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Abstract 
 

This thesis presents an investigation into the feasibility of tunable, monolithically 

integrated, nonlinear optical frequency conversion sources which work under the 

principles of an optical parametric oscillator (OPO). The room-temperature continuous 

wave (CW) operation of these devices produces narrow line-width, near- and mid-

infrared wavelengths, primarily used in chemical sensing applications. The devices 

detailed here, based on the GaAs–AlGaAs superlattice material system, benefit from 

post growth, ion implantation induced, quantum well intermixing, to achieve 1st order 

phase matching. The experiments, which have been performed to optimize the second-

order nonlinear processes in our GaAs–AlGaAs superlattice waveguides, have 

demonstrated improved conversion efficiencies when compared to the performance 

achieved previously in similar superlattice nonlinear waveguides. We have achieved 

pulsed type-I phase matched second harmonic generation (SHG) with powers up to 3.65 

µW (average pulse power), CW type-I phase matched SHG up to 1.6 µW for the first 

time, and pulsed type-II phase matched SHG up to 2 µW (average pulse power), again 

for the first time. Moreover, we have been able to achieve both CW type-I and CW 

type-II phase matched difference frequency generation, which converts C-band 

wavelengths into L- and U-band wavelengths, over at least a 20 nm conversion 

bandwidth. These results have been made possible through the systematic optimization 

of processes developed to fabricate nonlinear optical waveguides. Fabrication processes 

have also been developed to facilitate the incorporation of on-chip lasers and optical 

routing components, required to achieve a fully integrated OPO and nonlinear optical 

frequency converter. The optical routing in these devices has been demonstrated using a 

frequency selective multi-mode interference (MMI) coupler. The superlattice laser 

material has been designed by optimizing the material structure and employing different 

growth technologies. Room-temperature CW laser action has been achieved in 100 nm 

thick, superlattice core, half-ring lasers. The laser excitation is measured at 801 nm, and 

the internal power of the on-chip pump is estimated to be in excess of 200 mW in a full-

ring, after accounting for optical routing, linear, bending and nonlinear losses. We have 

been able to conclude that our designed OPO and frequency converter is just feasible 

with the performance achieved in different components. 

  i



 

Acknowledgements 
 

Firstly, I would like to thank my supervisors, Prof. David C. Hutchings and Dr. Barry 

M. Holmes, for their help and experience, which were essential in the completion of this 

work. I pay my gratitude to Prof. Hutchings, for his guidance which started even before 

I came to this country, and his support when it was required the most. I am personally 

thankful to Dr. Holmes for his continual encouragement (almost every day), and his 

incredible assistance, at work, and more importantly, at the social level. Similarly, I 

would like to thank Dr. Corrie D. Farmer for his expert advice in some portions of this 

work.  

 

I would like to thank Prof. J. Stewart Aitchison, Prof. Amr S. Helmy, and Sean J. 

Wagner at the University of Toronto, for collaborating on this work, and providing us 

with the nonlinear optical measurements. 

 

I would like to thank all my colleagues and fellow postgraduate students, for each and 

every bit of their help. Many thanks to Masoud, Gabor, Steven, Antonio, Piotr, Michael, 

Carla, Giuseppe, Yasir, Jehan, Shahid, Azhar, Kamran, Lianping, Ali Khokhar, Rafal, 

Basudev, Cheng, and Moss. I wish good luck to all of you. 

 

I am thankful to the technical assistance of Mr. William Ward and Mr. Thomas Reilly, 

for arranging the necessary tools and equipments, and making the experimental labs 

available to me all the time. I am thankful to all the technical support staff of the James 

Watt Nanofabrication Centre. Especially, the dry-etch team, Mark, Ronnie, Dougie, and 

Eve, for expediting my work most of the times. 

 

Being an international student could be challenging sometimes; however, I would like 

to pay my sincere regards to some good friends I made in these years. I would like to 

thank Dr. Nadeem Javid, for being a great companion and a true friend. 

 

  ii



 

I am hugely indebted to the love of my family. It is the emotional support and the 

affection of my parents which brings me this achievement, and I pray for this affection 

to remain as a life long guidance. 

 

I am thankful to the National University of Sciences and Technology, Islamabad, 

Pakistan, for funding my Ph.D. studies. I should also acknowledge the partial assistance 

which I received from the University of Glasgow. 

 

Above all, I am thankful to God, who gave me health and strength to accomplish 

another milestone in my life.   

 

  iii



 

Contents 
 
Abstract .......................................................................................................................... i 

Acknowledgements ....................................................................................................... ii 

Contents ....................................................................................................................... iv 

List of Figures ............................................................................................................. vii 

List of Tables ............................................................................................................. xiii 

Abbreviations ............................................................................................................. xiv 

List of Publications .................................................................................................... xvi 

Chapter 1 Introduction.................................................................................................. 1 

1.1 Mid-Infrared Technologies ................................................................................. 1 

1.1.1 Lead-salt Lasers ........................................................................................... 1 

1.1.2 Quantum Cascade Lasers ............................................................................. 2 

1.1.3 Nonlinear Optical Frequency Conversion.................................................... 3 

1.1.4 Applications ................................................................................................. 4 

1.2 Optical Parametric Oscillator         (principle of operation) ............................... 7 

1.3 Objectives and Motivation .................................................................................. 8 

1.4 Device Overview............................................................................................... 10 

1.5 Thesis Outline ................................................................................................... 12 

Chapter 2 Literature Review and Theoretical Background ........................................ 15 

2.1 Optical Nonlinearity.......................................................................................... 15 

2.1.1 Induced Polarization .................................................................................. 16 

2.1.2 Induced Electric Field ................................................................................ 18 

2.1.3 Phase Matching .......................................................................................... 19 

2.1.4 Parametric Oscillation................................................................................ 21 

2.2 Multimode Interference..................................................................................... 22 

2.2.1 General Interference................................................................................... 23 

2.2.2 Restricted interference ............................................................................... 27 

2.3 Semiconductor Laser......................................................................................... 27 

2.3.1 Double Heterostructure  (The birth of modern semiconductor lasers) ...... 28 

2.3.2 Quantum Well ............................................................................................ 30 

  iv



 

2.3.3 Multiple Quantum Well ............................................................................. 32 

2.3.4 Superlattice Heterostructure....................................................................... 33 

Chapter 3 Quasi Phase Matching Waveguides........................................................... 35 

3.1 Material ............................................................................................................. 35 

3.1.1 Superlattice Heterostructure....................................................................... 35 

3.1.2 Passive Wafers ........................................................................................... 37 

3.2 Quantum Well Intermixing (QWI) ................................................................... 38 

3.2.1 Sputtered Silica Tests................................................................................. 40 

3.2.2 Ion Implantation Tests ............................................................................... 42 

3.3 Second Harmonic Generation (SHG) ............................................................... 49 

3.3.1 QPM Period................................................................................................ 50 

3.3.2 Ion Implantation Mask ............................................................................... 51 

3.3.3 Protective Dielectric Cap ........................................................................... 54 

3.3.4 Device Design ............................................................................................ 55 

3.4 Sample Fabrication ........................................................................................... 57 

3.5 Characterization ................................................................................................ 58 

3.5.1 Type-I SHG................................................................................................ 58 

3.5.2 Type-II SHG .............................................................................................. 63 

3.5.3 Difference Frequency Generation (DFG) .................................................. 66 

3.6 Fabrication Process Optimization ..................................................................... 68 

3.6.1 Improved Gold Electroplating ................................................................... 72 

3.6.2 Resist Contamination Removal.................................................................. 73 

3.6.3 Ti Layer Contamination Removal.............................................................. 74 

Chapter 4 Di-chroic Multimode Interference Coupler ............................................... 79 

4.1 Coupler Design ................................................................................................. 79 

4.2 Dry Etch Optimization ...................................................................................... 82 

4.2.1 RIE with Laser Reflectometry ................................................................... 83 

4.2.2 RIE Lag ...................................................................................................... 84 

4.3 Simulations and Tests near Band-gap............................................................... 85 

4.4 Simulations and Tests near Half-Band-gap ...................................................... 89 

4.5 Tapered Coupler................................................................................................ 91 

Chapter 5 Superlattice Lasers ..................................................................................... 94 

5.1 Materials............................................................................................................ 94 

  v



 

5.2 Material Tests.................................................................................................. 103 

5.2.1 Transmission Line Measurement (TLM)................................................. 104 

5.2.2 Broad Area Lasers (BAL) ........................................................................ 108 

5.3 Ridge Waveguide Lasers ................................................................................ 112 

5.3.1 Device Design .......................................................................................... 113 

5.3.2 Fabrication Process .................................................................................. 114 

5.3.3 Basic Device Characterization  (Annealed semiconductor chip)............. 121 

5.3.4 Material Parameters ................................................................................. 125 

5.3.5 Gain Calculation ...................................................................................... 127 

5.3.6 Spectrum Analysis ................................................................................... 130 

5.3.7 As-grown Semiconductor Chip................................................................ 132 

5.4 Resonant Tunneling in Superlattices............................................................... 133 

5.4.1 Energy Band Calculation ......................................................................... 134 

5.4.2 Experiments ............................................................................................. 137 

Chapter 6 Monolithically Integrated Devices........................................................... 139 

6.1 Ring Design..................................................................................................... 139 

6.2 Coupler Simulations Revisited........................................................................ 145 

6.3 Integrated OPO Design ................................................................................... 146 

6.4 Integrated Frequency Converter Design ......................................................... 147 

6.5 Integrated Chip................................................................................................ 148 

6.6 Monolithic Integration Demonstrated............................................................. 150 

Chapter 7 Conclusions & Future Recommendations ............................................... 153 

APPENDIX I.................................................................................................................. I 

APPENDIX II ...............................................................................................................II 

APPENDIX III ......................................................................................................... VIII 

REFERENCES......................................................................................................... XIII 

 

  vi



 

List of Figures 

 

Figure 1-1 [15] – Intra-cavity singly-resonant OPO for mid-infrared wavelengths 

generation..........................................................................................................................7 

Figure 1-2 [34] – Simplified schematic of an OPO demonstrated using OPG-GaAs.......9 

Figure 1-3 [22] – The designed optical parametric oscillator. ........................................11 

Figure 2-1 – Linear and nonlinear response of a medium. .............................................16 

Figure 2-2 [43] – Dipoles which result in the induced polarizations in a medium.........16 

Figure 2-3 [44]  – Quasi phase matching. .......................................................................20 

Figure 2-4 – Phase matched second order nonlinear processes. .....................................20 

Figure 2-5 [54] – Field propagation in a multimode cavity. ...........................................24 

Figure 2-6 – Simulated length of a directional coupler for the cross operation (775 nm 

wavelength), the inset shows the device geometry. ........................................................25 

Figure 2-7 [56] – Design of a MMI coupler with length L = M/N (3Lπ/a). ...................26 

Figure 2-8 [64] – Double heterostructure laser under applied bias.................................28 

Figure 2-9 [76] – Absorption spectra for quantum wells of different thicknesses, 

measured at 2 K (Permission to reproduce this figure has been granted by The American 

Physical Society).............................................................................................................31 

Figure 2-10 [80] – GRIN-SCH energy level schematic..................................................31 

Figure 2-11 [86] – MQW structure which achieved 2.4 mA threshold current at the 

room-temperature............................................................................................................32 

Figure 2-12 [93] – Sequential resonant tunneling: (a) from the ground state into the first 

excited state, and (b) from the ground state into the second excited state. .....................34 

Figure 3-1 – Schematic conduction band diagram of a six period 14 ML GaAs / 14ML 

Al0.85Ga0.15As superlattice with moduli-squared wave-function for the lower edge of E0 

mini-band (the diagram is only for the illustration purpose and none of the energies are 

up to the scale). ...............................................................................................................36 

Figure 3-2 – Cross-sectional scanning electron microscope image of the material........39 

Figure 3-3 – Photoluminescence measurements setup. ..................................................41 

Figure 3-4 – Photoluminescence measurements of sputtered silica induced QWI at 

different annealing temperatures – annealing time is 60 s (solid lines are a smoothed fit 

to the data).......................................................................................................................41 

  vii



 

Figure 3-5 – Ion implantation induced QWI, (a) Disorder cluster created in the result of 

high energy ion collisions, (b) The inter-diffusion of group III atoms increase the band-

gap of intermixed material. .............................................................................................43 

Figure 3-6 – Photoluminescence measurements of ion implantation induced QWI at 

different annealing temperatures – annealing time is 60 s (solid lines are a smoothed fit 

to the data).......................................................................................................................44 

Figure 3-7 – linear loss measurements for different implantation doses, samples were 

annealed at 775 °C for 60 s. ............................................................................................45 

Figure 3-8 – (a) Top view of the periodic electroplated gold (designed as: 60% masked / 

40% exposed), (b) Cross-sectional SEM micrograph of the same duty cycle after ion 

implantation. ...................................................................................................................47 

Figure 3-9 – Simulated penetration of As2+ ions in gold. ...............................................52 

Figure 3-10 – Cross-sectional view of the developed photolithography. .......................53 

Figure 3-11 – Cross-sectional view of a dose test performed using 15%15% PMMA. .55 

Figure 3-12 – Designed E-beam mask for QPM samples...............................................56 

Figure 3-13 - Mode profile of the designed waveguide at 1550 nm...............................56 

Figure 3-14 – SEM image of the periodic gold mask created over a test sample...........57 

Figure 3-15 – Cross-sectional view of the final sample – dark shaded HSQ resist is 

visible. .............................................................................................................................58 

Figure 3-16 – SHG phase matching polarization configurations....................................59 

Figure 3-17 – Schematic diagram of the type-I SHG measurements setup. ...................60 

Figure 3-18 [130] – Pulse spectrum of the phase matched type-I SHG – the curve 

resembles Sinc2-function which is consistent with the phase-matched process. ............61 

Figure 3-19 [131] – Tuning curve for CW SHG.............................................................62 

Figure 3-20 [131] – Filtered tuning curves for CW SHG with increasing input powers.

.........................................................................................................................................63 

Figure 3-21 – Schematic diagram of the type-II SHG measurements setup...................64 

Figure 3-22 [133] – Tuning curve for type-II SHG. .......................................................65 

Figure 3-23 – Mode solution for TE polarized band-gap excitation...............................66 

Figure 3-24 [135] – The output spectra of measured DFG – the signal wavelengths are 

between 1535-1555 nm, and the arrows indicate the generated idler wavelengths. .......68 

Figure 3-25 – The fabrication process flow chart for a monolithically integrated device. 

The left section provides the process if one wishes to achieve only the passive nonlinear 

  viii



 

waveguides; however, the right section continues with the fabrication to achieve the on-

chip lasers in the case of an active device.......................................................................70 

Figure 3-26 – SEM image of a test sample – no GaAs cap removal etch.......................71 

Figure 3-27 – SEM image of a partially gold etched sample..........................................74 

Figure 3-28 – SEM image of a gold etched sample – masked region and exposed region 

are visible. .......................................................................................................................75 

Figure 3-29 – Edge-on view of the sample partially exposed to Ti wet-etch. ................76 

Figure 3-30 – Top view of a sample exposed to non-HF-based Ti wet-etch..................77 

Figure 4-1 – Required design: (a) cross coupler near the band-gap (775 nm), (b) bar 

coupler near the half-band-gap (1550 nm)......................................................................80 

Figure 4-2 – (a) Mode solutions of the designed waveguide structure for the band-gap 

and the half-band-gap-wavelengths, (b) the designed access waveguide structure. .......81 

Figure 4-3 –Recorded plot of a real time RIE signal (the oscillations in the signal are 

seen as the etch depth increases with time).....................................................................83 

Figure 4-4 – The measured RIE etch depth against the number of oscillations recorded.

