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nonlinear (nnn-Iin'ýF-: D) adj. Not in a straight line; Behaving in an 

erratic and unpredictable fashion; Unstable; Of or relating to a system of 

equations whose effects are not proportional to their causes. Such a set of 

equations can be chaotic; Of or relating to a device whose behaviour is 

described by a set of nonlinear equations and whose output is not 

proportional to its input. 

response (r 
-spons') n. A reaction, as that of an organism or a 

mechanism, to a specific stimulus. 

modification (m6d'a-fi-ký'shQn) n. The act of modifying or the 

condition of being modified; An alteration, adjustment or limitation. 

Source: 1-ittp: //www. dictionary. com/ 
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Abstract 

ABSTRACT 

This thesis provides an account of an investigation into possible dynamic 

interactions between two coupled nonlinear sub-systems, each possessing 

opposing nonlinear overhang characteristics in the frequency domain in 

terms of positive and negative cubic stiffnesses. This system is a two 

degree-of-freedom Duffing oscillator coupled in series in which certain 

nonlinear effects can be advantageously neutralised under specific 

conditions. This theoretical vehicle has been used as a preliminary 

methodology for understanding the interactive behaviour within typical 

industrial ultrasonic cutting components. Ultrasonic energy is generated 

within a piezoelectric exciter, which is inherently nonlinear, and which is 

coupled to a bar-horn or block-horn to one, or more, material cutting 

blades, for example. The horn/blade configurations are also nonlinear, and 

within the whole system there are response features which are strongly 

reminiscent of positive and negative cubic stiffness effects. The two 

degree-of-freedom model is analysed and it is shown that a practically 

useful mitigating effect on the overall nonlinear response of the system can 

be created under certain conditions when one of the cubic stiffnesses is 

varied. It has also been shown experimentally that coupling of ultrasonic 

components with different nonlinear characteristics can strongly influence 

the performance of the system and that the general behaviour of the 

hypothetical theoretical model is indeed borne out in practice. 
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Nomenclature 

NOMENCLATURE 

Symbols Description Units 

a, , a, Amplitude responses (m) 

C1 , c, Damping coefficients (Ns/m) 

Nonlinear cubic hardening spring stiffness (N/m3) 

Ii, Nonlinear cubic softening spring stiffness (N/m3) 

k, , k, Linear spring stiffnesses (N/m) 

/1111111, Masses (kg) 

t Nondimensionalised time, t=w, t 

t Time (s) 

X, X" Nondimensionalised displacements, x, 2= 
Jx" 

X] , _x; 
Displacements (m) 

xý,, Reference displacement (m) 

A, 
, 

A, Complex amplitudes (m) 

F', F, *, F, ý Excitation force (N) 

F' 
F Nondimensionalised excitation force, F= 

tai, £O, _t 
ýe[ 

T rý =0: Fast time scale; tý =1: Slow time scale (s) 
i. e. TO=t; T, =st 

Complex frequencies (rad/s) 

Ordering parameter for method of multiple scales 

f1 External detuning parameter (rad/s) 
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Nomenclature 

eo; Internal detuning parameters (rad/s) 

i=I: Case 1- Superharmonic resonance 
i=2: Case 2- Subharmonic resonance 
i=3: Case 3- Primary Resonance 

y, 1 Y2, yl Nondimensionalised linear spring stiffnesses 

rj, , 772,773 Nondimensionalised nonlinear spring stiffnesses 

c, 
, 

c', 
, 

4', Nondimensionalised damping coefficients 

Undamped linear natural frequencies 
"' (i. e. Eigenvalues) 

(rad/s) 

Nondimensionalised natural frequencies, 

N= Y' , ctý = 

Nondimensionalised excitation frequency, - 

S2 Excitation frequency (rad/s) 

ACA Adaptive control algorithm 

ANC Active noise cancellation 

BIFD No. of iterates (dots plotted) for each bifurcation parameter 

BIFPI Pre-iterates for each bifurcation parameter 

BIFV No. of parameter values in bifurcation diagram 

CON Connect consecutive dots of trajectories 

DSP Digital signal processors 

ESPI Electronic speckle pattern interferometry 

IHB Incremental harmonic balance 

IPP No. of iterates per plot 

KB Krylov-Bogolioubov 

KBM Krylov-Bogolioubov-Mitropolski 
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Nomenclature 

LDV Laser Doppler vibrometer 

LP Lindstedt-Poincare 

MS Method of multiple scales 

NI Direct numerical integration 

ODE Ordinary differential equation 

OPCL Open-plus-closed-loop 

PI No. of pre-iterates before plotting 

SPC Steps per cycle 

1D One-dimensional 

3D Three-dimensional 
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Chapter 1: Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 The Rise of Nonlinear Science 

The 19th century was the century of classical mechanics but this has 

recently rather given way to scientific applications and initial technological 

proposals for relativistic and quantum mechanics in areas as diverse as 

computing and space craft propulsion. However, in the many technological 

applications of Newtonian mechanics the various, and complicated effects 

of nonlinearity have been shown to be pervasive in all areas. Nonlinear 

phenomena genuinely appear everywhere in our daily life and in many of 

our scientific works, and therefore today they represent one of the most 

important effects within research in most fields of science and technology. 

It can still be difficult to solve nonlinear problems, numerically and 

analytically, and even more difficult to establish high fidelity models for real- 

world nonlinear problems. Many assumptions have to be made, sometimes 

artificially, to make practical engineering problems solvable, leading to the 

potential loss of important information. So, one of our chief aims in general 

is to establish more reasonable nonlinear models for practical engineering 

problems, the physical sciences, and for the economic sciences, and so 

this ensures that nonlinear mechanics is of continuing interest to the 
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international applied science community. Particular engineering interest will 

continue to be directed to contributions concerned with the application of 

variational theory in order to deduce field equations and boundary/initial 

conditions, and towards the solution of inverse or hybrid problems of 

identification of optimal aerofoils, cascades, towards the solution of 

channels, and other important technology based engineering applications. 

Most problems in natural sciences are not scale invariant, meaning 

that the responses of the system to increases in (generic) forces are not 

proportional to such increments, but rather that they respond to more 

complex interactions. When the response of a system to the addition of 

forces or scaled stimuli is not just the simple addition of the responses, or 

the scaling of the solution, we speak of the problems as being nonlinear. 

Nonlinear problems appear almost everywhere within applied 

science; in lasers, electronics, fluid dynamics, biology, chemistry, medicine, 

signal processing, vibrations, rigid and flexible body multi-body dynamics, 

planetary orbits and spacecraft propulsion, as well as taking a role in 

certain aspects of sociology and economics. The review paper on the 

nonlinear dynamics of engineering components by Jerrelind and Stensson 

(2000) gives a comprehensive definition of inherently nonlinear behaviour 

in a wide range of practical components. Therefore, there exist 

innumerable potential new possibilities for nonlinear phenomena in all 

areas of contemporary and future science and technology. 

2 



Chapter 1: Introduction 

1.2 Background 

Mechanical and structural systems are inherently nonlinear with many 

sources of nonlinearities present in any system under consideration. 

Nonlinearities necessarily introduce a whole range of phenomena that are 

not found in linear systems. These include the well-known jump 

phenomenon, the occurrence of multiple solutions, the presence of 

modulations, specific shifts in natural frequencies, the generation of 

combination resonances, evidence of period-multiplying bifurcations and 

complicated chaotic motions. These various phenomena have all been 

investigated in many publications and the literature on nonlinear dynamics 

is huge. Books on nonlinear dynamics have been written by Nayfeh (1973), 

Nayfeh and Mook (1979), Sanders and Verhulst (1985), Thompson and 

Stewart (1986), Cartmell (1990), Moon (1992), Strogatz (1994), Nayfeh and 

Balachandran (1995), Thomsen (1997), Murdock (1999) and Tomlinson 

and Worden (2000). 

One highly specialised, but extremely topical application area is that 

of high power ultrasonic tooling within modern manufacturing. This has 

emerged as an interesting and potentially very effective methodology within 

manufacturing but is largely unexploited due to observed reliability 

problems associated with the nonlinear behaviour of the systems that have 

been operated to date. It has recently been accepted that research is 

required to investigate and model the influence of ultrasonic energy 

generation, and its interaction with possibly beneficial mechanisms in 

ultrasonic tooling design in order to formulate solutions to certain observed 

nonlinear coupling effects which have been shown to be extremely 

3 
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important (Lucas et al., 2001). This research necessarily impinges on 

multiple blade ultrasonic cutting tool design, and in doing so attempts to 

establish a range of high power ultrasonic manufacturing tools within a 

standardised tool design approach for optimum performance. On that basis 

this research aims to define a new generation of ultrasonic tools by 

identifying generic models for practically necessary multi-component tools. 

Reliability of tuned components in ultrasonically assisted tooling is often 

poor due to energy leakage into non-tuned modes. The mechanism of 

energy leakage can be described by nonlinear vibration behaviour, and 

Lucas et al. (1998) have characterised the nonlinear vibration in ultrasonic 

tools by using a laser Doppler vibrometer and electronic speckle pattern 

interferometry. The serious reliability limitations imposed by deficiencies in 

current design practices are tackled in this thesis, by this first attempt to 

incorporate logically a mechanistic understanding of ultrasonic system 

nonlinearities. The outcome is a tuned ultrasonic tool design strategy, 

adaptable to a wide range of manufacturing processes and targeted 

towards reliability. 

In this research, preliminary investigations into vibration response 

modifications in coupled oscillators are discussed. In order to establish a 

systematic basis for this, a simple coupled oscillator problem is proposed in 

which two single degree-of-freedom sub-systems are implemented, with 

the principal nonlinearity being a hardening and softening cubic stiffness 

effect, respectively, in each. This hypothesised theoretical vehicle in fact 

closely reflects the characteristics which emerge from measurements made 

on actual ultrasonic cutting tooling in which serially coupled components 

are encountered. Such systems routinely exhibit alternate hardening and 

4 
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softening effects in this manner, notwithstanding their more complicated 

structural form. The hypothesised theoretical vehicle is shown to respond in 

a manner which mirrors that of a typical food-industry ultrasonic cutting 

system. Specifically, serially coupled structural components with different 

nonlinearities (i. e. hardening or softening) are shown to work together in 

response-modifying ways that are closely predicted by the simplified 

theoretical model. Although this model is not intended to define literally a 

typical ultrasonic cutting system it is still of use in that it consolidates a 

major phenomenon which is readily observable in such systems, and on 

that basis has intrinsic value. 

This research explores the behaviour of the hypothesised theoretical 

model and then attempts to show that judicious attention to the same class 

of principal nonlinearities in the experimental system can lead to improved 

designs for applications to practical engineering systems such as ultrasonic 

cutting systems. 

5 
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1.3 Objectives 

Currently there are already many methods of controlling nonlinearity and 

Section 2.4 highlights and discusses some of them. However, this research 

provides a whole new perspective on nonlinear control, different from the 

widely used feedback control method. This new approach does not use any 

electronics or constant feedback from the system to achieve stable 

response behaviour. Instead, it provides an open-loop approach that 

modifies the nonlinearity of a system to achieve a more linear response. 

When a system is modified to become apparently more linear, it has the 

potential to become more predictable, possibly without additional effort 

directed to the control of stability. 
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1.4 Scope 

Much research has been carried out on nonlinear systems modelled by the 

Duffing-type problems (Duffing, 1918), the Van Der Pol oscillator (Van Der 

Pol, 1927a; Van Der Pol and Van Der Mark, 1927b), Lorenz systems 

(Lorenz, 1963), Rössler attractor based systems (Rössler 1976), Chua's 

circuit (Chua, 1992), the Goodwin equation, and Hamiltonian systems in 

general. The research within this thesis stems from attempting to 

understand the interactions of nonlinear components theoretically; the 

classical Duffing equation is used to analyse the effect of coupling within a 

two degree-of-freedom nonlinear oscillator system which closely represents 

the proposed hypothesised theoretical vehicle. 

1.4.1 A review of basic phenomena within systems governed by 

the Duffing equation 

The Duffing equation is frequently cited in a form containing a cubic 

nonlinearity, linear viscous damping, linear stiffness and a single- 

frequency excitation. 

x=AcosQt (1.4-1 ) +qx=AcosQtl 

1 Note that all notations in Chapters 1 and 2 do not follow those in the 

nomenclature but of the original papers. 
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Figure 1-1 shows representative curves for the general cases where 

h=0, h>0 and h<0. On comparing these frequency response 

curves it is seen that the nonlinearity bends the curve to the right 

when h>0 and to the left when h<0. These are well known as 

hardening and softening nonlinearities respectively. When h=0, the 

curve is in linear response. 

a 

0 
a- 

Figure 1-1: Frequency-response curves for different values of 
coefficient h in a Duffing equation (Effect of nonlinearity) 

- Nayfeh & Mook (1979) 

The well-known `jump phenomenon' is evident in a nonlinear 

response of the Duffing system. For a hardening nonlinearity, one 

can assume that an experiment may be performed in which the 

amplitude of the excitation is held constant, the frequency of the 

excitation (i. e. 6) is very slowly varied up and down about the linear 

natural frequency, and the amplitude (i. e. a) of the harmonic 

response is observed. The experiment is started at a frequency 

corresponding to point 1 in Figure 1-2(a). As 6 decreases the 

response travels through point 2 to point 3, and a increases. Asa is 

decreased further, a jump in a from point 3 to point 4 takes place, 

after which a decreases smoothly with decreasing 6. Conversely, if 
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the experiment is started at point 5 and then 6 is increased, a 
increases until point 6 is reached. Asa is increased further, a jump 

in a from point 6 to point 2 takes place, after which a once again 

decreases smoothly with increasing 6. The maximum amplitude 

corresponding to point 6 is only attainable when approached from a 

lower frequency. The portion of the response curve between points 3 

and 6 is unstable and hence cannot be produced experimentally. 

In the case of a softening nonlinearity, one could imagine 

that the experiment is started from point 1 in Figure 1-2(b), and then 

a is slowly decreased so that a jump from point 3 to point 4 takes 

place. For a sweep in the opposite direction starting at point 5 and 

increasing 6, a jump from point 6 to point 2 occurs. Likewise, the 

portion between point 3 and 6 is unstable. Thus, these jumps are 

nonlinear phenomena and take place within hard as well as soft 

systems. 

n 

(a) 
CT 0 

n 

(b) 

Figure 1-2: Jump phenomena within a typical Duffing system; 
(a) h>0; (b) h<0- Nayfeh & Mook (1979) 

System dynamics within the Duffing equation have been 

extensively explored by Ueda (1979,1980a, 1980b). Ueda has 

shown that however small uncertain factors may be in nonlinear 

systems, they sometimes bring statistical properties into 

phenomena, depending on the global structure of the solutions of 
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the diff.: rentiai equations of the system . The dependence of the 

attractors on the system's parameters was highlighted by Ueda 

(1979) when he considered the following Duffing equation, 

i+kx+x' =Bcost (1.4-2 ) 

First he showed the change of attractors through Poincare maps 

where the excitation force, B is varied while the damping, k is kept 

constant at 0.1. Outlines of the attractors in such a case are shown 
in Figure 1-3. Figure 1-3(a)2 shows a completely stable period-3 

motion, and as B is slightly increased, a fluctuation is brought into 

the process. This state is shown in Figure 1-3(b). Further increase in 

B results in the abrupt growth of the fluctuation and a randomly 

transitional process develops. This motion continues until B reaches 

13.3 and the attractors in such cases are shown in Figure 1-3(c) to 

(g). A catastrophe occurs at some value of B between 13.3 to 13.4, 

and the randomly transitional process is replaced by a harmonic 

oscillation as in Figure 1-3(i)2. Next, the damping, k is varied while 

B is kept constant at 12.0. Figure 1-4 shows the effect of varying the 

damping parameter, and one can conclude that when the damping 

coefficient k is small, the size of the attractor is large, but as k 

increases, the attractor decreases. 

The same equation was revisited by Ueda (1980a) where he 

presented `a picture book of regular and chaotic motions' via phase 

planes and Poincare maps for different damping and forcing levels. 

2 Pei-mission has been granted for the reproduction of these, and all other, results 
from the literature, however in this case the periodic points were not clearly 
reproduced on the available original, and therefore have not transferred 

successfully into the forms given overleaf. The reader is asked to accept that they 

are indeed present in the original work. 
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1.4.2 The approach 

A preliminary investigation to achieve near linear vibration is 

presented in this thesis by studying the effect of response 

modification within coupled nonlinear oscillators. In this research, 

two single degree-of-freedom systems of opposite nonlinear 

characteristics are coupled in series. The methodology behind this is 

based on the premise that modifications to the individual systems' 

responses may be obtainable in such a way that the overall 

response behaviour of the two degree-of-freedom model can be 

shown to exhibit certain key features of a linear system response 

characteristic. This can be shown to have direct relevance to the 

ultrasonic cutting systems which are the principal motivations for the 

whole research programme. 

In order to summarise the approach, one may start by 

assuming a single degree-of-freedom system in which the stiffness 

is characterised by (k, x, + h, x, ). The resonance graph for this system 

has hardening characteristics as shown in Figure 1-5(a). Another 

single degree-of-freedom system with an opposite nonlinear stiffness 

of has the characteristic of Figure 1-5(b) in which the 

resonance graph displays softening characteristics. So, by coupling 

the above two systems together it is interesting to see if the 

characteristics of the response of the new two degree-of-freedom 

system can be modified towards a generally more linear behaviour, 

as shown in Figure 1-5(c). This proposal is potentially useful 
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because the effects of nonlinearities can then be reduced, modified, 

or possibly even eliminated by simply combining appropriate sub- 

systems together. The theoretical model of this system takes the 

convenient simplified form of a two degree-of-freedom Duffing 

oscillator system that will be discussed more in details in Section 

3.1. 

x1* 

I 

(a) 

X1 * 

Ww1 

+ 

+ 

CA)1 

X2* 

X2* 

(c) 

Figure 1-5: Conceptual summary of the nonlinear response 
modification in the theoretical model 

(a) hardening cubic stiffness; (b) softening cubic stiffness; 
(c) linear output response of coupling (a) + (b) 

S2Jcu, =1 

(b) 

SVo), 

cs(, )l 
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1.5 Outline and Methodology 

This thesis is divided into seven chapters. It begins off with an introduction 

in Chapter 1 followed by literature review in Chapter 2. Analytical and 

numerical methods are used to derive and plot the nonlinear response 

modification of the hypothesised model in Figure 3-1. Chapter 3 applies the 

Method of Multiple Scales and Chapter 4 uses a direct numerical 

integration method. 

Chapter 5 strengthens the above results with the numerical 

investigation of the system dynamics in the form of bifurcation diagrams 

and calculated Lyapunov exponents. Phase planes, Poincare maps and 

time plots are also plotted for more in-depth understanding into the details 

of the system dynamics. All these will, in turn, provide one with a better 

comprehension of the overall dynamics of the proposed system. 

Besides theoretically understanding the effects of the nonlinear 

coupling, experiments have been carried out on the coupling of different 

ultrasonic components to simulate the theory of nonlinear response 

modifications. These are discussed in Chapter 6. 

Chapter 7 presents a discussion and comparison of the results from 

the four different methods of analysing the coupled system, and the 

conclusions of the thesis is followed in the next chapter. Recommendations 

for further work are also suggested in Chapter 9. 

A list of journal and conference publications produced during the 

course of this postgraduate research by the author and others, is given 

after the References. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Historical Perspective 

The history of Dynamics has progressed considerably since it was 

recognised formally as a branch of physics in the mid-1600s. Since the 

invention of differential equations within Europe by Isaac Newton [1643 - 

1727], subsequent generations of mathematicians and physicists have 

proceeded to develop the subject from the bases of quantitative, and then 

later, qualitative analysis. In the late 1800s, Henri Poincare [1854 - 1912] 

introduced the motion of chaos, and this has underpinned the modern 

subjects of dynamics and dynamical systems. Extensive studies of 

nonlinear oscillators led to the identification of the cubic phenomenon in the 

so-called Duffing oscillator (Duffing, 1918), and this system along with 

several other fundamental nonlinear oscillations has been exhaustively 

investigated by Ueda, Thompson, Nayfeh, Holmes and other major 

researchers in the field. Seminal research in nonlinear systems is 

attributable to Lorenz, Feigenbaum and Mandelbrot and from their 

pioneering work key constructs within Dynamical systems theory have been 

defined and explored. Figure 2-1 summarises this history. 
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Dynamics -A Capsule History 

1666 Newton Invention of calculus, explanation of planetary 
motion 

1700s Flowering of calculus and classical mechanics 

1800s Analytical studies of planetary motion 

1890s Poincare Geometric approach, nightmares of chaos 

1920 - 1950 Nonlinear oscillators in physics and engineering, 
invention of radio, radar, laser 

1920 - 1960 Birkhoff Complex behaviour in Hamiltonian mechanics 
Kolmogorov 
Arnol'd 
Moser 

1963 Lorenz Strange attractor in simple model of convection 

1970s Ruelle & Takens Turbulence and chaos 

May Chaos in logistic map 

Feigenbaum Universality and renormalisation, connection 
between chaos and phase transitions 

Experimental studies of chaos 

Winfree Nonlinear oscillations in biology 

Mandelbrot Fractals 

1980s Widespread interest in chaos, fractals, oscillators, 
and their applications 

Figure 2-1: History of Dynamics - Strogatz (1994) 
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2.2 Nonlinear Dynamics 

Nonlinearity is now recognised as one of the fundamental tenets of 

dynamics and has been the focus of an enormous research effort in recent 

years. Many studies have, in particular been based on the Duffing oscillator 

in different attempts to quantify and map the local and global dynamics of 

systems in which softening and hardening nonlinearities feature 

significantly. An early article by Morozov (1976) presented a qualitative 

study of a softening Duffing equation, viz., the boundedness of the number 

of resonances and periodic solutions, the existence of heteroclinic solutions 

and the behaviour of solutions in a neighbourhood of an unperturbed 

separatrix contour. Over twenty years ago, Ueda (1979,1980a, 1980b) 

extensively studied the steady-state chaotic behaviour, and randomly 

transitional phenomena, in a system governed by a hardening Duffing 

equation. He showed that the nonlinear system under consideration could 

exhibit chaotic responses (under harmonic excitation) in certain parameter 

regimes. By combining second-order perturbation solutions with an 

assessment of stability by means of Floquet analysis, Nayfeh and Sanchez 

(1989) developed an approximate procedure for the generation of 

bifurcation diagrams in a forced softening Duffing oscillator. In a nonlinear 

system, jump phenomena occur regularly and a hardening system reported 

by Soliman (1997) showed that for small excitation levels the system 

exhibited what appeared to be linear behaviour, however this invariably 

became nonlinear as the excitation levels were increased, and 

unpredictable jumps to and from resonance were clearly evident. 
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Vibration isolators consisting of polymeric materials are used 

extensively in various forms of vibration control. Nonlinearities in these 

systems can arise from its geometrical effects, the mode of loading, the 

material properties or combinations of all three. Harris and Stevenson 

(1986), Harris (1987), Mallik et al. (1999), have experimentally identified 

that polymeric materials exhibit forms of softening nonlinearity in their 

stiffness and damping characteristics. They have also shown that the 

nonlinearity in the damping characteristic is seen to be more pronounced 

than that in the stiffness for these materials. 

Two fundamental nonlinear formulations based on two different 

strategies have been extended by Majed and Raynaud (2003) for the 

analysis of a nonlinear structure. The first formulation exploits the 

eigensolutions of the associated linear system and the dynamic 

characteristics of each localised nonlinearity, while the second formulation 

was developed using the linearised eigensolutions which are calculated by 

means of an iterative process. Their proposed formulations led to coherent 

results between theoretical and experimental results and was validated for 

two cases; one being the stiffness nonlinearity effects on transfer functions, 

and the second one was on the stiffness and damping nonlinearity effects 

on transfer functions. The strengthening of the stability of the solution 

around the resonance frequency was found to depend on several 

parameters particularly the sine-sweep frequency, the weighting coefficient, 

and the convergence criteria. 
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2.3 Nonlinear Coupling 

The dynamics of coupled anharmonic oscillators are of considerable 

general interest due to the fact that such models are good candidates for 

the description of various physical and electromechanical systems. Among 

the reported coupled anharmonic oscillators, the most intensively studied 

examples are typically the Duffing oscillators (Umberger et al., 1989; 

Dressler and Lauterborn, 1990; Asfar, 1992; Kapitaniak, 1993; Kozlowski et 

al., 1995; Woafo et al. 1998), and the Van Der Pol oscillators (Rand and 

Holmes, 1980; Chakraborty and Rand, 1988; Maccari, 2003). 

Woafo et al. (1998) used the method of multiple scales to find 

solutions to a two nonlinearly coupled oscillators subjected to an external 

periodic force. Chaotic behaviour emanating from the well-known period- 

doubling bifurcation was evident in this system. However, the coupling in 

the system of Woafo et al. (1998) is fundamentally different to that reported 

in this thesis because of the predominant presence of quadratic coupling 

terms and the non-existence of nonlinear cubic coupling. The pair of 

nonlinear differential equations analysed by Woafo et al. (1998) are as 

follows, .+A, 0x +ox+ yox 3-a, 
oq - 

ß, oq' =F cos (wt) (2.3-1 ) 

it ++a, ()-x- <<-0 (2.3-2) ýoq ýiq - 

where .v and q are the coordinates, ' and A, are the viscous damping 

coefficients, w, and a the natural frequencies, and yo the cubic 

nonlinearity coefficient. The coupling between the oscillators is 

characterised by the coefficients a,,,, a,, ß,,, and ý3, ý, . 
Oscillatory states of 

the model were analysed by the method of multiple scales, and the effects 
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of equal coupling between the oscillators (a, = a, = a) on the amplitudes a, 

and a, are shown for different values of external detuning parameter a in 

Figure 2-2. The behaviour of the coupling-resonance curves show that 

when the oscillator move away (o increases) from the exact external 

resonance point (6 = 0), their amplitude may be singled-valued or multi- 

valued depending on the coupling coefficient a. This theoretically 

represents an electrostatic microphone, where the acoustic waves may be 

converted into an electrical signal with minimal distortion, and the 

parameters of both electrical and mechanical parts must be chosen 

properly to satisfy this condition. Thus, the amplitude of the oscillators must 

be single-valued in order to avoid distortion. 

3. Oro 

a=0.2933 ýý 
a=0.178. 

a "\"ý 0.320 
2.00 

a=0.1673 \\a=0.3393 
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Figure 2-2: Coupling-resonance curves with A,, _A=0.1; y=0.1; F=0.3; 

Q(, = 0; (a) a, (a) ; (b) a2 (a) - Woafo et al. (1995) 

The local and global bifurcations of a two mutually coupled, identical 

Duffing oscillators that are driven by an external sinusoidal force have been 

investigated by Kozlowski et al. (1995). The equations for the investigated 

system were, 
3 (2.3-3) 
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+v"; +I,; +c0 (2.3-4) 

where 
,f 

is the amplitude of the driving force, the frequency co is used as 

the control parameter in the bifurcation diagrams, the damping parameter, 

cl and coupling constant c, are fixed at 0.1 and 5 respectively. Note that 

this system is different from the one analysed in this thesis as it is coupled 

merely by the linear stiffness, whereas the thesis model is coupled via the 

linear damping, the linear stiffnesses and also by the cubic nonlinear 

stiffnesses. The bifurcation sequence of this system shows aspects of 

recurrence for different frequency regions. Figure 2-3 compares that for 

different frequency regions, the same structure consisting of symmetry- 

breaking (sb) and Hopf bifurcations (H) are shown; i. e. (sb-sb)-(sb-sb) for 

Figures 2-3(a) and (c), and (sb-sb)-(H-H)-(sb-sb) for Figures 2-3(b) and (d). 

These repeated subpatterns are similar to the structure observed for single, 

periodically driven, Duffing oscillators (Sato et al., 1983; Scheffczyk et al., 

1991), but in a more complicated way and show additional occurrences of 

Hopf bifurcations. 
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Figure 2-3: Bifurcation diagrams for different driving amplitudes; 
(a) f =4.5; (b) f =4.8; (c) f =20; (d) f =25 - Kozlowski et al. (1995) 
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2.4 Nonlinear Control 

Nonlinearity is generally reckoned to be undesirable in most practical 

engineering systems, not least because of the analytical difficulties that are 

perceived to go with it. However, it is a fact that most, if not all, real physical 

systems exhibit significant nonlinear behaviour. Control of nonlinear 

structural systems has received considerable attention, and various control 

methods have been proposed and studied for applications in different 

discipline areas. These include different algorithms for pulse control (Masri 

et al., 1981,1982; Reinhorn et al., 1987a, 1987b), combining passive 

control with an active control (Abdel-Rohman and Nayfeh, 1987), stochastic 

dynamic programming (Shefer and Breakwell, 1987), optimal control based 

on a numerical approach (Kamat, 1988), acceleration control (Nagarajaiah 

et al., 1993; Reinhorn et al., 1993; Riley et al., 1993), dynamic linearisation 

(Reinhorn et al., 1993; Yang et al., 1994a), nonlinear control (Yang et al., 

1994b; Shing et al., 1995), and neural networks (Nerves et al., 1995). 

In addition to general `nonlinearity', chaos is a robust phenomenon 

exhibited by the majority of nonlinear systems and leads to potential 

behaviour patterns of extreme complexity. Recent investigations have 

clearly shown that chaotic motion can be controlled or directed towards a 

desired regular orbit by means of preassigned, and small, perturbations, 

either to the system parameters or through the addition of weak external 

forces. The associated control methods can be broadly classified into (i) 

feedback and (ii) non-feedback methods. 

Recent research on the response of systems exhibiting nonlinear 

cubic damping have been reported by Shekhar et al. (1998) who studied the 
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effect of nonlinear damping on the performance of a single degree-of- 

freedom shock isolator system and showed that this appreciably affects the 

response. Specifically, a small negative coefficient for the damping term is 

more favourable than a positive coefficient in generating a considerable 

reduction in the peak of the acceleration response. In a follow-up paper, 

Shekhar et al. (1999) proposed that three-element and two-stage isolators 

are more effective when in the presence of nonlinear cubic damping. In 

another publication, Ravindra and Mallik (1995) showed how nonlinear 

damping can be used as a passive mechanism to suppress chaos. Besides 

interpreting the behaviour of nonlinear cubic damping by Shekhar et al., 

and Ravindra and Mallik, the principal aim of this thesis is to give a detailed 

discussion of the coupling of two opposite nonlinear stiffnesses, and their 

effects on the nonlinearity of the coupled system. 

In the well-known publication of Ott et al. (1990), chaos is controlled 

by careful choice of a small perturbation parameter in order to create a 

variety of attracting periodic motions, from which the most desirable 

attractor can be selected. Since this postulation was made interest in such 

approaches has increased, and it has been applied in a variety of physical 

experiments such as a gravitationally buckled amorphous magnetoelastic 

ribbon, an externally driven nonlinear oscillator, a pendulum, an elastic 

panel subjected to a combination of supersonic gas flow and quasistatic 

loading, and a periodically excited nonlinear elastic panel near a buckled 

state, discussed by Ditto et al. (1990), Pyragas and Tamasevicius (1993), 

Hubiger et al. (1994), Bolotin et al. (1998) and Chow and Maestrello (2001), 

respectively. 
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High frequency parametric vibration and amplitude modulation of the 

forcing function have both been used by Chow and Maestrello (2001) as 

the basis for a general method of vibrational control for a certain class of 

nonlinear evolution equations. The use of high frequency parametric 

vibration introduces a change in some system parameter in order to ensure 

static stability, whilst modulation of the forcing amplitude, if needed, can be 

used to stabilise an unstable periodic motion. Maestrello (2001) used a 

method that requires knowledge of the initial unstable disturbances in terms 

of frequency, amplitude and phase, or their equivalent temporal values, to 

cancel growth after several bifurcations from periodic to chaotic states. 

Singer et al. (1991) suppressed chaos in a simple dynamical system 

(i. e. a thermal convection loop) by making small adjustments to the heating 

rate in response to events detected inside the loop (feedback control). 

The Duffing oscillator has been a traditionally useful model for the 

nonlinear behaviour of certain systems. Suhardjo et al. (1992) presented a 

method of optimal polynomial control, based on the series expansion of the 

cost function and the indicial notation of tensor algebra (O'Sullivan and 

Sain, 1985) for the control of Duffing systems. Recently, Agrawal et al. 

(1998) studied the applications of two control strategies to Duffing 

oscillators; namely an optimal polynomial control (Agrawal and Yang, 1995) 

and robust sliding mode control (Yang et al. 1994c). 

Raj and Rajasekar (1997) have studied the transfer from one 

attractor to another coexisting attractor in two coupled Duffing oscillators by 

means of an open-plus-closed-loop (OPCL) method and adaptive control 

algorithm (ACA). Interestingly, migration from chaos to periodic motion is 

possible by both OPCL and ACA methods. In contrast to the linear 
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feedback methods, where the control function must be on constantly, the 

advantage of these two methods (OPCL and ACA) is that control can be 

switched off once the system trajectory reaches the basin of attraction of 

the goal dynamics. Figure 2-4 shows the transfer of the system dynamics 

from the limit cycle X+ to X-, and Figure 2-5 illustrates the migration from 

chaotic motion to the chosen goal orbit by the OPCL and ACA method. 

1.5 

0.0 

-1,5 

X 

X_ 
x+ 

X 

-1. U 0.0 2.0 

Figure 2-4: Migration dynamics from the limit cycle X+ to X_ of the two 
coupled Duffing oscillators by OPCL method - Raj and Rajasekar (1997) 
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Figure 2-5: Migration from chaotic motion to a coexisting periodic orbit 
by the (a) OPCL method; (b) ACA method - Raj and Rajasekar (1997) 

The proposed nonlinear response modification in the context of this 

thesis is largely relevant to acoustic systems. Acoustic problems in the 

environment have gained attention due to the tremendous growth of 
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technology that has led to noisy engines, heavy machinery, pumps, and a 

myriad other noise sources. Hence, exposure to high decibels of sound 

proves damaging to humans from both a physical and a psychological 

aspect. Although the classical technique of using a passive acoustic 

approach in order to cancel noise, such as sound absorption and isolation, 

both of which are inherently stable and effective over a broad band of 

frequencies, these systems are limited to fixed structures and prove to be 

impractical where space is at a premium and the added bulk can be a 

hindrance. Various signal processing techniques have been proposed over 

the years for noise reduction. Digital Signal Processors (DSPs) have 

shrunk tremendously in size and cost while their processing capabilities 

have grown exponentially. The use of DSPs include applications within 

hearing aids, headsets, and hearing protectors, for example. 

Besides these techniques, one worthy of particular mention is the 

concept of Active Noise Cancellation (ANC). ANC is an electroacoustic 

methodology that cancels the primary unwanted noise by generating an 

`antinoise' of equal amplitude but opposite phase, thus resulting in an 

attenuated residual noise signal, as shown in Figure 2-6. The design of 

ANC systems was first conceived in a patent by Lueg (1936), and an 

overview can be found in the book and tutorial paper of Kuo and Morgan 

(1996,1999). ANC systems are based either on feedforward control where 

a coherent reference noise input is sensed, or feedback control where the 

controller does not have the benefit of a reference signal. Figure 2-7 shows 

a feedforward ANC where an integral amplifier drives a set of loudspeakers 

to insert the `antinoise' into the noise stream. 
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Primary Noise 
Waveform 

+ 
Secondary Noise 
Waveform (antinoise) 

Residual Noise 
Waveform 

Figure 2-6: Physical concept of Active Noise Control 

Figure 2-7: Signal channel broadband feedforward Active Noise Control 
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2.5 Perturbation Methods 

The history of perturbation methods dates back to the 18th century, when 

the French astronomer, mathematician and physicist Pierre Simon Laplace 

[1749 - 1827] was the first to use perturbation methods when he solved the 

problem of equilibrium of a large weightless drop on a plane. Laplace gave 

an insightful view of perturbation methods when he said that "a 

mathematical method is the more precise the greater is the need for it". 

The perturbation methods, which have many similar qualities to 

asymptotic methods, are a collection of techniques that may be used to 

simplify, and to solve, a wide variety of mathematical problems involving 

small or large parameters. The solutions may often be constructed in 

explicit analytical form or, when it is impossible, the original equation may 

be reduced to a more simple one that is much easier to solve numerically. 

Many perturbation methods have been envisaged in the resolution of 

nonlinear problems. These include such well established methods as 

Incremental Harmonic Balance (IHB), Averaging, Krylov-Bogolioubov (KB), 

Krylov-Bogolioubov-Mitropolski (KBM), Lindstedt-Poincare (LP) and the 

Method of Multiple Scales (MS). 

Many authors such as Lau and Cheung (1981), Lau et al. (1982), 

and Pierre and Dowell (1985) have all applied the IHB method to various 

problems in nonlinear dynamics. In addition, Pierre et al. (1985) proposed a 

multi-harmonic analysis of a dry, friction-damped, system using the IHB 

method, where he found that the IHB method can yield very accurate 

results over the time domain methods. Ferri (1986) showed the 

equivalence of the IHB method and the harmonic balance Newton- 
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Raphson method. Cheung and lu (1988) presented a development of a 

simple algorithm for the implementation of the harmonic balance method 

for solving a nonlinear dynamic system. The versatility of this algorithm is 

demonstrated on a variety of nonlinear vibration responses, namely, the 

combination resonances of a hinged-clamped beam, the nonlinear effect 

on the degenerate vibration modes of a square plate and the nonlinear 

oscillation of thin rings. Jezequel et al. (1990) proposed a nonlinear 

synthesis in the frequency domain by using the Ritz-Galerkin-Newton- 

Raphson method and also the IHB method. Friswell and Penny (1994) 

proposed the iterative Newton-Raphson method for solving sets of 

nonlinear equations from the Duffing equation, where the series solution is 

composed of sine and cosine functions, 

x(t) = ao +a, cos(ra, t)+a, sin(a, t)+a3 cos (2w., t) +a, sin(2w, t) + --- (2.5-1 ) 

where w,. is the fundamental frequency in the response. 

In the analysis of the machining dynamics of tool chatter, Nayfeh et 

al. (1997) used the MS method to obtain the normal form of the Hopf 

bifurcation, a six-term harmonic balance solution to generate a bifurcation 

diagram, and a combination of Floquet theory and Hill's determinant to 

ascertained the stability of the periodic solutions. Lately, Warminski et al. 

(2003) have taken this application further in the multiple scales analysis of 

non-resonant machining vibrations. 
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2.6 The Method of Multiple Scales 

The perturbation method of multiple scales has been associated primarily 

with the names of Sturrock (1957,1963), Frieman (1963), Cole and 

Kevorkian (1963), Nayfeh (1965a, 1965b, 1968,1973) and Sandri (1965, 

1967). The method of multiple scales is now so popular that it is applied to 

a very wide variety of problems in physics, engineering and applied 

mathematics. The underlying principal behind this method is that the 

dependent variables are uniformly expanded in terms of two, or more, 

independent variables, or scales, instead of a single variable, thus taking 

better account of slow and fast oscillations within the system, this being a 

commonly occurring feature within nonlinear systems. 

In terms of useful, generic, engineering applications, Lee and Park 

(1999) investigated a weakly nonlinear, harmonically excited, spring- 

pendulum system, which is known to be a good model for a variety of 

engineering systems, including ship motions. The analysis was carried out 

using a second order multiple scales expansion, with the zeroth order term 

neglected. Resonances relating the spring and pendulum modal 

frequencies, a and w,, namely 2w2 =q+ s6, and S2 = w, + E6, , led to the 

identification of regions of periodic and chaotic motions, as well as a route 

to chaos. The modulation equations were used to generate Poincare maps 

for bifurcation analysis and to obtain the Lyapunov exponent. It was shown 

that the Lyapunov exponent is quantitatively and qualitatively quite different 

for the first order and second order approximations, with the authors 

suggesting that the latter agrees better with the original system. 
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In another important work, Rahman and Burton (1989) proposed a 

version of the method of multiple scales which can be used to determine 

the periodic, steady-state, primary response of a single degree-of-freedom, 

lightly damped, weakly nonlinear, forced oscillator. The usual ordering of 

damping and external excitation and the conventional expansion of external 

frequency produces extra non-physical results for some cases, and this 

approach is referred to as MMS version I in Rahman and Burton, 1989. In 

order to eliminate the conditions which can sometimes generate unwanted, 

and physically dubious results, Rahman and Burton then recommended the 

alternative MMS version I/ for ordering and expansion of the damping and 

external excitation frequency. The version I method starts from the point of 

steady-state conditions where the slow-time variations in amplitude and 

phase have been set to zero after annulling the secular generating terms. 

