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Abstract

Deeply Virtual Compton Scattering (DVCS) i.e. ep → epγ is the simplest interac-

tion that allows access to Generalised Parton Distributions (GPDs), a theoretical

framework describing nucleon structure. The strong interest in GPDs results from

the fact that they can be used to determine the total angular momentum of quarks

inside the nucleon and provide a 3-dimensional picture of nucleon structure. The

measurement of the DVCS process is facilitated by the interference with a compet-

ing interaction known as the Bethe-Heitler process which has the same final state.

DVCS information is obtained from the asymmetrical in distribution of the real

photon around the azimuthal angle φ at HERMES. Beam charge and beam helic-

ity asymmetries, extracted from DVCS events with an unpolarised hydrogen target

recorded during the 2006-2007 and 1996-2007 data taking periods, are presented in

this thesis. The asymmetry amplitudes are presented over the range of HERMES

kinematic acceptance, with their dependence on kinematic variables t , xB and Q2

also shown and compared to a phenomenological model.
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Chapter 1

Introduction

The atom consists of a dense central nucleus of positive electric charge and a cloud

of negatively charged electrons. The two baryons that comprise the nucleus, collec-

tively known as nucleons, are positively charged protons and electrically neutral neu-

trons. The constituent particles of the nucleon are partons: quarks and gluons [1].

The presence of partons within the nucleon has been postulated and experimentally

confirmed over the last half century [2].

The intrinsic angular momentum, known as the spin, is one of the fundamental

properties of a particle. If the particle has spin, then the total angular momentum

J is the sum of the orbital and spin angular momentum

J = L + S. (1.1)

It follows from the general theory of angular momentum that no meaning can be

ascribed to the spin vector S having a particular direction. The average spin direc-

tion, however, can be considered and the average value of SZ , expressed in units of

~, has been measured to be 1
2

[3], while SX and SY = 0. The z-component of the

nucleon spin sz can be written as [4]

SZ =
1

2
= JQ + JG =

1

2
∆Σ + LQ + ∆G+ LG (1.2)

where JQ (LQ) and JG (LG) are the total (orbital) angular momentum of quarks

(gluons), ∆Σ is the fraction of the spin carried by the constituent quarks, ∆G the

fraction of the spin carried by the gluons.

1



Chapter 1. Introduction 2

It was originally believed that the total spin of the nucleon was carried by the

quarks, as predicted by the quark-parton model. The European Muon Collaboration

(EMC) at CERN [5, 6] published a result showing that the fraction of the overall

spin contributed by the spin of the quarks was 14 ± 9 ± 21%, potentially consistent

with zero [7].

The result of the quarks not carrying the entire nucleon spin prompted a large

amount of discussion and research interest around the globe. Two of the facilities at

the forefront of this research were the Spin Muon Collaboration at CERN and the

Stanford Linear Collider Center (SLAC) [8]. Both of these experiments worked on

the principle of detecting a lepton that scattered off a quark. Results produced at

these experiments indicated that the contribution of the quarks to nucleon spin to

be closer to 30%. Determining the contributions of LQ, ∆G and LG to the nucleon

spin is known as the “spin puzzle”, illustrated in Fig 1.1. Providing answers to this

“puzzle” is the reason that the HERMES experiment was constructed.

HERMES (HERa MEasurement of Spin) is one of the experiments on the HERA

(Hadron Electron Ring Accelerator) at the DESY (Deutsches Electron SYnchrotron)

laboratory in Hamburg, Germany [9]. It was a fixed target experiment that was

initially designed to study the spin structure of the nucleon through polarised DIS

(Deep Inelastic Scattering) in which longitudinally polarised electrons or positrons

scatter off a polarised gas target. The experiment took data from 1995 until 2007.

The most precise measurement of the quark contribution to the overall nucleon spin

was published by the HERMES collaboration and was found to be ∆Σ ≈ 0.33 ±
0.011(theo.) ± 0.025(exp.) ± 0.028(evo.) [10].

Recently this understanding of nucleon structure has manifested itself in the

form of Generalised Parton Distributions (GPDs). GPDs are a phenomenological

parametrisation of Form Factors and regular Parton Distributions. Strong interest in

the formalism of GPDs emerged after it was found that GPDs give access to the total

(including orbital) angular momentum carried by the quarks in the nucleon [4]. More

recent focus has been on the potential of GPDs as three dimensional representations

of hadrons at the partonic level [12], correlating traditional longitudinal momentum

fraction to transverse spatial coordinates. Driven by the interest in GPDs HERMES
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Chapter 1. Introduction 3

(a) Pieces of the spin puzzle. (b) Nucleon structure at different scales.

Figure 1.1: Left: The contribution of the various components of nucleon spin [11].

Right: The development of the structure of the nucleon from the indi-

vidual nucleon, to the nucleon comprising of three constituent quarks

and to the nucleon comprising of quarks and gluons with respective

spin and angular momentum .

August 6, 2010



Chapter 1. Introduction 4

and other particle accelerator experiments such as CLAS and Hall A at Jefferson

Lab or H1 and ZEUS at DESY all contribute to the study of GPDs as part of their

physics program.

The experimentally most direct way of accessing GPDs is through DVCS (Deeply

Virtual Compton Scattering) interactions i.e. the hard exclusive leptoproduction of

high energy photons, denoted by ep→ epγ [13,14,15,16,17,18]. Competing Bethe-

Heitler interactions have the same initial and final state as DVCS interactions and

are, experimentally indistinguishable. DVCS information is, therefore, accessed from

the interference of the scattering amplitudes of these two processes. This information

is determined from the asymmetrical distribution of the real photon around the

azimuthal angle φ, the angle between the lepton-nucleon scattering plane and the

real photon production plane. HERMES has published a number of DVCS azimuthal

asymmetries using various gas targets and different beam polarisation and charge

states [19,20]. During an access period in 2005 a rather unique Recoil Detector was

installed around the HERMES gas target cell to allow an exclusive measurement of

the DVCS interaction [21]. Data taking resumed with the Recoil Detector present

until the experiment shut down in July 2007.

The work presented in this thesis involved developing track reconstruction soft-

ware for the Recoil Detector and the analysis of DVCS on an unpolarised hydrogen

target. The theoretical framework of GPDs is introduced in chapter 2 of this the-

sis. This chapter also outlines the DVCS interaction and the azimuthal asymmetries

that can be extracted from unpolarised hydrogen data. The HERMES experimental

apparatus is detailed in chapter 3 and includes a description of the Recoil Detector.

A track reconstruction software algorithm for the Silicon Strip Detector, the inner

most detector of the Recoil Detector, is discussed in chapter 4. Chapter 5 introduces

the selection process used to isolate the analysable events from the HERMES exper-

imental data. The predicted DVCS asymmetries, used to estimate the systematic

errors, extracted from Monte Carlo simulations of the HERMES experiment and

produced by theoretical models are also detailed in this chapter. The final DVCS

results of the Beam Helicity and Beam Charge asymmetry analysed in this thesis

are presented in chapter 6. This is the DVCS result with the largest number of

August 6, 2010
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analysable DVCS events at HERMES.
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Chapter 2

Generalised Parton Distributions

and Deeply Virtual Compton

Scattering

2.1 Introduction

Generalised Parton Distributions (GPDs), are a theoretical framework that can be

used to describe nucleon structure [16, 14]. GPDs embody regular Parton Distri-

bution Functions (PDFs) and Form Factors (FFs) as limiting cases and moments,

respectively. PDFs describe the longitudinal momentum and helicity distributions of

partons as limiting cases and FFs describe the transverse number and current density

of partons. GPDs expand significantly on the information that can be obtained from

these two quantities alone providing correlated information on transverse positional

and longitudinal momentum distributions of partons [22]. Strong experimental in-

terest in GPDs developed after it was shown that the moments of certain GPDs

contained information on the total angular momentum carried by partons in the nu-

cleon [18,4]. A number of theoretical models have been developed to describe GPDs

leading to an approach [23] based on Double Distributions [24], this model was later

improved upon by [25]. The four nucleon GPDs thought to be most accessible from

HERMES proton data to leading order are H, H̃, E and Ẽ.

Deeply Virtual Compton Scattering (DVCS) is one the simplest interactions al-

6



2.2. Generalised Parton Distributions 7

lowing access to GPDs. DVCS on the proton ( lp → lγp) is an incoming lepton

interacting with a quark in the proton via a virtual photon. The scattered lepton

then leaves the interaction along with a real photon and the recoiling proton. In ad-

dition to the DVCS process there is the competing Bethe-Heitler process, which has

the same initial and final state as DVCS [26]. These two processes are experimen-

tally indistinguishable so their scattering amplitudes interfere. DVCS information

can be accessed using this interference term. DVCS results from HERMES are ob-

tained from the asymmetrical distribution of the real photon around the azimuthal

angle φ, which is defined as the angle between the lepton-nucleon scattering plane

and the real photon production plane. DVCS results can be accessed directly from

the cross section at some experiments, however, this is not the case at HERMES due

to the fact that precise measurements of the luminosity were not available. Using

asymmetry measurements also allows systematic effects such as acceptance to be

removed as the ratio of the cross sections approximately cancel these effects.

The two asymmetries analysed in this thesis are the Beam Charge Asymme-

try (BCA) and the Beam Helicity Asymmetry (BHA). The BCA and BHA are the

asymmetries of DVCS events with different charge and helicity states respectively.

These asymmetries are extracted using two different methods. The Beam Charge

Asymmetry (BCA) is extracted simultaneously with the Beam Helicity Asymmetry

(BHA) from DVCS event data and the single charge BHA is also extracted sepa-

rately. The Fourier coefficients of the BHA and BCA amplitudes relate to Compton

Form Factors (CFFs), convolutions of GPDs with hard scattering kernels. The lead-

ing terms of the BCA and BHA relate to the real and imaginary parts of CFF H
respectively allowing access to GPD H.

2.2 Generalised Parton Distributions

This section describes the kinematic variables used to describe GPDs and introduces

models developed to parametrise GPDs. The observables in the analysis presented

in this thesis allow access to GPD H. This GPD, therefore, is the main focus of this

section.

August 6, 2010



2.2. Generalised Parton Distributions 8

2.2.1 Kinematic Variables Associated with GPDs

Exclusive electroproduction of photons off an unpolarised nucleon target can be

described as

l(k) +N(P)→ l(k′) +N(P’) + γ(q’) (2.1)

where k (k’) and P (P’) denote the four momenta of the incoming (outgoing) lepton

and the initial (final) proton. The four momenta of the virtual photon is denoted

q’ and the quantity Q2 can be written as

q2 = −Q2 ≡ (k− k’)2 < 0. (2.2)

The energy loss ν of the scattered lepton is expressed as

ν ≡ P · q
M

(2.3)

where M is the rest mass of the nucleon target. The q2 and ν terms are Lorentz

invariant. For a fixed target experiment such as HERMES in which the nucleon

target is at rest and the electron beam is considered to have negligible mass, these

quantities can be written in the laboratory reference frame as

Q2 ∼= 4EE ′sin2

(
θe
2

)
(2.4)

and

ν ∼= E − E ′ (2.5)

where E (E ′) are the energies of the incoming (outgoing) lepton respectively, θe

is the polar angle of the lepton with respect to the beam direction. Two other

quantities that are introduced to describe the process are expressed

xB ≡ Q2

2P · q
∼= Q2

2Mν
, (2.6)

and

y ≡ P · q
P · k

∼= ν

E
. (2.7)

In the DIS case xB can be interpreted as the four momentum fraction of the nucleon

that is carried by the struck quark. The same xB variable is used to describe GPDs.

The variable y is the fraction of the energy lost by the lepton in the interaction. The

August 6, 2010



2.2. Generalised Parton Distributions 9

variables Q2, ν, xB and y are purely inclusive in the fact that they are determined

by the the initial particles. For the DVCS process, two other quantities that are

also important for describing GPDs are introduced

ξ ≡ −q2

q · (P+P’
2

)
≈ xB

2− xB (2.8)

and

t = (P−P′)2. (2.9)

The skewness variable ξ is related to the Bjorken scaling variable xB in the HERMES

kinematic region . The skewness variable can also be interpreted as the momentum

imparted to a quark during the DVCS interaction. The quark leaves the nucleon

with momenta x + ξ and returns to the nucleon with momenta x − ξ, where x

refers to the longitudinal momentum of the struck quark and the overall momentum

transferred is 2ξ. The Mandelstam variable t is the squared momentum transferred

during the interaction process to the target nucleon.

2.2.2 Properties of Generalised Parton Distributions

There are four GPDs at twist-2 level accessible from a spin-1
2

proton in the HERMES

measurement range H, H̃, E and Ẽ. The twist referred to when discussing GPDs is

defined as the dimension of the hadronic tensor minus the spin of the nucleon [27].

For the analysis presented in this thesis it is sufficient to describe the twist term as

a suppression by powers of 1
Q

. The smallest possible twist is twist-2 which has no

suppression by ( 1
Q

), followed by twist-3 which has suppression of ( 1
Q

) and twist-4

objects that have suppression of ( 1
Q

)2. The GPDs discussed in this thesis are assumed

to be at leading twist (twist-2) unless stated to the contrary. The properties of

these GPDs are summarised in Table 2.1. GPDs H and E describe nucleon helicity

conservation and inversion respectively. The distributions H and E are referred to

as unpolarised and H̃ and Ẽ polarised because H and E correspond to the sum over

parton helicities and H̃ and Ẽ to the difference. The GPDs are valid for each quark

flavour q and there exists an equivalent set of GPDs for gluons. There is also an

expanded set of GPDs that describe the spin-1 nucleus [28].
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2.2. Generalised Parton Distributions 10

Nucleon Helicity Conserving Nucleon Helicity Inverting

Unpolarised GPDs H E

Polarised GPDs H̃ Ẽ

Table 2.1: Review of different GPDs at leading twist.

Generalised Parton Distributions (GPDs) reduce to regular PDFs in the forward

limit of t → 0 and ξ → 0 [14,18,29],

Hq(x, 0, 0) = q(x),

H̃q(x, 0, 0) = ∆q(x), (2.10)

where q(x) is the quark density distributions and ∆q(x) is the quark helicity distri-

bution for quark flavour q.

The GPDs E and Ẽ are inaccessible in the forward limit as they do not conserve

nucleon helicity and cannot be related to regular PDFs. The gluon GPDs are anal-

ogous to their quark counterparts in terms of being observable in the forward limit:

Hg(x, ξ, t) and H̃g(x, ξ, t) reduce to the unpolarised and polarised gluon distribu-

tions G(x) and ∆G(x) and Eg and Ẽg are, again, inaccessible in this forward limit

as are the gluon helicity flip GPDs [30]. The gluons and spin-1 GPDs are beyond

the scope of the work presented and are not further detailed.

The first x moments of the GPDs reduce to the elastic form factors of the nucleon

∫ 1

−1

Hq(x, ξ, t)dx = F q
1 (t), (2.11)

∫ 1

−1

Eq(x, ξ, t)dx = F q
2 (t), (2.12)

∫ 1

−1

H̃q(x, ξ, t)dx = Gq
A(t), (2.13)

∫ 1

−1

Ẽq(x, ξ, t)dx = Gq
P (t) (2.14)
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2.2. Generalised Parton Distributions 11

where F q
1 (t) and F q

2 (t) are the elastic Dirac and Pauli form factors respectively

and Gq
A(t), Gq

P (t) are the axial-vector and pseudo-scalar form factors for the quark

flavour q in the nucleon.

The principle aim of the HERMES experiment is the investigation of the spin of

the nucleon. GPDs can access the total angular momentum of quarks in the nucleon

via the Ji relation [4]

Jq = lim
t→0

1

2

∫ 1

−1

x(Hq(x, ξ, t) + Eq(x, ξ, t))dx (2.15)

where Jq is the total angular momentum sum of all quark flavours q and Hq(x, ξ, t)

and Eq(x, ξ, t) are GPDs in the limit t→ 0. The Ji relation holds for gluons equating

the total angular momentum Jg of the gluon’s to the gluon GPDs.

In the Ji decomposition [4, 27] the total angular momentum can be written in

terms of the contributions of the quark spin of the nucleon 1
2
∆Σ and the orbital

angular momentum contribution Lq

Jq =
1

2
∆Σ + Lq. (2.16)

The total angular momentum of the gluons can be expressed in a similar manner

Jg = ∆G+ Lg, (2.17)

where ∆G is the gluon spin of the nucleon and Lg the gluon orbital angular momen-

tum contribution. The most precise measurement of ∆Σ ≈ 0.33 has been determined

from inclusive and semi-inclusive polarised DIS measurements at HERMES [10]. The

angular momentum contribution Lq can, therefore, be determined from Jq and ∆Σ.

At present this method is the only method known to determine the value Lq and this

is one of the important areas of research in the developing field of GPDs. The spin

of the nucleon can be expressed as the sum of the quarks and gluon contributions

1

2
= Jq + Jg. (2.18)

The determination of the value of Jq also gives the total angular momentum of the

gluon’s Jg within the nucleon.
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GPD Models

A non-trivial property of GPDs is the polynomiality of their Mellin moments that

follows from Lorentz invariance. This invariance dictates that the Mellin moments

of GPDs should be maximally of order N + 1 [31]:

∫ 1

−1

dxxNHq(x, ξ) = h
q(N)
0 + h

q(N)
2 ξ2 + .....+ h

q(N)
N+1ξ

N+1 (2.19)

∫ 1

−1

dxxNEq(x, ξ) = e
q(N)
0 + e

q(N)
2 ξ2 + .....+ e

q(N)
N+1ξ

N+1. (2.20)

Due to the time reversal invariance the polynomials contain only the even powers

of ξ. As N + 1 is odd this implies that the highest power of ξ for even N remains

N [32]. This allows for the coefficients of ξ to be related to each other in a non-trivial

way [25]

e
q(N)
N+1 = −hq(N)

N+1. (2.21)

One method of parametrising GPDs while satisfying the polynomiality conditions is

to use the Double Distribution formalism. The t-independent part can be written

as [14,29],

Hq
DD =

∫ 1

1

dβ

∫ 1−|β|

−1+|β|
dαδ(x− β − αξ)F q(β, α) (2.22)

Eq
DD =

∫ 1

1

dβ

∫ 1−|β|

−1+|β|
, dαδ(x− β − αξ)Kq(β, α) (2.23)

where F q(β, α) and Kq(β, α) are the double distributions. The terms β and α are

the equivalent of x and ξ respectively in the Double Distribution notation. The

x and ξ parameters of GPDs are disentangled using the δ functions. The GPDs

obtained from double distributions satisfy the polynomiality conditions but always

lead to e
q(N)
N+1 = h

q(N)
N+1 = 0 i.e. the highest power for ξ is absent for odd N . The

parametrisation was completed by adding the “D-term” as proposed in [33]:

Hq(x, ξ) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|
dαδ(x− β − αξ)F q(β, α) + θ

[
1− x2

ξ2
Dq(

x

ξ
)
]

(2.24)

Eq(x, ξ) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|
dαδ(x− β − αξ)Kq(β, α) + θ

[
1− x2

ξ2
Dq(

x

ξ
)
]

(2.25)
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2.2. Generalised Parton Distributions 13

where Dq(z) is an odd function. The D-term generates the highest power of ξ

−eq(N)
N+1 = h

q(N)
N+1 =

∫ 1

−1

dzzNDq(z). (2.26)

The polarised GPDs H̃
q
(x, ξ) and Ẽ

q
(x, ξ) have similar polynomiality conditions

to the unpolarised GPDs. The difference between H̃
q
(x, ξ) and Ẽ

q
(x, ξ) is that for

polarised GPDs the highest power of the polynomial in ξ for odd (even) N is N − 1

(N). The D-term is not included in case of polarised GPDs as it drops out of the

Ji relation due to the fact that for polarised GPDs H̃q and Ẽq are of the same

magnitude and opposite sign. This is valid for leading twist-2 quark GPDs. There

also exists a number of higher twist quark GPDs that can be expressed in terms

of the leading twist GPDs in the Wandzura-Wilzeck approximation [34, 35]. All of

these are required for a full description of the DVCS process.

2.2.3 The VGG Interpretation of a Double Distribution Model

of GPDs

Several theoretical models have been proposed to describe GPDs with a phenomeno-

logical ansatz in the past decade. The result of these efforts have lead to the

development of two models based on Double Distributions known as the “VGG

model” [23, 25], proposed by Vanderhaeghen, Guichon and Guidal and the Dual

Parametrisation, proposed by Guzey in [36]. The Dual Parametrisation was not

used in this analysis as one of the parameters used in the model calculations were

found to be significantly wrong [37]. The corrected version of this model produced

theory bands that do not describe the experimental result. The theory curves in

this analysis were, therefore, generated using the VGG model and compared to the

experimental results. Only the parametrisation of GPD H(x,ξ,t) is described as this

is the dominant contribution to the observables presented in this analysis, detailed

in Section 2.6.1.

The t-independent part of GPD H(x,ξ,t) can be parametrised using the Double

Distribution and is completed using the D-term. The Double Distribution model

proposed by Radyushkin [24], is

F q(β, α) = h(β, α)q(β) (2.27)
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where q(β) is the forward quark distribution for quark flavour q and h(β, α) is the

profile function. The profile function is parametrised using a one-parameter ansatz

h(β, α) =
Γ(2b+ 2)

22b+1Γ2(b− 1)

[(1− |β|)2 − α2]b

(1− |β|)2b+1
. (2.28)

The parameter b characterises the strength of the GPD on skewness ξ. As the value

of b increases the skewness of the model decreases. This parameter is applied to both

valence (bval) and sea quarks (bsea) and is a free parameter chosen in a reasonable

range [1,∞) (but in practice [1,9]).

The simplest parametrisation of the t dependence of GPD Hq in the small t

region that satisfies the sum rules of Eq 2.11, consists of the factorised ansatz for

the t-dependence

Hu(x, ξ, t) = Hu(x, ξ)F u
1 (t)/2 (2.29)

Hd(x, ξ, t) = Hd(x, ξ)F d
1 (t) (2.30)

Hs(x, ξ, t) = 0 (2.31)

where F u
1 (t) and F d

1 (t) are determined using the parametrisations of the proton and

neutron Pauli and Dirac form factors. The calculations of GPDs using the quark

soliton model [38] show a dependence that is not described well by this factorised

ansatz. The results from this model can be described using a simple Regge motivated

ansatz for Hq(x, ξ = 0, t)

Hq(x, ξ = 0, t) =
1

xα′t
q(x) (2.32)

where α′ can be interpreted as the slope of a Regge trajectory. If this ansatz is used

then the nucleon form factors follow from the sum rule of Eq 2.11

F q
1 (t) =

∫ 1

0

dx
1

xα′t
qval(x).t (2.33)

This gives a satisfactory description of the proton Dirac form factor over the range

0 < −t < 1 GeV2 with α′ = 0.8 GeV−2. There is a more recent ansatz for the t-

dependence which is not presented in this work [39]. The ξ-dependence of the Regge
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type ansatz can be restored by modifying the model for the double distribution

introduced in Eq 2.22

F q(β, α, t) = h(β, α)q(β)
1

|β|α′t . (2.34)

2.2.4 Parametrisation of the D-term

To complete the parametrisation of GPD Hq the D-term has to be specified. The

estimates of the D-term in the chiral quark-soliton model [38] show that Du(z) ≈
Dd(z). The calculations assume that

Dq(z) =
1

Nf

D(z) (2.35)

where Nf is the number of active flavours and D(z) =
∑

qD
q(z) is the flavour singlet

term. The D-term can be expanded using a sum of odd Gegenbauer polynomials

D(z) = (1− z2)[d1C
3/2
1 + d3C

3/2
3 (z) + d5C

3/2
5 (z) + ....]. (2.36)

In principle the D-term also has a scale dependence but this is neglected in this case

as the uncertainties in the modelling of the D-term are larger than the logarithmic

scale dependence. The negative sign of the Gegenbauer coefficients for the D-term

gives a contribution relative to the Double Distribution part to the GPD Hq.

A model of the x and ξ dependence of the parametrisation of GPD Hu(x, ξ, t = 0)

including the double distribution and the D-term is shown in Fig 2.1. Moving along

the lines of constant x illustrates the sensitivity of the GPD to the D-term (increases

relative to the double distribution part with increasing skewness ξ). In the limit at ξ

= 1, the D-term contribution dominates GPD Hq. The D-term as previously stated

drops out of the sum rule of Eq 2.11, hence the t-dependence of the D-term is not

constrained. Due to the lack of further information this t-dependence is factorised

and a dipole is used.
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2.3. Using DVCS to access GPDs 16

Figure 2.1: The x and ξ dependence of GPD Hu(x, ξ, t = 0) for the u quark distri-

bution including the Double Distribution part for bval = bsea = 1 and

the D-term for the VGG model [25].

2.3 Using DVCS to access GPDs

Deeply Virtual Compton Scattering (DVCS) is experimentally the most simple

means by which to access GPDs [40]. A variation of this process called time like

Compton Scattering and Meson production [41] are also used to access GPDs. Hard

exclusive leptoproduction of π+ mesons off a nucleon target can be used to inves-

tigate helicity flip GPDs. These processes are beyond the scope of this work and

as such are not discussed further. The DVCS interaction is related to Deep Inelas-

tic Scattering (DIS) in that it involves the exchange of a virtual photon. In the

DVCS process a virtual photon strikes a quark in the nucleon. The quark leaves
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p p’

e

e’

*γ γ

,t)ξGPDs(x,

ξx+ ξx-

(a) DVCS

p p’

e e’

*γ

γ

p p’

e e’

*γ

γ

(b) Bethe Heitler

Figure 2.2: Left: The DVCS interaction in which an electron/positron interacts

with a quark in the nucleon via a virtual photon. The quark leaves

the nucleon with momentum x + ξ before emitting a real photon and

returning to the nucleon with longitudinal momentum fraction x− ξ.
Right: The Bethe-Heitler interaction which is a competing process to

DVCS with the same initial and final reaction products.

the nucleon with longitudinal momentum fraction x+ ξ emits a real photon and re-

turns to the nucleon with a momentum x− ξ resulting in a longitudinal momentum

fraction change of 2ξ. There is a competing reaction to DVCS called Bethe-Heitler

(BH), an interaction in which the virtual photon interacts with the nucleon and

the real photon comes from the lepton. Both DVCS and BH have the same ini-

tial and final reaction products and the two processes cannot be experimentally

distinguished, and hence they interfere. The BH terms dominate at HERMES and

although these terms, calculable in QED, can be subtracted at the cross section level

from the DVCS cross section the errors involved are large and the result obtained is

worthless. The interference between the scattering amplitudes of the BH and DVCS

process facilitates access to GPDs at HERMES.
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Figure 2.3: The production and scattering planes of the DVCS interaction [42].

