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ABSTRACT 

This thesis proposes some new self-tuning algorithms. In contrast to the conventional 
discrete-time approach to self-tuning control, the continuous-time approach is used here, that is 
continuous-time design but digital implementation is used. The proposed underlying control 
methods are combined with a continuous-time version of the well-known discrete recursive least 
squares algorithms. The continuous-time estimation scheme is chosen to maintain the continuous- 
time nature of the algorithms. 

The first new algorithm proposed is emulator-based relay control (which has already been 
described in a paper by the author). The algorithm is based on the idea of constructing the switch- 
ing surface by emulators; that is, unrealisable output derivatives are replaced by their emulated 
values. In particular, the relay is forced to operate in the sliding mode. In this case, it is shown 
that emulator-based control and its proposed relay version become equivalent in the sense that 
both give the same control law. 

The second new algorithm proposed is a continuous-time version of the discrete-time gen- 
eralized predictive control (GPC) of Clarke et al (which has already been described in a paper by 

the author). The algorithm, continuous-time generalized predictive control (CGPC), is based on 
similar ideas to the GPC, however the formulation is very different. For example, the output pred- 
iction is accomplished by using the Taylor series expansion of the output and emulating the output 
derivatives involved. 

A detailed closed-loop analysis of this algorithm is also given. It is shown that the CGPC 

control law only changes the closed-loop pole locations leaving the open-loop zeros untouched 
(except one special case). It is also shown that LQ control can be considered in the CGPC frame- 

work. Further, the CGPC is extended to include some design polynomials so that the model- 
following and pole-placement control can be considered in the same framework. 

A third new algorithm, a relay version of the CGPC, is described. The method is based on 

the ideas of the emulator-based relay control and again it is shown that the CGPC and its relay 

version become equivalent when the relay operates in the sliding mode. 

Finally, the CGPC ideas are extended to the multivariable systems and the resulting closed- 
loop system is analysed in some detail. It is shown that some special choice of design parameters 

result in a decoupled closed-loop system for certain systems. In addition, it is shown that if the 

system is decouplable, it is possible to obtain model-following control. It is also shown that LQ 

control, as in the scalar case, can be considered in the same framework. 

An illustrative simulation study is also provided for all of the above methods throughout the 

thesis. 

vi 



CHAPTER I 

INTRODUCTION 

1.1. SELF-TUNING CONTROL 

In general, any control system design involves two steps: system modeling and controller 

design. Self-tuning control may be viewed as an automation of these two steps. It consists of a 

recursive estimator and a controller design procedure. A block diagram of such a system is shown 

in figure 1.1. The recursive estimator obtains a plant model from the input/output data. The 

estimated model is then used in the controller design procedure to deduce the controller parame- 

ters. As the process model and the controller are updated at each sampling time, a self-tuning con- 

troller is expected to detect changes in the process and tune itself accordingly. 

ControHer 
design 

Controller 

w r- 

parameters 

ControHer 

Process 

parameters Recursive 
estimation 

u1 
-1 Process 

Figure 1.1 Block diagram of a self-tuning controller 

y 

A self-tuner can be thought of as composed of two loops: the inner loop which is an ordi- 

nary feedback loop having process and controller, and the outer loop (estimator and controller 
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design) which adjust parameters of the controller. This structure is common to any adaptive con- 

trol system. 

The self-tuner shown in figure 1.1 is called an indirect (or explicit) self-tuning controller as 

the controller parameters are updated indirectly through a design step. If the controller design step 

is avoided so that the controller parameters are estimated directly, then the self-tuner obtained is 

called direct (or implicit). This simplifies the algorithm significantly. However, it is limited to cer- 

tain types of controller design methods. 

1.1.1. Recursive Parameter Estimation 

Recursive estimation of the process parameters is a key element in the self-tuning control. 

There are many recursive estimation methods such as least squares, extended least squares, instru- 

mental variables and maximum likelihood (Astrom, 1971). Among these methods, the most com- 

mon and widely used one is the recursive least squares (RLS). This is mainly due to its simple 

structure. Discrete estimation methods are now well established (Ljung, 1983, Ljung, 1987). In 

this thesis, a continuous time version of the discrete least squares will be used. Details of the 

algorithm is given in chapter 2. 

In order to be able to track the changes in the process parameters, the estimator should dis- 

card the old data, as it may not be relevant any more to the current parameters of the process. 

This can be done by weighting the data accordingly, that is by putting less and less weight on the 

data as it gets older. The most commonly used weighting scheme is that of exponential forgetting 

in which the exponential weighting coefficient is refer to as forgetting factor. The effective 

memory length and thus the ability of tracking the parameter variations depend on the choice of 

the forgetting factor: the shorter the memory length, the faster the adaptation. On the other hand, 

memory length can not be further reduced from a certain length as this is essential for satisfactory 

estimation. This clearly puts a limit on the rate of change which can be tracked. 

A typical problem with the forgetting is that of covariance blaw-up that is exponential 

increase of the covariance matrix and thus the subsequent failure. This problem occurs due to the 

discounting of the old data while the new information comming in from the plant is not sufficient, 
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that is in a situation where the input signal is not persistently exciting. There are several methods 

to overcome this problem such as putting an upper bound on the diagonal elements or on the trace 

of the covariance matrix, stopping the parameter and covariance update when there is not enough 

information and adjusting the forgetting factor automatically. See for example (Fortescue, 1981) 

and (Astrom, 1984). 

1.1.2. A Brief Review 

Self-tuning control has been a very active domain of research during the last two decades. 

The idea of self-tuning seems to have been first proposed by Kalman in 1958 (Kalman, 1958). 

However, due to lack of technology for the implementation, the idea was abandoned until 1970s. 

The developments in both computer technology and control theory during 1960s led to new 

interest in the subject in early 1970s (Peterka, 1970, Wieslander, 1971, Astrom, 1973). These 

works were based on the minimum variance control strategy (Astrom, 1970) and the recursive 

least squares. A variant of the minimum variance (MV) self-tuner was later proposed by Clarke 

and Gawthrop (Clarke, 1975). This method, which is now known as generalised minimum vari- 

ance (GMV), have some advantages over the MV self-tuner. In particular, use of the control 

weighting enables the stable control of noriminimum-phase systems. Some interpretations of this 

method such as model-reference adaptive control and optimal smith predictor were further given 

in (Gawthrop, 1977). During this period, some industrial applications were also reported (Boris- 

son, 1974, Borisson, 1976). A review of some of these early developments and applications can 

ho 
be found in (Astrom, 1977). The above developments in early and mid 1970s stimulated exten- 

sive research into different types of self-tuning controllers. 

MV or GMV type controllers are based on the exact knowledge of the time delay. There- 

fore, these type of self-tuners perform badly if the assumed time delay does not corresponds to the 

actual delay of the plant or if the time delay varies. In addition, although nonminimum -phase sys- 

tems can be controlled by the GMV method, the choice of the control weighting involved is not 

straightforward. To overcome these problems, several authors proposed pole(/zero)-placement 

algorithms (Wellstead, 1979, WeRstead, 1979, Allidina, 1980, Astrom, 1980, Clarke, 1982). In the 
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same spirit, Grimble described a polynomial LQC method (Grimble, 1984), which can be treated 

in the pole-placement framework where the desired closed-loop poles are obtained from a spectral 

factorisation, rather than chosen by the designer. Although pole-placement methods overcome the 

above two problems, they fail to control the system if common factors in the estimated model 

arise (e. g. due to overparametrisation), which is of great importance from implementation and 

robustness point of view. Some research effort has also directed towards the state-sPace methods, 

specially LQ and LQC, in order to avoid the problems associated with GMV and pole-placement 

methods (Lam, 1980, Warwick, 198 1, Samson, 1982, Clarke, 1985). Although these methods can 

cope with overparametrisation, nonminimum -phase zeros and variable time delay, they are compu- 

tationally more demanding compared to GMV and pole-placement self-tuners. 

Sensitivity of the GMV method to time delay variations is simply due to the fact that the 

method is based only on k-step ahead prediction, where k is the assumed time delay. Therefore, 

one may expect to achieve robustness against time delay variations by making predictions over a 

range, which covers possible time delay variations, and minimising a multi-stage cost function of 

these predictions. In recent years, many self-tuning controllers based on this and similar ideas 

have also been proposed in the literature (Peterka, 1984, Ydstie, 1984, Mosca, 1984, Keyser, 

1985, Clarke, 1985, Clarke, 1987, Keyser, 1988). These algorithms are in general classified as 

Long Range Predictive Control (LRPC) methods and all have the common feature of being robust 

against time delay variations. An important point worth mentioning is that, these methods are 

based on a receding-horizon control strategy. This ensures a time invariant control law and also 

enhances the robustness, as it takes into account the latest information available at each time 

instant, unlike a fixed-horizon control strategy. Among these algorithms, the Generalised Predic- 

tive Control (GPQ method of Clarke et al appears to be the best. Its robustness, ability to cope 

with difficult systems, and superiority to some other self-tuners such as GMV and pole-placement 

have been illustrated by simulations (Clarke, 1985, Clarke, 1987, Mohtadi, 1987). Recently, some 

successful industrial applications of the GPC have also been reported demonstrating its 

effectiveness for the self-tuning control of industrial processes (Clarke, 1988). 
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Many self-ttining algorithms have also been extended to multivariable case. The MV self- 

tuner was first extended to multivariable case by Borisson (Borisson, 1979). The extension of 
GMV method then followed this (Koivo, 1980, Keviczky, 1981). A multivariable pole-placement 

self-tuner was outlined by Prager and Wellstead (Prager, 1980) and so on. See chapter 5 for the 

review of the developments in multivariable self-tuning controllers. 

1.2. SCOPE AND OUTLINE OF THE THESIS 

Most of the self-tuning literature has been devoted to the discrete-time methods. This is 

presumably due to the digital technology necessary for the implementation. However, there are 

some problems with discrete-time methods such as nomninimurn -phase zeros due to fast sampling 

and/or fractional delay, numerical sensitivity, etc (Gawthrop, 1982, Astrom, 1984, Clarke, 

1984, Sinha, 1985). These problems are addressed in chapter 2. Alternatively, one may consider 

to design the controller in continuous-time and implement the resulting controller digitally. This 

approach does not suffer from the above problems and also seems more appropriate as the physi- 

cal. systems are inherently continuous. Unfortunately, there has been little attention towards this 

ap roach (Egardt 1979a, 1979b; Elliott 1982a, 1982b; Gawthrop 1982,1986,1987). In particular, Ip 

the work of Gawthrop is interesting as he reformulates the discrete-time GMV self-tuner in 

continuous-time by using the notion of emulator, which is referred to as Emulator-Based Control 

(EBC). 

In this thesis, we are interrsted in developing some new continuous-time self-tuning algo- 

rithms which are robust, versatile and easy to use. For this purpose, three novel methods are pro- 

posed: emulator-based relay control (Demircioglu, 1988), continuous-time generalised predictive 

control (Gawthrop, 1989) and its relay version. In addition, the continuous-time generalised 

predictive control is extended to the multivariable case. These methods are combined with the 

continuous-time least squares algorithm to give their self-tuning versions. The continuous-time 

least squares is chosen specially to maintain the continuous-time nature of the algorithms although 

it is possible to use a discrete recursive estimation method. It should be noted that in this thesis 

we are mainly concerned with the algorithmic developments and the analysis of the proposed 
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underlying control methods rather than stability, convergence or robustness analysis of the associ- 

ated self-tuning versions. 

Chapter 2 starts with a critical review of discrete-time methods and proceeds with a sum- 

mary of the necessary background material for the continuous-time methods considered in this 

thesis. This material includes: emulators, emulator-based control, continuous-time least squares 

and self-tuning emulators. The work reported in this thesis is built on this material and therefore it 

should be noted that the understanding of this material is important. The chapter ends with some 

discussion on the implementation of continuous-time self-tuning algorithms. 

Chapter 3 first gives some background material on relay control and then describes the pro- 

posed emulator-based relay control method. The method is based on the idea of constructing the 

switching surface by emulators, that is unrealisable output derivatives are replaced by their emu- 

lated values. In particular, the relay is forced to operate in the sliding mode. In this case, it is 

shown that emulator-based and emulator-based relay control are equivalent. This clearly means 

that control methods obtained in the emulator-based control such as model-reference, polc- 

placement, predictive control and their detuned versions can also be obtained in the relay case. 

The properties of the proposed method for both nonadaptive and adaptive case are Wustrated by a 

number of simulations. A real experiment (level control of a two cascaded tanks) is also given to 

show the effectiveness of the method. This chapter is based on the paper (Demircioglu, 1988). 

Chapter 4 proposes a continuous-time version of the discrete-time generalised predictive 

control method of Clarke et al (Clarke, 1987). A detailed closed-loop analysis of the proposed 

method, continuous-time generalised predictive control (CGPC), is then given. Further, the rela- 

nons of the CGPC with the state feedback and LQ control are established. The method is also 

extended to include some design polynomials so that model-following and pole-placement control 

can be considered in the same framework. In addition, a relay version of the CGPC is described. 

Again relay is forced to operate in the sliding mode. The CGPC and its relay version are shown to 

be equivalent in this case. Effects of the design parameters and polynomials, and the properties of 

the both methods are illustrated by a large number of simulations. Some of this work has been 

reported in a conference paper (Gawthrop, 1989). 
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Chapter 5 extends the CGPC method to the pxm multivariable systems. A detailed 

closed-loop analysis is given and the relation with the LQ control is pointed out The conditions 

for decoupling and mcdel-following qrpe control are established. The properties of the method are 

illustrated by simulation. 

Chapter 6 concludes the thesis and suggests possible future research areas. 

Finally, the contributions of the thesis can briefly be summarised as developing and analys- 

ing some new self-tuning algorithms in a continuous-time framework for both scalar and mul- 

tivariable systems. More precisely, the material given in chapters 3,4 and 5 is original and thus 

forms the contribution of this thesis. 



CHAPTER 2 

CONTINUOUS-TIME SELF-TUNING CONTROL 

2.1. INTRODUCTION 

Developments in self-tuning control have been mainly within a discrete-time framework. It 

seems that this is partially because discrete-time methods are more appropriate for digital imple- 

mentation and partially because the first developments took place in a discrete-time framework 

(Astrom, 1973) leading the later researchers in that direction. However, as has been pointed out in 

the literature (WeRstead, 1979, Gawthrop, 1980, Gawthrop, 1982, Astrom, 1984, Clarke, 

1984, Sinha, 1985) there are some problems associated with discrete-time methods. These are 

mainly as follows: 

I- Nonminimum phase zeros: This is the main criticism of the discrete-time methods. If a 

continuous-time system with relative degree >2 is sampled at a fast sample rate with respect 

to system time constant then, some zeros of the corresponding discrete system will definitely 

be outside the unit circle. Noriminimum phase system zeros may also occur if the time delay 

is not integer multiple of the sample interval, due to the resulting fractional delay. Although 

the above problems can be overcome by choosing a larger sample interval, this would not be 

desirable as the resulting controller will be slow to respond to disturbances and setpoint 

changes. As a result, it will not be wrong to say that most of the discrete-time modelsof real 

systems will be nonminimum phase. This means that the chance of practical applications of 

discrete-time methods based on the cancellation of the open-loop system zeros such as model 

reference and minimum vadance will be very limited. 

8 
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2- Nwnerical sensitivity: Poles and zeros of a discrete-time system model depend on the sam- 

pling rate. For fast sampling rate, with respect to system time constant, the poles and m 

zerost cluster roundApoint in the z-plane, even though the corresponding continuous-time 

model may have its poles and zeros scattered widely over the s-plane. This produces a large 

sensitivity to numerical errors caused by truncation and round off in computation. In other 

words, discrete methods arc numerically ill-conditioned. 

3- Sample rate selection: From the above discussion it is clear that selection of the sample rate 

is an important issue in discrete control: a fast sample rate leads to nonminimum phase zeros 

and numerical sensitivity, on the other hand a slow sample rate leads to degraded control 

performance (eg. slow response to disturbances and setpoint changes). A suitable selection of 

the sample interval necessitates some knowledge of the system, such as time constant, 

closed-loop bandwidth, etc. The issue becomes even more important in the adaptive case as 

the estimated parameters depend on the sample interval. If the sample interval is not chosen 

adequately the estimates can be quite far from the actual system parameters (Sinha, 1985). 

So, choice of sample interval is not straightforward for discrete-time methods and it needs 

great care as well as some additional a priori information. 

4- Difficulty in interpretation of the discrete parameters: The coefficients of discrete-time 

models depend on the sampling rate. In addition, the knowledge of the relative order is lost 

due to sampling. Tberefore it is not easy to relate the discrete coefficients to the properties 

of the actual physical system. 

An alternative to pure discrete-time design methods is to perform the design in a 

continuous-time framework and implement the resulting continuous-time controller digitally. This 

approach does not suffer from the above problems as the choice of sample interval is left after the 

design. In addition, a continuous-time approach seems more appropriate as the real systems to be 

controlled are inherently continuous. However, there has not been much attention towards the 

design of self-tuning controllers in a continuous-time framework. A noticeable work is that of 

t Where m is the number of zeros of the corresponding continuous -time model 
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Gawthrop (Gawthrop, 1987) which is based on the author's earlier work on the subject 
(Gawthrop, 1980, Gawthmp, 1980, Gawthrop, 1982, Gawthrop, 1986). Some continuous-time 

algorithms are also given by Egardt (Egardt, 1979a, Egardt, 1979b) and Elliott (Elliott, 

1982a, Elliott, 1982b). 

This chapter is aimed to provide the necessary background for the work reported in this 

thesis. It is mainly based on the work of Gawthrop, (Gawthrop 1987). Organization of the chapter 

is as fbHows. In section 2, description of the system considered is given. Section 3 introduces the 

idea of emulators and describe how to design emulators for the unrealisable operations such as, 

takdng derivatives, canceling noriminimum phase zeros, and removing time delay. Section 4 exam- 

ines the closed-loop system resulting from incorporating an emulator into the feedback loop. In 

section 5, a continuous-time version of the well-known discrete least squares is described. Section 

6 combines the emulator based control methods of section 4 with the continuous-time least 

squares of section 5. In section 7, some implementation aspects of continuous-time self-tuning 

algorithms are discused. 

2.2. SYSTEM DESCRIPTION 

The system considered is single-input single-output and described in Laplace transform terms 

by the following equation 

Y(s) =e -sT 
B (s) U (s) +C 

(S) V(S) 
A (s) A (s) 

where 

aos n"+ als A" -1 +.... +a., (2.2) 

(s) = bosab + bis a -1 +.... + bnb (2.3) 

C(S) = COS Rc+ CIS of , -1 +----+ Cpc (2.4) 

nb 5 na 
(2.5) 

and eT is the time delay term. Y(s), U(s) and V(s) are the system output, control input and 
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disturbance input respectively. 

11 

No special assumptions are placed on the disturbance V(s) and thus the polynomial C(s) will 
be considered as a design polynomial having all its roots in the left-half s-plane. The degree of 

C(s) will depend on the characteristics of the disturbances. In many cases, the disturbance com- 

ponent of the system is such that we would not wish to differentiate it, this can be modeled by 

choosing n, = n,, -l. An even worse case would be when we would not wish even to use the sys- 

tem output directly. This can be modeled by choosing n, = n.. It will be seen later that, the poly- 

nomial C(s) acts as an observer polynomial. 

2.3. EMULATORS 

The notion of emulator was first introduced in (Gawthrop, 1986) to describe the dynamic 

systems which emulate unrealisable operations. Examplesof such unrealisable operationsin control 

systems design are: taking derivatives of the output, canceling nonminimum phase system zeros 

and removing time delay by an inverse delay (prediction). ne idea of emulating unrealisable 

operations are further discussed in (Gawthrop, 1987). In this section, we will review those ideas. 

2.3.1. Output Derivatives 

In the presense of the noise, the operation of taking derivatives of the system output is not 

feasible as it amplifies the noise. In addition, all physically realisable systems have positive rela- 

nve orders: they do not include any pure derivative terin. Here, it will be shown that it is possible 

to emulate this unrealisable operation by using the system input and output. 

Taking derivative of a signal in time domain corresponds to multiplication by s in Laplace 

domain (assuming zero initial conditions). Then, k' derivative of the system output can be written 

in Laplace domain as 

Yk (S) =S 
ky(s) IB (s) 

e--' U (s) +v (S) (2.6) 
A (s) A (s) 

the Sk multiplied disturbance transfer function can be decomposed into two parts 
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SkC(S) 
= Ek (s) -# 

Fk (S) 

(2.7) A (s) A (s) 

where 

deg (Ft )= na -I 

deg (Ek) = k-I 

deg (Ej, ) =k 

if nc = n,, 

if 

The transfer function - 
Fk(s) 

mpresents the strictly proper (realisable) pan of and Ek (s) the A (s) A (s) 

improper remainder (unrealisable). 

0 Using identity (2.7) Yk(s) may be wfitten as the sum of an emulated value Yý(s) and the 

corresponding error Ek*(s) 

Yk (s) = Yk (s) + Ek*(s) (2.8) 

where 

and 

Yk* (s skB (s) 
e -sTU(S) + 

Fk (s) 
V(s) 

A (s) A (s) 
(2.9) 

E; (s) = Ek(s) V(s) 

Eqn. (2.9) can not be implemented as V(s) is unknown. But from the system equation (2.1) 

A (s) B (s) 
-sT (S) V(S) = Y(S) - E7-( C (S) s) 

eU 

Substituting eqn. (2.11) into eqn. (2.9) and using identity (2.7) one can then find the following 

expression for the emulated value of the Ph derivative of the output. 

Ek (s)B (s) 
--, T U(S) + Yý(S) -C (S) eC (S) 

Y (S) (2.12) 

One can also easily show that when there are no disturbances (V(s)--O) Y; (s) = Yk (s 

Ek (S)B (S) 
Notice that the relative order of C (S) . is p-k, where p is the relative order of the 

Fk (s) 
. 

system. For this term to be realisable we must have k :5p. The transfer function T-S) is 
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proper. 

13 

Note that the equations leading to eqn. (2.12) are algebraicly equivalent to those leading to 

a discrete time k-step ahead predictor, but the interpretation is different. 

Markov recursion 

Ibe polynomials Ek(s) and Fk(s) in eqn. (2.7) can be calculated recursively as follow: 

fk 
0 

ek, l - ao 
(2.13) 

Ek+I(S) ": SEk(S) + ek+l (2.14) 

Fk+, (s) = sFk (s) - et+, A (s) 

wherefkO is the coefficient of s 
'a-' 

in Fk(S)- The initial polynomials are given by the following 

identity. 

C (S) 
= EO(s) + 

Fo(s) 
A (s) A (s) (2.16) 

The name 'markov recursion' comes from the fact that the coefficients of the polynomial Ek(s ) are 

the markov parameters of the transfer function C (S) 
and in this way markov parameters of any A (s) 

transfer function can be calculated recursively. Details of the derivation of the algorithm can be 

found in (Gawthrop, 1987). 

2.3.2. Zero Canceling 

Assume that we want to cancel the open-loop system zeros 

Yb (S) '-: 
I 

Y(S) 
B (s) 

(2.17) 

if the system has some nonminimum phase zeros this operation will not be feasible as B (s) is 

unstable. But, it can be emulated by using a similar method to the previous subsection. Consider 

the explicit fonn of eqn. (2-17) 

Yb (S) 
-I %ý 

-ST U(S) +C 
(S) 

. V(S) (2.18) 
A (s) B (s)A (s) 
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the tenn C (S) 
can be divided into two parts (realisable and unrealisable) B (s)A (s) 

C (S) El, (s) Fb (S) 
B (s)A (s) B (s) A (s) 

where we impose the condition 

deg (Fb) = n. -I (2.20) 

then 

deg (Eb) = nb-I (2.21) 

The term 
Eb (S) 

is considered as the unrealisable part of 
C (S) 

as B (s) is unstable. Using B (s)A (s) 

identity (2.19) Yb (s) can be written as the sum of an emulated value Yb*(s) and the corresponding 

error Eb(s) 

Yb(s) = Yb(s) + Eb*(s) (2.22) 

where 

I- 
-sT U(S) + V(S) Yi(s) =A (s) eA (s) 

(2.23) 

and 

Eb (S) 
Eb (s )= li -( 

S) 
V (S) (2.24) 

Substituting eqn. (2.11) into eqn. (2.23) and using identity (2.19), the emulated value Yj (s) can be 

written in terms of system input and output as 

Eb (S) 
T 

Fb (s) 
Yb- (S )=ý -(S) e'U (s )+ -C(s )Y 

(s (2.25) 

Note that both 
Eb (S) 

and are proper transfer functions. Note also that Y; (s) = Yb(s) when ý -(S) C (S) 

V(s) = 0. 

Remark: One may divide the polynomial B (s) into two parts as B (s) =B -(s)B +(s), where B -(s) is 

the unwanted part of B (s) (such as nonrninimum phase part), and only cancel B -(s). 
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Diophantine equation 

Eqn. (2.19) can also be written as 

(S) =A (s)EI, (s) +B (s)Fb (s) 

15 

(2.26) 

This equation is known as diophantine equation. It has a solution if and only if the greatest com- 

mon factor of A (s) and B (s) divides C (s). To have a unique solution at least one of the following 

conditions must hold (Astrom, 1984) 

deg (Fb )< deg (A) (2.27) 

or 

deg (Eb ) "deg (B) (2.28) 

2.3.3. Prediction 

The systems with time delay are difficult to control. An effective method for the control of 

such systems is to predict the future system output at time t+T (T is the system time delay) and 

then used the predicted output in the feedback. This idea was suggested by Smith in late 50s 

(Smith, 1959). The same idea was also considered by Astrom in discrete-time minimum variance 

control (Astrom, 1970) which later constitute a basis for many discrete-time self-tuning algo- 

fithms. 

The future output of the system at time t+T can be written in Laplace transform terms as 

YT(s) =e , Ty(S) (2.29) 

The quantity YT(s) can not be obtained from Y(s) as e"T is an unrealisable transfer function but, it 

may be emulated. To start with substitute the system eqn. (2.1) into eqn. (2.29) 

YT (S) =B 
(L 

U (s) +e "T 
C (s) 

V (s) 
A (s) A (s) (2.30) 

As in the previous emulators design, the term esT 
C(s) 

can be divided into realisable and unrealis- A (s) 

able parts 
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eir 
C(s) 

=e zT IET(S) + 
FT(S) 

(2.31) 
A (s) A (s) 

TT (S) 
jrT 

C(S) 

A (s) proper, rational transfer function representing the impulse response of eA (s) 
for 

t ý! 0, and ET(s) the transcendental transfer function representing (together with e) the non-causal 

impulse response for t<0. For example if A (s) =s +a and C (s) = 1, then 

e -T (s +a) 
ET (S) 

s+a 
(2.32) 

-Ta FT(s) e (2.33) 

After repeating the steps of the previous sections, one can obtain the following emulator 

ET(S)B (s) FT(S) 
YRS) =, U (S) + ý- Y(S) (2.34) C (S) (S) (S) 

with the corresponding error 

E; (s) = e"TET(s) V(s) (2.35) 

The problem with this emulator is that it includes a transfer function (ET(5))which is not rational. 

To obtain a rational emulatorffT(s) should be approximated by a rational transfer function. 

