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Abstract

Imagine a thin sheet that performs optical illusions on the scene
behind it. For example, a window that appears to reverse depth and to
image objects in front of the sheet, or alternatively swimming goggles
that cancel the refraction of surrounding water. This thesis will explore
how such sheets may be realized.

With the refinement of optical fabrication technologies, it is now
possible to mass-produce miniaturized optical components. Repeating
them over the surface of a sheet, their combined effect may realize op-
tical effects from the structure, rather than the substance, of the sheet.
Specifically, such components may realize arbitrary ray-direction map-
pings at each point on the sheet. Here such mappings, metarefractions,
are explored from a range of perspectives.

This thesis will explore the inception, theoretical development and
ultimately the experimental realization of metarefraction. At its core,
this work is primarily mathematical in nature but draws upon both ex-
perimental and computational techniques in order to test and visualize
the concepts that will be discussed. Examples of such ray-direction map-
pings will be explored as will their ray- and wave-optical implications.

This thesis is structured as follows: Initially, the definition of metare-
fraction, along with some existing examples, is presented. Then, ray
mappings are related to negative refraction, a subject that metarefrac-
tion has a surprising number of parallels to. New forms of metarefrac-
tion are then introduced, before being incorporated into imaging sys-
tems. Later, ray-optical transformations, such as metarefraction, are
shown to be limited by implicit wave-optical restrictions. In some cases,
these vastly reduce the number of light fields that may be exactly trans-
formed. After this, the most general possible metarefraction is sought,
and a simple case is realized experimentally. Further restrictions are
then determined, before finishing with a discussion and summary, and
by considering possible directions that future work could develop in.
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Preface

Over the course of my PhD, I have had the good fortune to explore a num-
ber of areas of physics. My research began by exploring atom optics before
completely changing direction. After this, I worked on the incorporation of
transformation optics and integral imaging into a new form of ray-optical
transformation.

In my first year, I focused on BEC phase imprinting — work that was
abandoned when it transpired that another group had already published the
same idea. In the December of that year, the focus then changed during a
visit to Aimé Cotton laboratory, in Orsay. There I modelled a novel optical
setup to reduce laser speckle in an optical ‘lens’ in order to shape a cold atom
cloud. It was on these simulations that I spent much of the first year of my
PhD.

During the Orsay trip, my supervisor, Johannes Courtial, gave a talk on his
ideas on Dove-prism sheets. I found the optical properties of these structures
to be both fascinating and counter intuitive. It is from that talk that all
of the work in this thesis since developed. Along the way, I have visited
micro fabrication facilities at Strathclyde University and in Durham, simulated
and visualized a number of such sheets, explored their ray- and wave-optical
properties and ultimately built metarefracting sheets.

Discussions of such sheet structures has also lead to additional research.
For example, at the EOS’08 conference, we met Carl Paterson who had previ-
ously studied limitations of related transformations. It became apparent that
some of our sheets were examples of optical transformations that lacked an
exact wave-optical analogue. Later, in collaboration with Mark Dennis, we
explored how ray direction was limited by wave-optical restrictions.

(Signature)
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CHAPTER 1
Introduction

“I set out to find one thing and found something better.”

— James Lovelock

1.1 Metarefraction

Metarefraction consists of a local and pixelated ray-direction transformation

of light rays as they pass through a metarefracting sheet. It is local in the

sense that ray position is only slightly offset, transversely, during propagation

through the sheet, and is pixelated in that most parts of the wavefront, locally,

are well approximated by a single, well-defined light ray. For visual applica-

tions, offsets of a few hundreds of wavelengths should be barely visible. A

metarefracting sheet then acts approximately like a homogeneous, light-ray-

direction changing window (Figure 1.1(a)); the light-ray-direction change can

be seen as a generalization of refraction at the interface,

r′ = T(r), (1.1)

2
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Figure 1.1: (a) A metarefracting sheet is analogous to a refracting
interface which maps an incoming light-ray direction into an outgo-
ing light-ray direction, T : r → r′. (b) Local light-ray direction-
transformation is defined in terms of the combined effect of constituent
metarefracting components (each represented by a square containing
the letter T) that each act separately on those incident light rays.
(c) Now only a section of the sheet is viewed front on, the transfor-
mation may introduce only offsets, δl, that cannot be larger than the
component size. (d) The ray direction transformations should also be
telescopic, i.e. parallel rays incident on a component are all mapped
into the same new direction.

where T is the law of metarefraction, r is the incident light-ray direction and

r′ is the transformed light-ray direction.

More precisely, there are three requisite properties that a metarefracting

sheet must satisfy. Firstly, the sheet must be describable as a collection of

independent optical components that separately transform the direction of

incident light as is shown in Figure 1.1(b). Secondly, the components must

not introduce a significant offset, δl, in the position of the ray as it propagates

within the sheet. That is, lateral offsets must be smaller than of the size of

the optical components as shown in Figure 1.1(c). This is so as to ensure
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a good visual quality of the mapping for a sufficient density of these optical

components. Finally, when mapping ray direction, every sheet component

must preserve collimation of a pencil of rays. This is defined here as a telescopic

ray mapping and is shown in Figure 1.1(d). This is in order to ensure that a

component such as a ground glass plate would not satisfy the requirements as

light rays will be inconsistently redirected.

Allowing non-zero offsets allows a far greater variety of metarefractions

than would be possible were only zero-offset metarefractions considered. Ray

optics is the limiting case of wave optics in the limit of small wavelength. That

is, phase front curvature also tends to infinity, and so locally all waves act as

plane waves. Light is then well described by rays that travel through the scene

along curvilinear paths. However, optical wavelengths are finite, albeit very

small, and so in practice each wave has a finite curvature and is subject to

additional wave-optical restrictions (see Chapter 6). In order to avoid such

strict requirements, a transformation need only be approximated as described

above. Allowing offsets then frees metarefraction to approximate a far greater

range of possible mappings than could be exactly realized while preserving the

simplicity of its ray-optical description.

This chapter will discuss the visual distortions that metarefracting sheets

may produce. After introducing existing examples of metarefraction, com-

ments will be made regarding the format and notations used throughout this

document.

1.2 Imaging and non-imaging visual distortions

There are two key attributes with which to describe the view through a metare-

fracting sheet. Firstly, all metarefracting sheets must realize a visual distortion

i.e. when viewed through a pinhole, rays that reach an observer from a specific
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direction must all originate from a small number of localized regions from the

far side of the sheet. Where this is not true, rays from many locations blur

together, giving rise to significant blurring across the sheet.

Secondly, some such sheets are also able to perform imaging in the sense

that in addition to producing a visual distortion, they will continue to produce

a sharp image when viewed through an extended aperture. This then requires

the sheet to satisfy parallax, i.e. to relate, for any given point light source,

the outgoing direction of light rays (from the sheet) to the point on the sheet

through which they exit. Consistency of parallax will be used as a test of

imaging later in this document.

The reason to distinguish between visual distortions and imaging is that,

for visual applications, the imaging requirement may often be unnecessarily

restrictive. This is of particular relevance in that the human eye has a rela-

tively small aperture so subtle aberrations remain undetected. An example of

a visual distortion in which, strictly, imaging does not take place is viewing a

stick through an air-water interface. The same is true for several metarefract-

ing sheets.

Additional care must be taken when using such sheets in more precise

optical systems. Light rays that intersect at different points on the sheet are

each transformed independently. Each metarefracting component may then

affect polarization and coherence separately and where such rays intersect to

form image points or at caustics, the resulting polarisation and coherence may

be elaborate and potentially disruptive. Wave-optical effects will be ignored

here, but may be optimized to better approximate what from now on will

simply to be assumed to be bright regions.

When constructed, sheet behaviour will be complicated by both physi-

cal and engineering constraints. In order to transform light-ray direction, a
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component will often employ fine structures such as a refracting surface or

an aperture which will work imperfectly. As a result, most components can

only approximate idealized metarefraction to some limiting angular resolution.

Similarly, they will have a limited field of view over which they will transform

telescopically.

The behaviour of such components will, when shrunk to a small enough

scale, be diffraction limited. This of course applies only to non-trivial compo-

nents that consist of some inhomogeneous part. A sufficiently homogeneous

mapping may work perfectly which will neither redirect, nor appreciably off-

set, incident light rays. In contrast, however, the effect of miniaturising even

trivial components will be to causes diffraction effects to become significant.

When the size of components are of the order of magnitude where diffraction

effects become significant, interaction between components through evanes-

cent coupling [1] can also become important.

1.3 Existing examples of metarefraction

While the definition of metarefraction as a paradigm is a new concept, there

are scattered examples of optical systems already in existence that satisfy the

above requirements. A real world example of metarefraction is the refraction

performed by a Fresnel lens.

Geometrical imaging may be understood in terms of Fermat’s principle [3]

which states that the optical path length between the object and image point

is stationary with respect to perturbations of the ray path. A consequence

of this is that the optical path length along each route that each ray follows

through a lens is the same. The lens is thicker at the centre to increase the

optical path length there. This is in order to compensate for the physically

shorter path at the centre of the lens. This then satisfies the criteria for
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(a) (c)(b)

Figure 1.2: (Looking from the side). An example of a metarefracting
sheet is a (a) Fresnel lens which consists of (b) a series of concentric
annuli with triangular cross sections, such that locally they each act as
a prism, i.e. each of which acts as a metarefracting component. This
is an example of an inhomogeneous sheet in that the parameter that
describe the constituent prisms, the prism angle, changes across the
sheet. A consequence of this inhomogeneity is that the sheet performs
imaging. (c) The Fresnel lens has long been generalized by adding
Dove-prisms at the edges of the sheet [2]. The resulting catadioptric
optical system offers a larger field of view and as a result has been
widely used in lighthouses.

constructive interference which results in a bright spot. A Fresnel lens builds

on the original lens design by taking the original optical path profile modulo

the sheet thickness so as to produce a piecewise continuous wavefront.

The behaviour of a Fresnel lens may alternatively be reinterpreted as a

metarefraction. A Fresnel lens, shown in Figure 1.2(a), may be constructed

from a collection of small prisms, Figure 1.2(b). In this sense, a Fresnel lens

satisfies the required criteria of locality of transformation, insignificance in
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offset and the telescopic property.

This is a complicated example of a metarefraction in that the transforma-

tion is inhomogeneous, i.e. the law of refraction varies with position. This is

however not the most complicated example of a metarefraction. It can, for

example be further extended in its field of view through the incorporation

of Dove-prisms at the edges of the sheet as is shown in Figure 1.2(c). Such

systems have found use in lighthouses in order to collimate as much light as

possible. In contrast to the Fresnel lens, the transformations that will be

introduced in the following chapters are all assumed to be homogeneous.

1.4 Notation and thesis structure

A consistent notation will, where possible, be used throughout this document.

Furthermore abstract index notation will be interspersed with explicit vector

notation where appropriate [4].

Ray directions in two and three dimensions will be written in a number of

coordinate systems, but the most useful will prove to be as the two dimensional

angle mapping, α 7→ α′. In three dimensions, metarefractions will be described

in terms of Cartesian coordinates

(rx, ry, rz) 7→ (r′x, r
′
y, r
′
z). (1.2)

where the sheet is orientated perpendicularly to the z axis. Additionally, use

will also be made of (unit length) spherical polar coordinates

(rθ, rφ) 7→ (r′θ, r
′
φ) (1.3)

which consist of polar and azimuthal angles respectively. Both Cartesian and

spherical polar coordinates will be interspersed where appropriate.

This thesis will be divided into several parts. Firstly, an overview was

provided above which defined and introduced metarefraction. In the next
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chapter, background material will be reviewed that explores some of the in-

spiration of metarefraction. Perhaps surprisingly, an inherently ray-optical

transformation possesses a number of connections with a wave-optical subject

called negative refraction. This and related subjects will be explored.

There will then be a pair of example transformations that demonstrate the

effect of a metarefracting sheet. These include the Dove-prism sheet in Chap-

ter 3 and the ray-rotation sheet in Chapter 4. These simple metarefractions

will demonstrate some effects that may be realized, and that a ray-direction

transformation must be recast in terms of the apparent position of a point light

source in order to understand the visual distortion. Simulated views of these

examples will also be presented. Several examples of metarefractions outlined

in the following chapters have been demonstrated with rendering ray-tracing

software, POV-Ray [5], which enables a full ray-optical simulation through a

collection of prisms and lenses.

After presenting example metarefractions, conceptually and practically in-

teresting properties will be discussed. These will focus on the use of metare-

fracting sheets to perform imaging; on the ability to (approximately) realize

wave-optically-forbidden light fields, and hence to recognize the existence of

a new and unexplored kind of transformation. Also, there is a surprisingly

natural representation of one such transformation in terms of an extended

form of Snell’s law and which, despite the lack of wave-optical analogue, may

be derived from Fermat’s principle — a wave-optical concept!

After finishing discussing the first two kinds of metarefracting components,

another transformation will be explored in Chapter 7: metarefraction by con-

focal lenslet arrays. In addition to reproducing and generalizing previous ray

transformations, the commercial availability of components required to con-

struct a confocal lenslet array means that a new form of metarefraction may
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be experimentally demonstrated as is outlined in Chapter 8.

The penultimate chapter will explore the combination of confocal lenslet

arrays into the most general possible metarefracting sheet which can map ray

direction without an offset. This document will then conclude with a summary

chapter which will provide an overview of this work as well as a discussion of

possible future generalization of metarefraction.



CHAPTER 2
Background

“Any sufficiently advanced technology is indistinguishable from
magic.”

— Arthur C. Clarke

2.1 Overview

Before expanding on my own work, the work of others that has influenced

metarefraction will be outlined. In particular this chapter will explore negative

refraction which will first be discussed in a historical context. Then, the

manner by which it may be realized will be explored and finally, one of its

applications will be discussed.

It is through approximate models of light that scientists and engineers

are able to concisely imagine and express the myriad of optical effects and

technologies that are available today. The most familiar theories, the ray-

and wave-optical models, have proven enormously useful. These models are

however simplifications and so inherently skew our view of nature.

11
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That nature behaves very similarly to such models can, through a lack of

counterexamples, lead to falsely assumed restrictions. An example of which is

the belief that refractive index could only be positive. However, this was not

immediately clear from the defining expressions, and one must look very hard

to find examples of negative refraction.

As well as by exploring the subtleties and extremities of existing theo-

ries, progress may be made through the reinterpretation of existing concepts

in terms of new paradigms. One example of which is transformation optics

which utilizes the equivalence between spatial curvature and medium-property

transformation to control the propagation of light through an optical system.

Simply having changed the way in which refractive index is defined, negative

refractive index appears quite naturally.

The structure of this chapter will be as follows. In the next section, nega-

tive refraction will be explored. Then, transformation optics will be explored,

particularly in terms of a simple special case. After this, metamaterials will be

introduced which will give a concrete mechanism by which negative refraction

may be realized and transformation optics implemented. The penultimate

section will discuss the ‘perfect lens’ which uses negative refraction to per-

form a form of imaging that will prove relevant in a number of later chapters.

This chapter will conclude with a brief summary, discussing the merits of

metamaterials.

2.2 Negative refraction

The study of negative refractive index began in 1967 when Veselago explored

what the implications were of a material having a negative refractive index [6].

Refractive index [7] represents the ratio between the speed of light in a vacuum
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Figure 2.1: Within a negative refractive index medium, a wave will
propagate with a negative phase velocity. This means the phase fronts
and hence the wave vectors travel backwards while the group velocity,
energy and information that the wave carries continue to travel for-
wards. At the interface, Snell’s law implies that the refracted ray is
reflected, but that the ray direction is reflected along the sheet plane.

and the phase velocity of light in a particular medium,

n =
c

vp
, (2.1)

and its sign reflects the fact that the velocity of light in a vacuum, c, and in

the medium, vp, may be in the same, or in opposite directions. So, intuitively,

negative refraction corresponds to a negative phase velocity, and hence to

backwards propagating phase fronts.

Refractive index may also be defined in terms of the medium with which

it is associated:

n = ±√εrµr. (2.2)

Here relative permittivity is εr and the relative permeability is µr respec-



CHAPTER 2. BACKGROUND 14

tively [8]. The key realization that Veselago had was that, although in con-

ventional materials the sign of the square root is positive, this need not always

be true. The sign of the refractive index follows from that of permeability and

permittivity.

These medium properties in turn follow from the constitutive equations [9]

which are

D = ε0εrE, (2.3a)

B = µ0µrH. (2.3b)

These equations relate resultant fields (the electric displacement field, D, and

the magnetic flux density, B) to their respective causative fields (i.e. the elec-

tric field, E, and the magnetic field, H). Although permittivity and perme-

ability can be scalars for some materials, they are in general rank two tensor

quantities.

For most materials, both permittivity and permeability are positive. Per-

mittivity of metals can be negative above their plasma frequency and unusual

materials such as magnesium fluoride have a negative permeability. In con-

trast when only one of the pair is negative, the material is opaque. Under these

conditions (i.e. when εrµr < 0), Maxwell’s equations no longer have a trav-

elling wave solution. Now working with scalar permittivity and permeability,

this may be demonstrated by combining Equation (2.1) and Equation (2.2) to

get

vp =
c

√
εrµr

(2.4)

and on taking the square root of a negative, the phase velocity is imaginary.

Veselago could find no material in which both properties were negative.

Despite the lack of materials demonstrating negative refraction, Veselago cal-

culated a number of interesting properties, for example modified C̆erenkov
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radiation and the Doppler effect, for what was then only a hypothetical ma-

terial.