The azimuthal angle φ is defined as the angle between the production

and scattering plane of the real and virtual photons respectively. Also

shown is the polar angle θγ∗γ between the two photons.
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2.4 Kinematic Variables of DVCS Events

The DVCS interaction is shown in Fig 2.3, in which an incoming lepton interacts

via a virtual photon with a quark inside the target proton at rest in the lab frame.

The reaction products of this interaction are a scattered lepton, a scattered recoil

proton and a real photon. The interaction is written

e±(k) + P (P)→ e(k’) + P (P’) + γ(q’) (2.37)

where e is the lepton, P the target proton, γ the produced real photon, k (k’) is

the four momentum of incoming (scattered) lepton, P (P’) is the four momentum

of the target (recoiling) proton and q’ is the four momentum of the real photon.

The angle φ shown in Fig 2.3 is defined as the azimuthal angle between the lepton

scattering and photon production planes of the virtual and real photons respectively.

The polar angle θγ∗γ is determined from the angle between the two photons.

2.4.1 Cross Section

In terms of the variables defined in the previous sections, the four fold cross section

for ep→ epγ is
dσ

dxBdyd|t|dφ =
α3xBy

8πQ2
√

1 + ε2
τ

e3

2

(2.38)

in which α is the fine structure constant, e is the elementary charge, τ is the scat-

tering amplitude and

ε = 2xB
MP

Q
(2.39)

where MP is the proton mass [40, 43]. The amplitude τ 2 is given by

τ 2 = |τBH |2 + |τDV CS|2 + I (2.40)

where τDV CS is the DVCS amplitude, τBH is the Beth-Heitler amplitude and the

interference term I is expressed as

I = τDV CSτ
∗
BH + τ ∗DV CSτBH . (2.41)

The contributions |τBH |2, |τDV CS|2 and the interference term I for an unpolarised

target can be Fourier expanded in φ to twist-3 approximation [40]

|τBH |2 =
e6

x2
By

2(1 + ε2)2tP1(φ)P2(φ)

(
cBH0 +

2∑
n=1

cBHn cos(nφ)
)
, (2.42)

August 6, 2010



2.5. Asymmetry Measurements of DVCS 20

|τDV CS|2 =
e6

y2Q2

(
cDV CS0 +

2∑
n=1

cDV CSn cos(nφ) + λsDV CS1 sin(1φ)
)
, (2.43)

I =
ηe6

xBy2tP1(φ)P2(φ)

(
cI0 +

3∑
n=1

cIncos(nφ) + λ

2∑
n=1

sInsin(nφ)
)

(2.44)

where η denotes the charge of the incoming lepton in the DVCS/BH interaction,

±λ denotes the polarisation of the beam, cBHn , cDV CSn , sDV CS1 , cIn and sIn are Fourier

coefficients detailed in Section 2.6 and P1,2(φ) are the lepton propagators

Q2P1 ≡ (k − q′)2 (2.45)

and

Q2P2 ≡ [k − (p′ − p))]2. (2.46)

The coefficients cI1, s
I
1 and cDV CS0 arise at the twist-2 level and are dependent on

GPDs.

2.5 Asymmetry Measurements of DVCS

In order to measure the absolute DVCS cross section precise knowledge of the lu-

minosity of the experiment is required. It is, therefore, experimentally simpler to

analyse asymmetries, the ratio of different cross sections, when exact measurements

of the luminosity are not available. By using the ratio of different cross sections the

acceptance effects approximately cancel. At HERMES kinematics the Bethe-Heitler

interaction dominates the DVCS process.

A number of asymmetry measurements have been published by the HERMES

collaboration that make use of the different polarisation states of the beam and tar-

get, the positron and electron beam particles and different target gases. HERMES

has produced asymmetry results of the Beam Helicity Asymmetry, ALU , using the

positive and negative beam polarisation states and an unpolarised target [19], the

Beam Charge Asymmetry, AC , using electrons and positrons and an unpolarised tar-

get, [44], the Transverse Target Spin Asymmetry, AUT , using an unpolarised beam

and a transversely polarised target [45], the Longitudinal Target Spin Asymmetry,
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AUL, using an unpolarised beam and a longitudinally polarised target and the Lon-

gitudinal Double Spin Asymmetry ALL using both a longitudinally polarised beam

and target [46]. ALU , AC , AUL and ALL results have been published by the HER-

MES using a hydrogen and in the case of ALU and AC using a deuterium target [47].

HERMES has also investigated the dependence of ALU on the nuclear mass of the

target [20]. The work presented in this thesis details the combined extraction of ALU

and AC from data taken at HERMES during 2006-2007 period with an unpolarised

hydrogen target. The asymmetries presented in this thesis are extracted from the

largest DVCS event sample that is available at HERMES.

2.5.1 Single Charge Beam Helicity Asymmetry

Two different extraction techniques were used in this analysis. The first extracts

only the Beam Helicity Asymmetry (BHA) from proton data with a single charge

and two beam polarisation states. The second is a combined extraction of BHA

and Beam Charge Asymmetry (BCA) using data with both two beam polarisation

states and with positively and negatively charged leptons. The cross section which is

independent of beam helicity, having an unpolarised beam (U), and an unpolarised

target (U) with a constant charge can be expressed as [40]

σUU =
α3

8πQ2xBy(1− ε2)5/2tP1(φ)P2(φ)

[
cBH0 +

2∑
n=1

cBHn cos(nφ)

]

+
α3xB

8πyQ4
√

1 + ε2

[
cDV CS0 +

2∑
n=1

cDV CSn cos(nφ)

]

−η α3

8πQ2
√

1 + ε2y2tP1(φ)P2(φ)

[
cI0 +

3∑
n=1

cIncos(nφ)

]
. (2.47)

The cross section dependent on the longitudinally polarised beam (L) and the

unpolarised target (U) can be expressed as

σLU =
α3

8πQ2xBy(1− ε2)5/2tP1(φ)P2(φ)

[
cBH0 +

2∑
n=1

cBHn cos(nφ)

]

+
α3xB

8πyQ4
√

1 + ε2

[
cDV CS0 +

2∑
n=1

cDV CSn cos(nφ)− λsDV CS1 sin(φ)

]

−η α3

8πQ2
√

1 + ε2y2tP1(φ)P2(φ)

[
cI0 +

3∑
n=1

cIncos(nφ) + λ
2∑

n=1

sInsin(nφ)

]
. (2.48)
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The cross section σLU can, therefore be expressed as

σLU = σUU

1 + λ

K1
sDV CS1 sin(φ)

σUU
− ηK2

2∑
n=1

sInsin(nφ)

σUU


 (2.49)

where λ and η represent the polarisation and charge state respectively and K1 and

K2 are kinematic factors expressed in equation 2.49. The beam helicity asymmetry

is defined as

AηLU(φ) =
dσ(−→e , φ)− dσ(←−e , φ)

dσ(−→e , φ) + dσ(←−e , φ)
(2.50)

where −→e and←−e are the positive and negative beam helicity states respectively. The

beam helicity asymmetry for a constant beam charge η using the cross section, σLU

can be written as

AηLU =

sDV CS1 sin(φ)− η 1

Z

xB
y
sI1sin(φ) + sI2sin(2φ)

1

Z

cBH0 +
2∑

n=1

cncos(nφ)

t(1 + ε2)2
+ cDV CS0 +

2∑
n=1

cDV CSn cos(nφ)− η 1

Z
cI0 +

3∑
n=1

cIncos(nφ)

(2.51)

where

Z =
x2
BP1(φ)P2(φ)

Q2
. (2.52)

Analysis of the above equation for ALU reveals that the asymmetry contains both

beam charge dependent interference terms and DVCS terms which are independent

of beam charge. BH is the dominant factor in the denominator of AηLU with cBH0

being the leading term [26]. The prevalent term in the numerator is the interference

term with the sI1 leading twist term dominating over the twist-3 sI2 term suppressed

by a factor of ∼ 1
Q

. The asymmetry value can therefore be approximated as

AηLU ≈ η
xB
y

sI1
cBH0

sin(φ). (2.53)

Using both equation 2.51 for ALU and the helicity dependent cross section σLU

can be expressed as

σLU ∼= σUU [1 + λAηLU ]. (2.54)
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2.5.2 Beam Helicity Asymmetry Arising From Both the In-

terference Term and DVCS Squared Term of the Over-

all Cross Section

The previous section detailed the calculation of the Beam Helicity Asymmetry

(BHA) which was independent of polarisation and dependent on a single beam

charge only. The charge independent BHA and the Beam Charge Asymmetry are

simultaneously extracted. The BHA is induced by the beam helicity dependence of

the pure DVCS cross section and the Interference term. The BHA arising from both

of these terms are accessible using the simultaneous extraction method. The charge

independent BHA AILU and ADV CSLU , for a longitudinally polarised beam (L) and an

unpolarised target (U), are defined as:

ALU(φ) =
dσ(
−→
e+, φ)− dσ(

←−
e+, φ)− dσ(

−→
e−, φ) + dσ(

←−
e−, φ)

dσ(
−→
e+, φ)− dσ(

←−
e+, φ)− dσ(

−→
e−, φ) + dσ(

←−
e−, φ)

, (2.55)

where −→e (←−e ) refer to the positive (negative) beam helicity states and ± to the

beam charge.

The BHA is calculated using the cross section σLU defined in 2.49.Using this

information the BHA induced by the interference terms and DVCS squared term

can be expressed as [40]

AILU =

xB
y

2∑
n=1

sInsin(nφ)

2∑
n=1

cBHn cos(nφ)

(1 + ε2)2
+ Z

2∑
n=1

cDV CSn cos(nφ),

(2.56)

ADV CSLU =
ZsDV CS1 sin(φ)

2∑
n=1

cBHn cos(nφ)

(1 + ε2)2
+ Z

2∑
n=1

cDV CSn cos(nφ).

(2.57)

As discussed in the previous section the term cBH0 dominates in the denominator

of the asymmetries. In the numerator the sI1 term dominates over sI2. The two

asymmetries can be approximated as

AILU ≈ −
xB
y

sI1
cBH0

sin(φ). (2.58)
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ADV CSLU ≈ x2
BtP1(φ)P2(φ)

Q2

sDV CS1

cBH0

sin(φ), (2.59)

Comparing the BHA that is dependent on a specific beam charge η in Eq 2.53 and

that arising from the interference term assuming that AILU >> ADV CSLU

AηLU ≈ ηAILU (2.60)

where η = ± 1

2.5.3 Beam Charge Asymmetry

The BCA is induced by the beam charge dependence of the DVCS/BH Interference

and is calculated using the difference between this cross section using both charge

states and is defined as

AC(φ) =
dσ(e+, φ)− dσ(e−, φ)

dσ(e+, φ)− dσ(e−, φ)
(2.61)

where e+ and e− are the positive and negative charged beam respectively. Using the

cross section σLU , AC can be defined as

AC =

xB
y

3∑
n=1

cIncos(nφ)

2∑
n=1

cBHn cos(nφ)

(1 + ε2)2
+ Z

2∑
n=1

cDV CSn cos(nφ),

(2.62)

As in the previous section describing the BHA, the cBH0 term dominates in the

denominator and the cI1 term dominates over cI0,2,3 in the numerator. The cI2,3 terms

are of higher twist and the cI0 term is smaller and has the opposite sign of the cI1

term. The BCA can be expressed as

AC ≈ −xB
y

cI1
cBH0

cos(φ), (2.63)

having a cosine dependence.
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The cross section which is independent of both the beam helicity and charge is

defined

σUU =
α3

8πQ2xBy(1 + ε2)5/2tP1(φ)P2(φ)

[
cBH0 +

2∑
n=1

cBHn cos(nφ)

]

+
α3xB

8πQ4
√

1 + ε2

[
cDV CS0 +

2∑
n=1

cDV CSn cos(nφ)

]
. (2.64)

Using the above equation for σUU the cross section σLU can be expressed as

σLU = σUU

[
1 + λK1

sDV CS1 sin(φ)

σUU
− ηK2

cI0cos(φ) +
∑3

n=1 c
I
ncos(nφ)

σUU
− ηλK2

∑2
n=1 s

I
nsin(nφ)

σUU

]
.

(2.65)

This can be further simplified using the the asymmetries AC , A
DV CS
LU and AILU to

σLU ∼= σUU [1 + λADV CSLU + ηAC + ηλAILU ]. (2.66)

2.6 Compton Form Factors, Fourier Coefficients

and GPDs

2.6.1 Relation of Fourier Coefficients to GPDs

The Fourier coefficients cn and sn from the DVCS squared and interference term have

a bilinear and linear dependence on the Compton Form Factors (CFFs) respectively.

The CFFs are convolutions of GPDs with hard scattering kernels C± that can be

expressed as (H
E
)

(ξ, t) =

∫ 1

−1

C−(x, ξ)dx

(
H

E

)
(x, ξ, t) (2.67)

(H̃
Ẽ
)

(ξ, t) =

∫ 1

−1

C+(x, ξ)dx

(
H̃

Ẽ

)
(x, ξ, t) (2.68)

where the right hand side of each equation expands to

C±F =
∑

q=u,d,s

C±e2
qFq, (2.69)

for each GPD F and quark flavour q. The scattering kernels C± can be expressed

as

C± =
1

x− ξ − iε ±
1

1 + ξ − iε +O(α) (2.70)
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where ε is a non-zero mathematical term that allows C± to exist when the values

of x = ξ. The imaginary terms i allow the CFF itself to be split into its real and

imaginary parts

<(F) = P

∫ 1

−1

dx

(
F

x− ξ ±
F

x+ ξ

)
,

=(F) = F (x, ξ)± F (x,−ξ) (2.71)

where P denotes Cauchy’s principle value and terms of O(x) are ignored.

The DVCS observables at HERMES can be written in terms of the real and

imaginary parts of the CFFs. The observable relating to the real part of the CFF

can access only an integral value of the GPDs at a given ξ. An observable relating

to the imaginary part of a CFF can access only the GPD along the line x = ±ξ, as

shown in Fig 2.1.

The leading twist (twist-2) amplitude for the interference term which dominates

at the HERMES kinematics on an unpolarised proton target can be written as [40]

CI
unp = F1H +

xB
2− xB (F1 + F2)H̃ − ∆2

4M2
F2E . (2.72)

where F1 and F2 are the Dirac and Pauli form factors of the nucleon. CI
unp is

dependent on the Compton Form Factors H, H̃ and E . These relate to the three

GPDs that can be accessed from a hydrogen target H, H̃ and E At HERMES

kinematics (xB and |t| of order 0.1) the contributions of the CFFs H̃ and Ẽ can be

neglected with respect to the CFF H [19]. Hence, to first approximation CI
unp is

dependent only on CFF H and, therefore, GPD H.

2.6.2 Amplitudes that Comprise the Beam Helicity and Beam

Charge Asymmetries

The Fourier coefficients of the BHA and BCA can be related to the asymmetry

amplitudes. The Fourier coefficients of the BHA can be related to the interference

term [40]

sI1,unp = 8Kλy(2− y)ImCIunp(F), (2.73)
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sI2,unp =
16K2

2− xB (λy)ImCIunp(F eff ), (2.74)

and the squared DVCS term

cDV CS1,unp =
8K

2− xB (2− y)ReCDV CSunp (F eff ,F), (2.75)

sDV CS1,unp =
8K

2− xB (−λy)ImCDV CSunp (F eff ,F), (2.76)

cDV CS2,unp = − 4Q2K2

M2(2− xB)
ReCDV CST,unp (FT ,F∗), (2.77)

c0,unp = 2(2− 2y + y2)CDV CSunp (F ,F∗). (2.78)

In a similar manner the Fourier coefficients of the BCA can be related to amplitudes

cI0,unp = −8(2− y)Re{(2− y)2

1− y K2CIunp(F) +
∆2

Q2
(1− y)(2− xB)(CIunp + ∆CIunp)(F)},

(2.79)

cI1,unp = −8K(−2 + 2y + y2)ReCIunp(F), (2.80)

cI2,unp = − 16K2

2− xB (2− y)ReCIunp(F eff ), (2.81)

cI3,unp = − 8Q2K3

M2(2− xB)2
ReCIT,unp(FT ), (2.82)

where λ is the beam polarisation state. sDV CS1,unp , sI1,unp and sI2,unp are polarisation

dependent. The asymmetry amplitudes that can be extracted from an unpolarised

proton target and the related Fourier coefficient, twist-level and Compton Form

Factors are summarised in Table 2.2. Twist-2 terms have the least amount of sup-

pression. The amplitudes shown contain GPD information accessible from the CFF

terms, additional amplitudes are extracted from the data as a consistency check

but these are not related to GPDs and as such should have a zero amplitude. The

asymmetry amplitudes from the squared DVCS term that give information on the
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imaginary part of F and F∗, the complex conjugate of F are suppressed as are

the sI2,unp, c
I
0,unp, c

I
2,unp and cI3,unp amplitudes from the interference term. The cI3,unp

asymmetry amplitude relates to CIT,unp and involves gluon transversity. The signif-

icant, leading twist, amplitudes are cI1,unp and sI1,unp that both give information on

CFF H at HERMES kinematics. Using CI
unp the sI1,unp and cI1,unp amplitudes can

access information on the real and imaginary parts of the CFF H.

Asymmetry Amplitude Fourier Coefficient CFF Dependence Twist Level

A
sin(φ)
LU,DV CS sDV CS1,unp ImCDV CSunp 3

A
sin(φ)
LU,I sI1,unp ImCIunp 2

A
sin(2φ)
LU,I sI2,unp ImCIunp 3

A
cos(0φ)
C cI0,unp ReCIunp 2

A
cos(φ)
C cI1,unp ReCIunp 2

A
cos(2φ)
C cI2,unp ReCIunp 3

A
cos(3φ)
C cI3,unp ReCIT,unp 4

Table 2.2: Table showing each asymmetry amplitude that can be extracted from

the available data set, the related Fourier coefficient, twist level and the

Compton Form Factor Dependence (CFF).

The analysis of DVCS on an unpolarised hydrogen target at HERMES is pre-

sented in this thesis. The method used to extract the asymmetry measurements

from experimental data is outlined in Chapter 5. The results of the BHA and BCA

extracted separately from data taken during 2006-2007 and 1996-2007, the entire

HERMES data set, are detailed in Chapter 6. The sinnφ and cosnφ amplitudes

extracted will be compared to the theoretical predictions described in this chapter.

The asymmetry results will be related to CFFs and GPDs.
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Chapter 3

HERMES Experiment

The HERMES experiment was situated in the East section of the HERA storage ring

at the Deutsche Elektronen Synchrotron in Hamburg, Germany. It was proposed

during the construction of the HERA ring to investigate nucleon spin. Construction

of HERMES began in 1993 and data taking commenced in 1995 [48]. During the

lifetime of the experiment several upgrades were made. The luminosity upgrade took

place during the shut-down period in 2001 and in 2005 the experiment was upgraded

with a new detector designed to measure scattered protons from the DVCS reaction

[21]. These upgrades were implemented due to the expanding physics program at

HERMES which reflected developments in the understanding of DIS interactions and

nucleon structure. The data presented in this thesis was taken using a hydrogen gas

target which was available in every data taking year during the lifetime of HERMES

with the exception of 1999. The final data taken with the HERMES experiment was

in 2007 which coincided with the shut-down of the HERA storage ring.

The HERA storage ring consists of two concentric beams with a circumference

of 6.3 km with four experimental halls having access to the ring. HERMES was

constructed in the East Hall of the HERA ring. The H1, HERA-B and ZEUS

experiments were situated in the North, West and South Halls respectively. took

data during the entire lifetime of the HERA ring from 1992 until 2007 while HERA-

B took data for three years commencing in 2000 and ending in 2003. The HERA ring

has two beams; a proton beam of 920 GeV energy and an electron / positron beam

of 27.6 GeV. ZEUS and H1 were collider experiments that used both of these beams
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Figure 3.1: Diagram of the proton and lepton beams as they interact with the

HERMES, H1, HERA-B and ZEUS experiments on the HERA ring

[49]. Also shown are the polarimeters and beam spin rotators
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while HERMES and HERA-B were fixed target experiments that used only one of

the beams, the proton in the case of HERA-B and the lepton beam in HERMES.

HERMES utilised both the electron and positron beams allowing a number of DVCS

asymmetry measurements to be made. The majority of the data taken is with the

positron beam and includes data taking years 1995, 1996, 1997, 2000, 2002, 2003,

2004, 2006 and 2007. Electron beam data was taken in 1998, 2005 and 2006.

The electron/positron beam was first accelerated at DESY by the Linac II linear

accelerator to 450 MeV. The beam is further accelerated to 7.5 GeV in the DESY-II

storage ring. The final pre-acceleration stage occurs in the PETRA storage ring, to

12 GeV. The beam is then provided to HERA and accelerated to the final operation

energy of 27.56 GeV.

The HERA beam was initially unpolarised. Due to the magnetic dipole fields

in the arcs of the high energy storage rings the helicity of leptons can flip by the

emission of synchrotron radiation described by the Sokolov-Ternov effect [50]. This

results in a transversely polarised beam which is polarised parallel ↑ and antiparallel

↓ for positrons and electrons with respect to the direction of the magnetic field of

the HERA spectrometer magnets, as shown in Fig 3.1.

Longitudinal beam polarisation is necessary for high energy polarised electron

scattering experiments due to the fact that in scattering with a transversely polarised

beam, all spin effects are suppressed byme/E, whereme is the electron mass and E is

the electron energy. The beam polarisation is obtained by a pair of spin rotators [51]

located up- and downstream of the HERMES experiment in the HERA East straight

section, consisting of interleaved horizontal and vertical bending magnets. The first

spin rotator rotates the spins into the beam direction and the second one turns

them back into the vertical direction for transit before the beam enters the next

section. These beam spin rotators were installed at the H1 and ZEUS experiments

also in 2001 during the high luminosity upgrade. By moving the magnets of the

spin rotators it is possible to reverse the spin of the beam polarisation after every

fill in principle. In practice, this was not the case and the polarisation direction was

typically altered every few months.
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The beam polarisation is defined as:

P =
N ↑ −N ↓
N ↑ +N ↓ (3.1)

where N ↑ (N ↓) denotes the number of electrons/positrons with polarisation ↑ (↓).
The polarisation increases with time (t) with the dependence given by:

P = PST ·
(

1− exp{− t

τST
}
)

(3.2)

where PST is the theoretical maximum polarisation and τST the characteristic rise

time of ∼40 minutes and depends on PST , the beam energy and the bending ra-

dius in the magnetic field. The theoretical maximum of 92% polarisation cannot be

reached at HERMES. This is due to a number of limiting factors; the misalignment

of the magnetic field which guides the bending of the beam in the ring, interactions

between the lepton and proton beams in the storage ring, proton-lepton interactions

that occur in collisions at the ZEUS and H1 experiments, the lepton beam interact-

ing with the HERMES target gas and energy loss from the emission of synchrotron

radiation as the beam travels around the ring. The maximum polarisation at HER-

MES of 60% was achieved during the first data taking period after a rise time of 45

minutes. During a shut-down period in 2001 HERA was upgraded to include other

rotator magnets which provided a longitudinally polarised beam to the two collider

experiments, in addition to the existing longitudinal beam at HERMES. This re-

sulted in a decrease in the amount of time the beam is in the transverse as opposed

to the longitudinally polarised state. Therefore, the rise time decreased slightly and

the average polarisation was considerably lower at 35% and decreased still further

in 2005 when the electron beam was used to 25%. The polarisation values increased

during the data taking years 2006 and 2007 to 40%. Precise alignment of the ma-

chine quadrupoles and fine tuning of the orbit parameters are mandatory to achieve

high polarisation. As this is difficult to control, continuous monitoring of the beam

polarisation was required.
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3.1 HERA Polarimeters

The polarisation of the electron/positron beam at HERMES was measured simulta-

neously by a transverse and a longitudinal polarimeter. The transverse polarimeter

was isolated in the HERA West section and the longitudinal polarimeter was lo-

cated in the HERA East section downstream of the HERMES experiment. Both of

these polarimeters utilise the spin dependent cross section for Compton scattering

of circularly polarised laser photons on polarised electrons.

3.1.1 The Transverse Polarimeter

Transverse beam polarisation leads to a small up-down spatial asymmetry of the

back-scattered photons with respect to the orbital plane of the electrons for the two

helicity states of the laser beam. The Transverse Polarimeter (TPOL) [52] used

the interaction of circularly polarised photons on the y-polarised electron/positron

beam, the transverse direction of the polarised beam. Back scattered photons were

detected in the calorimeter. The polarisation of the incident photons was flipped at

∼83 Hz, creating an asymmetry in the y-distribution of the detected photons. This

asymmetrical distribution is given by

∆y (Eγ) =
1

2

(〈y (Eγ)〉+
)

= ∆S3 · Py · Πy (Ey) (3.3)

and is dependent upon the energy of the photons Eγ, the y polarisation (Pγ) of the

electron/positron beam and the mean magnitude of the circular polarisation ∆S3.

The relationship to Eγ is given by a second function Πy, the analysing power of

the polarimeter. A measurement of the beam polarisation to an absolute statistical

accuracy of less than 1% requires typically one minute, the fractional systematic

uncertainty of the TPOL is 3.4%.

3.1.2 The Longitudinal Polarimeter

Longitudinal polarisation modifies the energy dependence of the cross section. The

Longitudinal Polarimeter (LPOL) [53] uses circularly polarised photons, similarly

to the TPOL. The longitudinal polarimeter measures an energy asymmetry by mea-
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suring the energy deposition of the photons in the laser produced photons. The

LPOL operated in multi photon mode measuring the total energy lost by around

1000 backscattered photons per laser pulse allowing the individual measurement of

a particular pulse. It measures an asymmetry

A (∆S3, PZ) = ∆S3 · PZ · Π (3.4)

where the analysing power Π is a function which relates the longitudinal polarisation

PZ to the polar scattering angle of the photon detected in the calorimeter and ∆S3

is again the mean magnitude of the circular polarisation of the incident photon. The

fractional uncertainty of the LPOL is 1.6%.

3.2 The HERMES Gas Target

The unique part of the HERMES experimental set up was the polarised gas target

[54]. The gas was stored in a custom designed storage cell which was filled with a

number of target gases including hydrogen and deuterium as well as heavier gaseous

targets like Xenon. For the purposes of the analysis presented in this thesis a

hydrogen target was used, therefore the hydrogen gas target will be referred to as

the target unless stated to the contrary.

