

Pullinger, Stuart (2010) A system for the analysis of musical data. PhD
thesis.

http://theses.gla.ac.uk/2133/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/2133/

A System for the Analysis of Musical Data

Stuart Pullinger
5th August 2010

This thesis is submitted in fulfilment of the requirements of the
degree of Doctor of Philosophy

Department of Electronics
& Electrical Engineering

University of Glasgow
© Stuart Pullinger, 2010

Abstract

The role of music analysis is to enlighten our understanding of a piece of music.
The role of musical performance analysis is to help us understand how a performer
interprets a piece of music. The current work provides a tool which combines music
analysis with performance analysis. By combining music and performance analysis
in one system new questions can be asked of a piece of music: how is the structure
of a piece reflected in the performance and how can the performance enlighten our
understanding of the piece’s structure?

The current work describes a unified database which can store and present musical
score alongside associated performance data and musical analysis. Using a general
purpose representation language, Performance Mark-up Language (PML), aspects of
performance are recorded and analysed. Data thus acquired from one project is made
available to others. Presentation involves high-quality scores suitably annotated with
the requested information. Such output is easily and directly accessible to musicians,
performance scientists and analysts.

We define a set of data structures and operators which can operate on musical
pitch and musical time, and use them to form the basis of a query language for a
musical database. The database can store musical information (score, gestural data,
etc.). Querying the database results in annotations of the musical score.

The database is capable of storing musical score information and performance
data and cross-referencing them. It is equipped with the necessary primitives to
execute music-analytical queries, and highlight notes identified from the score and
display performance data alongside the score.

Contents

1 Introduction 11
1.1 What Is Music? . 12
1.2 Computers in Music . 13
1.3 Computers in Performance Musicology 17
1.4 Requirements of the System . 18
1.5 Representation . 22

1.5.1 The Logical Domain . 22
1.5.2 The Visual Domain . 23
1.5.3 The Gestural Domain . 23
1.5.4 Analytical Domain . 26
1.5.5 Phonological Domain . 27
1.5.6 Modelling Music . 27
1.5.7 Issues in representation . 30

1.6 Summary . 32
1.7 Outline of this thesis . 33

2 Pitch 36
2.1 The Need for a Pitch Representation 37
2.2 The Requirements of a Pitch Representation 37
2.3 MIDI Representation . 38
2.4 Base-40 . 40

2.4.1 Extending to Base-X for Microtonality 41
2.5 Binomial Representation . 43
2.6 Spiral of Fifths Representation . 44

2.6.1 The 12- and 19-tone Spiral of Fifths Representation 46
2.6.2 Musical Operations . 47
2.6.3 Scales . 50
2.6.4 Enharmonic Equivalence . 51

1

2.6.5 Beyond 19 Divisions of the Octave 54
2.7 Summary . 57

3 Time 58
3.1 The Requirements of a Time Representation 59
3.2 MusicXML Time . 62
3.3 Spoff Time . 63
3.4 Performance Time . 64
3.5 Score-Performance Mapping . 65
3.6 Temporal Logic . 66
3.7 Summary . 67

4 Musical Functions 69
4.1 Basic Musical Types . 70

4.1.1 Pitch . 70
4.1.2 Interval . 71
4.1.3 Time . 72
4.1.4 Notes . 72
4.1.5 Note Groups . 73

4.2 Pitch Functions . 74
4.2.1 Ordinal Operators . 74
4.2.2 Equality . 76
4.2.3 Adding and Subtracting Intervals 77
4.2.4 Pitch Difference . 77
4.2.5 Generate Scale . 78
4.2.6 Scale Membership . 79

4.3 Time Functions . 79
4.3.1 Ordinal Operators . 80
4.3.2 Addition and Subtraction . 81

4.4 Interval Functions . 81
4.4.1 Equality . 81

4.5 Other Functions . 83
4.5.1 Text Representation and Conversion 83

4.6 Summary . 83

5 System Workflow 87
5.1 Overview . 87

2

5.2 Data Gathering . 89
5.2.1 MusicXML . 90
5.2.2 The Piano Bar . 91
5.2.3 Audio, Video and MIDI Recording 92

5.3 Data Processing . 92
5.3.1 Performance Markup Language 93
5.3.2 Score-Performance Matching 94

5.4 Uploading Data . 95
5.5 Database Design . 95

5.5.1 Types . 96
5.5.2 Score Notes . 98
5.5.3 Note Groups . 99
5.5.4 Performance Segments . 99
5.5.5 Timed Data . 100
5.5.6 Metadata Tables . 100
5.5.7 Indexing . 101

5.6 Creating Documents . 102
5.6.1 Populating the Document . 103
5.6.2 Adding Data to the Document 105
5.6.3 Extracting the Data as Lilypond Markup 106

5.7 Displaying Results using Lilypond . 108
5.8 Summary . 110

6 Results 112
6.1 Displaying Performance Data - single values 112

6.1.1 The Query . 113
6.1.2 The Result . 119

6.2 Displaying Performance Data - continuous values 122
6.2.1 The Query . 123
6.2.2 The Result . 126

6.3 Combining Musical Queries and Performance Data 130
6.3.1 The Query . 130
6.3.2 The Result . 137

6.4 Summary . 139

7 Discussion 142
7.1 Represent the score . 143

3

7.2 Represent different tuning systems 145
7.3 Represent the performance . 146
7.4 Combined Analysis . 147
7.5 Accessibility . 151
7.6 Interoperability . 152
7.7 Understandable . 153

7.7.1 Complexity of Query Language 153
7.7.2 Database Design . 153

7.8 Further Work . 156
7.8.1 Database Design . 156
7.8.2 Performance Time . 157
7.8.3 Score Time . 158
7.8.4 MGF . 160
7.8.5 OSF . 161

7.9 Summary . 163

8 Conclusion 164

Appendices 165

A Recording Equipment Inventory 166

B Lilypond Results 168
B.1 Displaying Performance Data - single values 168
B.2 Displaying Performance Data - continuous values 171
B.3 Combining Musical Queries and Performance Data 173

4

List of Tables

2.1 12-tone number-line scheme similar to that used in the MIDI code.
Each note of the 12-tone scale is assigned an integer value from 1 to 12. 39

2.2 21 note-name number-line representation. Each of the 21 note names,
consisting of the 7 naturals, the 7 sharps and the 7 flats, which make
up the familiar set of note names most often encountered in 12-tone
music, are assigned a number from 1 to 21 39

2.3 The Base-40 pitch numbering scheme. Each of the 35 note names
of the 12-tone scale, that is the 7 sharps, 7 flats, 7 double sharps, 7
double flats and 7 naturals, are given a number from 0 to 39 with gaps
inserted between note names separated by whole-tone intervals. The
gaps ensure the representation has the property of interval invariance:
an interval is always represented by the same number of scale steps
no matter what the starting note. 40

2.4 Extract from base-73 pitch representation. This representation ex-
tends the Base-40 system shown previously to include microtonal in-
tervals. 42

2.5 The 12-tone Binomial representation. Each pitch is represented by a
tuple indicating the pitch class and name class of the pitch. Pitches
with the same pitch class but different name class are enharmonically
equivalent. 43

2.6 The 19-tone Binomial representation. Notes are given different values
to the 12-tone binomial system . 44

2.7 The spiral of fifths number line for scales with 1 division per semitone. 47

5

2.8 Interval values in the spiral of fifths pitch representation. Intervals
of the same class are grouped vertically — all types of 2nd are shown
together. It should be clear that each member of an interval class is
7 steps from the next member of that class meaning that a modulo
operation can be used to identify membership of an interval class.
Furthermore, intervals and their inversions are shown on the same
row. It should be clear that a change of sign inverts the interval. . . 48

2.9 The number of chromatic scale steps travelled in the 18ET cycle of
fifths. For example, travelling a fifth from F to C takes 10 chromatic
scale steps. Travelling a fifth from C to G takes 11 chromatic scale
steps. This can be verified by counting notes in the 18ET chromatic
scale shown in Figure 2.2. 53

2.10 The Spiral of Fifths pitch representation for scales with 2 divisions to
the chromatic semitone. The notes of the previous table (Table 2.7)
now lie on the even numbers at twice their previous value. Between
them, on the odd numbers, lie the notes of the interleaved spiral of
fifths. The new spiral of fifths is aligned to preserve the 7-step chro-
matic scale property. 55

A.1 Inventory of equipment used in a typical recording setup 167

6

List of Figures

1.1 Gesture levels . 25

2.1 The 12-tone spiral of fifths — pitches increase by a perfect fifth in the
clockwise direction and decrease by a perfect fifth in the anti-clockwise
direction. Pitches in the same segment are enharmonically equivalent
in the 12-tone equally-tempered scale. 45

2.2 The 18 tone equal-tempered scale as defined in [47]. Tied notes indi-
cate enharmonic equivalents. 53

5.1 Diagram to show the flow of processes in the design of the system.
Scores (in MusicXML format) and performance data (as MIDI data
here) are processed by the matching programs to produce a matched
performance in a PML file. The matched performance contains per-
formance events which point to their corresponding notes in the score.
The data from the PML file is loaded into the database. Queries are
sent to the database in the SQL language. Results from queries are
written to a Lilypond (.ly) file which is processed by the Lilypond
program to produce a graphical score annotated with performance data 89

5.2 A UML diagram showing the main data holding tables of the database
and their relations. The score_notes table holds the score data, the
segments table holds the performance segmentation from the matcher
and the timed_data table holds the sampled data. score_notes are
members of note_groups in a many-to-many relationship. Tables
holding metadata are shown on the right of the diagram and are ex-
plained in more detail in Figure 5.3 97

7

5.3 A UML diagram showing the metadata holding tables on the right and
the main data holding tables on the left. The work table hold infor-
mation about the musical piece. The composer and performer tables
hold information about people. The performance table holds informa-
tion about the performance and the timed_data_metadata table holds
information about timed data. The performer and performance ta-
bles are related by a many-to-many relationship. 101

5.4 The result of processing Program 5.4 with Lilypond. 107

6.1 The resulting annotated score from the edited lilypond code in Pro-
gram 6.2. The first 3 bars of Chopin’s Prelude No. 7 is shown an-
notated with performance data from a performance by Martin Jones.
The top line of bar graphs under each note shows the inter-onset-
interval and the bottom line shows the keypress duration. One can
see a staccato playing style in the left hand where keypresses are short
relative to the inter-onset interval. 122

6.2 An extract from Ash by Graham Hair annotated with the singer’s pitch
contour. This edited extract is the result of the query in Program 6.4
and processing the extracted file shown in Program 6.3. The graphs
have a heavier line for the origin and fainter lines at +/− 20, 40 and 60
cents. Plots are shown centre-aligned, underneath the note to which
they belong. Where the matcher failed to match a note to a segment
of the performance data, a note will have no plot. In these cases, the
typesetter moves surrounding notes closer. 129

6.3 An extract of Bar 19 from Bach’s Two-Part Invention No. 1 (BWV772)
annotated with normalised inter-onset intervals shown in bar graphs
and intervals. Dissonant intervals are shown in red. Whereas previ-
ously the IOI has been displayed as an absolute value, here we show the
IOI as a deviation from a constant tempo. If the entire performance
had been played at a constant tempo, the normalised IOI would give a
constant value. Since we are analysing a real performance, with fluc-
tuations in tempo, the normalised IOIs change. A semiquaver with a
longer line line than a quaver here means that the semiquaver’s nor-
malised IOI was longer than the quaver’s — the semiquaver’s IOI was
longer relative to the expected semiquaver IOI for a constant tempo
than the quaver’s expected IOI. 140

8

7.1 The structure of an MGF file showing the core technologies and pre-
ferred representations. 162

9

I would like to thank my supervisor, Dr Nick Bailey, and Professor Graham Hair
for their invaluable assistance with this thesis. I would also like to acknowledge the
help of Carola Böehm, Ingrid Pearson and Margaret McAllister.

I would also like to thank my colleagues at the Centre for Music Technology
for their help: Jered Bolton, Alasdair Anderson and Bryony Buck. Special thanks
must go to Jennifer MacRitchie for her help in collecting data presented here, Douglas
McGilvray for writing his excellent tools and Tom O’Hara for his technical assistance.

Finally, I could not have completed this thesis without the support of my wife,
Georgina Humphreys.

10

Chapter 1

Introduction

The aim of this work is to create a computer system which is capable of combining
music and performance analysis. We define music analysis here as understanding
a piece of music from it’s written form and performance analysis as understanding
how a performer interprets a piece of music. It is the intention that a system which
is capable of combining music analysis and performance analysis will enable new
questions to be asked about music and its performance. It is hoped that new insights
can be gained into the way in which a performer reflects the structure of a piece in
their performance and how analysis of musical structure can provide insights into
musical performance.

This introduction will describe how others have approached using computers for
musical research; in particular for music analysis and performance analysis. I will use
this work to formulate a set of requirements for a computer system which is capable
of music and performance analysis. The combination of music and it’s performance
in a computer requires the storage and manipulation of data in many different forms:
audio, MIDI, video etc. Therefore, an analysis of the approaches to the representation
of different musical domains follows which shows how others have approached the
problem of music representation. Finally, an outline is given of the remaining thesis.

11

1.1 What Is Music?

Any investigation should begin with a definition of the object which is under inves-
tigation. In the present case, the problem of defining what we mean by music is
deceptively difficult. We may feel that we know what we mean by the term ‘music’
but actually putting that feeling into a concise and accurate definition is problem-
atic. To further complicate matters, any definition of any art form provides the
inspiration for an artist to subvert that very definition. One only has to think of
Marcel Duchamp’s Fountain or John Cage’s 4’33” for examples of artwork whose
very existence challenged the contemporary definition.

In the Bloomsbury Dictionary of Music [103], a definition that is suitably broad
is given, though even this broad definition is qualified with a statement of it’s limi-
tations:

music sound organised in space and time. A more specific definition would
depend on the definer and the period of history, as the concept of what
constitutes music has changed greatly over time. At present the term has
a rather broad scope, esp. in its use by avant-garde classical, jazz and
rock musicians.

So ‘sound organised in space and time’ tells us that music is temporal and exists
in some sort of space. But what is this space? This is not the 3 dimensions of physical
space. This is the space of pitch and harmony.

A simplistic approach would assume that a score is the perfect representation of
this space: a graph with time on the horizontal axis and pitch on the vertical axis.
But a score also includes performance indications such allegro, which are not reflected
by the score and are only realised when the piece is performed. So a score does not
completely capture a piece of music. But neither does a performance. A performer
may interpret a piece in many different ways introducing new notes that were not
in the original score. One can think of countless examples in jazz where wildly
different interpretations exist of the same piece of music. For example, compare the
performances of Honeysuckle Rose by Louis Armstrong and Thelonius Monk.

12

So a score exists as a record of a piece of music but also functions as an aide-
memoir to a performer. The performance exists as the performer’s interpretation of
that piece but can change between performances. Audio and other performance data
act as a record of the performance. All these artifacts are manifestations of some
thing which we could call the musical object. The computer system described in this
thesis is, broadly speaking, intended to aid in the understanding of this musical object.
More specifically, it aims to aid in the understanding of the process of performance by
combining two different manifestations of this musical object: the musical score and
it’s performance. Since a performance involves a performer analysing a piece of music
(either from a printed score or from memory) and then providing an interpretation of
that analysis through performance, any analysis of this process must combine analysis
of the score and of the performance.

The musical score manifested in the current system is a representation of the data
contained in a graphical score. The performance can take the form of many different
recordings of performance data such as MIDI or pitch-tracking data. By combining
these two views it is hoped that new insights into the music and it’s performance can
be gained and, consequently, a new understanding of part of this musical object.

Implicit in the above is the scope of the current work. It aims to aid in the
understanding of music which is written in a score —music which is purely improvised
is outside of this scope. Also outside of this scope is music which is not notated with
Common Music Notation. Although the system could be extended into this area, it
is not attempted in the current work. However, what remains is the vast majority of
music performed in the western art music tradition so this is where the scope of the
current work lies.

1.2 Computers in Music

We have seen that the musical object is manifested in many different ways when we
try to represent it in a computer. Before we establish the requirements for a system
to manipulate this data, it is worth looking at how others have approached employing
computers to help in the understanding of this musical object.

13

An attempt to define the scope of the definition of music as it relates to computers
is Standard Music Description Language (SMDL)[97]. It aims to provide a descrip-
tion of a standard music format to represent music from several domains. It is an
application of HyTime [115] hypermedia structure and Standard Generalised Markup
Language (SGML)[67]. Four domains are associated with any piece of music:

• The Logical Domain is the latent information contained in a piece of music;
the information that is encoded in the score.

• The Visual Domain is the graphical representation of the logical domain.
It describes how the glyphs which represent the notes will be rendered on the
page.

• The Gestural Domain is the data from a performance.

• The Analytical Domain is the theoretical analysis of the piece’s content.

The domains were further expanded by Selfridge-Field in [113] to include:

• The Phonological Domain is the domain of recorded audio artifacts.

Since we are concerned with the application of computers to the understanding of
music, it is useful to survey the ways in which computers have been used in these
domains of music.

In the logical domain, computers have been used for composition. There are a
large number of software packages, both commercial and otherwise, for the compo-
sition of music. Commercial software would include sequencing packages such as
Cubase [5] and Logic [17] whereas free alternatives exist such as Rosegarden [29]
and Muse [19]. Some of the packages support composition through the laying out of
graphical scores so they would also fall into the visual domain.

The previously mentioned software packages are aimed primarily at sequencing
MIDI data so have an event driven interface: music is created by creating note
events and modifiers which operate on them. Another approach used in computer
composition is programmatic: a piece is created as a program which is compiled into
an audio file. This approach is used in CSound [50], SuperCollider [32] and ChucK [3].

14

There are also the Max family of programs that allow for music to be programmed
and manipulated in real-time such as the free Pure Data [104] and the commercial
Max/MSP [14].

In the visual domain there exist several notation packages both commercial and
free. Of the commercial packages the most popular must be Sibelius [30] and Finale
[8]. Of the free software packages, the most popular would be NoteEdit [23] and
Lilypond [15]. Lilypond has a different interface to the graphical point-and-click
interface of the other programs as it uses a text file to represent a score which is
subsequently processed to produce a pdf file.

Other tools are used for the visualisation of analyses such as the commercial Mat-
Lab [18] software and the similar free software Octave [12] combined with the plotting
program GnuPlot [13]. One can trace the use of technology to record musical perfor-
mance data at least as far back as 1938 when Seashore [112] used a kind of modified
player piano to record the durations of performers’ keypresses. This technique is
analogous to using MIDI data today.

One could consider MIDI data as gestural data since its original purpose was
to transport and store piano keyboard performances. However, it is now used as a
complete music representation though it is inadequate for this purpose [94]. It has
been used successfully as a tool for gesture analysis [52].

Studies in gestural analysis such as [122] have used MatLab to process data from
3D tracking systems. Technology has been used to augment instruments with extra
sensors to provide more information on a performer’s gestures: in [57], Young intro-
duced the hyperbow — a violin bow with additional sensors for position, acceleration
and strain. In [38], North Indian instruments were augmented with sensors to capture
performance data.

The data from such augmented instruments has been used in teaching and more
creatively. In [85], Ng et al described the i-Maestro system which uses gesture track-
ing and other performance data in an interactive learning environment. In [42], violin
performance was recorded and analysed to improve a model for violin synthesis. In
[45], Moody described a new instrument which used sensors to control a synthesiser.

In the analysis of music, the HumDrum toolkit [74] and its **kern [6] representa-

15

tion is used frequently. The HumDrum toolkit consists of a number of small programs
which are chained together using the Unix command line. It uses **kern (a textual
representation) to represent the music at each stage and regular expressions to select
portions of the file.

The AMuSE system [76], in use at Goldsmith’s University, implements the Ab-
stract Data Type (ADT) introduced by Wiggins et al in [123] and the CHARM
specification introduced by Harris et al in [70]. Wiggins’ ADT abstracts the set of
classes required to represent music allowing a single interface to be used with mul-
tiple back end representations. The CHARM specification provides a framework for
the manipulation of musical structures. The AMuSE system attempts to implement
both specifications and provide a single interface for computational music analysis to
diverse collections of music using different representations.

Few generalised, programmable systems such as HumDrum or AMuSE exist, how-
ever. More research into computer analysis of music is conducted with ad-hoc or spe-
cialised systems such as the Rameau system for automatic harmonic analysis [100] or
the Schenker system [117] for computer aided Schenkerian analysis [111].

In the phonological domain, there exist many software packages for editing music
for production, composition and mastering. Programs such as the commercial Adobe
Audition [28] and the free Audacity [9] allow for detailed editing of single audio files.
Programs such as Pro-Tools [26] and Ardour [2] allow multitrack music to be edited.

The phonological domain should also cover the analysis of audio - an area where
much research is currently underway. Software such as Sonic Visualiser [31] and the
CLAM [4] toolkit allow detailed analyses of audio for the purpose of pitch-tracking
and chord-naming among other uses.

So there are many fields in which computers are being used to study and manip-
ulate music. Commercial software tends to concentrate on music composition and
production. Academics tend to concentrate on specialised systems tailored to test-
ing a particular idea: be it in the field of music analysis, gestural analysis or audio
analysis. Few systems exist which are capable of accepting a wide range of queries.
Such systems, where they do exist, concentrate on a single domain, e.g. HumDrum
concentrates on the analytical domain, and do not include data from other domains.

16

1.3 Computers in Performance Musicology

At the beginning of this chapter we outlined the various artifacts which are mani-
festations of the musical object: the score and performance data. We have seen in
Section 1.2 that computers have been used in the creation of scores, the performance
of those scores and the recording and production of the performance. But how have
computers been used in the investigation of the process of performance? How has
the understanding of the conversion of a written score into an audible performance
been enlightened by the use of computers?

There are two fields in which computers have been used for the study of musical
performance: in analysing performance data; and in displaying and making available
results of performance analyses.

General purpose software has been used in studies of musical performance. In
[122], Wanderley et al investigated the movement of clarinet players during perfor-
mance. Performers were recorded with a motion tracking system and the resulting
data was analysed in MatLab.

Entire systems have been designed purely for analysing performance data. In [36]
and [35], Camurri et al outlined the EyesWeb system for processing and visualising
musical performance. The system allows patches to be created between processing
blocks (inspired by analogue synthesisers). These patches can process video, sen-
sor data, audio and MIDI to create analyses of expressiveness in music and dance
performance. The system outputs is to audio, MIDI and video.

Technology for recording performance data has been used for improving computer
performances. In [42], researchers used 3D motion tracking systems to record violin
performances. This data was then used to create a model of the performance. Pa-
rameters extracted from the performance were then used to create a more expressive
synthesised computer performance.

Systems have been devised for the visualisation of performance data synchronously
with audio recordings. In [87], Kurth et al describes a system which allows perfor-
mances stored in a database to be searched and played on a remote computer through
a special client program. The client software plays the audio and shows a MIDI piano

17

roll representation of the performance.

Systems have also been devised for the visualisation of performance data alongside
music notation. In [51], Bresin et al introduces the Director Musices system for
synthesising expressive musical performance from MIDI files. The output of the
program is viewable in graphs which have notation shown aligned to a real-time axis.

All of the above systems align performance data to a real-time axis. Even the
Director Musices system which can show notation shows it aligned to a real time
rather than score time resulting in a rather ugly and obscured score. Since the
performance is a manifestation of the score and not the other way around it makes
sense to align performance data to the score. Furthermore, this allows visualisation
of different performances and different data sources alongside the very information
they intend to convey.

In a survey of tools used by members of the Music Information Retrieval com-
munity [33], Lamere listed 67 tools in 7 categories, none of which are able to show
performance data aligned to a score.

So much research is being undertaken in computer systems for score analysis, for
audio analysis and performance data analysis. There are competent systems for all
of these fields but none which are capable of combining data from all three analyses
and none which can display the results aligned with the score.

1.4 Requirements of the System

We have seen from the previous section that current tools lack the ability to make
available musical scores and their performance data for generalised queries and lack
the ability to display results in a way that is suitable for musicological analysis (i.e.,
alongside the score). The need for such a system is clear if we are to enlighten the
process of performance. The current work describes a system that aims to address this
need. Before detailing this system it is appropriate to outline what the requirements
for such a system are.

In [93], Balaban states that a good knowledge representation framework should:

18

‘respect the requirements of the real world problem, should respect the
characteristics of the available information about the problem, and should
take into account user demands, such as convenient media of expression.’

The requirements below aim to satisfy Balaban’s criteria. The requirements aim
to respect the real world problem by selecting appropriate representations for the
data; respect the characteristics of the available information by providing suitable
functions to manipulate the data; and take into account user demands by remaining
interoperable with existing systems where possible and presenting performance data
alongside the score.

1. A representation of the score used for the performance should be
stored without loss of data. The intention here is to provide a record of the
logical information in the score from which the performer performed. Specifying
‘without loss of data’ means that the representation should be chosen which can
store the score maintaining the musical meaning of the contents so that it can
be processed by music analytical queries. The detail should be sufficient that
the score can be reproduced from the data stored. Specifically, MIDI would be
unsuitable here as it would be unable to distinguish between certain notes and
unable to store score annotations such as key signature.

2. The representation should be able to cope with music written for
different tuning systems. As a test for the applicability of the chosen method
of representation and the associated processing functions, it is proposed to test
the system with music written for different tuning systems. If the representation
correctly encodes musical meaning it should be able to cope with music in
different tuning systems. This would also broaden the range of music that
the system could analyse wider than other systems which are hard-coded for
12-tone equal temperament.

3. A recording of the performance should be stored. Clearly to make a
comparison between a musical score and it’s performance, some form of perfor-
mance data must be stored. This may take the form of:

(a) Audio

(b) Video

(c) Other performance data such as MIDI or motion sensing data.

19

4. The system should enable the analysis of the score, the performance
and the score and performance combined. To enable analysis of the
process of performance, the means by which a performer interprets and reflects
the musical structure, score and performance analysis must be combined. To
achieve this:

(a) The system should be able to represent musical structure such
as bars and ties. It is not enough to simply represent those aspects of a
score which describe sound i.e., notes and rests. Those marks on a score
which reflect some of the piece’s structure must also be stored so that they
are available to later analyses.

(b) The system should be able to represent segmentations and anal-
yses of performance data It is not enough to simply store raw perfor-
mance data. The system should allow the storage of the results of analyses
of the performance data.

(c) The performance data must be pre-processed to include score-
performance matches. In order to allow investigation of musical per-
formance, the correspondence between notes in the score and events in the
performance must be established. For the current work, the data will be
pre-processed using the score-performance matching tools created at the
Centre for Music Technology, Glasgow University, by Douglas McGilvray
for his doctoral thesis [58].

(d) The system should allow for the manipulation of data by the
computer. Manipulation may take the form of musical operations such
as:

i. transposition

ii. interval calculation

(e) The system should be capable of running many different and
diverse queries. It should be a generalised, programmable system (like
HumDrum) rather than a specialised solution (like Rameau). This will
allow for the widest possible range of queries into the relationship between
musical structure and performance, including those which have not yet
been thought of.

(f) Able to present results in such a way that the performance data
can be seen alongside or in the context of the score. In order

20

to understand the process of performance, by which a performer analyses
and interprets a score in their performance, we should be able to display
performance data in the context of the score from which it originates.

5. Runs and is accessible from as many platforms and in as many dif-
ferent programming environments as possible. Lamere’s survey [33] of
tools in use by the MIR community shows that no single computer environ-
ment is more popular than others — researchers used Windows, Macintosh
and GNU/Linux operating systems. For the current system to be of use to
the widest possible community of researchers, it should run on all the different
operating systems in use by the community. The previous sections have shown
that there are many different systems in use for the analysis on music and per-
formance. These systems are created in different programming languages and
environments. For example, the Rameau, AMuSE and Lilypond systems all
use LISP or a variant; SonicVisualiser and CLAM tools use C++; CSound and
ChucK have a C-like syntax. The current system should be accessible from as
many of these programming environments as possible for it to be of any use to
the existing research community.

6. Compatible with existing formats — both input and output. The
system will not operate in isolation but will rely on the outputs of other tools
and will provide data for further analysis with other software. As we have seen
in Requirement 5, researchers currently use a diverse range of tools. For the
system to be of most use, it should try to remain interoperable with as many
of these as possible.

7. The interface to the data should be created so that it can be under-
stood by musicians, analysts and programmers alike. The system will
be useful to researchers who may not be computer programmers. Therefore,
the interface to the system should enable non-programmers to access and query
the data.

So we require a system which can store and analyse a score and store and analyse
performance data. To be of most use, it should be able to accept many diverse queries
rather than be tailored to performing a single type of analysis. Since researchers use
a diverse range of software, it should be able to interoperate with as much of this
as possible. Finally, it should be understood by all the different possible users who
might operate the system.

21

1.5 Representation

Since a system that fulfils all the requirements in Section 1.4 will need to represent
data from many different sources, it is useful to review how other researchers have
approached the issue of representation. The five domains of music information used
earlier are used here to structure this investigation.

1.5.1 The Logical Domain

The logical domain is described in [97] as the essential parts of a piece of music that
are common to the other three domains: visual, analytical and gestural. The logical
domain must contain the minimum information so that an automaton can:

• produce a minimally acceptable synthetic performance of a piece

• produce a minimally acceptable printed score

It could be argued that a MIDI representation can fulfil the first requirement. How-
ever, its limited representation of pitch (see Chapter 2) is not capable of producing
a score. A more detailed representation is required.

The field of file interchange has conceived many formats for the description of a
musical score such as the Music Encoding Initiative (MEI) [109], WEDELMUSIC [46]
and MusicXML [68]. MusicXML stands out for its wide adoption by both commercial
and open-source software. This makes it a good candidate to fulfil Requirement 6
— for interoperability with existing systems. In spite of (or perhaps because of)
MusicXML’s use as an interchange format between notation software, it holds little
information about the position of glyphs on a page. Instead it stores each note as
a combination of note name and accidental, with a duration given in fractions of
a crotchet. Clefs, key signatures and time signatures are all implied, as in common
western notation, to apply to all subsequent notes unless cancelled by the appearance
of another. The MusicXML provides enough detail to enable a basic printed score
and a basic synthesis of a piece of music so provides sufficient information for the
logical domain.

22

1.5.2 The Visual Domain

The graphical representation of scores has followed two patterns: representation using
existing graphical file formats and representation using music specific formats. The
automated notation typesetting systems abc [1] and Lilypond [16] take text files as
input and output scores to purely graphical representations. Abc produces Postscript
whilst Lilypond can produce Postscript, Portable Document Format (PDF) and Scal-
able Vector Graphics (SVG). Representing scores in existing graphical formats has
the advantage that the score will be available on more systems (see Requirement 6
in Section 1.4) however the disadvantage is that the conversion is one way. Once the
score is in the graphical format it is no longer possible to turn that data back into
the logical score it represents. Since the SVG format is XML-based, it provides the
opportunity for extension to represent the logical score alongside the graphical score.
Preliminary efforts towards this are examined in Chapter 7.

The second pattern uses music specific formats for the score representation. Per-
haps the oldest such format is the Digital Alternate Representation of Musical Scores
(DARMS) [114]. It indicates exactly how a score should be printed on the page whilst
maintaining the link between the musical meaning of the symbols. It does, however,
imply some structure. For example, a G in the key of G would be given the same
representation as a G in the key of G. The absolute pitch is implied by the presence
of the key signature rather than explicitly stated.

The Notation Interchange File Format (NIFF) [69] was designed as a interchange
format between notation software. Both DARMS and NIFF are considered obsolete
as they are not supported by current notation software.

1.5.3 The Gestural Domain

The study of gesture in music has taken many forms from a more artistic interpre-
tation of the term to a purely mechanistic interpretation. For this reason it is useful
to examine some definitions of the term before engaging in discussion of the research
in this area.

A dictionary definition would provide a basic insight what is meant by the term

23

gesture.

gesture noun (MOVEMENT) a movement of the hands, arms or head, etc. to
express an idea or feeling. verb to use a gesture to express or emphasise
something. [34]

In [49] Bolton further separates the above into 3 key concepts:

• 1. Motion

• 2. Expression

• 3. Idea or emotion

The composer expresses their idea through the score which is interpreted (akin to
adding emotion) by the performer. The composer can add further emphasis through
score markings which the performer can express through changes in tempo and dy-
namics. Finally, the motion of the performer acting on their instrument is what
causes the sound. These motions are further separated into excitation gestures which
cause sound - such as the plucking of a string - and control gestures which modify a
sound - such as the position of a finger on a fretboard.

In [122] a three-tiered system of gesture classification is used after [56]. Effective
gestures (like excitation and control gestures above) are those responsible for actually
producing sound. Accompanist gestures are body movements that are not necessary
to produce sound such as movement of the head and shoulders. Figurative gestures
are audible gestures with no direct correspondence to a physical movement such as
note articulation.

