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Abstract

In this thesis, a numerical study ot film cooling in hypersonic laminar and turbulent
flows has been performed using an in-house Navier-Stokes solver. The aim of this
computational work 1s to investigate the mechanisin and effectiveness of film cooling
In hvpersonic laminar and turbulent flows.

Hypersonic flow over a flat plate without film cooling was first studied to provide
a reference datum to check the effectiveness of filin cooling. For laminar filim cooling
(Ms = 9.9), three different primary How conditions were first used for validation. The
inclusion of the development of the flow in the plenum chamber upstream of the slot
was found to provide better heat prediction than a uniform boundary condition at
the slot exit. Detailed information of the flow field including velocity profile, Mach
contour, temperature contour and heat transter rate was presented. The mechanism
of hilm cooling has been revealed according to the plots of calculated velocity profiles.
Mach contours and temperature contours downstream of the slot. The coolant fluid
was found to affect the primary boundary layer in two ways: 1) initially a separate layer
established by the coolant fluid itself in the near slot area. 2) later a mixing laver be-
tween the primary and coolant flow streams. Then five coolant injection rates between
2.95 x 107% and 7.33 x 107* kg/s and three slot heights. 0.8382, 1.2192, 1.6002 mm.
were examined 1n hvpersonic laminar film cooling,

For turbulent film cooling (M = 8.2). for the geometry used in the experiment. the
imjection at an angle of 20° was found to be appropriate. Difterent turbulence models
including Wilcox’s £ — w model, Menter’s baseline and SST model have been tested.
It 1s concluded that the Wilcox's & — w turbulence model with dilatation-dissipation
correction provides the best heat prediction. Again, five coolant injection rates varied
from 5.07 x 107" to 30.69 x 10~ kg/s and three slot heights (the same as studied in the
laminar film cooling) were studied to check the influence on film cooling effectiveness.

Both the coolant and the primary flow were air. Film cooling was found to be
an eflective way to protect wall surfaces that are exposed under a high heat transfer
environment especially i hvpersonic laminar flow. [ncreasing the coolant injection
rate can obviously increase the filin cooling effectiveness. Again, this works better

in laminar flow than in turbulent flow. The coolant injection rate in turbulent flow

11



Abstract i11

should be considered to be high enough to give good heat protection. Slot height in
both laminar and turbulent flows under the flow conditions in this studyv was found
to be less important, which means other factors can be considered in priority when
constructing film cooling systems.

With the application of curve fitting, the cooling length was described using power
laws according to curve fitting results. A two-equation film cooling model has been
presented to 1llustrate the relation between the filin cooling effectiveness and the pa-
rameter z/(hm). For film cooling effectiveness in log-log coordinates, a second-order

polynomial curve can be used to fit the laminar flows, whilst a straight line is suitable

for the turbulent fHows.
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Chapter 1

Introduction

1.1 Film cooling models

1.1.1 Definition of film cooling

In 1966, Goldstein et al. {1] defined film cooling as

"The employment of a secondary fluid injected through discrete slots to insulate ther-

mally a solid surface from a gas stream flowing over it is called film cooling.”

From this definition, it is clear that film cooling introduces a secondary fluid into the
primary flow stream in order to decrease the heat transfer rate from the primary flow
stream to the solid wall or the wall temperature. With the wall surface temperature
at a lower level, less expensive materials can be used in structural fabrication. Film
cooling might be used on blades of gas turbines, scramjet intake surfaces and combustor
walls of high-speed vehicles, rocket nozzles and the extension surfaces of rockets all of
which usually work under high heating loads.

Fig. 1.1 gives two examples of the application of film cooling. In Fig. 1.1(a), film
cooling is applied 1n a scramjet engine combustor wall with some hydrogen fuel injected

parallel to the wall through small supersonic slots to provide a lower energy buffer layer

between the engine core flow and the structure (Olsen et al. [2]). In Fig. 1.1(b), an
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ACE turbine geometry and cooling arrangement are shown schematically (Garg {3]).
Modern gas turbine engines are designed to operate at inlet temperatures of 1800-2000
K, which are far beyond allowable metal temperature. The turbine blades need to be
cooled under these conditions in order to increase their lifetime. So an efficient cooling
system 1s required. Discrete jet film cooling is applied in this turbine blade with 93
holes on each blade.