HERMES was part of a storage ring and, therefore it was necessary that the

HERMES target could be used without negatively impacting upon the other ex-

periments H1 and ZEUS by degrading the beam significantly. The usage of a gas

target instead of a liquid or a solid also removes impurities that would be present

in these materials and, therefore, reduces the background signal from unpolarised

nucleons in the target. The density could be altered during the operation of the

experiment and was increased to allow high density data taking as the beam current

decayed over the period of a fill, increasing the reaction rate. Throughout the 06/07

data taking period this technique was used to substantially increase the number of

interactions.
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3.2.1 Unpolarised Gas Feed System

There were two systems used to inject the gas into the target cell at HERMES. These

were the Atomic Beam Source (ABS) [55] and the Unpolarised Gas Feed System

(UGFS) [56], which were used to provide a polarised and unpolarised gas target

respectively. The analysis presented in this thesis used a polarised and unpolarised

hydrogen target.

The UGFS allowed the selection of the target gas type and density as required.

Throughout the lifetime of the experiment unpolarised hydrogen, deuterium, nitro-

gen, neon, krypton and xenon were used. The density of the target was limited by

the lifetime of the electron/positron beam, which under normal operating conditions

was more than 10 hours. The total lifetime τ can be expressed as

1

τ
=

1

τHERMES

+
1

τHERA
. (3.5)

During normal operation τHERMES had to be less than 45 hours, with a correspond-

ing areal target density of 0.162 × 1015 nucleons/cm2. At the time of injection the

electron beam current was typically around 35 mA and this decreased during the

data taking period, known as a “fill”. After the beam current had fallen to 13 mA

the density of the target was increased to 0.313 × 1016 nucleons/cm2, allowing a pe-

riod of high density data towards the end of a fill, resulting in a HERMES lifetime

of 2 hours. A large quantity of high quality data was taken during this period due

to the increase in luminosity and the decrease in the background contaminants. The

DAQ system had a maximum trigger rate of 500 Hz as increasing the target density

to achieve a higher frequency of data taking would have caused a reduction in the

beam lifetime. Another consequence of increasing the target density would be an

increase in the number of background Mφller electrons that would have led to an

increase of the DAQ dead time.

3.2.2 The Target Cell

The target cell was designed to allow the greatest number of interactions possible

between the circulating electron/positron beam and the gas target [57]. The target

atoms interacted with the side walls of the cell before escaping the cell through the
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Figure 3.2: Diagram of the HERMES gas target storage cell [58]. The target gas

is injected into the target cell. The target gas escapes through the

ends of the cell before being removed by the pump system.

end points, thus increasing the chance of an interaction with the beam. The gas

atoms were injected into the cell and eventually diffused into the storage ring where

they were removed by a high powered pumping system, to ensure the high vacuum

of the beam pipe was maintained.

The target cell was constructed using 75µm thick aluminium of 99.5% purity.

The walls were as thin as possible to reduce bremsstrahlung, multiple scattering

and energy straggling of particles passing through them. The cell used for the

longitudinally polarised target at HERMES from 1995-2002 was 400 mm in length,

with an elliptical cross section to match the HERA electron beam shape, 29.0 mm

wide and 9.8 mm high. For data taking with a transversely polarised beam between

2002 and 2005 these dimensions were reduced to 21.0 mm and 9.1 mm respectively

to increase the target density. The final target cell used from 2006-2007 had the

same width and height as the previous version but the length had to be reduced to

150 mm to accommodate the Recoil Detector.

A system of collimators in front of the target shielded the cell from synchrotron

production from the electron/positron beam. The cell was connected to the beam

pipe to minimise radio frequency excitations induced by the bunch structure of the

beam at discontinuities of the beam pipe. Sharp steps in the beam line profile were
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also minimised by the introduction of a metal mesh, mounted both upstream and

downstream of the target providing a smooth transition from the elliptical cell cross

section to the circular beam pipe.

3.3 The HERMES Spectrometer

The HERMES spectrometer [59] is shown in Fig 3.3. It was a forward spectrome-

ter with a dipole magnet above and below the electron/positron and proton beam

pipes, providing an integrated field of 1.5 T. The magnet was divided into two iden-

tical sections by a horizontal septum plate that shielded the electron/positron and

proton beams from the spectrometer’s magnetic field. The spectrometer was con-

structed as two identical halves mounted above and below the beam pipes. Scattered

electrons/positrons and hadrons produced in the inelastic reactions were identified

within an angular acceptance ± 170 mrad horizontally and 40 - 140 mrad vertically.

The spectrometer provided Particle Identification (PID) and track reconstruction

capability for particles from interactions of the electron/positron beam and the tar-

get.

For tracking in each spectrometer half several tracking chambers (microstrip-

gas counters, multiwire proportional chambers and drift chambers) situated in front

of, inside and behind the magnet were used. The scattered lepton of the physics

process of interest must have been detected in both the front and rear regions of

the spectrometer if it was to be used in the data to be analysed. The region before

the magnet contained the Drift Vertex Chamber (DVC) and the Front Chambers

(FCs), the region behind contained the Back Chambers (BCs). The Multi-Wire

Proportional Chambers were inside the magnet.

3.3.1 Drift Chambers

The Drift Chambers were used to measure where a charged particle crossed a virtual

plane [61]. For this purpose thin wires were fixed in a volume filled with gas in a

way that the wires form cells.

Inside these cells a charged particle traversed the volume ionising the gas. Due
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to the electrical potentials applied to the wires the electrons drifted to the sense

wires, the connected electronics measured the charge of the signal when it arrived.

The difference between this time and the time when the particle traversed the cell

(measured by other detectors) was used to reconstruct the impact point of the

particle in the chambers mid plane.

All drift chambers were operated with an Ar(90%)/CO2 (5%)/CF4 (5%) gas

mixture which facilitated a high drift velocity and was non-flammable. The readout

of the drift chambers was accomplished by Amplifier-Shaper-Discriminator (ASD)

cards connected to FastBus Multihit Time to Digital Converters (TDC) with a time

resolution of 0.5 ns. The spatial resolution per plane was in the order of 200 - 300

µm.

3.3.2 Multi-Wire Proportional Chambers

The HERMES Multi-Wire Proportional Chambers (MWPC) were constructed with

alternating planes of high voltage wires and sense wires, which were at ground. All

the wires were placed in a special gas environment. When a charged particle passed

through the gas in the chamber, it ionised the gas molecules [62]. The freed electrons

were accelerated towards the sense wire by the electric field, ionising more of the

gas. In this way a cascade of charge, known as a Townsend Avalanche, developed

and was deposited on the sense wires. The signal from the avalanche was read out

using the LeCroy PCOS IV system. The drift chamber gas mixture was optimised

for MWPC operation containing Ar(65%)/CO2 (30%)/CF4 (5%). The MCs provide

a spatial resolution of about 700 µm.

3.4 Track Reconstruction

An efficient reconstruction code (HRC) using a tree-search algorithm [63] was em-

ployed to allow a determination of particle tracks from a given set of detector hits,

which was possible due to the similar layout of each drift chamber. Afterwards each

track was reconstructed under the assumption that front- and back- partial tracks

had to form a continuous curve (forced-bridging). Every possible partial track was
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reconstructed until a unique track is found that bridged the magnet gap. The

DVCS analysis detailed later relies on tracks found in this manner, although HRC

can provided measurements of partial tracks in the spectrometer. The momentum

of a particle was then calculated from its deflection in the magnetic field, which

also provided the particle charge, determined by HRC using a look up table. For

electrons/positrons with momenta between 3.5 and 27 GeV/c, the average angular

resolution is 0.6 - 0.3 mrad and the average momentum resolution ∆p/p was 0.7

- 1.3 % excluding bremsstrahlung tails. The resolution deteriorated when the gas

threshold Cerenkov counter was replaced by a Ring Image Cerenkov Counter (RICH)

which introduced more material into the particle’s path. HRC was expanded as new

detectors were added to the spectrometer over the lifetime of the experiment. Ex-

tensions to the reconstruction software are found in the external software package

eXternal Tracking Code (XTC). A reconstruction algorithm for the Recoil Detector

is investigated in Chapter 4.

In this chapter and throughout this thesis a number of references are made to

the HERMES coordinate system shown in Fig 3.4. This is a right handed coordinate

system in which the z-axis lies along the beam line of the experiment through the

HERMES spectrometer. Also frequently refered to are the polar θ and azimuthal φ

describing the angle between the y-z plane and the x-y plane respectively.

3.4.1 Photon Reconstruction

The above reconstruction method did not apply to uncharged particles, the paths

of which were not bent by the spectrometer magnetic field. In this case photons

were only detected by the calorimeter, and all information on these particles must

come from this source. This caused the energy resolution of untracked particles to

be poorer than that of tracked particles, and consequently in the analysis presented

in this thesis, detailed in chapter 5, a missing mass assumption is made so that a

minimal amount of information about the photon from the calorimeter is used.
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Figure 3.4: Illustration of the HERMES coordinate system [64]. The z axis is in

the same direction as the beam line. The polar θ angle and azimuthal

φ are defined in the y-z and x-y planes respectively.
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3.4.2 Particle Identification Detectors

Particle Identification (PID) at HERMES was implemented using four detectors,

a Transition Radiation Detector (TRD), a Pre Shower detector in front of the

Calorimeter, the Calorimeter and a Cerenkov detector. The first HERMES data

taken from 1995 to 1997 was taken using a Threshold Cherenkov detector, later re-

placed by a dual-radiator Ring Image Cerenkov counter (RICH) [65]. For the DVCS

analysis presented in this thesis the Cerenkov detector was not used, therefore it will

not be further detailed. PID at HERMES is performed using a likelihood technique

that discriminates between leptons and hadrons with a hadron contamination of the

sample in the order of 1 %.

3.4.3 Transition Radiation Detector

The Transition Radiation Detector consisted of 6 modules each containing a radia-

tor with plastic fibres of about 20µm diameter as radiator material and a Xe/CH4

(90:10) filled proportional chamber with vertical wires separated by 1.27 cm. Both

electrons/positrons and hadrons deposited energy in the detector due to the ionisa-

tion of the chamber gas, but only electrons/positrons produced transition radiation

in the HERMES energy range. Combining the information from several modules

and using the truncated mean method an average pion rejection factor greater than

1400 was obtained, for a lepton efficiency of about 90 %.

3.4.4 Calorimeter

The Electromagnetic Calorimeter [66] served many different functions in the HER-

MES experiment. As well as providing PID for hadrons and electrons/positrons, it

provided energy measurements of photons for processes such as DVCS/BH, energy

measurements of electro-produced π0, η and other radiative decays and was used as

part of the DIS event trigger. The calorimeter did not provide high energy mea-

surements of photons, so for DVCS analysis steps are taken to avoid dependence on

these measurements. The calorimeter also provided the only position measurement

of the photon, which otherwise went through the detector untracked.
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Figure 2.16: Schematic diagram of the HERMES electromagnetic calorimeter.

over adjacent cells the measurements are summed over a 3×3 block array with the centre
of the shower in the middle of the block with the most energy.

2.6 The Luminosity Monitor

The luminosity is a characteristic quantity which represents the product of the beam flux
and the surface target density. At HERMES the luminosity is measured by means of a
luminosity monitor [15](figure 2.17). The luminosity monitor consists of a calorimeter made
from 24 radiation hard NaBi(WO4)2 blocks, with each block coupled to a photomultiplier
tube. Since it is not possible to place a detector directly into the beam, the luminosity is
measured indirectly by accessing the rates of Bhabha scattering e+e− → e+e− from the
atomic electrons in the target gas, which is related to the beam luminosity through:

R = Lσ (2.10)

where L, R and σ denote the luminosity, the process rate and the Bhabha cross section
respectively. The luminosity is related to the beam current I and the surface density of
the target ρ through:

L =
Iρ

e
(2.11)

where e is the elementary charge.

16

Figure 3.5: A diagram of the calorimeter [66]. A particle track passed through one

of the calorimeter blocks, causing a shower in neighbouring blocks.
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The calorimeter was constructed from radiation resistant F101 lead glass blocks

with a front area of 9 x 9 cm2, and a length of 50 cm (about 18 radiation lengths).

These are stacked in two 42 x 10 arrays each above and below the beam as shown

in Fig 3.5. As the electromagnetic showers of electrons or positrons passed through

the detector they radiated Cerenkov light. As an incident particle emitted Cerenkov

light it loses energy until the lepton deposits all its energy in the calorimeter block.

By selecting calorimeter blocks of the correct length an electromagnetic shower can

be contained inside the block. At HERMES energies this lead to a ratio of Ecalo/p '
1, where Ecalo is the energy deposition in the calorimeter and p is the momentum

of the electron/positron measured by the tracking detectors. Photomultiplier tubes

(PMTs) were used to detect the Cerenkov light. Hadrons interacted differently

with the calorimeter: energy was lost through ionising atomic collisions and nuclear

interactions only. However, particles could still be produced through these collisions,

including photons and neutral pions. These could create e+e− pairs, leading to an

electromagnetic shower. The process of particle production from hadrons, known as

a hadronic shower, did not begin immediately in the calorimeter and was also not

contained within the length of the calorimeter. These properties, combined with

the loss of neutrons and nuclear binding energy, lead to a ratio of Ecalo/p < 1 for

hadrons, allowing separation of hadrons and electrons/positrons for PID.

3.4.5 Hodoscopes

The scintillator hodoscopes H1 and H2 provided a fast signal that was combined

with the calorimeter to form a trigger. Both counters were composed of 42 vertical

scintillators with a width of 9.3 cm to match the size of the calorimeter. In addition

H2, which had a passive radiator of two radiation wavelengths of lead in front of

it and acted as a pre-shower counter, provided discrimination between electrons

and hadrons. Hadrons did not produce an electromagnetic shower when passing

through the lead layer, thus they produced an amount of light in the H2 hodoscope

different to that of an incident lepton. Part of the light production distribution

of the hadrons and lepton overlapped, shown in Fig 3.6, however, the calorimeter

worked by a similar principle and had better separation in this area.
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Figure 3.6: The distribution of the energy deposited in the preshower detector [58].

The hadron energy is shown in blue and the lepton in yellow. The

overlap region is shown in green.
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3.4.6 Luminosity Monitor

The luminosity of the experiment was measured by detecting elastic scattering of

the beam leptons from electrons of target atoms [67]. The scattered and ejected

electrons are detected on either side of the beamline, 7.2 m downstream of the

centre of the target cell. The calorimeter consisted of NaBi(WO4)2 crystals with a

very high radiation tolerance. Due to the proximity of the detector to the beam

pipe it experienced a high radiation background. To suppress the detection of the

background events, coincident signals above a threshold of 4.5 GeV were required

for both detectors.

3.5 Recoil Detector

The HERMES Recoil Detector [21] was proposed as a final upgrade to the HERMES

experiment in order to obtain a more precise measurement of DVCS asymmetries.

This unique detector permitted the measurement of the recoiling target nucleon al-

lowing for a truly exclusive measurement to be made for the first time at HERMES.

The position of the Recoil Detector within the HERMES spectrometer is shown in

Fig 3.7. For analysing events without using the Recoil Detector the proton was

identified by calculating the missing mass of the desired interaction. For this rea-

son, analyses that were dependent on the HERMES spectrometer only maintained

exclusivity on the data sample by using a defined missing mass range. The main

aim of the Recoil Detector is to improve this overall measurement by establishing

exclusivity at the event level eliminating background events that were included using

the missing mass technique.

Exclusive measurements will greatly improve and enhance the study of DVCS at

HERMES in two ways. The design of the Recoil Detector allowed measurements of

DVCS at low t, increasing the resolution of the experiment and allowing measure-

ments of the t dependence of DVCS asymmetry amplitudes. The Recoil Detector

also allowed for the separation of events where a ∆+ resonance was produced in-

stead of a proton. The ∆ decays into a nucleon and a pion, emitted back to back

in the rest frame of the ∆. These decay products will usually possess a transverse
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Figure 3.8: The HERMES recoil detector showing the target cell, silicon detector,

scintillating fibre tracker and the photon detector, adapted from [68].

momentum component with respect to the momentum of the recoiling proton. This

is a violation of the co-planarity with the reaction plane defined by the momentum

and real photons.

The Recoil Detector was installed at the HERMES experiment during 2005 and

is shown in Fig 3.8. The design of the detector allowed for it to be installed around

the target cell. The HERMES experiment took data with the the Recoil Detec-

tor fully active during 2006 and 2007 [69]. A greater yield of DVCS events was

measured during the recoil data taking years than for all the pre-recoil data taking

years combined due to continuous running with an unpolarised target which has a

greater density than the polarised target. The first data production including recoil

information for data analysis was made available within the collaboration during

2009.
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The HERMES Recoil Detector consisted of three active detectors; a Silicon Strip

Detector (SSD) surrounding the target cell inside the beam vacuum, a Scintillating

Fibre Tracker (SFT), in an inhomogeneous magnetic field of about 1 T, and a Photon

Detector (PD) consisting of several scintillator layers [68]. The PD uses an extra

layer of lead, the cryostat and the return yoke of the magnet as shower material.

The SSD provided momentum information for recoil particles with momenta

below 0.45 GeV/c. As the SSD is located inside the beam vacuum it is possible to

detect momenta as low as 0.135 GeV/c, corresponding to kinetic energies as low as

9 MeV. The SFT detector measured the momentum of recoil protons between 0.25

and 1.40 GeV/c. It also detected pions and provided particle identification (PID)

for the separation of pions and protons. The photon detector was used to identify

neutral pions by detecting photons produced in the π0 → γγ reaction. It also

improved the particle identification in the Recoil Detector acceptance and provided

the possibility of a cosmics trigger for alignment purposes. The exclusivity of a

given event is established in the recoil detector through the positive identification

of the recoil proton, the absence of additional pions and cuts utilising mainly the

transverse-momentum balance that can be established due to the measurement of

the recoiling proton momentum.

3.5.1 The Target Cell for Recoil Detector Operation

A new target cell was installed at the HERMES experiment as part of the Recoil

Detector installation. This target cell differs from the older cell detailed in Fig 3.2.

The cell walls were 75µm thick and had a length of 150 mm, the same length as the

SSD. The target cell was centred at +125 mm in the Z direction of the HERMES

coordinate system, while the previous cell was centred at the 0 mm position in Z.

The cell was elliptical in cross section, with a major (minor) axis of 21 (9) mm.

With knowledge of the density of aluminium (2.17g/cm3), the lowest kinetic energy

of protons that could pass through the target cell walls was ∼ 3 MeV. During the

recoil data taking period the target gas was unpolarised and was injected into the

centre of the cell, after which it dissipated to the outer edges of the cell before being

pumped away. As the target gas was unpolarised, it was no longer necessary to cool
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the gas target with liquid helium to increase the density, therefore a new system that

used water at 8oC was developed. This cooling reduced mechanical stress caused by

temperature gradients and in second order it kept the cell temperature as constant

as possible in order to have a controllable target gas density.

3.5.2 Silicon Strip Detector

The SSD [70] was located inside the scattering chamber within the beam vacuum in

order to detect low momentum recoiling protons that would otherwise be stopped

within the chamber. Momentum determination for low momentum particles is per-

formed using the energy deposition in the silicon layers can measure the momentum

of recoiling protons in the range 135 - 400 MeV/c. This detector also provided two

space points used to plot the direction of the tracked particle. It consisted of 16

double sided silicon sensors designed by Micron Semiconductors, with 128 strips per

side and a strip width of 758µm. The sensors measure 99 mm x 99 mm with a thick-

ness of 300µm and were arranged around the cell in a diamond shape configuration.

Each of the four faces comprised of two layers and each contained two sensors. The

design of the SSD with the kapton flex foils and electronics is shown in Fig 3.9.

The SSD was sensitive to small energy depositions from minimum ionising par-

ticles, which pass through the SSD, and large energy depositions from protons stop-

ping in either silicon layer. To cover the large dynamic range of the expected signals

each sensor strip was connected to a high and low gain readout channel. This allowed

a clear readout of a large range of energy values.

3.5.3 Scintillating Fibre Tracker

The Scintillating Fibre Tracker (SFT), shown in Fig 3.10, was located outside the

scattering chamber and detected charged pions and protons with momenta in the

range of 0.3 to 1.4 GeV/c [71]. The SFT served two primary functions within

the overall operation of the Recoil Detector: to reconstruct the momentum of the

charged particle by bending in the magnetic field and to provide particle identi-

fication (PID) to discriminate between the particles by analysing the amount of
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Figure 3.9: A picture of the silicon strip detector inserted into the vacuum pipe.

Half of the silicon strip detector structure is shown inside the vacuum

chamber. The flex foil readout electronics can be seen on top of the

silicon material, as are the leads that connect to the readout system.
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Figure 3.10: A picture of the scintillating fibre tracker detector barrels [71]. The

output connections to the readout electronics are shown around the

edge of the barrel

scintillation light produced.

The SFT consisted of two concentric barrels of scintillating fibres with an inner

radius of 108 mm and 183 mm respectively and a thickness of 4 mm. Each barrel

contained two sub-barrels, the inner sub barrel with four layers of fibres and outer

sub barrels with two fibre layers. The inner sub-barrel was oriented parallel to the

beam axis, the outer sub-barrel was inclined by 100 in a stereo configuration. This

configuration allowed the determination of a space point of a particle track for each

barrel. The track information from the SFT and the SSD were combined in such a

manner that the path of a particle through the detector can be reconstructed via

the space point information as shown in Fig 3.11. Fibre diameters of 0.5 mm were

chosen for the inner and 1 m for the outer layers to ensure that the resolution of the
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detector matches the smearing of the tracks by multiple scattering.

The azimuthal angle φ and the transverse momentum of a track was resolved

from the two SFT barrels alone. This required the assumption that the track comes

from a primary vertex at the beam position. Tracks from secondary vertices can

only be reconstructed if an additional space point is provided by the SSD. The two

stereo layers allowed the reconstruction of the vertex along the z-axis, track space,

and the determination of the longitudinal component of momentum and the polar

angle θ, the angle between the track and z-axis. The acceptance in θ ranged from

90 degrees down to the acceptance region of the Lambda Wheels installed behind

the Recoil Detector. The small stereo angle of 10 degrees was chosen to minimise

the track ambiguities.

The active length of the detector modules is 280 mm. The modules were glued

together to form a self supporting fibre structure which on both ends is attached

to a supporting ring. The downstream end of the fibre was polished and coated

with a reflecting surface to minimise light losses. To further ensure that light losses

are minimised the SFT barrels were sealed against the scattering chamber and the

Photon Detector. At the upstream end the fibres were bundled over a length of

72 mm upstream of the active area in roads and bent into connectors which attach

the scintillating fibres to clear light guide fibres. The scintillating fibres were read

out by 64-channel multi-anode photomultiplier tubes (PMTs). The 4992 channels

of the SFT were read out by 78 PMTs in total.

3.5.4 Photon Detector

The Photon Detector (PD), shown in 3.12, was designed to eliminate the background

∆+ decays which could not be detected by the SFT and the SSD alone as DVCS

events. The two decay channels of the ∆+ are ∆+ −→ pπ0 and ∆+ −→ nπ+. The π+

can be identified by the SFT and eliminated from the DVCS event sample but the π0

is not and the detected photon can be identified wrongly as a DVCS candidate. The

PD eliminated this source of contamination in the DVCS event sample by detecting

the photons of the decay channel of the π0 which can be of the form π0 −→ γγ or

π0 −→ γe+e−. In order to complete this task the PD was designed to surround the
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Figure 3.11: A particle track passing through both of the scintillating fibre barrels

[71]. The two inner parallel layers and the two outer stereo layers are

shown with respect to the HERMES beam. The outer stereo layers

are at an angle of 100 to the parallel layers.
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Figure 3.12: A picture of the photon detector [71]. The scintillating fibres are

shown, as are the connection fibres to the readout electronics.
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SFT and was located just behind the second SFT barrel and in front of the detector

magnet. The PD was based on a segmented shower detector design. Three layers

of tungsten were used as converters for the photons. These alternate with three

layers of plastic scintillator used as active detector material. The first tungsten

converter layer had a thickness of 6 mm corresponding to two radiation lengths

whereas the other two layers of converter material corresponded to one radiation

length. The scintillating layers were segmented to allow the reconstruction in the

case of two detected photons. The innermost layer is oriented parallel to the beam

axis and consisted of 60 scintillator strips of 2 cm width and 1 cm thickness. The two

outer scintillating layers were inclined by ± 450 with respect to the beam axis thus

enabling a coarse spatial resolution of the point of impact of an impinging particle.

Each stereo layer consisted of 44 scintillator strips of the same cross section as the

innermost layer. A π0 decays into two photons. The neutral pion can, therefore,

be rejected as a DVCS event if one or more of these photons is detected in the PD

along with a proton. Each scintillator was read out via two wavelength shifting

fibres, which were connected to multi-anode PMTs outside the magnetic field of the

recoil magnet.

3.5.5 Superconducting Magnet

A super conducting magnet surrounded the detectors of the Recoil Detector as-

sembly and was of solenoidal configuration. The magnet itself performed some key

functions, firstly it provided a tracking method for particles in the SSD and SFT

via deflection in the magnetic field and it removed Mφller electrons by letting them

spiral forward protecting the SSD from these background electrons. The magnet

consisted of two superconducting Helmholtz coils immersed in liquid Helium bath.

The magnetic field strength was 1 T with the homogeneity of the field greater than

20%. An iron yoke supported the magnet mechanically and attenuated the field on

the outside to a strength of less than 0.002 T at a distance 2 m from the bore.
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Chapter 4

Track Reconstruction Using the

Silicon Strip Detector

The Recoil Detector was installed at HERMES during the HERA shut down period

of 2005. The detector was primarily designed to provide information on recoiling

target protons from the DVCS/BH interaction, see Chapter 2. The three princi-

ple main detectors that comprise the Recoil Detector, the Silicon Strip Detector

(SSD), the Scintillating Fibre Tracker (SFT) and the Photon Detector (PD), and

their functionality are outlined in the previous chapter. In order to obtain useful

information from the Recoil Detector a number of software packages were developed

that processed the readout of the individual detectors in order that the properties of

the recoiling proton can be determined. The software packages for the new detector

had to be integrated with the existing software so that information from both the

spectrometer and the Recoil Detector could be used to identify the resultant parti-

cles of an observed physics event in the most efficient manner. The development of

the software packages began before installation of the Recoil Detector using Monte

Carlo simulations of the detector as test data. These simulations were used to test

the performance of the detector and predict the resolutions that would be achievable

with experimental data. Software development continued at HERMES in tandem

with construction of the detector and continued after data taking ended in July

2007.