.........................................................................................................................................84 

Figure 4-5 – Cross-sectional SEM micrographs of the small gaps depicting RIE lag....85 

Figure 4-6 – Simulated cross operation at the excitation wavelength of 780 nm (MMI 

cavity dimensions: 6.5 µm wide, 220 µm long, and 1.35 µm deep etched). ..................86 

Figure 4-7 – SEM image of a test sample with various coupler lengths. .......................87 

Figure 4-8 – Measurement setup for the near band-gap wavelengths. ...........................87 

Figure 4-9 – Measurements for 797 nm wavelength, and simulations for 780 nm 

wavelength (quasi-TE polarized light in both cases).  Solid lines are a smoothed fit to 

the data. Solid circles represent the measured data, and the empty circles are the 

simulated data. ................................................................................................................88 

Figure 4-10 –Cross + bar state power. ............................................................................89 

Figure 4-11 – Simulated bar operation at the excitation wavelength of 1560 nm. .........90 

Figure 4-12 – Measured and simulated performance of the coupler for 1560 nm 

wavelength (quasi-TE polarized light). Solid lines are a smoothed fit to the data. Solid 

circles and squares represent the measured data, and the empty circles are the simulated 

data. .................................................................................................................................91 

Figure 4-13 – Tapered couplers, (a) tapers have been introduced in the inner side of the 

access waveguides, (b) SEM images of the fabricated couplers.....................................92 

  ix



 

Figure 4-14 – Measured performance of the tapered coupler for the half-band-gap 

wavelength (quasi-TE polarized light). Solid line is a smoothed fit to the data, solid 

circles and squares represent the measured data. ............................................................93 

Figure 5-1 – PL map of the wafer BMH4. ......................................................................97 

Figure 5-2 – The real time growth information for BMH6.............................................99 

Figure 5-3 – Left a) A mesa etch section with 5 contact pads having multiple gaps in 

between them; Right b) RTA profile of the annealing treatment provided to the samples 

after mesa definition......................................................................................................104 

Figure 5-4 – Schematic of the four-probe station measurement. The bias voltage is 

applied across VF & VM, and the current flow is measured from IF to IM.................105 

Figure 5-5 – The measured resistances’ scatter, plotted against their respective pads 

separation. .....................................................................................................................107 

Figure 5-6 – V-I curves for the measured BAL. ...........................................................109 

Figure 5-7 – TLM, current flow measurement (BMH4)...............................................109 

Figure 5-8 – L-I-V curves for the BAL (BMH9)..........................................................110 

Figure 5-9 – L-I-V curves for the BAL (BMH9 annealed at 775 °C). .........................111 

Figure 5-10 – V-I curves for the BAL, fabricated with as-grown and annealed (775 °C) 

BMH9_REV..................................................................................................................111 

Figure 5-11 – Left a) Effective refractive index calculations with varying the waveguide 

width (the upper cladding has been etched completely). Right b) The proceeded ridge 

structure (also highlighted by the green markers in (a)). ..............................................113 

Figure 5-12 – Mode profile for 3 µm wide waveguide, etched down to the core.........114 

Figure 5-13 – Optical micrograph of an exposed and developed E-beam registration job.

.......................................................................................................................................117 

Figure 5-14 – The edge-on SEM image of an etched ring (HSQ mask is visible on the 

waveguide). ...................................................................................................................118 

Figure 5-15 – Cross-sectional SEM image of a 3 µm wide ridge waveguide laser. .....121 

Figure 5-16 – Optical micrograph of a fabricated chip, using the annealed material. ..122 

Figure 5-17 – L-I curves for various cavity length ridge waveguide lasers (3 µm wide 

ridges)............................................................................................................................123 

Figure 5-18 – L-I curves for different ridge widths (500 µm long FP cavities). ..........124 

Figure 5-19 – Room-temperature CW threshold current density for various FP cavity 

lengths (solid lines are a smoothed fit to the data)........................................................124 

  x



 

Figure 5-20 – The external differential quantum efficiency plotted against the cavity 

length.............................................................................................................................127 

Figure 5-21 – Gain at threshold is plotted against the Jnom. ..........................................128 

Figure 5-22 – a) The calculated gain for an un-doped GaAs [158] (Permission to 

reproduce this figure has been granted by IEEE), b) Gain calculated for BMH9 using 

the experimentally obtained parameters. ......................................................................129 

Figure 5-23 – Excitation wavelength of 801 nm for a 500 µm long annealed FP ridge.

.......................................................................................................................................130 

Figure 5-24 – Measured excitation wavelength using pulsed injection for: (a) As-grown 

BAL, (b) Annealed BAL...............................................................................................132 

Figure 5-25 – V-I curves for the as-grown diodes in comparison with the annealed 

diode..............................................................................................................................133 

Figure 5-26 – Schematic representation of BMH9/BMH9_REV.................................135 

Figure 5-27 – Schematic representation of the calculated conduction band under the 

application of an electric field in BMH9. .....................................................................136 

Figure 5-28 – I-V curves for the resonant tunneling measurements in BMH9_REV 

which has 150 nm thick superlattice core. ....................................................................137 

Figure 6-1 – The designed E-beam pattern for the half ring lasers...............................140 

Figure 6-2 – The bending losses calculated using the simulations. Solid lines are a 

smoothed fit to the data. The solid circles and squares are the values calculated using 

measurements from the half ring lasers, and the empty circles represent the simulated 

data. ...............................................................................................................................142 

Figure 6-3 – L-I curves of the half ring lasers with different ring radii (all rings had the 

same etch depth of 1.3 ± 0.07). .....................................................................................142 

Figure 6-4 – Losses of the ring cavity...........................................................................143 

Figure 6-5 – The internal power estimates of the rings before the saturation effects 

become significant. All the rings are biased at same current density of 6.6 kA/cm2....144 

Figure 6-6 – Cross coupler for the 801 nm laser excitation (MMI cavity dimensions: 6.5 

µm wide, 220 µm long, and 1.35 µm deep etched). .....................................................145 

Figure 6-7 – The designed integrated OPO. .................................................................146 

Figure 6-8 – Simulated directional coupler for the longer wavelengths, (a) cross-

sectional view of the structure,  (b) 350 µm long coupler is estimated to couple out 20% 

of the power. .................................................................................................................147 

  xi



 

Figure 6-9 – The designed nonlinear optical frequency converter for 1.5 µm 

telecommunication band. ..............................................................................................148 

Figure 6-10 – The designed semiconductor chip which includes monolithically 

integrated devices..........................................................................................................149 

Figure 6-11 – The SEM image of the gold mask for the integrated DFG. ...................150 

Figure 6-12 – The SEM image of the deep etched waveguide. ....................................151 

Figure 6-13 – The IR image of an integrated DFG being tested...................................151 

  

  xii



 

List of Tables 
 

Table 1-1 – Resource distribution map. ..........................................................................14 

Table 3-1 – Intermixing process selection criteria..........................................................48 

Table 3-2 – Gold electroplating tests. .............................................................................73 

Table 5-1 – Designed active wafer BMH3. ....................................................................95 

Table 5-2 – Designed active wafer BMH4. ....................................................................96 

Table 5-3 – Designed active wafers BMH5 & BMH6....................................................98 

Table 5-4 – Designed active wafer BMH7. ..................................................................101 

Table 5-5 – Designed active wafer BMH8 (a/b)...........................................................102 

Table 5-6 – Designed active wafer BMH9. ..................................................................103 

Table 5-7 – Measured specific contact resistances of the different active materials. ...107 

Table 6-1 – Bending losses for various rings................................................................141 

Table 6-2 – The ring parameters used for the internal power calculation. ...................144 

 

 

 

 

 

 

 

  xiii



 

Abbreviations 
 

BAL  Broad Area Laser 

CW  Continuous Wave  

DD-QPM Domain Disordered Quasi Phase Matching 

DFG  Difference Frequency Generation 

DFB  Distributed Feedback 

ECA  Energy levels Calculation in GaAs–AlGaAs  

EDFA  Erbium Doped Fiber Amplifier 

EDTA  Ethylenediaminetetraacetic Acid 

EL  Electroluminescence 

EPSRC Engineering and Physical Sciences Research Council 

FP  Fabry-Pérot 

FSR  Free Spectral Range 

FWHM Full Width at Half Maximum 

GRIN-SCH Graded Index Separate Confinement Heterostructure   

HF  Hydrofluoric 

HSQ  Hydrogen Silsesquioxane 

ICP  Inductive Coupled Plasma 

IFVD  Impurity Free Vacancy Disordering 

IID  Impurity Induced Disordering 

IPA  Isopropyl Alcohol 

I-V  Current-Voltage 

JWNC  James Watt Nano Fabrication Centre 

KI  Potassium Iodide 

L-I  Light-Current 

L-I-V  Light-Current-Voltage 

MBE  Molecular Beam Epitaxy 

MIBK  Methyl Isobutyl Ketone 

ML  Monolayer 

MMI  Multimode Interference 

MOCVD Metalorganic Chemical Vapour Deposition 

  xiv



 

MOVPE Metalorganic Vapour Phase Epitaxy 

MPA  Modal Propagation Analysis 

MQW  Multiple Quantum Well 

NDR  Negative Differential Resistance 

OPG  Orientation Patterned Growth 

OPO  Optical Parametric Oscillator 

OSA  Optical Spectrum Analyzer 

PECVD Plasma Enhanced Chemical Vapour Deposition 

PL  Photoluminescence  

PMMA Poly Methyl Methacrylate 

PTFE  Polytetrafluoroethylene 

QPM  Quasi Phase Matching 

QWI  Quantum Well Intermixing 

RIE  Reactive Ion Etching 

RPM  Revolutions per minute 

RO  Reverse Osmosis 

RT  Resonant Tunneling 

RTA  Rapid Thermal Annealing 

SEM  Scanning Electron Microscope 

SHG  Second Harmonic Generation 

TE  Transverse Electric 

TLM  Transmission Line Measurement 

TM  Transverse Magnetic 

TMAH  Tetramethylammonium Hydroxide 

TMI  Two Mode Interference 

TRIM  Transport of Ions in Matter 

V-I  Voltage-Current 

WDM  Wavelength Division Multiplexing 

 

 

  xv



 

List of Publications 

 

Journal: 
 

Usman Younis, Barry M. Holmes, David C. Hutchings and John S. Roberts, “Towards 

Monolithic Integration of Nonlinear Optical Frequency Conversion,” IEEE Photonics 

Technology Letters, vol. 22, pp. 1358-1360, Sep. 15 2010. 

 

A. S. Helmy, P. Abolghasem, J. S. Aitchison, Bhavin J. Bijlani, Junbo Han, B. M. 

Holmes, D. C. Hutchings, U. Younis, and S. J. Wagner, “Recent Advances in Phase-

Matching Second Order Nonlinearities in Monolithic Semiconductor Waveguides,” 

Laser & Photonics Reviews, DOI: 10.1002/lpor.201000008, Sep. 17 2010. 

 

David C. Hutchings, Sean J. Wagner, Barry M. Holmes, Usman Younis, Amr S. 

Helmy, and J. Stewart Aitchison, “Type-II quasi phase matching in periodically 

intermixed semiconductor superlattice waveguides,” Optics Letters, vol. 35, pp. 1299-

1301, Apr. 15 2010. 

 

Sean J. Wagner, Barry M. Holmes, Usman Younis, Amr S. Helmy, J. Stewart 

Aitchison, and David C. Hutchings, “Continuous wave second-harmonic generation 

using domain-disordered quasi-phase matching waveguides”, Applied Physics Letters, 

vol. 94, pp. 151107, Apr. 14 2009. 

 

Sean J. Wagner, Barry M. Holmes, Usman Younis, Amr S. Helmy, David C. 

Hutchings, and J. Stewart Aitchison, “Controlling Third-Order Nonlinearities by Ion-

Implantation Quantum-Well Intermixing,” IEEE Photonics Technology Letters, vol. 21, 

pp. 85-87, Jan. 15 2009. 

 

 

 

 

  xvi



 

Conferences: 

 
S. J. Wagner, S. Chaitanya Kumar, O. Kokabee, B. M. Holmes, U. Younis, M. 

Ebrahim-Zadeh, D. C. Hutchings, A. S. Helmy, and J. S. Aitchison, "Performance and 

Limitations of Quasi-Phase Matching Semiconductor Waveguides with Picosecond 

Pulses," Photonics North, Niagara, Canada, Jun. 2010. 

 

David C. Hutchings, Usman Younis, Barry M. Holmes, Sean J. Wagner, Amr S. Helmy 

and J. Stewart Aitchison, “Developing Integrated Optical Frequency Convertors and 

Generators on a Semiconductor Chip (Invited),” Photonics North, Niagara, Canada, Jun. 

2010. 

 

S. J. Wagner, I. Sigal, A. S. Helmy, J. S. Aitchison, U. Younis, B. Holmes, and D. C. 

Hutchings, “Difference Frequency Generation in Domain-Disordered Quasi-Phase-

Matched Semiconductor Waveguides,” Conference on Lasers and Electro-optics 

(CLEO), San Jose, CA, May 2010.  

 

Usman Younis, Barry M. Holmes, David C. Hutchings and John S. Roberts, “Towards 

Monolithic Integration of Nonlinear Optical Frequency Conversion,” 15th European 

Conference on Integrated Optics (ECIO), Cambridge, UK, Apr. 2010. 

 

Usman Younis, Barry M. Holmes, David C. Hutchings, Sean J. Wagner, Amr S. Helmy 

and J. Stewart Aitchison, “Optical Frequency Generation and Conversion in Domain-

Disordered Quasi-Phase-Matched Semiconductor Waveguides,” Nonlinear Photonics in 

Micro- and Nanostructure, Institute of Physics, London, UK, Dec. 2009. 

 

B.M. Holmes, U. Younis, D. C. Hutchings, S. J. Wagner, A. S. Helmy, and J. S. 

Aitchison, “Type-II Quasi-Phase-Matched Second Harmonic Generation in Domain-

Disordered Semiconductor Waveguides,” Conference on Lasers and Electro-Optics 

(CLEO), Baltimore, MD, Jun. 2009. 

 

 

  xvii



 

Usman Younis, Barry Holmes and David C. Hutchings, “Experiments toward the 

Integrated OPO through Periodic χ(2) Modulation,” Mini-symposium on Periodically-

Modulated and Artificially Hetero-Structured Devices (Rank Prize Funds), Grasmere, 

UK, May 2009. 

 

J. S. Aitchison, S. J. Wagner, A. S. Helmy, B. M. Holmes, U. Younis, and D. C. 

Hutchings, “Nonlinear Superlattice Waveguides,” Photonics North, Quebec City, 

Canada, May 2009. 

 

S. J. Wagner, B. M. Holmes, U. Younis, A. S. Helmy, D. C. Hutchings, and J. S. 

Aitchison, “Quasi-phase matched continuous wave second harmonic generation in 

periodically intermixed GaAs/AlGaAs superlattice waveguides,” IEEE Lasers and 

Electro Optic Society (LEOS) meeting, Newport Beach, CA, Nov. 2008. 