In negative refractive index materials, the sign of both permittivity and

permeability are negative. In this case, the phasefronts do travel, but do

so backwards, in the opposite direction from the group velocity, against the

progressing wavefront. This may be seen from the relationship between the

electromagnetic field and the Poynting vector,

S = E×H. (2.5)

Conventionally, materials are ‘right handed’ in the sense that the above re-

lation obeys the right hand rule. In the case of negative permeability and

permittivity, the Poynting vector changes sign. This follows from the con-

stitutive relation, Equation (2.3b). The equation, and hence the material, is

‘left handed’. As a result of this, for the same direction of energy flow, the

causative electromagnetic field is oppositely orientated from normal as shown

in Figure 2.1.

2.3 Transformation optics

Transformation optics is a recent merging of medium and coordinate-system

concepts. Initially it was conceived of in order to generalize (finite-difference

time-domain) electromagnetic field simulations [12] to arbitrary coordinate

system grids [13, 14, 15]. Subsequently, it has been applied as a very general

optical design technique that naturally incorporates smoothly varying positive

and negative refractive indices.

It is natural to talk about a visual distortion as being ‘stretched’ or

‘twisted’, using language that describes spatial distortions. This is in con-
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Figure 2.2: Light rays can curve as they propagate in space as a result
of varying medium properties or from spatial curvature. An example
of a varying medium is (a) a graded refractive index lens [10] (shown
here as viewed in cross section). Such a lens can collimate light using
a parabolic radial refractive index gradient. (b) Alternatively, curved
space may bend light rays. For example, the mass of an intermediate
galaxy (yellow) distorts the light from a more distant galaxy (blue)
into Einstein rings (image credit: A. Bolton [11]).

trast to optical design which shapes the optical path of light by controlling

medium properties.

Physically, there are two reasons why the path of a light ray will bend

as it propagates through space. Either the surrounding medium properties,

permittivity or permeability, vary in space. This is described by Maxwell’s

equations [16], an example in which they vary smoothly is in the case of a

graded refractive index lens which is shown in Figure 2.2(a)).

Alternatively, the space that the ray propagates through may bend [17], for

example in the case of gravitational lensing [18]. Here, the curvature of space

changes as a result of an intermediate mass such as a galaxy (Figure 2.2(b)).

From general relativity, space may be curved by the presence of mass or energy.

Different spatial curvatures correspond to different ray paths through the save

volume. Transformation optics uses the mathematical equivalence of medium

properties and spatial curvature to change the language in which curved opti-
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cal paths may be described. Through this analogy, the visual distortion that

would result from a curved space may be realized by the equivalent material

properties.

From the work of Pendry [13, 14] and Shyroki [15], the two interpreta-

tions of optical path may be interchanged. They allowed permeability and

permittivity to be written as

εγδ = εgγδ
√

det gαβ, (2.6a)

µγδ =
µgγδ√
det gαβ

. (2.6b)

That is, they may be written as functions of an equivalent metric tensor, gαβ,

of the equivalent curved space. For a fuller and accessible treatment of the

subject, consult Leonhardt and Philbin [19]. This reinterpretation of material

properties in terms of a new coordinate system has subsequently provided a

new paradygm with which to design optical systems.

A wide range of applications of transformation optics exist [20]. These vary

from optical novelties to effective extensions of fundamental theories [21] and

they even extend to acoustics [22, 23]. Also, objects may be hidden by shrink-

ing their visual distortion to a negligible size as has been demonstrated in ray

tracing simulations [24, 25] and experimentally at microwave frequencies [26].

Also, apparent topology changes may be realized by hiding a connecting tun-

nel of space between two parts of the system. The resulting visual distortion

then suggests that the ends of the tunnel are unconnected [21].

Transformation optics is formulated without specifying the method by

which a particular permeability and permittivity may be realized. As a result,

it is independent of the source of the medium properties. While existing opti-

cal fabrication techniques allow fine control over refractive index, for example

in Reference [27], conventional materials are limited to positive refractive in-
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Figure 2.3: Metamaterials achieve their optical properties through
microscopic structure and not atomic structure. (a) By embedding
wires within a region smaller than the wavelength of incident light,
its permittivity will be negative across a frequency range. (b) More
elaborately, a magnetic ‘meta-atom’ may be built which has a negative
permeability as realized by a split ring resonator. (c) By repeating
both structures within a volume, the entire volume may be described
by these effective medium properties.

dices. A wave-optical method by which to implement negative refraction and

the smoothly varying positive and negative refractive index profiles produced

by transformational optics is metamaterials. These will be discussed in the

following section.

2.4 Metamaterials

Veselago’s exploration of negative refraction ended when he could not find any

materials with simultaneously negative permittivity and permeability. How-

ever, what could not be found in nature was later fabricated.

Metamaterials gain their material properties through structure and not

substance. This relies on subwavelength structures to interact with the elec-

tric and magnetic fields. The first such structure was originally used to per-

form plasma simulations [28] and consisted of metal rods that give a negative

frequency response to an electric field (as is shown in Figure 2.3(a)). This is
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an example of a material in which bulk permittivity was entirely different to

that of its constituent parts.

Another structure was required to also artificially alter the permeability.

This was complicated by the relatively small magnetic response of natural ma-

terials. Progress was made when researchers sought to replace atoms — which

are in effect circulating currents that give rise to a magnetic dipole moment —

with a much better source, the split-ring resonator. As shown in Figure 2.3(b),

split-ring resonators each consist of a tiny circuit that produces a significant

magnetic moment when at resonance with the external field. At microwave

frequencies metamaterials have been experimentally demonstrated [29]. How-

ever, progress in the fabrication of optical equivalents has been slower due to

the lack of equivalent, pre-existing fabrication techniques at these smaller size

scales.

These two ideas have since been combined into a single, effective medium

in which both permittivity and permeability are simultaneously negative (see

Figure 2.3(c)). A metamaterial is constructed by repeating such subwave-

length components throughout its volume. The key property is that, due to

their size, each circuit interacts not with light as a whole, but with the elec-

tric and magnetic fields that constitute it. Therefore, as long as each circuit is

smaller than half a wavelength (from the Nyquist limit [30]), each meta-atom

in a material may separately interact with the local electric and magnetic

fields.

2.5 The perfect lens

Shown in Figure 2.4, one truly remarkable application of metamaterials is

the perfect lens, which was first suggested by Pendry [31]. This is able to

image finer details than that of an ordinary lens. This is because high spatial
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Figure 2.4: Shown in blue and viewed from the side, a ‘perfect lens’
consists of a block with an equal magnitude, but opposite sign of
refractive index, −n, to that of its surroundings, n. The lens images
a point light source, L, twice: first at I inside the block and then
at I′. Rays (shown in red) are reflected at each interface such that
diverging rays converge. In addition to travelling waves, evanescent
components — which carry high spatial frequency information — also
propagate. These decay exponentially in positive index media so are
normally lost. However, in negative media they are amplified and so
the near field information may be recovered by the perfect lens.

frequency information is transported by evanescent waves which ordinarily

decay exponentially as they propagate until the ‘near field’ information is

lost [1]. Metamaterials are able to amplify these waves and so preserve the

information that they contain.

The amplification of evanescent components by a negative refractive index

medium is a consequence of waves having a negative optical path length. The

phase fronts literally propagate backwards and decay as they do so. Equiv-

alently, in the direction of information flow, their amplitudes grow exponen-

tially.

By ensuring that each wave propagates through the same path length of

negative index medium as it does through positive space on either side of

the lens, the total optical path length is zero and the evanescent components
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should regain their original amplitudes. Furthermore, from Fermat’s prin-

ciple [3] the optical path is stationary. Alternatively, in terms of Huygens’

principle [32], wavefronts propagate through the system through equal path

lengths (all of length zero). They will then combine coherently to interfere

constructively at the image.

A variant of this has been demonstrated using a curved lens in a nanoscale

experiment by coating an object in layers of silver which has a negative per-

meability [33]. Such a setup has obvious applications in subwavelength mi-

croscopy.

Ray-optical interpretation

It is more relevant to the following chapters to discuss the perfect lens within

the context of ray optics. Each interface between positive and negative index

media separately images point light sources into the other medium. Ray opti-

cally, this is a consequence of the reflection of the components of ray direction

that lie parallel to the interface. Snell’s law continues to work, and implies

that the angle of refraction is the negative of the incident angle.

This transverse ray-direction reflection follows from the refraction of rays

at the interface between positive and negative media of equal magnitude. This

is shown wave optically in Figure 2.1. The figure shows wavefronts (solid lines)

travelling to one side of the refracting interface and rather than continue in

the same direction (dashed lines), the component of the ray direction that

is parallel to the interface is reflected backwards (again shown as solid lines).

Then, from Snell’s law the refracted angle is the negative of the incident angle.

Diverging rays then converge after each interface to form an image. From

equality in magnitude between incident and refracted angle, before and after

refraction, the rates of divergence and convergence are equal. As a conse-
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quence, the object and image distances are equal to one another. A conse-

quence of this is that the depth of further away objects correspond to closer

image distances. Depth has therefore been reversed. This is known as pseu-

doscopic imaging [34].

The behaviour of the perfect lens is then to combine two such interfaces (on

either side of the negative refractive index block) to pseudoscopically imaging

the scene twice (Figure 2.4). The advantage of this is that neither the object

plane nor the image plane need be immersed in a negative index medium and

that the overall optical path length may be set to zero for the correct lens

thickness, returning evanescent components to their original magnitude.

2.6 Summary

Clearly metamaterial volumes and metarefracting sheets operate on a differ-

ent length scale, to a different optical approximation and are designed quite

differently. However, both gain optical properties from structure and not sub-

stance. They both transcend the conventional limitations placed upon them,

be it the effective medium properties or the angle of refraction. And as will

be shown in the following chapters, both may realize negative refraction and

pseudoscopic imaging.



CHAPTER 3
The Dove-prism sheet

“It can scarcely be denied that the supreme goal of all theory is
to make the irreducible basic elements as simple and as few as
possible without having to surrender the adequate representation
of a single datum of experience.”

— Albert Einstein

3.1 Introduction

Having already briefly introduced the motivation behind metarefraction, and

placed it within the context of existing work of other researchers, the purpose

of this chapter is to explore what is perhaps the simplest example of metare-

fraction — local light-ray direction reflection along one axis. That is, a single

component of the direction of each light ray (taken here to be the x-direction)

is reflected about the point at which the ray intersects the sheet:

r′x = −rx (3.1a)

r′y = +ry (3.1b)

r′z = +rz (3.1c)

23
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(a) (b)

(c)

Figure 3.1: (a) In order to perform ray-direction flipping, a Dove prism
may be used. In the case of a single prism, each reflection takes place
about some common centre rather than the point at which each ray
intersects the sheet. (b) In order to avoid this, many short but wide-
apertured prisms may be stacked to produce a “Dove-prism sheet”.
(c) On tracing a series of light rays through the sheet, their ray di-
rection may be seen to be reflected about one axis with only minor
position offset.

where the sheet normal will be taken to lie in the z direction. While reflection

may be realized by a number of well known components, what is different

about this transformation is that the plane of reflection lies on the point

where the ray and sheet intersect.

This chapter will explore this ray-flipping metarefraction from a number of

perspectives. Firstly, by what mechanism may ray flipping be approximated?

Additionally, the visual qualities are of interest: What does the visual dis-

tortion through the sheet look like? Can a simple expression be derived to

describe it and if so what form does it take? And lastly, why is such a mapping

interesting?



CHAPTER 3. THE DOVE-PRISM SHEET 25

How may ray-direction reflection be realized? A simple reflection of ray

direction may be realized by a single Dove prism. As an example, rays ob-

served propagating upwards (Figure 3.1(a)) were initially downwards propa-

gating and vice versa. However, the sought transformation should perform

the reflection without such a large offset.

The offset cannot be eliminated, but it can be reduced by several orders of

magnitude (i.e. below the angular resolution of the observer who’s field of view

includes the entire sheet). In order to do so, multiple Dove prisms are stacked

as shown in Figure 3.1(b). Choosing a stack of short and wide-apertured

prisms of sufficient proximity to one another reduces the offset size. Offsets

are of the order of the height of each prism, so by reducing the prism height by

several orders of magnitude, the offset is similarly reduced (see Figure 3.1(c)).

This structure will be referred to as a Dove-prism sheet, and was first

proposed in a paper by Lian and Chang [35] for beam steering applications

before being patented by Watkins [36]. Vastly increasing the number of Dove-

prisms, Nelson and Courtial realized that such a structure could produce a

sharp visual distortion [37]. Later, I was involved in the investigation of the

optical properties of such a structure with Dr Courtial [38].

When viewed from the side, a Dove prism is a trapezium, but transverse

to this plane, the Dove prism is homogeneous and so has no net effect on that

component of the light ray direction. A Dove prism therefore only transforms

the light ray direction two dimensionally. When projecting the scene onto this

plane, this projection will be referred to as the ‘prism projection’. It is on this

plane that the relevant behaviour of a Dove-prism sheet may be captured.

A Dove-prism sheet does not perform imaging because it only reflects one

transverse component of a light ray. Diverging rays are made to reconverge af-

ter passing through the sheet only along that axis. In the orthogonal direction,
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Figure 3.2: Chess piece seen through a Dove-prism sheet for various
distances of the piece behind the sheet. The reflection direction is
marked as a red arrow and is 45◦ to the horizontal. The chess piece’s
distance behind the sheet is given in the corner of each frame (in units
of the side length of the floor tiles). The sheet is a distance z2 = 5.5
in front of the camera and contains 100 Dove prisms.

normal to the prism projection, the ray continues to diverge.

The lack of imaging does not mean that the view through a Dove-prism

sheet is blurry. So long as it is viewed through a small aperture, the resulting

visual distortion will appear sharp because each prism ‘looks’ in a slightly

different direction to that of its neighbour with a small field of view. This

sharpness of the visual distortion requires each prism to be smaller than the

angular resolution of the observer.

While reduction of prism size is desirable to achieve good visual quality, a

compromise must be reached to avoid diffraction. Additionally, prisms must

be sufficiently separated to avoid coupling of evanescent waves between neigh-

bouring prisms, and must be significantly larger in height than this gap.
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Figure 3.3: A chess knight seen through a Dove-prism sheet for various
ray-inversion directions. The arrows in the top left corner of each
frame indicate the direction along which the ray direction is inverted
in the different frames; its angle with respect to the horizontal is also
stated. The chess piece is positioned a distance z1 = 2 floor tiles
behind the Dove-prism sheet, which is a distance z2 = 5.5 floor tiles
in behind of the camera.

3.2 Visual qualities

While such a structured sheet may be concisely expressed through its law

of metarefraction, it is more directly useful to instead consider the resulting

visual distortion. That is, given the location of the eye and point light source,

where on the sheet does the transformed light that intersects the eye appear to

come from? As might be expected, the resulting view does not bear an obvious

connection to a reflection. What then does the view through a Dove-prism

sheet look like?

There are two particularly informative perspectives from which to view



CHAPTER 3. THE DOVE-PRISM SHEET 28

the transformed scene. In order to explore such optical properties, sheets

may be simulated by the ray-tracing software POV-Ray [5]. As is shown

in Figure 3.2, the view through a Dove-prism sheet distorts the horizontal

coordinate of each object. This in effect skews the object. The key length

scale is the depth at which the apparent position of objects appear to diverge

towards infinity from the perspective of the current observer. This occurs when

the object-sheet separation is equal to that of the camera-sheet separation.

Another parameter of interest is the orientation of the flip axis, as is shown in

Figure 3.3. This extends the law of refraction from flipping along the x axis to

an arbitrary direction on the x-y plane. As the sheet is rotated through 180◦,

the axis along which the object appears to stretch changes and the horizon

spins through 360◦.

Ray-direction flipping, involving the transformation of only a single ray-

direction component, and transforms the ray only along the prism projection,

nonetheless takes place in three dimensions. Despite this, the problem can

easily be reduced in dimension by noting that while each ray tranvels further,

the distance that it travels along the z axis remains unchanged. The inter-

esting behaviour is then entirely captured by projecting the rays onto the x-y

plane.

When looking through the sheets, an observer sees the location of point

light sources according to some transformation. However, what the observer

sees is not intuitively connected to the underlying metarefraction transfor-

mation. Specifically, the apparent ray direction may be described by an im-

plicit equation that expresses the apparent point light source direction (i.e.

the ray-sheet intersection point) in terms of the initial ray direction and the

metarefraction. This implicit expression must be solved.

An expression for the apparent location of a point light source will now be
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Figure 3.4: A side view of a ray path through a Dove-prism sheet from
a point light source, L, to an eye point, E, through a point, P on the
sheet. The first light ray travels a displacement (x1, y1, z1) and the
mapped, second ray travels a displacement, (x2, y2, z2).

presented. Figure 3.4 shows the location of a point, P, on a Dove-prism sheet

where a light ray intersects as the ray propagates from the point light source,

L, to the observer, E. As before, the coordinate system is chosen such that

the sheet is orientated perpendicularly to the z-axis, and the ray-direction

reflection is along the x-axis. The horizontal ray-direction flip may therefore

be expressed as

x1
z1

= −x2
z2

(3.2)

where the initial ray vector is (x1, y1, z1) and the metarefracted ray vector is

(x2, y2, z2). Meanwhile, the vertical ray direction is unaffected, so

y1
z1

=
y2
z2
. (3.3)

The (known) displacement between light source and observer, (xLE , yLE , zLE),
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is the sum of the two rays. In the x direction this is

xLE = x1 + x2 (3.4)

and the y direction is

yLE = y1 + y2. (3.5)

Eliminating the transformed light ray vector, it is now possible to solve for

the initial light ray

(x1, y1) =

(
xLEz1
z1 − z2

,
yLEz1
z1 + z2

)
. (3.6)

As stated above, only the x and y coordinates are sought. The z-component is

fixed as the depth between the point light source and the sheet, z1, is known.

