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ABSTRACT

This thesis proposes some new self-tuning algorithms. In contrast to the conventional
discrete-time approach to self-tuning control, the continuous-time approach is used here, that is

continuous-time design but digital implementation is used. The proposed underlying control
methods are combined with a continuous-time version of the well-known discrete recursive least
squares algorithms. The continuous-time estimation scheme is chosen to maintain the continuous-
time nature of the algorithms.

The first new algorithm proposed is emulator-based relay control (which has already been
described in a paper by the author). The algorithm is based on the idea of constructing the switch-
ing surface by emulators; that is, unrealisable output derivatives are replaced by their emulated
values. In particular, the relay is forced to operate in the sliding mode. In this case, it is shown
that emulator-based control and its proposed relay version become equivalent in the sense that
both give the same control law.

The second new algonthm proposed is a continuous-time version of the discrete-time gen-
eralized predictive control (GPC) of Clarke et al (which has already been described in a paper by
the author). The algorithm, continuous-time generalized predictive control (CGPC), is based on
similar ideas to the GPC, however the formulation is very different. For example, the output pred-
iction is accomplished by using the Taylor series expansion of the output and emulating the output

denivatives involved.

A detailed closed-loop analysis of this algorithm is also given. It is shown that the CGPC
control law only changes the closed-loop pole locations leaving the open-loop zeros untouched
(except one special case). It is also shown that LQ control can be considered in the CGPC frame-
work. Further, the CGPC is extended to include some design polynomials so that the model-
following and pole-placement control can be considered in the same framework.

A third new algorithm, a relay version of the CGPC, 1s described. The method 1s based on
the ideas of the emulator-based relay control and again it is shown that the CGPC and its relay

version become equivalent when the relay operates in the sliding mode.

Finally, the CGPC ideas are extended to the multivariable systems and the resulting closed-

loop system is analysed in some detail. It is shown that some special choice of design parameters
result in a decoupled closed-loop system for certain systems. In addition, it is shown that if the
system is decouplable, it is possible to obtain model-following control. It 1s also shown that LQ

control, as in the scalar case, can be considered in the same framework.

An illustrative simulation study is also provided for all of the above methods throughout the

thesis.

%



CHAPTER 1

INTRODUCTION

1.1. SELF-TUNING CONTROL

In general, any control system design involves two steps: system modeling and controller
design. Self-tuning control may be viewed as an automation of these two steps. It consists of a
recursive estimator and a controller design procedure. A block diagram of such a system is shown
in figure 1.1. The recursive estimator obtains a plant model from the input/output data. The
estimated model is then used in the controller design procedure to deduce the controller parame-

ters. As the process model and the controller are updated at each sampling time, a self-tuning con-

troller is expected to detect changes in the process and tune itself accordingly.

Process

Recursive

Controller
design

estimation

Controller | parameters

Controller Process

Figure 1.1 Block diagram of a self-tuning controller

A self-tuner can be thought of as composed of two loops: the inner loop which is an ordi-

nary feedback loop having process and controller; and the outer loop (estimator and controller
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design) which adjust parameters of the controller. This structure is common to any adaptive con-

trol system.

The self-tuner shown in figure 1.1 is called an indirect (or explicit) self-tuning controller as
the controller parameters are updated indirectly through a design step. If the controller design step
1s avoided so that the controller parameters are estimated directly, then the self-tuner obtained is

called direct (or implicit). This simplifies the algorithm significantly. However, it is limited to cer-

tain types of controller design methods.

1.1.1. Recursive Parameter Estimation

Recursive estimation of the process parameters 1S a key element in the self-tuning control.
There are many recursive estimation methods such as least squares, extended least squares, instru-
mental variables and maximum likelihood (Astrom, 1971). Among these methods, the most com-
mon and widely used one is the recursive least squares (RLS). This 1s mainly due to 1its simple
structure. Discrete estimation methods are now well established (Ljung, 1983, Ljung, 1987). In
this thesis, a continuous time version of the discrete least squares will be used. Details of the

algorithm is given in chapter 2.

In order to be able to track the changes in the process parameters, the estimator should dis-
card the old data, as it may not be relevant any more to the current parameters of the process.
This can be done by weighting the data accordingly, that is by putting less and less weight on the
data as it gets older. The most commonly used weighting scheme is that of exponential forgetting
in which the exponential weighting coefficient is refer to as forgetting factor. The effective
memory length and thus the ability of tracking the parameter variations depend on the choice of
the forgetting factor: the shorter the memory length, the faster the adaptation. On the other hand,
memory length can not be further reduced from a certain length as this is essential for satisfactory

estimation. This clearly puts a limit on the rate of change which can be tracked.

A typical problem with the forgetting is that of covariance blow-up that is exponential
increase of the covariance matrix and thus the subsequent failure. This problem occurs due to the

discounting of the old data while the new information comming in from the plant is not sufficient,
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that 1s 1n a situation where the input signal is not persistently exciting. There are several methods
to overcome this problem such as putting an upper bound on the diagonal elements or on the trace

of the covariance matrix, stopping the parameter and covariance update when there is not enough

information and adjusting the forgetting factor automatically. See for example (Fortescue, 1981)

and (Astrom, 1984).

1.1.2. A Brief Review

Self-tuning control has been a very active domain of research during the last two decades.
The idea of self-tuning seems to have been first proposed by Kalman in 1958 (Kalman, 1958).
However, due to lack of technology for the implementation, the idea was abandoned until 1970s.
The developments in both computer technology and control theory during 1960s led to new
interest in the subject in early 1970s (Peterka, 1970, Wieslander, 1971, Astrom, 1973). These
works were based on the minimum variance control strategy (Astrom, 1970) and the recursive
least squares. A variant of the minimum variance (MV) self-tuner was later proposed by Clarke
and Gawthrop (Clarke, 1975). This method, which is now known as generalised mimmum van-
ance (GMYV), have some advantages over the MV self-tuner. In particular, use of the control
weighting enables the stable control of nonminimum-phase systems. Some interpretations of this
method such as model-reference adaptive control and optimal smith predictor were further given
in (Gawthrop, 1977). During this period, some industrial applications were also reported (Bons-
son, 1974, Borisson, 1976). A review of some of these early developments and applications can

be found in (Astrom, 1977). The above developments in early and mid 1970s stimulated exten-

sive research into different types of self-tuning controllers.

