

heterogeneity of CLL presents difficulties from the outset in establishing whether 

an identified dysregulated signalling protein has therapeutic potential.  In this 

study, we have confirmed that tonic BCR signalling is a valid target for 

pharmacological intervention in CLL, however demonstrated that a varied 

therapeutic armoury is likely required to inhibit this pathway in individual patients, 

given the correlation observed between dasatinib sensitivity and Syk kinase 

expression and phosphorylation.  Current evidence suggests that similar 

heterogeneity in regulatory protein expression exists in other key CLL signalling 

pathways, for example in RelA expression in the NF-κB pathway (359).  Two 

broad strategies may be employed in future to determine which patients may 

benefit from novel targeted agents in CLL.  Full molecular analysis of the signalling 

pathway to be targeted, using technology such as gene expression arrays, would 

provide detailed information, however is outwith the scope of a routine diagnostic 

laboratory.  In vitro drug sensitivity screening assays may be performed against a 

range of novel agents, however studies to date have often shown a poor 

relationship between in vitro sensitivity and in vivo clinical response.  It is therefore 

imperative that these issues are addressed within future clinical trial protocols, in 

order to validate potential clinical biomarkers.  

Our studies also demonstrate the important point that a number of conserved 

signalling pathways, including the PI-3K/Akt and MAPK pathways, function to 

maintain CLL cell survival and direct proliferation.  As these pathways are 

activated by many microenvironmental stimuli, targeted inhibition of individual 

proximal receptor signalling pathways may not impact significantly on the net 
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balance of pro-survival signalling induced in CLL cells by the microenvironment.  

Although we demonstrated dasatinib to exert direct effects on CXCR4 signalling in 

addition to BCR signal transduction, the drug was unable to inhibit PI-3K/Akt or 

MAPK signalling induced by other stromal factors, CD154 and IL-4.  As the key 

microenvironmental interactions that support the survival and proliferation of CLL 

cells are more constant than the apparent heterogeneity in intrinsic signalling 

dysregulation that leads to CLL leukaemogenesis, inhibitors targeted toward the 

microenvironment may be effective across patient subgroups.  In conclusion, the 

future success of targeted therapy in CLL will likely be in combination strategies, 

able to target both the CLL cells and microenvironmental signalling.  Although our 

understanding of CLL biology has been transformed in the last decade, the 

challenge for the next remains to understand how to translate the biological 

information into improved outcomes for CLL patients. 

6.7 Concluding remarks 

These data provide a comprehensive in vitro assessment of the anti-leukaemic 

effects of the Src/c-Abl TKI dasatinib on CLL cells in vitro.  Further investigation of 

rational dasatinib drug combinations, in the co-culture model systems and our 

mouse model system will provide data which may form the basis for future clinical 

trials in CLL. 
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Table 6.1  Current phase I/II clinical trials of dasatinib in relapsed/refractory 
CLL 
 

Trial Number + 
Investigational 
Drugs 

Phase Dosing Schedule Status 

NCT00829647 

Dasatinib + 
Lenalidomide 

 

I/II 

 

Daily oral dasatinib (start at 70 mg) + 

Daily oral Lenalidomide (start at 2.5 mg) 

 

Recruiting 

NCT00949988 

Dasatinib + 
Rituximab 

 

 

I/II 

 

Daily oral dasatinib (100-140 mg) + IV 

rituximab (375mg/m2 cycle 1; 500 mg/m2 

cycle 2 onwards) 

Up to six 28 day cycles 

 

Recruiting 

NCT01051115 

Dasatinib + 

Fludarabine 

 

 

II 

 

Daily oral dasatinib (100 mg) 

If less than partial response at day 28 

oral fludarabine (40 mg/m2 for 3 days 

every 28 days) will be added for up to six 

cycles 

 

Recruiting 

NCT00438854 

Dasatinib 

 

II 

 

Daily oral dasatinib (dose not specified) 

 

Closed 

NCT00364286 

Dasatinib 

 

II 

 

Daily oral dasatinib (50 mg twice daily) 

 

Closed 

 

* Further details available at: http://clinicaltrials.gov/ 
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