The principle aim of the software developed for the Recoil Detector was to recon-
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struct particles. The particle type, momentum and direction of each recoil particle

are determined using the track reconstruction software. The particle momentum al-

lows the energy of the particle to be calculated and this can be used with the energy

conservation of the reaction process to reject DVCS/BH events if the reconstructed

proton energy breaks energy conservation. Identification of pions and photons in the

Recoil Detector allowed pion events to be rejected as contaminants of the DVCS/BH

event sample.

A number of different methods for tracking in the Recoil Detector were developed

separately. This practice used at HERMES, and indeed at many collaborations,

allowed a number of different approaches to be analysed for their efficiency and

accuracy. The final track reconstruction software contains the optimum algorithms

from each of these different tracking methods in order to reconstruct the complete

particle track through all the individual detectors and over the entire momentum

range of recoil particles. The work presented in this thesis details the method

developed for tracking particles using the SSD only, without using the information

from the SFT or PD. The development of this tracking method is crucial for low

energy protons which deposit large amounts of energy in the SSD, many of which

are stopped completely and therefore do not reach the SFT.

4.1 HERMES Reconstruction software

The HERMES Reconstruction software [72] translates signals from the various de-

tectors at HERMES into meaningful information. A Monte Carlo simulation of

the experiment was also developed in order to predict detector response to physical

events. The software has been developed over the entire lifetime of HERMES and

has been expanded to include the Recoil Detector and Lambda Wheels.

4.1.1 ADAMO Database Structure

The HERMES software suite was written using the ADAMO database concept devel-

oped at CERN [73]. ADAMO allowed the data to be stored and managed effectively.

The structure of an ADAMO database is defined in a language called Data Definition

August 6, 2010



4.1. HERMES Reconstruction software 59

Language (DDL). The structural definitions, objects, attributes and their relation-

ships for any given database are contained in the DDL file. An extension package was

written for the HERMES software called Distributed ADAMO Database (DAD) [74].

This allowed the server and client programs to exchange information in the ADAMO

table format, thus allowing the collaboration to use the software in online machines

both in the HERMES experimental hall, the DESY site and at satellite institutions

around the world. The client-server model is used frequently at HERMES in which

a large central computer holds a database centrally and can be accessed remotely by

low-level client programs, providing updated and new information to the database.

4.1.2 DAQ and Slow Control

The Data AcQuisition (DAQ) software processes the direct output of the individual

detectors of the HERMES experiment. The DAQ is based around an event builder.

The program responds to a trigger, see Section 5.2.1, in which the electronic readout

of the detector modules produces a signal, indicating that an “interesting” event has

been registered in the experimental set-up. The readout signals from the individual

modules are combined to produce an event from the raw information. The event

information is stored in two separate locations: the tape which is located in the East

Hall and the tape robot located at the DESY main site.

The event data as well as other important information is stored in the DAQ

database. A number of measurements, known as scaler events, are recorded once

during every ten second period of data taking at HERMES. This ten second time

period is defined at HERMES as a “burst”. An important example of these scaler

quantities is the LUMI monitor, recording Bhabba and Mφller scattering events.

The luminosity monitor counts the number of these events in a burst and is then

reset. A second prominent example of a scaler event is the DAQ trigger dead time.

One set of scalers counts the generated triggers and another set counts the accepted

number of triggers. The DAQ has to build events at the rate generated by the

triggers, which can as high as 500 Hz. As the DAQ cannot always keep up with the

rate of data production due to the processing limits of the hardware, some events

are not recorded. The dead time, the ratio of generated and accepted trigger scalers,
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can be corrected for and is used as a restriction on the data sample.

The data stream generated by the DAQ is finally organised into “runs”. A run

is simply a convenient way in which to store one file of data. The DAQ stores 560

MB of data before ending the run and beginning a new one. The HERMES data

stream is analysed on the event, run and burst level. During the analysis process

restrictions on the data sample are applied on each of these three levels to remove

undesired events. The DAQ is one of the few parts of the HERMES software that

does not work with the ADAMO format, the output of the DAQ is in the EPIO

format.

“Slow control” refers to information from the experimental hardware which only

needs to be recorded every few minutes. Factors such as pressure gauge measure-

ments, high voltage settings and measurements of the photomultiplier tube gains

by the Gain Monitoring System do not change within the short time scale of the

DAQ and, therefore, it was unnecessary to record this information at such a high

frequency. The slow control consists of a suite of many programs, interconnected via

the client-server model, that read, write and display information about the status

of the hardware. The most important of these is the taping client to which the

client programs of each individual device feed into. The taping client records the

information from each client program in the form of ADAMO tables. One file is

created for each fill at HERMES, while information can also be recorded for when

there is no beam.

The DAQ and the slow control have different timings recorded by two different

clocks. The information from both of these timings had to be synchronised. This is

important so that the correct information from both the slow control and the DAQ

is analysed together.

4.1.3 HDC, HRC and XTC

The EPIO files are processed using the main software production chain outlined in

Fig 4.1. The main software production chain consists of two programs, HDC and

HRC. XTC was introduced as additional software to the main production and al-

lowed the detector information from the Recoil Detector and the Lambda Wheels
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to be analysed. HDC, HERMES Decoder, decodes the online information and ap-

plies detector calibrations. HRC, HERMES Reconstruction Code reconstructs all

the wire chamber hits into particle tracks and associates information from the PID

detectors with each track. Finally the data is run through ACE, which computes

the wire chamber efficiencies. Each stage is discussed in more detail in the following.

HDC [63] processes the raw hit information into DAD files. The HDC achieves

this in three important steps. HDC first maps each detector and relates each hard-

ware channel to a software channel, allowing each physical piece of hardware in the

electronics trailer to be identified. The next step is calibration: this relates detector

signals to physical quantities such as deposited energy. Finally HDC implements

the geometry file in order to determine the location of each detector signal in the

HERMES coordinate system. The output of the HDC process, the HDC files, are a

series of ADAMO tables containing the calibrated response of each detector.

The HERMES detector consisted of front and back sections that were separated

by the spectrometer magnet, the field of which caused the charged tracks to bend.

HRC reconstructed partial tracks in the front and back sections of the detector

separately, due to the absence of the magnetic field in these sections the tracks were

straight. The track was reconstructed by projecting both partial tracks back towards

the centre. If these tracks matched a full track was recorded and the momentum and

charge of this track calculated. Low energy particles, in which the particle bends

in the magnetic field such that it does not reach the back section of the detector,

were also tracked. In this case the momentum was determined by the bending

radius in the magnetic field. HRC takes almost all of its input information from

HDC with one notable exception: the alignment file. The alignment file is a precise

location of each wire chamber in real space, accurate to < 0.01 cm. The alignment

file was generated using alignment runs taken every year or after installation or re-

installation of detector components. HRC also provided PID information, however,

the PID calculations have been superseded by those in the µDST writer. HRC

also performs calculations for the calorimeter. A particle that came into contact

with the heavy lead doped glass of the calorimeter began a shower, resulting in a

cascade of particles. The shower could spread from one calorimeter block to its
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Figure 4.1: An overview of the main software production chain at HERMES. The

raw output from the DAQ is processed during the main production

using the HDC, HRC and XTC programs. The software relates the

raw information to the physical detector using the geometry and cali-

bration files. The output ADAMO tables are created using the output

of the detectors and information about the state of the experimental

hardware. The final output is a DAD file known as a µDST table

which holds all the particle information obtained from the experiment

and can be directly analysed.
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neighbours. HRC used a clustering algorithm to reconstruct a single calorimeter

hit, determining the centre of the hit and the total energy deposited from the 3 ×
3 block segments. The output of HRC files is a series of ADAMO tables containing

information arranged by particle track.

XTC, eXternal Tracking Code [75], provides reconstruction routines for upgrades

to the main spectrometer eg. reconstructing tracks in the Lambda Wheels and the

Recoil Detector which are outside the standard HERMES spectrometer acceptance.

The Lambda Wheels and the Recoil Detector are treated independently in XTC and

are written to separate ADAMO tables. There are a number of different methods

within XTC for tracking recoil protons that traverse the different detectors of the

Recoil Detector. Each of these methods was constructed as individual routines to

ensure that the optimum tracking method can be constructed using all or parts of

each individual tracking algorithm. The overall structure of XTC is outlined in Fig

4.2. The tracking methods for the recoil detector are listed and described briefly in

Table 4.1.

The Recoil Detector was designed to detect protons and pions with momenta

typically less than 1 GeV/c. The momentum of a particle is calculated from the

curvature of the particle in the magnetic field of the detector and the energy loss of

the particle in the SSD and SFT. The path of a particle can be reconstructed using

the spacepoint information, i.e. the coordinate in three-dimensional space where

the particle comes into contact with the detector material. The particles detected

by the Recoil Detector lose energy as they pass through subsequent materials and

therefore the bending in the magnetic field is not a perfect circle. This is taken into

account in method 7. The magnetic field used in tracking method 7 is assumed to

be homogeneous, when in reality it is not. The inhomogeneity of the magnetic field

is taken into account in method 1 which improved the calculation of the particle

momentum. As the track reconstruction software was further developed additional

refinements were found to negate the necessity of using the inhomogeneous magnetic

field map. The final version of this software, “common” tracking, uses subroutines

from a number of the different methods and assumes a homogeneous magnetic field.

The lookup table and passive material corrections presented in this thesis are in-
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ADAMO form HRC

ClusteringGeometry and Mapping

Spacepoint
Reconstruction

Track Re-
construction

Magnetic Field Map DER Lookup Table

ADAMO Output

Figure 4.2: An overview of the XTC software package with respect to the Re-

coil Detector. The ADAMO output from HRC is further processed

to include the clustering information from the Recoil Detector. The

spacepoint information is taken from the hit in each individual detec-

tor and is used to reconstruct the “recoil particle” track. This uses

the Recoil Detector geometry, the magnetic field map and a “lookup”

table for the SSD.
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Method Description

1 Tracking using spacepoints from the SSD and SFT. Each

possible combination of 2, 3 and 4 spacepoints tracks

considered. Uses inhomogeneous magnetic field.

2 Full Tracking using clusters in the SSD and SFT.

3 SFT only tracking using two spacepoints and inhomo-

geneous magnetic field.

7 Tracking using spacepoints from the SSD and SFT. Each

possible combination of 4 spacepoints tracks considered.

Track fit approach including beam position.

15 Tracking using energy loss and spacepoint in SSD only.

16 Used for protons stopped in SSD, summing energy

losses. Included in method 15.

701 Hybrid of the methods 1 and 7.

Common Utilising subroutines from methods 1, 7, 2 and 15.

Table 4.1: Table summarising the individual tracking methods developed for track-

ing particles in the Recoil Detector at HERMES. Particle momentum is

calculated from the curvature in the magnetic field of the recoil magnet

and from energy loss in the individual detectors.
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cluded in common tracking. The track is not identified as being of a particular

particle type during the reconstruction phase therefore a number of different parti-

cle hypotheses are reconstructed, ie. supposing the particle was a pion, kaon, proton

or deuteron. There is also an additional hypothesis reconstructed for the “stopped”

proton and deuteron, where these particles do not reach the SFT. The pion hypoth-

esis is given for a three space point track in which the momentum is determined by

deflection in the magnetic field for both positive and negative charges, the proton

hypothesis is given in the positive case. PID methods are applied during the analysis

stage to select the correct hypothesis for a given track and disregard the others.

4.1.4 Monte Carlo Production

The Monte Carlo production is a simulation of the perfect experimental detector

setup and uses a model of the detector assembly to simulate detector responses to

generated physics processes. Simulating the detector in such a manner allowed the

design of the detector to be tested before it was constructed. Before construction

of the Recoil Detector began the detector components were simulated and tested

to find the optimum design for the available space within the existing HERMES

spectrometer. Monte Carlo is used at the next stage to track the “recoil particles”

through the detector and compare the simulated response in each detector for a par-

ticle of known type and momentum with the actual response in the Recoil Detector.

Using comparisons of both these sets of information tracking methods and particle

identification methods were developed. This method is used to design the look up

tables for the SSD only tracking detailed in Section 4.4. Background corrections

can also be made at this point in which unwanted events and processes are removed

or accounted for. The Monte Carlo also serves a major purpose during the analysis

processes as it allows physics processes to be simulated and provides a necessary

cross-check of the results. Monte Carlo data is generated using two programs; GMC

and HMC. The procedure is summarised in Fig 4.3.
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Generated
Events (GMC)

Detector Re-
sponse (HMC)Geometry (HDB)

Spectrometer
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Recoil Track-
ing (XTC)

µDST

Figure 4.3: An overview of the Monte Carlo µDST production at HERMES. The

GMC package simulates the physics processes that take place at HER-

MES before HMC simulates the detector response. The HRC and XTC

tracking packages are applied similarly to both Monte Carlo and Ex-

perimental Data.
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GMC

Generated Monte Carlo (GMC) consists of a number of different Monte Carlo gen-

erators developed to simulate the physics processes that take place in the HERMES

experiment, combined into a common user interface. GMC differs to its equiva-

lent for experimental data in that one event per record can have numerous different

tracks. The events reconstructed GMC were direct simulations of physical process

and not from a simulation of the HERMES spectrometer, this is simulated in HMC.

By simulating the physical event the decay processes could of the experimentally

recorded event could be studied, therefore, GMC provided more information about

each event than HRC. Tracks in GMC are related to each other by parent links so

the entire event process can be linked.

HMC

HMC (HERMES Monte Carlo) is the detector simulation package. HMC takes

the output of GMC and simulates the response of the physics process in each part

of the detector, based on a geometry file that contains information on each part

of the hardware. The interaction of a particle to a particular material through

processes such as ionisation, multiple scattering, energy loss, bremsstrahlung and

hadronic interactions are modelled using GEANT3, a simulation package developed

at CERN. HMC models the sensitive and passive parts of each individual detector

in the HERMES experiment. In a sensitive material the physical charge induced by

an interacting particle is translated into a detector output. In passive material the

physical response of an interacting particle is not recorded or accounted for. A “hit”,

an interaction of a particle with one of the detectors, is recorded in the sensitive parts

of the detector with additional information such as energy loss and hit position. The

hits are processed into information describing the detector response of the incident

particle. Based on the amount of energy deposited in each detector, calculations

are performed to simulate the actual (calibrated) signal the detector would have

produced. The output at this stage resembles that of HDC and the HDC tables

are filled by HMC as well as additional information detailing particle types. HRC

can be used to reconstruct the simulated data produced by GMC/HMC. For the
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purposes of track reconstruction the physics process information is not necessary,

therefore a separate event generator called BACK was developed which randomly

passes particles of a known type through the detector without the use of GMC. The

track reconstruction using the SSD is based on a lookup table created using the

BACK generator.

4.2 Silicon Strip Detector

Semiconductor detectors are now used widely in particle physics and several have

been installed in high energy particle experiments around the world [76,77,78]. They

have many important applications and functions within larger scale experiments

such as high resolution vertex and tracking detectors and as photon detectors in

scintillation calorimeters. The semiconductor material most commonly used for

detector purposes is silicon or germanium. Silicon is predominantly used for p-n

junction detectors as it has a larger band gap than germanium. Integrated circuit

technology allows the formation of high density micron-scale electronics on larger

silicon wafers. Due to this high density only a small thickness of material, typically

around 100-300µm, is required for ionisation processes to occur and signals to be

observed. Semiconductor detectors have the advantage that they feature high spatial

and energy resolution, making them ideal for use in the HERMES experiment for

tracking protons.

A p-n junction is created in a semiconductor material by doping it with im-

purities, either n-type or p-type. The n-type material is created with pentavalent

impurities giving positive ions which produce donor levels immediately below the

conduction band. For p-type materials trivalent impurities are added giving an

excess of negative ions which have accepted electrons from the conduction band.

These acceptors produce a general surplus of positive carriers. At a junction be-

tween p and n-type material electrons cancel the positive holes leaving a depletion

layer in which there are no charges. Silicon detectors operate in reverse bias forming

a depletion layer without charge carriers. This creates an electric field that sweeps

charge carriers liberated by the interacting particle to the electrodes. Detectors are
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typically asymmetric in structure, a highly doped p electrode, denoted p+, and a

lightly doped n region, such that the depletion layer extends predominantly into the

lightly doped volume. The n-type material is the active material in the p+n junction

and allows the creation of electron/positron pairs while the p side is used only to

deplete free charge carriers. The thickness of the depleted region is

W =

√
2ε(V + Vbi)/Ne

√
2ρµε(V + Vbi) (4.1)

where V is the external bias voltage, Vbi is “the built in” voltage, N is the doping

concentration, e is the electronic charge, ε is the dielectric constant = 11.9, ε0 ≈
1 pF/cm, ρ is the resistivity (typically 1-10 kΩ cm) and µ is the charge carrier mo-

bility, 1350 cm2 V−1 s−1 for electrons and 450 cm2 V−1 s−1 for holes. This equation

becomes

W = 0.5[1/
√
R− V ]×

√
ρ(V + Vbi) (4.2)

for n-type material and

W = 0.3[1/
√
R− V ]×

√
ρ(V + Vbi) (4.3)

for p-type material. The conductive p and n regions together with the depleted

volume forms a capacitor with the capacitance per unit area

C = ε/W. (4.4)

When an ionising particle such as a proton comes into contact with the semiconduc-

tor material it loses energy by producing electron / hole pairs within the material.

The particle is detected by creating mobile charge carriers within the depletion

region. The presence of the charge carriers allows the semiconductor material to

conduct an electrical signal that can be detected by the readout electronics. The

more energy that is lost within the material, the more charge carriers are created

within the depletion region and hence the greater the signal conducted by the de-

tector material.

The position information from the ionising particles that interact with the detec-

tor is determined by splitting the detector itself into several small sections. This can

be achieved by two different approaches. In the first of these methods the semicon-

ductor is constructed as a number of small pads. In this configuration it is difficult
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to attach the electronics to each of these pads. To resolve this issue a hybrid device

that includes both the silicon and the electronics is used. The second approach is to

split the detector into a number of narrow and parallel strips. This type of detector

is relatively simple to manufacture by embedding p-doped strips into p-type silicon.

Strip widths as low as 20µm have been achieved. A two sided silicon detector is

slightly more difficult to construct as the n+ strips on the n-side need to be separated

electrically from each other. This problem is solved by introducing p+ electrodes

in between these n-type regions. The silicon strip design was used for the silicon

detector at HERMES.

4.2.1 The Silicon Modules

The SSD modules were mounted in a diamond configuration, around the HERMES

target cell and within the beam vacuum, as shown in Fig 4.4.

The SSD is comprised of eight individual silicon modules. Two silicon modules

are positioned on each side of the SSD. The particle tracked in one quadrant of

the SSD can be identified by two independent silicon detectors. The silicon detec-

tors were connected to an aluminium heat sink on which the readout hybrids were

connected. The modules consisted of a number of n-type strips with p-type strips

perpendicular to them. HELIX chips were located on both sides of these modules,

which connected to the readout electronics via a series of conducting kapton flex

foils.

Due to time restrictions it was decided by the collaboration to use an existing

design for the SSD. After considering a number of different designs, the chosen

detector that best conformed to the requirements of detecting recoil protons was

that of the TTT design of Micron Semiconductors Ltd, Sussex. The design was

originally designed for the TIGRE Gamma Ray Telescope [79].

The sensors were square shaped with a side length of 9.9 cm, providing an active

area of 97.3 mm× 97.3 mm3, with a thickness of 300µm. Both sides of each of these

modules comprised of 128 strips, of width 758µm. Some minor changes were made

to the original design: the bias resistors and the thickness’s of the oxide layer were

altered. These alterations allowed the silicon detector to operate despite the high
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Figure 4.4: The structure of the SSD [64]. The two layers of silicon modules

are shown along with the target cell, support structure and cooling

mechanism.
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background radiation due to the proximity to the beam. The p-side strips were

created using boron doping, with an ion implantation density of 2.0 · 1015 cm−2.

The n-type implants on the p-side were similarly created using phosphorus doping

with a density of 5.0 · 1014 cm−2. The n-side strips were of a complementary design

with a nominal ion beam density of 5.0 · 1015 cm−2 and a p-implant density of 5.0

· 1014 cm−2. A bias guard ring was created in the sensor after doping. Finally an

aluminium layer for bond pads and charge collection lines and a thin passivation

protection layer were applied to the detector.

4.2.2 Readout System

Semiconductor detectors are thin in nature due to the high density of the manu-

facturing process. These detectors are well suited to situations where the available

space is particularly limited. As the detector is relatively small it was possible to

position the SSD at HERMES within the confined volume of the beam pipe, allowing

the detection of low momentum particles that would otherwise be absorbed within

the pipe. Due to this spatial restriction and the high volume of individual strips

that comprise the detector as a whole it is not possible to read out each channel

individually with an ADC. Instead the front end chips were directly connected to

the sensors that serialised and digitised the signals. The director signals are fed

through a pre-amplifier, and stored in a buffer before they are transferred via a mul-

tiplexer to an ADC. The chips also feature control devices and supply electronics.

All readout chips are custom designed for the HERMES experiment.

Two of the serial read out chips that have been developed at HERA are the

APC, developed and used extensively in the H1 experiment, and the HELIX chip,

developed for HERA-B and used at both the HERMES and ZEUS experiments.

The HELIX chip was selected for the readout of the Recoil Detector as this was the

most technically advantageous for the detector and had previously been used for

the Lambda Wheels so there was a working knowledge of using this chip within the

collaboration.

The readout chip was mounted with some additional electronics onto a circuit

board made from kapton foil. This unit is known as a “hybrid”. The kapton flex

August 6, 2010



4.2. Silicon Strip Detector 74

foil was also used to connect the hybrid to the read out electronics at the end of the

beam pipe. The kapton foil partially covers the sensitive material of the SSD, as a

consequence particles tracked using the Recoil Detector interact with this passive

material.

Semiconductors produce noise that must be taken into account. The signals are

low; a Minimising Ion Particle (MIP) passing through silicon deposits around 2.2 ·
104 eV. There is no intrinsic charge multiplication, therefore the noise on the charge

amplification can be quite prominent. The electronics have a constant intrinsic

noise, inherent to the design, that depends on the capacitance of the strips being

read out.

In order to develop a tracking method using the silicon detectors it is necessary

to have a precise method for measuring the energy loss within the silicon material.

The energy loss measured at HERMES was over a wide energy range, therefore a

charge splitting read out was devised so that the system was able to give precise

measurements for both low and high energy depositions. This ranges from Minimum

Ionising Particles (MIPs) to the large energy lost by protons that can at lower

momenta be completely stopped within the two layers of silicon. The input pads

of the HELIX chips were connected to a ceramic pitch adapter, connected to the

capacitor array used to distribute the charge into a high gain and a low gain channel.

Each silicon strip is connected to both a high and a low gain HELIX chip, the latter

via a 10 pF capacitor. The split into two individual and distinct HELIX chips

facilitates the measurement of a large range of energy loss to be determined. The

high gain helix chip is used to read out energy losses from 1 to 10 MIP equivalents.

The low gain chips, conversely, reads out higher energy losses, up 70 MIP equivalents.

By using the low gain helix chip to determine the high energy losses of particles it is

possible to track protons that are stopped within the beam vacuum and that would

not be measured by the other detectors that comprise the Recoil Detector.
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4.3 Energy Loss

The method of tracking and identifying particles by energy deposition has been an

integral part of modern detector operation [80,81]. The inner detector of the ATLAS

experiment at the Large Hadron Collider (LHC) consists of multiple-layer silicon

detectors that have been designed to take advantage of this technique [82]. The

energy lost by a particle over a given distance is dependent on the particle type, the

initial momentum of the particle and the material the particle passes through. These

properties are used by the SSD both in identifying the recoiling proton from other

particles such as pions and determining the momentum of the recoiling particle. The

silicon detector was optimally used to measure the momentum of recoiling particles

up to ∼ 0.6 GeV/c with higher momenta protons tracked to a greater accuracy using

the SFT.

Charged particles lose energy in the silicon by inelastic collisions with the atomic

electrons, resulting in ionisation of the atoms and allowing conduction through the

p-n junction depletion layer described in Section 4.2. In this ionisation process more

energetic electrons, δ-rays, are emitted resulting in an additional energy loss unless

they are captured by another atom. This effect is largely ignored when calculating

the energy lost in the SSD as the energy losses of heavy particles such as protons

are large, creating a number of ions, hence the δ-rays are captured immediately,

rendering this correction insignificant.

The dominant contributions to the energy loss of charged particles in the SSD

are the Coulomb Interactions with the atomic electrons. Nuclear interaction length

in the 300 µm silicon sensors is 7 × 10−2 g/cm2, hence, the probability of a nuclear

interaction in the sensor is less than 1%. Correlated energy loss effects are also

negligible due to their dependence on certain incident angles. The probability of a

single charged particle undergoing an interaction with an atomic electron is described

by the doubly differential cross section σ(E, k) where E is the energy lost in an

electron with momentum transfer k. The proton in the SSD will experience a number

of collisions (n) with atomic electrons. The total energy lost can be described by

∆ =
n∑
i

Ei. (4.5)
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The probability of losing an amount of energy ∆ when traversing a detector of

thickness d is described by the energy loss straggling function f(d,∆).