The steady-state value of the complex amplitude, A, is given in the usual 

form of A, = 12 cr�e", and so this leads to computation of the second order 

solutions from, 

f(Ao, lo)+ý'(AC,, )=o 

Version II requires that, in the steady-state, each function f, (A0, A)) , 

f, (A,, AO) vanish separately, ensuring that the steady-state solutions ii,,, it, 

and u, do not explicitly depend on e. Rahman and Burton (1989) also 

point out that this divergence in the approach cannot be used for first order 

expansions because in such cases the only possibility is 0. The 

reason given for the inadequacy of version I of the second order expansion 

method is that this approach accommodates possible violations of the 
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ordering requirements (as opposed to e not being `sufficiently small'), 

where terms that are neglected because they appear to be of too high an 

order are actually contributing at a similar level to those that remain. 

Rahman and Burton suggest that version I is inconsistent, and that version 

II is generally better. Similar proposals and discussions have been 

advanced by Luongo et al. (1986), Hassan (1994a, 1994b, 1995), Boyaci 

and Pakdemirli (1997) and Luongo and Paolone (1999). 

As the preceding discussion points out certain fundamental 

difficulties can be encountered in the application of perturbation techniques 

to the study of strongly nonlinear problems. One of the most pervasive 

difficulties centres around the fact that all classical perturbation techniques 

rely strongly on the assumption of a small parameter. Many novel 

techniques have been proposed to overcome this particular limitation. For 

example, Cheung et al. (1991) proposed a modified Lindstedt-Poincare 

method, and He (1999,2000) proposed a homotopy perturbation 

technique. The homotopy technique embeds a parameter p that typically 

ranges from zero to one. When the embedding parameter is zero, the 

equation is of a linear system, when it is one, the equation is the same as 

the original one. So the embedded parameter pe [0,1 ] can be considered 

as a small parameter which globally controls the prevailing nonlinear nature 

of the problem. He (2000) illustrates this method with a nonlinear 

differential equation: 

Aý rrý +f (r) = 0, r- EQ (2.6-2) 

with boundary conditions, 

a (u. au/an) = o. ,-Er (2.6-3) 
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where A is a general differential operator, B is a boundary operator, f (r) 

is a known analytic function, F is the boundary of the domain Q. The 

operator A can be divided into two parts L and X, where L is linear, 

while N is nonlinear, so equation (2.6-2) can therefore be written as 

follows, 

L(u)+N(u)-f(r) = 0 (2.6-4) 

A homotopy v (r, p) :cx [0,1] -) R is then constructed which satisfies, 

h(v, p)=(I -p)[L(v)-L(uo)]+p[A(v)-. f (r")]=0, or (2.6-5) 

O(v, p)=L(v)-L(uo)+pL(u�)+p[N(v)- f (r)]=0 (2.6-6) 

where pc [0,1] 
, re Q and uo is an initial approximation of equation (2.6-2). 

Equations (2.6-5) and (2.6-6) are called the perturbation equations with an 

embedding parameter, and it can be solved by a traditional perturbation 

technique using the embedding variable p as a `small parameter' 

A comprehensive review of the method of multiple scales has 

recently been completed by Cartmell et al. (2003), in which they examined 

the role of term ordering, the integration of the small perturbation 

parameter within system constants, nondimensionalisation and time- 

scaling, series truncation, inclusion and exclusion of higher order 

nonlinearities, and typical problems in the handling of secular terms. In that 

paper, Cartmell et al. (2003) showed in a comparative example that the 

form of the adopted power series and the ordering terms can have a major 

bearing on the structure of the solution, with clear connotations for 

accuracy and physical relevance. They then gave suggestions on how one 

can deal with ordering by basing it on some sort of physical appreciation of 
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the problem in terms of `hard' and `soft', or `strong' and `weak' quantities 

within the equation of motion such as damping mechanisms, excitation 

amplitudes, and the coefficients of nonlinear terms. 

In a recent advancement, the method of multiple scales has been 

computerised by means of specialised packages within Mathematica code 

constructs, by Khanin and Cartmell (1999), Khanin et al. (2000) and Khanin 

and Cartmell (2001), with parallelisation strategies introduced for reasons 

of optimisation. This work is still at the stage of a research tool but is 

entering a final stage in which issues of visualisation of large and 

complicated symbolic solutions are to be explored, and so it will enter the 

public domain in the next few years. 
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2.7 Ultrasonics 

Ultrasound comprises mechanical vibrations of sound waves in a solid or 
fluid, but at a frequency higher than the range audible to humans - the 

lowest ultrasonic frequency is normally taken to be 20 kHz. The top end of 

the frequency range is limited only by the ability to generate the signals - 
frequencies in the gigahertz range have been used (Sittig et. al., 1969; 

Brereton and Bruno, 1994). 

Ultrasound has been used for a huge variety of applications, and 

can be divided into two broad categories: low and high power ultrasound. 

Low power applications are usually used where the ultrasound does not 

have any significant effects on the subject of the scan, and these include 

medical imaging (e. g. scanning the unborn foetus) and non-destructive 

testing (e. g. regular crack-testing for aircraft structures). By contrast, high 

power applications tend to use frequencies at the low end of the spectrum 

(i. e. from 20 kHz to about 100 kHz). This is because the power available is 

limited by mechanical stress in the vibrating parts. To maximise the effects, 

high power applications often use as much amplitude as possible. Typical 

amplitudes range from about 5 to 50 microns. These appear to be small 

amplitudes, but an ultrasonic system operating at 20 kHz and 50 microns is 

moving with a cyclic acceleration of 80,000 g! Some high power 

applications include cutting, machining, welding, cleaning, etc. 

The application of high power ultrasonic tooling to manufacturing 

processes is a well-established area of research and one which has shown 

great potential. However, ultrasonic machining and cutting processes have 

been rather under-exploited in industry due to reliability problems 
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associated with the nonlinear behaviour of the various components that are 

used. These processes generally require the use of specifically designed 

ultrasonic components to transmit the energy correctly from the exciter 

(known incorrectly, but generally, as the transducer) to the tool interface. In 

the design of ultrasonic components, three primary performance indicators 

are the vibration amplitude, the uniformity of vibration amplitude at the 

vibration transmission surface, and the acceptable stresses in the block 

horns or blades. 

Studies of high power ultrasonic components by Lucas et al. (1996) 

have relied upon 1D Laser Doppler Vibrometer (LDV) analysis to monitor 

the out-of-plane component of vibration. However, verification of modal 

behaviour is difficult with this method because ultrasonic components are 

designed to exhibit a predominantly longitudinal response, hence 

measurable out-of-plane motion can be easily misidentified as a flexural 

mode response. Further work in providing a complementary technique to 

1D LDV measurements was undertaken by Graham et al. (1999a, 1999b). 

In these studies, ultrasonic bar- and block-horns were analysed by using 

electronic speckle pattern interferometry (ESPI). ESPI is the name given to 

several laser speckle-based techniques which are used for measuring 

discrete displacement components. Shellabear and Tyrer (1989,1991) 

have successfully used ESPI to measure wholefield vibration displacement 

of structures in the low ultrasonic frequency range and thus provides an 

opportunity to incorporate in-plane measurement data into the modal 

analysis of ultrasonic horns. With the advent of 3D LDV, Cardoni and 

Lucas (2002) have accurately characterised the modal analysis of block 

horns from both in-plane and out-of-plane measurements. 
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With the advancement of experimental measurements by the use of 

3D LDV, design strategies such as ensuring vibrational uniformity and 

acceptable stresses in the block horns, or blades, really have to be 

implemented for reliable tuned ultrasonic systems. 

One main source of nonlinearities in ultrasonics equipment 

emanates from the primary component - the ultrasonic transducer. 

Transducers consist of piezoelectric ceramics, which when driven at high 

electrical levels rapidly reach their nonlinear response domain. By 

describing the transducer as a lumped system, Aurelle et al. (1996) have 

highlighted the influence of a nonlinear coefficient, a, in a nonlinear 

piezoelectric constitutive equation as stated below, 

n=+oo n=+oo n=+oo nt=+oo 

_12 
Y 

n2C,, e 
lnS2t + w2 CneJnS2t +a 

n=-ý n=ý n=-ý nt=-ý 

(' +y0C,, e'(n+l)S21 + C, el(n-1ýS2t + 22wj 11C e. 
1' 

= 
-ý 0 (e '+ 

2M 21N1 n=-- 
(2.7-1 ) 

where M is the mass of each tail mass (at each end of the transducer), E 

the ceramic surface, l the half length of the ceramic stack, e the linear 

piezoelectric coefficient, a and y the nonlinear piezoelectric coefficients, 

E,, the excitation level, i the driving pulsation, A the damping coefficient, 

and it, the pulsation associated with the natural frequency of the linear 

system. Equation (2.7-1) was derived by seeking a solution of the tail mass 

displacement u, in the form, 

rt=+oo 

C, e �a' (2.7-2) 
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and together with the stress T given by the piezoelectric constitutive 

equations extended to the nonlinear domain, equation (2.7-1) is primarily 

structured from equation (2.7-3), Mit" = -TI (2.7-3) 

where the primes specify time differentiation. In Figure 2-8, as a is 

increased from lx 10' 5 to 2x 10", , it is obvious that the effect of increasing it 

manifests as a more accentuated softening behaviour. Aurelle et al. (1996) 

have shown how these coefficients affect the nonlinearity of a transducer 

which is predominantly of a softening characteristic. Different excitation 

levels were also investigated, and when the excitation was small, a 

symmetrical curve was generated, whose maximum amplitude is at the 

natural resonant frequency of the system and is represented in Figure 2-9. 

As the excitation level increases, it is evident that the curve changes and 

becomes nonlinear; together with unstable regions. Therefore, the 

performance of ultrasonic systems is strongly affected by these 

nonlinearities and instabilities which originate partly within the transducers 

themselves. 

However, by investigating and modelling the influence of ultrasonic 

energy generation and its interaction with the beneficial mechanisms in 

ultrasonic tooling, other potentially useful solutions related to the measured 

nonlinear coupling effects can be formulated. The state of the art in 

ultrasonic system design is not by any means entirely clear-cut and so 

reliability limitations imposed by deficiencies in current design practices are 

treated in this research by a new attempt to exploit a mechanistic 

understanding of ultrasonic system nonlinearities. The outcome is a reliable 
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tuned ultrasonic tool design strategy which is potentially adaptable to a 

wide range of manufacturing processes involving ultrasonics. 
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CHAPTER 3 

MODELS OF COUPLED NONLINEAR SYSTEMS 

3.1 Introduction 

The approach of achieving nonlinear response modification is proposed by 

coupling two Duffing oscillators in series as introduced in Section 1.4.2. 

The theoretical model of this system takes the convenient simplified form of 

a two degree-of-freedom Duffing oscillator system as shown in Figure 

3-1(a). The model is taken to have predominantly linear damping, as 

defined by coefficients c, and c2, and linear spring stiffnesses, together with 

attendant nonlinear cubic stiffnesses, k,, k2 and h,, h2 respectively. The 

nonlinear stiffness quantity hi relates to a hardening spring defined by 

+ h, x; ̀ 3 and h2 controls a softening spring defined by -h, _V 
3. A harmonic 

excitation force f*() = F* cos Q*t* is applied to the first sub-system, 

whereas there is no applied force on the second sub-system F, (r) =0. 

Note that the stars define physical, dimensional, quantities. This line of 

thinking very much emanates from the serially coupled nature of the 

ultrasonic cutting tool upon which this modelling concept is based as shown 

in Figure 3-1 (b). 
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(a) 

(b) 

Fit t) 

.... ý . 

F2 *(t) 
x2` 

Figure 3-1: (a) Theoretical representation of the hypothesised 
model; (b) A practical representation of an ultrasonic cutting tool 

3.2 System 1: Stiffness Coupled Translating System Modelled In 

Physical Coordinates 

3.2.1 Equations of Motion 

The governing differential equations for the sub-systems in Figure 

3-2 and Figure 3-3 are directly derived from the free body diagrams 

using Newton's laws of motion, 
t 

k, 
_v + /I, (_v, ') 

C I"VI 

1711 :. F, ( t' ) 

Figure 3-2: Free Body Diagram of m, 
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The equation in xI* is as follows, 

17iß I +('IX1 +kl. v +h, (x1 )` -(, (x, -x, ) -k, (x, -x, )+h, (_1_ - ýI )ý - FIý(r ) 
iIII. V] +cI_iI +C2 z, -z, +k, x; +k2 (x1 

- x2)+h, (xl )' +h, (. i; -. i) = F`cýýs S2' 1 (3.2-1 

* 

k, ýx, 
-x, 

ý-h, ýx, 
-x, 

ý 

L, 
(X, 

- XIk) 

F- (t 

Figure 3-3: Free Body Diagram of m2 

The other equation for x2 is also directly obtained, thus, 
s**s 

in,. z, +c2(±, -i )+kz(xz -x, )-lý, (_x, -x, )3 =F(t ) 

nr,. V*+c, ý_V, 
-X, *)+k, (x*-x, )-h, (-x, -x, ") =0 3.2-2 

where v, *,, = x; ̀, (t*) and the star (*) represents variables which still, at 

this stage, possess physical dimensions, and the dot (') represents 

differentiation with respect to time, t* . 

3.2.2 Derivation of the Natural Frequencies (Eigen values) of this 2 

Degree-of-Freedom System 

The undamped linear natural frequencies (i. e. eigenvalues) of the 

two degree-of-freedom system are derived and are used as 

reference frequencies for non-dimensionalisation. Appendix A 

summaries the derivation of these two natural frequencies. 

Therefore, equations (A. 1-7) and (A. 1-8) are the first and second 
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linear natural frequencies of undamped vibration respectively, and 

are re-stated below as, 

1 k, k, k, L, 2k, L2 k, k, k, 
1 

w, _- -+-+-- +- + _+= I (3.2-3) 
2 /]7,111 /I1 l11ý m1 /11 1i1, lYl, in, I 

k21 
w1k, +k, +k, + +2k, 

k, 
-k2 + 

-' 
+k,, (3.2-4) 

? 1771 m1 nl, i92, in, n2, /17,1771 nl, 

3.2.3 Non-Dimensionalisation of Equations 

By introducing dimensionless time, t=w, t. (3.2-5) 

And non-dimensional response coordinates in the form of, 

xI. z=X*, (3.2-6) 
x,.,, / 

where wet is the first eigenvalue as stated in Equation (3.2-3) and 

'17 11T , can be an arbitrary reference displacement. 

Therefore, 
___d 

ýý rt 1 d_rý , 

d (t` 

't 
t dd ýý 

' d_r` 

Jr 

'i2(tý) =COýý _v , 
(t) iý, 

(t 
=CV. -Cý, 

ýtý (3.2-7) 
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In dimensionless time, equations (3.2-1) and (3.2-2) become, 
rr // 

ix (x1' 
ý71,,. ý +c, +c,,, -x, +k, x, +k, (x 

-.. 
) 

+h, (x, Y) 3 +h, (. ý-, -x, )'=F`cos (Y 
t (3.2-8) 

m2we1x2 +c, l0 xz -xý* +k2(xz - xi) -h2(x, -. ai) =0 (3.2-9 

where the prime (') represents differentiation now with respect to 

dimensionless time, t. 

Non-dimensionalising equations (3.2-8) and (3.2-9) with respect to 

the reference displacement, 

rr rr 
#r # .«# 

x1k C pik c, x1 x2 kl xi k, x1 x +#+##+2+7 
:kt 

x, 
rr 

1"I 1 -kr, / 
Inlo)l X, 

-�/ 
vrer MAI Xref ink 1e! xrf 

2## 
MAI xrr/ ifIW'I irr/ 

x2 

rel 
Yk M2Cl Xý. 

ý, f 
IYl, w;, Xrrl xrr! %n2W 1 X''ý 

results in, 

F* S2* 
cos -t 

(3.2-10) 

(3.2-11 ) 

rr rrrý3 

r +2ý,. ý, +2ý2 
(. 

z", -. ý, 
)+y1x, 

+y, (x, - "ýý+7I, ( ) +t7 ýý"ý- `ýý =FcosQt (3.2-12) 

_; 
rr r ') 

+ r, (-v, 
- vi )- 173 (X-, - 

(3.2-13) 
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where the non-dimensional parameters are, 

ei 
- 

C, 
_C 

2m10)e1 2m, (t)� 2m, we1 

;v=k, Yý = 
kZ 

2 Y3 = 
k2 

2 m1w 1m ýel mzwel 2 

+2xhx, 2.2 

ý7 ref n/ 
h2 xj 

22' '/3 2 miCO, 
i m1we1 m2wei 

F` S2" F= 
2 S2= 

ml0el ire/ del 

3.2.4 Solution to the Equations of Motion 

(3.2-14) 

The classical perturbation method of multiple scales has been 

chosen for the analysis of these equations because the solution is a 

function of multiple independent time-scales, so the fast scale can 

be used for capturing motions at frequencies comparable to the 

linear natural frequency of the system, whilst the slow scale 

accounts for slow modulations of amplitudes and phases. Nayfeh 

(1973), Jordan and Smith (1977), Nayfeh and Mook (1979), Cartmell 

(1990), Thomsen (1997), Murdock (1999) and Warminski (2001) 

have all authored books discussing and applying this method to 

engineering systems. 
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3.2.4.1 Ordering of terms 

Motions in the neighbourhood of the static equilibrium position are 

considered so that the amplitude of the response is assumed to be 

of the order of some small parameter F, 0<F01. All the terms in 

equations (3.2-15) and (3.2-16) are re-formulated in terms of this 

small parameter, e, with the exception of the linear inertia terms, 

and the linear stiffness terms containing y, and y,. This ensures that 

all other effects only appear within the higher order perturbation 

equations, whereas the aforementioned terms appear in the zeroth 

order perturbation equations from which generating solutions are 

obtained [Asfar (1992)]. This philosophy is pragmatic and realistic in 

that it permits the pre-ordained generation of linear, homogeneous, 

generating solutions for each coordinate. 

Multiplying the appropriate terms in equations (3.2-12) and (3.2-13) 

by r: 

X1 +2E +2E ý, x -_x, J+YxI+E x --x-, +Eý, t, 3 +Cr/, (, V, --x, =EFCOSS2t ( 
Y(ý ) (x ) 

(3.2-15) 

if rr 

1,2ýýýý1 11 l' i1)-E'/i\x (3.2-16) 

where: 
ýi =F iý 17, =C 17.173 =E if 

: 

F=EF (3.2-17) 

47 



Chapter 3: Models of Coupled Nonlinear Systems 

3.2.4.2 Introducing time scales 

As required by the method of multiple scales, the co-ordinates of 

XI 
,2 

(t) are stated in power series form, as are the total derivatives 

with respect to time. Assuming a uniformly valid expansion for the 

solution of equations (3.2-15) and (3.2-16) as: 

. v1(t; e)=xjo(T, T)+Ex1i(T T, )+O(Hý 

where j: 1,2 and, 

T =ent where e0 1 

n: 0= fast time, 1= slow time (independent time scales) 

Taking uniform expansions as: 

(3.2-18) 

(3.2-19) 

x, =XI() +E x� + o(e'2) , X2 = . l2O + EX'[ + o(E 2) (3.2-20,3.2-21 ) 

and for the derivatives: 

d= 
Doi +e Di + O(e") ;d= D02 + 2e DOD, + O(e2) (3.2-22,3.2-23 

dt dt' 

where _t,,, and _ ,,, 
in equations (3.2-20) and (3.2-21) represent 

functions of timescales T� (i. e. To =t and T, =e t). The partial 

derivatives of equations (3.2-22) and (3.2-23) are stated in the 

standard D operator notation where D, ' = )' /JT, ' . 
Series (3.2-20) - 

(3.2-23) inclusive are truncated after the first order c terms, because 

this perturbation analysis is limited to first order level. 
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3.2.4.3 Coefficients of order, e 

Applying the method of multiple scales in the conventional manner 

by substituting equations (3.2-20) to (3.2-23) into equations (3.2-15) 

and (3.2-16), the equations of motion become, 

[D1 +2£D0DýýLxi0+£xiý]+2£c, [Dn+£Di][xio+£x1i]+2£4,, [Do +£D1ý{ýx0+F-ýii1 ý. k2 +£. r. I 

+i/i1x10+£xii]+02{1xi0+£I - 21 +£x, iý}+£7J, 
[x +3£-vi'nx +3£. viýý. ti-i+£_tii1 

+£r/2 [_x, 
o + 3x420 - 3x, nx, () +x+0 (£" 1_£F COS S2 t (3.2-24 

ýD( 
+2ED0D1]x20+a21]+2Ej, [D0+eD1ý{ýxý, +a21ý-ýx1O+a 1} 

+Y3 ýý, 
ý, + , i]-[x10+ ii]}-E%3L x')+3xý)X20-3x, flx O+x u+OýE'lýý=0 

(3.2-25 

Then, collecting the coefficients of like order of s" and equating 

them to zero leads to, 

Order e° 

Do xco + Yýxýo =p (3.2-26) 

(3.2-27) z0 D() z, O + Y3xz0 

Order e' 

D- +2D Dx +2cDýýx, () +2ý D<, xý ý, D�-v, ý, +Y'iIO-Y, 
,, x.. ý, ýýý ý (3.2-28) 

33 
+ý 1+`r, -3. r r, -F cosS2r 

D+2DDv, +? 
2 -3C v, 0 (3.2-29) 
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Arranging equations (3.2-28) and (3.2-29) into conventional ODE 

structure for further analysis, 

D( x1I +Cý2x,, =FcosQt-2DoýDixi00-2 1Dnvio-ýý, [) vin+2 D,, 
-v, 0-7'" IO+Yzk 

- ý1ýx<<ý3 - ý7z(x 1,, 
3+ 3xIý, 2xz(, - 3x�)-ý-,, ý2 - -x1ýý3 (3.2-30) 

D0 X21 + CO2 X-1 I=2 Doxio - 2D0D, x, 0 -2 3DO-k, + o) 

+773(-zo g +3xJQ 2 x,, -3xiox, 0 
2' 

--t-io> (3.2-31 ) 

where, wI =Y2=Y, (3.2-32,3.2-33 ) 

It is clear that each perturbation order requires explicit solutions to 

x, 0 and x20 , and then appropriate treatment of the emergent 

structures on the right hand sides. 

3.2.4.4 Terms in x� which are always seen to be secular 

Harmonic solutions of equations (3.2-26) and (3.2-27) are 

appropriate; and stated in convenient polar forms, respectively, 

these are, 

v. = AI (TI) erü), r� + A, (T, ) e-r(", r� 
(3.2-34) 

aý, T . 
-T 

un 1 -im To 

t. =A, (T, ) e"+A. (T, ) e, ý+A (T, ) c+ ýa 
; (T1) Cý (3.2-35) 
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Reference to Appendix B provides a validation of the above 

equations, and so re-stating equations (B. 2-2) and (B. 2-3) 

appropriately, gives, 

A3(T1) =T A1(T1ý 
, 
ý= (3.2-36,3.2-37 ) w; -; 

The overbar denotes complex conjugacy and i=. It is assumed 

that the system parameters are such that none of the internal 

resonances is activated, and the system is under a form of external 

resonance, as stated in Section 3.2.5.1. Substituting equations (3.2- 

34) and (3.2-35) into the right-hand side of equation (3.2-30), then 

removing the `always secular' terms at the first perturbation order 

yields the following equation. Appendix C. 1 shows the detailed 

analytical calculation, and so re-stating In[11]1 from it as follows, 

shows the predominance of cubic structures that are present. 

7A -i2w A -i2w A -3ýA2A + 3A'A -3i, A2; +6V AA, A, 
1 

+? 2A, +i2ü 2A3 -6i 2A, AýA, +6i2A, A3A, -6kA2AýA, +3i 2A, 
2- 2 A, -302A, A, -i2w, A, +c. c. 

(3.2-38) 

As usual, c. c. denotes the complex conjugates of the preceding 

terms, whilst the prime indicates differentiation with respect to the 

slow time scale T,. 

I Input line 11 from the Mathematica program in Appendix C. 
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Since the primary system is excited at Q, which is going to 

be synchronous with a, or nearly so, then one can state, 

c=a), +eV 

In Appendix C. 2, three internal resonances are identified in 

the system. They are superharmonic, subharmonic and 

primary resonances, and are defined as the following 

3.2.5 Identification of the External and Internal Resonances 

3.2.5.1 External resonance 

3.2.5.2 Internal resonances 

(3.2-39) 

specific cases of interest, 

0 
I 

Case 1 (Superharmonic Resonance) : co, =3(, + E61 (3.2-40) 

0 

0 

Case 2 (Subharmonic Resonance) : w, =3 co, + c6, 

Case 3 (Primary Resonance) : w, = W, + Co-, 

(3.2-41 ) 

(3.2-42) 

c t, and e6, F6, ca, are conveniently defined as external and 

internal detuning parameters respectively, in common with literature 

style conventions for such quantities. 
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The theoretical analyses of Chapters 3 to 5 investigate a 

simple discrete physical system which is a vehicle for the 

phenomena of interest but is not a direct model of the ultrasonic 

system that will be discussed in Chapter 6. The resonance 

conditions predicted theoretically in these chapters do not, therefore, 

explicitly define the resonant behaviour of the experimental system. 

However the theoretical model does indeed encapsulate the 

phenomena, which can be observed and discussed here, within the 

experimental system. For this purpose the superharmonic resonance 

condition is examined first because of the particularly clear-cut 

manifestation of the phenomena of interest. These phenomena are 

also present in the subharmonic case and despite some algebraic 

complexities will also be present in the primary resonance case. 
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3.2.6 Case 1 (Superharmonic Resonance) : Method of Multiple 

Scales w, = 
1 
acv, + e6, 

3.2.6.1 Secular terms from the first order perturbation equations 

As usual, the system dynamics become more involved when internal 

resonances are activated. For instance, in the case of the 

superharmonic resonance (1: Y, ), extra terms from In[1] of Appendix 

C. 2 are required, 

-e`T°(j -q) ý, A2 +c. c. (3.2-43) 

These need to be added to the `always secular' terms of equation 

(3.2-38), to result in the following secular terms for perturbation x� 

for this superharmonic resonance condition, 

-e' o(3 q)) AýI+ 
1 

e'(ý2-q)' A -i2wýA -i2wý A -3iA2A +3i, A2A 

-302A, 
'A' + 602A, A, A, + y, A, + i2w, ý2A, - 67"J, A, AA, + 60J, A, A, A, - 6ý 

2A, 
Aý, 

2- 2- A, -3i2Al Al -i2w, A, '+c. c. (3.2-44) +3i2A3 

In Appendix C. 3, the secular and complex conjugate terms in 

equation (3.2-44) are removed from the inhomogeneous part of 

equation (3.2-30) and so x� is then derived as equation In[19] of 

Appendix C. 3, as re-stated below, 
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Iy, A, +i2w, , A, -6'2AA, A+6ýAA, A -3ýA'A, +6' 424'Al-6iß�-1 

+terms proportional to e; ý2°''+q,, T, eiaagT, c, 'u'=-z`ý)T, ei ("'- 2°ýýr, 
Eýý2a -aj)T, +c. c. 

(3.2-45) 

Perturbation x� is then substituted into the inhomogeneous part of 

equation (3.2-31), and the `always secular' terms of _Y,, 
(from In[12] 

of Appendix C. 4) are then identified as follows (refer to Appendix C. 4 

for intermediate analysis), 

w7YA i2w; «2Ai 6wwrJZA, A, A, 6w; iJ, AA, A, 
2 z+ 2 -i2w, ýiý -z+ +6ý7, A, ýA, -6ý, A, A, A, 

Ctli -coz 0) -Cý Lý -CO2 Cqý -(a 

30)2 2 
2A2 

z- 6w 
2A2AA, 

60) 
2A2A3 

A3 -, 
- ý_ý, +3M Ai+ 

ý2 - 2_ý2 -60; A, AAl+60, A, AýA3-i2w, A, +c. c. 
1z Ui z ýi z 

(3.2-46) 

Again, extra terms for the superharmonic resonance need to be 

added to equation (3.2-46) as follows, 

ei (cý-3(o, ) T 1-3A1Ä ,+ 3ý, AJ + 
3cok, A1; ý 312 kAl+c. 

c. -, 4 q, (02 -4 o), ,4ww, - 4w2 

(3.2-47) 

This results in the following secular terms for perturbation x21 for the 

superharmonic resonance case, 

ý 3w; A, Az 3 ü), - wY 
e (ý--« ir� 

1-31AiA;, 
+ 3r)ýA1A; +, -++ 4w, w, -4w, 4w, w, 

-i 2w, , A, - 
6w 1A, A, A1 

+ 
6a 7AIAý A3 3(v, ý), Aý A, 

A, AAý A, A, A, 
+30, A, A, + 

(Ui - Cv, Chi - C0; 
(3.2-48) 
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Appendix C. 5 identifies the 3 internal resonances of . v,, , and they 

are identical to those in Section 3.2.5.2. 

3.2.6.2 Modulation equations 

The general approach in multiple scales is to equate the secular 

terms of equations such as (3.2-44) and (3.2-48) to zero, so as to 

preserve the uniformity of the expansion. The complex amplitudes 

A and A, can be expressed here in polar form, in common with 

conventional practice based on algebraic expediency, 
An=2Qne All 

2Qn (3.2-49) 

Clearly, a� and ß,, are real and are functions of T,. Substituting 

them into equations (3.2-44) and (3.2-48) and separating out the 

real and the imaginary parts of the resulting relations, leads to a set 

of modulation equations (also known as slow-time equations). 

Appendix C. 6 shows the derivation of the four modulation equations; 

In[18], In[19], In[26] and ln[27], and they are re-stated here as , 

F11 3_ 339923 
2 cos[A, ]-2y1a, + Fy2a, -8 a1 +1a; 8F772ä, +jF7ý, a, 

+3 17, a1ä; -3 F7%, a, a, - cos [(DI ] rj, a + Ct1, n, ý, =0 
448 

(3.2-50) 

F 
sin[ A, ]-ýiýý;, u, il, cr; -co, uý =0 

(3.2-51 ) 
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cr 3CO; aý , 
3h Co; i, a, -a, 3hw-; 7, )a a3 

>>>,, 
+-I7; LIý (l, F%/; 

(lý (l, 
2w - 2w; 4a - 4rß, 4a - 4w; 

+ 
2r. ß- - 2w; 4-- 

3 ,_ 3cos[ý, ]w; i, a, a; 3Fcos[(D, ]w; a1a; 3, 
+-T ij3a a, +- 2- 

-----cos[ (Dý ]lTa a, 4 32w w, - 32wz 32w, wz - 32w, 

+3 I'cos [(D] 7%., aiaz - 
30, t, -1 

z+3i a3 + w2azßz =0 88w -80)2 8 

(3.2-52) 

_ __ 
3sin[(D, ] ta, a; 3Fsin[(D, ]w; ý, a, a; 3., 0) ý2a2 

- ýz + +-sin 
0) 32co, w, -32w; 32aw, -32(a_ 8 

-3Fsin[(') , 
]7J3a, a; -w, a'' =0 8 

(3.2-53) 

where A1=v11-ß1 , (D, =36, T, - )6, + 3ß, (3.2-54 , 3.2-55 ) 

and the primes indicate differentiation with respect to the slow time 

scale T,. The form of equations (3.2-50) - (3.2-53) renders the 

system autonomous because of the use of equations (3.2-54) and 

(3.2-55). 

For steady state, the condition is required for this autonomous 

system whereby, 

ý'-n; =A'-ý'-0 (3.2-56) 

noting that the dependence on slow time scale T, provides a 

reasonable justification for doing this. 
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In order to apply the steady-state conditions, it is necessary to 

differentiate equations (3.2-54) and (3.2-55) with respect to T 

leading to, 

A; =v, - ß1 =0 Qý _ (3.2-57) 

ý; =36, -ß; +3ß2' =0 ßý=1 
1 -6, (3.2-58) 

Substituting equations (3.2-56) to (3.2-58) into equations (3.2-50) to 

(3.2-53) generates the following four algebraic equations, 

F11133 
2 cos [A1 ]=g cos [ý1 ] r), a2 + 7221 -2 Iy a1 +g 11, a1 - g-il, a; 

9; 9.. ;333 3_ 3 
+8 T'71, a1 -8 F2 r12ai +8 F172a, -4 7j, a, u, +4 hil, cila -Ua, vi 

(3.2-59) 

F 
sin [A, ]=1 sin [(D, ] ý72Qý +N ýja, + a, - I, w, 

28 

(3.2-60) 

3 3w; ý, a, a; 3TCOýýza, a; 
-7 aa, +3 Fi a, a, cos[(D, ] 

32ov, w, - 32a 32r w, - 32w; 818 

(o--, Y, a, 3o), ai az 3J w a; a 
-- 

3I'w; iJ, crý a, 3 
-au, 

2' -2co, 
+ 

4w, 2 
-4aa,? 

+ 
4(2 -4w 2r 2- 2rv 4 

ýl, , 

3w2 ý7, a, 
_3 +3 I'rJn, 'cr, -3 I''ý7ýa; a, +8'_ 8ý; 8 

Wa, 3 v, - 6, 
24 

(3.2-61 ) 

3w-i7_crýcrll 3TCr)-'17aýa , ýýi I1cru_ +-rlj; criu 

]sin[IJ 

32ww, - 32 w, 320J1wý-, - 32(D 88 

w, ý3ý, (3.2-62 ) 
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3.2.6.3 Solvability equations 

Squaring and adding equations (3.2-59) & (3.2-60) and (3.2-61) & 

(3.2-62) leads to the so-called solvability equations for the 

superharmonic resonance of Case 1 (See Appendix C. 7 for detailed 

intermediate analytical calculations). 

- Col 1296CF2 ((I'- l)` (w, + wz)2 (wýýýz +4(ct)2 )'C'03 )2 aý 
) 

4C01 Co; 
(Eý2 

1+ = w, (ýý"ý-(r-1)ß'2)u, - 

(2 

3(I, -1)(wi +w2)(a2e 1 +4(a2 -w )cý., )aý 

+w, ) (4we -w2(ei2+4e 3)) a, 
(8ev1 +4(F-1)e2 _3(E +(I, -1)3Fij, 

)a1) 

2 
+2ei2(8co2(2(Ev, -3Eo, )(w, Z-w2)+3w2e22)-9(F_1)2(Crý(w, -3col)eij, +8( Z-a)) E03)a1 

)a2 

-36E02 
(w (E0 

2+ ei ý-w, ýýý1ýý u2 

(3.2-63) 

_ 
'- 4w2(2(ev, -3e6, )(w; + 

Chi -CU, 
ý $760), ++ 

2222 O -w, - CO) 9(CO +E -CO Fi )(2ýI'-lý a +cý= 

-81(r_ 1)2 )e)2e )2aýa, 
16 

(3.2-64) 

From the standpoint of these two solvability equations, the next 

section shows the results of the frequency-response plots for the 

superharmonic resonance under appropriately varying conditions 

and parameters. 
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3.2.7 Case 1 (Superharmonic Resonance) Multiple Scales 

Results 

Four autonomous, slow-time, modulation equations (3.2-50 to 3.2- 

53) were derived from the real and imaginary parts of the secular 

terms equations for perturbations x� and x,,. The function of the 

secular terms equations is to remove those terms from the right 

hand sides of the perturbation equations that will otherwise 

invalidate the uniformity of the power series. The secular terms 

equations are then processed separately in order to find the steady- 

state amplitudes of the solutions. After this, a return is made to the 

main analysis to find the particular solutions for the system variables 

(i. e. co-ordinates), into which the analytical forms that have been 

found for the steady state amplitudes can be substituted to give the 

complete solutions. 

In order to make progress, the Mathematica code was then 

used to solve numerically for a, and a, within equations (3.2-63) and 

(3.2-64). Graphs of Amplitudes versus Forcing Frequency (i. e. a, 

versus S2) were plotted for different cubic stiffness values. 

Table 3-1 represents the values of the constants for the 

graphs plotted for Figure 3-4. These values are obtained from the 

experimental set-up and experimental testing of an elastomer spring 

in Section 9.1 and Appendix F. 1, respectively. Figure 3-4(a) and 

3.4(b) shows the nondimensionalised response plots of amplitudes 

a, and a, respectively for the case of the superharmonic resonance 
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of equation (3.2-40). In these plots, the hardening cubic stiffness 

coefficient h, , the excitation level, and all system quantities other 

than the softening cubic stiffness coefficient h, , are kept constant. 

Dimensional Parameters 

Mass 
[kg] 

Damping Stiffness 
[Ns m-1] (Linear) 

[Nm-'] 

Stiffness Force 
(Cubic) [N] 
[Nm ] 

Eigenvalues 
[rad s-1] 

m, =2 c, = 0.05 k, = 847,776 h, =1200 x 106 F* = 10 w., = 209.828 

11/2 =1.125 c2 = 0.05 k2 = 52,986 h, = see below (o., = 673.388 

Softening cubic stiffness coefficient, h, varies within the following range: 
10 x 10`' ; 20x106 ; 50 x 106 ; 100 x 106 [N m-31 

Reference displacement :. a- =0.1 m 

Non-Dimensional Parameters 

Damping 

C, = 0.0000596 

ý, = 0.0000596 

Stiffness 
(Linear) 

Y, = 9.6277 

y2 = 0.601731 

Stiffness 
(Cubic) 

r71 = 136.277 

772 = varies 

Force 

F=0.0001136 

ý; = 0.0001059 =1.06974 rýý = varies 

Table 3-1: Data of graphs plotted for Case 1 
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3.2.8 Case 1 (Superharmonic Resonance) : Discussion of Results 

Figure 3-4 presents the nondimensionalised response plots of the 
hypothesised theoretical model of Figure 3-1. Using the method of 
multiple scales, the effects of coupling an opposite nonlinear cubic 

stiffness to an initial nonlinear system have been accommodated for 

the superharmonic resonance. By varying only the softening cubic 

coefficient li., it is evident from Figures 3-4(a) and 3-4(b) that /1, 

affects the general characteristic behaviour of the system. 

The effect of increasing h, manifests as more accentuated 

softening behaviour by bending both responses towards the left. In 

both graphs, it is shown that as h, is increased from 0-008h, to 

0.083h, , both responses become more softening in nature, thus 

suggesting that the softening cubic coefficient does contribute 

significantly to the nonlinear properties of the overall system. 

Conversely, a decrease in h, will cause the system to be 

less softening and bend towards a more linear response. The most 

desirable response is when h, =0.008h, for which both responses 

and a2 are distinctly linear in appearance. 

Both graphs also show that the resonance curves are 

centred approximately at Q=3 reflecting that this analysis is indeed 

representing the superharmonic resonance of the system. 
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CHAPTER 4 

DIRECT NUMERICAL INTEGRATION 

4.1 Introduction 

The most general approach for the solution of the dynamic response of 

systems is direct numerical integration of the governing equations of motion 

in the time domain. The solution is initially defined at time zero and then 

convergence is sought thereafter at discrete points in time. Many methods 

use equal time steps at At, 2At, 3At...... NAt, however highly nonlinear 

systems benefit from more sophisticated alternatives where variable step 

size is employed in an attempt to achieve convergence. 