 

S. J. Wagner, A. S. Helmy, J. S. Aitchison, U. Younis, B. M. Holmes and D. C. 

Hutchings, “Control of the Third-Order Nonlinearities in a GaAs/AlGaAs Superlattice 

by Ion Implantation Quantum Well Intermixing,” Conference on Lasers and Electro-

Optics (CLEO), San Jose, CA, May 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  xviii



 

Chapter 1 
Introduction 

, e.g. hospitals and large buildings. Other applications which can be 

enerally placed in this category are security, forensics, clinical analysis, and food 

monitoring.  

f the art nonlinear optical frequency 

onversion sources developed for mid-IR generation include optical parametric 

oscillators and difference frequency generators. 

 

 

There is an increasing demand to develop tunable coherent sources for sensing 

applications in the 2-20 µm region of the electromagnetic spectrum, in which most 

molecules find their vibrational resonances [1]. This effort has been complemented by 

the industrial need to trace gases which are hazardous for the working environment [2-

3]. The applications for such mid-IR sources extend further into tracing pollutants in the 

environment [4], and are finding increasing demand in air quality control in closed 

environments

g

 

1.1 Mid-Infrared Technologies 

 

The state of the art tunable laser based sources suitable for the above given applications 

have been realized in the form of diode lasers, i.e., lead-salt lasers, quantum cascade 

lasers, and others. In addition to this, state o

c

 

1.1.1 Lead-salt Lasers 

 

Lead-salt lasers are based on IV-VI semiconductor materials which can cover a wide 

range of emission wavelengths between 3-30 µm. These lasers have been successfully 

employed for numerous sensing applications; however, the laser action in these devices 
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is limited to operation at cryogenic temperatures which makes them expensive to use. 

The power levels are limited up to several hundred microwatts and the emission suffers 

from multimode behavior. Moreover, lead-salt lasers are limited by the much higher 

threshold current densities required for continuous wave operation, which has been so 

far achieved only at low temperatures [5]. Their beam quality and the spectral 

reproducibility have also been reported as non ideal [3]. Therefore, pulsed operation of 

ese devices has been used for applications which do not require high spectral 

resolution [5].  

sults 

 an increased optical power. Additional benefit includes the mature fabrication and 

above 400 K at 8.38 µm 

 reported in [9]. High power room-temperature CW emission (4.6 µm) with powers up 

to few W’s has also been achieved in InP based QCL [10-11].  

th

 

1.1.2 Quantum Cascade Lasers 

 

The basic idea of quantum cascade lasers (QCL) originated as early as 1971; however, 

the first demonstration was achieved later in 1994 [6]. These lasers are not dependent 

upon the band-gap transitions as in the case of conventional semiconductor lasers. The 

photon emission is achieved by inter sub-band transitions which can be engineered to 

any desired energy in conduction band of these uni-polar devices. The cascade of equal 

energies allows the generation of multiple photons from a single electron which re

in

material technologies developed for III-V semiconductors which are used in QCL. 

 

Quantum cascade lasers have an advantage to circumvent the problems which lead-salt 

lasers face, and they provide considerable output powers while maintaining single-

longitudinal-mode operation. The research in QCL has seen a massive ascend after the 

achievement of room-temperature continuous wave (CW) operation in a buried 

heterostructure [7]. This demonstration opened new opportunities for QCL based 

semiconductor lasers to cover the mid-IR region, e.g., room-temperature CW emission 

in single-mode at 4.8 µm is reported in [8], and CW emission 

is
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Recent demonstrations have reported wide tunability for QCL, e.g., a grating coupled 

external cavity high power QCL with 166 cm−1 tuning bandwidth centered at 4.6 µm is 

reported in [12], and external cavity QCLs with 155 cm−1 and 182 cm−1 tuning 

bandwidths centered at 5.3 µm and 8.4 µm, respectively, are reported in [13]. In 

ddition to this, a more compact tunable device is demonstrated in an array of 

distributed feedback (DFB) buried heterostructure QCL lasers, each with a different 

emonstrations show that quantum cascade lasers are highly sophisticated for 

id-IR generation in contrast to lead-salt lasers. However, one must recognize that the 

emission is limited by the inter-sub-band splitting which is defined at the wafer growth 

aterial with a high power, optically-pumped source, which resulted in systems with a 

large footprint [15]. However, contemporary sources employ a high power diode lasers 

a

period, to provide tunability in 8.7-9.4 µm for spectroscopic applications [14]. 

 

These d

m

stage.  

 

1.1.3 Nonlinear Optical Frequency Conversion 

 

Another approach to realize tunable long wavelength sources used in chemical sensing 

is through nonlinear optical frequency conversion. The principle advantage in this 

technique is the flexibility to select a desired band of wavelengths, which depends upon 

the phase matching period, and subsequent tuning is achieved with a tunable pump 

source. Initially, nonlinear frequency conversion was achieved by exciting a nonlinear 

m

to excite the nonlinear crystals, and hence they achieve a more compact form [2, 16-17].  

 

The second-order nonlinear optical frequency conversion process can be achieved either 

by placing the nonlinear material in a cavity, i.e., optical parametric oscillator (OPO) 

[16, 18], or it can be achieved by pumping the nonlinear material by two sources, i.e., 

difference frequency generation (DFG) [1, 19] [20] [4] [21]. The bulk crystals (e.g., 

KTP, LiNbO3, KTA, etc.) which are employed for these nonlinear interactions have a 

second order nonlinear coefficient of a few pmV–1; therefore, much higher pump 
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powers up to few W’s are required to generate sufficient powers at the longer 

wavelengths in the case of an OPO. However, similar three-wave-mixing can be 

achieved in DFG using two different pump sources with powers in the hundreds of mW 

range, at the cost of added complexity in managing two input pumps. Nevertheless, both 

DFG and OPO have been successfully employed for the spectroscopic detection of trace 

ases; especially, the gas imaging OPO based devices used for industrial use in methane 

detection [2]. As much as there is an industrial demand for these mid-IR sources, they 

ure which is in great demand for THz imaging applications (e.g., to 

etect concealed weapons) [23-24]. The benefit of employing OPO over QCL in THz 

generation is the room-temperature operation which has not been achieved in the latter 

ave benefited numerous environmental 

nd industrial needs. Some examples from the literature are presented in order to 

ead-salt lasers have been used in numerous sensing systems, and one of such systems 

Qu

spectro

system  

g

typically retail at hundreds of thousands of GB pounds [22]. 

 

In the recent past, OPO technology has also been used to generate the THz emission at 

room-temperat

d

by 2009 [25]. 

 

1.1.4 Applications 

 

A significant number of demonstrations have been reported over the last few decades in 

the development of mid-IR technologies which h

a

identify these achievements, and establish the importance of a continual requirement for 

such sophisticated and highly sensitive systems. 

 

L

is reported in [26]. This mid-IR (7.8 µm) high-frequency modulation spectrometer has 

been developed to detect methane (CH4) concentrations in ambient atmosphere. 

 

antum cascade lasers are more promising in high sensitivity and broad-band 

scopic applications when compared to lead-salt lasers. A few examples of the 

s which have employed QCL are given next:
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1) A wavelength modulation spectrometer to detect N2O and CH4 is given in [27]. 

The system performs absorption spectroscopy in the chemical fingerprint 

wavelengths near 8 µm using a DFB QCL. 

which emits ~8 µm 

3) 

sphere [29]. 

4) A high resolution broadband absorption spectroscopy of Ethanol, NO and N2O 

s identified in the previous section, nonlinear optical frequency converters are highly 

pro

are giv

 

onoxide (CO). 

. 

4) 

5) 

2) Absorption spectroscopy of the ambient air has been performed to detect CH4 

and N2O using a near room-temperature pulsed DFB QCL 

wavelengths [28].  

A cryogenically cooled tunable QCL (8 µm emission wavelength) has been used 

measure CH4 and N2O up to 20 km in the strato

has been performed in [13]. The system employs an external cavity tunable QCL 

with tuning bandwidths in excess of 150 cm−1. 

 

A

mising in the generation of mid-IR wavelengths. A few examples of these converters 

en next: 

1) A compact tunable difference frequency generation source has been reported in 

[20], which produces wavelengths near 5 µm. The output powers up to 0.2 µW 

have been used for the absorption spectroscopy of carbon-m

2)  The detection of formaldehyde (H2CO), which is a well known pollutant, has 

been performed using DFG [4]. The output powers up to 4.7 µW have been 

produced in this case with ~3.5 µm emission wavelengths

3) Mid-IR spectroscopy has been performed for the trace gases using DFG in [19]. 

Tunable radiations between 3.33-3.73 µm and 2.65-2.90 µm wavelength ranges 

have been produced to detect methane and water vapors. 

An interesting experiment of guided-wave difference frequency generation in 

periodically poled lithium-niobate (PPLN) waveguides is reported in [21]. The 

idler wavelengths produced between 3.43-3.73 µm have been used to perform 

high resolution spectroscopy of methane. 

The long-wave IR (8-15 µm) is considered to be more useful than the mid-wave 

IR (3-5 µm), because of its lower absorption in the atmospheric water vapor 

window. The nonlinear optical frequency converters which employ conventional 

ferroelectrics are limited by their material absorption to generate long-wave IR. 
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GaAs has gained much attention due to its wide transparency range which 

extends up to 17 µm, and its higher second order nonlinearity. In these lines, a 

6) 

ped using a pump enhanced OPO. Output powers 

7) 

n 3.18-3.53 µm. The image detection optics creates images at the rate of 

8) portant applications of OPO based system has been 

reported in [30]. The tunable source produces wavelengths between 6-8 µm, and 

 switching in the backbone, 

and nonlinear optical frequency conversion is one way to achieve this switching. The 

feasibility of a fully integrated optical frequency conversion source for 1.5 µm 

telecommunication band is recently reported by us in [31]. 

tunable long-wave IR source has been demonstrated in [3], which produces 

wavelengths between 7.95-8.6 µm using diode-pumped DFG in orientation 

patterned grown GaAs. 

Gas imaging systems are a very effective tool for monitoring industrial leaks, 

and they can also be used in oil & gas explorations. One such system is reported 

in [2], which has been develo

up to 50 mW are able to scan an area of 4 m2 at a distance of 3 m. The broad 

spectral coverage (3.18-3.50 µm) is useful in the spectroscopic detection of 

methane and other gases.       

A backscatter-absorption, portable gas-imaging system has been presented in 

[3]. In this system a continuous wave diode-pumped Nd:YAG laser has been 

used as a pump source to excite a PPLN crystal, which creates a singly resonant, 

continuous wave OPO. The PPLN crystal has phase matching periods in the 

range of 29.3-30.1 µm, and the adjustment of its position produces idler tuning 

betwee

30 frames per second. A shoulder-borne version of this system has also been 

developed using a fiber amplified, continuous wave, diode-pumped Nd:YAG 

laser. 

Probably one of the most im

it has been used to detect a variety of explosives which include: TNT, TATP, 

RDX, PETN, and Tetryl. 

 

The applications of nonlinear optical frequency conversion are equally important in 

near-IR as in the case of mid-IR. For example, short wavelengths are required in the 

detection of CO2 (which is a greenhouse gas) and monitoring air quality and carbon 

sequestration storage sites. Modern wavelength division multiplexing (WDM) 

telecommunication networks require all-optical wavelength
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1.2 Optical Parametric Oscillator  

       (principle of operation) 

 

In order to understand the principle of operation, consider the case of an intra-cavity 

continuous wave (CW) singly-resonant OPO [15], in which the oscillations cavity is 

created within the pump laser cavity using the conventional optics, figure 1-1 [15]. 

Singly-resonant means that the OPO cavity is formed only for signal oscillations. The 

tunable Ti:Sapphire laser acts as a pump source for the OPO, in which the pump near 

800 nm wavelength produces the singly-resonant signal in 1.14-1.27 µm range, and the 

idler is produced in the range of 2.23-2.73 µm, using the periodically poled KTiOPO4 

(PPKTP). In an interesting experiment, using the same setup and placing a 

unidirectional device in the pump cavity, the OPO operation has been achieved in a ring 

configuration. A similar setup has been used to report the singly-resonant OPO 

operation using PPLN [32], and the nonlinear material KTiOAsO4 (KTA) [18]. In each 

of these devices, the signal and the idler are produced with hundreds of milli-watts of 

output powers, and the mid-infrared wavelengths enable these devices to set a bench 

mark.  

 

Figure 1-1 [15] – Intra-cavity singly-resonant OPO for mid-infrared wavelengths generation. 
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Using a similar approach to an intra-cavity OPO, in which a 1-W diode-pumped-

Nd:YVO4 source has been used to pump the PPLN, the idler wavelengths in 3.16-4.02 

µm have been produced [16]. A considerable reduction in the footprint was achieved in 

this case. 

 

1.3 Objectives and Motivation 

 

The objective of this investigation is to develop monolithically integrated mid-IR 

sources using the same technique of OPO, but employing III-V semiconductor as the 

nonlinear material. These semiconductors benefit from their large second order 

susceptibilities, e.g., the nonlinear coefficient (d14) for GaAs is about 5 times of the 

largest coefficient (d33) in LiNbO3 at λ = 4.1 µm [33]. Further benefits of GaAs include: 

a very broad transparency range (0.9-17 µm), low absorption, very mature 

material/fabrication technologies, and most importantly, GaAs is a very attractive light 

generating source. It has been identified in the literature that the nonlinear interaction is 

improved in a waveguide, as compared to that of bulk crystals, because much higher 

irradiance is available over a sizeable interaction length [19, 21] [22]. All these benefits 

complement the realization of such sources with estimated out put powers up to few 

mW for the longer wavelengths, if the nonlinear material is placed inside the laser 

cavity. Therefore, the monolithic integration of the nonlinear waveguide and an on-chip 

pump source is an attractive route to achieve such powers.  

 

The single chip OPO design which has been investigated in thesis can potentially 

benefit the mid-IR source market by considerably reducing the size and lowering the 

cost and power consumption currently required. Additionally, due to its small scale, 

many devices (each with a modest tunability) can be placed on the same semiconductor 

chip offering multiple frequencies and arraying of powers. 

 

The motivation for selecting GaAs as a nonlinear material in our research arises from its 

successful use in OPO demonstrations. It should be mentioned at this point that the 
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nonlinear frequency conversion requires a necessary phase matching of different phase 

velocities (more on this has been presented in the next chapter), and the quasi phase 

matching (QPM) technique is usually employed in GaAs based systems. One such 

example, in which QPM has been achieved in orientation patterned growth (OPG) 

GaAs, is reported by K. L. Vodopyanov to demonstrate an OPO [34]. This domain 

reversed GaAs has a QPM period of 61.2 µm, and with the pump wavelength near 2 

µm, the signal and the idler have been produced in 2.28-3.08 µm and 5.78-9.14 µm 

wavelength ranges, respectively. A simplified schematic of this experiment is given in 

figure 1-2 [34].  

 

Figure 1-2 [34] – Simplified schematic of an OPO demonstrated using OPG-GaAs. 

 

Using the OPG-GaAs, with the appropriate selection of QPM period, efficient THz 

generation (0.5-3.5 THz) has been demonstrated in an intra-cavity configuration [24]. 