The straggling function, described by Eq 4.5, is known as the restricted energy

loss straggling function. This is different to the energy loss straggling function due to

the presence of the δ-rays that are created during energy deposition. To determine

the energy deposition straggling function the probability of n number of collisions

and the probability of a particular energy loss Ei have to be determined. The

number of collisions is given by a Poisson distribution with a mean value µ = dM0,

where M0 given by

M0 = Ne

∫
σ(E)dE (4.6)

and Ne is the number of electrons per unit volume. The collision cross section

σ(E) is determined separately depending on the energy of the momentum transfer

and the longitudinal and transverse excitations. The collision process for the large

energy transfer cross section, considered for protons in the silicon detector, is the

non-relativistic Rutherford cross section [83]

σnr(E) =
2πz2e4

meνv2E2
(4.7)

that describes the collision probability of a heavy charged particle with charge ze,

velocity v and rest mass M in collision with a free electron with rest mass me. In this

non relativistic case, the electron receives all the energy E lost by the particle and

the corresponding momentum transfer k is
√

2meE. To consider the probability of

a collision in the relativistic case, such as those which occur at HERMES, this cross

section needs to be modified to include the maximum energy transfer for relativistic

particles, given by

Em =
Mc2β2γ2

M
2Me

+ me

2M
+ γ

(4.8)

where M and me are the rest mass of the incident particle and free electron re-

spectively, β is the ratio of the velocity of the particle to the speed of light and

γ =
√

1− β2. The relativistic Rutherford cross section [83] is then described by

σrr(E) = σnr(E)

[
1− β2 E

Em

]
. (4.9)

August 6, 2010



4.3. Energy Loss 77

The Rutherford cross section described relativistic charged particles that are incident

upon free electrons. In the SSD the electrons are bound to the nucleus, therefore,

the binding energy must be taken into account. This process is then described by

the empirical cross section [84]

σu(E) = σrr(E)

[
1− β2 E

Em

]∑
Zl

[
1 +

d1

E
+
d2

E2

]
(4.10)

where Zl is the number of electrons in the sub shell l, d1 and d2 vary depending on

the energy transfer. The empirical cross section is the dominant part of the total

cross section σ with smaller quantities due to longitudinal and transverse excitations

also contributing to the total. If the total cross section is available it is possible to

define the set of moments

Mm = Nv

∫
EmσEdE (4.11)

where Nv is the number of atoms in a unit volume, 4.99 · 1022 cm−3, for silicon. The

mean number of collisions per unit length is given by the zeroth moment M0. The

mean energy loss is given by the next moment M1, this is comparable to that given

by the Bethe Bloche equation. The M2 moment is related to the width of the energy

straggling distribution. This distribution is also taken into account by modifying

the Bethe Bloche equation.

The stopping power of particles passing through the silicon detector is described

by the Bethe Bloche equation [85]. This calculates the mean energy loss of a charged

particle that is heavier than an electron as it traverses a particular material, and is

shown below

dE

dx
= 2πNar

2
emec

2ρ
Z

A

z2

β2

[
ln(

2meγ
2v2Em
I2

)− 2β2 − δ − 2
C

Z

]
(4.12)

where Na is Avogadro’s number, 6.022·1023 atoms per mole, re = e2

mec2
is the

radius of an electron, 2.817·10−15 cm, mec
2 is rest mass of the electron, ρ is the

density of the stopping material (2.33 g/cm3 for silicon), Z is the atomic number

of the stopping material (14 for silicon), A is the atomic weight of the stopping

material (28.09 for silicon), I is the mean ionisation potential (173 eV for silicon), z

is the charge of the particle in units of electron charge, and Em is given by Eq 4.8.
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The shell correction takes into account the reduction in the stopping power that

occurs in silicon due to the atomic binding of electrons that is neglected by the

other contributions. At low energies, the stopping power dE/dx decreases with the

natural logarithm of particle energy. As the particle energy increases its electric field

flattens and extends so that the distant-collision contribution increases as ln(β2γ2).

The stopping power of the silicon material decreases as the density correction lowers

the ln(β2γ2) dependence to ln(βγ) because the stopping power is polarised by the

field of the passing particle, reducing the effect of distant collisions.

The Bethe Bloche equation calculates the mean energy loss accurately and in

this form is suitable for particle tracking by energy loss. The equation relates the

stopping power, dependent on the energy loss and the path length of the incident

particle within silicon, to β, therefore i.e. dE/dx is a function only of β. The

ratio β relates the velocity of the incident particle to the speed of light and the

momentum of a particle can be calculated from this velocity, p = γmv. The Bethe

Bloche equation is therefore used as the basis for particle momentum reconstruction

by energy loss at HERMES.

4.4 DER Tracking Method

The objective of tracking in the SSD is to determine the momentum and the position

of the recoiling particle that interacts with the detector. The method developed

for tracking with the SSD is known as DER tracking, ∆E Reconstruction. The

momentum of the proton is reconstructed using the energy deposited ∆E and the

pathlength L of the particle through each of the silicon sensors.

4.4.1 Track Identification and Energy Loss Regions

Any track reaching the outer sensor in the SSD is identified from two spacepoints

in each of the silicon sensors. The track is reconstructed as a straight line between

these two points. The incident angle α to the sensors is determined from this straight

line approximation which ignores the effects of the magnetic field. The polar θ and

azimuthal φ angles shown in Fig 4.5 describing the path of a recoiling particle are
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corrected for the effect of the magnetic field. The ϕ angle determined from the

spacepoint information is re-calculated using the curvature in the magnetic field is

denoted φ. The track is identified as a real proton track only if the spacepoints in

both the sensors lie within the same quadrant and that the track itself can be traced

back to the target cell. All track combinations that satisfy the above criteria are

analysed as real tracks with the remainder rejected, as also shown in Fig 4.5.

The recoil protons can be identified in the SSD using the energy loss in both the

silicon sensors. There are three different methods for reconstructing the momentum

of recoil protons, dependent on whether the particle is stopped in the detector or

not, as illustrated in Fig 4.6. The momentum of protons that are stopped within the

silicon sensors are reconstructed by adding the energy loss in the sensitive silicon

and the passive materials. The second method for reconstructing recoil protons,

when they are not stopped within the silicon sensors, is to use the energy loss and

pathlength in the silicon sensor to identify the initial momentum of the particle using

the lookup table described in the following section. There is a third possibility when

it is not possible to determine if the proton has stopped within the SSD or not. In

this circumstance the recoil momentum is reconstructed using both the stopped

proton and the lookup table methods. Both these values are available to the data

analyser and the correct value can be selected by using PID selection, momentum

cuts and other tracking methods. In circumstances where, after analysis cuts and

selection criteria have been implemented, both results remain plausible, the lookup

table method should be used as this has been shown to produce the more accurate

resolution, as described in section 4.6.3. The appropriate tracking routine is selected

by applying cuts based on the energy loss relationship between stopped and non-

stopped protons in both silicon sensors shown in Fig 4.6. Stopped protons can also

be selected if a proton is stopped in the inner silicon sensor and no energy loss is

identified in the outer layer.

4.4.2 Lookup Table Development

A lookup table method was used to determine the initial kinematic energy T of a

recoil proton. Lookup tables relate one or more variables to another quantity which
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Figure 4.5: An overview of track reconstruction from spacepoints in the SSD [86].

The top figure shows the SSD in x-y coordinate space and the angle

between the x-plane and the track ϕ. The bottom figure shows the z

coordinate of the SSD and the angle between the z-plane and the track

θ. In both cases a track that is reconstructed as a real track is shown

as a continuous red line and a rejected track as a dashed red line. The

actual track is shown in grey in the top figure.
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Figure 4.6: The energy loss of a recoil proton in the outer sensor vs the energy

loss in the inner sensor. Protons stopped in silicon and not stopped

are shown in blue and green respectively. The energy loss region in

where it is not possible to distinguish if the proton is stopped or not

is shown in magenta.
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is dependent on the known input variables, but is not directly calculable from them.

In the case of the DER tracking lookup table the known input parameters are the

energy loss and pathlengh in the SSD and the desired value is the initial kinematic

energy of the recoil proton.

The structure of the SSD allows for the coordinates in three dimensional space

of where the particle passes through the detector to be accurately determined. Us-

ing the spacepoints from both the outer and inner silicon sensors it is possible to

calculate the incident angle of the recoiling particle has on the silicon detector. The

incident angle α and the strip width W of each sensor are both used to calculate

the pathlength L of the recoil particle

L =
W

cos(α)
. (4.13)

The thicknesses of each of the eight silicon sensors can vary from 290 to 310µm and

is taken into account when calculating L. This affects the value of the energy lost

in each sensor which is both sensor and angular dependent.

A Monte Carlo simulation is used to determine the relationship between these

properties, shown in Fig 4.7. A lookup table that relates the energy loss and the path

length, read out and calculable in the silicon, to the kinetic energy of the incident

particle just before the sensor was created from this relationship. This information

allows each combination of a specific value of path length and energy deposited to

yield a unique value for the kinetic energy of the proton. Two individual values of

the kinetic energy T can be determined, one for each sensor in the SSD. These two

values can then be recombined to give an overall value of the kinetic energy of the

recoil proton, which can be used to determine the initial momentum.

The advantage of using the Monte Carlo simulation to construct such a lookup

table rather than determining the momentum of the proton from the Bethe Bloch

equation, directly, is the inclusion of other effects that are not described by Eq 4.12.

Ideally the relation between the kinetic energy path length and energy loss, shown

in Fig 4.7, would be a straight line. However, due to energy and angular strag-

gling, modelled in the Monte Carlo, a broad relationship between these quantities

is obtained. The lookup table is being used in other tracking methods that use

information from the SFT and PD.
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Figure 4.7: Kinetic energy immediately before either of the silicon detectors vs the

energy lost divided by the pathlength in the sensor. This linear rela-

tionship forms the basis of the lookup table used in the DER method.

August 6, 2010



4.5. Passive Materials 84

A lookup table is constructed with a certain binning, such that a small range of

dE/L contains a number of events with a value of the momentum known precisely

from the Monte Carlo simulation. Each bin in the lookup table can only return

one value of momentum. To determine the momentum of a particular bin the

momentum values from each of the events are plotted and a Gaussian fit applied

to the distribution, with the mean value of the fit assigned as the momentum value

of a particular bin. By using a Gaussian fit to the momentum distribution the

contribution from events that have random fluctuations can be minimised. The

lookup table at this stage has a number of dE/L bins that span the range in momenta

of the recoil protons. The individual bins still fluctuate slightly, therefore it was

necessary to introduce a smoothing algorithm, based on a linear fit of the lookup

table bins, to remove such fluctuations between individual bins. The smoothed

lookup table is then implemented into the DER tracking software such that for each

event a kinetic energy of a particular bin can be reconstructed from the energy loss

and the path length.

Each bin covers a certain dE/L range, where the same kinetic energy value is

returned no matter whether the dE/L value is near the centre or at the edge of a

particular bin. In order to improve the precision of this process an additional step

was introduced to calculate the fraction of the dE/L values that lie within a certain

bin, shown in Fig 4.8. The length of a particular bin is a fixed quantity, but if a

dE/L is at the edge of a particular bin it will have a different value to that at the

opposite edge. It is more realistic to extend this bin length into the neighbouring bin

and calculate the kinetic energy value based on the fractional contribution of two

values from separate bins. Introducing this additional step improves the precision

and smooths the bin dependence of the tracking method.

4.5 Passive Materials

4.5.1 Description of Passive Materials

The silicon sensors within the SSD were not installed in isolation but rather co-

existed with a number of passive materials, including the read out electronics and
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1/T

dE/L

Value at bin centre

Value returned

Figure 4.8: An example sketch of two adjoining bins in the lookup table used

to determine kinetic energy. In this example the dE/L point is not

centred in one particular bin and the bin length is extended from the

dE/L point across into the neighbouring bin. In this example the value

returned is T = 1
3
× bin1 + 2

3
× bin2.
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the walls of the target cell. The particles tracked using the Recoil Detector lose

energy as they pass through these inactive materials. This slows the particle and

increases the energy lost in the silicon sensors, giving an inaccurate value of the

reconstructed momentum that is less than in reality.

The first of the passive materials the recoiling particle encounters before reaching

the silicon is the walls of the target cell in which the target gas is held. This is an

ellipsoid tube constructed with 75 µm thick aluminium walls. The recoil particles

passing through the target cell lose energy in the aluminium material.

Due to the high frequency radiation from the lepton beam used in the HERMES

experiment it was necessary to construct a Faraday cage to protect the individual

SSD modules from damage. The construction of this RF shield also ensured that

there was no interference in the signals of the readout system of the SSD from this

background radiation. The RF shield was constructed of 30µm thick kapton and

copper and covered the entire length of both the inner and outer silicon sensors in

the SSD, therefore all recoil particles will lose energy in this material in addition to

the target cell structure.

The read out system of the SSD allows the information from both silicon sensors

to be accessed individually. The information from each of the sensors is read out

using kapton flex foils which carry the information to the HELIX readout chips. A

particle passing through the silicon will lose energy in this material in addition to

the active silicon sensor. Hence it is important to calculate how significant this effect

is and to correct for it. The flex foil material was of different shape and surface area

on opposite sides of the silicon sensors. The flex foils that were smaller in size and

covered less of the sensor, shown in Fig 4.9, were positioned facing each other. Low

momentum particles may lose almost all of their energy in the inner silicon sensor

of the SSD, therefore, in order to increase the likelihood of the particle reaching the

outer sensor it is important to minimise the energy loss between the two sensors.

The information from a recoil particle can be more accurately reconstructed from a

particle with information from both sensors.

For the inner silicon sensor the flex foil with the larger surface area, shown in

Fig 4.10, is positioned facing the target cell and in the outer sensor facing the outer
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Figure 4.9: A picture of the p-side of the SSD. The intermediate flex foil covers a

part of the silicon material [87]. Also shown are the readout electronics.

Figure 4.10: A picture of the n-side flex foil [87]. This flex foil was positioned

facing the target cell. Also shown is the connection to the readout

electronics for data processing.
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vacuum. This flex foil is comprised of two different sections; one that has only

a small linear gap and the other which covers most of the sensor, apart from a

triangular area to the right hand side.

4.5.2 Passive Material Implementation in Monte Carlo

The HERMES Monte Carlo software chain is used to simulate the energy lost in all

the passive materials. The target cell is modelled in the x − y coordinate system

as an ellipsoid tube with walls 75µm thick. The RF shield is implemented as a

continuous sheet. All particles will pass through the target cell and RF shield.

The flex foil materials which are part of the readout electronics partially cover

each of the silicon sensors, therefore, the Monte Carlo simulation is used to de-

termine if a particles pass through the flex foil or not. The track reconstruction

software is reliant on the detector output so the passive material information is not

available directly. In order to determine if a particle has interacted with the flex foil

before the inner sensor the initial energy of the proton is compared with the energy

immediately before it interacts with the inner silicon sensor. The energy lost in the

target cell walls and the RF shield are also determined using this calculation. If

the difference between the initial energy of the proton and the energy after passing

through the passive materials before the inner sensor is > 0.5 MeV the proton is

identified as passing through the flex foil. A similar method is used to identify the

intermediate flex foils between the sensors. In this case the energy of the recoiling

proton immediately before the inner sensor is compared with the energy just before

the proton interacts with the outer sensor. The results of this method are shown in

Figs 4.11 and 4.12 for the intermediate and before inner sensor flex foils respectively.

In order to identify if a recoiling proton has passed through either of the flex foils

using the track reconstruction software cuts were introduced based on the space-

point coordinate system. If the spacepoint lies within a flex foil region identified in

Figs 4.11 and 4.12 a correction for the flex foils is applied. The slight shifts in the

positioning of the sensor in each of the four quadrants are taken into consideration,

therefore the cuts are implemented separately for each quadrant, see Fig 4.11.
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Figure 4.13: Energy lost in the materials before the inner silicon sensor vs mo-

mentum of the recoil proton. A momentum dependent Bethe Bloche

function is fitted to the data, see Eq 4.15.

4.5.3 Combined Correction for the Passive Materials Before

the Inner Silicon Sensor

The recoil proton loses energy as it passes through the target cell, RF shield and flex

foil that are positioned before the inner silicon sensor in the SSD. By losing energy in

these passive materials a particle loses momentum and in turn loses more energy in

the silicon due to the increased possibility of a lower energy particle interacting with

the sensor material. By losing more energy in the silicon sensor the reconstruction

software will return a lower initial momentum value. The correction function is used

in an iterative process after the initial momentum value of the incident proton is

determined by the tracking method, and recalculates the momentum including the

energy lost in the passive materials.
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The correction procedure for the materials in front of the inner silicon sensor

implemented in Monte Carlo simulated geometry combines the target cell, RF shield

and the outer flex foil. All particles pass through the target cell and RF shield, only

the presence or otherwise of flex foil material varies. The passive material correction

uses a momentum dependent procedure. The energy loss is calculated in the Monte

Carlo using

Eloss = Einitial − Ebefore (4.14)

where Eloss is the energy lost before the particle reaches the inner sensor, Einitial

is the initial energy of the proton immediately after interacting with the electron

beam and Ebefore is the energy of such a particle before is comes into contact with

the silicon.

The distribution of the energy lost in the passive materials was plotted indi-

vidually over the entire momentum range in bins of 0.05 GeV. A convolution of a

Gaussian and a Landau fit was made to the distribution and the mean value of this

function determined for each individual bin. The momentum dependent energy loss

curves of the proton interacting with these passive materials, fitted to the mean val-

ues of the energy loss in each momentum bin, are shown in Fig 4.13. The function

used to fit the energy loss curve is

Ecorr = C0 + C1β
2 +

C2

β2
, (4.15)

where C0, C1 and C2 are constants and β = v
c

and is based on the Bethe Bloche

equation 4.12. Protons with the lowest momentum lose the most energy in the

passive materials. Using this approach the energy lost in the passive materials is

calculated, using Eq 4.15 from the initial momentum given by the track reconstruc-

tion software, in the case of DER tracking from the lookup table. The energy lost

in the passive materials is then added to this initial momentum value. Using this

new value for the initial momentum value the energy lost in each of the SSD sensors

is ascertained once again and the initial momentum re-evaluated. The corrections

for passive materials are then recalculated using this corrected initial momentum

value. The processes continues until the momentum values of the recoiling proton

converge. This iterative approach, in which the track reconstruction algorithm is
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re-run including the energy loss in passive materials, is particularly important for

“silicon only” low momentum track reconstruction methods which are highly sen-

sitive to small changes in energy loss in the silicon sensors. The passive material

correction is most significant for silicon only tracking which is used to reconstruct

low momentum protons that are not measured in the other detectors.

4.5.4 Correction for the Intermediate Flex Foils

The intermediate flex foils, positioned between the two silicon sensors, are shown

in Fig 4.12. The area shown in red has one layer of flex foil material and the black

area represents two layers of flex foil material. The blue region is silicon only, where

the proton does not pass through any kapton material. The energy loss curves of

the proton interacting with the intermediate flex foil are shown in Fig 4.14, and are

calculated as described in the previous section. The black region representing twice

the thickness, due to the flex foils in the inner and outer sensor overlapping, has a

greater energy deposit. The energy loss curves are fitted using the same function as

before, see Eq 4.15. Both of these plots are generated using a Monte Carlo simulation

of the detector. Using the coordinate system it is possible to determine if the recoil

proton has passed through one of these regions and correct for the energy lost.

The energy lost in the intermediate flex foils, Eintermediate, is determined by using

the incident energy of the proton before it interacts with the silicon detector and

subtracting the energy deposited in the inner layer, ∆E1, and the energy before it

hits the outer layer, Eouter,

Eintermediate = Einner −∆E1 − Eouter. (4.16)

4.5.5 Determining Kinetic Energy Including Passive Mate-

rial Corrections

The goal of the DER tracking routine for non-stopped particles is to use both sensors

to give two values of the proton momentum calculable from the initial kinetic energy

T . The process for determining T from the silicon sensors and the passive materials
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Figure 4.14: Energy loss in the intermediate flex foils vs momentum. The two

curves represent the two flex foil areas of different thickness. A mo-

mentum dependent function based on the Bethe Bloche equation is

fitted to both the energy loss curves, see Eq 4.15.
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is iterative, beginning with the sensor information and extrapolating each particle

backwards along its track, introducing the passive material corrections. The tracking

method is summarised in Fig 4.15. The first step in this process is to determine T

immediately before each sensor using the lookup table. The value of the energy

deposition and the pathlength from the inner sensor in the SSD are used in the

tracking algorithm to generate the value of T1 of the incident particle from the

lookup table

T1 = lookup (∆E1, path) . (4.17)

The kinetic energy T2 before the outer sensor is found using the same direct method,

using the same lookup table and tracking procedure. In order to calculate T ′2 of the

recoiling proton before the inner sensor using information from the outer sensor, the

intermediate flex foil correction function to determine the energy lost in these flex

foils and the energy lost in the inner silicon sensor are included. These additional

energy losses are added to the T2 value found using the look up table to calculate a

second value for the energy lost before the inner sensor.

T ′2 = T2 + ∆Eflex + ∆Esensor1. (4.18)

The result of these two steps in the reconstruction chain is two values of T before the

inner sensor, which should be equal. These T values from each sensor are then used

in the correction function to calculate the energy the particle loses in the passive

materials before the inner sensor.

T ′′1,2 = T1,2 + ∆Ebeforefirst (4.19)

The end result is two values for the initial kinetic energy of the recoil proton T1 and

T2. The momentum of the recoil particle can be determined from the equation

p =
√

(T +m)2 −m2 (4.20)

4.5.6 Stopped Particles

The advantage of the SSD being installed within the beam vacuum is that it is possi-

ble to detect recoiling particles with low kinetic energy values that would otherwise
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Figure 4.15: A flowchart outlining the different stages of the DER lookup table

tracking subroutine. A track is identified in the SSD before the mo-

mentum of the track can be determined from the lookup table. After

the initial value of momentum has been determined from the detec-

tor output a correction is made for the passive materials and the

momentum re-calculated.
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have been stopped within the beam pipe wall. Some of these particles have such low

energy that they are stopped within the silicon sensors. The kinetic energy of these

particles can be determined by summing the energy deposited in each of the sensor

layers. This calculation also involves the corrections for the passive materials. As a

stopped particle loses most of its energy just before it stops, this information is the

dominating factor in determining the initial energy of the particle.

Due to the low energy nature of the stopped particles the passive materials

are more crucial in determining an accurate value for the initial kinetic energy of

the particle. The same iterative method outlined for the non-stopped particles is

used in this case. In this instance only one value of kinetic energy is determined.

The first step of this iterative process is to use the energy of particles stopped in

the outer sensor to determine the intermediate flex foil correction. The values of

the energy deposited in both sensors is then added to the flex foil correction value

to give the energy immediately before the inner sensor. Using this value and the

correction function for passive materials before the inner sensor the initial value of

T is determined:

T = ∆Esensor1 + ∆Esensor2 + ∆Eintermediateflex + ∆Epassive. (4.21)

4.6 Results

The results of the track reconstruction software using Monte Carlo simulated data

are compared with the unreconstructed results of a full Monte Carlo detector simu-

lation in order to quantify the accuracy and resolution of the reconstructed values.

As the lookup table used in DER tracking is completely based on the Monte Carlo

detector simulation it is necessary to ensure that the reconstructed and simulated

values are compatible with each other. If this is not the case an incorrect value of

momentum would be calculated using this method.

4.6.1 Energy Loss Distribution

The distribution of the energy lost in the inner silicon sensor is shown in Fig 4.16.

The energy lost in the silicon is confined to a small range, 0 - 0.0035 GeV, with
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the majority of the distribution having an energy loss of less than 0.0005 GeV.

This region is where the lookup table most precisely determines the momentum

of the recoiling proton. The distribution of the Monte Carlo and reconstructed

XTC values are similar. Both are landau distributions, observed due to energy loss

straggling, where energy losses are higher than the mean of the peak. The values of

the reconstructed energy loss are slightly greater than for the Monte Carlo simulation

due to the different way in which this value is determined. The reconstructed energy

loss is recorded as one value in each silicon sensor and contains no information on

any secondary processes or interactions while the simulated Monte Carlo energy

loss records all the energy losses from secondary particles after the incident proton

interacts with the silicon sensor individually. The Monte Carlo energy loss value is

determined from the sum of all the different processes in the detector which in cases

with many hundreds of separate processes being summed to give the overall energy

loss within the sensor only the first 100 secondary interactions are included, leading

to a smaller approximation of energy loss. The slight fluctuation in the distribution

of the reconstructed data is due to two different data files being used to create the

distribution one with energy less than than 0.001 GeV and the second with energy

loss less than 0.001 GeV.

4.6.2 Angular and Pathlength Distributions

The pathlength of a recoiling proton through each silicon sensor is the second input

to the lookup table and is determined from the incident angle to the sensor. As

the SSD consists of only outer and inner active silicon layers the incident angle is

effectively determined from trigonometric calculations, using the line given between

the two hit coordinates in each layer where the proton encounters the detector

material with respect to the normal. The distribution of this incident angle is given

in Fig 4.17. The distribution of both the reconstructed data and the Monte Carlo

data are similar. However, it should be noted that due to the scale of the binning

used in Fig 4.17 and the inverse cosine function used to calculate the incident angle

from spacepoint information of each silicon strip in the SSD causes the number of

events in each bin of the distribution to fluctuate for the reconstructed data. This
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Figure 4.16: The distribution of the energy lost in the silicon sensor expressed as

a percentage of the total number of events. The reconstructed data

is shown as the black curve and the Monte Carlo simulation in red.
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Figure 4.17: The distribution of the incident “alpha” angle to the silicon sensor

expressed as a percentage of the total number of events. The re-

constructed data is shown as the black curve and the Monte Carlo

simulation in red.

is due to the fact that each strip in the SSD returns only one spacepoint, defined

as being in the centre of the individual strip. Consequently, each strip in the SSD

returns the same value for the incident angle. As the incident angle is determined for

each individual strip, rather than from the precise point at which the proton interacts

with the SSD sensor, results in the varying number of events with a particular value

of incident angle for neighbouring bins in the histogram. The Monte Carlo simulated

data does not have this limitation and returns the precise value of the spacepoint

hit in each silicon sensor, hence the smooth distribution.

The pathlength is calculated from the incident angle and the thickness of each

individual silicon detector; all of which are in the range 300 ± 10 µm. The distri-

bution of the pathlength for all the silicon layers is shown in Fig 4.18. The Monte
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Figure 4.18: The distribution of the pathlength through the silicon sensor tra-

versed by the recoil proton expressed as percentage of the total num-

ber of events. The reconstructed data is shown as the black curve

and the Monte Carlo simulation in red.

Carlo and reconstructed data agree well with each other and the distributions have

the same overall shape. Overall the pathlength calculated from reconstructed data

is higher than that for Monte Carlo as seen from the incident angle distribution.

This difference arises from the fact that small changes in angle can make significant

changes to the cosine values obtained. The small outlying distribution at around

300 nm is due to one of the silicon sensors having a thickness of less than 300 µm.

4.6.3 Momentum Resolution

Both the inner and outer silicon sensors are used to separately determine the mo-

mentum of the recoil proton. This allows the most appropriate momentum value to

be selected depending on the initial conditions of the recoil proton. For low momen-
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Figure 4.19: The momentum resolution of the inner silicon sensor, the σ value of a

Gaussian fit to the normalised distribution of each momentum bin, is

shown in red. The mean value of this fit is shown in blue. In general

the momentum resolution is constant over the momentum range.

tum protons ie. those with P < 0.4 GeV/c, the value for the inner silicon sensor is

used due to the fact that most of the energy is lost in the inner sensor, giving a more

accurate momentum value than the outer sensor. For protons with P > 0.4 GeV/c

the reconstructed momentum values from both the silicon sensors are equally valid.