The methods for integrating ordinary differential equations can be 

classified as the predictor-corrector method, multi-step methods and single- 

step methods. Predictor-corrector methods proceed by extrapolating a 

polynomial fit to the derivative from the previous points to the new point 

(the predictor step), then using this to interpolate the derivative (the 

corrector step). Press et al. (1992) opine that predictor-corrector methods 

have been largely supplanted by the Bulirsch-Stoer and Runge-Kutta 

methods, but predictor-corrector schemes are still in common use. 
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Multi-step methods include the Adams method and the Gear 

method. The principle behind a multi-step method is to utilise the past 

values of y and/or y' to construct a polynomial that approximates the 

derivative function, and extrapolate this into the next interval. Most methods 

use equispaced past values to make the construction of the polynomial 

easy, and the Adams method is typical. Referring to Figure 4-1, the Adams- 

Bashforth method uses the 0, -1, -2 and -3 data point to calculate the +1 

value. Thus, quite large step sizes can be used accurately. A further 

advantage is that only one additional calculation is needed for each new 

step. The earlier points must be calculated using another technique, such 

as the Runge-Kutta method. A refinement of this approach is the Adams- 

Moulton method which includes a back calculation step to confirm the 

accuracy of the first step. These methods are called predictor-corrector 

methods (forward-backward calculations). These methods work well with 

ordinary differential equations, however, there are occasions where these 

methods become very inefficient, particularly for stiff systems. 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Figure 4-1: Illustrating a multi-step method 
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Stiff systems are distinguished from non-stiff systems in that they 

have interacting components that vary on widely different scales. Stiff 

systems are models where the ratio between the slowest and fastest rate 

constants is greater than 500 (stiffness ratio > 500). An answer to this 

problem is the Gear method (Gear, 1971). The Gear method, a predictor- 

corrector method, is very efficient for stiff systems. It is quite capable of 

efficiently working with systems with a stiffness ratio greater than 106. 

The Newton-Raphson method is one of the most popular technique 

used by engineers for solving nonlinear equations. This method is 

distinguished from the others by the fact that it requires the evaluation of 

both the function f'(x) and the derivative f'(x), at arbitrary points x. The 

Newton-Raphson formula consists geometrically of extending the tangent 

line at a current point x; until it crosses zero, then setting the next guess 

x; +, to the abscissa of that zero-crossing. The general iterative formula for 

this method is, 

xn+i 
_x -J, 

(fin) 

f(xn) 

Another technique that has been applied to the dynamic analysis of 

many practical engineering structures is the Newmark method. Newmark 

(1959) presented a family of single-step integration methods for the 

solution of structural dynamic problems for both blast and seismic loading. 

Since then, it has been modified and improved by many other researchers 

such as Wilson and Clough (1962), Wilson et al. (1973) and Hughes 

(1987). In 1962, Wilson and Clough (1962) formulated Newmark's method 

in matrix notation, added stiffness and mass proportional damping, and 
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eliminated the need for iteration by introducing the direct solution of 

equations at each time step. Then Wilson et al. (1973) made the general 
Newmark method unconditionally stable with the introduction of a `B factor'. 

The introduction of the `0 factor' is motivated by the observation that an 

unstable solution tends to oscillate about the true solution. Therefore, if the 

numerical solution is evaluated within the time increment, the spurious 

oscillations are minimised. Hughes (1987) then proposed the `a method' 

and used the Newmark method to solve the following modified equations of 

motion, 

Müt +(1+a)Cu, +(1+a)Kur =(I+ a)Ft -a Ft +aCi , _,, 
+aKrr, 

_ot 
(4.1-2 ) 

With a equal to zero, the method reduces to the constant acceleration 

method. It produces numerical energy dissipation in the higher modes; 

however, it cannot be predicted as a damping ratio as in the use of 

stiffness proportional damping. Also, it does not solve the fundamental 

equilibrium equation at time t. The performance of this method appears to 

be very similar to the use of stiffness proportional damping. 

In this chapter, the Runge-Kutta technique is used to integrate 

numerically the equations of motion so that these can be compared with 

the results from Chapter 3 that were generated by the Method of Multiple 

Scales. The Mathematica program (Version 4.1.0.0) developed by Wolfram 

Research [Wolfram (1996)], has been used to carry out this analysis. The 

function used within this Mathematica code to solve the set of differential 

equations is NDSolve[ ]. NDSolve[ ] can handle a wide range of ordinary 

differential equations as well as some partial differential equations. In a 

system of ordinary differential equations there can be any number of 
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unknown functions v; , but all of these functions must depend on a single 

"independent variable" x, which is the same for each function. NDSolve[] 

represents solutions for the functions y; as InterpolatingFunction objects. 

The InterpolatingFunction objects provide approximations to the v; over 

the range of values xmin to xmax for the independent variable x. 

The integrator method selected within the function NDSolve[] is the 

fourth order Runge-Kutta (i. e. Method - RungeKutta ). This is because the 

relevant equations of motion are non-stiff. The Runge-Kutta method 

numerically integrates ordinary differential equations by using a trial step at 

the midpoint of an interval to cancel out lower-order error terms. The fourth 

order Runge-Kutta method requires four gradient or `k' terms to calculate 

for v�+, , 

n+l =_yn+6(k, +2k, +2k3+k4) 

where h is the incremental independent variable and, 

k k, =hf 
12 kl 

+ t+-, 
V� - hf (t' 

I vn �7 

k3 =ý2f tai+ýý, y'n+k2 k4=hf(t +h, v�+ký) 

(4.1-3) 

(4.1-4) 

69 



Chapter 4: Direct Numerical Integration 

4.2 System 1: Stiffness Coupled Translating System Modelled In 

Physical Coordinates 

In order to provide another theoretical basis for the comparison with the 

results from the multiple scales analysis, a direct numerical integration of 

the differential equations is carried out in this section. 

4.2.1 Program Code 

The code that numerically integrates the governing equations of 

motion (3.2-1) and (3.2-2) can be found in Appendix D. 1. It is written 

in Mathematica and this code is for an upward frequency sweep. A 

definition of the program code follows next in Appendix D. 2. 

4.2.2 Sample Results from Mathematica 

Some sample results from the bespoke Mathematica integrator are 

given from a frequency sweep up and down between Q* = 205 to 

215, with a frequency step of Qstep = 0.2, (units in rad/s). A 

superposition of the sweep up and sweep down graphs, together, for 

ý, and Y, can be found in Figures 4-4(b) and 4-5(b), respectively. 
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4.2.2.1 Frequency sweep up from Q* = 205 to 215 rad/s 

The program code in Section 4.2.1 took approximately 17576.4 

seconds (about 5 hours) on a Pentium 4-2.4GHz - 512 Mb RAM 

computer to produce the following results, 
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4.2.2.2 Frequency sweep down from S2* = 215 to 205 rad/s 

Next, the results are presented for the downward sweep between IY 

= 215 to 205 rad/s 
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4.2.3 Case 1 (Superharmonic Resonance) 

In order to provide a theoretical benchmark for comparison with the 

results from the multiple scales analysis, results from direct 

numerical integration of the differential equations are presented in 

this section. With certain modifications to some of the program 

control parameters within the general code summarised in Section 

4.2.1 and Appendix D, non-dimensionalised frequency-response 

graphs are plotted for x, and x, . In a similar approach as taken for 

the multiple scales analysis the softening cubic stiffness, h,, is 

varied, but the rest of the constants remain the same as in Table 3- 

1. Figures 4-4(a) and 4-5(a) show the non-dimensionalised linear- 

logarithmic plot of the amplitude responses _v, and x, , with respect 

to the excitation frequency 92. 

An upward and downward sweep of the excitation frequency 

has been carried out for each overall iteration. The thicker lines 

denote the upward sweeps while the thinner lines denote the 

downward sweeps. A closer look at the first mode and the third order 

superharmonic is provided in Figures 4-4(b)/4-5(b) and 4-4(c)/4-5(c) 

respectively. It is clearly seen from Figures 4-4(b)/4-5(b) and 4- 

4(c)/4-5(c) that the regions between the respective thick and thin 

lines are multivalued, with at least one unstable solution implied. The 

familiar jump phenomena, which are evident here for the frequency 

sweep in both directions are as described in Section 1.4.1. The 

unstable regions in Figures 4-4(c) and 4-5(c) are approximately 

73 



Chapter 4: Direct Numerical Integration 

around S2= 3.23 to 3.27 rad/s, with slight variations for the different 

values of h, , 
however these can only be clearly seen if the diagrams 

are enlarged. 
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4.2.3.1 Discussion of results 

Comparison between the results from the multiple scales analysis in 

Section 3.2.7 and the numerical integration benchmark summarised 

here shows evidence of a consistent phenomenon whereby both the 

responses in the first mode of _v, and _v, show accentuated softening 

as the softening cubic coefficient is increased (see Figures 4-4(b) 

and 4-5(b)). The amplitudes of both a, and x, are also marginally 

higher than a, and x, for the response of the first mode. The results 

for the third order superharmonic in Figures 4-4(c) and 4-5(c) cannot 

be compared to results from the method of multiple scales analysis 

because the latter only gives results for the first mode around the 

region close to the external resonance condition where ev = 0, as in 

equation (3.2-39). However, it is interesting to note that when the 

softening cubic stiffness coefficient is increased, the overall 

response characteristic shows a tendency to become more linear in 

Figure 4-4(c), whilst a more progressive hardening effect is visible in 

Figure 4-5(c). 
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CHAPTER 5 

NUMERICAL INVESTIGATION 

OF SYSTEM DYNAMICS 

5.1 Introduction 

In the study of nonlinear dynamics, exact analytical solutions are hard, if 

not impossible, to find. Besides relying on precise analytical solutions, 

emphasis can also be placed on the qualitative behaviour of the system. 

Bifurications, Lyapunov exponents, manifestations of periodicity, chaotic 

attractors and fractal structure are all qualitative features which can be 

observed in solutions obtained from numerical integration. Therefore, 

understanding the dynamics of an analytically modelled system, or a 

system defined by a finite element model, can be extended further by 

recourse to techniques based on specialised numerical investigations. 

During the last decade, proprietary numerical analysis software, simply 

entitled Dynamics has been developed by Nusse and Yorke (1994) to 

enable computational numerical investigations of system dynamics. 

Several authors, Nusse et al. (1994), Chin et al. (1994) and Nusse et at. 

(1995) have all used the algorithmic approach of this software to plot 

bifurcation diagrams and basin of attractions for a range of physically 

interesting systems. Since then, a newer edition, Dynamics 2, also by 
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Nusse and Yorke (1998), has been developed and it is this environment 

that has been utilised as a computational basis for the qualitative 

assessments discussed in this chapter. 

5.2 Program Code 

The Dynamics 2 programming environment has numerous examples of 

maps and differential equations built in, in particular the Henon map, Ikeda 

map, Kaplan/Yorke map, Logistic map, Quasiperiodicity map, Tinkerbell 

map, Tent map, and the Piecewise linear map, amongst others. Differential 

equations include Chua's circuit, Goodwin's equation, examples of 

Hamiltonian systems, the Lorenz system, the Lotka/Volterra equations, 

forced-damped pendulum equation, a parametrically excited Duffing 

equation, the Rössler equation, and the forced Van der Pol equation. Some 

of the defined equations from the program are as follows, 

Henon map: 

H(x, v)=(p-x'+C,, x) 

Logistic map: 

L(x)=p. ß(1-x) 

Forced-damped pendulum: 

v"+C, . ý'+C, sin_i = p(C3 +COS[Qt]) 

Parametrically excited Duffing equation: 

"+C, i'-_ +C, (l+psin[Qt]). v'+C3(l+psIn[S2t]). v'=0 
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Forced Van der Pol equation: 

x"-C1 x'(l-x') +C, x+C, x =psin[, 2t1 

where p is the excitation amplitude, Q is the excitation frequency, and 

C1, C, and C, are all constants. 

Although code is provided for a variety of maps and differential 

equations, coupled Duffing equations are not pre-defined in this way. 

However, an option within Dynamics 2 allows the user to add his/her own 

mathematical model to the above list. Figure 5-1 shows a screen dump of 

the code that was created for the analysis of the coupled Duffing system of 

equations (3.2-1) and (3.2-2). The reader is referred to Appendix E. 12 for a 

brief summary of Nusse and York's (1998) detailed procedures for adding 

customised differential equations into Dynamics 2 and also the definition of 

the program code in Figure 5-1. 

Line 1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 

12 
13 
14 
15 
16 
1/ 
13 
19 
20 

Line 21 

) Documentation: (allowed process paraneters: rI..... r9, phi, rho. : igna, beta 
SYSTEM 1: CASE 1 
X' + (cl+cZ)-X'- cZ*Y' + (kl+k2)*X - k2*-Y - h1*X-3 + hZ*(Y-X)"3 = rhowcos(phiw 
t) 
Y'' + c3-Y' - c3-X' + k3*Y - k3*X - b3st(Y-X)-3 =0 
y[0]=s; y[1]=t; y[2]=X'; y[3]=Y'; y[4]=X; y[5]=Y: 

Uector field: caii use p, q,..., x, y, z: phase spa-f'' set t': -1 
's' :=1! This is time 
t' :=1! This is cycle time mod 2-pi/phi (see Modulo window below) 

X, =u 
y' .=u 
u' = rho*cos(phiit) - (c4+c5)*u + c5*u - (ct+c2)*x + c2*9 - c7*xix*x - c8*(y- 
x)*(y-x)*(y-x) ! EOM1 
u' :=- c6*v + c6*u - c3-*y + c3mx + c9*(q-x)*(y-x)*(y-x) ! EOM2 

full: al izt: u, r iýth to°s R pt anet. erý.; ýu; e inn II) ii , ý.... ,. fog. ptio'r ' 1iawr. 
t: =0 x: =0 y: =0 u: =0 u: =0 ! Set initial conditions 
XCO :=4 YCO :=2! Plot X (x-axis) us X'(y-axis) 
X_upper: = 0.005 X_lower: = -0.005 Y_upper: = 0.15 Ylouer: = -0.15 
cl 423888 cZ 26493 c3 := 47098.66667 ! Set k consts 
c4 :=0. OZ5 c5 :=0.025 c6 :=0.04444444444 ! Set c coasts 

c7 := 6e8 c8 := 5e6 c9 :=8.888888889e6 ! Set It coasts 

rho :=5 phi := 57.1128 

spc := 2000 ! Take 2000 steps per 2-pi/phi 
ipp := 2000 ! Plot once in Z000 steps / per cycle (Poincare). 

Minlulo fiuuct. inn: (Optional; this is evaluated a: ur_1" t INC , tf-11) 

t := mod(t, 0,2»pi/phi) ! Assume period is 2-pi/phi 

Figure 5-1: Program code for coupled Duffing equations 

82 



Chapter 5: Numerical Investigation of System Dynamics 

5.2.1 Definition of Parameters 

Table 5-1 represents the values of the parameters for the program 

code shown in Figure 5-1. This is for the case of the superharmonic 

resonance of equation (3.2-40) which corresponds to all the data 

presented in Chapters 3 and 4. Again, the hardening cubic stiffness 

coefficient h, , the excitation level Q, and all system quantities other 

than the softening cubic stiffness coefficient Ii, , are kept constant. 

Parameters for Dynamics 2 Program 

Stiffness 
(Linear) 

[s-2] 

Damping 
Is-'] 

Stiffness 
(Cubic) 
[m-2s-2] 

Excitation 
Amplitude 

[ms-2] 

c, = 423,888 c4 = 0.025 c7 =6x 108 rho =5 

c, = 26,493 c5 = 0.025 cs = varies 

c; = 4,7098.66667 c6 = 0.04444 c9 = varies 

Because the softening cubic stiffness coefficient, ! r, varies within the following 

range: 

h, = 10 x 106 ; 20 x 106 ; 50x106 ; 100x106 [Nm-3] 

Then, cg =5x 106 ; 10x106 ; 25x 106 ; 50 x 106 [m-2s-2] 

c9=8.88889 x 106 ; 17.77778x106 ; 44.44444 x 10' . 88.888889x 106 [m-2s-2] 

Reference displacement : a, = 0.1 m 

Reference frequency : w,, = 209.828 rad s- 

Table 5-1: Data for coupled Duffing system parameters 
used in the Dynamics 2 program 
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5.3 Response Bifurcations 

Bifurcation is a French word that was introduced into nonlinear dynamics 

by Poincare. Its accepted use is as an indicator of a qualitative change in 

the dynamics of a system, such as the number and type of solutions under 

the variation of one or more parameters of the system. In bifurcation 

representations, it is useful to consider a space formed by using the state 

variable(s) and chosen control parameter(s), called the state-control space. 

In this space, locations at which bifurcations occur are called bifurcation 

points. 

To understand the dynamics within equations (3.2-1) and (3.2-2), the 

Dynamics 2 software was used to plot the bifurcatory behaviour of 

amplitude responses x, and x* as a function of the excitation frequency 

Q*, and these are illustrated in Figures 5-2 and 5-3 respectively. All the 

conditions and data variables for these plots are tabulated in Table 5-1. 

Because the raw graphs plotted using Dynamics 2 are in dimensionalised 

coordinates (shown on the inner scale of the graphs), these graphs have 

subsequently been nondimensionalised (given on the outer scale of the 

graphs) using the first mode eigenvalue of w,, = 209.828 rad s-' for the x- 

axis, and the reference displacement of _t ,, =0.1 m for the y-axis. 

In the following pages, all the figures are plotted using certain 

necessary Dynamics 2 commands, Table 5-2 below summarises the list of 

the command values used, 
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SPC IPP PI BIFPI BIFD BIFV CON 

Time plots 30 1 0 0 200 480 On 

Phase 
planes 

30 1 0 0 200 480 On 

Poincare 
Maps 30 30 0 0 200 480 Off 

Bifurcation 
diagrams 30 30 0 10000 1000 1000 Off 

Lyapunov 
diagrams 30 30 0 10000 1000 1000 On 

Table 5-2: Program command values for Dynamics 2 plotting 

Due to the sensitivity of the command values that are necessary to get 

good plots, the author has included, in Appendix E, a definition of these 

commands and also a section on tips for using Dynamics 2. This 

represents a significant amount of effort in familiarisation with this very 

subtle program. 

It is evident that for the third order superharmonic, as the cubic 

softening coefficient is increased from the values of Figure 5-2(a) to that of 

5-2(d), the response becomes more linear, hence broadly correlating with 

results in Figure 4-4(c). The first mode is examined in more detail using a 

more fine-grained sweep up (see Figures 5-2(e) to 5-2(h)) and a similar 

sweep down (see Figures 5-2(i) to 5-2(l)) around the resonant region, and it 

is again evident that the cubic softening coefficient accentuates the 

softening effect, mirroring the effect noticeable in Figures 3-4(a) and 4-4(b). 

It is also relevant to note that the single-valued solution for 
_t, 

is not 

apparent prior to the downward jumps of the downward sweeps in Figures 

5-2(i) to 5-2(l) and also at the high frequency end of the upward sweeps in 
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Figures 5-2(a) to 5-2(c), and possibly in Figure 5-2(d). This could imply 

chaos and is discussed further in Section 5.4. 

Figure 5-3 shows the nondimensionalised bifurcation diagrams of 

amplitude response _V2 as a function of the excitation frequency Q. Further 

evidence of accentuated softening due to the increase of the cubic 

softening coefficient is highlighted in Figures 5-3(e) to 5-3(l). In the 

superharmonic responses of Figures 5-3(a) to 5-3(d), the increase in the 

cubic softening coefficient correlates with the numerical integration of 

Figure 4-5(c), whereby the response becomes progressively more 

hardening. However, the results from Dynamics 2 arbitrarily depict these as 

negative values, and the analysis is automatically truncated in Figures 5- 

3(c) and 5-3(d) due to the computational limitations of the program. Despite 

this effect, both methods still show the same general trends regarding the 

nonlinear behaviour of the response curves. 

Given that necessary and sufficient conditions exists for possible 

chaos in the form of one stable and one unstable equilibrium then it 

appears that the presence of chaos in the downward sweep, but not in the 

upward sweep, is strongly influenced by the effect of the relevant initial 

conditions. This observation is made in the sense of Pezeshki and Dowell's 

(1988) proposal that such Duffing systems manifest disconnections in the 

fractal form of the map of initial conditions and that this leads to chaos, or 

not, dependent on the precise nature of those initial conditions. 
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Outer scales are nondimensionalised 
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5.4 Lyapunov Exponents 

In 1899 the Russian scientist Aleksandr Mikhailovich Lyapunov [1857 - 
1918] introduced a bespoke method for providing ways to determine the 

stability of sets of ordinary differential equations. His work concentrated on 

the stability of equilibrium and motion of a mechanical system and the 

stability of a uniformly rotating fluid. He also devised many important 

methods of approximation (i. e. Lyapunov's -time, -characteristic exponent, 

-characteristic number, -equation, -fractal, -function, -stability and -test), 

which are now better known as Lyapunov methods. ' 

The Lyapunov exponents of a system are a set of invariant 

geometric measures which describe, in an intuitive way, the dynamical 

content of the system. In particular, they can serve as a measure of how 

easy it is to perform prediction on the system. Lyapunov exponents quantify 

the average rate of convergence or divergence of nearby trajectories 

generally, in a global sense. A positive exponent implies divergence, a 

negative one convergence, and a zero exponent indicates the continuous 

nature of a flow in time. Consequently a system with positive exponents 

has positive entropy in that trajectories that are initially close together move 

apart over time. The more positive the exponent, the faster they move 

apart. Similarly, for negative exponents, the trajectories move together. 

Thus, a positive Lyapunov exponent, is amongst one of the strongest 

indicators of chaotic motion. The Lyapunov exponent, 2,, is defined by 

1 Source: http: //t,, -xý, xt'. wikipedia. org/wiki/Aleksaiidr_Mikliailox, ich_I_N, apuiiov 
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taking the natural logarithm of the Lyapunov number (defined by the 

divergence ratio), 

2= Jim 
I 

In 
IAX(X0, t)l 

, -ý-t IAxoI 

-- V 

"i: 
(Ire 

.T} 

Figure 5-4 shows the Lyapunov exponents plotted for the respective 

bifurcations of the softening sweep down in Figures 5-2(i) to 5-2(I). In the 

regions of the softening characteristics, chaotic motions are evident from 

the positive values of the Lyapunov exponents. And as the cubic softening 

coefficient is increased, the system gets more softening and 

correspondingly more chaotic, with a wider region of positive Lyapunov 

exponents. 
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5.5 Bifurcations as Functions of Excitation Acceleration 

Figure 5-5 shows the bifurcation of x, ̀ as controlled by the excitation 

acceleration, when the excitation frequency is set equal to the first mode 

eigenvalue of w,, = 209.828 rad/s. By exaggerating the excitation 

acceleration to a high value, the periodic response for the case based on 

the smallest cubic softening coefficient in Figure 5-5(a) (i. e. the most linear 

response in Chapters 3 to 5), bifurcates to chaos as the softening 

coefficient is increased (see Figure 5-5(b) to 5-5(d)). Positive Lyapunov 

exponents for these respective figures show clear indication of chaos, while 

the negative Lyapunov exponents show stable motion. Also from these 

graphs, as the responses become chaotic, less excitation acceleration is 

required in each of the four cases, successively. Figure 5-5(d) interestingly 

shows a period-13 window in the region of F`/iii, = 735 to 749 ms-2 in 

between two regions of chaos. Although Figures 5-5(b) and (c) do show a 

bifurcation to periodic motion after the chaos region, the limitation of 

Dynamics 2 has truncated the analyses due to mathematical limits of the 

program. Discrete excitation acceleration points are selected for the plotting 

of phase planes, Poincare maps and time plots for a more detailed 

understanding of the system's dynamics in the next section. 
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Figure 5-5: Bifurcation of x, as a function of excitation acceleration 
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5.6 Phase Planes, Poincare Maps and Time Plots 

More detailed analyses of Figure 5-5 are extended to phase planes, 

Poincare maps and time plots (i. e. Figures 5-7 to 5-12) at discrete 

excitation acceleration points. The phase plane and time plots are plotted 

at assumed steady-state during the interval t= 999.5 to 1000 seconds. 

However, the Poincare maps are plotted from its transient time (i. e. t=0 to 

1000 seconds) as most of them converged to a period-1 motion with just a 

point, therefore richer diagrams are preferred and so these maps converge 

to darker areas and finally to a point (indicated with a white cross). Those 

that are not in period-1 motion have an inset within the diagram where the 

motion is into a post-transient condition. A break-down of the observations 

for the four different varying softening coefficients, h, are as follows, 

5.6.1 At F `/fry, = 200 ms-2 (Figure 5-7): 

" All the bifurcation diagrams for the different values of h2 show 

periodic and stable motions with negative Lyapunov exponents (see 

Figures 5-5(a) to (d)). 

9 The phase planes show that as h, is increased, the orbits decrease 

in size and move towards the centre, crossing each other at 

iz, = 0.042 h and then move outwards against each other at 

h, = 0.083 11, . 
The initial part of the solutions were omitted, so the 
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figures show only stationary, post-transient motion. The orbits are all 

periodic, corresponding with the bifurcation diagrams. 

9 All the Poincare maps converge into a single point at the centre of 

the darkest region (indicated with a white cross). As the maps 

consists of a finite number of points, which implies periodic motion, 

and because there is just one point, it indicates a period-1 motion. 

" All the time plots show evidence of a periodic response, and it is 

observed that as the nonlinearity increases, the peaks of the 

amplitude in each cycle become further apart, indicating a wider 

jump in response. 

5.6.2 At F*/m, = 700 ms-2 (Figure 5-8): 

" The bifurcation diagram for /z, = 0.083h, , in Figure 5-5(d), shows 

chaotic motion with positive Lyapunov exponents, whereas the 

others are all in period-1 motion. 

" The phase planes underpin the above, and the periodic orbits now 

move away from each other as h, increases. For the chaotic motion 

(Figure 5-8(d)), a densely filled phase plane is obtained. Had the 

simulation been allowed to continue, the central part of the plane 

would be even more overlaid by repeated orbit cross-overs. A 

complicated phase plot is one indicator of chaotic motion, however 

motion that rides on a complicated looking orbit may very well be 

fully-predictable, and thus non-chaotic. For example, a phase plot 
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with very large numbers of degrees-of-freedom may look similarly 

complicated, even if the system is in fact linear and thus certainly 

non-chaotic. 

9 Here the Poincare maps again converge into a single point in the 

darkest region for the periodic motions. The interesting map is that 

of chaotic motion at h2=0.083h, (Figure 5-8(d)), where more and 

more points are added to the map as simulation time marches on. 

However, they continue to do so in an orderly manner, filling out the 

details of the strange attractor on which the chaotic motion rides. 

Inset in the figure is the strange attractor in post-transient motion. 

" The time plots are in periodic motion, except for the last one where 

the oscillations never repeat. This is another qualitative visual 

indicator of chaotic motion. 

5.6.3 At F*7m, = 740 ms-2 (Figure 5-9): 

9 The bifurcation diagram for h, =0.083h, in the inset of Figure 5-5(d) 

shows a period-13 motion at F*/m, = 740 ms-2 

" Its corresponding phase plane shows a complicated phase plot, but 

the orbits repeat its same path as simulation time is continued, 

unlike chaotic orbits which densely fill the central part. 

" The Poincare map in Figure 5-9(d) shows how the transient motion 

slowly converges into 13 stationary crosses on the figure inset. This 

finite number of points implies periodic motion (i. e. Period-13 

motion) as corresponding to its bifurcation diagram. 
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" The time plot for this motion may seem complicated, but a careful 

observation at it shows that the oscillations repeat itself exactly after 

every 13 periods. 

5.6.4 At F` jn1, = 840 ms-2 (Figure 5-10), F*1m, = 1000 ms-2 (Figure 

5-11) and F"7m, = 2000 ms-2 (Figure 5-12) : 

" The phase planes, Poincare maps and time plots for these discrete 

excitation acceleration display periodic or chaotic motions 

corresponding with their bifurcation diagrams in Figure 5-5. 

5.6.5 Counting number of periods: 

For a periodic motion, the informally used term 'period(s)-n' can be 

defined as where n is the number of period(s) for a cycle to repeat 

itself. This can be illustrated with reference to the following forced 

Duffing equation, from Penney and Edwards (1999)2. The phase 

planes, Poincare maps and time plots for the equation, 

+x -x+ -v = 0cos t 

are plotted for two different external forcing levels, FO = 0.6 and 

2 Can also be found at: 
litt p: / /wwww. prenticehallmath. com/epdebvp2/secur('/projcc't, /chapt6/proj6.5B/ 

proj6-5B. pdf 
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Fo = 0.7 in Figure 5-6. At FO = 0.6, a period-1 motion is observed 

which takes exactly one period (i. e. T= 27 ) for the cycle to repeat 

itself. When FO = 0.7, the cycle only repeats after t=4, r meaning 

that it is a period-2 motion because it requires two periods to 

complete one cycle of oscillation. This definition can be applied to 

the data of Figures 5-7 to 5-12, where although some of the phase 

planes and time plots may imply n>1, via a number of peaks 

apparent in a period, however in actual fact the period for these 

figures is T= 2/ = 0.03 secs and therefore they are period-1 

motion because the cycle repeats itself after every 0.03 seconds. 
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CHAPTER 6 

EXPERIMENTAL INVESTIGATIONS 

6.1 Introduction 

Ultrasonic systems behave in a noticeably nonlinear fashion when run 

under certain conditions, particularly within high power, continuously 

operating systems. In the food manufacturing industry, ultrasonic cutting of 

different products is of considerable interest and this requires the 

application of high energy, ultrasonic oscillations within the mechanical 

cutting tools over long operating periods. Because of this, the mechanical 

cutting tooling is required to be tuned so that modal energy does not leak 

out into audible lower frequency modes, both for reasons of efficiency, as 

well as longevity due to the minimisation of fatigue. Nonlinear 

characteristics within the motion of the cutting tool are not particularly 

desirable because they can lead to multivalued responses, complex 

bifurcatory behaviour, unwanted inter-modal coupling, and also other 

phenomena such as combination resonances and very low cutting 

efficiency due to high levels of modal spill-over. For these reasons 

linearisation of the cutting tool response is seen as an important goal, 

however it has to be realised that nonlinearity within the individual parts of 

the ultrasonic cutting system cannot necessarily be eradicated at source. 
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Using the nonlinear modification theory as proposed in the previous 

chapters, a practically implementable strategy is defined in which the 

inherent and predominant nonlinearities of the constituent parts of the 

ultrasonic cutting system are manipulated in such a way that their individual 

effects on the overall response can be effectively neutralised. In order to 

justify this work, a programme of experimental research has been 

conducted in order to identify, and therefore confirm, the precise nature of 

the predominant nonlinear characteristics in each of the principal parts of 

an industrial ultrasonic cutting system. The findings of this work supported 

strongly the notion that such systems could be seen as two serially coupled 

sub-systems, each with opposing cubic stiffness nonlinearities which 

strongly predominate. 

6.2 Instrumentation 

Figures 6-1 and 6-2 show the experimental configuration for measuring the 

nonlinear response of the ultrasonic system. The exciter (or transducer) is 

driven by a function generator connected to a signal amplifier. The vibration 

response of the transducer is then measured in the Cartesian x, y and z 

coordinates by means of a Polytec 3D Laser Doppler Vibrometer (3D LDV), 

allowing both in-plane and out-of-plane responses to be identified and 

monitored. A multi-channel data acquisition analyser connected to a 

portable computer enables the identification of system responses via 

contemporary signal processing software (DataPhysics SignalCalc 620). 
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Figure 6-1: Experimental set-up for response measurements 

(a) 

ON 9-1 

(d) 

(b) 

(c) 

Figure 6-2: Experiment equipment; (a) 3DLDV measuring blade; 
(b) Signal generator, amplifier and 3DLDV module; 

(c) Signal analyzer and (d) Computer 
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6.2.1 The 3D laser vibrometer 

The 3D laser vibrometer used in the experiment is a Polytec CLV-3D 

(see Figure 6-3). It is a non-contact vibration sensor that 

simultaneously measures all three linear velocity components at a 

point on a vibrating structure. The system comprises a three-channel 

controller unit coupled to an optical sensor containing three 

independent optical systems, all focused to the same measurement 

point. The individual vibration components lying along the three 

respective laser beams are available as analogue outputs. Most 

importantly, a geometry-calculation module generates true V>, V, 

and VZ analogue outputs in real time, and can process vibration 

frequencies as high as 50 kHz. 

The optical sensor contains the optical components of three 

independent sensors. Each output laser beam is inclined at a 12° 

angle with respect to the surface, but from three slightly different 

directions. A 12° angle is small enough to allow the sensors to 

collect enough back-reflected light to make high-quality 

measurement, but still large enough for good sensitivity to the in- 

plane vibration components. Further, the narrow cone angle allows 

the beams to pass through small holes or windows in wind tunnels or 

environmental test chambers. Figure 6-3 shows how the three 

beams converges into a measurement point and below outlines the 

analyses for the measurement geometry. 

The CLV-3D sensor generates three laser beams: top, left 

and right, which measure components V,, Vt and Vr respectively. 
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When the sensor is pointed at a surface vibrating in three directions 

VX, Vy and VZ, the true x- and z- components can be calculated using 

these relations with reference to Figure 6-4(a), 

Vr =VZcos6+Vxsin 0 and V, =VZcos6+VXsin 0 

Vz (Vr + V, ) /2 Cos 0 and Vx (Vr - V, ) /2 sin 0 

Similarly, viewing the sensor as in Figure 6-4(b), the true y- 

component is calculated using, 

Vt=VZcose+Vysine 

Vy=(Vt-VZcos0)/sine 

Figure 6-3: The Polytec CLV-3D laser vibrometer and a modular 
controller unit 
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6.3 Experimental Results 

6.3.1 Nonlinearity of Transducer 

The nonlinear response characteristics of a typical industry standard 

35 kHz high power ultrasonic transducer, as shown in Figure 6-5(a), 

can be obtained from an upward and downward stepped-sine sweep 

about its tuned frequency. The measured longitudinal mode 

response of the transducer is shown in Figures 6-5(b) and 6-5(c) for 

two different excitation levels. Figure 6-5(b) shows the transducer's 

response at an excitation of 30 V. Then, as the excitation is 

increased to 50 V as in Figure 6-5(c), a region of hysteresis, 

combined with amplitude jumps and stable and unstable multivalued 

responses, becomes evident. As the frequency is swept upwards, 

there is an upward jump at approximately 35.34 kHz. Likewise, as 

the frequency is swept downwards, there is a downward jump effect 

at approximately 35.31 kHz. Within this small region hysteretic 

behaviour is plainly evident. The extremely narrow frequency band 

over which this occurs is a function of the high Q (i. e. efficiency) of 

such systems and underlines the importance of very precise design 

so that these effects can be reduced in such a way that the output of 

the cutting system to which the transducer is attached is as efficient 

and robust as possible. The frequency shifts in Figures 6-5(b) and 6- 

5(c) are considered to be due to the effects of damping and thermal 

phenomena over the time duration of the experiment. 
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Figure 6-5: Responses of an industrial ultrasonic transducer 
for two different excitation levels 

6.3.2 Coupling of 1.5 , lBar Horn 

Ultrasonic block and bar horns are specially machined components 

used to transmit vibration from a transducer to a tool or some other 

specialised tuned component. In this work, a simple bar horn of 

aluminium material comprising a solid cylindrical rod (of length 1.5 X) 

is attached to the transducer via a threaded stud half-screwed into 

both components (see Figure 6-6(a)). At the 30 V excitation level, it 

can be seen that the response in Figure 6-6(b) has less of a 

softening characteristic compared with that of Figure 6-5(b). A 
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similar observation applies to the 50 V excitation level, with the 

characteristic region in Figure 6-6(c) now having reduced in 

influence. The results obtained for typical industrially relevant 

equipment suggests that the strongly softening nature of the 

transducer can only be mitigated to a certain extent by the addition 

of characteristically hardening bar or block horns, and therefore that 

a truly linearised response at the output of the system is not easily 

achieved. 
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Figure 6-6: Responses of an ultrasonic transducer and 1.5 ? bar horn 
for two different excitation levels 
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6.3.3 Coupling of Half- and Full-wavelength Blades 

Figure 6-7 compares the nonlinear performance of the same 

transducer, but attached directly to a 0.5 X. and a ý. cutting blade with 

both blades manufactured from tool steel. In the first case at the 30V 

excitation level (see Figure 6-7(b)), an even softer response is 

obtained than that for the transducer by itself. However, the X blade 

exhibits a predominantly hardening characteristic and so the 

combined response is now significantly linearised as depicted in 

Figure 6-7(d). A supporting theory for the 2 blade to have a 

hardening characteristic is that its geometry is of a `beam-like' 

structure, and that Chakraborty et al. (1998) have demonstrated that 

a beam-like structure is a hardening component. 
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6.3.4 Influence of Joint Tightness on System Nonlinearity 

These experimental investigations have also shown that the 

tightness of the screwed joints in between the coupled components 

contributes to the nonlinear characteristics of the system. The joint 

between the transducer and the 1.5 2 bar horn in Figure 6-6(a) has 

been tightened with a higher torque and shows a more linearised 

response in Figure 6-8(a) than that of a lower-torque joint in Figure 

6-8(b). 
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Figure 6-8: Effects of joint tightness on the response 

6.3.5 Influence of Positioning of Stud on System Nonlinearity 

The nonlinear characteristics of the system can also be varied by 

means of the axial positioning of the stud within the joint. Figure 6-9 

shows three different configurations for the position of the threaded 

stud. It is evident that when the stud is fully-fitted into the transducer- 
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base (see Figure 6-9(a)), the smallest nonlinear region is evident in 

the system response at the blade tip compared with a configuration 

where it is half-fitted into the blade-base (see Figure 6-9(b)). This 

effect is even more accentuated for the other extreme case where 

the stud is fully-fitted into the blade-base (see Figure 6-9(c)), for 
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Figure 6-9: Different stud configurations 

6.3.6 Relation Between Transducers and the Duffing Oscillator 

Further supporting evidence that the transducer behaviour is typical 

of a Duffing oscillator is presented in Figure 6-10. Figure 6-10(a) is 

the predicted bifurcation of the response as a function of excitation 

acceleration when the excitation frequency is at the first mode 

eigenvalue of the system in Figure 3-1. This phenomenon was 
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investigated experimentally by measuring the response from the 

transducer face of two different 35 kHz tuned transducers over a 

range of excitation levels and the results are presented in Figure 

6-10(b). Although the measured response from the transducer face 

cannot indicate multiple response solutions, the measurements in 

Figure 6-10(b) seem to exhibit a bifurcation point at higher excitation 

levels for each transducer, corresponding to the characteristic 

behaviour outlined in red in Figure 6-10(a) 
. 
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Figure 6-10: Transducer as a Duffing oscillator 
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CHAPTER 7 

DISCUSSION OF RESULTS 

7.1 Introduction 

The analyses for the hypothesised nonlinear response modification model 

have been presented in Chapters 3 to 6. The method of multiple scales 

was first used in Chapter 3 to derive two solvability equations (3.2-63) and 

(3.2-64) to calculate the nondimensionalised response of the represented 

assumed model as shown in Figure 3-1. Chapter 4 corroborated the results 

from the method of multiple scales with those from a direct numerical 

integration. A numerical study into the system's dynamics was extended in 

Chapter 5, where a study of the bifurcations and stability of the solutions 

via phase planes, Poincare maps, time plots, bifurcation diagrams and 

Lyapunov exponents were summarised. Chapter 6 applied this novel 

method of modifying nonlinear responses to a physical, industrial, 

application, that is the ultrasonic cutting system. 

The purpose of this chapter is to examine the results from Chapters 

3 to 6, extending the discussion where appropriate, and allowing 

conclusions to be derived from the respective results. 
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7.2 Analytical Results 

The analytical developments involved using both the method of multiple 

scales and direct numerical integration. In the following are summarised 

points which emerge from these studies: 

" The results from the method of multiple scales given in Figures 3- 

4(a) and 3-4(b) showed good conclusive results that the effect of 

coupling a softening system to a hardening system does indeed 

have a global effect on the nonlinear response of the overall system. 