For the practical measurement, storage and analysis of gestural data the classi-
fication may be restructured to describe three levels of complexity as in Figure 1.1.
At the bottom level is the recording of gestural parameters such as movement of the
clarinet bell or the MIDI recording of a keyboard performance. At this, the data
level, raw data is recorded and stored. Basic analyses can be made at this level such
as calculating the duration of notes from MIDI data. The aggregation/segregation
layer collects or separates the gestural data into basic units of gesture. For exam-
ple, in [122] x, y and z coordinates are joined to represent a circular motion of the

24

clarinet bell. Currently this work is usually carried out by a human operator [66]
however, with the correct programming and established taxonomy of gestures, the
aggregation/segregation of gestural data is a good candidate for the computerisation
of performance analysis. At the information level significant gestures are examined
for their information. For example, a circular motion of the clarinet bell may be used
to signify the end of a phrase of music.

Figure 1.1: Gesture levels

The level of detail in the data increases as we descend the levels: The data level
has the finest detail of the gesture. Conversely, the generality of the information
decreases as we descend the levels: the x, y and z coordinates stored at the data
level do not explicitly tell us what the performer was signalling with that gesture.
Alternatively , we can say that there is a broader scope at the information level.

The problem of representation and storage at the data level is addressed in [88]
which describes the Gesture and Motion Signals (GMS) data format based upon the
widely used Interchange File Format (IFF) [95]. The format is a binary file that,
at its lowest level, describes a single track of mono-dimensional sampled data which
is recorded from motion sensors or other gestural capture devices. These tracks are
grouped together into channels according to their related geometric dimensionality.
For example, a channel might consist of several dimensions such as x, y and z co-
ordinates. Units gather several channels that are related structurally. For example,
a hand unit could comprise of the channels for each finger. Finally, a scene is con-
structed of units that are not dynamically linked e.g., the units representing each
musician in a performance.

25

The GMS file format provides a model for the storage of gestural data. How-
ever, to process the data usefully, more work needs to be done at the aggrega-
tion/segregation layer, such as producing a taxonomy of gestures for a particular
instrument.

The Performance Markup Language (PML) [25] (Section 5.3.1) goes some way
towards providing a representation for the Aggregation Layer. It is an XML file
format which allows performance events in external files to be indicated.

1.5.4 Analytical Domain

Representation in the analytical domain is characterised by two main approaches:
text based representations and MIDI data.

The HumDrum [74] toolkit uses the **kern [6] text file format. Music is arranged
in rows and columns. Time increases from left to right and simultaneous events are
placed in the same column. Pitches are represented in text i.e., G is represented as
G# A text representation allows files to be processed with standard Unix command-
line tools which are highly efficient at processing text files. For example, a particular
phrase can be searched for using a regular expression1. The representation, whilst
being easy to read, suffers from a lack of musical meaning. For example, a sensible
assumption for a text representation would be that G is followed by H and then I.
There is nothing inherent in the representation which expresses that a G is followed
by an A.

The Rameau [100] system for automatic harmonic analysis uses the Lilypond [15]
file format which is a textual representation of a score using TEX-like syntax. The
representation is easy to read but suffers from the same problem as the **kern format
in that it does not embody any musical meaning.

The POCO system [72] for analysing, modifying and generating expression in
musical performance used the MIDI format for all its input and output. Whilst the

1Regular expressions are a language for defining text matches. The syntax has become standardised
and is available as an optional library for most programming languages. An excellent reference can
be found in ‘Mastering Regular Expressions’[64]

26

MIDI format does encode some musical meaning (increasing the pitch value increases
the musical pitch) there are numerous other problems already mentioned such as the
inability to distinguish between enharmonically equivalent but functionally distinct
pitches [94].

1.5.5 Phonological Domain

The representation most commonly found in the domain of audio artifacts is sampled,
pulse-code modulated audio usually found inside a Microsoft Wave (or wav) file. The
Sun au and Apple aiff file formats are used little in modern computer music software.

Also of interest in the phonological domain are the various compressed audio
formats. The most prolific of these is MPEG 1 Layer 3 (or mp3), but there are
others such as the Advanced Audio Codec (aac), MPEG4 Audio and Ogg Vorbis.

1.5.6 Modelling Music

In the previous sections we have looked at the different domains of music and the
attempts to represent musical data in that domain. We can take an alternative
approach and investigate the different data modelling approaches that researchers
have used to describe musical data and its relationships.

Most well-known data modelling paradigms have been applied to music research.
In [93], Mira Balaban categorises the different approaches to music representation in
different music processing systems. Firstly, she discounts graphical representations
such as DARMS [114] since a picture of music is not suitable for music processing.
She goes on to identify grammar-based approaches, such as Smoliar [117] or Lerdahl
and Jackendoff’s Generative Theory of Tonal Music (GTTM) [63], which manipulate
strings of sounds or events. Other systems manipulate multi-dimensional arrays of
sounds or events, most often consisting of pitch and time, as described in [65] where
Loy describes the variety of uses to which MIDI data is being put. Another group
of systems adopt an object-oriented approach such as Rodet and Cointes’ FORMES
system [37] and Steven Travis Pope’s MODE system [110]. Finally, Balaban describes
hierarchy-based systems, such as her own Music Structures approach [89] and Smail

27

et al ’s CHARM representation [116] which process structures of musical entities.

The entity relationship model proposed by Chen [102] was extended for music
applications by Rubenstein in [121]. The concepts of ordering and hierarchies were
needed to fully represent aspects of musical structure such as membership of a chord.
Rubenstein outlined a set of musical primitives which are needed to represent Com-
mon Music Notation such as notes, rests, chords and bars and their hierarchical
relationships.

In [75], Lane and Punch presented a relational database approach to storing
and querying music. A simple relational schema was populated from MIDI files.
A regular expression syntax and parser was developed to search the database and
provide matches. The performance of the system was shown to be theoretically sound
and practical for general use.

In [44], Eaglestone et al used an extended relational database to store different
versions of a composers artifacts to support the composition process. The model
was designed using an object-oriented methodology which was then mapped onto the
extended relational database POSTGRES. The model was described in more detail
in [43].

An object-oriented approach was taken by Alvaro et al with the EV meta model in
[79] where a model was proposed for computer-aided composition. The model consists
of three core classes which are extended to specialise for different applications. The
classes are events, parameters and dynamic objects. Events consist of a start position
(in time), length (duration), a list of parameters, a list of events (thereby allowing
recursion) and a position function which modifies the time position. A parameter
consists of a name and value. The value is a dynamic object. The dynamic object
could be a value or a curve describing many values or a sequence or any of a number
of different objects.

When designing a data model there must inevitably be a trade off between the
simplicity of the primitives of the model and their descriptive completeness. The
EV model defines a very simple set of primitives. Any practical realisation of the
model would require a large amount of specialisation to turn the simple primitives
into useful recognisable musical objects.

28

An object-oriented approach was taken by Hirata and Aoyagi in [84] where Ler-
dahl and Jackendoff’s Generative Theory of Tonal Music was implemented in a de-
ductive object-oriented database. They defined a set of objects and a set of primitive
operators describing polyphony and used the GTTM to analyse a set of pieces with
partial success.

In [101], Roland proposes XML as a suitable format for music information retrieval
citing a number of reasons including the openness and advantages in interoperability
which it provides. Roland’s proposal was implemented in [81] where Ganseman,
Scheunders and D’haes used the XQuery XML query language to query a database
of musical scores represented in MusicXML format. The queries shown are generally
statistical or meta-data based. They show one query of rhythmic pattern matching
and admit that more work needs to be done to provide a library of functions which
can perform music analysis.

In [62], Deliège and Pederson propose Music Warehouses. These take the idea
of a data warehouses and apply it to music. A data warehouse represents data as
a multi-dimensional cube. Queries are answered using an approach called Online
Analytical Processing (OLAP) where aggregations are pre-computed along selected
axes to reduce query times. A data warehouse can be implemented in a dedicated
database (called Multidimensional OLAP or MOLAP) or built upon a relational
database (Relational OLAP or ROLAP). Deliège and Penderson expect OLAP to
provide faster query response times for larger databases but outline a number of issues
which must be overcome before the approach can properly be applied to music.

So many different data modelling paradigms have been applied to music data.
No single model has been taken up as a standard and applied consistently for music
data modelling. Rather researchers have used whatever model has been appropriate
to represent music for their specific application. The wide variety of models in use
reflects the difficulty in creating a model which captures all aspects of music data for
all applications. All researchers can hope to do is choose an appropriate model for
their application from the currently available arsenal of tools.

29

1.5.7 Issues in representation

The previous sections have shown that many different representations are in use for
the different domains of music information. These different representations fulfil to
different degrees the requirements set out in Section 1.4.

In the logical domain, MusicXML provides enough detail for representing the
logical information of a score and for reproducing the score. It is therefore a suitable
model for fulfilling Requirement 1 for a score representation. In the visual domain
there exist widely used representations for scores but none which retain the musical
meaning of the score they represent. Using a purely graphical representation might
be sufficient in most cases but the ability to interoperate with other systems would be
improved if the system outputted the musical information along with the graphical
presentation. There is potential for SVG to fulfil this and support Requirement 6 for
interoperability.

In the gestural domain, there are representations for low-level data but few which
can aggregate this data into meaningful gestures. PML provides the capability to
aggregate and segregate this low-level data and so provides a model for fulfilling
Requirement 4b to allow the analysis of performance data.

In the analytical domain there exist several representations in use but none which
encode musical meaning. The requirements to enable analysis and manipulation of
the data (Requirements 4 and 4d) would be expedited by a representation which
encodes the musical meaning. In the phonological domain, using the most popular
representations will ensure the system remains interoperable with other software.

The above makes clear that there are many choices to be made when creating a
music representation. Some combination of current representations would be needed
to fully meet the requirements laid out in Section 1.4. In [73] Honing outlines several
factors required of a music representation scheme which should help in this choice.
He differentiates between types of knowledge representations: declarative versus pro-
cedural. Declarative knowledge is information about something whereas procedural
knowledge is information describing how to do something. Problems arise with pro-
cedural representations because the structure is implicit and often difficult to inspect
at any point in the procedure. As we have seen, most representations are declarative

30

since they allow explicit access to the data.

A further issue in knowledge representation is decomposability: the ability to
reduce the subject to appropriate and meaningful primitives. In the field of music
representation there is broad agreement that the basic primitive of music is the note.
All the representations of symbolic music we have seen share this in common; though
what is actually meant by a note is poorly defined. Do all notes have a fixed or
clearly defined pitch? Do all notes have a duration which can be defined as a power
of 2? From a Western music point of view these questions can seem unimportant.
Nevertheless they do need careful consideration when creating a music representation
system which might represent both early, modern and non-Western music.

Finally the choice between continuous or discrete knowledge representations is
discussed. This is of particular significance to the representation of time. Note
durations in scores are represented as a discrete multiple or fraction of a whole note.
This relational method is dependant on the tempo and the speed of the performer.
Conversely durations from audio files are represented in continuous time: milliseconds
or seconds.

Honing outlined a set of issues with the structure within a music representation:

• Tacit The data has no structure. For example, MIDI data is just a stream of
primitives.

• Implicit The structure can be derived or calculated from the representation.

• Explicit The structure is explicitly described in very few cases.

• Types of structure

– part-of a note can be described as being part of a chord.

– is-a a note is a crotchet.

– N-ary a binary relation can exist between a score symbol and its corre-
sponding MIDI note. A more complex relation could exist between a note,
the key signature and the tuning system for the piece.

• Dedication vs generalisation A dedicated structure defines primitives for
every type of musical construct whereas a generalised structure defines a general
primitive from which others are derived.

31

• Relation to time Objects’ temporal relations to each other can be explicitly
stated. For example, this bar follows that bar, this note overlaps that note.

• Multiple representations Including multiple representations of the musical
data allows greater flexibility.

In his conclusion, Honing states that a representation should be as formal as
possible (not requiring knowledge from outside the formal definition), declarative,
explicit, include multiple representations and relate all objects to time.

1.6 Summary

This chapter began by outlining that the aim of the current work is to create a
computer system capable of both music and performance analysis with the hope that
such a system would be able to enlighten the process of performance. The review of
the use of computers in music found that they were being used in 5 domains: logical,
visual, gestural, analytical and phonological. Few systems exist which can accept
a wide variety of queries — they tend to be more specialised. Where such systems
exist, they tend to concentrate on a single domain.

We looked at computers in performance musicology and found that they were
used in the analysis of performance and in the displaying of results. Whilst there
were competent systems in this area, few combined results from analysis of different
domains and none aligned results with the musical score.

These findings became a set of requirements for a system for the analysis of musical
performance: that it should allow analysis of the score and performance data and it
should provide results aligned with the score. Additionally, such a system should be
capable of representing microtonal scales as a test of the music representation; and
it should be compatible and interoperable with existing software.

Since such a system would need to represent data from many different sources,
a review of the different methods employed in the representation of music data was
given. This reviewed representations under the 5 domains mentioned above. It
also looked specifically at the area of music data modelling where most of the data

32

modelling techniques from outside music have been applied to musical data with no
single model gaining broad acceptance. Rather, researchers choose the model which
is most suited to the application.

The final section looked at the issues in representation and looked at Honing’s
criteria [73] for a music representation.

This chapter has shown that to understand the process of performance, it is
necessary to combine score analysis and performance analysis in a system which
is generalised rather than specialised to a single type of analysis. Such a system
does not yet exist. The design of such a system will need to pay special attention to
representation of musical data if it will successfully combine data from many different
sources.

1.7 Outline of this thesis

The current work aims to provide a system which is capable of enlightening the pro-
cess of performance by providing the ability to analyse scores and performance data
together and present results alongside each other. As shown above, representation is
a critical issue in creating such a system, so the following 3 chapters are dedicated
to describing the representations chosen for the current work. Following these is
a chapter explaining how the system has been implemented to enable generalised
queries. Examples of queries on real data are given followed by a discussion of the
success of the system.

A pitch representation is described in Chapter 2 which is based on the spiral
of fifths. Whilst the idea of using the spiral of fifths to represent pitch has been
suggested before [86, 55], musical transformations using this representation have not
been described. Furthermore, the current work extends the representation to mi-
crotonal2 scales based on the diatonic scale of 7 tones (C, D, E, F, G, A, B). It is
not able to represent all microtonal scales: scales such as the Partch [99] and the
Bohlen-Pierce [90] would require a different representation.

2Microtonal scales use intervals smaller than a semitone

33

A representation of musical time is outlined in Chapter 3. The representation is
based on that used by the MusicXML file format with the addition of explicit start
times for all musical events.

A set of musical functions necessary for the manipulation of music is described in
Chapter 4. These functions provide the basis for computer-aided score analysis and
use types similar to those introduced in Wiggins et al ’s CHARM specification [116].

The entire system architecture is described in Chapter 5 from how data was
gathered and processed to the design of the database system used for storage of the
data, how the system is queried and how presentations of performance data aligned
with score data are created.

The database implements the pitch and time representations and musical func-
tions outlined in the previous chapters. The database system is designed so that
the representation is declarative and well defined. For example, operators (such as
‘+’ and ‘-’) have been redefined so that they ‘do the right thing’ on custom types;
explicit: for example, all notes have an onset time rather than an implied onset time
as found in many other representations; enables multiple representations: the rep-
resentation uses score notes and note groups to provide a flexible method to extend
the representation; related to time: all objects have explicit start times and, where
appropriate, durations or end times.

The system aims to fulfil all of the requirements in Section 1.4 including Re-
quirement 4e (to be queryable): the new musical functions and types added to the
database extend the SQL query language and enable multiple different queries to be
created of the same data; Requirement 5 (to be accessible): the database and associ-
ated software run on all major operating systems and are available free of charge; and
Requirement 6 (to be interoperable): the system accepts scores in the MusicXML for-
mat and outputs results to popular image formats such as PDF (Portable Document
Format), PNG (Portable Network Graphics) and SVG (Scalable Vector Graphics).

A series of queries of real performance data are included in Chapter 6. The queries
show the system coping with music in different tuning systems; calculating different
types of performance data; using the musical functions; and displaying results in
different ways. The queries used here have formed part of the investigations of

34

musical performance in [80, 78, 77].

The system and its implementation is discussed in Chapter 7 and conclusions
made in Chapter 8. The system is also described in [118].

The Appendix lists the Lilypond markup generated by the queries in Chapter 6
(Appendix B) in full.

35

Chapter 2

Pitch

The aim of the current work is to create a system capable of analysing musical
scores and score-aligned performance data and displaying the results of those anal-
yses alongside each other. To achieve this it is necessary to choose an appropriate
representation of the musical data so that it may be analysed in a computer. The
next 3 chapters will be dedicated examining the representation of the musical score
data for this purpose. In particular, this chapter concentrates on the representation
of musical pitch.

In Section 1.4 in the previous chapter, several requirements were given which a
music representation must fulfil. Of particular relevance to the topic of this chapter
are Requirements 1 and 2 which state that the system should represent the logical
data of the score in a musically meaningful way and should be capable of representing
microtonal scales. In the chapter that follows we will first examine some examples of
previous work in computational pitch representations and assess them against these
requirements. We will examine in some detail the pitch representation chosen for
the current work and look at how it can be extended to represent microtonality and
how it can be manipulated to achieve musical transformations necessary for musical
analysis.

Pitch is the primary percept involved in the understanding of music and is one
of the most important factors which distinguish musical sound from other sounds.
It is therefore essential that any musical application be able to adequately represent

36

pitch.

2.1 The Need for a Pitch Representation

The system described here is intended to process and analyse musical scores in a
computer. The system is capable of converting queries expressed in musical terms
into computable problems. To achieve this it is necessary to have an internal pitch
representation which behaves in a musically correct fashion.

One may think that it would be sufficient to store a textual representation of a
pitch: a ‘c’ character for the pitch C. However it does not take long to realise that
a representation such as this would present difficulties: how do we add an interval
to the pitch? We could evaluate the difference in the notes’ alphabetic ordinality
(making sure we have not crossed an octave boundary), and according to whether
the interval is a major or minor we might move a semitone in either direction. We
have to be aware that in the 12-tone system there are no semitones between an E
and an F and that if we are in a different tuning system, this might be different.

All these consistency checks require programmers to program them and computing
power to perform. It is therefore preferable to use a representation which can properly
reflect the tonal structure whilst being easily computable without a large number of
consistency checks.

2.2 The Requirements of a Pitch Representation

The notion of pitch in Western classical music theory has several facets. Pitches can
be ordered from low to high; they can be grouped according to their class e.g., D, D
 and D are all in the same class; notes an octave apart are sometimes considered
equivalent. Thus, for a representation to retain this multitude of meanings it must
incorporate some form of periodicity and allow grouping.

Many text-based representations exist, such as **kern used by the HumDrum

37

music analysis toolkit [74]. Whilst a text description of music allows for easy creation
and editing of music files by humans, it does not fit well with the key aptitude of a
computer for numerical manipulation. Since computers deal mainly in numbers then
any pitch representation would have to be capable of being manipulated numerically.

There is a great deal of modern music written using microtonal intervals. For
example, the works of Ligeti, Ives and Ferneyhough all include compositions in 24
divisions of the octave. Many older works, going back to the 16th and 17th centuries,
expanded the repertoire of pitch names beyond the diatonic seven. For example, the
piece “Ut, re, mi, fa, sol, la.” by the 17th century composer John Bull notates 18
different pitch names and it is highly unlikely that tuning systems of that era would
have pitched the notes now considered enharmonically equivalent as the same.

The microtonal scales mentioned above and those dealt with in this chapter are
from the class of scales based on the diatonic scale: that is the 7 familiar note names
with a varying number of accidentals in addition. We do not attempt to represent
non-diatonic scales such as the Partch scale [99] or the Bohlen-Pierce [90]. Such scales
are outside of the scope of the current work as they would require significant work to
represent. The quantity of work added by extending into diatonic microtonal scales
is significant enough to make the exercise worthwhile.

The work of Easley Blackwood [48] suggests that pitch-representation needs to
make allowances for the functionality of pitches and not just their frequency values,
and that one avenue of approach to the general theory of pitch representation would
be to test pitch-representation systems in the context of microtonal music with more
than 12 notes to the octave. Such a system may also extend to historic tuning
systems with more than 12 pitch signs per octave. Therefore we will require the pitch
representations to be capable of representing music written for microtonal tuning
systems.

2.3 MIDI Representation

An efficient representation of pitch could assign each pitch with an integer. For
example the 12-tone scale could be assigned with numbers from C ← 1 to B ← 11

38

C C/D D D/E E F F/G G G/A A/B B C

1 2 3 4 5 6 7 8 9 10 11 12

Table 2.1: 12-tone number-line scheme similar to that used in the MIDI code. Each
note of the 12-tone scale is assigned an integer value from 1 to 12.

1 2 3 4 5 6 7 8 9 10
C C C D D D E E E F
11 12 13 14 15 16 17 18 19 20 21
F F G G G A A A B B B

Table 2.2: 21 note-name number-line representation. Each of the 21 note names,
consisting of the 7 naturals, the 7 sharps and the 7 flats, which make up the familiar
set of note names most often encountered in 12-tone music, are assigned a number
from 1 to 21

as in Table 2.1.

This is the approach adopted by the MIDI protocol. Though efficient and suc-
cinct it fails to distinguish between notes which are enharmonically equivalent. For
example, both D and C are assigned the same number. Table 2.1 could be expanded
to separate out the note names which are enharmonically equivalent and give them
a unique number assignment.

Suppose the notes of the twelve tone scale were assigned numbers starting at
C ← 1 to B ← 21 as in Table 2.2.

The interval of a major 2nd from C to D is 3 steps where C← 2 and D← 2+3 = 5.
However the same interval from E is 4 steps: E ← 8 and F ← 8 + 4 = 12. This
presents difficulties when computing the interval between two notes. The requirement
for interval invariance was introduced in [71]. It is the property of a representation
which determines that the number of steps of a given class of interval remains the
same no matter what the value of the starting note. So a major 2nd would always
be 3 steps and never anything else. Clearly the 21 name scheme fails to satisfy this
criteria.

39

0 1 2 3 4 5 6 7 8 9
C C C C C - D D D D

10 11 12 13 14 15 16 17 18 19
D - E E E E E F F F

20 21 22 23 24 25 26 27 28 29
F F - G G G G G - A
30 31 32 33 34 35 36 37 38 39
A A A A - B B B B B

Table 2.3: The Base-40 pitch numbering scheme. Each of the 35 note names of the 12-
tone scale, that is the 7 sharps, 7 flats, 7 double sharps, 7 double flats and 7 naturals,
are given a number from 0 to 39 with gaps inserted between note names separated by
whole-tone intervals. The gaps ensure the representation has the property of interval
invariance: an interval is always represented by the same number of scale steps no
matter what the starting note.

2.4 Base-40

The Base-40 system [71] addresses the issues raised above: that of interval invariance.
It represents pitches in such a way that the difference between any two pitches
separated by the same interval is always constant. The system uses a 40 position
number line to equate to the 35 note names produced by the s, s, s, s and s of
the 12-tone scale as in Table 2.3. The scheme introduces gaps of unassigned numbers
to provide the required interval invariance. For example, when comparing Tables
2.2 and 2.3, it can be seen that in the Base-40 system a major 2nd is always 6 steps.
The gaps have created a system where each musical interval will require the same
number of steps no matter what the starting note.

Another useful property of the Base-40 system is octave wrapping. The number
line continues above 39 and below 0. The note number can be extracted from values
outside of the range 1-40 by finding the remainder as in Equation 2.1.

note← Rem(k, 40) (2.1)

where k is the note value and Rem(x, y) is the remainder when x is divided by y and

40

is given by1:

Rem(x, y) = x− y

⌊
x

y

⌋
(2.2)

The octave can be extracted by dividing by 40 as in Equation 2.32. The result
(as an integer) gives the octave relative to the the 40 point number-line.

octave← k

40
(2.3)

2.4.1 Extending to Base-X for Microtonality

The system described above can be extended to represent microtonal scales. We can
start by generalising the creation of the representation thus:

X ← 7 ∗ (2n + 1) + 5 (2.4)

where n is the number of sharps or flats required per semitone and X is the base of
the system. For the Base-40 system, n ← 2 thus X ← 40. This can be extended to
include tones less than a semitone apart:

X ← 7 ∗ (2nz + 1) + 5 (2.5)

where z is the number of divisions per semitone. Setting n ← 2 and z ← 2 we can
produce a system where X ← 73 and we can represent music written in the 24-tone
scale. An extract of this system is shown in Figure 2.4.

There remains a problem with all Base-X representations: that of the gaps or
holes having ambiguous pitch. Of course it is possible to increase the value of n so
that the transposition lands on an unambiguous pitch, however, even then, it remains
theoretically possible to add another transposition which will land on another gap. To

1The result of the calculation given in Equation 2.2 is the same as that returned by the modulo
operator (%) in the Python programming language. However, it is not the same as that returned by
the modulo operator or the remainder function in C and many other programming languages. Care
must be taken when translating the equations given here to program code.

2All equations from here assume integer arithmetic

41

0 1 2 3 4 5 6 7 8 9 10
C C C C C C C C C – –

11 13 14 15 16 17 18 19 20 21 22
D D D D D D D D D – –

23 25 26 27 28 29 30 31 32 33 34
E E E E E E E E E F F
35 37 38 39 40 41 42 43 44 45 46
F F F F F F F – – G G
47 49 50 51 52 53 54 55 56 57 58
G G G G G G G – – A A

Table 2.4: Extract from base-73 pitch representation. This representation extends
the Base-40 system shown previously to include microtonal intervals.

implement any Base-X system, the programmer must either trust that no unfeasible
transposition will ever take place (and risk corrupted data if it does) or check the
integrity of each requested transposition and take steps accordingly.

So the Base-X representation succinctly encodes musical meaning — increasing
a value increases the pitch, modular arithmetic can be used to encode octaves —
but it suffers from a practical problem when used in a system which mixes music in
different tuning systems. No single version of the representation can correctly encode
for all possible combinations of pitches and intervals without introducing ambiguities
which must be checked for.

Furthermore, when manipulating music in a computer it is often necessary to
know which notes are enharmonically equivalent — for example, when transcribing
a MIDI performance. This information is not encoded into the Base 40 system. The
data could be made available through the use of look-up tables for each tuning system
however a more elegant solution is offered by the Binomial system described in the
next section.

42

C D E F G A B
 <11, 0> <1, 1> <3, 2> <4, 3> <6, 4> <8, 5> <10, 6>
 <0, 0> <2, 1> <4, 2> <5, 3> <7, 4> <9, 5> <11, 6>
 <1, 0> <3, 1> <5, 2> <6, 3> <8, 4> <10, 5> <0, 6>

Table 2.5: The 12-tone Binomial representation. Each pitch is represented by a tuple
indicating the pitch class and name class of the pitch. Pitches with the same pitch
class but different name class are enharmonically equivalent.

2.5 Binomial Representation

The Binomial system [53] is capable of representing pitches and intervals and achieves
interval invariance. It also encodes for enharmonic equivalence.

The Binomial system encodes each note as an integer couple of the pitch class
(pc) and name class (nc), denoted as <pc,nc> The pitch class is the sounding pitch
of the note numbered from 0 to 11 for the 12 notes in the 12-tone scale. The name
class is the letter name of the note – one of {C, D, E, F, G, A, B} – and is numbered
from 0 to 6. The most frequently used note couples are given in Table 2.5.

Enharmonic equivalent notes can be found by comparing the pitch class of two
notes. If it is the same then the notes are enharmonically equivalent. Transposition
is as simple as addition or subtraction. For example, to transpose A up a perfect fifth
we add the binomial representation of the interval to the couple which represents A:

< 9, 5 > + < 7, 4 > = < (9 + 7) mod 12, (5 + 4) mod 7 > = < 4, 2 >

A + P5 = = E

This example also demonstrates the use of modular arithmetic to track and wrap
around octaves.

The Binomial system can be extended to represent diatonic scales with more or
fewer divisions of the octave than 12. The number of pitch classes would be extended
while the number of name classes would remain the same. For example, the 19-tone
scale can be represented as in Table 2.6.

Comparing this table with Table 2.5 we see that the binomial couples are different

43

C D E F G A B
 <0, 0> <3, 1> <6, 2> <8, 3> <11, 4> <14, 5> <17, 6>
 <1, 0> <4, 1> <7, 2> <9, 3> <12, 4> <15, 5> <18, 6>
 <2, 0> <5, 1> <8, 2> <10, 3> <13, 4> <16, 5> <0, 6>

Table 2.6: The 19-tone Binomial representation. Notes are given different values to
the 12-tone binomial system

for the same pitch name. For example, D is given the couple <1,1> in the 12-tone
Binomial system and <3,1> in the 19-tone system. The consequence of this is that
there is a different set of pitch couples and interval couples for each choice of octave
division. This complicates making comparisons across musical pieces written using
different divisions of the octave.

So the binomial system can represent pitches and intervals, achieving interval
invariance and representing enharmonic equivalence. It does this at the expense of
requiring a different representation for each number of divisions of the octave. Using
the same representation for pitch and intervals, no matter how many divisions of
the octave were used, would expedite comparisons across pieces written for different
tuning systems, should make the system easier to learn and maintain and therefore
should save programmers’ time.

2.6 Spiral of Fifths Representation

This section outlines a pitch representation which aims to match the capabilities of
the previous representations and surpass them in it’s ability to represent tonal and
microtonal scales using the same representation. It uses the spiral of fifths, familiar
to anyone who has studied music theory, to order pitches. This gives each pitch a
unique identifier yet still allows for calculation of enharmonic equivalence. It achieves
interval invariance and can represent some microtonal scales.

The spiral of fifths is a graphical representation of the process by which diatonic
scales are constructed through repeatedly adding the interval of a fifth and scal-
ing the result to within an octave. The more common form of the cycle or circle
of fifths represents the case where the position of a note coincides with a previous

44

Figure 2.1: The 12-tone spiral of fifths — pitches increase by a perfect fifth in the
clockwise direction and decrease by a perfect fifth in the anti-clockwise direction.
Pitches in the same segment are enharmonically equivalent in the 12-tone equally-
tempered scale.

note after a certain number of repetitions (scaling to within an octave). This exact
correspondence occurs in an equally tempered scale. The repeated note is there-
fore enharmonically equivalent with the previous note at the same position and the
complete circle represents a scale.

Figure 2.1 shows the spiral of fifths with the notes of the 12-tone equally-tempered
scale around the circle. The enharmonic equivalence of notes 12 steps apart is in-
dicated by their presence in the same segment. The relationship can be expressed
mathematically as in Equation 2.6.

(
N × CP5,N

)
mod 1200 = 0 (2.6)

where CP5,N is the interval of a perfect fifth in cents and N is number of divisions in
the octave. A result of zero shows that after N additions of the perfect fifth, we have
got back to where we started. Using a 12-tone equally tempered fifth of 700 cents:

(12× 700) mod 1200 = 8400 mod 1200 = 0

45

Using a 19-tone equally tempered fifth of approximately 694.736842105 cents:

(19× 694.736842105) mod 1200 ≈ 13200 mod 1200 = 0

The spiral of fifths pitch representation described here combines the efficiency of
a number line using integer maths with a representation which is closely related to
the principle underlying the construction of diatonic scales. Similar representations
have featured in the work of Kolosick [86] and Meredith [92]. The representation I
have developed is slightly changed from those used elsewhere and has been extended
to support microtonality. It retains the same value for the same note in scales with
different numbers of divisions of the octave and is capable of representing some
microtonal scales.

The simplest form of the spiral of fifths pitch representation is given by represent-
ing 12- and 19-tone scales. An explanation of this representation and the associated
musical operations is given in the next sub-section. This is actually a simplified
special case of the more generalised system for representing all diatonic tonal and
microtonal scales which is explained in the following sub-section.

2.6.1 The 12- and 19-tone Spiral of Fifths Representation

To construct the number line for the spiral of fifths we start numbering from F ← 0

and step round the spiral incrementing the number by 1 at each note. Thus C ← 1,
G ← 2 . . . and in the opposite direction B ← −1, E ← −2 . . . The complete
number line for the most common note names is given in Table 2.7.

The number line is shown in a table for brevity. The top of the spiral of fifths (F)
is shown in the top centre of the table (F ← 0). Continuing clockwise along the spiral
of fifths is equivalent to travelling down the columns (C ← 1, G ← 2…B ← 6,
F ← 7…). Moving anti-clockwise along the spiral of fifths is equivalent to travelling
up the columns.

46

F -14 -7 0 7 14
C -13 -6 1 8 15
G -12 -5 2 9 16
D -11 -4 3 10 17
A -10 -3 4 11 18
E -9 -2 5 12 19
B -8 -1 6 13 20

Table 2.7: The spiral of fifths number line for scales with 1 division per semitone.