The momentum reconstruction performance using the DER tracking methods

in the XTC track reconstruction software was tested using HERMES Monte Carlo

data. The accuracy of the tracking software was analysed by calculating the nor-

malised difference (PREC−PMC)/PMC , where PREC is the reconstructed momentum

value and PMC the Monte Carlo value. In order to quantify the performance of the

DER momentum reconstruction over the entire momentum range the normalised

distribution (PREC − PMC)/PMC fitted with a Gaussian function is derived for in-
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Figure 4.20: The momentum resolution of the outer silicon sensor, the σ value

of a Gaussian fit to the normalised distribution of each momentum

bin, is shown in red. The mean value of this fit is shown in blue.

In general the momentum resolution is constant over the momentum

range. The mean of the distribution is shifted at low momentum

values. This is due to the fact that protons are stopped in the outer

silicon sensors at low momentum values.
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Figure 4.23: The predicted momentum resolution of the SSD and SFT taken from

the HERMES Recoil Detector Technical Design Report [21]. The

mean values are calculated from a Gaussian fit to the normalised

distribution of each bin.

dividual bins 0.1 GeV in size. In total nine such momentum bins ranging from 0.1

to 1 GeV/c are used with the mean and resolution (σ) values from the fit of each

bin shown in Figs 4.19 and 4.20 for inner and outer silicon sensors respectively. The

expected SSD only resolution, determined using Monte Carlo simulations under-

taken during the design of the Recoil Detector, is shown in Fig 4.23. As predicted

the DER tracking is the most effective manner in which to reconstruct the momen-

tum of protons less than 0.6 GeV/c and the tracking methods that include the SFT

detector are used for values greater than 0.6 GeV/c. Four of the indiviual binned

(PREC − PMC)/PMC distributions of the inner and outer silicon sensors are shown

in Figs 4.21 and 4.22.

The DER tracking method fulfilled all of design requirements for tracking protons

with momentum values less than 0.6 GeV/c with the SSD. The tracking software

has been adopted by the collaboration and is included both as the stand alone DER

tracking and combined in another method which includes the SFT and PD and uses

curvature in the magnetic field. The method is compared with the expectations

of silicon tracking, first proposed from simulations during the design of the recoil
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detector, as published in the Technical Design Report [21], as shown in Fig 4.24.

The resolution of the lookup table from both silicon sensors is relatively stable,

unlike the original prediction which has an increasing ∆P
P

as the momentum value

increases. The stability of the SSD tracking method is due to the line of best fit

shown in Fig 4.7 used to construct the lookup table that gives equal weighting to all

events in the momentum range 0 to 0.6 GeV/c. The momentum reconstruction of

this SSD tracking method is the most precise that has been developed at HERMES.

The ∆P
P

value increases with momentum in the original TDR prediction of the SSD

performance as it is based on fits to the energy deposit in both SSD sensors, shown

in Fig 4.6. The energy deposited in each SSD sensor decreases with increasing

momentum, therefore such a fit is less precise as the momentum of the recoiling

proton increases. The original predicted resolution did not include other factors,

such as the presence of passive materials, which although corrected for decrease the

resolution of the momentum obtained, particularly for low momentum protons. Due

to the high performance of the lookup table tracking method it is actively used in

the HERMES tracking software and will be used for future physics analyses.
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Figure 4.24: The momentum resolution of the inner and outer silicon sensors com-

pared with the expected performance from the Technical Design Re-

port [21].
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Chapter 5

Data Analysis

This chapter details the analysis of the hydrogen target data taken during the entire

running period of the HERMES experiment, from 1996 until the end of data taking

in July 2007. The hydrogen target data taken after the Recoil Detector installation

during 2006-2007 is analysed for the first time in this thesis. This new data provided

the greatest number of analysable events at HERMES for the DVCS/BH process.

The increase in statistics is due to the use of an unpolarised hydrogen target which

has a greater density than the polarised target used in previous years of data taking.

5.1 Kinematic Definitions

The DVCS interaction at HERMES is shown in Fig 5.1 in which a positron or

electron interacts, via a virtual photon, with a quark inside the target proton. This

proton is at rest in the lab frame. The reaction products of this event are a scattered

positron/electron, a recoiling proton and a real photon. The proton remains intact

throughout the interaction. The reaction process is described

e±(k) + P (P)→ e±(k’) + P (P’) + γ(q’), (5.1)

where e± is the electron/positron beam, P the target proton and γ the real photon.

The following kinematic definitions are used to describe the four momentum of

the particles involved in this interaction: k is the four momentum of the beam

positron/electron, P is the four momentum of the target proton at rest, q is the four
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x
y

z
φ

"q′

"k
"k′

"q

Figure 5.1: The DVCS process on an unpolarised target in the HERMES coor-

dinate system [88]. The angle φ is defined as the azimuthal angle

between the photo-production and lepton-scattering plane. The in-

coming lepton with four momenta k interacts with the target proton

via a virtual photon with four momenta q leaving the scattered lepton

with four momenta k’ and a produced photon with four momenta q’.
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momentum of the virtual photon, k’ is the four momentum of the scattered lepton

detected in the forward spectrometer, q’ is the four momentum of the real photon

detected in the forward spectrometer, P’ is the four momentum of the scattered

proton.

The scattering angle φ shown in Fig 5.1 is defined as the azimuthal angle between

the lepton-scattering and photo-production planes of the virtual and real photons

respectively, i.e.

φ =
−→q ×−→k · −→q′
|−→q ×−→k · −→q′ |

· cos−1

( −→q ×−→k
|−→q ×−→k |

·
−→q ×−→q′
|−→q ×−→q′ |

)
. (5.2)

The asymmetry results produced at HERMES are binned in three kinematic vari-

ables Q2, xB and t. The variables Q2, xB and the energy loss of the scattered lepton

ν have been defined in Section 2.2.2. The photon virtuality Q2 is calculable directly

from the difference between the four-momenta of the initial and scattered leptons.

The Mandlestam variable t is calculated as the difference in the four-momenta of

the protons or photons in the interaction

t = (P−P’)2 = (q− q’)2 ∼= −Q2 − 2Eγ(ν −
√
ν2 +Q2cosθγ∗γ), (5.3)

where Eγ is the energy of the produced photon and θγ∗γ is the polar angle between

the virtual and produced photons, defined as

θγ∗γ = cos−1
−→q · −→q′
|−→q ||−→q′ |

. (5.4)

If the proton is not detected, as in the analysis presented in this thesis, t is cal-

culated using the reconstructed energy of the real photon. The momentum of the

scattered proton in the interaction is identified by calculating the missing mass in

the interaction written as

M2
x = (q + P− q’)2 = M2

p + 2Mp(ν − Eγ) + t. (5.5)

Assuming that in an elastic process Mx ≡ Mp, the mass of the proton, the photon

energy can be calculated as

Eγ =
t

2Mp

+ ν. (5.6)
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Eγ can be substituted into Eq 5.3 allowing a constrained t to be calculated.

t =
−Q2 − 2ν(ν −√ν2 +Q2cosθγ∗γ)

1 + 1
Mp

(ν −√ν2 +Q2cosθγ∗γ)
. (5.7)

This is independent of the energy measurement of the produced photon, i.e. the

only measurement of the photon momentum is provided by the calorimeter with a

resolution of approximately 5%. This is an order of magnitude higher than the reso-

lution of the equivalent electron/position momentum measurement. The angle θγ∗γ

is calculated from the measurement of the position of the photon in the calorimeter

which is a more precise measurement.

The squared invariant mass W of the final hadronic state can be written as

W 2 = (P + q)2 ∼= M2
p + 2Mpν −Q2. (5.8)

In order to identify exclusive events a cut is placed on the squared missing mass, M2
x

defined in Eq 5.5. The cut is defined so that the remaining missing mass spectrum

is the region in which it could be expected that a proton would be found in the

HERMES resolution.

5.2 Data Selection

5.2.1 Data Quality Checks and Criteria

The data at HERMES is recorded at the run, burst and event level as illustrated

in Fig 5.2. Different criteria (“cuts”) are introduced at each stage of the analysis

chain to ensure that the data is of sufficient quality to be analysed. The first of

these cuts are applied at the run level. Thirty two individual cuts are applied to

each run represented by a hexadecimal number, called a bad bit pattern. The same

bad bit pattern is applied to the data from each individual year, including the 2006

and 2007 productions, if the information from the Recoil Detector is not used for

event rejection.

The bad bit pattern used is 0x501e03dc, which contains the following criteria:
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Yearly Data
Productions

Data RunData Run Data Run

Data BurstData Burst

Data Quality Cut

Data Burst

EventEventGeometric/Kinematic Cuts Event

Particle TracksParticle Tracks Particle Tracks

Figure 5.2: A flowchart giving an overview of the data productions at HERMES.

A data production is generated for each year individually at HERMES.

The data is described on the run, burst and event level as described in

chapter 2. Data quality cuts can be made on these individual levels.
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• The trigger 21 dead time is not unphysical. This is the main physics event

trigger and relates to the energy deposition in the calorimeter and signals in

the H0, H1 and H2 hodoscopes.

• The burst length L is within 0 < L ≤ 11 seconds.

• The beam current is between 2 and 50 mA. The lower cut on the beam cur-

rent discards data with lower count rates. The upper cut discards data with

unphysically high currents.

• The burst was not the first in a run. This excludes events recorded during the

rise time of the detectors.

• There is no bad µDST record. This cut discards data that are part of the last

burst in a fill with reconstructed events. In addition data are discarded which

are considered bad due to synchronisation problems, burst or event number

jumps or table overflows.

• The PID values were available. This cut discards data with no available PID

due to initialisation problems or an unknown Calorimeter threshold.

• The run was marked as analysable. This cut accepts only runs that are marked

analysable in the logbook as noted by the shift crew during data taking.

• The latest beam polarisation measurement was made within the last 5 minutes.

The following criteria are detector specific and check that the detector con-

cerned was operational.

• There are no dead blocks in the Calorimeter

• There are no dead blocks in H3 or the Lumi detector

• The Transition Radiation Detector (TRD) was operating

• No High Voltage trips in the FCs or BCs
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An additional criteria is applied to the 1996 data production which rejects events

where the calorimeter was not performing correctly. Some other data quality cuts

applied in addition to the bad bit pattern, are:

• There has been a beam polarisation measurement and events are rejected if

the beam polarimeter was not operational. (g1DAQ.bProdMethod&0x00800

!= 0x00800).

• The beam polarisation measurement is within the range accurately recorded

by the beam polarimeter. (0 < |g1Beam.rPolF it| < 1).

• TRD was operational in both the top and bottom halves of the spectrometer

(g1Quality.iT rdDQ == 3).

• The raw luminosity count rate is within the specified limit

(5 < g1Beam.rLumiRate < 3000).

• The DAQ lifetime is reasonable i.e. the DAQ software was operational for

more than 80% of each burst. (0.8 < g1DAQ.rDeadCorr21 < 1.0).

Following the application of these data quality criteria, additional restrictions

are introduced to select the events that are applicable for this analysis. The first

additional step is to remove the events that are detected in, or originate from,

unphysical regions of the HERMES experiment due to deflections within the spec-

trometer. These events are removed by introducing criteria based on the geometry

of the spectrometer:

• The vertex position of the interaction originated within the long target cell for

data taken between 1996 and 2005 i.e. -18 6 zvx 6 18 cm.

• The vertex position of the interaction originated within the short target cell

for data taken in 2006 and 2007 i.e. 0 6 zvx 6 20 cm.

• The closest transverse distance to the vertex is 0 6 tvx 6 0.75 cm. This

limit ensures that the event originates from the target cell by removing events

originating from outside the target cell.
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• The energy deposition of the scattered lepton is detected within the fiducial

volume of the calorimeter. The struck region of the calorimeter satisfies |xe±calo|
< 175 cm and 30 cm < |ye±calo| < 108 cm.

• The polar angle between the virtual and real photon is within the limit

5 mrad < θγ∗γ < 45 mrad. The azimuthal angle φ is not defined below the

lower limit due to the finite resolution of the spectrometer. Above the upper

limit Monte Carlo studies have shown that an event sample is dominated by

background events [89].

• The lepton is not deflected by the septum magnet plates in the spectrometer.

This is achieved by placing limits on the measured slopes and spatial offsets

of the lepton track. These are:

|xoffset + 172 ∗ tanθx| < 31 cm,

|yoffset + 181 ∗ tanθy| < 7 cm,

|yoffset + 383 ∗ tanθy| < 54 cm,

|xpos + 108 ∗ xslope| ≤ 100 cm,

|ypos + 108 ∗ yslope| ≤ 54 cm.

The DVCS/BH event sample is a subset of the DIS sample at HERMES. The

DIS sample is determined using the following criteria:

• A scattered lepton is identified using the PID limitation (2 < g1Track.PID2+

g1Track.PID5 < 100).

• The scattered lepton has the same charge as the lepton beam.

• Trigger 21 has fired identifying that a physics event has occured in the detector.

• The beam energy is greater than 27 GeV.

• The correct track reconstruction method is used for the scattered lepton i.e.

the lepton is tracked by all the tracking detectors in the spectrometer

((g1Track.iSelect&0x0100) && (g1Track.iSelect&0x0200)).

• Q2 > 1 GeV2 ensures the applicability of factorisation.
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• W 2 > 9 GeV2 is the kinematic limitation in which the Monte Carlo fragmen-

tation operates correctly. This models allows the background processes to be

estimated and removed from the event sample.

• ν < 22 GeV eliminates events in which the efficiency of the photon energy

reconstruction is dubious.

In addition to the identification of a charged lepton in the spectrometer it is also

necessary to detect one photon in the calorimeter to distinguish a DIS event from

the recorded data. The photon is measured using the following limitations on the

recorded cluster:

• Eγ > 5 GeV ensures the photon is of sufficient energy to be accurately re-

constructed in the calorimeter and eliminates some background processes that

could contaminate the event sample.

• Epreshower > 1 MeV is the minimum energy required in the preshower detec-

tor to ensure that an electromagnetic shower is produced in the calorimeter

allowing the energy of the photon to be accurately reconstructed.

• The energy deposition of the real photon is contained within the fiducial vol-

ume of the calorimeter. This limitation is different from the criteria used to

identify the scattered lepton due to the positional differences of photon and

lepton clusters in the calorimeter due to the bending of the lepton allowing

a bigger detection range. The photon energy deposit is detected within the

limit |xγcalo| < 125 cm and 33 cm < |yγcalo| < 105 cm.

The DVCS/BH (ep→ eγp) events are identified by imposing additional criteria

on the DIS event sample. The criteria are:

• Each event contained exactly one photon measured as an untracked cluster in

the calorimeter.

• −t < 0.7 GeV2 is used to eliminate background events contaminating the anal-

ysed sample. Monte Carlo studies have shown that background processes

dominate at higher values of −t [89].

August 6, 2010



5.2. Data Selection 118

−t 0.00 - 0.03 0.03 - 0.06 0.06 - 0.10 0.10 - 0.20 0.20 - 0.35 0.35 - 0.70 GeV2

xB 0.03 - 0.06 0.06 - 0.08 0.08 - 0.10 0.10 - 0.13 0.13 - 0.20 0.20 - 0.35

Q2 1.00 -1.40 1.40 - 1.80 - 1.80 - 2.40 2.40 - 3.20 3.20 - 4.50 4.50 - 10.00 GeV2

Table 5.1: The −t, xB and Q2 binning used in this analysis

• Q2 < 10 GeV2 and 0.03 < xB < 0.35 define the kinematic region for the binning

variables used in this analysis. These limits reject few DVCS candidate events.

• An additional limit is placed on the missing mass of the interaction, consistent

with the mass of the proton, in order to identify DVCS/BH events. This is

detailed in Section 5.4.3 and is year-independent.

The criteria listed in this section are applied to the entire hydrogen data set

over the HERMES experiment’s operational lifetime. The Beam Charge (BCA)

and Beam Helicity Asymmetries (BHA) are extracted from the resulting DVCS/BH

event sample.

5.2.2 Binning of DVCS Asymmetries

The quantity of DVCS/BH events recorded after the installation of the Recoil De-

tector is very much greater than that of the previous years of data taking, with

the 2006 and 2007 data sets containing approximately 32000 and 25000 DVCS/BH

events respectively. Asymmetry amplitudes are extracted from the DVCS/BH event

sample over a range of −t, xB and Q2. The data sample is divided into six bins

containing approximately equal numbers of DVCS/BH events from which the asym-

metry amplitudes are extracted. The kinematic range of each bin is based on the

experimental resolution of each variable, as defined by Monte Carlo studies [90].

The size of each bin used to plot asymmetry data is detailed in Table 5.1.
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5.3 Extraction Method

As described previously in section 2.5, this thesis contains both a single extraction of

the Beam Helicity Asymmetry and the combined extraction of the Beam Charge and

the Beam Helicity Interference and DVCS amplitudes. The Maximum Likelihood

method for simultaneous extraction of the BHA and BCA and the single charge

extraction of the BHA used for current DVCS analyses at HERMES was originally

proposed in [91].

5.3.1 Maximum Likelihood Fitting

The first DVCS asymmetry results were produced at HERMES using the Least

Squares fitting technique. Using this technique involved fitting the φ-binned distri-

bution of the extracted DVCS data. The Maximum Likelihood method was intro-

duced so that the fit could be made to individual data points without introducing

potential errors from binning the data in histograms, used in the extraction of am-

plitudes with the Least Squares method. Maximum Likelihood fitting also allowed

the simultaneous extraction of the ALU asymmetry amplitudes induced by the in-

terference and pure DVCS contributions separately at the same time as the AC

amplitudes. The Extended Maximum Likelihood method used in this analysis was

selected as it gives the correct values for the asymmetries when constant terms are

used in the function that is minimised and this method takes into account that

the total number of observed DVCS/BH events is a Poisson Distribution [91]. The

fitting function used describes the theoretical dependence of the asymmetries on φ.

A comparison of the single charge BHA results extracted from 2006 positron, 2006

electron and 2007 positron is detailed in Chapter 6.4.

The likelihood function for a set ofN independent data points xi = {−t, xB, Q2, φ}
is determined from the probability density function (p.d.f.) p(x; θ) depending on a

set of m unknown parameters θ is

L (θ) =
N∏
i

p(xi; θ). (5.9)

The values of the parameter set θ are determined by maximising the likelihood func-
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tion L (θ). The likelihood equations are solved for the logarithm of the likelihood

equations i.e.
∂ ln L

∂θj
= 0, j = 1, ...,m. (5.10)

The distribution of events around the angle φ are observed to have a Poisson dis-

tribution about the expected value θ. To take this distribution into account, the

maximum likelihood function is “extended” to include the Poisson p.d.f. NNe−N

N !
,

L (θ) =
[N(θ)]Ne−N(θ)

N!

N∏
i

p(xi; θ). (5.11)

known as the Extended Maximum Likelihood (EML) function. The N is the ex-

pected number of events and N(θ) can be interpreted as the normalisation of the

extended p.d.f. P(x; θ) ≡ p(x; θ)N(θ) i.e.

N(θ) =

∫
P(x; θ)dx. (5.12)

In practice, maximising the likelihood function leads to a large value due to the large

number of DVCS/BH events analysed. A large product of small values may lead

to rounding errors during the asymmetry extraction. The negative log-likelihood

method is used as a solution to this problem at the same parameters θ as the

maximum likelihood. The negative log-likelihood functions to be minimised is,

− ln LEML(θ) = −
N∑
i

lnP(xi; θ) + N(θ). (5.13)

The number of events available at HERMES are constrained by the data taking

period, dictated by the use of the HERA accelerator, and the luminosity. Studies

described in [92], have shown that the EML method is the most suitable for use at

HERMES as the normalisation is not dependent on a fixed number of events. The

EML method is also shown to be more consistent with the Least Squares method.

The Standard Maximum Likelihood (SML) is not used as it was found to overesti-

mate the uncertainty of a constant term included in the fit function [91].
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5.3.2 Extraction of the Single Charge BHA

The BHA-only extraction is independent of beam charge. The extended probability

density function of the total observed exclusive events in x and P reads

N (x;P ; θ) = L(P )ε(x, P )σUU(x)[1 + PALU(x; θ)], (5.14)

where L is the luminosity, ALU the asymmetry around the azimuthal angle φ, ε

the detection efficiency and σUU the cross section for an unpolarised target. The

normalisation reads

N(θ) =

∫∫
N (x, P, θ)dxdP, (5.15)

and can be approximated in the case that detector efficiency is set to unity as

N(θ) =
L
−→
L

∑−→N
i [1 + 〈P 〉ALU(xi; θ)][

1− 〈
−→
P 〉
〈←−P 〉

] +
L
←−
L

∑←−N
i [1 + 〈P 〉ALU(xi; θ)][

1− 〈
←−
P 〉
〈−→P 〉

] (5.16)

where N is the observed number of exclusive events, L is the integrated luminosity

L =
∫ L(P )dP =

∫
L(t)dt and 〈P 〉 is the avarge polarisation with → (←) the

positive (negative) polarisation. The standard p.d.f is

p(x;P ; θ) =
N (x, P ; θ)

N(θ)
. (5.17)

The negative log-likelihood function − ln `(θ) for the EML method, which is min-

imised during the extraction procedure, is given as

− ln LEML(θ) = −
N∑
i

ln[1 + PiALU(xi; θ)] + N(θ), (5.18)

The asymmetry amplitudes are dependent on the azimuthal angle φ in both the

numerator and the denominator. The fit function allows the physical interpreta-

tion of the Fourier coefficients decomposing the involved amplitudes. The following

decomposition function is used to extract the Beam Helicity Asymmetry

ALU(x; θ) = Acos0φLU + AsinφLU sin(φ) + AcosφLU cos(φ) + Asin2φ
LU sin(2φ). (5.19)

The coefficients used in this function are “asymmetry amplitude’s” and should not

be identified as Fourier coefficients.
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5.3.3 Simultaneous Extraction of BCA and BHA

The simultaneous extraction of the BHA and BCA amplitudes is implemented in a

similar manner to the previous section. In order to extract the BCA the beam charge

terms are also included in the cross section. The extended p.d.f of the exclusive

events in x, P and η reads

N (x, P, η; θ) = L(P, η)ε(x, P, η)σ0
UU(x)[1+ηAC(x; θ)+PADV CSLU (x; θ)+ηPAILU(x; θ)]

(5.20)

where L is the integrated luminosity, η the detector efficiency, σ0
UU the unpolarised

cross section averaged over both beam charges and AC , ADV CSLU and AILU the asym-

metries in the azimuthal angle φ. The deduction of the normalisation

N(θ) =

∫∫
η=1

N (x, P, η, θ)dxdP +

∫∫
η=−1

N (x, P, η, θ)dxdP, (5.21)

in the extraction of the asymmetry amplitudes when the detector efficiency is set to

unity. The normalisation can therefore, be approximated as

N(θ) =
N∑
i

K(Pi, ηi)[M1 +M2AC(xi; θ) +M3A
DV CS
LU (xi; θ) +M4A

I
LU(xi; θ)], (5.22)

with

K(P, η) =
1

2

1
−→L+

1

1− 〈−→P +〉/〈←−P +〉
(P > 0, η = 1),

1

2

1
←−L+

1

1− 〈←−P +〉/〈−→P +〉
(P < 0, η = 1),

1

2

1
−→L−

1

1− 〈−→P −〉/〈←−P −〉
(P > 0, η = −1),

1

2

1
←−L−

1

1− 〈←−P −〉/〈−→P −〉
(P > 0, η = −1), (5.23)

and

M1 = L+ + L−, (5.24)

M2 = L+ − L−, (5.25)
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M3 = L+〈P+〉+ L−〈P−〉, (5.26)

M4 = L+〈P+〉 − L−〈P−〉, (5.27)

where + (−) is the beam charge, → (←) the positive (negative) beam polarisation

and 〈P 〉 the average polarisation. The weights are used to account for luminosity

imbalances with respect to the beam charge and polarisation. In practice, these

quantities were normalised using the number of DIS events listed in Table 5.3. The

negative log-likelihood function − ln L (θ) of the EML method, minimised during

the asymmetry extraction procedure is given as

− ln LEML(θ) = −
N∑
i

ln[1 + ηiAC(xi; θ) + PiA
DV CS
LU (xi; θ) + ηiPiA

I
LU(xi; θ)] + N(θ).

(5.28)

The asymmetries are extracted from the data using the MINUIT package con-

tained in the ROOT analysis framework developed at CERN [93] for high energy

particle physics experiments such as HERMES.

In order to extract the combined BCA and BHA amplitudes the following de-

composition is used

AC(xi; θ) = Acos0φC + AsinφC sin(φ) + AcosφC cos(φ) + Acos2φC cos(2φ) + Acos3φC cos(3φ),

(5.29)

ALU,DV CS(xi; θ) = Acos0φLU,DV CS+AsinφLU,DV CSsin(φ)+AcosφLU,DV CScos(φ)+Asin2φ
LU,DV CSsin(2φ),

(5.30)

ALU,I(xi; θ) = Acos0φLU,I + AsinφLU,Isin(φ) + AcosφLU,Icos(φ) + Asin2φ
LU,I sin(2φ). (5.31)

The minimisation of this function is used to extract the BHA and BCA asymme-

try amplitudes. The Fourier coefficients of the BHA and BCA are related to the

amplitude of each asymmetry, as detailed in Section 2.6.2
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5.4 Systematic Studies

5.4.1 Comparison of the 10 and 13 Parameter Fit Functions

The asymmetry results have been obtained by extracting the parameters of the fits

outlined in the previous section. The BHA is dependent on sin(nφ) and the BCA on

cos(nφ) at leading order. In addition to the expected physics motivated harmonics

the 13 parameter fit includes non-physical sine and cosine terms in the BCA and

BHA amplitudes respectively as a consistency of fit test. The additional terms which

are not physical are expected to be zero if the fit has been normalised correctly. In

order to show that this is the case and that these extra parameters do not affect the

analysis the asymmetry amplitudes were extracted using a fit with (13 parameter)

and without (10 parameter) these terms. The 10 parameter fit minimised is:

AC = Acos0φC + AcosφC cos(φ) + Acos2φC cos(2φ) + Acos3φC cos(3φ), (5.32)

ALU,DV CS = Acos0φLU,DV CS + AsinφLU,DV CSsin(φ) + Asin2φ
LU,DV CSsin(2φ), (5.33)

ALU,I = Acos0φLU,I + AsinφLU,Isin(φ) + Asin2φ
LU,I sin(2φ). (5.34)

The asymmetry amplitudes extracted from 2006 and 2007 unpolarised hydrogen

data using both fits are shown in Figs 5.3, 5.4 and 5.5. This is a first check of the

fitting function and is not yet corrected for known detector effects.