This is emphasised when increasing the cubic softening stiffness, 

hz , and this softens the responses for both amplitudes a, and a, . 

Similarly, a decrease in h, tends to bend the backbone of the 

nonlinear response further to the right, to a more linear-like 

response, accentuated when li, = 0.008h, . 

9 Numerically integrating the governing equations of motion (3.2-1) 

and (3.2-2) has produced results that corroborate those of the 

method of multiple scales. There is evidence of a consistent 

phenomenon whereby both the responses in the first mode of _v, 

and x, show accentuated softening as the softening cubic 

coefficient is increased (see Figures 4-4(b) and 4-5(b)). 

" The amplitudes of both a, and x, are also marginally higher than a, 

and _v, 
for the first mode of response. 

" The numerical integration results give two modes of response 

whereas the method of multiple scales only generates results related 
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to the chosen resonance condition and around the region of perfect 

external tuning, ev =0 (equation 3.2-39). 

7.3 Numerical Results 

All the subsequent numerical analyses were undertaken by generating 

problem-specific code within the public-domain software Dynamics 2. 

" Figures 5-2 and 5-3 give plots of the nondimensionalised bifurcatory 

behaviour of amplitude responses x, and x, , as a function of the 

excitation frequency Q. For the first response mode, as shown in 

Figures 5-2(i) to (I) and Figures 5-3(i) to (I) respectively, it can be 

deduced that an increase in the cubic softening coefficient 

accentuates the softening effect, mirroring the effects noticeable in 

the results of the method of multiple scales and numerical 

integration. 

" It is evident that in the case of the third order superharmonic when 

the cubic softening coefficient is increased from the values of Figure 

5-2(a) to that of 5-2(d), the response becomes more linear, hence 

broadly correlating with results in Figure 4-4(c). 

0 In the superharmonic responses of Figures 5-3(a) to 5-3(d), the 

increase in the cubic softening coefficient correlates with the 

numerical integration of Figure 4-5(c), whereby the response 

becomes progressively more hardening. 
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" The calculated Lyapunov exponents support the notion that 

nonlinearities can generate undesirable responses, but only in cases 

of very high excitation level, as shown in Figure 5-4. As the cubic 

softening coefficient is increased, the system gets more softening 

and correspondingly more chaotic, with a wider region of positive 

Lyapunov exponents, obviously rendering any practical system 

inefficient. 

" Figure 5-5 shows the bifurcatory behaviour of amplitude response . ý- 

as a function of the excitation acceleration, accompanied by its 

respective Lyapunov exponent. For the most linear response from 

Chapters 3 to 5 (i. e. h2=0.008h, ), a periodic response for a wide 

range of excitation values is achieved. As the softening coefficient is 

increased, evidence of chaos surfaces, with a lesser excitation 

acceleration that is subsequently required. 

At discrete excitation acceleration points of the above bifurcations, phase 

planes, Poincare maps and time plots are given in Figures 5-7 to 5-12. The 

following are general observations of the coupled Duffing oscillators as the 

softening cubic coefficient, h, is increased from 0.008h, to 0.083h, : 

" Periodic orbits in the phase planes move away from each other as 

the effect of the predominant system nonlinearity is increased, either 

by manipulation of the cubic nonlinear coefficient, or by the 

excitation acceleration. And therefore, the phenomenon behind this 

behaviour, as shown on the phase planes, could represent a 

bifurcation to chaos. 
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" Complicated phase plots are obtained for the higher values of /, 
-,, 

indicating likely chaotic motions as the system effectively becomes 

more nonlinear. 

" Strange attractors are also obtained in the Poincare maps for higher 

values of h, , again indicating likely chaotic motions. 

" Therefore, certain phenomena, necessary for nonlinear response 

modifications, are evident, and are also potentially involved in the 

generation of chaos. In principle such modifications can be achieved 

by varying the coupled, oppositely configured, nonlinear stiffnesses. 

7.4 Experimental Results 

The following results were obtained from an experimental programme 

carried out on an ultrasonic cutting system. An industrial ultrasonic 

generator (colloquially referred to as a transducer) usually has a softening 

characteristics, and the following are the resultant effects of coupling 

different components to such a transducer: 

" Attaching a 1.5 2 bar-horn to the transducer results in a more linear 

response than that provided by the transducer itself. The hardening 

bar-horn clearly contributes to mitigating the effects of the 

nonlinearity of the system (see Figure 6-6). 

" Attaching ak blade to the transducer also results in an almost linear 

response. Thus, once again, hardening characteristics of a coupled 
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component, this time the blade, modifies the nonlinear response of 

the system (see Figure 6-7(d)) 

9 However, coupling a 0.5 2 blade to the transducer results in an even 

more softening response than originally generated by the transducer 

itself. This shows clearly that this length of blade is, instead of a 

softening nonlinear characteristic and therefore exaggerates the 

softening behaviour of the system (see Figure 6-7(b)). 

Other ways of influencing the nonlinearity of an ultrasonic system have also 

been identified in this research: 

" Figure 6-8 shows that a higher torque joint is preferred over a lesser 

torque joint as the former generally results in a more linear overall 

response than the latter. 

The axial positioning of the stud within the joint can also highly 

influence the nonlinearity of the system. Figure 6-9(a) shows that 

when the stud is fully-fitted into the transducer-base, the smallest 

nonlinear region is evident in the system response at the blade tip 

compared with a configuration where it is half-fitted into the blade- 

base (see Figure 6-9(b)). The most undesirable case is where the 

stud is fully-fitted into the blade-base in Figure 6-9(c), for which the 

widest nonlinear response region, and accentuated softening can be 

observed. 

0 Relationships between the transducers and the Duffing oscillator 

were also identified by comparing the predicted bifurcation of the 

latter's response as a function of excitation level in Figure 6-10(a), 
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with the measured response from the transducer face of two 

different transducers over a range of excitation levels in Figure 6- 

10(b). These two figures show some similarities in the bifurcation 

path. 

7.5 Conclusions 

The three methods of investigating and identifying the response behaviour 

of serially coupled Duffing oscillators have all shown similar trends with 

regards to the effects of increasing the softening cubic coefficient. 

Numerical studies have also indicated that chaos is evident as the system 

becomes more nonlinear due to the coupling of the opposite nonlinear 

cubic stiffness. Experimental results from tests on the coupling of different 

components within an ultrasonic system conclude that this novel approach 

to nonlinear response modifications could be successfully applied to an 

industrial application. 
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CHAPTER 8 

CONCLUSIONS 

This thesis has considered the issue of response modifications within an 

ultrasonic system as used within the food industry. The technique that has 

been developed is based on the exploitation of the natural mitigating 

effects of serially coupled nonlinear sub-systems on the overall system 

response. It has been shown theoretically that certain nonlinear effects can 

be advantageously neutralised with the novel methodology of coupling 

another sub-system of opposite nonlinear characteristic. It has been 

experimentally demonstrated that components with different geometries, 

materials and wavelengths are shown to possess different nonlinear 

characteristic. By coupling them together, the overall nonlinear response of 

the system has been usefully influenced. There are some limited 

references to such systems in the literature but there have not been many 

reported phenomena relating to serially-coupled, interacting, oppositely- 

signed, nonlinear subsystems to date. 

In order to gain an understanding of serially-coupled nonlinear 

oscillators it was decided firstly to investigate the behaviour of a pair of 

nonlinear single degree-of-freedom sub-systems coupled together via their 

linear and nonlinear stiffnesses. This approach was seen to be justifiable in 

order to test the hypothesis that useful response modifications could be 
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obtained by means of manipulations of the pertinent and dominant 

nonlinearities. The hypothesised, simplified, system contained springs 

(linear and nonlinear), masses, and dampers, together with an externally 

imposed harmonic excitation. The two nonlinear springs were of positive 

cubic and negative cubic characteristics, respectively, and the equations of 

motion were derived in the form of two Duffing oscillators coupled in series. 

These equations were solved analytically, to first order 

approximation, using the method of multiple scales, and they were also 

numerically integrated. Interesting interactive behaviour between the two 

degree-of-freedom was observed for the synchronous external resonance 

condition and the superharmonic internal resonance, n=w, + ev and 

w2 =1w, + cc, , where ev and ems, are the external and internal detuning 

parameters respectively. In this research it has been shown conclusively by 

using a first order multiple scales approximation that the nonlinear 

characteristics of the steady-state responses to the nonautonomous 

modulation equations can be manipulated by altering the two, oppositely- 

signed, nonlinear cubic stiffness coefficients. In particular it was shown that 

the effect of increasing the softening quantity, h, was to soften the 

amplitude for the responses of both subsystems, a, and a,. In addition to 

this, certain specific numerical relationships between the raw nonlinear 

coefficients (i. e. h, =0.008h,, for example), can be determined that 

effectively linearise the two sub-system response amplitudes (Figures 3- 

4(a) and 3-4(b)), notwithstanding the fact that such numerical relationships 

are necessarily system-data specific. These effects were corroborated 

numerically and a further study of the bifurcations and stability of the 
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solutions via phase planes, Poincare maps, time plots, bifurcation diagrams 

and Lyapunov exponents showed that additional, and highly complex, 

dynamics could be observed, particularly in more strongly excited systems. 

A range of numerical results was obtained for both the first order analytical 

approximation and the numerical integrations for the principal, stiffness- 

coupled, model in the physical co-ordinate space, and these underpinned 

the general finding that response amplitude characteristics could be 

effectively linearised for different combinations of data. This suggests that 

the useful mitigating effect might also be realisable in the more complex 

ultrasonic system and so a parallel programme of experimental tests on an 

ultrasonic cutting system was carried out to test this hypothesis. 

The nonlinear response characteristic of a physical industrial 

application was thus determined. Ultrasonic transducers are inherently 

nonlinear at high power and tend to exhibit a cubic softening characteristic, 

with a jump phenomenon typical of a Duffing oscillator. To find a practical 

design solution to the effects of nonlinear responses, it was first necessary 

to measure the linear regime and nonlinear response for a range of input 

voltages to the transducer. The effect on this response of attaching 

different tuned components was also assessed, as well as the effects of 

the attachment method. It was found that some tuned components, 

including certain blades and block-horns of particular wavelength, tended to 

reduce the softening response when attached to the transducer, and would 

therefore result in the system increasing its linear threshold, and operating 

with a near linear response. In other cases, including those of half- 

wavelength blades, the blade transducer system response was softer than 

that of the transducer alone, had a lower linear threshold, and a wider 
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instability region. A bank of experimentally obtained information on the 

nonlinear characteristics of transducers, bar-horns, block-horns and blades 

has been compiled, providing valuable data for understanding serially- 

coupled multi-component system configurations, and which assists the 

control of the nonlinear response in the design of ultrasonic devices. 

Additionally, the width of the instability region could be manipulated 

by altering the tightness of the joints, and by altering the position of the stud 

between the attached components. It has always been understood in the 

high power ultrasonics community that careful assembly of system 

components is critical for good system performance. There have been 

many "rules of thumb" applied, concerned with stud sizes, stud position and 

torque requirements for joining components, although there are 

inconsistencies between manufacturers' recommendations. The work 

carried out in this project has clarified this issue and has related the 

nonlinear responses to the undesirable audible noise problems associated 

with poor assembly. As an illustrative example, Figure 6-9 shows the effect 

of stud position on the response of a single blade attached to a transducer, 

from a sweep up/down measurement around the longitudinal mode 

frequency using the 3D laser vibrometer. The stud position has a marked 

effect on the nonlinear response, offering a practical method for 

manipulating the softening characteristic. 

The results of this work have showed that serially-coupled elements 

within a typical ultrasonic cutting system do indeed exhibit alternately 

softening and hardening nonlinear cubic stiffness characteristics, and that 

these can be mutually ameliorated by individual characteristic 

manipulations. So, although the two degree-of-freedom models did not 
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directly model the ultrasonic cutting system, they provided a 

phenomenologically relevant test-bed through which the important 

interactions could be investigated. From this, robust indicators were 

obtained for obtaining linearised responses of the cutting blades, and 

therefore the capability of showing preferential modal characteristics. 

These indicators were in the form of experimentally derived data defining 

the principal nonlinearities within the components of the system that was 

tested, and the relationship between these and the various practical 

settings and configurations of the cutting system itself. It is intended that 

reduced order dynamical models of practical ultrasonic cutting systems will 

be derived in future spin-off work, and that these could be used to provide 

even more efficient energy transfers from the ultrasonic transducer through 

to the process medium being manufactured. 

This research provides some basic theory and understanding of how 

nonlinear systems can be made more efficient. It has also initiated an 

identification of the nonlinear characteristics of some ultrasonic 

components, and other factors that will influence the nonlinearity. The 

practical goal has been to try to get the response of the blade (i. e. at the far 

end of the chain from the transducer) to be linear, irrespective of the fact 

that the transducer, or the interconnecting components such as joints and 

bar-horn, are all nonlinear. This is tackled by means of exploiting the 

alternately nonlinear characteristics of soft, hard, soft, hard, etc, effects that 

the serially linked transducer, joint, bar-horn, joint, and blade may provide. 

Engineers and scientists are encouraged to use this new approach 

with prior understanding of the nonlinearity of the particular components to 

be coupled. More research could stem from here in understanding how 
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different variables (e. g. geometries, materials, wavelengths, etc) will 

contribute to a component's nonlinear characteristics. By obtaining a good 

basic understanding of each individual component, an ideal and robust 

overall linear system can ultimately be configured, and hence more reliable 

and efficient industrial systems can be designed. From here, one could 

intend to move onto fully representative actual models of the ultrasonic 

system as initiated from thinking about this simplistic theoretical vehicle, 

now that the experiments have borne out the theoretical proposal that this 

approach to the control of nonlinear behaviour of such a system is 

possible. 
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CHAPTER 9 

RECOMMENDATIONS FOR FURTHER WORK 

This thesis provides an enhanced understanding of the influence of 

nonlinearities in the design of high power ultrasonic cutting systems. Some 

further areas of research have been identified as a result of this work, and 
these could be used to emphasise the novel method of nonlinear response 

modification. 

9.1 Experimental Work which is Directly Related to the Theoretical 

Results 

The main result of this research is an experimental verification of the 

proposal that nonlinear modifications can be achieved in an industrial 

application of the ultrasonic cutting system, as well as the proposal of 

phenomenological models which allow an in-depth investigation into the 

principal theoretical mechanisms which underpin the main effects. These 

models are phenomenologically relevant to the problem in that they reduce 

it down to the basic essentials in order that it can be explored with a 

minimum of extraneous conditions and additional complicating effects. On 

the understanding that the theoretical models examined in this thesis are 

vehicles for the phenomena, rather than literal physically based models of 

the ultrasonic cutting system, it is suggested that further experimental work 
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relating specifically to the phenomenological models would also be of 

considerable interest and value. On this basis a partially completed 

sequence of experimental work of this nature is summarised here, with 

suggestions for completion and further developments. 

Figure 9-1 shows two masses fitted onto a linear slide system and 

comprising the fundamentals of a two degree-of-freedom system. This 

system also consists of a hardening spring that is fitted between m1 and the 

support structure. The two masses are connected together by means of a 

softening spring which is made up of an elastomeric material. Mass m1 is 

directly excited by a shaker via a push rod. The stiffness characteristics of 

the hardening spring (see Figure 9-1(b)) are variable, by means of a 

specially designed spring based on a small beam, clamped at its upper end 

and with the lower end running in between rollers within a bracket on ml. 

The stiffness can be easily adjusted by changing the length, or thickness of 

the beam, or even its initial deflection position. The softening spring is 

made up of natural elastomeric rubber bonded to an M6 screw fastener at 

each end. Natural rubber was selected because of its inherent nonlinear 

softening stiffness characteristics. Appendix F. 1 discusses how the 

nonlinear characteristics of the softening spring were obtained 

experimentally. 

A preliminary system set-up was tested in the laboratory with some 

initially encouraging results. Dissipation levels were generally found to be 

rather high, with damping ratios for each degree-of-freedom in the region of 

0.35. It was subsequently observed that these high levels emanated from 

the friction within the linear bearing. Higher excitation levels, by means of a 
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more substantial shaker, and a higher quality linear bearing, will be 

implemented in the next version of this experimental rig. 
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Figure 9-1: Modelling of stiffness-coupled system; 
(a) CAD drawing of set-up; (b) Hardening spring sub-assembly; 

(c) Complete experimental set-up 
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9.2 Pendulum System (Inertia Coupling) 

The elastomeric spring and mass m2 were replaced in an alternative 

experimental rig by means of a pendulum, forming the second degree-of- 

freedom. This alternative system was set up by attaching this pendulum to 

the translating mass mi (see Figure 9-2). The spring h, is still the hardening 

spring, whereas the softening characteristic is achieved with the pendulum, 

based on the fact that for large deflections (i. e. nonlinearities) the Maclaurin 

series expansion for Sin 8 gives rise to cubic and higher order terms, thus, 

Sin 9=9- eý +.... This alternative experimental system posesses dynamic 3. 

coupling (i. e. via the mass/inertia terms) in contrast to the stiffness coupling 

in the previous model. 

The pendulum in Figure 9-2(b) comprises several short sections in 

order to facilitate an easy variation of the sub-system's natural softening 

characteristics via the pendulum length. Some limited explorations of this 

alternative experimental configuration are attributable to Tan (2002). 

Appendix F. 2 gives the derivation of the equations of motion for the 

pendulum system for three different cases; a harmonic force applied to the 

mass m,; a harmonic force applied at the free end of the pendulum; and a 

combination of both of the two forces. The motivation for exploring this 

other system was to attempt to show that the nonlinear modification theory 

could be feasible within a range of different physical systems in order to 

show the same kind of effects. On this basis, a wider physical observation 

of the phenomenon implies a little more generality in application. 

13 
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(a) Schematic diagram; (b) Complete experimental set-up 
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9.3 Identification of Cubic Nonlinearities ('Degree of Nonlinearities') 

from Coupled Components 

Further research should be done on the precise identification of the 

nonlinearities within individual components in these two systems. The 

nonlinear characteristics of the pertinent component will be dependent on 

mass, material, stiffness, damping, and wavelength. From thereon, the 

theory of nonlinear response modification could be more effectively applied 

having established a wider, and therefore better knowledge of the relevant 

nonlinear characteristics for practical, demonstrable, systems. 
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Glossary 

GLOSSARY 

A 

anharfnonic: not harmonic. 

antinode: a position in a standing wave pattern of maximum amplitude of vibration. 

arbitrary value: one to which any value can be assigned at pleasure. 

asymnptotic: approaching a value or curve arbitrarily closely (i. e., as some sort of limit is taken). A 

curve A which is asymptotic to given curve C is called the asymptote of C. Hardy and Wright 

(1979, p. 7) use the symbol x to denote that one quantity is asymptotic to another. If f then 

Hardy and Wright say that f and ý are of the same order of magnitude. 

attractor: a set of points or a subspace in phase space toward which a time history approaches after 

transients die out. For example, equilibrium points or fixed points in maps, limit cycles, or a 

toroidal surface for quasiperiodic motions are all classical dynamical attractors. 

attractor, chaotic: when the attractor is sensitive to initial data. It contains a chaotic trajectory (a 

trajectory with a positive Lyapunov exponent). Generally may have very complicated structure, 

except for one dimensional maps. - emphasizing complicated dynamics. 

attractor, strange: introduced by Ruelle and Takens (1971), was defined to mean an attractor with 

a very complicated geometric structure. - emphasizing complicated geometry. Primarily, it is the 

same as chaotic attractor. 

autonomous: the independent variable time, t does not appear explicitly in the equation and only 

as a differential dt, the system is called autonomous. 

autoparametric system: system that has an internal coupling involving at least two modes, where 

one is a forced response which parametrically excites the other. From a mathematical point of 

view, this coupling comes about due to non-linear coupling terms in the equations of motion. 
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B 

basin of attraction: a set of initial conditions in phase space which leads to a particular long-tine 

motion or attractor. Usually this set of points is connected and forms a continuous suhspacc in 

phase space. However, the boundary between different basins of attraction may or may not he 

smooth. 

bifurcation: a qualitative change in dynamics upon a small variation in the parameters of a system. 

bifurcation, Hopf. - The emergence of a limit cycle oscillation from an equilibrium state as some 

system parameter is varied. Named after a mathematician who gave precise conditions for its 

existence in a dynamical system. 

bifurcation theory: a methodology for studying how solutions of a nonlinear problem and their 

stability change as the parameters varies. 

bifurcation value (critical value): the values of parameters at which the qualitative or topolo`gic. ºI 

nature of motion changes. 

C 

chaotic: denotes a type of motion that is sensitive to changes in initial conditions. A motion for 

which trajectories starting from slightly different initial conditions diverge exponentially. A motion 

with positive Lyapunov exponent. 

circle map: this is a map or difference equation that maps points on a circle onto the original 

circle. In the theory of two coupled oscillators, some motions in phase space can be viewed as 

motion on a toroidal surface. A Poincare section that intersects the smaller diameter of the torus 

constitutes a circle map. 

complianzce: the degree to which a system is displaced or compressed per unit of applied force: the 

reciprocal of stiffness. 

D 

damping, C: any method of dissipating vibration energy within a vibrating sý strm. 

damping ratio, ;: the ratio of the actual damping in a sy,, trm to the critical clamping" at a resonant 

frequency: I= elec. 
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degree-of-freedom: the number of degrees of freedom in a problem, distribution, etc., is the 
number of parameters which may be independently varied. 

deterministic: refers to a dynamic system whose equations of motion, parameters and initial 
conditions are known and are not stochastic or random. However, deterministic systems may he 
motions that appear random. 

differential equation: 

ordinary differential equation: expressed in terms of ordinary derivatives of the dependent 

variable x with respect to the independent variable t. 

duffing's equation: a second-order differential equation with a cubic nonlinearity and harmonic 
forcing z +cx +bx +ax; = fo Cos wt. Named after G. Duffing (circa 1918). 

E 

equilibrium point: in a continuous dynamical system, a point in phase space toward which a 
solution may approach as transients decay (t -* 00). In mechanical systems, this usually means a 

state of zero acceleration and velocity. For maps, equilibrium points may come in a finite set where 

the system visits each point in a sequential manner as the map or difference equation is iterated. 

(Also called a fixed point. ) 

excitation: 

external-excitation: 

parametric-excitation: the external excitation acts through a parameter of a system (e. g. stiffness, 

damping parameter) 

self-excitation: 

F 

fixed point: see equilibrium point 

fractal: a geometric property of a set of points in an n-dimensional spare having, the quality ofself- 

similarity at different length scales and having a noninteger fractal dimension less than n. 

fractal dimension: a quantitative property of a set of points in an n-dimensional spare which 

measures the extent to which the points fill a suhspace as the number of points becomes \'Cr1 large. 
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H 

heterocliiiic orbit: an orbit in a map that occurs when stable and unstable orbits from different 

saddle points intersect. 

hoinoclinic orbit: an orbit in a map that occurs when stable and unstable manifolds of a saddle 
point intersect. 

homogeneous: each term contains x or one of its derivatives. 

Hopf bifurcation: see bifurcation, Hopf. 

hyperchaos: a dynamic system where the phase space is stretched in two or more directions (i. c.. 
two or more positive Lyapunov exponents). 

I 

intermittency: a type of chaotic motion in which long time intervals of regular, periodic, or 

stationary dynamical motion are followed by short bursts of random-like motion. The time interval 

between bursts is not fixed but is unpredictable. 

invariant: not varying, constant. 

I 

jump phenomenon: an abrupt change in the amplitude and phase of the steady-state response due 

to a small change in the excitation. 

L 

limit cycle: A periodic motion that arises from a self-excited or autonomous system. 

linear: there are no non-linear terms in x or its derivatives. 

Lorenz equations: A set of three first order autonomous differential equations that exhibit chaotic 

solutions. The equations were derived and studied b\ E. N. Lorenz in 1903 as a model for 
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atmospheric convection. This set of equations is one of the principal paradigms for chaotic 
dynamics. 

Lyapunov dimension: sometimes called the Kaplan-Yorke conjecture/dimension. Lvapunt, \ 
dimension of an attractor is defined to be k+(2 + A, +""" +' )/ A, 

+i where k is the 

maximum value of I for which +"""+2. ) 0 

Lyapunov exponent: number that measure the exponential attraction or separation in time of tw o 

adjacent trajectories in phase space with different initial conditions. A positive Lyapunov exponent 
indicates a chaotic motion in a dynamical system with bounded trajectories. Named after the 

dynamicist Lyapunov (1857 - 1918) (in some books spelled Liapunov). The Lyapunov exponent 

(A) is defined by taking the natural log of the Lyapunov nu 

/i =l im 
1 

In 
IX, t 

toot ýIAXo 

V 

Lyapunov number: the measure (the ratio) of how fast two nearby points move apart after the first 

n iterations. 

M 

manifold: a subspace of phase space in which solutions with initial conditions in the manifold stay 

in the manifold or subspace, under the action of the differential or difference equations. 

map, mapping: a mathematical rule that takes a collection of points in some n-dimensional space 

and maps them into another set of points. When this rule is iterated, a map is similar to a set of 

difference equations. 

N 

nioise: in experiments, noise usually denotes the small random background disturbance of either 

mechanical, thermal, or electrical origin. 

node: a position in a standing wave pattern of minimum amplitude o1'% ihration. 

nonlinear: a property of an input-output system or mathematical operation 
for \'hich the output is 

not Iinearly proportional to the input. 
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0 

ordinary differential equation: see differential equation 

P 

period doubling: refers to a sequence of periodic vibrations in which the period doubles as some 

parameter is varied. In the classic model, these frequency halving bifurcations occur at small and 

smaller intervals of the control parameter. Beyond a critical accumulation parameter, chaotic 

vibrations occur. 

phase: 

phase plane: usually plotted as velocity vs displacement graph. Time is implicit. 

phase space: in mechanics, phase space is an abstract mathematical space whose coordinates arc 

generalized coordinates and generalized momentum. In dynamical systems, governed by a set of 

first order evolution equations, the coordinates are the state variables or components of the state 

vector. 

phase trajectory: the solution curve in a phase plane - always in a clockwise direction and crosses 

x- axis perpendicularly. (also known as orbit or integral curve) 

Poincare map (section): the sequence of points in phase space generated by the penetration of a 

continuous evolution trajectory through a generalized surface or plane in the space. For a 

periodically forced, second-order nonlinear oscillator, a Poincare map can be obtained by 

stroboscopically observing the position and velocity at a particular phase of the forcing function 

(H. Poincare, 1854-1912). 

Q 

qua. siperiodic: a vibration motion consisting of two or more incommensurate (i. e. not proportional) 

frequencies. When the difference between driving and free oscillation frequencies is large. (a. k.; i. 

almost periodic). They are not periodic and they may be mistaken for chaotic solutions, which thcy 

are not. 

quenching: process of increasing the amplitude of excitation until the free-oscillation term delay->. 

(Nayteh, pig 17) 
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R 

resonance: 

external resonance: a system which has the external frequency in the neighbourhood of one of the 
linear natural frequencies. 

S 

saddle points: in the geometric theory of ordinary differential equations, an equilibrium point with 

real eigenvalues with at least one positive and one negative eigenvalue. 

seinitrivial solution: a secondary system is coupled to the primary system in a nonlinear way (i. e. 

autoparametric systems), but such that the secondary system can he at rest while the primary 

system is vibrating. 

stochastic process: often refers to a type of chaotic motion found in conservative or non dissipative 

dynamical systems. 

strange attractor: refers to the attracting set in phase space on which chaotic orbits move. An 

attractor that is not an equilibrium point nor a limit cycle, nor a quasiperiodic attractor. An attractor 

in phase space with fractal dimension. 

T 

transient chaos: a term describing motion that looks chaotic during a finite time: that is, it appears 

to move on the strange attractor, but eventually settles into a periodic or quasiperiodic motion. 

V 

Van der Pol equation: A second order differential equation with linear restoring for and non linear 

damping which exhibits a limit cycle (named after B. Van der Pol. circa 1027) 

Sources: 

http: //ww\v. dictionary. com/ 
http: //mathwk, ot-ld. ýv, olfram. com/topics/Terminoloý, y,. html 
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Appendix A. 1 : Derivation of Eigenvalues & Eigenvectors 

APPENDIX A 

DERIVATION OF EIGENVALUES (I. E. UNDAMPED 
LINEAR NATURAL FREQUENCIES) AND 

EIGENVECTORS (I. E. MODES) OF SYSTEM 

A. 1 Eigenvalues 

This section derives the undamped linear natural frequencies (i. e. 

eigenvalues) of the system. 

2 equations that defined the unforced, undamped and linear system: 

1711 X, +(k, +k, )x, -k2 x, =0(A. 1-1 ) 

1122 2-k, x, + k, x2 =0 (A. 1-2) 

To find natural frequencies, assume the motion of each mass to be 

harmonic. 

Let : 
X1 = A, Sin w. t or A, e(CJ. 

I 

x, = Az Sin co,, t or A, e 

where A, and AZ are amplitudes and we is the frequency in rad/s 

Differentiating w. r. t. time 

. v, = A, w,, Cos coy t 
, 

-A, w Sin w, t 

-- (- -ti 

1, = A, Cos ('� t 

Sin (t), t 

_- (L)S. ý, 

ý-; 



Appendix A. 1 : Derivation of Eigenvalues & Eigenvectors 

Substituting the above into Equation (A. 1-1) and (A. 1-2): 

- nii A, w(, 2 Sin w, t+ (k, + k2) A, Sin w, t-k, A, Sin wý t=0 (A. 1-3 ) 

-in, A, a)I Sin w, t-k, A, Sinwýt+k, A, Sin w, t =0 (A. 1-4) 

Dividing throughout by Sin w, t: 
(k, 

+ k2 - M, w(, 2)A, 
- k, A, =0 (A. 1-5 ) 

-k, A, +(k2-m2w; 
)A2 

=0 (A. 1-6 ) 

ForA, #OandA2#0 

Let the determinant of the above equations be zero 

k, +k2 -m, wß, 2 -k, = z 
-k2 k2-m2we 

(k, 
+k2 -1111 6ý1 2) (k2 

-m2We2) -k, 
2 =0 

k, k, 
- 

k, itt2 Wß, 
2 

+ k22 
- 

k2 tn2 0ý, 
2- k2 III, 6( 

12 
+ )9tß tn, (0,4 - 

k, 2 
=0 

1111 r2We 4- (k, m2+k2m2+k2m, )wý, 2+k, k, =0 

Let i=we 

111 in, 22 
- 

(k, 
in, + k, 112, + k, in, 

)A+k k2 =0 

111 )11ý 11l 111 111, 
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Appendix A. 1 : Derivation of Eigenvalues & Eigenvectors 

Let a, a_, = and a 
k, 

,_ in 1 111 111, 

ý' -(a, +a2 +a3 )ý +a, aý =0 

A= 

7_ 
W= 

(a, +a7+a3 )±I(a, +a2+a7 )2 
-4a, a, 

2 

ý (a, +a, +a, )± a2+a, 2+a-+2a, a, +2a, a1-2a, a, 
2 

ýý = 

(a, +a2+a3 
)- Va, 2+ 

a22 + a32 +2 
(a, 

a, + a, a, - a, a3) 

1) 

6V 
,22= 

ýa +a, + Grp + jGri a2 + Grp +2 (a, a, + a, a3 - al a3 

1) 

Therefore, the natural frequencies of the system are: 

+2a, (a, -a, 
)+(a, + a, )2ii (A. 1-7) 2=1 [ai 

+ a, +a32 

z 
2=2 

lal 
+ a2 + aj + a, + 2a, (a, - aý+ (a, 

2 

A-ý 



Appendix A. 2 : Derivation of Eigenvalues & Eigenvectors 

A. 2 Eigenvectors 

From equations (A. 1-5) and (A. 1-6), two expressions for the ratio of the 

amplitudes are found: 

A, 

A, 
k2 

2 k, +k2 -mI W 

L 
-111_ %/) 

K, 
( A. 2-1 ) 

Substitution of the natural frequencies in either of the above equations 

leads to the ratio of amplitudes. 

For 412, the amplitude ratio corresponding to the first natural frequency is: 

A 
A2 

ýý 

k, +k2 - m, Cl)e, 
( A. 2-2 ) 

For (422, the amplitude ratio corresponding to the second natural frequency 

is: 

A 2' k 2 (A. 2-3) 
A2k, + k, - m, we, 

\-(ý 



Appendix B. 1 : Validation of Equations 

APPENDIX B 

VALIDATION OF EQUATIONS 
FOR HARMONIC SOLUTIONS 

B. 1 Validation of Equation (3.2-34) 

From equation (3.2-34): 

x0=A, (T1) e"TO + Ai (Ti )c -r«, r� (3.2-34) 

From equation (3.2-26): 

O 
DDx = D2 

[A, 
(T, ) eito, 

T� +A (Tj) e -ir. To 

= D0 
[iw, 

A, (T, ) e(0To - lam, A, (T, ) e-icu1T� 
] 

=i2A, 
(T, ) e' 

A T� +i 
2W12 A, (T1) e- 

im Tu 

w1 A, (T1) eiw, 
T� 

-wA, 
(T1) e -ito, T(, 

Substitute Do x, o into (3.2-26): 

_O)l AI (TI ) ý, 
t(O. T.. 

- col A, (/TI ) -iW1T(, +ý12 
[A, 

(1 rT, 
1) e1(1To +A, (TI ) ýý-'(O'T 

J=0 
(B. 1-1) 

ý' 

L. H. S. = R. H. S. 
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Appendix B. 2 : Validation of Equations 

B. 2 Validation of Equation (3.2-35) 

From equation (3.2-35): 

k"2O = A, (TI ) e"'T� +A2(Tl) e 
"ITI, 

+A, (T, ) +A, (T, ) e-ku, 
r, (3.2-35) 

From equation (3.2-27): 

Do x20 + Y3-x20 - Y, -x 1o=0 (3.2-27) 

2D [A1 
() c+ A (T) e-i[0 +A (T1) ý, 

i(+ A (T) ('-j 
DX= 

II 
A3 

1 

= Do 
{1w2 

A, (T1) eim2TO - lCo 2A2(TI) e-""'T + iwI Ai (TI ) I' - loI A3 (T ) E2-iauT, 
1 

2 iwiT 2 
0)2- 

. 47' 23 /(0 T ') 2- -iau TO 
=i C02A, (TI) e° +i Cý2A, (Ti)e -°+iw , -A., (T1) c +j -C)I A 3(TI) 

2 iru Tý -i(t)2T(, (0T - -i(0 = -w A, (T1) e -w, A2(TI) e -wi A, (TI) cc O _CVl-A1( TI) cý To 

Substitute D� x70 into (3.2-27): 
D0 x20 + w2 x20 - QI; x10 =0 

2 "To , 2- ru, T, 2, i (oil� 2A -i"T" 
-C); A2(1) e -CO2A2(T, ) e -Ct)i AS(T) c -CýI ý(T, ) e 

tm, T, irO, T, T iru1T� 1 

+w; 
ýA, (T, ) e +(T, ) e +Aý(T, ) c'iro, +A3(Tý) c, J 

-0)2 
2 [AI (T, ) eiw, T� + A, (T, ) e-iw, T, 1=0 

imiT, ) 2- -trýT 2 ýi(u1T� -iaUT, iA3(T, )e -0)1A3(TI)e +C02A3(TI)c +(A, (7 )c 

_wA, (TI) e" T(' -WA, (1) e-`u'T' =0 
(B. 2-1) 

Taking the conjugates of (B. 2-1): 

rmi7� 

-wi A3(Ti)c +wZA3(T1)e"'T" -w; Ai(T1)errs .. =0 

A3 (Ti) (w; 
- 01-) = w; A, (T1) 

A3 (T1) _ii 

,- (Wi 

A3 (T, ) = rA, (T, ) (B. 2-2) 

where r= ýý= (B. 2-3) 

A-ti 
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Likewise, taking the complex conjugates of (B. 2-1): 

- w2A T e. 0'T" + w2A T e-, ý,,, rh 

A3 (T) (0) ?-w; ) 
_ 

A, (T, ) _ 

A, (T, ) _ 

(v A, (T, ) e-"01r� =0 

(,; A, (T, ) 

w; A, (T1) 
9, -o i 

FA, (T, (B. 2-4) 

: 
ý-ýý 
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APPENDIX C 

MATHEMATICA EVALUATIONS 

C. 1 Deriving the `Always' Secular Terms for 
_v, I 

In[l] = x10 = A1IT1 ] ýnxrulxTo + A1IT1 ] -nxolxTo r 

X20 =A2IT1] . nxo2xT0 +A2[T1] C-nxC42xT0 +A3IT1] eII i>T0 + 

A3 [ T1 ] c-nxolxT0 ; 

In[3]: = D [xi0, To l 

C;. rt[3[= -i C- Al [ T11 6i1 +i en To c'1 oil Al [ T'1 ] 

In[41: = D[D[x10, TO], T1] 

Oirt[4]= n CnTpýl w A'1[Ti] -n -3i cul OverBar'[Al [Ti] ] Al[T1] 

In[5]: = D [X20 , TO] 

nTcd 
Out[s]= -n -n Tp cal A3 [ T1 cal -p2 A2 [ T1 ] 6j2 + 

nýn T0 2 CU2 A2 [ T1 ]+n To (il (. ii A3 [ Tj 

In[6]: = TricJToExp [F Cos[ Qt]] 

O`rt[E]- 
21 

-ntS2 F+2 entQ 

The above equation converts F Cos .0t 
into polar' forms 

-k Cos 11 t=1g 0An t+t -an t 
`2 

From equation (3.3 - 19) ,t° 
To 

Let Right - Hand Side of equation (3.3 - 30) = RHSI 

SubstitutoSn[l] to In[6] in toRHSY 

nnTO +1 Fc-änTO -2DID[x1o, 
To], Ti] -2, 

eiD[xio, To] - 
Irý[7]: = F. HS 12Fß2 

3 

2r2D[xio, To] +2t2D[x20, To] -Y2 (xio) +Y2 (X20) -)11XX10 

F72 (x203 +3 xxio2 x x20 -3X X1o x x202 - x1o3 ) 

A-10 
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_ rt[71= 
z 

nnTo F'+ ns2To F -ßf2 3i Tow, 
lIT1) +. FT TO'-'1 

1IT1)) - 
ýJ1 (ý-n TOcv1k1IT1] +enTo`ýlA1[T1])3 - 

P1 (-]L. �-nTO`l til[T1J W1+ in TO '1 GJ1r1IT. 1 
2 ý2 (-3i C-nTowl AlI`1'1J (J1+]i e ATo ul W1 A, IT1 + 
ö2 nTOcv2 42I`1'1] +e-'L T0 w1 p, 3[T1] +enTO`ý2 ý-, T1 +nT `ý1_ 2 T1 + 
2 C2 (-Il -n To w1 A3 [ T1 I Gi 1-n e-n T0 u2 A2 [ T1 J(12+ en To `"2 W2 A2 I T1 ]+ 

n'enTo ci1Cu1A3[T1J) 
-f72 (-(, e-ii To `lA. 1ITiI +. e1T0wIAl[T1J)3+ 

3 (ý-äTO(fIAi[T J +e ii To v, 1Al[, 1'1]}2 
(e-ii Tow2A2[T1] +e-n Tou1A3[T1I+enTow2r.; 

T1] + nTOco1A3T1J) 
3 (ý-uT0w1p1[T1] +. enT0w1A1[T1]) 

(n TO w2 A2 [ T11 + e-n T0 ý1 p3 I T1) + en TO A` [ T1 J+ en TO '. ̀'1 A3 I T1 ]) 2+ 

(f-ATo(L2 p2[T1] +e -n T3cd1 A3[T1] +enTow2 A2IT1I +WIlTýýý1 [T1J)3) 
- 

2 (nýii To ulw1A1[T1] 
-n -nTOulculOverBar'[A, IT1J)Al[T1J) 