2.6.2 Musical Operations

It is clear from Table 2.7 that the interval of a perfect 5th is obtained by adding 1
to the note value: adding 1 moves one step around the spiral of fifths. Consequently
a perfect 4th can be obtained by subtracting 1 from a note value. A major 2nd is
obtained by adding 2: C← 1, 1 + 2 = 3 = D. The list of the most common intervals
and their values are given in Table 2.8. Thus transposition correlates to addition
(Equation 2.7).

ktransposed ← k + i (2.7)

where k is the note value and i is the interval value.

Interval calculation correlates to subtraction (Equation 2.8).

k1 − k2 ← i (2.8)

where k1 is a higher pitch than k2. This raises the question of how to calculate
whether one pitch is higher than another. It should be clear from Table 2.7 that a
modulo 7 operation on any given pitch will yield its name class (i.e., its row in the
table). We use the remainder function described above:

knc ← Rem(k, 7) (2.9)

where knc is the name class (in the spiral of fifths representation) of the pitch k.

It should also be clear from Table 2.7 that the number of accidentals (i.e., the
column in the table) can be calculated by dividing the pitch by 7:

kaccidental ←
k

7
(2.10)

47

i

unison ±0 ±0 octave
aug. unison +7 -7 dim. octave

dim. 2nd -12 +12 aug. 7th

minor 2nd -5 +5 major 7th

major 2nd +2 -2 minor 7th

aug. 2nd +9 -9 minor 7th

dim. 3rd -10 +10 aug. 6th

minor 3rd -3 +3 major 6th

major 3rd +4 -4 minor 6th

aug. 3rd +11 -11 dim. 6th

dim. 4th -8 +8 aug. 5th

perfect 4th -1 +1 perfect 5th

aug. 4th +6 -6 dim. 5th

Table 2.8: Interval values in the spiral of fifths pitch representation. Intervals of the
same class are grouped vertically — all types of 2nd are shown together. It should
be clear that each member of an interval class is 7 steps from the next member of
that class meaning that a modulo operation can be used to identify membership of
an interval class. Furthermore, intervals and their inversions are shown on the same
row. It should be clear that a change of sign inverts the interval.

48

where kaccidental is the number of accidentals of the pitch k giving positive values for
sharps, negative values for flats and zero for naturals.

We can calculate whether one pitch is higher than another by comparing the pitch
order positions given by the name classes and the number of accidentals. The pitch
order position is the position of a pitch ordered from low to high. In this ordering,
a C ← 0, D ← 1, E ← 2 . . . The value can be retrieved by using the name class in
spiral of fifths representation (knc) as the index into a list of values as in Equation
2.11.

kpop ← {3, 0, 4, 1, 5, 2, 6}[knc] (2.11)

where kpop is the pitch order position of k and is found by using knc as the index
into a list of values. We can now compare the values to find the higher note. The
procedure to achieve this is shown in Algorithm 1.

Algorithm 1 Algorithm to show the procedure to establish the higher note
if k1pop > k2pop then

k1 is greater
else if k1pop < k2pop then

k2 is greater
else if k1pop = k2pop then

if k1accidental > k2accidental then
k1 is greater

else if k1accidental < k2accidental then
k2 is greater

else if k1accidental = k2accidental then
pitches are in unison

end if
end if

This may be best illustrated with a couple of worked examples. If we take k1 ← 9

(G) and k2 ← 10 (D) then, to calculate which is the highest pitch, we first find the
name class. According to Equation 2.9, k1nc ← 2 and k2nc ← 3. We use the name
class in Equation 2.11 to find the pitch order position: k1pop ← 4 and k2pop ← 1.
Using Algorithm 1, we can see that k1pop > k2pop, therefore k1 is the higher pitch.

Following the same procedure for two notes with the same name class: If k1 ← −4

49

(D) and k2 ← 17 (D) then k1nc ← k2nc ← 3 and k1pop ← k2pop ← 1. Following
Algorithm 1, we see that we will need to calculate the number of accidentals for each
pitch. So, using Equation 2.10, k1accidental ← −1 and k2accidental ← 2. Therefore
k1accidental < k2accidental and k2 is the higher pitch.

Interval inversion is achieved by changing the sign of the interval value as in
Equation 2.12.

iinverted ← −(i) (2.12)

The inversion of a minor 3rd is a major 6th

(−3)inverted ← −(−3) = +3 (2.13)

Calculating The Octave

It can be seen from Table 2.8 that the interval of the octave and unison both result in
the an unchanged value of k. This presents some difficulty in distinguishing between
notes which are in unison and notes which are 1 or more octaves apart.

By convention pitches in the name class range C to B are in the same octave.
Since the spiral of fifths does not order notes in strict pitch order, the note value k

must be transformed to its pitch order position kpop as above.

Then when raising by interval i:

k1pop < k2pop ⇒ octave+ 1 (2.14)

When lowering by interval i:

k1pop > k2pop ⇒ octave− 1 (2.15)

2.6.3 Scales

Scales can be generated from the sequence of intervals which make up the scale.
For example, the major scale is generated from the sequence {major 2nd, major 2nd,

50

minor 2nd, major 2nd, major 2nd, major 2nd, minor 2nd}. This equates to the interval
sequence {+2, +2, -5, +2, +2, +2, -5}. To generate the scale: the starting note is
chosen, the first interval is added to it and each additional interval is added to the
previous accumulated result. This can be generalised to Equation 2.163.

km ← ktonic +
m−1

∑
n←0

I(n) (2.16)

where km is the mth note in the scale, ktonic is the tonic of the scale and I is the
sequence of intervals. Note that this equation does not describe the melodic minor
scale which would be slightly more complicated.

The chromatic series for a given number of divisions of the octave can be generated
by repeatedly raising the tonic by an augmented unison. For example, C ← 1,
C ← 1 + 7 = 8, C ← 8 + 7 = 15 . . . This quickly brings up the issue of calculating
the enharmonic equivalent.

2.6.4 Enharmonic Equivalence

Inspecting Table 2.7 and following the 12-tone chromatic scale we can see that en-
harmonically equivalent notes are 12 steps apart. For example, C ← 8 and its
enharmonic equivalent in the 12-tone scale D ← 8 − 12 = −4. A similar rela-
tion can be found for the 19-tone scale: A ← 18 and its enharmonic equivalent
B ← 18− 19 = −1, 19 steps apart. It is tempting to assume from this relation that
in any scale of N divisions of the octave, the enharmonic equivalent of a note can
be calculated as kequivalent ← k± N. Unfortunately the generalisation is not quite so
simple.

To find the enharmonic equivalent of a note in terms of the next note name above
it, it is raised by a major 2nd and then reduced by the number of chromatic scale
steps in a major 2nd. For example to find the enharmonic equivalent of E ← 12

in the 12-tone scale, it is raised by a major 2nd (12 + 2 = 14) and reduced by the
number of chromatic scale steps in a major 2nd (14− (2× 7) = 14− 14 = 0) which
results in F . This relation is expressed in Equation 2.17:

kenharmonic ← k± (iM2 − 7x) (2.17)
3Indices into arrays are 0-based

51

where iM2 is the interval of a major 2nd and x is the number of chromatic scale steps
in a major 2nd. Finding the enharmonic equivalent in terms of the name class above
the current note equates to addition in the above equation and subtraction for the
name class below.

The relation expressed in Equation 2.17 (k± iM2 − 7x) resolves to k∓ 12 for the
12-tone scale and to k∓ 19 for the 19-tone scale. (Where we previously used +, we
now use − and where we previously used − we now use +). This allows the use of
the Rem() function or modular arithmetic to keep the result of any transformation
within the gamut of the chromatic scale note names (i.e., excluding s and s).

The expression in Equation 2.17 can be used with all scales generated from a
single size of fifth. In the range from 12 to 19 notes per octave this includes 12, 17
and 19 notes per octave. The consequence of constructing a scale from a single size
of fifth is that there is a single size for each interval of the scale: there are an equal
number of chromatic scale steps for each interval no matter which note is the starting
note. For example, Equation 2.18 relates the number of steps in an octave to the
diatonic scale.

N ← x + x + y + x + x + x + y = 5x + 2y (2.18)

where N is the number of notes in an octave, x is the number of chromatic scale
steps in a major 2nd and y is the number of chromatic scale steps in a minor 2nd.

Equation 2.18 shows how the octave is generated from the diatonic scale and how
the diatonic scale is generated from the major and minor 2nds. Substituting 2 and 1
for x and y respectively evaluates to N ← 12, 3 and 1 gives N ← 17 and 3 and 2
gives N ← 19.

Other scales in the range 12–19 notes per octave require an extended version of
Equation 2.17 to find the enharmonic equivalent. As an example, let us use the 18
note equal-tempered (18ET) scale shown in Figure 2.2.

The major 2nd from D to E takes 3 chromatic scale steps whereas the major 2nd

from B to C takes 2 chromatic scale steps. Thus Equation 2.17 must be modified to
find the enharmonic equivalent in 18ET, since there is no longer a single value of x
for all ks.

52

��� ����� ���� �� � �� �� �

� �� � �� � �� � ��� �� ��� ��

�� � �� �� �� �� ���� �
Figure 2.2: The 18 tone equal-tempered scale as defined in [47]. Tied notes indicate
enharmonic equivalents.

Name Class F C G D A E B
No. of steps 10 11 10 11 10 11 10

Table 2.9: The number of chromatic scale steps travelled in the 18ET cycle of fifths.
For example, travelling a fifth from F to C takes 10 chromatic scale steps. Travelling
a fifth from C to G takes 11 chromatic scale steps. This can be verified by counting
notes in the 18ET chromatic scale shown in Figure 2.2.

The 18ET scale is constructed from 2 sizes of fifth. Counting the number of
chromatic scale steps travelled in the 18ET cycle of fifths results in a repeating
sequence of 7 intervals as in Table 2.9. Using the name class of the note (calculated
from Rem(k, 7)) as an index into this array, the modified form of Equation 2.17 is:

kenharmonic ← k±
(
iM2 − 7

(
Xscale

[
Rem(k, 7)

]
+Xscale

[
Rem(k± 1, 7)

]
−N

))
(2.19)

where Xscale is the sequence of chromatic scale steps in the cycle of fifths of scale
such as the one given in Table 2.9. As in Equation 2.17, addition is used to find
the enharmonic equivalent in terms of the name class above and subtraction for the
name class below.

So we have seen how to construct the spiral of fifths and use it to create unique

53

identifiers for each pitch. We have seen how to add and subtract intervals from
pitches, how to calculate octaves, how to construct scales and find the enharmonic
equivalent. This pitch representation is interval invariant like the Base-X and Bino-
mial systems. Unlike the Base-X system, it has no ‘holes’ of ambiguous pitch and
unlike the binomial system, it uses the same representation for pitches and intervals
in 12-tone scales and 19-tone scales. But what about microtonal scales with more
divisions of the octave? What we have seen so far is the special case. To represent
all diatonic scales, including microtonal scales, we need to make slight adjustments
to the calculations presented so far.

2.6.5 Beyond 19 Divisions of the Octave

The scales mentioned so far take their note names from the gamut of names including
seven s, seven s and seven s. The maximum number of notes in a diatonic scale
that can be represented by these note names is 19: 7× 3 = 21 less 2 enharmonic
equivalents. To represent scales with more divisions of the octave, we must introduce
accidentals which lie between the accidentals already mentioned. The new accidentals
form a separate spirals of fifths which can be interleaved with the existing spiral of
fifths representation. For example, we can add 1 accidental between each semitone
and give them the labels: semisharp()4, sequisharp ()5, semiflat () and sesquiflat
(). We re-number the notes in the table as in Table 2.10.

The s, s, s, s, and s of the previous table (Table 2.7) now lie on the even
numbers - F ← 0, C = 2, G = 4 etc. In between them lie the additional accidentals:
s, s, s and s. The additional notes are aligned to preserve the 7-step chromatic
series property: adding or subtracting 7 steps moves around the chromatic scale. For
example, starting at F = 0, F + 7→ F, F + 7→ F, F + 7→ F.

The other calculations mentioned so far will no longer work with this extended
representation. However, they can be retained with little modification. We introduce
an additional parameter z which stores the number of chromatic steps in a semitone.
In Table 2.10, for example, z = 2.

4Or half sharp.
5Or sharp and a half.

54

-// / / / / // / /-
F -28 -14 0 14 28
A -27 -13 1 15 29
C -26 -12 2 16 30
E -25 -11 3 17 31
G -24 -10 4 18 32
B -23 -9 5 19 33
D -22 -8 6 20 34
F -21 -7 7 21 35
A -20 -6 8 22 36
C -19 -5 9 23 37
E -18 -4 10 24 38
G -17 -3 11 25 39
B -16 -2 12 26 40
D -15 -1 13 27 41

Table 2.10: The Spiral of Fifths pitch representation for scales with 2 divisions to the
chromatic semitone. The notes of the previous table (Table 2.7) now lie on the even
numbers at twice their previous value. Between them, on the odd numbers, lie the
notes of the interleaved spiral of fifths. The new spiral of fifths is aligned to preserve
the 7-step chromatic scale property.

For transposition:
ktransposed = k + iz (2.20)

To calculate whether the octave boundary has been crossed we first convert the
value of k to one in the range {0...6} representing the cycle of fifths’ name classes
i.e., {F, C,...,B}. (Previously we used Rem(k, 7) to achieve this.)

So:

knc =
Rem

(
k + 7

(
Rem(k, z)

)
, 7z

)
z

(2.21)

where knc is the name class of k in the spiral of fifths order {F,C,...,B} and z > 1.

55

and kaccidental is calculated thus:

kaccidental =
k− zknc

7
(2.22)

where kaccidental now represents the number of accidentals above the natural in the
extended representation. Where previously if k = 8 (C), kaccidental = 1 i.e., 1 ac-
cidental over the natural, if z = 2 and k = 16 (C) then kaccidental = 2 that is: a
and a above the natural. The calculation of the pitch order and the method of
comparison of two pitches remains unchanged.

Scales can be generated using the same arrays of intervals as used previously:

km = ktonic + z
m−1

∑
n=0

I [n] (2.23)

The calculation of enharmonic equivalence remains largely unchanged from Equations
2.17 and 2.19. Only the interval of an major 2nd is replaced with ziM2.

kenharmonic = k± (ziM2 − 7x) (2.24)

and

kenharmonic = k±
(
ziM2 − 7

(
Xscale

[
Rem(k, 7)

]
+Xscale

[
Rem(k± 1, 7)

]
−N

))
(2.25)

So this extended spiral of fifths representation can be used to represent all diatonic
scales whether tonal or microtonal. Pitches are represented by a fraction consisting
of the spiral of fifths position (k) as the numerator and the number of divisions per
semitone (z) as the denominator. For example, C is expressed as either 1

1 with 1
division of the semitone (as in Table 2.7) or 2

2 with 2 divisions of the semitone (as
in Table 2.10). Similarly, intervals can be represented as a fraction consisting of the
interval value i as a numerator and the number of divisions of the semitone z as the
denominator. The musical operations can be performed taking care to replace the z

value with the number of divisions per semitone.

56

2.7 Summary

In this chapter we aimed to investigate pitch representations which could fulfil 2 of
the requirements given in the previous chapter: to represent music in a musically
meaningful way and to enable representation of microtonal scales. We looked at
the MIDI representation and found that, whilst it correctly encodes increasing pitch,
it could not distinguish between enharmonically but functionally distinct pitches.
We extended the representation to provide distinct pitch names but found it was
problematic as it did not have the property of interval invariance.

We went on to look at two representations which did achieve interval invariance:
Base-X and the Binomial representation. The Base-X representation suffered from
‘holes’ of ambiguous pitch and the binomial representation had a different version
for each number of divisions of the octave.

A new extended spiral of fifths representation was introduced which achieved
interval invariance, had distinct names for pitches without holes of ambiguous pitch
and used the same representation for all diatonic tonal and microtonal scales. A set of
musical operations were outlined which can form the basis of more complex musical
score analyses.

This pitch representation is the first part of achieving the aim of the current sys-
tem which is to create a system which enables analysis of both score and performance
data.

57

Chapter 3

Time

This thesis aims to create a system which is capable of storing music and performance
in a computer in a form which makes it available to multiple queries. In the intro-
duction, we saw that it is necessary to use an appropriate representation for music
in a computer if the system is going to be used for diverse queries. In the previous
chapter we looked at the difficulties in representing pitch. In this chapter we will
look at the issue of representing time.

Since the system described here must represent both score and performance data,
the current work uses two different time lines: the time line of a score (score time)
and the time line of a performance (real time). The way in which one time line is
mapped onto the other is part of the interpretation which constitutes a musical per-
formance. For analysis to take place the different representations must be combined
along this common axis. There must be mappings between the representations to
allow significant data from one source to be located in another.

Musical time also has its own logic: events can occur before, during or after other
events; events can occur simultaneously or sequentially. This temporal logic creates
relations between events and provides some structure for the music. These relations
form the creative palette for rhythm and tempo.

It is beyond the scope of the current work to provide a full treatment of the
fields of temporal logic or rhythmic analysis. Instead, this work aims to provide the
necessary primitives and basic operators which will enable others to investigate these

58

areas more thoroughly.

This chapter describes a representation for musical score time, performance time
and the mapping between them. In the next chapter we will see some basic operations
on this time representation. In the Results chapter (Chapter 6) we will see these
operators used in a query. In the Discussion (Chapter 7 we will discuss how these
operators can be combined to create the operators of temporal logic.

3.1 The Requirements of a Time Representation

In Section 1.4, we outlined the requirements for the current system. These included
the requirements for representing the score and representing the performance and
representing both in a way that will enable analysis. The previous chapter addressed
the requirements for representing pitch and this chapter addresses the requirements
for representing time.

In [73] some of the main difficulties in representing time is examined:

• Tacit vs implicit vs explicit In a time tacit representation there is no ref-
erence to time; there is only the present. An example of this would be the
messages which are sent down a MIDI cable - they must be acted upon im-
mediately to preserve the correct timing of the performance. Implicit time is
implied by the order in which the notes appear whereas explicit time states the
position along a time axis.

• Points vs intervals Primitives that are represented as points exist as single
events on the time-line such as the note-on and note-off messages of the MIDI
protocol. Interval primitives have a duration such as ‘minim’, ‘crotchet’ etc.

• Absolute vs relative The time-base can be represented as either absolute
values such as 300ms or as relative values such as 1

8th of a whole note.

• Discrete vs continuous Discrete time is the representation of events quan-
tised to a time grid whereas continuous time represents events as a function of
a continuous variable.

• Explicit time structuring Events in a music representation can be structured

59

by grouping all events for a single voice or instrument into one stream, with
the streams for other voices following after (horizontal time-slicing). The alter-
native is to group all events which occur at the same time together, regardless
of the voice (vertical time-slicing).

• Declarative vs Procedural Structures can be merely stated as existing in the
representation (declarative) or precise instructions for creating them included.
For example, a trill could be declared or could be described at the level of the
individual note.

Many representations use an implicit measure of time. For the purpose of storage
and interchange (e.g., MusicXML), where the music will only parsed over once, it is
reasonable to use an implicit representation of time since the application only has to
maintain a single counter of the current location. However, for score analysis, where
the music will be parsed over several times, an explicit measure of time is preferable
(such as in **kern). This allows locations in the music to be found without having
to parse the data from the beginning each time.

Point primitives tend to occur in performance representations (such as GDIF
[66], GMS [88] and MIDI) where raw sampled data or event-based representations
are used. There is no reason why interval primitives cannot occur in performance
representations (as they do in PML) but they would tend to occur at the level above
raw data — that is the aggregation/segregation layer in Figure 1.1 — where parts of
the data are aggregated into gestures. There are few representations which do this.

Interval primitives are used more than point primitives in score representations
where the most basic primitive is often the note comprised of a pitch and a duration.
This underlines the unsuitability of MIDI as a score representation as its event-based
representation is at odds with the concept of a note as a single entity.

The absolute versus relative time distinction occurs again mainly between per-
formance representations (absolute or real time) and score representations (relative
time). Representing a score in relative time allows for the separation of note du-
rations from the overall tempo of the piece. Combining the note durations with a
tempo in beats per minute allows an approximate real time duration for each note to
be calculated. This will be altered greatly by the performer during their performance.

60

The distinction between discrete time and continuous time is usually, but not
always, one of the distinction between score representations and performance repre-
sentations. Score representations tend to use discrete values for durations and loca-
tions to match those used in Common Music Notation. Performance representations
tend to use continuous time as this best reflects the real time axis of performance.
Exceptions do exist such as MIDI which is a performance representation but uses
a discrete time representation of 96 clicks per note. Computer music composition
programs may use a real time axis for describing musical time.

The inherent 1-dimensionality of a data stream leads most representations to
choosing either horizontal time structure or a vertical time structure i.e., either each
channel or voice is encoded time-ordered, one after the other or each time instant is
encoded with each channel or voice’s data grouped together. Regular sampled data
can get around this limitation by structuring the data in a vertical time structure
and ensuring that each datum takes the same amount of space. Thus a regular offset
will reveal each datum in a particular channel. This interlaced approach is used in
RIFF (wav) audio and GMS files.

For non-sampled data such as a musical score, where data are not organised at
regular intervals, such an approach will not work. The solution has been to cre-
ate two representations: one horizontally sliced and one vertically sliced. Standard
MIDI Files use two formats — one horizontally time-sliced (Format 1) and one ver-
tically time-sliced (Format 0). MusicXML defines 2 formats — score-partwise for
horizontal slicing and score-timewise for vertical slicing.

Musical score analysis requires that the data be available in both forms — horizon-
tal for melodic analysis and vertical for harmonic analysis. Analysis data structures
such as the **kern format and the doubly-linked list structure described in [41] allow
for score data to be sliced both ways.

The distinction between declarative and procedural representations depends on
the purpose of the representation. Storage and interchange formats tend to be declar-
ative: they use primitives from a predefined set. Programmed music tends to be
procedural. An interesting hybrid is found in the Lilypond typesetting system. For
most music, the required set of primitives is already defined and is made available
through the TEX-like markup. However, a file can include scheme code alongside

61

the markup to draw extra symbols or manipulate the score. This greatly increases
the flexibility of the system for representing non-standard notation. It does limit the
usefulness of the representation for other purposes as one cannot know the musical
meaning of a piece of scheme code to draw lines and dots on a page.

So there are differing requirements for representing time depending on whether it
is score time or performance time being represented and what the goal of the repre-
sentation is. A score representation which will be used for analysis should be explicit
in its representation of time to allow easy movement through the data; the time prim-
itives should be relative, discrete intervals and declarative to closely match those in
the score; and time should be structured so that it can be accessed horizontally and
vertically.

At its lowest level, performance data will consist of points (often samples) placed
on an absolute, continuous time scale. At this low level of regularly sampled data,
we have seen that it is relatively simple to change between horizontal and vertical
time structuring. This is the data level of the 3 gesture levels in Figure 1.1. At
the higher level of aggregation/segregation, the data becomes intervallic rather than
point-based. At the highest level, the information level, time may require a proce-
dural representation rather than the declarative approach used so far as many data
aggregations are composed into a meaningful gesture. Since the current work only
deals with performance data at the 2 lower levels, we will not treat the representation
of time at the information level here.

3.2 MusicXML Time

In Chapter 1, we saw the various approaches to representing music and decided that
MusicXML provided sufficient information for representing the logical domain of
music and that its wide adoption as an interchange format made it a good candidate
for a model for representing scores. The previous section has outlined some of the
requirements for a representation of time in scores and performances. So how is time
represented in MusicXML and can we adopt this model unchanged for the current
application? Like many representations, MusicXML chooses to imply time.

62

In MusicXML [68] the onset location of a note in a score is implied by the sum of
the preceding notes in the score. This alone would make it necessary to parse from
the beginning of a file to find any location in it. However the situation is further
complicated by the inclusion of the <backup> tag which can occur at any point in
a file and operates as a ‘rewind’-like function to move the following notes’ locations
back in the file by a given number of steps. This requires that the entire file must
be parsed, and the ordering of the notes rebuilt, before the data held at any location
in the file can be known. It should be noted that the MusicXML file format was
not created for the purpose of performance analysis but for the interchange of music
notation.

MusicXML durations are encoded as a pair of numbers representing the numerator
(duration) and denominator (divisions) of a fraction of a crotchet beat. The
denominator is given once at the beginning of the file so that only the numerator is
included for each note’s duration.

MusicXML separates the note’s performed duration from the glyph used to repre-
sent it on the printed page. For example, a dotted crotchet would have a duration
of 3

2 to indicate its performed duration and both a quarter type and a dot tag to
indicate a dotted-quarter note (dotted crotchet) should be used in the printed score.

So MusicXML time is relative, discrete and declarative which matches the score
notation it is representing. Times are implicit rather than explicit and time is struc-
tured either horizontally or vertically. In order to satisfy the requirements in Section
3.1 above, time would need to be made explicit and would need to enable easier
movement between horizontal and vertical structuring.

3.3 Spoff Time

The representation of score time used in the current work extends that of MusicXML
to make timing explicit. It uses the same fraction-of-a-crotchet time-base used by
MusicXML. From here it will be referred to as Spoff time — after the spiral-of-fifths
pitch representation outlined in the previous chapter.

63

We define a Spoff time instant as a fraction of a crotchet and use the same
representation for note onsets and durations. Every note is given a duration and,
unlike MusicXML, an onset time relative to the beginning of the piece. This makes
the time representation explicit rather than implicit using interval primitives rather
than points.

Bar (or measure) numbers are deliberately ignored when representing score time in
Spoff time. Bar numbers are a useful method of defining location in musical scores.
One could devise a system which defined a location as the bar number combined
with the number of beats from the start of the bar. However such a system presents
problems. Music that has a changing time signature or music with two different,
simultaneous time signatures (polychronous music) would be difficult to traverse
using a representation which relied on bar numbers for note locations. For example,
a piece written with one voice in 3

4 and another in 4
4 would, after 12 beats, be in bars

4 and 3 respectively. Thus a timing system which uses bar numbers for locations
increases complexity over a beat-based location system.

We have addressed the need for explicit timing here by creating Spoff time as
an extension of that used in MusicXML. We have not addressed the need for easy
movement between horizontal and vertical time structuring. This will be addressed
in Chapter 5 where the facility to alternate between horizontal and vertical time
structuring is provided ‘for free’ by the database query language.

3.4 Performance Time

In Chapter 1, we formulated the requirement that the current system should store
performance data and make it available to many diverse queries. Additionally, the
requirements in Section 3.1 above state that performance time should be represented
on an absolute and continuous time scale featuring point-based primitives for low-
level data and intervallic primitives for aggregations. This section will look at how
these requirements are addressed in the current system.

Since all performances have the same time base in common, performances are
represented in real time, that is, seconds. This allows direct comparison between

64

performance data that may have different sources or have been recorded at different
sample rates.

Sampled data is positioned on a real time axis with each sample given a time as a
decimal fraction of a second. Segmented performance data is given a start time and
duration in the same format. This reflects the intervallic structure of performance
segments.

In this way we have used an absolute and continuous time line for all performance
data without regard to sample rates which might be different for different sources
of performance data. By using the same time base for all sampled data, we make it
easier to query data from different sources.

3.5 Score-Performance Mapping

The current system aims to enable the analysis of musical performance by making
both score and performance available for querying. It aims to allow new questions to
be asked of music by allowing analysis of music and performance data in the same
place rather than in separate systems. For this analysis to take place, it is not enough
to represent the two data streams isolated, a mapping between data in one domain
and the other must be created.

Dannenberg has been successful in this field, presenting a monophonic matcher
[108] and then a polyphonic matcher [82] using dynamic programming1. Later, in
1993, Large [60] used dynamic programming for score-performance matching to in-
vestigate errors in piano performances. Hoshishiba [120] added post-processing to the
dynamic programming technique to improve the results.

The current work uses tools developed by Douglas McGilvray at the University
of Glasgow to perform score-performance matching. The software (described in [58])
uses an algorithm based on Dannenberg [108]. The algorithm uses dynamic pro-
gramming to find the optimal correspondence between two sequences. The algorithm

1dynamic programming aims to solve a complex problem by breaking the problem into a series of
small steps which can be solved recursively.

65

includes novel extensions to allow matching of polyphonic music.

3.6 Temporal Logic

In this chapter, so far, we have dealt with the representation of musical time prim-
itives and the correspondence between two time lines of these primitives. Within
these time lines there are relationships between the musical time primitives. We use
phrases such as ’during’ or ’after’ to describe the relationship between notes. This is
known as the temporal logic.

An excellent introduction to the issues surrounding temporal logic and music
can be found in Alan Marsden’s “Representing Musical Time: A Temporal-Logic
Approach” [40]. In [39] Marsden created a system for investigating the processes
in music theory. The system was programmed in the Prolog logic programming
language and was able to describe music using a relatively simple set of operators such
as precedes(X, Y) (asserting that note X occurs before note Y) and duration(X,
D) (asserting the duration of X).

In [91], Bergeron and Conklin described a set of logical operations which encode
some of the logic of musical time. The temporal relations described were: notes start
together, note starts during another note and notes end together. The work included
relations to describe vertical and horizontal (melodic) intervals as well. This set
of relations was used to analyse 185 Bach chorale harmonisations for suspensions,
parallel fifths and melodic patterns at cadences.

Of particular relevance to the present application is the use of temporal logic
in databases. In Chapter 5 we will outline the use of databases for the current
application. However it is worth looking at the use of temporal logic in databases
here.

Richard T. Snodgrass has written extensively on the subject of temporal databases
[106] having led the creation of Temporal SQL (TSQL2) [107], the temporal extension
to the SQL database query language. A temporal database has been used for a
system which facilitated collaborative writing. In [61], a temporal database was used

66

to implement a temporal data model which modelled the lifetime of a document as
it was edited by different people.

In [83], Aberer and Klas outlined temporal extensions to an object-oriented database
for representing multimedia such as video and audio. They described operations such
as timed events, sequential compositions (where events occur one after another) and
parallel compositions (where events occur at the same time). By combining these
operations, they were able to model temporal multimedia compositions.

In this section we have seen some of the operations needed to realise the temporal
logic of music. The use of temporal logic in music and multimedia applications has
been shown. The use of temporal databases in this field seems to be limited. The
main focus of research in temporal databases seems to be in creating more reliable
and robust database systems and the technology does not seem to have been applied
to music representation.

3.7 Summary

The current system aims to represent musical data from scores and performances.
To do this it must represent two different time lines: score time and performance
time. In addition, to allow analysis of both, it must include a mapping between the
two time lines.

In this chapter we have investigated the requirements for representing musical
time. Score time should be explicit, relative, discrete, declarative and be structured
both horizontally and vertically. Performance time will consist of points at its lowest
level and intervals at the aggregation/segregation level. An extension of MusicXML
time was proposed for score time and a common time-base of seconds was chosen
for performance time with mappings between the two timelines provided by external
software.

The relation between timed musical events has been investigated with researchers
using temporal logic to describe these relations. The potential for temporal databases
to be of use in this field seems underexploited.

67

The representation of time presented in this chapter, along with the represen-
tation of pitch introduced in the previous chapter, provide the basis for the music
representation used in the current work. The next chapter will formalise how these
representations are combined and how they are manipulated by musical functions to
enable computational music analysis.

68

Chapter 4

Musical Functions

The aim of the current work is to create a system capable of querying musical scores
and performance data inside a computer to produce analyses which provide insight
into the process of musical performance. In the first chapter we looked at other
computer systems which manipulate musical data and used this overview to create
a list of requirements for the current system. In the previous two chapters methods
of representing pitch and time have been shown which aim to fulfil some of these
requirements.

In this chapter we define a set of musical types for describing symbolic music and
the algorithms which manipulate them. The musical types combine the represen-
tations described above. The purpose of these types and functions is to enable the
analysis of the musical data by providing an interface to the underlying data through
the expression of musical queries. This interface intends to fulfil the requirements to
allow analysis of musical data and provide access to the data in a way which can be
understood by programmers and computer-literate musicologists.

To make the algorithms easier to read, once a function is defined, it is thereafter
referred to using its operator. For example, once the addInterval function is defined,
it is referred to with a ‘+’ symbol.

69

4.1 Basic Musical Types

In order that we may perform music analysis on the scores stored in the computer,
we need to define a core set of data types (these could be primitives or objects) which
we will manipulate. These datatypes are not intended as a replacement for a score
and do not presume to be a complete representation of a musical work. They are
however sufficient for a good deal of musical analysis and form the basis of more
complex queries.

The types described here are similar to those described by Wiggins. In [123],
Wiggins describes abstract types for pitch and time. These are combined in tuples to
create events — synonymous with notes here. Events are grouped into constituents
which are synonymous with note-groups here. Wiggins’ abstract data model has
been implemented in the AMuSE system [76] for music analysis and Wiggins used it
himself to implement algorithms for rhythm and similarity analysis.