These demonstrations make GaAs a highly competitive source for the generation of 

optical frequencies which are in a great demand for sensing applications. Additionally, 

with the use of difference frequency generation (DFG), and using 775 nm as a pump 

source, a monolithically integrated nonlinear optical frequency converter could be 

realized for application in 1.5 µm telecommunication band [35]. 
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We aim to develop devices operating within this band by monolithically integrating a 

nonlinear QPM waveguide with an on-chip pump source. The QPM in GaAs has been 

successfully demonstrated in passive OPG GaAs (given above), and also by employing 

wafer bonding techniques [36-37]. However, these techniques are limited by the 

significant challenge of integrating an on-chip laser. Additionally, the losses (e.g., 

interface losses, scattering, unequal domains, waveguide corrugation, etc.) incurred in 

these techniques have reduced their predicted nonlinear conversion efficiencies. We 

have employed post growth, quantum well intermixing (QWI) techniques to achieve 

QPM in our domain disordered GaAs/AlGaAs superlattice waveguides. These 

superlattices have been demonstrated to achieve a substantial modulation in the second 

order nonlinear coefficient χ(2), which is necessary to achieve improved QPM [38]. This 

post growth technique benefits from its flexibility to achieve QPM over any desired 

period, unlike in the previously mentioned techniques which are limited to definition at 

the wafer growth stage. The added benefit which QWI brings is the ease of achieving 

active-passive integration, which is mandatory in the case of wavelength routing 

components in our OPO design, discussed in the next section. For similar reasons, the 

added complexity which arises in other active-passive integration techniques, e.g., 

selective area growth [39] and asymmetric twin-waveguide technology [40-41], has 

been circumvented by our design, in which we can achieve the required χ(2) modulation 

and the active-passive integration using a single step post-growth QWI. 

 

In order to enhance the pump power available for nonlinear frequency conversion a ring 

laser has been employed in our design. It has been discovered in the literature that these 

lasers achieve a much higher internal power due to their higher quality factor Q as 

compared to that of conventional cleaved facet devices. Finally, the nonlinear 

waveguide has been incorporated within this ring laser in our design, in order to take 

maximum benefit of this higher internal power. 

 

1.4 Device Overview 

 

This investigation finds its roots in the development and demonstration of a novel 

optical parametric oscillator [22]. This self pumped monolithically integrated device 

  10



  
 

INTRODUCTION 

would produce wavelengths near 1.5 µm; however, it can be extended further to the 

mid-infrared wavelengths with the appropriate selection of the phase matching period.  

 

A high power ring laser, with an electroluminescence near 775 nm, excites parametric 

emission due to the nonlinear nature of the superlattice material. This parametric 

emission is phase matched with the pump wavelength in a quasi phase matched (QPM) 

nonlinear waveguide. Finally, the phase-matched signal resonates in the adjoining 

passive cavity for a maximum power buildup.  

 

Di-chroic multi mode interference (MMI) couplers establish the required routing 

between the two resonating cavities, in which the pump wavelength is routed from the 

ring laser cavity into the QPM waveguide and then routed back into the ring for laser 

action; and due to the di-chroic nature of the couplers, the phase-matched parametric 

emission is, instead, routed into the passive ring resonator. The design is given in figure 

1-3 [22]. 

 

 

Figure 1-3 [22] – The designed optical parametric oscillator. 

 

The concepts which can be identified in our OPO design and the above stated devices 

are: 1) the tunability in the pump excitation, and consequently in the signal/idler 

wavelengths, achieved using a coupled bragg-reflector as a seed to the ring laser, 2) di-
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chroic MMI couplers serve exactly the same purpose as the beamsplitter in figure 1-3, 

and 3) there is a choice of tuning either signal or idler wavelengths to the passive ring’s 

resonances; however, in the conventional approach longer wavelengths (idler) are 

coupled out, and a singly-resonant cavity is created for shorter wavelengths (signal) 

only, which has been followed in our design. 

 

1.5 Thesis Outline 

 

The thesis is compiled into the following chapters: 

 

1.5.1 Literature Review and Theoretical Background — Chapter 2. 

 

1.5.2 Quasi phase matching waveguides — Chapter 3 initially presents the 

material employed for nonlinear experiments, which is followed by the 

optimization of the intermixing techniques to achieve the necessary quantum 

well intermixing. The QPM investigation starts with preliminary analyses, 

followed by the device design and the fabrication process. The experimental 

demonstrations of various second-order nonlinear processes, with improved 

conversion efficiencies, cover the optimizations achieved in QPM. Finally, a 

comprehensive investigation is presented for the fabrication process 

optimization conducted in order to achieve a monolithically integrated device. 

 

1.5.3 Di-chroic multimode interference coupler — Chapter 4 details the 

required frequency selective routing required in our OPO. The device design has 

been optimized using beam-propagation-based simulations for the band-gap and 

the half-band-gap wavelengths. Dry etch optimization is included in this chapter 

to achieve a precise control over the real time device fabrication. Finally, the 

fabricated couplers are tested and shown to achieve a good agreement with the 

behavior predicted through simulations. 

 

1.5.4 Superlattice lasers — Chapter 5 presents the design, development, and 

the experimental characterization of the superlattice laser. The chapter starts 
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with the material design and covers the details of its design evolution. The 

material design is supported by the tests which include transmission line 

measurements and broad area lasers for initial characterization purposes. The 

main section of ridge waveguide lasers presents the details for device design, 

fabrication process, and experimental analyses. Finally, the observed resonant 

tunneling of current is measured in the superlattice diodes, and is analyzed with 

a theoretical explanation. 

 

1.5.5 Monolithically integrated devices — Chapter 6 presents the 

investigations which have been conducted to demonstrate the feasibility of 

monolithically integrated devices, i.e., integrated OPOs, and integrated nonlinear 

optical frequency converters. The ring design for these devices has been 

achieved by the assessment of bending losses in the half ring superlattice lasers; 

and the optical routing has been revisited for the modified/thinner superlattice 

core material structure – thinner than the material used in the nonlinear and the 

di-chroic coupler experiments. Finally, the detailed designs for these integrated 

devices have been presented.   

 

1.5.6 Conclusions — Chapter 7.  

 

In addition to the thesis outline, a resource distribution map is presented in table 1-1, 

which shows the activities performed in the overall OPO research, and it highlights the 

author’s specific involvement. 
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Activities Author’s involvement 

QPM waveguides  

Passive material design — 

QPM device design Partial 

Fabrication Significant 

Characterization — 

Fabrication process optimization Significant 

Di-chroic MMI coupler  

Coupler design Complete 

Fabrication Complete 

Characterization Complete 

Superlattice Lasers  

Active material design Significant 

Device design Complete 

Fabrication Complete 

Characterization Complete 

Monolithically integrated devices  

Device design Significant 

Fabrication Developed 

Characterization — 
 

Table 1-1 – Resource distribution map. 
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Chapter 2 
Literature Review and Theoretical Background 

ode interference are presented after the QPM section. 

l section of the ring laser has been reviewed in the perspective of 

semiconductor lasers evolution. 

2.1 Optical Nonlinearity 

ention of 

ser. Optical nonlinearities in a medium become substantial with higher intensity of the 

propagating electric field, where the polarization of the input field is given as: 

EP

 

  

This chapter starts with the background theory of the overall processing required in our 

integrated OPO. Three major sections of the device which have been identified in OPO 

design are: 1) QPM waveguide, 2) di-chroic MMI coupler, and 3) the ring laser. In the 

case of QPM waveguide, optical nonlinear theory has been presented in this chapter 

which also incorporates the quasi phase matching technique – the literature review in 

this case will be discussed in the next chapter, as a lot of work has been reported in 

several cases, and it would be simple to place them under individual sections. The 

image formation and the multim

Finally, the most critica

 

 

Nonlinear optical phenomenon dates back to the 19th century with the discovery of Kerr 

and Pockel’s effects, but it has been investigated significantly after the demonstration of 

second harmonic generation in 1961 by Franken et al [42], and with the inv

la

 

χε0          (1) 

 

=

 



 
 

LITERATURE REVIEW AND THEORETICAL BACKGROUND 

The constant εo is the permittivity of vacuum, and χ is the susceptibility of a medium. 

Figure 2-1 shows how a second order term will change the overall response o

dium. 

f a 

me

 

Figure 2-1 – Linear and nonlinear response of a medium. 

he propagating electric field in a medium will induce sub-harmonic polarizations as a 

 

( (
0=P χε (2) 

 

2.1.1 Induced Polarization 

 

T

consequence of the generated dipoles (figure 2-2 [43]). These induced polarizations can 

be expanded as a power series in the following: 

..))4()3()2()1 ++++ EEEEEEEEEE χχχ   

 

Figure 2-2 [43] – Dipoles which result in the induced polarizations in a medium. 
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LITERATURE REVIEW AND THEORETICAL BACKGROUND 

The induced polarizations may not be parallel to the applied field (anisotropic medium); 

d, in which the first order 
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χij with 9 elements, which can also 

 

therefore, 3-dimensional susceptibility has to be introduce

polarization will become: 
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This first order polarization has a second rank tensor 

be written in a more compact form as:  

∑
=

=
zyxj

jiji EP
,,

0 )(ωχε
       (4) 

ωω

e a third rank tensor with 27 elements, 

nd it is written in the compact form as: 

 

 

Similarly the second order polarization will hav

a

 ∑
=

2 ωωω

he relation (5) is valid for the induced polarization, which occurs due to a single 

equencies, then the 

 

=
zyxkj

kjijki EEP
,,,

0 )(ωχε       (5) 

 

T

frequency. However, if there is an interaction of two different fr

induced polarization will become:  

( )∑+ += kjkjijki EEEEP 210
122121 ),(2 ωωωωωω ωωχε   (6) 

= zyxkj ,,,
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We restrict our self to the second order nonlinearities. Although the sub-order terms are 

important, but they have a lesser impact in the practical nature of the devices 

The spatial response of the induced electric field can be derived from the wave equation 

]. 

investigated here. 

 

2.1.2 Induced Electric Field 

 

by using slow varying envelope approximation [44

 

ikzezEE )(
ω

ω
∧

= , which can be evolved into: 

 

ikzNLPzE +−= )( 0
    (7) 

 

The material absorption constant α is equal to k/0

e
k

i
dz

zEd −
∧

∧

)(
22

)( 2

ωµωα ω
ω

σωµ  (µ0 = permeability, σ = electrical 

onductivity). The above equation shows that the induced electric field not only c

depends upon the fundamental field, but also, on the spatial modulation of the nonlinear 

polarization in a medium. Introducing (6) in (7), gives us: 
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The symbol χeff represents the effective nonlinear susc . Substituting ωeptibility tensor 3 

= ω1 + ω2 in the above equation gives us the sum-frequency case, in which the two 
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fields at different frequencies add up to give a third frequency. The term ∆k is the phase 

difference between the original and the induced fields: 321 kkkk −+=∆  (symbol k is the 

ave number for a specific field). The phase difference relationship implies that the 

induced field will have a maximum response if ∆k = 0. This takes us to the next section 

g. 

n 

scillating behavior of constructive and destructive interferences at the induced fields in 

aximum response 

 = 0. This condition can be written as following: 

w

which is the phase matchin

 

2.1.3 Phase Matching 

 

The fields with different frequencies will observe different material dispersion, which 

will result in the different propagation constants. This gives us a phase velocity 

mismatch between the fundamental and the induced fields, which results in a

o

spatial domain.  Equation (8) concludes that the induced field has a m

if the phase difference is zero, i.e., ∆k
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er QPM. It can be deduced that the higher order 

    (9) 

 

For continuous buildup of the induced fields, the phase matching condition must be 

satisfied. Birefringence phase matching and quasi phase matching (QPM) are important 

contenders for this solution. However, many materials such as GaAs lack birefringence; 

therefore, QPM is the available solution which has been employed in our case to 

achieve the phase matching in GaAs–AlGaAs superlattices. QPM is illustrated in figure 

2-3 [44]. The distance for which the phase velocities result in constructive interference 

is known as the coherence length (Lc). Phase matching can be achieved by periodically: 

1) reversing the material domains (domain reversal), or 2) disordering the domains 

(domain disorder). This periodic alteration of the material domains can be generated at 

any odd integral multiple of Lc, i.e., 1, 3, 5, and so on, which results in the formation of 

first order, third order, and fifth ord
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QPM will require longer devices to achieve the maximum power. Once the re

atching has been established, several second-order nonlinear processes can be 

achieved, summarized in figure 2-4. 

quired 

phase-m

 

Figure 2-3 [44]  – Quasi phase matching. 

 

 

Figure 2-4 – Phase matched second order nonlinear processes. 
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Parametric oscillation in figure 2-4 (f), illustrate the concept in our designed OPO. The 

pump excitation (near the material band-gap), excites the parametric emission (near the 

alf-band-gap), due to the nonlinear nature of the material. This parametric emission has 

to be resonated in a cavity such that the three-wave-mixed signal should achieve 

-gap wavelengths.  

 and parametric oscillation, in which the pump 

ntense field) is at the higher frequency, the evolution of spatial optical irradiance can 

be written in the form of following equations (assuming that the perfect phase matching 

h

maximum conversion in half-band

 

2.1.4 Parametric Oscillation 

 

In case of parametric amplification

(i

has been achieved, i.e., ∆k=0) [44]: 
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The irradiance is defined as: the optical energy flowing through unit area per unit time, 

of electric field given below. 
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321
3

02 ηηηε c

and it can be written in the terms 

2)(0
ωω ωηε EcI =   

 

2

Where ε0 is the permittivity of the vacuum, c is the speed of light, η(ω) is the refractive 

index for optical frequency ω, and 
2ωE  is the modulus of complex electric field.  

  21



 
 

LITERATURE REVIEW AND THEORETICAL BACKGROUND 

In the above relations, if Gz>>1 then both the signal and the idler irradiances will be 

dominated by the exponential growth term e2Gz, which means that the gain coefficient 

2G is proportional to the square root of the pump irradiance. Under this amplification, 

the optical parametric amplifier is used to directly amplify any input signal, given in 

figure 1-5 (e). Additionally, if the parametric amplifier is paced inside a resonating 

cavity, then it can produce parametric oscillations from the initial fluorescence, under 

the same principle of stimulated emission which occurs in a laser cavity. The 

oscillations in this case will be produced for the maximum gain G, which depends upon 

the perfect phase matching; and if the phase matching condition can be controlled by 

any means then it would results as a tunin smg mechani  for the OPO. The threshold 

condition for OPO operation, when the gain exceeds the optical losses (transmission, 

absorption, scattering, etc), can be written as 3ωIG ∝ .  

1-52], and reconfigurable splitter/switch [53].  The 

ain principle under which these devices work is the phase difference between the 

multiple modes (mostly guiding).  

ltiple images of the input field. The 

input to such a cavity is usually a single mode waveguide, but the number of access 

waveguides depends upon the device configuration. 

  

2.2 Multimode Interference 

 

The idea of multimode interference (MMI), finds its early explanation in the formation 

of self images using a pinhole array, illuminated by incoherent light, or through the 

transmission in an optical fiber [45]. The same principle has been studied in detail for 

optical waveguides by Ulrich [46-47] [48]. In general, the self imaging is said to occur 

when a single or multiple images of an input field appear at periodic intervals in a 

multimode guiding structure.  This property of multimode structures is widely exploited 

in modern day optoelectronic devices, like in the case of MMI splitters [49], electro-

optic switches [50], ring lasers [5

m

 

Generally a multimode cavity supports two or more guiding modes which at certain 

length of a device add up constructively or destructively to give either: a single inverted 

(cross coupler), a single erected (bar coupler), or mu
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MMI devices fabricated in an integrated model are usually etch-based, in which the 

large width of MMI cavity and the lateral confinement results into multiple guiding 

modes. The width of an example MMI cavity is assumed to be We (effective width), 

which is larger than the lithographically defined width, due to the lateral penetration of 

mode in the guiding structure. The beat length Lπ for the two lowest order modes is 

given by [54]: 

 

0

2

10 3
4
λ

η
ββ

π
π

erWL ≅
−

=  

 

The refractive index is ηr, which is an effective refractive index in the case of a 

multilayered material. The free space wavelength is λ0, and propagation constants for 

the lowest order modes are β0 and β1. When the propagation length becomes a multiple 

of this beat length, the field will result in the formation of self/multiple images of the 

input. MMI is further categorized into general interference and restricted interference.  