In[8]: = RHS1 = ExpandA11[P. HSI] 

Oi. lf[t, ]= 2 e-uPTp F+ 
1 

r-- 3i TO F-e-ATpwl AT2 +nTC, w2 - 

-nTpwlA3[T1] 7'2+2n -nTp(j 1A nT 
1[ T l1 wl +2 ]i 0w1Al[T11 W1 2- 

2 Il -n Tp wl A3 [ T1] J1 r2 -2ý. e- n Tp w2 A2 [ T1 ] W2 t2 - . e-3 n To `wl Al -Ti 13 F71 + 

e-3 n Tp c. $1 Al Tr 1 i72 -3 -2 n Tp w1-n Tp (1)2 Al [ T2 A2 [ T1 1 i72 + 

3 a-n Tp c)l-Z n Tp W2 Ai [ T1 ] A2 [ T'1 12 772 - 

-3 n Tp c2 AZ [T rig -3 <e-3 
n TO wl Al [T A3 [ T1 1 'F72 + 

6 $-2 n Tp ml-n Tp J2 Al [ T'1 1 A2 [ T1 1 A3 [ Tl ] X72 - 
3 -n Tp wl-2 n Tp wz A2 [ Ti 2 A3 [ T1 r72 +3 -3 n Tp ýrl A, [ T1 1 A3 r12 - 
3 e-2 n Tp (i1-n Tp U2 A2 [ T1 1 A3 TT1 12 i72 - e-3 n Tp wl A3 [ T1 ] 3X72 

- 
a Tp '1 ö2 Al [ T1 1 -2 nn Tp (il a1 Cl Al [ T1 1-2 Ile ]i To °'1 6j1 ý2 Al [ T1 1- 

[T 1 3 e-n 
Tp (i1 Al 771 `A'1 [ T1 1+3n Tp cal Al ? 72 Al [ T1 ]- 

6 e-n To 'J2 Al [ T1 ] A2 [ T1 1 X72 Ai [ T1 ]+3 en Tp c1-2 n Tp U2 A2 T11ý 72 p1[ T1 1- 

6 -n Tp cj1 p1[ T1 1 A3 [ T1 1 T72 Al [ T1 ]+6 e-n Tp'2 AZ [ T1 1 A3 [ `1'11 r72 Al [ T1 1+ 

3 e-n Tp cil A3 [ T11 L T72 Al [ T1 1-3 en TO ('J1 Al [ T1 ] 111 -A-1 
[ T11 2+ 

3 en Tp °'1 c'ß'1 [ T1 772 Al [ T1 23 e2 n Tp (il-3i Tp w2 A2 [ T1 t72 ``, [ T1] 2- 

3+ 3 nTp`j1A3[T11 f72 ä'1[T12 -ý3nTpý1r7lAl[T1] 

e3 it Tp (i1 772 A, [ T1 ]3+ en Tp cj2 Y2 A2 [ T1 I+2 Il en Tp °J= c"2 r2 A2 [ T11 - 

32n Tp v. l+n Tp u2 Al [ T1 1 2X72 A2 [ T1] +6 (e- 
n Tp (i1 Al [ T1 12[ T1 ]rZ A2 [ T1 1- 

3 1--n 
Tp (J2 A2 [ T1 1 772 `42 [ X1'1 1+6 -2 n Tp cwl+n Tp ()2 A1[ T1 1 A3 [ T1 1 r12 `t'2 [ T1 1- 

6 e-n Tp (J1 A2 [ T11 A3 [ T1 1 r12 A2 [ `I'1 ]-3 e-2 
n Tp (. 11 +A Tp w2 A3 -T, ]FZ 172 A2 [ T'1 1- 

6enTo 02Al[T11 Ti2Al[T11 A2[T11 +6enTO ("lAZ [T11 X72Al[T11 A2[T11 + 

6en Tp (J2 A3 [ T1 1 r72 Al [ T11 A2 [ T1 ]-3 e2 
n Tp 4-1+n TO 4'2 y72 Al [ T1 12 A2 [ T1 ]+ 

3 (e- 
n Tp (j1+2 n Tp ("2 Al [ T1 ] X72 AZ [ T1 Z-3en Tp ("2 AZ [ T1 1 t72 [ T, 12 

3 e- 3i Tp Lj1+2 n Tp "2 A3 [ T1 1 -72 A2 [ T1 ]2 +3 en Tp u-1+2 n Tr, `-, 2 -72 Al [ T11 AZ [ T1 ]2- 

e3 n Tp W2 A2 [ T1 13+en To u1 ý2 A3 [ T1 1+ 

2nea Tp u1 r. J1 S2 A3 [ `I'1 1-3 ý- n Tp ail Al E Tl i7Z A3 [ T1 ]+ 

6`Q-A To 42 A1[T1 A2[T1 -72 A3[T11 3 ei 
To wl-2ATo(ZA? [Tj]L�LA3[T1 + 

6 Il Tp (j1 Al [ T11 A3 [ T1 1 X72 A3 [ T1 1-6 e-n 
Tp W2 A2 [ T1 1 Ä3 [ T11 2 A3 [ T1 1- 

3n Tp ul A3 T n2 ý'3 [ T1 1-6 (en 
To (i1 Al [ T11 X72 ý1 [ T11 "3 [ T11 + 

6e2nTpu1-nToI,, `12[T1] F72A1[T1] A3[T1] + 

T, T., 

3 ý3 n Tp cdl ý _` 
Al [ T1 ]2 ý''3 [ T1 ]+6 Tp wZ Al [ T11 '? 2 `[ T1 A-, [ T11 

6 To "'l A2 [T11 `''2 [T11 A3 [T1] -6 aenTo uZ A3[T11 "ý [T11 
"-' 

[T11 + 

62n Tp 4,1+n Tp cd2 Al [ T1 1 A2 [ T1 1 A3 [ T1 1- 

3 eUTo -'1+2 nTp,,, 2 �: A2 [T112 A3 [T1] + 

3 Pi 
To wl Al [ T1 ]". A3 [T1 ]2 -3 e2 

n Tp wl-n Tp ]Z IT11z "ý. -', 
[ T1 ]- 

nTpwlA, [T11'? A[T1]2+3e3nTpýý1fý`Al[T11 ""_: 
[T11 

3 p2 n Tp c. i1+ii TO °12 ; i2 
.ý 

[T11 A[ T1 12- e3 
n Tp (il ,; ` "ý 

[ T11 

Tpý11 
1Ai[T11+'-n -nTo wloil OverBar'[AI [T111=1[T11 

: A-lI 
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Extracting the ' Always ' Secular Terns of RHSY fr om Out [ 81 : 

In[91= Coefficient [RHSI, ýnxw1xT0 I 

-rt(9]= -"f2 Al [ Ti ]-2i 611 ?1 Al I T1 ]-21 oii t2 Al [ T1 ]-3 Aj TT1) 'j1 Al [ T1 ]2+ 
3Ai[Ti] rJ2A1[Tj]2 -3 A3I`-T'1] r]2A1[T1]2+6A2[T1]'72= 

1[Ti] A2IT1] + 
ßf2 A3 [Ti] +2n ajl ?2 A3[T1] - 6A1 [T1] ? 72 Al [Ti] A3 [TiI + 
6 A3 [ Ti 1772 Al [ Ti ] A3 [ Ti I-6 A2 -[T1 rJ2 A2 [ T1 ] -zl3 [ T1 I+ 
3 Al [Ti] TX72A3[`1'1]2 -3A3[T1I; 72A3I`1'1]2 -2 Iloi Ai[T1] 

Extracting the ' Always ' Complex 

Conjugate Secular Terms of RHSI fig out[ S] 

In[1O]: = Coefficient[P. HSI, o-nx01xTOj 

Out[10]= -Al [T1] ;2+A3[T1Iäk2+2n Al [T, IW1ý1+2 ii A1[T1]. 1? ý- 
2i A-T Oi1 ?2-3 Al [ T1 ]ý Y71 A, [ T1 ]+3 Al [ T1 ]2; 2 Al [ T1 ]- 
EA1[T1] A3[Tl] i72A1[T1] +3A3[T1]2 2A1[T1] + 
6A1[T1[ A2 [T1I ý72A2[T1] -6A2[ß'1] A3[T1] T72A2[T1] - 
3A1[`-T '1]2r12A3[`I'lI +6A1[TlI A3[Ti1 -; 72A3[T1] - 

T112[TI. +2i oil OverBar' [Al [Tl I] Al [TI 1 

Below are the ' Always ' Secular and ' 

Alsways ' Complex Conjugate Secular Terms for x11 . 
They are the e- statement of out[ 91 and out[ 101 respectively, 

except that the excitation terms (i . e. the lst teams) are 

added in here as they are left out previously by Mathematica . 

  The 'Always' Secular Terms of x11: 

in[1.1 ]: = 
1 

(O_ý Z 
2i oF -*2A1[T1] -2nG11t1A1[TI] -21"1 t2A1IT1ý 

A36 

A2 IT11 F72 A1IT1I A2 IT1I + ä2 A3ITiI + 2L12 A3 IT1J - 

6 A1ITiI I72 A1IT1] A3IT1J + 6A3[ T1] i2 Al [TiI A3[ T1] - 

6 A2 IT1] I72 A2 IT1I A3 ITiI +3 A1[ T1 ] F12 A3IT11 2-3 A3IT1 ] '12 A3IT1 12 _ 

2A col Aj[T1I 

Tie 'Al wt, ays' Complex Conjugate Secular Terms of xil :   

In[12] = 
1n (Q-(jl) To j; - AT+A TI +2n. AT tt + 
2 1I 1] *2 3I ] Y2 1I 1] 1 

ti. 

2A Al [ T1 ] '6)1 t2 -2n A3 [T1 ] 01 . 
02 -3 A1[ Ti i71 Al I Ti ] 

3K-: L[T1]2A2F)2X3A2 

3A1IT1]2 X72 A3[T1] + 6A1[T1] A3[T1] F72A3IT1] - 3A3IT112'12A3[T1] ' 

2 ii 1 OverB ar' [Al [T1]] Al [ T1 ] 

ýIý 
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Dividing RHSY by eß'3 TO and then grouping them 

for alike coefficients for easier identification 
. This 

purpose -is to identify other secular teams :j 

In[13]: = Collect [ ExpandAll [ R]IS 1/ enxo1xTp j 

ren(u1Tp, le-nw1T0, @3no1Tp, e-3nu1Tp' eno2Tp e-'lw2Tp 

'2nw2Tp e3n02Tp , e-3n"2Tp ) 

Out[13]= . e-4 
n Tp (ii (-P 1[ Ti ]3 z71 + Al [ Ti ]3 T72 - 

3A1[Ti]2A3[Ti] f72+3Al[Ti] A3[T1]2t2 -A3ITl]ý 

ö2AI[T1] -2i(, jl 1Al[T1] 2i(ä1 ý2AlIT1] 

3A1[ Ti ]X71 Al [ Ti ]Z+3 Al I`i'1] T72 Al [ T1 ]2- 

3A3[T1] t2A1[T1]2+6A2[T1] i72A1[T1] A2[T1] + 

-3nTpCi1 (e To iZ(_3Al[Tl]ZA 2[ `1'1] f72+6Al[Tj] A2[T1] A3[2'1]'72- 

3A2[T1] A3[T1]2j72) +efT0 2 (-3A1[Tl]2ý72 A2[Tl] + 

6 Al [ T1 ] A3[TI] i72 A2 [ T1 ]-3 A3 [ `i'1 ]2 X72 ='- (T1 ])) + 

'2A3[Ti] +2iW1.2A3[T1] -6Al[T1] t72Ai[T1] A3[T1]+ 

6A3[Ti] f72Al[Ti] A3[Ti] - 
6A2[Ti] X72A2[T1] A3[Ti] + 

3 Al [TI ] i72 A3 [Ti J2- 

3A3[T1] ý7ZA3[Tl]2+ 

-2 n Tp (j2 (3 A2 [`i'1 ]2 X72 Al [`i]-3 A2 [ `1'l ]Z 712 A3 [ Ti ]) + 
2nToUZ (3r72Al[Ti] AZ[T1]Z -3i72A2[`rl]2A3[Ti + 

e2 
n Tp (i1 (-ti Al I `i'1 J3+ T72 Al [ T1 ]3-3 r]2 Al [`iJ2 A3 [ Ti ]+ 

3r7ZAl[T1] A3[T1]2 -t2A3[T1]3) +e- 
nTpcil 

lz 
n 51 Tp +2n 

St Tp 
'e-3 

n Tp UZ A2 2'1 ] 3'72 3n Tp w2 
Z A2 [ `i'1 ]3+ 

31 Tpw2 (A2 [Ti] 2f2 -21 A2 [Ti] w2 
?2- 6Al [Ti] A[`i'1] X72 Al [TiI + 

6A2[T1]T3 i72A1[T1] -3A2[Ti12t2Ai[T1] + 

AzA3772 

en TouZ (X2A2IT1]+21 w2ý2Az[`i. 6A1[TiIt2Al [Ti ]A2[`i'1I+ 

6A3[T1] f72Ai[Ti] A2ITiI -3A2[T1J r72A2[TiI2+ 

6 Al [ Tl ] 772A2[Ti] A3 [ T1 ]-6 A3 [ Tl ] X72A2[Ti] A7 [ Tl 1)) + 

ii To c'1 (, e'nTo CJ2 -3Ä2[T1] r72A1[T1]2+6Ä2[T1] -72Ä1[T1] L3[T1] - 

3A2[T1] 772 A3[Ti]2) +eUT0U2 (-3i72Al [T1]2 ß-2[T1] + 

6f72A1[`j'1] Ä2[`f1] ß=3[T1] -3T72A2[T1] 

2n wl Ai [ Ti ]+ e-2 n TO cv1 (-Al (T1 ] -f2 + A3 [ Tl ]ý2+ 

21 Al [ Ti ] ýý1 1+2n Al [ Ti ] 6J1 . 
e2 -2n A3 [ Ti ] (01 -2 

+ 

-2 ii To J2 (3Ä1[`r1] A2[T1]2f72 -3A2[T1]2A31T1] 772) - 

3A1[Ti ]2T71Al [T1] +3A1[T1]2r72A1[Tl] - 

6A1[T1] Ä3[T1] f72A1[Tl] +3A3[T1]2ý72A1[T1] + 

6 Ä1 [ Ti ] Ä2 [ Ti ] rig A2 [ Ti ]-6 32 [ T1 ] A3 [ T1 ]2A. T1 ]+ 

, FZ 
nTOc2 (ý Al`I1] ý72A2[ `T'1]2 3Ä3[T1] 7- 

12 

(T1] 

3A1[Tiri2A3[Tl] +6A1[T1] A3(Tlj [T1] - 

3 A3 [T1]2; ß`. A3[T1] +2 i Wl OverBar'[Al(T1] ] 1[T1] 
) 

A-1 
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Similarly, for the complex conjugate, 

dividing RHSl by e-ý'1 TO and then grouping them for alike coefficients 
for e. sier iden tification . The purpose of solving for the complex 

conjugates is to double check that all the terms in the conjugates 

are alike with the complex conjugates ones - which it does. 

In[14]: = Collect [ExpandAll [ RHS 1/ e-IIxwixTO [ 

{cn6) IL To -it ul To, 
r3 

nw1 Tor -3 nU1To 
ßn02 

Tp 
e-n02 

To 
rr Ie2 $02 Tp 

e3 
nci2 T0 

e-3 
not T0 11 

Oi. rt(14]= -A1[ `r1] <' +A3[ T1] ö2+2 nAlI2'1) W1 e1 +2iAl[ `r1] W1 'y2 
2i z3 I T1) 4)1 2+ e-2 ä T0 w2 (3 Al [ `1'1) A2 X72 -3 Aý(T A3 I T1) X72) + 

e -2nTOci1 _A1IT1 r1i+A1 i72-3A1 2 A3I`11)'7z+ 

A3[Ü, 

3 A1IT1)ZT72 A1IT1) - 6A1IT1) A3[ T1] r12A1[ T1] +3 A3 ÜZ[ ß'1] + 

6A1[ T1] A2[ T1] i72A2[ T1] -6A2IT1) A3IT1) i72A2IT1) + 
nT0w2 (3A1[T1] 772A2[ T1)2 -3A3IT1) i72A2IT1)2) + 

e-u T0 uj1 «e- ii TO OJ2 (-3 Al [ TjT2 A2 I T1) r)2 +6 Al I T1) A2 [ T1] A3 I T1) 172 - 

A, To 

6A1IT1) A3[T1] r72A2IT1) -3A3[T1lr12A2[T1))) - 

3A1[T1)2rJ2A3[T1] +6A1[T1) A3[T1] lý72A3[T, - 

3 A3 I T1) 2 l72 A3 [T1 ]+ 

e4 äT0 c. il t _ý71 Al [ T1) 3+ X72 Al [ T1 ]3-3 l72 Al [ 'I'1) 2 A3 [ T1 ]+ 

3 X72 Al [ T1] A3ITl)2 -'72 A3IT1)3) +nTocil 

(1 
-ß 92 TO F+ ü To e-3n Tow2AZI, i, 1)3 2nT0 2r12A2IT1)3+ 

`2 2 

e-IlT3v, 2 (A2IT1) 2ý2 -2 nA2[ T1] W2 e2 
- 6A1I`j'1) A2I`T'1) X72 AlI`r1) + 

6A2IT11 A3ITi1 'r72A1IT1) -3A2IT1 
2 Ü' 2A2 [T, ] + 

6A1[T1] A2IT11 -72A3IT1) -6A2[ T1] A3IT1) ü2A3IT1)) + 

a T0 2 (ö2 A2[T1] +2 Il 612 e2 A2 [T1] - 6A1IT1) T72 A1[ T1] A2 [T1) + 

6 A3 [TI 1 772 Al I T1) A2[T1] -3 Az [ T1) «72 A2 [ T1 12 + 

6 Al I `I'1) X72 A2 I `I'1) A3 I `r1) -6 A3 [`1'1] X72A2[T1] A3 I T1))) + 

3nT0crl (, e-ii To w2 (-3 A2I`rl] X72`ý1I` 1]2+6A2IT1I'72 AlIT1] A3IT1] - 

f72 

6772Al[`i'1] A2[`rl] A3[`I'1] -3f72AZ[`I'1] A3[`I'1]2)) + 

2 Wl OverBar'[Al[T1] I Ai[Tl] +&2 AT0cJ1 

(-'f2Al[T1] -2nwl., AlIT1] -2n6j1ýZAlIT1] - 

3Al[Tl] r71rl[T1]2+3Al[T1] r72Al[Tl]Z - 

3A3[T1] -i72Aj[T1]2+6AZ[Tl] f72Al[Tl] A2[T1] + 

y'2 r'3 [T1]+2n 6jl t2 A3 [`I'1I -6 Al [TlI t72 Al I. 3 [Tl ]+ 

6A3IT1] ii2A, IT1] A3[T1] -6A2[T1] r12A2[T1] [T1] + 

3Al[T1] t72A3IT1]2 -3A3ITII f72A3IT112+ 

, e-2 äT0 cJ2 (3 A2 T ýF72 Al [ Tl ]-3 A2 T1T 1" I T1 I) + 

I} -'ý n W. Al IT1 
e2 A To u2 (3 ;; 2 A, I TI I AZ I T1 ]2-3 r72 A2I T1 ]Z=[ Ti 

A- 14 
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C. 2 Identifying the Internal Resonances of _v, I 

With reference from In[l] of Appendix C. 2 on the next page, all the terms 

admit resonances of one sort or another; a full list of these is given in Table 

C-1 below, in which it may be seen that some appear in one or two of the 

first-order perturbation equations. Only resonances that show coupling 

between at least two modes are of practical interest. 

Secular Possible Internal Complex Possible Internal 
Terms Resonance Conjugates Resonance 

i2c)2 T' N. A. e-i(2cu, +2w1 )TT CÜ, ~ Wi 

e1zoj, T� N. A. e-i4(o, T� N. A. 

-(ui )To 1 
-i (3(u, +(oi )Tn 

1 

ý3 3 

i((O -w )T() -i(m, +(0)T, 1 Ce 
(02 -ýI 

ý2 ý ý1 

-i(w, -(ai)Tn U)2 '= 0)1 
ei 

(m, -3(° ) To 
e 1w, ý3W, 

e 
i(co, (ol )To 0), = -oil e-i((0'+3(ol 

)T( £= -3w1 

c ,; (_«, -2w1)T� e-i2 T N. A. 

Table C-1: Possible internal resonances for 1st order perturbation 
equations (Case 1) 

From the table above, the internal resonances of the system are 
1 

11 (0contributed by the terms that are highlighted with a box, i. e. 23ý 

w, = 3w, and co, =co,. 

A-1 
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Multiplying eII Tb "1 back into Out (13 j from Appendix C-1 and rearrang- 
ing it: 

Iri[1]: = F. HS1 == 

IIT, IIT 
1[ ) 

-äTo (2vasaw1j (3AIITII A2[T11af1a -3A2 T1]2A3[T1J Tja) 
AIL To AIL IL j+ 

113I 

-4äTpu1 -All 711 'Fll +A1ITIP; 72 -. 3X, [7112A3IT1] j-2 

3 Al711 A3I `1'3la 'jý a -A3I TZ1 ; 7-a} 
it To (3 o2-. u1) ; 72 A2T113 

-ä T0 (3 ova twl) A2 3I 
! 711 T12 + 

it To (°2-6)1) 

(X2A2[T1] +2Aci2t2A2[T1] -6A1[T1I'72Ai[T1] A2[T1] + 
6A3[Ti] 772 A1[T1I A2[T1I -3A2[T1] r72A2ITi]2 + 
6A1[T11'72 '42[TI] A3[T1] -6A3[T11 572 A2[T1I A3[Ti]) 

-A TO (Waf&Pi) 

(A2 [ T1 I a"2 -2 ik A2 [ Ti ] 02-C2 -6 Al [ ß'2 ] A2 [ ß'11 T%2 All T11 

6A2[ß'11 A3[Ti1 T72A, [TiI -3A2[TiJ2T72A2[TI I 

A21472 

CnTo 
(f32 -3OjL) 

(-3A1[T1J2 r12A2[T11 + 6A1[T1I A3[T11'72 A2[T1I - 

3A3[T1Iý F72A2[TiI) + 

--6 TO OJ2 -"1) 

(-3A21T1I ;72 +6A2ITi1 J72A, [TlI A3[- 

3A2[T1I T72A3[Ti12) + 

hT0 (02+ 1) (-3 i72 A1[T1] 2 A2[T1] +6 X72 A1IT1I A2[T1I A3[TiI - 

35I2A2[T1I A3[T112) + 

-a TO (-wa +3 &, 1) 
(-3A1[T1]2A2[T1] '12 + 6A2[T1I A2[ß'11 A3[TiI T72 - 

3 A2 T11 A31 T112 T72) + 

e1TO 
(26)2-2o1) (3AlIT11 n2A2[TlI2 -3A3[Tl] '72A2IT1I2) 

-2äTo bra (3A2[ýY1aTJ? Al [T11 32 [T112 T72A3[T1Iý + 

2 
en(n-wjL)ToE'-ä2A1[T1] -2nui1 lAl[T11 -21LOIt2Ai[TiI 

3 Al I Ti J ý? 1 Al I T1 J2+3 Al [ T11 n2 Al [ T1]2 -3 A3 [ T1 ] '72 Al [ T112 + 

6A2[T1I'72A1[Ti] A2[T1I +I2A3[TiJ +2n 1.2A3ITiI - 

6A1[T1] '72Ai[T1] A3[T1] +6A3[T1J'J2A1[T1] A3[T1] - 

6A2[T1] '72 A2[T1J A3[T1] +3A11T1I 12A3[T1I2 -3A3[T1I'72A3[T112 - 

2no1Ai[T1] +2 c-ä(At&r1)Tpý 

2IITpdi (-A2[TiI Y2 +A3ITiI ä"2 +21iA1[T11'1'1 + 

2-hAl[TiI E01 e2 
-2Ii A3[TiI 01. e2 -3A1[T1IlT71A2[ý1I 

3A2[T212T12A1[Ts1 -6A2[ß'11 A3[TI1 h/2A1IT1I + 

3A31 T212 T72A1[3'i1 6A2[Ti1 A21 T11 J72A2[Tl 

6 Aa [ 3'1 A, [ ý'1 ; 72 Aa [ T11 3 X21 2'1 1a '12 A-3 T 

6A1[TiI A3[T11 T72A3[T1I -3A31T1] 
2"72A3[Tl] + 

2 1[ col OVe2 BcE Y'[ Al I Ti 1I Ai [ Ti I) 

'Always ' Secular Terms 

Italics: C=omplex Coz »i: yates of the Preceding Teams 

: \-16 
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C. 3 Case 1 (Superharmonic Resonance): Solving for 
_. -� 

Non-secular terms of RHS1, after removing the secular and complex con- 
7ugate terms in (3.3-43) 

In[1]: = P. HS1 
1T0Cº1 (. e2 

it To 02 (3Ii2AIL [T1]A2IT 1]2-3'J2A2IT1]2A3IT1]) 
iTo(2&P2*2 l) {3AlITY] AaITl 2; 

72 3A2 3'YI2A3ITY] ja) 
2 it To wy_ (-Ij1AiIT1]3 + i2 AIIT1]3 -3 q2 Al IT1]2 A3[T1] + 

3 F12 Ai[T1] A3IT1]2 - rj2 A3IT1]3) + 

-4aTO cPY AY`l'Y]3ý1 AYI3'Y]3T72 -3Xi ITY]2A? I`C'Y]'72 { 

3A1I71] A31T11 22 
-A3ITlI 

3 
q2) 

iTo ßw2-(31) 

[Ti1L02-6 Ai 1T i] 772 All T IL I A2 IT 1] + 

6A3[T1] 5J2Aj[Ti]A2[T1] -3A2[T1] 772A2IT112+ 

6Ai[T1] IJ2 A2[Ti] A3[T1] -6A3[Ti] 572A2IT1] A3IT1]) 

&-P 
TO (u2 *&1) 

(A2ITi] ä'a-21A2ITi] 0a-6A1Iý'1]AaI71] T72AiITi] 

6A2ITi] A3[ T1] rl2AllT1] -3A2Iý°Y]2T72A2ITi] 
6All7Y] A2ITi] I72A3I71] -6A2ITlI A3ITi] T72A3IT2]) 

e' 0 (o2-3w1) 

(-3Ai[Ti]2I12A2IT1] +6A1[T1]A3[T1] 512A2[T1] - 

3A3[Ti]2IJ2A2[Ti]) 

-äT0 ('2-'i) 

(-3A2[TjJ j72A1IT1]2 + 6A2I71] T%2AllT1I A3IT1] - 

3A2ITi1 13'2 A3[ß''i]2) + 

nTo (o2+01) (-3 i)2 Ai[T1 ]2 A2ITi J+6 rj2 A1IT1 ] A2 ITlJ A3 [Ti ]- 

3ý12A2[T1] A3[T1]2) 

, -Jýr To(''2*3d1) 

(-3A1I2'112A2ITi1 772 6A1I2'11 A2ITzI A3[ T1]'12 - 

3A2 ß'1] A3ITi]2T12) + 

nTO (202-2`'1) (3A1IT1] r12A2ITi]2 -3A3[T1] FhA2[T1]2) 

-air To &2 (3A2IT112r12AlIT1] -3AA TI 12F72A3IT11)): 

. \-17 
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Multiply out the team e-"70'1 in In [1 j: I 

Iri[2]: = F. HS1 == eIITO (202+(a1) (3 q2 A1ITil A2[T112 -3 F72 A2[T1]2 A3[Ti]äTo(202*01) 

(3AYI1,11 A2[T1] 2T7a 
-32I`_7 `112A3[2711 T72) + 

'3iT0of (-)1Ai[Ti13 +'72 Ai[T1]3 - 3'12 A1[T1] 2 A3ITiI + 
3i72Ai[TiIA3ITiJ2-F12A3IT1I3) + 

-3sTo rv1 -AlT13'ý1 4AlIT113'ý72 -3A2[3'212Pt31Tj T72 

3A, [fr11 A3 I r11 2 
#2 - A3 I T1 13 #2) + 

CnTO02 (j2A2[TiI +2nG12t2A2[Ti] -6Ai[Ti] j72A, ITiI A2[Ti + 
6 A3 [TI ] F72 Al ITlI A2 ITlI-3 A2 ITiI F72 A2 ITi1 2+ 

6 Ai [Ti ] T72 A2 I T1 I A3 [T11 -6 A3 [ Ti 1 '72 A2 I T1 I A3 [ Ti 1) 

C-6Tp&P2 (A21TlI : '2-2 A2[71102. e2-6Al[3'i1A2I711'ý2As[Tl1 { 

6A2IT11 '43 #2A1IT1I -3A2[T112#2A211711 
6AlT1] A2IT11 'F72A3IT1I -6A2IT1I A3IT1I T72A31TI 1) + 

ýnT0 (02-201) 

A, [ 

3A3 I TI r72A2[T11) { 

FT0(&02-211) -1 

(-3A2IT1J'12AYTu 2{ 6A2[ TiI'12Al ITi] A3[T1l - 

3A2IT11 T72A3ITuI2) + 

CATO ()2+201) 

(-3 FJ2AiIT112A2[Ti] +6 n2AiIT11 A2IT1I A3IT11 - 
3 r12A2ITi1 A3ITiJ2) 

-STo (u2+2&11) 

(-3AYITYI2A2IT1l'12 6AYIT1] A2IT1I A3ITYI T72 - 

3A2 IT1l A3ITY1aj72) + 

cIITo (202-"i) (3 A1IT1I F72 A2[ T1]2 -3 A3IT11 '12 A2IT112) 

e-aT0(2u2-i1) (3X2-[2'112; 7-2 All T11 -3 Aa[TZ12'i2A3[Trl): 

Assume trial solution for x11 (Note :E and I are not used here as 

they are Nathematica's reserved letters. j: 

Iri[3]: = x11 =B cnTj 
(202+01) 

+C &. -A To (2AP2+&_) 
+D E3fTo cal_ +F 

3äTo cal + 

G nTp(a2 +H --äTQu2+ J nTp (ßu2-201) 
+K ß-äTp(cu2-2rr1I + 

LeATo (02+20u1) 
+M -$To (v2#2av1) +2ieüTo 

(2(32-01) +O ¢-ä 
To(=rj2-&, 1) 

Differentiate Iz)[3j by 2 times: 

In[4]i= D[xii, (TO, 2) ] 

3n To ah1 
-y -3 n Tp crl 2n To cý2 ,2 

TC, H2- 
+Dut[4]= -9 De w"' iF w1 G a2 

eii 
To (-2('Jl+"2) J (-2 col + W2)2 - e-n 

To (-2w1+("2) K( -2 all +(, z)2 - 

:B 
nTO (24'1+w2) L (2 üli+ W2)2 - C- 

n T0 (2(il+w2) M (2 e11 +W2)` - 

Ile 
n Tp (-ßi1+2 clZ) PI ( -6-11 +2 GJ2) 

2- 
<e- 

nTp (-u1+2 c. J2) 0`- 

C 'e-n 
T0 ko, 1+Z w`) (col +2(, 12) 

2-B 
en 

To (W1+2 c12) (öji + ,, i2} 
` 

-I'S 
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From L. H. S. of equation (3.3-30): 

Ir[S]: = D [x11. (To. 2} 1+ (12 x11 

Ollt[5)= T 
W2 - l9 <e -3 n Tp wl F 6J2 + 

(D e3 n Tp ci1 +c KE-n 
Tp ("r1+2 U2) +Bn Tp (u1+2 cJ2) + F-3 n Tp (i1 F+ en To w2 

dp-n To cwt H+ en T0 (-2 w1+ci2) j+ e-n T0 (-2 w1+u2) }+ eR To (2 -. ßl+c. '2) L+ 

<e- ii T0 (2 '1+(d2) M+eii T0 (-w1+2 W2) PT+<e- n T0 (-r1+2(r2) 0) w2 - 
n T3 'd2 G WZ - "-a T3 "j2 H W2 - <enTo 

(-2w1+w2) J -2 W1 + W2)" ý - 
, --nT0 (-2u1+c, i2) K. (-2 GJ1 + 612) 2- 

a T0j (2 (Jl+"ý2) L (2 G11 + 012) 2- 
<e-n 

Tp (2 U1+w2) M (2 wl + w2) 2- 
nT3 (-CJ 1+2c. i 2) Ar ( -6J1 +26.12)2 -<e -nT0 (-"1+2cj 2) 0 (-(-11 +2 6J2)2 - 

G e-l To (r. 1+2 [u2)(W1+2 W2)2 - BeIITp (cd1+2cd2) ( i+2 W2)2 

Simplifying Out (5 j above : 

In[66]: = B ¢n T0 ((a1+2cu2) (4 - (°i+ 202)2) +C C-iTO (0)1+202) (02 - (01+ 202)2) - 
8D e3iTo of 02 -8 e-3ATo OIL Fsui +CATOo2 G (o -o2} + 

-nT0o2 H (0i-o2) +e] TO (-201+02) j (c4- (-2611+02)2} + 

-n T0 (-201+02) KC a2 G) + Gl 2+1 uTO (2'1+'2) 22 (21 2} }L (02 _ (2 G)1 + (J2) }+ 

ý-äT0 (201+02) I"i (Gli - (2 G11 + Gt2)2) + rnT0 (-o1+2ci21 tl (02 ( Gt1 + 202}2} + 

'-n T0 (-(')1+2'42) 0 (cjj2L -( -cam, +2 02) 2) ; 

Referring to %n (2] 
, solution to xll can be derived : 

In[7]: = B == 
1 

(3rj2A1[T1]A2[T1]2-3T72A2[Ti J2A3[TiJ): 
2 01 - (oi +2 02) 2 

-3A2[Ti12A3[TI] 2)% C == 
1 

(3Al[Ti] A2[Ti1 12 
ail - (01 + 202)2 

D 

1_ 
- (-i11A1[T1J3 + r72 A1[T1I3 -3 712 A1[T1]2 A3[T1] + 

801 

3X72Al [T1] A3[T1]2 -t? 2A3[T1]3) 

F =_ 

- (-A1 [ T1 J3 111 + Al [ 711 ' "72 -3 Al [ Ti 12 A3 [ Ti ] 1%2 
$ ý1 

3A1[Tl] A, [7112 112 -A3[7113 172) % 
G == 

1_ 

W2 lilt 
(ä2A2 [T1 ]+2 Il O2 -C2 

A2 [T1] -6 A1[ T1 ] ')2 Al [T1 ] A2 [T1 ]+ 

A21 

6A1[T1] I)2A2[TlIA3[T1] -6A3[T1] 772A2[T1IA3[T1]); 

H 
1 

(4 -C32 
(A2[TY1 j2 -2-üAaITz] wa a -6A1[2's] A2I2'i]772 AiTi] 

6A2[TT] A3[Ts] j72ASITi] -3Aa[Tl12 72A2[T'Z] 

6 Al IT3] A2Ti1 772A3I2'2] 6A2[T3] A3I3't] T7aA3Ti])= 

1 
J =_ 

mi - (-2 oi+l(1)2)2 

i72 

3A3[Ti]2112A2IT1]): 

19 
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1 K =_ i- (-2 cal + ()2) 2 

-3 A21 T1 ] r/2 All T1 ]26 A2 "72 Al [ TI I A3I Ti 
3A2IT11 ; /2AS[T1]2 

1 

---, -- r- 

- 
ca 

i_ (2 c1 + 02) 2 

(-3ASITi12A2ITz] j12 + 6All Ti] A2[ Tt] A_31 T, I 'I 
3A2I711 A3I7112T72): 

1 

Gli - (2G11 +02)2 

(-3i72Al IT1J2A2IT1J +6F12A1[T1JA2IT1]A3IT1J - 
3 7'72 A2 [ Ti J A3 [T1 ] 2) 

1 

L == 

11 == 
wi - (-el +2 02 )2 

1 

kIal L1lI 772 A2L11I -JA3LT1I 772 A2LfIf )i 

0 == 
01 - (-o1+202)2 

(3A2[ TP112 g2A1[T; LI -3A2Iý'1]2'/2A31T1]): 

Substitute 1n[7] - Iin[181 Into In[3], solution to x11 is derived as: 
I 

In[13]: = x1l = 

-2 
nT0 (202+o1) 

((J2 
(3 r12 Ai[Ti] A2IT1]2 -3 i12 A2 [T1]2 A3IT1]) + 

- (°i + 202 )2 

e- 
iTo (2&2+&l) 

a 3A2ITi]2A3ITi] Tja) (3AZIT1] Aa 77 lß'1] 2- 2 6J2)2 
- 

im 
3 lT0 u1 

1AlAlAlA3 

A3 

e-3 
nT0 01 

11 3 AY I 2'Y 3 
f7.. 2 3AYZ`Ya 

8ý 
3Iý'Yý rf2 + 

i 
Al I `ýY ý rfY ý 

3A1ITiI A3[Til2T72 -A3[T2l3 J12)) + 

le 
n To w2 

A1IT1I A2 [T1] + 1T6 
AlET1 [ i72 

2_2 
(*2 A2[T1] + 2ýý2. ý2A2[ 1] 

Cal C32 

6 A3 [T1] F12 Al [TlI A2 ITl1 -3 A2[T1 ] 5J2 A2IT1I2 + 

F72A3A3 

a, -ä T0 '2 

(AaIx'21 ä"a -2 A2 [211 Wa ýa 6A1[Til AaIx'11 112AlITI 

ýºi 

I{ 

- dä 

6 A2 I TI I A3 [ Tl I2 A11 TI J- 3 A2 I T1 la T12 A2 I T1 l4 

6 Al -I T1 I A2 IT11 ; 72 A3 I x'11 A-31 W21 Ti TI 

A-"O 
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nT0 f02-2 W11 

1 

oI2 - (-2 o1 + 02) 2 

(-3 

3 A3 I T11 2 ý72 A2 I T1 I) 
)+ 

-" TO (02-2 u1 ) 

Y 

413 -( -2411 +02)2 

{-3A2T1 'r12Al 1,112 + 6A2[71] #2AI[ 711 A. 3[ I'll 

3A2[T1J j72A3IT112)) + 
it To ('2+2°1) 

f 

1 

l4 - (201+02)2 

(-3u)2A1IT112A2ITI J +6F12AIITi lA2A3- 

3 F72 A2 I T1 1 A3 I T1 12) )+ 
ä TO ( u2+2 cr1) 

Y 

dº2 - (2 as1 4 'W2) 2 

(-3Aj17112A2ITi1 #2 6AlIriI A2IT1I A3IT11 r72 - 
3A2[ß'1) A3Iý'112JT2)) + 

iTo (2o2-w1) 

1__l 
(3 Al [ Tl I F12 A2 [ T1 12-3 A3 I T1 1 q2 A2 I T1 1 2) 

J+ ýi - (_o1 +2 02) 2 

0-ä 
TO (2a+2-u1) 

(3A217112J12AlIT11 -3A2IT112J12A3IT1I)); rd; - (-ßr1 4202)2 

  Counter - Checking the Solution to x11: T 

(SRART of Checking ...... ) 
1 

In[20]i= D[x11, (T0,2} ]+ 012 x11; 
1 

Divide Out[ ? U] by . Z)12], gives a solution of 1 which proves that 

x� is correctly derived : 

In[2-1]: = FullSimplify[ 

ýý) f (enTO (202+11) t3 Ü2 A1[T1I A2[T1I2 -3 772 A2 [T1I2 A3 [TII 

ýTa(adafýi) ý3A2[2'Y Aa[ý'1laiýa -3A2[Ti]2A3[71ý 7a) ' 

leý3ÜTO ca1 (_el Al [Ti 13+e2A1[T1]3-3e2A1[Ti]2A3[Ti]+ 

3 i12A1[Ti] A3[T1I2 -772 A3[Ti]3) 

-3-6 TO cri -All Ti I3TI2 "'Ai[T1I3172 -3A1[2F1IlA, [T1] 172 

3Al[ Tl1 A3[ 2'i ]a j72 -A3[Tl13 e2) + 

enTO"2 (i2 A2 [Ti] +2]L 2. Ü2A2[T1] -6A1[TiI'12Al 
[Ti ] A2[TI 

6A3[T1]'12 A1[T1] A2[T1] -3A2[TiI'12A2[T112 + 

A3772A3 AIL TI 

TO wl (Aa[ 6Ai[T2] A2[T1] 772A1[T2] 
Ti I j2 -')B Aa[ Ti l da 

6A2 [T1] A3[Ti1 rl2Ai[Ti1 -3A2[T2Ia'72A2[TlI 

6A1[T1] A2 T72A3[ 'i] -6Aa[TlI A3[ß'1[ 772 AA T1[) 

: \-, 1 
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it To (62-2c. >1 

(-3 All T112 ý2 A2 [TI] +6 A1ITi I A3 ITiJ '12 A2[Ti] - 

K3+ 

-ä To (u2 -2 u1 ) 

(-3A2[T1] j2A1[T'112 + 6A2[T1] ý72AlIT1l A-31- 
3A2[Ti1 T72A3I7'1 12) + 

QnT0 
(t)2+201) 

(-3 il2Al ITi]2A2[T1] +6 r12Al[Ti] A2[Ti] A3[Ti] - 
3 e2A2[T1] A3[T1]2) 

e-ä To (&2 #2 u1) 

(-3A1[Ti]2A2I2'1] '12 + 6A1[TY] A2[Ti] A3[T1] q2 - 

3A2ITs] A3Iß'1]2 g2) + 

, enTo (2o2'w1) (3AlITi] e2A2[T1]2 -3A3[Ti] 772A2[T1]2) 
T0(202-u1) (3A2Iý'i]2T72Ai[Ti] -3A2Ilps]lr7aA3ETi]))] 

Out[21 ]= 1 

(...... END of Checking) 

; ý-ý ý 
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C. 4 Deriving the `Always' Secular Terms for 
_v,, 

Frown equation (3.3 - 34) & (3.3 - 35) 

in[1]: = xio =Al[Ti] eu1 1xT0 +Ai[T1] e-nx01xT0r 

X20 = A2 [T1 ] efixo2xT0 + A2 [T1 ] -nxc02xT0 + A3 [T1] enxo1 <T0 + 

A3 [ T1 ] e-nxoixT0 . 