4.1.1 Pitch

The full requirements for a pitch representation can be found in Chapter 2. It is
worth repeating here that a pitch representation ought to be able to distinguish
between pitches regardless of tuning and enharmonic equivalence, should be able to
extract name class, should be able to be ordered in pitch height order, should be
able to extract intervals from pitches and add intervals to pitches and finally should
represent octaves.

Additionally there are more practical requirements that a representation should
not be taxing on the processor of the computer that is manipulating it and should
not require large amounts of storage space.

The work presented here has the extra requirement that the pitch representation
should be capable of doing all of the above with microtonal tuning systems. The
spiral of fifths pitch representation outlined in Chapter 2 satisfies all of these criteria
so has been chosen for the current work.

70

In addition to storing the pitch in the spiral of fifths representation, it is necessary
to store 2 further parameters for each pitch: the number of divisions per semitone (z in
Chapter 2) and the octave. Though it may be possible (and more space preserving) to
store the parameter z once for an entire score, the current implementation stores the
parameter alongside the pitch as it allows the musical functions described in Section
4.2 and later the queries to be simplified. Since the spiral of fifths representation does
not preserve pitch order it is necessary to separately store the octave of each pitch.
Thus a complete pitch is stored and processed as a triple:

p := (k, z, o) (4.1)

where k is the pitch in the spiral of fifths representation, z is the number of divisions
per semitone and o is the octave with 4 representing the octave beginning on middle-C
[124].

4.1.2 Interval

As soon as one begins manipulating pitch one soon finds the need to represent an
interval. An interval representation ought to give unique representations to all inter-
vals, to be able to extract the class of an interval1, to be able to extract the interval
type2, to be able to invert intervals and combine them into scales.

The interval is represented in an almost identical way to pitch: a triple which
stores the interval in the spiral of fifths representation, the number of divisions per
semitone and the number of octaves this interval traverses.

v := (i, z, o) (4.2)

where i is the interval in the spiral of fifths representation and z and o are the same
as in Equation 4.1.

1The class of an interval is given by the number of diatonic steps i.e., all thirds share the same
class whether major, minor, augmented or diminished

2The type of an interval is given by the number of diatonic steps and the modifier i.e., major,
minor etc. It ignores octaves so a major 10th has the same type as a major 3rd

71

4.1.3 Time

The full requirements for the representation of time can be found in Chapter 3. A
time representation ought to allow for adding and subtracting time, should use the
same representation for note onsets, offsets and durations, should be independent
of time-signatures, meters and measures and should be capable of representing any
division of a note.

The representation chosen here matches that of MusicXML in that it represents
time as a fraction of a crotchet. However, where MusicXML stores the denominator
of the fraction globally for an entire piece, here we store the denominator with each
fraction numerator. This allows some simplification of the functions in Section 4.3
and later in queries.

Thus time is represented as a tuple:

t := (n, d) (4.3)

where n is the numerator and d is the denominator of the fraction of a crotchet
represented by t.

4.1.4 Notes

We define notes as those units of music which have pitch, a duration and a start
time. We use the representations for pitch and time introduced above along with a
unique identifier for each note to create a tuple representing a score note:

s := (u, p, t, d) (4.4)

where u is the unique identifier for this note s, p is the pitch triple, t is the start time
of the note (expressed as a time tuple) and d is the duration (expressed as a time
tuple). It is important to note that the duration represented here does not necessarily
match the duration indicated by the notehead. The duration of the note holds the
duration after all modifiers have been taken into account: such as dots, tuples etc.

Unlike Wiggins’ abstract data model in [123], we do not include a component to

72

describe timbre. The inclusion of timbre inside a note tuple in Wiggins’ data model
could have originated in the MIDI data model. MIDI includes a velocity value with
each note event. This makes sense in a performance representation where intensity
will be measured for each note event. However, this section describes a representation
for musical scores. In music notation, dynamic instructions such as crescendo or
pianissimo apply to groups of notes rather than individual notes. For this reason, in
the current application, timbre will be indicated by note groups described below.

4.1.5 Note Groups

Since the note description given above is incomplete in representing much of the
additional information contained in a score, we implement note groups to reflect notes
membership of certain categories such as membership of a chord or the presence of a
key signature. The note group also provides the means to implement analysis groups
which can overlap.

g := (u, y, v,m) (4.5)

where u is the unique identifier for this group g, y is the type of this group, v is a
list of values for this group (for example, for a key signature group, v would hold the
key) and m is the list of members of the group.

In Wiggins’ abstract data model [123], the equivalent groupings to note groups are
called constituents. Constituents comprise of a unique identifier, a label describing
their type and a set of particles. Particles can be notes or other constituents. By
allowing constituents of constituents, Wiggins allows for the creation of hierarchical
structures which the model described above does not. Hierarchical structures have
been shown to be a useful method of organising music for analysis [117], [63]. A small
modification to the current data model which allows hierarchical structures will be
described in the Discussion (Chapter 7.

73

4.2 Pitch Functions

The basic musical types outlined above allow us to represent notes consisting of a
pitch, start time and duration and note groups to combine notes together which
share a common membership such as key signature. In order to manipulate the note
representation, and create the basis for more complex processes, we define a set of
functions which operate on the note tuple.

Previous work in this area includes that of Harris et al [70]. In this work, the
necessary functions to manipulate notes are adding and subtracting intervals from
pitches, extracting the interval from two pitches, adding and subtracting durations
to time instances and extracting the duration from two time instances. Harris et al
also indicate that ordinal operators (i.e., greater-than >, less-than-or-equal-to >=

etc.) will be needed.

In this section, we show the algorithms which implement the functions outlined
in Harris et al for the current work’s pitch representation. In the next section we will
see the algorithms for manipulating time followed by musical intervals. In addition
to those in Harris et al , we show the algorithms to implement the different types of
equality which arise from considering music. These include, for example, the equality
where two pitches are exactly the same (in unison) and the equality where two pitches
are the same but in different octaves.

4.2.1 Ordinal Operators

The ordinal operators are used here to place pitches in pitch height order (not spiral
of fifths order) and therefore require the pitches being compared to first be converted
to pitch height order. The ordinal operators are less than (<), less than or equal to
(<=), greater than (>) and greater than or equal to (>=). The algorithm for the
less than (<) operator for pitch is shown in Algorithm 2.

74

Algorithm 2 Algorithm to compare two pitches (p1 and p2) and return true if p1

is lower in pitch order to p2.
1: function LessThanPitch(p1, p2)
2: if p1(o) < p2(o) then ⊲ p(o) is octave of pitch p

3: return True
4: else if p1(o) > p2(o) then
5: return False
6: else if p1(kpop) < p2(kpop) then⊲ p(kpop) is the pitch order position of pitch

p calculated with Equation 2.11. Assumes pitches are in the same octave
7: return True
8: else if p1(kpop) > p2(kpop) then
9: return False
10: else if p1(kpop) = p2(kpop) and p1(kaccidental) < p2(kaccidental) then ⊲ Name

class is the same but p1 is flatter than p2

11: return True
12: else
13: return False
14: end if
15: end function

75

4.2.2 Equality

When considering equality between pitches one must not only consider pitches in
unison as equal but also those an octave apart as also differently equal. We therefore
define 2 types of equality between pitches in Algorithm 3.

Algorithm 3 Algorithm to calculate two types of equality between pitches: unison
and ignoring octaves.
1: function equatePitch(p1, p2)
2: if p1(o) = p2(o) and p1(k)

p1(z)
=

p2(k)
p2(z)

then ⊲ Pitches are in unison
3: return True
4: else
5: return False
6: end if
7: end function
8:

9: function approxEquatePitch(p1, p2)
10: if p1(k)

p1(z)
=

p2(k)
p2(z)

then ⊲ Pitches are the same, ignoring octaves
11: return True
12: else
13: return False
14: end if
15: end function

The comparison of pitches must take account of the number of divisions per
semitone which the pitch is represented in. For example, consider the pitch F4. It
can be represented as {7, 1, 4} with 1 division per semitone or as {14, 2, 4} with 2
divisions per semitone (refer to Tables 2.7 and 2.10). Clearly comparing these two
triples’ k value alone would lead to incorrectly concluding that they are not equal.
Therefore it is necessary to compare the pitches in the form k

z . Additionally one must
realise that this is not integer division as in Chapter 2. Consider the comparison
between A3 = {15, 2, 3} and F3 = {14, 2, 3}. If we were to use integer division we
would incorrectly conclude that the pitches were equal thus we should use normal
division here.

76

4.2.3 Adding and Subtracting Intervals

To add or subtract an interval is superficially simple: all one has to do is add or
subtract the pitch value and the interval value. However, in practise one must
take account of the transformation crossing the octave boundary. For example,
the transformation of B 3 to C4 by the addition of a major 2nd crosses the octave
boundary i.e {6, 1, 3}+ {2, 1, 0} = {8, 1,4}. The complete algorithms for addition
and subtraction are given in Algorithm 4.

Algorithm 4 Algorithm to add a pitch and an interval
function addInterval(p, v)

pnew(k)
pnew(z) ←

p(k)
p(z) + v(i)

v(z)

pnew ← {pnew(k), pnew(z), p(o)}
if pnew < p then ⊲ If resulting pitch is lower

pnew(o)← pnew(o) + 1 ⊲ increment the octave
end if
pnew(o)← pnew(o) + v(o)

return pnew

end function

function subtractInterval(p, v)
pnew(k)
pnew(z) ←

p(k)
p(z) −

v(i)
v(z)

pnew ← {pnew(k), pnew(z), p(o)}
if pnew > p then ⊲ If resulting pitch is higher

pnew(o)← pnew(o)− 1 ⊲ decrement the octave
end if
pnew(o)← pnew(o)− v(o)

return pnew

end function

4.2.4 Pitch Difference

Now that we have introduced how to add and subtract intervals we must see how
the inverse is achieved: that is how to extract an interval from two pitches. Since
intervals are always quoted from the lower pitch to the higher pitch we must first
establish the lower pitch. Once this is achieved we subtract the lower pitch triple

77

from the higher pitch triple to give the interval. Next we check if we have crossed
the octave boundary and adjust accordingly. Finally we subtract the octave. The
complete algorithm is given in Algorithm 5.

Algorithm 5 Algorithm to compute the interval between two pitches
function lowest(p1, p2) ⊲ returns the lowest of the two pitches

if p1 < p2 then
return p1

else
return p2

end if
end function

function highest(p1, p2) ⊲ returns the highest of the two pitches
if p1 > p2 then

return p1

else
return p2

end if
end function

function getInterval(p1, p2)
plowest ← lowest(p1, p2)

phighest ← highest(p1, p2)
v(k)
v(z) ←

phighest(k)

phighest(z)
− plowest(k)

plowest(z)

v(o)← phighest(o)− plowest(o)

return v

end function

4.2.5 Generate Scale

In order that we might distinguish between notes that belong in a key signature and
those which do not, we need to be able to generate the scale of pitches and test for
a pitch’s membership of that scale. We construct a scale by following a sequence
of interval transformations. In its initial form, this sequence will give us the major

78

scale. If we start on the 5th interval of the sequence we get a harmonic minor scale3.
Starting at other places in the sequence gives us the church modes. Thus we construct
a sequence of pitches by transforming the initial pitch by each of the intervals in turn.

Algorithm 6 Algorithm to generate a scale
function scale(k, m)⊲ where k is the pitch of the starting note and m is the mode
(for the major scale m← 0 and for the minor scale m← 5)

Vscale ← [vM2, vM2, vm2, vM2, vM2, vM2, vm2]

Kscale(1)← k

i← 2

for all v ∈ Vscale do
Kscale(i)← Kscale((m + i− 1) mod 6) + v

i← i + 1

end for
return Kscale

end function

4.2.6 Scale Membership

To allow us to check whether a pitch belongs in a particular key we must define a
function to compare a pitch against each member of a scale. Furthermore we can
generalise the function to compare any pitch against any array of pitches. Finally, we
must define two versions of this comparison function: one to check for exact matches
and one to check for approximate matches i.e., ignoring octaves.

4.3 Time Functions

Since we have defined a time type (in Section 4.1.3) we must also define how to
manipulate it. Of primary importance when manipulating time is to place events
in time order – to calculate whether an event occurred before another – hence we
define the ordinal operators for the time tuple. We will also wish to calculate offset

3For the melodic minor, which alters by one pitch on the descending portion, a more complicated
algorithm would be needed. This is discussed in Chapter 7

79

Algorithm 7 Algorithms to check a pitch’s membership of a set of pitches
function elementOfPitchArray(ktest, K)

for all k ∈ K do
if equatePitch(ktest, k) then

return True
end if

end for
return False

end function

function approxElementOfPitchArray(ktest, K)
for all k ∈ K do

if approxEquatePitch(ktest, k) then ⊲ equality ignoring octaves
return True

end if
end for
return False

end function

time from the onset and the duration and vice versa so we define the addition and
subtraction.

For the sake of clarity, we reiterate that t represents a time tuple consisting of two
values: n which is the numerator of the fraction representing divisions of a crotchet
and d which is the denominator of the fraction.

4.3.1 Ordinal Operators

Since the time tuple represents a vulgar fraction, implementing the ordinal operators
is simple (provided the language is capable of manipulating fractions). The algorithm
for the less than (<) operator is given in Algorithm 8.

80

Algorithm 8 Algorithm for the less than operation for the time tuple
function lessThanTime(t1, t2)

if t1(n)
t1(d)

< t2(n)
t2(d)

then
return True

else
return False

end if
end function

4.3.2 Addition and Subtraction

Similarly, implementing addition and subtraction with the time tuple is trivial with
a programming language which is capable of mathematics with vulgar fractions. Al-
gorithm 9 shows how addition is achieved with the time tuple.

Algorithm 9 Algorithm to add two time tuples
function addTime(t1, t2)

return t1(n)
t1(d)

+ t2(n)
t2(d)

end function

4.4 Interval Functions

Having defined the functions for manipulating pitch and time, we must finally define
the functions for manipulating intervals.

For the sake of clarity, we reiterate that v represents an interval tuple consisting
of three values: i which is the interval value in the spiral of fifths representation; z
which is the number of divisions per semitone; and o which is the number of octaves
in this interval.

4.4.1 Equality

As with pitch, there is more than one kind of equality between intervals. There is
complete equality where the two intervals are exactly the same; there is type equality

81

where the intervals are the same but with different octaves for example, a major 3rd

has the same type as a major 10th; and there is class equality where two intervals are
in the same class, for example a major 2nd and a minor 2nd are both of the interval
class 2nd. We therefore define three functions in Algorithm 10 to calculate interval
equality.

Algorithm 10 Algorithms to calculate equality between intervals
function equateInterval(v1, v2)

if v1(o) = v1(o) and v1(i)
v1(z)

= v2(i)
v2(z)

then
return True

else
return False

end if
end function

function approxEquateInterval(v1, v2)
if v1(i)

v1(z)
= v2(i)

v2(z)
then

return True
else

return False
end if

end function

function equateIntervalClass(v1, v2)
if Rem(v1(i)

v1(z)
, 7) = Rem(v2(i)

v2(z)
, 7) then

return True
else

return False
end if

end function

82

4.5 Other Functions

4.5.1 Text Representation and Conversion

To support the conversion from an external format to the format used in the database
a number of conversion routines are necessary. It is also convenient to have a number
of functions to convert between the representations used in the database and more
familiar textual representations. This eases the job of formulating queries to the
database and makes the resulting queries easier to read.

We therefore define a text format to represent musical pitches which is easy to
read and relatively easy to convert to the computer representation. The format
consists of a pitch class letter (upper or lower case), followed by optional accidental
characters, followed by an optional octave number. The accidental characters are #
for , b for . For example, the D above middle C would be represented as D#5.

Algorithms 11 and 12 show the algorithms for converting between familiar text
representations and the pitch representations used in the database for scales without
semisharps.

4.6 Summary

In this chapter we have introduced a music representation which is based on Wiggins’
abstract data type [123]. The current implementation differs in not representing
timbre as part of a note and not allowing groups of groups (thereby eliminating one
means of creating hierarchical structures). Timbre was excluded because it would be
better represented at the note group level. Alterations to the music representation
which will allow hierarchical structures are given in the Discussion 7.

Musical functions have been described based on those found in Harris et al [70].
Additional functions to deal with the many types of equality found in music and to
convert between more familiar formats have also been described.

83

Algorithm 11 Algorithm to convert from the text representation of pitch and the
representations used in the database.
naturals ← mapping(F ← 0, C ← 1, G ← 2, D ← 3, A ← 4, E ← 5, B ← 6)
function text2pitch(text)

matches ← regex(([a-gA-G])([#b])*(-?[0-9]*), text)
pitchClass ← naturals[matches[1]]
if matches[2] then ⊲ If there is are # or b symbols. . .

accidentals ← matches[2] ⊲ . . . assign them to accidentals
else

accidentals ← ‘’ ⊲ . . . else assign an empty string
end if
if matches[3] then ⊲ If there is an octave number. . .

octave ← matches[3] ⊲ . . . assign it to octave
else

octave ← 4 ⊲ . . . else assume octave is four (octave starting on middle C
end if
if stringContains(‘#’, accidentals) then

alter ← 7 * stringLength(accidentals)
else if stringContains(‘b’, accidentals) then

alter ← -7 * stringLength(accidentals)
else

alter ← 0
end if
k← pitchClass+ alter
z← 1

o ← octave
p← {k, z, o}
return p

end function

84

Algorithm 12 Algorithm to convert from the representation of pitch used in the
database and the text representation.
naturals ← mapping(F ← 0, C ← 1, G ← 2, D ← 3, A ← 4, E ← 5, B ← 6)
function pitch2text(p)

pitchClass← ((p(k) + ((p(k) mod p(z)) ∗ 7)) /p(z)) mod 7

accidental← (p(k)− (pitchClass ∗ p(z))) /7

pitchString ← keyOf(pitchClass, naturals)
if p(z) = 1 then

if accidental > 0 then
accidentalSign ← ‘#’

else if accidental < 0 then
accidentalSign ← ‘b’

else
accidentalSign ← ‘’

end if
accidentalString ← stringRepeat(|accidental|p(z) , accidentalSign)
text ← stringConcatenate(pitchString, accidentalString, octave

end if
return text

end function

85

These types and functions combined are intended to allow diverse queries to be
asked of musical scores. This should fulfil the requirement for the current system that
it should be capable of music analysis, in particular, that it should enable manipula-
tion of musical data. Once implemented in a computer programming language, they
should enable the accomplishment of another requirement: that the system should be
queryable. The system which aims to achieve that goal is described in the next chap-
ter and the use of the representation and functions is demonstrated in the Results
(Chapter 6).

86

Chapter 5

System Workflow

5.1 Overview

The system described here is intended to enable the analysis of music and its per-
formance. In the first chapter we formulated a number of requirements for such a
system including a requirement to represent musical data so that it is available to
music analysis. The following three chapters examined how to represent and manip-
ulate musical score data to enable music analysis. This chapter will show how the
types and functions are implemented in a working system.

Where the first three chapters were theoretical in their approach, this chapter and
the one following it, will include more practical information. This chapter outlines the
procedure for collecting data, processing that data outside of the system, loading the
data into the system and getting results. It describes in detail how each step has been
achieved and which tools have been used. By describing how music and performance
data is collected, it is hoped that a better understanding of the capabilities and
limitations of the current system can be attained.

In this chapter we will describe the method of collection of two types of per-
formance data which can be used as examples for other types of data. Firstly, we
will examine piano performance. There are several reasons for choosing piano perfor-
mance. Firstly, piano performance data is most often represented in the form of MIDI

87

data. Since many existing systems use MIDI data to represent musical performance,
choosing piano performance here demonstrates the current system interfacing with
the most popular format for storing music performance. Additionally, piano per-
formance provides many interesting areas for investigation. In [105], Parncutt and
Troup examined expressive gesture in piano performance. They found that a num-
ber of interactions between timbre, loudness and timing where a number of different
performance gestures combine to influence the manipulation of these three musical
expressions. Rather than finding a simple mapping between key velocity and loud-
ness and key onset and timing, they found that combinations of different performance
expressions produced the different expressive effects. This complexity validates the
choice of piano performance for investigation.

Secondly, we will examine vocal performance. This provides a useful contrast to
piano performance. When analysing piano performance we will be using the point
primitives of MIDI data. Alternatively, when we analyse vocal performance, we will
be using continuous data taken from an audio recording. In this way we can demon-
strate the system analysing and displaying different types of data. Additionally, we
can use vocal performance to demonstrate the system analysing music written using
microtonal intervals.

In the follwing results chapter we will use this data to analyse the performances.

Figure 5.1 gives an overview of the system as a sequence of inter-connected pro-
cesses. Each process is described in detail in a subsequent section of this chapter.

In a typical scenario of recording a piano performance, the performer will play
from a printed score. A digital copy of that score in MusicXML format [68] will
be combined with a recording of the MIDI data from the performance to create a
Performance Markup Language (PML) file (Section 5.3.1) which contains both sets
of data. The PML file is processed by the matching software (Section 5.3.2) which
adds links between each performance event and the corresponding score note which
the event realises. The matched PML file is uploaded to the database (Section
5.4) where after it is available for querying (Section 5.6) with the musical functions
described in Chapter 4. A document can then be created to display the query results
(Section 5.7).

88

Figure 5.1: Diagram to show the flow of processes in the design of the system. Scores
(in MusicXML format) and performance data (as MIDI data here) are processed
by the matching programs to produce a matched performance in a PML file. The
matched performance contains performance events which point to their corresponding
notes in the score. The data from the PML file is loaded into the database. Queries
are sent to the database in the SQL language. Results from queries are written to a
Lilypond (.ly) file which is processed by the Lilypond program to produce a graphical
score annotated with performance data

5.2 Data Gathering

The first stage, before the analysis of performance, is collecting together the various
data sources for each performance. Figure 5.1 shows that this requires a score and
some performance data. The current system accepts scores in MusicXML format
and performance data in PML format. The PML file can include data from a MIDI
performance or from a pitch-tracked vocal performance. This section will describe
the 3 sources of data used in the next chapter.

89

5.2.1 MusicXML

Digital copies of the score are required in MusicXML format [68] since the subsequent
processing stages need to use PML (a super set of MusicXML). Future versions of
PML may support other XML score formats such as MEI [109].

MusicXML is an XML (eXtensible Markup Language) [7] format designed for the
interchange of musical scores between music typesetting software. It is developed
by Recordare, a company which sells plugins for commercial notation software such
as Finale [8] and Sibelius [30] which use MusicXML to allow interchange between
notation software. The specification for MusicXML is released under an open licence
(“MusicXML™ Document Type Definition Public License Version 2.0” [22]).

There are 3 versions of the specification available: 1.0, 1.1 and 2.0. The differences
between versions 1.0 and 1.1 are minor. Version 2.0 introduces a new compressed
format. The specification is released as a commented Document Type Definition
(DTD) and additionally in XML Schema language (XSL) for version 2.0. Where
a DTD allows for the definition of tags and their location, XSL allows for stricter
definition of their contents. XSL, however, is not as widely supported as DTD by
XML validation software. The files used in the software described here aim to be
compliant with version 1.1 of the standard.

The reasons for using an XML-based file format, and MusicXML in particular,
for interchange are numerous and compelling. An XML file is both human-readable
and machine-readable. This aids software development and debugging significantly
as files can be read and understood by a programmer simply by opening them in a
text editor. There are mature application programming interfaces (APIs) available
for most languages making XML a language-agnostic choice. Furthermore, the APIs
are standardised as the Document Object Model (DOM) and the Simple API for
XML (SAX) which makes moving between systems easier for the developer.

There is much software available to produce MusicXML files: plugins are available
for the 2 major commercial music notation programs: Sibelius and Finale as well as
free software such as NoteEdit [23], MuseScore [10] and Rosegarden [29].

All these reasons make XML, and MusicXML in particular, excellent choices

90

for file interchange. For an application which relies heavily on analysis and stored
procedures, they are not suitable. In a MusicXML score, time is implied rather than
explicit: a note’s onset is the sum of the previous note’s onset and duration which
is the sum of the previous note’s onset and duration and so on. Time can also be
adjusted with the <backup> and <forward> tags which move the current time ‘cursor’
backwards or forwards. Furthermore, the presence of a <chord> tag means that the
current note’s onset is the same as the previous. All these reasons (and more) mean
that MusicXML is not a good choice for analysis.

5.2.2 The Piano Bar

The Piano Bar is a device made by Moog Music Inc [96] to enable the recording of
MIDI data from a standard 88-key acoustic piano. The device consists of an array
of infra-red sensors on a toothed bar which rests on the cheeks of the piano. The
‘teeth’ extend between each black key. The infra-red beams shine down onto the
white key and are reflected back up to the sensor. The beam is broken when the key
is depressed. The beams shine across the black key to the sensors and are connected
when the key is depressed. The key presses are converted to MIDI messages by the
attached control box. The device is capable of sensing key velocity and has a separate
sensor which can sense pedal movements which are converted to MIDI sustain and
soft pedal messages.

The piano bar enables the recording of musicians using existing acoustic pianos
thus enabling a more realistic setting for the recording of performance. Care must
be taken when inferring from this data as a key press duration is not the same
as the duration of the sound. The piano bar is not wholly unobtrusive. The bar
reduces the length of the key available and flashes small lights above each key when
a keypress has been detected. Several musicians have commented that this makes
them uncomfortable.

The device is placed a small distance (< 5mm) above the keyboard and calibrated.
The calibration involves adjusting the height till all the keys are correctly sensed (as
indicated by the lights). Keyboards naturally flex and bend over time and individual
keys can vary in their height as they ‘bed in’ therefore meaning that the distance
from the sensor to the key is not always the same. It is not known whether this

91

might affect the timing or velocity measurements. There is also no data available to
describe how the velocity measurement relates to the actual speed of the keypress:
how fast does the key have to move to generate a velocity value of 64? Additional
measurements would have to be performed to provide reliable data. However, even
if such data were available, it may not be entirely useful as differences between
different manufacturers of pianos, between the pianos themselves, room acoustics
and many other factors would produce subtle changes in performers playing which
might confound any attempt to gain reliable objective measurements of velocity and
timing. All that can be hoped for at present is a reliable relative difference between
keypress timings and velocities in any given performance.

5.2.3 Audio, Video and MIDI Recording

In a typical recording session, audio and video will be recorded alongside the MIDI
data. Audio is recorded by a microphone connected through a USB audio interface to
a laptop computer. MIDI data is recorded from the Piano Bar through the interface
to the same computer. Video is recorded from a high frame rate camera placed
above the piano keyboard attached via firewire to the laptop. A full inventory of the
equipment used is given in Appendix A.

Currently the database is not capable of making use of audio and video data
directly though it is theoretically possible to store it. The functionality has not yet
been added as there exists no software capable of combining the results from the
database with audio and video. Steps towards achieving this end have been made
and are described in Chapter 7 Section 7.8.4.

5.3 Data Processing

The previous section describes the collection of data. Scores are collected in Mu-
sicXML format and performance data is collected in MIDI files from the piano bar
and audio files from a microphone. The next stage is the processing of those files to
create the PML files ready to transfer into the database. This processing takes the
form of establishing correspondances between the performance data and notes in the

92

score.

This processing stage uses software developed by Dr Douglas McGilvray as part
of his PhD [58]. In particular, this project uses the pitch tracker and segmenter (de-
scribed in [98]); the matching software (Section 5.3.2) for score-performance matching
and the Performance Markup Language (Section 5.3.1) (PML) as an intermediate for-
mat to store performance data before it is loaded to the database.

First the MusicXML file containing the score is processed to create a PML file
containing the score and an empty performance section. Then the PML file’s per-
formance section is populated with data from a MIDI file or segmented audio file.
Finally the PML file is processed by the matching software which matches the key-
press events from the MIDI file to the score note from the MusicXML file. The
matches are stored in the PML file for uploading to a database later.

5.3.1 Performance Markup Language

The process of matching score and performance data for musicological analysis presents
the problem of where and how to store the results. Performance Markup Language
(PML) aims to solve this problem by specifying a file format which extends Mu-
sicXML to include performance data. Thus the file stores the score, the performance
data and the correspondances between the two, in one place.

A PML document has a <pml> tag as its root node. This is usually followed
by a <score-partwise> tag which contains the partwise MusicXML score. The
MusicXML section is pre-processed to add a unique identifier (<id>) to each note
and a start time in score time. A <performance> tag follows which contains the
performance data.

The performance section contains optional tuning information (<tuning>) and one
or more performance parts (<perfpart>). Performance parts contain the data from
a single performance of the piece in the score as a sequence of events (<events>).
Events contain such data as the onset time and duration (in milliseconds) of the
event, the MIDI note number and velocity, the estimated frequency and pitch (for
pitch tracking), a unique identifier for the event and the note in the score with which

93

it has been matched.

5.3.2 Score-Performance Matching

The procedure for matching a score and performance uses several different programs.
It is relatively easy to follow, though it does contain several steps. The following
sections describe each tool in the order in which they are used, with the output of
each tool being passed as the input to the next.

mxml2pml This tool converts a MusicXML file to a PML file. It adds a <pml> root
document node above the MusicXML score and an empty <performance> node
after it. Each note in a performance is given an unique identifier and a start
time.

mergeparts A MusicXML score consisting of several parts must first be processed
to merge each of the musical parts into one to enable the subsequent matching
of notes polyphonically. This is an unfortunate procedure as information is lost.
It is hoped that a future version of the software will address this issue.

Followed by either:

midi2pml A MIDI file is combined with the PML file. No matching occurs here -
the data from the MIDI file is translated into <event> nodes and inserted into
the PML file.

Or:

audio pitch tracker and segmenter An audio file is processed by a pitch tracker
and the resulting pitch contour is segmented into likely notes and inserted into
the PML file.

winmatch The PML file, which now contains the musical score from the MusicXML
file and the performance data is processed by the matcher. The program takes
additional parameters to determine the window size (the number of notes it will
scan for a match) and thresholds for determining the confidence of a match.

intermatch Finally the file is processed with an interpolation matching algorithm
which unaligns and realigns potential matches found by the winmatch program.

94

5.4 Uploading Data

The previous two sections have described the collection of scores and performance
data and the processing of the two to create a PML file. This PML file now contains
the score, the performance data and the result of the matching process: correspon-
dances between performance events and score notes. This data is now ready to be
loaded into the database.

A script was written to upload data from a PML file to the database using the
Python programming language, the built-in XML processing libraries and the Psy-
coPG2 PostgreSQL database access library. The script adds the performance data
to the database and can optionally add the score. This allows the score to be added
once along with multiple performances which may be located in different files.

The intermediate pitch contour data from the audio pitch tracker was loaded into
the database from a Comma Separated Value (csv) file. The SQL copy command
was used to load the data into a temporary table from where it was loaded into the
timed_data table.

5.5 Database Design

In the first chapter of this thesis, several requirements were outlined for a system
which aims to analyse music and its performance. Among them, requirement 4e
stated that the system should be queryable — that is, it should be able to receive
generalised queries not pre-programmed to do a specific task.

In order to address this requirement, the system has been created upon an object-
relational database management system (ORDBMS) which provides a query lan-
guage. Additionally, the chosen ORDBMS (PostgreSQL) addresses another require-
ment. Requirement 5 for accessibility states that the system should run on as many
systems as possible since the MIR community use many different systems for research.
The database chosen for the current application, PostgreSQL, runs on Windows,
Macintosh and GNU/Linux operating systems.

95

The database has 3 tables which hold the majority of the data that is accessed
in queries: score_notes which holds the score; the timed_data table which holds
individual sample values; and segments which holds the PML events. Other tables
exist to satisfy the requirements of many to many relations and to reduce the storage
requirement and number of columns in the previously mentioned tables.

The segments table holds performance data which has a start and an end time
(these are the performance data versions of Honing’s interval primitives [73]). The
timed_data table holds sampled data (Honing’s point primitives).

Figure 5.2 shows the tables and their relations to one another. In addition to the
three tables already mentioned, there is a note_groups table which holds the groups
to which notes belong. These groups could represent key signature, time signature or
measures. Since there is a many-to-many relationship between score notes and note
groups (one note can be a member of many groups and one group can hold many
notes), the relation is stored in a separate table: note_groups__score_notes.

The tables on the right of the Figure 5.2 are the metadata tables. These are
described in Section 5.5.6 below.

5.5.1 Types

In accordance with the design outlined in Chapter 4, several new types were created
in the database to represent pitch, time and musical intervals. All were created as
composite types and given the prefix ‘spoff’ (an abbreviation of spiral of fifths).

The spoff_pitch type consists of three small integers1: the pitch (i.e., the posi-
tion on the spiral of fifths), the divisions per semitone and the octave.

The spoff_interval type is essentially the same as the spoff_pitch type with
the pitch replaced with the interval position on the spiral of intervals.

The spoff_score_time type was named to avoid confusion with real time. It is
essentially a fraction, however, the PostgreSQL database does not have a fraction

1In the PostgreSQL database, small integers (smallints) are stored in 2 bytes.