 

2.2.1 General Interference 

 

In the case of general interference, all guided modes are excited to form images of the 

input field Ψ(y, 0) – as given by the modal propagation analysis (MPA) in figure 2-5 

[54]. This general interference leads to the formation of a single mirrored image of the 

input field at 3Lπ, a single erected image at 2(3Lπ), and two-fold images at 1/2(3Lπ) and 

3/2(3Lπ). At all these lengths, the excited modes of the input field add up constructively 

to generate super resonance. The length of a multimode cavity can be formulated in the 

terms of beat length [55], as:  

 

)3( πL
q
pL =  
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It can be understood from the above relation, and looking into figure 2-5, that at a 

specific length L of the cavity 

1) The input field will reproduce its image when p/q is an even integer, i.e., 2, 4, 6, 

and so on, which is a bar coupler. 

2) The input filed will result into a mirrored image when p/q is an odd integer, i.e., 

1, 3, 5, and so on, which is a cross coupler. 

3) And, the input field will result into a combination of its original and mirrored 

image when p/q is 1/2, 3/2, 5/2 and so on, to give 3 dB coupling.  

 

 
Figure 2-5 [54] – Field propagation in a multimode cavity. 

    

The coupling operation can also be achieved by employing a directional coupler (which 

is also known as evanescent field coupler). In this coupler the two waveguides are 

placed close to each other in such a way that the evanescent tail of their guided modes 

overlap; and when the light is launched into one of the waveguides, there is a periodic 

exchange of power between the guided modes as the light propagates. The coupling 

operation is very sensitive to the device geometry, especially the spacing between the 

two waveguides, in the directional coupler as compared to that of a MMI. Additionally, 

the required fabrication to achieve the desired coupling is very challenging when the 

spacing between the waveguides is small. Figure 2-6 shows the simulated length of an 

example directional coupler for a cross operation at 775 nm excitation wavelength. 

These simulations are performed using the parameters of our material structure, and the 
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waveguide dimensions are the same which we have employed in our devices, the details 

on these are presented later in this thesis. It can be seen in these simulations that the 

coupler length increases exponentially with an increase in the spacing between the 

waveguides. In our case, where we require cross coupling for the wavelengths near the 

material band-gap, the minimum length of ~830 µm is achieved with 100 nm spacing 

between the waveguides (figure 2-6). The fabrication to achieve this small gap is very 

challenging, and it has been found practically impossible in our case, for which the 

detailed experimentation is presented in the di-chroic MMI coupler chapter. In 

conclusion, not only we are limited by the fabrication constraints, but also the required 

coupling operation requires a longer device in the case of directional coupler; therefore, 

its was decided to employ MMI in our device design. 

 

 

Figure 2-6 – Simulated length of a directional coupler for the cross operation (775 nm wavelength), 

the inset shows the device geometry. 
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The geometry of a MMI coupler can also be formulated for a certain cavity length L 

[56], as:  

 

a
L

N
ML π3

⋅=  

 

Where N is an integer defining the number of images, and M is an integer which defines 

the possible cavity length at which N images will appear. The integer a defines the type 

of MMI coupler. For example, in figure 2-7 [56], the general MMI coupler N x N has a 

= 1, and the position of input/output ports contain a free parameter b; and similarly the 

symmetric 1 x N coupler has a = 4. 

 

Figure 2-7 [56] – Design of a MMI coupler with length L = M/N (3Lπ/a). 

 

The coupler based on general interference principle has been reported as: a 3 dB coupler 

in [51-52] [55] [57], and as a cross coupler in [55]. The general interference in multiple 

images configuration has been reported in [50]. 
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2.2.2 Restricted interference  

 

The self imaging, in case of MMI devices, is achieved due to the super resonance of all 

the excited modes which add up constructively. However, it is possible that the modes 

2, 5, 8 … and so on, of MMI cavity are not excited due to specific placement of the 

input guides at ±We/6 [54]. This configuration of MMI results in the first self image to 

appear at the length Lπ, which makes the length of this device, functioning as a cross 

coupler, three times less than its general interference equivalent. The selective 

suppression of the modes and subsequently the interference is said to be paired 

restricted in this case. Restricted inference mechanism has been employed to make very 

short length devices, such as 3 dB and cross couplers [54]. An extremely short cavity of 

only 107 µm long as a 3 dB coupler, and 216 µm long as a cross coupler, has been 

reported in [58], using deep-etched InP. 

 

Restricted interference is also observed in the multiple images, in which suppressing the 

odd modes, 1, 3, 5 … and so on, of MMI cavity result in symmetric interference [54]. 

The device length in this case, with the placement of input access guide at We/2, is 4 

times less than its general interference equivalent. MMI 1 x N splitters fabricated under 

the said genre have been reported in [49, 59]. 

 

2.3 Semiconductor Laser 

 

The first demonstration of stimulated emission in a ruby crystal in 1960 [60], derived 

the determination to achieve coherent radiation in a semiconductor material. GaAs has 

been reported in many previous studies as an attractive source for such radiation, and 

the first experiment to report this was performed in 1962 [61]. The emission occurred 

due to the direct band-gap transitions under pulsed electrical injection in liquid nitrogen. 

Similar experiments were reported in the same year [62-63]; however, the major 

drawbacks in these initial efforts were the very high injection current and the pulsed 

operations at very low temperatures. These shortfalls significantly affected the prospects 

of semiconductor lasers in research and industrial adoption. This issue was addressed by 
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a proposal in 1963 by Herbert Kroemer to improve the laser action by Double 

Heterostructure.  

 

2.3.1 Double Heterostructure  

(The birth of modern semiconductor lasers) 

 

The earliest work carried out on semiconductor lasers proved that it is almost 

impossible to achieve a laser action at higher temperature with lower threshold currents. 

This issue was addressed by the initial proposal of introducing heterojunction injectors 

on both sides of the active medium (hence double heterostructure lasers). The work 

under this proposal was formulated independently by Herbert Kroemer and Zhores I. 

Alferov (Nobel Prize winners in Physics, 2000) in 1963. The work by Kroemer was 

reported in IEEE proceedings [64], in which he proposed to introduce the material of a 

higher band-gap energy as heterojunction injectors across the active layer (figure 2-8 

[64]).  These injectors, which are heavily doped and have opposite polarity, will be able 

to confine the carriers with much higher density (as compared to the homogenous 

material) because of their potential barrier at the heterojunction interfaces, and will 

cause laser action to occur at higher temperatures.  

 
Figure 2-8 [64] – Double heterostructure laser under applied bias. 

 

Although the proposed structure was ground breaking, however, it posed significant 

challenges. The lattice match identified to be the most critical issue in this design, and it 
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was concluded that the interface dislocations can result in the recombination currents in 

excess of 1 kA/cm2, even in a very high quality structure. Therefore the epitaxial 

techniques must avoid the interface dislocations as they will end up carrier traps and 

degrade the whole idea.  

 

Similarly, the work reported in the same period by Alferov [65], emphasized that the 

double heterostructure lasers can achieve super injection of the carriers because of their 

several orders magnitude of the carrier density in the active region, as compared to the 

adjoining heterojunction injectors.  The refractive index differences between the layers 

shall result the optical confinement within the active layer, and the potential barriers 

shall restrict the carrier recombination within the active region. He also identified the 

lattice match between different layers to be highly important. The earliest work reported 

by his group considered GaAs to be a strong contender as an active region in GaP–

GaAs and AlAs–GaAs double heterostructure compounds, and reported the first laser 

action in a GaAs–AlAs based system in 1969 [66]. Further improvements in their 

structure demonstrated lower threshold laser action at room-temperature [67], and 

finally the continuous wave operation at room-temperature [68]. 

 

The Bell Telephone laboratories were also actively involved in the investigation of 

heterostructure lasers in 1960-70’s, where the major credits were entitled to I. Hayashi 

and M. B. Panish [69]. They reported their first laser action in GaAs–AlGaAs double 

heterostructure in 1970 [70], which achieved a lower room-temperature threshold 

current density of 2300 A/cm2, as compared to that of 4300 A/cm2 by Alferov [67]. The 

improvements they achieved in their structure through liquid phase epitaxy (LPE) 

helped them grow high quality wafers, which resulted in the demonstration of  

continuous wave laser action at room-temperature [71]. They reported to have achieved 

a threshold current density of 1000 A/cm2 for a square diode, and 1600 A/cm2 for a 

Fabry-Pérot diode. They concluded in further studies [72-73], that the double 

heterostructure lasers have: 1) lower absorption because of the less penetration of 

optical field outside the active region, 2) perfect optical and electrical confinement 

within the active region make double heterostructures less effected by temperature if 

compared to the single heterostructures and the homostructures, and 3) the lasing mode 

of the optical field is mostly TE polarized because of its higher reflection coefficient.    
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The developments in double heterostructure lasers were ground breaking; however, the 

improvements in lowering the threshold current densities than the earlier achieved were 

not significant. The work conducted on growing high quality structures developed the 

sophisticated and precision enhanced techniques such as molecular beam epitaxy 

(MBE) [74-75]; the growth procedure was reported to control the different layers in few 

nanometers. This achievement led to the developments in quantum well and superlattice 

heterostructures. 

 

2.3.2 Quantum Well  

 

The developments in MBE gave a precise control in the heterostructure growth – in 

which the individual layers can be achieved with the thickness in few nanometers. 

Exploiting this, R. Dingle et el. [76], reported the first observation of quantum 

confinement effects in GaAs  potential wells, bounded by AlGaAs barriers. They 

reported that the number of bound states increases with an increase in the well depth, 

and the spacing between the bound states increases with a decrease in the well 

thickness. The absorption spectra measurements (figure 2-9 [76]), they performed on 

the quantum wells of different thicknesses show the quantum confinement in bound 

sates. These quantum confinement effects were further understood by the earliest 

demonstration of a multiple quantum well heterostructure laser [77]. The laser action 

was supported by an optical pump; however, the threshold density was reported to be 

higher than the conventional double heterostructure lasers. They concluded that the 

quantum efficiency has been significantly degraded by the recombination centers at the 

quantum well/barrier interfaces.  

 

The first major achievement in the development of a quantum well laser was reported in 

1978 [78]. The GaAs quantum well (~20 nm) with AlGaAs barriers and claddings, 

grown using metal organic chemical vapor deposition (MOCVD), achieved the very 

first room temperature injection laser action. These lasers were reported to have the 

threshold current densities of ~3000 A/cm2.  
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Since then, much work has been reported in quantum well laser structure improvement. 

The graded index separate confinement heterostructure (GRIN-SCH) symmetric 

waveguide laser, grown using MBE, reported the threshold current density of 500 

A/cm2 [79],  and further improved it down to 160 A/cm2 [80]. The GRIN-SCH structure 

(figure 2-10 [80]), not only can achieve very low threshold current density, but also the 

selection of GRIN layers can result in any desired far-field pattern. 

 

 
Figure 2-9 [76] – Absorption spectra for quantum wells of different thicknesses, measured at 2 K 

(Permission to reproduce this figure has been granted by The American Physical Society). 

 

 
Figure 2-10 [80] – GRIN-SCH energy level schematic. 
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2.3.3 Multiple Quantum Well 

 

Tsang comprehensively investigated the characteristics of a multiple quantum well 

(MQW) structure [81], and later in [82], author reported an extremely lower threshold 

of 250 A/cm2 in a broad area laser (BAL) with the dimensions 200(wide)×380(long) 

µm. This opened an attractive opportunity to achieve an optimized laser action using 

MQW structures. A detailed study, in which the threshold current was measured for the 

increasing number of quantum wells in a 4000 Å wide core, has shown a monotonic 

increase in the threshold current for 2, 4, 10, 20, and 40 GaAs wells bounded by 

Al0.35Ga0.65As barriers [83]. Authors concluded the single quantum well structure to be 

optimum in this case. However, more elaborated analyses [84-85], have identified that 

the minimum threshold current density is achieved in: short devices with a large number 

of quantum wells, and long devices with a small number of quantum wells. This is 

explained by the higher mirror loss for a shorter cavity, which requires a higher gain 

factor for the laser action to occur, and is provided by an increased number of quantum 

wells. An experimental demonstration to achieve sub-milliampere threshold current of 

only 2.4 mA at room-temperature for a 100 µm long device under continuous injection 

is reported in  [86], which supports the previous observation. The material structure 

included 3 GaAs quantum wells bounded by Al0.22Ga0.78As barriers, given in figure 2-11 

[86]. 

 
Figure 2-11 [86] – MQW structure which achieved 2.4 mA threshold current at the room-

temperature. 
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A very interesting investigation in which the excitation wavelength has been varied as a 

function of decreasing GaAs quantum well width, bounded by 80 Å AlxGa1-xAs 

barriers, is reported in [87]. The pulsed excitation has been observed in 10 and 20 GaAs 

quantum well material systems, and a red shift of about 20 nm has been reported 

between the excitation wavelength and the calculated n=1(e–hh) transition. In a 

different material system which had 20 GaAs quantum wells (25 Å) bounded by 

Al0.31Ga0.69As (40 Å) barriers, has indicated coupling between the quantum 

confinements among the quantum wells. The excitation in this case also observed a red 

shift of 18 nm from the calculated n=1(e–hh) transition which has been attributed to re-

absorption. 

 

2.3.4 Superlattice Heterostructure 

 

The earliest investigations in the semiconductor superlattices have been reported by Leo 

Esaki (Nobel Prize winner in Physics, 1973) in 1970 [88-89]. These “man-made” 

materials exhibit the resonant tunneling of carriers under the applied bias. This 

tunneling results from the overlay of the electron waves in the bound states of the 

periodic potential wells. This overlay can either occur among the bound states at the 

same energy level, or it can occur when the bound states become degenerate among the 

excited energy levels (in the case of sequential tunneling). The tunneling process has 

been reported in the case of Zener diodes and Tunnel diodes in 1950’s, whereas in the 

case of superlattices, it became apparent after the significant advancements in the 

growth procedures, such as MBE [90]. The use of this procedure, along with its in-situ 

analysis, enabled the scientists to achieve a precise control over the thickness and 

composition of thin semiconductor layers. The carrier transport measurements 

performed in GaAs–AlGaAs based double barrier structure [91], and GaAs–AlAs based 

superlattice structure [92], showed the tunneling at specific bias amplitudes which 

coincide with the quantum confined states. The sequential resonant tunneling was 

reported by Capasso et al. in 1985 [93]. They performed photocurrent measurements in 

a p-i-n superlattice diode. Their reported surge in the photocurrent with increasing the 

reversed bias manifested the resonant tunneling in the ground and the excited states of 
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the periodic wells. A schematic illustration of the electron tunneling among degenerate 

energy states in periodic wells is shown in figure 2-12 [93].   

 

 
Figure 2-12 [93] – Sequential resonant tunneling: (a) from the ground state into the first excited 

state, and (b) from the ground state into the second excited state. 

 

In 1981, Coleman and Dapkus et el. reported the photo-pumped laser action in AlGaAs–

GaAs superlattices [94], and then in AlAs–GaAs superlattices [95]. Their superlattices 

were grown using MOCVD, and showed the emission lines at 77 K and 300 K, in both 

pulsed and continuous optical pumping. The first continuous photo-pumped laser action 

in strained GaAs–InGaAs and GaAs–GaAsP superlattices, grown using MOCVD, was 

reported in 1983 [96]. These lattice mismatched structures were reported to be unstable 

and failed quickly within 2-20 min. This experiment considerably questioned the 

stability of strained superlattice structures.   