In[3J: = D[ xio r TO] 

Out[31= -n e-n T0 w1 Al [T1] wl + Il en T0 `j1 wl Al I T1 I 

In[4]: = D [x20. Tol 

Out[41= -n e- nTp u1 A3 [T1] (Ail - <e-il To 'J2 A2 [T1] 6Jz + 
i enTo WZ w2 A2[T1] +IleiTo u1 al A3[T1] 

In[5): = D[D[x2o, T0] . T1] 

Out[5]= ne nTo (J2a. i2A2[T1] - Ile- A T0 2(02 OverBar'[A2[T1]]A2[T1[+ 

ne ]i To uloill'`3[`T'1ý <e- 3i T0(i1ejlOverBar'[A3[T1)ý AS[`, 

F2-', Om equation %n [ 19] of Appendix C .3 

In[6]: = xýjL = 

en To (202+01) 

(3 X12AiITiI A2ITi12 -3X12A2ITi12A3ITiI) + 
Cai - (cal +2 02 )2 

&-S To (2v2tu1) 

(3Al[TlJ A2[TlJ2 2 -3A2ITs12A3tTl1 T72)) - 
i -(ýºY 2rýa)a 

e3 
ä TO Ca1 

AT2 A3[T1] + 
13+33 

C02 
f-F7i Ai[ Ti] 5"72 Ai[ T i1 - nz i[ il stet 

3 5! 2AlITiI A3[ T1]2 -772A3IT1J3) 

4-3 
n T0 o1 

1 
-Al[ T1 ] ý7Y + `ýL1 I ý'Y 3 72 -3 AI I T1 23I TY I 'ý72 

8 c1 

- A3I ß'1ý 3 Tja) 
ý+ 

3 A1I 71 1 A3 I ß'1I 22 

0n 
To 02 

A2 [T1] +2 ý0z 2 Az IT1 1 6KI[T1]'j2A1[Ti] A2[T1] 

ý' 21 ý'22 
(2 

6A3[TII FJ2 A, [T1] A2[T1) -3A2[T1) F72A2IT1j2 + 

A3r72 

W-6 
T0 u2 

(2 Al[ý'21 "12AlIT21 

`d 2 
(W2-1 T1 1ýa-'B A2 I Ti la ha- ES Ai [ Ti l 

6A21711 A3[Ti] . 2AlITlI 
3Aa[Till'12A2Iý°il 

Aý1 T11 T12A3In11 )1 + 
6 AYIT11 A2 IT21 ; 72A3[g'il -6 A2[721 

A-13 
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eiTo 
((02-2(, )1) 

1 

cai - (-2cu1+02)2 
(-3 Ai[T1j r12 A21TiJ +6 A1IT1] A3IT1J T12 A2IT 1I - 

3A3[Ti r72A2ITiJ)) + 

C -ä To ( rua -a dull 

iY - (-2 wt " ", z }a 
(-3A2IT3l T12A1[T1J2 6A2IT1J '? 2A-31- 

3A2IT1J 72A3[T1J2}1 + 

nT0 (CJ2+2cºi) 

1 

w2 - (2 o1 + o2) 2 

{-3512AiIT112A2ITiI +6572Ai[TiJA2ITiJA3[TiJ - 

3i72A2ITI IA3ITlJ2)) + 

e-ä To (&2 *2. v1) 

z 
4 -(2&i 112)2 

(-3AtITj12A2I211'12 6A1IT1J A21r1] A3IýiJ'12 - 

3A2I71IA3[TlJa; 72)) + 

CA 
TO (202-0i) 

(, 

o21 

1 
(3 A1IT11 r12 A2ITi12 -3 A3IT, J F72 A2IT112)) + 

-(-cal+2C32)2 

-a T0 (awe-u1) 

(3Aa1Tl J 2T- All71] -3A2ITx12J72A3tTlI) 
rJ2 -(-o f 2o2)a 

Let Right -Hand Sideof equation (3.3 -31) =RHS2 

substitute In [Y] to zn [6 J -into ßs2 : 

In[7]: = RES2 = 2t3DIxio, T0 -2C3DIx20, TOJ -2DID[x20, TOJ, TIJ + 

022 Xx11 + P13 {x203 +3X x102 Xx20 -3X x10 X x202 - x103) 

Out(? ]= 2 t3 (-Il E-ä 
T0v. l Al[T1] k)1+b enT0`ý1 wlAl[T1J) - 

2 t3 (-n e-n T0 u1 A3 [ T1 J c1 - Ile-nT0 ßr2 A2 [ T1 J OJ2 +n, AnT0'2 W2 :, [ T1 ]+ 

nTo `il _3[T11) +$73 (-(e-a T0`ýjAlIT1J +. FnT0 'i Al [T1])3+ 

3 (ý-nTo(1. k1[T1] +, enTo (ilAl[T1J)2 

nTowZ ý, 2[T1 +E-AT0`il A3T1 +nTO"2 T1 +. FnTO'-'lA3[T1J) 

3 (ý-U Towl1 ;, 
-1[T1] 

+enTool Al[T1J) 

3[TlI3+ 
(e-IITO`"` A2[T1] +e-n 

T0 u1 ý. 3T1 +enT0t'2 2[T1] +T01 A2 

(, e-n 
TO w2 `"ý -[T 

1J+ e-31 
T0 (i1 A3 [ T1 J+n TO I. 2 [ T1 J+ +n 

T0 `1 A3 [ T1 J) )+ 

-nT0(j+2(2) (3A1[T1]AZ[`j]2.72-3AZ1T1J2A3[T1] ? 2) + 

w2 - (col +2 (02) 2 

1 
(ý-äT0 (2w1+w2) (-3 Al (Ti 12 + 

(2 all +2 
1 

Ti 
.TATl 

-3A2(T1J 1(J[ 1J 3(1J '2 6_ -ý 

nTo wl ----------- 311T 

3 Al TT1J A-, (T1J2"72 -A3 [T J3;, ß)) + 

A-" ý 
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1 

Wi - (-2 W1+W2)2 
(e T0 (-2 v, 1+ý2) (-3 P. 1[T1]2? 7zA2[T1J + 

6 Al [ T1 I A3 [ T1 1772 A2 [ T1 I-3 A3 T1 I2 i12 [ T1 I) }+ 

en T0 (-ý1+2 uz) (3 Al [Ti I i7z A2 [Ti 12 -3 A3 [T1 I ? 72 "ý ý. 
_ ;[ Ti ] 2) 

G1i - (-W1 +2 W2 

-n Tp (-w1+Z cj2) (3 A2 [ Ti 12 r12 Al [ Ti I-3 AZ -T 2 
riz A3 [ T11 

+ 

1 

OJ2 
nTp(,, 2 (A2IT1] ä2 

-2 3iA2 [T1] ('J2 ?2- 6Al [T1] A2IT1] i72Al IT1] + 
6A2[`1'1] p3`1'1] T72Al`1'1] 3A2[T1]2 A2IT1] + 

6A1[T1] A2[T1] r12A3[T1] -6A2[T1] A3[`i'1] X72 3I`1'1])) + 
G12 2 

- 
(en Tp w2 (Y2 A2 [ `1'1 ]+2n W2 C1 

cý2 

2 A2 [ T1 ]-6 Al I T1 ] f72 Al [ T'1 ] A2 [ T1 ]+ 
6A3[`r1] rJ2Al[T1] A2IT1] -3A2[T1]'J2A2IT1]2+ 
6 Al [ ß'1 ] 772 A2 I T1 ] A3 I T1 ]-6 A3 [ `1'1 ] -'72 A7 [ T1 ] A3 [ T1 ])) + 

en To (ý1+2 cý2) (3 i72 Al [ T1 ] A2 [ ß'1 ]2-3 i7z A2 [ T1 ]2 A3 [ Ti ]) 

G'i - (oil +2 (u2) 2 
1 

1.1i - -2 GJ1 + G12) 2 
(e_ n T0 (-2 m1+ý2) (-3 A2 [ T1 ] X72 ``ý1 I T1 ]2+ 

6A2[T1] i72Al[ 2'1] A3[ T1] -3A2IT1] TitA3[ 2'112)) + 
1 

{en To (2 w1 +w2) (-3772 A1[ T1I2A2[T1] + 
öj, 2 

- (2 ail + ail) 2 

6 i72 Al [ T1 ] A2 [ T1 I A3[T1] -3 i72 A2 [T'1I A3 [ T1 ] 2) )1 
8 tJ2 1 

(, e3 ii To ul 

3'i72 Al [T1] A3 [T1] 2 
-r72 `a'3 [`r1I3) )I- 

2 (neATO`j2cJ2A2[T1] -ne-nTO', J2 a2OverBar'[A2[Tu ]A2[`1'1[+ 

enT0('l ail AS [T1J -n ý-ATo u1 W1 OverBar'[ T [T1[ [ A3I21J 

In[S]: = P. HS2 = ExpandAll[RHS2] 

A2 [ `I'1 ] öj2 Z(2 2n A2 [ Ti ] CJ2 e2 
out[8]= -- 

<e nT0C)2 612 -enTp4'2 G72 enT0J2 CJ2 -ýiToci2 Gl2 121 

2 IL e-n Tp cil Al [ T1 ] W1 ?3+2n e-n Tp cil A3 [ T1 ]1 t3 + 

_ <-3 n Tp cil AT3 ý2 2Ile-nTpci2, fTl] W2 C3+ 1[ 1] 2 71 
- 

8 cJ1 

-3 ä Tp cal Al [Ti ] (u22 -72 3 <e-3 
n Tp cil Al [Ti ]2 A3 [ TI ] W2 772 

w1 8ci 

3 -3 n Tp cal A1 [Ti ] A3 [ 2'i ]2 W2 772 -3 n Tp wl A2 [Ti ]J G12 i72 

8 CJ2 8 CJ1 

3A1[T1]2A2[ý'1] W 2i72 
+ 

3 E2 n Tp cil+n Tp '2 Wi -4 e2 n Tp cil+n Tp cd2 W1 W2 - ,Fn 
Tp v. 1+n Tp (J2 , _, Z 

6'A1[T1] A2[T1] A3[T1] 6J2üZ 
- 

-3 E2 n Tp c. il+n TO "'2 CJi <L2 $ Tp ýl+n Tp ý2 CJ1 W2 n T0 L'l+n T0 (J2 r, J2 

3 A2 [T1] A3 [T1] 2 
W2 i72 + 

-3 . 2.2 n Tp ul+n Tp n12 CJi -4 EZ (il (12 (, j, cß'2 - F- n Tp l+n Ti) - wL 

3 Al [` i] A2 [2'1] 2 
W2 172 

En T0 -1+2 Ü TO °'2 CJ1 CJZ -4 en Tp u1+2 n Tp UZ W2 
- 

3=[ T1 ]". 3[ T1 

e, To tal+2 ii To ail CJ2 -4 EnTpu1+2 nT0C , CJ` 

P-3 
ä Tp 1 Al [ T1 ] '73 +3 e-2 n Tp u1ä TO cJ2 Al [ T1 T1 ''3 

3 -nTpwl-Z nTo y2 Al [T1] A2[ß1]773+ 

-: 5 
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-3 n T0 w2 A` T1 ]3 i") 
,+3 e-3 n Tp wl ý rP 2 I1 A3 r '73 - 

6 e-2ii To cdl-nTprj2A1[T1] A2[2'1] 13[ + 11 X3 
3 -n Tp wl-2 n Tp A2 I T1 ]2 A3 [TI7 3- 

Z, --T A3 I T1 12 r73 +3 -2 n Tp wl- n Tp u2 T2 I T1 I+1 '73 + 3ii To w1A3[T1ý ýJ3+21enTo u1l. Jj? 3 Al[T'1) - 
6 Al [ T1 ] A2 [ Ti I W2 72 Al [ T1 ]+6 A2 [ T1 1 A3 [ T1 l 6j2 i7` A1[ Ti I+ 

II T0 u2 GJi - ýn TO ci2 W2 eII To (J2 6J2 _Gn Tp uZ 2 
1 W2 

3A2[T1]2&J2r72Al [T1] 

4 6, -n Tp w1+2 n T3 w2 cj1 w2 -4 e-Il Tp (i1+2 n To 'j2 W2 
- 

3<e-1 Al [ T1 ? 73 Al I T1 ]+6 e-n Tp w2 Al I `1'1 ] A2 I `I'1 ] 773 Al I T1 ]- 
3 äTpv, j-2nTpcv2A2IT1]2173Al[ T1] +6 -äTpw1A1I`I' A3IT1] X73 AlIT1] - 
6 e-n Tp w2 A2 [ 2'1 ] A3 12'1 ] 1173 Al I `I'1 ]-3 e-n Tp cil A3 r1 2 ýý3 Al Tl 

3A2IT1] (2772Al[Tu]2 

-3 e-2 n Tp crl+n Tp cd2 w2 +4 -2 n TO ail+n Tp ci2 wl W2 - -2 n Tp wl+n Tp w2 W2 
- 

3en Tp cil Al [ T1 ] 773 Al [ T1 ]2+3 e2 n Tp w1-I T0 c2 A2 12'1 ] 773 Al [ T1 ]2+ 

ci, 
3e To `i 1 A3 [ T1 ] 773 Al [ T1 ]2+ 

e3 n T0 
w2 ýJi Al [ T1) 3- 

8 cu 12 
e3 n Tp crl W2 T72 Al [ Ti ]3- 

e3 n Tp ml r73 Al I T1 ]3+ 
8 W1 

eä To 4'2 w2 ä2 A2 [ Ti ]21 eil To u2 W3 [] 

22+222 

C2 A2 2'1 

wl - w2 w1 - W2 

3 e-2 n Tp crl+n Tp w2 Al I T1 ]L w2 72 A2 [Ti 
2Ile1Tpu2W2e3A2[T1] -+ 

-3 w2 +4 W1 w2 - W2 

6 e-2 
n Tp (il+n Tp cJ2 Al [ Ti ] A3 [Ti ] w2 r72 A2 [ Ti ) 

-3 wl +4 wl 6J2 - 032 
- 

3 e-2 
n Tp cal+n Tp cv2 A-T w2 X72 A2 [ Ti ]-3 A2 [ Ti ]2 w2'72 A2 [ Ti ]+ 

-3 W1 +4 W1 W2 -2n 
TO 21- en Tp (12 2 

3 -2nTpml+nTpa2A[T1]2r]3A2[T1] -6ii 
Tpci 

, 1IT1 A2T1] 173A2T1 + 

3 e- n Tp w2 A2 773 A2 [ T1 ] -6 e-2 
n Tp cil+1 Tp W2 Al [Ti] p3[ ý'1) 773 A2 (Ti ]+ 

6n Tp ý1 A2 I T1 ] A3 I T1 ] ri3 A2 I Ti] ]+3 e-2 n Tp cal+n Tp j2 A3 [ T, 1 Y73 A2 I T1 ]- 

6n Tp w2 Al I Tl ] w2 X72 Al [ Tl ] A2 [ T1 ]+ 

22 W1 - w2 

6n Tp `'j 2 A3 [ T1 ] w2 X72 Al I T1 ] A2 [ T1 ]+6 
en 

Tp ciz Al I T1 ] X73 A, I T1) A2 I T1 ]- 

W2 1-2 W2 

6eiiTpcjlA2IT1) ý73`F, T1] ß=2[T1] 6TOw2 A3[ T1]'73A, T1] A2T1) 

3 e2 
To ('j2 52 Al I Ti ]2 A2 [ T1 ] 

-3w1-4 W1 w2-W22 

3 E2 nTp cut+nTp j2 773 Al [Ti]2 A2 [T1] + 

3 W-n 
Tp . 1+2 I TO td2 Al [ T1 ] w2 r72 A2 [ T1 ]2 

41 W2 -42- 

3n T0 ü, 1+2 n Tp w2 , ý, 3[ T1 ] W2 x72 A2 [ T1 ]2 

cý 1 Cri2 -i w2 
- 

3n Tp U2 A2 [Ti] CL'2 f72 A2 [Ti] 22 
3n Tp (, i1+2 n Tp W2 : 

-l 
I T1 I X73 A2 I T1 I+ 

Wi -CJ2 

nT0 2 A2 [Ti] '73 A., IT1ý2 +3 
nTpý1+2 nTp IT1ý2 + 

__,, 
To wj+? n Tp A,. [Ti 

-Z 
Ti 2 

-4 coil (J2 -4 w22 

Tp ci1+ n Tel c"'- �3 Al [ T1 ] A2 [ T1 ]2+ 

3n TO "2 A2 I T1) 3- 'ý an To ci f all 3 A3 [ T1 ]+ 

6 Al [Ti) A2IT1) üu ; j, A3[T1] 6A2[T1) A3IT1] [Ti] 3- 

FäTLI 12 -n 
To w2 G12 F3i T0 a2 cif - ýnT0 i' . i` 

ý-_(ý 
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3A2[Ti]2 ý02712A3[Ti] 
4 e-ii T0 w1+Z nT0 u12 + 

(il w2 -4 e-n Tp c. ý1+2 n Tp ýZ ýý 

.J e- Tp cal Al T73 A3 [ `I'1 ]-6 e-n Tp w2 Al [ T1 ] A2 [ T'1 ]r3=.; [ T1 ]+ 
3en Tp r, 1-2 n Tp u2 A2 1 TI 12 Ü3 A3 [ T, 6 e-n To il .1[ T1 ]r 3[T11 573 Ä3 [ T1 ]6 

-ä Tp u2 A2 [ T1 ] A3 [ T1 ] 773 A3 [ T1 ]+3 e- n Tp Wl A3[ , I, 1 ]2. =3 [ T1 ]+ 
6 A2 [ T1 ] W2 r72 Al [ T1 ] A3 [ T1 1 

Z nT +nT w22nT +n T0 w+ -3 ý- 0 w1 02 ý1 +4 e- 0 w1 2 r, ul 6j2 -2n TO w1 +n T0 W2 2 
6e To (JI Al [ T1 ] 773 Al [ T1 J A3 [ T1 ]- 

6e2ii To w1-nTo WZ 2[T, 1 j73A, [T, A3[T, 

nTw3 42 3n T0 wl W2 X72 Al [ Ti J2 V3 [ Ti 601 A3 [ T1 J X73 Al [ T1 J A3 [ T1 J+ 

aJ2 

33n Tp c, 1 Al [ `I'1 ]2 A3 [ `I'1 I+ 

-a -3iTnrJ9 r. fm i ,_xr... . r... `= iL11J '? 3 GJ 22 2l"1: 1J H3l11J + 

nT0 A2[T1] 773 A2[ `1'1] A3[T1] +6enTo 2 A3[T1] 773 A2[ Tl A3[T1] + 

6 e2 n Tp cil+n Tp c., 2 w2 i72 Al [ Ti ] A2 [ Ti ] A3 I Ti ] 

-3 rii -4 wl w2 - wZ 

6 <e 
2n To Eil +n To w2 -ý3 A, [ T1 ] A2 [ T1 ] A3 [ T1 ]- 

n Tp w1+2 n Tp w2 w2 772 A2 [ Ti ]2 A3 [ T1 ] 

-4 wl w2 -42 
3eii T0u1+2nT0 273 A2[T1]2A3[T1] - 

3 A2 [ 2'1 ] w2 X72 A3 [ T1 ]2 

-3 e-2 n Tp'l+n Tp c, r2 w2 +4 e-2 n Tp c)l+n Tp °2 wl w2 - e-2 n Tp cdl+n TO w2 w2 
- 

n Tp w1 Al [ T1 ] r73 A3 [T1]2+3 e2 n T0 wl-n T0 ci 2 A2 I T1 ] X73 A3 [ T1 ]2+ 

nT w23 e3 nToc. ýl w2 T72 Al [2'1] A3 [T1] 2 
]3 A3 [T1]- - 3p1 A3 [2'1 77 

ö wl 2 

2 nTpcjl+nTp'j2 w2 2 [Ti] A3 [Ti ]2 
3 <e3 

n Tp s1 i73 Al [ Tl ] A3 [ T1 ]2-22+ 

6ýn T0 "2 Al [ T1 ] Wz "2 A2[ Tl l A3 [ T1 ] 

22 W1-W2 

6 nTo u2h3[Ti] w2r72A2[T'1) A3 

T, 

-J WI -Y WI WZ - GJ2 

3n T0 (11 
-1 

2 7z A3 [Ti] 3 

8 of 
4- 

e, 3 n To a'1 773 A- [ T1 ]3-2i <e1 
T3 ci2 w2 A2 [ T1 ]+ 

2n -üToCJ2ailOverBar'IA? [T1]1AZ[T11 - 

2n en 
T3 u1 cal ='^ [ `1'1 ]+2n e-n 

Tp (., 1 A11 OverBar' ["-3 [ `I'1 ]] ý'3 [ T1 

Extracting the ' Always ' Secular Terms of RHS2 from Out[ 81 : 

In[9]: = Coefficient[RHS2, . IIxo2xTp I 

Out[9l= 
ý'ý2 A2 [T1 

(, jT- 

6A3[T1] wj 2 -N1[T1] ''- [T1] 

6J2 
- w2 

T 
wl -w 

6A1[ß'1] X73 A1[Tj] Az[T1] -6A3[T1[ ý73A1[T1[ '2[T1] - 

3A2[T1[ w22 �Z, [T1ýZ 
1'ý A rIP, I -r7-AofTiI + 

I 

2 Il Gi? -ý2 
42 [ T1 I 

GJ1 - GJ2 
2 

G1i -Z 

6 A, [T1] w2 i'+2 Al [T1] A2[`I'1 

I- -4 L-LiI; 15 --L--, 

+ 

0 

uý i- rýl 

r Al IT1 W2 X72 A2 I21I A3IT1) 6 A3I`T'1j WZ [`I1( IT1 

2 rid - i= 61 1- QI ̀  -- 1- 

6A 1 [T1] '73A2[T1] a3ITiI+6A3[T11'; 3ý=2IT1ý 
IT1ý - nuiý I`I1ý 

A -27 
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Extracting the ' A1srays ' Complex 

(C 

Irfl0]: = Coefficient[F. HS2, e-iLx`''2, To] 

Out[10]= 2i A2 [ T1 ] 6J2 .3+6 Al I T1 I A2 I T1 J 173 Al I T'1 I-6 A2 I T1 I A3 I T11 '13 Al [ T1 J+ 
3A2I`i'1]2713Az T1] 6A1[ T1] A2I`1'11 ý73A3IT1] + 
6 A2 [ T1 I A3 [ T1 773 A3 12'l I+2i w2 Ove rB a r' f 

.LI T1)ß yý I T1 

Due to some terms missing fx-om the Kathematica exta-action of the C. C. S. T. , 
below is the corrected C. C. S. T. 

In[11 ]: = 2n A2 I Ti ] 02 C3 +6 Al [ Ti ] A2 [ Ti ] 513 Ai I Ti ]-6 A2 1 Ti ] A3 [ T1 ] '13 Ai [ Ti ]+ 

3A2[T 513A2[Ti] -6Ai[Ti] A2[Ti] r13A3ITi] + 

6A2[T1] A3[T1]'13A3[Ti] +23k02OverBar'[A2[Ti]] A2IT, I + 

A2[T1] ý2 ä2 2nA2[Ti] 03 C2 6A1[Ti] A2[Ti] 022 l2 Ai[TiI 
2222 

Cl) 1- G12 G11 - Gt 2 

2 01 -02 2 

6A1IT1] A2[ T1] 02 r12A3ITi] 

tD2 -02 12 

6A2[ T1] A3[ T1] (J2 ? 72A1ITi] 

22 
2 (4-O 

3A2IT1]202"12A2ITi ] 

22 Gý1 - Gt2 

6 A2[T1] A3 IT1 1 02 F72 A3IT1] 
2' 

ý1 -02 2 

Below are the ' Always ' Secular and ' 

Always ' Complex Conjugate Secular Terms for x21 

They are there - -statement of out[ 9] and In[Y1] respectively. 

m The 'Always' Secular Terins of x21 (Case 1): 

In[121: = 
ca 2 ä2 A2 [Ti] 2 not 

E2 A2 [TI] 

22+22 -2no2 C3 A2[T1] - 
ý1 - ý2 Cal - CJ2 

6 A1[ T1] Ca2 7J2Ai[T1] A2IT1] 6A3[T1] 02? Jz A1IT1] A2[Ti] 

AlAlA3A2 

3A2[Ti] 612'J2A2IT1]2 
ý,. _rm. I : 71_rm_12 

01 - Ca2 

Gli - lilt (ill - G12 

6A1[T1] X73A2IT1I A3(T1] +6113[Ti] i3A2(T1] A3[TiJ - 

2i L02 A2ITiI; 

IL 113 °[ L1J' 

+ 

6 AlIT1 C02 F12 A2 ITi I A3ITi I6 A3 IT1I o2 uj2 A2 ITlI A3 IT1I 

I` -1N 
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m The'Always' Complex Conjugate Secular Terms of x_1 (Case 1): 

In[13]: = 2nA2IT1J (L)2 C3 +6 A1ITiJ A2IT1J F73 Ai[Ti] -6A2ITlI A3IT11 º13 Ai[TiJ + 
3A2[T1]2 773 A2 I T1 ]-6 Ai [ Ti J A2 [ Ti J 773 A3 I Ti ]+ 

6 A2 [ T1 ] A3 [TI. ] '13 A3 I Ti ]+2 A02 OverB ar' [ A2 [ T1 ]] A2 [T1 ]+ 

A2[T1] 02 T2 2i A2IT1J 02 &2 6 A1IT1] A2IT1J ý2'J2 Al IT1J 

6A2[T1] A3ITiJ 02 ii2Al[TiI 3A2[T1]2C32 X12 A2IT1J 
22 G71 412 

6 A1IT1I A2 IT1I 02 f12 A3IT1I 

22 
01 - 02 

6 A2 [T 1] A3 [T 11 '32 772 A3 ITiI 

22 01 -02 G11 - c)212 

Dividing RH52 by ek'2 710 and then grouping them for alike coefficients for 

easier identification . 
Eris purpose is to identify other secular terms : 

In[14] = Collect [ExpandAll [ R-HS 2/ enx'D2 xTO 11 

{e-n02TO-3AralTpr e-nr02Tp+3no1TO, e-2it w2To -2 not To 

e-2 
nru2Tp+2 n01T0, 

e-3 
Ao2 TQ-AG): TO 

, e-3 
äw2To+äo1Tp, 

1 
0-iL02TO-ii 1TO 

, e-AO2 
TO+AcjLTO 

, aii 2TO+ncu1TO 
, I? 

no2 To -AojL To 

Out[141= 
ä T0(JZA2[Ti] 02 Z(2 

n T0 E'Z G11 2- en T0 (12 wZ 
- 

2n e-nTO(J2 AZ[Tit W2 . 
'2 

-2 n Tp ßr2 A? F`11 «J2 C3 - +2 Il e 
eaTo(J2 Gli - eIIT0(J2 G12 

3 <e-n T0 (J2 Al [T1 ]2 A2 [T1] OJ2 ? 72 
+ 

ý2 nTo cjl+nTo (12 Wi -4 e2 ii To c. i1+n T0 J2 LJ1 GJ2 -<EZ 
nT0cr1+n T0°'2 W2 

A2Z3 0Al[T1] 

- .Fn 
Tp l+n Tp ,2 ýý2 

-3 e2 n Tp w1+n Tp m2 (. li -4 ý2 n Tp cdl+n To W2 W1 2 

3 e-n 
Tp J2 A2 I Z'1 ] A3 12'1 ]22 X72 

+ 

-3 e2 n Tp wi+n Tp w2 Wi -4 e2 n Tp o, l+n Tp (J2 W1 w2 _ ý2 n Tp v, i+n Tp ý2 w2 

3n T0cd2 Al[ i] A2[T1]2 W2-J2 

-4 <e n TO (1+Z n T0 `'2 W1 W2 -4 <e n T0 ci1+2 ä T0 (J2 Wz 

3 <e-nTpw 2 A2I2'1I2A3 Ti] W2ri2 
+-4nTp02 A2s773+ 

-4 (e n T0 wi +2 n T0 `-d2 tll cj 2-4en 
TO J1+2 n T0 W2 6J2 

-n TO cri-3 n Tp W2 -3 Ai I T1 l 2-p'I T ri3 +3 A2 I T'1 12 ý3 IT 1] X73 ý+ 

-2 n Tp a1-2 n Tp w2 (3 Al -[T1]2A2 [T1] ri3 - 

6AlIT1I A2IT1I A3II'1I X73+3A2IT1I A3[T1] ; 37 + 

3 

-3 n T0 1-n T0d2 
Al I Ti ]3 tot 7j1 

- 
Al [Ti I a2 772 

+ 
2 

8 611 8 ai 

3A1IT1]ZA3IT1] 6JZi72 3AlT1] A3[Tl] -3IT1) 
ý`ý72 

_ +2 

8 8cýi 

1_ ý2 3+ 
IT1ý 3JJJ -2A T -3A1IT1: =3IT1 AT3i +' Al Tl] 3I 1l X73 

1I1J ý3 

6 -nTpý2 A1iT11 A2[Ti] X12 
2A`1ýT1I 

+ 
IIT0 u'2 oil - ýn T04'2 Cý2 

Tp, Ti] AIIT1I W2'2A1ITiI 

en TO"'ý °T04'2 (JZ 

3 F-nTp"A2IT1I2 W2 I72 AlITi] 
+ 

n To-, 11+2 U T0 . eil cot -4 .F-u 
Tp'-'1+ n T0 Cýý 

11 

A-. O 



Appendix C. 4 : Mathematica Evaluations 

6 f--2 n Tp ci2 
1 [T1 ] A2 I T1 ] 173 A1 12'1 ]- 

6 <e-2 
R Tp '2 A2 [ T1 ] A3 [ T1 ] 173 Al I T1 ]- 

3, ý-nTpci22I. 1,1] ßi2 X72 AlIý'1] 2 

e-2 n Tp (il+n Tp CJ2 Gli +4 e-2 n Tp cil+n Tp cj2 of 2- -2 n T0 rl+n T0 'j2 Gi2 2 
W2 -k2 A2 [ T1 ] 

22 W1 - W2 
+2 

Il W2 
. 
ý2 A2 [ `I'1 I 

22-2 
Il W2 ý3 A2 [T1) 

- 

3 Al [ T1 ]2 cJ2 -72 A2 [ `I'1 ] 

- e2 n Tp ci1 ai +4 e2 n Tp cj 1 W1 W2 - ý2 n Tp u1 WZ 
+ 

6 A1 [Tl] A3 [T1] X2772 A2 [T1] 

-3 cE2 n Tp (il 4i1 +4 e2 n T0 ci1 W1 WZ - e2 n T0 cal WZ 

3 A3 C T1 ]2 W2 r72 A2 I Ti 

-3 C2 a TO (il G. ii +4 e2 ä To oil W1 W2 - '2 n T0 (il w2 
- 

3 e-nTp"2p2[T1]2 ý2r72A2[T1I 
. -n --2nT 

nTo w2w2-enTo u2WZ 
TJAý Al ý11J ? ]3--" 2[ `11]+ 

2 

3 -2 n Tp c02 A2 T i73 A2 [ T1 ]-6 e-2 n Tp w1 Al [ T1 ] A3 ] T1 ] "3 -'ý'2 T1 ]+ 

P-2ii TOv1 z_fm_i2 rrm , 
6A1[T1] 6J2172A1[T1] A2[2'1] 

' 3L 1J 'J3-Z1111 - 

6T k3 `I'1 ] W2 r72 Al [ T1 ] A2 [ Ti ] 

W1 - .5 liz 2 

6 A3 I Ti I i73 A, I Ti I A2 I Ti I- 

Gi 2- 
aý 2 

.1j 
+6 Al IT f Al IT1I A2 I`I'1I 

3 e2 nTo cal W2 772 Al [T1 12 A2 [T1 ] 

3 <e2üTo(J1i73Al[T1]2A2[Ti] - 

-3w2-4a1W2-W2 

3A2[T1] tJ2712A2IT1]2 
4- 

+ 

4- 

22' Gll -GJ2 

3enTo w2A3[T 1 «)2r12Az [Ti ]2 3 nTo 02A1I-T, ] W2172A2[ Ti ]2 

4 ae n T0 u1 al , j2 -4a 
T0 ci1 , j222 4n T0 u1 CJ1 ul2 -4 en T0 ci1 cj2 

3A2[`r1] 773A2[T1]2+e2IITpu27I3A2[T1]3+ 

- nTpcvl+nTp'j 2 3A, [T1] 773 A2 [ T1 ]2+3 A3 [ T, 1 773 A2IT1]2 + 

6 e- TOcv2AlI`rl] A2IT1] w2172A3[Ti] 

eiTo w2 Coil - e3 TouZ WZ 

6 C- 31 To 12 A2 [ Ti ] A3 [ T1 ] W2 772 A3 [ Ti ] 

e: Tpw2 W2 -en 
Tpcj2 w2 

- 

3 -nTow, A2 [2'1]2 W2172 A3[Ti] 

4 e- 31 Tp (J1+2 A Tp a2 Wl W2 -4 e-n Tp w1+2 n Tp GJ2 W2 
- 

6 -2nTpc+i2Ai[T1] A2[T1] 773A3[T1] + 

6 <e-2 
i To 'J2 A2 [ T1 ] A3 [ T1 ] 773 A3 [ T1 ]+ 

6 E-aTpcv2A2[2'i] W2772Al[Ti] A3[`I'i] 
+ 

-3 e-2 ä Tp wi+ä Tp cj2 W2 +4 e-2 n Tp c. ýl+n Tp W2 Wl W2 - -2 n Tp ýl+n Tp (j2 W2 

6Al [Ti] 6LJ2 ý72A2 [Ti]A3[Ti] 6A3[Ti] W2 -72 A7, Tl] A3 [Ti] 
_ 

W1 w1 - <J2 

6 Al [ T1 ] 173 `x'2 [TI] A3 [ Ti ]+6 A3 [ T1 ] X73 A2 [ T1 ] A3 [ Tl ]+ 

6 EZ n Tp ui w2 c2i[ Ti ] A2 [ Ti ] A3 [ T1 ] 

-3 oil -4 wi w2 - WZ 
- 

6 e2 n Tp wl X73 Al [ T1 ]A2[ T1 ] A3 [Ti ]- 

3-n Tp ý2 A2 [ 2'1 ] W2 i72 A3 [ Ti ]2 

-3 e-2 nTpc. i+nTpw2 Wi +4 E-2 äTpc. ii+nTpc. i2 wi W2 _. F nTý . l+nTp w 

3. z, nTp(, )iW2,7 
ý-[Ti] A3[Ti]2 

+ e2nTp'''1�`= [Tl] T1]2+ 

-3W 
i- 4W2 

$nTo wl-3nTo c k-3A2[T1]2'73AI[Tl] +3AZ[Ti] ,; 
[Tl + 

1- 
- 

() 



Appendix CA: Mathematica Evaluations 

ATo ul+n To w2 
3r2712Al (T1J A2[T1]2 

- 
IL 

-4 rýl 02 -4 (J 
-3 rJ3 `1[ T1 ]2 (T1 ]Z 

3 a2 Y72 AZ tT1] 2 A3 (T1] 

-4 WW-4 W2 
r. 3 773 AZ IA3I+ 

122i 
nT0 1-2nTo cd2 (3A2[T1] 7ßAl [2'1]2-6X2- ( T1 Al 12'1 ]=3 (T1 ]+ 3 A2 I T1 ] 1'13 A3 [ T1 ] 2) + e3 i Tp of-II Tp'2 

2 
T71 A1[ Ti ]3- WZ ý28A12 T1 ]3- 

yý3 1''1 12'1 ]3+J W2 172 Al I T1 ]2 A3 I T1 ]+ 

1s Wi 

3 r13 Al [ T1 ]2 A3 [ T1 ]-3 W2 572 Alf Ti ] A3 I T1 ]2- 

8 Wi 

412 3 
3r131'', [ `T'1] A3[`rl]2+ 2týiTi] 

+173A3[T1]31 -2i , A, [T1 8 ]+ 

2n e-2 ]i Tow2 ßw2 OverBar'[A2 [T1] ] A2 IT1 ] +, en To Cii-äTow2 
(2 n w., ý3 Al [ T1 ]-3 Ai I T1 ] Y73 Al [ T, ]2+3 Ag [ T1 ] t73 Al I T1 ]2- 

6 A2 [ T1 ] ? 73 Al [ T1 ] A2 [ T1 ]-2L cif ?3 A3 [ T1 ]+6 Ai 1 T1 ] r73 Al [ T1 I 
A3 I T1 ]-6 A3 I T1 ] 773 Al [ T1 ] A3 I T1 ]+6 A2 -[T1 ? 73 AZ [ T1 ] A3 I T1 ]- 

3A, [Tl] r73A3[T1]2+3 A3- lj r13A3[ß'1]2 -2noil A3[`I'1]) + 
n To wi -n To W2 (-2 i Al [ T1 ] 6j1 .? 3 +21AT 3[ 1] 3A1I2'1ý 

? 73 Al 12'1 ]+6 Al [T1 ] A3 T, Il] r13 A 1IT'1]-3 A3 [ T1 ]2 ý7 Al I T1 ]- 
6A1IT1] A2[T1] r13Az [T1] +6A2[T1] A3IT1I r73A2IT1] + 
3A1IT1]2t73A3[T1] 

-6A1[T1] A3[T1] 713A3IT1] + 
3A3[T1}2i'3A3[T1] +21 OverBar'[A3[T1]] A3[T1)) 

Similarly, for the complex conjugate, 
dividing RHS2 by e-A'2 TO 

and then grouping them for alike coefficients 
for easier identification. The purpose of solving for the complex 
conjugates is to double check that all the terms in the conjugates 
are alike tiiith the complex conjugates ones - which it does. 