Although film cooling is a technique to give heat protection for wall surfaces, it was
first studied by Wieghardt as a method for de-icing airplane wings in 1940s. Here it
could be described more aptly as "film heating”. Subsequently, film cooling was con-
sidered as a technique which could be used to protect solid surfaces encountering a high
heat transfer or high temperature environment. In [4|, Kanda et al. suggested using
a combination of film cooling and regenerative cooling to achieve thermal protection
while minimising fuel flow requirements in a scramjet engine combustor.

Fig. 1.2 given by Kanda et al. |4] shows three cooling systems: a) film cooling only,
b) regenerative cooling only and c¢) a combination of film and regenerative cooling.
Usually hydrogen is used as the propellant and it is also used as the coolant in all
the three types of scramjet engines. In the engine with only film cooling, it i1s cooled
with the cold hydrogen injection while in the engine with only regenerative cooling, it
1s cooled by heating the fuel - hydrogen. The engine using a combination of the two
cooling methods together was found to provide best cooling efficiency:.

Besides providing heat protection for the wall surfaces, film cooling can also be used
to control flow separation. When the coolant fluid is injected downstream through
a rearward facing tangential slot. the skin friction generally increases or decreases
according to whether the specific momentum of the coolant flow is greater than or less
than that of the primary flow stream. With the coolant flow stream momentum greater
than the primary flow stream momentum, the flow configuration is often referred to as

a wall jet, which will increase the skin friction and mayv be used to delay separation.



1.1. FILM COOLING MODELS 3

i.
1k
/|
'.-’//:
,"/ /
/|
..f J
'
;;- .
/ )
,, ed Y
| I" p / - ; ‘u{‘%\# “\
,,,,, L]
- 1
o '-*
: Ete T B e~ - —3m
3 N :
— 51 :
2% ) ;
o |
Pl s e N SRR T ;
- .3 - |
. //_C:‘"M“""‘"*---\H
R e,
| r" - - f,."'; ‘\\
| Mf /’/ —
s | ~
| ]
,___'___,_J ..-ﬂ"""'___-"""‘-».:“}\ _ -'#'i "".|
Coolant | ‘;
7, P a— _J ......\H _ B "‘--'—"-,‘ _ -\uﬁif‘.‘.
i i d { j '.-_.____.l'
L’Lﬁ N :
TR o -—-"—-—-—-_ ”-. e

(b) ACFE turbine blade

Figure 1.1: Film cooling applications: a) scramjet engine (Olsen et al. [2]), b) ACE
turbine blade (Garg [3])
1.1.2 Stollery and El-Ehwany’s film cooling model

A film cooling model was first described by Stollery and El-Ehwany (8. In Fig. 1.3,

three separate regions were recognised in film cooling using coolant injection through
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Figure 1.2: Scramjet engine schematics (Kanda et al. [4]): a) film cooling only, b)
regenerative cooling only and ¢) combination of film cooling and regenerative cooling

a slot over a flat plate. Just downstream of the injection slot, there is a mixing-
layer region, which was called the "potential core” region in [8] In this zone, the
wall temperature remains close to the coolant gas temperature. The cooling length

can be defined here as the length downstream of the slot where the adiabatic wall
temperature is equal to the injectant stagnation temperature (9]. A ”wall-jet” region
exists after the ”potential core” region, where the velocity profile is similar to that of
a wall jet. Farther downstream, there should be a fully developed turbulent boundary-
layer when the difference between the coolant and the primary flow streams disappears.
For coolant and primary gases of similar density the relative length of the three regions
is determined mainly by the velocity ratio between the coolant flow and the primary
flow, u./u,. When u. > u,, a simple jet model suggested by Spalding 10| for the
second zone may be appropriate. When u, < u,, the second region is non-existent.

Although some experiments have been done to investigate the former condition, the

latter one is more commonly used in both experiment and practice.
This film cooling model was published in 1965. At that time, experiments were

mainly focused on subsonic film cooling. An adiabatic wall boundary condition was
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Figure 1.3: Stollery and El-Ehwany’s Film cooling model

used and the wall temperature was recorded directly in almost all the experiments.

Then film cooling effectiveness was defined as a non-dimensional temperature as

_Tad,w_Too
A

(1.1)
Here T,4.,,7. and T, 1n Eqn. (1.1) represent the adiabatic wall, coolant and freestream
flow temperatures, respectively. This definition is applicable when adiabatic conditions
are observed in the experiment.