 

There has been a significant amount of research reported by the scientists all over the 

world in the development and the evolution of semiconductor injection lasers, and much 

work will be under progress. However, the literature presented up to this point can 

cover the major achievements in this technology. An observation worth mentioning is 

that the work on the superlattice injection lasers is scarcely reported. While, majority of 

the stimulated emission measurements in these structures are assisted by optical 

pumping.  
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Chapter 3  

Quasi Phase Matching Waveguides 

 

Nonlinear optical conversion is the fundamental requirement in our integrated OPO. 

This conversion has been achieved using the quasi phase matching (QPM) technique of 

periodic domain-disordering, as there is no useable material birefringence in GaAs–

AlGaAs system. This domain-disordered quasi phase matching (DD-QPM) benefits 

from the post-growth quantum well intermixing (QWI), which is used to achieve the 

necessary control of nonlinearity. In addition to this, post-growth QWI techniques are 

employed to establish the monolithic integration in a fully integrated optoelectronic 

device. Our GaAs–AlGaAs superlattice core material system can be compared to the 

GaAs–AlAs superlattice core, which has been previously investigated to achieve a 

substantive modulation in the optical nonlinearity [38], which in turn facilitates the 

phase-matched three-wave-mixing. Therefore, using the DD-QPM to achieve the 

nonlinear optical conversion in GaAs–AlGaAs superlattice is a valued course. The 

optimization in second harmonic generation (SHG) has been achieved in our periodic 

DD-QPM waveguides, to achieve the consequent optimization in QPM, i.e., the phase-

matching period. The quantum well intermixing has been achieved using the ion-

implantation, assisted with the periodic gold mask to retain the as-grown nature of the 

aterial. The devices have been later characterized at the University of Toronto for 

der nonlinear processes.   

m
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3.1 Material 

3.1.1 Superlattice Heterostructure  

 

The material which we have employed in this investigation is a GaAs–AlGaAs 

superlattice core heterostructure. Superlattice heterostructures have been investigated 

 



 
 

QUASI PHASE MATCHING WAVEGUIDES 

for the last four decades, and the very first studies are reported by Esaki and Tsu [97]. 

There have been extensive achievements in the material growth technologies since that 

time, such as molecular beam epitaxy (MBE) and metal-organic vapor phase epitaxy 

(MOVPE). In these highly sophisticated growth technologies chemical compositions 

and thicknesses of a material are controlled precisely under high vacuum [98]. These 

material structures are grown by atomic/molecular interactions with the crystalline 

surfaces; and thin layers can be easily grown with a thickness of 2.8 Å, i.e., a monolayer 

(ML). In these heterostructures, where the layer thicknesses are comparable to the 

electron/hole wavelengths, the interlayer carrier interactions are apparent.  These 

interactions of carriers with the potential energy barriers result in resonant tunneling 

T), which has been studied and experimentally demonstrated [88, 93]. Resonant 

tunneling is a quantum

 

(R

 effect in which the carrier transport through the barrier layers is 

transparent, which results in the formation of sub/mini bands in the superlattice region.  

 
gure 3-1 – Schematic conduction band diagram of a six period 14 ML GaAs / 14ML Al Ga As Fi 0.85 0.15

superlattice with moduli-squared wave-function for the lower edge of E0 mini-band (the diagram is 

only for the illustration purpose and none of the energies are up to the scale). 

 

The studies conducted by Hutchings [38, 99], have given us the calculated modulation 

in the second order nonlinear susceptibility χ(2) in a domain disordered GaAs–AlAs 

superlattice. It has been concluded that 14ML GaAs/14ML AlAs superlattice structure, 
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which has a pump transparency close to 775 nm, results in the χ(2) modulation of ~60 

pm/V at the half-band-gap, i.e., 1550 nm. However, the native oxidation of AlAs has 

ompelled AlGaAs as a stable barrier in such periodic heterostructures, which makes 

ency 

iagram is only 

r the illustration purpose, as the energies depicted are not up to the scale). The red line 

shows the calculated moduli-squared wave-function for the lower edge of E0 mini-band. 

tion Eg of this composite material is 1.702 eV. 

e (PL) of 773 nm at room-temperature which is quite uniform over 

c

GaAs–AlGaAs superlattices a competitive source in nonlinear optical frequ

conversion processes.  

 

A schematic conduction band diagram of a six period 14ML GaAs/14ML Al0.85Ga0.15As 

superlattice heterostructure is given in figure 3-1 (please note that the d

fo

The direct band gap transi

 

3.1.2 Passive Wafers 

 

Our investigation started using the material grown for passive processing, given in 

figure 3-2. The material has a 600 nm thick 75 periods 14ML GaAs/14 ML 

Al0.85Ga0.15As superlattice core. The core cladding has a thickness of 300 nm with 

Al0.56Ga0.44As composition, and the outer cladding has a thickness of 800 nm with 

Al0.60Ga0.40As composition. Lastly, there is a protective cap of 100 nm GaAs, and a base 

layer of 1000 nm Al0.85Ga0.15As to isolate the guided modes from the substrate 

radiations.  For the initial investigations to optimize the nonlinear processing, two 

wafers were used: BMH1 grown locally by Prof. Colin Stanley (MBE research group, 

University of Glasgow), and BMH2 received from Sheffield. Both wafers have been 

grown in [001] crystal axis using MBE, and the devices which were fabricated on these 

wafers had cleaved facets in [110] axis. The idea here is to exploit the bulk like χ(2)
xyz 

coefficient [100], which is reported to be much higher than the typical χ(2)
zzz in the case 

of asymmetric quantum well structures [101]. BMH1 has a measured 

photoluminescenc

the whole wafer, whereas BMH2 has a room-temperature PL of 770 nm from the centre 

of the wafer and gradually decreases down to 760 nm at the edge, indicating a non-

uniform growth.  
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The quantum confined wave-functions are subjected to overlap within the successive 

quantum wells if the mean free path of carriers is comparable to the thicknesses of the 

wells and their surrounding barriers. These mini-bands which result due to this resonant 

tunneling, requires a specific approach for energy band calculations in superlattices. A 

research software Energy levels calculation in GaAs/AlGaAs heterostructures (ECA 

4.C), written by Roland Teissier was used to solve the energy bands in our structure. 

he calculated band-gap energy for 25 periods 14ML GaAs/14ML Al0.85Ga0.15As 

xGa1-xAs is calculated to be 

com

T

structure is 1.702 eV. The corresponding mole fraction of Al

0.22 using the following [102]: 

 

237.0155.1425.1)( xxxEg ++=Γ
 

 

Refractive index values for subsequent modeling and simulations in the investigation 

have been obtained from the electronic resource www.luxpop. . The programmed 

oftware on this resource calculates the refractive index for different materials of 

various mole fractions, operating wavelengths, and temperatures. The calculations are 

2] models. 

brication complexities, which are introduced by 

ubstrate patterning, to achieve monolithic integration [106]. Thus to summarize, QWI 

s

performed using both Gehrsitz [103], and Adachi [10

 

3.2 Quantum Well Intermixing (QWI) 

 

The discovery of QWI has enabled the realization of low loss sections in monolithically 

integrated devices [104]. Many applications of integrated optoelectronics have been 

identified in which QWI has been employed [105], such as: low loss waveguide 

interconnects, distributed bragg-reflector lasers, mode-locked lasers and non-absorbing 

mirrors. QWI has also overcome the fa

s

has proved to be a very effective technology for the active-passive integration in the 

modern single chip device fabrication. 

 

Over the recent past, QWI techniques like impurity induced disordering (IID) [105], 

impurity free vacancy disordering (IFVD) [107], sputtered SiO2 [108], and ion 
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implantation [109-110] have been investigated. QWI has also been used to modify the 

linear optical properties [111-112], and the nonlinear optical properties [113], of 

multiple quantum well structures. The freedom to shift the absorption peak and control 

the nonlinearities in GaAs–AlGaAs heterostructures using QWI has a fundamental 

relevance to this investigation. The preferred case of 1st order phase matching to achieve 

the maximum χ(2) modulation, requires a phase matching period of 3-5 µm for over the 

range of wavelengths which we intend to investigate. The required resolution is always 

compromised by the lateral straggle introduced in any QWI process. However, the 

teral straggle in QWI techniques of IID, IFVD, and sputtered SiO2, limits their 

 

la

application in our case, and micron-scale resolution has been reported to be achievable 

using ion-implantation [99-100]. 

 
 

Figure 3-2 – Cross-sectional scanning electron microscope image of the material. 
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Sputtered SiO2 and ion implantation induced intermixing are presented next, which 

ave been investigated to characterize the band-edge shift and the loss profile in our 

ents, which were performed at first, for the blue shift 

er the samples’ 

inimize the arsenic desorption. Finally, the low temperature (70 K) PL 

in figure 3-4, which show that with increasing the RTA 

temperature the blue shift increases; and a maximum shift of 71 nm has been achieved 

at 600 °C. The diminishing power of the reflected PL signal, from the high temperature 

annealed samples, indicates a fully intermixed core; and also, the devices which would 

be fabricated with these intermixing parameters will have higher losses. 

 

h

material.  

 

3.2.1 Sputtered Silica Tests 

 

This section covers the experim

characterization in BMH1 using sputtered SiO2. The motivation here is to show a 

comparison with ion implantation induced intermixing, and finally identify the 

technique which exhibits better control over the process parameters, and the required 

spatial resolution. 

 

The samples were prepared by sputtering an initial layer of 50 nm sputtered SiO2 on the 

clean surface. The cleaning procedure used (in all the sample preparations) was a 

solvent based, in which the samples were placed in: acetone, isopropanol (IPA), and RO 

water, for 5 min each, in an ultrasonic water bath. On the top of sputtered layer a 

protective cap of 200 nm plasma enhanced chemical vapor deposition (PECVD) SiO2 

was deposited. The samples were then given a rapid thermal annealing (RTA) treatment 

for 60 s at different temperatures – samples were placed on a silicon carrier wafer in 

RTA chamber, and a small piece of clean silicon was used to fully cov

surface to m

measurements were performed. The PL measurement setup (figure 3-3) had a green 

frequency-doubled (Nd:YaG) source from which the light was shinned on the surface of 

the samples kept in liquid nitrogen (77 K), and the reflected light was coupled back into 

the optical fiber and measured on optical spectrum analyzer (OSA). 

 

The results obtained are given 
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Figure 3-3 – Photoluminescence measurements setup. 

 

 
Figure 3-4 – Photoluminescence measurements of sputtered silica induced QWI at different 

annealing temperatures – annealing time is 60 s (solid lines are a smoothed fit to the data). 

  

The point defects created by sputtered SiO2 underneath the sample’s surface create the 

group III vacancies, and at higher temperatures these defects migrate deep into the 

epitaxial layers. It is understood that at these higher temperatures, the inter-diffusion of 

group III atoms is increased at the vacancies, which is also enhanced by desorption of 

Ga atoms into the deposited SiO2 layer. The result of these effects increases the Al 

composition in the intermixed regions, and thus the band-gap of the material increases 
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to a higher energy. This diffusion based process is a temperature dependent [108], and 

higher annealing temperatures will result in an increased band-edge shift. However, at 

such higher temperatures, depending upon the material profile, the intermixing will 

result in a fully disordered structure, which has been observed in our case. This would 

degrade the optical transmission in the intermixed devices as the large defect 

concentration causes the scattering of light; and also, higher diffusion can significantly 

compromise the micron-scale resolution required for a 1st order phase-matching process. 

Although, sputtered SiO2 can achieve the band-edge shift which is required to suppress 

the χ(2) in our case, the spatial resolution of this process is found to be poor in the 

literature and a value of tens of microns is reported [114]. 

 

3.2.2 Ion Implantation Tests 

 

The mechanism by which ion implantation induced intermixing achieves QWI in the 

target material is significantly different to that of the sputtered SiO2 process. In this 

process, high energy ions are bombarded on the surface of the material which can easily 

penetrate deep into the epitaxial layers. Each ion on collision with an atom dislocates it 

from its site (only nuclear/heavy-ion collisions can transfer the sufficient energy to 

cause the lattice dislocations), and also the energy which is transferred to the dislocated 

atom enables it to cause further dislocations. This gives a “tree like” dislocations effect, 

given in figure 3-5 (a). After implantation, the optical properties of the material are 

severely degraded, and a high temperature annealing treatment is required to repair this 

damage. At these higher temperatures the inter-diffusion of group III atoms occur at the 

dislocations, and consequently the relative Al composition increases in the regions 

which are ion implanted to cause QWI, figure 3-5 (b). This inter-diffusion is also 

assisted by desorption of Ga atoms into the SiO2 layer, which is deposited on the sample 

surface prior to annealing. Similar to any QWI process, the optical transmission in ion 

implantation induced devices is degraded when higher doses of the ion-beam are 

employed; however, the lateral straggle in the case of ion implantation is much lower. A 

value of ~0.45 µm is predicted for this lateral straggle in [100], for 4 MeV As2+ ion 

beam with an estimated ion range of 1.7 µm in a similar material system as ours. We 
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estimate the ion straggle of <1 µm in our experiments using the same ion implantation 

parameters (more details are given in section 3.2.2.1).  

 

 
Figure 3-5 – Ion implantation induced QWI, (a) Disorder cluster created in the result of high 

energy ion collisions, (b) The inter-diffusion of group III atoms increase the band-gap of intermixed 

material. 

 

Ion implantation for our samples was performed at Surrey Ion Beam Centre1. We have 

employed As2+ ion implantation to achieve the necessary QWI in our material. Selection 

of As2+ ions avoids introducing an impurity in the intermixed structure. The ion energy 

of 4 MeV, calculated by Transport of Ions in Matter (TRIM) software, and 

correspondingly reported in [100], has been used for the implantation.  

 

The samples prepared for the ion implantation were initially cleaned with solvent based 

process, and a 200 nm protective cap of PECVD SiO2 was deposited. Intermixing tests 
                                                 
1 http://www.ee.surrey.ac.uk/IBC/  
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were performed for various implantation doses and annealing temperatures (60 s anneal 

time), to characterize the blue shift in the material BMH1, which has a room 

temperature PL of 773 nm. Figure 3-6 summarizes these findings – implantation doses 

are in the scale of 1013 ions/cm2. An average blue shift of 80 nm has been achieved 

using higher ion beam doses, which is 52 nm larger than previously reported in a 

conventional multiple quantum well (MQW) structure with half-band-gap at 1550 nm 

[115].  

 
Figure 3-6 – Photoluminescence measurements of ion implantation induced QWI at different 

annealing temperatures – annealing time is 60 s (solid lines are a smoothed fit to the data). 

 

In order to measure the linear losses for different implantation doses, 2 mm long Fabry–

Pérot (FP) waveguides were fabricated in each case. The samples which were used for 

these devices were given an initial RTA treatment of 775 °C for 60 s. Figure 3-7 shows 

these measurements over a range of transmission wavelengths, which have been 

obtained using the FP resonance method [116]. The losses for the as-grown material 

have an average value of 0.55 cm–1.  

 

As we increase the implantation dose the transmission loss increases, e.g., in the case of 

2×1013 ions/cm2 dose a blue shift of 78 nm has been measured, and the loss coefficient 

  44



 
 

QUASI PHASE MATCHING WAVEGUIDES 

in this case is 2.5 cm–1. This shows that the optical properties of intermixed material are 

fairly retained, which makes ion implantation much appreciated to achieve the 

necessary band-edge shift. These measurements have been reported in [117]. In 

comparison to ion implantation, the transmission loss in the case of sputtered SiO2 has 

been reported to be 4-4.4 cm–1 in InGaAsP material system for a blue shift of 110 nm 

[118], and similarly, an average value of 4.25 cm–1 has been reported for AlGaInAs 

material system which is >100 nm blue shifted [119]. The transmission loss for the 

sputtered SiO2 intermixing was not measured in our material system.  