Ir[15]: = Collect [ExpandAll [RHS2 / -nx02xTo 

{ent"2TO-3nw1TO, Ieno2Tp-3nw1Tp! ent02TO+3no1TO @-iQ2Tp-äwITo 

e-n02TO+nO1ToJ e"2TO-IW1TOr eno2To+ncj1To' e2nO2TO-2n(JITO', 

e2"2Tp+2n 1T0J e3$ci2TO-nca1Tp` e3n 2TO+i1 lT0}J 

nTo CJ 2A2[T1J ß'J2 ö2 2IlenT0(d2A2[T11 612 f2 
Out[i51= 

- +2 r [T1J x"! 2'3 - 
enTou2 W2 - enT0 . '2 a2 enT0 '2 W2 -enTow2 W2 

3ýATýw2A1 A2[`T'1J W2 r12 
2 nT U11 +w22 nT +nT w2uT +nTcd 2 

+ 
-3 0102 W1 -40102 W1 W2 01022 

6en To '2 Al [ T1 J A2 [ T1 J A3 [ T1 ]W2 X72 

e2 nTocl+nTocd2 
W2 -4 (e2nTo(il+nToc, 2 W1 W2 -e2nTowl+nTp �L 

- 

3 <en To w2 A2 I T1) A3 W2 ;, L 

-e _3 .2n Tp cal+n Tp w2 6ji _ e2 n Tp c. il+n Tp w2 6J1 6J2 
2n Tp' 1 +n Tp w2 W2 

3 °$nTo ci' Al[ T1I A2 W2 712 

2 WZ nT0w1+2 nTpw2 W1 X12 e ii To wl+ZnTo u 

II To "' T1 ]2 A3 I T1 I W2 r72 
-4- 

+ 

-4 "n Tool+2 n T0 -2 6)1 W2 -4 e To ul+2 n T0 W2 

32n Tp ý1 I Ti ]2 A2 I Ti ] 7J3 + $-2 
n Tp cý2 A2 [ Ti ]3 03 - 

6v2n T3 u1 Al I Ti ] A2 I Ti ] A3 [ Ti I X73 +3 , e-2 
n To 1 An [ Ti ]A[ Ti ]2 '13 + 

n T3 c. 1-n To W2 i-` Al [Ti Az Ti I] 2%73 
+3 A2 [T1 A3T1] '73) 

3nTp rr1 +nT, D 
ý1 [Ti] 2 '; 1 Al [ T1 ] 

8w2 8a1 

: ý-ýi 



Appendix C. 4 : Mathematica Evaluations 

j Al [ T1, A3 [ T1 ]2 ýJ2 Al [ -Ti ] A3 [ T1) ='2 772 r3l1] GJ2 772 

8 ý, 2 8 wl - 8 612 
.3 

Al I `1'1 3773 
+ ..; Al [Ti) Z 

A3 [ T1 ] X73 3 Al [ T1 ] ý' 3 (T1 ]2+ A3 [ Ti ýJ31 - 

6n Tp w2 Al I T1 ] AZ I T1 ] ý2 X72 Al 12'1 ) 

nTp('J2 
6ji _ 

ATpcj2 
&J Z+ 

6 nTo G)2P. 
2[T1] A3[T1] w2 X72 Al[T1 

nT0 cj2 W2 _ ýnTo c, 2 W2 
+ 

3en Tp ('j 2 A2-(T w2 772 A1 I T1 ] 

-n Tp a 1+2 ä Tp wZ W1 WZ -4 -n Tp w1+2 n TO cJ2 W2 

6A1[T1] A2[ß'1] t3Al[T1] -6A2[T1] A3[ß'1] ý73Al[T1] - 
3en Tp (J2 A2 [ T1 ] w2 i7Z Al [ T1) 2 

-3 (B-2 
A Tp (il+n Tp cd2 6Ll2 +4 e-2 n Tp ail+n Tp w2 Wl 6J2 - e-2 n Tp (il+n Tp ar2 W2 

+ 
2 

3 e2 
nTp (J1 A2IT1] r13 Al IT1]Z +2 

nTp(j22 
2 

j2 A2IT., ] 
+ 

61 W2 

2n e2 n Tp w2 6JZ2 A2 T1 

-2n e2 n Tp (j2 W2 ?3 A2 I Ti ]- 
Wi - WZ 

3 <e 2n Tp w2 p1I T1I W2 '72 A2 [ T1 I 

-3 <2 i Tp ci1 WZ i+4 e2 n Tp (il W1 W2 - e2 n Tp wl WZ 
+ 

6 e2 a Tp w2 Al [ T1 I A3 [ T1 I W2 '72 p2 [ T1. 

-3 e2nTo Jl Wi+i 52aTOw1 W1 W2-e2nTpwl W2 

3 e2 ä Tp w2 A3 W2 r12 A2 I `i'1 

-3 
2n Tp W1 W2 + E2 n Tp cal W1 W2 - e2 n Tp wl W2 

3n Tp ýJ2 A2 (T1 12 W2 ii2 A2 I `I'l I2 

enTp, 2 W2 -ei 
To W2 WZ 

+3 A2]ý'lI f73A2ýT1] - 

T W2 i72 Al I T1 I A2 [ T1 ]+ 

CJ1 - CJZ 

6e2nTo -v2A3IT'1] Wzi72AlI`i'1I A2[T1I 
+ 

CO i2- 612 2 

6 ý2 n Tp w2 Al I T'1 I X73 Al Ti [Ti] A2 I T1 I-6 e2 n Tp A3 [ Ti I t3 Al [ Ti ] A2 I Ti I- 

3e2ä Tp ý2 A2 I T1 ] 6v2 r72 A2 I T1 1213 e3 n Tp cr2 hl TI 1 (, J2 r12 A2 I T, 12 
- 

Ali Od 

3 ý3 To (1)2 p31 T11 W2 t72 A2 [T1 )2 

4 ý3i 
T0u1 cal WW2 -4 WnTo ul WZ 

+3e2n To A 2[ T1I '72 J-'-2 [ Ti 2+ 

4 enTo "1 6J1 02 -4 eATo "1 6j2 -- - 

e4 
n Tp W'2 773 A2 [Ti 13 + -2 n Tp ý1+2 n Tp ý2 (3 Al [ `T1 ]27,3 A2 [ T1 I- 

6 Al [ T1 ] A3 [ Tl 1 173 A2 [ Tl I+3 A3 [ Tl ]2 X73 AZ [ T1 ]) + 

3i Tptdl+3ATo-2 (-3 Al Ti ] ý73A2[`r12+3 -[T1I F73= [x'1]2) 

6'e nT0 2A1[T1] A2[`r1] W2i72A3[T1I 

n To °'z Cot - ¬n 
To (J2 612 2 

6 en T0 A2[T1] A3[T1) W2ý72A3[T1I 

En To w2 (L12 - $f To c"2 W2 

3 ýnT0 "2 A2 W2 '72 A3 [Tu 
_ 

4 ý-n 
Tp w1+- n Tp ,` G)1 u2 

n Tp w1+2 n Tp w2 WZ 

6 Al Ti ] A2 [Ti] '? ý,. 
A3 [ T1 I+6 Ä2 [T1) A3 [Ti] ';? `-[ Ti ]+ 

'= °nTp42 ý'2[ T1] W2-72A1IT1) A3IT1) 
2 

-2 n Tow, +n Tp d2 j1 n Tp dl+n Tp 
n Tp cdl+n Tp c., 2 Gll +4 

6 nTp cdl ., [Ti] '; 3 "-1 [Ti] A; [Ti ]+ 

t . F2 IL Tp" A1IT1] 7, A2IT1] A3IT1] 

icI1 - 

A-_1" 



Appendix C. 4 : Mathematica Evaluations 

T W2 i72 A2 [ T1 ] A3 [ T1 ] 

wi - WZ 
- 

T Ti iý3 A2 [ Ti ] A3 [ Ti ]+6 e2 
n Tp fj2 3[T1]]'; _; "[ Ti ] A3 [ Ti ]- 

3 en T0 ý112 A2 [ T1 ] W2 r72 A3 [ T1 12 

-, 3e2n Tp ýl+ä Tp W2 Wi +4 8-2 n Tp cil+n T0 w2 Wl w2 - e-2 n Tp ail+ä TLS U12 
+ 

o-- 
2n T0 cdl A2 [ Ti ] 773 A3 [Ti] 2+ 

n T0 (i1-n T0 2 (-3 A2 [ Ti ]2 f73 Al [ Ti ]+3 A2 [ Ti ]2 ! 73 A3 [ Ti ]) + 

3 W2 -72 Al [ T1 ] ß°'2 [ T1 ]2 
n T0 cr1 +3 n T0 c. ý2 

f-3 
773 Al [ Ti ]A[ Ti ]2- 

4 
-4 W1 W2 -4 W2 

3 Gil r72 A2 [ T1 J2 A3 [T1 ]+3 
i)3 A2 [ Ti 12 A3 I T1 ]) + 

-4 al W2 -4 X12 

2ä Tp (. j1+2 n Tp (12 
f3 W2 7%2 Al [ T1 ]2 A2 [ T1 ] 

I1 +33? =1(`'1]2A2[T11 + 
-3cri-4rýlw2-612 

i7 

6 WZ X72 =ý1IT1] ý'2[T1] A3[ T1] 
- 6ý3 Al[Tl] A2[T1] A3 [T1] - 

-3 wi -4 W1 W2 - WZ 

3 "J21ý72A2[ T1] A3IT1]2 
+37]3 A2 [TI] A3Iý1)2} +3IITD4i1+n T3 2 

-3 cvi -4 i1 J2 - cv2 il 

w2 -i71 A., IT1]3 
_ 

W2 X72 p1 IT1]3 
_ý3 Al[ T1]3+ 

3 c42 t72 a1[T1]2A3 [T1] 
+ 

8ýýi 8 cýi 8wi 

3 Y]3 Al ITiI2 A3ITiI -3O. 
lz rigAl IT2I A3IT1I2 

- 
8 W1 

a2 A3[ T1 ]3 2 x1 2[Ti 
- 3 Y13 Al [Ti ] A3 I T1 ]2+ý1 

8 

2i e2 nTp'IJ2 w2 AZ[Ti] +2 n w2 OverBar'[A2[Ti]) A2[Ti] +, e IITo cri+nTO W2 

(2 a wl C3 Al [ Ti ]-3 Al [Ti] X73 Al I T1 ]Z+3 A3 [ Ti ] 173 Al [ Ti ]2- 

6A2 Ti I 773 Al [Ti] A2 [T1] -2 n wi ý3A3[T11 + 6A1[T1] t73 A1[T1] 

A3IT1] -6A3[T1] ý73Al[T1] A3[T1] +6A2[T1] ý73A2[T1] A3IT1] - 

3 Al [ Ti ] X73 A3 [ Ti ]2+3 A3 I `ri ] X73 A3 [ T1 ]2-2 Il wl A3 [ Ti ]) + 

-nTo u1+nTpm2 (-2iAi[Ti] 6J1? 3+2nA3[Ti] ß'-'1 `3-3A1[I'1]2 

713 Al [ T1 ]+6 Al [ Ti ] A3 [ `1'1 ] "73 Al [ `i'1) -3 A3 [ Ti ] 2X73 Al 121 ]- 

6A1[T1] A2[Tl] F73A2[T1] +6A2[Ti] A3IT1) X73= 2[T1] + 

3Al[T1]2t3 ß=3[`i'1] -6A1[T1] A3IT1] t3A3[Ti] + 

3A3[Ti]2r73A3[T1] +2 i w1 OverBar' [A3[T1]] t3[T1]) 

: ý-ý ; 



Appendix C. 5 : Mathematica Evaluations 

C. 5 Identifying the Internal Resonances of _v,, 

Similar to Appendix C. 2, Table C-2 below gives a full list of resonances 

from In[1] of Appendix C. 5 on the next page. And only resonances that 

show coupling between at least two modes are relevant. 

Secular Possible Internal Complex Possible Internal 

Terms Resonance Conjugates Resonance 

ei2(D, 
T, N. A. e-i4cu-r, N. A. 

e' 
( (ol + co, )T� C02 _ -CÜI e-i(m, 

+3(&,, )T(I (02 ,_ _1 (0I 

3 

ei2WWhT, 
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)To 0)2 = -CSI 

ýi(3mý-rv, 
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Ct)2 - 3(01 e-i«i, -(e, )T 0), = WI 

-2(o, )Tý ýÜ2 = ýÜ1 e-i2rýTo 
N. A. 

ei 0 «, )T, W2 

Table C-2: Possible internal resonances for 2nd order perturbation 
equations (Case 1) 

From the table above, the internal resonances of the system are 

contributed by the terms that are highlighted with a box, i. e. 

I 
r0, =3 wo , w, = 3w, and w, - w, . 

A-34 
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6 AY I TY 1 A2 I TY 1 A3 I ýY 1 Tý 3 

-34ýrlý, 2-(4 

3A21T11A3IýYla02,72 
3AAsI2'12 - 

-3rr1 
2I3i1 27 

-49l 612 
s 

3A32A2(T1l (412 a 
ý3AYIß'Y1 AaITYI J73 + 

-3 
(4 

-4 601 ßr2 - ('i 

e3 
nTo o1-A To w2 

((4iAi[Ti13 
_ 

X2 '72 A1IT113 
_3ý, 1IT113 + 

8(4 8(4 

3 02 12 A1IT1J2 A3IT1I 

8o 

3 cue qq2 A1IT1I A3IT112 

173 A3IT1]3) 

-1 TO 01-äTO 02 

+3 '73 Al[TlI2 A3 [TlI - 

-3 A73 Al[T1I A3[T112 

I A, [ TI L02 "/I 
_ 

piY [ 3'ý 13 L02 J1a 

3A 217 1J2Aý[ß'2l C)2 2 72 

da 

3A2[ý1ý Aý[3'1la, 2 7 

A3[Ti1ýT7, ` + 

-A, IT1IJT7,4 

cZ '12 A3[ T113 

S Cal 
+ 

r3KIIý1IaA3IT j13 

-3AYIZ'1] A31ý'1]l r13 
A3[ TI 1J ýä 2, 

8 u2 

, -ý -; i 
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MATpol-3 
ATp 02 

A2IT, ý)3AlITi +3AZ1T11ý ? 73A3ITII + 
3A2ITII 2 

G)2'72AiITij 
- 4OIL °2-4(2 

3A2[T1]2cu2'72A3[T1J } 

11 
+ 

4 10)102 -4 02 

-sTO w1fäTO U2 

I-3 AlIT11 r%3A2I_71] 24 3A3[T, 1 TI3AAI Fl 12 + 

3ArI ý'il 02 r72 A2[ T1]2 

4 &1 02 -4 rä 
- 

2 it T0G)1-2 AT0 02 

3A3[T11 ßäT12A2ITi12 

4i9l02 -402 11 
+ 

ý3A2IT1I 
ý1sAi[ T1]2-6A2ITiI naA1IT1J A3IT1J 

3 A2 [T11 02 772 A, IT112 
3A2IT1ý r13A3IT1ý2- + 

-3c4+4ca 1Cd 2-02 
6 A2 [TiI ý2'J2 Ai[Ti] A3 [T1] 

_3 
A2[T1] 02'72 A3IT112 l 

-3 of +4 cal 6o2 - cuZ -3 02 + 40102 Cº2 11 
{ 

e-2.6A3 

3A3ITiJa Tl3A2ITII - 
3A2[71]2ý'2'12A21T1 

4 
-3 ý, i +4 iI1 L02 - rr2 

ýAYIý1ý A3IýYý '2T72A2ITYJ 
_ 

3A3Iý'Y1`, ä. 
2A2ITil 

02 
+ 

-3 4 +4a, l 612 -d'0ä -3 i' 4 4rýi _ 
TT 02 

(2no1C3A, ITiI -3A, [T1) 573Al[Tl12+3A3IT, I 

A2 

AIL 

F73 noi 3 A3IT1I + 

A, A3+ 

A2IT, 

A3 

--6 Tp01-jiTO u2 

ý2 02 ý1 _ ý2 
12 

6A1[T1] i)a Ai[T1] A2IT1J -6A3[T1] F13A1[T1I A2IT11 

3 A2I T11 C02 2 T72A2[ T112 
yI ]W_IT-1n. AýIT, 12+ 

(-2BAYIý'21 ý1r3 -3A1ITiJ2 3AYIý11 +3AYIý'21273A3IT1J - 

6AYIT'Y A2I3'il T73A2IrYI +2ii A3 711 riY-rs + 

6AYIT11 A3ITYI jT3Al[TY1 -6AIIT21 A3In21 173 A3IT21 { 

112T13AYI! U 11 A2IýY1 F 73A2I2Y1 -3W 
1}+ 3 A3 [ T1 J2 ri3 A3 I T1 I+2. h wY Ove--Bar' A3 13'Y 11 A3 I Ti 

ca2 är2 A2IT11 2n C02 .2 A2 ITiI 

22+22 -2 not C3A2ITiI - 
til1 - 02 tt1 - C42 

6A1IT11 02 ; )2 AlA2 6A3IT11 C02 5T2 AlLTi1 A2+ 

--9- AL 2«i ZF --. .-. 
22 

Gll - Gl2 

AILA2A36K3 02 X72 A2ITl I A3 IT1I 

2 
G02 1-lD2 2 

Oi -(1 

6AlIT1[ r73 A2 A3[T1] +6K3[T1] 773A2IT1I A3IThI 

C-1TO o2 A2 IT1I 02 Y2 Zn nT0 ý2 pý2 ITi I ýi C2 

2Ao2A2IT1ý + 
enT0 2 ()i -nTp(112 CJ2 euT0'2 (j 

i_e T002 (j2 

K- 
2 

eiT0cu2 Cý2 _ enT0ca2 02 

: ý- ý(ý 



Appendix C. 5 : Mathematica Evaluations 

Al[TI] 6e 

TOb2 (A) - efTo(a2 cjZ 
- 

3 C-n Tp Ca2 A2 I Ti J2 Ca2 712 A2 I Ti J 

eiLTO ru2 02 - nT0 o2 02 

AILK2-A3 

it To (a2 6)2 [eüToo2 CO2 
- 

A3 '1A2 
ITi] ý2 ý3 

0 nTpw2 02 - enTp02 tilt 
+2n2 nTp (a2 

6 e-2I To 02 AIL IT1I A2[TI] '73 AiITiI - 

6 -2 ATp02 A2[ T1] A3 [T1] 513 A1IT1] +3 e-2 nTp'J2 A2 ITiI2 'J13 A2IT1I - 

6 -2 nTp o2 A1IT1 I A2 IT1I T73 A3ITi I+ 

6 e-2 
nTpw2 A2[T1] A3IT1] 773 A3[T1] + 

2n e-2 ih To 02 02 OverBar' IA2 [T1] I A2 IT1I 

: 'A1irays ' Secular Terms 

Italics: Complex Conjugates of the Preceding Terms 

A-37 
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C. 6 Derivation of Modulation Equations 

From equaLi on (3.3 - 49) 
, the polar e. 2 ) essionS are 

Ifl[1): = Al JTI ]= 1l ai[ 
x 

nxßl[T1] 
. 

2 

AiIT11 = 
al[T1] 

X _nxßl[Ti] 
2 

A2[T1J = 
a2[T1I 

Xi <ß2[T1I 
. ` 2 

A2 [T1 ]= 
a2 I T1 

x , -36Lxft2 [Ti] 

2 

From equation (3.3-36) : 

In[5]: = A3[T1] =r 
a1[2T1] 

X. nxß1[T11); 

A3[T1] =r 
r a1[T11 

X i-3kxßl[T11) . l2r 

Derivative Of Al [ Ti ] 

In[? ]: = Ai[T1] =2 enP1IT1] ai[T1] +2 3L le 
Tit a1[T1] ß1[T1]: 

The secular tesms of xll from equation (3.3-44) : 

1 
In[8]: = ST1 -ýiT0 

(3ßu2-w1) i)2 A2ITi13 +2 0n(n-"1) Tog 
-*2 A, IT II - 

2IL cu1k1A1IT1I - 2n01e2 AiITiI -3Ai[TiI i71A, ITl12 + 

A2 l76 

*2 A3 IT1I +2A o1 t2 A3 IT1I -6 A1IT1I R72 A1IT1I A3IT1I + 

6 A3IT1I T72 A1IT1I A3 ITiI -6 A2IT1I T72A2[T1] A3IT1I + 

3 AIITl I F72 A3 [Tl ]2-3 A3ITl I T72 A3ITl 12-2a o1 Aj [T1 Ir 

F2-om equation (3.3-39) : 

In[4]: = e vi == Q- Glii 

From equation (3.3-40) : 

1 

3 

And because eTe =- T1 

In[11): = e vi To == z`i Ti: 

In[12] =EU T0 == a1 Ti; 

-\- ýý 
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Therefore, equation In[8] becomes: 

In[131: = ST1 = -enx3xa1xT1 12 A2 ITi13 +2 enxvxTl *2 Al ITi I-2n Qi e1 A, IT1 I- 

21L o1C2AlITiI -3A1IT1] IJ1Al IT1I2+3A1ITiI "72 A, ITiI2 - 
3 A3IT1I r12 A1[T1I2 +6 A2IT1I r12 AlIT1] A2ITiI I+ 

2n1.2 A3 [T1I T, 

6 A2IT1I 5J2 A2 [Tl J A3 ITlI +3 Al ITl I 772 A3 ITl I2 -3 A3 ITl I 772 A3 ITl I2 - 

2n o1 Al I T1 IJ 

Substituting polar egressions In[2] to In(7] into In(131: 

O,. rt[13]= 2 en"T1 F-2 le nßl[T1] li2 al[ T1] +z enßl[T1] r >2 a1[T1] - 

eaßl [T1] W1 _C 1 al [T. I -n enßl [Til 6j, ?2 al [T1] +3 

Il enß1 [T1]r6.11 al [ T11 -8e 
ßl [T1] iJj al [T113 +8 eaßl [T1I x12 al ['I'1] 3- 

8 
nßl[T1] rr7, a1[T113 +8 <e aßl[T1] r2t2 al [T1]3 - 

8 
n)31[T1] r3T72 a, [ T1]3+ 4 enßl[T1] f)2 a1[T1) a2[T1]2 - 

3 
enßl[T1] r 2a1[ T1] a2[ T1] 2- 

8 
33iT1a1+3nß2[T1]7i2a2[T1]3- 

4 

2ný, ý1 
(2e ß1 [T1] ai [TuI +2 eaß1 [T11 al [T1] I31 [`I'1 ] 

Dividing throughout by a? IIxfl3ITll ; 

In[94]: = ExpanciAll [ ST1 / en"ß1ITiI ] 

1 
Ol4t['14]= 2 

nvTl-nß1[T1] F_G j2 a1[T1] +- I ''2 al [T1] - 

3 
ün 

GJ1 e1 al [ Ti I-n cil 
e2 al [ Ti I+nr W1 C2 al [ Ti -l al T1 3+ 

3 
r72 a1 [ T1 ]3-Sr i7z al [ Ti 13+8 r2 7i2 al [Ti ]3- 

S r3 ßj2 al [ T1 ]3+3 T72 al [ T1 ] $2 [Ti ]2-4r t72 al [Ti I a2 [ T1 12- 

e3 
ATlal-n/31[T11+3 3i)32 [T11 2 a2[T1]3 - Il G11 ai [TiI +<,. ii al[T1] /1[x'11 

ö 

Let 

In[151: = Al == vi Ti - Ä1 [Ti] 

In[i6: = 9E'i == 3 a1 Ti - $i[TiI +3 $2ITiI ; 
J 

\- 0 



Appendix C. 6 : Mathematica Evaluations 

Substitute above into out(141 and convert them into t2igonometrical 
forms 

In[17] = E3 pToTrigý enxf'i F-1e1 '12 a2 ITil3 - ßf2 aT+ 282 1[ il 

2r *2 ai[Til - noiCi ai[Til -nait2 a1[Til +ni'Cal -t2 a1[Til - 

39 9 
'1i a1ITi13 +g X72 ai[Til3 -8 r'12 ai[T113 +- r2 F72 ai[T113 - 

33 
$ r3 712 a, [Til3 +- T72 ai[Ti] a2[Ti12 -4 r'72 ai[Til a2[Til2 - 

n-oiai[Ti] + of al[Ti] $i[Til I 

1111 
Out[17]= 

2 
Cos[A1] F+ 

2 
iFSin[A1] - z- 'f2 al [T1] +2 I'ß'2 al[T1] 

n wl 1 a1 [ T1 ]- Il wl al [ T1 ]+ Il r wl t2 al [ T1 1-s7.71 al [Ti ]3+ 

3 
"i7z al [ T1 13-9r P72 al [ T1 13+9 r2 t2 al [ T1 ]3-3 r3 f? z al [ T11 3+ 

8888 
32313 

X72 n1[T1] az[T11 -4r, 7z al[T1] a2[T1]' -8 fps [X11 tzaz[T1] - 

$ nSin [X11'i72 a2[T113-bwl al[T1] +wl al[`i] 131[`u] 

Separating them into real and imaginary components : 

  Real: I 

1113 
In[1g]: = 2 Cos[Ai] F-2 *2 ai[Ti] +2 I' *2 ai[Ti] -8 i1 ai[T: L + 

_3_ 
3 

FJ2 ai[Ti]3 -gr F72 ai[Ti]3 +8 r2 i2 ai[Ti]3 -8 T3 F72 ai[Ti]3 + 
8 

-Tý aT a2 T -Cos aT+ 
4 '72 ai[Ti] a2[T112 -4 r12 i[ iý [ 1ý2 -8[ i] r12 2[ i]3 

ci al ITi 1 $1ITi 1 _= 0; 

  Imaginary-: 

In(19]: = 2F Sin[Ai] -cuiCiai[Ti] - Q1. t2 al[Ti] +TCJ1t2 al[TI] - 

8 Sin[1i] r72a2[Ti]3-oia, ITi1 ==0: 

A-40 
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Derivative of A2 [ 711 

Ir[20]: = AjITiI =2 , ß11ß2[T11 a2[T1I +2 nCnJ82[T11 a2 [TI] $ IT1J% 

The secular terns of x21 from equation (3.3-43) 

In[21]: = ST2 -- 
it To Wi-3 nTo 02 

(_3A2(T1J23A1[T1J+3A2[TlJ23A3ITlJ 

+ 
3A2[T1]26º2 72A1[T1] 

4cuio2 4cu2 

3 A2 IT1I2 Cj) 2 572 A3IT1] 1 o2 är2 A2IT1] 2 n02 t2 A2 [T1] 

4 0102 -4 (2 11 
+ 

sui 2 -02 w2 - C32 

2n 02 k3 A2 [ T1 
6A1ITi] 02 572 AIIT1] A2[T1] 

]-+ 
02 -02 

6A3[Til02 22 r12Al IT1] A2IT1] 
+6A1[T1] iJ3A1[T1] A2[TI] - 

ta 1- til 2 

3 A2 [Ti] 02 772 A2IT1 ]2 
6A3[T1] ý13Al IT1] A2[T1] - 

CI)i-02 
+ 

6Ai[Ti] 02 572 A2IT1] A3[T1] 
3A2[Ti] ')3 A2[Ti]2+ 

Cji-02 
- 

6A3[T1] CA2r12A2A3 
-6AIL [ T1[ T73A2IT1) A3IT1] + 

cri-02 

6A3[T1] T73A2[Ti ]A3IT1] -2no2A2[T1]% 

Substituting equation In (Y0] & In (12] , equation In [2Y] becomes : 

Iri[22]: = ST2 = 

C-nx3xo1xT1 

3 A2 IT112 42 ?2 A1IT1 I (_3A2-r23AlITl]+3A2ITli23A3LTlI+ 

2 4 01 02 -402 

3A2IT1I202'72A3IT1I ) 4*2A2IT1I 2no2t2A2IT1I 
- + 

4 cut cut -4 02 of - o2 of - o2 

6 A1IT1I 02 172 A1IT1I A2 IT1I 
+ 2n02, ý3A2ITiI - 4 

-6) 
2 

6 A3 IT1I Ca2 2 A1IT1j A2 [T1] 
+6 A1IT11 X73 A1IT1I A2[T1] - 

22 ý-CD2 

3L] 02 '12 A2 IT,. 12 3 A2 IT 
6 A3IT11 F73 A1[T1 ] A2 [T1] -22 

c. º1 - w2 

_6 
A1IT1ý 02 '? 2 A2[TiI A3ITi[ 

A2A2 
ci -C3Z 

- 

6 A3 IT11 02 T72 A2 IT1I A3 IT1[ 
_6 A1IT1 [ F13 A2[TI] AAT1 ] 

22 till - 02 

6A3[T1J ý73A2IT_IA3ITiI -21Lca2AZ[Tiý 

: \-41 
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Substituting polar egressions In[Y] to In[6] & In[20] into In[22]: 

ßnß2[ T1) rý12a2[T1] aßaß2[T1] W3 Gtrt[22]= +2 
C2 a2 f T, 

n 
2 (cri -cJ2) al2 -cj 

2 -nom ß2[T1] 
W2 S3 a2(T1I - 

3e nJ'2 [T11 612 X72 a1 [T ,2 a2 [T1] 3 e31 ß2 [T1] I WZ 2 a1 f T112 a2 f T1I 
4 w2) 2(W2 

3 ßnß2 [T1] r2 w2 r2 a1 [Ti 12 a2 [T1 ]3 

4 (rwi - o, jZ) 
+ -'e"Z"li 73 al[Tl lz a2[T1] 4 

3 
ß2 [T 

32en ß2 [ T1 ]r 
773 al [ T1 ]2 $2 [ T1 l+4 ea 11 r2 3 al [ T1 12 32 [ `l'1 1- 

3 ßnß2 [T1] ü12 -ý2 a2 [T1] 33 

+ aß2 [T1] f73 82 [T113 + E) (i -W2) 

3 nTl al 
f3j, -3iß1[T1)-2 n/32[T11 (, j2 772 S1 [T1] a2 [T112 

- li 
8 (4 W1 w2 -4 

Z 

3 8nßl [T1]-2 nß2 [T1] r GJ2 772 al [T1 ] az [ Tl ]2-3 
<nß1 [T11 -2 aß2 [T1] 

8 (4 oil w2 -4 W2) 8 

-i'3 al[T1] a2[2'l] 2+ 
$I enßl[T1]-2nß2[T1] 1'ýý. -: al[T1] a2(Ti]2) - 

21 oj2 
(2 

enß2[T11 a2 [T1] +2 Il eaß2[T11 a2 [ß'1] r2 [T1 )1) 

Dividing throughout by & 12ITlJ : 

In[23]: = ExpandAll [ ST2 /e xß2 [T1] I 

J2 ö'2 a2 [ T'1 ]n 62 .2 a2 [ T'1 13 6J2 '12 al [ ý'1 ]2 a2 [ ý'1 ] 
Out[23]= 

2 a2 -2 w2 
+ 

W2 - W2 
-n c02 ý3 a2 [ T1 ]-24 

w2 -4 ,2- 121212 

3 r2 Gl2 Yi2 81 [ 2'1 ]2 a2 [ T1 ]3rw al [ Ti ]2 az [ Ti ] 

4 612 -4 w2 
+ 

2wi-2 a, 2 + 

4 X73 al[T1]2 a2 [` i] -Zr3 al[T1]2 a2[T1] + T2ý73 al[T1]2 a2[T1] + 

-3 n T1 a1+ä131 IT1l-a)''Z IT1 WZ 772 al [`i'1 ] a2 [ 2'1 ]2 

32 e2 3iß2 [T11 611 612 - 32 e2 n/32 [T1] 612 

3-e-3nTlal+3iß1[T1] -nß2[T11 T(42; r7z al[T1] a2[ß'1]2 

32 C2 nß2 (T1) al W2 - 32 e2 nß2[T11 w2 
3 

e-3 
A nß2 [T11 j73 al [2'1 ] a2 [`I1] 2+ 

8 

3 

le-33i 
Tjal+äß1[T1] -3nß2[T1] rj73 al[T1] a2[T1]2 

8 

3 (o2 7j2 s2[T1]3 3 
e_rm. 13 _r .. ý sa 1T, l +cý a FTil i?; [Ti I 

9 cri - 13 W2 Lj -e- L 

J 

i 

JJ 

A-42 
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Factorising it: 

In[24]: = Collect[%, {e-3 AT1 a1+nßi(TiJ-3 nß2[Ti] }] 

w2 ä2 a2 C T1) n w2 ý2 az f T1) 3 c, ý2 r12 a1 [ T1 12 a2 [ T1) OiA24]= 
2 WZ - W2 

+22- Il 6J2 13 a2 [ T11 -- 
122ýW 1- 244 W2 

3 r2 2 i12 a1 T1 12 a2 Ti) 
+3r 

w2 nz a1 [ T11 2 a2 f T1 
4 GJi - li GJ2 2 Wi -2 CJ2 

+ 

2 
4 773 a1 C T1 1 a2 f T1 l-2r X73 a1 [ I'1 ]2 a2 [ T1 1+4 I'2 X73 a1 f T1 12 a2 f T1 1+ 

3 e-3 äT1 of+npi [T1)-nIi2 [T11 2 t2 ý2 2 al T., l a2 T1 12 

32 4a 
2 nß2 [T1] 

(u 1 c&2 - 32 e2 nß2 [T1 J w2 

3 e-3 AT1 al+n ß1[T11-nß2[T11 r'2 72 ai1T11 a2[T112 

32 4-2 nß2 [T1] 611 OJ2 - 32 e2 äß2[T1] 2- 

3 WZ ! 12 a2 (T113 3 

8 6J2 -$G. 12 
+$ 13 a2 ( T1]3 +e 3 nT1 of+nßl[T1)-3 nß2[T1l 

33 
-S 773 al f T1) a2 [ T1 12+g r'73 a1 [ T1 I a2 [ T1 ]27- 

n 6J2 a2 [T1] +c'i2 a2 [`I'11 j 9j [T1] 

Substitute In[16J into Out[24] and convert them into trigonometrical 

forms 

In[25]: = ExpToTrigI 

33 
e-Ax. m1 , j3 al ITlI a2 ITi12 r r13 a1ITl I a2IT112 + 

302 r12 a1ITiJ a2[T1]2 3r W2 '12 a1[T1] a2ITiJ2 1 

32 01 02 - 32 02 32 01 02 - 32 o2 
11 + 

02 *2 a2[T1] n o2 t2 a2 [T1] 

2cu2 -202 
+ 

ý2 ý2 
- 02 C3 a2IT1J - 

121-2 

3C4 q2 a1IT112 a2IT11 
- 

3r202 n2alIT112a21T11 

4 of -4 o2 4 4-4o2 

3r CL)2 ij2 

ýa1I 

2 ý2 a2ITi 14 
n3 a1ITi] 2 a2ITi 1 

22z 1-2 

_ 
3cil2 a2[TI]3 3r 

i73 a1IT1J2 a2[T1] +3 r2 r13 a1[T1]2 a2[T1] - 
2X72 + 

24 8cui-8aº2 

3 
r7_ 83 a2IT1 13 -a (J2 a2ITi J+ 02 a2IT1 J P, 2 IT1I 

'ý, J2 Y2 a2 [ Ti liý2 a2 [ Ti) 3 W2 X72 al [ T1 ]2 a2 [ Ti 

Out[2=)= +-n W2 ?3 a2 [ T1) -2 
2 w2 -2 a12 ('12 - W2 

44 W2 

3rw? 772 a1 [ Ti) 2 a2 [ T1) 3r WZ 172 al [Ti] 2 YZ [Ti ]+ 
+ I' 4( U1 24 22 wi -2c. 12 

332+ r`? js a1[T112 a2[Ti + 
- 1'73 al [ T1) a2 [Ti] -Zr r13 al [ ý'1) a2 [Ti ) 

3Cos[11] Gl2iý ai[T1) a2[T1)2 3rCos[1,1] al` al[T1) a2[T1]2 

3 
c'.. 6J1 !J2-i `Z j, l 

Z 

3i Sin[ai] ` [Ti] ala2[T1)Z 3irSin[ 1] c: 
`;; ý1[T1] a2 T1.1 

3 

2+3' rui ,ý-3? w2 32(01 at -32co2 

3i 

Cos[ 1)'r3 ýi[Ti] 2[Ti]2+ rco [Ii)3al[Ti] ''-[T1]ß+ 
bi 

32 
n Sin ;;, al [ T1 ] a2 [ T1 nr Sin (1i), al [ T1 [ T1) - 3 

[ý1 ] ,, ý 
)3 

3 w aý[T1)ý 
+ fl [T1)3 W2 a2(T1] +i, ý Ti] . 3HT1] 

O ýýI - Ci ül 
,8 

. 
\-4' 
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Separating them into real and imaginary components: 

  Real: 

In[26]: = 
(a2 Y2 a2[T1] 

- 
3o2 F12 al[Ti]2 a2[Ti] 

- 
3r2(2 q2 ai[Ti12 a2ITi] 

202 -202 4(4-4cu2 4(i-4ý2 + 

3r(4 i72 ai[Ti]2 a2[Ti] 323 

2o)i -202 
+4 1J3 ai[T1] a2[Ti] -2r, J3 ai[Ti]2 a21Ti] + 

3 3Cos[ cl1] aJ2 ýJ2 ai[Ti] a2[T112 
4 T2 5"73 ai[Ti]2 a2[Ti] + 

32 0 320 12-2 

3r Cos [151 ] 02 5j2 a1 [ Ti ] a2 [T1 ]2_3 
Cos al T a2 T2+ 

32c0102 -32cu2 g[ i] i Ja [ 11 [ il 

3T 
CosI rJ3 a1[Ti] a2 [Ti] 2-3ý2 

572 a2[ T1 ]333 
J3 a2[Ti] + 

8 84-8c, ý2 
+-i8 

02 a2IT11 $2[Ti] _= 0; 

  Imaginary: 

In[2? ]: = 
02 C2 a2[ Ti] 3 S1n[cli] c$ q2 ai]Ti] a2[Ti]2 

- .. - 02 (: 3 a2 [Ti] - -- -- 
+ 

Il1-to t 

3r Sin[ý§1] c$ a)2 a1ITi] a2[ Ti]2 

3L 01 02 - 3L wZ 

Sin[ai] 773 a1ITi] a2[Ti]2 _ «8 
32 01 02 - 32 2 

sr Sin[<Ii] 173 al[Ti[ az[Ti[2 -cue az[Ti[ __ 0; 

a 

ýI 

ýII 
JJ 
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C. 7 Derivation of Solvability Equations 

The 4 Modulation Equations for Case Y are as folloyýs :] 

1_1_1_3 
In[1]= 2 Cos[A1[ F-2 7f2 al[Ti] +2 I' ä2 ai[Ti] i -8 11ai[Ti]3 + 

8 772 al[Ti]3 -r e72 al[Ti]3 + r2 e2 ai[Ti[3 -8 r3 '72 ai[Ti[3 + 

3_3_1 
4 X72 al[T1J a2[Ti]2 -4r I2 al[Ti] a2[Ti]2 -8 Cos[. i[ iJ2 a2[TiJ 3+ 

ciai[Ti] $i[Ti] =_ 0; 

In[2]: = 2FS. in[A11 -wif1 ai[T11 -U1f2 al [T1] *T12 al[T1] - 

s Sin[. 11 i22 a2 [T113 - sui ai[T11 == 0; 