MV or GMV type controllers are based on the exact knowledge of the time delay. There-
fore, these type of self-tuners perform badly if the assumed time delay does not corresponds to the
actual delay of the plant or if the time delay varies. In addition, although nonminimum-phase Sys-
tems can be controlled by the GMV method, the choice of the control weighting involved 1s not

straightforward. To overcome these problems, several authors proposed pole(/zero)-placement

algorithms (Wellstead, 1979, Wellstead, 1979, Allidina, 1980, Astrom, 1980, Clarke, 1982). In the
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same spirit, Grimble described a polynomial LQC method (Grimble, 1984), which can be treated
in the pole-placement framework where the desired closed-loop poles are obtained from a spectral
factorisation, rather than chosen by the designer. Although pole-placement methods overcome the
above two problems, they fail to control the system if common factors in the estimated model
arise (e.g. due to overparametrisation), which is of great importance from implementation and
robustness point of view. Some research effort has also directed towards the state-space methods,
specially LQ and LQC, in order to avoid the problems associated with GMV and pole-placement
methods (Lam, 1980, Warwick, 1981, Samson, 1982, Clarke, 1985). Although these methods can
cope with overparametrisation, nonminimum-phase zeros and variable time delay, they are compu-

tationally more demanding compared to GMV and pole-placement self-tuners.

Sensitivity of the GMV method to time delay variations is simply due to the fact that the
method is based only on k-step ahead prediction, where k 1s the assumed time delay. Therefore,
one may expect to achieve robustness against time delay variations by making predictions over a
range, which covers possible time delay vanations, and minimising a multi-stage cost function of
these predictions. In recent years, many self-tuning controllers based on this and similar ideas
have also been proposed in the literature (Peterka, 1984, Ydstie, 1984,Mosca, 1984, Keyser, |
1985, Clarke, 1985, Clarke, 1987,Keyser, 1988). These algorithms are in general classified as
Long Range Predictive Control (LRPC) methods and all have the common feature of being robust
against time delay variations. An important point worth mentioning is that, these methods are
based on a receding-horizon control strategy. This ensures a time invariant control law and also
enhances the robustness, as it takes into account the latest information available at each time
instant, unlike a fixed-horizon control strategy. Among these algonthms, the Generalised Predic-
tive Control (GPC) method of Clarke et al appears to be the best. Its robustness, ability to cope
with difficult systems, and superiority to some other self-tuners such as GMYV and pole-placement
have been illustrated by simulations (Clarke, 1985, Clarke, 1987, Mohtadi, 1987). Recently, some

successful industrial applications of the GPC have also been reported demonstrating 1ts

effectiveness for the self-tuning control of industrial processes (Clarke, 1983).



INTRODUCTION 5

Many self-tuning algorithms have also been extended to multivariable case. The MV self-
tuner was first extended to multivariable case by Borisson (Borisson, 1979). The extension of
GMYV method then fo]loweci this (Koivo, 1980, Keviczky, 1981). A multivariable pole-placement
self-tuner was outlined by Prager and Wellstead (Prager, 1980) and so on. See chapter 5 for the

review of the developments in multivariable self-tuning controllers.

1.2. SCOPE AND OUTLINE OF THE THESIS

Most of the self-tuning literature has been devoted to the discrete-time methods. This is
presumably due to the digital technology necessary for the implementation. However, there are
some problems with discrete-time methods such as nonminimum-phase zeros due to fast sampling
and/or fractional delay, numerical sensitivity, etc (Gawthrop, 1982, Astrom, 1984, Clarke,
1984, Sinha, 1985). These problems are addressed in chapter 2. Altemnatively, one may consider
to design the controller in continuous-time and implement the resulting controller digitally. This

approach does not suffer from the above problems and also seems more appropriate as the physi-

cal systems are inherently continuous. Unfortunately, there has been little attention towards this

approach (Egardt 1979a, 1979b; Elliott 1982a, 1982b; Gawthrop 1982, 1986, 1987). In particular,
the work of Gawthrop is interesting as he reformulates the discrete-time GMYV self-tuner in

continuous-time by using the notion of emulator, which 1s referred to as Emulator-Based Control

(EBC).

In this thesis, we are interested in developing some new continuous-time self-tuning algo-
rithms which are robust, versatile and easy to use. For this purpose, three novel methods are pro-
posed: emulator-based relay control (Demircioglu, 1988), continuous-time generalised predictive
control (Gawthrop, 1989) and its relay version. In addition, the continuous-time generalised
predictive control is extended to the multivariable case. These methods are combined with the
continuous-time least squares algorithm to give their self-tuning versions. The continuous-time
least squares is chosen specially to maintain the continuous-time nature of the algorithms aithough

it is possible to use a discrete recursive estimation method. It should be noted that in this thesis

we are mainly concemed with the algorithmic developments and the analysis of the proposed
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underlying control methods rather than stability, convergence or robustness analysis of the associ-

ated self-tuning versions.

Chapter 2 starts with a critical review of discrete-time methods and proceeds with a sum-
mary of the necessary background material for the continuous-time methods considered in this
thesis. This material includes: emulators, emulator-based control, continuous-time least squares
and self-tuning emulators. The work reported in this thesis is built on this material and therefore it
should be noted that the understanding of this material is important. The chapter ends with some

discussion on the implementation of continuous-time self-tuning algorithms.

Chapter 3 first gives some background material on relay control and then describes the pro-
posed emulator-based relay control method. The method is based on the idea of constructing the
switching surface by emulators, that is unrealisable output derivatives are replaced by their emu-
lated values. In particular, the relay is forced to operate in the sliding mode. In this case, it is
shown that emulator-based and emulator-based relay control are equivalent. This clearly means
that control methods obtained in the emulator-based control such as model-reference, pole-
placement, predictive control and their detuned versions can also be obtained in the relay case.
The properties of the proposed method for both nonadaptive and adaptive case are illustrated by a
number of simulations. A real experiment (level control of a two cascaded tanks) is also given to

show the effectiveness of the method. This chapter is based on the paper (Demircioglu, 1988).

Chapter 4 proposes a continuous-time version of the discrete-time generalised predictive
control method of Clarke et al (Clarke, 1987). A detailed closed-loop analysis of the proposed
method, continuous-time generalised predictive control (CGPC), i1s then given. Further, the rela-
tions of the CGPC with the state feedback and LQ control are established. The method 1s also
extended to include some design polynomials so that model-following and pole-placement control
can be considered in the same framework. In addition, a relay version of the CGPC is descnibed.
Again relay is forced to operate in the sliding mode. The CGPC and its relay version are shown to
be equivalent in this case. Effects of the design parameters and polynomials, and the properties of

the both methods are illustrated by a large number of simulations. Some of this work has been

reported in a conference paper (Gawthrop, 1939).
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Chapter 5 extends the CGPC method to the pxm multivariable systems. A detailed
closed-loop analysis is given and the relation with the LQ control is pointed out. The conditions

for decoupling and model-following type control are established. The properties of the method are

illustrated by simulation.