 

 
Figure 3-7 – linear loss measurements for different implantation doses, samples were annealed at 

775 °C for 60 s. 

 

Another issue which was considered while selection of the dose for subsequent 

fabrication is the ions flux in smaller gaps. The values which have been reported above 

were all obtained from the intermixed samples on which no patterns were created; 

however, in the case of final devices the implantation has been performed using a 

periodic gold mask (3-5 µm periods). It is understood that in these small openings, the 

concentration of ions reaching the core is spread, due to straggle, and is, therefore, 

lower than the surrounding open regions on the sample. This deviates the desired ion 
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implantation required in these small openings and affects the required periodic χ(2) 

modulation. Taking these effects into account, after analyzing all the measurements and 

the physical constraints, the dose of 2x1013 ions/cm2 was selected for the various second 

order non-linear process demonstrations, which have been given later in this chapter. 

 

3.2.2.1 Lateral Straggle in Ion Implantation 

 

It has been reported earlier [99], that the spatial resolution of the intermixing process is 

highly critical to achieve a maximum modulation in the nonlinear coefficients. The 

intermixing processes in which the point defects are migrated into the buried layers by 

diffusion at high temperature annealing could compromise the required resolution for a 

1st order QWI grating. Therefore, it is imperative to identify the lateral straggle of an 

intermixing process in the wave-guiding core.  

 

The ion implantation for the test samples was performed assisted with a 2 µm thick gold 

mask. The periodic mask was grown into the patterned E-beam resist on the sample’s 

surface using the gold electroplating. Gold has a high density of 19.3 g/cm3 which can 

protect the as-grown properties in our superlattice core, provided that the mask 

thickness is large enough for 4 MeV implantation energy. These test samples were 

prepared with various duty cycles of the periodic gold mask – the duty cycle in this case 

is the designed E-beam mask which is slightly different from the actual duty cycle of 

the developed E-beam resist, more details of the fabrication process are presented later 

in this chapter.  

 

Figure 3-8 (a) shows the top view of one of the test samples, with gold mask at the 

surface which has a period of 3.5 µm and the designed duty cycle is 60% masked: 40% 

exposed. This sample, which was implanted with As2+ ions 2×1013 ions/cm2 dose and 4 

MeV energy, is presented in a cross-sectional view in figure 3-8 (b). Material contrast is 

clearly visible under the SEM in figure 3-8 (b) – the light shade in the middle which 

spans horizontally is the superlattice core, the horizontal dark shade is Al0.85Ga0.15As 

base layer, and the tear-drop shaped implantation pattern is also visible in the lighter 

shade. The implantation duty cycle is approximately 55% intermixed: 45% as-grown, 
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which has been reported to result the maximum conversion in a phase-matched process 

[120]. The lateral straggle from these measurements is estimated to be ~0.9 µm. This 

straggle will slightly increase after annealing the samples due to domain diffusion 

which could not be measured. It should be mentioned here that the material contrast was 

only visible in un-annealed samples after the implantation, whereas, no contrast was 

observed in the same samples after RTA treatments, which is attributed to the damage 

repair at such high temperatures. A synopsis of all these implantation tests is provided 

in appendix II. 

 

(a) 

 

(b) 

Figure 3-8 – (a) Top view of the periodic electroplated gold (designed as: 60% masked / 40% 

exposed), (b) Cross-sectional SEM micrograph of the same duty cycle after ion implantation. 
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Table 3-1 summarizes the two intermixing processes for the selection criteria which 

have been considered when deciding the course of action in this research. 

 

  

Sputtered SiO2

 

Ion Implantation 

Blue shift Large (maximum achieved is 70 

nm in our case; however, more 

than 100 nm has been reported in 

the literature). 

Large (maximum achieved is 

>90 nm in our case for a higher 

ion beam dose). 

Transmission 

loss 

Reported to be 4-4.5 cm–1 for 

>100 nm blue shift [118-119]. 

Measured to be 2.5 cm–1 for 78 

nm blue shift. 

Lateral 

straggle 

control 

Poor, and is reported to be tens of 

microns in the literature [114]. 

Very promising, and is 

estimated to be <1 µm in our 

experiments. 

Cost Low, as fairly simple processing 

is required.  

High, as the implantation can 

only be performed at the 

specialist facilities. 
 

Table 3-1 – Intermixing process selection criteria 

 

In conclusion, sputtered SiO2 is a fairly robust intermixing technology, and it has been 

proven to achieve good quality devices; however, its application is limited by its poor 

spatial control which is critical in our case. One can reason to circumvent this control by 

selecting a higher order QPM period, and it has been demonstrated using 3rd order 

grating with periods in the range of 10.5-12.4 µm [121]. However, the higher order 

period requires much longer devices to achieve the same conversion efficiency which 

can be achieved in a 1st order grating, and also, this efficiency is limited by the optimum 

length of the device which is related to the losses at the band-gap wavelengths. 

Therefore, to proceed further in this research it was decided to use the ion implantation 

induced intermixing which has been demonstrated to give improved conversion 

efficiency in the previous literature for various second order nonlinear processes.  

. 
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As identified earlier in the chapter introduction, we have employed the optimization in 

second harmonic generation to achieve the optimization in QPM, which is presented 

next. 

 

3.3 Second Harmonic Generation (SHG) 

 

The earliest demonstration of SHG [42] in a quartz crystal established one of the 

research foundations in optical harmonics. The follow up of this demonstration, and the 

studies of the nonlinear properties in potential materials [122-123], have lead the way 

forward in realizing tunable coherent sources. The operational environment and the 

large footprint of these sources have made their integration not viable in modern 

optoelectronics. GaAs has been much investigated as a potential material in such 

integrated coherent sources, as it benefits from the sophisticated fabrication 

technologies, and its large nonlinear second order susceptibility χ(2)
xyz of ~340 pm/V for 

near-infrared wavelengths [124], which is much larger than that of the ferroelectrics.  

 

A detailed study has been conducted to optimize QPM SHG in our material, and 

subsequently, to optimize the generation of phase-matched parametric fluorescence at 

the half-band-gap – which is the main aim in our designed OPO. Phase matching results 

in a higher signal buildup when the domain reversal techniques are employed, as 

compared to the domain disordering techniques. In these lines, SHG has been 

demonstrated using periodic domain inversion achieved by wafer bonding in [36]. 

Higher scattering losses, unequal domain dimensions, and bonding losses, have been 

identified as the main contributing factors in the lower efficiency reported in this 

experiment. Fabricating a domain inverted structure is a significant challenge which 

also limits its applications in the integrated optoelectronics. An efficient way of 

achieving periodic domain inversion has been demonstrated by orientation patterned 

growth (OPG) in GaAs–AlGaAs [125-126]. In this technique a thin layer of Ge is 

deposited on GaAs substrate, which is followed by a thin layer of GaAs deposition with 

a 90° rotation around the growth axis of the underneath GaAs substrate (usually [001]). 

This rotation results in the inversion symmetry in the zinc-blende crystal structure of 

GaAs–AlGaAs. In order to define the periodic domain inversion, a photolithographic 
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and a wet-etch procedure is performed for the required QPM period. Finally, the 

claddings and the wave-guiding layers are grown. Using this OPG method, an efficient 

continuous wave SHG has been demonstrated in AlGaAs material system for 1.55 µm 

pump wavelengths [127]. However, the shortfalls include the lack of monolithic 

integration in a single chip device, and the waveguide corrugation which arises from the 

initial template layout causes scattering. 

 

This leads us to the techniques, as identified in section 2.2, to achieve QPM and hence 

the modulation in the second order nonlinearity. The demonstration by Helmy et al. 

[121], shows that the sputtered SiO2 has been employed to modulate χ(2)
zxy, but the 3rd 

order grating has compromised the necessary QPM resolution, and it has resulted in a 

lower efficiency. Ion implantation induced intermixing has been found to be the most 

effective to achieve sub-micron lateral straggle, required for a 1st order QPM grating. 

This intermixing technique has also been recommended earlier in [99], and has been 

experimentally demonstrated in [100-101]. Authors in reference [101], have used 5 

MeV As+ ion beam to achieve QPM in asymmetric quantum wells, but the modulation 

in the lower χ(2)
zzz (as compared to bulk like χ(2)

xyz) has limited the efficiency. Therefore, 

we have modulated χ(2)
zyx and χ(2)

xyz in our periodically intermixed superlattices to 

achieve SHG in type-I and type-II polarization configurations.  

 

The next details in this chapter include initial analyses, followed by the fabrication 

process to achieve QPM waveguides, and the tests performed on these passive devices 

to demonstrate second order nonlinear processes. The fabrication related issues and 

findings have also been included, and a complete process is presented which has been 

developed to achieve the monolithic integration in a fully integrated OPO. 

 

3.3.1 QPM Period 

 

The quadratic dependence of the SHG power on the fundamental power requires the 

phase matching period to be closer to the degeneracy point, i.e., the period for which the 
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band-gap wavelength is converted equally into the half-band-gap wavelengths. The 

phase matching condition for SHG is given as: 

 

ωω kkk 22 −=∆  

 

The signal build-up in the case of SHG is much higher if the phasing matching 

condition stated above is equal to the period of QWI. 

 

Λ
=∆

π2k  (Λ is the period of QWI) 

 

This equates the phase matching condition in term of QWI period as: 

 

ω

ω

ω

ω
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2 ×−=
Λ  

 

(Where effη  is the effective refractive index of the guiding structure) 

 

The earlier study [99], has given an estimate of 3-7 µm phase matching period, for a 1st 

order grating.  

 

3.3.2 Ion Implantation Mask 

 

The ion implantation induced QWI has proven to be the suitable choice to achieve the 

required phase matching spatial resolution. Therefore, it is necessary to identify the 

materials that can be used as a protective mask for implantation. The higher density of 
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gold (19.32 g/cm3 at room temperature) has made it an attractive choice [100-101]. The 

maximum penetration of 4 MeV As2+ ions is 1.5 µm in gold, given in figure 3-9 – which 

is a snap-shot of Transport of ions in matter (TRIM) software. 

 

 

Figure 3-9 – Simulated penetration of As2+ ions in gold. 

 

Gold mask requires a seed conducting layer at the sample’s surface, and a patterned 

resist on top of it which provides protection against the gold growth; electroplating 

process then grows the metal mask starting from the sample’s surface. The vertical 

profile of gold mask is critical for the ions flux to reach the sample’s surface, which 

depends upon the resist profile. Some tests were conducted initially for the resist 

selection based on the said criteria.  

 

Photolithography, which can easily achieve 1-2 µm size features with high precision 

[128], had been a fine start. The tests in this case were performed using photo-resists 

that can achieve a height of 1.5 µm after patterning. The process development in this 

case was comprehensive and various photolithography parameters were experimented 

and tuned to reach an optimized process. For example, the standard photolithography 

employed in the clean room for S1818 resist is: 30 s spin at 4000 RPM (which gives the 
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resist height of 1.8 µm), 30 min oven bake at 90 °C, 4 s exposure under Maskaligner-6 

(MA-6) tool, and finally 60 s development in 1:1 Microposit:H2O developer. In these 

lines, our experiments were designed for the same resist spinning parameters; however, 

the hotplate baking was performed on one set of samples, along with the oven bake on 

the other set. It should be mentioned that the specification sheet of the resist identify 

hotplate baking to be an optimum course (115 °C for 60 s). In addition to different 

baking procedures, the exposure of the resist was also performed for various times, i.e., 

starting from 3.8 s it was increased up to 5 sec over a range of samples. Finally, each set 

of samples was developed for different times, i.e., 50 s, 60 s, and 75 s. the resist profile 

in each case was measured under the SEM, and it was found unacceptable in almost all 

the cases. The best resist profile achieved using the developed photolithography is given 

in figure 3-10, which shows the cross-sectional view (the details of some these 

experiments are given in appendix III). 

  

 
Figure 3-10 – Cross-sectional view of the developed photolithography. 

 

It is observed that the intended side wall verticality has not been achieved; this could be 

caused by an improper exposure, as it has been found in the literature that the resist 

edge beads introduce a gap between the mask and the resist surface and causes 

interference. To resolve this, some tests were performed in which the resist was 

carefully removed from the edges of the samples; however, this did not give us the 

required profile. Another reason for an improper exposure could be the MA-6 lamp. It 

has been discovered in the specifications sheet that the resist has been optimized for the 

g-line exposure (435 nm), and it can be effective over the spectrum of a standard 

mercury lamp (g-line 436 nm, h-line 405 nm, and i-line 365 nm). One can argue that 
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this exposure could be optimized by using appropriate filters; however, this could not be 

performed in our case where the maintenance of the MA-6 tool is restricted only to the 

staff.  

 

The unsatisfactory results using photolithography, compelled us to develop the 

fabrication process using Electron-beam (E-beam) lithography. For this purpose, 

positive tone Poly Methyl Methacrylate (PMMA) resist has been used. The bi-layer 

15%15% PMMA has given us the thickness of ~2.5 µm resist at 4000 RPM (spinning 

speed) for 60 sec – this should suffice the later gold growth. Several dose tests were 

conducted, and one of them is given in figure 3-11. The cross-sectional SEM 

micrograph of the resist shows that the required vertical side wall profile has been 

achieved – the charging effects under E-beam are also visible in the image. 

 

3.3.3 Protective Dielectric Cap 

 

Gold mask, which has been grown using electroplating, required a protective cap on the 

sample’s surface against potential penetration of the metal into the semiconductor. Also, 

this protective cap would prevent any surface damage which has been observed during 

subsequent cleaning in various wet-etch chemicals [100]. The selection of protective 

dielectric cap was decided after performing some tests. These tests included the PL 

measurements of the annealed material with a protective cap, and an effective removal 

of this cap. The tested protective layers were PECVD SiO2 and inductive coupled 

plasma (ICP) Si3N4. It has been identified in [107], that Si3N4 cap layer does not 

introduce IFVD in the material at the annealing temperatures near 800 °C, but SiO2 cap 

layer does introduce a slight band-edge shift. Similar tests were performed on our 

material, and the measured PL of the samples with 200nm thick ICP Si3N4 deposited 

and then annealed at 775 °C did not indicate any blue shift; however, PECVD SiO2 with 

similar thickness and annealing temperature introduced a blue shift of 5 nm. Therefore 

Si3N4 seemed a better choice, but the cracks which were observed on the surface after 

annealing indicated a stress. On the other hand, the samples which were deposited with 

SiO2 had their surface intact and clear after annealing. The wet-etch of protective layers 

in buffered Hydrofluoric (HF) solution showed that SiO2 is easily removed to give a 
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clean surface, where as Si3N4 is difficult to remove and has a very slow etch rate once it 

is annealed. Therefore, these tests conclude the robustness of PECVD SiO2 against ICP 

Si3N4 during different process stages, even if there is a slight compromise in the band-

edge shift.  

 

 
Figure 3-11 – Cross-sectional view of a dose test performed using 15%15% PMMA. 