Alternatively, one may first consider approximating the time delay term by a rational transfer 

function so that the resulting emulator is rational. TWs is the approach used in the rest of the 

thesis. For this purpose, we will consider the pade approximation (MarshaU, 1979) given by 

e -sT _ 
T(-s) (2.36) 
T(s) 

where T(s) is a finite order polynomial in s 

T(s) = tos ft I+ tjs MI-I +.... + tnt (2.37) 

where 

(2.38) 

Clearly, the approximation accuracy is determined by 
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Using the approximation for the time delay, the system can be approximately written as 

Y(S) = 
T(-s)B(s) 

U(S) + 
C(S) 

V(S) T(s)A (s) A (s) 

17 

(2.39) 

With the above approximate equations for the time delay and system, the quantity YT(s) becomes 

yT(s) =B 
(s) 

U(S) +- 
T(s)C(s) 

A (s) T(-s)A(s)' 
V(S) (2.40) 

The disturbance term can be divided into two parts as in the previous cases 

T(s)C (s) ET(S) FT(s) 
(2.41) T(-s)A (s) T(-s) +A (s) 

where we again impose the condition 

d'eg (FT) = n, -1 (2.42) 

Then the resulting emulator is given by 

ET (S)B (5) FT (S) 
Y; (. F) =U (s) + Zý -( Y (S) (2.43) 

T (s)C (s) Y) 

with the corresponding error 

E; (s) = T(-s) 
v (S) (2.44) 

23.4. Generalized Emulator 

One can obtain a generalization of the previous emulators by considering a quantity in the 

following form 

O(s) =e 'T P (S) 
Y(S) 

Z(S) 
(2.45) 

where P (s) and Z (s) are polynomials in s and deg (P) ý! deg (Z). The polynomial Z (s) is divided 

into notionaBy realisable and unrealisable parts 

Z(S) = Z-(s)Z+(s) (2.46) 

Z-(s) is regarded as the unrealisable part. This decomposition is not unique and particular choices 
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of Z-(s) and Z+(s) will depend on application. For example, if we want to cancel open-loop sys- 

tem zeros Z-(s) =B (s) or if we want to cancel a part of the open-loop zeros then 

(s) =B -(s)B *(s) (2.47) 

and Z -(s) =B -(s) . The following design rules are imposed: 

I- Z+(s) contains no zeros with positive real part, 

Z(s) contains no zeros at s=0. 

Because of the same reason given in the previous subsection, the time delay term is approxi- 

mated by a rational transfer function. Here, we again use pade approximation. Then the decompo- 

sition identity for the quantity (D(s) will be 

T(s)P(s)C(s) 
_E 

(s) F (s) (2.48) 
T(-7s)Z(s)A (s) T(-s)Z-(s)- + Z'(s)A (s) 

where 

deg (F (s)) = deg (Z'(s)A (s)) -1 (2.49) 

This identity leads to the following emulator 

4D* (S) =E 
(s)B (s) U(S) +F 

(s) 
. Y(S) (2.50) 

T (s)Z-(s)C (s) Z'(S)c (S) 

with the corresponding error 

(S) -- 
E (s) 

_ V(S) (2.51) 
T(-s)Z-(s) 

Eqn. (2.50) can be further written as 

(S) G Ls) U (S) +F 
(s) y (S) (2.52) 

Gf (s) Ff (s) 

where 

G (s) =E (s)B '(s) (2.53) 

Gf (s) = T(s)Z-'(s)C(s) (2.54) 

Ff (s) = Z'(S)C(s) (2.55) 
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and Z-"(s) is the remaining part of Z-(s) after canceling out the common factors of Z-(s) and B (s), 

and usuaUy Z-*(s) = 1. 

2.4. EMULATOR BASED CONTROL (EBC) 

There are some nasty components in physical systems such as time delay, nonminimum 

phase zeros and high relative order which make difficult to control such systems. As mentioned 

earlier, control of time delay systems can be simplified by using a predictor in the feedback loop. 

In the same way, control of the systems with nonminimum phase zeros and/or high relative order 

can also be simplified by using an appropriate emulator in the feedback loop. In this section, we 

will examine the closed-loop systems with an emulator in the feedback loop and show that with 

this approach a number of control methodisuch as model-reference, pole-placement and predictive 

control can be treated in a unified fashion. 

The control law considered will be in the following form 

U(S) =I[ W(s) - (D * (S) 
Q (S) 

(2.56) 

where U (s), W (s) and (D* (s) are the control signal, setpoint signal and emulator output; Q (s) is 

the control weighting and 
I 

is a proper transfer function. Here, we consider the generalised Q (S) 

emulator as the others can be obtained as special cases. 

The closed-loop system described by eqn. (2.56) is shown in figure 2.1. However, for sim- 

plicity in obtaining the closed-loop equations and properties of the emulator based control we will 

consider a notional feedback system given in figure 2.2. 

Combining the equations forming figure 2.2 the following expressions for the closed-loop 

system are obtained: 

Notional loop gain 

L(s) -P 
(s)B (s) (2.57) 

Q (s)Z (s)A (s) 
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Figure 2.1 Emulator in the feedback loop 

Figure 2.2 Notional feedback system 

Closed-loop system output 

Y(s) = e-$T _L(s) 
Z(S) 

[ W(s) + E*(s) I+1C 
(S) 

V(S) 
I+L (s) P (s) 1+L (s) A (s) 

20 

5) 

3) 

(2.58) 

e -sT 
B (s)Z (s) [ W(s) + E*(s) I+Q (S)z (S)c (S) v (S) (2.59) 

P (s)B (s) +Q (s)Z (s)A (s) P (s)B (s) +Q (s)Z(s)A (s) 

Closed-loop system input 

U(S) -L 
(s) Z (s)A (s) I W(S) - 

T(S) 
V(S) (2.60) 

1+L (s) P (s)B (s) A (s)Z'(s) 
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First we will consider the case where there is no control weighting (Q (s)=O), and the systems 

without time delay (T=O). The closed-loop equations then becomes 

Notional loop gain 

co (2.61) 

Closed-loop system output 

Y(S) = 
Z(S) [ W(s) + E* (s) (2.62) P (S) 

Eqn. (2.62) shows that in this case, the closed-loop setpoint response is defined by a reference 

N Z(S) 
model - P (s), 

Model-reference control 

Consider the case where B -(s) = Z-(s) = 1. This gives us a model-reference control. Note 

that closed-loop system is not related to the open-loop system and the control signal will be stable 

if B (s) is stable. 

Pole-placement control 

Consider the case where B -(s) = Z-(s) =B (s) and Z+(s) = 1. This gives us a pole-placement 

control. Note the zeros of the closed-loop system are identical to those of the open-loop system 

and the control signal will be stable even if B (s) is not. 

Detuned model-reference and pole-placement control 

When Q (s)--O, the loop gain is infinite. Indication of this is that, we require exact model 

matching at all frequencies. However, in many cases there can be some unmodeled high frequency 

dynamics and thus requirement of exact model matching at all frequencies may not be met. This 

may also result in unstable control. Therefore, instead of choosing Q (s)=O, we may chose Q (s) 

such that it is small at low frequencies but large at high frequencies. This will have the effect of 

giving exact model matching at low ftequencies whilf st not requiring exact model matching at 
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high frequencies. The use of Q (s) in this way leads to detuned (or control weighted) version of 

the above control methods. 

(s) will be chosen zero at zero frequency that is, Q (0)=O. This is to ensure exact model 

matching at zero frequency and remove any offset due to control weighting. 

As it is obvious from the above discussion, control weighting is important for robust control. 

See (Gawthrop, 1987) for the further discussion of this point. 

Predictive control 

For the time delay systems (T#O), the emulator automaticab includes a predictor. If 

(s)--Z(s)--l the emulator merely reduces to a predictor. If P (s)#1 and Z(s)*I, the resulting con- 

trol laws can be regarded as predictive model-reference or predictive pole-placement depending on 

the choice of P (s) and Z (s). For Q (s): #O again detuned versions are obtained. 

Integral action 

The most effective method to remove offsets of any kind is to have an integral action in the 
. 

controller. In the above control strategies, the integral action can automaticalbbe obtained if the 

non-zero mean disturbances are modeled correctly. This corresponds to a system model as follows 

Y(s) =eTB 
(s) 

+ 
C(S) 

V(S) 
A (s) sA (s) 

Some remarks 

I- Note that when Q (s)=O, the control law becomes W (s) = 4) . (S). 

(2.63) 

2- It follows from the closed-loop equations that, C (s) only affects the disturbance response, it 

has no effect on the setpoint response. It acts as an observer polynomial. 

3- As one may notice, the above developments and analysis are in full analogy with the 

discrete generahsed minimum variance control and thus emulator based control can be 

regarded as continuous-time version of the discrete generalised minimum variance control. 
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2.5. LEAST SQUARES ESTIMATION 
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Self-tuning control is merely a combination of a control method with a recursive estimation 

algorithm. The most popular and widely used estimation scheme is that of recursive least squares 

(RII S), which has been almost always used within a discrete-time framework: discrete RLS to esti- X%-L- 

mate discrete-time model parameters. In this thesis, we are interested in continuous-time methods 

for the self-tuning control and so we need continuous-time model parameters. Although it is possi- 

ble to use discrete RLS to estimate the parameters of a continuous-time model, it seems more 

consistent to use a continuous-time estimation scheme for our purpose. In this section, we wiU 

briefly review a continuous-time version of the well known discrete least squares. Details can be 

found in (Gawthrop, 1987). 

We assume that the system to be identified can be described by the following linear-in-the- 

parameters model 

XT(t) 0+e (t ) (2.64) 

where y (t) is the scalar system output; x(t) and 0 are data and parameter vectors respectively; e (t) 

is an error or noise term. Further we assume that y(t) and x(t) can be measured (or can be 

obtained from measurements) and 0 is unknown. The aim is then to find an estimate 6(t) of 0 

based on all the measurements up to and including time t. For the least squares estimation, this is 

done by minimizing a cost function of the following form. 

i (O(t V)=Ie -A' 
^ TSO ^+ 

-L (t,, C)2 
2 

(O(t ao) (-O(t 
-00) 2eedT 

(2.65) 

where 0 is a non-negative scalar, So is a positive definite matrix; aO is an initial parameter esti- 

mate; and the estimation error e (t,, r) is defined as 

(T) k(t ) (2.66) 

The exponential weighting coefficient 0 acts as a forgetting factor. As time t increases, the effect 

of old data at time r<t is discounted exponentially with the elapsed time t-r. So varies the 

weight given to the initial parameter estimate. 
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Minimization of the cost leads to the following solution for the parameter estimate 

Wl e *S o Oo +jex (r) y (r) dr (2.67) 
0 

where the matrix S(t) is caHed information matrix and given by 

t 

0fex (r) XT (r) dr (2.68) 
0 

This equations can also be written in a recursive form as follows 

t+T 

S(t+T) =e -PTS(t) +fe -P(t+T--T) X (, r) XT (r) dc (2.69) 

and 

r+T 
S (t +T)6(t +T) =e -ATS (t ) 6(t )+fe -P(I+T--T) X (, C) y (r) dr (2.70) 

1 

By using eqn. (2.69), eqn. (2.70) can be further written as 

t+T 
P(t +T--T) X (, r) [y (, r) T (, C) +S -1 (t +T) fe 6(t)] dr (2.71) 

1 

As one may notice, these equations are very similar to their discrete counterparts. 

One can also show that equations (2.67) and (2.68) are the solutions of the following 

differential equations 

d9(t) 
= X(t) [ Y(t) _ XT(t) Wt )1 (2.72) -dt 

dS(t) 
+ pS(t) = X(t) XT(t) (2.73) 

dt 

with initial conditions 

(2.74) On = 9W S(O) = SO 

In eqn. (2.72) SW needs to be inverted to obtain the parameter estimate O(t). This matrix inver- 

sion can be avoided by the following reformulation. 

dOQ) S-i(l) A(t) [ Y(I) _. XT(t) DO 1 (2.75) 
dt 
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+ pS-I(t) S-I(t)X(t)jKT(t)S-I(t) (2.76) 

Clearly, in the above equations we assume that S(t) is nonsingular. 

2.6. SELF-TUNING CONTROL 

Self-tuning version of the emulator based control method of section 2.4 can easily be 

obtained by combining it with a recursive parameter estimation algorithm. Here we will consider 

the continuous-time least squares given in the previous section. As mentioned in chapter 1, there 

are two types of self-tuning control method: indirect and direct. These two methods will now be 

considered in turn. 

2.6.1. Indirect Method 

In this method, first the system parameters are estimated and then based on these estimates 

the emulator design is performed. To be able to estimate the parameters of the system model 

given in eqn. (2.1), we need to write it in the linear-in-the-parwneters form of eqn. (2.64). 

Consider the system model with T=0 

A (s)Y (s) =B (s)U (s) +C (S)V (S) (2.77) 

Eqn. (2.77) can directly be written in linear in the parameters form but, in this case data vector 

will consist of pure derivatives of the input and output. These pure derivatives can be replaced by 

filtered ones by the following procedure: choose a filter polynomial Cf (s) with the same degree as 

A (s); divide both sides of eqn. (2.77) by Cf (s); and add Y (s) to both sides. 

Y(S) +A 
(s) Y(S) =B 

(s) U(S) +C 
(S) V(S) + Y(S) (2.78) 

Cf (S) Cf (S) Cf (S) 

Eqn. (2.78) can be rean-angedas 

Y(S) =B 
(s) U(S) + 

Cf (s) -A (s) 
Y(S) +C 

(S) V(S) (2.79) 
Cf (S) Cf (S) 

Choose co = ao where co is the coefficient of highest power s term in Cf (s), then 
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y(t) = x- T(l) e+ e(t) (2.80) 

where 

OT 
=[ bo b, .... b,, b cl-al C2-a2 .... C', a -a na 

1 

and the data vector x(t) and error term e(t) are given in Laplace transform terms by 

XT(S) =TI 
nb ptb -1 

.... 
na -1 n. -2 

.... 
2) 

(S) 
RssII U(S) [ss 11 Y(s)] (2. V 

E(s) =C 
(S) V (S) (2.83) Cf (S) 

TWs formulation is the same as that given by Gawthrop (Gawthrop, 1987) from an emulator point 

of view that is, designing an emulator for the system itself. A disadvantage of this formulation is 

that, although each entry in the data vector is filtered by Cf (s), the output is not filtered. In a 

noisy environment, this gives rise to poor parameter estimates, specially if the signal to noise ratio 

is low. This problem can be avoided by a slightly different formulation: first add Y(s) to both 

sides of eqn. (2.77) and then divide both sides by Cf (s). Here, we also choose 

deg (Cf (s)) > deg (A (s)). 

-I Y(S) +A 
(s) Y(S) =B 

(s)_ U(S) + 
C(S) V(S) +IY (S) (2.84) 

Cf(S) Cf(S) Cf(S) Cf(S) Cf(S) 

This can be rearrangedas 

I- Y(S) =B 
(s) U (S) + _L- 

A (S) y (S) +C 
(S) V (S) (2.85) 

Q(S) ou) 0(s) p(s) 

without lost of generality, we can take a% = 1, then 

Yf (1) = XT(t) ý+e0) (2.86) 

where 

DT =[bob, .... 
b., -ao-al .... -a%-, ] (2.87) 

and the filtered output yf (t), data vector x_(t) and e (t) are given in Laplace transform terms 

Yf (S) =IY (S) (2.88) 
Cf (S) 



CONTINUOUS-TIME SELF-TUNING CONTROL 27 

XT(S) =I [Is Rb 
s 

Rb-1 u(s) I S". s%-' 
.... sI Y(S)i (2.89) Cf (s) 

E(s) = 
C(s) V(s) (2.90) 
Cf (S) 

Above, we assume that time delay is zero, if the time delay is not zero but is known, the control 

signal U(s) can be replaced by a delayed version UT(s) =eTU (S) in the above equations. If the 

delay is not known, it should be estimated together with system parameters. Time delay estimation 

in continuous-time is a quite involved problem and will not be considered here. Interested readers 

can refer to a recent thesis, which studies estimation and self-tuning control of time delay systems 

in a continuous-time framework, by Besharati-Rad (Besharati-Rad, 1988). 

2.6.2. Direct Method 

In this method, emulator parameters are identified directly so that the separate design phase 

is avoided. The emulator given by eqn. (2.52) can easily be written in the linear-in-the-parameters 

form required by the estimator. 

e(i )= xT(t ) 0, +e* (t ) 

where 

T fo f, 
.... 

f"f 
90 91 gng 

e 

and the data vector x, (t) is given in Laplace transform terms 

I[ 
Sqg s 

mg u (s )I[s Mf 
s 

Otf 

XIT(s Gf (s) Ff (s) 
11 Y(S)l 

(2.91) 

(2.92) 

(2.93) 

Eqn. (2.91) can not be used directly as 0(t) is not realisable but, a realisability filter A(s) can be 

employed such that 

OA(s) = A(s)(D(S) (2.94) 

is realisable. Then, the corresponding linear-in-the-parameters model 

(2.95) e, &(t 
)ý 

: KA (t ) 
-9e 

+ 
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NA(S) = A(s)X, (s) 
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EA(s) = A(s)E * (s) (2-96) 

is used with recursive least squares to estimate the emulator parameters. One possible choice of 

A(s) is: 

A(s) = e-sT 
Z(S) 

(2.97) P (S) 

giving 

ýA(t )=Y (t ) (2.98) 

Note that above we assume that time delay is known. 

In some control methods the polynomial Z(s) includes a part (or all) of the open-loop zero 

polynomial B (s), such as pole-placement where Z(s)=B (s). In such cases two estimators are used 

in parallel: one for estimating B (s), one for estimating the emulator parameters. 

2.7. IMPLEMENTATION 

As stated earlier, by continuous-time self-tuning we mean that underlying design method is 

continuous, not the implementation. Complexity of self-tuning controllers, without any doubt, 
. 

necessitates their digital implementation. The continuous-time algorithms are essentially described 

by differential equations and there are many different ways of solving them numerically. In doing 

that, there are also many theoretical and practical considerations to be taken into account such as 

choice of sample interval, numerical stability, cost, speed etc. Here, our aim is not to discuss the 

best way of implementing continuous-time self-tuning algorithms, rather to provide the reader with 

some information about the implementation of simulations given in this thesis. Then, the first 

thing to say is that most of the simulations (except the simulations in chapter 3) were performed 

by using the MATLAB, a package program which is very convenient for the control system 

design and simulation, and we proceed as follows. 

Implementation of the feedback systems 

Feedback systems are merely an interconnection of different subsystems. They can be simu- 

lated either on the basis of each subsystem that is, implementing each subsystem separately and 
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then interconnecting them accordingly, or on the basis of an equivalent closed-loop system. We 

used generally the former approach as it is the convenient one for the adaptive simulation, and it 

is also the correct desciiption of practical implementation. Each subsystem was implemented as 

fonows: 

1- as the subsystems in our case are transfer functions (or matrices), we first converted them 

into a state-space representation, 

2- and choosing a proper sample interval, we obtained the corresponding discrete-time state- 

space representation. 

The continuous to discrete conversion in MATLAB is done by assuming a zero order hold 

in the input and then calculating the matrix exponentials that is, for the following continuous-time 

system 

i (t) = Ax (t) + By (t) (2.99) 

the corresponding discrete-time system is: 

(k +1) = Oýx (k) + lFu (k) (2.100) 

where 

e 
Ah r=feA VT 

and h is the sample interval. 

In the simulations, we chosed the sample interval small enough in order to approximate the 

corresponding continuous-time system as close as possible. 

Implementation of the estimator 

In the discrete least squares, inverse of the information matrix (so-called covariance matrix) 

is updated in order to avoid matrix inversion. For numerical reasons operation of updating is per- 

formed by factoring the covariance matrix and updating the factors such as square-root or U-D 

factorization algorithms (Bierman, 1977). This methods guarantee that the covariance matrix 

always remains positive definite and thus nonsingular. However, there may be some situations 
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where. the system is overspecified (this is the case in some of our simulations). In such situations, 

the estimates are not unique (any common factors together with the actual parameters will be a 

solution to the estimation problem) and thus the information matrix is singular. Despite this, the 

above methods try to update the inverse of a matrix which does not have an inverse. This prob- 

ably will give rise to some numerical problems. By taking this into account, in our simulations we 

updated the information matrix and then used the pseudoinverse of it to obtain the estimates (Law- 

son, 1974). This gives a unique solution which has a minimum Euclidean length among other 

solutions. Clearly, this way of implementation is not numerically efficient and thus is not suitable 

for the practical implementation, nevertheless we are interested in theoretical properties of the 

algorithms presented in this thesis and it suits our purpose well. Before giving some implernenta- 

tion details, it should also be noted that further work is needed to elucidate the fundamental prob- 

lems arising from the essentially singular information matrix as a result of the overspeci fi cation of 

systems, but this is out of the scope of this thesis. 

Continuous-time least squares given in section 2.5 can be implemented recursively by using 

either the integral (eqn. 2.69 and 2.70) or the differential (eqn. 2.72 and 2.73 or 2.76) equations 

formulation. It seems more sensible to implement the former ones, as they are the analytic solu- 

tion of the later ones. In our implementation, we assumed that consecutive samples are connected 

to each other by a straight line, this gives better approximation than a zero order hold approach 

that is assuming that signals between two samples are constant and equal to the previous sample 

values. So, by taking T as the sample interval (T=h), equations (2.69) and (2.70) can be approxi- 

mately written as follows 

S(t+h) = e-Oh[ SO) +h X(t) XT(t) ]+ -Lx(t+h) XT(t+h) (2.102) 
2- 2- 

S(t+h)O(t+h) = e-fNS(t) 0(j) +A x(t) y(t)] +A x(t+h) y(t+h) (2.103) 
2-2- 

As discussed above, to obtain the parameter estimate the pseudoinverse of the information matrix 

was used in eqn. (2.103). It should be noted that, eqn. (2.103) is a set of linear equations and 

there are also other ways of solving it without explicitly taking a pseudoinverse. 



CHAPTER 3 

RELAY SELF-TUNING CONTROL 

3.1. INTRODUCTION 

Relay-based control systems have been used and analysed for many years (Flugge-Lotz, 

1953, Atherton, 1982, Tsypkin, 1984). An interesting feature of such systems is that the resulting 

closed-loop system can be made unsensitive to parameter variations. This can be achieved in two 

different ways: 1) by using relay as a high gain element, 2) by forcing relay to operate in the slid- 

ing mode. The systems using the first approach are called self-oscillating adaptive system (SOAS) 

(Horowitz, 1974, Astrom, 1989). The problem with such systems is the existence of a limit cycle, 

which is unacceptable in many applications. The second approach is mainly used in variable struc- 

ture systems (VSS); a more general form of switching control (Utkin, 1977, Utkin, 1978). The 

theory of VSS has also been used for designing robust model-following control systems (Young, 

1978, Zinober, 1982). A disadvantage of such methods is the need to measure the system states in 

order to implement the switching surface. In this chapter, we will use the second approach that is, 

operating relay in the sliding mode. However, the method described here (Demircioglu, 1988) 

does not require measured system states: only the system output is required. There are two steps 

involved: 

1. Implementation of the switching surface by replacing unrealisable derivatives by their emu- 

lated values. 

2. Removal of the need of knowing the system parameters in the emulator design by using a 

self-tuning emulator. 

ý) I 
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This chapter is organised as follows. Section 2 reviews the necessary material from the 

theory of relay control systems. In section 3, the proposed method, emulator based relay control, 
is described and analysed. In section 4, a number of illustrative simulations for both non-adaptive 

and adaptive cases are given. Section 5 describes an experiment using a laboratory level control 

system and section 6 concludes the chapter. 

31. RELAY CONTROL 

As we mentioned earlier, the analysis and synthesis of relay control systems has a long his- 

tory. Here, we will only review the material needed for the emulator-based relay control method 

described in this chapter. 

3.2.1. System Description 

The relay control system considered here is illustrated in figure 3.1 where B (s)1A (s) is the 

transfer function of the linear open-loop system; P (s) is a polynomial in the Laplace operator s; 

W(s), U(s) and Y(s) are the setpoint. signal, control signal, and the closed loop system output 

respectively; E (s) is the relay input (enor) signal. 

W(s) Relay -1 
IIA 

(s) 

P(s) 

Figure 3.1 Relay control system 

Y (s) 

We assume that the relay is symmetric and ideal, that is, it has no dead zone and no hys- 

teresis. In this case the input output relationship of the relay element is given by 

u (1) =M sign (e (t)) = 
if e(t) ý! 0 fM 

-M t' if e (t) <0 

where M is the relay amplitude. 
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31.2. Sliding Motion In The Relay Control Systems 
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The relay output u(t) is a sequence of rectangular pulses that change sign when the sign of 

e(t) changes (figure 3.2). In figure 3.2 tj, t2, ... are called the switching times. Note that at the 

successive switching times tk and tk+l the direction of e (t) is opposite, that is if i (tk) > 0, then 

i (tk, l) <0 or vice versa where i (t) is the derivative of e (t). 

e(t) 

t 

U 

t 

Figure 3.2 Relay input and output signals 

Define 

i -(t i) =i (t 

i +(t I)=i (t 1+0) 

If at the first switching time t 1, i -(t 1) *i +(t 1) and have opposite sign, that is 

i'(ti) i+(ti) <0 

(3.2) 

(3.3) 

(3.4) 

then, when e(t) crosses the threshold level, it immediately recrosses it giving the so-called sliding 

motion (Tsypkin, 1984). in the sliding motion the relay input e (t) stays in the vicinity of the 

threshold level (zero) oscillating at a high frequency (figure 3-3) and the relay output oscillates at 

the same high frequency between +M and -M - 
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em t 

Figure 3.3 Relay input in the sliding motion 

t 
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The inequality i -(t 1) i I(t 1) <0 is the necessary and sufficient condition for the sliding motion 

to occur. A necessary condition for this inequality to be satisfied is that the relative order of the 

loop transfer function, B (s)P (s)1A (s), must be unity. 

'M- Por our purposes it is desirable to obtain the sliding mode just after the first switching time 

tj and keep tj as small as possible (this can generally be done by choosing M large). Because of 

this, above we consider the first switching time t 1. In fact the sliding motion which depends on 

the system parameters and the initial conditions occurs at the the time when the condition i- 

Ok )ý +(tk )< 0 holds. This condition will certainly hold after some time if the relay control system is 

stable and the relative order of the loop transfer function is unity (Tsypkin, 1984). 

In the sliding mode, the closed-loop system is approximately governed by the following 

equations 

E(s) =0 (3.5) 

(s) =W (s) -P (s)Y (s) (3.6) 

from eqn. (3.5) and (3-6) 

Y(S) =Iw (S) (3.7) 
P (S) 

It is clear that, in the sliding mode the input/output relationship of the closed loop system is 

independent of the open-loop system and defined by a reference model 11P (s). 

Similar analysis for the sliding motion can be done by using the state space theory (Utkin, 

1977, Zinober, 1982). In the state space, e (t) =0 defines a switching surface on which the control 
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signal has a discontinuity. For sliding motion to occur the following conditions must be satisfied 

in the neighbourhood of the switching surface. 

lim i (1)<O and lim i (t)>O (3.8) 
e (t)--+O+ e (t)--)O- 

this two conditions may be combined as 

e (t)i (t) <0 (3.9) 

These conditions ensure that the motion of the state on either side of the switching surface 

(in the neighbourhood of the switching surface) is towards the switching surface. Thus the state 

remains on the switching surface and slides towards the direction indicated by the trajectories, 

hence the name sliding mode. Note that eqn. (3.9) and (3.4) are equivalent. 

1M_ For the second order systems, state-space is reduced to a plane known as phase-plane. For 

such systems, the above analysis can be done graphically. More insight into the sliding motion 

can be gained by using this method, although it is limited to the second order systems. Below an 

example is given for this purpose. 

An example 

Consider the following system together with the feedback polynomial P (s). 