So too is the distance from the sheet to the camera, z2.

This equation can be more concisely written in dimensionless coordinates,

which are defined as

ξ =
x1
xLE

, (3.7a)

ψ =
y1
yLE

, (3.7b)

ζ =
z1
z2
. (3.7c)

On substituting into Equation (3.6)

(ξ, ψ) =

(
ζ

ζ − 1
,

ζ

ζ + 1

)
. (3.8)

Now consider the quantitative behaviour of the dimensionless equation.

As the depth ratio, ζ, is increased from zero the actual point and apparent

point start in the same place, but move apart. As the depth ratio tends to

unity, the x-coordinate of the apparent point tends to infinity. This takes

place when the camera is as far in front of the sheet as the light source is

behind. Camera-sheet distance provides, as was observed in Figure 3.2, the
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Figure 3.5: (a) The simulated view shows a straight rod, parallel to the
viewing direction of a pinhole camera and extending towards infinity.
A Dove-prism sheet orientated to flip the horizontal component of the
light ray direction may be described by Equation (3.7a). (b) The visual
distortion of the rod should therefore display a hyperbola as plotted in
the graph. This hyperbola tends to the object and eye x-y projection
as the object-sheet separation tends to zero and infinity respectively.
The rod is at (0, 0) and the observer is at (1, 1). (c) The same scene
as in Figure (a) has been rendered, but now it includes a Dove-prism
sheet which is five and a half floor units in front of the camera. The
visual distortion of the rod seen through the sheet reproduces the
quantitative result shown in the parametric plot.

natural length scale of the system. As the object moves further from the sheet,

its appears moves towards the projection of the eye on the sheet.

By eliminating ζ, Equation (3.8) may alternatively be written as

2ξψ − ξ − ψ = 0. (3.9)

This equation implies that a straight rod that is normal to the sheet will appear

as a hyperbola when viewed through a Dove-prism sheet. This is confirmed

in the simulation shown in Figure 3.5.
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Figure 3.6: (a) In addition to an inverted view, when an observer looks
from above at the bottom of the front face of a Dove prism, an observer
will see the view through the roof of the prism. (b) Alternatively,
when looking from below, an observer will see an unreflected scene.
(c) When stacked to form a Dove-prism sheet, each prism displays a
series of strips of the visual distortion and any ‘parasitic images’ that
are visible at that viewing angle. Across a single Dove prism, the
fractional area of each view may be found by projecting collimated
light rays onto a plane. As the strips, like the prisms, are periodic,
the same relative brightness for a single prism corresponds to that of a
region of the sheet. The relative brightnesses of each varies across the
sheet while the types of errors depend on whether the sheet is viewed
from (d) above or (e) below.

3.3 Dove-prism sheet quality

There are a number of ways in which the quality of a Dove-prism sheet is lim-

ited. These include a limited field of view, ‘pixelation’ of the visual distortion,

a decreased transmittance at larger viewing angles and the presence of ‘par-

asitic images’. Here parasitic images do not imply imaging but rather alter-

native, undesired visual distortions due to alternative light-ray paths through

the sheet.

For low densities of Dove prisms, the view will appear ‘pixelated’ or ‘noisy’.

This is because the field of view of each prism is sufficiently large for an

appreciable portion of the scene to be visible through it. Each strip of the



CHAPTER 3. THE DOVE-PRISM SHEET 33

scene is individually reflected, and the border between neighbouring strips

then appears as a sharp discontinuity.

The presence of dimming and parasitic images are due to errors over por-

tions of the front face of each prism. The view through an individual Dove

prism is divided into several strips, each of which displays either a visual dis-

tortion or a parasitic image. If, when looking through a Dove-prism sheet,

individual prisms are thinner than the observer’s minimum resolvable dis-

tance, strips of the view blur together across that local region. The resulting

visual distortion superimposes the ray-flipping visual distortion with the var-

ious parasitic images with angle-specific relative brightnesses.

Each strip that appears across the face of a Dove prism arises due to a

particular route that rays may take through the prism. When viewing a single

Dove prism from above, the bottom of its front face displays the view through

the roof of the prism (Figure 3.6(a)). Alternatively, when viewing the front

face from below, another parasitic image, an unreflected view of the scene,

appears in the top corner (Figure 3.6(b)).

Variations in the brightness across the Dove-prism sheet are due to each

strip of the visual distortion or parasitic image appearing over a different area

of the front aperture of each prism. The visual distortion is brightest at the

centre, while parasitic images may be seen through a significant fraction of

the aperture at larger angles.

On combining prisms to form a Dove-prism sheet, there are additional

scattering mechanisms due to interaction between neighbouring prisms (Fig-

ure 3.6(c)). Each prism displays several strips which include the visual dis-

tortion and the various parasitic images. The sheet then displays a series

of alternatively coloured stripes which, locally, are approximately periodic.

For a particular visual distortion or parasitic image, the resulting fraction of
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Figure 3.7: The reflection of a light ray as viewed through the top and
side of a Dove prism. While propagating internally, the ray is offset
in width and height. (a) The offset in width, δw, may be minimized
by reducing the thickness of the prism, T , (defined here as the prism
thickness at half its height). (b) The vertical position of the ray is
reflected on passing through the prism. The offset, δh, is twice the
distance between the ray height and the axis of reflection. (c) This is
minimal when the axis of reflection is at the centre of the prism.

transmitted light is therefore proportional to the fractional area of its corre-

sponding strip. Projecting all strips from the local area onto a plane, and

selecting a periodic section of the resulting pattern, the fractional area of the

visual distortion or any of the parasitic images may be determined.

Because front faces of each prism are inclined, their projections overlap

when viewed from above (Figure 3.6(d)). Prisms can therefore occlude part

of the aperture of their lower neighbour. The part of the front aperture that

is in partial shadow displays the visual distortion. Prism overlap therefore

decreases the fractional brightness of the visual distortion in favour of the

other parasitic-images.

Alternatively, looking upwards through the front face of a Dove in the

sheet, the top of the prism displays both the unreflected view through the

prism and the base of the neighbouring prism (Figure 3.6(e)).

The Dove-prism offsets light ray position along both axes of the sheet

plane. Offsets take place perpendicularly to the flip axis (see Figure 3.7(a)),

but are relatively insignificant relative to those along the flip axis. A side effect
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of ray-direction reflection with a Dove-prism sheet is that the view through

each prism is also reflected. This leads to a small offset in position of the order

of the height of each prism which may be minimized by correct prism design.

The reflection takes place along a mirror plane parallel to the prism base (see

Figure 3.7(b)). Its position depends on a number of parameters, including

the prism angle, γ, (measured between the left face and the vertical), the

refractive index, n, and the thickness to height ratio of the prism. This ratio

minimizes the offset when the mirror plane is halfway between the roof and

base of the prism (see Figure 3.7(c)). It may be shown that this occurs when

D

H
= cot

[
γ − sin−1

(
sin γ

n

)]
(3.10)

where the prism height is H and the prism thickness, T , which is measured

at half the height of the prism.

The sheet design may be optimized in order to reduce the effect of the

angular and positional errors discussed above. Offsets are smallest for small

enough prism sizes and so are simple to remove, but of the angular errors,

only the ‘pixelation’ may be reduced.

3.4 Connection to negative refraction

A Dove-prism sheet, when considered only in terms of the prism projection

(i.e. the x-z plane) is simply a reflection of a light ray direction perpendicular

to the sheet. Analogously, as was discussed in Chapter 2, the same law of

refraction is observed across an interface between positive and negative media

of equal magnitude (i.e. between n and −n). The later law follows from Snell’s

law, but applies along both transverse axes. In order to generalize a Dove-

prism sheet to this three dimensional form, a second Dove-prism sheet may

be placed behind the first in order to reflect along the other transverse axis.
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The law of metarefraction for this crossed Dove-prism sheet is

r′x = −rx (3.11a)

r′y = −ry (3.11b)

r′z = +rz (3.11c)

and corresponds to pseudoscopic imaging (see Section 2.5). This will be dis-

cussed further in Chapter 5.

3.5 Summary

The work explored in this chapter was begun by Johannes Courtial and John

Nelson. I have been involved in the exploration of Dove-prism parameters and

much of the simulation work. I also took part in the mathematical analysis of

the Dove-prism sheet. This chapter explored work that has been published in

References [37] and [38].

In this chapter, a Dove-prism sheet has been introduced. Specifically, it

was shown that the reflection of a single light-ray direction, with negligible

offset, may be achieved by a stack of wide-apertured Dove prisms. The ap-

parent direction of a point light source then appears to move away from its

actual location of the light when it is just behind the sheet to negative infin-

ity (along the flip direction) as the object moves as far behind the sheet as

the camera is in front. As it continues to move further back, the object then

reappears from positive infinity (again along the flip direction) and appears

to move towards the eye position’s projection onto the sheet. Equation (3.9)

was derived which quantifies the behaviour of the sheet making a straight line

appear as a hyperbola.

While a Dove-prism sheet’s ray-direction mapping is extremely simple and

so too is the resulting view, the connection between the two is not. In addition,
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the Dove-prism sheet acts as a fundamental component in realizing other

more elaborate metarefractions (such as the crossed Dove-prism sheet). Such

extensions will be the subject of Chapter 4 and 5. In particular, the latter

chapter will return to the idea of pseudoscopic imaging and will explore the

potential of using Dove-prism sheets to perform more general forms of imaging.



CHAPTER 4
The ray-rotation sheet

I was like a boy playing on the sea-shore, and diverting myself
now and then finding a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth lay all undiscovered before
me.

— Isaac Newton

4.1 Introduction

Here the crossed Dove-prism sheet will be generalized. In Section 3.4 the

crossed Dove-prism sheet was described as a pair of ray-direction reflections

along both transverse axes of the sheet, and was shown to be analogous to a

refractive index interface between media of opposite sign. This metarefraction

is also equivalent to a single light-ray direction rotation around the sheet

normal by 180◦. Here it will be shown that this ray-rotating metarefraction

may be generalized to rotate by an arbitrary angle.

Now consider how such a metarefraction may be realized. As before, the

sheet may be constructed from a pair of parallel Dove-prism sheets. Now

however the flip axes of the two sheets are at an arbitrary angle to one another.

38
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(a) (b)

Figure 4.1: (a) The figure shows a ray-rotation sheet from one side.
Such a sheet consists of a pair of parallel Dove-prism sheets in se-
ries. These sheets are rotated relative to one another, but remain
coplanar. Figure (b) schematically shows the boundaries of a pair of
Dove-prisms. Here, the sheet is divided into diamond ‘pixels’ which
separately transform the local light ray direction by performing a pair
of reflections.

The constituent metarefracting component is a pair of Dove-prisms then share

a common optical axis, but are rotated relative to one another. An example

of such a sheet is shown in Figure 4.1(a). The resulting metarefraction is for

the light-ray direction to rotate by a fixed angle, α. The law of metarefraction

for local light ray direction rotation may be expressed as

r′φ = rφ + α, (4.1)

where, as before, the z axis is taken to be the sheet normal around which

the rotation takes place. The rotation therefore only changes the azimuthal

component of the ray direction, r′φ, while orthogonal ray directions remain

unchanged. These components include the ray direction component normal

to the sheet, rz, and the polar ray direction angle, rθ, between the ray and

the sheet normal.

As stated in the previous chapter, Dove-prism sheets introduce a small off-

set of the order of the height of a prism. This offset will be introduced by each
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sheet in turn about a different axis which leads to diamond shaped pixelation

of any visual distortion. This is shown schematically in Figure 4.1(b).

Whereas an idealized (i.e. an offset free) crossed Dove-prism sheet has an

unambiguous wave-optical interpretation, the same is not true for an idealized

ray-rotation sheet. With the exception of two angles, it is strictly speaking

impossible as will be explored in Chapter 6. Such an approximation of ray-

rotation using a metarefraction is perhaps as close to an idealized transforma-

tion as is physically realizable. The lack of exact wave-optical implementation

may well explain why (to the best of the author’s knowledge) ray-rotation has

never previously been explored.

Following the same approach as was applied in the previous chapter, the

visual distortions of ray rotation will be explored. In order to present the

qualitative features, ray-traced simulations have been included. A more quan-

titative approach will then explore patterns in terms of a simple expression

for the apparent position of a point light source.

This chapter will be structured as follows. Firstly, the mechanism by

which two Dove-prism sheets perform ray rotation will be discussed. Then,

the transformation’s visual qualities will be explored in some detail. Next a

quantitative analysis will fully describe the visual distortion and finally this

chapter will conclude with a short summary.

4.2 Transformation mechanism

It was stated above that a metarefracting component comprising a pair of

Dove-prisms is able to azimuthally rotate the local light ray direction. That

a pair of reflections is equivalent to a rotation is a curious, but trivial mathe-

matical identity.

Now consider the effect of a single constituent pair of Dove prisms, i.e. one
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Figure 4.2: A ray-rotation sheet may be realized by combining two
Dove-prism sheets. In order to do so, consider the behaviour of a
single pair of Dove prisms that constitute the resulting metarefracting
component. (a) The effect of such components is to rotate the local
light ray direction. Locally, this is equivalent to rotating the incident
scene. (b) Here the intensity pattern incident on the first Dove prism
is chosen to be the letter ‘R’. (c) The view through the Dove-prism is
the reflection of the original pattern. (d) Viewing this reflected pattern
through the second Dove prism, a second reflection takes place. The
resulting transformations are equivalent.

of the diamonds in Figure 4.1(b). As long as both Dove-prisms reflect along

the sheet plane, the ray direction component normal to the sheet remains

unchanged by either Dove-prism. This discussion therefore reduces to the

projection onto the sheet plane. The identity may then be demonstrated

pictorially by rotating the letter ‘R’ as shown in Figure 4.2(a). This may be

broken down into the various steps that take place. The view incident on the

far prism’s far face is shown in Figure 4.2(b). Now looking through the first

prism, the visual distortion is a reflected version of the scene, as is shown in

Figure 4.2(c). The second Dove prism then reflects again, this time at an angle
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α/2 to the first. The resulting visual distortion of the two is now a rotated

version of the original scene. In Figure 4.2(d) the letter now appears to have

been rotated by α.

In what way does the relative prism orientation relate to the resulting ray-

rotation angle? Consider the effect of a pair of Dove-prism sheets on a ray

direction vector. The ray passes through each sheet in turn, flipping it twice.

A flip along an arbitrary axis on the x-y plane may be written as a change of

basis by a rotation, say α/2, from the x-axis, flipping along the new x-axis,

then changing basis back by the reverse rotation: cos(α/2) sin(α/2)

− sin(α/2) cos(α/2)


−1 0

0 1


cos(α/2) − sin(α/2)

sin(α/2) cos(α/2)

 , (4.2)

which may more concisely be written as− cosα sinα

sinα cosα

 . (4.3)

Applying a second flip, this time along the x-axis, the resulting matrix iscosα − sinα

sinα cosα

 (4.4)

which is the matrix describing rotation through α. That is, a pair of flips at

an angle α/2 to one another is equivalent to a rotation by α.

4.3 Optical properties of a ray-rotation sheet

As in the case of a Dove-prism sheet, a ray-rotation sheet may be best under-

stood in terms of ray-traced images. The quantitative behaviour of the sheet

is quite unexpected as demonstrated in the two ray-traced images that are

shown in Figures 4.3 and 4.4.
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Figure 4.3: The apparent orientation of the chess knight is dependant
on the particular depth. Chess piece seen through a pair of Dove-prism
sheets rotating the direction of transmitted light rays through α = 90◦

around the sheet normal. Different frames are calculated for various
distances of the chess piece behind the sheets (2× 100 Dove prisms).
The distance between the sheets and the camera is z2 = 6 (in units of
the floor-tile side length).

First considering Figure 4.3 where depth of a chess knight has been varied,

the orientation, despite appearing to rotate, has not been changed throughout.

In moving the object then it appears to travel along different axes and as a

result will move around some centre. While subtle, the knight is actually

distorted as well as being reorientated and so does not simply undergo a

rotation. This said, the knight does not appear to be significantly offset.

The horizon, however, remains consistently distorted by some fixed angle.

Therefore at infinity (at least for the horizon) the line is transformed into a

second line. When viewing any point on the knight, it actually appears to

rotate in a separate circle, independently of the whole knight.

In Figure 4.4, the ray-rotation angle has been varied. In order to make
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α=120ºα=0º α=60º

α=180º α=240º α=300º

Figure 4.4: The frames show the apparent positions of several green
spheres, all positioned along a sheet normal through the point at var-
ious distances from the sheet. Different frames are calculated for dif-
ferent ray-rotation angles, α. The green spheres play the role of a
light source located at different distances behind the sheet. In terms
of the distances between the camera and the sheet, these distances are
z = 2nz′, for n = −5, . . . , 5. The camera is directed normal to the
sheet at a distance z′ = 6 floor-tile side lengths in front.

clearer the circular paths traced as the object depth is varied, the chess piece

has been replaced by a series of spheres. Each sphere is located immediately

behind the previous one, but when viewed through a ray-rotation sheet, it

instead appears to trace the circumference of a circles. By varying the rotation

angle, the underlying shape is made clearer and is indeed always circular.