Chapter 6 concludes the thesis and suggests possible future research areas.

Finally, the contributions of the thesis can briefly be summarised as developing and analys-
Ing some new self-tuning algorithms in a continuous-time framework for both scalar and mul-

tivariable systems. More precisely, the material given in chapters 3, 4 and 5 is original and thus

forms the contribution of this thesis.




CHAPTER 2

CONTINUOUS-TIME SELF-TUNING CONTROL

2.1. INTRODUCTION

Developments in self-tuning control have been mainly within a discrete-time framework. It
seems that this is partially because discrete-time methods are more appropriate for digital imple-
mentation and partially because the first developments took place in a discrete-time framework
(Astrom, 1973) leading the later researchers in that direction. However, as has been pointed out in
the Iiterature (Wellstead, 1979,Gawthrop, 1980, Gawthrop, 1982, Astrom, 1984, Clarke,

1984, Sinha, 1985) there are some problems associated with discrete-time methods. These are
mainly as follows:

1-  Nomminimum phase zeros: This 1s the main criticism of the discrete-time methods. If a
continuous-time system with relative degree > 2 1s sampled at a fast sample rate with respect
to system time constant then, some zeros of the corresponding discrete system will definitely

be outside the unit circle. Nonminimum phase system zeros may also occur if the time delay

is not integer multiple of the sample interval, due to the resulting fractional delay. Although

the above problems can be overcome by choosing a larger sample interval, this would not be
desirable as the resulting controller will be slow to respond to disturbances and setpoint
changes. As a result, it will not be wrong to say that most of the discrete-time modelsof real

systems will be nonminimum phase. This means that the chance of practical applications of

discrete-time methods based on the cancellation of the open-loop system zeros such as model

reference and minimum variance will be very limited.
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2-  Numerical sensitivity: Poles and zeros of a discrete-time system model depend on the sam-

pling rate. For fast sampling rate, with respect to system time constant, the poles and m
the \+3°
zerosT cluster round A point in the z-plane, even though the comresponding continuous-time

model may have its poles and zeros scattered widely over the s-plane. This produces a large

sensitivity to numerical errors caused by truncation and round off in computation. In other

words, discrete methods are numerically ill-conditioned.

3-  Sample rate selection: From the above discussion it is clear that selection of the sample rate
Is an important issue in discrete control: a fast sample rate leads to nonminimum phase zeros
and numerical sensitivity, on the other hand a slow sample rate leads to degraded control
performance (eg. slow response to disturbances and setpoint changes). A suitable selection of
the sample interval necessitates some knowledge of the system, such as time constant,
closed-loop bandwidth, etc. The issue becomes even more important in the adaptive case as
the estimated parameters depend on the sample interval. If the sample interval is not chosen
adequately the estimates can be quite far from the actual system parameters (Sinha, 1985).
So, choice of sample interval 1s not straightforward for discrete-time methods and it needs

great care as well as some additional a priori information.

4-  Difficulty in interpretation of the discrete parameters: The coefficients of discrete-time
models depend on the sampling rate. In addition, the knowledge of the relative order is lost

due to sampling. Therefore it is not easy to relate the discrete coefficients to the properties

of the actual physical system.
An alternative to pure discrete-time design methods is to perform the design in a

continuous-time framework and implement the resulting continuous-time controller digitally. This

approach does not suffer from the above problems as the choice of sample interval 1s left after the

design. In addition, a continuous-time approach seems more appropriate as the real systems to be

controlled are inherently continuous. However, there has not been much attention towards the

design of self-tuning controllers in a continuous-time framework. A noticeable work is that of

+ Where m is the number of zeros of the corresponding continuous-time model
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Gawthrop (Gawthrop, 1987) which is based on the author’s earlier work on the subject

(Gawthrop, 1980, Gawthrop, 1980, Gawthrop, 1982, Gawthrop, 1986). Some continuous-time

algorithms are also given by Egardt (Egardt, 1979a, Egardt, 1979b) and Elliott (Elliott,
1982a, Elliott, 1982b).

This chapter is aimed to provide the necessary background for the work reported 1n this
thesis. It 1s mainly based on the work of Gawthrop (Gawthrop 1987). Organization of the chapter
is as follows. In section 2, description of the system considered is given. Section 3 introduces the
idea of emulators and describe how to design emulators for the unrealisable operations such as,
taking derivatives, canceling nonminimum phase zeros, and removing time delay. Section 4 exam-
ines the closed-loop system resulting from incorporating an emulator into the feedback loop. In
section 5, a continuous-time version of the well-known discrete least squares is described. Section
6 combines the emulator based control methods of section 4 with the continuous-time least
squares of section S. In section 7, some implementation aspects of continuous-time self-tuning

algorithms are discused.

2.2. SYSTEM DESCRIPTION

The system considered is single-input single-output and described in Laplace transform terms

by the following equation

Y) =™ TR UE) + 3 V) @.1)
where
A(s) =aps™ +ais™ +....+a, (2.2)
B(s) = bos™ + bis™ +....+b, (2.3)
C(s) = cos™ +C18™  +....+Cpn (2.4)
(2.5)

and e~7 is the time delay term. Y(s), U(s) and V(s) are the system output, control input and
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disturbance input respectively.

No special assumptions are placed on the disturbance V(s) and thus the polynomial C (s) will

be considered as a design polynomial having all its roots in the left-half s-plane. The degree of

C(s) will depend on the characteristics of the disturbances. In many cases, the disturbance com-
ponent of the system is such that we would not wish to differentiate it, this can be modeled by
choosing n. = n,~1. An even worse case would be when we would not wish even to use the SYS-

tem output directly. This can be modeled by choosing n, = n,. It will be seen later that, the poly-

nomial C(s) acts as an observer polynomial.

2.3. EMULATORS

The notion of emulator was first introduced in (Gawthrop, 1986) to describe the dynamic
systems which emulate unrealisable operations. Examplesof such unrealisable operationsin control
systems design are: taking derivatives of the output, canceling nonminimum phase system zeros
and removing time delay by an inverse delay (prediction). The idea of emulating unrealisable

operations are further discussed in (Gawthrop, 1987). In this section, we will review those ideas.

2.3.1. Output Derivatives

In the presense of the noise, the operation of taking derivatives of the system output is not
feasible as it amplifies the noise. In addition, all physically realisable systems have positive rela-

tive orders; they do not include any pure derivative term. Here, it will be shown that it is possible

to emulate this unrealisable operation by using the system input and output.