B (s) 
A (s) - S2 

(3.10) 

P (s) = 0.5s +1 

The phase portrait of this system, which was obtained by a computer simulation, is given in 

figure 3.4. In this figure, it is assumed that input to the system is zero. If the input is not zero but 

constant, say U, the phase portrait will be still the same but about the point (-U, O)f rather than 

(0,0) (Atherton, 1982). In our case, input to the system is either M or -M depending on the relay 

input. 

t In general, for constant input U, the phase portrait will be about the point (SU, O) where I if 

the steady state gain of the system is positive, 8=-I if it is negative. 
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Figure 3.4 Phase portrait of 11(sZ-1) 
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The closed-loop system given by eqn. (3.10) and (3.11) is governed by the following equa- 

tions in time domain 

Y(t) - Y(t) = U(t) (3.12a) 

u (t) =M sign (e (t)) (3.12b) 

0.5 ý (t) (3.12c) 

In addition to these equations, for the analysis we also need the derivative of the relay input 

(t); by assuming that setpoint is constant, say w (t) = w, it can be obtained as 

i(t) =- ý(t) - 0.5 Y(t) (3.12d) 

Recall the condition for the sliding motion (eqn. 3.9), which can be rewritten more explicitly 

as follows 

when e (t) >0 then i (t) <0 

when e (1) <0 then i (t) >0 

(3.13) 

(3.14) 

By using (3.13) together with the above set of equations (3.12a to 3.12d), one can obtain the 
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following inequality 

41 
y(t) < TW + -TM (3.15) 

In the same way from (3.14) 

41 
y t) > TW - -TM 

These two inequalities can be combined as 

4w-1< 
Y(t) 

41m 
(3.17) T33 -3 

This interval of y (t) corresponds to the sliding mode and it can be represented on the 

switching line as a line segment. Note that the interval is proportional to the relay amplitude M. 

As an example, consider the following choice of w and M 

I and M= 

then 

0.66 < y(t) <2 (3.19) 

and the switching line 

+ 0.5 ý (t) =1 (3.20) 

These can be plotted on the phase plane as illustrated in figure 3.5. The line segment KL of the 

switching line in the figure corresponds to the sliding mode region. Starting with zero initial con- 

ditions, the first switching time tj is obtain as t, = 0.59 sec and at the first switching time the 

output is y (t 1) = 0.366. These results are also shown in figure 3.5. It is clear that, when M=2 and 

the sliding mode will not occur after the first switching time tj. However, as illustrated in 

the figure, following the second switching time the state enters the sliding mode region and slides 

down to the point (1,0). 
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y 

Figure 3.5 Analysis of sliding motion on the phase plane 
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By finding the value of the output at the first switching time t I, y(tj), in terms of w and M 

and using inequality (3.16), the condition for the sliding mode to occur after the first switching 

time can be obtained as 

M >3w (3.21) 

In the calculations leading to (3.21), the initial conditions were assumed to be zero. It should be 

noted that the first switching time depends on the initial conditions. 

For M=4 and w=I the phase portrait of the closed-loop system is given in figure 3.6. In 

this case the sliding region corresponds to the interval 0<Y (t) < 2.66. Note that at the first switch- 

ing time the output is in the sliding region (starting with the zero initial conditions). 
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Figure 3.6 Phase portrait of the closed-loop system with M=4 and w=1 

3.3. EMULATOR BASED RELAY CONTROL 
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The relay control method described in the previous section is based on availability of the - 

output derivatives or the states. If, as is assumed here, only the system output is available then the 

quantity 

(D(S) =P (S)y (S) (3.22) 

is not physically realisable and thus the method is not feasible. However, if the quantity (D(s) is 

replaced by the emulator output (D* (s) described in chapter 2 then the method becomes feasible. 

This is illustrated in figure 3.7. Recall that the emulated value, 4D* (s), of O(s) is given as follows. 

(S) =G 
(s) U(S) +F 

(s) Y (S) 
C(S) c (S) 

where 

E (s)B (s) 

wP (s)C (s) =E (s)A (s) +F (s) 

(3.23) 

(3.24) 

(3.25) 
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F-M I 

G (s) 

C (S) 

U B (S) 

A (s) 

F (s) 

C (S) 

Figure 3.7 Emulator-based relay control system 

Y 
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Suppose that the system is operating in the sliding mode then the relationship relating x (t) 

(see figure 3.7) to u(t) will be defined by the transfer function C(s)IG(s). Using this linear rela- 

tionship, the response of the closed loop system to the setpoint can be obtained as 

Y(S) =c 
(S) W(S) (3.26) 

E (s)A (s) +F (s) 

from eqn. (3.25) 

Y(S) =-1 F- W (s) (3.27) 
(s) (s) 

As a result, when P (s) is replaced by its emulator the input/output relationship of the closed loop 

system, in the sliding mode, will still be defined by a reference model UP (s). Equations in the 

sliding mode 

e(t) =0 (3.28) 

from eqn. (3.28) and (3.29) 

e(t) = w(t) - e*(t) (3.29) 

(3.30) 

Note that this is the same control law obtained in chapter 2 by setting Q (s) equal to zero. Namely, 

in emulator based control replacing the control weighting Q (s) by a relay and operating the sys- 

tem in the sliding mode has the same effect as setting Q (s) equal to zero. This implies that, not 

only the model-reference control, also the other control approaches obtained in chapter 2 by 
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setung Q (s) equal to zero, such as pole-placement and predictive control, are also obtainable (by 

using the comsponding emulatof) in this case. 

In the above analysis, it is assumed that the system is operating in the sliding mode. For this 

system to operate in the sliding mode the condition e (t)i (t) <0 must hold. In order for this condi- 

tion to be satisfied the relative order of the relay loop transfer function G (s)IC (s) must be unity. 

'Me relative order of G (s)IC (s) is equal to that of P (s)B (s)1A (s). Iberefore, we need to choose 

p (s) such that the relative order of P (s)B (s)1A (s) is unity, that is 

deg (P) = deg (A) - deg (B) - 1. (3.31) 

There may be some cases where P (s)B (s)1A (s) may have zero relative order, thus G (s)IC (s) 

has also zero relative order. In such cases a transfer function with unit relative degree, for exam- 

ple a first order low pass filter, can be inserted into the relay loop before or after the relay to 

make the relative order of the relay loop transfer function unity. Note that this filter acts as a tool 

to obtain the sliding motion. It has no effects on the closed-loop system response when the system 

is in the sliding mode; that is in the sliding mode, despite this filter, the relationship relating x(t) 

to u (I ) will still be defined by the transfer function C (s)IG (s). 

So far, in order not to obscure the main points, we only considered the emulator for the 

quantity 0(s) =P WY (s). As we stated above, it is also possible to use the emulator for the 

quantity (see chapter 2) 

O(S) = eIr 
P (S) Y(S) z (S) (3.32) 

in the feedback-loop of the relay control system, which will enable us to obtain the same control 

laws as obtained in chapter 2. Here, we assume that the system has a time delay. In this case, 

relative order of P (s)B (s)1Z (s)A (s) must be chosen unity to make relative order of the relay loop 

transfer function G (s)lGf (s) unity. Again if the relative order is zero, a first order low pass filter 

can be inserted into the relay loop as explained above. 
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3.3-1. Detuned Version of The Algorithms 
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As is explained by Gawthrop (Gawthrop, 1987, Gawthrop, 1987a) detuning is crucial for the 

robustness in the self-tuning control and as mentioned in chapter 2, it can be obtained by choosing 
Q (s) * 0. If the detuning is so important, then a question immediately arises as to how the detuned 

versions of the algorithms can be obtained in the relay case. The answer to this question is given 
in figure 3.8 where the control weighting Q (s) is fed back around the relay. In this configuration 

if the relay operates in the sliding mode then the relay loop will be equivalent to the transfer func- 

tion 11Q (s). Thus, figure 3.8 will be reduced to figure 2.1 of chapter 2 which has the control law 

U(S) =I 1w (S) - (D* (S)i 
Q (S) 

(3.33) 

As is explained in chapter 2 this will give the detuned version of the algorithms if Q (s) is not 

zero. 

w 
e- STB (S) FM 

A (s) 

(S) 
G (s) I 
Gf (S) 

+ 
+ 

Figure 3.8 Detuned relay control 

F (s) 
Ff (S) 

Y 

Note when Q (s) =0 figure 3.8 reduces to figure 3.7 which is equivalent (in the sliding 

mode) to emulator based control with Q (s) = 0. Therefore, figure 3.8 is the general form of the 

emulator based relay control system. 

In this case to obtain the sliding mode the transfer function [Q(s)Gf (s)+G(s)IlGf (s) must 

have a unity relative order. As Q (s) is generally chosen to have zero relative order a first order 

low pass filter needs to be used in the relay loop. 
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3.4. SIMULATIONS 
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This section presents a number of simulated examples which illustrate the properties of the 

emulator based relay control for both non-adaptive and adaptive cases. Tbe examples simulated are 

as follows: 

Model-reference control 

Example 1: B (s) 
=-I A (s) S2 

Z(S) =I 
P (S) = O. 5s +I 

C(s) 0.5s +I 

Example 2: B (s) 
21 A (s) S(s + 

Z(S) =I 

P (s) = 0.333S3 + 1.666S2 + 0.833s +I 

C(s) = 0.5S2 +S 

Low-pass filter =1 
s+1 

Pole-placement control 

Example 3: B (s) 
= 

I-s 
77) 

s2 

Z(S) = I-S 

The rest is as in example I 

Example 4: B (S) 
_ 

(1-s) 
A (s) S(S2 + 

Z(S) = I-S 

'IrL - I he rest is as in example 2 

Predictive model-reference control 
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Example 5: B (s) e 
A (s) (S+1)2 

The rest is as in exatVle I 

Detuned model-reference control 

Example 6: B (s) 2 
A (s) S+I 

N(s) =- 
loo 

S2+ 8s+100 

Z(S) =1 

P(s) = 0.3s+l 

C(s) = 0.3s+l 

Q(S) = 
0.15s 

0.02s+l 

(neglected dynamics) 

Low-pass filter =-1 1Os+1 

44 

Simulations were performed by using a PASCAL programmet running on a SUN 3 worksta- 

tion. In these simulations the followings are common: 

1- the sample interval is 0.01 time unit; 

2- each figure consists of three graphs for non-adaptive simulations: 

(a) the upper graph shows the setpoint (square wave), the actual system output and the 

model output; the model output Y, (s) con*esponds to 

Y. (s) =e -sT 
Z (S) 

W(S) 
T-S) 

(b) the middle graph shows the control signal (relay output); 

(c) the lower graph shows the relay input; 

t The programme called CSTC was written by Gawthrop. Its implementation details together with a 
large number of simulated examples are soon going to be published as an accompanying volume to the 

first volume of his book 'Continuous-time self-tuning control'. 

(3.34) 
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and four graphs for adaptive simulations: 

the above three plus estimated parameters; 

all adaptive simulations start with a set of wrong parameters. 

3.4.1. Non-adaptive Simulations 

45 

Example 1 was simulated for two different relay amplitudes, M=5 and M= 30, to illustrate 

the effect of the relay amplitude. Simulation results are given in figure 3.9 and 3.10 respectively. 

Note that at the initial setpoint change, the system is in the sliding mode following the first 

switching time tj for both M=5 and M= 30. However, as the setpoint. changes from 1 to -I or 

vice versa, the sliding motion occurs after the second switching time for M=5 whereas it remains 

the same for M= 30. It is clear that, when M is small, the first switching time tj is large and this 

prevents the system output from following the model output perfectly. When M is large, iI 

becomes very small and the system output perfectly follows the model output. 
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The simulation result of example 2 is given in figure 3.11 for M= 10. From the lower graph 

it can be seen that the relay input is always in the vicinity of zero indicating that system is always 

in the sliding mode. This gives perfect model following as can be seen from the upper graph. 

Note that in this example a first order low-pass filter was used to obtain the sliding motion since 

P (s)B (s)1A (s) has a zero relative order. 

In the simulation of example 3 and 4, the pole-placement algorithm was used since both 

examples are non-minimum phase system. The simulation result of example 3 for M= 30 and of 

example 4 for M= 10 are given in figure 3.12 and 3.13, respectively. Both systems are in the 

sliding mode and their outputs perfectly follow those of the models. Note that the models and the 

systems have the same numerator polynomial. In example 4a first order low-pass filter is used for 

the sliding mode. 
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In order to give an example for the predictive control we simulated example 5. As we men- - 

tioned. in chapter 2, predictive control strategies can be combined with the model-reference or 

pole-placement control. Here, we used the model-reference approach. The emulator design was 

performed by using a second order pade approximation of the delay. But, in the simulation exact 

time delay was used. Simulation result is given in figure 3.14. As can be seen from the figure, 

after the first switching time system is in the sliding mode and the system output follows the 

model output closely. Much closer model-following can be obtained by increasing the relay ampli- 

tude. 

The reason why we can not see the sharp peaks in the relay input of example 2 and example 

4 when the setpoint changes its level is the low pass fflter before the relay. 

it is possible to obtain the sliding mode for a very large range of M but when M is 

increased we need to decrease the sample interval to obtain quasi continuous-time behaviour. 
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3.4.2. Adaptive Simulations 

Self-tuning version of the above emulator-based relay controHer can easily be obtained by 

combining a recursive parameter estimator to the emulator. Here, the recursive least squares given 

in chapter 2 is used. As described in chapter 2, there are two approaches to the self-tuning con- 

trol: direct and indirect. In this section, we will consider both approaches in order to see their rela- 

tive performance. 

Examples 2 and 4, the fonner for model-reference and the latter for pole-placement control, 

were simulated. The simulation results of example 2 for indirect and direct self-tuning are given in 

figure 3.15 and 3.16, respectively. The simulation results of example 4 are given in figure 3.17 for 

indirect and in figure 3.18 for direct self-tuning. 

2468 10 12 14 16 18 20 
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As can be seen from the figures, the parameter estimates rapidly converge to their true 

values. The systems are always in the sliding mode giving the same control law of the self-tuning 

EBC. If these examples are simulated by using the self-tuning EBC algorithms of chapter 2 with 

(s) = 0, exactly the same results will be obtained. As can be seen from the upper graphs, after 

transients caused by parameter variations at the beginning, the system outputs perfectly follow 

those of models. 

In the direct pole-placement case (figure 3.18), we need to identify system numerator B (s) in 

order to identify the emulator parameters. The large variations in the emulator parameters at the 

beginning, in comparison to Others, is due to this two step identification. 
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Robustness properties of the emulator-based controller have been studied by Gawthrop 

(Gawthrop, 1987, Gawthrop, 1987a). His conclusion is the importance of the control weighting for 

the robustness, that is the need to use the detuned versions of the algorithms for the robust con- 

trol. Detuned version of the emulator-based relay controller was derived in section 3.3.1 and it 

was shown that both emulator-based and emulator-based relay controller are equivalent if the relay 

operates in the sliding mode. Clearly, this suggests similar robustness properties for both. Our 

aim here to compare the robustness properties of two methods by simulation. For this purpose 

example 6t was simulated by using the direct self-tuning algorithm for both with and without 

t This example was first used by Rohrs et al (Rohrs, 1985) to illustrate the poor robustness of a class 

of model-reference control algorithms. It was also used by Gawthrop in his work. 
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relay, and the simulation results are given in figure 3.19 and 3.20, respectively. Figure 3.20 shows 

that self-tuning EBC is robust for this chosen Q (s) despite the second-order neglected dynwnics in 

the example system. In figure 3.19, as can be seen from the control signal and relay input, the 

relay is operating in the sliding mode. This gives the same control law and thus the same output 

(see upper graphs in figure 3.19 and 3.20). In both figures emulator parameters also show the 

same convergence performance. As a result figure 3.19 and 3.20 suggest that these two self-tuning 

algorithms are equivalent and thus have the same robustness properties if the relay operates in the 

sliding mode. 
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Note that in all of the simulations systems are in the sliding mode at the beginning, despite 

parameter variations. This is due to the fact that the closed-loop system is less sensitive to pararn- 

eter variations in the sliding mode. 

3.5. EXPERIMENT ON A REAL SYSTEM 

To see the performance of the relay self-tuning control on a real system, two cascaded tanks 

as shown in figure 3.21 were used in a level control experiment This system can be approxi- 

mated as a linear second order system although it has nonlinearities. 
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To imitate a symmetric relay, two pumps were used: one for pumping water into the first 

tank and the other for pumping water out of the first tank. The level of the second tank was con- 

trolled by using the indirect relay self-tuning control algorithm. The algorithm was the same as the 

one used for the simulations. The interface between tank to SUN 3 workstation was made thmugh 

a MOTOROLA MVME315 microsystem which had a A/D and D/A converter. The run time for 

experiments was around 40 minutes. 

The results of the experiments showed that the relay self-tuning performed well. One of the 

results is given in figure 3.22. Since the system is second order four parameters were estimated. 

Note that parameter estimates rapidly converge to their correct values. Also notice that after 
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a short time, the relay starts to operate in the sliding mode and the system output perfectly follows 

the model output when the correct parameters are reached. 

It was observed that the relay self-tuning controller perfonned better than the corresponding 

self-tuning controller without a relay. The reason for this is that the pump is strongly non-linear. 

This has no effect on the relay control as only two points on the non-linear characteristic are used; 

but the usual self-tuning controller has a strongly non-linear system to identify. 

First tank Second tank 
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Relay control of single-input single-output systems with unknown parameters has been con- 

sidered. The method developed here, emulator-based relay control, removes the need to know the 

system states to implement the switching surface, unlike the variable structure design. The switch- 

ing surface is implemented by replacing unrealisable derivatives by an emulator. The need to 

know system parameters for the emulator design is removed by using self-tuning emulators. 

It has been shown that emulator-based control and its proposed relay version are equivalent 

if the relay operates in the sliding mode. Thus the same control approaches, such as model- 
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reference pole-placement and predictive control, obtained in the first case can also be obtained in 

the second case. The results are illustrated by a number of simulated examples. Algorithms are 

also tested on a real experiment using a laboratory level control system. 



CHAPTER 4 

CONTINUOUS-TIME GENERALIZED PREDICTIVE CONTROL 

4.1. INTRODUCTION 

The shortcomings of the early self-tuners have lead researchers to look for better algorithms 

for the self-uming control. This research effort gave rise to a new group of algorithms called Long 

Range Predictive Control (LRPC) (Richalet, 1978, Cutler, 1980, Keyser, 1981, Peterka, 

1984, Mosca, 1984, Keyser, 1985, Clarke, 1987, Clarke, 1987, Lelic, 1987, Keyser, 1988). These 

algorithms differ from each other in the assumed system model which the design is based on and 

in fonnulation, but all are based on the same basic ideas which can be summarized as follows: 

1. Predict the system output over a range of future times. 

2. Assuming that future setpoint is known, choose a set of future controls which minimize the 

future errors between the predicted future output and the future setpoint. 

3. Use the first element u(t) as a current input and repeat the whole procedure at the next time 

instant; that is a receding horizon strategy is used. 
11-ý- 

These algorithms, as a natural result of different formulation and choice of different system model 

for the design, have different properties, but aH have an important common property of being 

robust against time delay variations due to the long range prediction of the output. 

One of the most recent of these algorithms is the Generalized Predictive Control (GPC) 

developed by Clarke and his co-workers (Clarke, 1987). Robustness of the algorithm against time 

delay and parameter variations, the choice of system order and its ability to control difficult sys- 

tems have been illustrated by simulations (Clarke, 1984, Clarke, 1985, Clarke, 1987, Mohtadi, 

58 
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1987). In addition some successful applications of the algorithm have been reported (Lambert, 

1987, Lambert, 1987). As a result, GPC generally seems to be the best among the other self- 

tuning control and LRPC methods. 

As with most of the other self-tuning control methods, GPC was also developed in discrete- 

time. It was noted in chapter 2 that, in general, the continuous-time approach has advantages over 

the discrete-time approach. Hence, we believe that it would be desirable to have a continuous-time 

version. Therefore, this chapter is devoted to the development and analysis of a continuous-time 

generalized predictive control (CGPQ (Gawthrop and Demircioglu 1988,1989). 

This chapter is organized as follows. In section 2 the basic CGPC algorithm is introduced 

and the relation of the resulting control law with the state feedback is discussed. Section 3 exam- 

ines the CGPC closed-loop system in detail. The choices and the effects of the CGPC parameters 

to the closed-loop system response are discussed in section 4. In section 5 the relation of CGPC 

with LQ control is examined. In section 6 some extensions are introduced to the basic algorithm. 

A relay version of the CGPC is described in section 7 and an illustrative simulation study is 

given in section 8. Finally, the chapter is finished by some conclusions in section 9. 

4.2. THE BASIC CGPC ALGORITHM 

4.2.1. System Description 

The system model to be employed in the development of the algorithm will be the same as 

in the previous chapters except here the system will be assumed to be strictly proper and the time 

delay term eT will not be considered explicitly. 

(S) =B 
(s) U (S) +C 

(S) V(S) 
A (s) A (s) 

(4.1) 

However, it will be assumed that the polynomials B (s) and A (s) include a rational approximation 

of the time delay term e -ST when it exists. Thus the time delay systems will be approximately 

modeled with a higher order system without a delay (Marshall, 1979, Gawthrop, 1987, Souza, 

1988, Besharati-Rad, 1988). Notice, this approach resembles the one in discrete-time where the 



CONTINUOUS-TDAE GENERALIZED PREDICTIVE CONTROL 60 

order of numerator polynomial B is increased to accommodate the time delay. 

41.2. Output Prediction 

The development of the CGPC algorithm involves two main steps as in the other predictive 

methods: 

1. output prediction, 

control law calculation based on this prediction. 

In this section we will consider the first of these steps. Before introducing the details, let us first 

point out some facts. 

1. In discrete-time, predictor design is based on the fact that the discrete transform variable z 

corresponds to a forward time shift (Astrom, 1970). This enables us to distinguish between 

the future and the past. Therefore, removing the unknown future noise terms, a j-step ahead 

prediction of the output at time t can be easily obtained. 

2. In discrete-time, there are a finite number of points in a given range of prediction horizon 

which means that a finite set of output predictors are needed. 

Obviously, these facts do not hold in continuous-time; the Laplace variable s conesponds to 

derivative operation, not to a forward shift, and there are an infinite number of points in a given 

range of prediction horizon indicating that the continuous-time predictor should depend on a con- 

tinuous future variable, say T. Therefore, the predictor design seems less obvious in continuous- 

time. However, one may note that the current derivatives of a smooth continuous-time signal 

imply the future development of that signal. Therefore, if the output derivatives at time t are 

known, it is possible to predict the future system output. This T-ahead predictor is given by a 

truncated Maclaurin series as follows. t 

tA function f(t) can be approximated about a specified point to by its derivatives at that point. This is 

known as the Taylor series expansion of that function about dmt point. If to=O the series is called Maclau- 

Tin series. In our case, the derivatives of the output y(t) (at time t) are known. So we are defining a new 

time axis T (taking the time t as the origin) and doing the expansion in this new variable T. 
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NY Tk I: Yt(t)-T- (4.2) 

where 

dk^ (t +T) Yk (1) `ý 
y 

(at T--0) -- (4.3) 
dTk i** 

Ny = predictor order 

Obviously, for a given T, prediction accuracy depends on Ny. We will leave the discussion of the 

choice of Ny to section 4.4.3. For the time being, it is sufficient to say that the larger T the larger 

Ny should be for a good prediction. 

As stated above, for the predicted value of the future output at time t +T, the derivatives of 

the output at time t are needed. However, as we discused in chapter 2 taking derivatives of the 

output is not desirable, because of noise amplification, so the derivative operation is emulated 

Recall that if y*(t) is the emulated value of yk(t), then it is given in the Laplace domain by the 

following equation. 

n(s) ý-- 
Ek (s)B (s) 

U (S) +Y (S) (4.4) 
C (S) C (S) 

where Ek(s) and Fk(s) polynomials are found from the following identity: 

SkC (S) 
= Ek(S) 

Fk (s), 
(4.5) 

A (s) A (s) 

The tenn in (4.4), 
Ek (s)B (s) 

is not a proper transfer function for k>p where p is the relative 
C (S) 

order of the system. This term can be decomposed into two parts by using polynomial long divi- 

sion 

Ek (S)B (S) 
- 

Hk (s) + 
Gk (S) 

C (S) C(S) 
(4.6) 

where Gk (s) and Hk (s) are polynomials in s, 
Gk (s) 

is strictly proper and Hk (s) is the remainder. T-S) 

Then the emulator equation (4.4) becomes, 
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Yk*(s) = Hk (s)U (s) +- 
Gk (S) 

U (s) + 
Fk (s) 

Y(s) (4.7) 
c(s) c(s) 

. 
Assuming that the degree of C(s) is one less Om that of A (s), the degree of the polynomials 

involved in eqn. (4.7) are: 

deg (Hk (s)) =k- 

deg (Gi, (s)) =n-2 

deg (Fk (s)) =n-1 

n =na = deg (A (s)) 

a 

If deg (C (s)) = deg (A (s)) then the only difference will be deg (Gk (s)) =n-1. Notice that the emu- 

lator equation has two parts. One part can be realized by using proper transfer functions the other 

part can not; it can be rewritten as 

Yj(s) = Hk(s)U(s) + Yko(s) (4.8) 

where 

Y0 
Gk (s) Fk (s) 

k (S) 
C (S) 

U (S) +C (S) 
Y(S) (4.9) 

is the realisable part. It is interesting to note that, the equations leading to (4.8) are algebraicly 

equivalent to those leading to a discrete-time k-step ahead predictor, but the interpretation is 

different. In the time domain equation (4.8) becomes 

Yk*(t) = -hkg 
+ yko(t) (4.10) 

where & is a row vector and contains the coefficients of the Hk(s) polynomial and u is a column 

vector which contains the input derivatives. 

U= 10) ul(t) ..... Uk_p(t)]T (4.11) 

Uk(t) - dik 
(4.12) 

If the output derivatives in eqn. (4.2) are replaced by their emulated values then the T-ahead 

predictor is given by 
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NTk 

y* (t+T) =y (t) + I: yk(t) (4.13) 
k=l k 

This equation can be rearranged in a matrix form 

where 

y'(t+T) = 25ý X* (4.14) 

T2 7-Ný 
IT..... . 2! y! 

(4.15) 

Y* = [Y(t) Y* 1 (t) ..... YNY * (t ]T (4.16) 

Using eqn. (4.10), the vector Y* can be written in an explicit fonn 

where Y' is a (Ny+l)xl column vector 

Y-= Hu + Y' (4.17) 

y0=IY (t) A (t) YNYO (t) iT (4.18) 

and H is a (Ny+l)x(Ny - p+1) lower triangular Toeplitz matrix which contains the coefficients of 

Hk(s) polynomials. When p=1, the H matrix is given as foHows 

H= 

0 0 0 0 0 

hi 0 0 0 0 
h2 hi 0 0 0 
h3 h2 h, 0 0 

hN, hi 
y 

(4.19) 

B (s) 
where the hk s are the Markov parameters of the open-loop system -. This can easily be pro- 

A (s) 

ven by using the identities (4.5) and (4.6). If p>I then hA, --,: 0 for k<p and as a result the 

number of the H matrix columns decreases with p. Note that the dimension of vector y is now 

(Ny - 

Substitution of eqn. (4.17) into eqn. (4.14) results in the following predictor equation. 

Y*(t+T) = Lý Hu+ Lý Yo (4.20) 
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The eqn. (4-20) is the basic equation in the development of CGPC algorithm, however the follow- 

ing Laplace fonn of it will be needed in the development of the closed-loop system. 