C02 *2 a2ITi] 36) 2 "72 a1IT1]2 a2IT1] 
_ 

3r2CJ2 r12 a1[T1]2 a2ITi1 
In[3]: = 2ca2 -202 44-402 4c4 -4cý2 

+ 

3rca 2 77,2 a1ITi]2 a2ITi] 3232 

cu 
+ 573 al[T1] a2[T1 ]- rn3alITl] a2[T1I 

2+ 2 cu2 42 1 

3 3COS[ Il] Q2 ý72a1[T1] a2IT1]Z 
4 r2 X73 a1ITi ]Z a2 ITi J+ 

32 ai 32 12- 02 

3rCos[ý1] $n2a1IT1]a2[T1]2 
_32 - CosIIli] X13 a1[ Ti] a2IT1] + 

32o102 -32cue 8 

233_ 323 ý2 q2 a2I Ti 13 
r sCOS5)3 a2ITi] _ 

81,12 -8lilt 
+g 'h a2[Ti] + 

12 

Q2 a2 [T1 ]$ ITi I =_ 0; 

03 -z a2[Ti] _3 
Si. n[, Ii] o2 n2 ai[Ti] a2[T112 

In[4]: = 
ýz - ýz 

- Cº2 -C3 a2 [Ti] - 32 sui 02 - 32 o+ 2 

3r sin[fi1 02')2 al ITi] a2[T112 
+3 Sin[ 11 T73 ai[Ti] a2ITi]2 - 

32oio2 -32o2 
8 

3r 
sin[i>i] F73 alITl] a2ITi12 -(2 a2[T1] __ 0; 

For steady - state, the condition 1s required whereby : 

in[-]: = aj[ TiJ == a[ TiI = A1' == 4'i'ß 0; 

From S22 j151 of Appendix C. 6 

Ai == vi Ti - $1[Ti ]% 

Air NILv 

Al' z0, Jº 

In(6): = ýG'1[ ß1 ] 
__ >v1; 
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From In [16] of Appendix C. 6: 

==3 aiTi -$iITi] + 3B2[Tu ; 

i' .. 3al -$i[Ti] +3$2[Ti]; 

vi'x0 
1 

1 ßn[7]: = P2 I Tý 1 _= 3 
v1 - ai 

Subst. In[5j to %n[71 Into Sn[1] to In[41 & Bringing Trig. Tervns to 
LHS: 

ln(81: = 2 cos[Ail F8 cos[`111 r12 a2[T113 +2 *2 al IT IL 1-2r Y2 ai[T11 + 
3 

YTi ai[T1]3 -3 I2 ai[T113 +-r 772 ai[Ti13 --r F72 al[TjJ3 + 
8888 

4 al[T1] a2 [Ti] 2+r 
8 r3 X72 ai[Ti13 - '72 4 )2 alITi1 a2[T112 - 

of al [T11 Xvi: 

-F SIn[A1 ] _= 8 Sin[`1i] '72 a2[T1]3IL +CJ 1 C2 ai[Til - 
r 1.2 al [Ti1 i 

3C. )2 ri2 a1IT1] a2ITi)2 3ro2 n2 a1ITi] a2[T1]2 
In[10]: = Cos [ ýi ] It -- 

32OIL Q2 -3202 32ofßu2 -3202 

g 773 ai[Ti] a2 [T1]2 +r IJ3 a1IT1] a2ITi]2) 

02 ä2 a2 ITi 1+3 o2 F12 a1[T11 
2 a2 [Ti ]+ 3r 2 o2 i)2 ai [Ti ]2 a2 [Ti ]- 

202 -2o2 402 4a2 402 -4o2 

3r cu2 a1IT1]2 a2[T1] 33r2 
2 

')2 
73 ai[Ti12 a2[T1] +2 r13a1. [Ti] a2[Ti] 

-- F 
24 -202 4 

3 
r2 al T2 a2IT1 j+ 

3a2 572 a2IT113 3 
773 a2ITi1 

3- 

4 na [ ll ý, sý C. )2 iS 

02 a2 [T1 ]Xl3 v1 - ý1 r 

3 ail 112 a1[T1] a2ITiI2 3rý2 772 al [Ti] a2[Ti12 
Ir(11]: = Sin[lP1] 2 32 cut 02 -32 w2 32 cut cue -322 

3s 
773 a1[T1l a2 [T1I2 +sr I3 a1[T1l a2[T112) 

c4 t2 a2[Tl] 
_. _ p -- rm_I 

Gt i- Gl 
2 

- WZ Sf °Z L -il z 
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From rn [Y0] and In [13] : 

In[121: = Cos[ ýI1 ] == 

J/ 
3 02 X72 a1[Ti] a2 [Ti]2 

-3r 
ci2 r72 a1[T1] a2ITi12 

- 32 01 02 -32Q2 320102 -32c4 

33 
8 773 a1ITiJ a2IT1J2 +gr 773 aiITiI a2IT112J 

Cj2 ä2 a2ITi I3 G2 572 ai[Ti ]2 a2ITi 13 r2 02 r72 ai IT1 12 a2 IT1 I 

2cu2 -2o2 
+ 

402-402 
+ 

4ýº2 4cuz 121212 

3r 02 r12 a1IT1I2 a2[T1] 3 
573 a1ITi12 a2[TI] + 

2c4 -2ý2 4 

323223 t$ i72 a2ITiI3 
- -r F73 a1ITiI a2ITiI --r '73 a1ITi1 a2ITiI +zz 

24 8cu1-8cil2 

31 
)J3 a2IT1 13- 02 a2IT1 Ix 

(3 
vi - 47i) 

In[13]: = Sin [ <Il I 
CJ2 E2 az I2 1 

02 C3 a2I Ti l 

1 CJ2 

3o2 512 a1IT1l a2ITj12 3T w2 r12 a1[T1I a2 ITi12 
- 

32 0102 - 32o2 320102 -32c2 

0 
773 a1ITiI a21T112 +s3r j73 a1[T1] a2[T1)2) 
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Squaring In [8] and In [9] and Adding them ; 

2 
In[14]: = FuilSi. ]rnplifyl 

12 
Cos[Ai] Fý + 

(2 
F Sin[Al]12 

1 

!!! J 

3 
ßl2 a2[Ti] 

/f3 °2 X72 ai [Ti] a2 [T112 
- 

3r02 r72 ai ITiI a2 ITi 12 

32 cut o2 - 32 02 32 c. )1o2 - 32 4 
1 Il 

33 
- 173 a1ITi] a2ITi12 +r n3 al[Ti] a2ITi12) 

CD2 ä2 a2[TI] 3(a 2 r12 ai[T1]2 a2[Ti] 

2c4-2c02 4c4-4o2 

3r2C0ZT72ai[Ti]2a2[Ti] 3]C 02772 al [TIL1a2 [TI 

4C 0 2402 2412 -2oZ 
33 

773 ai[Ti]2 a2[Ti] +2r 573 ai[Ti]2 a2[Ti] - 

322]+ 3t, ý2 X72 a2[T1]3 3 
X73 a2ITi]3 

4r i73 a i[ T11 a2 [ Ti 
8 ca o2 i -8 

V1+2 ä2 al[Ti] -2 rä2 al[Ti] 

3 
r11 a1ITi13 -3 X72 a1ITi13 +- I'12 ai[Ti]3 -9 r2 '12 al [Ti13 + 

8888 

8 r3 i12 ai[Ti13 -4 112 ai[Til a2[Ti]2 *4r i12 a1ITi] a2[Ti]2 - 

ý2 
o1a1ITi] Xvi + 

-02C3a2[Ti] 772a2[Ti]3 
lt 

ý2 

02aai2 

1] 

12 

3a322 '72 ai[Ti] a2[Ti] 2- 3ro2F72 al[Ti] a2ITi]2 
- 

32 ojL cue - 32 02 32 of o2 - 32 o2 

8 A73 ai[Ti] a2[Ti]2 +8r 5J73 ai(Ti] a2[Ti]2)) + 

2 

cº1. eial[T1] *Q1t2a1ITi1 _r01t2a1ITh1) 
1 

OLd[141= 4 w1 (. e1 - (-1+ r) ! 2) a1[T1I - 

4 
?3_2 )) 2 a2 [Ti] 2+ 

4w W2 i t3 + WE (! +3 x7 

3 (-1+r) (wl+w2) (w2r12+4 (-w1+w2) 773) a1IT11 

(9 (-1+r) (wl+c, i2) (4 w1r)73-w2 (f)2+4 73)) a1[T1]2 

(8vlcý1+4 (-J+ r) 23 (ijl+(-l+r)'' a, (T112)+ 

2 ßj2 (8 w2 (2 (vl -3 a1) (wi - w2) +3 w2 ) 
2 

9 (-1+r)2 (w2 (-3 wl+w2) n2+8 (w7- -cj ) `; ) a1IT1]) 

1-72 (-wl t3+w2 (ý2+ri3 azIT1I4)2f 

(5184 (-1+r)` (a'i+w2)2 ((j2i72+4 (-wl+w2) ; _)2 EL llTll) 
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Squaring In [121 and In [13] and Adding them: 

In[15]: = Fu11Simp1ifyI (Cos[. i])2 + (Sin[cli])2 

3X2'72 ai[Ti] a2[Ti]2 
- 

3r432112 ai[T1] a2[T112 
32 01 02 - 32 cj2 32 01 °2 - 32 2 

2 

773 ai[Til a2 [Ti] z+8 r'73 ai[Ti] a2[Til2) 

r 02 i2 a2[Ti] 
+ 

302 n2 a, [Ti] 2 a2ITi1 
I- + toi-2ra2 4(4-4o2 

3r2cý2r12a1ITil2a2ETil 
_ 

3r Q2r12ai[Til2a2ITil 

Omi -4Q2 toi-2 j2 
33 

4 n3 aiITil2 a2ITil +2 I' i73 aiITil2 a2[Til - 

32 302 ITi 13 3 

4r 
i73 a, ITil 2 a2ITil +2 

ý7 - 

a2 

8ý? 

3 
F1 3 a2ITil3 - 

02 a2IT11 X3 ti`i -ai + t3 )JJ2 
C02 k2 a2IT11 

- '32 C3 a2 ITiI 
lI 

l1 Gt i- Gl 2 

r3 C02 5i2 a1ITi 1 a2 ITý12 
-3r 

o2 572 ail Ti 1 a2 IT112 
- Il 

32 01 02 - 32 c2 32 cal cj2 - 32 02 

2 

8 113 a1ITil a2ITi12 +8r r73 aiITiI a2ITi12) II 

2 
) 5'76 W2 

Iý2 
.ý2+ t3fll + out[15]= 

[16 

W1 - WZ 2 

-wi + WZ 

((4 6j2 (2 (vl-3a1) (-611+(, jZ) -3w2üz)+ 
(rail - 

Z) 2 

18 1 +r)2 (-ýjiý]3+W2 U32+; J3 a1[T1]`+ 

] 2) `) 
9 (-tai i; 3+ w2 (r72 + r73)) a2 [ Ti 

(81 (-1+r)2 (tý12? ý2+4 (-W1+G12) ri3) a1[T1]2 a jT1]2) 2 

1 
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Therefore, the 2 'solvability' equations are: 

FZ 
In[16]: = 4 

(0i 
+1') . t2) ajL [TjL] - 

4 °2 (-c4 3+ ý2 (f2 + t3) ) e2 a2 [Ti12 2 

3 (-1+r) (o1+°2) (002X72+4 (-01+432) Y73) ai[Til 

(-1+ 1') (611+at2) (401'73-102 (i2+4r13)) a1(T112 

(8v1Wi +4 (-1+r) ä2 -3 (e1 + (-1+T)3 T? 2) ai[T112) + 

2 )2 (8 132 (2 (v1 -3 ai) (01 -o2) +3 02 Y2) - 

9 (-1+r)2 (o2 (-3(1i+2)'72+8 (0i-o2) X13) ai[Ti12) 

a2[Ti]2-36n2 (-01 i3+(2 (rh+Ü3)) a2[T1ý4)2! 

(5184 (-1+r)2 (0 +£32) 
2 (oz 772+4(-°i+ (2)7)3)2ai[Ti12) 

In(17]: = 16 (oi - 02) 
2 

02 f2 
2 

2 576e2 It +. e3 + 
-till+ý2 

1 

(°1 -msz) ` 
((4 °2 (2 (vi -3 ai) (-01 + Buz) -3 cJ2 92) + 

18 (-1+r)2 (-ý1Ü3+c2 (772+'13)) a1[Ti]2 + 

9 -£a1 Ü3 +02 (e2 + X73)) a2IT1]2)2) 
/ 

(81 (-1+ r)2 (02 2+4 (-"i + 32) I3)2 ai[Ti]2 a2[Ti12) _= 1; 

Multiplying e throughout the equations allows a return to the origi- 

nally defined parameters in the equations of motion : 

In[l 8]: = 
e F2 

4 

(e +r) e t2) a1ITil - 

2 
2 +02 E +eý3))Er12a2[T112 4 C32 (-G11 e t3 2 (c t2 

I+ 

3 (-1+r) (Cal +Q2) (o2E3j2+4 (-o1 +<32) E773) ailTil 
J 

2 
(9 (-1. +r) ((ill+02) (4G11E , -G12 (E i2+4EJj3 a1I T1I 

(8evicai +4 (-i+r) e*2 -3 (Eni+ (-1+r)3 E'12) ai[T112) + 

2 i72 (8 02 (2 (evi -3E ai) (0i -02) +3 6)2 e 72) 

9 (-1+r)2 (°2 (-3C1+6)2) ei? 2+8 
i -02) e')3) aiIT112) 

a2ITi 12 - 36 E r12 (-02 e TJ3 + c2 (E'72 +e 7)3)) a2ITi14) 
2/ 

r)2 (5184 (-i+ 2 (01+02)2 (02ei12 +4 (-cut+02) f ýjs)2 alITi12) 
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In(19): = 116 (0i - 02)2 

( (2 E .2 ý2 
576 cut Il 

2 
+e 3+ 

-<a2 + ca 
2 

1 

((4°2 (2 (ev1 -3ea1) (-f3i+oZ) -392e? "2) + 

18 (-1+r)2 (-cu1ee3+0i (e e2+EX73)) al[Tl]2 + 

9(-lilt e3 +(a2 (e 42+'E 
3)) a2[T1]2)2) 

I/ 

(81 (-1+r)2 (02e'72+4 (-°i+02) en3)2aiIT112a2f[T1] 2) ==1; 

Rearranging and Simpiying In [IS] and In [19J above: 

Irt[20]: = 

In[21 ]: = 

1296F-2 ((-1+ r)2 (o1+02)2 (C32eÜ2+4 (-o1+02) i73 )2a1IT112) 
(ei 

(efi - (-1+r) er2) a1[T11 - 

402 (-4 ef3 +(2 (e. 2 +e. t3)) E772a2ITiI2 
2 

3 (-1+ r) (£a1+02) (°2 e q2 +4 (-6)1+'32) e e3) a1ITil 

(9 (-1+r) (01+aa2) (4O1ei13 -02 UE7)2+4ei? 3)) ai[T112 

(8ev101+4 (-1+r) eY2-3 (eei +(-1+r)3en2) a1IT112)+ 

2 e'12 (8 02 (2 (ev1 -3e a1) (c4 - o2) +3 °2 E X2) - 

9 (-1 +r)2 (°2 (-3 of +°2) e 772 +8 ((4 -aý2) e r13) alITi12) 

a2ITi12 -36ee2 (-oien3 +c4 (ee-2+ei13)) a2ITi14)2; 

(01-02)2 

ý2 2 

576cu2 
6)22 e22+E f3 + 

ý1 + cut 

1 

(cue -°2)Z 
(4°2 (2 (ev1-3eai) (-0i+O2) -302eä2) + 

9 (cut (e I+e 773) -e wi r73 ) 

(2 (-1 +r)2 al[T1]2 + a2ITl12))2 __ 

16 
(-1+r)2 (02Ei12+4 (-Cal +02) en3)2al ETl12a2IThI2; 
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APPENDIX D 

NUMERICAL INTEGRATION 

D. 1 Program Code for Numerical Integration 

On the next page, the code that numerically integrates the governing 

equations of motion of equations (3.3-1) and (3.3-2) can be found. It is 

written in Mathematica and this code is for an upward frequency sweep. 
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Timing[ 

(* Setting variables to zero 

Clear[resultl, result2, al, a2, Q, i2step, i, ans, maxiter, start, tz, xlvel, xldis, x2vel, x2dis); 

(* Defining values of constants - Large start & tz values to ensure steady-state .) ml = 2; M2 = 1.125; c1 = c2 = 0.05; kl = 847776; k2 = 52986; h, = 1200x3.0'; h2 = 100 x 106; F0 = 10; Q= 205; step = 0.2; maxiter = 51; start = 2000; tz = 2010; 

(* Defining Arrays *) 
resultl =Array[al, {maxiter, 2)]; 

result2 = Array [a2, {maxiter, 2}]; 

(* Function to extract the highest peak from the graph +) 
HighestPeak[gr_] 

Reverse[ 

Last [Sort [ReplaceList [Join @@ Cases[gr, Line[pts_] :> pts, Infinity], 
{_, {xl_, yl_}, {x2_, y2_}, {x3_, y3_}, 

yl < y2 && y2 > y3 -> {y2, x2}]]]]; 

(* Defining initial boundary conditions *) 
xlvel = 0; xldis = 0; x2vel = 0; x2dis = 0; 

(* Loop to numerically integrate the equations , r) 
For[ i=1, i 

_< maxiter, i ++, 

Clear [ans, x, t, grl, gr2] ; 
Casel = 

Cl + C2 c2 kl + k2 k2 h, h2 g 
NDSolve[{x1"[t]+ xl'[t]-- x2'[t]+ xl[t] -- x2[t]+-xl[t]3+- (x2 [t]-xl[t])3= Cos[Qxtj, ml ml ml ml ml ml ml 

x2" [t] + 
CZ 

x2' [t] 
- 

CZ 
xl' [t] +k x2 [t] - 

k2 

xi [t] 
- 

hý 
(x2 [t] 

- xl [t]) 3=0, 
x1 [0] = x1vel, xi [0] = xldis, 

mZ m2 m2 m2 m2 

x2'[0] = x2vel, x2[0] = x2dis}, (xl, x2}, (t, start, tz), MaxSteps 1 Infinity, Method -'RungeKutta, 
WorkingPrecision -' 16, PrecisionGoal -, co] ; 

(* Storing results into the array *) 

grl = Plot [Evaluate [xl [t] /. Casel], {t, start, tz}, DisplayFunction -' Identity] ; 

al [i, 1] = Q; 

al[i, 2] = HighestPeak[grl][[2]]; 

gr2 = Plot[Evaluate[x2[t] /. Casel], {t, start, tz), DisplayFunction-, Identity] ; 
a2 [i, 1] = S2; 

a2 [i, 2] = HighestPeak[gr2] 1 [2] ]; 

(* Assigning last velocity & displacement to be used for next calculation loop +) 

xlvel = Evaluate [xl'[tz] /. Casel][[1]]; 

xldis = Evaluate [x, (tz] /. Casel] [ [1] ]; 

x2vel =Evaluate [x2' [tz] /. Casel] [ [1] ]; 

x2dis =Evaluate [x2 [tz] I. Casel] [ [1] ]; 

52 =4+ f2step; 

)l 
(* Storing data into harddisk *) 
SetDirectory["c: \mdata"]; 

Export["a1_h2=100-Z1. dat", resultl, "CSV"]; 

Export["a2_h2=100-Z1. dat", result2, "CSV"]; 

(* Displays numerical results #) 
resultl 

result2 

(* Displays graphical results - Without Lines *) 

ListPlot[resultl, Frame -+True, FrameTicks -'Automatic, GridLines -9 None, 

FrameLabel -* {"Frequency, Q [rad/s]", xl[metres])]; 

ListPlot [result2, Frame -i True, FrameTicks -r Automatic, GridLines -r None, 

FrameLabel ý {"Frequency, c (rad/s] ", x2 [metres]) ]; 

(* Displays graphical results - With Lines *) 

ListPlot[resultl, PlotJoined -. True, Frame True, FrameTicks-+ Automatic, GridLines-a None, 

FrameLabel -i ("Frequency, 0 [rad/s] ", xl [metres]) ]; 

ListPlot[result2, PlotJoined -* True, Frame - True, FrameTicks - Automatic, GridLines-+ None, 

FrameLabel - {"Frequency, G [rad/s]", x2 [metres])]; 
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D. 2 Definition of the Program Code 

The different sections of the code (in Appendix D. 1) are defined here in 

details: 

0 Initially it is necessary to clear all the variables to zero before running 

the program. 

" All the constants such as the masses, damping coefficients, linear 

and cubic stiffnesses, and excitation force are defined next. Other 

constants that are also defined are the start value for the excitation 

frequency (S2), frequency step size (Qstep), number of iterations 

(maxiter), integration start time (start), and end time (tz). The 

integration start time is defined with a large value to ensure that the 

system is in steady-state. 

" In a nonlinear frequency-response analysis it is common to do a 

sweep up and down over a range of frequencies. This results in an 

implied unstable region of the system defined by an enclosure of the 

upward and downward jumps. To achieve the downward frequency 

sweep the frequency step-size is required to be negative. 

" Two arrays are defined for storing the results of the amplitudes x, 

and x2 in an appropriate format. 
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" (*Function to extract the highest peak from the graph') 
This function HighestPeak[gr j is used to automatically extract the 

highest peak value of the graph plotted between the integration start 

time and end time. This value is used as the assumed steady-state 

value for plotting a point in the frequency-response graph. 

" Next all the initial response values are set to zero. 

" (*Loop to numerically integrate the solutions*) 

This section uses the powerful NDSolve[ ] function within 

Mathematica to integrate numerically the two equations of motion. 

The method used is as specifically stated in the 

code: Method - RungeKutta. The integration is repeated for a total of 

maxiter number of times. NDSolve[ ] can potentially use a wide 

variety of other integration methodologies such as the Adams 

method, Gear method, and GeI'fand-Lokutsiyevskii chasing method. 

" (* Storing results into the array *) 

The highest peak value of the result from the numerical integration is 

extracted and stored into an array with its respective frequency. 
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" (*Assigining last velocity & displacement to be used for next 

calculation loop*) 

This is an important sub-section because at each frequency step the 

previous displacement and velocity are assigned as the next 

initialised response values, in order to construct a frequency domain. 

9 Following on from this the two arrays are subsequently stored to the 

hard disk in 'CSV' (Comma-Separated Values) format for extraction 

of data to MS Excel for more detailed plotting of graphs. The 

contents of the two arrays are displayed and the response 

displacements for x, and x2 are plotted as individual frequency 

domain points, after which inter-point interpolation is carried out by 

means of the internal Mathematica operation, PlotJoined - True . 
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APPENDIX E 

DYNAMICS 2 COMMANDS 

E. 1 General 

to get help with commands 

(e. g. *MM - help with main menu) 

pauses the program after plotting one dot. 

<space bar> returns the program to normal 

&: Cycle through the most important menus 

<Enter> : Fetch previous menu 

<Esc> : current routine terminates or fetches parent menu of current 

menu 

<space bar> : removes menu and continues plotting 

<Tab> : prints the speed (in dots per second) and a selection of 

parameter values. 

dynamics : Starts the program 

MM : Main menu 

C: clear screen & core memory 

R: refresh screen 

E. 2 Colour 

<F7> : decrease colour number by 1 

<F8> : increase colour number by 1 

<F9> : choose colour number 
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CT - displays colour table 

E. 3 Change Parameters: 

PM : Parameter Menu 

<+> increase PRM (e. g. RHO) by the amount PS 
(i. e. Parameter Step) 

<-> decrease PRM by the amount PS 

<Home> or <Shift 3> : halve PS 

<PgUp> or <Shift 4> : double PS 

E. 4 Crosses 

<End> or <Shift 1>: halve step size for small cross 

<PgDn> or <Shift 2> : double step size for small cross 

K: big temporary cross shows y as trajectory is 

plotted 

KK draw permanent cross at y 

KKK : permanent cross at each point as trajectory is 

plotted 

KK1 : draw permanent cross at y1 

KKS : set size of permanent cross 

E. 5 Display 

BXM : Box Menu 

B: draws a box around the screen 

131 draws a box with tic marks - use while the pic is plotted 

B2 draws a box with double tic marks - to get BIFR scale 

B20 : draws a box with double tic marks but no numbers 

ROT : rotates picture 90 deg. clockwise 
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FLIPH : flips picture horizontally 

FLIPV : flips picture vertically 

XAX, YAX : draws the x-axis & y-axis respectively 

XAX1, YAX1 draws the x-axis & y-axis respectively with 1 tic mark 

XAX2, YAX2 : draws the x-axis & y-axis respectively with 2 tic marks 

XS : change X-axis scale (i. e. XS<Enter> -2 2<Enter>) 

YS : change Y-axis scale 

E. 6 Plotting 

I: initialize y using y1 

II : initialize and iterate 

CON : connects consecutive dots 

PT : toggle `Plot Time' to have time on the horizontal axis 

T: plots the trajectory 

E. 7 Storing 

TD : to disk 

FD : from disk 

AFD : add from disk - adds the old picture onto the screen 

E. 8 Window Parameters 

OW 

OW 1, OW2.. OW4 

<F1 >: upper left <F2> : upper right 

<F3> : lower left <F4> lower right 

<F1O> : whole screen 
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E. 9 Lyapunov Commands 

L: sets number of Lyapunov exponents (0 
_< L _< -1) to be 

computed. 

LL : prints the current values of the Lyapunov exponents, 

numbers and dimension on the screen. 

E. 10 Bifurcation Commands 

BIFM : Bifurcation Diagram Menu 

BIFD : sets the number of dots to be plotted (per horizontal line). 

BIFI : re-initialise y for each parameter 

BIFP : toggle the printing of parameter values. 

BIFPI : sets the number of pre-iterates. 

BIFR : specifying range of the bifurcation parameter (e. g. RHO). 

BIFS : plots bifurcation diagram on screen. 

BIFV : for higher quality picture 

(recommend 720 horizontal lines per page, screen has 480 

I/pg. Space between each horizontal line plotted => higher 

= closer) 

PRM : parameter to be varied 

E. 11 Procedures 

Finding a Fixed Point: 

1) 11 <Enter> 

2) Use arrow keys to move the small cross to be together with the big 

cross. 

3) YV<Enter> 

4) Fixed point is displayed 
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Computation of Lyapunov Dimension and Exponents: 

1) Set the number of Lyapunov exponents to be computed (command L) 
2) Plot trajectory (command T, or SST, or BST etc) 

Optional: 

" Set Text Level to be 2 to speed up computation (command T2). 

" Use "List Lyapunov exponents and numbers" command LL to get 

current estimates of the Lyapunov exponents and Lyapunov 

numbers. 

Plotting of Lyapunov Exponents versus Time 

1) Set the number of Lyapunov exponents to be computed (command L) 

2) Set the horizontal axis for the time scale (command XS) 

3) Set the vertical axis for the range of Lyapunov exponents (command 

YS) 

4) Set the number of exponents to be computed (command L) 

5) Turn the toggle PT on (command PT) 

6) Start a process like T or SST. 

Computation of Bifurcation Diagram: 

1) Set the X Scale (command XS) 

2) Set the PaRaMeter to be varied (command PRM) 

3) Set the BlFurcation Range (command BIFR) 

4) Set the number of BlFurcation Pre-Iterates (command BIFPI) 

5) Set the number of BlFurcation Dots (command BIFD) 

6) Set the number of BlFurcation Values (command BIFV) 

7) Set the number of BlFurcations initializations (command BIFI); 

If BIFI > 1, then set vectors ya and yb appropriately. 

8) Plot the BlFurcation diagram (on the screen) (commands BIFS, BIF). 
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Plotting of Lyapunov Exponent Bifurcation Diagram: 

1) Set the number of Lyapunov exponents to be computed (command L) 

2) Set the horizontal axis for the range of the Lyapunov exponents 

(command XS) 

3) Set the PaRaMeter to be varied (command PRM) 

4) Set the vertical axis for the range of the parameter to be varied 

(command BIFR) 

5) Set the number of parameter values (command BIFV) 

6) Set the length of the transient time interval (command BIFPI) 

7) Set the length of the time interval for the approximate Lyapunov 

exponents to be plotted (command BIFD) 

8) Set the Screen Diameter to a higher value (command SD) 

9) Optional : Connect the consecutive dots (command CON) 

10) Plot the Lyapunov exponents (command BIFS or BIF) 
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E. 12 Adding OWN Differential Equation: 

Documentation window 

The Documentation window provides text that will appear whenever 

the Main Menu or Parameter Menu is called. 

Vector field window 

The differential equations to be added are written in the Vector field 

window. Refering to Figure 5-1, 

Line 5: The period is defined as 2*pi/phi. 

Line 6: Definition of time 

Line 7: Assigning x' to u 

Line 8: Assigning y' to v 

Line 9-11: The two differential equations of equations (3.3-1) and 

(3.3-2) are defined here in this window as ! EOM1 and ! EOM2 

Initialisation window 

This window is to define and initialise all the variables and the step 

sized used by the differential equation solver. 

Line 12: All the initial response values of the system is set to zero 

here. (i. e. time, displacement and velocity) 

Line 13: Defining the coordinates to be plotted 
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The program makes a list in alphabetical order of the variables that 

are defined and assigns to them to y[0], y[1], y[2], ... For example, in 

the code of Figure 5-1, y[0]=s; y[1]=t; y[2]=x'; y[3]=y'; y[4]=x: y[5]=y. 

Therefore, XCO: =4 YCO: =2 is defining the x- and y-axis as x and x' 

respectively. 

Line 14: Defining the scale of both the x- and y-axis. 

Line 15: Defining the stiffness variables, k where, 

cl =k1/m, c2=k2/m1 ; c3=k2/m2; 

Line 16: Defining the damping variables, c where, 

c4=c1/m1 c5=c2/ml ; c6=c2/m2; 

Line 17: Defining the nonlinear cubic variables, h where, 

c7=h1/mi ; c8=h2/m1 c9=h2/m2; 

Line 18: Defining the force, F and frequency, Q where, 

rho=F/m1 phi= 

Line 19: SPC is Steps Per Cycle. This is to define the period of the 

forcing which is 21r/phi (also true in several cases). 

Line 20: IPP is to set Iterates Per Plot. The process is iterated IPP 

times before each plot. If SPC is set to 2000, then setting IPP to 

2000 will mean that one point is plotted for every cycle. 

Modulo window 

The use of the modulo window is optional. The equation(s) in this 

window are applied after each time step of the differential equation 

solver. 

A-04 



Appendix E. 13 : Dynamics 2 Command. 

E. 13 Tips on Using Dynamics 2 

SPC : (Default = 30) 

0 Is the number of differential equation steps in one period of the 
forcing period. 

" It must not be small! 

" The larger the value, the more accurate the solution and less fuzzy. 

IPP : (Default = 30) 

9 If IPP=1, then T plots every time step. 

" If IPP=SPC, then T is a Poincare return map, it plots one point per 

cycle. 

" For Time and Phase Plots, set IPP-1. 

" For Bifurcation and Lyapunov diagrams, set SPC=IPP. 

BIFD : (Default =200 ) 

" Sets the number of dots to be plotted per horizontal line. 

0 Higher resolution the better. 

BIFV : (Default = 480) 

" Controls the quality of the picture. 

" Space between each horizontal line plotted => higher = closer. 

" Recommends 720 horizontal lines per page, screen has 480 I/pg. 

BIFPI : (Default = 60) 

" For Lyapunov diagrams, BIFPI=10000. 

" For Bifurcation diagrams, BIFPI=10000. 
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PI : (Defa! iIt = 60) 

" For Poincare maps, Phase and Time Plots, set P1=0. 

E. 14 Comparison: 

Example of Henon Map - Chapter 2 

" Henon map is 

0 Default values: p=2.12 , c, =-0.3, x[O]=0.0, v[0] = 2.0 

0 Comparison of Computationally & Manually: 

Dynamics 2 Program Manually 
Dot 

x y x y 

#1 1.52 0 1.52 0 

#2 -0.1904 1.52 -0.1904 1.52 

#3 1.6277 -0.1904 1.6277 -0.1904 

#4 -0.4724 1.6277 -0.4724 1.6277 
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APPENDIX F 

FURTHER WORK 

F. 1 Obtaining the Characteristics of the Nonlinear Softening Spring 

The characteristics of the nonlinear softening spring were obtained for use 
in the analytical and numerical computations. A compression test using a 

Lloyd Testing Machine was carried out on the nonlinear softening spring. 

The experimental curve was then curve fitted by means of the equation 

below (refer to Figure F-1): 

y= -1200000000 x' + 52986 x (F. 1-1) 

Therefore, the stiffnesses of the spring can be extracted as being, 

k2 = 52.986 kN/m ; h, =1.2 x 109 =1.2 GN/m' 

M6 Nonlinear Elastomer Softening Spring 
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Figure F-1: Curve fitting the experimental curve of the 

nonlinear softening spring 
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Appendix F. 2 Further Work 

F. 2 Inertia Coupled System (Physical Coordinates) 

For the Block: 
X 

kx 

h x3 

cl x 

+ vei 

F1(t) 

Kinetic Energy for Block, Tn = mý .i (F. 2-1) 

Potential Energy for Block, U,, _kY+Ih , -4 (F. 2-2) 
24 

For the Pendulum: 

____ x 

kx 

te 

*4 , i 
T Sin 0 

cl k 

; os U 

9 

F2(t) 

Kinetic Energy for Pendulum, 

., 1 
.) 

Ic B- (F. 2-3) T=1 »1, _v +lB Cosa +1 ni, B SinG +2 
222 

Potential Energy for Pendulum, U, _mg (1- cose) (F. 2-4) 
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Kinetic energy for the whole system: 

T=T,, +T, 
z 

_ MI -V -+1»z, +lBCos9 +1»i, 
IBSing 

+ 1GB' 222 2- 2 

P 
_-m x2 + i? i, _2+li 

BCos9+ 9-Cos29+ 
l 

0- 
2244+ nr, l , B, 

J 24 

11111 
_ -m, xý+62+-mzx2+-Inzlz6Cos9+-/? i, 1.8`Cos`B+-ni lý9`Siýr, 9 

2 24 2288 

=1 nn, xý +-m, lý 8 +_M2 z2 +1 In, l _x9Cos9+ 
- 

ni, l'92 
2 24 228 

_ 
ý(112 

+mz)z2 +ým, l20 -In, li9Cos9 (F. 2-5) 

Potential energy for the whole system: 

U= Uh+Up 

=Ik x2 +4h x4 + nnr, g (1- CosO) (F. 2-6) 
2 

L= T-U 

I 
mý +) .x2+l rn, l' B' +1m, l 

.v9 
Cos9 -lk . x' -1h _V g (1- Cos H 

262242 
1 (mý + m, ) .x2+1 nt, l2 82 +1 m, l .i 

Cos9 -lkt2-lh x4 - in, g1+ III, g 
,I 

Cos9 
2-62242 

(F. 2-7) 

The 2 equations of motion for the dynamically coupled system are 

conveniently set up using Lagrange's equations, 

d aL aL (F. 2-8) 

aq; dt aq- 

where 

y, _ .Vy, =0L=T-Ub : block /ý : lýcýliclulllill f: I. ý. C cý. ýr. ti of ! _. rcitutiý, rº 

. 
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For q1 =x aL :_ (nz1 + »i, ý + m'l 0 Cosh 

d aL 
171, l 171,1 - dt aX 

(mj +mmm, )x+ BCos9- O2Sr119 

az, 
_ -kx-hx3 ax 

Therefore, using equation (F. 2-8): 

d aL aL 
dt (iX ax 

ýhý 

z 
m, + m2) x+ m2 le 

Cos9 - 
m2 l8 

Sing +kx+h x' = Q,,; (F. 2-9) 22 

For q2 =0 : aL 12 17, ,l 
ao-3e+- -x cose 2 

d aL m12 ml 17121 
dr a0-3 

B+ 2 core 
.v-2 sifi9e x 

aL 
_ _- 

L 
Sing 9 x-nýýgl Sin6 

ae 22 

Therefore, using Equation (F. 2-8): 

d aL aL 

dt äeäe- Qýýý 
11121 .. ni, lX In, l in, l ni, 

3 -0+- Cosa -2 Sing BX+- Sing 9z+ ý` SinO = Qpj 

171,12 
+lx Cos9 + 

nn2 l Sing = Q, 
i (F. 2-1 0) 

3 

Restating the 2 equations of motion (i. e. equations (F. 2-9) & (F. 2-10)): 

111 - 
ý111ý+111, 

X+ CosO-111, 
iß 

SmO+k. v+I1. C3 _ ýýhý 

111, /e+ 1112 1 
.i CoýsO + nl, gl Silyd 

3 
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Generalised Forces for the System (3 Cases): 

Case 1: Single force applied at the mass m, only 

Thus, Q1, = F, (t) 

QB! =o 

Case 2: Single force applied at the free end of the pendulum only 

(i) Thus, Qxz = F2(t) 

(ii) Thus, Q,, =I, (t)l CosO 

Case 3: Forces applied at the free end of the pendulum and to the 

mass m, 

Because it's a combination of Case 1&2: 
Qx3 = Qxl + Qx2 

=F, (t)+F, (t) 

Q03 = Qg, + Q02 

=F, (t)lCos9 
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Equations of Motions 

Generalised Forces for Block, 

Case 1 (Block only) : Q,, I = F, (r) - c, _v 
Case 2 (Pendulum only) : Q1,2 = F, (r)- c, 
Case 3 (Block + Pendulum) : Q13 

Generalised Forces for Pendulum, 

Case 2 (Block only) 

Case 1 (Pendulum only) 

Case 3 (Block + Pendulum) 

= F(t)+F, (t)-c, v 

Ql, 
i l2 B 

Qýi2 = F, (t)I Cos'9 - c2 l'9 

Q1,3 = F, (t)lCOS 9-czl20 

Case 1: Single force applied at the mass m1 only 
2 

ýni, +fn, ýx+mzlBCosO-mzlB Sing+kx+h. v3 22 

ins+»ý, ýX+n1, l8Cos9+c, 
x+kx+h. x; -ßn- SinG = F, (t 

fei' lý n12 iX zgl o+ Cosa +, Sing 
3ý2=Q, ý I 

17,13 ö+ /112 lz 
CosO + c, 12 9+ i11-1gl Sing =C 

32-2 

N=171 
1 1711+ 1112 

3= 
1 and w, = 

(F. 2-11) 

(F. 2-12) 

(F. 2-13) 

Case 2: Single force applied at the free end of the pendulum only 

11 l, 

lný + nl, ) . 
i= +10 Cos0 

- 
1712 

Sing +kV+ Ii 
. v3 _ ýý 

,, 

)1, Si11H = F, (1 rlli+rll, ý: ýý+ 
r 

_18Ccrs9+ci _i+kx+hx'-1n- 

02 (F. 2-14) 
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171, l M, lx 
+ Cosa + m2gl Sine 

322 

1l2 12 
8+ "1ý "V Cos9 + c212 9+ in2gl Sing = F, (t) l Cosh 32 

1k 
and W, = 

3`ýT 
w, _ 

1n1 + m2 2l 

(F. 2-15) 

Case 3: Forces applied at the free end of the pendulum and to the 

mass m1 
Z 

(m, +m2)x+m2 Cos9-m2 
2 

1e 
Sing+kx = Q1,3 

2 

111 +mz) X+ýýýýý 
ýCosO+cý 

x+kx+hx3_"1210 Si. n0 = F(t)+F, ýtý (F. 2-16) 

m2 12 
+ m2 lX 

CosO + m2gl Sing = Qpz 
322 

, 711 ä+ M21 x Cos9 + c2 l2 6 +'n'gl Sing = F, (t) l Cosh 
322 

. ". w, _ 
k ::: 

m, + m2 
and wz = 

L 

(F. 2-17) 

For large deflections (i. e. nonlinearities), using the Maclaurin series to 

expand the trigonometrical functions prior to nondimensionalisation: 

+...... sine=e-01 +e 
5 

3! 5! 
2d 

Cos8=1- 
2 i+4, 

+ 

By assuming the pendulum rotations to be finite, but not very large, then 

these become: el (F. 2-18) Sirz9 =B-- 6 

e, cose ýI -- 
(F. 2-19) 

uI yv 
v ý` 
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