Taking derivative of a signal in time domain corresponds to multiplication by s in Laplace

domain (assuming zero initial conditions). Then, k* derivative of the system output can be written

in Laplace domain as

skB (s) e~TU (s) + s*C(s)

2.6
A6) A() V(s) (2.6)

Y,(s) = s*Y(s) =

the s* multiplied disturbance transfer function can be decomposed 1nto two parts
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s¥C(s) Fi(s)
=F
A(s) L(s) + As) (2.7)
where
deg (Fy) = ng -1
deg (Ek) = k-1 if n. = n,—1
deg(Ex) = k it n. =n,
: Fr(s) . : sEC(s)
The transfer function A0) represents the strictly proper (realisable) part of and E,(s) the

A(s)
improper remainder (unrealisable).

Using identity (2.7) Y,(s) may be written as the sum of an emulated value Y,(s) and the

corresponding error E,(s)

Yi(s) = Ye(s) + E;(s) (2.8)
where
., SB(s) _g Fi(s)
Y, (s) = YER ) et U(s) + A ) V(s) (2.9)
and
Ei(s) = E(s) V(s) (2.10)

Egn. (2.9) can not be implemented as V(s) is unknown. But from the system equation (2.1)

A(s) Y (s) - B(s) e—sTU(S) (2.11)

V&) =6 C(s)

Substituting eqn. (2.11) into eqn. (2.9) and using identity (2.7) one can then find the following

expression for the emulated value of the k™ derivative of the output.

Ei(s)B (s) ~TU(s) + Fi(s)

Yi(s) = C(s) C(s)

Y(s) (2.12)

One can also easily show that when there are no disturbances (V (s)=0) Ye(s) = Yi(s).

E,(s)B(s) :

Notice that the relative order of CO)

s p-k, where p is the relative order of the

Fi(s) o
C(s)

system. For this term to be realisable we must have k <p. The transfer function
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a discrete time k-step ahead predictor, but the Interpretation is different.

Markov recursion

The polynomials E, (s) and F,(s) in eqn. (2.7) can be calculated recursively as follow:

epuy = 220

k+1 a, (2.13)
Epia(s) = SEp(s) + exsq (2.14)
Fri(s) = sFe(s) - egnA(s) (2.15)

n -1 .

where f,o is the coefficient of s“ * in F,(s). The initial polynomials are given by the following

identity.

C(s) Fo(s)
AG) - LTS

(2.16)

The name ‘markov recursion” comes from the fact that the coefficients of the polynomial E, (s) are

C(s)
A(s)

the markov parameters of the transfer function and in this way markov parameters of any

transfer function can be calculated recursively. Details of the denvation of the algorithm can be

found in (Gawthrop, 1987).

2.3.2. Zero Canceling

Assume that we want to cancel the open-loop system zeros

Y,(s) = B(IS) Y (s) (2.17)

if the system has some nonminimum phase zeros this operation will not be feasible as B(s) is

unstable. But, it can be emulated by using a similar method to the previous subsecton. Consider

the explicit form of eqn. (2.17)

Y, (s) = Azs) e>TU(s) + E(—f)%:—l(s V(s) (2.18)
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the termACL

B(5)A (5) can be divided into two parts (realisable and unrealisable)

C(S) . Eb(s) Fb(S)
B(s)A(s)  B(s) & AG) (2.19)

where we impose the condition

deg (Fb) = n,—1 (220)

then

deg (Eb) = nb-l (221)

Eb (S) . C
The term is considered as the unrealisabl _C(s) . .
B (s) ¢ unrealisable part of B(G)AG) as B(s) 1s unstable. Using

identity (2.19) Y,(s) can be written as the sum of an emulated value Y,(s) and the corresponding

erTor E,(s)

Yo(s) = Y, (s) + Ep(s) (2.22)
where
» - 1 —T Fb (S)
Y, (s) = A0) e U(s) + AG) V(s) (2.23)
and
) E
E,(s) = Bb (?)) V(s) (2.24)

Substituting eqn. (2.11) into eqn. (2.23) and using identity (2.19), the emulated value Y,(s) can be

written in terms of system input and output as

Ey(s) Fy(s)

(s) = i Y 2.25
Y, (s) Co) e U(s) + C) (s) (2.25)
E, (S) Fy (s) fer funct N also th Y. =Y h
Note that both —E-(—S-)- and CO) are proper transfer functions. Note also that Y,(s) = Y, (s) when
V(is) = 0.

Remark: One may divide the polynomial B (s) into two parts as B(s) = B(s)B*(s), where B(s) is

the unwanted part of B (s) (such as nonminimum phase part), and only cancel B (s).
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Diophantine equation

Eqgn. (2.19) can also be written as
C(s) =AG)EL(s) + B(s)F,(s) (2.26)

This equation is known as diophantine equation. It has a solution if and only if the greatest com-
mon factor of A (s) and B (s) divides C(s). To have a unique solution at least one of the following

conditions must hold (Astrom, 1984)
deg (Fp) <deg(A) (2.27)
or

deg (E,) < deg (B) (2.28)

2.3.3. Prediction

The systems with time delay are difficult to control. An effective method for the control of
such systems 1s to predict the future system output at time ¢+7T (T is the system time delay) and
then used the predicted output in the feedback. This idea was suggested by Smith in late 50s
(Smith, 1959). The same idea was also considered by Astrom in discrete-time minimum variance
control (Astrom, 1970) which later constitute a basis for many discrete-time self-tuning algo-
rithms.

The future output of the system at time ¢+7 can be written 1n Laplace transform terms as
Yr(s) = e Y (s) (2.29)

The quantity Yr(s) can not be obtained from Y (s) as e*T is an unrealisable transfer function but, it

may be emulated. To start with substitute the system eqn. (2.1) into eqn. (2.29)

_ B(SZ sT C(S)
Yr(s) = A05) U(s) +e A(5) V(s) (2.30)

As in the previous emulators design, the term e”%g-))— can be divided into realisable and unrealis-

able parts
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a1 C(s) T Fr(s)
€ ""'—"""A (s) =€ ET(S) + A(s) (23])
Frs) ' ) , . C(s)
A0) Is a proper, rational transfer function representing the impulse response of e”m for
A}

t 20, and Er(s) the transcendental transfer function representing (together with e¢*’) the non-causal

impulse response for ¢+ < 0. For example if A(s) = s+a and C(s) = 1, then

L 1 - e-—T(.r+a)
Er(s) = EE— (2.32)
Fr(s)=e™® (2.33)

After repeating the steps of the previous sections, one can obtain the following emulator

. E;(s)B F.
Yr(s) = LS-()-SQ U(s) + CT(ES)) Y(s) (2.34)
with the corresponding error
E7(s) = e E;(s) V(s5) (2.35)

The problem with this emulator is that it includes a transfer function (E;(s)) which is not rational.