Y; (s) =T NH Wu (S) + 1: jýý ro (S) 

where 

Sq [Iss2..... s 
NY -p iT (4.22) 

(S) 
G SG 

- U(S) +F 
SF 

Y(S) (4.23) 
C (S) C (S) 

where G and F are (Ny+l)x(n-1), (Ny+l)xn coefficient matrices of the polynomials Gk(s) and Fk(s) 

ýG, 
SF are corresponding s vectors. respectively and S 

SG Sn-2 Sn-3 S1 ]T 

SF =I Sn-1 S n-2 
..... S1 iT 

(4.24) 

(4.25) 

The subscript T is used in eqn. (4.21) to indicate that the Laplace transform is taken with 

N _G 
and ! ýF_F 

respect to t and T is left as a parameter. Note that Lv HSH ,T GS S are pol), nomials 
yy 

with coefficients dependent on T 

G T(S) = LýFSF (4.26) HT(s) GT(S) = LvýG-S ,F 

with these polynomials, the predictor (eqn. 4.21) can be written in a transfer function form. 
0 

Y; (s) = HT(s)U(s) +ý 
GT (S) 

u (S) + 
FT(S) 

Y(S) (4.27) 
C (S) c (S) 

The polynomials HT(s), GT(S) and FT(S) satisfy the following identities 

TT(S)C(S) 
= ET(S) -T 

FT(s) (4.28) 
A (s) A (s) 

ET(s)B (s) 
= HT(s) -, u 

GT(S) (4.29) 
C (S) C (S) 

where 

e ST = TT(s) =1+ sT . ..... 
+S 

NY Ty (4.30) 
Ny I 
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41.2.1. Recursion of the identities 
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Computations involved in the output prediction can be reduced significantly by using recur- 

sive equations for Ek (s), Fk (s), Hk(s) and Gk (S) polynomials. Recursions for the Ek(s) and Fk (s) 

polynomials (markov recursion) are given in chapter 2. Here, a recursive formulation for the Hk (s) 

and Gk(s) polynomials will be developed. Consider the second identity (eqn. 4.6) 

Ek+, (s)B (s) 

C (S) 
Hk,, (s) 

Gt,, (s) 

C (S) (4-31) 

if the recursive equation for Ek+, (s) (eqn. 2.14) is substituted in this identity and the resulting 

equation is pursued further, the Wowing recursive equations are obtained. 

Hk+, (s) = sHk (s) + ek,, B, (s) + hk+l (4.32) 

sGk(s) + ek+, Bf (s) - hk+, C(s) (4.33) 

where B, (s) and Bf (s) satisfies the following identity 

B (s) 
= B, (s) + (4.34) 

C (S) C (S) 

and 

hk+, - 
9ko 

9 ek+I ««,: 

fko 
(4.35) 

C0 ao 

wheregkOl fkOq co and a0 arr, the coefficients of the highest power s term of Gk(S), Fk (S) C (s) and 

(s) polynomials respectively. The initial polynomials for these recursions are given by 

EO(s)B (s) 
= Ho(s) + 

Go(s) (4.36) 
C (S) c (S) 

Note, if deg (Ek (s)B (s))<deg (C (s)), then Hk (s) =0 and Gk (s) = Ek (s)B (s) 

41.2.2. Control order 

in the discrete-time GPC after a future time instant, which is called control horizon (Nu), 

the predicted controlt increments are constrained to be zero (Clarke et al 1987). This constraint is 

t The term predicted control is used for the future control which is to be calculated at time t from the 

predictor model in order to minimize specified cost function. 7lie calculations are based on the receding 

horizon strategy that is predicted control u, * (t, T) is not applied to the system over the time which cost 
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convenient for the following reasons: 
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1- It reduces the dimension of the matrix involved in the control law calculations and thus the 

computational burden. 

2- It enables the control of non-minimum phase systems with zero control weighting. 

It can be used to adjust the system transients. 

As discussed by Clarke et al (1987), the effect of Nu on the output response is that the larger Nu, 

the more active control action, thus the faster response or vice versa. As a result, Nu is a useful 

design parameter. 

In discrete-time, the predictor equation explicitly includes the future controls whereas in 

continuous-time (eqn. 4.20) the future control is implicitly included in terms of current input 

derivatives and the future variable T. More precisely, the futurr, control (predicted control) 

appears to be a polynomial in T. Therefore the above discrete-time constraint is not as appropriate 

for the continuous-time case. Instead, we use the constraint that input derivatives of order greater 

than N,, are zero that is 

Uk(t) ý0 for k>N,, (4.37) 

We will call this value of N,,, as control order because of the obvious reason that the predicted 

control is constrained to be a polynomial of order N.. For example, the predicted control will be a 

constant for N,, =0, a ramp for N, =I and so on. 

The control order (N,, ) is algebraically equivalent to the control horizon (Nu) because it 

reduces the dimension of the vector -u 
to (N. +I)xl and the dimension of the matrix H to 

(NY +l)x(N. +I). However, they are not physically equivalent. Despite this, the constraint (4.37) has 

similar effects in continuous-time (control of non-minimum phase systems with zero control 

weighting, the larger N,. the faster response etc. ). This will be discused in detail later in this 

chapter. 

function is minimized just only its value at T=O u, * (t 0) is applied. Therefore predicted control and the 

Teal future control are not the same. This matter will be clearer in section 4.2.4. 
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41.2.3. Interpretation of the predictor 

At any time t, the future response of any linear system can be divided into three parts. 

y (t +T) = y,, (tT) + yj (tT) +v (t +T) (4.38) 

where: 

- y, (tT) is the response to the input after time t assuming zero initial conditions at time t 

yi(t, T) is the response to initial conditions at time t created by the past data, assuming zero 

input after time t 

v (t +T) is the ftiture noise component. 

At time t, yj (t, T) is exactly known, y,, (t, T) depends on the future input and v (t +T) is not known. 

Thus assuming that future noise is zero a predictor model for the system depending on the future 

control is obtain as 

y (t +T) =h (T)*u (t +T) + yj (t, T) (4.39) 

where h (T) is the impulse response of the system and * denotes the convolution integral with 

respect to T. 

Now, note that the predictor of eqn. (4.20) is exactly in the same form. The tenn Lýyo 

entirely depends on the past data and can be calculated at time t; thus this part is related to the 

initial condition response. The part LýHýy depends on the future input in terms of input derivatives 

at time t and the future variable T. Thus it is an approximation to h(T)*u(t+T). To make this 

point more clear consider the following approximate functions 

h(T) = h(T) = hi + h2T + h3 T2...... 
+ hN Ty (4.40) 

2! Y (Ny - 1)! 

u(t+T) = ri(t+T) = u(t) + ul(t)T + u2(l) 
T2 T N. 

(4.41) 
2! + UN, (t) I 

it can be shown that 

h (T)*4 (t +T) = ! ýýMu- + -TH,, u (4.42) 
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where 

(N. + 1) 
TY 
(Ny + 1)! 

14= 

From eqn. (4.42) it is obvious that 

.. 
T (N 

-y 
+ Na, ) 

1 
(Ny 

0 hN,, h (N yh (NY N. +I) 
00 hN 

y 

h(N7 

000 hNy 

T 
.N 

ILu =h (T) *u (t +T) 
y 
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(4.43) 

(4.44) 

(4.45) 

As a result, eqn. (4-20) is an approximation to eqn. (4.39) and approximation accuracy depends on 

Ny, N, and T. 

41.3. Reference Output 

The objective of the CGPC control law, as in the discrete-time GPC, is to drive the predicted 

future output as close as possible to the future setpoint subject to the input constraints. This 

implies that the future setpoint needs to be known, which is the case in some applications such as 

robotics, however in many applications future setpoint is not known. In this case, one may con- 

sider a constant setpoint w into the future, but trying to match the predicted output to a constant 

value might give an excessive control action or overshoot at the output. The better approach may 

be to consider a reference output which goes smoothly from the current output y (t) to w as illus- 

trated in figure 4.1. As will be seen later, this approach indeed has the effect of reducing the 

overshoot and the control activity, in addition it enables us to obtain model-following type control 

(even sometimes exact model-foRowing) with the right choice of CGPC design parameters. 

The reference output w,, (t, T) will be taken as the output of a rational transfer function (refer- 

ence model) with numerator R, and denominator Rd, namely 

W, (t, s) = 
R, (s) w (t)-y (t) (4.46) 
Rd (S) s 
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Figure 4.1 Graphical illustration of the CGPC strategy 

69 

In order to have the same structure as the output predictor (eqn. 4.20), the reference output is 

approximated as a truncated Maclaurin series 

Wr (1, T) = 

NY 
Tk (4.47) ýýy 
k! 

It 

where 

wk = rk [w (t)-y (01 (4.48) 

R,, (s) 
and rk is the kI markov parameters of In the control law calculation the following matrix Td(S) * 

form of the eqn. (4.47) is more appropriate 

Wr * (t, T) = Lý w (4.49) 

where 

Lý is a row vector as defined before 

g= [wo wi ... WN, IT (4.50) 

or 
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&=r[ w(j)-y(t) ] (4.51) 

where r is a column vector which contains the maricov parameters of Rd(S)' 

L=[ ro r, ... rNy ]T (4.52) 

If the future setpoint is known, then this can be used instead of reference output. To do this, 

the future setpoint, should be approximated as a truncated Maclaurin series as in the form of eqn. 

(4.49). This can then be used in the control law calculations. However, note that if the future set- 

point is not a continuous function in the given time frame, this approximation can be a problem. 

Therefore, setpoints which are discontinuous, such as a square wave, are not easily incorporated 

into the design unlike discrete GPC. 

4.2.4. Control Law 

The CGPC, like the GPC, is based on a receding time frame (Ttomas, 1975, Kwon, 

1977, Chen, 1982, Longchamp, 1983, Yaz, 1984, Selbuz, 1987). That is at a give time t the cost 

function minimization occurs not with respect to t but with respect to a receding time frame 

whose origin is at time t. Tbus for each time t, a pseudo input u, (t, T), a pseudo output y, (t, T) 

and a pseudo setpoint w,, (t, T) are considered where T is the receding time variable and t is a con- 

stant for that time frame. These pseudo vaiiables are defined so as to be directly related to the 

actual system variables at T--O: 

Yr (1,0) =0 (4.53) 

U, (t, 0) = u(t) (4.54) 

These pseudo variables are undefined for T<0 and have no direct relationship with the actual 

variables. In particular, it is not generally true that u, (t, T) =u (t +T). 

in the discrete-time GPC, output predictiont depends on the future controls which are to be 

t The term 'output prediction' is shortly used for the j-step ahead Cr-ahead for the continuous-time 

case) output prediction based on the information available at time t, where j (T) is any integer (Teal) 

number greater than the system time delay. 
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determined. Suppose that the future, controls are known, then the predicted output can be calcu- 

lated. Reverse operation is also possible: given a predicted output over a time frame the 

corresponding future controls can be calculated. Ihese future controls will be called predicted con- 

trols. GPC does this reverse operation by minimizing a cost function over the given time frame. 

The first element u (t) of the predicted controls is then applied to the system and the swne pro- 

cedure is repeated at the next time instant. 

However, in continuous-time the predicted output depends on the input u (t) and its deriva- 

tives (see predictor equation 4.20). In other words, future control (predicted control) is a polyno- 

mial of order N,, in T. If the input and its derivatives are known the predicted output can be cal- 

culated or given the output prediction over a time frame corresponding input and input derivatives 

can be calculated. The objective of the CGPC is then to find the input and its derivatives such that 
4 

predicted output I %s close as possible to the reference output. This is done by minimizing a cost A 

function, similar to the one in discrete case, over the given time frame. Having obtained the 

Maclaurin representation of the pseudo control (predicted control), only the first term of the series 

is used in computing u (t) from (4-54). 

Now consider the fbHowing cost function 

T2 T2 - T, 

j Ly., * (t, T) - Wr * (t, T)]2dT + [Ur* (t, T)]2dT (4.55) 

where 

Y'. 0 (t, T) =y* (t+T) - y(t) (4.56) 

N. Tk (4.57) 
Ur (1, T) Uk (t) -j7! 

or in the matrix form 

Ur * (t, T) L% u 
(4.58) 

T2 TN' (4.59) 
Lvý =[IT2! *.. Nu! 

I 

H=[u 
(I) ul(t) ... UN"(0 17 (4.60) 
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T, = ndnimum prediction horizon 

T2 ma)dmum prediction horizon 

X= control weighting 

Note that y., * (t, T) is exactly given by the same predictor equation (eqn. 4.20) except that the 

first element of YO is set to zero, tWs new vector will de denoted by YO. 

y00 Y10 (t) ...... YNYO (t ) iT (4.61) 

For the Laplace domain equation (eqn. 4.21) this is equivalent to setting the first row of the matrix 

to zero. 

Note that we include a minimum prediction horizon T, in the cost. In the general case, T, is 

zero but, if the system has a time delay, T, can be set equal to the delay. If the time delay is not 

known then T, can be set equal to the largest possible delay. Since the predicted input u, * (t, T) 

for T> T2 - T, will have effect on y, * (t, T) for T> T2 (which arc not included in the cost) when 

T, = time delay, then there is no point in weighting the u, * (t, T) for T> T2 - TI. This is also 

included in the cost, which has not been taken in consideration in the discrete GPC. 

The CGPC control law can be restated as follows: 

1. Find the vector u which minimizes the above cost (4.55). 

2. Use the first element of yu (t) as control input. 

With the substitution of the eqn. (4.20) , eqn. (4.49) and eqn. (4.58) into eqn. (4.55), the 

cost becomes 

T2 T2 - T, 

j (Tjv Hu+ Mý)2dT +XjT i% T 2ýý m dT (4.62) 
y0 

The minimization of the J results in 

K(w - Y') (4.63) 

where 

= (HT TT (4.64) K Ty H+XT. )-'H y 
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T2 

Ty 

T2 - TI 

Tu =j Lvý TLý dT 

is (Ny+l)x(Ny+l) 

is (N. +I)X(N. +I) 
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(4.65) 

(4.66) 

Note that Ty and T. are symmetric. Evaluation of the integrals in eqn. (4.65) and eqn. (4.66) 

reveals that the ijh element of the matrix Ty is given by 

ty (4.67) (i+j+l)i! j! 

and the ij' element of the matrix T,, is given by 

luij = 
(T2 - Tl)"i'l 

(i +j+l)i! j! (4.68) 

Note that T. becomes submatrix of Ty when TI=O. Let the first row of K be k, then CGPC con- 

trol law is given by 

(4.69) 

In the Laplace domain 

U(S) =kIL [W(s) - Y(S)l - yo(s)] (4.70) 

eqn. (4.70) can be rearranged in a transfer function form 

U(S) = glw(s) - Y(S)l - C(S) 
U(S) -C (S) 

Y(S) (4.71) 

where the scalar gain g and the polynomials G,, (s) and F, (s) are given by 

=k r (4.72) 

G, (s) =kG SG (4.73) 

F, (s) =kF SF (4.74) 

The feedback system given by the CGPC control law (eqn. 4.71) is illustrated in figure 4.2. 
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v 

Figure 4.2 The feedback system of CGPC 

The CGPC control law can be rewritten in the following form 
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W(S) = (D, (S) (4.75) 

where 

G, (s) F, (s) 
Oe (s = U(s) + F(- 

s) C (s) s) 
Y (s) (4.76) 

G, (s) = 
G, (s) (s) 

(4.77) 
9 

Fc (s) 
+ C(S) (4.78) 

Remark 1: Note that the CGPC control law is obtained by setting the output of an equivalent 

emulator equal to the setpoint (eqn. 4.75). The equivalent emulator polynomials satisfy the pole- 

placement identity PC = G,. A + FB, but P is implicitly specified by the CGPC algorithm. 

Remark 2: An important result of using the receding time frame is that, although the control law 

required to realize u, * (t, T) (for fixed i and varying T) would vary with T, the actual control law 

required to realize u (t) = u, * (t, O) for variable t and fixed T=O does not depend on t. Tbus, like 

the GPC, the CGPC is a time invariant control law. 

Remark 3: In the development of the above control law it is assumed that deg (C) = deg (A) -I- 

If deg (C) =deg (A), then the output y(t) should be replaced by its emulated value. 
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Remark 4: The eqn. (4.63) has a unique solution, if the matrix (HTTYH + XT. ) is nonsingular. 

The matrices Ty and T, are positive definite, and matrix H has always full rank because of its 

structure. This means that the matrix (H'TyH + XT,,, ) is also positive definite and thus nonsingu- 

lar. However, the above argument is purely based on a theoretical viewpoint, numerically speak- 

ing, for small values of T2 the matrix (HTTyH + XT,, ) can be singular. This can be easily over- 

come by increasing T2 or choosing a smaHer N,. 

Minimum of the cost function 

The cost function (eqn. 4.62) can be written as foRows 

(Hýu +W )T Ty (Hu +W)+?, UTT u 
(4.79) 

this can be rearrangedas 

TT_W )T +W )TT (W) u (H TYH + XT. +2( f' Ty Hýu y 
(4.80) 

substitution of the control law (eqn. 4.63) into eqn. 4.80 gives the following minimum of the cost. 

jmin W_ 
fb)T [ Ty - TyH (H T TyH + %T,, ) -1 HT Ty 

More on the control law 

Consider the system model (eqn. 4.1) with zero disturbance input, that is 

Y(S) =B 
(s) U (S) (4.82) 

A (s) 

then, the realisable part of the emulator (eqn. 4.9) can be written as 

YAS 
Gk(s)A (s) + Fk(s)B (s) 

U (S) (4.83) 
C (s)A (s) 

using the decomposition identities (eqn. 4.5 and eqn. 4.6), it can be shown that 

Gk (S )A (5) + Fk(s)B (s) ýC (S)Lk (S) (4.84) 

where Lk(s) satisfies the following identity 

lkB (s) 
= Hk(s) + 

Lk(S) 
(4.85) 

A (s) A (s) 
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hence, Yf(s) becomes 

Y0 
ýk(s) 

U(S) k (S 
A (s) 

(4.86) 

This reveals that when there are no disturbances, k4 derivative emulator gives exact k' derivative 

of the output, that is 

skB (s) U(s) = Hk(s)U(s) + 
Lk(s) 0 (4.87) Yk(S) 

A (s) A (s) 
U(S) = Yi(s) 

We will use this fact to establish a relationship between Y' and the states of the system. To do 

this, consider a state-space representation of the eqn. (4.82) 

X-(t) =A x(t) +bu (t) 

Y(t) =c X(t) 

(4.88) 

(4.89) 

Consecutive derivatives of the output can be arranged in the foRowing matrix form (Kailath, 

1980) 

Hx y+Q : 0) 

where 

y=I Y(t) YI(t) ...... YNY (t ) 

u(t) ul(t) ...... UNY_J(t) ]T 

c 
cA 
cA 2 

cA 
NY 

and H, is a lower triangular Toeplitz matrix 

0 

cb 
cAb 

Hx CA 2b 

cA 
NY-1 

b 

0 0 0 0 
0 0 0 0 

cb 0 0 0 

cAb cb 0 0 

cb. 

4 

(4.90) 

(4.91) 

(4.92) 

(4.93) 

(4.94) 
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where cAk-lb is the Ph markov parameter of the system, that is hk = cAk-lb so H, = H. Compar- 

ing eqn. (4.90) with the eqn. (4.17) one can see that, when there are no disturbances, they are 

equivalent and thus 

YO 
=Q x(l) 

and 

YO Q x(t) 

where 

0 
cA 

cA 2 

N 
cA 

(4.95) 

(4-96) 

(4.97) 

where 0 is a zero row vector with appropriate dimension. Substitution of the eqn. (4.96) into the 

control law (eqn. 4.69) results in 

U(t) =kw-ka X(I) (4.98) 

this can be further written as 

U(t) =g W(t) -f x(t) (4.99) 

where g is as defined before (eqn. 4.72) ,f is the feedback gain vector and is given as foRows. 

f=k(Lc +) (4.100) 

" (s) 
is reflected by the r vector in the feedback gain f, note that if The effect of Rd(S) Rd(S) 

then f becomes 

k (4.101) 

This is an interesting result showing that CGPC control law is actually a state feedback where the 

state feedback gain I is chosen by the CGPC algorithm in order to meet some specifications stated 

by the CGPC design parameters (TI, T29 Nut X, R, lRd)- This also means that CGPC control law 

only aitcrs the pole locations (zeros stay the same) which enables the control of non-minimum 
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phase systems with zero control weighting. Notice that this state feedback is made possible by the 

C(s) polynomial, which acts as an observer polynomial as discussed in chapter 2, enabling us to 

obtain the state information from the input output data. The above results will also be obtained 

from a transfer function analysis of the CGPC closed-loop system in the following section. 

43. THE CLOSED-LOOP SYSTEM 

43.1. General Closed-loop Equations 

Closed-loop setpoint response 

Application of the CGPC control law (eqn. 4.71) to a system given by the eqn. (4.1) results 

in the following closed-loop setpoint response. 

Y(S) = 
gB (s)C (s) 

- W(S) (4.102) 
A (s)C (s) + G, (s)A (s) + F, (s)B (s) + gB (s)C (s) 

Considering the eqn. (4.84) together with the equations for the G,, (s) and Fc(s) polynomials (eqn. 

4.73 and eqn. 4.74) one can easily see the following relationship 

G, (s)A (s) + F, (s)B (s) = L, (s)C (s) (4.103) 

where the L, (s) polynomial is given as follows 

L,, (s) =kL Sr, (4.104) 

where L is the (Ny + I)xn coefficients matrix of the Lk(s) polynomials given by the identity 

(4.85) and SL is the corresponding nxl s vector, that is 

0 

Li 
L 

L2 

L 
y 

Lk ý[ lkO lkl 
--- 

lk(R-1) I; k=1,2, --- 
Ny 

si. =Is M-1 s m-2 
... Si iT 

(4.105) 

(4.106) 

(4.107) 
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where 9 is an appropriate dimension zero row vector. It follows from eqn. (4.103) that C(s) is a 

factor of both numerator and denominator of the closed-loop system hence cancellation of this 

common factor results in the following closed-loop transfer function. 

Y(S) = 
gB (s) 

W(S) 
A (s) + L,, (s) + gB (s) 

(4.108) 

The closed-loop transfer function shows that CGPC control law only alters the pole locations leav- 

ing the zeros untouched. In addition to this we see that the closed-loop system has the same 

degree as the open-loop system (degree of L, (s) is n- 1). Notice that these are also properties of a 

state feedback. 

The feedback system given by the eqn. (4.108) is shown in figure 4.3. In this figure, the 

inner loop actually corresponds to a state feedback where the partial state and its derivatives 

(Wolovich, 1974, Kailath, 1980) are fed back by the gain vector kL. In addition to this state feed- 

back in the figure there is also an output feedback, but this output feedback can be incorporated 

into the state feedback by modifying the figure 4.3 as in figure 4.4. The state feedback gain then 

becomes 

f, +rB ) (4.109) 

where B is a Ixn row vector which contains the coefficients of the B (s) polynomial. Note that if 

deg (B (s)) <n -1 then corresponding leading elements of B will be zero. This result is a special 

case of the general result of the previous section (eqn. 4.100): here the controller canonical reali- 

zation is assumed and subscript c denotes this. Note that when 
R, (s) 

= If, becomes 
Rd(S) 

fc kL 

where 

B 
L-1 
L2 

L 

LN 
1. Y, 

(4.110) 

(4.111) 
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w (s) 

A (s) 

Lc (s) 

p 

W(s) 

B(s) 

Figure 4.3 Equivalent CGPC feedback system 

A(S) B (s) 

Figure 4.4 CGPC feedback system in the state feedback form 

R, (s) 
So when 1 the closed-loop system can be written as 

d 
(S) (S) 

ko B (s)_ 
Y(S) W (S) 

A (s) + L, (s) 

where 

Y(s. ) 

Y (s) 

80 

(4.112) 

L, (s) =kL SL (4.113) 

and ko is the first element of the row -k. 

An interesting result of the above argument is that Lk(s) polynomials can be expressed in 

terms of the matrices of the controller canonical realization (A, bc, cc), that is 

Lk (S LA cc Ak SL (4.114) 
c 

This also suggests the following recursion for Lk 

__. a4 Ac (4.115) Lk+j =L 
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with the initial coefficient vector 

LO=B =cc (4.116) 

Note that using the identity (4.85) the Lc (s) polynomial can be written as 

where 

L,, (s) =B(s)k 5 -A (s)k HfSHf (4.117) 

5=[ Os s2..... s 
Ny 

and Hf is the full H matrix, namely the H matrix when N, = NY -p and S is the corresponding ýH f 

s vector. L, (s) further can be written as 

Lc (s) =B (s)Zc (s) -A (s)Hc (s) (4.119) 

where the polynomials Z, (s) and Hc (s) are defined as follows 

Z. c (S) =ks (4.120) 

H, (s) =k Hf &ýf (4.121) 

with the substitution of eqn. (4.119) into eqn. (4.108) a new expression for the closed-loop system 

is obtained as follows 

gB (s) 
'W A (s) (1 - H, (s» +B (s) (Z, (s) + 9) 

(4.122) 

This expression will be used to prove some properties of the closed-loop system in the following 

subsections. 

Closed-loop disturbance response 

The closed-loop disturbance response is give by 

Y(S) = 
(G, (s) +C (s)) A (s) 

T(S ) (4.123) 
(A (s) + L, (s) + gB (s)) C (s) 

where T(s) is the direct disturbance at the output and given by T(s) = 
C(s) V(s). The eqn. A (s) 
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(4.123) can be divided into two parts 
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Y(S) =_A 
(s) 

T(S) + 
G, (s)A (s) 

T(S) (4.124) 
A (s) + L, (s)+gB (s) (A (s) + L, (s) + gB (s)) C (s) 

Although the second part of the closed-loop disturbance response may be adjusted by C (s) poly- 

nomial without effecting the closed-loop setpoint. response, as a whole we do not have enough 

flexibility to adjust the disturbance transients separately from the closed-loop setpoint response. 

Closed-loop control input 

The closed-loop control input is given by 

U(S) = 
gA (s) 

- W(S) - 
QC (s) + F, (s)) A (s) 

T(s) (4.125) 
A (s) + L, (s) + gB (s) (A (s) + L, (s) + gB (s)) C (s) 

43.2. A Special Case 

There is a special case where X=0 and N,, = Ny -p then CGPC control law becomes a can- 

cellation law. Namely, closed-loop pole polynomial has B as a factor. This obviously gives 

unstable control for the non-minimum phase systems. In this special case, the closed-loop system 

is given as follows. 

Y(S) =I W(S) (4.126) 
Z(S) 

where 

Z(S) = 
Zc (S) +g (4.127) 

9 

The proof is simple: consider the equation for the gain matrix K (eqn. 4.64), then it can easily be 

shown that when X=0 and N. = Ny - p, H, (s) polynomial is equal to 1, that is H, (s) = 1. This 

ends the proof (see eqn. 4.122). Note that deg (Z (s)) = p. 

In general, the analysis of the closed-loop pole locations in terms of the CGPC design 

parameters seems impossible analytically. In this special case, however, this can be done to some 

extent, which may also provide some insight into the general case. 
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Now consider the H matrix, it can be decomposed as follows 

H=1 (4.128) H2 

I 

where H, is a zero matrix with the dimension px(Ny -p+ 1) and H2 is a lower triangular square 

matrix in the following form. 

hp 00 

h p, +, hpo 

H2 (4.129) 

hjý hp 

The matrix Ty can also be decomposed appropriately as 

T 11 
Ty12 

TY = Ty 21 Ty 22 
(4.130) 

y 

then, it can be shown that the gain matrix K (eqn. 4.64) can be written as fbHows 

K= H21 I T; 212Ty21 1 (4.131) 

where I is a unit matrix with appropriate dimension. Since H2 is lower triangular its inverse is 

also lower triangular, hence the first row of K is given as 

-1- 0 
.... 

0 11 T; -212Ty 21 1 (4-132) 
hp 

or 

A =-L [T, 10 .... 
01 (4.133) 

hp 

where T is the first row Of T; 212Ty2l. Note that the dimension of T is lxp. 

The elements of _T_, are non-linear functions of different powers of T, and T2. so even in this 

simple case a general expression for the closed-loop pole polynomial (in this case Z(s) ) will be 

quite complex. Therefore we will not examine Z(s) in general case instead we will consider two 

special cases where p=I and p=2. 
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Case 1: Here p=j, thus Tc is scalar say t, and we assume a first order R, 1Rd as follows 

R. (s) 
(4.134) Rd FS) 

rs + 

then the first markov parameter ro of R. 1Rd is zero, that is 

.L=[r, 
r2 .... rN 

y 
]l (4.135) 

Using eqn. (4.127) it is easy to show that, in this case, Z(s) is given as follows 

Z (S) =IS+ (4.136) 
r1 

one may also note that ri hence Z(s) becomes 
r 

Z(s) = rs +1 (4.137) 

This means that under thencircum stances we obtain exact model-following regardless to the choice 

of T, and T2. Note that if R, 1Rd =1 then Z(s) wiH be 

Z(s =1s+I Ic 
(4.138) 

and pole location can be adjusted by T, and T2 : generally T, is chosen as zero and T2 is used for 

adjustment. 