The particular path does however appear to move, changing both centre and

radius with rotation angle. Additionally, looking at the horizon in Figure 4.4

demonstrates that the horizon in not distorted by ray-rotation sheet so while

it is rotated, the horizon remains a line. In fact, the angle by which the horizon

rotates is equal to the ray-rotation angle, α.
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Figure 4.5: (a) The side view of a ray-rotation sheet as light-rays
propagate between a point light source, L, and an eye position, E,
through a point on the sheet, P. (b) As the z components of both
light rays are known, it is simpler to work with the projection of the
light rays onto the x-y plane. The second light ray, PE , which has a
projected length, r′, is rotated by an angle, α, relative to the first ray,
LP, with corresponding projection length r.

4.4 Quantitative analysis

This chapter has so far explored the qualitative aspects of local light ray-

rotation, but in order to describe the transformation more precisely, a quanti-

tative description of what an observer sees when looking through such a sheet

will now be investigated.

The constituent transformation on each light ray is a rotation and is there-

fore rotationally symmetric. Clearly the overall effect is very different to that

of the constituent mapping, but objects do appear to rotate as the depth of an

object is changed which implies that underlying metarefraction is relatively

straightforward.

For a given observer’s eye position, the distorted point light source is

restricted to a line by the observed ray direction. Light rays propagate through

the sheet from a known point light source, L, to a known eye position, E,

through an unknown point on the sheet, P. As the point lies on the sheet,

which is a known distance from the light source, z, and from the observer, z′,

it then remains only to solve for its x and y coordinates.
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As a ray-rotation sheet only turns the ray direction, LP = (x, y, z), az-

imuthally, the polar angle, rθ, remains unchanged during ray rotation into

PE = (x′, y′, z′). The tangent of polar angle is the ratio between the x-y ray

projection length and the z component of the light ray. This ratio is therefore

also preserved:

tan rθ =
ρ

z
=
ρ′

z′
, (4.5)

where ρ =
√
x2 + y2 and ρ′ =

√
x′2 + y′2 denote the projected ray lengths

before and after the ray mapping. Combining this with the definition of ray

rotation, Equation (4.1), an expression for the projected light rays may be

written as x′
y′

 =
z′

z

cosα − sinα

sinα cosα


x
y

 . (4.6)

As is summarized in Figure 4.5, in order to simplify the following treat-

ment, the sheet plane will now be interpreted as being the complex plane.

Now, the x-axis becomes the real axis and the y-axis becomes the imagi-

nary axis. Correspondingly, the ray direction projections will similarly be

described as complex numbers. Now (x, y) becomes r = x+ iy, (x′, y′) is now

r′ = x′ + iy′ and similarly LE becomes rT . This representation is simpler

because by Equation (4.6) may be rewritten as

r′ =
z′

z
exp(iα)r. (4.7)

The vector sum of the two rays is the (known) projected distance between

the light source and eye,

rT = r + r′. (4.8)

Upon substituting for r′ from Equation (4.7), this becomes

rT = r

[
1 +

z′

z
exp(iα)

]
, (4.9)
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which may be rearranged for the (unknown) ray direction projection

r =
1

1 + z′/z exp(iα)
rT . (4.10)

What is of interest is the visual distortion seen by an observer looking through

the ray-rotation sheet. This distorted location of each point light source, in

turn, may be inferred from the apparent ray direction projection

r′ = rT − r (4.11)

where r is given by Equation (4.11) and hence

r′ = rT

[
1− 1

1 + z′/z exp(iα)

]
(4.12)

which on simplifying may be written as

r′ = rT

[ z
z′

exp(−iα) + 1
]−1

. (4.13)

This equation may be rewritten as a Möbius transformation [39] of the ray

projection:

f(ζ) =
aζ + b

cζ + d
, (4.14)

where

ζ = z/z′ exp(−iα) (4.15)

and the coefficients are a = 0, b = rT , c = 1 and d = 1. Equation (4.15)

describes a point on a circle: varying the object or image distance varies

radius and varying rotation angle rotates varies the point on the circle’s cir-

cumference. It is true that for any Möbius transform that lines and circles are

mapped into other lines or circles. Therefore varying object distance, image

distance or rotation angle moves the viewing direction in a line or circle as

was observed in Figure 4.4. The Möbius transformation is only a consequence

of the artificial choice of working on the complex plane. The real vector-space
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Figure 4.6: The transformation of a point light source by a ray-rotation
sheet is to make appear the point according to a bipolar coordinate
transformation. Changing the object’s depth moves it around circles
as does changing the ray-rotation angle.

equivalent is a bipolar coordinate transformation as shown in Figure 4.6, but

the same argument applies. In this case the circles are known as Apollonian

circles.

4.5 Summary

This work was performed in collaboration with Bhuvanesh Sundar, John Nel-

son and Johannes Courtial and closely follows the content of Reference [40].

Local light-ray direction rotation has been shown to be constructable from

a pair of Dove-prism sheets. By varying either the ratio of sheet separation of

the sheet and observer or the rotation angle, the apparent location of a point

light source was observed to rotate around a circle.
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There is a rotational symmetry that is introduced into the system by the

constituent ray-direction mapping. Because of this, it is not surprising that

there was a corresponding spherical symmetry in observed ray location. The

resulting ray mapping was a bipolar transformation and was expressed in

complex numbers as Equation (4.13).

Now that a ray-rotation transformation has been described and its visual

properties outlined, what will follow in the next chapter is an exploration of

imaging as may be performed by the metarefracting components that have

been introduced so far.



CHAPTER 5
Imaging

For long you live and high you fly
And smiles you’ll give and tears you’ll cry
And all you touch and all you see
Is all your life will ever be.

— Breathe, by Pink Floyd

5.1 Introduction

This chapter is concerned with perhaps the most practical application of

metarefraction, imaging. Metarefraction is able to realize several forms of

imaging. The most obvious, and perhaps the only example already in com-

mon use, is the Fresnel lens. It is shown in Figure 1.2 and uses radially orien-

tated prisms as constituent components in order to realize the metarefraction.

This is able to reproduce the effect of a parabolic lens and has already been

discussed in Section 1.3.

The second example to be explored was that of a Dove-prism sheet, which

was discussed in Section 3.4. The direction of light rays that diverge from a

point light source will be transversely reversed upon passing through the sheet

50
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Figure 5.1: Imaging may be performed in a restrictive sense with (a) a
Dove-prism sheet in two dimensions along the (b) prism projection and
(c) with a Ray-rotation sheet in three dimensions (where the rotation
angle is 180◦). In either case, the image and object distances must be
equal in order for imaging to take place.

and so converge to a point as is shown in Figure 5.1(a). This then images from

a point anywhere on a line to a corresponding line a distance as far in front

of the sheet as the original line was behind. A Dove-prism sheet is therefore

able to image in the sense shown in Figure 5.1(b), along the prism projection.

Such imaging was then generalized to three dimensions using crossed Dove-

prism sheets as shown in Figure 5.1(c). In either case, as the direction of the

light rays are only reflected, rays travel as far a depth after the sheet to

converge to a point as they travelled while diverging before the sheet. As a

consequence of this, depth appears to be reversed: closer objects appearing

behind further ones and vice versa. Such a sheet is equivalent as far as ray-

optical imaging is concerned to an interface between positive and negative

refractive indices of equal magnitude. This form of imaging is called pseudo-
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scopic imaging as discussed in Section 2.5 and is discussed further by Nelson

and Courtial in Reference [37].

Generalizing further by considering a ray-rotation sheet, imaging is ob-

served only in the two special cases where the ray-rotation angle, α, is 0◦

which immediately reduce to direct transmission (the identity ray mapping);

and to 180◦ which corresponds to a crossed Dove-prism sheet. For any other

rotation angle, the sheet produces a non-imaging visual distortion as was dis-

cussed in Chapter 4.

The imaging performed by a Dove-prism sheet, sign-changing refractive-

index interface and crossed Dove-prism sheets is unusual. The peculiarity to

all three imaging systems is that they are all homogeneous. That is, there

is no optical-axis ‘centre’ as there is in a Fresnel lens. As a consequence,

such systems may have applications in the construction of large apertured

systems without significant aberration. In practice, however, the quality of

the imaging performed by metarefracting sheets is significantly undermined

by the pixelated and ray-optical nature of the transformation.

Additionally, the flexibility in the forms of imaging that any homogeneous

metarefracting sheets may perform is limited. There is no preferred displace-

ment direction in which to transform. As a result of the azimuthal symmetry

of the ray-rotation transformation and the lack of a central optical axis posi-

tion, there can be no scaling nor rotation of the object plane when mapped

onto the image plane and so imaging must therefore be an identity mapping.

Despite imaging being quite restricted when performed by a ray-rotation

sheet, this is no longer true of two or more such sheets. In this case imaging

is far more unusual; it is more specialized in that imaging is only possible

between two specific planes. However, these planes may be chosen by correct

selection of appropriate sheet parameters which may be changed as required
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(i.e. they need not be selected during manufacture). While these two planes

may be sharply resolved by an observer, the visual distortion from and to all

others appears to be both blurred and rotated.

5.2 Multiple ray-rotation sheet imaging

This form of imaging may be generalized to a type of imaging which takes

place when multiple ray-rotation sheets are combined. Such series of sheets

offer the possibility of imaging between planes at arbitrary distances as well

as the ability to control the location of the object and image plane by varying

the sheets’ ray-rotation angles and the inter-sheet distance(s). A simulation

of such a system of two such sheets is shown in Figure 5.2(a). Here the

image distance and chess-knight distance were selected to complement the

sheet separation and ray-rotation angles such that, despite appreciable focal

blur being simulated in the scene, the chess knight appears in sharp focus.

Here, focal blur is simulated by averaging the sampled intensity of multiple

rays that intersect the camera through a slightly different point on its aperture,

all of which are detected at the same depth plane and from the same direction.

This form of imaging will be discussed further throughout the rest of this

chapter and follows the work performed in Reference [41] which was performed

with Dr Courtial.

Imaging with two ray-rotation sheets may be shown to take place. This

can be demonstrated by looking for consistency in parallax between different

viewing directions, this time shown in Figure 5.2(b). The same scene has

added to it additional coloured chess knights at one half, twice and four times

the separation between the original knight and the far sheet. Here the camera

is moved horizontally while the chess knights are kept stationary and upright

behind the two separated ray-rotation sheets. As the camera moves, all the
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(b)

(a)

Figure 5.2: Two simulations each looking through a pair of ray-
rotation sheets, where each sheet has a ray-rotation angle of α = 137◦,
each consisting of two Dove-prism sheets (each of 1000 Dove prisms).
The sheets are separated by a distance s = 5 and the object and im-
age distance are o = i = 3.42 (in units of the floor-tile length). (a) A
green chess knight in the object plane behind the two sheets appears
as a sharp image despite rendering the scene with a finite aperture.
(b) Now without focal blur and halving the size of the knight, addi-
tional (upright) chess knights have been added to the previous scene.
The new chess knights are of equal size and are placed in different
planes behind the ray-rotation sheets: at distances o/2 (blue), 2o (or-
ange), and 4o (red). Three frames were calculated for different hori-
zontal camera positions. This makes those chess pieces that are not in
the object plane appear to move vertically which cannot be reconciled
with parallax.

newly added chess knights appear to rotate and to move along lines that are

inclined at some angle to the horizon. In these cases, the position of a point

light source cannot be inferred using parallax and hence imaging, in the sense

discussed in Chapter 1, does not take place. In contrast the original (green)
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(a)

(b)

Figure 5.3: A reproduction of the central image in Figure 5.2(b) with
focal blur and where the knights have been moved from directly behind
the sheet to the upper right corner. While there is always a single
object plane, there are no other planes from which imaging takes place.
All other planes appear both blurred as well as appearing rotated, at
a constant rate, relative to the imaging plane. This leads to both
(a) objects at different depths appearing to be rotated by different
amounts, and (b) giving objects the appearance of being twisted in
depth.

knight does obey parallax, moving horizontally without being rotated.

Clearly imaging does not always take place and an exhaustive search would

show only one object plane and one image plane exists for a given set of sheet

rotation-angles and separation. A proof of this will be given in the next

section.

Now the imaged chess knight appears in sharp focus. As before, the other

chess knights are observed to be rotated, but this is also true to a lesser extent
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Figure 5.4: (a) The light path of a single ray is shown travelling be-
tween a point light source, L and image point, I. The ray is seen
propagating through a pair of ray-rotation sheets, separated by a fi-
nite distance as viewed from the side. (b) The same ray path has now
been projected onto the sheet plane. From this perspective, the ray
path is a polygon of three lines, each rotated from the previous line by
the rotation angle of the sheet that lies between them. The rotation
angles are α and β respectively. The axis of ray rotation is around
the sheet plane and is therefore transverse to the sheet normal. This
direction may then be ignored and as a consequence, the sheet plane
contains all of the light-ray dynamics.

of the individual depth planes on which the imaged chess knight lies. Each of

these is also slightly rotated which leads to an additional visual distortion of

any extended object. This becomes apparent on closer inspection of the centre

image in Figure 5.2(b) and is more clearly reproduced in Figure 5.3 with focal

blur (in the sense described above), and where the knights have been moved

to the top right corner of the sheet.

5.3 Object and imaging plane selection

This section will explore two-ray-rotation-sheet imaging from a quantitative

perspective. The system that will perform this imaging consists of a pair

of ray-rotation sheets that an observer looks through in order to observe an

image of the scene. As shown in Figure 5.4(a), both sheets lie parallel to the

x-y plane.
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This section will derive expressions for the required object distance, o, and

image distance, i, (which are both measured relative to their nearest sheet).

These quantities will be shown to be functions of the rotation angles of the

two sheets, α and β respectively, and of the sheet separation, s.

Each light ray travels along a polygonal path through the system. The

ray leaves the light-source, L, and intersects the first sheet at A. After being

rotated by an angle, α, the ray leaves and travels in a straight line until it

intersects the second sheet, this time at point B. After a second rotation by

β, the ray then propagates to the image point, I.

Due to the similarity in problem to determining the visual distortion due

to a single ray-rotation sheet, a similar treatment will be applied here. In

Chapter 4, the law of metarefraction for a single ray-rotation sheet is given by

Equation (4.1). The equation only alters the azimuthal angle, rφ, and so does

not affect orthogonal ray-direction components. Therefore the polar angle of

the light ray, rθ, and hence

tan rθ =
rρ
rz
, (5.1)

remain unchanged. Here rρ = (r2x + r2y)
1/2 is the component of the light

ray direction in the sheet plane (i.e. the x-y plane). Two ray-rotation-sheet

imaging is composed of two such azimuthal transformations, but neither affect

the polar ray direction component. The three stages of the light ray path then

all share the same polar angle

tan rθ =
LAρ

o
=

ABρ

s
=

BIρ
i
. (5.2)

This allows the problem of solving for quantities in the z direction (the object

and image distances) to be reinterpreted in terms of the projection of rays

onto the sheet plane. This projection is shown in Figure 5.4(b). Solving
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Equation (5.2) for the ray-projection lengths gives

LAρ = o tan rθ, (5.3a)

ABρ = s tan rθ, (5.3b)

BIρ = i tan rθ. (5.3c)

As the ray-rotation sheets are both homogeneous, they are incapable of

displacing or globally rotating an image. This is because there is no preferred

offset direction in which to translate or rotate around. Imaging can therefore

only ever be an identity mapping from the object plane to the image plane.

Then, in order for imaging to take place, light rays that diverge from a point

on the object plane must be rotated by the two sheets through appropriate

angles in order to ensure that the resulting image point is not offset. That is,

the initial and final light-ray projections into the sheet plane coincide:

(Lx, Ly) = (Ix, Iy). (5.4)

In terms of the projection of the light ray, the polygonal ray path closes to

form a triangle as shown in Figure 5.4(b).

The rotation angles of the sheet can be related to the interior angles of

this triangle. The first two interior angles of the triangle are complementary

to their ray-rotation angle and the third is inferred from all angles summing

to 180◦. The interior angles are

∠LAB = π − α, (5.5a)

∠ABI = π − β, (5.5b)

∠BIA = α+ β − π. (5.5c)

In order for the line segments to form a triangle, they must satisfy the law

of sines. This may be written as

LAρ

sin∠ABI
=

ABρ

sin∠BIA
=

BIρ
sin∠LAB

. (5.6)
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Combining Equation (5.3), Equation (5.5), and Equation (5.6) and on elimi-

nating the common factor (i.e. tan rθ) and simplifying with sin(π− x) = sinx

and sin(x− π) = − sinx, the object and image distances are

o = − s sinβ

sin(α+ β)
, (5.7a)

i = − s sinα

sin(α+ β)
. (5.7b)

The case of imaging (or otherwise) between a pair of sheets has been

discussed. This may be generalized to an arbitrary number of ray-rotation

sheets. General ray-rotation sheet imaging takes place between two principal

planes [42]. For example, a single sheet only performs trivial imaging between

two sides of the sheet: it maps only the sheet plane to itself. More generally,

n− 1 sheets image when the closed path on the projection plane forms an n-

sided polygon (generalizing a three sided triangle). The condition for imaging

with a series of ray-rotation sheets then generalizes to

o = − 1

sinα

∑
j

sj sin

 N∑
k=j+1

αk

 , (5.8a)

i = − 1

sinα

∑
j

sj sin

(
j∑

k=1

αk

)
(5.8b)

where s1, s2, . . ., sN−1 is the separation between the sheets and the effective

ray-rotation angle is given by α =
∑

j αj .

Note that there is in general only one object plane and one image plane.

There will, however, be special cases in which imaging does take place be-

tween intermediates, which corresponds to the ray-projection polygon closing

at multiple points.
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5.4 Summary

In this chapter, imaging by metarefracting elements and systems thereof has

been explored. This is perhaps the most immediately useful application of

metarefraction. A Dove-prism sheet images in two dimensions and crossed

Dove-prism sheet image pseudoscopically. A series of ray-rotation sheets only

image between principal planes. Here the view is an identity map while other

planes appear both blurred and rotated. The apparent position of a point

light source may be recovered with Equation (5.7) in the case of a pair of

ray-rotation sheets and more generally with Equation (5.8).