To obtain a rational emulator E;(s) should be approximated by a rational transfer function.

Alternatively, one may first consider approximating the time delay term by a rational transfer
function so that the resulting emulator is rational. This is the approach used in the rest of the

thesis. For this purpose, we will consider the pade approximation (Marshall, 1979) given by

—sT T("'S)
e ==/ ) (2.36)

where T (s) is a finite order polynomial in s

IT(s)= tos"‘ + tls"'t"_'l +....+1, (2.37)
where
VI S —————— . ° - 2.
tﬂ‘—l i(2n‘_i+1) tﬂt—l"'l ? tﬂ, 1 ( 38)

Clearly, the approximation accuracy is determined by n,.
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Using the approximation for the time delay, the System can be approximately written as

Yic) = Tg—SZB(sz C(s)
(s) TGIAGS) U(s) + AG) V(s) (2.39)

With the above approximate equations for the time delay and system, the quantity Y7(s) becomes

BGs) 15y 4 LECG)

Y - —_— N\ T
) = 1) T(-5)A(s)

V(s) (2.40)
The disturbance term can be divided into two parts as in the previous cases

T(s)C(s)  Er(s) Fr(s)

T()AG) - TCs) & AW (241
where we again impose the condition
deg (FT) = na—l (242)
Then the resulting emulator is given by
* ET(S)B (S) FT(S)
Yr(s) = T 5IC ) U(s) + ) Y(s) (2.43)
with the corresponding error
x ET (S)
Er(s) = T o) V(s) (2.44)

2.3.4. Generalized Emulator

One can obtain a generalization of the previous emulators by considering a quantity in the

following form

- .tTP(S)
O(s) =e _Z(s) Y(s) (2.45)

where P(s) and Z(s) are polynomials in s and deg (P) = deg(Z). The polynomial Z(s) 1s divided

into notionally realisable and unrealisable parts
Z(s)=2(s)27(s) (2.46)

Z'(s) is regarded as the unrealisable part. This decomposition is not unique and particular choices
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of Z°(s) and Z*(s) will depend on application. For example, if we want to cancel open-loop sys-
tem zeros Z'(s) = B(s) or if we want to cancel a part of the open-loop zeros then

B(s) =B (s)B*(s) (2.47)
and Z°(s) = B'(s) . The following design rules are imposed:
1- Z%(s) contains no zeros with positive real part,
2- Z(s) contains no zeros at s = 0.

Because of the same reason given in the previous subsection, the time delay term is approxi-
mated by a rational transfer function. Here, we again use pade approximation. Then the decompo-

sition 1dentity for the quantity ®(s) will be

T(s)P(s)C(s) _ _ _E(s) , —FG) (2.48)
T(=s)Z(s)A(s) T(=s)Z(s) Z*(s)A(s)

where
deg (F(s)) =deg(Z(s)A(s)) - 1 (2.49)
This identity leads to the following emulator

E(s)B(s) F(s)

() = —Y 2.50
P ) T(s)Z(s)C(s) vis)+ Z*(s)C(s) (5) (2.50)
with the corresponding error
() = el 251
E (s) ()2 5) V(s) (2.51)
Eqgn. (2.50) can be further written as
. ~ G(s) F (s) 5 59
O (s5) = G, (s) U(s) + F(s) Y(s) (2.52)
where
G(s) = E(s)B™(s) (2.53)
Gr(s)=T(s)Z7(s)C(s) (2.54)

F;(s) = Z*(s)C(s) (2.55)
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and Z*(s) 1s the remaining part of Z'(s) after canceling out the common factors of Z*(s) and B (s),

and usually Z*(s) = 1.

24. EMULATOR BASED CONTROL (EBC)

There are some nasty components in physical systems such as time delay, nonminimum
phase zeros and high relative order which make difficult to control such systems. As mentioned
earlier, control of time delay systems can be simplified by using a predictor in the feedback loop.
In the same way, control of the systems with nonminimum phase zeros and/or high relative order
can also be simplified by using an appropriate emulator in the feedback loop. In this section, we
will examine the closed-loop systems with an emulator in the feedback loop and show that with

this approach a number of control methodssuch as model-reference, pole-placement and predictive

control can be treated in a unified fashion.
The control law considered will be 1n the following form

1 .
= —— [W() - D |
U(s) 0(5) [ W(s) (s) ] (2.56)

where U(s), W(s) and @ (s) are the control signal, setpoint signal and emulator output; Q (s) is

the control weighting and is a proper transfer function. Here, we consider the generalised

1
Q(s)
emulator as the others can be obtained as special cases.

The closed-loop system described by eqn. (2.56) is shown in figure 2.1. However, for sim-

plicity in obtaining the closed-loop equations and properties of the emulator based control we will

consider a notional feedback system given in figure 2.2.

Combining the equations forming figure 2.2 the following expressions for the closed-loop

system are obtained:

Notional loop gain

L(s) = __P.(_S)igil_ (2.57)
Q(s)Z(s)A(s)
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Figure 2.1 Emulator in the feedback loop

V(s)

W(s) 1 U(s)

. Q(s)

. sT P(S)
© Z (s)
- *

E(s)

F(s)
Fe(s)
C(s)
A(s)
+

e—sTB(S) .
A(s)

Figure 2.2 Notional feedback system

Closed-loop system output

v(s) = e=T —LG) _ ZG) rywiey 4 B (s) ] + —

1 +L(s) P(s) 1 + L(s)

— o—sT B(S)Z(S) W E"'
= B G) + 0ZAG) LT rE @I

Closed-loop system input

L(s) M [ W(s) ——ii('&—v(s)]

Us) = 1 +L(s) P(s)B(s) ) A(G)Z*(s)

C(s)
A(s) Vies)

Q(s)Z(s)C(s)
P(s)B(s) + Q(s)Z(s)A(s)

Y(s)

Y (s)

V(s)

20

(2.58)

(2.59)

(2.60)
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First we will consider the case where there is no control weighting (Q (s )=0), and the systems

without time delay (T=0). The closed-loop equations then becomes

Notional loop gain
L(s) = o0 (2.61)

Closed-loop system output

Z(s)
P(s)

Y(s) = [W(s) + E"(5) ] (2.62)

Eqn. (2.62) shows that in this case, the closed-loop setpoint response is defined by a reference

Z(s)

model P(s)’

Model-reference control

Consider the case where B(s) = Z'(s) = 1. This gives us a model-reference control. Note

that closed-loop system is not related to the open-loop system and the control signal will be stable

if B (s) 1s stable.