Case 2: Here p=2 thus T= [t,, I t,, 2] and we assume a second order R. IRd as follows 

R. (s) 
Rd (s) 

1 

ra S2+ rbs 
(4.139) 

then r will be 

.L= 
[OOr2 

.... rNy 

It can be shown that in this case Z(s) is given by 

Z(S) = _LS2 + 
tc2S 

r2 r2 

(4.140) 

(4.141) 

one may note that r2 
I then Z(s) becomes 
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Z(s) = r. S2 + r. 42 S+1 (4.142) 

If tc2 is adjusted to be tc2 by T, and T2 which is always possible, then we obtain exact ra 

model following. This type of exact model-following is not possible for p>2 since more than 

one t, terms appears in Z(s) making it impossible to adjust them independently. 

If R,, IRd is chosen to be a first order as in case 1, then Z(s) will týe given as Mows. 

Z(S) = (rs + 1)( s+ 1) 
rtc 2-I 

(4.143) 

This equation shows that, in this case, irrespective of T, and T2, one of the closed-loop poleswill 

be at the location defined by Rd. The other pole can be replaced far away from the imaginary axis 

by the proper choice of T, and T2. This results in a very close model-following. This is also true 

for p>2, that is one of the closed-loop poleswill be at the location defined by Rd and replacing 

the other poles further left from this pole, model-following type control can be obtained to some 

extent. Note that if R, 1Rd =I then Z(s) is given by 

(S 2+ tc2 S+ tcl) (4.144) 
tc I 

43.3. The Effect of Common Factors 

In self-tuning control if the system model is overspecified, a common factor will appear in 

the estimated model. Therefore, it is important to examine the case where the system does not 

have a common factor but the model which the design is based on has a common factor. Consider 

the following model 

A (s) = A(s) X (S) B (s) = B'(S) X (S) (4.145) 

where A'(s) and B J. (s) are the actual system polynomials, X(s) is a common factor. There are two 

questions to be answered: 

I- Does the common factor create any problem in the control law calculations? 
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How does the common factor effect the control law? 
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Examination of the decomposition identities (eqn. 4.5 and 4.6) shows that common factors 

will not create any problem in the solution but, for different common factors we will have 

different Fk(s) and Gt(s) polynomials. Although Hjs) polynomials and thus the vector k do 

not depend on the common factor (this is apparent from the identity (4.85)), this gives rise to 

different G, (s) and F, (s) polynomials for different common factors. Note that gain g is indepen- 

dent of common factor. 

As the control law is applied to the actual system, the closed-loop system (eqn. 4.102) will 

be given in terms of actual system polynomials A'(s) and B'(s). So we will have the term 

G, (s)A'(s) + F, (s)B'(s) in the denominator instead of G, (s)A (s) + Fc (s)B (s). Then the question is 

what this term wiH be as G, (s) and F,, (s) are different for different common factors. The examina- 

tion of the identity (4.85) shows that 

(s) = Lc'(S) X (S) (4.146) 

where L'(s) is the L, (s) polynomial when X (s) = 1. It then follows from eqn. (4.103) that 
c 

(s) A'(s) + Fc (s) B'(s) = L'(s) C (s) (4.147) 
c 

This equation shows that whatever the common factor is, we end up with the same closed-loop 

system and thus the same control law. 

Note that in the above analysis we did not make any distinction between the stable and 

unstable common factors: the above result is true for both cases. Note that the above result is also 

true when the system itself has a common factor but, in this case unstable common factors will 

result in unstable control. 

So, an important feature of CGPC is that, unlike pole-placement it does not suffer from the 

ill effects of the pole-zero cancellation. 
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43.4. The Offset Problem 
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The CGPC closed-loop system has unit steady-state gain, regardless to the choice of parame- 

ters and the open-loop system, when ), = 0. The proof is as follows. Using the equation for the 

gain matrix K (eqn. 4.63) it can be shown that the constant coefficient of the H, (s) polynomial 

(eqn. 4.12 1) is I when X=0. Also note that Z, (s) polynomial (eqn. 4.120) has s as a factor. 

These two facts guarantee that the constant coefficient of the L, (s) polynomial (see eqn. 4.119) is 

-a,, is the constant coefficient of A (s)) when X=0. This results in a closed-loop system with 

unit steady-state gain. Tberefore, there will be no offset due to setpoint when X=0. This is not 

true when ), #0 and the resulting offset is called X-offset. This can be overcome by replacing X 

by a transfer function Q (s) such that Q (0) = 0. This type of control weighting is called dynamic 

control weighting and we will show how to include Q (s) in the CGPC design later. 

An other reason for the offset is the disturbances (specially dc or stepwise disturbances or 

the ones with a dc level). To remove the offset due to disturbances closed-loop disturbance 

transfer function must have a zero steady-state gain. However, examination of the CGPC distur- 

bance transfer function (eqn. 4.123) reveals that the above type of disturbances will cause an 

offset at the output. This offset problem can easily be overcome by modeling the disturbances 

correctly that is, by taking into account dc type disturbances. This can be done by augmenting 

(s) and B (s) polynomials by s as follows (Gawffirop, 1986, Gawffirop, 1987). 

Y(S) = 
sB (s) U(S) +C 

(S) V(S) 
sA (s) 

(4.148) 

This results in a disturbance transfer function with zero steady-state gain and thus remove this 

kind of offsets. The proof is as follows. Examination of the identity (4.5) reveals that F, (s) poly- 

nomial will have s as a factor. Then, from eqn. (4.103), by noting that the constant coefficient of 

the Lc (s) is -a., one can see that the constant coefficient of Gc (s)A (s) is -a, c, where c. is the 

constant coefficient of the C (s) polynomial. Hence Gc (s)A (s) +C (s)A (s) has s as a factor. This 

ends the proof 



CONTINUOUS-TMM GENERALIZED PREDICTIVE CONTROL 88 

4.4. THE EFFECTS AND CHOICE OF CGPC PARAMETERS 

4.4.1. The Minimum Prediction Horizon T, 

This parameter is usually chosen as to be zero, but it is useful to choose T, >0 when the 

system has a time delay or when it is non-minimum phase. If the system has a time delay then 

there is no point in setting T, less than the time delay since the corresponding output can not be 

effected by u(t). If the time delay is not known then T, may be chosen equal to the largest possi- 

ble delay. For the non-minimum phase systems T, may be chosen such that the negative going 

part is excluded. Although it is possible to obtain reasonable control for the time delay and non- 

minimum phase systems with T, = 0, the above choice of T, >0 wiU improve the control perfor- 

mance for each case. T, corresponds to N, in the discrete time formulation (Clarke et a] 1987). 

4.4.2. The Maximum Prediction Horizon T2 

This parameter is equivalent to N2 in the discrete-time formulation (Clarke et al 1987) and 

has the same effect in continuous-time. In general, the smaller value of T2 corresponds to the fas- 

ter output response and thus the more active control action. For the larger T2. the slower output 

response is obtained. Therefore, T2 can be used as a knob to adjust the rise time of the closed- 

loop output response. However, if a reference trajectory is specified by R. lRd the choice of T. 

needs to agree with the rise time of the model. If the system has an initially negative-going non- 

minimum phase response, the minimum value of T2 should cover the later positive-going part. 

An interesting limiting case is that when X=0 and T2 -4 0, Y(s) -* W(s). The argument of 

this point is similar to the one which will be given in section 4.6.2 under the heading 

'Relation of CGPC with EBC. Clearly this gives unstable control for the non-minimum phase sys- 

tems as the controller tries to cancel the system by its inverse. 
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4.4.3. The Predictor Order NY 

In the predictor design, the future output is approximated by a Ny4 order truncated Maclaurin 

series. It is obvious that approximation accuracy depends on Nyj So Ny needs to be chosen such 

that a good approximation can be obtained over the range in which T varies. In other words, the 
i 

sum of the terms yi(t) -, 
2 for i> Ny should be reasonably small. However, as yi(t)s are not 1 

known, it seems impossible to choose Ny on the basis of this argument. 

Intuitively one may argue that if NY is chosen such that we have a good approximation of 

the open-loop system step (or impulse) response over the range 0<T< T2. then this will also 

result in a good approximation for the output predictor as the predictor design is based on the 

open-loop system. This intuitive argument can be supported as follows. Consider the output pred- 

ictor (eqn. 4.20) when N,,, =0 

y* (t +T) = y, *(T)u (t) + !: Ný Yo (4.149) 

where 

T2 TIVY 
y, (T) = LýH = hIT + h2 

2! + hN 
v Ny! 

(4.150) 

As one may notice, y, *(T) is the approximate step response (truncated Maclaurin series) of the 

open-loop system. We believe that if Ny is chosen such that y, '(T) is approximated well over the 

Ny Y' will also be approximated well over the same range as it is the initial range 0<T< T2? 
_T 

condition response of the same system. 

As a conclusion, choosing Ny such that the error between the real and approximate step 

responses of the open-loop system over the range 0<T< T2 is reasonably small will be a good 

criteric* This is also supported by simulation results. 

t Approximation of a function f(t) with Taylor series about a specified point to will be very good near 

to that point and very poor away from that point. Of course, the range in which the approximation is 

good, depends on the order of Taylor series (in our case NY). 
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It may be useful to illustrate the procedure with an example. Consider the following system 

A (s) -0.2s + 
B (s) S(S2 + (4.151) 

The actual and approximate step responses of this system for various Ny over the range 0<T<5 

is given in figure 4.5. As can be seen form the figure , for a larger T2 a larger Ny is needed and 

vice versa. For example, for T2= 5 Ny should be 12 whereas for T2= 3 Ny =6 will be 

sufficient. 

6 

5 

Ny = 12 

Ny =8 

Ny =4 

4 

3 
NY = 10 

Actual step response 

2 

1 

0 

Ny =6 

Ny =2 

-1 0 0.5 1*1.5 2 2.5 3 3.5 4 4.5 5 

Figure 4.5 Graphical illustration of the choice of Ny with an example 

As it is obvious from the above discussion, there is a close link between T2 and Ny. Tbere- 

fore these two parameters should always be considered together. However simulation studies 

showed that a large number of systems can be controlled reasonably well with the value of 

Ny = 6. For the simple plants this value can be reduced even further. But, for the complex systems 

(at the same time open-loop unstable, non-minimum phase and higher order) Ny can be as large as 

30 depending on the complexity. This is the case generally with the time delay systems since their 

approximation becomes non-minimum phase and higher order. For example for the double integra- 

_S 
tor with the unit time delay (-72-) Ny needs to be chosen around 20 when T2 = 2. 

S 
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Note that we do not use the step response representation in the predictor design, we intro- 
duce the step response only to give a criteria in order to choose Ny. However, it is interesting to 

note that Ny will never be as large as in the control methods based on step or impulse response 

representation such as DMC or IDCOM (Cutler, 1980, Richalet, 1978), since Ny is chosen in 

order to approximate a part of step (or impulse) response not all of it. 

There is no physical equivalent to Ny in discrete time but algebraically NY is equivalent to 

N2 since both has the same effect on the dimension of the matrices. 

4.4.4. The Control Order N. 

Control order N,, can be seen as a parameter to constrain the predicted control u,, . (t, T) since 

the form of the predicted control is defined by N,; for example N,, =0 assumes a constant into the 

future, N, =Ia ramp and so on. The smaller the N., the higher the constraint on the predicted 

control and vice versa. Note that in this way we indirectly constrain the control u (t). No 

mathematical argument has yet been devised but it seems reasonable that more constraint on the 

predicted control u,, * (t) means more constrainton u (t) or vice versa. As a result a small value of 

gives less active control u (t) and slow output response. Increasing N,, makes the control and 

the corresponding output more active until a stage is reached where any further increase in N. 

makes little difference. Simulation results show that a value of N, =0 gives generally acceptable 

control for a large variety of systems but, an increased value of N. is needed for the complex 

systems (higher order open-loop unstable and non-minimum phase systems). 

The control horizon Nu in discrete time is an other way of constraining the predicted con- 

trol. Because of this they have similar effects but, they are physically not the same. However N. 

and Nu are algebraically equivalent since both have the same effect on the dimension of mauices 

and thus on the control law calculations. 

4.4.5. The Control Weighting X 

In general, control weighting has the effect of reducing control activity and thus input 

energy. For the control of non-minimum phase systems X is not needed and the effects of A. can 

also be accomplished by N. and T2without associated drawback of X-offset. Therefore we will 
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not consider X as an important design parameter and it will usually be chosen as zero. However if 

LQ type control, which is given in the next section, is desired then X needs to be X*0. 

4.4.6. The Model R. lRd 

The closed-loop system response can be specified by a reference output defined by a model 

R, lRd. Then CGPC control law tries to match the system response to the model output. But, in 

general, it is not possible to obtain exact model-following since CGPC only changes the closed- 

loop pole locations. Some special cases where exact model-following is obtained are examined in 

case 1 and case 2 of section 4.3.2. A first order R,, IRd generally seems more appropriate to use. 

In this case CGPC places one of the closed-loop poles at the location specified by Rd the rest 

away (the distance depends on the choice of T2) from the imaginary axis when N, = NY -p and 

X=0. Thus it is possible to obtain a very close model-following with the right choice of T2. This 

model-following property becomes less accurate as N,, decreases from Ny - p. For a small N,, 

such as 0 or 1, no longer model-following is obtain instead the effect of R,, IRd is that it smooths 

the response by penalizing the overshoot. 

4.5. RELATION OF CGPC TO LQ CONTROL 

The CGPC cost function is similar to the LQ cost function and previously it was also shown 

that CGPC control law correspond to a state feedback. Clearly, these facts suggest a relation 

between COPC and LQ control and indeed COPC becomes LQ control with the following set- 

ting of the design parameters. 

Rn =Rd =1 

N�, = Ny - 

Ny -+ oo 

T, =O 

T2 --> "'0 

However, the firm proof of the above argument seems difficult because of the fact that CGPC 
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design is based on transfer function representation whereas LQ design is based on state-space 

representation. Here we only give a heuristic discussion of this point. In sectionlp2.2.3 , we dis- 

cussed the relationship between the predicted future output y* (t +T) and the actual futurr, output 

(t +T) and it was shown that y* (t +T) is an approximation to the noise-free future output y (t +T) 

(eqn. 4.39). It was also noted that the approximation accuracy depends on N,, N, and T. From 

this argument, it is clear that when N. = NY -p (largest possible N. for a given Ny) and Ny 

the predicted output y*(t+T) approaches to Y(t+T) and by assuming no future noise this can be 

replaced by y (t +T), and in the same way the predicted control can be replaced by u (t +T). By con- 

sidering that t is the initial time and choosing T, = 0, then the CGPC cost function can be written 

as 

t+T2 
j Ly 2(T) + XU2(T)]dT 

t 
(4.152) 

where setpoint has been omitted for simplicity. Note that this is also receding horizon LQ cost 

function for single-input single-output systems (Kwon, 1977, Longchamp, 1983). So CGPC can 

be considered as an approximation to the receding horizon LQ and it can be argued that when 

N, = Ny - p, R, lRd = 1, T, =0 and NY -+ -o this relation becomes exact. It is well known that 

when T2 -ý oo receding horizon LQ reduces to standard LQ see (Longchamp, 1983). 

An interesting point, which supports the above argument , is that the minimum of the CGPC 

cost function and the LQ cost function are similar type. To make this point more clear consider 

the minimum of the CGPC cost (eqn. 4.81) when setpoint is zero 

Jniin ' X- T(t) p X(t) 

where the symmetric matrix P is given as foHows. 

(4.153) 

(HT 
TT (4.154) p= QT [ Ty - TyH Ty H+ XT. )-l HyIQ 

By considering t is the initial time in the minimization, one can immediately notice that the eqn. 

(4.153) has the same form as the minimum of the LQ cost function (Kwakemaak, 1972). This 

also suggest a relation between the matrix P (eqn. 4.154) and the solution of the algebraic Riccati 

equation. Numerical calculations show that P converges to the solution of the algebraic Riccati 
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equation when R IR N, = Ny - p, Ny T, =0 and T "A -nd "= 19 
2 -+ 00 

4.6. SOME EXTENSIONS TO THE BASIC ALGORITHM 

4.6.1. Inclusion of Systems With Zero Relative Order 

94 

In the development of the basic algorithm the system was assumed to be strictly proper as 

the intention was to keep the fonnulation simple. Although the basic fonnulation can also handle 

systems with zero relative order, for a proper formulation of the CGPC algorithm for these sys- 

tems some modifications are needed. This is because systems with zero relative order has a feed- 

forward from input to output unlike strictly proper systems and this needs to be taken into account 

in the design. The modifications are as follows: 

1- choose deg (C (s)) = deg (A (s)), 

2- emulate the output and replace the output by its emulated value throughout the basic design. 

This enables us to separate the feedforward term from the rest. Let y* (t) be the emulated value of 

(t), then in the Laplace domain 

Y* (s) = Ho(s)U (s) + Y* (s) (4.155) 

Yo (S) =G 
o(s) U(S) + 

Fo(s) 
Y(S) (4.156) iý (S) Zý(S) 

where HO(s), Go(s) and Fo(s) satisfies the foRowing identities. 

C (S) 
= EO(s) + 

Fo(s) (4.157) 
A (s) A (s) 

Eo(s)B (s) 
= HO(s) -, 

G o(s) (4.158) 
C(S) C (S) 

Fo(s) 
Note that C (S) is strictly proper. this prevents any feedforward from input to y*(t) and HO(s)U(s) 

corresponds to the feedforward from the input. The eqn. (4.155) can be written in the time domain 

as 

hou + yo (t) (4.159) 
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where 

ho =[ ho 0 .... 01 (4.160) 

The differences which arise from the replacement of Y (t) by y* (t) in the predictor (eqn. 4.20) are: 

the first element of YO (eqn. 4.18) is now yo (t) instead of y (t) and the first rx)w of the H matrix is 

now h, that is 

H= 

ho 0 0 0 

h1 ho 0 0 
h2 h1 ho 0 

ho 

hN 
yh 

(NY -N. ) 

We also need to replace y (t) by y* (t) in the reference output 

w,. [w (t (t 

and in the y,, (t, T) 

Yr*(t, T) = y* (t + T) - y* (t) 

(4.161) 

(4.162- 
) 

(4.163) 

Note that yr*(t, T) is the same as before that is, the first row of the H matrix and the first element 

of the Y* wifl be zero in the predictor equation for y,, *(t, T). The only difference in the cost func- 

tion (eqn. 4.55) then arise from the existence of the vector -u 
in the reference output. By taking 

this into account, the minimization of the cost function results in a similar control law for proper 

systems. 

L(w (t) - yo (0) - f7o 1 (4.164) 

where K is now given by 

TH+ XT )-IHTT, K= (HpTy ppy 
(4.165) 

where 

Hp =H+r ho (4.166) 
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Note that for strictly proper systems HP reduces to H and thus matrix K becomes the same as 

before. 

The closed-loop setpoint, response for systems with zero relative order is then given as fol- 

lows. 

Y(S) = 
(S) 

A (s) + L,, (s) + gL -0( w (S) (4.167) 
s) 

where g and L, (s) are defined as before and L O(s) satisfies the fbHowing identity. 

B (s) 
= Ho(s) . 

LO(s) 
(4.168) A (s) A (s) 

For strictly proper systems HO(s) = 0, LO(s) =B (s), so eqn. (4.167) reduces to eqn. (4.108). 

In the special case where X=0 and N, = Ny, the open-loop zeros are canceled out by the 

closed-loop poles and thus the closed-loop transfer function becomes unity that is 

Y(S) = W(S) (4.169) 

The proof is similar to the previous one and will not be repeated here. Notice that in the special 

case R, lRd must have zero relative order. This is because if R. lRd is strictly proper then the first 

row of Hp will be zero and thus Hp will be singular. As the transfer function in the special case is 

independent of R,, lRd it can be taken as unity. 

4.6.2. Auxiliary Output Approach 

The use of an auxiliary output, instead of output itself, in the predictor design was first sug- 

gested by Clarke and Gawffirop in the GMV design (Clarke, 1975, Gawthrop, 1977, Clarke, 1979). 

This enables us to consider different control approaches such as model-reference and pole- 

placement in the same frame work. Later the same ideas were extended to the continuous-time 

with the notion of an emulator, which was explained in chapter 2. The auxiliary output approach 

is also used by Clarke et al (Clarke, 1987) in the GPC design to add some new design polynomi- 

als and thus to increase the capabilities of the algorithm. The extension of this approach to the 

CGPC is also straightforward. 
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Consider the following auxiliary output 

lb(s) = 
PR (S) 

- Y(S) (4.170) 
B-(S)Pd(S) 

where B -(s) is the part of B (s) which we do not want to cancel out. So, as in chapter 2, B (s) is 

decomposed as B (s) =B -(s)B +(s) where B -(s) contains aH the zeros with positive real part and it 

may also contain zeros with negative real part. 

proper and the steady-state gain of 
P. (S) 

B _(S )Pd (S 

P. (S) 
hosen such that 

B -(s)Pd (s) 

is unity (to ensure offset-free control), namely 

P. (s)B (S) 
B -(S)Pd (s)A (s) 

is 

pn (0) 

B'(0)Pd(0) 

Now, the design steps of section 2 should be repeated for (D(s) that is, design a T-ahead 

predictor 0*(t+T) for 0(t) and minimize the cost function (eqn. 4.55) with y*(t+T) and y(t) 

replaced by 0* (t +T) and 0* (t) respectively. This results in the following similar control law. 

U(s) = g[ W(s) - V(s) I- Dc(s) 

where (DO (s) is the realisable part of the emulated value (D* (s) of (D(s) 

0* (s) = Ho(s)U (s) + V(s) 

4DO (S) 
G o(s) 

- 
Fo(s) 

) 
Y(S) ý(S) U(S) + Pd (S)C (s 

HO(s), GO(s) and Fo(s are obtained from the foflowing identities 

P, (S)c (S) Eo(s) 
+ 

Fo(s) 

B -(S )Pd (S )A (S )B -(s) Pd (S)A (S) 

E O(s)B '(S) 
= Ho(s) -T- 

GO(s) 

C (S) C (S) 

and 

G, (s) F, (s) 
Y(S) oc (s) = _i(S) U (S )+ «Pd(S)C(S) . 

(4.171) 

(4.172) 

(4.173) 

(4.174) 

(4.175) 

(4.176) 

Scalar gain g, G, (s) and Fc (s) polynomials are defined as before. Note that HO(s) =0 and 



CONTINIJOUS-TUAE GENERALIZED PREDICTIVE CONTROL 

Go(s) = Eo(s)B(s) when 

rearranged as 

P. (s)B (s) 
B'(S)pd(S)A (S) 
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is strictly proper. The control law (eqn. 4.171) can be 

w (S) = (D. (S) (4.177) 

Oe (S) = 
G. (s) 

U(S) +-e 
(S) 

Y(S) (4.178) 
C (S) Pd (S)C (S) 

where 
I 

G, (s) =G o(s) + 
G, (s) +C (s) 

(4.179) 
9 

F, (s) =F o(s) +Fc 
(s) 

(4.180) 

Differences in the development of the above control law are as follows: 

1- For 0* (t +T), the identities (4.5) and (4.6) should be modified as 

S kp 
n 

(S)c (S) Ek (s) Fk (s) 
(4.181) 

B-(S)Pd(S)A(S) B-(s) Pd(S)A(S) 

Ek (s)B +(s) 
Hk (s) 

Gk (S) 
(4.182) 

C (S) C (S) 

thus the emulator for the V' derivative of ý(t) becomes 

4)k*(s) = Hk(s)U(s) + OAS) (4.183) 

G, t (s) Ft (s) 
Ok*(S) = -- (S) (4.184) 

c (S) 
(Sl + P, (S)C(S) 

, 

where the degrees of the polynomials involved are : 

deg (Fk) ý deg (PdA )-I 

deg (Gk) = deg (C) -I 

deg (Hk) =k+ deg (P. ) - deg (BPd) - 

In equation (4.46), for the reference output, y (t) should be replaced by 0* (t). 
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L, (s) =kL SL (4.186) 

LSL 0 LI(s) L2(s) 
... 

LN, (S) IT (4.187) 

The CGPC closed-loop setpoint response, in this case, given by the following equation and 

the corresponding feedback system is Mustrated in figure 4.6. 

where 

Lk(s) polynomial is obtained from the following identity 

and LO(s) polynomial satisfies 

SkP,, (s)B+(s) 
- Hk (s) + 

Lk (s) 
(4.188) 

Pd (S)A (s) Pd(S)A (S) 
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P,, (s)B '(s) 
= HO(s) ý 

Lo(s) 
- (4.189) 

Pd (S)A (S) Pd(S)A (S) 

Note that both Lc (s) and LO(s) are of degree n+ deg(pd) - 1- So the degree of the clo4-loop 

system is n +deg (Pd) 

W(s) 

Y(S) =- 
9B (S)pd (S) 

W(S) (4.185) 
A (s)Pd (s) + L, (s) + gL O(s) 

g 
1 

APd 
PdB 

Y(s) 

Lc + gLo 

t eedback system of CGPC with auxiliary output Figure 4.6 Equivalen f, 

A special case of section 4.3.2 is also true for this case when 

N. = NY + deg (P. ) - deg (B Pd) - p. Then the closed-loop system equation becomes 

Y(S) =g 
B'(s) Pd(s) 

W(S) 

Vc (S) + g) P, (S) 

X= and 

(4.190) 
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or 

Y(S) = 
B-(s) Pd(S) 

W(S) (4.191) Z(S) Pl(s) 

where Z, (s) and Z (s) are defined as before, and deg (Z) =p+ deg (B Pd) - deg (P. ). 

Model-following control 

Model-following control is a special case of the above algorithm defined by 

B(s) =1 

Nu = NY + deg (P. ) - deg (pd) -P 

X= 

the corresponding closed-loop system is then 

Y(S) - 

Pd (S 
W (S) (4.192) 

z (S) P. (S) 

So 
P. (S) 

specifies the inverse model. The Z(s) polynomial does not effect the output Pd (S) 

response significantly, because the CGPC control law tries to place the poles of Z(s) faraway from 

the imaginary axis. The distance of these poles from the imaginary axis depends on the choice of 

T2- When T2 -ý 0 the model-following relationship becomes exact as the poles of the Z(s) poly- 

nomial moves towards Note that degree of the Z(s) polynomial is equal to the relative order 

P (s)B (s) P. (S) P,, (s)B (s) 
of " is chosen such that . has zero relative order then Z(s) becomes 

Pd(S)A(S)* 'ý Pd(S) Pd (S)A (S) 

unity, which means that irrespective of T2 exact model-following is obtain. 

P. (S) 
When N. is less than the above value, Pd (S) acts as an approximate inverse model. For 

large N, the relationship is very close and it may be interpreted as detuned model-reference. For 

small N, the effect Of P. IPd is that: it reduces the overshoot at the output, giving better and 

smoother response. 

Remark: 1: It is clear that the control signal will only be stable if B (s) is stable. 
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Remark 2: Although RlRd and P. IPd seem to have similar effects for small N., the use of P. lPd 
has greater effect than the use of R. IRd. This is easily understood by considering the closed-loop 
transfer function where the effect of R,, IRd implicitly appears in the scalar gain g, whereas P. lPd 

explicitly appears in the transfer function itself. 