The presence of the “check” terms causes some slight fluctuations in the am-

plitude of the extracted asymmetries. The kinematic dependence of the extracted

amplitudes over the range of −t, xB and Q2 values is identical using both fits. Due

to the overall compatibility of the amplitudes, the function used to extract the asym-

metries is seen to be stable and in all other work presented the 13 parameter fit is

used.
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5.4.2 Cross-Check of Data Sample and Results

In order to verify that the identification of DVCS/BH events in each of the data tak-

ing years was performed correctly, a cross check was performed with Dietmar Zeiler

of Erlangen University. The number of DVCS/BH events identified is identical and

the DIS events agree to within 0.05%. The results of this cross-check are presented

in Table 5.2.
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µDST Helicity NDV CS NDIS BPol 〈P 〉 [%]

D. Zeiler This Work D. Zeiler This Work D. Zeiler This Work

96d0 + 1212 1212 829629 829755 50.1466% 50.1466%

96d0 - 0 0 0 0 0% 0%

96d0-p + 553 553 366465 366538 51.2768% 51.2767%

96d0-p - 0 0 0 0 0% 0%

97d1 + 0 0 0 0 0% 0%

97d1 - 1652 1652 1168350 1168735 -52.4756% -52.4756%

97d1-p + 384 384 3176888 317975 49.6752% 49.6750%

97d1-p - 1638 1638 1213566 1213840 53.0786% 53.0786%

98d0 + 0 0 0 0 0% 0%

98d0 - 702 702 479389 479469 -30.1470% -30.1475%

00d2 + 2791 2791 1887579 1887874 53.6930% 53.6930%

00d2 - 4905 4983 3187375 3237320 -55.0303% -55.0413%

03c0-p + 396 396 277064 275756 32.1466% 32.1441%

03c0-p - 0 0 0 0 0% 0%

04c1 + 161 161 109725 109747 33.8550% 33.8554%

04c1 - 0 0 0 0 0% 0%

04c1-p + 1794 1794 1207353 1207095 32.5564% 32.5566%

04c1-p - 1433 1433 928162 927962 -40.2725% -40.2727%

05c1 + 392 392 232497 232532 21.0862% 21.0863%

05c1 - 283 283 181052 181082 -28.3204% -28.3204%

05c1-p + 2626 2626 1748896 1748355 33.5334% 33.5339%

05c1-p - 3817 3817 2466635 2465845 -28.5221% -28.5220%

06e1 + 29472 29472 17078917 17083751 34.6391% 34.6489%

06e1 - 9238 9238 5148126 5149508 31.8751% -31.8750%

07c2 + 16205 16205 9355212 9357851 45.9619% 45.9618%

07c2 - 12630 12630 7971616 7973788 -39.6629% -39.6629%

Table 5.2: The number of DVCS/BH events (NDV CS), DIS events (NDIS) and av-

erage beam polarisation 〈P 〉 for each of the data taking years with a

hydrogen target. The results from D.Zeiler and the work presented in

this thesis are in excellent agreement.
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Total DVCS/BH events Total DIS events

1996 - 2005 (old) 24817 16649880

2006 - 2007 (new) 67815 39564898

Ratio (new / old) 2.73 2.38

Table 5.3: The number of DIS and DVCS/BH events available from the 1996 - 2005

and the 2006 - 2007 data taking periods. The number of DVCS/BH

events is weighted using the beam polarisation. The analysable events

is more than double that of the previous analysis as seen in the ratio of

the “new” 2006-2007 events and “old” 1996-2005 events

The inclusion of the 2006 and 2007 data has more than doubled the number of

DVCS/BH events available compared with data taken from 1996-2005. The overall

increase in statistics is summarised in Table 5.3.

The asymmetries from 2006 and 2007 hydrogen data, extracted independently by

each analyst, are shown in Figs 5.6, 5.7 and 5.8. The results obtained from the cross-

checked DVCS/BH event sample are in agreement and show identical dependence

on the kinematic variables −t, xB and Q2. The statistical uncertainties of the fit in

both cases are consistent.

5.4.3 Missing Mass Window Shift

Two independent BHA and BCA results were analysed; the first extracted from the

new 2006-2007 data and the second using all the hydrogen data taken from 1996

until 2007. As the experimental configuration itself has changed during the lifetime

of HERMES, the data taken from individual years is compared to identify changes

that could affect the analysis procedure and experimental results. The average value

of the missing mass Mx, i.e. the value of the missing mass consistent with the proton

and used to identify DVCS/BH events, has been observed to change over the lifetime

of the HERMES experiment. This effect could be due to detector misalignment. The

window was altered slightly for different data taking periods to reflect alterations

to the experimental setup and different beam charges. The most dramatic change
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in the detector setup was in 2005 when the Recoil Detector was installed and the

target cell was moved in z by 12.5 cm and shortened to 20 cm [21]. In order to

verify that the asymmetry amplitudes were unaffected by spectrometer alterations,

the extracted results from data taken before and after installation were compared,

in Section 6.2.

In order to identify exclusive events, a cut is placed on the missing mass defined

in Eq 5.5. In the analysis presented the recoiling proton from an exclusive event

remains undetected as the analysis was performed using only information from the

forward spectrometer. The event is identified by using a specific range or “window”

defined around the square of the proton mass (0.938 GeV)2. As the missing mass

resolution is restricted by the resolution of the photon energy measurement in the

calorimeter the range of the distribution is quite broad, including negative values.

The missing mass was calculated as

Mx =
√
|M2

x |. (5.35)

The missing mass window used to determine exclusive events is identified over a

range in M2
x of -2.25 < M2

x < 2.89 GeV2. This cut was obtained from a Monte

Carlo simulation that resulted in a resolution of δM2
x = 1.840 GeV2 at a peak

position of 1.502 GeV2. This error was propagated as:

δMx =
dMx

M2
x

· δM2
x =

1

2Mx

· δM2
x = 0.8GeV. (5.36)

The asymmetric exclusive window chosen is [M2
p − 3σ,M2

p + 1σ] around the squared

proton mass M2
p . In practice, this window is shifted for different years of data

taking with the change in the peak of the missing mass which was not constant

from year to year. The width of the missing mass distribution σ is consistent for all

periods of data taking with the exception of 1996-1997. The change in σ after 1997

is attributed to the installation of the RICH detector in 1998.

It has been observed that the missing mass peaks for electron and positron data

are shifted with respect to each other [94, 19, 47, 42, 95]. The missing mass window

is, therefore, calculated for separate electron and positron periods. The pre-recoil

data was split into four time periods, each with a different missing mass window.

These periods are summarised in Table 5.4. The two years when data was taken
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Figure 5.9: The missing mass distribution of the 2006 electron and 2006-2007

positron data within the standard missing mass window -2.25 < M2
x

< 2.89 GeV2.

using the electron beam are separated due to the significant time interval between

them. For the post-recoil data taking periods three different time periods are used:

the 2006 positron data, the 2006 electron data and the 2007 data. The 2006 data is

split into two separate periods due to the fact that two beam charges are used. The

missing mass distributions for the 2006 electron and 2006 and 2007 positron data

are shown in Fig 5.9, which illustrates the shift between the electron and positron

data.

The peak of the missing mass window in the 2007 data was found to be time

dependent, which was not observed in data taken in other years. One possible
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Data Sample Mean (GeV2) Shift (GeV2) Window (GeV2)

96d0, 97d1 1.17 0.02 [-2.08,2.81]

98d0 0.88 -0.27 [-2.52,2.62]

00d2, 03c0, 04c1 1.15 0.00 [-2.25,2.89]

05c1 0.93 -0.22 [-2.47,2.67]

06e1 ele 1.09 -0.06 [-2.31,2.83]

06el pos 1.25 0.1 [-2.15,2.99]

Table 5.4: The mean values for the missing mass distributions in the window be-

tween -2.25 < M2
x < 2.89 GeV2 and the resulting shift in the missing

mass windows for the different data samples.

explanation for this is the miscallibration of the calorimeter. This effect was found

to affect the normalisation of the asymmetry extraction, as shown in Figs 5.3 -

5.13. In order to correct for this, the missing mass window was shifted for each

calorimeter calibration period (5000 runs) during the 2007 data, as shown in Fig

5.10. This resulted in a series of different missing mass windows for 2007 data,

detailed in Table 5.5. Using these time dependent missing mass shifts improved the

overall normalisation of the 2007 extracted asymmetry amplitudes.
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individual calorimeter calibration periods over the entire 2007 data

set.
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Calorimeter Period (run) Mean (GeV2) Shift (GeV2) Window (GeV2)

0 - 5000 1.32 0.17 [-2.08,3.06]

5001 - 10000 1.31 0.16 [-2.09,3.05]

10001 - 15000 1.27 0.12 [-2.13,3.01]

15001 - 20000 1.22 0.07 [-2.18,2.96]

20001 - 25000 1.20 0.05 [-2.20,2.94]

25001 - 30000 1.19 0.04 [-2.21,2.93]

30001 - 35000 1.22 0.07 [-2.18,2.98]

35001 - 40515 1.24 0.09 [-2.16,2.98]

Table 5.5: The mean values for the missing mass distributions in the window be-

tween -2.25 < M2
x < 2.89 GeV2 for the 2007 data binned in calorimeter

calibration periods.

The asymmetry amplitudes extracted using the shifted missing mass windows

are shown in Figs 5.11, 5.12 and 5.13. Using the new missing mass windows reduces

the constant cos(0φ) term in the BHA extraction, indicating an improvement in

the normalisation of the fit to the data. To date, the most significant advance in

improving the normalisation of the fit to extract asymmetry amplitudes has been

achieved using this approach. The other significant improvement in using the miss-

ing mass correction is the suppression of the unphysical sinφ term in the BCA which

becomes consistent with zero as expected. The kinematic dependences of the asym-

metry amplitude values are slightly different after the new missing mass windows

are applied. This change in kinematic dependence is most significant in the BCA

result. The statistical uncertainties of the asymmetry amplitudes are independent

of the correction. Further improvements may be made by identifying the proton

directly using the Recoil Detector, therefore not relying on this missing mass ap-

proach. The asymmetry amplitudes extracted from the missing mass shifted DVCS

event sample are used for the final results. The systematic uncertainty attributed to

each asymmetry amplitude is one quarter of the difference between the amplitudes

extracted from the DVCS events with the standard and shifted missing mass cuts.
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This is due to the effect that this shift is not well understood but the effect does not

contribute more than a quarter of the difference to the uncertainty [96].

5.5 Monte Carlo Simulation Studies

A number of systematic studies have been performed to compare the asymmetry re-

sults obtained experimentally with asymmetries extracted from Monte Carlo (MC)

data. Different Monte Carlo generators are used to simulate the experimental pro-

cesses and produce theoretical predictions of the asymmetry amplitudes, using mod-

els introduced in Section 2.2.2. Monte Carlo simulations can be used to identify the

individual reaction processes that are analysed within a selected DVCS/BH event

sample. There are three interactions analysed in addition to the Bethe-Heitler and

DVCS process that occur at HERMES. These are, in order of significance: associ-

ated Bethe-Heitler, Semi-Inclusive Deep Inelastic Scattering (SIDIS) and exclusive

π0 production. Associated Bethe-Heitler events result from interactions with a res-

onant state of the proton, one of a number of possible resonances most likely at low

energies produces a ∆+ before decaying into a proton or neutron with the emission

of a neutral or charged pion respectively. The analysis of experimental data has

been performed without using the Recoil Detector to identify protons, hence these

background events remain part of the analysed sample.

MC studies have shown that π0 production and subsequent decay into two pho-

tons in the forward spectrometer accounts for 80% of SIDIS background events in

the single photon DVCS/BH event sample. In these events, the neutral pion and

one of the produced photons is detected while the second is not, either because it

lies outside the calorimeter acceptance or that both photons are coincident in the

calorimeter and are identified as a single photon event. The remainder of SIDIS

background is from η decay. The SIDIS asymmetry amplitudes can be extracted

from the experimental data sample and used to correct the BHA and BCA results,

later described in Section 5.5.2.

The final contribution is from exclusive π0 production which accounts for such

a small percentage of the total background [97] that the asymmetries cannot be
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extracted and are assigned a value of 0± 2√
12

, equivalent to one standard deviation

for a uniform distribution in the range [-1,1].

5.5.1 Using Monte Carlo to Identify the Different Interac-

tions

Monte Carlo simulations of the detector and reaction processes are used to compare

the experimental result with expected detector performance and theoretical predic-

tions. Three Monte Carlo generators are used which simulate the different reaction

processes. A Monte Carlo generator called GMC DVCS was used to simulate the

elastic Bethe-Heitler and associated Bethe-Heitler processes and a second generator

called DISNG was used to simulate the SIDIS process [98]. In order to compare

the MC results with data the number of DVCS/BH events produced is normalised

using the DIS events from GMC DVCS. The exclusive π0 events are obtained from a

GMC EXCL MC simulation by selecting neutral pions. The fractional contribution

from each MC generator is recorded in Table 5.6. The experimental and MC data

generally agree well at the DVCS/BH event level as shown in Fig 5.14. Once an

event has been selected the fractional contribution is calculated using

fprocess =

∑Nprocess

i wi∑N
i wi

, (5.37)

where wi is the MC event weight of a DVCS/BH event, i and Nprocess ⊂ N .

5.5.2 Background Correction

As discussed in the previous section, the fractional contributions of the background

processes to the DVCS/BH event sample can be obtained from MC simulation. The

SIDIS asymmetry amplitudes are extracted from data by performing a two-photon

π0 dominated event analysis. If one or both of the decay photons of the neutral pion

is detected in a SIDIS event, the resulting asymmetry amplitude is the same [96].

Hence, the asymmetry amplitudes extracted from SIDIS events identified using a

two-photon analysis can be used to correct for the background SIDIS contamination

where only one of the photons is identified. In addition to SIDIS background process,
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DVCS/BH assoc. BH SIDIS excl. π0

overall 84.5 ± 0.1% 11.4 ± 0.1% 3.7 ± 0.3% 0.4 ± 0.5%

1.0 < Q2 < 1.4 85.9 ± 0.2% 8.8 ± 0.1% 4.0 ± 1.2% 0.7 ± 0.7%

1.4 < Q2 < 1.8 86.1 ± 0.3% 10.2 ± 0.1% 3.2 ± 1.1% 0.5 ± 0.7%

1.8 < Q2 < 2.4 86.0 ± 0.3% 10.2 ± 0.1% 1.9 ± 0.7% 0.4 ± 0.6%

2.4 < Q2 < 3.2 83.1 ± 0.3% 12.4 ± 0.1% 4.2 ± 0.9% 0.3 ± 0.5%

3.2 < Q2 < 4.5 83.4 ± 0.3% 13.6 ± 0.1% 2.8 ± 0.6% 0.2 ± 0.5%

4.5 < Q2 < 10.0 79.2 ± 0.4% 15.6 ± 0.2% 5.1 ± 0.8% 0.1 ± 0.5%

0.03 < xB < 0.06 87.7 ± 0.2% 11.3 ± 0.1% 0.8 ± 0.5% 0.2 ± 0.3%

0.06 < xB < 0.08 87.3 ± 0.2% 10.1 ± 0.1% 2.2 ± 0.7% 0.4 ± 0.5%

0.08 < xB < 0.10 86.0 ± 0.3% 11.2 ± 0.1% 2.3 ± 0.7% 0.5 ± 0.7%

0.10 < xB < 0.13 84.5 ± 0.3% 12.3 ± 0.1% 2.7 ± 0.7% 0.5 ± 0.7%

0.13 < xB < 0.20 82.0 ± 0.2% 13.3 ± 0.1% 4.2 ± 0.7% 0.5 ± 0.8%

0.20 < xB < 0.35 76.1 ± 0.5% 13.6 ± 0.2% 9.9 ± 1.5% 0.4 ± 1.2%

0.00 < -t < 0.03 94.5 ± 0.3% 4.5 ± 0.1% 0.9 ± 0.5% 0.2 ± 0.4%

0.03 < -t < 0.06 89.8 ± 0.3% 6.8 ± 0.1% 3.1 ± 0.8% 0.3 ± 0.5%

0.06 < -t < 0.10 86.9 ± 0.3% 9.8 ± 0.1% 2.8 ± 0.8% 0.5 ± 0.7%

0.10 < -t < 0.20 81.8 ± 0.2% 13.9 ± 0.1% 3.8 ± 0.7% 0.5 ± 0.6%

0.20 < -t < 0.35 74.2 ± 0.3% 20.0 ± 0.2% 5.4 ± 1.0% 0.4 ± 0.8%

0.35 < -t < 0.70 66.7 ± 0.4% 27.6 ± 0.3% 5.5 ± 1.2% 0.2 ± 0.9%

Table 5.6: Fractional contributions of the elastic Bethe-Heiter with the contribu-

tions of the associated Bethe-Heitler, semi-inclusive pion and exclusive

pion background processes to each kinematic bin. The statistical errors

of each contribution are also shown. The largest background contribu-

tion is from the associated Bethe-Heiter process.
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exclusive π0 production also contaminates the DVCS/BH event sample but the

contribution of this process is less than 0.7% in each kinematic bin [23].

The following criteria are used to identify the SIDIS events:

• All previous criteria used to identify DIS events.

• Two trackless clusters pass the fiducial volume cuts of the calorimeter, both

of which produce a pulse in the preshower greater than 1 MeV, one of which

deposits an energy Eγ1 > 5 GeV, and the second Eγ2 > 1 GeV.

• The reconstructed invariant mass of the π0 is within the range 0.1 GeV < mγγ

< 0.17 GeV.

• All exclusive cuts apart from an altered missing mass range described above

are applied in this case.

• The fractional energy z of the π0 is greater than 0.8.

The fractional energy z can be calculated from the two photon events as

z = (Eγ1 + Eγ2)/ν = Eπ0/ν. (5.38)

The missing mass from two photons is calculated by

M2
γγ = (pγ1 + pγ2)2 = 2Eγ1Eγ2(1− cosθγγ), (5.39)

where,

θγγ = cos−1 |rγ1 · rγ2|
|rγ1||rγ2| , (5.40)

the polar angle between the two real photons calculated from their positional three-

vectors rγ1 and rγ2. In order to correct for the background processes the following

is used:

Aexcl =
1

1− fSIDIS − fexcl.π0

· [Ameas. − fSIDISASIDIS − fexcl.π0Aexcl.π0 ], (5.41)

where fSIDIS (fexcl.π0) is the fraction of SIDIS (exclusive) π0 events and ASIDIS

(Aexcl.π0) is the corresponding asymmetry amplitude. The fractional contribution of

the background events to the overall DVCS event sample is determined from the ap-

propriate MC simulation. Propagating the error from the background contribution
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(i.e. SIDIS and excl. π0) together with the measured asymmetry the systematic

error can be obtained from

δfbg,i
=
Ameas. − Abg,i + Abg,jfbg,j − Abg,jfbg,j

(1− fbg,i − fbg,j)2
· δfbg,i, (5.42)

δAbg,i
=

−fbg,i
1− fbg,i − fbg,j · δAbg,i, (5.43)

δ =
∑
i

√
(δ2
fbg,i

+ δ2
Abg,i

), (5.44)

where bg, i is the background process of interest. The asymmetry Aexcl.π0 cannot

be extracted from real data with sufficient statistics to give a realistic result. The

background described in the equation, therefore, does not include the effect of the

exclusive pion process as Aexcl.π0 ≈ 0.

The BHA and BCA amplitudes, ALU,I and AC , dependent on the beam charge are

expected to be compatible with zero as an asymmetry extracted from π0 event can

only arise from a two photon exchange mechanism. In the correction the charge re-

lated asymmetries are treated as dilutions i.e. the ALU,I and AC are set to zero. The

charge averaged BHA amplitudes arising from the squared DVCS term, ALU,DV CS

are expected to have a significant values and are used in the correction. The asym-

metry amplitudes extracted from the semi-inclusive π0 data are shown in Figs 5.15,

5.16 and 5.17. The results show that the AsinφLU,DV CS and A
sin(2φ)
LU,DV CS amplitudes are

significantly non-zero, with values of 0.053 and 0.064, as predicted from previous

results [90]. The BCA amplitudes AcosφC , A
cos(2φ)
C and A

cos(3φ)
C are all consistent with

zero but the other amplitudes expected to be zero, AsinφLU,I , A
sin(2φ)
LU,I and A

cos(0φ)
C , have

significant values of -0.063, -0.060 and -0.057 respectively. The asymmetry ampli-

tudes are not corrected for these values but they are considered in the systematic

error of the results shown in Chapter 6. The amplitude of the constant A
cos(0φ)
LU,I term

is also larger than expected. A value half the size of the difference between each

asymmetry amplitude with and without the semi inclusive background correction

contributes to the systematic uncertainty of the final DVCS asymmetry results de-

tailed in chapter 6. This uncertainty takes into account the approximations and

assumptions applied during the correction procedure [90].
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Monte Carlo simulations are also used to correct for radiative effects. The lepton

in the DVCS/BH interaction may emit an additional photon before of after it en-

counters the target proton losing an additional amount of energy. Consequently, the

lepton will have lower energy than that detected and the kinematics will be incor-

rectly reconstructed. If the lepton is emitted out with the electromagnetic field of the

target it is known as external bremsstrahlung. External bremsstrahlung events can

be eliminated from the event sample as the difference between the energy of the lep-

ton track reconstruction in the front and back parts, of the spectrometer, described

in Section 4.1.3, are not compatible. Correcting for the internal bremsstrahlung

i.e. the photon is emitted within the electromagnetic field, are known as radiative

corrections and are calculable at HERMES using a Monte Carlo simulation called

RADGEN. RADGEN takes as input the observed kinematics of an event, potentially

generates a radiative photon dependent on the observed kinematics and returns the

true kinematics at the interaction vertex. The difference between the observed and

true kinematics can be used to develop a migration matrix using the unfolding for-

malism which can be used to correct the event sample for radiative effects. It should

be noted that RADGEN only calculates the lowest order photons and soft photons

of energy up to 100 Mev are not simulated. The contribution of soft photons is

determined from a data-to-MC comparison using the GEANT detector simulation

package. The maximum contribution of soft photons emitted has been found to be

3.2% and 0.8% in the initial and final state respectively [89].

5.5.3 Combined Estimation of Systematic Uncertainty

In addition to the systematic error contributions from the missing mass and back-

ground processes, the remaining uncertainty in the extraction of asymmetry ampli-

tudes arises from detector effects and the extraction method. The individual uncer-

tainty contributions are from the spectrometer acceptance, smearing and finite bin

width effects. All of these effects are estimated together using an approach known as

the “3-in-1” Method. The inclusion of an improved detector alignment for new data

productions corrects for the misalignment of detector components [99]. In order

to reflect the change in the data productions, the most recent Monte Carlo produc-
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tions were created using a perfectly aligned detector. Previous DVCS analyses, using

data taken before 2005, have an error that is attributed to the misalignment of the

detector, the “4th” contribution to what is then known as the “4-in-1” uncertainty.

In order to determine this systematic uncertainty, the GMC DVCS MC pro-

duction is used to generate DVCS/BH events from a proton target using the two

different beam charge and polarisation states. This simulation is analysed using

exactly the same analysis method as for experimental data, with all the DIS and

DVCS/BH event criteria detailed in section 5.2.1. The asymmetry amplitudes are

extracted using the Extended Maximum Likelihood technique. A second set of

asymmetry amplitudes is generated using a code called QPLOT. In the QPLOT the

amplitudes are calculated directly from the Fourier coefficients, detailed in section

2.6.1, and are based on the VGG models of GPDs. The five different VGG models

include various combinations of choices of the t-ansatz, skewness, b parameter and

D-term, summarised in Table 5.7. The asymmetry amplitudes are calculated using

the average value of −t, xB and Q2 in each kinematic bin from the GMC DVCS pro-

duction. QPLOT is model dependent and free from any detector or binning effects.

The systematic uncertainty δ3in1 is defined as the difference between the generated

points from QPLOT, Agenerated, and the reconstructed asymmetry amplitudes from

GMC DVCS MC, Areconstructed,

δ3in1 = |Agenerated − Areconstructed|. (5.45)

The final systematic error contribution is calculated from the RMS i.e.
√

1
5

∑n
i=5 δ

2
i,3in1,

of the mean value of each of the five VGG QPLOT models. The asymmetry plots

showing the first of these VGG type models are shown in Figs 5.18, 5.19 and 5.20.

The BHA amplitudes originating from the interference term AsinφLU,I and Asin2φ
LU,I

are dependent on −t, xB and Q2. AsinφLU,I and Asin2φ
LU,I decrease in value with increas-

ing t for both the model amplitudes generated from QPLOT and the reconstructed

amplitudes from the Monte Carlo DVCS event sample. The model also predicts a

dependence on Q2 and xB which is not reflected in the reconstructed points. The

Acos0φLU,I and AcosφLU,I terms are both consistent with zero as expected. The reconstructed

and calculated BHA arising from the squared DVCS term are all small and compat-

ible with zero. The only result of the BCA not compatible with zero and dependent
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Model Factorised t-ansatz Skewness b Parameter D-term

1 X X 9 X

2 X X 1 X

3 X X 3 X

4 X X 1 X

5 X X 3 X

Table 5.7: Table summarising the contribution of the factorised t-ansatz, skewness,

b parameter and D-term to each VGG model.

on the kinematic binning is AcosφC , which decreases in value with increasing Q2 and

xB. In general, the reconstructed and generated asymmetry amplitudes agree with

each other and display a similar dependence on the kinematic binning. The largest

differences in the overall asymmetry values are the leading twist AsinφLU,I and AcosφC

amplitudes.