CHAPTER 6
Wave-optical limitations of

ray rotation

“The fact that we live at the bottom of a deep gravity well, on the
surface of a gas covered planet going around a nuclear fireball 90
million miles away and think this to be normal is obviously some
indication of how skewed our perspective tends to be.”

— Douglas Adams

6.1 Introduction

The ray-optical consequences of metarefraction have already been briefly dis-

cussed in Section 1.1. There the discussion focussed on the size limitations of

individual components. In this chapter, the wave-optical behaviour of metare-

fraction will be explored from a different perspective. While metarefraction

was defined to allow minor offsets, this chapter will consider whether an offset-

free equivalent transformation could be constructed, even in principle.

61
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It will be shown that some offset-free ray mappings can only be realized

for specific incident light fields. This is a consequence of implicit wave-optical

requirements applying equally when working in the ray optical limit in terms of

rays. Firstly, this requirement will be explored in terms of wave optics before

the topic of translating from ray-optics back to wave-optics will be discussed.

This requirement will then be applied to a light-ray field transformed by a

ray-rotation sheet.

In order to simplify this discussion, only coherent, monochromatic light

will be considered, and then only in terms of scalar wave optics. The follow-

ing discussion will explore the wave-optical requirement in two dimensions, as

a mapping between two planes, for example between either side of a metare-

fracting sheet. However, this discussion also applies to a wider range of optical

systems.

6.2 Implicit wave-optical restrictions

Ultimately, any optical system must map between physically realizable, ‘al-

lowed’, fields. That is all ray-optical mappings must map and incident light

field into a second field that satisfies the ray optical approximation. Ray optics

is an incomplete description of light and by translating into wave optics the

light field is described more comprehensively. The conservation of underlying

wave-optical concepts can be expressed mathematically as a constraint on the

incident and outgoing light rays which must also be satisfied.

A transformation from an allowed field into a forbidden one is clearly im-

possible, and its real-world implementation must approximate such a transfor-

mation by an allowed equivalent. There therefore exists a class of apparently

ray-optically valid mappings that, despite appearing to be self consistent, can-

not actually transform most incident light fields.
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(b)

r

r‘

(a)

projection

scene

free form mirror

observer

free form mirror

Figure 6.1: (a) In attempting to construct a free-form mirror that mag-
nified a scene without distortion, Hicks [43] realized that the mirror
surface could be inferred from the manner by which it reflected known
incident rays towards a known eye position. (b) In integrating from
a point at the centre of the mirror, he sought to calculate the surface
from its gradient. However, the resulting surface was dependent on
the path of integration, implying that the surface was inconsistently
defined.

The form of wave-optical consistency that will prove relevant to offset-free

metarefraction has already been discussed by previous authors. The work is

most closely related to the work of Paterson [44, 45] who’s work is discussed

in detail below. However, it is instructive to begin by considering the work

of Hicks [43] who sought to redirect an incident intensity pattern of initially

collimated light rays towards an observer.

Specifically, Hicks studied the design of a distortion-free magnifying mirror

surface. His aim was to redirect collimated light rays towards an observer’s

eye without distorting the intensity cross section. The experimental setup is
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(a) (b)

Figure 6.2: Ray-optical transformations, such as metarefraction, can
be translated back into wave optics; for example, for the cross section
of a Gaussian beam. (a) The intensity is common to both descriptions
and is here shown as saturation. However, there is no single ray-optical
replacement to phase (shown as hue and with solid grey lines). There
are a number of alternatives that include the Poynting vector, the
momentum flow and the phase-front-normal. (b) This last quantity
is concisely represented by the direction in which the phase gradient
points.

shown in Figure 6.1(a). Despite well approximating such a transformation, he

realized that it was wave-optically impossible to do so using his approach.

The method that Hicks tried was to infer the shape of the mirror from its

surface normal, and in turn to determine the normal at each point from the

direction that correctly reflected the incident and reflected light ray pair that

intersected there (see Figure 6.1(b)). However, the surface normals could not

be translated into a single, consistent mirror surface. Although the reflection

was defined in terms of apparently ‘allowed’ ray optics, the equivalent wave-

optical description was ‘forbidden’.

The same consistency requirement applies to offset-free metarefraction. In

order to explore this further, a wave-optical description of metarefraction is

required.

6.3 Generalizing from ray to wave optics

When relating ray optics to wave optics, the former may be derived from the

latter. Crudely, this involves working with a simplified version of Maxwell’s
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equations [16] in the limit of infinitely small wavelength [46]. In contrast,

translating back to the more general wave optics is more ambiguous. Ray

optically, a light-ray field may be viewed as a real vector field of ray directions,

r(x, y), and a scalar intensity field at every point in space, I(x, y). Note that

we are concerned here only with the slice through the light field on either side

of a transforming sheet (which is taken to lie on the x-y plane).

The two slices through the field may be more completely described in terms

of wave optics. For the sake of simplicity, this discussion will be restricted to

scalar wave theory. Within this context, a coherent light field may be described

wave-optically by a single, complex scalar field

u(x, y) =
√
I(x, y) exp(iφ(x, y)), (6.1)

or in terms of the two constituent real scalar fields: intensity I(x, y) and

phase φ(x, y). An example of this is shown in Figure 6.2(a). This intensity is

common to both ray- and wave-optical descriptions, so only the ray direction

needs to be translated into phase in order to convert between these two field

representations.

There are at least three reasonable choices for a wave-optical description of

light-ray direction: These include the direction of energy flow, i.e. the Poynting

vector; the direction of momentum flow, which can flow around the former, for

example near the centre of an optical vortex; and the phase gradient direction.

It is this last interpretation that is used here, where rays are seen as vectors

normal to surfaces of constant phase and may be written as

∇φ(x, y) ∝ r(x, y). (6.2)

An example of this (in which the ray direction has been normalized) is shown in

Figure 6.2(b). This equation may be seen as being closely related to the eikonal

equation (see Reference [46] and in particular Equation (24) in Reference [47]).
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This requirement has made no assumptions on the nature of the scale

factor in Equation (6.2). While quantitatively it is unimportant, it is needed

to express a requirement on any outgoing ray mapping. In order to better

understand this proportionality, a scale factor, which will be referred to here

as the phase gradient length, f(x, y), may be included explicitly. The ray

direction is then taken to be of unit length, r̂. The more general version of

Equation (6.2) becomes

∇φ(x, y) = f(x, y)r̂(x, y). (6.3)

The ray direction and phase gradient must be parallel. This is however not

always true for some values of the phase gradient length. For example, when

it is negative then rays point in the opposite direction to the phase gradient

and describes a different light field. Alternatively, when the phase gradient is

zero or infinite then the ray direction is undefined. Phase gradient length is

therefore restricted to values within the range

0 < f(x, y) <∞. (6.4)

Where phase gradient length is inferred from a given ray direction to take

values outwith this range, the field is inconsistent and therefore physically

cannot exist. The interpretation of this factor is discussed in more detail in

References [48, 49, 50].

6.4 Wave-optical requirements

Above, the work by Hicks was introduced as an example in which ray-optical

transformations suffered from implicit wave-optical restrictions. His trans-

formation inconsistently described a mirror surface, and hence the phase of

reflected light in terms of their gradients.
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Another example of work in which the phase was inconsistently described

was that of Paterson [44, 45]. His work investigated the rotation of an arbitrary

intensity pattern about its centre. The experiment used a phase hologram to

add a spatially varying phase to an incident light field pattern and observed

the far field through a lens.

The aim of Paterson’s experiment was to find a single hologram that pro-

duced a second intensity pattern in the far field that was an identical copy of

the incident intensity, except that the entire pattern was rotated around the

optical axis of the system.

In order to perform this transformation, Paterson sought an expression for

the required phase hologram within the paraxial limit. In this context, the

resulting intensity is related to the phase hologram in terms of the hologram’s

gradient. See Section 2.1.1 in Reference [44] for more details. As in the case of

Hicks, the required phase pattern was defined in terms of its gradient vector

field. And as before, while the vector field was well defined, it described an

inconsistent phase.

Exactly this issue renders a number of offset-free forms of metarefraction

unphysical. Apparently well defined phase gradients, i.e. ray directions, can

imply an inconsistent phase. That is, metarefraction describes a visual dis-

tortion in which the phase cannot exist, even in principle.

So in a number of contexts, phase, a scalar field [51], may be described (to

within an additive constant) in terms of its gradient. The gradient is a vector

field, but a vector field may be the gradient to more elaborate, less consistent

structures than a scalar field. So what limitations should be placed on such a

vector field in order for it to qualify as the gradient of a scalar field?

A point on a scalar field may be determined by integrating from some

initial point. For the vector field to consistently describe a scalar field, the
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height of a point must be independent of the path of integration. In order to

test for this consistency, the net change in phase around a closed path should

be zero:

∆φ = 0. (6.5)

The differential form of this expression may be written as

∂2φ

∂y∂x

∣∣∣∣
(x0,y0)

=
∂2φ

∂x∂y

∣∣∣∣
(x0,y0)

. (6.6)

which tests whether a vector field, ∇φ, is a valid gradient to the scalar field

φ. Mathematically, it is simply the z component of the familiar vector iden-

tity [52]

∇× (∇φ) = 0. (6.7)

Rather than transform into a wave-optical description before applying the

requirement, it is simpler to translate the phase-gradient requirement explic-

itly in terms of ray direction. Replacing the first order derivatives of phase

in Equation (6.6) with the ray direction, as defined in Equation (6.2), the

constant of proportionality cancels to become

∂ry
∂x

=
∂rx
∂y

. (6.8)

Or using the more general relationship between phase gradient and ray direc-

tion, Equation (6.3), the phase-gradient requirement may instead be written

as

f
∂r̂y
∂x

+
∂f

∂x
r̂y = f

∂r̂x
∂y

+
∂f

∂y
r̂x. (6.9)

6.5 Allowed and forbidden metarefractions

The wave-optical inconsistency of an apparently ray-optically valid metare-

fraction will now be demonstrated. Ray-rotation is chosen as it may be par-
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Figure 6.3: Ray rotation involves an azimuthal rotation of each light
ray about the point at which the ray intersects the sheet. Wave opti-
cally, this may be described by how the phase gradient is transformed.
(a) A plot of a parabolic phase field that is incident on the front of the
sheet. (b) The light-ray direction is given by the corresponding phase
gradient direction. (c) On passing through the sheet, the phase gra-
dient direction is rotated by 90◦ at every point. The resulting phase
field may be inferred from these gradients. This would be achieved, in
principle, by moving each square up and down. (d) However, as can
be seen in the phase plot, there can be no combination of offsets that
joins the pieces of the surface into a piecewise-smooth whole.

ticularly clearly demonstrated. A more concise mathematical equivalent will

then be presented for offset-free Dove-prism and crossed Dove-prism sheets.

Consider an arbitrary but non-zero light field with a phase that is constant

along the y direction of the sheet plane, but parabolic along the x direction:

φ(x, y) = x2. (6.10)

This is shown in Figure 6.3(a). Initially, this discussion will be restricted

to the simpler of the two phase gradient definitions. The ray direction can

be calculated by differentiating according to Equation (6.2) (with unity as a



CHAPTER 6. WAVE-OPTICAL LIMITATIONS OF RAY ROTATION 70

proportionality factor) to get

r(x, y) = (2x, 0), (6.11)

and is shown in Figure 6.3(b). This is an allowed ray field according to Equa-

tion (6.8). After locally rotating this direction vector through 90◦, the result-

ing vector field, shown in Figure 6.3(c), is

r′(x, y) = (0, 2x) (6.12)

and nolonger satisfies the requirements as the gradient to a scalar field.

This can also be seen visually in Figure 6.3(d). Regardless of how each

polygon is moved up or down, the sides cannot smoothly join their neighbours

at more than a finite number of points. Without being able to smoothly join

the infinitesimal components, no smooth phase surface can be constructed,

even in principle. Ray-rotation of an incident plane wave is therefore impos-

sible.

The above discussion used the simple expression for the ray direction and

ignored the effect of ray rotation on phase gradient length, f(x, y). While

it was sufficient in most practically interesting cases, the more specific de-

scription, Equation (6.9), is also informative. Explicitly including the phase

gradient length in the description of the field, the phase gradient requirement

is then a partial differential equation of phase gradient length as well as ray

direction, r(x, y).

Applying this requirement to the rotated light-ray field, Equation (6.12),

and cancelling ray direction, the expression reduces to

∂f(x, y)

∂x
= −f(x, y)

x
. (6.13)

This partial differential equation may be solved to get

f(x, y) =
g(y)

x
(6.14)
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where g(y) is an arbitrary function.

Those phase gradient lengths that do describe a consistent phase front

must also propagate forwards in a well defined direction. The length of the

phase gradient must remain positive, non-zero and finite (i.e. it is restricted

by Equation (6.4)) which on substituting Equation (6.14), requires that

0 <
g(y)

x
<∞. (6.15)

This expression can only ever be true for at most half of the x axis. Offset-free

ray-rotation may therefore only be implemented in a special case.

Rather than search for incident light fields for which a metarefraction does

not work correctly, here a more systematic method will be introduced. For an

optical mapping to be allowed, it must only produce allowed light-ray-direction

fields that satisfy Equation (6.8).

The resultant light-ray-direction field is a function of the incident light-

ray-direction field. As a consequence of this, it is possible to express the

requirement of the output field in terms of the metarefraction of the incident

field. On expanding Equation (6.8) using the chain rule, the simple test may

be written as ∑
i=x,y,z

∂r′y
∂ri

∂ri
∂x

=
∑

i=x,y,z

∂r′x
∂ri

∂ri
∂y

(6.16)

where transformed rays are primed and the untransformed rays are unprimed.

The ∂r′/∂r factors are derivatives of the metarefraction. On substituting for

this law, this equation tests whether a metarefraction is allowed.

This may be used, for example, to test whether an offset-free Dove-prism

sheet is allowed. That is, whether an alternative optical device, regardless of

how it was implemented, could perform ray-direction reflection without any

transverse change in the ray position on passing through such a sheet. The

partial derivatives of Equation (3.1) with respect to the incident direction
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components are

∂r′h
∂ri

=


−1 h = i = x

+1 h = i = y or h = i = z

0 otherwise.

(6.17)

Now substituting these into Equation (6.16), it reduces to

∂ry
∂x

+
∂rx
∂y

= 0. (6.18)

On substituting for the phase from Equation (6.2), this is(
∂2

∂x∂y
+

∂2

∂y∂x

)
φ = 0. (6.19)

In combination with Equation (6.6), this places extreme restrictions on the

form of incident light fields that could be correctly transformed, even in prin-

ciple. There therefore cannot, even in principle, exist a metarefraction that

reflects one component of the ray direction without also transversely offsetting

the position of the ray.

The Crossed Dove-prism is however allowed. This may be demonstrated

by taking the partial derivatives of the law of metarefraction for a crossed

Dove-prism sheet (i.e. Equation (3.11)):

∂r′h
∂ri

=


−1 h = i = x or h = i = y

+1 h = z

0 otherwise.

(6.20)

Now substituting these into Equation (6.16), it becomes

∂ry
∂x

=
∂rx
∂y

. (6.21)

This expression, in terms of phase (on substituting Equation (6.2)), becomes

∂2φ

∂x∂y
=

∂2φ

∂y∂x
(6.22)
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which simply states that the incident field must satisfy the same requirement

that was applied to the refracted field. This is simply a restatement of Equa-

tion (6.6) for the incident field. Offset-free crossed Dove-prism sheets are

therefore a valid ray-optical transformation.

Note that these analyses are restricted to near the ray-optical limit. Yet

while there may be unusual structures in which such requirements do not

apply, they would be sufficiently specialized to be beyond the scope of this

document.

6.6 Summary

This chapter gave an example of a wave-optical restriction and discussed how

it might be applied to a mapping that is expressed ray-optically. Much of

the subject matter contained within this document was originally published

in Reference [48] and is the combined work of Mr Sundar, myself and Dr

Courtial. The systematic test has been developed as part of a collaboration

with Martin Šarbort and Tomáš Tyc.

It has been shown by previous authors that any ray-optical transformation

must result in a phase that satisfies Equation (6.6) in order for it to describe

a consistent phase surfaces. This requirement was restated, in terms of ray

optics and then in terms of a metarefracted field. These requirements on the

ray direction demonstrated the (in)consistency of several offset-free metare-

fractions.

This discussion was restricted to scalar waves in the ray-optical limit.

Where this is true, no ray flipping or ray rotation is possible, and in more

unusual situations, they remain limited to mapping between very specific light-

ray fields. A similar, but more elaborate, analysis in terms of the Poynting

vector should apply to a wider range of electromagnetic fields. This is however
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dependent on matters such as polarization which is beyond the scope of this

document.



CHAPTER 7
The confocal lenslet array

O wad some Power the giftie gie us
To see oursels as ithers see us!

— To a Louse, by Robert Burns

7.1 Introduction

So far only Dove-prism sheets have been considered. This chapter will seek a

more general law of metarefraction than has been explored so far, i.e. the most

flexible function that simultaneously maps each incident light ray direction

into an arbitrary outgoing direction. In practice, such a sheet can only have

a finite domain of parameter values, and hence can simultaneously map ray

directions only within a range of outgoing angles. Nonetheless, the flexibility

of a metarefracting sheet may be extended beyond ray-direction flipping and

ray rotation.