Pole-placement control 

Pole-placement control is a special case of the above algoritlun defined by 

B (s) 

Pd (S) ýI 

N,, = Ny + deg (P,, ) - deg (A) 

X= 

the corresponding closed-loop system is then 

Y(S) =B 
(s) 

_W (S) 
z (S) P, (S) 

(4-193) 

So there is no cancellation of the B (s) polynomial in this case and a part of the closed-loop 

poles are given by the P, (s) polynomial. The Z(s) polynomial does not effect the output response 

significantly, because CGPC control law tries to place the poles of Z(s) faraway from the ima- 

ginary axis. The poles of the Z(s) polynomial move towards -- when T2 -ý 0, thus for T2 -* 0 

exact pole-placement is obtained. Note that deg (Z) =n- deg (P. ) in this case, if deg (P, ) is chosen 
I 

equal to n then Z(s) becomes unity, which means that exact pole-placement is obtained regardless 

of T2- This pole-placement relationship becomes less accurate when N, is reduced from 

N,, = Ny + deg (P., ) - deg (A). However, for a large Nu the relationship is quite close and it may be 

interpreted as a detuned pole-placement. 

Relation of CGPC with EBC 

Consider the case where T, = 0, T2 -ý 0 then ý* (t + T) -4 0* (t). So for very smaU T2, 

without introducing a considerable error, we can write 

ý* (t +T) = 0* (1) (4.194) 
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and similarly 

u, Q, T) =u (t) (4.195) 

By assuming R, lRd = 1, then CGPC cost function can be written as 

T2 T2 

jW (()12 dT +Xfu 2(1)dT (4.196) 
0 

after evaluating the integral, the cost becomes 

W (t)12 T2 +X U2(t) T2 (4.197) 

Recall that 

0*(t) = ho u(t) + 0*(t) (4.198) 

then, the control law which minimize the above cost is given by 

1w (t) - 0* (ol (4.199) 

Clearly, this is equivalent to the control law of EBC (eqn. 2.56) if the control weighting Q (s) is 

chosen as Q (s) = 'ý' - When X=0 the control law can be written as ho 

W(t) =0* (1) (4.200) 

Thus for R. lRd =I and T2 -4 0 CGPC -4 EBC. 

4.6.3. Dynamic Control Weighting 

We mentioned before that X will not be regarded as an important design parameter, as the 

effects of X can be obtained by the other CGPC parmeters without associated drawback of 

X-offset. Therefore, instead of a constant control weighting X, a dynamic control weighting 

Q(S) - 
Q. (S) 

can be considered which has two main advantages as discussed in chapter 2 
Qd (S) 

I- it removes the X-offset if Q (0) = 
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2- it may be used to improve robustness of the algorithm in the precence of neglected high fTe- 

quency dynamics by choosing it to penalize the effects of these dynamics. 

However, in this thesis we wW not examine the effect of Q (s) on the robustness of the CGPC; it 

is only covered for completeness. 

There are two possible ways of incorporating dynamic control weighting into the CGPC 

algorithm: 
0 

I- during the design phase, 

2- after the design phase. 

The first one is obviously the natural way of incorporating the control weighting and it will be 

called natural dynamic control weighting (NDCW). The second one will be called forced dynamic 

control weighting (FDCW) as the control weighting is forced into the algorithm after the design 

phase. 

Natural dynamic control weighting 

In this case, a filtered predicted control Uf (t, s) = Q(s)U,. (t, s) instead of Nl- u, (t, T) is con- 

sidered in the cost Let q(t) be the impulse response of Q(s), in the time domain the filtered 

predicted control is then given by the following convolution integral. 

T 

uf (t, T) = Iq (r) u., (t, T-, r) dc 

Recall that 

Ur(t, T) = u*(t, T) = u(t) + ul(t)T r 
U At )'! 

ý 
...... + UNl (t ) 

TN. 

2! N.! 

(4.201) 

(4.202) 

and consider the following approximate impulse response of Q (s) 

2 (N -1) 

q (T) = q* (T) = qo5(T) +qI+ lq2T + q, 
T+ 

qv. 2! y (Ny-I)l 
(4.203) 

where qk is the Ph markov parameter of Q(s) and S(T) is the unit impulse function. Then it can 

be shown that 
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Uf (t -T) = IN QM + Ir Q, y 
where Lý, m and 1, (eqn. 4.43) are defined as before, Q. and Q, are given as foRows. 

qo 0 0 

q, qo 0 

q2 q, qo 

QM = 
qo 

qNy q(N -N) y. 

0 qN. 
yq (Ivy - 1) q (N, N. +j) y 

00 qNy 

Qr 
q (N y- 1) 

000 qN. 
L. y 
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(4.204) 

(4.205) 

(4.206) 

The second term of the right hand side of eqn. (4.204) will be ignored as it corresponds to Tj 
j! 

terms where i> Ny. So a Ny" order truncated Maclaurin series approximation of uf (t, T) is 

obtained as 

Lý Q. (4.207) 

Minimization of the cost function (eqn. 4.55) with 4X u*(t, T)replaced by u; (t, T) then results in the r 

following control law 

y= K(w - J76) (4.208) 

now K is given as foRows 

YH + QTTqQm y 
TT -IHTT (4.209) KHm 

where 

T2, T, 

Tq =IA Lý dT (4.210) 

Note that when TI=0, Tq = Ty - 
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Forced dynamic control weighting 

In this case we will consider the CGPC control law eqn. (4.75) which a control weighting 

can easily be incorporated as follows 

(S)v (S) =w (S) - (D. (S) (4.211) 

or 

U(S) =I[ W(S) - (D, (s) (4.212) Q (S) 

where, Q (s) can be used similarly as in EBC or GMV to detune the CGPC algorithm. Clearly, the 

effect of Q (s) here will be different from the first case. 

Remark: Q (s) in general will have a simpler structure than system: a suitable choice for Q (s) is 
xS 

suggested by Gawthrop (Gawthrop, 1987) as Q (s) - qs + 
So eqn. (4.203) wiH be a good 

approximation of q (T) over the prediction range as the NY is chosen to approximate the system 

sufficiently well over the same range. 

4.7. RELAY-CGPC 

In chapter 3, a relay control strategy is described for the emulator-based control. The same 

strategy can also be employed in the CGPC without any difficulty. This is shown in figure 4.7 

where G, (s) and F, (s) are the equivalent emulator polynomials (eqn. 4.77 and 4.78) and Rf (s) is 

a transfer function with a unit relative degree. The aim again is to operate relay in the sliding 

mode. The transfer function Rf (s), therefore, is needed to make the relative degree of the overall 

relay loop transfer function unity, as deg (G, )= deg (C). Recall that this is the necessary condition 

for the sliding mode to occur. As stated in chapter 3, a suitable choice of Rf (s) is a first order low 

pass filter and it can also be replaced after the relay. 

Suppose that relay is operating in the sliding mode, the relay input ef (t) will then force to 

stay in the vicinity of zero. This will approximately give 

W(s) = (De(s) (4.213) 
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which is control law of the CGPC (eqn. 4.75). As a result, the relay version of the CGPC given in 

figure 4.7 will be equivalent to the CGPC, if relay operates in the sliding mode. This will also be 

illustrated by simulation. 

wE Ef m 
Rf (s) 

Ge (s) 
C (s) 

Figure 4.7 Block diagram of the Relay-CGPC 

4.8. A SIMULATION STUDY 

Non-Adaptive Simulations 

Y B (S) 

A (S) 

Fe (S) 

C (S) 

CGPC design parameters (Ny, N, T1, T29 X) and transfer functions (R,, IRd and P, IB'Pd) Will 

have the same effects in both adaptive and non-adaptive case. In this section a set of non-adaptive 

simulations were performed to illustrate the effects of these parameters and transfer ftmctions, 

and the properties of non-adaptive CGPC. Simulations for the self-tuning CGPC are given in sec- 

tion 4.8.2. All of the simulations were performed using the MATLAB package program running 

on a Sun 3 workstation. Examples used in the adaptive and non-adaptive simulations are tabu- 

lated below. 

Example 1: B (s) 
_21 A (s) S(s + 

C(s) = 0.2S2 +S+I 

Example 2: B(s) 
=s 

+I 
A (s) S(S2 + 
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C(S) = 0.2S2 +S+I 

Example 3: B (s) 
=I A (s) (S2 + 1)(1.5S2 + 

C(S) = (S+1)3 

B (s) -0.2s + Example 4: 
A (s) = S(S2 + 

C(s) = 0.2S2 +S 

Example 5: B (s) e-s 
A (s) S2 

C(S) = (S+1)3 

Example 6: B (s) 
-I A (s) S2 + 

C(S) =s+I 

1.1. The effects of T2 and N,, 

107 

Example 1 was simulated to illustrate the effects of T2 and N,. Since the effects of design 

ameters are of interest the design transfer functions R,, lRd and P,, 1B -Pd were set to unity. ne ' 

ýtrol weighting X and T, were chosen to be zero and the sample interval to be 0.1 sec. 

Figure 4.8 illustrates the effect of T2 wherr, T2 varies from I to 9 with an increment of 2. 

predictor order Ny and the control order N, were chosen to be 6 and 3 respectively, that is 

=6, N,, =3. In the figure, the upper graph shows the step responses and the lower graph shows 

closed-loop poles locus as T2 varies. The fastest response in figure 4.8 corresponds to TY=1. 

can be seen from the graphs the response becomes slower and poles move towards the origin 

r2 increases. 

If a model R,, IRd is specified, the effect of T2 may be different. This is because the 

cification given by the model and T2 contradict with each other. In this case T2 should be 

sen by considering the time constant of the model. 
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Closed-loop step response -v 1.5 
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-U 
-9 -8 -7 -6 -5 -4 -3 -2 

Figure 4.8 Illustration of the effect of T2 
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The effect of N. is shown in figure 4.9. For this example, NY and T2 were chosen to be 6 

and 2 respectively and N, is varied from 0 to 3. The upper graph shows the step responses and 

the lower one the poles locus as N, varies. For N, =: O, the output response and the corresponding 

poles are marked on the graphs. The output response becomes faster and the poles move away 

from the imaginary axis as N, increases. Note that N,, and T2have opposite effects that is, when 

is increased response becomes faster whereas when T2 is increased response becomes slower. 

4.8.1.2. The effect of RnlRd 

As mentioned in section 4.4.6, R,, lRd has two functions: it can either be used as an approxi- 

mate model or to penalize the overshoot. In this section examples I and 2 were simulated to illus- 

trate these two functions of R, 1Rd- In the simulations R,, P,, B-Pd were chosen to be 1, X and T, 

to be 0, Ny to be 6 and the sample interval to be O. lsec. 

Figure 4.10 shows the simulation result of example I with Rd = S+1 (model= I ), T2= I 
S+1 

and N,, =3. In the figure, poles are the corresponding closed-loop poles, ym is the model output. 

Note that CGPC control law placed one of the poles at -1, the others quite away from the ima- 

ginary axis in order to approximate the model. Also note the impulsive behaviour of the control at 

the beginning, this is because a third order system was made to closely follow a first order model. 

In the example N. was chosen to be N. = Ny -p in order to obtain the best approximation to the 

model. If N. is chosen smaller this relationship becames less accurate. 

Example 2 was simulated to illustrate the point discussed in the case 2 of section 4.3.2. For 

this purpose Rd and N. were chosen to be Rd=(0.5s +1)2 and N. = Ny -p=4. This choice of N., 

will result in a cancellation law giving a second order closed-loop system. Since the model was 

chosen as second order, there is a value of T2 which gives exact model matching. This value of T2 

was found as 5.625. The simulation result of example 2 and the corresponding closed-loop poles 

are shown in figure 4.11. Note that, as expected, one of the poles is equal to the closed-loop zero 

and the others are equal to the model poles. As a result exact model matching is obtained for 

T2 = 5.625. Figure 4.12 shows, for the same example, the closed-loop poles locus as T2 varies 
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from 3 to 10. The poles at the breakaway point, where T2= 5.625, corresponds to the model 

poles. 

The use of R. lRd in order to penalize the overshoot is shown in figure 4.13. In this simula- 

tion example I was used with N, = 0, T2 = 1. The upper graph shows the step response when 

Rd= 1, the lower graph shows the step response when Rd= 0.7s+1. Note that the use of Rd . 
for 

this example, completely removed the overshoot. 

bignal -u T-7 



CONTINUOUS-TIME GENERALIZED PREDICTIVE CONTROL 

Closed-loop step response -v 1.5 

1 

0.5- Poles 

0 
01234567 

5 Uontrol signal -u r- II 

10 

0 

2 

1.5 

1 

0.5 

0 

-0.5 

-1 

-1.5 

-1) 

-5 0 234567 

Figure 4.11 Exact model-foUowing with R,, IRd 

Closed-loop pole locus 

10 

x x x x x T2 5.625 x 

xxxxxxxxxxxxx 
lk6 xx xxx 

x 

x 

x 
x 

x 
x 

-7 -6 -5 -4 -3 -2 

Figure 4.12 Closed-loop pole locus of example 2 

112 



CONTINUOUS-TIMIE GENERALIZED PREDICTIVE CONTROL 

Closed-lo, op step resRonse -y 1.5 

0.5- 

0 
0 

10 

5 

0 

-5 

1 () 

t-onuoi signai -u 

-. L %j 01 10 

%J 01 lu 

1.5 

1 

0.5 

n 

10 

5- 

-5- 

-10- 0 

113 

10 

23456789 10 

Figure 4.13 The use of R, 1Rd to penalize the overshoot 



CONTINUOUS-TIME GENERALIZED PREDICTIVE CONTROL 

4.8.1.3. The effect Of PnIB'Pd 
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As we discussed in section 4.6.2, P. IB-Pd can be used in dime different ways: model- 

following control, pole-placement control and to penalize the overshoot. Here, pole-placement con- 

trol will not be considered, hence B-=1. In the following simulations the sample interval was 

chosen to be O. Isec, the control weighting A. and T, to be 0. 

Example 1 was simulated to illustrate the model-following control with P,, IPd- In the simu- 

lation R. 9 Rd,, Pd were chosen to be 1, Ny to be 6, T2 to be 1. Figure 4.14 shows the simulation 

result for a first order model P. = s+1. The corresponding closed-loop poles are also given with 

the figure. Note that, one of the poles is equal to the model pole, the others quite away from the 

imaginary axis (the distance of these poles from the imaginary axis depends on the value of T2 for 

T2 -4 0 these poles moves towards infinity giving the exact model matching). As seen from the 

figure the response is very close to the model output ym. However, forcing a third order system to 

match a first order model resulted in an impulsive control. In the simulation N,,, was chosen to be 

N. = NY -p+ deg (P., ) =4 to obtain the best approximation. Making N,, smaller gives a less accu- 

rate relationship but removes the impulsive behaviour of the control, this may be interpreted as 

detuning the control. The same example was also simulated for a second order model 

Pj% = (0.5s+1)2 and the result is given in figure 4.15. In this simulation N,, was 5. Note that here 

two of the closed-loop poles are the model poles. 

Example 3, a double oscillator, was simulated to show the use of P. lPd to penalize the 

overshoot. In the simulation the following choice of parameters were used: 

RnlRd ý 19 Pd ': -- 11, Ny --,,: 89 Nu ,ý0, 
T2 

"": 
I 

The simulation result is given in figure 4.16. The upper graph shows the step response when 

PR = 1, the lower graph shows the step response when P. = 0.7s+1. As seen from the figure, the 

overshoot is much reduced. The same example was also simulated for Rd= 0.7s+I, p. =I to 

give a comparison between R,, IRd and PnlPd. The result is given in figure 4.17, which illustrates 

the greater effect of P,, 1Pd 
- 
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4.8.1.4. Non-minimum phase systems 

10 
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In contrast to the GMV algorithm, one of the properties of the GPC is that it is able to con- 

trol non-minimum phase systems with zero control weighting. The CGPC also has this property. 

Example 4 was simulated to illustrate the control of non-minimum phase systems. In the simula- 

tion, sample interval was chosen to be 0.05sec and the following choice of parameters were used: 

RnlRd = 1, PnlPd = Is Ny = 6, N. = 0, T, = 0, T2= 3, X=0. 

The simulation result is given in figure 4.18. As seen from the figure output response is reason- 

able but, it can further be improved by increasing N. and using one of the design transfer func- 

tions to remove the overshoot. This is Wustrated in figure 4.19 where N, =2 and Rd = 1.5s+l. As 

seen from the figure the response is much improved. Note that the choice of N. = Ny -p is not 

0 

possible (when ý, -O) for the non-minimum phase systems since it removes the system zeros. 

Iz 10 
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4.8.1.5. Time delay systems 
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Example 5 (a double integrator with unit time delay) was simulated to illustrate the ability of 

the CGPC to control time delay systems. A second order Pade approximation of the time delay 

was incorporated into A and B polynomials. CGPC design was based on the resulting 4'h order 

approximate system without time delay but, the simulation was performed by using the exact time 

delay. The CGPC parameters used in the simulation are as follows: 

Rn = 1, Rd = 0.6s + 1, PnlPd = 1, T, = 1, T2 = 2, Ny = 20, N,, = 0, X=0 

In the simulation sample interval was chosen to be 0.05s&c. The simulation result is shown in 

figure 4.20. As can be seen from the figure control performance is good but, this performance is 

obtained at the expense of increased NY. However, this increase in Ny did not increase the compu- 

tational burden significantly since N. = 0. Although T, is chosen equal to the system time delay, 

it is also possible to Obtain good control when T, = 0. However, in general, chosing T, equal to 

the system delay improves the control performance. 
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4.8.1.6. LQ Control 

As discused in section 5, the following setting of the CGPC parameters gives LQ control. 

RmlRd ý1 

P. 1B -Pd 

N,, Ny p 

Ny oo 

T2 c' 

T, 0 

120 

A double integrator (example 5 without time delay and C(s) = s+1) with the following choice of 

CGPC parameters was employed to illustrate this relationship. 

NY = 12, N,, = 10, ), =I 

The closed-loop LQ poles for the above choice of X are found as: -0.7071 ± 0.7071i 

The closed-loop CGPC poles were calculated for T2 
' '-: 

1 to T2 ` 10 to see whether they 

converge to the LQ poles and the resulting poles are give below. 

T2 -2 1 -0.1546 ± 0.6654i 

-0.6021 ± 0.7920i 

-0.6941 ± 0.6987i 

-0.6963 ± 0.7002i 

-0.7030 ± 0.7071i 

-0.7065 ± 0.7075i 

-0.7071 ± 0.7071i 

-0.7071 ± 0.7071i 

-0.7071 ± 0.7071i 

T2 ý 10 -0.7070 ± 0.7072i 

As seen from the CGPC poles for T2> 6 CGPC poles and LQ poles become the same to a four 

figure accuracY. 
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4.8.2. Adaptive Simulations 
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In the first part of the simulations (section 4.8.1), properties of the non-adaptive CGPC and, 

effects of the CGPC design parameters and transfer functions were illustrated. Since these proper- 

ties will remain the same in the self-tuning case, in this section we did not reconsider them, 

instead we simulated several examples in order to illustrate properties of the self-tuning CGPC. 

In the simulations, parameter do of the highest power s term of A was fixed to 1 and thus one 

less A parameters were estimated. The following are common in the simulations. 

1- All simulations start with a set of wrong parameters. 

2- Estimator parameters: forgetting factor and initial inverse covariance are 0.2 and 0.00001I 

(where I is the unit matrix) respectively. 

Sample interval is 0.05sec. 

4- Each figure consists of four graphs: the first one is the setpoint and output, the second one is 

the control signal, the third and fourth ones are the estimated A and B parameters. 

4.8.2.1. An example 

A non-minimum phase system (example 4) was simulated to give an example for the self- 

tuning CGPC. Simulation was performed with the same CGPC parameters as in the non-adaptive 

simulation corresponding to figure 4.19. Two B and three A parameters, same number as actual 

parameters, were estimated. Simulation result is shown in figure 4.21. As can be seen from the 

figure, parameters rapidly converge to their true values. Much more rapid convergence can be 

obtained if the initial inverse covariance is chosen zero. However, this results in large variations in 

the parameters at the beginning and this may give rise to initially large output. Note that, after 

ýA 

convergence, the output is the same for adaptive and non-adaptive simulations as expected. 
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4.8.2.2. Effect of the noise 
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In practice, control systems are subject to disturbances of all kinds such as stepwise load dis- 

turbances or high frequency sensor or thermal noise etc. In self-tuning control, although the under- 

lying design method may have a good setpoint. response and disturbance rejection, these distur- 

bances may give rise to wrong parameter estimates and thus result in a bad control performance or 

even an unstable system. In general this problem can be avoided if the signal to noise ratio is 

high. 

In order to see the performance of the CGPC when noises are present, we simulated example 

4 with a added random disturbance (Gaussian white noise with zero-mean and a standard devia- 

tion of 0.1) direct at the output. In the simulation exactly the same parameters as in section 

4.8.2.1 were used. Simulation result is shown in figure 4.22. As can be seen from the figure 

despite the noise parameter estimates and the control performance is good. 

4.8.2.3. Time delay systems 

In non-adaptive CGPC, time delay systems are approximated by a higher order system 
i! 

without a delay. This is done by approximating the delay and incorporatingAinto system polynomi- 

als. The CGPC design is then based on the resulting approximate system. However, in adaptive 

case knowledge of the time delay is not available. One possible approach to this problem is to 

estimate the delay together with the system parameters (Besharati-Rad, 1988). Then the above 

design procedure can be applied. However, there are two drawbacks of this method: first it will 

increase the complexity of the estimation algorithm, second each time instant we need to approxi- 

mate the delay and then incorporate into system polynomials to obtain the approximate system. 

The second approach, which removes these two drawbacks, is to let the estimator obtain the 

approximate system by specifying a higher order model to the estimator. This is the approach 

taken in the self-tuning CGPC. Note that this approach resembles the approach in discrete GPC 

where the time delay is taken into account by estimating a higher order B polynomial. Here we 

take the delay into account by estimating higber order B and A polynomials. 



CONTINUOUS-TIME GENERALIZED PREDICIrIVE CONTROL 

setDoint a nd output 

-ALAAL 
1J. &JA"d 

0 

-1 -" 

-2- 1 
10 20 In An '7A on -- - It) ÖU 

40 

20 

0 

-20 

-4n 

LUIIUOI Sigihul 

0 10 20 30 40 50 60 70 80 

Iý 
2 

1 

0 

_1 

2 

1 

0 

CNLIJIlilLCU 13 PdldlJICLCIýý 
-r- II 

----------------------------------------------- -- ------ 

-. L 0 10 20 30 40 50 60 70 80 

estimateciA mrameters 

---------------------------------------------------------- 

.......... 

0 10 20 30 40 50 bu 

Figure 4.22 Example 4 with added random disturbances 

70 80 

124 



CONTINUOUS-TIME GENERALIZED PREDICTIVE CONTROL 125 

Example 5 was simulated to illustrate the control of time delay systems by self-tuning 

CGPC. The CGPC design parameters and polynomials were chosen as in non-adaptive simulation 

(section 4.8.1.5) expect that Rd was chosen here Rd ý-- US +I since Rd= 0.6s +1 gave very 

01,1 slight overshoot. Four A and four B parameters were estimated. Simulation result is shown in 

figure 4.23. As can be seen from the figure control performance is very good. Note that estimated 

system is non-minimum phase as expected. 

4.8.2.4. Over parameterization 

There may be some situations where the parameters of the model are overspecified. This 

results in common factors in the estimated model. Pole-placement algorithms (Wellstead, 1979) 

fail under these circumstances. In section 4.3.3 the effect of common factors is examined and 

shown that, as for the GPC it is not a problem for the CGPC. This will also be illustrated by 

simulation. Example 6 was simulated for this purpose with the following CGPC pararnetcrs: 

Rn = 1, Rd = 1.5s + 1, P,, = 1, Pd = 1, T, = 0, T2 = 1, Ny = 6, N,, = 0, X=0 

One more A and B (3 A and 2 B) parameters were estimated. Simulation result is shown in 

figure 4.24. As can be seen from the figure there is a common factor at s--O in the estimated sys- 

tem model. This common factor did not effect the control performance. If the simulation is 

repeated with exact parameterization, it can be seen that the same output response is obtained. 

4.8.2.5. Relay-CGPC 

Finally, the simulation given in section 4.8.2.2 was repeated for the relay-CGPC. In the 

simulation, the filter Rf (s) and the relay amplitude M were chosen to be Rf (s) = II(O. 5s+l) and 

5 respectively. The simulation result is given in figure 4.25. Note that initially relay is not 

operating in the sliding mode. Relay may force to operate in the sliding mode earlier or from the 

beginning, if necessary, by choosing a larger relay amplitude. Note also that, relay is in the sliding 

mode following the first switching time when the setpoint changes. A larger relay amplitude will 

also reduce the first switching time. 
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By comparing figures 4.25 and 4.21, one can see that the output responses in both cases are 
very similar (after the initial transients). This demonstrates the equivalence of the CGPC and the 

relay-CGPC when the relay operates in the sliding mode. It is also interesting to note that the 

parameter convergence are very similar in both cases. 

4.9. CONCLUSIONS 

In this chapter the CGPC, a continuous-time version of the GPC developed by Clarke et al, 

is presented and analysed. The basic CGPC algorithm appears to be a very useful design method. 

A large variety of systems can be controlled reasonably weR by only adjusting the prediction hor- 

izons T, and T2 keeping the control order N. as zero but, for the more complex systems ( at the 

same time higher order, open-loop unstable, non-minimum phase) an increased value of N,, is 

needed. In general, it is advisable to keep N,, small in order not to increase the computational bur- 

den, instead use reference-model RlRd to adjust the transients. Apart from Ns R,, IRd can also be 

used to obtain model-following type control (sometimes exact model-following) with a large N,,. 

The relationship of CGPC with LQ control is also examined and it is shown that LQ control can 

be considered as a subalgorithm of the CGPC. In addition, it is shown that time-delay systems can 

be controlled in a similar way to GPC by increasing the system order in order to accommodate a 

rational approximation to the delay. 

The basic CGPC algorithm is also enhanced by using an auxiliary output instead of output 

itself. This made it possible to consider the model-reference and pole-placement control (and also 

their detuned versions) in the CGPC frame work. It is also shown that emulator based control 

(EBQ of Gawthrop can be considered as a subalgorithm of the CGPC. In addition, the case of 

systems with canceling pole/zero pairs is considered and shown to cause no difficulty unlike 

pole-placement control. An important feature is that control weighting is not necessary for the 

control of non-minimum phase systems unlike GMV or EBC. 

in these respects, the CGPC is superficially similar to its discrete-time counterpart, but there 

are important differences in the way in which output prediction and control weighting is accom- 

plished. An example of this is that, whereas the GPC constrains the predicted control difference to 
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be zero after N. samples, the CGPC constrains the predicted control so that the derivatives of 

order greater than N, are zero. 

A relay version of the CGPC based on the ideas of chapter 3 is also described and shown to 

be equivalent to the CGPC, if relay operates in the sliding mode. 

In brief, CGPC appears to be a very suitable control algorithm for the self-tuning control 

applications for a large variety of systems. 



CHAPTER 5 

MULTIVARIABLE CONTINUOUS-TIME GENERALIZED 

PREDICTIVE CONTROL 

5.1. INTRODUCTION 

One approach to the control of multivariable systems is to reduce the multivariable control 

problem to a set of scalar control problems so that the scalar control techniques can directly be 

applied. A straightforward way of doing this is simply to design a scalar controller for each loop 

by treating the interactions from the other loops as disturbances. The work of Gawthrop 

(Gawthrop, 1985) can be given as an example of this type of self-tuning multivariable control in 

which a feedforward term is also estimated to reduce the effect of interactions. This technique was 

also applied to a number of real plants and some encouraging results were reported (Nomikos, 

1988). An altemative way is to decompose the multivariable system into a set of scalar systems 

by some means and design a controller for each. The method proposed by Cloud and Kouvari- 

takis (Cloud, 1988) is an interesting example of this type of self-tuning multivariable control 

where the multivariable system is decoupled by spectral decomposition and GPC is used as a con- 

trol technique for each scalar subsystem. 