96

score_notes

+work_id: integer

+note_id: integer

+pitch: spoff_pitch

+onset: spoff_time

+duration: spoff_time

+part: char[10]

+voice: integer

+type: char[10]

note_groups

+id: integer

+type: char[10]

+comment: string

+values: int[]
note_groups__score_notes

+note_group_id: integer

+work_id: integer

+score_note_id: integer

segments

+id: integer

+start_time: numeric

+duration: numeric

+matched_work_id: integer

+matched_note_id: integer

+midi_note: smallint

+midi_velocity: smallint

+pitch: spoff_pitch

+freq: numeric

+performance: integer
t imed_data

+id: integer

+performer_id: integer

+time: numeric

+value: numeric

points to

n

1

work

per fo rmer

t imed_data_metadata

composer

per formance

part of

n

1

performed by

n

1
part of

n

1

performer__performance

part of

n

1

composed by

n

1

member of

n

n

performed in

n

n

part of

n

1

Figure 5.2: A UML diagram showing the main data holding tables of the database
and their relations. The score_notes table holds the score data, the segments table
holds the performance segmentation from the matcher and the timed_data table
holds the sampled data. score_notes are members of note_groups in a many-to-
many relationship. Tables holding metadata are shown on the right of the diagram
and are explained in more detail in Figure 5.3

type so it is stored as 2 integers - a numerator and a denominator. The fractional
representation matches that of MusicXML: it stores a fraction of a crotchet. Thus a
quaver is stored as 1

2 and a minim as 2
1 .

In addition to these three types, it is necessary to have a type in which to pass
data between analyses and presentation functions. These types need to identify the
note to which the datum belongs (using the work identifier and the note identifier)
and carry a value. Two types have been created: spoff_value_type for carrying
numeric values and spoff_text_type for carrying text values. In order to make
it easier to implement sorting of the values for presentation in a score, both types
include the part and voice of the note to which they belong.

97

5.5.2 Score Notes

The score_notes table holds the note data from the MusicXML score. The score-
_notes table only holds those attributes which are common to all notes and is based
on the MusicXML note type. A score_notes entry contains a pitch, duration, part,
voice and type. The valid types are ‘pitch’, ‘rest’ and ‘grace’ though this could be
extended to include some others. In addition to the MusicXML note, a score_notes
entry contains an onset time, a note identifier and a work identifier.

The onset time is necessary to allow a note to stand independent of the other
notes. MusicXML assumes that a note’s onset is equal to the previous note’s offset.
By including the onset in each entry we lose the dependence of each note on those
that went before it.

The work identifier and note identifier combine to make the composite key for the
table. At first this might seem unnecessary: a properly normalised database should
have a work stored in a separate table, a single identifier for each score_notes entry
and another table to relate the work identifier to each note identifier. Difficulties
arise because the PML file which is used to populate the database already contains
note identifiers and relations from performance events pointing to those identifiers.
When a MusicXML file is processed to convert it to a PML file, the note identifiers
are added counting up from 0. Thus each PML file contains duplicates of the same
note identifiers. We cannot therefore use the note identifiers directly as the database
identifiers. We could create new identifiers for each score_notes entry, but we
would have to store a map (in the database) between the PML identifiers and the
database identifiers so that each subsequent performance of that score entered into
the database could have the relational links between performance events and notes
corrected. To eliminate this additional storage requirement and to simplify queries
to the database (which would need an additional join if the work identifier to note
identifier relation were stored in another table), we combine the work identifier and
note identifier as the composite key.

98

5.5.3 Note Groups

Once the minimum amount of data is entered into the score_notes table, there
remain further pieces of information which are not common to all notes but only a
subset of the notes such as membership of a slur. This information is represented
as note groups and is stored in two tables: note_groups and note_groups__score-
_notes The former stores information about a group and the second holds the relation
between the group and a note.

The note_groups table holds an integer identifier, a short string describing the
type of group, a space for a comment and an array of integer values. For example,
notes which are all in the same measure are placed in a measure note group. The
value array in this case holds the measure number and the start time numerator and
denominator. The start time is necessary to avoid complex calculations in pieces
with changing time signatures or polychronous music (where there are two or more
time signatures operating in parallel.

The note_groups__score_notes table simply holds the note group identifier and
the corresponding work identifier and note identifier of the member note.

Three notations of Western music are also represented as note groups. The clef,
key signature and time signature are all stored in this way. This allows their value
to change over the course of a piece and the affected notes to be indicated.

5.5.4 Performance Segments

The performance events from the PML file are stored in a table named segments
The performance events are created by pitch-tracking software and score-performance
matching software. As such they can contain different data. The implementation
described here is discussed further in Section 7.7.2 including possible improvements
to the design.

The segments entries consist chiefly of an integer identifier, a start time and
duration and the work and note identifiers of the matched note. The start time and
duration are stored as numeric types since they indicate the locations in performance

99

time. In addition, a MIDI performance includes entries for MIDI note number and
velocity and a vocal performance includes an entry for the estimated frequency in
Hertz. Both types of performance include entries for the estimated unambiguous
pitch of the event. Finally, the identifier for the performance to which the segments
belongs is included. The performance table is described in Section 5.5.6.

5.5.5 Timed Data

Sampled data can be stored in the timed_data table. This table is intended to
store continuous data such as sampled data. The table holds an integer identifier, a
performer identifier, a time as a numeric type and the value also as a numeric type.
In addition, each row also stores a metadata identifier which points to an entry in
the timed_data_metadata table. This table stores information about the timed data
such as the performance identifier and a comment.

5.5.6 Metadata Tables

There are also items of data which must be stored in addition to the contents of the
score and the contents of a performance. This section describes the tables which hold
this metadata.

Figure 5.3 shows the metadata tables and their relationships. On the left of the
figure are the main data holding tables described above (Figure 5.2). On the right
are the tables which hold the metadata.

There are two tables that hold information about people related to the data stored
in the database. The performer table holds the first name and last name of each
performer along with a unique identifier. The composer table holds the first name,
last name, initials, date of birth and death and an identifier for each composer. In
addition, there are attributes for initials, second name and alternative names. This
allows users of the database to search for different parts of names and dates and still
arrive at the correct composer. For example, ‘J. S. Bach’, ‘Johann Christian Bach’
and the various composers called ‘Johann Christoph Bach’ who had different dates
of birth and death.

100

score_notes

note_groups

note_groups__score_notes

segments
t imed_data

points to

n

1

work

+id: integer

+title: string

+composer_id: integer

+opus: char[10]

per fo rmer

+id: integer

+first_name: string

+last_name: string

t imed_data_metadata

+id: integer

+performance_id: integer

+comment: string

composer

+id: integer

+first_name: string

+last_name: string

+date_of_birth: date

+date_of_death: date

+initials: char[10]

+second_name: string

+alternative_names: string

per formance

+id: integer

+comment: string

part of

n

1

performed by

n

1

part of

n

1

performer__performance

+performer_id: integer

+performance_id: integer

performed in
n

n

part of

n

1

composed by

n

1

part of

n

1

member of

n

n

Figure 5.3: A UML diagram showing the metadata holding tables on the right and
the main data holding tables on the left. The work table hold information about the
musical piece. The composer and performer tables hold information about people.
The performance table holds information about the performance and the timed-
_data_metadata table holds information about timed data. The performer and
performance tables are related by a many-to-many relationship.

The work table holds the relation between a composer and score data. Each work
has an identifier, a text field to hold the title, a field to hold a reference to a composer
id and a text field to hold the catalogue or opus number.

Each performance is stored in a table with simply an identifier and a text field
for a comment. The relation between a performance and a performer is stored in a
separate table since there could be many performers in a single performance or many
performances by a single performer.

5.5.7 Indexing

The PostgreSQL database automatically creates an index for each table using the
primary key. This allows the database to go directly to a table entry, of which the
identifier is known, without searching for it from the beginning of the database. In
practise, queries will need to access the database using attributes other than the
identifier. To increase the performance of these queries, several indices were created

101

for score_notes and segments tables.

The score_notes table has an index on the primary key — a combination of the
work identifier and the note identifier. In addition, indices were created for the work
identifier alone, the note identifier alone and the part identifier. These attributes all
use PostgreSQL’s built in types so their creation was relatively simple. Indices were
also sought for the note onset time and note duration. These attributes are stored in
custom types so the creation of the indices is a little more involved.

The entire set of comparison operators must be created: <, >, <=, >=, =.
This involves writing a function for each operator and an operator entry so that the
database knows which function to call for each operator. Additionally, a comparison
function is required. This is a function which returns −1 if a < b, 1 if a > b, 0 if a
= b and false in all other cases. Finally the operators and the comparison function
are grouped together by making an operator class entry which associates them with
the type that they operate on.

The segments table has an index on its primary key - the segment identifier.
Additionally, indices were created on the matched note identifier, the matched work
identifier and the performance identifier.

5.6 Creating Documents

In the previous sections we have seen how to collect data, process it and load it into
the database. The preceding section has shown how the design outlined in Chapter
4 has been implemented in the database. This section will outline the procedure for
querying the database to create data structures (documents) which can be processed
later to produce graphical scores annotated with performance data.

There are three stages to creating documents that contain the results of queries:
firstly, the document is created and populated with notes from a score; secondly, the
data to be presented is added to the document; finally, the document is converted to
Lilypond markup for later processing with the Lilypond typesetting software.

102

5.6.1 Populating the Document

A document to contain results is created at the same time that we populate it with
notes from a score. In this context, the term document refers to a data structure
stored in the database where we hold note data and other data in a form that can
be later processed to produce Lilypond markup. The PostgreSQL Python implemen-
tation provides a global dictionary object for each session which persists between
function calls and queries. We use this to store our document data structure so that
we can use several queries to add data to it.

The SQL code for populating the document is shown in Figure 5.1. The populate-
Document function takes two arguments: a string containing the name of the docu-
ment to be created and the input rows to be added to the document.

Program 5.1: A sample SQL query showing how to use the populateDocument
function to populate a document called ‘mydoc’ with notes from a work with the
identifier 4.

select populateDocument('mydoc', score notes) from score notes
where work id = 4;

The populateDocument function is an aggregate function. In PostgreSQL, normal
functions are those which take 0 or more arguments (such as a row from a table) and
return a result. Aggregate functions take several rows as arguments and return
a result. Examples of built in aggregate functions are SUM and COUNT. Aggregate
functions are created by specifying a function that is called for each input row and
a variable and its initial condition. The function takes the variable, 1 input row and
any other variables as its arguments. The variable is updated with the value returned
by the function after each call.

The populateDocument function calls another function called addScoreNoteTo-
Document which actually adds the note to the document. The populateDocument
function sets the value of the initial condition variable to false. Each successful call
to addScoreNoteToDocument returns true, setting the variable to true. The add-
ScoreNoteToDocument uses the value of this variable to determine if it is the first

103

run of the function. If it is (the variable is false), it creates an entry in the Global
Dictionary with the document’s name and adds a sub entry named noteData to store
the notes. It then creates sub-entries for the work identifier and the note identifier
and adds the remaining score note attributes under this entry. Thus each note is
locatable by its work identifier and note identifier. An outline of the data structure
is given in Program 5.2.

Program 5.2: Pseudo-Python code showing the document structure that is used
to hold data for a presentation of results alongside a score. The textUnderList
holds pieces of text which are displayed under notes such as melodic intervals. The
barGraphList hold data which will be displayed in bar graphs under notes. Finally,
the noteData list holds the score.

GD = {
doc {
"textUnderList" {
part id {

5 voice [
"melodic_intervals",
"chord_names", . . .]

. . .}
. . .}

10 "barGraphList" {
part id {
voice [
"MIDI_velocity",
"ioi", . . .]

15 . . .}
. . .}
. . . #other display methods
"noteData" {
work id {

20 note id {
"pitch": (0,1,0), "onset": (0,1,2), . . . #rest of score note type
"melodic_intervals": 5, "MIDI_velocity": 99, "ioi": 32 . . . }

. . .}
. . .}

25 . . .}
}

104

The data structure for a document is stored in a Python dictionary object (known
as an associative array, map or mapping in other languages). The name of the
document (used as the argument to the populateDocument function) is used as the
key for the structure. The key noteData is used for the score note data. The work
identifier and subsequently the note identifier are used to indicate the location of a
note. The remaining attributes of the note are stored under this identifier.

Additionally the data structure is used to store data for display alongside the
score. This will be described in Section 5.6.2. The pure Python data structure is
used over any other structure (such as creating a custom object) in the hope that it
will result in faster executing code following the advice of [27]. Since this structure is
accessed and added to many times in a query it is important that it operates quickly.

5.6.2 Adding Data to the Document

Now that the appropriate data structure has been created and it has been populated
with a score, we can add performance data to it. This will enable us to ultimately
create a presentation of performance data alongside the score.

Three methods of adding data to a score have been created which allow for dif-
ferent types of data to be displayed: addTextUnderNotes allows text to be displayed
under notes; addBarGraphUnderNotes allows a box containing a bar and a value to
be drawn under notes; and addLineGraphUnderNotes draws a box containing a line
graph plot from a sequence of values. The functions accept data in one of two types:
spoff_value_type and spoff_text_type

The addTextUnderNotes function is an aggregate function which calls the add-
TextToNote function for each spoff_text_type The function accepts a name for the
data, the name of the document to which it is being attached and the value to be
attached as its arguments. On its first run it creates an entry textUnderList under
the document name. For each part and for each voice under each part, an entry is
made under this entry with the name for this data. This is to allow easy iteration
over all the addTextUnderNotes entries for each voice when we come to output the
score later. Finally, an entry is made in the corresponding note entry with the data
name as the key. The addBarGraphUnderNotes operates in a similar fashion.

105

The addLineGraphUnderNotes function operates a little differently as it requires
a sequence of values to be attached to each note rather than a single value. The
function is an aggregate function which calls addLineGraphToNote for each spoff-
_value_type On the first run, it creates the entries under the document name. For
each value, it checks whether there is a already an entry for the corresponding note
with the current data name. If there is none, it creates a list with the current value
as its only item. If it finds a list, it appends the current value.

5.6.3 Extracting the Data as Lilypond Markup

The previous two sections have shown how to create a data structure in the database
and populate it with a score and various types of performance data. This section will
show how to extract that data structure in Lilypond format ready to be turned into
a graphical presentation of performance data alongside the score.

The getLilypond function is used to extract the named document in Lilypond
markup format. An example query is shown in Program 5.3.

Program 5.3: An example SQL query showing how to extract a named document
in Lilypond format.

select getLilypond('mydoc');

The simplicity of the query hides the complexity of the Python function that
it calls. The doc2lilypond Python function takes the data structure outlined in
Program 5.2 as its first argument and the plpy object as its second. The plpy object
is provided to all Python functions called in the database. It provides access to the
database from the Python environment allowing queries to be made in SQL and
results to be returned.

The aim of the getLilypond function is to return a document in Lilypond markup
including the score and any data plots that have been attached to it so that it can
be later processed by the Lilypond command-line program to create a pdf file. It
achieves this by creating Lilypond markup which contains the score and lyric lines.

106

ò�
star

�
tle

�
kle,

�
Twin-

�
Twin-

�
Lit-

�
kle,

�

Figure 5.4: The result of processing Program 5.4 with Lilypond.

Each lyric line holds a line of data values rather than words. Custom functions for
the creation of bar graphs and line graphs are included in a header to each file and
are called from the lyric line to draw the appropriate graph under the note. The
structure of the resulting file is outlined in Program 5.4 with the output from Lily-
pond in Figure 5.4.

Program 5.4: An example Lilypond file showing the basic file structure.

\book { %one per document
\score { %one per work
\new Staff = "part_id" << %one per part
\new Voice { %one per voice

5 \clef treble \time 4/4 \key c \major
c'4 c' g' g' a' a' g'2

}
\addlyrics { %one per data list
Twin− kle, Twin− kle, Lit− tle star

10 }
>>

}
}

The doc2lilypond function first creates a string to hold the Lilypond markup and
inserts the scheme code for the different data display functions. It then iterates over
the data structure creating a score section for each work identifier it comes across.
For each work, it creates a Python set2 containing the identifier of each musical part.
For each part, it creates a new staff in the Lilypond string and a set of each musical
voice. It then creates a list of each note contained in each voice. For each voice it
creates a voice section in the Lilypond string and a list of the data names of any data
lines for the current voice.

2A Python set is like a list but each value can only occur once

107

For each note, it obtains a list of the note groups to which the note belongs
by sending a query via the plpy object. By comparing to previous notes’ values, it
establishes if there have been any changes in key signature, time signature or clef and
sets the value of the corresponding strings. It also establishes if the current note is the
beginning of a tie, a slur or a chord and sets the values of the corresponding strings.
It appends the strings to the Lilypond string in the order: chordStartString, note-
String, durationString, slurString, tieString and chordEndString

Each data entry is appended to a lyric line string which is itself appended to the
Lilypond string at the end of the voice.

5.7 Displaying Results using Lilypond

The preceding section has shown how to extract score and performance data from
the database into a file in Lilypond markup. This file is now ready to be processed
by the Lilypond typesetter to create the graphical presentation of a score annotated
with performance data.

The text returned by the getLilypond function can be saved to a file from the psql
PostgreSQL shell. This file can then be processed on the Linux command line using
the Lilypond program to produce a PDF score annotated with graphs of performance
data.

The functions used to annotate the score with graphs are shown in Program 5.5.

Program 5.5: The Lilypond scheme functions used to annotate scores with perfor-
mance data graphs. The valuebox function is used to draw a bar graph with a text
box containing the value. The linegraphbox function is used to draw a line graph.

\version "2.12.1"

valueboxheight = 10
valueboxwidth = 1

5 #(define−markup−command (valuebox layout props val) (number?)
"Draws 2 boxes - one containing val as text,
one containing val as a line graph - in a column"

108

(interpret−markup layout props
(markup

10 #:center−column
(#:override '(box−padding . 0.1)
#:rounded−box
(markup #:override '(font−size . −5)
(format #f "˜$" val))

15 #:override '(box−padding . 0.1)
#:rounded−box
(#:combine
(#:combine
#:with−color (x11−color 'white)

20 #:filled−box `(0 . ,valueboxwidth) `(0 . ,valueboxheight) 0
#:with−color (x11−color 'blue)
#:filled−box `(0 . ,valueboxwidth) `(0 . ,(* 5.29 val)) 0)
#:translate `(−0.5 . 0) #:draw−line `(,(+ 1 valueboxwidth) . 0))

))))
25

linegraphboxheight = 10
linegraphboxwidth = 5
linegraphscalefactor = 1
linegraphbias = 0

30

#(define (pslines prev x x inc y list)
(if (> (length y list) 0)
(format #f "˜$ ˜$ ˜a˜a" (exact−>inexact (+ prev x x inc)) (car y list) "lineto

" (pslines (+ prev x x inc) x inc (cdr y list)))
35 ""

))

#(define (generate−ps y list)
(format #f "˜$ ˜$ ˜a˜a˜a" '0 (* linegraphscalefactor (+ (car y list) linegraphbias)) "moveto

40 " (pslines '0 (/ linegraphboxwidth (− (length y list) 1)) (cdr y list)) "stroke"))

#(define−markup−command (linegraphbox layout props y list) (list?)
"draws a line graph from a list of values in fixed size box"
(interpret−markup layout props

45 (markup
(#:rounded−box
(#:combine
#:with−color (x11−color 'white)
#:filled−box `(0 . ,linegraphboxwidth) `(0 . ,linegraphboxheight) 0

50 #:with−color (x11−color 'red)
#:postscript (generate−ps y list)

109

)))))

The first function, valuebox draws a bar graph with a text box containing the
value. The function creates a column containing two rounded boxes. The top rounded
box contains the value, formatted to 2 decimal places and printed in a small font.
The bottom rounded box contains a white box. This a cheat which is not visible.
It forces the rounded box to be a certain fixed size — it defaults to shrinking or
expanding to fit its contents. On top of the white box, a blue box is drawn to the
size of the value to be displayed and a line is drawn at the origin.

The next three functions draw the line graphs. Starting with the third function,
linegraphbox it draws a rounded box filled with a white box as above. Inside this it
calls the generate-ps function to generate the Postscript commands to draw the line
graph. The generate-ps function outputs Postscript commands to move to the first
value and to draw the line (stroke once the line has been defined. In between these
commands, it calls the ps-lines function which outputs the lineto commands for
each value in the list y_list

By repurposing the scheme interpreter and drawing commands of Lilypond to
draw graphs rather than musical notation, it is possible to annotate scores with
performance data.

5.8 Summary

In the introduction to this thesis we looked at systems designed for the analysis of mu-
sic and systems designed for the analysis of performance. We proposed that, in order
to better understand the process of performance, we require a system which can anal-
yse both music and performance together. This system will allow us to understand
how the structure of music is reflected in its performance and how the performance
indicates the structure. Since there exists no such system in the literature, a set of
requirements for such a system were produced.

The following three chapters explained the theoretical approach taken here to

110

solving some of the problems faced in creating such a system: the representation
of pitch; the representation of time; and the creation of functionality to manipulate
these representations for music analysis. In this chapter we have seen how the theo-
retical information of the previous three chapters has been implemented in a practical
system. This represents the culmination of the work of this thesis: the creation of a
system capable of analysing musical scores and performance in one place and present-
ing the results in a musically appropriate way — a score annotated with performance
data.

By creating scores annotated with performance data from a system which is capa-
ble of receiving diverse queries, the current system aims to fulfill the requirements in
Chapter 1 for a system which is queryable, able to manipulate score and performance
data for music analysis and able to present performance data in the context of the
score.

The next chapter (Chapter 6) will demonstrate the use of this system for the
analysis of several different performances. The performances and analyses have been
chosen to demonstrate the capabilities of the system in analysing music (including
microtonal music), analysing performance data and displaying different types of data.
The entire system will be discussed in the chapter following the next chapter (Chapter
7.

111

Chapter 6

Results

In this chapter we use the database (Chapter 5) and the functions (Chapter 4) to
create queries of several performances of different pieces of music. The queries are
used to populate documents which in turn generate Lilypond code which can be
processed to produce musical scores annotated with performance data.

Section 6.1 shows two types of analysis of a piano performance producing a score
annotated with bar graphs. Section 6.2 shows an analysis of the intonation of a vocal
performance producing a score annotated with line graphs showing the tuning and
pitch contour over the course of each sung note. The analysis also shows the system is
capable of representing and processing music in non-standard tuning systems. Finally
Section 6.3 shows a combination of musical and performance queries producing a score
annotated with normalised inter-onset intervals and musical intervals with dissonant
intervals highlighted.

6.1 Displaying Performance Data - single values

In this section we will follow the process of creating a presentation of performance
data alongside a score. The data used was collected from a performance of Chopin’s
Prelude No. 7 by the pianist Martin Jones — one of Britain’s most highly regarded
solo pianists. The recording setup used was that described in Section 5.2.3, namely:

112

a grand piano with the piano bar attached, a high frame-rate camera and a computer
to record the MIDI, audio and video.

The MIDI data was processed as described in Section 5.3.2 to produce a PML file
which was uploaded to the database.

6.1.1 The Query

The aim of the query described here is to annotate the performance with bar graphs
showing the keypress durations (the length of time the performer holds a piano key)
and the inter-onset interval (IOI) (the length of time between down keypresses). Both
of these measures give an indication of the tempo and playing style of the performance.
For example, a sequence of short-duration keypresses might indicate an accelerated
tempo or it might indicate a staccato playing style. Only when this is combined
with the IOI will it become clear which is in operation. Alternatively, a sequence
of long duration keypresses might indicate a decelerated tempo or a legato playing
style. Combining this information with the IOI allows the two to be distinguished.
Combining this data with a score allows the musicologist to see how the structure of
the piece is reflected in the performance.

The full query is given in Program 6.1.

Program 6.1: A query in SQL to create a document with two bar graphs under each
note, one showing the keypress duration and one showing the inter-onset interval.

−−set the performance id (used later) to be Martin Jones.
−−This is a variable for the psql program and is not proper SQL.
\set performance id 27

5 begin;

−−add score notes to the Python data structure which holds the document.
−−The finale work has id=5, the document is called 'mjones'.
select populatedocument('mjones', sn) from score notes as sn where work id=5;

10

−−add ioi bargraphs under the notes. The name of this lyric line is 'ioi'.
select addBarGraphUnderNotes('mjones', 'ioi', data)

113

from (
15 select first.work id,

first.note id,
first.voice,
first.part id,
(seg fol.start time − seg first.start time) as value

20

from score notes first
inner join score notes following

on (first.onset + first.duration = following.onset
and first.work id = following.work id

25 and following.type = 'pitch'
and first.voice = following.voice
and first.part id = following.part id
and first.note id <= 553)

left join segments seg first
30 on (seg first.matched work id=first.work id

and seg first.perf id = :performance id
and seg first.matched note id = first.note id
and seg first.align = 'correct')

left join segments seg fol
35 on (seg fol.matched work id=first.work id

and seg fol.perf id = :performance id
and seg fol.matched note id = following.note id
and seg first.align = 'correct')

40 where first.work id = 5
and first.type = 'pitch')

as data;

−−add keypress duration bargraphs under the notes,
45 −−the name of this lyric line is 'perf_dur'.

select addBarGraphUnderNotes('mjones', 'perf_dur',query vals st)

from (
select segments.matched work id as work id,

50 segments.matched note id as note id,
sn.voice as voice,
sn.part id as part id,
segments.duration as value

55 from segments,
(select score notes.note id,

114

score notes.work id,
score notes.voice,
score notes.part id,

60 score notes.type,
score notes.onset,
score notes.duration,
score notes.pitch

65 from score notes
inner join
(select ng.score note note id as note id

from
(select *

70 from note groups score notes
inner join
(select id

from note groups
where type='measure'

75 and value[1] <= 22)
as t2
on note group id = t2.id)

as ng
where ng.score note work id=5)

80 as t3
on score notes.note id = t3.note id)

as sn

where segments.matched work id = sn.work id
85 and segments.matched note id = sn.note id

and segments.perf id = :performance id)
as query vals st;

−−process the Python data structure and create the lilypond file.
90 select getlilypond('mjones');

commit;

−−this is a psql command to save the result to a file
95 \g 'prelude_7_ioi+dur_mjones.ly'

115

The first line sets the variable performance_id to the value 27. We use this vari-
able later on to find the correct performance. The value is the id of the performance
that we want to display. The BEGIN directive begins a transaction for the current
block of SQL. If any of the queries fail, then any changes made to the database are
reverted to the state before the transaction began (called “rolling back” in database
terminology).

The first sub query occurs at line 12 where the populateDocument function is
called. A document called mjones is created and populated with the notes from the
score with a work identifier equal to 5.

The next sub query calculates the inter-onset interval and attaches it to each
note by calling the addBarGraphUnderNotes function. It achieves this by calculating
several joins before picking out the columns to use as the spoff_value_type

In order to calculate the IOI for each note: we find the note that follows it;
find the start time in the performance of the first note; find the start time in the
performance of the following note and calculate the difference.

The first join is an inner join and included to find the following note for each
note in the score. For each row of the table on the left and the table on the right
which match the join criteria, a new row is created which has all the columns of the
left table and all the columns of the right table. In this example, the table on the
left is the score_notes table called first and the table on the right is the same
table, this time called following The join criteria can be seen in lines 23-28: the
following note’s onset must equal the first note’s duration added to its onset; the part
identifier, voice and work identifier must be the same; the following note must be a
‘pitch’ type (i.e., not a rest or grace note) and the note identifier must be less than
or equal to 553. This last criterion is a crude method of restricting the result to the
the first portion of the piece. An improved, though more complex, method using bar
numbers is given later. The criteria for the first note is given in the where clause
at the end of the sub query (lines 40 and 41) where it is restricted to a given work
identifier and only notes of type ‘pitch.’

We use an inner join here so that we are left with a table which includes only
those notes which match the join criteria. For the calculation of an IOI, we only want

116

those notes which are followed by another note. We want to disregard those notes
which are followed by a rest (because we cannot use them to calculate an IOI). When
we calculate keypress durations, we want to include those notes which are followed
by a rest, so we use a left join.

Of particular importance in these join criteria is the one which specifies that the
following note’s onset must equal the first note’s onset plus duration. There is no
implicit or explicit ordering of notes in the database: rows of a table are ordered
according to the order in which they were created, although further processing will
move them to different places. It is therefore not possible to rely on the database
returning rows in a particular order unless that order is specified in the query. The
simplicity of the join criteria also hides some complexity. The onset and duration of
notes is stored in a custom type. The addition and equality operators call custom
functions to operate on these types.

At this point we have a table with rows for each note in the score with additional
columns for the note in the score which follows it.

The second join is a left join. For each row of the table on the left, a new row is
created with all the columns of the left table and all the columns of the right table if
the right row satisfies the join criteria. In this example, our result from the previous
join is the table on the left and the segments table is the table on the right called
seg_first The join criteria (in lines 30-33) state that the row from the segments
table must be correctly matched with the work identifier and note identifier of the
first note and the performance identifier matches the values assigned to the variable
at the top of the query. We have now attached columns to our row which describe
the first note’s performance.

The third join is almost exactly the same as the second join except that this time
we are matching against the following note. This subquery has used three joins to
create a table with each note of the score followed by the following note in the score,
the data for the matched first note from the performance and the data for the matched
following note from the performance. Finally at lines 15-19, the identifiers for the
work, part, voice and note for the first note are selected and the IOI is calculated
as the following note’s start time in the performance less the first note’s start time.
These are given as arguments to the addBarGraphUnderNotes function so that it

117

attaches the IOI value to the first note.

The second subquery aims to add bar graphs under notes representing the duration
of keypresses in the piano performance. The subquery takes a different approach
than the subquery for the IOIs and is best understood by starting in the middle and
working out.

The purpose of this first section is to find the group identifiers for the bars we
are interested in and use these to select only those notes which are members of those
groups. Starting at lines 72-766, we see a subquery to find the identifiers for all note
groups which have the type ‘measure’ and the measure number less than 22. The
next outer query is a join between the note_groups__score_notes table and the
subquery containing the identifiers of the measure groups. This is an inner join so
the result is rows consisting of the note group identifier and the score note identifiers
of only those rows which are in the measures less than or equal to 22.

The next outer query (lines 67-79) picks out the note identifiers for all the rows
whose work identifiers match the current work i.e., 5. We now have a table consisting
of a single column of note identifiers which are in the current work from measures
1 to 22. This is an improved method to finding the notes in the first portion of the
piece to the one described above since it does not rely on the note identifiers to imply
the order of the notes.

This table is used to pick out the notes we need from the score_notes table by
performing an inner join between the two tables (lines 56-86).

The penultimate layer of the subquery selects out those columns needed to satisfy
the spoff_value_type: the identifiers for the work, part, voice and note and the
value – calculated from the segments onset and offset of the segment which matches
the note identifier, work identifier and the performance identifier. Finally the value
is attached to the note by calling the addBarGraphUnderNotes function.

Now that the data structure has had all the data attached to it, we can generate
the Lilypond file with the performance data. This is achieved in line 90 by calling
the getLilypond function.

118

6.1.2 The Result

The Lilypond code resulting from the query is in Appendix B in full and is sum-
marised here in Program 6.2 in its edited form.

Program 6.2: A summary of the Lilypond markup code generated by the query in
Program 6.1.

\version "2.12.1"

valueboxheight = 10
valueboxwidth = 1

5 valueboxscalefactor = #5.29
#(define−markup−command (valuebox layout props val) (number?)