The “All-in-1” uncertainty is the systematic error contribution of the spectrom-

eter acceptance, smearing, misalignment and finite bin width to the BHA and BCA

extracted from the combined 1996-2007 data. The asymmetries are extracted from

a DVCS event sample that includes data taken both, with and without, the recoil

detector and the correction for the misalignment. In order to measure the systematic

uncertainty of this result two Monte Carlo productions were used with the geometry

files for both the old and new experimental configuration and alignment files. The

uncertainty was determined form the simulated DVCS events in both productions

using the 3-in-1 and 4-in-1 methods described previously. The All in 1 system-

atic uncertainty was calculated by weighting the contribution of both the 3-in-1

and 4-in-1 uncertainty using the number of DVCS events from the 1996-2005 and

2006/07 data taking periods. The All in 1 method, therefore, reflects the systematic

uncertainty of the experimental conditions during all years of data taking.
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5.5.4 Total Systematic Uncertainty

The total systematic uncertainty δsyst of the BHA and BCA amplitudes has con-

tributions from the Semi Inclusive DIS process δ2
BG, the 3-in 1 / 4-in-1 uncertainty

δ2
3in1 / δ2

4in1 and the missing mass shift δ2
M2

x
. This is calculated using

δsyst =
√
δ2
BG + δ2

3−in−1 + δ2
M2

x
(5.46)

for asymmetry results extracted from DVCS events obtained from 2006-2007 and

1996-2005 data.

The results of the individual contributions and the total systematic uncertainty

δsyst are summarised in Tables 5.8 and 5.9.

3-in-1 SIDIS Correction Missing Mass Shift δsyst

Acos0φC 0.0069 0.0008 0.0038 0.0115

AcosφC 0.0017 0.0022 0.0011 0.0050

Acos2φC 0.0013 0.0003 0.0010 0.0026

Acos3φC 0.0001 0.0003 0.0012 0.0016

Acos0φLU,DV CS 0.0007 0.0011 0.0029 0.0047

AsinφLU,DV CS 0.0004 0.0044 0.0068 0.0116

Asin2φ
LU,DV CS 0.0003 0.0047 0.0004 0.0054

Acos0φLU,I 0.0111 0.0025 0.0084 0.0220

AsinφLU,I 0.0246 0.0045 0.0054 0.0345

Asin2φ
LU,I 0.0016 0.0050 0.0006 0.0072

Table 5.8: The individual contributions of the missing mass shift, Semi Inclusive

DIS correction and 3-in-1 corrections to the overall systematic uncer-

tainty for the 2006-2007 data.
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All-in-1 SIDIS Correction Missing Mass Shift δsyst

Acos0φC 0.0066 0.0010 0.0034 0.0110

AcosφC 0.0013 0.0021 0.0009 0.0043

Acos2φC 0.0014 0.0006 0.0010 0.0030

Acos3φC 0.0003 0.0001 0.0006 0.0010

Acos0φLU,DV CS 0.0007 0.0032 0.0026 0.0065

AsinφLU,DV CS 0.0006 0.0017 0.0058 0.0081

Asin2φ
LU,DV CS 0.0004 0.0017 0.0002 0.0023

Acos0φLU,I 0.0006 0.0030 0.0054 0.0090

AsinφLU,I 0.0267 0.00581 0.0031 0.0356

Asin2φ
LU,I 0.0031 0.0019 0.0081 0.0131

Table 5.9: The individual contributions of the missing mass shift, Semi Inclusive

DIS correction and All in One corrections to the overall systematic

uncertainty for the 1996-2007 data.

The asymmetry amplitude with the greatest overall uncertainty is AsinφLU,I due

to the relatively large 3-in-1 / 4-in-1 contribution. An interesting result is the

significant difference between the 3-in-1 and All-in-1 systematic uncertainty of the

Acos0φLU,I term. This results from the difference between the asymmetry value extracted

from Monte Carlo simulation and the VGG model. This difference is explored

further in the next chapter. With the exception of Acos0φLU,I , the other systematic error

contributions to 2006-2007 and 1996-2005 BHA and BCA results are similar.
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Chapter 6

Final Results

The Deeply Virtual Compton Scattering (DVCS) asymmetry results presented in

this thesis are extracted from all hydrogen data available at HERMES for the first

time. From this data it is possible to extract both a single charge Beam Helicity

Asymmetry (BHA) and the combined BHA and Beam Charge Asymmetry (BCA).

These asymmetry amplitudes are presented with their respective uncertainties and

VGG model [23] calculations. Two results of the combined analysis of the BHA

and BCA are presented in this thesis. The first set of asymmetry results using the

combined extraction method with hydrogen data taken in 2006-2007 are shown in

Figs 6.1 and 6.2. A comparison of these amplitudes with the published BHA and

BCA results [19] from the 1996-2005 data is shown in Figs 6.3 and 6.4. These figures

have been released by the HERMES collaboration [88]. The second BHA and BCA

result, using the combined extraction method, is extracted from hydrogen data taken

during the entire running period of HERMES (1996-2007). These asymmetries are

shown in Figs 6.5 and 6.6. Single charge BHA results extracted separately from 2006

positron, 2006 electron and 2007 positron hydrogen data are discussed in Section

6.4.

HERMES has previously published results of BHA and BCA results on an un-

polarised hydrogen target. The first BHA result [100] was extracted from 1996-1997

data using the Least Squares fitting method. The first BCA result [44] was ex-

tracted using the 1998 electron and 1996-1997 positron data, again using the Least

Square Fitting to measure the asymmetry. The second publication of both the BHA
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and BCA included all the hydrogen data taken from 1996-2005 [19]. This analysis

used the combined extraction technique using the Extended Maximum Likelihood

Fitting (EML) method as detailed in the previous chapter. The data used in these

publications is a subset of the data used in this analysis, therefore, the published

asymmetry results and those presented in this thesis should be comparable. In to-

tal 67815 analysable DVCS/BH events were identified in the 2006-2007 unpolarised

hydrogen data set. This is more than double the 24817 DVCS/BH events produced

during hydrogen data taking from 1996-2005, as summarised in Table 5.3, and is

far greater than the 5439 DVCS/BH events available from the 1996-1997 hydrogen

data set.

6.1 Combined BHA and BCA Results from 2006-

2007 Unpolarised Hydrogen Data

The asymmetry amplitudes extracted from the 2006-2007 and 1996-2007 unpolarised

hydrogen DVCS events have been analysed separately. This allows the asymmetry

amplitudes extracted from data taken after the installation of the Recoil Detector

to be compared with previous results and the compatibility of the two results to be

verified as discussed in Section 5.4.

The overall BHA and BCA amplitudes from the combined extraction method

are summarised in Table 6.1 and are shown in Figs 6.1 and 6.2. The AsinφLU,I and

A
sin(2φ)
LU,I amplitudes sensitive to the interference term in the scattering amplitude are

shown respectively in the first and third row of Fig 6.1. Neither of these amplitudes

have a clear dependence on any of the variables −t, xB and Q2. The significant

negative overall value of the leading twist amplitude AsinφLU,I is much larger than the

value of A
sin(2φ)
LU,I , which is compatible with zero. The AsinφLU,DV CS amplitude shown in

the second row of Fig 6.1, dependent on the squared DVCS term in the scattering

amplitude, has no particular kinematic dependence and is similarly compatible with

zero. AsinφLU,I can be used to access the imaginary part of the Compton Form Factor

(CFF) H, that can be used to constrain GPD H [101]. The systematic errors

calculated as described in 5.5.4 are shown as a band at the bottom of each panel.
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The VGG model of the asymmetries does not include the Associated Bethe-Heitler

contribution.

Asymmetry amplitudes obtained from experimental data are compared with the

theoretical calculations from the VGG GPD model [23]. VGG theory bands are

shown with a Regge-motivated ansatz to describe the t-dependence. The thickness

of the theory bands arises from varying the skewness parameters bval and bsea, free

parameters in the VGG model for valence and sea quarks respectively. The values

of bval and bsea are varied between one and nine, with the variation of bsea producing

the most significant difference in theoretical amplitude value. The theory bands for

the AsinφLU,DV CS amplitudes are included for completeness, although the VGG model

does not include precise twist-3 dependence, rather relating twist-3 to twist-2 via

the Wandzura-Wilczek approximation [34]. The absolute value of the broad theory

bands for the AsinφLU,I amplitude are larger than the amplitude obtained from data and

has a dependence on −t that is not evident in the experimental result. The model

for A
sin(2φ)
LU,I is compatible with zero in agreement with the experimental result. The

D term can be neglected in the model as it only contributes to the real part of the

CFF and does not alter the result of the BHA [33].

The bottom row of Fig 6.1 shows the fractional contribution of the Associated

Bethe-Heitler production, which can only be estimated from a Monte Carlo simula-

tion. The overall value of the associated fraction is ≈12%. Monte Carlo simulations

have shown that the presence of this contamination does not account for the differ-

ence between the experimental result and the model calculation [90].

The BCA amplitudes are shown in Fig 6.2. The A
cos(0φ)
C and the AcosφC amplitudes

are dependent on the real part of CFFH and are both significantly non-zero. A
cos(0φ)
C

and AcosφC have opposite sign. The absolute value of AcosφC is greater than A
cos(0φ)
C .

Both of these amplitudes increase as−t increases with the AcosφC amplitude appearing

to plateau in the higher −t bins. The BCA amplitudes have no such dependence

on either xB or Q2. There is a direct relationship between AcosφC and A
cos(0φ)
C as

both are related to the quark helicity conserving twist-2 GPDs. Considering only

the dominant CFF H the Fourier coefficient cI1,unp is directly proportional to cI0,unp,

see Section 2.6. The real part of CFF H can be directly accessed using the AcosφC
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amplitude. The A
cos(2φ)
C and the A

cos(3φ)
C amplitudes are both compatible with zero

and show little variation across the kinematic range of −t, xB and Q2. A
cos(2φ)
C

relates to twist-3 GPDs, and A
cos(3φ)
C relates to gluon helicity flip GPDs.

The VGG theory bands shown in Fig 6.2 are produced by varying both the bval

and bsea between the values between 1 and 9 as before. The resulting theory band

does not describe the experimental result. The overall value of the A
cos(0φ)
C , AcosφC and

A
cos(2φ)
C theory bands is double that of the experimentally observed amplitude. The

VGG model predicts the kinematic dependence of the A
cos(0φ)
C amplitudes which are

offset from those extracted from the HERMES data. The theory bands for the AcosφC

amplitudes show dependence on the individual kinematic bins with the −t band

continuing to increase in the higher bins instead of levelling off. The xB and Q2

bands have a decreasing absolute asymmetry amplitude at higher values while the

experimental result has no such dependence. The model also produces an amplitude

compatible with zero for the A
cos(3φ)
C in agreement with the expected result. This

is because the VGG model does not include the twist-3 or gluon helicity flip GPDs

which relate to the amplitudes A
cos(2φ)
C and A

cos(3φ)
C respectively. The Associated

Bethe-Heitler contribution is given in the bottom row of the figure.

6.2 Comparison with the Published 1996-2005 Anal-

ysis

In order to verify the analysis procedure used in this thesis an independent analysis

of the 1996-2005 hydrogen data was undertaken. The asymmetry amplitudes of these

two independent analyses of the same data set were found to be consistent as both are

extracted using the same target, beams and experimental conditions. The amplitude

of the asymmetries are equivalent extracted over the entire kinematic range within

experimental error. In order to show the consistency of the asymmetry results

extracted before and after the installation of the Recoil Detector the asymmetries

extracted from 2006-2007 data are compared with the published 1996-2005 results.

The BHA and BCA amplitudes extracted from both data taking periods are shown

in Figs 6.3 and 6.4 respectively and the overall amplitudes are summarised in Table
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Year Amplitude A± δ(stat.)± δ(syst.)
A
cos(0φ)
C 1996-2005 −0.020 ± 0.006 ± 0.016

2006-2007 −0.038 ± 0.004 ± 0.012

1996-2007 −0.031 ± 0.003 ± 0.011

AcosφC 1996-2005 +0.055 ± 0.009 ± 0.013

2006-2007 +0.032 ± 0.006 ± 0.005

1996-2007 +0.041 ± 0.005 ± 0.007

AsinφLU,I 1996-2005 −0.224 ± 0.028 ± 0.050

2006-2007 −0.209 ± 0.026 ± 0.034

1996-2007 −0.214 ± 0.018 ± 0.036

AsinφLU,DV CS 1996-2005 +0.045 ± 0.028 ± 0.006

2006-2007 −0.015 ± 0.026 ± 0.011

1996-2007 +0.010 ± 0.019 ± 0.008

Table 6.1: Results of the BHA and BCA leading twist amplitudes for the periods

1996-2005, 2006-2007 and 1996-2007. The results are shown together

with the statistical and systematic uncertainties. The 1996-2005 ampli-

tudes are taken from [19]
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6.2. Comparison with the Published 1996-2005 Analysis 168

6.1. The overall value of the AsinφLU,I amplitude of extracted from both 2006-2007 and

1996-2005 are comparable and have a similar kinematic and the value and shape

of the amplitudes are consistent over the kinematic range of −t, xB and Q2. This

is also true for the A
sin(2φ)
LU,I , AsinφLU,DV CS, A

cos(2φ)
C and A

cos(3φ)
C asymmetry amplitudes

extracted from both data sets which are comparable with zero as expected from

model predictions. The overall value of AcosφC extracted from 2006-2007 data is

lower in magnitude compared with the value extracted from 1996-2005 data. The

AcosφC amplitude for the last two bins of the −t variable are smaller in magnitude

for 2006-2007 compared with the previously published amplitudes. The last −t bin

has a different kinematic dependence decreasing in value for 2006-2007 data and

increasing for 1996-2005 data. Interestingly, the AcosφC amplitudes extracted from

2006-2007 data are similar to recently published BCA result using an unpolarised

deuterium target [47]. The overall value of A
cos(0φ)
C from 2006-2007 data is similarly

lower than the value extracted from 1996-2005 data. The statistical errors of the

asymmetries from 2006-2007 data do not decrease compared with 1996-2005 despite

the increase in the available statistics. This is due to the time dependence of the

2007 data and the lower beam polarisation values during the final two years. The

beam polarisation at HERMES is not 100% polarised, therefore, it was necessary

to scale the polarisation to 100% during the analysis procedure. As a consequence

of this scaling the error bars are larger for the Beam Helicity Asymmetry than

the Beam Charge and a the beam polarisation was lower during the 2006-2007

data taking period than 1996-2000 the error bars are not dissimilar. Overall the

asymmetry results extracted from the 2006-2007 data set are consistent with the

two independent analyses of the 1996-2005 data set. The results of the 2006-2007

asymmetry amplitudes are, however, more stable than those extracted from the

1996-2005 data as they do not feature the outlying amplitudes in some of the higher

t, Q2 and XB bins. These results are also consistent with the deuterium results,

shown in Fig 7.1.
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6.3. Combined BHA and BCA Results from All Hydrogen Data 169

6.3 Combined BHA and BCA Results from All

Hydrogen Data

The results of the BHA and BCA amplitudes extracted from the 1996-2007 unpo-

larised hydrogen DVCS event sample are shown in Figs 6.5 and 6.6. The resulting

amplitudes are similar to the 2006-2007 amplitudes as expected due to the domi-

nance of the statistics from both of these years. The leading twist AsinφLU,I amplitude

is the largest BHA result with A
sin(2φ)
LU,I and AsinφLU,DV CS both being compatible with

zero. The BCA amplitudes A
cos(0φ)
C and AcosφC integrated over all kinematics have

a non-zero amplitude, while the higher twist amplitudes A
cos(2φ)
C and A

cos(3φ)
C are

compatible with zero. Both the AcosφC and A
cos(0φ)
C amplitude distributions have a

discernible shape when binned in −t. The −t dependence of AcosφC from the 1996-

2007 DVCS event sample continues to increase in the high −t bins, as opposed to

reaching a plateau as in the 2006-2007 case. The theory bands calculated from

the VGG model are also similar to those in Figs 6.1 and 6.2 having been recalcu-

lated at the correct kinematics. The systematic error bands were calculated from

the weighted average of both the systematic errors from Monte Carlo simulations

weighted using the relevant geometry files. The weighting was based on the statis-

tical contribution from each of the independent data sets to the overall result and

in each kinematic bin.

6.4 Single-Charge BHA Results from 2006-2007

Unpolarised Hydrogen Data

The HERMES experiment used both an electron and positron beam during different

data taking periods. The electron and positron beams were used during 2006 while

data taken during 2007 used only the positron beam. The single charge BHA was

extracted separately from the 2006 electron, 2006 positron and the 2007 positron

data. These asymmetry amplitudes are shown in in Figs 6.7 and 6.8.

The BHA amplitudes are extracted using a four parameter fit, Eq 5.19 that in-

cludes the cos(0φ), sinφ, sin(2φ) and cosφ terms. The cos(0φ) and cosφ terms are
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included as a check of the stability and normalisation and should have no physical

value. The overall amplitudes from the different DVCS event samples remain con-

stant despite the 2007 data having a slightly larger constant A
cos(0φ)
LU amplitude. The

constant term is reduced by introducing the time dependent missing mass shift as

described in Section 5.4.3. The constant A
cos(0φ)
LU amplitude from the fit to the 2006

electron and positron data indicates that the fit for both charges has been correctly

normalised and does not have the time dependence associated with the 2007 data.

The AsinφLU and A
sin(2φ)
LU amplitudes include the AsinφLU,I and AsinφLU,DV CS and A

sin(2φ)
LU,I

andA
sin(2φ)
LU,DV CS amplitudes respectively, but the single-beam charge extraction method

does not allow for their disentanglement. The leading twist AsinφLU amplitude has the

largest overall value while the A
sin(2φ)
LU amplitude is compatible with zero. The sup-

pression of the higher order terms is as expected. The value of the AsinφLU amplitude

is greater for the positron data than for electron data. The amplitudes from elec-

tron and positron data have positive and negative values respectively, the values are

shown with the same sign in Fig 6.8 for ease of comparison. There appears to be no

strong kinematic dependence for any of the amplitudes when projected in −t, xB
and Q2.

The BHA single charge amplitudes are comparable with those extracted from

the 1996 and 2005 data and the published BHA result using data taken in 1996

and 1997 shown in Fig 6.9 which has a value of ALU,e+ = -0.23 ± 0.04(stat.) ±
0.03(syst.). These BHA single charge results are summarised in Table 6.2. The

asymmetries extracted from the positron data are similar in amplitude and are

compatible with one another. The BHA extracted from the 1996-2005 and the

2006 data are compatible. The 2007 positron data is most consistent with the first

published result.

6.5 Summary

Three separate results have been extracted from HERMES hydrogen data: a com-

bined extraction of the BHA and BCA from both 2006-2007 and 1996-2007 data

and a single-charge BHA only extraction of the 2006 positron, 2006 electron and
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Figure 6.9: The single charge BHA shown as a function of φ with a sinφ function

using Least Squares method fitted to the data. Plot taken from [44].

Year Charge (e+/e−) AsinφLU ± δ(stat.)
1996/1997 e+ −0.23 ± 0.040

1996-2005 e+ −0.267 ± 0.065

1996-2005 e− +0.181 ± 0.046

2006 e+ −0.217 ± 0.025

2006 e− +0.182 ± 0.047

2007 e+ −0.232 ± 0.020

Table 6.2: A summary of the results of the single charge BHA AsinφLU amplitudes

for both positive and negative beam charges including the statistical

error. The results were produced using combinations of different data

taken over the entire HERMES data taking period. Due to the large

statistical sample available for 2006 and 2007 these results are shown

separately. The 1996/1997 amplitudes are taken from [89] and 1996-

2005 amplitudes from [90].
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2007 positron data. The single-charge BHA extraction is included to confirm that

these results are consistent with those previously published by the collaboration and

that the ALU,I and ALU,DV CS amplitudes, obtained from the combined extraction,

sum to give the value of ALU . The results have been described in the previous

section and their relation to the underlying GPDs and Compton Form Factors ex-

plained. The experimental results have been compared to theoretical values based

on the VGG model. The asymmetry results are all compatible with one another and

those previously published by the HERMES collaboration using both a hydrogen

and deuterium target.
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Conclusions and Outlook

Generalised Parton Distributions (GPDs) can be used to describe the structure of

the nucleon and give experimental access to the total angular momentum of quarks

in the nucleon, leading to a complete description of the nucleon spin. Deeply Virtual

Compton Scattering (DVCS) using an unpolarised hydrogen target is used to access

GPD H.

All of the hydrogen data taken during the entire running period of HERMES

have been included in the analysis presented in this thesis. The Beam Charge

Asymmetry (BCA) and the Beam Helicity Asymmetry (BHA) originating from the

interference and the squared DVCS term have been extracted simultaneously from

the DVCS/BH event sample. The asymmetry results of the 2006-2007 hydrogen,

1996-2005 hydrogen [19] and 1996-2005 deuterium data including the statistical and

systematic uncertainties have been extracted along with their dependence on the

kinematic variables −t, xB and Q2 and are shown in Fig 7.1. The results presented in

this thesis are the most precise measurement of DVCS asymmetries at the kinematic

conditions of the HERMES experiment. The BHA leading amplitude AsinφLU,I , sensitive

to the DVCS and Bethe-Heitler (BH) interference term, has a negative overall value

of -0.209 ± 0.026 ± 0.034. The AsinφLU,DV CS, sensitive to the squared DVCS term, and

the higher twist A
sin(2φ)
LU,I amplitudes are both suppressed with overall values of -0.015

± 0.026 ± 0.011 and 0.005 ± 0.025 ± 0.007 respectively. The leading amplitudes

of the BCA, A
cos(0φ)
C and AcosφC , are both non-zero, with overall values of -0.039 ±

0.004 ± 0.011 and 0.032 ± 0.006 ± 0.005, and have opposite sign as predicted from
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theoretical models. The higher moment amplitudes of both the BHA and BCA are

suppressed. As with the BHA amplitudes there is no strong dependence on the

kinematics, apart from expecting a possible increase in value with increasing −t in

the first part of the kinematic range. The results of the analysis presented in this

analysis are in statistical agreement with the results from the 1996-2005 hydrogen

and 1996-2005 deuterium data which exhibit larger errors.

All DVCS analyses performed at HERMES from the start of data taking in

1996 until now, including the analysis presented in this thesis, have relied upon

calculating the missing mass in the DVCS interaction to identify the proton. The

experiment was upgraded in 2005 to include a detector that would allow the proton

from a DVCS/BH event to be identified and measured directly. Data using this

new detector was taken from 2006 until the end of data taking in July 2007. The

analysis of DVCS at HERMES will be improved by including information from the

recoiling target proton in the final state, allowing background events to be more

precisely removed from the exclusive event sample. To this end software has been

developed [64, 102] to track the recoil protons from the raw information provided

by the detectors that comprise the recoil detector, namely, the Silicon Strip De-

tector (SSD), Scintillating Fibre Tracker (SFT) and the Photon Detector (PD). A

method that reconstructed the tracks of protons using the energy loss in the SSD

has been developed. This method of track reconstruction has been included in the

complete recoil tracking package and will be used in future DVCS analyses. The

final DVCS results at HERMES will use the Recoil Detector to identify the recoiling

proton present in a DVCS event. This will remove background events present in

this analysis. Removing the background processes from the exclusive event sample

will reduce both the statistical and systematic uncertainty of the asymmetry results.

The DVCS/BH event sample obtained using the Recoil Detector will, therefore, be

a subset of the DVCS/BH events used to produce the results in this thesis.

The available theoretical models do not describe the experimental data. Instead

of using models, recent attempts to constrain the values of GPDs, in particular GPD

H, have involved making fits and parametrisations to the globally available DVCS

data [103, 104, 101]. Other experiments continuing to measure DVCS information
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at different kinematics to that of HERMES include COMPASS at CERN [105] and

Hall A and B at Jefferson Lab [106]. These experiments will expand the present

knowledge of both DVCS and GPDs, and ultimately, the internal structure of the

nucleon.
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Appendix B

BHA and BCA Monte Carlo

Results Using Pre and Post-Recoil

Geometry

Two individual Monte Carlo data productions simulating the HERMES experiment

with and without the Recoil Detector were created in order to determine the effect

the new configuration would have on the DVCS results. As with experimental

data both the BHA and BCA were extracted from the simulated DVCS/BH events.

The amplitudes obtained from both simulations were compared to verify that the

BHA and BCA amplitudes extracted from hydorgen data recorded at the HERMES

experiment with the Recoil Detector from 2006-2007 and without the Recoil Detector

from 1996-2005 should be equivalent. The asymmetry amplitudes obtained from

Monte Carlo data with and without the Recoil Detector are equivalent and have

identical dependence on −t, xB and Q2, as shown in Figs B.1, B.2 and B.3. The

new experimental geometry used to simulate the presence of the Recoil Detector

also includes a new implementation of the detector alignment, improving upon the

previous measurement of the alignment of the detectors and reducing the systematic

error. This improvement, however, does not appear to influence significantly the

value of the asymmetry amplitudes.
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Appendix C

Input to the VGG Code

The following details the input to the VGG code obtained from Guidal.

• 4 : 2-body DOUBLY POLARIZED cross sections for (D)DVCS polarized

electron, polarized target

• 3 : Bethe-Heitler + DVCS contribution

• 1 : proton target

• 25 : ξ dependent parametrization with MRST02 NNLO distribution

• 2 : evolution with scale sqr = Q sqr

• Give the value for the power b in the profile function for the valence contribu-

tion to H : 1 or 9

• Give the value for the power b in the profile function for the sea contribution

to H : 1 or 9

• 2 : Regge inspired ansatz for the t-dependence

• Enter slope alphap (GeV−2) : 0.8

• Do you want to evaluate the D-term contribution to the GPD H? : 2 = No

• Do you want to evaluate the GPD E? : 2 = double distribution contribution

+ D-term contribution
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• Give the model for the double distribution part of the GPD E : 2 = valence

quark + VM contribution

• Give the value of Ju (e.g. 0.3) : 0.3

• Give the value of Jd (e.g. 0.1) : 0.1

• Do you want to evaluate the pi0 pole contribution (i.e. SPD Etilde)? : 1 =

Yes

• Do you want to include twist-3 corrections ? : 2 = Include twist-3 corrections

for L photon in Wandzura-Wilczek approximation

• With (1) or without (2) Htilde ? : 2

• Give the polarization of the target proton : 1 = proton polarized along x-axis

• Calculation for what LEPTON charge ? : 2 or 1 positively and negatively

charged lepton.

• Give the value of beam energy in GeV (e.g. 27.) : 27.56

• Give the value of Q2 in GeV2 (e.g. 5.0) : 2.46

• Give the value of xB (e.g. 0.3) : 0.095

• Give the value of Q′2in GeV2 (e.g. 2.0) : 0.00

• Give the value of −t (in GeV2) : 0.118

• Give the first value for the angle phi (in deg) to calculate : 0

• Give the step in the angle phi (in deg) (e.g. 10.) :10

• Give the last value in the angle phi (in deg) (e.g. 180.) : 180
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