A more common approach to the control of multivariable systems is to design a multivari- 

able controller. Most of the extension of the scalar self-tuning algorithms to the multivariable case 

are based on this approach A quick review of some of the important ones are as Wows: 

Minimum vanance controffer of Astrom and Wittenmark (Astrom, 1973) was first extended 

to the multivariable case by Borisson (Borisson, 1979). The extension of the GMV controller of 

131 
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Clarke and Gawthrop (Clarke, 1975) then followed this (Koivo, 1980, Keviczky, 1981). In these 

methods the time delay is assumed to be the same in all channels, which prevented them from 

being considered as the complete generalization of the corresponding scalar techniques. Goodwin, 

Ramadge and Caines (Goodwin, 1980) took this generalization effort one step ftirther by assum- 

ing different delays at different outputs in their design. Generalization of the MV type controller 

appeared to be completed by Goodwin and Long (Goodwin, 1980) using the so-called interactor 

matrix (Wolovich, 1976) which provided a proper generalization of the time delay to the discrete 

multivariable systems. t It then became apparent that the earlier results of Borisson (1979), Koivo 

(1980), and Goodwin, Ramadge and Caines (1980) were special cases in which the interactor 

matrix was taken to be a scaled identity matrix and a diagonal matrix respectively. Implementation 

of the Goodwin and Long's algorithm (1980) requires complete knowledge of the interactor 

matrix, which is a severe practical limitation. This limitation was partially overcome by the 

method suggested by Dugard, Goodwin and Souza (Dugard, 1983) and Elliott and Wolovich 

(Elliott, 1984) where the off-diagonal elements of the interactor matrix are estimated together with 

the system parameters. Singh and Narendra (Singh, 1984) suggested an alternative method in 

which a suitably chosen precompensator is applied to the system in order to transform the interac- 

tor to a diagonal matrix. As a further improvement, an extended horizon approach (Ydstie, 1984) 

was adopted by Dugard, Goodwin and Xianya (Dugard, 1984). This reduced the prior knowledge 

about the interactor matrix to an upper bound on the maximum forward shift in the interactor 

matrix. 

There have also been attempts of generalizing other types of scalar self-tuning algorithms to 

the multivariable case. A multivariable pole-placement self-tuner was outlined by Prager and Well- 

stead (Prager, 1980). Elliott and Wolovich (Elliott, 1982) proposed a model matching algorithm 

based on the pole-placement approach in which the open-loop zeros are canceled out by specify- 

ing them as part of the closed-loop poles and a setpoint Mter is used to meet the model matching 

requirement. Elliott and Wolovich (Elliott, 1984) also proposed a direct multivariable pole- 

t Interactor matrix in the continuous-time corresponds to the generalization of the relative order. 
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placement method to avoid the tmnsformation from the estimated left MM (matrix fraction 

description) to the right NIFD, however this considembly increased the number of parameters to 

be estimated making it practically unrealistic. A further method based on a pole-placement 

approach was proposed again by Elliott and Wolovich (Elliott, 1984) with an attempt to unify 

minimum variance, pole-placement and model matching stmtegies. In addition to these algorithms, 

a number of state-space multivariable self-tuners have also appeared in the literature (Hesketh, 

1982, Shieh, 1983, Bezanson, 1984, Shieh, 1989). 

As expected, the above multivariable strategies suffer from the same limitations as their 

scalar counterpart: MV and GMV methods are very sensitive to the variations in the time delay 

structure of the plant; MV is only applicable to the minimum phase systems; pole-placement 

methods require exact knowledge of the controllability indexes and an upper bound on the obser- 

vability index to assure a unique and physically realisable solution to the multivariable diophantine 

equation. These limitations seem to be overcome by LRPC methods in the scalar case. In partic- 

ular, the GPC provided considerable improvement over the GMV and pole-placement strategies in 

these aspects. Motivated by this success, a multivariable generalization of GPC was outlined by 

Mohtadi, Shah and Clarke (Mohtadi, 1986) and Mohtadi (Mohtadi, 1987). As mentioned previ- 

ously, continuous-time approach has some advantages over the discrete-time approach and we 

believe that it will be worthwhile to generalize the scalar CGPC concept to the multivariable case. 

Therefore this chapter is devoted to the development and analysis of a multivariable CGPC 

(MCGPC). 

This chapter is organized as follows. In section 2a multivariable generalization of the scalar 

CGPC is presented. In section 3 the resulting MCGPC closed-loop system is analysed in some 

detail and conditions for decoupling and exact model-following are established. Some illustrative 

simulations are given in section 4 and section 5 concludes the chapter. 
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5.2. DEVELOPMENT OF THE MCGPC ALGORITHM 

51-1. System Description 

The development of the algorithm will be based on the following linear multivariable sys- 

tem model f 

A(s)Y(s) = B(s)LZ(s) + C(s)V(s) (5.1) 

where Y(s), LI(s) and V(s) are pxl output, mxI input and pxl disturbance vectors respectively; 

B(s) is ap xm polynomial matrix; A(s) and C(s) are p xp diagonal polynomial matrices. Elements 

of C(s) are all stable polynomials with a degree of one less or equal to that of corresponding ele- 

ment of A(s). C (s) polynomials are chosen by the designer and can be interpreted as observer 

polynomials as in the scalar case. The time delay problem will be tackled in a way similarly as in 

chapter 4, that is it will be assumed that polynomial matrices A(s) and B(s) include a rational 

approximation of any time delay term between any input output pair when they exist. For simpli- 

city it will also assumed that multivariable system is strictly proper. 

Note that the assumption that A(s) and C(s) are diagonal very much simplifies the predictor 

design as it reduces multivariable identities involved in the design to a set of scalar identities and 

as diagonal matrices commute. 

The above system model corresponds to a left NIEFD (matrix fraction description) (Kailath, 

1980) of a multivariable system having transfer matrix T(s), that is 

T(s) = A(s)-'B(s) (5.2) 

T(s) can also be written in a right Nl[FD form 

T(s) = BR WAR (S )-1 (5-3) 

This later forin will be employed in the evaluation of a closed-loop equation for the MCGPC in 

section 3. There are many NIFD Oeft or right) representations of a given multivariable system, 

t Throughout this chapter matrices will be denoted by the bold letters and vectors will be underlined. 
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however in our case it is unique as A(s) matrix is assumed to be diagonal. 

51.2. Output Prediction 

As in chapter 4, the Maclaurin series expansion of the output will be used for the prediction. 

Each output of the multivariable system will be considered separately as this enables us to choose 

different predictor orders for different outputs. This is important from the computational point of 

view as the predictor order needed for each output can be considerably different. Now consider 

the truncated Maclaurin expansion of the iI output 

N Yi T 
yi(t+T) = yi(t) +y (t)- ik i=1,2, -p (5.4) 

k=l k! 

where 

Yik W=dk 
ýj (t +T) (at T =0) =dk 

yi W 
(5.5) 

dTk dtk 

Ny, = predictor order for the Ph output f 

Eqn. (5.4) can be rewritten in a matrix form 

(5.6) 

where 

N 
T2Y. T (5.7) 
2! Ny,! 

Yi (t ) Yi I (t ) Yi At ) 
.... YiN (t) ]T (5.8) 

yi 

Using eqn. (5.6) the predicted future output vector can be written as 

TNY (5.9) 

t The rules given in the scalar case (section 4.4.3) for the choice of the predictor order also apply to 

the choice of Ny, and will not be repeated here. 
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where 

TNY Q 

T 

yp 

and 

Y2 

UY-P 
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(5.10) 

(5.11) 

In eqn (5.10) 0 denotes an appropriate dimension zero row vector. The outputs derivatives in 

eqn. (5.9) should be emulated because of the reasons given earlier. Consider the PI output 

Im Ci (S) Yi (S) = Ai (s) 
2:, Bij(s)Uj(s) + Ai (s) 

Vi 
j=l 

(5.12) 

If yik(t) represents the emulated value of the k1h derivative of the il output yik(t), then it is given 

in the Laplace domain as 

Eik (s) m Fik (s) 
Yik (S) E7 -( Bij (s)Uj (s) + (5.13) 

S) 
2: Yi (S) 

i j=l Ci (S) 

where the polynomials Eik (s) and Fik (s) satisfies the following identity 

sk ci (S) 
= Eit (s) . 

Fik(s) 
(5.14) 

Ai (s) Ai (s) 

The terin s 
Eik (s)Bij (s) 

in eqn. (5.13) are not proper transfer functions for k> pij (j=1,2, 
Ci (S) 

where pij is the relative order of the ijI element of the system transfer matrix. This term can be 

decomposed into two parts by using polynomial long division 

Eik (s)Bij (s) 
ý Hijk (s) +j=1,2, m (5.15) 

Ci (S) Ci (S) 

where 
Gijk (s) 

is a strictly proper transfer function and Hijk(s) is the remainder polynomial. 'Men 
Ci (S) 
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the emulator eqn. (5.13) becomes 

pn Im Fik (s ) 
Y; (S) --'ý 1: Hijk (S)Uj (S) +-F, Gijk (S)Uj (S) + Yi (S) (5.16) 

j=l Ci (S) 
i =1 

assuming that the degree of Ci(s) is one less than that of Ai(s), the degree of the polynomials 

involved in eqn. (5.16) are-. 

deg (Hijt (s)) =k- pij 

deg (Gijk (s)) = ni -2 

deg (Fik (s)) = ni -I 

ni = deg (Ai (s )) 

If deg (Ci (s)) = deg (Ai (s)) then the only difference will be deg (GjjA, (s)) = ni - 1. Notice that the 

emulator eqn. (5.16) has two parts: one part can be realized by using proper transfer function, the 

other part can not. Hence it can be rewritten as 

m 
0 Yil (S 

Iffijk 
(S ) Uj (S + Yik (S (5.17) 

j=l 

where the realisable part Yj*k(s) is given by 

m Fik (s ) 
Kok (S Z Gijk (S ) Uj (S )+ Yi (S) 

Ci (S) i=l Ci (S) 

Choosing a control order for each input, eqn. (5.17) can be written in the time domain as follows 

m 
yik (t H, ijk yj + yjok (t 

j=l 
(5.19) 

where H"jk is a row vector containing coefficients of the polynomial Hijk (s) and y, is a column 

vector of the derivatives of the j' input 

Mj -`ý 
[ Uj 0) Uj I (t ) Uj 2(t ) 

.... U jNuj (t) ]T (5.20) 

Ujk 
dk uj (t) (5.21) 

d(k 

where N,, is the control order for the jI input uj(t). Eqn. (5.19) can be rearrange in a matrix 

fonn 
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ik (1) = Hik U+ Yik YI o(t) 

where HA is a row vector of the row vectors Hj ,, jk 

,H 4k ýI H-Li lk Hi 2k H-Limk 

and u is a column vector of the column vectors yj 

U2 
U 

VU- i 

Using eqn. (5.22), the column vector 

yA* ": I Yi (t ) Yi*l (t ) Yi*2 (t ).... y, ýYi (t) 

can be written as 

-= Hju + YP 

where 

yp yi (t) yo 0 
yj .... iI yi, 2 (t yi 

vi 
(t 

and 

Hi I 
Hi 2 

Hi 

Hjiv 
Yi 
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(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

where 0 is an appropriate dimension zero row vector. Further using eqn. (5.26) the vector of the 

emulated outputs derivatives 

0= (5.29) 

can be written in an explicit forTn 
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y*= Hu + Y* (5.30) 

where 

H, 0 Yl 
0 H2 Y2 

H YO 

Hp 

Finally, replacing I in eqn. (5.9) by its emulated value -Y* 
(eqn. 5.30), the output predictor for 

the multivariable system is obtained as fallows. 

y* (t+T) = TN 
y 
Hy +TN 

y 
yo 

It is important to note that the matrix H is in the following form 

H1, H12 
... 

Hi. 

H21 H22 
... 

H2,,, 

H= 

rp I Hp2 
... 

Hpm 

pm 
(p+Z NY, ) x (m+y, N 

i=l j=l 

(5.32) 

(5.33) 

where each subblock matrix Hij . which corresponds to the ijI element of the system transfer 

matrix, is in the form as in the scalar case, that is 

Hij = 

000... 0 
hij 100... 
hii 2 hij 10... 
hij3 hij2 hij, ... 

0 
hij I 

hijNy, hij(Nyi-N. 

(Ny, +I) x (N,, +I) (5.34) 

where hijk is the Ph Markov parameter of the ij' transfer function 
Bij (s) 

of the system transfer 
Ai (s) 

matrix. 

As in the scalar case (see section 4.2.2.3), the second term TV YO in eqn. (5.32) corresponds 
y 

approximately to the response of the system to the initial conditions at time t, and the first term 
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T, v, Hm corresponds approximately to the response to a future input y (t +T), that is y 

TNY Hu= h(T)* u (t +T) (5.35) 

where h(T) is the impulse response matrix of the system and * denotes the convolution integral 

with respect to T. Clearly the approximation accuracy depends on the parameters T, Ny, 

(i=1,2, --- and N. 
j 

(j=1,2, --- m). 

Remark: Note that in the above developmendAdifferent control order is used for each input. This 

is important as it enables us to adjust control inputs independently, to some extent. The effect of 

the control orders here are similar to the scalar case, that is the larger the control orders the more 

active the control signals and vice versa. They have also effects on interactions: in general, larger 

control orders result in less interaction. 

5.2.3. Reference Outputs 

In the scalar case it was seen that a reference output approach is useful as it provides us 

with an extra design transfer function which can be used either to reduce the overshoot or to 

obtain a model-following type control depending on the choice of the other design parameters. 

This approach is also useful for the same reasons in the multivariable case. As one may expect, 

here a reference output for each of the system outputsneeds to be considered which means that we 

simply have p scalar casmLet for the i" output, the reference output wi(t, T)6e defined by the 

transfer function 
Rj (s) 

. Then Nth order Maclaurin expansion w* (t, T) of wri (t, T) is given as fol- 
Yi ri 

lows (see section 4.2.3) 

(5.36) W, i (t T) = Lv 
Vi -W, 

N. is defined as in eqn. (5.7) and w, - is given by where T 
Yi 

wi(t) - yi(t) (5-37) 

where 

rilv ri 0 ri I ri 2.... Y, 
iT (5.38) 
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where rit is the kl markov parameter of Using eqn. (5.36), it is then easy to show that 

the reference output vector 

., 
(1, T) Wr I (t, T) W, 2 (t, T) 

.... W; (t, T) ]T w (5.39) 

is given as follows 

w: (t, T) = TN 
y Mý (5.40) 

where TN is defined as in eqn. (5.10) and w is defined as y 

Wi 
W2 

W (5.41) 

L-W- Pi 

It can be shown that w can be further written as follows 

w(t) - y(t) ) (5.42) 

where w(t) is the set point vector, y(t) is the output vector and R is the block diagonal Markov 

parameters matrix of the reference model. 
R,, i (s) 
R& (s) 

0 
E2 

0 

where 0 is an appropriate dimension column vector. 

5.2.4. MCGPC Control Law 

0 

rp 

(5.43) 

As in the scalar case, the control objective here is to determine at time ta (predicted) future 

input vector u(t, T) such that the predicted outputs are as close as possible to the reference out- 

puts. This is done again by minunizing a cost function of the future errors, between the predicted 

outputs and reference outputs, and the future inputs. Once the predicted future input vector is 



M-LJLTIVARIABLE CONTINUOUS-TIME GENERALIZED PREDICITVE CONTROL 142 

detemiined, only its value at T=O W(tO) is applied, which is known as receding horizon strategy. 

The cost fimction considered is in the following fonn 

T2 TI-T, 

t 2,, *((, T) - -w -w .; 
(t, T) ]T Q, T) 

-; 
(t, T) I dT +ju: (t, T)TA m: (t, T) dT (5.44) 

0 

where 

2r; (t, T) = Y* (t+T) - Y(t) (5.45) 

which is the same as eqn. (5-32) except that the first elements of the vectors Y,!, (i=l, .. p) in eqn 

(5.27) are set to zero, in the sequel these new vectors will be denoted by Yý 

yo 
-. 1 

0 yo .... yo ii Yi2, (t ) iNyi 

and the vector of these vectors in eqn. (5.3 1) will be denoted by P 

yo 
-I YO 2 

pyo 

is a diagonal control weighting matrix 

x, 

(5.46) 

(5.47) 

(5.48) 

and u: (t, T) is the truncated Maclaurin series expansion form of the predicted future input u(t, T) 

u Tlv. u 

where 

Lvý 
10... 

TN. = 

(5.49) 

(5.50) 
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Lvý 
i= 

[I T T2T 
Ni 

2! N., I 

and the inputs derivatives vectorm is defined as in eqn. (5.24). 
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(5.51) 

In the cost (eqn. 5.44), we included a minimum prediction horizon T, for completeness. It is 

not an important design parameter and will be usua. Uy chosen to be zero however, if there is a 

common delay between all the input output pairs, T, can be set to the common delay. The effect 

of the maximum prediction horizon T2 is similar to the scalar case that is, the larger the T2 the 

slower the outputs response and vice versa. Note that the prediction horizons (T,, T2) are the same 

for all the outputs. A drawback of this is that, outputs transients can not be adjusted independently 

by T2. But, this is not a problem as the output transients can always be adjusted independently by 

the reference models (Rj (s)lRdi (s)) and/or control orders. It is also possible to consider different 

prediction horizons for each output however, it is omitted here to retain simplicity. 

With the substitution of the eqn. (5.32) (with Y* replaced by P), eqn. (5.40) and eqn. (5.49) 

into eqn. (5.44), the cost becomes 

T2 

y 
J=J, (TN, Hu + TN. TN mý)T (TN Hu + TNYP - TNyhOdT + 

y 

T27T, 

fTT m TN. ATv. u dT (5.52) 
0 

and the maumization of the cost (eqn. 5.52) results in 

=K(w -r) 

where 

K= (HTTyH + T. )-'HTTY 

T2 
; TNT TN dT TY 

y y 

T27T, 

TTT ATN, dT 
u N,, 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

Note that the matrices Ty and T, are block diagonal and symmetric. 
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Tyl 0 

0 TY2 

TY 

0 Ty, 

Tu = 

where the submatrices are given as in the scalar case 

T2 

T =1 T TT dT 
1 

Yi --N A-Nyi 
Yi 

T2: -T, 

T,, 
j 

j dT 
0 

(Ny, +I)x(Ny, +l) 

(N,, 
j+l)X(N, i . 

+l) i=1,2, --- 
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(5.57) 

(5.58) 

(5.59) 

(5.60) 

and 0 is an appropriate dimension block zero matrix. Notice also that, if Ty7x represents the 

matrix Ty, with the maximum dimension, then one can see that rest of the matrices Ty, are the 

submatrices of. Tyl, " , having the first Ny, +I rows and columns. The same is also true for the 

matrices T. 
j. 

Note that the matrices T Ui also become submatrices of Tym, ax when T, = 0. The ele- 

ments of the matrices Ty, and T Ui are given by eqn. (4.67) and (4.68) respectively. 

Let k be the matrix formed from the rows of matrix K corTesponding to the inputs 

UI(Ot U2(0) --, Um(t) then, the MCGPC control law is given by the following equation. 

g(t)=k(w -P) (5.61) 

In the Laplace domain the control law becomes 

E(s) =kR[f (s) - Y(s) I-k P(s) (5.62) 

where Y'(s) is the Laplace transform of P and one can show that it is given as follows 

Y* (s) = G(s) U(s)-' V (s) + F(s) C(s)-l 
-Y 

(s) (5.63) 
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where G(s) and F(s) are the block diagonal polynomial matrices of the polynomials GjA (s) and 
Fik(s) respectively 

Gl(S) 0... Fl(s) 0... 0 
0 G2(S) 0 F2(S) ... 

G(S) F(s) (5.64) 

0... Gp (s) Fp (s) 

where 0 is an appropriate dimension zero matrix and the polynomial submatrices Gi (s) and Fj (s) 

(i=I, --- are given as follows 

000 

Gill(s) Gi2l(S) 
... Gi,,, 1 (s) 

Gi 12(s) Gj22(s) Gipn 2(S 
Gi (s) 

GilN. (s) Gi2NYi(s) 
... 

GinN 
, 
(s 

L Yi yi 

and C(s)-l is given by 

im 

Ci(s) 
im 

C2(S) 

U(Syl = 
im 

. 
C, (s) 

which is the right inverse of 

0 

Fil(s) 
Fi 2(S 

Fi (s) 

FiN (s) 
L Yi 

C(S) = «' [ Im C1 (S) Im C 2(S) .... 
Im CP (s) 1 

(5-65) 

(5.66) 

(5.67) 

where I, is mxm unit matrix. With substitution of eqn. (5.63) into eqn. (5.62), the final form of 

the MCGPC control law is obtained as follows 

LI (s) = (s) U(s)-1 U (s) - F, (s) C(s)-1 
XY 

(s) (5.68) 

where 



MULTIVARIABLE CONTINUOUS-TIMEE GENERALIZED PREDICITVE CONTROL 146 

Gn =kR (5.69) 

G, (s) =k G(s) (5.70) 

k F(s) (5.71) 

and the resulting MCGPC feedback system is illustrated in figure 5.1. 

EI 

Figure 5.1 MCGPC feedback system 

US) 

Remark 1: Note that, as a result of the receding horizon control strategy, the MCGPC control law 

is time invariant 

Remark 2: In the development of the above control law it is assumed that deg (Ci (s)) = deg (Ai (s)) 

-1 - If deg (Cj (s)) = deg (Ai (s)), then the output yj (t) should be replaced by its emulated value 

(i=1,.. �j'). 

Remark 3: With a similar argument to the one given in section 4.2.4 under the heading 

'More on the control law', it can be shown that MCGPC control law, as in the scalar case, 

corresponds to a state feedback however, this point will not be pursued here. 
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53. ANALYSIS OF THE MCGPC CLOSED LOOP SYSTEM 

In this section, we will derive the closed-loop equations and examine the properties of the 

closed-loop system. In particular, it will be shown that for a specific setting of the design parame- 

ters, the MCGPC control law becomes a cancellation law as in the scalar case. It will also be 

shown that in some cases the closed-loop system is decoupled. In the sequel the following 

definitions wiH be needed. 

Definition 1: Define the relative order matrix p as follows 

Pll P12 Plm 

P21 P22 ... P2m 

p 

Ppl Pp2 Ppm 

where pij is the relative order of the ijI transfer function of the system transfer matrix T(s). 

Definition 2: Define the predictor order vector Sy as 

L ": E Nyl NY2 Ny )T VY 
"p 

(5.72) 

(5.73) 

Ma for a Definition 3: Let N. ' 
.' 

denotes the maximum possible value of the j" control order N,,, 

given Sy, then it wiH be defined as 

N max max MVY - Pj Ui 
(5.74) 

where pj is the j4 Column of p and max(. ) denotes the maximum element of the argument vec- 

tor. 

Definition 4: Let Hf denotes the ftffl H matrix, then it will be defined as the H matrix 

corresponding to the control orders N,,, = Nmja" ; 

5.3.1. Closed-Loop System Equations 

The control input, as a result of application of the MCGPC control law (eqn. 5.68) to the 

system described by. eqn. (5.1) (with zero disturbance input), is given as follows 
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L(S) =[ Im + G, (sj-C(s)-1 + F, (s)C(s)-lA(s)-IB(s) + GA(s)-lB(s) l-'G� 3LJ(s) (5.75) 

In this equation the term G, (s)-C(s)-l + F, (s)C(s)-'A(s)-'B(s) is the key term for reducing this 

equation further and for rewriting it in a N[FD form. So this term should be examined first. 

Using identities (eqn. 5.14) and (eqn. 5.15), it can be shown that Ci (s) polynomials cancel 

out from G, (s)U(s)-l + Fc (s)C(s)-'A(s)-lB(s), and it is given by 

G, (s)C(s)-1 + F, (s)C(s)-lA(s)-lB(s) = L, (s jA(s)-1 

where 

L, (s) =k L(s) 

where the block diagonal polynomial matrix L(s) is given as 

L, (s) 00 

0 L2(S) 

L(s) 

0 Lp (S) 

(5.76) 

(5.77) 

(5.78) 

where 0 is an appropriate dimension zero matrix and the polynomial submatrices Li(s) (i=I, .. 

are given as follows 

000 

Lill(s) Li2l(S) 
... 

Li,, 1 (s) 

Li 12(s 
Li 22(S 

Lim2(S) 

Li (s) 

L i(s) ... 
Li. Nyi(s) 

yi(s) 
Lj2N, Li IN 

where the polynomials Lijk(s) (j=I, .. m; k=I, .. Ny, ) satisfy the following identity 

sk= 
Hijt (s + 

Lijk (s 
deg (Lijt (s ))=deg (Ai (s 

Ai (s) Ai (s) 

(5.79) 

(5.80) 

*i and A(s)-l is given by 
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, X(S)-l = 

which is the right inverse of 

- 
im 

A j(s) 
im 

A 2(S) 

im 

Ap (s) 

A(s) I 
.. 
A l(s) I 

.. 
A 2(S) .... 

ImAj7 (s) 
p 

wherr, Im is mxm wiit matrix. 

One may also show the following relationship by using eqn. (5.80) 

SA(s)-'B(s) = Hf SH 
f+ 

L(s)A(s)-l 

where 

SN o 
Yl 

-SN Y2 

SN 
yp 

N 
SN 0SS2.... si iT 

yi 

and Hf is the ftffl H matrix and SH 
f 

is the corresponding s matrix. 

SIV 
u00 

SHf 

ss2sN 
mj* 
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(5.81) 

(5.82) 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

In the above equations Q denotes an appropriate dimension zero column vector. Further, by 
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multiplying both sides of eqn. (5.83) by the matrix k, the following important relationship is 

obtained 

Ze 
. 
(s)A(s)-lB(s) = H, (s) + L, (s)A(s)-1 (5.88) 

where the polynomial matrices Z, (s) and H, (s) are given by 

Zc(s) kS (Mxp) (5-89) 

Hc (s) k Hf SHf (mxm) (5.90) 

Using a right N4FD form (eqn. 5.3) for the open-loop system in eqn. (5.88), one obtains the fol- 

lowing relationship 

L, (s)A(s)-l = LR (s)AR (s)-l (5.91) 

where 

LR (s) = Z. (s)BR (s) - H. (s)AR (S) (5.92) 

Note that the polynomial matfix LR (s) is m xrn. 

Then it follows from eqn. (5.76), (5.91) and (5.3) that the closed-loop control input (eqn. 

5.75) can be written as follows 

il (s) =[ I�, + LR (s)AR (S)-l + G�, BR (s)AR (S)-l 1-IG� ILI (S) (5.93) 

By rearranging eqn. (5.93), one can obtain the following right NIEFD for the closed-loop control 

input 

11 (s) = AR (s) [ AR (S) + LR (s) + G,, BR (s) ]-'G,, Mf (s) (5.94) 

and it follows from eqn. (5.94) that a right WD for the closed-loop system output is then given 

by 

Y (s) = BR (s) [ AR (s) + LR (s) + G,, BR (s) 1-1G. E (5.95) 

Note that the closed-loop zeros are the same as the open-loop zeros, which shows that MCGPC 

control law only changes the pole locations as in the scalar case. So non-minimum phase systems 

can be controlled by MCGPC without any problem. The closed-loop system described by eqn. 
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(5.95) is shown in figure 5.2. One may note that the feedback configuration in the figure actually 

corresponds to a state feedback where the partial state vector and its derivatives are fed back 

through the gain matrix defined by the coefficients of the polynomial matrix LR (s) + G. BR 

(KaHath, 1980, Wolovich, 1974). 

wl 

Figure 5.2 Equivalent MCGPC feedback system 

Y(S) 

As it is known, any right NIIFD can also be written in a left N4FD form. However, a left 

NIFD of eqn. (5.95) in terms of known polynomial matrices, in general, is not obvious but, for the 

square systems (assuming system is invertible) eqn. (5.95) can be easily rearranged to give the 

following left WD of the closed-loop system. 