"Draws 2 boxes - one containing val as text,
one containing val as a line graph - in a column"

(interpret−markup layout props
10 (markup

#:center−column
(#:override '(box−padding . 0.1)
#:rounded−box
(markup #:override '(font−size . −5)

15 (format #f "˜$" val))
#:override '(box−padding . 0.1)
#:rounded−box
(#:combine
(#:combine

20 #:with−color (x11−color 'white)
#:filled−box `(0 . ,valueboxwidth) `(0 . ,valueboxheight) 0
#:with−color (x11−color 'blue)
#:filled−box `(0 . ,valueboxwidth) `(0 . ,(* valueboxscalefactor val)) 0)
#:translate `(−0.5 . 0) #:draw−line `(,(+ 1 valueboxwidth) . 0))

25))))

%\book {
%\score { <<

30 \new Staff = "Staff 1 "
<<

{
\key a \major
\clef treble

119

35 \time 3/4
r4 r4 e'4 cis''8. d''16
<d' gis' b'>4 <d' gis' b'>4 <d' gis' b'>2 <d'' fis''>4

}
\addlyrics

40 {
\markup \valuebox #0.7406 \markup \valuebox #0.5876 \markup \valuebox #0.1666
\markup \valuebox #0.6479 \markup \valuebox #0.6531 \markup \valuebox #1.4011
\markup \valuebox #0.625

}
45 \addlyrics

{
\markup \valuebox #1.0365 \markup \valuebox #0.6271 \markup \valuebox #0.2343
\markup \valuebox #0.3062 \markup \valuebox #0.2292 \markup \valuebox #0.7115
\markup \valuebox #0.7458

50 }
>>

\new Staff = "Staff 2 "
<<

{
55 \key a \major

\clef bass
\time 3/4
r2. e,4
<e e'>4 <e e'>4 <e e'>2 r4

60 }
\addlyrics
{
\markup \valuebox #0.7094
\markup \valuebox #0.6719 \markup \valuebox #0.6343 \markup {}

65 }
\addlyrics
{
\markup \valuebox #0.25
\markup \valuebox #0.2813 \markup \valuebox #0.177 \markup \valuebox #0.8416

70 }
>>

%>> }
%}

120

The Lilypond code in Program 6.2 has 2 sections: the first is the scheme function
which draws the graphs; and the second is the Lilypond markup which holds the
score and calls the scheme functions. The scheme function, called valuebox draws
a bar graph to the height of its argument (scaled by valueboxscalefactor inside
a box of height valueboxheight and width valueboxwidth The Lilypond section
consists of 2 staves of Lilypond score notation, each followed by 2 lyric lines. In
stead of containing lyrics, the lyric lines consist of a call to the markup command in
place of each word. The argument to the markup command is the call to valuebox
to draw the bar graph. In this way, a bar graph is drawn under each note. The
output routines which generate the Lilypond code have to take account of the fact
that Lilypond, understandably, does not allow lyrics under rests and the second note
of a tie.

The score resulting from the Lilypond code in Program 6.2 is shown in Figure 6.1.

The top line of bar graphs in Figure 6.1 shows the inter-onset interval. The final
note in the left hand has no IOI bar as it is followed by a rest. The bottom line
shows the keypress duration. One can see a staccato playing style in the left hand
where keypresses are short relative to the inter-onset interval. In the right hand, one
can see an extra long pause on the first note of the third bar. This is indicative of
a phrase ending — the performer indicates the structure through a pause here. The
presentation of performance information alongside the score shows how the musical
structure is reflected in the performance.

In this section we have seen how a presentation of data alongside a score is
created. We have retrieved a score from the database and annotated it with two
different types of performance data calculated from the data held in the database.
We have shown that the system is able to analyse performance data and display
single values as bar graphs aligned with the corresponding note in the score. This
section shows the system fulfilling several of the requirements in Chapter 1: to enable
the analysis of performance data in the computer (Requirement 4); and to present
the results aligned with the score (Requirement 4f).

The next section will address presenting continuous data alongside the score and
will address Requirement 2: to manipulate music in different tuning systems.

121

0.28

X

XXX
0.65

0.23

X
0.17

0.23

XXX
0.65

0.31

XX

0.67

���
1.40

0.71

��

0.84

�

� �

XX
0.63

0.75

�

� ���
4
3

� ���
4
3

0.71

0.25

�

X

0.63

0.18

� X
0.74

1.04

X
0.59

0.63

X

Figure 6.1: The resulting annotated score from the edited lilypond code in Program
6.2. The first 3 bars of Chopin’s Prelude No. 7 is shown annotated with performance
data from a performance by Martin Jones. The top line of bar graphs under each note
shows the inter-onset-interval and the bottom line shows the keypress duration. One
can see a staccato playing style in the left hand where keypresses are short relative
to the inter-onset interval.

6.2 Displaying Performance Data - continuous val-
ues

In this section we will investigate displaying continuous data alongside a score. The
data comes from a recording of the vocal part of the piece ’Ash’ by Graham Hair.
The singer is Amanda Morrison (The Sixteen, BBC Singers, The Tallis Scholars).
The piece is written using a 19-tone equally-tempered scale and therefore presents a
challenge to the singers to achieve the correct intonation. The presentation of the
performance data will therefore show the accuracy of the intonation by displaying the

122

results of pitch-tracking the performance. The data will be displayed as a line graph
under each note showing the pitch contour over the course of the note, showing the
deviation from the target pitch.

The data was recorded and processed using Douglas McGilvray’s pitch tracker
and audio segmenter. The segmentation was loaded from the PML file. The raw
pitch contour data was loaded from the csv file produced at an intermediate stage of
the processing. The segmentation from the PML file was then used to locate values
within the pitch contour data.

6.2.1 The Query

The query to create the document calls the populateDocument function in a sim-
ilar manner to that described above in Section 6.1.2, creating a document called
‘ash’. The query to attach data to the document uses the addLineGraphUnderNotes
function described in Section 5.6.2. The function operates slightly differently to the
addBarGraphUnderNotes function in that it is called several times per note, each
time appending a value to the Python list that is attached to each note.

The query uses several joins to create a table containing all the necessary data.
Several columns are then selected out and used to call addLineGraphUnderNotes to
append the data to the Python list for each note. The full query is given in Program
6.3.

Program 6.3: The query to attach line graphs to the score for Ash by Graham Hair
showing the pitch contour of the vocal performance.

select addlinegraphundernotes('ash', 'pitch_contour',
(val.work id, val.note id, val.voice, val.part id, val.value))

from (
select

5 score notes.work id,
score notes.note id,
score notes.voice,
score notes.part id,
timed data.time,

10 1200*log(2, first.freq/timed data.value)

123

− first.centsdiff as value
from score notes
left join score notes sn2 on

(sn2.onset = score notes.onset + score notes.duration
15 and sn2.work id = score notes.work id

and sn2.type = 'pitch ')
left join segments first on

(first.matched note id = score notes.note id
and first.matched work id = score notes.work id

20 and first.perf id = 22
and first.align = 'correct')

inner join timed data on
(timed data.metadata id = 4
and timed data.performer id = 12

25 and timed data.time >= first.start time
and timed data.time < first.start time + first.duration
)

where score notes.work id = 6
and score notes.type = 'pitch '

30 order by score notes.work id,
score notes.note id,
score notes.part id,
score notes.voice,
timed data.time

35) as val
group by val.work id, val.note id, val.part id, val.voice
;

The query uses joins in a similar way to the previous query: first joining the
score_notes tables to itself to create a table of the first note and following note,
then using subsequent joins to append the values from the performance to that data.

The first join (lines 13-16) takes all the notes in score_notes table which have
the work identifier 6 and type ‘pitch’ (lines 28-29) and joins them with all the notes
from the same table which satisfy the criteria: the following note’s onset must equal
the first note’s onset plus its duration; the following note must have a work identifier
of 6 and a type of ‘pitch.’

The second join (lines 17-21) joins the data from the segments table which satisfies
the criteria: the first note and work identifier match; the performance identifier is 22

124

and the segment is correctly matched.

The third join attaches data from the timed_data table where the timed data
identifier is 2 and the data times fall into the range defined by the start and end of
the segments. Usually, a single row in the resulting table will match several rows in
the timed_data table. Using an inner join here means that each row in the compound
table will be made up of only those rows with values which meet the criteria.

At the top of the subquery, the relevant fields are selected from the compound
table: work, note, part and voice identifiers. Additionally, the time of each value
from the timed_data table is selected. This allows us to order the values by time
before passing them to the addLineGraphUnderNotes This is needed since we cannot
guarantee the order in which the values will be returned by the database.

The last value in the select clause is the actual value which will be plotted. It
is calculated as the difference between the performed pitch and the target pitch in
cents and is calculated according to Equation 6.1.

value = 1200 log2

(
fsegment
fperformed

)
− centsdiff (6.1)

where fsegment is the calculated frequency for the segment in Hertz, fperformed is the
performed frequency, also in Hertz and centsdiff is the difference between the target
pitch and the segment pitch in cents. The segment frequency is calculated from the
averaged frequency for the segment.

Finally, in the outer subquery, the selected fields are combined as the arguments
to the addLineGraphUnderNotes function. The first argument is the name of the
document to which these values are being attached: ‘ash’ in this case. The second is
the name for this data set: ‘pitch_contour’ in this case. The final argument is the
spoff_value_type Since the result of the lower subquery is a set of fields and not
the compound spoff_value_type we could cast the values to the correct type. It is
enough, however, to combine the values in an array, as done here. The group by
clause on line 36 groups the results by the work, note, part and voice and ensures
that the initial state of the addLineGraphUnderNotes function is reset for each note.
In this way we can ensure that each set of values is only attached to the correct note.

125

The ‘ash’ document is then extracted in the same way as that described in Section
6.1.2 and processed with the Lilypond music typesetter.

6.2.2 The Result

The Lilypond code resulting from the query is in Appendix B in full and is sum-
marised here in Program 6.4 in its edited form.

Program 6.4: A summary of the Lilypond markup code generated by the query in
Program 6.3.

\version "2.12.1"

\pointAndClickOff

5 linegraphboxheight = 10
linegraphboxwidth = 5
linegraphscalefactor = #0.066666666
linegraphbias = 75

10 #(define (pslines prev x x inc y list)
(if (> (length y list) 0)
(format #f "˜$ ˜$ ˜a˜a"
(exact−>inexact (+ prev x x inc))
(* linegraphscalefactor (+ (car y list) linegraphbias))

15 "lineto
"

(pslines (+ prev x x inc) x inc (cdr y list)))
""
))

20

#(define (generate−ps y list)
(format #f "˜$ ˜$ ˜a˜a˜a"
'0
(* linegraphscalefactor (+ (car y list) linegraphbias))

25 "moveto
"

(pslines '0 (/ linegraphboxwidth (− (length y list) 1)) (cdr y list))
"stroke"))

126

30 #(define−markup−command (linegraphbox layout props y list) (list?)
"draws a line graph from a list of values in fixed size box"
(interpret−markup layout props
(markup
(#:rounded−box

35 (#:combine (#:combine (#:combine (#:combine
(#:combine (#:combine (#:combine (#:combine
#:with−color (x11−color 'white)
#:filled−box `(0 . ,linegraphboxwidth)
`(0 . ,linegraphboxheight) 0

40 #:translate `(0 . 5)
#:with−color (x11−color 'Black)
#:draw−line `(,linegraphboxwidth . 0))

#:translate `(0 . ,(+ 5 (* 60 linegraphscalefactor)))
#:with−color (x11−color 'LightGrey)

45 #:draw−line `(,linegraphboxwidth . 0))
#:translate `(0 . ,(+ 5 (* 40 linegraphscalefactor)))
#:with−color (x11−color 'LightGrey)
#:draw−line `(,linegraphboxwidth . 0))

#:translate `(0 . ,(+ 5 (* 20 linegraphscalefactor)))
50 #:with−color (x11−color 'LightGrey)

#:draw−line `(,linegraphboxwidth . 0))
#:translate `(0 . ,(+ 5 (* −20 linegraphscalefactor)))
#:with−color (x11−color 'LightGrey)
#:draw−line `(,linegraphboxwidth . 0))

55 #:translate `(0 . ,(+ 5 (* −40 linegraphscalefactor)))
#:with−color (x11−color 'LightGrey)
#:draw−line `(,linegraphboxwidth . 0))

#:translate `(0 . ,(+ 5 (* −60 linegraphscalefactor)))
#:with−color (x11−color 'LightGrey)

60 #:draw−line `(,linegraphboxwidth . 0))
#:with−color (x11−color 'red)
#:postscript (generate−ps y list))))))

\book {
65 \score { <<

\new Staff = "Staff 1 "
<<

{
\key c \major

70 \clef treble
\time 3/4
e''8 disis''32 e''32 eis''32 f''32
fis''16 e''16 cis''8 e''16 cis''16 b'8

127

cis''8 gis'4 ais'4 cis''16 cis''16
75 }

\addlyrics
{
\markup \linegraphbox #'(−27.052078535 −33.0811246357 −37.1979962791 . . .
\markup {}

80 \markup \linegraphbox #'(24.3379305708 21.7113376389 19.2565159557 . . .
\markup \linegraphbox #'(1.32210016935 −0.252991595803 −2.39992054312 . . .
\markup {}
\markup \linegraphbox #'(2.61163242619 −5.36683190018 −11.1096629582 . . .
\markup \linegraphbox #'(19.1605978728 19.3257335074 17.8560475439 . . .

85 \markup \linegraphbox #'(−38.4968622961 −40.2087710756 −41.0455687734 . . .
\markup \linegraphbox #'(9.6387158307 2.60735871978 1.16760594764 . . .
\markup \linegraphbox #'(1.05743256154 4.15050852965 6.35099898724 . . .
\markup \linegraphbox #'(16.3793628642 18.3635650729 18.9910033344 . . .
\markup \linegraphbox #'(−5.81490477254 −7.44611253398 −8.30203904057 . . .

90 \markup \linegraphbox #'(5.10151575788 5.65344559157 7.84166776491 . . .
\markup \linegraphbox #'(−15.6358081059 −17.826242782 −19.8901531136 . . .
\markup \linegraphbox #'(9.72374232529 5.57701872602 5.07919097319 . . .
\markup {}

}
95 >>

>> }
}

As before, the Lilypond code in Program 6.4 can be considered in 2 parts: the
scheme functions to draw the linegraph boxes and the Lilypond markup which de-
scribes the score and calls the scheme functions.

There are 4 variables which determine the size of the line graph: linegraphbox-
height for height, linegraphboxwidth for width, linegraphscalefactor for scaling
the line to fit in the graph and linegraphbias to move the graph up (required when
the values dip below zero).

There are 3 scheme functions responsible for drawing the line graphs: pslines
(lines 10-19) which returns postscript commmands to connect the points on the line;
generate-ps (lines 21-28) which returns postscript commands to move to the origin,
insert the points from pslines and draw the line; linegraphbox draws the box
surrounding the line graph and calls generate-ps to fill it.

128

The linegraphbox function has additional code to that described in Section 5.7.
Lines 40-60 draw several lines on the box. A single black line for the origin and
additional grey lines to mark +/− 20, 40 and 60 cents deviation from the target
pitch.

The annotated score which results from processing Program 6.4 with the Lilypond
typesetter is shown in Figure 6.2.

7 ����� ����

� ���6

4
3 ������ �� �����

Figure 6.2: An extract from Ash by Graham Hair annotated with the singer’s pitch
contour. This edited extract is the result of the query in Program 6.4 and processing
the extracted file shown in Program 6.3. The graphs have a heavier line for the
origin and fainter lines at +/− 20, 40 and 60 cents. Plots are shown centre-aligned,
underneath the note to which they belong. Where the matcher failed to match a note
to a segment of the performance data, a note will have no plot. In these cases, the
typesetter moves surrounding notes closer.

Figure 6.2 shows the successful annotation of a score in 19-tone equal temperament
with the singer’s pitch trajectory. We can clearly see which notes were sung sharp
and which were sung flat. We can also see the pitch trajectory over the course of
the note and amount and depth of vibrato applied. This figure shows the application
of the database system to the analysis of music in non-standard tuning systems and
shows the ability of the system to display useful continuous data alongside a score.

129

6.3 Combining Musical Queries and Performance
Data

In this section we will show the combination of queries of musical information and
performance data. The piece we will use to illustrate this is Bach’s Two-Part Inven-
tion No. 1 for solo piano (BWV772) performed by a student at Glasgow University.
The piece was recorded using the Piano Bar according to the procedure outlined in
Chapter 5. The presentation will annotate the musical intervals and highlight those
considered dissonant. In addition, the inter-onset interval will be displayed so that
one can clearly see how the presence of a dissonance is reflected in the performance.
The IOIs will be normalised (divided by the score note’s duration in crotchets) to
more clearly show any deviation from a regular tempo.

6.3.1 The Query

The query to create the document calls the populateDocument function in a similar
manner to that described above in Section 6.1.2, creating a document called ‘inv1’.

The query to attach note intervals and inter-onset intervals to the score consists
of three parts: a query to attach the interval text to the top staff (the right hand); a
similar query to attach interval text to the bottom staff (the left hand); and a query
to attach the bar graphs showing the IOIs.

The first part of the query to attach intervals to the top staff uses a temporary
table to store the intervals between the top staff and the bottom staff. Then the
addBarGraphUnderNotes function is called twice: once for the dissonant intervals to
be highlighted in red text; and once for the other intervals. The full query is shown
in Program 6.5.

Program 6.5: A query in SQL to attach text to each note in the top staff of a score
with dissonant intervals highlighted with red text.

begin;

130

create temp table bi as
(

5 select top.work id,
top.note id,
top.voice,
top.part id,
getinterval(top.pitch, bottom.pitch) as value

10 from score notes as top
inner join score notes as bottom
on (bottom.work id = top.work id
and bottom.part id = 'Staff 1 '
and bottom.type = 'pitch '

15 and (bottom.onset = top.onset
or (bottom.onset < top.onset and bottom.onset + bottom.duration > top.onset)))

where top.part id = 'Staff 2 '
and top.type = 'pitch '

20 and top.work id = 0
order by top.onset, bottom.onset
)

;

25 select addtextundernotes('inv1', 'intervs',
cast(

(bi.work id,
bi.note id,
bi.voice,

30 bi.part id,
' \\with-color #red ' | | interval2text(bi.value)

) as spoff text type))
from bi
where equateIntervalClass(bi.value, text2interval('M2'))

35 or equateIntervalClass(bi.value, text2interval('P4'))
or equateIntervalClass(bi.value, text2interval('M7'))
;

select addtextundernotes('inv1', 'intervs',
40 cast(

(bi.work id,
bi.note id,
bi.voice,
bi.part id,

45 interval2text(bi.value)
) as spoff text type))

131

from bi
where not equateIntervalClass(bi.value, text2interval('M2'))
and not equateIntervalClass(bi.value, text2interval('P4'))

50 and not equateIntervalClass(bi.value, text2interval('M7'))
;

drop table bi;

55 commit;

The first part (lines 3 to 23) of the query shown in Program 6.5 creates a temporary
table called ‘bi’ to hold the intervals for further processing. The table has columns
for work, note, part and voice identifiers of the notes from the top staff along with the
interval between the top staff and the bottom staff pitch. The interval is calculated
using the getInterval function which takes two values of spoff_pitch_type and
returns an interval as a spoff_interval_type

Notes from the score_notes table are included if they fulfil the criteria on lines
18-20: the work identifier is 0; the part identifier is ‘Staff 2’ and the note type is
‘pitch.’

The result is joined with score_notes using an inner join to attach the simulta-
neous notes from the bottom staff. An inner join is used to ensure that only those
notes with a simultaneous note are copied to the temporary table. The criteria for
the join are: the work identifier must match; the part identifier must be ‘Staff 1’;
and the note type must be ‘pitch.’ The final criteria select those notes whose onset
is simultaneous with the top note or those whose onset is before the top note and
whose offset is after the top note’s onset.

It is worth noting here that these criteria do not account for those overlapping
notes whose onset occurs after the onset of the top note but before the offset of the
top note. These notes will be covered by the later query.

The next subquery (lines 25-37) attaches the interval names in red text for those
intervals from the ‘bi’ table which are dissonant by calling the addtextundernotes
function. Here, a dissonant interval is defined as any kind of 2nd, 4th or 7th. The
query collects together the work, note, voice and part identifiers and the interval

132

text from the ‘bi’ table and casts them as a spoff_text_type The interval text is
produced by calling the interval2text function (line 31), which takes an interval
as its argument and returns text, and prepending it with the Lilypond code for red
text.

The dissonant intervals are selected by calling the equateIntervalClass func-
tion. This function takes two intervals as its arguments and returns true if the first
interval has the same class as the second. For example, if the first interval was a
minor 2nd and the second was an augmented 2nd, the function would return true as
a minor 2nd is a kind of 2nd.

The call to equateIntervalClass makes use of the text2interval function to
convert the string ‘M2’ to a major 2nd represented as a spoff_interval_type In
this way, only those intervals which are a kind of 2nd, 4th or 7th are attached to the
document in red text.

The next subquery is very similar to the previous only it selects those intervals
that are neither a 2nd, 4th or 7th without the red text.

Finally the ‘bi’ temporary tabled is deleted (‘dropped’).

The query to attach interval text to the bottom staff (the left hand) is very similar
to that shown in Program 6.5. The query is shown in Program 6.6.

Program 6.6: A query in SQL to attach text to each note in the bottom staff of a
score with dissonant intervals highlighted with red text.

begin;

create temp table bi as
(

5 select bottom.work id,
bottom.note id,
bottom.voice,
bottom.part id,
getinterval(top.pitch, bottom.pitch) as value

10 from score notes as top
inner join score notes as bottom
on (bottom.work id = top.work id

133

and bottom.part id = 'Staff 1 '
and bottom.type = 'pitch '

15 and (bottom.onset >= top.onset and bottom.onset < top.onset + top.duration)
)

where top.part id = 'Staff 2 '
and top.type = 'pitch '
and top.work id = 0

20 order by top.onset, bottom.onset
);

select addtextundernotes('inv1', 'intervs',
cast(

25 (bi.work id,
bi.note id,
bi.voice,
bi.part id,
' \\with-color #red ' | | interval2text(bi.value))

30 as spoff text type))
from bi
where equateIntervalClass(bi.value, text2interval('M2'))
or equateIntervalClass(bi.value, text2interval('P4'))
or equateIntervalClass(bi.value, text2interval('M7'))

35 ;

select addtextundernotes('inv1', 'intervs',
cast(

(bi.work id,
40 bi.note id,

bi.voice,
bi.part id,
interval2text(bi.value))

as spoff text type))
45 from bi

where not equateIntervalClass(bi.value, text2interval('M2'))
and not equateIntervalClass(bi.value, text2interval('P4'))
and not equateIntervalClass(bi.value, text2interval('M7'))
;

50

drop table bi;

commit;

134

The query to attach interval text to the bottom staff proceeds in much the same
way as the query to attach text to the top staff except for the obvious substitutions of
the top staff with the bottom staff and vice versa. A notable difference is the criteria
for selecting those notes in the bottom staff which overlap with the top staff. In this
second query we select only those note in the bottom staff whose onset occurs at or
after the onset of the top note and whose onset occurs before the top note’s offset.

In this way we have covered all the possible ways in which the two notes can
overlap. One might ask why we couldn’t attach all of the intervals to the top staff.
We could but the intervals would not be aligned with the notes they represent. We
have two separate queries to create a clearer presentation of the intervals.

The final query calculates the inter-onset interval and attaches a bar graph to
each note to represent it. It is shown in Program 6.7.

Program 6.7: A query in SQL to attach a bar graph representing the inter-onset
interval.

\set performance id 0
\set work 0

BEGIN;
5

select addBarGraphUnderNotes('inv1', 'ioi', data) from (
select first.work id,

first.note id,
first.voice,

10 first.part id,
(seg fol.start time − seg first.start time)
/
(cast (((first).duration).crotchet numerator as numeric)
/

15 (cast (((first).duration).crotchet denominator as numeric)))
as value

from score notes first
inner join score notes following

20 on (first.onset + first.duration = following.onset
and first.work id = following.work id
and following.type = 'pitch'

135

and first.voice = following.voice
and first.part id = following.part id)

25 left join segments seg first
on (seg first.matched work id=first.work id
and seg first.perf id=:performance id
and seg first.matched note id = first.note id
and seg first.align = 'correct')

30 left join segments seg fol
on (seg fol.matched work id=first.work id
and seg fol.perf id=:performance id
and seg fol.matched note id = following.note id
and seg first.align = 'correct')

35

where first.work id = :work
and first.type = 'pitch'
order by seg first.start time)

as data;
40

COMMIT;

The query in Program 6.7 collects the work, note, part and voice identifiers and
calculates the normalised inter-onset interval. This is calculated from the difference
between the following note’s performance time onset and the first’s divided by the first
note’s score time duration. This calculation differs from the previous IOI calculation
in that it is normalised to the score note duration. Whereas previously the IOI had
been displayed as an absolute value, here we show the IOI as a deviation from a
constant tempo. If the entire performance had been played at a constant tempo, the
normalised IOI would give a constant value — the reciprocal of the beats per minute
which is the duration of one beat. This would be the result if we analysed a computer-
generated MIDI performance with the system. When we show the normalised IOI of
a real performance, we can see the deviations from a constant tempo.

Since the score note durations are stored as a compound type which represents the
numerator and denominator of a fraction, we divide one by the other to get a result
that we can use in a calculation. First, though, each value must be cast from an
integer to a numeric type to ensure that the calculation is performed with sufficient
accuracy.

The values are taken from a compound table created by joining the score_notes

136

with itself to extract first notes and following notes. This is then joined with the
segments table twice to extract the start times of the first notes and following notes
from the performance.

As before the Lilypond markup is extracted using the getLilypond function.

6.3.2 The Result

The Lilypond code resulting from the query is in Appendix B in full and is sum-
marised here in Program 6.8 in its edited form.

Program 6.8: A summary of the Lilypond markup code generated by the query in
Programs 6.5, 6.6 and 6.7.

\version "2.12.1"

\pointAndClickOff
valueboxheight = 10

5 valueboxwidth = 1
#(define−markup−command (valuebox layout props val) (number?)
"Draws 2 boxes - one containing val as text, one containing val as a line graph - in a column"
(interpret−markup layout props
(markup

10 #:center−column
(#:override '(box−padding . 0.1)
#:rounded−box
(markup #:override '(font−size . −5)
(format #f "˜$" val))

15 #:override '(box−padding . 0.1)
#:rounded−box
(#:combine
(#:combine
#:with−color (x11−color 'white) #:filled−box `(0 . ,valueboxwidth) `(0 . ,valueboxheight) 0

20 #:with−color (x11−color 'blue) #:filled−box `(0 . ,valueboxwidth) `(0 . ,(* 8 val)) 0)
#:translate `(−0.5 . 0) #:draw−line `(,(+ 1 valueboxwidth) . 0))

))))

\book {
25 \score { <<

137

\new Staff = "Staff 1 "
<<

{
\time 4/4 \key c \major \clef treble

30 e''16 c''16 d''16 e''16
f''16 d''16 e''16 c''16
d''16 e''16 f''16 g''16
a''16 f''16 g''16 e''16

}
35 \addlyrics

{
\markup {} \markup {\tiny 1+m3} \markup {\tiny 1+M3}
\markup {\tiny \with−color #red 1+A4} \markup {\tiny 1+m6}
\markup {\tiny \with−color #red 1+P4} \markup {\tiny 1+M6}

40 \markup {\tiny \with−color #red 1+P4} \markup {\tiny 1+M6}
\markup {\tiny \with−color #red 1+M7} \markup {\tiny 1+m3}
\markup {\tiny \with−color #red 1+P4} \markup {\tiny 1+M6}
\markup {\tiny \with−color #red 1+P4} \markup {\tiny 1+M6}
\markup {\tiny \with−color #red 1+A4}

45 }
\addlyrics
{
\markup {} \markup \valuebox #0.8288 \markup \valuebox #0.692 \markup \valuebox #0.8872
\markup \valuebox #0.6376 \markup \valuebox #0.8208 \markup \valuebox #0.7544

50 \markup \valuebox #0.808 \markup \valuebox #0.7336 \markup \valuebox #0.8248
\markup \valuebox #0.8252 \markup \valuebox #0.6668 \markup \valuebox #0.754
\markup \valuebox #0.7624 \markup \valuebox #0.6792 \markup \valuebox #0.8044

}
>>

55 \new Staff = "Staff 2 "
<<

{
\clef bass \key c \major
a8 bes8 a8 g8

60 f8 d'8 c'8 bes8
}
\addlyrics
{
\markup {\tiny 1+P5} \markup {\tiny 1+M3} \markup {\tiny 1+m6} \markup {\tiny 1+M6}

65 \markup {\tiny 1+M6} \markup {\tiny 1+m3} \markup {\tiny 1+M6} \markup {\tiny 1+M6}
}
\addlyrics
{
\markup \valuebox #0.679 \markup \valuebox #0.8668 \markup \valuebox #0.7874

138

70 \markup \valuebox #0.7542 \markup \valuebox #0.8 \markup \valuebox #0.7542
\markup \valuebox #0.6042 \markup \valuebox #0.8916

}
>>

>>

75 }
}

The Lilypond code in Program 6.8 has the same structure as previous examples:
a scheme section followed by a Lilypond markup section. Each staff of music is fol-
lowed by two lyric lines: one holding the interval text and one holding the calls to
the valuebox function which draws the bar graph of the normalised inter-onset inter-
val. In lines 36-45, we can see the interval text highlighted in red for the dissonant
intervals and un-highlighted for the consonant intervals.

The annotated score resulting from the Lilypond code in Program 6.8 is shown in
Figure 6.3.

The score in Figure 6.3 shows the dissonant intervals and the normalised inter-
onset interval. We can clearly see a difference in emphasis between certain notes
with the notes of the dissonant intervals nearly always showing a slowing relative to
their neighbours. This figure shows the application of the musical functions of the
database in annotating the score. It also shows how presenting performance data
and musical analysis combined can provide new insights into a piece of music and its
performance.

6.4 Summary

This chapter has demonstrated the system analysing several different performances
and annotating scores with the results. We have seen the system dealing with differ-
ent types of performance data and music written for different tunings systems.

This chapter shows the system fulfilling all of the requirements outlined in Chapter
1.

139

0.80

1+M6

�

0.73

1+M6

� �
1+M7

0.820.82

1+P4

� �

0.81

1+P4

�

0.75

1+M6

�

0.75

1+M6

� �
1+M6

0.75

�
1+M6

0.60

�
1+M6

0.68

�
1+M6

0.89

�
1+A4

0.80

�
1+m3

0.83

�

1+m3

0.75

�
1+P4

0.67

�

1+M3

�

� �

1+P4

0.76

�

�
1+A4

0.89

�
1+m6

0.64

�
1+m6

0.79

19

�

�

1+P5

0.68 0.87

�
1+m3

0.83

�
1+M3

0.69

�

Figure 6.3: An extract of Bar 19 from Bach’s Two-Part Invention No. 1 (BWV772)
annotated with normalised inter-onset intervals shown in bar graphs and intervals.
Dissonant intervals are shown in red. Whereas previously the IOI has been displayed
as an absolute value, here we show the IOI as a deviation from a constant tempo.
If the entire performance had been played at a constant tempo, the normalised IOI
would give a constant value. Since we are analysing a real performance, with fluc-
tuations in tempo, the normalised IOIs change. A semiquaver with a longer line line
than a quaver here means that the semiquaver’s normalised IOI was longer than the
quaver’s — the semiquaver’s IOI was longer relative to the expected semiquaver IOI
for a constant tempo than the quaver’s expected IOI.

• It shows that the system has successfully stored a score in a form which allows
it to be analysed and later extracted for presentation.

• It shows that the system has successfully stored performance data in a form
which allows it to be analysed

• It demonstrates the system manipulating music written in different tuning sys-
tems.

• It illustrates the system being used for analysis of both musical score and per-
formance data.

• It shows that the system is able to accept many diverse queries.

140

• It shows that the system is capable of displaying performance data alongside a
musical score.

This chapter demonstrates the successful implementation of the representations
for pitch and time (described in Chapters 2 and 3) and the functions for the manip-
ulation of these types (described in Chapter 4). It shows that the system described
in Chapter 5 can be used for useful analyses of musical performance. It demostrates
that a system for the analysis of music and performance data has been created which
is capable of providing new insights into musical performance.

141

Chapter 7

Discussion

In Chapter 1, we looked at computer systems used in music research. We found
computer systems being used in 5 domains: logical, visual, gestural, analytical and
phonological. The systems tend to be specialised to one domain for answering a spe-
cific research question. Few systems exist which can accept general musical queries.
Looking at performance musicology, we found few systems capable of combining re-
sults from different musical domains and none which could display results alongside
the score.

We made clear that the aim of the current work is to create a system which is
capable of both music and performance analysis. Since no such system exists we
formulated a set of requirements that a system would need to fulfill in order to
be useful for combined music and performance analysis. We will look again at the
requirements here and assess the extent to which the current system meets these
requirements.

In [77, 80], MacRitchie et al investigated the correlation between movement and
musical performance — in particular, how the performer’s movement indicated the
underlying structure of the piece. The studies recorded 9 pianists performing 2 pieces
in a Vicon motion capture system as well as recording audio, MIDI and video. In [77]
the performers’ movements were then segmented and matched to their performance
and analysed using Principal Component analysis. The study demonstrates the need
for systems (such as the one decribed here) capable of analysing both scores and

142

performance data and doing so across several performances and several pieces. In
[80], the audio and MIDI data were analysed, demonstrating the need for systems
which can manipulate data from multiple sources, such as the current system.

The current system is described in [118] and the proposed file format is described
in [119].

7.1 Represent the score

The first requirement in Section refsec:requirements was to represent the score used
in the performance without loss of data. This requirement is needed since the cur-
rent system aims to enable the analysis of the relationship between the score and
performance, therefore we must store the score. To enable varied analyses, we must
store the score without loss of data. This is because we cannot predict what analyses
will be done on the data. This contrasts some other systems, such as the OMRAS2
system [59], which only needs MIDI data so only stores MIDI data, but loses a great
deal of information by so doing. The distinction is between systems designed to re-
ceive general queries (which must therefore store all the data) and those designed to
perform a specific function which need only store the data relevant to that function.