As mentioned above, this film cooling model was originally introduced for subsonic
film cooling. It is the most popular model and called the turbulent boundary-laver
model by Kanda et al. [4]. It was also indicated in [4] that this model eventually
adopts the growth rate of the turbulent boundary layer. It can predict the decay
tendency of film cooling efficiency far downstream from the injection slot. The model
has been applied to predict the flow condition near the slot with several combinations of
gas properties as parameters, e.g., density, heat capacity, etc. But these combinations
do not seem to be so well-grounded physically. Moreover, it does not seem reasonable

to apply this model in the near slot region since the boundary layer of the primarv

flow stream and the coolant are separated near the injection slot.

1.1.3 O’Connor and Haji-Sheikh’s film cooling model

O’Connor and Haji-Sheikh [11] gave a slightly different film cooling model as shown in

Fig. 1.4.
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Figure 1.4: O’Connor and Haji-Sheikh’s Film cooling model

In this model, the boundary layer for the primary flow starts at point O’ and for
the coolant flow at point O. A mixing shear layer between the primary and coolant
flow streams occurs in the region A-O’-B. Only coolant flow exists in region O’-B-0,
and no mixing occurs between the two streams. This will reduce the convective heat
transfer from the primary flow to the wall. Line O’-C is a streamline that theoretically
divides the primary stream from the coolant stream. In the actual flow, turbulent
mixing between the primary and the coolant flow streams causes fluid particles to
travel across this streamline.

In both models, there is a mixing region just downstream of the slot. The difference
lies in O’Connor and Haji-Sheikh’s model, where a separate region O’-B-O is indicated

to give more details within the " Potential core” region.

1.1.4 Kanda et al.’s film cooling model

Another film cooling model was constructed by Kanda et al. |4]. It was based on exper-
nental results on the compressible mixing layver and on an analysis using a turbulent
boundary layer. According to experimental results, the film cooling efficiency n was
found to have a relation with the distance from the exit of a coolant injection slot
z/(h-m). This relation is plotted with logarithm scales in Fig. 1.5.

The model 1s illustrated in Fig. 1.6. The flow region of film cooling is divided into
two parts: 1) a mixing-layer region near the injection slot and 2) a turbulent boundary-
layer region far from the slot. At position A, the mixing layer is assumed to reach the

wall, and the concept of the mixing layer was applied from the injection slot exit to A4.
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Figure 1.5: Film cooling efficiency (Kanda et al. [{])
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Figure 1.6: Kanda et al.’s film cooling model (Kanda et al. [{])

The thickness of the boundary layer on the wall under the coolant was much thinner
than both the slot height and the thickness of the mixing layer, so the effect of the
coolant side boundary layer was neglected. The feature of turbulent boundary layer
was then applied to the area downstream of position A.

No attempt was made to model the flow between the slot exit and position A
in previous models, tor example, Stollery and El-Ehwany’s turbulent boundary-layer

model [8]. Rather, prediction of z, was attempted by extension of the turbulent

boundary-layer model. The film cooling model constructed by Kanda et al. has the
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ability to predict the distance of the mixing layer region indicated by z, in Fig. 1.5
with the assumption that the mixing layer grows symmetrically both in the main flow
and in the coolant. In this model, static pressure of the coolant was assumed to be the
same as that of the mainstream at the slot exit. The length of the mixing laver region

r 4 can be estimated using Eqn. (1.2) in which ¢ is the mixing laver thickness

1 do
T, =h/ (_‘2_;17’;) . (1.2)

[n Chapters 4 and 5 numerical results obtained in this study will be analvsed to

clearly reveal the mechanism of film cooling in hypersonic flows.

1.2 Experimental studies of film cooling

Many experimental results have been published for subsonic, supersonic and hypersonic
film cooling. Although primary and coolant flow stream velocities are often quite
different, the flow is distinguished by the primary flow stream velocity. Film cooling
offectiveness was found to be influenced by many parameters. Researchers offered
different empirical equations to predict the effectiveness of film cooling. But usually
such equations are only valid in a narrow scope related to similar conditions used 1n the
experiment. Different parameters were studied such as slot height, lip thickness. flow
density and velocity ratios between the primary and the coolant How and a coolant gas
different from the primary one. This section offers a review of the experimental work

done on film cooling in the past forty v<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>