Pole-placement control

Consider the case where B(s) = Z(s) =B(s) and Z*(s) = 1. This gives us a pole-placement
control. Note the zeros of the closed-loop system are identical to those of the open-loop system

and the control signal will be stable even if B (s) 1s not.

Detuned model-reference and pole-placement control

When Q(s)=0, the loop gain is infinite. Indication of this is that, we require exact model
matching at all frequencies. However, In many cases there can be some unmodeled high frequency
dynamics and thus requirement of exact model matching at all frequencies may not be met. This
may also result in unstable control. Therefore, instead of choosing Q (s)=0, we may chose Q (s)

such that it is small at low frequencies but large at high frequencies. This will have the effect of

giving exact model matching at low frequencies whilgst not requiring exact model matching at
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high frequencies. The use of Q(s) in this way leads to detuned (or control weighted) version of

the above control methods.

Q(s) will be chosen zero at zero frequency that is, Q (0)=0. This is t0 ensure exact model

matching at zero frequency and remove any offset due to control weighting.

As 1t 1s obvious from the above discussion, control weighting is important for robust control.

See (Gawthrop, 1987) for the further discussion of this point.

Predictive control

For the time delay systems (T#0), the emulator automaticollyincludes a predictor. If
P (s)=Z (s =1 the emulator merely reduces to a predictor. If P (s)#1 and Z(s)=1, the resulting con-
trol laws can be regarded as predictive model-reference or predictive pole-placement depending on

the choice of P(s) and Z(s). For Q (s)#0 again detuned versions are obtained.

Integral action

The most effective method to remove offsets of any kind 1s to have an integral action in the
controller. In the above control strategies, the integral action can automaticallybe obtained if the

non-zero mean disturbances are modeled correctly. This corresponds to a system model as follows

_ =T B (s) C(s)
Y(s)=e AG) + AG) V(s) (2.63)

Some remarks
1-  Note that when Q (s)=0, the control law becomes W (s) = @ (s).

2. 1t follows from the closed-loop equations that, C(s) only affects the disturbance response, it

has no effect on the setpoint response. It acts as an observer polynomial.

3. As one may notice, the above developments and analysis are in full analogy with the
discrete generalised minimum variance control and thus emulator based control can be

regarded as continuous-time version of the discrete generalised minimum variance control.
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2.5. LEAST SQUARES ESTIMATION

Self-tuning control is merely a combination of a control method with a recursive estimation
algorithm. The most popular and widely used estimation scheme is that of recursive least squares
(RLS), which has been almost always used within a discrete-time framework: discrete RLS to esti-
mate discrete-time model parameters. In this thesis, we are interested in continuous-time methods
for the self-tuning control and so we need continuous-time model parameters. Although it is possi-
ble to use discrete RLS to estimate the parameters of a continuous-time model, it seems more
consistent to use a continuous-time estimation scheme for our purpose. In this section, we will

briefly review a continuous-time version of the well known discrete least squares. Details can be

found in (Gawthrop, 1987).

We assume that the system to be identified can be described by the following linear-in-the-

parameters model

y()=x"(t) 8 + e(t) (2.64)

where y(¢) is the scalar system output; x(r) and 8 are data and parameter vectors respectively; e (1)
is an error or noise term. Further we assume that y(¢) and x(¢r) can be measured (or can be
obtained from measurements) and 6 is unknown. The aim is then to find an estimate 8(t) of 6
based on all the measurements up to and including time ¢. For the least squares estimation, this 1s

done by minimizing a cost function of the following form.

{

J@O@).t) = -%— e Pt (8(t) - 80)7So B(t) - Bp) + % ‘[e‘ﬁ(“"’ é(t,1)*dr (2.65)

where B is a non-negative scalar; So is a positive definite matrix; 9§, is an initial parameter esti-

mate: and the estimation error é (¢,7) is defined as
E(n) =y -xT(x) O() (2.66)

The exponential weighting coefficient p acts as a forgetting factor. As time ¢ increases, the effect

of old data at time t <t is discounted exponentially with the elapsed time t—t. S, vanes the

weight given to the initial parameter estimate.
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Minimization of the cost leads to the following solution for the parameter estimate

0(1) = 570) [ePSo By + [P x(1) y(x) d | (2.67)
0

where the matrix §(1) is called information matrix and given by
{
S)=ePS, + je'ﬂ("‘) x(t) xT(0) dt (2.68)
0

This equations can also be written in a recursive form as follows

t4+71

St+T) =ePTS() + j e PU+T=9 (1) xT (1) d (2.69)

and

t+7

SU+T8U+T) = ePTS(1) 8(t) + | P70 x(1) y(v) d (2.70)

By using eqn.(2.69), eqn. (2.70) can be further written as

t+7

0(t+T) = 8(t) + S7(+T) [ P9 x(1) y(®) - 27 (1) ()] d (2.71)

As one may notice, these equations are very similar to their discrete counterparts.

One can also show that equations (2.67) and (2.68) are the solutionsof the following

differential equations

@) 22 =20 [y () - 570 80 ] 2.72)
RS JORFIOPY0 @.73)

with initial conditions
80)=8, ; SO =S (2.74)

In eqn. (2.72) S(¢) needs to be inverted to obtain the parameter estimate 8(t). This matrix inver-

sion can be avoided by the following reformulation.

_4_%(1_ =S x(®) [y(@)-xT(@t)8(t) ] (2.75)
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—dS!
di

L4 s = SOz LT (S 7) (276)

Clearly, in the above equations we assume that S (¢) is nonsingular.

2.6. SELF-TUNING CONTROL

Self-tuning version of the emulator based control method of section 2.4 can easily be
obtained by combining it with a recursive parameter estimation algorithm. Here we will consider
the continuous-time least squares given in the previous section. As mentioned in chapter 1, there
are two types of self-tuning control method: indirect and direct. These two methods will now be

considered in tum.

2.6.1. Indirect Method

In this method, first the system parameters are estimated and then based on these estimates
the emulator design is performed. To be able to estimate the parameters of the system model

given in eqn. (2.1), we need to write it in the linear-in-the-parameters form of eqn. (2.64).
Consider the system model with T = 0
AGBY () =BE)UE) + Ci)V(s) (2.77)

Eqn. (2.77) can directly be written in linear in the parameters form but, in this case data vector
will consist of pure derivatives of the input and output. These pure derivatives can be replaced by
filtered ones by the following procedure: choose a filter polynomial C,(s) with the same degree as

A(s); divide both sides of eqn. (2.77) by C; (s); and add Y (s) to both sides.