The software created for the current system allows simple scores to be converted
from MusicXML to the database representation and from the database to Lilypond
without loss of data or accuracy. It is extensible to allow a more complete represen-
tation of music notation to be built up in time.

The representation approximates the Abstract Data Type outlined by Wiggins et
al [123] with the exception of the timbre element. The timbre element, intended to
describe the timbre and intensity of a note, could be represented as part of a more
generalised structure.

The note groups in the current representation approximate Wiggins’ collections.
An important difference is that the note groups do not allow groups of groups only
groups of notes. This has the effect of preventing the creation of hierarchical struc-
tures. The addition of a type column in the note_groups__score_notes table (and

143

the renaming of it) would allow for hierarchical structures to be represented.

group_members [group_id integer, member_type char[10],
work_id integer, member_id integer]

where the group id is the identifier of the group, the member type will be ‘note’ or
‘group’, the work id is the identifier of the work to which the member belongs and
the member id is either the note identifier or the group identifier for the member.

Whilst the database is capable of representing collections of notes in note groups,
it does not have a method for representing the many articulation instructions such
as staccato or fermata which might apply to a single note. The problem could be
solved by creating note groups with only a single member but this is not conceptually
consistent with the purpose of note groups to collect many notes. Alternatively, a
new table could be created to hold note marks. (Only one table would be required
as this would be a one to many relationship between one note and many marks or
articulations). The new table could be as simple as:

note_marks [work_id integer, note_id integer,
mark_type char[10], value[] integer]

The mark type would hold a short string to describe the type of articulation mark
e.g., ‘fermata’ or ‘staccato’. The value array would be available for any values specific
to that type, just as it is used in note groups.

The database does not have any native representation for chords. All the neces-
sary primitives and functions to manipulate chords are already present, however. As
seen in Section 6.3.2, it is possible to establish simultaneities and name intervals using
existing functions. New functions would need to be written to convert a collection of
intervals into a chord name.

The music representation used in the current work successfully stores simple mu-
sical scores without loss of meaning. It stores pitch without losing important infor-
mation and stores time without losing important information. But is not complete —

144

there are still plenty of score marks and annotations that are not currently included
when a file is uploaded to the database. However, the note group facility is able to
provide that function. Work remains to be done in writing the code to upload and
download each score mark as a note group.

7.2 Represent different tuning systems

In [48], Blackwood suggested that the representation of microtonal music be used as
a test for any music representation. This test was therefore added as a requirement
to test the chosen pitch representation’s validity. In the Results chapter, we saw
that the database can load, store and process music written in 19-tones to the octave
showing the success of the approach in the current work.

The pitch system described here is valid — it functions as a pitch representation,
it is interval invariant and allows manipulation of musical data. An alternative pitch
representation described in the Introduction is the Base-N representation [71]. It is
valid for most cases and is capable of representing microtonal scales. It is problematic
when an interval lands on a ‘hole’ in the representation as these gaps have ambiguous
pitch.

Another pitch representation described in the Introduction was the binomial rep-
resentation. It is valid — it functions as a pitch representation. However, it is
probably more accurate to call the binomial system a method for creating a pitch
representations — a family of pitch representations. For each number of divisions of
the octave there is a separate representation of pitch with different representations
for all the intervals. In the spoff representation there is a single representation for all
pitches and intervals – the fraction – which decouples the pitch representation from
the tuning system used. For example, a C is always a 1

1 or 2
2 or 3

3 etc. whether the
piece is tuned in 12-tone, 19-tone or 24-tone. In the binomial system a C is <0, 0>
in 12-tone, <1, 0> in 19-tone etc.

Despite this, the spoff representation is a little esoteric. It does not match the
way that we think about pitch: as an ascending sequence in pitch. Only theorists
really use the spiral of fifths so this makes the representation more difficult to use.

145

To address this convenience functions were made to convert to and from the more
familiar textual representation.

The system has the potential to represent music from non-Western traditions.
The Arabic maqām system used in Persian music is mapped onto a 24-tone scale
so could, in theory, be represented by the current system. The Persian scales use
different note names to the 7 letters used in the Western tradition. Additionally,
each note has a different name in different octaves. New functions would have to be
written to convert between text representations and the Spoff representation.

There are scales that the current system cannot represent: any scale which does
not use the 7 tones and some accidentals cannot be represented. For example, Harry
Partch created a scale based on small integer ratios with 43 tones to the octave [99].
The system also cannot represent scales which are not octave based. For example,
the Bohlen-Pierce scale uses the compass of an octave and a fifth and divides it into
13 tones.

So the current pitch representation system can represent a large family of scales
but not all scales. It can represent a larger family of scales, and represent them more
succinctly, than other representations in use elsewhere. Although it may not be as
easy to learn as other representations, conversion functions are provided so that a
user should never have to use the representation directly if they do not wish to.

7.3 Represent the performance

The third requirement in Chapter 1 was to store the performance. Since the current
system aims to enable analysis of music and performance data, a representation of
the performance must be stored.

The system stores two types of performance data: sampled data in the timed-
_data table and intervallic data in the segments table.

In Chapter 1, the Gesture and Music Signal (GMS [88]) file format was introduced.
It stores performance data in a number of hierarchical streams made up of channels,
units and scenes. Storing GMS data in the timed_data table, loses this structure.

146

A system of similar to the note groups used with the score notes might allow the
representation of the GMS structure and others in the performance data.

The system uses Performance Markup Language (PML) as the principal method of
loading intervallic/segmented data into the database. Although other formats exist
for storing scores and other formats exist for storing performance data, there are
no formats which store score performance matches together other than PML. Also,
it is the format outputted by the software used to accomplish score-performance
matching. The system can load scores in MusicXML format and the database can
load performance data in Comma Separated Value (csv) text files.

Once the data is in the database, only a small amount of additional informa-
tion about each performance is stored. This is sufficient for the small number
(< 50) of performances currently stored in the database as there are not many cross-
performance comparisons that can be made. For a larger collection of performances,
it would be advantageous to store more data about the data (metadata) to enable
stronger distinctions to be made. Data such as the performance location, date, time,
instrument and equipment used could all be added to the performance table as extra
columns.

7.4 Combined Analysis

The fourth requirement was that the system must enable analysis of musical scores,
performance data and scores and performance data combined. Since the system is
intended to enable analysis of the process of musical performance, including how
musical structure is reflected in performance and how performance indicates musical
structure, the system must enable the analysis of both datasets together.

Other computer systems for computer music analysis tend to be specialised toward
one type of analysis rather than their combination. For example, the HumDrum [74]
music analysis system does not provide the ability to analyse and display performance
data; the EyesWeb [35] system displays performance data but cannot analyse or
display music notation. By providing the tools for the analysis of musical scores and
performance data along with the means to present results, the current system aims

147

Program 7.1: An SQL query to obtain all the notes of the piece with work identifier
6 and order them by onset time within each part (horizontal time-slicing).

select * from score notes as note
where note.work id = 6
order by note.part id, note.voice, note.onset;

to enable investigation into the process of performance which would not be possible
using other systems.

The fourth requirement outlined several specific criteria which would enable the
system to analyse music and performance data together. The criteria included the
ability to represent musical structure such as phrases. This is provided by the note
groups and could be extended to enable hierarchical structures with the alterations
described above. The second and third criteria were to represent segmentation of
performance data and match these segments to notes in the score. This is achieved
using the matching software written by Douglas McGilvray [58] which creates PML
files containing segmented and matched performances which are uploaded to the
database. The fourth and fifth criteria were to enable the manipulation of the data
by the computer and make the data queryable — that is enable the creation of many
different queries rather than only a pre-programmed set. These criteria are satisfied
by the creation of musical functions which extend the database’s SQL query language.

One of the advantages of using a database with a query language over other
representations is that it is simple to change between different methods of time slicing
(time interlacing). Most music contains several parts consisting of many notes at
different times. For some applications, such as melodic analysis, it is preferable to
order the musical notes sequentially in each part. This is called horizontal time-slicing
and can be achieved with the SQL query in Program 7.1.

The order by SQL command is not available on composite types (such as the
spoff_time type used for the note onset) unless the complete set of ordinal operators
has been defined (<, >, <=, >=, =). Once this has been done, a comparison function
is created which returns −1 if a the second argument is less than the first, +1 if it
is greater and 0 if it is equal. The functions are combined into an operator class.
The operator class enables the order by command and allows B-tree indices to be

148

created, increasing performance of the database.

For some applications, such as harmonic analysis, it is preferable to order musical
notes by time across parts — to group all the notes which occur simultaneously. This
is called vertical time-slicing and can be achieved with the SQL query in Program 7.2.

Program 7.2: An SQL query to obtain all the notes of the piece with work identifier
6 and order them by onset time across parts (vertical time-slicing).

select * from score notes as note
where note.work id = 6
order by note.onset, note.voice, note.part id;

Using a database for the current application has allowed us to slice time horizon-
tally and vertically with ease — an operation which is not easy to achieve using other
representations — enabling different analyses to be performed on the same data.

The musical functions described in Chapter 4 implement all the functions for
manipulating the Abstract Data Type — the ordinal operators for pitch and time,
the getInterval and addInterval functions and addition and subtraction of time.

Additionally, most of the functionality of the CHARM specification [70] is imple-
mented: CHARM constituents are equivalent to note groups, specific functions for
getting and setting values are not needed; similarly, functions for defining streams
(horizontal time-slices) and slices (vertical time-slices) are not needed. The ability
to define amplitude is not present though this could be implemented through the
note-mark method described above.

The musical functions could be used to encode the SPP (Structured Polyphonic
Patterns) grammar outlined in [91]. SPP is a grammar for describing sequences and
simultaneities in polyphonic music. An interesting application of the current system
would be to implement the SPP grammar in SQL.

The final criterion is to present the results in the context of the score. Lilypond is
used in the current system to provide high-quality typeset music and to draw graphs
of performance data. Whilst there are several programs available which are capable

149

of typesetting music and several which are capable of drawing graphs there are few
(if any) other than Lilypond that are capable of doing both.

The problem is usually that the output format for most typesetting programs
(including Lilypond) is a purely graphical — that is, all musical meaning is lost in
the conversion from logical score to graphical score. The output formats consist only
of instruction as to where to draw lines or pixels, not the musical pitch of the notehead
being drawn. This makes it almost impossible to trace back which notehead belongs
to which note and, therefore, which graph should be drawn where.

Early in the current work, partially successful attempts were made to change
Lilypond’s output routines to include some metadata in it’s output that would allow
the tracing of output glyphs back to the originating items in the score. The routines of
Lilypond’s Scalable Vector Graphics (SVG) output were altered to include metadata
(in this case the note identifier from the database) read from the source file. SVG
is an XML-based language that allows for custom metadata to be included inside all
graphics entities. The SVG file was then processed by a Python script which drew
the performance data graphs on the score aligned with the correct notes.

This approach, though successful, suffered where the graph boxes clashed with the
music notation. A better solution would be to specify the performance data graphs
in advance of the typesetting and let the typesetting software resolve any clashes.
This is the approach used in the current system.

It is clear from the results in Chapter 6 that Lilypond is capable of high-quality
musical output. It is licenced under the GNU GPL [11] which has several advantages
in the current work: it allows us access to the source code to extend the functionality
of the software; and it helps us to fulfil Requirement 5 — that the system should be
accessible on as many different platforms as possible.

By fulfilling these criteria, the system has been created to enable the analysis of
music and performance data combined. By representing musical structure we enable
music analysis. By representing segmentation of performance data we enable perfor-
mance analysis. By representing the correspondances between score and performance
and by including functions to the score and making the whole system queryable we
enable the analysis of the score and performance data combined. Finally, by pre-

150

senting the results in the context of the score we allow results to reach the widest
audience.

7.5 Accessibility

The fifth requirement states that the current system should run on, and be acces-
sible from, as many different operating systems as possible. This requirement was
motivated by Lamere’s study [33] which showed no single preference for an operating
system among the MIR community. In order that the system is of most use to as
many researchers as possible, this requirement for accessibility was formulated.

The database chosen for the current system (PostgreSQL) has a long history (over
20 years) and a wide user and developer base. It therefore represents a stable and
mature platform on which to develop the current system.

The PostgreSQL database is free software and is released under a BSD-style li-
cence. It is available for all major operating systems (Windows, Macintosh, Linux,
BSD), as is the Python programming language used in the current system. Post-
greSQL can be accessed and extended in many different languages. All these make
it a suitable choice to fulfil Requirement 5 to allow access from different operating
systems.

The MySQL database is arguably more popular than the PostgreSQL database
and also fulfils the requirements above. However, at the time that the PostgreSQL
database was chosen for the current project, MySQL did not have the capability to
be extended through database functions.

So the software written for the current system runs on the major operating systems
in use by the MIR community and is available under a liberal licence. The system
utilises the matching software of Douglas McGilvray which is currently only available
for the Linux operating system. For the complete system to satisfy this criteria, the
matching software would need to be available on all platforms.

151

7.6 Interoperability

The sixth requirement was for the system to interoperate with existing software. We
have seen from Lamere’s study [33] that there are a diverse range of tools in use by
the MIR community. To be of most use to the MIR community, the current system
should attempt to interoperate with them where possible.

The system supports taking score input from MusicXML files. MusicXML was
chosen, among other reasons, because it is well supported among the most popular
music typesetting and sequencing programs in use in the MIR community [33]. The
segmented and matched performance data is taken from PML files. Whilst these are
not widely supported, there is no other interchange medium for matched performances
and, since PML is an extension of MusicXML, it is relatively easy to add PML support
to other software.

The system is capable of outputting presentations to Lilypond format. Once this
file is processed, the presentation is available in a number of different formats: PDF,
PNG and SVG would be the most popular. Using the SQL COPY command, one can
output query results to formatted text files including the popular CSV file format.
The system does not currently output to PML which would be the only format
capable of transporting the score and performance data to another application.

As part of investigations into appropriate target formats for the current system,
a new format was proposed which could combine the PML file with the original
performance data and graphical score whilst retaining compatibility with existing
software. The format is called Music and Gesture File (MGF) and is introduced in
[119].

So the current system supports widely used formats for entering scores to the
system and producing results. The format used for entering segmented and matched
performances is not widely used but has been designed so that it is relatively easy to
support.

152

7.7 Understandable

The final requirement was that the interface to the current system be understandable
to programmers and musicologists alike. Since the system aims to enable analysis of
musical performance, and this analysis is of most use to musicologists, it is preferable
that the system could be used by musicologists directly rather than relying on a
programmer to interpret their wishes.

7.7.1 Complexity of Query Language

The SQL query language is the most widely used language to query databases. How-
ever, it is not widely used in musicology and music information retrieval — two
communities who would most benefit from the current work. Language bindings to
the PostgreSQL database are provided for a large number of languages which enable
users who do not wish to use SQL directly to use the language of their choice.

The current system uses a relational database to represent music and performance.
Others [54] have argued that an object-oriented approach is more appropriate to mu-
sic representation and that an object database would, therefore, be a more appropriate
choice for the current application. So why choose a relational database?

One only has to visit their high-street book store to see that relational databases
and SQL are the most popular database technologies. Choosing this technology makes
the system more accessible to more people and better fulfils Requirement 7 to use a
data representation which can be understood by as many people as possible than an
object database.

7.7.2 Database Design

Much of the detail of the musical score is stored in the note groups such as bar
numbers, key signature and time signature. Currently, the mechanism for querying
this data involves two joins and is quite verbose. An example query to add bar
numbers to notes is shown in Program 7.3.

153

Program 7.3: An SQL query to find all the notes in the piece with work identifier
6 and to append the bar number of each note to its row.

select note.work id,
note.note id,
note.voice,
note.part id,

5 note.type,
note.pitch,
note.onset,
note.duration,
note groups.value[1] as bar number

10 from score notes as note

left join note groups score notes as ngsc
on (note.work id = ngsc.score note work id
and note.note id = ngsc.score note note id)

15

inner join note groups
on (note groups.id = ngsc.note group id
and note groups.type = 'measure')

20 where note.work id = 6;

The query in Program 7.3 first performs a left join to attach all the note groups
to which the score note belongs. The second join is an inner join and leaves only
those rows which have a note group type ‘measure.’ Finally, the appropriate fields
are selected.

The query could be greatly simplified if a few extra functions were defined to
allow searching for or testing a note group from the note. For example, a function
such as:
getNoteGroupValue(note score_notes, group_id integer, index)
which returns a value from the note group’s value array, could be combine with one
such as:
getNoteGroupID(note score_notes, note_group_type char[10])
which returns a note group’s identifier, to create a simplified query as in Program
7.4.

154

Program 7.4: An SQL query to find all the notes in the piece with work identifier
6 and to append the bar number of each note to its row using the proposed new
functions.

select note.work id,
note.note id,
note.voice,
note.part id,

5 note.type,
note.pitch,
note.onset,
note.duration,
getNoteGroupValue(note, getNoteGroupID(note, 'measure'), 1) as bar number

10 from score notes as note

where note.work id = 6;

A query such as that suggested in Program 7.4, which replaces two joins with
two function calls would probably be far less efficient to execute than the equivalent
query created with joins. The existence of the new functions would not, however,
prevent the user from forming a query using joins. It would have to be a decision for
the user to trade off ease of use against query performance.

The inclusion of an array to hold data values pertaining to note groups is a com-
promise to reduce the number of tables in the database. It is not optimal because it
violates one of Honing’s criteria that data should be explicit. There is nothing ex-
plicit which defines what the second value of a measure group array should represent
— the user just has to know. Ideally a note group entry should point to a sepa-
rate table, one for each type, which holds the required data in separate, well-defined
fields. However, this would require many additional tables in the database which
the current solution avoids. The current solution also places the restriction that note
group values must be integers. In future, the note groups should be separated into
their own tables.

The current database design has separate tables for composers and performers.
This is satisfactory for the queries described in Chapter 6 but could lead to problems
later. If a composer was to perform their own work, there would be two entries for

155

them in the database — one in the composer table and one in the performer table.
This does not correctly reflect the real world: in the real world there is one person
who fulfils 2 roles. This relationship would be better represented with a single table
to store people and separate tables to store the roles they carry out.

So the current system uses a relational database and the SQL language to allow
easy access to the data using well understood, popular technology. The addition
of extra convenience functions would make the process of writing queries easier but
users still have to be computer literate. The interface to the data is probably not
understandable by all but the most computer literate musicologists. It was beyond
the scope of this work to create a graphical user interface to the system — such an
interface would require a great deal of work. It is left to future work to define and
build a graphical interface.

7.8 Further Work

The system outlined in the previous chapters succeeds in fulfilling nearly all of the
requirements in Section 1.4. The only requirement which is partially fulfilled is the
requirement to provide an interface which is understandable to both musicologists
and programmers. The current interface is suitable for programmers and computer
literate musicologists. The underlying representation used and the interface presented
to the user satisfies Honing’s criteria. It is explicit in its representation of time, able
to represent all the types of data structure and balances the ease of comprehension
of dedicated primitives with the flexibility of a generalised system.

There remain areas where the design of the system could be improved. This
section will outline some of those areas and suggest solutions which could be imple-
mented by others.

7.8.1 Database Design

The database aims to represent the important parts of the musical score and asso-
ciated data without too much complexity. The representation used is sufficient to

156

represent simple scores as can be seen from the results in Chapter 6. More types
types could be added to properly represent a more complete set of musical notations.
More tables could be added for other applications such as the storage of audio and
video data.

The segments table holds a great deal of information with many of its fields
optional. For example, when storing a vocal performance, it is not relevant to use
the midi_velocity field. Likewise, when storing a MIDI performance, it makes no
sense to use the centsDiff field to store the difference in intonation. There are,
however, some fields which the two performances have in common: both need a start
time and duration and matched note and work identifiers. It is therefore felt that
it would make more sense to split the table into several smaller tables. This could
be achieved through the PostgreSQL table inheritance mechanism. A common table
could be defined with the basic fields required by all segment tables. Each additional
segment table would then inherit this set of basic fields and add their own. This
configuration would protect the segment table from becoming bloated with extra
fields for each new type of performance data.

7.8.2 Performance Time

The use of milliseconds for the representation of performance time is the most obvious
choice as it is easily converted to from most of the popular sample-based performance
representations and is the most easily understood representation of time for the sys-
tem user.

The database type used to store the performance time is numeric which has the
highest accuracy possible in the database — able to store numbers with up to 1000
digits of precision. There is a database type intended for storing time — the interval
type. This has 6 digits of precision so the numeric type was chosen for its increased
precision.

No amount of fractional precision, however, is able to represent a number with a
recurring fraction such as 1

3 . This limitation could create problems when the numeric
type is used to represent performances at some sample rates. For example, a sample
rate of 48kHz has a sample interval of 0.00002083̄. A fraction data type (which stored

157

Program 7.5: An SQL query to find notes in a piece located between bars 1 and 6
using the proposed getBarNumber function.

select * from score notes as note
where note.work id = 6
and getBarNumber(note) >= 1
and getBarNumber(note) <= 6;

a numerator and denominator) would be a solution to this problem. PostgreSQL does
not have such a type and its implementation would require some work in redefining
all the mathematical and logical operators for the new type. Such work would be
advantageous to the current system for the performance time representation, the
score time representation and the pitch representation.

7.8.3 Score Time

The score time representation and its associated functions were used successfully to
locate notes and to compare durations. The representation is successful in retaining
the original meaning of the musical representation and its associated logic.

In Section 6.1, two methods of locating a music by the bar number were shown:
one where the location of the bar was known in the spoff time representation and
one where the location was computed from a subquery. It would be rare for a user
to know the exact location of a bar in the spoff time representation, so this method
does not demonstrate the normal usage of the database. The other method (using a
subquery) should be considered the proper method.

The subquery method is rather long for a method of locating notes that is second
nature to a person used to using musical scores. It is a strong candidate for conversion
into a database function:
getBarNumber(note score_notes)
The function takes one argument: the note to query and returns the bar number
for that note. The function could then be used in a query such as the one shown in
Program 7.5.

158

An alternative to the above scheme which is, perhaps, obvious, is to include the
bar number as an extra field in the score_notes table. This would simplify finding
bar numbers over the solution above. It would not, however, be consistent with the
data model. A bar number is not a property of a note like pitch or duration; rather,
a note belongs to a bar. Thus representing a bar as a note group to which a note
belongs is consistent with the data model.

The bar number was deliberately excluded from the representation of time to
prevent problems when locating notes which sound together in music where two
parts are in different or changing time signatures. The current time model allows
notes to be located regardless of the time signature of the current or previous bars.
This model does, however, assume that the two parts have the same tempo.

To locate notes which sound together in music where two parts have different
tempi would require additional information. If the two parts had different but con-
stant tempi, the tempo of a part could be represented with a note group. A new
function could be created to calculate a tempo-adjusted note location from a tempo
represented in beats-per-minute (BPM). Equation 7.1 shows the calculation this func-
tion would implement.

ttempo ← bBPM
tn
td

(7.1)

where ttempo is the tempo-adjusted location, bBPM is the tempo in beats-per-minute
and tn

td
is the time location as a fraction.

Such a system would require a mapping to be made between the more common
musical tempo instructions, such as Lento or Allegro, and BPM values. Such a
mapping is not a trivial undertaking as the values will depend on many factors and
will be different for different styles and different historical periods.

Further complication would be introduced by changing tempi in several parts such
as can be found in many works by the composer Steve Reich. A method of defining
start and end tempi or start tempo and rate of change for a tempo group would be
required to represent tempo instructions such as Accelerando and Rallentando. This
would further complicate the above equation for calculating tempo.

159

Although the current system does not represent tempo accurately, it enables the
necessary research that would be needed to investigate different performers’ playing
speeds in response to different score instructions and establish a mapping between
tempo instructions and beats per minute.

7.8.4 MGF

The current system outputs presentations to widely used graphical formats such as
PDF or SVG. It has been noted that the conversion of a score to a graphical format
is a lossy one. The true meaning of the notes is lost from the digital file when they
are converted to a glyph with a coordinate. A solution to this problem has been
proposed which is the Music and Gesture File format [119].

MGF aims to integrate data in formats which are already in use and which ap-
plications already support. By combining PML and other data sources into a widely
used compression format, we encapsulate the multifarious data into an easily trans-
ported form whilst preserving the accessibility of that data.

The proposed container format extends the MusicXML 2.0 specification [21] to
include data from other sources inside a compressed archive. (It is worth noting that
while additional data is added to the file, it remains a valid MusicXML 2.0 file). The
data is integrated through the inclusion of a Performance Markup Language (PML)
file which relates notes in the score to locations in the other files.

The MusicXML 2.0 specification [21] extends the more widely used MusicXML
1.1 specification introduced here [20]. Of particular interest to the current work is
the compressed format which stores data in a JAR (JAVA archive) file (compatible
with the popular zip format) with the addition of an index file called container.xml
under the META.INF/ folder. The JAR container allows for the inclusion of files
which are not MusicXML files.

The use of zip/JAR as the container format is particularly attractive since it is
widely supported in file browsers and operating systems. This enables access to the
contained data even where there is no software which supports MusicXML 2.0 or
MGF. It also simplifies the extension of software to support the file format.

160

A basic MGF file consists of a MusicXML file, a Performance Markup Language
(PML) file which references it and a META.INF folder containing a “container.xml”
file. These files are compressed into a ZIP archive. For music with no score the
MusicXML file can be empty. An overview of the structure of an MGF file is given
in Figure 7.1.

The MGF file can store different representations of the score, audio and video.
Formats were chosen for their openness and the ability to store extra metadata in
them — providing locations for the PML files to point to.

The MGF file is a valid ZIP file, a valid JAR file and a valid MusicXML 2.0
file at the same time providing access to the data it contains from many different
applications. A user would not have to have an application which could read all of
an MGF file to have access to some of the data it contains.

7.8.5 OSF

After the publication of [119], a consortium of organisations including Yamaha re-
leased a specification for the Open Score Format (OSF [24]) which has similar aims.
The format uses the MusicXML 2.0 specification to provide “A package format for
combining digital scores with other media assets such as HTML, video, audio and
MIDI into a single distribution package.”

The two formats could coexist, with MGF being built on top of and extending
OSF. This would provide another set of applications which MGF and the current
system could interact with fulfilling Requirement 6 for interoperability.

So the current system has broadly fulfilled the requirements of Chapter 1, but
work remains to be done in improving the database design and the output format of
the system.

161

Figure 7.1: The structure of an MGF file showing the core technologies and preferred
representations.

162

7.9 Summary

In this section we have looked at the extent to which the current system meets
the requirements outlined in Chapter 1. In doing so we have assessed the music
representation; the suitability of the pitch representation to microtonal music; the
representation of performance data; the capability to combine music and performance
analysis and display results; the accessibility of the software from different computing
environments; the ability of the current system to interoperate with other systems;
and the extent to which a musicologist could use the system.

In all assessments except one we have found the current system to be able to
meet the requirement, often surpassing the capability of other systems. The only
requirement which the current system does not fully meet is to be understandable to
all musicologists. The interface to the system is more appropriate to programmers and
computer literate musicologists. Further work would be needed to create a graphical
interface which is easier to use.

Finally we looked at improvements that could be made to the database design
and the output format of the system.

163

Chapter 8

Conclusion

The current work has described a system which is capable of combining musical
and performance queries and displaying results annotated on the score. The need
for such a system is clear if we are to enlighten the process of performance — that
is the method used by a performer to turn a page of printed music into a musical
performance.

The current work has presented a new extended pitch representation capable of
representing microtonal scales and has explained the necessary methods to perform
music analysis using the representation. A database system has been described which
stores and analyses music and performance data and is capable of annotating scores
with performance data.

Finally the system was tested using several different analyses demonstrating the
ability of the system to display single values and continuous data alongside the score;
to manipulate tonal and microtonal music; and to calculate analyses from score data
and performance data.

The system has been shown to be capable of fulfilling all the requirements of
a system for musical performance analysis and been demonstrated creating novel
analyses of musical performance.

164

Appendices

165

Appendix A

Recording Equipment Inventory

166

E
qu

ip
m

en
t

M
an

uf
ac

tu
re

r
M

od
el

/V
er

si
on

D
es

cr
ip

ti
on

M
ic
ro
ph

on
e

B
ey
er
dy

na
m
ic

M
C
E
82

N
(C

)
St
er
eo
,c

on
de
ns
er

m
ic
ro
ph

on
e
w
ith

ba
la
nc
ed

X
LR

co
nn

ec
tio

n

Pi
an

o
B
ar

M
oo
g
M
us
ic

Pi
an

o
B
ar

M
ID

Ia
ug

m
en
ta
tio

n
fo
r
an

ac
ou

st
ic

pi
an

o

A
ud

io
/M

ID
Ii
nt
er
fa
ce

T
as
ca
m

U
S1

22
U
SB

1.
1
A
ud

io
an

d
M
ID

Ii
nt
er
fa
ce

w
ith

m
ic

pr
e-
am

ps

La
pt
op

C
om

pu
te
r

T
os
hi
ba

Sa
te
lli
te

Pr
o
L1

0
1.
6G

H
z
C
el
er
on

pr
oc
es
so
r,
1G

b
R
A
M

O
pe
ra
tin

g
Sy

st
em

K
ub

un
tu

Li
nu

x
8.
04
/H

oa
ry

H
ed
ge
ho

g
K
er
ne
l:
2.
6.
24
,K

D
E:

3.
5.
10

M
ID

Is
eq
ue
nc
er

R
os
eg
ar
de
n

1.
6.
1

M
ID

Is
eq
ue
nc
er

A
ud

io
so
ftw

ar
e

A
rd
ou

r
2.
3

A
ud

io
sy
nc

JA
C
K

0.
10
9.
2-
1u

bu
nt
u1

D
ig
ita

lC
am

er
a

A
V
T

G
up

py
F-
04
6C

H
ig
h
fra

m
e
ra
te

vi
de
o
ca
m
er
a;

R
O
I;
50

fp
s;
re
qu

ire
s
se
pa

ra
te

PS
U

Fi
re
w
ire

in
te
rfa

ce
B
el
ki
n

P8
18
00

/
(F

5U
51
3)

PC
M
C
IA

Fi
re
w
ire

in
te
rfa

ce

V
id
eo

re
co
rd
er

C
or
ia
nd

er
1.
0.
1-
3.
2b

ui
ld
1

So
ftw

ar
e
to

co
nt
ro
la

nd
re
co
rd

fro
m

IE
EE

13
94
(F

ire
w
ire

)
ca
m
er
a

T
ab

le
A
.1
:
In
ve
nt
or
y
of

eq
ui
pm

en
t
us
ed

in
a
ty
pi
ca
lr
ec
or
di
ng

se
tu
p

167

Appendix B

Lilypond Results

B.1 Displaying Performance Data - single values

A presentation of a performance of Chopin’s Prelude No.7 by Martin Jones. The
score is annotated with 2 lines of graphs of performance data: the top line shows the
inter-onset interval and the bottom line shows the keypress duration.

168

0.26

0.57

åå

0.38

0.66

åå ��

0.29

0.69

åå�

0.25

0.67

å

0.51

0.48

åå

0.08

0.20

åå�� �

0.22

0.18

å� �

0.30

0.69

å

0.74

0.65

å

0.81

��

0.74

1.39

�

åå

0.18

0.63

åå

�

0.25

0.71

å

0.63

0.59

å
0.65

ååå

0.23

0.17

å��� �

� ��� �

1.04

0.74

å�

��

�

0.84

��

0.71

1.40

����

�

0.75

0.63

åå

0.28

0.67

åå

0.31

0.24

0.67

åå

0.23

0.65

ååå

å
0.67

å

0.24

å

�

0.46

0.48

å��

0.98

���

0.96

1.89

�� å

0.94

��

0.73

1.39

���

0.230.28

0.63

åå

0.38

0.67

ååå

0.67

åå

0.29

0.68

ååå

0.18

0.64

åå

0.30

0.71

åå

0.85

��

0.87

1.34

������
5

0.26

0.61

åå

0.31

0.63

åå

���� å

åå

0.59

0.21

åå

0.22

0.70

ååå

0.27

0.72

åå

0.27

0.64

åå�

0.41

0.66

åå ��

0.21

0.72

å

0.26

0.52

åå

169

 2

0.62

0.76

�

åå
0.56

0.25

å

0.18

�

��� å��

0.23

0.73

å

0.22

0.52

åå

�

0.47

0.73

å

0.99

0.82

å

0.38

åå � åå
0.43

0.10

1.76

����

1.44

2.27

�������

0.33

0.66

ååå

åååå �å

1.25

0.22

åå

0.26

0.97

ååå

åååå
0.52

�
0.72

�å

�

�

0.70

0.88

å

0.24

�å9

� ���

� ���

å

2.45

åå

0.36

0.93

å

1.27

0.42

åå

0.38

0.91

åå

ååå å

1.12

å���
2.03

0.33

å

1.91

��

1.11

å
å

0.420.55

åå å

�

2.39

�

0.080.30

0.22

å

0.330.32

0.74

å

Music engraving by LilyPond 2.12.1—www.lilypond.org

170

B.2 Displaying Performance Data - continuous val-
ues

A presentation of a performance of Graham Hair’s ‘Ash’ by the soprano Amanda
Morrison. The score is annotated with bar graphs showing the pitch contour for the
duration of that note. The graphs have a heavier line for the origin and fainter lines
at +/− 20, 40 and 60 cents. Plots are shown centre-aligned, underneath the note
to which they belong. Where the matcher failed to match a note to a segment of
the performance data, a note will have no plot. In these cases, the typesetter moves
surrounding notes closer.