In order to do so, a new metarefracting component will be explored. Shown

in Figure 7.1(a), an alternative to a Dove prism is a confocal pair of cylindrical

lenses. The resulting sheet that may be constructed from these will be referred

75
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to as a confocal cylindrical-lenslet array. In terms of the metarefraction that it

performs, it is equivalent to a Dove-prism sheet. That is, either form of sheet

is able to realize local light ray flipping, rotating and imaging just as it may

be performed by one or more Dove-prism sheets. Additionally however, the

design of an individual confocal lenslet array may also be generalized beyond

these forms of metarefraction.

There are a number of useful design parameters that control the perfor-

mance of a confocal lenslet array. While varying a single parameter is sufficient

to control one ray direction, multiple parameters are required in order to si-

multaneously, but separately control the redirection of multiple rays. That is,

the law of metarefraction should be as flexible as possible in possessing the

greatest possible number of independent parameters. Here the term ‘indepen-

dent’ implies that changing each parameter leads to a qualitatively different

behaviour to any arbitrary combination of all others.

The effect of a simple confocal cylindrical-lens pair, Figure 7.1(b), is to

reflect one component of the light ray direction. This is achieved by focussing

an incident, collimated beam through the shared focal line. From the focus,

rays diverge towards the second lens whereupon they are again collimated.

The reflection in direction and equality between incident and transformed an-

gle follows from the horizontal symmetry of the ray paths about the focal line.

Transverse to this, i.e. along the axis of the lens cylinder, the ray component

remains unchanged throughout.

One way in which a confocal cylindrical-lenslet array may be extended is

to replace the cylindrical lenses with corresponding spherical lenses in order

to form a confocal spherical-lenslet array (Figure 7.1(c)). These are otherwise

equivalent in behaviour except that the ray-direction reflection takes place

simultaneously along both transverse axes of the lenses. Such a sheet performs
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a metarefraction that is equivalent to that of a crossed Dove-prism sheet.

Later, the sheet will be further generalized to use confocal elliptical lenses.

After exploring the historical development of various types of confocal

lenslet array, this chapter will consider their construction and constituent

parts. In the next section, the related subject of integral imaging will be

discussed, in terms of which metarefraction may be reinterpreted. Having

introduced this, the laws of metarefraction for both generalized cylindrical-

and elliptical-confocal lenslet arrays will then be derived.

Pairs of spherical-lenslet arrays have been discussed by a number of au-

thors. This literature may be grouped into two categories: The first of which

seeks to image between nearby planes. In addition to neutron/x-ray imag-

ing [53], these have found applications within photocopiers and oscilloscope

screens [53, 54, 55]. The second category, derived from integral imaging, per-

forms visual distortions and satisfy the definition as metarefracting compo-

nents. These build on the work of Lippmann [56] and include the Gabor

superlens 1 [57] and the Moiré magnifier [58]. The use of such components

has been in the formation and magnification of various visual distortions. As

well as being examples of integral imaging, this latter category may also be

considered as inhomogeneous confocal lenslet arrays.

Alternative homogeneous generalizations have since been considered, first

in terms of an analogy with negative refractive index which was explored

by Johannes Courtial [59], before other parameters were explored by Sharvil

Talati, myself and Courtial [60].

Confocal cylindrical-lenslet arrays may be constructed as shown in Fig-

ure 7.1(a), but it is impractical to align so many small lenslets individually.

It is simpler to instead use a pair of prefabricated lenticular arrays. These

1The term ‘superlens’ in this context derives from the notion of the superlattice of a
crystal and has no connection with the metamaterial superlens of Pendry.
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(a) (b)

f f
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Figure 7.1: (a) The (schematic) side view of a confocal cylindrical-
lenslet array. Two representative light rays are shown passing through
the sheet. The system is confocal so transforms incident collimated
light rays into a second beam of collimated rays. The effect of the lens
pair is to reflect the transverse ray component. (b) In practice, such a
sheet structure may be realized using a pair of lenticular arrays placed
back-to-back and with a combined optical thickness of twice the focal
length of the constituent lenses. (c) The sheet may be extended by
replacing cylindrical lenses with spherical lenses.

are plastic sheets with curved lens-shaped indentations on one side. Lenticu-

lar arrays are commercially available as they are often used in tasks such as

Shack-Hartmann wavefront sensing [61]. Confocal lenslet arrays (cylindrical

or spherical) may then be constructed by placing two lenticular arrays back-to-

back. The cylindrical case is shown in Figure 7.1(b). This constitutes perhaps

the simplest method of confocal lenslet array construction. Correctly selecting

their thickness ensures that the lenses on their surface are separated by two

focal lengths of optical path, ensuring the resulting lens pairs are confocal.

Constituent lenticular arrays may be produced through a number of

processes. Standard lenticular-array fabrication includes melting micro

spheres [62, 63] onto a plastic block or moulding the requisite surface structure
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from a metal template. An alternative approach is to replace curved lenses

with graded refracting index lenses (GRIN lenses). These may be designed as

discussed in Reference [64] and fabricated as described in Reference [10], most

likely through diffusion [65].

Due to the homogeneity in depth of both lenses in a confocal GRIN lens

pair, the resulting structure is also homogeneous in depth. Such a structure

may therefore be constructed in exactly the same way as a single lens, except

for lens thickness being doubled. This is also true for a lenticular GRIN

array. The fabrication of GRIN lenticular arrays have already been thoroughly

investigated [64]. Simply by doubling the thickness of the array should produce

a confocal spherical-lenslet array. Its fabrication, although more specialized,

would require only one such sheet to be fabricated and would therefore avoid

all alignment issues.

7.2 Integral imaging

A confocal spherical-lenslet array may be interpreted in terms of integral imag-

ing. Originally proposed by Lippmann [56], integral imaging was then referred

to as integral photography, but the core concept has since applied in a wider

range of optical systems. The device used to capture an integral image is

known as a polydioptric camera or as a plenoptic camera [66] and has given

rise to a number of components [57, 58, 67, 68].

A polydioptric camera is simply a lenticular array a focal length away from

the integral image that it creates. The resulting integral image consists of a

lattice of images, each formed by a separate lens that images from a different

location. For all lenses, multiple images of the same scene, all taken from

neighbouring perspectives, are imaged side by side onto a common plane —

the integral image.
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A conventional camera measures only the direction of light rays. All rays

incident upon a single lens with a common direction are mapped onto a cor-

responding point on the image plane, regardless of where on the lens the ray

intersected. However, on replacing the single lens with a lenticular array, the

image that each constituent lens captures is specific to the location of that

lens. In so doing, both the position and direction of a light field is measured.

Measurement precision is limited by both the angular resolution of the (now

smaller) lenses and spatially by the lens diameter. Angular and spatial pre-

cision are optimized at the expense of one another. Integral image quality is

discussed further in Reference [69].

In order to view the scene that an integral image records, the same poly-

dioptric camera may be used, but where light paths are reversed. Light rays

travel from a point light source on the integral image back through the poly-

dioptric camera, again a focal length away. The part of the light-ray field that

was captured from where an observer is now positioned is retransmitted to

the observer. In this way, an integral image acts like a ray-optical hologram,

but the analogy is not valid wave optically in that a polydioptric camera does

not capture phase.

While the integral image may be used as a three-dimensional photograph,

it can also be interpreted as an information transformation. That is, various

visual distortions may be performed by the manipulation of the integral image

representation of a scene. An integral image may therefore be post-processed

in order to select information either computationally or optically. This may,

for example, reproduce focal blur from an arbitrary, hypothetical observation

point [66, 70] or be used to infer subtle detail in the scene than could be

captured from a single lens [67]. Alternatively, there are several examples in

which a second lenticular array transforms back after scaling, offsetting or
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selectively absorbing the integral image [57, 58, 68].

This form of such an information processing configuration, i.e. using a sec-

ond lenticular array in order to view the first, generalizes a confocal lenslet

array. The discussion will now be restricted to such a setup in which cor-

responding lens pairs in both arrays are arranged confocally, but in between

which is some additional optical transformation. Only inhomogeneous optical

transformations have been explored by the aforementioned authors, but the

following discussion will be limited to homogeneous transformations.

Despite having reflected the polydioptric camera position in depth along

the optical axis of the lenses, the lens that a ray leaves from remains unchanged

as is position in the visual distortion of the integral image. The ray direction

is however altered in that light rays were twice Fourier transformed by the

recording and the viewing lenticular arrays rather than previously where the

transformation was undone on passing back through the original lens.

The Gabor superlens and Moiré magnifier are implemented using inho-

mogeneous variations of the confocal spherical-lenslet array. Because of their

inhomogeneity, they are therefore beyond the scope of this discussion. In

contrast, a number of homogeneous lens properties have not elsewhere been

explored (so far as the author is aware). What will now follow will be the

generalization of the confocal lenslet array in a number of different ways.

7.3 Generalized confocal cylindrical-lenslet arrays

Regardless of how the design of a confocal cylindrical-lenslet array is general-

ized, each lens pair must remain confocal. Each lens pair must share a common

focal line (while in the spherical lens case, each lens pair must share a common

focal plane and more elaborately still, confocal elliptical lens pairs must share

common focal lines along both transverse axes). Several parameters do not
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Figure 7.2: Confocal cylindrical lenses may be generalized in a number
of different ways. While the telescopic property must be preserved, i.e.
that the lenses must still share a focal line, they can be (a) shifted along
the focal line relatively (by some transverse distance, d), (b) rotated
(by some angle θ) and (c) have their relative focal lengths changed (and
so have their focal line, F, moved along the optic axis). (d) A further
extension is to work with elliptical lenses in order to simultaneously
transform in both directions. The resulting astigmatism present in the
latter case is shown in green and purple and so the lenses have two sets
of focal lines along orthogonal axes (marked Fhorizontal and Fvertical).

affect the resulting metarefraction and so are ignored here.

Nonetheless, there remains some flexibility in how a confocal lenslet array

is constructed, as is summarized in Figure 7.2. For example, the lenses shape

may be varied, as can the relative orientation of confocal lenses to the sheet

plane. Additionally, the offset between the shared focal lines and their position

in depth offers an additional degree of freedom. Here such generalizations as

well as their implications will be explored in more detail.

As is shown in Figure 7.2(a), the first parameter that may be varied is

the offset between the two lenses. This offset must be entirely transverse to

the optical axes of the lenses or else the focal planes of the two lenses will no

longer coincide. This breaks the symmetry of the simple confocal lens pair

and so incident rays will be transformed asymmetrically. The offset may be
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described by a scalar displacement, d, which is a measure of the displacement

of the second lens relative to the first, transverse to the optical axis.

A second generalization, as is shown in Figure 7.2(b), consists of rotating

both lenses around a fixed point. The rotation is parametrised by an anti-

clockwise rotation, θ, of the lens pair relative to the sheet. The rotation of the

lenses corresponds to an opposite rotation of the rays. This change of basis

from the input ray direction, α, and output ray direction, α′, may be written

in terms of their corresponding angles in the rotated basis,

α̃ = α− θ, (7.1a)

α̃′ = α′ − θ. (7.1b)

This lens orientation parameter, θ, may be interpreted as approximately equiv-

alent the previous offset parameter, δ. Observing that the focal planes are

inclined with respect to one another implies that one is simply an aberrated

version of the other. However, their effect is qualitatively different, affecting

different incident angles differently and while they are approximately equiva-

lent, as is shown below, they enable the independent control of multiple ray

directions and the inclusion of both as separate parameters contributes to the

flexibility of the ray-direction mapping.

The last parameter is the distance of the focal lines along the optic axis,

between the two lenses. Additionally, the focal lines may even be moved

in front or behind both lenses. Changing the position of the focal plane is

equivalent to varying either focal length and is shown in Figure 7.2(c). This

last parameter is related to the refractive index analogy as will be discussed

below.

The above effects may be incorporated into a single description of the

metarefraction performed by a generalized confocal cylindrical-lenslet array.
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Figure 7.3: The most general cylindrical confocal lens pair setup. It is
described by a number of parameters which include the focal lengths
of the left and right lenses, f and f ′ respectively; in terms of the lens
pair’s orientation relative to the sheet normal, θ; and in terms of the
offset of the optical axis of the right lens relative to the that of the left
lens (shown with dashed lines). As before, the key property of this
component is that it retains the telescopic property.

Shown in Figure 7.2, it will be sufficient here to consider the behaviour along

a single plane on which the focal lines and optical axes lie. This will be

referred to as the prism projection in order to remain consistent with previous

chapters. Perpendicular to this plane, the ray direction component remains

almost unchanged throughout.

Described by three parameters, the law of metarefraction for a generalized

cylindrical case is significantly more elaborate than for ray flipping. However,

an expression with which to describe it may be derived. This is done by

relating the incident ray direction to the common point on the focal plane,

which will be referred to here as the confocal point, P (as shown in Figure 7.3).

This in turn may be related to the outgoing light ray. Both connections are

made in terms of each light ray that passes, without deviation, through the

centre of one of the two lens.

The tangent of the incident angle (relative to the shared direction of the

lens’ optical axis), tan α̃, is therefore equal to the ratio of the focal point height,
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h, to the focal length, f , that separates the lens and focal line. Changing basis

according to Equation (7.1)(a), the input angle becomes α− θ, viz.

tan(α− θ) =
h

f
. (7.2)

The optical axes of each lens are transversely shifted, relative to one another,

by a distance d. Again in terms of the sheet basis, Equation (7.1)(b), the

equivalent relation for the second lens is

tan(α′ − θ) =
d− h
f ′

. (7.3)

Eliminating h from Equations (7.2) and (7.3) gives

f tan(α− θ) = d− f ′ tan(α′ − θ). (7.4)

Simplifying by defining and substituting the dimensionless displacement,

δ =
d

f
, (7.5)

and the effective refractive index ratio,

η = −f
′

f
, (7.6)

(the latter of which will be explained below). The resulting equation is a

three-parameter model that describes the metarefraction that is performed by

a two-dimensional generalized confocal lenslet array:

tan(α′ − θ) =
tan(α− θ)− δ

η
. (7.7)

Note that, in the small angle approximation, δ, and θ, are equivalent, but for

larger angles of incident, a pencil of rays will fan out differently on changing

the lens orientation, θ, to changing the offset, δ. Again, multiple rays must

be transformed simultaneously in order to distinguish between δ and θ.
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For zero offset and rotation, but arbitrary effective refractive index ratio,

the expression reduces to

tanα′ =
tanα

η
. (7.8)

This equation is very similar to Snell’s law

sinα′ =
sinα

n2/n1
, (7.9)

particularly when using the small angle approximation where the two tangent

functions may then be replaced with sine functions. It is in this paraxial limit

where lower quality, aberrated confocal lenslet arrays work best. The effective

refractive index ratio, η, is approximately equivalent to the ratio of the indices

of refraction of an equivalent refracting interface, n2/n1.

The minus sign in Equation (7.6) ensures that the effective refractive index

ratio is of opposite sign to that of the focal-length ratio as required. (A

convex-convex lens pair with positive focal-length ratio reflects rays and so is

analogous to a negative effective refractive index ratio.) The exploration of

the effective refractive index ratio is discussed in more detail in Reference [59].

7.4 Three-dimensional model

The law of metarefraction that describes a generalized confocal spherical-

lenslet array may be interpreted in terms of light-ray projections onto two

orthogonal planes that lie transversely to the sheet and map light rays ac-

cording to the equation derived in the previous section. Alternatively, both

equations may be combined into a single model as will now be outlined.

The constituent component, a pair of confocal spherical-lenses, is shown

in Figure 7.4. Lens-pair orientation is now described by a Euler rotation [71].