A(s) _ B(s)
Y(s) + C, (5) Y(s) = C, () U(s) + C, () V(is) + Y(s) (2.78)
Egn. (2.78) can be rearrangedas
 B(s) Cr)-AG) .. C6) 9
Y(s) = C ) U(s)+______Cf(s) (s) + C; ) (s) (2.79)

Choose co = ao where ¢ 1S the coefficient of highest power s term in Cy (s), then



CONTINUOUS-TIME SELF-TUNING CONTROL 26

y)=x"(t) 8 + e(t) (2.80)

where
Ry

T _ [bO bl ... b Ci1—ay Cra, .... ('J',,,ﬂ—'tliln‘ﬁl ] (28])

and the data vector x(¢) and error term e(7) are given in Laplace transform terms by

XT(@s) = c,l(s) ([s™ s™7 ... 11UG) [s™ s™7% ... 11Y()] (2.82)
_ C(s)
E(s) = C:6) V(s) (2.83)

This formulation 1s the same as that given by Gawthrop (Gawthrop, 1987) from an emulator point
of view that is, designing an emulator for the system itself. A disadvantage of this formulation is
that, although each entry in the data vector is filtered by C,(s), the output is not filtcred. In a
noisy environment, this gives rise to poor parameter estimates, specially 1f the signal to noise ratio
is low. This problem can be avoided by a slightly different formulation: first add Y(s) to both

sides of egn. (2.77) and then divide both sides by C,(s). Here, we also choosc

deg (Cr(s)) > deg (A (s)).

A(s) _B() € 1, -
Cf(s) Y(s) + Cr(s) Y(s) Cr(5) U(s) + == C ) (s) + ) (s) (2.84)

This can be rearrangedas

] _B(s) 1-46) yeoy 4 L6 v 2.85
G, ) Y(s) = C; ) U(s) + C, ) (s) + C, (s) () (2.85)

without lost of generality, we can take a, =1, then
yr(t) =x"(t) 8 +e(t) (2.86)

where

0T =[by by .... by, —ag —ay .... —Gp 1] (2.87)

R

and the filtered output y,(¢), data vector x(¢) and e (1) are given in Laplace transform terms

Y, (s) = c,l(s) Y (s) (2.88)
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1 " e o
X7(s) = o) [s™ s™ ... 11UG) [s™ s™7 ... 5s]1Y(s) (2.89)

£y = £6)
(s) C, () V(s) (2.90)

Above, we assume that time delay is zero, if the time delay is not zero but is known, the control
signal U(s) can be replaced by a delayed version Ur(s) = e™ U(s) in the above equations. If the
delay is not known, it should be estimated together with system parameters. Time delay estimaton
in continuous-time is a quite involved problem and will not be considered here. Interested readers
can refer to a recent thesis, which studies estimation and self-tuning control of time delay systems

in a continuous-time framework, by Besharati-Rad (Besharati-Rad, 1983).

2.6.2. Direct Method

In this method, emulator parameters are identified directly so that the separate design phase

is avoided. The emulator given by egn. (2.52) can easily be written in the linear-in-the-parameters

form required by the estimator.

o(t) = xJ(1) 8, + e (1) (2.91)
where
07 =1g0o & ---- &, fo 1 - fn] (2.92)

and the data vector x, (¢) is given in Laplace transform terms

s s 11UG) —

G/ (s) Fr(s)

lf ""'1

(57 s . 11Y(s)) (2.93)

Eqn. (2.91) can not be used directly as ¢(¢) is not realisable but, a realisability filter A(s) can be

employed such that

Dp(s) = A(s )D(s) (2.94)

is realisable. Then, the corresponding linear-in-the-parameters model

OA(1) = x0(t) 8, + eAlt) (2.95)

L

.....
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XA(G) = A(s)X.(s) 5 Ep(s) = A(S)E™(s) (2.96)

1s used with recursive least squares to estimate the emulator parameters. One possible choice of

A(s) 1S:
- 3T Z(S)
A(s) =e P (5) (2.97)
giving
OA(t) = y (1) (2.98)

Note that above we assume that time delay is known.

In some control methods the polynomial Z(s) includes a part (or all) of the open-loop zero
polynomial B (s), such as pole-placement where Z(s)=B (s). In such cases two estimators are used

in parallel: one for estimating B (s), one for estimating the emulator parameters.

2.7. IMPLEMENTATION

As stated earlier, by continuous-time self-tuning we mean that underlying design method 1s
continuous, not the implementation. Complexity of self-tuning controllers, without any doubt,
necessitates their digital implementation. The continuous-time algorithms are essentially described
by differential equations and there are many different ways of solving them numerically. In doing
that, there are also many theoretical and practical considerations to be taken into account such as
choice of sample interval, numerical stability, cost, speed etc. Here, our aim 1s not to discuss the
best way of implementing continuous-time self-tuning algorithms, rather to provide the reader with
some information about the implementation of simulations given in this thesis. Then, the first
thing to say is that most of the simulations (except the simulations in chapter 3) were performed

by using the MATLAB, a package program which is very convenient for the control system

design and simulation, and we proceed as follows.

Implementation of the feedback systems

Feedback systems are merely an interconnection of different subsystems. They can be simu-

lated either on the basis of each subsystem that is, implementing each subsystem separately and
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then interconnecting them accordingly, or on the basis of an equivalent closed-loop system. We
used generally the former approach as it is the convenient one for the adaptive simulation, and it

1s also the correct description of practical implementation. Each subsystem was implemented as

follows:

1- as the subsystems in our case are transfer functions (or matrices), we first converted them

INto a state-space representation,

2- and choosing a proper sample interval, we obtained the corresponding discrete-time state-

space representation.

The continuous to discrete conversion in MATLAB is done by assuming a zero order hold

in the 1nput and then calculating the matrix exponentials that is, for the following continuous-time

system

x(t) =Ax(t) + Bu(t) (2.99)

the corresponding discrete-time system 1.

x(k+1) =Ox(k) + Tu(k) (2.100)

where

h
O = e ; [ = je“d‘t B (2.101)
0

and A is the sample interval.

In the simulations, we chosed the sample interval small enough in order to approximate the

corresponding continuous-time System as close as possible.