171

oo o � o� ��oo��
4
3� � �o��

o� o� o� o 	 o��
� o� o�	 o

4

� o o
3

o o o

 o o� ��o� o � o oo o� o o o�o o� o�o6

� o

o�oo�oo8

� �o �o
o o�o 	 o o�o�o oo� �� �� o ��� o�

ooo o� oo o oo	 �oo �o11

�

13

� oo � �
o	o �o

o
o o 	o o o� ��o� o� o o � �

Music engraving by LilyPond 2.12.1—www.lilypond.org

172

B.3 Combining Musical Queries and Performance
Data

A presentation of a performance of Bach’s Two Part Invention No.1 by a student at
Glasgow University. The score is annotated with bar graphs showing the normalised
inter-onset interval. Musical intervals are marked, with those intervals considered
dissonant indicated in red. Whereas previously the IOI has been displayed as an
absolute value, here we show the IOI as a deviation from a constant tempo. If the
entire performance had been played at a constant tempo, the normalised IOI would
give a constant value. Since we are analysing a real performance, with fluctuations
in tempo, the normalised IOIs change. A semiquaver with a longer line line than a
quaver here means that the semiquaver’s normalised IOI was longer than the quaver’s
— the semiquaver’s IOI was longer relative to the expected semiquaver IOI for a
constant tempo than the quaver’s expected IOI.

173

å
0.790.75

å
0.76

å� å
0.88

å
1+A4

å
1+A4

0.89

�

� �

� �

å
1+m6

å
1+m6

å

å
0.71

å
1+m7

1.15

å
1+P5

0.88

å
1+m6

1.59

å
1+M6

0.84

å
0.85

å
0.80

å
1+m7

0.86

2+P1

å
0.72

�

0.80

å
1+m6

0.95

å
1+m6

0.81

å
1+m6

0.62

å
1+m7

0.80

å
1+m6

0.92

å
1+P4

0.74

å
1+P4

å
2+P1

0.90

2

�

�
1+P5

0.88

å

0.78

å
0.81

å
1+P1

0.76

å
2+M2

0.85

å
2+M2

å
1+P5

0.70

å

å

0.63

�

å
0.87

å
1+m7

0.85

å

0.82

� å
1+P5

0.73

å
2+M3

0.85

174

 2

0.78

1+m3

å

0.75

1+m3

å
1+m3

å

0.82

1+P5

åå
1+D5

0.72

å
1+M3

0.84

å
1+M3

0.80

å
1+P5

0.83 0.74

å

1+m3

0.81

å
1+m2

0.81

3

�

�

0.76

å
1+m3

0.69

å
1+P5

0.85

å
1+m3

0.72

å
1+m3

0.80

å
1+M6

0.81

å
1+M6

0.80

å
1+P5

0.70

å
1+m3

å
1+M6

0.74

å
1+m6

0.79

å
1+m6

0.76

å
1+D5

0.84

0.79

1+M3

å

0.82

1+M3

å

�

0+A4

å

0.89

0+A4

å å
0.88

0+M6

å
1+M2

0.80

å
0+m7

0.77

å
0+m7

0.69

å
0+m6

0.63

0+P5

0.64

å
0+M7

0.82

4

�

�

0.67

å
1+P5

0.72

å
1+m3

0.77

å
1+m3

0.87

å
1+M3

0.70

å
1+M3

0.76

å
1+M2

0.79

å
1+m6

0.76

å
1+m6

å
1+P5

0.86

å
1+m3

0.71

å
1+m3

0.80

å

�

å
1+D5

0.85

å
1+M3

0.75

å
1+M3

0.79

175

3

0.86

1+M3

å

0.77

1+M3

å

å

0.99

1+M3

å
0.58

1+P5

å
1.01

å
1+m6

0.64

å
1+m6

0.85

å
1+P5

1.01

�

1+M3

å
1+P5

0.83

5

�

�

å
0+m7

0.71

å
0+m7

0.50

å
0+m6

0.96

�

å
0+M6

0.76

å å

0.83

1+D5

å

0.87

1+P5

0.95

å
1+M3

0.64

å

1+M2

å

0.70

1+M3

å
1+P4

0.85

å
1+P4

0.81

�

2+P1

å

0.70

2+P1

å

0.64

1+m6

å

0.87

1+M6

å å

0.81

1+M6

å

å
2+m2

å
2+m3

0.80

å
2+P5

0.83

å
2+P5

0.95

2+P5

0.83

å
2+P5

å
2+P4

0.70

6

�

� �

å
1+D5

0.81

0.74

1+M3

å

0.86

1+M3

åå
1+m3

0.66

å
1+m3

0.87

1+m3

å

0.67

1+m3

å
0.86

1+P5

å å
2+P1

0.85

å
2+m3

0.89

å
2+m3

0.75

2+P1

å

�

å
1+P5

0.77

0.86

1+m6

å

0.75

1+m6

å

176

 4

å

�

1+m3

0.68

å
1+M3

0.77

å
1+M3

0.75

å
1+M3

0.80

å
1+D5

0.76

å
1+D5

0.82

å
1+P1

0.55

7

�

� å
0.83

�

å
0.73

å

�

�

å
2+P1

0.77

	

å
0.77

�

å

0.80

å
1+P4

0.80

å
1+M2

0.76

å
1+M2

0.65

å
0.79

å
0.79

å
0.80

å
0+M7

0.79

å
0+m7

0.70

å

0+m7

0.82

å

0+M6

0.75

å
0+m7

0.86

å
1+M2

0.66

å
1+M2

0.73

å
0+P5

0.86

8

�

�

	

å

0.52 1.02

�

�

å

0.71

å

å
0+M6

å
0+M6

0.77

��

å
1+M3

0.75 0.83

�

å

0.79

å
1+P1

0.76

å
0+M6

0.73

å

0.56

å

0.85

å

177

5

0.79

å
0+P5

0.77

å
0+M3

0.80

å
0+M3

0.73

�

å
0.79

å
0+M6

0.80

å
0+m6

0.80

å
0+m6

å
1+P1

0.77

9

�

�
1+M3

0.83

å�
0+M3

0.80

	 å
0+P5

0.76

å
0+M6

0.79

å
0+M6

0.78

å
1+M3

å å
0.66

å
0.76

å
0.82

å
0.65

å
0.85

�

å
0.84

0+P5

å

0.59

å
0+M6

0.96

å
0+M6

0.74

å
0+P5

0.82

å
0+M3

0.67

å
0+M3

0.78

� å
1+P1

0.79

10

�

�
0.70

å
0.75

�

å
0.67

å
0+m6

å
0+m6

0.89

å
0+m3

0.74

	

å

�

å
0.77

å
0+M6

0.84

å
0+M6

0.79

å
0+M6

0.76

å
0.84

å
0.73

å
0.80

178

 6

0.80

0+M6

å

0+M6

å
0+M6

å

0.78

0+A4

å
0.85

å
0+M3

0.86

å
0+M3

0.75

å
0+P4

0.78

å
0+M6

0.75

å
0+A4

0.82

11

�

�
0+M3

0.77

�

å
0+A4

0.77

å
0+M6

0.77

å
0+M6

0.78

å
0+M6

0.69

å
0+M6

0.60

å

0.87

0+M3

å

�

1.08

0+M3

å å
0+A4

1.07

å
0+m6

0.74

å
0+m7

å
0.74

0+m6

å
0+P4

0.71 0.50

0+M6

å

0.80

0+M6

å

1.03

1+D5

å

1+D5

å

0.72

1+m3

å�å
0+M7

0.67

å
1+m2

0.79

å
1+m2

0.89

å
1+m3

0.58

å

1+P4

0.70

å
1+M2

0.87

12

�

�

å
0+M3

0.80

å
0+M3

0.75

�

å
0+A4

0.79

å
0+M6

0.71

å
0+M6

0.76

å
0+m7

0.82

å
0+M6

0.74

å
0+P4

0.75

å
0+M6

0.74

å
0+M6

0.79

å
0+M6

0.92

å
0+M6

0.84

�
0.71

0+M6

å

0.74

0+A4

å

179

7

1+m3

å

� å

0.76

1+m3

å

0.67

1+m3

å

0.74

0.60

1+M6

å

0.75

1+M6

å

0.72 0.87

1+m6

å

0.75

1+m6

å

0.81

1+m3

å

�

0.82

1+m3

�
13

�

0.74

1+m3

å

0+P5

å�
0.94

1+M3

å å

�

0+P5

å

0.410.58

0+P4

å

0.81

1+m3

å

å �

0.74

1+M2

å

0.84

1+M2

å
0.69

1+m3

å

0.60

1+M3 1+m3

å

0.80

1+m3

å

0.80

1+m3

å

0+P1

å
1.00

0+A4

å
0.88

0+M3

å

0.77

1+M3

å

0+P1

å

0.91

0.92

1+P4

å

0.81

0+m6

å

0.63

0+m6

å�

0.74

0+M3

å

0.90

0.78

1+P5

å

0.72

1+P5

å

0.79

1+m2

å

�

0.76

1+P5

å

0.81

1+P5

å�
14

0.74

1+P4

å�

0.78

1+M6

å

0.93

1+M6

0.75

1+M6

å

0.70

1+M6

å

0.80

1+m3

å

0.70

1+m3

å å

0.88

1+M6

å

0.56

1+M6

å å

0.64

1+m3

å

0.75

1+m3

å
0+M3

å

0.78

0+M6

å

0.69

0+M6

0.62

1+M6

å

0.76

1+M6

å

0.87

1+P1

å

0.83

1+P1

å

180

 8

å

1+P4

0.57

å

1+D5

0.83

�å

1+m3

0.76

å

1+P5

0.79

å
1+m6

0.75

å

1+m3

0.93

15

�

�

å
2+m7

0.77

å
2+m7

å
2+m6

0.72

å

1+P4

0.77

å
1+P1

0.82

å
1+P1

0.79

å
2+P1

0.80 0.68

å

0.80

�

�

å

0.77

�

å

0.86

å

å
1+D5

0.83

å
1+P4

0.68

å
1+m6

0.750.95

å
1+P4

0.70

å

1+m3

0.77

16

�

�

å
1+P4

0.81

å
1+P5

0.78

å

�

1+P4

å
1+M2

0.74

å
1+m3

0.75

�
1+m3

å å
1+m6

0.84

å
1+D5

å
1+m3

0.73

å
1+P4

0.75

å
1+M2

0.74

181

9

å
1+P4

0.74

å
1+D5

0.70

å

1+m3

0.880.82

å
1+D5

0.70

å
1+m6

0.80

17

�

�

å
1+P4

0.79

å
1+m3

0.78

å
1+m6

0.66

å

�
1+D5

å
1+D5

0.83

�
1+D5

å å

1+m3

0.73

å
1+P4

å
1+D5

0.82

å
1+P4

0.70

å
1+m6

0.82

å
1+A4

0.98

� å
1+M3

0.66

åå
1+M6

0.77

å
1+P5

0.51

1+P5

0.68

18

�

�
1+P4

å
1+M2

0.86

å
1+M3

0.65

å
1+A4

0.93

å
1+M6

0.78

å

�

å
1+P4

0.75

å
1+M2

0.80

�
1+M3

å

å
1+P4

0.88

å
1+P5

0.79

å
1+M3

0.74

182

 10

0.60

1+M6

å

0.75

1+M6

å

0.68

1+M6

å

0.76

1+P4

åå
1+m3

0.83

å

1+m3

0.75

å
1+P4

0.67

å
1+M6

0.89

å
1+A4

0.80

19

�

� �

å
1+A4

0.89

å
1+m6

0.64

å
1+m6

0.79

å

å
1+P5

0.68

å
1+m3

0.83

å
1+M3

0.69

å
1+M3

0.87

0.81

å
1+M6

0.73

å
1+M6

0.80

å
1+M7

0.82

å
1+P4

0.82

å
1+M6 1+P4

å

0.75

1+M6

å

0.75

0.87 0.81

1+M6

å

0.91

1+M6

å

0.63

2+P1

å

å
2+m3

0.77

å
2+m3

0.77

å
2+M2

0.75

å
1+M6

0.65

å
1+M6

å
1+m7

0.85

å
1+m7

0.92

20

�

�

å

1+A4

0.85

0.78

1+m6

å

0.71

1+m6

åå
1+m6

0.71

å
1+m6

0.78 0.73

1+M3

å

0.74

1+M3

å

0.77

1+m7

å å

1+m6

0.77

å

1+m6

0.93 0.70

2+m7

å

0.69

1+M6

å

0.80

1+P4

å

0.83

1+P4

å

0.67

1+M6

å

183

11

å
1+P4

0.99

1+m7

å

1.18

1+m7

å

1.00

0+M7

å

0.94

0+M7

å

0.91

0+P5

å

0.80

0+P5

å

�

�
21

�

2+M3

1+M3

2+P5

1+P5

2+P1

3+P1

���

1.50

2+M3

å

2+M3

2+P5

3+P1

1+P5

1+M3

2+P1

�

0.80

1+P5

å

0.75

1+M6

å

0.80

1+m3

å

0.70

1+m3

å

0.74

1+m6

å

0.62

1+m6

å

å

0.97

1+M6

å

0.71

1+M6

å�

0.95

1+D5

å

0.85

1+M6

0.92

1+M3

å

0.75

1+M3

0.79

1+m6

å

0.80

1+m6

å�

0.77

1+m3

å

0.51

1+m3

å

0.93

1+P5

å å

1.06

1+D5

å

Music engraving by LilyPond 2.12.1—www.lilypond.org

184

Bibliography

[1] abc music notation. http://www.walshaw.plus.com/abc/.

[2] Ardour - the new digital audio workstation. http://www.ardour.org/.

[3] Chuck : Strongly-timed, concurrent, and on-the-fly audio programming lan-
guage. http://chuck.cs.princeton.edu/.

[4] Clam is a full-fledged software framework for research and application devel-
opment in the audio and music domain. http://clam-project.org/.

[5] Cubase 5 – advanced music production system. http://www.steinberg.net/
en/products/musicproduction/cubase5_product.html.

[6] Everything you need to know about the humdrum “**kern” representa-
tion. http://www.music-cog.ohio-state.edu/Humdrum/representations/
kern.html.

[7] Extensible markup language (xml). http://www.w3.org/XML/.

[8] Finale - music notation software. http://www.finalemusic.com/.

[9] The free, cross-platform sound editor. http://audacity.sourceforge.net/.

[10] Free music composition & notation software. http://musescore.org/en.

[11] Gnu general public license. http://www.gnu.org/licenses/licenses.html.

[12] Gnu octave is a high-level language, primarily intended for numerical compu-
tations. http://www.gnu.org/software/octave/.

[13] Gnuplot is a portable command-line driven graphing utility. http://www.
gnuplot.info/.

185

[14] Interactive visual programming environment for music, audio, and media.
http://cycling74.com/products/maxmspjitter/.

[15] Lilypond documentation. http://lilypond.org/web/documentation.

[16] Lilypond typesetter software. http://lilypond.org.

[17] Logic studio is a complete set of professional applications that lets you write,
record, edit, mix, and perform. http://www.apple.com/logicstudio/.

[18] Mathematics software. http://www.mathworks.com/products/matlab/.

[19] Muse is a midi/audio sequencer with recording and editing capabilities. http:
//muse-sequencer.org/index.php/Main_Page.

[20] Musicxml 1.1 dtd. http://www.recordare.com/dtds/1.1/index.html.

[21] Musicxml 2.0 dtd. http://www.recordare.com/dtds/index.html.

[22] Musicxml™ document type definition public license version 2.0. http://www.
recordare.com/dtds/license.html.

[23] Noteedit - a score editor. http://noteedit.berlios.de/.

[24] Open score format is an open and non-proprietary distribution, interchange and
archive file format for digital scores (sheet music). http://openscoreformat.
sourceforge.net/.

[25] Performance markup language. http://www.n-ism.org/Projects/pml.php.

[26] Pro tools is the most popular sound creation and production system in the
world. http://www.digidesign.com/protools/.

[27] Python speed wiki page. http://wiki.python.org/moin/PythonSpeed.

[28] Recording, mixing, editing, and mastering — adobe audition. http://www.
adobe.com/products/audition/.

[29] Rosegarden: music software for linux. http://www.rosegardenmusic.com/.

[30] Sibelius - software for writing, playing, printing and publishing music notation.
http://www.sibelius.com/.

[31] Sonic visualiser is an application for viewing and analysing the contents of
music audio files. http://www.sonicvisualiser.org/.

186

[32] Supercollider is an environment and programming language for real time
audio synthesis and algorithmic composition. http://supercollider.
sourceforge.net/.

[33] The tools we use. http://www.music-ir.org/evaluation/tools.html.

[34] Cambridge Advanced Learner’s Dictionary. Cambridge University Press, 2007.

[35] M. Ricchetti A. Camurri, S. Hashimoto. EyesWeb - Toward Gesture and Affect
Recognition in Interactive Dance and Music Systems. Computer Music Journal,
24(1):57–69, 2000.

[36] R. Trocca A. Camurri, M. Ricchetti. EyesWeb - toward gesture and affect
recognition in dance/music interactive systems. Proceedings of the IEEE Mul-
timedia Systems ’99, Firenze, Italy, June 1999.

[37] A. X. Rodet and P. Cointe. Formes: composition and scheduling of processes.
Computer Music Journal, 8(3):32–50, 1984.

[38] Perry R. Cook Ajay Kapur, Philip Davidson. Digitizing North Indian Per-
formance. In Proceedings of the International Computer Music Conference,
2004.

[39] Alan Marsden. MTT - A Music Theory Tool. In Proceedings of the Journées
d’Informatique Musicale (JIM ’97), 6 June 1997.

[40] Alan Marsden. Representing Musical Time: A Temporal-Logic Approach.
Swets & Zeitlinger, 2000.

[41] Alexander R. Brinkman. Representing Musical Scores for Computer Analysis.
Journal of Music Theory, 30(2):225–275, 1986.

[42] Stefan Kersten Alfonso Perez Carillo, Esteban Maestre. Expressive Irish Fiddle
Performance Model Informed With Bowing. In Proceedings ICMC 2008, 2008.

[43] B. M. Eaglestone. Composition tools integration with a music database system.
In Proceedings of the International Conference on Database and Expert Systems
Applications (DEXA), number 978 in Lecture Notes in Computer Science, pages
459–468. Springer-Verlag, 1995.

187

[44] B. M. Eaglestone, G. L. Davies, M. Ridley, and N. Hulley. Implementation of
an artists version model using extended relational database technology. In Ad-
vances in Databases. 11th British National Conference on Databases (BNCOD-
11), number 696 in Lecture Notes in Computer Science, pages 258–276, Keele,
July 1993. Springer Verlag.

[45] Niall Moody; Dr. Nick Fells; Dr. Nicholas Bailey. Ashitaka: an audiovisual
instrument. In Proceedings of the New Interfaces for Musical Expression Con-
ference, 2007.

[46] Pierfrancesco Bellini and Paolo Nesi. Wedelmusic format: an xml music nota-
tion format for emerging applications. In Proceedings of the First International
Conference on WEB Delivering of Music, 2001.

[47] Easley Blackwood. Twelve Microtonal Etudes for Electronic Music Media, Op.
28. G. Schirmer, Inc., 1982.

[48] Easley Blackwood. The Structure of Recognizable Diatonic Tunings. Princeton
University Press, 1985.

[49] Jered Bolton. Gestural Extraction from Musical Audio Signals. PhD thesis,
Department of Electronics and Electrical Engineering University of Glasgow,
2004.

[50] Richard Boulanger, editor. The Csound book: perspectives in software synthe-
sis, sound design, signal processing, and programming. MIT Press, Cambridge,
Mass., 2000.

[51] Friberg Bresin, R. Director musices: The KTH performance rules system. In
Proceedings of SIGMUS-46, pages 43–48, 2002.

[52] Bresin R.; Umberto Battel G. Articulation Strategies in Expressive Piano Per-
formance: Analysis of Legato, Staccato, and Repeated Notes in Performances
of the Andante Movement of Mozart’s Sonata in G Major (K 545). Journal of
New Music Research, 29(3):211–224, 2000.

[53] Alexander R. Brinkman. A binomial representation of pitch for computer pro-
cessing of musical data. Music Theory Spectrum, 8:44–57, 1986.

[54] Carola Boehm. Methodologies for the Design and Development of System and
Data Architectures for Music Information. PhD thesis, University of Glasgow,
2005.

188

[55] David Meredith. The ps13 pitch spelling algorithm. Journal of New Music
Research, 35(2):121–159, 2006.

[56] F. Delalande. La gestique de Gould, page 85–111. Quebec, 1988.

[57] Diana Young. The Hyperbow: A Precision Violin Interface. In Proceedings of
the International Computer Music Conference (ICMC2002), 2002.

[58] Douglas McGilvray. On the Analysis of Music by Computer. PhD thesis,
University of Glasgow, September 2007.

[59] M. Dovey. Overview of the omras project: Online music retrieval and searching.
Journal of the American Society for Information Science and Technology, 2002.

[60] E. W. Large. Dynamic programming for the analysis of serial behaviors. Be-
havior Research Methods, Instruments, & Computers, 25(2):238–241, 1993.

[61] B.M. Eaglestone, B. Desai, R. Holton, and E. Gulatee. Temporal database
support for cooperative creative work. In Proceedings of the 2nd Interna-
tional Database Engineering and Applications Symposium (IDEAS’98), pages
266–275, Cardiff, July 98.

[62] F. Deliège and T. Pederson. Music warehouses: Challenges for the next gener-
ation of music search engines. In Proceedings of the LSAS, 2006.

[63] F. Lerdahl and R. Jackendoff. A Generative Theory of Tonal Music. MIT
Press, Cambridge, Mass., 1983.

[64] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly, 2nd edition,
2002.

[65] Gareth Loy. Musicians Make a Standard: The Midi Phenomenon. Computer
Music Journal, 9(4):8–26, 1985.

[66] Alexander R. Jensenius; Tellef Kvifte; Rolf Inge Godoy. Towards a gesture
description interchange format. In Proceedings of the International Conference
on New Interfaces for Musical Expression, page 176–179, 2006.

[67] Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

[68] Michael Good. The Virtual Score, volume 12 of Computing in Musicology,
chapter 8, page 113–124. The MIT Press, 2001.

189

[69] Cindy Grande. The notation interchange file format. In Eleanor Selfridge-Field,
editor, Beyond MIDI, pages 491–512, Cambridge, Mass., 1997. The MIT Press.

[70] Smaill Harris, M. Representing music symbolically. In C. Canepa A. Camurri,
editor, IX colloquio di Informatica Musicale, Genova, 1991. Universita di Gen-
ova.

[71] Walter B. Hewlett. A base-40 number-line representation of musical pitch
notation. Musikometrika, 4:1–14, 1992.

[72] Henkjan Honing. Poco: an environment for analysing, modifying, and gener-
ating expression in music. In Proceedings of the 1990 International Computer
Music Conference, 1990.

[73] Henkjan Honing. Issues in the representation of time and structure in music.
Contemporary Music Review, 9:221–239, 1993.

[74] David Huron. Music information processing using the humdrum toolkit: Con-
cepts, examples and lessons. Computer Music Journal, 26(2):11–26, 2000.

[75] J. Lane and W. Punch. A relational database approach to polyphonic music
search systems using regular expressions. Technical report, Department of
Computer Science and Engineering, Michigan State University, Michigan, USA,
2002.

[76] Jamie Forth. Personal communication with the author.

[77] Bryony Buck Jennifer MacRitchie and Nicholas J Bailey. Visualising Musical
Structure through Performance Gesture. In Proceedings of the 10th Interna-
tional Society for Music Information Retrieval Conference, September 2009.

[78] Nicholas J. Bailey Jennifer MacRitchie, Stuart Pullinger and Graham Hair.
Communicating Phrasing Structure with Multi-Modal Expressive Techniques
in Piano Performance. In The Second International Conference on Music Com-
munication Science, Sydney, Australia, 3 December 2009.

[79] Jesus L. Alvaro, Eduardo R. Miranda, and Beatriz Barros. EV: Multilevel
Music Knowledge Representation and Programming. In Proceedings of the
10th Brazilian Symposium of Musical Computation (SBCM), Belo Horizonte
(Brazil), 2005.

190

[80] B.Buck J.MacRitchie and Nicholas Bailey. Gestural Communication: Linking
multi-modal Analysis of Performance to Perception of Musical Structure. In
Proceedings of the International Symposium of Performance Science, Auckland,
New Zealand, December 2009.

[81] Joachim Ganseman, Paul Scheunders, and Wim D’haes. Using XQuery on
Musicxml Databases for Musicological Analysis. In Proceedings of ISMIR 2008,
2008.

[82] Joshua J. Bloch and Roger B. Dannenberg. Real-time computer accompaniment
of keyboard performances. Proceedings of the ICMC, pages 279–289, 1985.

[83] Karl Aberer and Wolfgang Klas. Supporting Temporal Multimedia Operations
in Object-Oriented Database Systems. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems, Boston, USA, May 1994.

[84] Keiji Hirata and Tatsuya Aoyagi. Computational Music Representation Based
on the Generative Theory of Tonal Music and the Deductive Object-Oriented
Database. Computer Music Journal, 27(3):73–89, 2003.

[85] Tillman Weyde Kia Ng and Paolo Nesi. I-MAESTRO: Technology-Enhanced
Learning for Music. In Proceedings of the International Computer Music Con-
ference (ICMC) 2008, 2008.

[86] J. Timothy Kolosick. A machine-independent data-structure for the represen-
tation of musical pitch relationships: Computer-generated musical examples
for cbi. Journal of Computer-Based Instruction, 13/i:9–13, 1986.

[87] Müller Kurth, F. SyncPlayer - An Advanced System for Multimodal Music Ac-
cess. In Proceedings of the 6th International Conference on Music Information
Retrieval (ISMIR 2005), London, UK, 2005.

[88] Annie Luciani, Matthieu Evrard, Damien Courousse, Nicolas Castagne, Claude
Cadoz, and Jean-Loup Florens. A basic gesture and motion format for virtual
reality multisensory applications. In International Conference on Computer
Graphics Theory and Applications, 2006.

[89] M. Balaban. Understanding Music with AI: Perspectives on Music Cognition,
chapter Music structures: Interleaving the temporal and hierarchical aspects in
music, pages 11–13. MIT-AAAI Press, 1992.

191

[90] M. V. Mathews and J. R. Pierce. Current Directions in Computer Music Re-
search, chapter The Bohlen-Pierce Scale. MIT Press, 1989.

[91] Mathieu Bergeron and Darrell Conklin. Structured Polyphonic Patterns. In
Proceedings of the International Conference on Music Information Retrieval,
pages 69–74, 2008.

[92] David Meredith. The ps13 pitch spelling algorithm. Journal of New Music
Research, 35:2:121–159, 2006.

[93] Mira Balaban. The Musical Structures Approach to Knowledge Representation
for Music Processing. Computer Music Journal, 20(2):96–111, 1996.

[94] F. Richard Moore. The dysfunctions of midi. Computer Music Journal,
12(1):19–28, Spring 1988.

[95] Jerry Morrison. Ea iff 85 - standard for interchange format files, 1985.

[96] Will Mowat. Bob moog piano bar. Sound On Sound, March 2005.

[97] S. R. Newcomb. Standard music description language complies with hyperme-
dia standard. Computer, 24(7):76–79, 1991.

[98] Douglas McGilvray Nicholas Bailey and Graham Hair. Musically Significant,
Automatic Localisation of Note Boundaries for the Performance Analysis of
Vocal Music. In Proceedings of the Conference on Interdisciplinary Musicology,
Thessaloniki, 2008.

[99] Harry Partch. Genesis of a Music. University of Wisconsin Press, 1979.

[100] Pedro Kröger and Alexandre Passos. Rameau: A System for Automatic Har-
monic Analysis. In Proceedings of the International Computer Music Confer-
ence (ICMC) 2008, 2008.

[101] Perry Roland. XML4MIR: Extensible Markup Language for Music Information
Retrieval. In Proceedings of the International Conference on Music Information
Retrieval (ISMIR 00), 2000.

[102] Peter Chen. The Entity Relationship Model — Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[103] Philip D. Morehead. Bloomsbury Dictionary of Music. Bloomsbury, 1992.

192

[104] Miller Puckette. Pure data. In Proceedings of the International Computer
Music Conference. International Computer Music Association, 1997.

[105] Richard Parncutt and Malcolm Troup. Science and psychology of music per-
formance: Creative strategies for teaching and learning, chapter Piano, pages
285–302. Oxford University Press, New York, 2002.

[106] Richard T. Snodgrass. Developing Time-Oriented Database Applications in
SQL. Morgan Kaufmann Publishers, Inc., July 1999.

[107] Richard T. Snodgrass (chair), Ilsoo Ahn, Gad Ariav, Don Batory, James Clif-
ford, Curtis E. Dyreson, Ramez Elmasri, Fabio Grandi, Christian S. Jensen,
Wolfgang Käfer, Nick Kline, Krishna Kulkarni, T. Y. Cliff Leung, Nikos Lorent-
zos, John F. Roddick, Arie Segev, Michael D. Soo, and Suryanarayana M. Sri-
pada. The TSQL2 Temporal Query Language. Kluwer Academic Publishers,
1995.

[108] Roger B. Dannenberg. An on-line algorithm for real-time accompaniment. In
Proceedings of the ICMC, 1984.

[109] Perry Roland. The music encoding initiative (mei). In XML (MAX), 2002.

[110] S. T. Pope. The interim dynapiano: An integrated computer tool and instru-
ment for composers. Computer Music Journal, 16(3):73–91, 1992.

[111] Heinrich Schenker. Harmony. University of Chicago Press, 1956.

[112] Carl Seashore. Psychology of Music. McGraw-Hill Book Company, 1938.

[113] Eleanor Selfridge-Field, editor. Beyond MIDI. Center for Computer Assisted
Research in the Humanities. The MIT Press, 1997.

[114] Eleanor Selfridge-Field. Beyond MIDI, chapter DARMS, Its Dialects, and Its
Uses. Center for Computer Assisted Research in the Humanities. The MIT
Press, 1997.

[115] Donald Sloan. Hytime and standard music description language. In Eleanor
Selfridge-Field, editor, Beyond MIDI. The MIT Press, 1997.

[116] Alan Smail, Geraint Wiggins, and M Harris. Hierarchical music representation
for composition and analysis. Computers and the Humanities. Springer, 1993.

193

[117] Stephen Smoliar. SCHENKER: a computer aid for analysing tonal music. ACM
SIGLASH Newsletter, 10(1–2):30–61, 1976.

[118] Jennifer MacRitchie Stuart Pullinger, Nicholas Bailey. Computer Assisted
Analysis and Display of Musical and Performance Data. In Proceedings of
the International Symposium of Performance Science, Auckland, New Zealand,
December 2009.

[119] Nicholas Bailey Stuart Pullinger, Douglas McGilvray. Music and Gesture File:
Performance Visualisation, Analysis, Storage and Exchange. Proceedings of the
International Computer Music Conference, 2008.

[120] Takayuki Hoshishiba and Susumu Horioguchi. Improved DP matching between
a musical score and its performance using interpolation. Acoustical Science and
Technology, 22(1):13–19, 2001.

[121] W. Bradley Rubenstein. A database design for musical information. In Pro-
ceedings of the ACM SIGMOD, pages 479–490, 1987.

[122] Marcelo M. Wanderley, Bradley W. Vines, Neil Middleton, Cory McKay, and
Wesley Hatch. The musical significance of clarinetists’ ancillary gestures: An
exploration of the field. Journal of New Music Research, 34(1):97–113, 2005.

[123] Harris Wiggins, G. A. Representing music for analysis and composition. In
O. Laske M. Balaban, K. Ebcioglu, editor, Proceedings of the Second IJCAI
Workshop on Artificial Intelligence and Music, pages 63–71, Detroit, US-MI,
1989.

[124] R. W. Young. Terminology for Logarithmic Frequency Units. The Journal
of the Acoustical Society of America, 11(1):134–139, July 1939. Source of the
number 4 for the octave starting on Middle-C.

194