This is a three dimensional rotation matrix, R(θ, φ, ψ), parametrised by a

z-axis rotation by θ then a x-axis rotation by φ and finally a second z-axis
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Figure 7.4: The passage of two separate light rays through a pair of
lenses, C and C′. As in Figure 7.3, two light rays are considered (here
they are not continued beyond the shared focal point). An input light
ray direction r̃ is mapped into an outgoing light ray direction r̃′. As
before, the left and right sheet are separated from the focal plane by
distances f and f ′ respectively. The vector quantity d describes the
displacement between the optical axes of the left and right lenses.

rotation by ψ. Rotation about the axis of the lens is unimportant, so φ is

unimportant. Therefore only two parameters are required, but the system

will be later generalized whereupon θ will prove useful. This change in bases

of the input ray direction, r, and output ray direction, r′, will therefore be

written as

r̃ = R(θ, φ, ψ) r, (7.10a)

r̃′ = R(θ, φ, ψ) r′. (7.10b)

By working in this local coordinate system, denoted by a tilde, the three

Euler angles are implicitly included in the ray mapping. To the best of the

author’s knowledge, there is no method of more concisely incorporating the

Euler angles into the metarefraction expression and so will not be discussed

further. There are however other parameters. Shown in Figure 7.4, these are

analogous to the transverse offset and the effective refractive index discussed

above, but are now vector quantities.
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As in two dimensions, the direction of the outgoing light ray that passes

through the centre of the second lens is undeviated. For collimated outgoing

light rays, all have passed through a single point on the focal plane, again

referred to as the confocal point, P. As a result, the new ray direction can be

found by subtracting the centre of the second lens, C′, from the point, P, on

the focal plane:

PC′ =
f ′

r̃′z
r̃′. (7.11)

Similarly, the incident light ray direction, r̃, may be related to the left lens

centre, C, and to the shared confocal point, P:

CP =
f

r̃z
r̃. (7.12)

These quantities may be related via the separation between lens centres,

CC′ = CP + PC′. (7.13)

In order for the lenses to remain confocal, their separation in depth is the

sum of focal lengths, f + f ′, while their transverse displacement is arbitrary,

dx along the x axis and dy along the y axis. Summing, the lens centres must

therefore be separated by

CC′ =


dx

dy

f + f ′

 . (7.14)

Substituting Equations (7.11), (7.12) and (7.14) in Equation (7.13) gives
dx

dy

f + f ′

 =
f

r̃z
r̃ +

f ′

r̃′z
r̃′ (7.15)
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solving for the outgoing ray direction to within an arbitrary scaling factor,

this becomes

r̃′ ∝


dx

dy

f + f ′

− f

r̃z
r̃. (7.16)

This simplifies to

r̃′ ∝


dx − f r̃x/r̃z

dy − f r̃y/r̃z

f ′

 . (7.17)

In order to separate the effects of refractive index into the relevant ray direc-

tion component, Equation (7.17) may be divided by the z component:

r̃′ ∝


dx/f

′ − f r̃x/f ′r̃z

dy/f
′ − f r̃y/f ′r̃z

1

 . (7.18)

Factorizing the x and y elements converts the equation,

r̃′ ∝


[dx/f − r̃x/r̃z] f/f ′

[dy/f − r̃y/r̃z] f/f ′

1

 , (7.19)

into a form into which the dimensionless parameters may be substituted for

r̃′ ∝


(r̃x/r̃z − δx) /η

(r̃y/r̃z − δy) /η

1

 . (7.20)

The minus sign appears due to the definition of effective refractive index and

the dimensionless displacement is defined as

(δx, δy) =

(
dx
f
,
dy
f

)
. (7.21)
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Effective refractive index may be similarly generalized, but in order to do

so the focal lengths along the two axes of the lens, fx and fy, must first be

separately varied. Such changes in focal lengh describe the metarefraction

performed by a confocal elliptical-lenslet array along both axes. As a result,

the dimensionless displacement may more generally be written as

(δx, δy) =

(
dx
fx
,
dy
fy

)
. (7.22)

Similarly, separate effective refractive indices may be introduced along the x

and y axes:

(ηx, ηy) =

(
f ′x
fx
,
f ′y
fy

)
. (7.23)

Generalizing Equation (7.19) results in

r̃′ ∝


(r̃x/r̃z − δx) /ηx

(r̃y/r̃z − δy) /ηy

1

 . (7.24)

The analogy with reflection across a planar interface may now be extended

to include anisotropic refraction. This is exact only for small angles while

aberrations will cause problems at larger angles.

Changing basis of the rays using the aforementioned Euler rotation,

R(θ, φ, ψ) r = (r̃x, r̃y, r̃z) (7.25)

the metarefraction is expressed in its most general form. The law of metare-

fraction for a generalized elliptical-confocal lenslet array may therefore be

written as

r′(r; ηx, ηy, δx, δy,R) ∝ RT

(
r̃x/r̃z − δx

ηx
,
r̃y/r̃z − δy

ηy
, 1

)
(7.26)

where normalization of ray length is ignored.
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7.5 Summary

In this chapter, confocal lenslet arrays and their generalizations have been

explored. In particular, a historical introduction to the subject in terms of the

related field of integral imaging was presented, as were potential fabrication

methods and the derivation of laws of metarefraction for confocal cylindrical-

lenslet arrays and for confocal elliptical-lenslet arrays.

There are a number of parallels between integral imaging and metarefrac-

tion. Both work ray optically, both transform between either sides of planar

sheets and both use structure and not substance to realize a transformation

analogous to refraction. Additionally, a metarefracting sheet may be thought

of as transforming an incident light field in terms of its integral image as a

confocal spherical-lenslet array consists of a pair of polydioptric cameras.

While confocal lenslet array shaping was previously considered in terms

of a number of parameters, these were all inhomogeneous. Here, homoge-

neous parameters have been explored. Specifically, a confocal lenslet array

may reproduce some of the visual qualities of negative refraction, either in

two dimensions, as can the Dove-prism sheet; or in three dimensions, as a pair

of crossed Dove-prism sheets can (see Figure 5.1). Additionally, the confocal

lenslet array may be generalized to such an extent that its description includes

transverse offsets, Euler rotations and a vector (i.e. anisotropic) effective re-

fractive index ratio.

Transformation quality is dependent on well optimizing relevant engineer-

ing parameters that were previously ignored. But quality also depends on

the parameters discussed above that affect the metarefraction. This has been

summarized in Reference [72].



CHAPTER 8
Experimental ray flipping

“Exact science, Mr Angier, is not an exact science.”

— The Prestige

8.1 Introduction

Until now the discussion of metarefraction has almost entirely been theoretical.

In this chapter, experimental conformation of ray-flipping will be presented.

This will demonstrate key qualitative aspects of the transformation. The

demonstration will use a confocal cylindrical-lenslet array to perform the ray

flipping. In order to do so, experimental images will be compared to equivalent

ray-traced scenes.

In order to confirm ray-flipping, three experiments are performed. These

will explore visual distortions associated with the two quantities that

parametrize the metarefraction. The metarefraction is defined as reflecting

one component of the ray direction parallel to the sheet. This is orientated

at some angle to the horizon, β. The second parameter is the ratio between

92
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the sheet-object and sheet-camera distances, ζ. The characteristic effect of

ray flipping is the hyperbolic visual distortion of a line perpendicular to the

sheet and this will be demonstrated in the first experiment. The other two

experiments will explore the visual distortion along the sheet plane of a rela-

tively flat object. In their respective experiments, the distance ratio and then

the axis of reflection will be varied and compared to equivalent ray-traced

simulations.

The next section will describe how the experiment was assembled and out-

line the key aspects in its design. Particular attention will be directed towards

the choice of the camera lens, sheet assembly and shielding that significantly

improved the quality of the results. After this, experimental results will be

presented as a series of photographs and associated comments. In the last

section, the quality of the results will be discussed and conclusions drawn

regarding sources of blurring in the visual distortions.

8.2 Method

In order to demonstrate ray flipping, three versions of the same experiment

were performed. In all cases, the experimental setup consisted of an object

which was viewed through confocal cylindrical-lenslet array. The experimental

setup is shown in Figure 8.1(a). The most sensitive part of the experiment

was the construction and alignment of the confocal cylindrical lenslet array.

A confocal cylindrical-lenslet array can be constructed from a pair of plas-

tic cylindrical lenslet arrays (“lenticular arrays”) placed back-to-back as dis-

cussed in the previous chapter and shown schematically in Figure 7.1(a).

These were commercially sourced from Edmund Optics (B43–028, f =

0.085 in) which avoided the expense and complexity of having them custom

built. The constituent lenses on the cylindrical-lenslet arrays will only be



CHAPTER 8. EXPERIMENTAL RAY FLIPPING 94

(a) (b)

camera

Figure 8.1: The ray-flipping metarefraction discussed in previous chap-
ters was experimentally demonstrated. (a) The experiment consisted
of a camera that viewed an object through a confocal cylindrical-lenslet
array. The camera, of aperture f/22, was a distance 93.6 cm infront
of the sheet. In order to resolve objects more closely, a macro lens
was used which gave rise to a smaller field of view. Two objects were
used: The first experiment used a metal rod which was perpendicu-
lar to the sheet surface. In the other two experiments, the rod was
replaced with a chess knight (shown). Unless otherwise stated, the
distance between the chess knight and the sheet was 43.7 cm. The
object was illuminated while in a light box. Such shielding was used
in order to avoid directly illuminating the sheets (which scattered a
lot). (b) The confocal cylindrical-lenslet array consisted of a pair of
cylindrical-lenslet arrays arranged back-to-back and held in place with
a metal frame. One sheet would be aligned relative to the other using
two grub screws, each separately pushing on a side of the latter sheet.

confocal if the optical path length between each lens pair is equal to the sum

of their focal lengths. By selecting correct lenslet array thicknesses, and by

placing them in a frame that held them together, the lenslet arrays remained

approximately confocal (see Figure 8.1(a)).

In addition, the sheets had to be correctly orientated in order for the focal

lines of the corresponding lenses to coincide. By adding a pair of grub screws

to the sides of the frame that holds the lenslets, one cylindrical-lenslet array

could be moved slightly along two axes relative to the other. The lenslets

could then be shifted while remaining confocal (see Figure 8.1(b)).
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Light rays that pass through one lens may not necessarily pass through the

corresponding lens on the other lenslet array. Instead, it may travel through

a neighbour of the latter lens giving rise to a significant loss mechanism. This

may alternatively be described in terms of how this light appears. That is,

the visual distortion gains additional “parasitic images” (here imaging does

not actually take place, and the term is used to clearly distinguish undesired,

alternative visual distortions). As the lens-pair offset is smoothly increased

from zero, i.e the focal lines of the two confocal cylindrical-lenslet arrays are

displaced, the loss fraction (for normal incidence) increases until all of the

light passes through the wrong lens and the parasitic images are increasingly

brightly illuminated. This topic is discussed more thoroughly in Reference [72].

In order to minimize this offset and hence the brightness of the parasitic

images, a laser was shone perpendicularly through the sheet. This resulted in

a comb of spots that were incident on a screen. These corresponded to parts

of the beam passing through various lens pairs, each with a different offset,

and so each beam left in a different direction. By having previously marked

the destination of the beam without the sheet, the offset could be minimized

by moving the brightest spot of the comb to this position.

The sheets scattered a significant amount of stray light from other paths

towards the camera. In order to minimize this, shielding was placed around the

illuminated object. While allowing the object to be illuminated and viewed, it

stopped the light source from directly illuminating the sheets and scattering

significant amounts of light into the camera.

The Canon EOS 450D camera with a Canon EF 100 mm f/2.8 macro lens

was used to photograph the scene. The scene was viewed through the smallest

available aperture setting (f/22) in order to minimize blurring. Focal distance

was empirically chosen in order to further reduce blurring. The macro lens
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was used in order to enable focussing on the sheets from shorter distances than

would have otherwise been possible. This had a noticeable effect on blurring,

but was not necessary. Additionally, the lens offered a narrow field of view.

The three experiments performed using this setup are as follows. The first

object that was used was a metal rod that was arranged perpendicularly to

the sheet. This was in order to demonstrate that the visual distortion of a

line, which was normal to the sheet, would appear as a hyperbola.

Next, the object was replaced with a chess knight (shown in Figure 8.1).

The sheet was then rotated azimuthally over a range of angles such that the

sheet flipped light rays along a range of different axes. These were then com-

pared with an equivalent ray-traced simulation to verify the visual distortion

was as expected.

This experiment was also repeated for various camera distances in order

to test variations in the sheet-camera to sheet-object distance ratio. This

parameter was again compared with equivalent simulations in order to check

the validity of the performed transformation.

8.3 Results

The experiments were carried out as stated above, and are summarized in

Figures 8.2, 8.3 and 8.4. Overall the experiments worked as expected, the

later two corresponding well to their simulation. However, all experimental

photographs were subject to significant blurring.

The first experimental test was that the visual distortion of a metal rod,

orientated approximately perpendicularly to the ray-flipping sheet, appeared

as a hyperbola. Looking through the confocal cylindrical-lenslet array and

through the circular aperture of the light box, Figure 8.2 confirms this pre-

diction. The metal bar touches the sheet and diverges to the left beyond the
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Figure 8.2: Experimental test of the predication straight line perpen-
dicular to a ray-flipping sheet, when viewed through the sheet, appears
bent into a hyperbola. The photo shows a straight metal bar that is
approximately perpendicular to the ray-flipping sheet, seen through
a confocal cylindrical-lenslet array, orientated such that it inverts the
horizontal light-ray-direction component. The end of the bar (small
back disk) touches the ray-flipping sheet.

field of view of the sheet. As the rod is of finite length, it does not extend far

enough to reappear from the right hand side. As well as the rod, there is a

wooden block on which it rests and on which there is a shadow cast by the rod.

Despite the camera focal distance having been chosen by the experimenter to

minimize blur, a noticeable degree of blurring remains. Close inspection of

the image also reveals subtle ‘pixelation’ due to the constituent lenses.

The next experiment explored the effect of varying the orientation of the

sheet, parametrized by the angle β with which the x axis is inclined with re-

spect to the horizon. Meanwhile everything else remained constant. Here the

experimental setup was the same as that of the previous experiment except

that the metal rod was replaced with a wooden chess knight. Figure 8.3 com-

pares the results of five angles against equivalent ray-traced scenes. The ray-

traced scenes only include a chess knight surrounded by a black background.

Clearly there is a good match between theory and experiment. However, there

is significant additional blur in the experimental images.

The last experiment to be performed was similar to the previous one ex-
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45º 90º 135º 180º0ºβ

Figure 8.3: The view through a ray-flipping sheet for various sheet
orientations, described by the angle, β, of the flip axis, relative to
the horizontal. The top images are experimental photographs for a
range of orientations. The simulated view through a corresponding
Dove-prism sheet is shown in the images below. The experiment was
performed for a camera distance of 96.3 cm (measured to the detector
plane) and the object (a chess piece) at a distance of 43.7 cm. The
scene includes a chequerboard floor and a chess piece viewed through
a confocal cylindrical-lenslet array. The simulation was performed
using the ray-tracing software POV-Ray and contained an equivalent
chess knight in front of a black background.

cept that the sheet orientation was fixed while the distance ratio was varied.

As before, the results (shown in Figure 8.4) were compared with equivalent

simulations only of the chess knight. Again, the experimental and simulated

visual distortions are in good agreement. Notably, the amount of focal blur

increases for larger camera distances.

8.4 Discussion and conclusions

The three experiments have demonstrated that a confocal cylindrical-lenslet

array performs ray-flipping as expected. These experiments tested both sheet

parameters as well as the resultant visual distortion both normal-to and along
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ζ 0.35 0.45 0.650.55 0.75

Figure 8.4: The view through a ray-flipping sheet for various object
distances. Different columns correspond to different ratios of sheet-
object distance to sheet-camera distance, which is labelled as ζ. The
angle between the ray-flipping sheet and the horizontal was β = 45◦

and the camera distance was 96.3 cm. The top images are photos of
the scene, including a chequerboard floor and a chess knight, taken
through a confocal cylindrical-lenslet array while the bottom image
shows the simulated view through a corresponding Dove-prism sheet.
In the simulation, an equivalent chess piece was rendered in front of a
black background.

the plane of the sheet.

Light ray flipping is, however, subject to significant performance issues.

The most serious problem was the presence of parasitic images which were

caused by the misalignment of focal lines of corresponding lenslets. As a con-

sequence, light passing through non-corresponding lens pairs. These parasitic

images overlapped with the visual distortion, limiting the field of view of the

sheets. In order to eliminate these, absorbing baffles could be placed between

individual confocal lens pairs. Alternatively, the width of the lenses could

be increased, or their focal lengths reduced. This would move the parasitic

images to greater angles.

Another limitation was blurring over the visual distortion. This may be

attributed to variation in sheet thickness which meant that the sheets were
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nolonger confocal. An additional cause of blurring could have been because

the sheets did not image and a finite camera aperture was used.

For further information on the experimental work, consult Reference [73].

The photography and alignment was carried out by Michael Blair, Leo Clark,

Alasdair Houston and Gary Smith as part of a undergraduate project. I was

involved in the design and assembly of the confocal cylindrical-lenslet array

frame, the light box and some of the initial alignment. In addition, I supervised

the student project along with Dr Jonathan Leach and Dr Johannes Courtial.



CHAPTER 9
Systems of confocal lenslet

arrays

“Plurality ought never be posited without necessity.”

— William Ockham

9.1 Introduction

The most general possible metarefracting sheet presented so far is the gener-

alized confocal lenslet array. Confocal lenses are, to the best of the author’s

knowledge, the most flexible optical component to preserve the telescopic prop-

erty. It is then reasonable to ask whether a (potentially infinite) series of

generalized confocal lenslet arrays is able to perform a completely arbitrary

metarefraction. Here it will be shown that this is not the case, and consider

what restrictions apply.

A metarefraction may be limited in two ways: Firstly, as restrictions on

the range of ray mappings that the metarefraction may perform. This could,
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for example, be due to wave-optical restrictions on the light field as discussed

in Chapter 6, or as engineering limitations of the constituent devices such as

field of view limitations of confocal lenses.

Secondly, only a finite number of light-ray paths may be independently

controlled. That is, the ray mapping is parametrized by a finite number of

independent parameters. Varying each parameter simultaneously affects many

ray paths, so selecting the direction into which an incident angle is refracted

will, as a side effect, also offset other ray paths. In order to separately perturb

each ray path, the affect on others must be cancelled out by other parameter

perturbations.

In order to quantify how many degrees of freedom such a sheet can possess,

consider that a confocal lenslet array is able to transform the local light ray

direction two dimensionally according to Equation (7.7), and three dimension-

ally according to Equations (7.25) and (7.26). As was discussed in Chapter 7,

there are a large number of parameters that describe individual confocal lens

pairs, but many could be eliminated. Such a cylindrical structure possesses 3

independent parameters while an elliptical structure possesses 7 independent

parameters in three dimensions.

Adding additional sheets contributes additional parameters, but many of

these are redundant. Here, it will be shown that the combination of multiple

sheets would offer at most only three additional parameters, regardless of

how many sheets are added, and then only for generalized confocal elliptical-

lenslet arrays. For the cylindrical-lenslet case, all additional parameters are

fully dependent on those of a single sheet.

This chapter will be structured as follows: The next sections will explore

the parameter and angle spaces associated with various series of generalized

confocal lenslet arrays. After which, a numerical method will be introduced
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which estimated the number of degrees of freedom that a series of general-

ized confocal lenslet arrays possess. Then, in two dimensions, the previous

result will be confirmed analytically. This chapter will conclude with a brief

summary and a discussion regarding the domain of series of such sheets.