Implementation of the estimator

In the discrete least squares, inverse of the information matrix (so-called covariance matrix)
is updated in order to avoid matrix inversion. For numerical reasons operation of updating is per-
formed by factoring the covariance matrix and updating the factors such as square-root or U-D
factorization algorithms (Bierman, 1977). This methods guarantee that the covariance matrnx

always remains positive definite and thus nonsingular. However, there may be some situations
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where the system is overspecified (this is the case in some of our simulations). In such situations,
the estimates are not unique (any common factors together with the actual parameters will be a
solution to the estimation problem) and thus the information matrix is singular. Despite this, the
above methods try to update the inverse of a matrix which does not have an inverse. This prob-
ably will give nse to some numerical problems. By taking this into account, in our simulations we
updated the information matrix and then used the pseudoinverse of it to obtain the estimates (Law-
son, 1974). This gives a unique solution which has a minimum Euclidean length among other
solutions. Clearly, this way of implementation 1s not numerically efficient and thus is not suitable
for the practical implementation, nevertheless we are interested in theoretical properties of the
algorithms presented in this thesis and it suits our purpose well. Before giving some implementa-
tion details, it should also be noted that further work is needed to elucidate the fundamental prob-

lems arising from the essentially singular information matrix as a result of the overspecification of

systems, but this is out of the scope of this thesis.

Continuous-time least squares given in section 2.5 can be implemented recursively by using
either the integral (eqn. 2.69 and 2.70) or the differential (egn. 2.72 and 2.73 or 2.76) equations
formulation. It seems more sensible to implement the former ones, as they are the analytic solu-
tion of the later ones. In our implementation, we assumed that consecutive samples are connected
to each other by a straight line, this gives better approximation than a zero order hold approach
that is assuming that signals between two samples are constant and equal to the previous sample

values. So, by taking T as the sample interval (T=h),equations (2.69) and (2.70) can be approxi-

mately written as follows

S@+h) = eBLSM) + 2 2O 27O ] + Lx(t+h) 27 (0+h) (2.102)
S (+m)B(+h) = e IS@) 80) + 5 x() YOI + 2 x(t+h) y (t4h) (2.103)

As discussed above, to obtain the parameter estimate the pseudoinverse of the information matnx

was used in eqn. (2.103). It should be noted that, eqn. (2.103) is a set of linear equations and

there are also other ways of solving it without explicitly taking a pseudoinverse.



CHAPTER 3

RELAY SELF-TUNING CONTROL

3.1. INTRODUCTION

Relay-based control systems have been used and analysed for many years (Flugge-Lotz,
1953, Atherton, 1982, Tsypkin, 1984). An interesting feature of such systems is that the resulting
closed-loop system can be made unsensitive to parameter variations. This can be achieved in two
different ways: 1) by using relay as a high gain element, 2) by forcing relay to operate in the slid-
ing mode. The systems using the first approach are called self-oscillating adaptive system (SOAS)
(Horowitz, 1974, Astrom, 1989). The problem with such systems is the existence of a limit cycle,
which is unacceptable in many applications. The second approach i1s mainly used in variable struc-
ture systems (VSS); a more general form of switching control (Utkin, 1977, Utkin, 1978). The
theory of VSS has also been used for designing robust model-following control systems (Young,
1978, Zinober, 1982). A disadvantage of such methods is the need to measure the system states in
order to implement the switching surface. In this chapter, we will use the second approach that is,

operating relay in the sliding mode. However, the method described here (Demircioglu, 1988)

does not require measured system states: only the system output is required. There are two steps

involved:

1. Implementation of the switching surface by replacing unrealisable derivatives by their emu-

lated values.

5 Removal of the need of knowing the system parameters in the emulator design by using a

self-tuning emulator.
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This chapter is organised as follows. Section 2 reviews the necessary material from the

theory of relay control systems. In section 3, the proposed method, emulator based relay control,

1s described and analysed. In section 4, a number of illustrative simulations for both non-adaptive

and adaptive cases are given. Section 5 describes an experiment using a laboratory level control

system and section 6 concludes the chapter.

3.2. RELAY CONTROL

As we mentioned earlier, the analysis and synthesis of relay control systems has a long his-

tory. Here, we will only review the material needed for the emulator-based relay control method

described in this chapter.

3.2.1. System Description

The relay control system considered here is illustrated in figure 3.1 where B(s)A(s) is the
transfer function of the linear open-loop system; P(s) is a polynomial in the Laplace operator s;
W(s), U(s) and Y(s) are the setpoint signal, control signal, and the closed loop system output

respectively; E (s) is the relay input (error) signal.

W(s) E(s) U(s) B(s) Y (s)
®

Figure 3.1 Relay control system

We assume that the relay is symmetric and ideal, that 1s, it has no dead zone and no hys-

teresis. In this case the input output relationship of the relay element is given by

M, ife(t)20
, ife() <0 (3.1)

u(t) =M sign(e(t)) = {_

where M is the relay amplitude.
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3.2.2. Sliding Motion In The Relay Control Systems

The relay output u(¢) is a sequence of rectangular pulses that change sign when the sign of
e(t) changes (figure 3.2). In figure 3.2 ¢,, t2, ... are called the switching times. Note that at the
successive switching times ¢, and ¢,,, the direction of e(t) 1s opposite, that is if ¢(s,) > 0, then

e (t+1) <0 or vice versa where ¢ (¢) is the derivative of e (¢).

e(t)
t
u(t)
M
t
-M
Figure 3.2 Relay input and output signals
Define
e(t,) = e(t;0) (3.2)
e*(ty) = e(t,+0) (3.3)

If at the first switching time ¢,, €(¢;) # ¢ (¢t;) and have opposite sign, that is
e(t)) e (1)) <0 (3.4)
then, when e (1) crosses the threshold level, it immediately recrosses it giving the so-called sliding

motion (Tsypkin, 1984). In the sliding motion the relay input e(¢) stays in the vicinity of the

threshold level (zero) oscillating at a high frequency (figure 3.3) and the relay output oscillates at

the same high frequency between +M and -M.
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e(t)

T t

Figure 3.3 Relay input in the sliding motion

The inequality é°(t,) € *(¢;) < 0 is the necessary and sufficient condition for the shiding motion
to occur. A necessary condition for this inequality to be satisfied is that the relative order of the

loop transfer function, B (s)P (s )/A (s ), must be unity.

For our purposes it is desirable to obtain the sliding mode just after the first switching time
t; and keep ¢, as small as possible (this can generally be done by choosing M large). Because of
this, above we consider the first switching time ¢,. In fact the sliding motion which depends on
the system parameters and the initial conditions occurs at the the time when the condition e

(1) € (t;) < 0 holds. This condition will certainly hold after some time if the relay control system 1s

stable and the relative order of the loop transfer function is unity (Tsypkin, 1984).

In the sliding mode, the closed-loop system i1s approximately govemed by the following

equations
E(s) =0 (3.5)
E(G)=W(s)-P(s)Y(s) (3.6)
from eqn. (3.5) and (3.6)
1
Y(s) = 76) W(s) (3.7

It is clear that, in the sliding mode the input/output relationship of the closed loop system is

independent of the open-loop system and defined by a reference model 1/P (s).
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