Y(s) =[ A(s) + LL(s) + B(s)G. ]-'B(s)G. IY(s) 

where 

LL (s) = B(s)LR (S)BR (S)-l = B(s) [ Z� (s) - H, (s)B(s)-lA(s) ] 

5.3.2. A SPecial Case 

Consider the case where 

A=O 

N, j -N max 
j "i 

(5.96) 

(5.97) 

then the gain matrix K (eqn. 5.54) becomes 
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K= (HfrTy Hf )-l HfrTy (5.98) 

If Hf has full rank, then HfTTyHf will be nonsingular. In this case, the closed-loop system is 

given as follows 

(S) = BR (s) [ (Zc (s) + G. )BR(s) 1-lG, Bf (s) (5.99) 

The proof is: 

It follows from eqn. (5.92) and (5.95) that the closed-loop system can also be written as 

Z(s) = BR(S) 1 (Im - Hý(S»AR(S) + (Z, 
1(S) + G-)BR(S) 1-'G� ! LJ(s) (5.100) 

using eqn. (5.98), it can easily be shown that the polynomial matrix H, (s) becomes a unit matrix 

in this case 

Hc(s) = 1. (5.101) 

then substitution of eqn. (5.101) into eqn. (5.100) results in eqn. (5.99). 

Note that for the systems which have more inputs than outputs (p < m), HJTTY Hf will 

always be singular. Therefore, eqn. (5.99) is not valid for such systems. This is an expected 

result as there are more than one input vector which gives the same output vector for the systems 

with p<m, that is the solution to the minimisation problem is not unique for such systems. To 

obtain a unique solution, some constraints on the inputs are needed. This means that the control 

orders should reduce from their maximum values (N Ma" s). In other words, for such systems the 'i 

control orders can not be chosen larger than certain values where HT Ty H becomes singular. 

One may also note that, for square invertible systems the open-loop zeros are canceled out 

and thus the closed-loop system becomes 

X(s) =(Z,, (s) + G,. )-'G,, E(s) (5.102) 

Clearly, this gives unstable control for non-minimum -phase systems. 
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53.3. Decoupling in MCGPC 

In MCGPC closed-loop system, interactions between different loops can be reduced by 

choosing larger value for control orders and/or smaller value for the maximum prediction horizon 

R,, i (s) 
T2 and/or using reference models for the outputs (7- -( s)). 

For some systems, it is even possible 

to obtain completely decoupled closed-loop system in some cases, which will be given as a 

theorem following some definitions. Here we will consider only (p x p) square systems. 

Definition 1: Let pj denotes the relative order of the ill row of T(s), then it will be defined as 

p, i = min( 12,, ) (5.103) 

where pj is the il row of the relative order matrix p and min(. ) denotes the minimum element of 

the argument vector. 

Definition 2: The matrix H can be decomposed as follows 

where Oi is a zero matrix with dimension 

(i=l, .. 
Then define the matrix ff as 

01 

H, 

02 

ii2 

H 

OP 

Hp 

prix(m+I: N. 
j) 

H, 

H2 

[H-p j 

(5.104) 

and Hi does not have any zero row 

(5.105) 

and denote the R matrix for the fuH H matrix (Hf ) as Rf 
- 
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Note that the mathx fff will be in the following fonn 

Hf 11 Hf 12 ... Hf lp 
Hf 21 Hf 22 ... Hf ýp 

Hf 

Hfp I 
Hfp 2... Hfpp 

where each submatrix fffij is a lower triangular matrix with dftnension (Ny, +I-p,, i)x(N. ml, +1). 

Definition 3: Let hij be the (V) element of the submatrix. -Hfij of -Hf 
, then define the matrix A as 

fonows 

hil h12 

h2l h22 

hpl hp2 

note that some of the hij s could be zero. 

154 

(5-106) 

(5.107) 

hip 

h 2p 

hpp 

Remark 1: Assume that fff is a square matrix and nonsingular, then ffj' will also have a lower 

triangular block structure where the dimension of each triangular block (submatrix) will be 

(N, Inax +1)x(Ny +I-pj) and the matrix formed from the III elements of the each triangular subma- 

trix of Hil as in definition 3, say H*, will be the inverse of 

H*= inl (5.108) 

Theorem 5.1 : For pxp invertible systems if MCGPC parameters A and Nj are chosen to be 

A=O 

N"" j=1,2,.. p Ui 

and if the matrix Hf is square and nonsingular, then MCGPC control law results in a decoupled 

closed-loop system. 
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Note that the matrix Rf being square and nonsingular implies that Hf has M rank, but if 

Hf has full rank, it does not imply that fff is square. This is the point whicb makes a distinction 

from the special case of the previous section. More precisely this means that, to decouple a sys- 

tem the conditions of the special case must be satisfied but, not every system can be decoupled, 

only the systems with square ilf can. 

Proof: Consider the gain matrix K (eqn. 5.98) when A=0 and N,,, Assume that Hf is 

decomposed as in eqn. (5.104) and decompose the matrix Ty accordingly as follows 

Ty 
Ill 

Ty 112 
0 0 

Ty 
121 

Ty 
122 

0 0 

0 0 TY 
211 

T Y212 

0 0 Ty 221 Ty 222 

TY = 

where Os are appropriate dimension zero matrices. Then it can be shown that the matrix K can be 

written as foRows 

Hil Ty 

Typil T yp 12 

T Yp 21 T yp 22 

(5.109) 

(5.110) 

where 

TY 

00 T; 
12; 

ry 
121 

00T; LFY221 I 

000T; 
pljyp 21 

(5.111) 

where Os and Is are appropriate dimension zero and unit matrices respectively. As we are only 

interested in rows of K corresponding to ul(t), u2(t), .. up (t), it follows from eqn. (5.110) and 

remark I give in the previous page that in this special case the matrix k can be written as follows 

k= (5.112) 
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where 

12 

.L =[4.1 O... Ø] 1x(N+1) 

where ty, (Ixpj) is the first row of T; l T (i = 1, .. p i 22 yi 21 

156 

(5.113) 

Now consider the closed-loop transfer matrix when A=0, Nj = N, 71ax 
j and Hf has full 

rank 

Z� + G� )-1 (5.114) 

It follows from eqn. (5-89), (5.69) and (5.112) that in this case Zc(s) and G, can be written as 

(5.115) 

Gn 
= Ü-1 üx, (5.116) 

where 

Z, (s) =TS (5.117) 

Ün = iF R (5.118) 

Then substitution of eqn. (5.115) and (5.116) into eqn (5.114) results in 

T, (s) = (2, (s) + C;. )-'C; n (5.119) 

Since t, S and R are block diagonal matrices, i, (s) is a diagonal polynomial matrix and C;. is a 

diagonal gain matrix. Then it is obvious that the closed-loop transfer matrix T, (s) is diagonal. 

This ends the proof Note that the order of Ph diagonal element Tci (s) of Tc (s) will be pj. 

Remark 2: Wolovich gives a theorem concerning the decouplability of a system by a linear state 

feedback in (Wolovich, 1974). We will rewrite this theorem for our case as follows: 

A pxp invertible system can be decoupled by a linear state feedback alone if and only if BO 

is nonsingular. Wbere the matzix B* is defined as follows: 
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B* = lirn D(s)T(s) 
9 

where 

s Pri 00 
Pr2 0s... 

D(s) 

0s Pp 

157 

(5.120) 

(5.121) 

One may note that the matrix R and B* are the same. One may also note that to have a 

square and nonsingular Hf , the matrix H must be nonsingular. This result is not surprising as 

MCGPC control law is a linear state feedback. So MCGPC can only decouple the systems which 

can be decoupled, by a linear state feedback. 

Model-following control 

In addition to the above decoupling conditions, assume that system has unit row relative ord- 

ers (p,. i) and we choose first order models as follows 

R,, i (s) ri 
R& (s) s+ ri 

it is easy to show that 

ri 
-1 2 -2 3 -3 -=0+ ris - ri s+ ri s 

s+ ri 

it follows fix)m eqn. (5.117), (5.118) and (5.123) that in this case Z,, (s) and G, will be 

s00 

0s 

LO sj 

0 
0 r2 

Gig 

0 rp 

(5.122) 

(5.123) 

(5.124) 

then from eqn. (5.119) it is obvious that 
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Ta(s) = 

r, 
S+rl 

r2 

s+r2 

rp 

s +rp 

158 

(5.125) 

Hence, in this case exact model-following is obtained. If system's row relative orders are not 

unity, it can be shown (as in scalar case) that one of the poles of transfer functions of T, (s) will 

be equal to corresponding model pole. As the other poles can be placed faraway from the ima- 

ginary axis by proper choice of T2. it is also possible to obtain a very close model following whcn 

P, j > P). 

53.4. Relation of MCGPC to LQ Control 

One can argue in a similar way as in section 4.5 that MCGPC becomes LQ control with the 

following setting of the parameters. 

R, ü Rfi =1 

max N�, 
j. 

Nj 

Ny, -) oo 

T1=O 

T2 -'ý 00 

i=l,.. 

Here we will illustrate this relationship with an example. First consider the LQ cost function 

XT(t)QX 
T(t)AU (t)ldt (5.126) 

-(t) +U 

for the system 

i(t) = x(t) +B u(t) 
(5.127) 

, Y(t) = x(t) 
(5.128) 
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and choose Q= CTC. Then the optimal closed-loop poles are the left half plane characteristic 

values of the matrix m (Kwakemaak, 1972) 

A- BA-IBT I 

CTC - AT (5.129) 

Example: Consider the fbHowing 2x2 system 

s+2 I 
S2+1 S2+1 

T(s) I S+j (5.130) 

s IL I slý-l 

with the fbHowing setting of MCGPC parameters 

Ny 
I =N Y2 = 11 

N�i = Ný, 2= 
10 

T, =0 

R., = Rdl = Rn2 = Rd2 =I 

C(s) = (S+l) I 

0.11 

It follows from eqn. (5.129) that for this example the optimal closed-loop poles are: 

-2.5047 ± 1.3853i -0.4799 -3.3257 

The closed-loop MCGPC poles were calculated for several values of T2 to see whether they con- 

verge to LQ poles and resulting poles are given below. 

T2 3.5 -2.5073 1.3794i -0.4629 -3.3195 

T2 4 -2.5076 1.3720i -0.4691 -3.3143 

T2 4.5 -2.5057 1.3600i -0.4732 -3.3063 

T2 5 -2.4997 1.3429i -0.4759 -3.2954 

These result shows that closed-loop MCGPC poles for this range of T2 are very close to the 

closed-loop LQ poles which verifies the above argument. 



MULTIVARIABLE CONTINIJOUS-TIME GENERALUED PREDICTIVE CONTROL 160 

5.4. SOME ILLUSTRATIVE SIMULATIONS 

In this section, some simulation results are presented to illustrate the properties and perfor- 

mance of the MCGPC algorithm. Simulations are arranged in two groups. The fu-st group is aimed 

to illustrate the effects of different design parameters and some properties of the MCGPC algo- 

rithm, such as decoupling and model following. These simulations were performed non-adaptively, 

as these properties will be the same in the self-tuning case. The second group is aimed to illustrate 

the performance of the self-tuning MCGPC. All of the simulations were performed by using the 

MATLAB package running on a SUN 3 workstation. Examples used in the simulations are given 

OW. 

Example 1: 

s +2 
_I 

S2+1 S2+1 s +1 0 

T(s) I S+j 
C(s) 0 S+l 

S 2ý. 
_ 1 Sý-j 

Example 2: 

s+2 

T(s) 
(s4l)(0.5s4l) (s2+1)(0.5s2+1) 

C(s) 
S+I)l o 

.1 
S+l 0 S+ll 

2s2+1 2S2+1 

Example 3: 

s-4 S+l 
S+1)3 0 

(s 2ý. 
_I)(S2+1) 

(S2ý. -j)(S2+1) C(s) 
0 (S+l )2] T(s) I s+3 

(s--0.5)(s2-4) (S--0.5)(s2-4) 

Example 4: 

S+l s+2 4 
S2+S+l S2+S+l S2+S+l S+l 0 

T(s) s+3 I s+2 
C(s) o S+I. 

(s+2)(s-1) (s+2)(s-1) (s+2)(s- 1) 
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5A. 1. Non-Adaptive Simulations 

In this group of simulations the following are common: 

I- Sample interval is 0.05 sec, 

R, (s) =[1 11 (model numerators), 

Tj=O and A=O, 

4- Each figure consists of four graphs: the upper two graphs show the system outputs for vari- 

ous design parameters and the setpoints (square waves). The lower two graphs show the 

corresponding control inputs. 

5.4.1.1. The effects of T2 and N,, 

As we mentioned earlier, the maximum prediction horizon T2 has similar effects as in the 

scalar case that is, the smaller the T2. the faster the closed-loop system outputs and vice versa. As 

T2 gets smaUer, the controBer gain becomes higher this also reduces the interactions. In the limit- 

ing case when T2 ---) 0, the controller gain tends to infinity and thus Y(s) -+ W(s). This obvi- 

ously gives unstable control for the non-minimum phase systems. For this type of systems T2 

should cover the negative going part of the output responses. Example I was simulated the illus- 

trate the effects of T2 with the following design parameters. 
I 

R. d (s )=[1 11 

Sy =[661 

N=[2 21 LU 

The simulation results are given in figure 5.3. In the figure, solid line corresponds to T2 2- It 

dashed line T2 =2 and dotted line T2 = 3. As can be seen from the figure, as T2 gets smaller, the 

control inputs become more active, the output responses become faster and the interactions 

become less and less. If T2 is chosen very small, such as 0.01, it can be seen that the closed-loop 

outputs coincide with the setpointS. 

The effects of the control orders are also similar to the scalar case that is, the larger the con- 

trol orders the faster the closed-loop outputs and vice versa. In addition, the larger control orders 

result in less interactions for the decouplable systems. Again we simulated example I to illustrate 
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Figure 5.3 illustration of the effects of T2 
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the effects of the control orders. In the simulations Rd(s) and Lvy were chosen to be as in the pre- 

vious simulation and T2 to be 2. The simulation results are given in figure 5A. In the figure solid 

line corresponds, to N, =j331, dashed line N. 
. j.. =[221 and dotted line N, II]. As can be 

seen from the figure, as the control orders increase, the controls become more active, the output 

responses become faster and the interactions become less and less. Note that in these simulations 

the control orders were chosen to be the same for both inputs. Control orders can also be chosen 

different for different inputs, which is useful as it enables us to adjust the output transients 

separately. An example of this is given in figure 5.5 where N, 13]. As a result, second con- 

trol input is much more active than the first control input and thus the second output is much fas- 

ter than the first output, the interaction on the second output is much less than the interaction on 

the first output. 

5.4.1.2. The effects and use of the reference models 

Reference models R,, j (s)lRdi (s) can be used in three different ways: 

I- to penalize the overshoots and reduce the interactions, 

2- to adjust the output transients separately, 

to obtain model-following type control or exact model-following (exact model-following is 

not possible for every system). 

Example 2, which is a highly oscillatory and interacting system, was simulated to illustrate 

the first use of the reference models. In the simulations the following design parameters were 

used: 

LVy =[881 

=[1 11 

T2 =2 

The simulation results are shown in figure 5.6. In the figure, dashed line corresponds to 

Rd(s) =[Ii] and solid line R--. d(s) =[ s+1 s+I 1. As can be seen from the figure, the use of 

reference models completely removed the overshoots and reduced the interactions. 
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Example 1 was simulated to show the second use of the reference models with the following 

parameters. 

Sy =[6 61 

LV : lu 

T2 =I 

The simulation results are given in figure 5.7. In the figure, dashed line corresponds to 

Rd(s) and solid line corresponds to R jd(s) i s+1 ]. As we did not specify any refer- 

ence model for the first output it remained the same, but the second output was modified as 

specified by the conrsponding mference model. 

The use of the reference models to obtain model-following type control and exact model- 

fbHowing wiH be given in the fbHowing section together with decoupling. 

5.4.1.3. Decoupling and model-following 

In section 5.3.3 the conditions for decoupling and exact model-following are given. Here we 

will illustrate these properties by simulation. For this purpose example I was simulated. Note that 

the matrix B* of example I is nonsingular so the system is decouplable and also note that row 

relative orders of the system (p,,, p, 2) are unity so it is also possible to obtain exact model- 

following. In the simulation the following parameters were used: 

Rd(s) =[0.5s+l s+l I 

Sy =[661 

N5 51 

T2 2 

V=1,2). The simulation result is given in figure 5.8. As seen from the Note that Nj N, 7a,, 

figure, the closed-loop system is decoupled and exact model-following is obtained. t 

t As model outputs and system outputs completely overlap, they are not distinguishable from each oth- 

er in the figure. 
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As mentioned in section 5.3.3, if the system is decouplable but the system row relative ord- 

ers are greater than umity, then it is still possible to obtain a very close model-following, as one of 
the poles of the transfer functions of the closed-loop transfer matrix will be at the position of the 

corresponding model pole and the other poles can be placed faraway from the imaginary axis by 

the proper choice of T2 (the smaller the T2, the more faraway the poles). To illustrate this relation- 

ship example 1 was simulated with the following modifications: 

B11(s) =2 instead of s+2 

B22(s) =2 instead of S+l 

Note that now PrI = Pr2 = 2. In the simulation the parameters and models were the same as the 

= Nn""', previous simulation except N,. Control orders were rechosen to satisfy the condition N,, 
j 

that is N, =[441. The simulation result is given in figure 5.9. In the figure dashed line 

corresponds to the model outputs. As seen from the figure, a very close model-following is 

obtained. Notice the impulsive behaviour of the control signals at setpoint step changes. This is 

because the models have lower relative orders than the corresponding system row relative orders. 

The above decoupling and model-following properties become less accurate as Nj reduces 

max -following from N, . 
However, for large control orders interactions are very small and the model 

relationship is close enough so that it still can be considered as a model-following type control. 

5.4.2. Adaptive Simulations 

In general, any control method can be combined with a recursive estimation algorithm to 

give its self-tuning version. Here, we will consider the continuous-time least-squares algorithm 

given in chapter 2. The multivariable estimation problem will be formulated as follows. Each 

output of the multivariable system will be written in a linear in the parameters form 

yi (1 )= xiT 
-o-i 

(5.131) 

where 0i is the parameter vector containing the coefficients of the polynomials Bil(s), BiAS)s .... 

Bi,, (s), Ai(s) and X-Lir is the corresponding filtered data vector. t The degree of the filter polynomial 

t The equations leading to the ab'Dve linear in the parmeters fonn (eqn. 5.131) are very similar to the 

scalar case and will not be given here, for the details see chapter 2. 
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C,, I(s) is equal to the degree of Ai(s) and both polynomials (Cf, (s), Aj(s)) are assumed to be 

monic. Then there will be as many estimators running in paraUel as there are outputs. The fol- 

lowing are common in the simulations: 

I- sample interval is 0.05 sec, 

R, (s) =t1 119 

LVy =[661 

4- Tj=O and A=O, 

the control signals are limited with ±iO000, 

all simulations start with a set of wrong parameters, 

7- estimator parameters forgetting factor and initial inverse covariance are 0.2 and 0.0001 1 

respectively (for all the estimators). 

As a simple example, we first simulated example I with the following parameters: 

Rd(S) 
'""': 

IIII 

=[1 1] 

T2 "ý 1 

C (S) S2+S+l S2+S+l ýY 

The closed-loop system outputs, control inputs and setpoints are given in figure 5.10(a) and the 

corresponding estimated parameters in figure 5.10(b). As can be seen from the figures, parameter 

estimates rapidly converge to their true values and despite the initial variations in the estimates, 

the initial output responses are very smooth. If quicker parameter convergence is desired, this can 

be accomplished by choosing smaller initial inverse covariance. However, this results in larger 

variations in the parameters initially and may results in more overshoots at the outputs in the tun- 

ing phase. 

To see the performance of the self-tuning MCGPC when it is subject to stochastic distur- 

bances, we also simulated example I with added random disturbances (Gaussian white noise 

with zero mean and a standard deviation of 0.1) direct at the outputs. In the simulation the design 
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parameters were exactly the same as in the previous simulation. The simulation results are given 
in figure 5.11 (a) and 5.11 (b). Note that despite the noise, parameter estimates and the control per- 
formance are very good. 

Second simulation was example 3. In this simulation the aim is to show the performance of 

the MCGPC on imore complicated system. Note that system has 2 stable, 3 unstable and a pair 

of complex poles on the imaginary axis. It is also non-minimum phase having two zeros at 

s, = 4.7417 and s2,. 2 -2.7417. In the simulation the following parameters were used: 

Rd(s) =[1.5s+l s+l I 

LV =[2 2] L" 

T2 = 

C (S) S4 +2S3 +3s 2+2s+l s 3+2s2+2s+l 
27 

The closed-loop outputs, control inputs and setpoints are given in figure 5.12(a) and the parameter 

estimates in figure 5.12(b). As can be seen from the figures, in the tuning phase there are large 

overshoots and large variations in the control signals due the wrong parameters. Once the esti- 

mates converge, a good control with very little interactions is obtained despite the fact that system 

is highly unstable and non-minimum phase. Note also that there is no control weighting. 

Finally, example 4 was simulated as an example of the control of nonsquare systems. In the 

simulation the parameters used were: 

R, j(s) =[III 

01 

T2 = 

C (s) s2+2s+l s2+2s+l 3Y 

The simulation results are given in figure 5.13(a) and 5.13(b). Here again after initial tunýing 

phase, the control performance is very good and there are almost no interactions. 
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5.5. CONCLUSIONS 

In this chapter a multivariable generalization of the CGPC (MCGPQ is presented and the 

resulting closed-loop system is analysed in some detail. In the development of the algorithm, a 

general (pxm) system is considered unlike the most of the self-tuning multivariable algorithms 

which only consider the square systems. The conditions for decoupling and exact model-following 

are established. The relation with the LQ control is pointed out and the argument is supported by 

a numerical example. It is also shown that the MCGPC algorithm is capable of controlling non- 

minimum phase systems with zero control weighting. The effects of different design parameters 

and the perfon-nance of the algorithm are illustrated by simulations. 

Although, for simplicity, we did not consider here, it is possible to generalize the algorithm 

further by using an auxiliary output approach and by incorporating a dynamic control weighting. 

This will possibly enable us to consider the pole-placement control in the MCGPC fi-amework and 

will possibly improve the performance and robustness of the algorithm further. 

On the basis of the analysis and simulations given in this chapter, our conclusion is that the 

MCGPC is a high performance algorithm and it seems to be very suitable for the self-tuning 

applications for a large variety of multivariable systems. 



CHAPTER 6 

CONCLUSIONS AND FURTHER WORK 

In this thesis, some new continuous-time self-tuning algorithms are presented. These are: 

emulator-based relay control (Demircioglu, 1988), continuous-time generalized predictive control 

(CGPQ (Gawthrop, 1989) and its relay version. The CGPC is also extended to the multivariable 

systems. These methods are combined with a continuous-time version of the well-known discrete 

recursive least squares algorithm to give their self-tuning versions. The thesis mainly concentrates 

on the development and closed-loop analysis of the proposed underlying control methods, rather 

than stability, convergence or robustness analysis of the corresponding self-tuning algorithms. 

The emulator-based relay control is described in chapter 3. The method removes the need to 

know the system states to implement the switching surface, unlike variable structure design. The 

switching surface is implemented by replacing the unrealisable output derivatives by their emu- 

lated values. It is shown that emulator-based control and its relay version are equivalent when the 

relay operates in the sliding mode. Thus, the control methods obtained in the first case, such as 

model-reference, pole-placement, predictive control and their detuned versions, can also be 

obtained in the second case. It was observed in a real experiment that (level control of a two cas- 

caded tank), the relay self-tuning controller perfonned better than the corresponding self-tuning 

controller without a relay. 7be reason for this is that the pump is strongly nonlinear. This has no 

effect on the relay control as only two points on the nonlinear characteristic are used; but the 

usual self-tuning controller has a strongly nonlinear system to identify and control. This is prob- 

ably true for many cases where the actuator has a nonlinear characteristic. 

183 
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The CGPC, a continuous-time version of the discrete-time GPC developed by Clarke et al 
(Clarke, 1987), is presented in chapter 4. It has very similar properties to those of the discrete- 

time GPC although there are important differences in the way in which output prediction and con- 
trol constraining is accomplished. The CGPC design parameters, as with the GPC, are directly 

related to the closed-loop output response. For example, the effect of the maximum prediction hor- 

izon T2 is that the larger the T2 the slower the output response and vice versa. The effect of the 

control order N, is opposite, that is a larger N. corresponds to a faster output response whereas a 

smaller N. a slow output response. This feature of the CGPC makes it easy for the user to adjust 

the output response as desired. In general, it is advisable to keep the control order N. as to be 

zero in order not to increase the computational burden and adjust the output response by using TI 

(minimum prediction horizon), T2 and the reference model R, lRd- In this way, it is possible to 

obtain a good control performance for a large variety of systems, but for the more complex sys- 

tems (e. g. at the same time higher order, open-loop unstable and non-minimum phase) an 

increased value of N. is needed. The reference model R. lRd, apart from adjusting the output tran- 

sients, can also be used to obtain model following type control (sometimes exact model following) 

with a large N,,. 

The CGPC, unlike pole-placement control, does not suffer from the ill effects of the com- 

mon factors due to overparameterization. It can control non-minimum phase systems without any 

difficulty even if the control weighting is zero. In addition, it is shown that time delay systems can 

be controlled in a similar way to the GPC by increasing the system order in order to accommodate 

a rational approximation to the delay. Therefore it is robust against time delay variations. It is 

also shown that a special setting of the CGPC parameters result in LQ control. The CGPC 

method is further extended to include some design transfer functions, which enables us to consider 

the model-reference and pole-placement control in the CGPC framework and also enhances the 

properties of the algorithm. As a result, the CGPC has all the potential and power of the GPC, 

without having its drawbacks due to the discrete-time formulation. 

The relay version of the CGPC is based on the ideas of chapter 2. it is shown again that the 

CGpC and its relay version becomes equivalent when the relay operates in the sliding mode. 
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Hence, the relay-CGPC can be seen as an implementation of the CGPC control law using the 

switching control. 

The CGPC ideas are extended to the multivariable systems in chapter 5. The method, mul- 

tivariable CGPC (NICGPC), is developed for a general pxm multivariable. system, unlike most of 

the multivariable self-tuning which only consider the square systems. The MCGPC has similar 

design parmneters to those of the scalar CGPC. In particular, it has different control orders and 

reference models for each inputs and outputs respectively. This is important as it enables us to 

adjust the closed-loop system outputs independently, to some extent. The interactions can also be 

reduced by using these parameters, for example larger control orders result in less interactions. It 

is shown that certain setting of the MCGPC parameters leads to a decoupled closed-loop system, 

if the system is decouplable by a state feedback alone. Further, it is shown that if the system is 

decouplable, it also possible to obtain model following control. In addition, it is argued that LQ 

control can be considered in the MCGPC framework. Moreover, as in the scalar case, over- 

parametrization (non-minimum realization) and non-minimum phase systems are not a problem for 

the MCGPC. 

We will end the thesis by suggesting some possible further research areas. These are: 

Extension of the relay self-tuning ideas to multivariable systems for both the EBC and 

CGPC strategies; 

Extension of the MCGPC further by using an auxiliary output approach and incorporating a 

dynamic control weighting into the method; 

3- Convergence, stability and robustness analysis of the algorithms; in particular it will be 

interesting to see the effect of the dynamic control weighting Q(s) on the robustness of the 

CGPC. 

4- Industrial applications of the algorithms; 

5- Comparing relative performance, advantages and disadvantages of the discrete and 

continuous-time versions of the methods by both simulations and practical applications. 
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