9.2 Parameter space

A particular metarefraction, i.e. a function that maps an incident direction

into a refracted direction, may be described by some collection of parameters,

pi. These then constitute a point, p, in parameter space. These parameters

include the effective refractive index, η, the offset, δ, and the lens orientation,

θ, all of which were summarized in Chapter 7. The last two parameters are so

similar to one another, that they are equivalent for small angles of refraction,

however, they do transform the ray direction differently for larger angles.

The domain of a generalized confocal lenslet array is bound by various

physical restrictions. The effective refractive index ratio, η, is minus unity

times the ratio of focal lengths of the two lenses (i.e. Equation (7.6)). Both

individual focal lengths are limited and therefore so too is the effective refrac-

tive index ratio. Similarly, the lens shift, δ, is limited to a range [−1/2,+1/2]

before less light passes through each lens into its corresponding lens than

through the lens and the corresponding lens’s neighbour (at least for small in-

cident angles). Finally, rotation angle is the most restrictive of the parameters

as the transmittance rapidly falls for larger rotations. Transmittance corre-

sponds to the fraction of the aperture that will correctly transform incident

light rays.

In the case of a two-dimensional generalized confocal lenslet array, param-
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eter space is three-dimensional:

p = (η, δ, θ). (9.1)

The resulting metarefraction is then a function of input angle and this param-

eter vector:

α′ = T(p, α). (9.2)

Similarly in three dimensions parameter space is seven-dimensional:

p = (ηx, ηy, δx, δy, θ, φ, ψ) (9.3)

where (ηx, ηy) are the (possibly anisotropic) effective refractive indices along

the x and y axes of the sheet while (δx, δy) are the dimensionless vector offset

and θ, φ, ψ are Euler angles that describe the change of basis from the sheet

coordinate system to that of each confocal lens pair. The parameter θ is sig-

nificant only where ηx 6= ηy as otherwise the lenses are rotationally symmetric

about their normal.

The corresponding metarefraction may be seen as the mapping

r̂′ = T(p, r̂). (9.4)

More general components may also be realized by appending each sheet’s

parameters in turn. In multiple 2D sheets, this is

p = (η1, δ1, θ1, η2, δ2, θ2, . . .). (9.5)

In order to implement multiple generalized confocal lenslet array metarefrac-

tions, one after the other, the resulting law of refraction, Equation (9.2) in 2D

(or Equation (9.4) in 3D) is produced by the iterative application of the law of

refraction for a single generalized confocal lenslet array, i.e. Equation (7.7) (or

Equations (7.25) and (7.26) in 3D). For example, in 2D, and for two sheets,

the law of metarefraction is

T ((η1, δ1, θ1, η2, δ2, θ2), α) = T ((η2, δ2, θ2),T((η1, δ1, θ1), α)) . (9.6)
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9.3 Angle space

The independence of metarefracting parameters will be discussed in terms of

their effects on the metarefraction. While there are an infinite number of input

and output angle pairs, it will be sufficient here to work with a finite set of

angles. Each input angle has a corresponding output angle

α′i = T(p, αi). (9.7)

Here it will be sufficient to consider a sample size of the order of tens of

input angles to capture the most significant behaviour of the ray mapping. For

a fixed set of representative input angles, the metarefraction may be approxi-

mately described by a corresponding set of output angles. It will prove to be

convenient to consider this set as a vector of output angles, α′. Therefore, the

output angle coordinate may be interpreted as being a point in angle space.

(Input angles, αi, are evenly sampled across the range [−90◦,+90◦]).

As was the case of the parameters, all angles are bound due to physical

constraints. The angles are restricted to the working angles of the sheet. Here

they will be taken to be any forward direction, but in practice will be further

restricted. What is true in the discussion here for the entire hemisphere is

no less restrictive for smaller angle ranges. In fact, the opposite is true: for

example in the paraxial limit it may be shown that in two dimensions, a single

generalized confocal lenslet array is well described by only two parameters.

9.4 Numerical analysis

This section will determine the number of ways in which different collections

of ray paths may be independently varied. In order to do so, consider that a

particular metarefraction may be approximately described by the output angle
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vector, which is a function of the parameter vector. Consider a small pertur-

bation in parameter space, δpj . The resultant perturbation in angle space may

be determined by expanding the metarefraction described by Equation (9.7)

using the chain rule:

δα′i =
∑

j=x,y,z

∂T(p, αi)

∂pj
δpj . (9.8)

This may be written as a matrix multiplication

δα′ = J δp (9.9)

where J = ∂T/∂p is the Jacobian matrix, and the ith element of T is T(p, αi).

The effect of varying a single parameter on the output angle vector is

quantified by the corresponding column vector of the Jacobian. The elements

of this vector describe how each component in angle space varies as the pa-

rameter is perturbed. The column vector, multiplied by the corresponding

perturbation, may therefore be interpreted as a displacement vector in angle

space.

The perturbation of each parameter corresponds to a different displace-

ment in angle space. Independence of parameters corresponds to indepen-

dence of their corresponding displacement in angle space. The number of

independent parameters then corresponds to the number of linearly indepen-

dent angle-space vectors. The dimensionality of the column space of the Jaco-

bian therefore corresponds to the number of linearly independent parameters.

Given a large enough row space, the rank of the Jacobian may be used to

count this.

To reiterate, when the rank of the Jacobian is calculated for a sufficiently

large number of sample angles, it equals the number of dimensions that span

the column space of the Jacobian. This in turn gives the minimum number of

parameters that must be retained, without loosing flexibility in perturbing the
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angle mapping. Perturbations are chosen randomly, but for a large enough

number of random angle vectors, they should prove representative.

The Jacobian is calculated for a particular law of metarefraction. Here

we are interested in comparing the various numbers of combinations of gen-

eralized confocal lenslet arrays. By comparing the Jacobian rank for different

numbers of sheets, a relationship between number of parameters and number

of constituent sheets may be determined.

The Jacobian was calculated analytically and evaluated for fifty evenly dis-

tributed incident angles within [−90◦,+90◦] and for randomly chosen param-

eters. In order for the following numerical work to be comprehensive, larger

parameter ranges were sampled over those physical ranges stated above. Both

η and δ were taken to be within [−5,+5] and rotation angles were selected such

that no ray deviation was ever greater than 90◦ from its original orientation.

A Jacobian rank was calculated for each of up to five different nested

generalized confocal lenslet array models. In each case, the metarefraction

performed by a generalized confocal cylindrical-lenslet array, Equation (7.7),

was recursively evaluated with the first three parameters, then the resulting

angle was refracted again with the next three parameters. This was repeated

until no more parameters were left.

The rank of the Jacobian was always found to be three. That is, there are

three linearly independent parameters for a generalized confocal cylindrical-

lenslet array regardless of how many subsequent sheets were added. A single

sheet offered as many degrees of freedom as it is in principle possible to achieve.

The same analysis was then generalized to three dimensions, i.e. to the

generalized confocal elliptical-lenslet array, where the space of output angles

was reinterpreted as the space of ray direction components. Each output

angle component is described by a function of the input angle vector and a
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parameter vector. Angle perturbations may again be described in terms of

corresponding perturbations in parameter space. Again fifty evenly spaced

sample rays were considered (i.e. 150 ray direction components). The rank of

the Jacobian was again calculated for a range of nested generalized confocal

lenslet arrays.

This time, adding a second sheet did increase the seven parameters of a

single sheet, but only to ten parameters. Furthermore, no amount of additional

sheets further increased the number of independent parameters. A pair of

sheets therefore offers as many degrees of freedom as can be realized with

confocal lenslet arrays.

9.5 2D analytic proof

The number of independent parameters that describe a series of confocal

lenslet arrays has already been measured numerically. In two dimensions,

this may be confirmed analytically. Specifically, it is possible to analytically

equate the parameters that describe the metarefraction performed by one and

two generalized confocal lenslet arrays. First consider Equation (7.7), and in

particular expand the tangents using the identity

tan(α− β) =
tanα− tanβ

1 + tanα tanβ
, (9.10)

to get

tanα− tan ζ

1 + tanα tan ζ
= δ + η

tanα′ − tan ζ

1 + tanα′ tan ζ
. (9.11)

From this, we may solve for tanα′ to get

tanα′ =
(−1 + δ tan ζ − η tan2 ζ) tanα+ (tan ζ + δ − η tan ζ)

(tan ζ + δ tan2 ζ + η tan ζ) tanα+ (tan2 ζ − δ tan ζ − η)
(9.12)

The pattern

tanα′ =
A tanα+B

C tanα+D
(9.13)
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emerges, where the empirical parameters are

A(η, δ, θ) = −1 + δ tan ζ − η tan2 ζ, (9.14a)

B(η, δ, θ) = (1− η) tan ζ + δ, (9.14b)

C(η, δ, θ) = (1 + η) tan ζ + δ tan2 ζ, (9.14c)

D(η, δ, θ) = −η − δ tan ζ + tan2 ζ. (9.14d)

The equivalence between one and two 2D generalized confocal lenslet ar-

rays reduces to the equality

α′′(η′, δ′, θ′;α′(η, δ, θ;α)) = α′′(η′′, δ′′, θ′′;α). (9.15)

The pair of transformations may be rewritten as

tanα′ =
A tanα+B

C tanα+D
, (9.16a)

tanα′′ =
A′ tanα′ +B′

C ′ tanα′ +D′
, (9.16b)

in terms of primed and unprimed empirical parameters while the single trans-

formation may be written as

tanα′′ =
A′′ tanα+B′′

C ′′ tanα+D′′
, (9.17)

in terms of a third set of doubly primed empirical parameters.

All that then remains is to equate parameters that describe the two step

transformation with those for the one step transformation,

A′′ = A′A+B′C, (9.18a)

B′′ = A′B +B′D, (9.18b)

C ′′ = C ′A+D′C, (9.18c)

D′′ = C ′B +D′D. (9.18d)
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This relation underlines the equivalence between one and two generalized con-

focal lenslet arrays. This implies that there are the same number of control

parameters in either case, confirming the 2D numerical results.

This of course ignores the difference between the domains of Equa-

tions (9.16) and (9.18). That is, is there a value of A, B, C and D for

every choice of A′, B′, C ′ and D′ and vice versa in Equation (9.18).

9.6 Summary

Here it has been shown that an infinite series of confocal lenslet arrays cannot

perform an arbitrary metarefraction. Furthermore, an upper limit on the

number of degrees of freedom has been determined for any number of sheets.

Only in three dimensions did adding a single additional sheet offer any extra

independent parameters, and even then only three independent parameters

were gained. In two dimensions, no additional independent parameters were

gained.

These results have explored the number of independent parameters, and

hence the number of light rays that may be separately redirected simulta-

neously, but the range of reachable combinations of outgoing rays was not

explored. That is, physical limitations of sheet parameters restrict the possi-

ble values of the outgoing ray directions, but by adding additional parameters

by combining multiple sheets, parameter space increases and as a result there

may be combinations of outgoing ray directions that could not otherwise be

achieved.

While not necessarily the most general possible means by which to realize a

metarefraction, a pair of confocal elliptical-lenslet array contains the greatest

(known) number of degrees of freedom of any thin sheet. Additionally, it

achieves this with the minimum number of required components.
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As an aside, were offsets to be included, multiple confocal lenslet arrays

would offer a clear advantage. A consequence of allowing offsets would be

that, within such a volume, a new form of transformation optics (discussed

in Section 2.3) could be implemented. However, due to significant compound

loss and complexity in fabrication and alignment, such a structure is currently

impractical.



CHAPTER 10
Conclusion

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I
I took the one less travelled by,
And that has made all the difference.

— The Road Not Taken, by Robert Frost

This chapter will gather together the various threads that have been ex-

plored in this thesis. It will be divided into three parts, each exploring a

different aspect of the subject. The next section will summarize the explo-

ration of metarefraction that has been presented above. After which, the

progress made will be discussed in a wider context. Finally, a brief discussion

regarding possible future directions of this work will be considered.

10.1 Summary

Initially, metarefraction was introduced in Chapter 1. This began with a

definition of metarefraction and presented a number of examples. Throughout,
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metarefracting sheets were interpreted as being analogous to refraction. The

background chapter explored recent advances in the description of refraction,

in particular the history of negative refraction as well as its realization and

experimental demonstration with metamaterials.

Chapters 3 and 4 then explored two new forms of metarefraction:

local-light-ray-direction flipping using Dove-prism sheets and local-light-ray-

direction rotation using rotated Dove-prism sheets. Here, the analogy between

a refracting interface and a metarefracting sheet was explored. The law of

metarefraction at crossed Dove-prism sheets was equivalent to a sign change

in refractive index across the interface. Furthermore, ray-rotation gave rise to

an entirely new law of refraction.

A useful optical transformation that a number of metarefracting systems

performed was geometrical imaging. In particular, pseudoscopic imaging was

reviewed in two and three dimensions before the non-trivial imaging between

two or more ray-rotation sheets was discussed in Chapter 5.

Notably, several idealized metarefractions lack a wave-optical description

as they implicitly describe the gradients of inconsistent phase surfaces. While

‘pixelated’ equivalent transformations were entirely possible, the same is not

true of some metarefractions that were everywhere-continuous. Chapter 6

firstly considered the translation of a ray-optical mapping into the language

of wave optics. In the ray-optical limit, the ray-direction was shown to be

irrotational so those ray-mappings that altered this aspect of an incident light

field were wave-optically impossible.

The ideas explored in Chapter 6 implied that offset-free metarefraction

is only superficially correct, i.e. that in many cases it may only ever be ap-

proximated by piecewise-smooth mappings. There is therefore an entire class

of optical transformations that may be well described and approximated yet



CHAPTER 10. CONCLUSION 114

have never been systematically explored until now.

In Chapter 7 another metarefracting component, the confocal lenslet array,

was discussed. This is a structure consisting of series of telescopic lens pairs

that may be extended into a great many variants. One parameter, for exam-

ple, was interpreted as being analogous to a refractive index ratio between

two media. This extended the metarefracting-sheet/refracting-interface anal-

ogy from a sign changing interface to any possible refractive index interface.

A simple confocal cylindrical-lenslet array was then demonstrated experimen-

tally in Chapter 8.

The penultimate chapter explored the limitations on transformations that

a series of generalised confocal lenslet arrays could perform. Ultimately, their

useful parameter space only grew so far which limited the range of transfor-

mations that could be performed by an arbitrary, offset-free series of confocal

lenslet arrays.

10.2 Comments

There had only been scattered examples of metarefraction until the systematic

exploration that I was involved in. The subject developed quite naturally and

offered a range of topics worth investigating [37, 38, 40, 41, 59, 60, 72, 73] .

Despite having lead to few applications, it has been a precursor to a range of

other topics [48, 49, 50, 74]. Perhaps some of these will provide applications

(which are currently missing) in order to motivate further work.

Of particular note are the range of visual distortions that may be realized

by metarefractions. This subject is such that while being simple to describe, it

produces quite unintuitive visual distortions, even for the simplest metarefrac-

tions. This has made the subject an aesthetically as well as an intellectually

interesting topic to study.
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10.3 Future work

There are any number of directions in which metarefracting sheets may be

developed. The variety of unexplored metarefractions alone may describe any

number of interesting visual distortions. Additionally, few inhomogeneous

sheets have been explored. Constructing imaging systems from inhomoge-

neous sheets is significantly more flexible; resultant images, for example, are

no longer restricted to 1:1 mappings.

Of particular interest would be the development of Dove-prism sheets, and

to construct custom-built confocal lenslet arrays as optical novelties. Proof of

principle demonstrations are necessary to justify their development. Lenslet

array technology already exists that can realize ray-flipping, but the experi-

ments performed so far were proof-of-principle demonstrations that used far

from optimal designs. Principal aims would then be to improve the field of

view and reduce the visibility and frequency of “parasitic images”.

Metarefracting sheets were initially conceived as equivalent to generalized

refraction across an interface. This analogy may be developed by considering

not only ray direction, but also attenuation being a function of incident angle.

An existing, trivial example of such an angle-specific attenuation is that of a

light control film [75]. Such sheets consist of miniature Venetian blinds which

are used to reduce glare on computer screens, and for privacy on bank machine

displays. The effect of the sheets is to absorb all light from any angle greater

than a cut-off angle.

The greatest generalization possible, while continuing to work in terms of

light rays, is to allow significant ray-position offsets during transformation.

Such a general ray mapping could for example be achieved with a pair of

confocal lenslet arrays that focus on either side of a fibre bundle. Such a

system is shown in Figure 10.1. By interconnecting fibres, a many-to-many
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(a)

(b)

(c)

Figure 10.1: The most general form of ray position and direction
mapping consists of rearranging the intensity pattern of an integral
image using a fibre bundle. The side view of such a structure is shown
schematically. Lenses focus the local plenoptic function onto one side
of a fibre bundle. This is then mapped (shown as as red arrows) to the
focal plane of the other lenslet array. (a) A metarefraction may be im-
plemented by mapping incident angle to an outgoing angle. (b) Such
a mapping may be extended to include large offsets, or (c) to include
a many-to-many mapping by joining fibres.

mapping is possible over integral image spaces. A fibre bundle is, however,

‘pixelated’ both in position and in angle space. Additionally, the bundle would

be too thick to be considered as a sheet.

Metarefraction may be developed in a number of ways, and there are any

number of directions in which to direct future research. Examples include

exploring the wave-optical behaviour of such components including how the

polarization is affected, the study of optical quality that may be achieved by

better understanding alternative light-ray paths and the search for ways to

coherently realize metarefractions, i.e. offset free equivalents. While a number

of the metarefractions have been thoroughly investigated, there are likely to

be many more forms yet to be discovered. Only time will tell what visual

distortions may be realized.
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