 

3.3.4 Device Design 

 

The optimization consideration required us to identify the QPM period for which the 

maximum SHG power is achieved. For this purpose, E-beam mask was designed with 

various even (3.6 – 4.4 µm) and odd (3.5 – 4.5 µm) periods to achieve the 1st order 

phase matching, given in figure 3-12. Each period incorporated three different duty 

cycles: 40:60, 60:40, and 50:50, and a single grating pattern of E-beam mask (single 

period with a specific duty cycle) had the designed width of 100 µm – this dimension 

would accommodate four waveguides defined in the later stage for a single grating 

pattern. The waveguide dimensions were designed to be 3.5 µm wide and 1 µm deep 

ridges – the design was optimized with multiple beam-propagation-based simulations 
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using commercial software BeamPROP2. The mode profile at half-band-gap wavelength 

is given in figure 3-13.   

 

Figure 3-12 – Designed E-beam mask for QPM samples. 

 

 
Figure 3-13 - Mode profile of the designed waveguide at 1550 nm. 

                                                 
2 BeamPROP from Research Software (Rsoft) Inc. 
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3.4 Sample Fabrication 

 

The fabrication process involved: 1) deposition of 200 nm thick PECVD SiO2 

protective layer, 2) sputtering of 40 nm Au/5 nm Ti seed layer, 3) patterning the 

samples with 15%15% PMMA (in E-beam), and 4) 2 µm thick gold mask. The samples 

were then placed in SVC-14 resist stripper in a hot water bath (50 °C), and mounted on 

a carrier wafer to be sent for ion implantation. Figure 3-14 shows the SEM image of a 

test sample, the periodic gold mask is visible from the top view.  

 

 

Figure 3-14 – SEM image of the periodic gold mask created over a test sample. 

 

The samples were then sent to Surrey Ion Beam Centre to be implanted with 4 MeV 

As2+ ions, with a dose of 2×1013 ions/cm2. After implantation, the gold was removed by 

wet-etch in potassium iodide/iodine (KI/I2) solution – the etch rate was found to be 

~700 nm/min. SiO2 protective cap was then removed by wet-etch in HF solution (which 

would remove the Ti adhesion layer as well), and a fresh layer of 200 nm SiO2 was 

deposited for annealing at 775 °C, which was removed later again by HF cleaning. 

Lastly, a quick treatment of GaAs cap removal was performed on the samples using 

citric-acid: hydrogen-peroxide (5:1) solution. This cleaning, which selectively etched 
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GaAs as compared to AlGaAs, was employed for the passive material only; as the 

contamination, which has been later investigated and presented in detail under the 

fabrication optimization, was very challenging to remove. 

 

The waveguides were patterned using negative tone hydrogen silsesquioxane (HSQ) E-

beam resist, and were finally defined using reactive ion etching (RIE) in SiCl4 plasma. 

Dose and developing processes for each of these steps were optimized. Figure 3-15 

shows the SEM image of a final sample which has been used for further 

characterization. 

 

3.5 Characterization 

3.5.1 Type-I SHG  

 

Type-I phase matching is occurred when the fundamental field is TE polarized and the 

induced SHG is TM polarized [129]. The linearly polarized pump is coupled into the 

device which generates the linearly polarized second harmonic, figure 3-16 (a). 

  

 

Figure 3-15 – Cross-sectional view of the final sample – dark shaded HSQ resist is visible. 
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Figure 3-16 – SHG phase matching polarization configurations. 

 

Pulsed SHG — has been measured in our devices cleaved to the length of 0.7 mm. The 

calculated group velocity mismatch for 1.3 ps pulses in a related material has limited the 

optimal length to be at 0.6 mm for maximum SHG [120]. Characterization was done 

using an OPO synchronously pumped by mode-locked Ti: Sapphire laser. Input light of 

1.35-1.5 ps pulses with a maximum power of 185 mw at the facets was end-fire coupled 

into the waveguides using a microscopic objective lens. The output SHG was measured 

using a silicon photo-detector. Figure 3-17 shows the schematic diagram of the 

experimental setup. An average SHG power of 2.04 µW was measured, which has been 

achieved due to the higher fundamental transmission (explaining the better sample 

quality). Linear loss at the fundamental was measured to be 0.9 cm-1 for a 3.5 mm long 

sample cleaved from the same chip. Peak SHG power was ~3.65 µW, measured for 3.8 

µm period (50:50 duty cycle) with 123 mW input power at the facet, and at a phase 

matching wavelength of 1583 nm. The pulse spectrum of the phase matched type-I SHG 

is given in figure 3-18 [130]. 
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Figure 3-17 – Schematic diagram of the type-I SHG measurements setup. 

 

A figure of merit for the SHG is given by the internal conversion efficiency, which is 

calculated for the type-I phase matching as: 

 

2
_

2

_
)/( LPP

TETM

I ωωη =  

 

The peak type-I SHG conversion efficiency in our case is calculated to be 250 % W–1 

cm–2, after accounting for the losses (output optics, facet reflectivity, etc). The peak 

SHG for type-I phase matching reported in the literature is ~1.5 µW (~40 % W–1 cm–2) 

for a 1st order QPM using ion implantation induced intermixing [100], and it is ~110 

nW (~13 % W–1 cm–2) for a 3rd order QPM using sputtered SiO2 [121]. The 

improvement in our case has been achieved due to the significant fabrication process 

optimization and a good QWI control. 
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Figure 3-18 [130] – Pulse spectrum of the phase matched type-I SHG – the curve resembles Sinc2-

function which is consistent with the phase-matched process. 

 

 

Continuous wave (CW) SHG — has been measured for the first time in our devices, 

and subsequently reported in [131]. Samples were cleaved to the length of 3.5 mm and 

the characterization was conducted using a tunable CW C-Band (1530 nm – 1565 nm) 

laser. The input power was enhanced up to 350 mW using an erbium-doped fiber 

amplifier (EDFA). The light was end-fire coupled into the waveguides using a 

microscopic objective lens, and was measured using a silicon photo-detector.  Linear 

optical losses were measured to be 0.9 cm-1 using the FP method. The maximum SHG 

power of 1.6 µW was achieved on a FP peak, with an input power of 310 mW at the 

input facet. The normalized conversion efficiency in this case has been calculated to be 

0.18 % W–1 cm–2. The tuning curve, figure 3-19 [131], shows the asymmetric FP 

features while scanning from shorter to longer wavelengths. The scan interval is 0.01 

nm which is kept shorter than measured 0.1 nm free spectral range (FSR) at the input 

fundamental. A delay of 3 sec was added between the scan points to account for the 

measured settling down time for 310 mW input. The scan shows a dotted red line 

obtained by filtering the data which resembles the Sinc2 phase matching behavior of the 
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SHG. The Sinc2 asymmetry in this case could be the result of absorption, as this feature 

is at the band-edge for the second harmonic. However, the exact source for this 

asymmetry is unclear and requires furher investigation. The filtered tuning curves for 

three different input powers are given in figure 3-20 [131]. Increased input power shifts 

the phase mathing wavelength to the longer side, which is an affirmation of the change 

in the effective refractive index. 

 

The inset in figure 3-19 [131], shows a bistable hysterisis loop when performing 

forward and reverse scans with a reduced scan interval of 0.002 nm. This bistability is 

attributed to the thermo-optical effects which occur due to the whole sample heating 

[132]. Bistability is observed for the fundamental wavelength outside the phase 

matching band width, and also, in the as-grown samples with no QPM periods at all; 

therfore, SHG has unnoticeable effect in this process. The linear optical loss of 0.9 cm-1 

which is dominating these heating effects, gives us the calculated absorbance of 64 % 

for a 3.5 mm long sample, which results in tens of mW of the absorbed power.  

 

 

Figure 3-19 [131] – Tuning curve for CW SHG. 
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Figure 3-20 [131] – Filtered tuning curves for CW SHG with increasing input powers. 

 

In summarizing, we have been able to measure CW SHG for the very first time in this 

material regime, which confrims our claim of achieving highly optimized fabrication 

process, and the periodic QWI control in a sub-micron scale. 

 

3.5.2 Type-II SHG 

 

The second order susceptibility is non-degenerate in GaAs–AlAs superlattices [38]. The 

calculated modulation in the χ(2)
xyz is ~60 pm/V, which is larger than the modulation in 

χ(2)
zxy for 14/14 ML GaAs/AlAs superlattice. Further more, the material we have 

employed is grown in [001] crystal axis, which will result the waveguide facets in 

[110]. The Type-I phase matching in this case, corresponds to the modulation in χ(2)
zxy, 

and the Type-II phase matching corresponds to the modulation in χ(2)
xyz. This concludes 

that the Type-II phase matching will result in higher SHG power in our devices. The 

eventual motive of this investigation is to monolithically integrate the phase matched 

nonlinear section with an on-chip pump superlattice laser. The selection rules identify 
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the pump to produce laser action in TE polarization, which makes it critical to measure 

the device performance in type-II polarization configuration, given in figure 3-16 (b).  

 

Pulsed SHG — has been measured in our devices cleaved to the length of 0.6 mm – 

and subsequently reported in [133-134]. The characterization was conducted using an 

OPO synchronously pumped by mode-locked Ti: Sapphire laser. Input light was end-

fire coupled into the waveguides using a microscopic objective lens. The 

characterization specifications include 1.9 ps pulses with an average power of 180 mw 

at the input facets. A half wave plate was used to inject a hybrid TE/TM polarized input 

fundamental, and a polarization beam cube was used to measure TE polarized SHG at 

the output using a silicon photo-detector. Figure 3-21 shows the schematic diagram of 

the experimental setup. 

 

 

Figure 3-21 – Schematic diagram of the type-II SHG measurements setup 
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Average linear loss at the fundamental for this chip is 0.9 cm-1. Peak SHG power is 

measured to be 2.0 µW for 3.5 µm period, with 130 mW of input power at the facet. 

The phase matching wavelength for the best performing waveguide is found to be 

1577.4 nm. SHG tuning curve which has been measured using an OSA is given in 

figure 3-22 [133]. The output SHG power has a polarization ratio of 4.4:1 (TE: TM), 

which establishes the dominance of type-II phase matching process. 

 

The observed output is lower than the expected, which is attributed to the higher losses 

at SHG. These losses could arise from the proximity of the TE polarized SHG to the 

material band-edge, or the radiation losses associated with poor TE polarized optical 

mode confinement. A mode solution for TE polarized band gap excitation is given in 

figure 3-23. 

 

Figure 3-22 [133] – Tuning curve for type-II SHG. 
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Figure 3-23 – Mode solution for TE polarized band-gap excitation. 

 

3.5.3 Difference Frequency Generation (DFG) 

 

Difference frequency generation is a promising three-wave-mixing process in order to 

achieve a direct wavelength conversion in an optical domain. Especially GaAs–AlGaAs 

materials, which have half-band-gap near 1.5 µm telecommunication band, are highly 

attractive for an all optical wavelength division multiplexing (WDM) network. 

Moreover, it is possible to achieve a monolithically integrated optical frequency 

converter with the inclusion of an on-chip pump source. Direct conversion near 1.5 µm 

wavelengths has been demonstrated previously in the periodic domain inverted AlGaAs 

waveguides [37]; however, they suffer a drawback of their inability to integrate with an 

on-chip pump laser source. Our developed process to achieve post-growth QWI is a 

solution to achieve this monolithic integration.  

 

The lower confinement for TE-polarized band-gap wavelength has been observed in 

type-II SHG tests, and it has been attributed as a source of radiation loss which 

degraded the expected conversion efficiency. Therefore, new samples were fabricated 

with deep etched ridge structures to increase the optical confinement. These samples, 
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which have 3 µm wide and 1.3 µm deep ridge waveguides, were measured for type-I 

DFG test. 

 

Continuous wave type-I DFG — The sample which has been used to perform DFG 

experiments was cleaved to the length of 1 mm, and it has the measured linear loss of 

2.5 cm–1 in waveguides; this higher loss is explained by the light scattering in a deep 

etched structure. Pulsed SHG measurement was initially performed to identify the 

degeneracy point which would result in the maximum conversion for the three-wave-

mixing process. Peak SHG was achieved for 1583.4 nm phase-matching wavelength in 

type-I polarization configuration. After this, the DFG measurements were performed 

using CW Ti:sapphire laser which was tuned to the degeneracy wavelength of 791.7 

nm, and the output beam of the laser was set to TM. C-Band tunable laser, followed by 

EDFA, was used as the TE-polarized signal. The composite input of pump and signal, 

combined using a beam splitter, was end fire coupled into the waveguides using a 

microscopic objective lens. The collected output was separated using a long pass filter 

to measure the pump and the signal/idler wavelengths on different photo-detectors. 

Finally, the idler was detected by measuring it on OSA. 

 

The input pump and signal powers at the waveguide facets were 45 mW, and 250 mW, 

respectively. More details of this experiment are presented in [135], but to summarize, 

TE-polarized idler wavelength at 1620.7 nm was produced for a signal wavelength of 

1550.1 nm. The signal wavelength was scanned from 1535 nm to 1555 nm to observe 

the idler tuning, and a measured spectrum of 20 nm has been achieved with the 

conversion efficiency within 5dB. This shows an extensive phase-matching bandwidth 

of signal/idler close to the degeneracy, given in figure 3-24 [135]. 
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Figure 3-24 [135] – The output spectra of measured DFG – the signal wavelengths are between 

1535-1555 nm, and the arrows indicate the generated idler wavelengths. 

 

This direct conversion of C-Band wavelengths, into L- and U-Band wavelengths, has 

demonstrated the realization of an all optical frequency converter, which could achieve 

a higher efficiency using the appropriate filtering and amplification. However, the 

monolithic integration for such a WDM device require an on-chip pump source, which 

has been achieved by the laser action in our superlattice material structure presented in 

the lasers chapter. 

 

3.6 Fabrication Process Optimization 

 

The fabrication process flow, in our case, is lengthy and requires the sample to go 

through many electro-chemical and chemical processing steps, in addition to the 

standard lithography. For instance, the formation of the gold mask early on in the 

process flow involves immersing the sample in a sulphite-based gold electroplating 

solution. If the solution becomes contaminated, and/or is used incorrectly, this may 
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degrade the sample and/or the plated metal. Existing electroplating procedures and 

shared equipment had to be revised to establish reliable plating. Further, there were 

some issues related with effective removal of the metal mask. Poor surfaces after RIE 

suggested the presence of residual Au/Ti. Investigations were conducted in which test 

samples were prepared to understand the source of this contamination. As a result, we 

established a fabrication process flow that enables the monolithic integration of required 

OPO components. 

 

The fabrication process flow chart for a complete monolithically integrated device is 

given in figure 3-25. The flow chart has been divided into two sections, in which the left 

section covers the fabrication up to the QPM waveguides, and the right section 

continues the fabrication to achieve the on-chip lasers. Please note that the individual 

recipes for each step have not been provided, and one can easily develop them to their 

requirements. 
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Figure 3-25 – The fabrication process flow chart for a monolithically integrated device. The left 

section provides the process if one wishes to achieve only the passive nonlinear waveguides; 

however, the right section continues with the fabrication to achieve the on-chip lasers in the case of 

an active device. 
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The selective etch of GaAs cap layer in the passive material, using citric acid based 

solution, resulted in a very clean sample surface suitable for subsequent RIE. The 

improved conversion efficiencies in various second order nonlinear measurements in 

these samples are an affirmation of this. However, the highly-doped GaAs cap is not 

always expendable; it must be conserved in electrically active regions in order to obtain 

ohmic contacts for the electrical injection. Therefore, it is mandatory to protect the 

GaAs cap while removing the Au/Ti based contamination. Test samples in which the 

GaAs cap removal stage was not included exhibited degradation, apparent in the form of 

grass on sample’s surface after the subsequent RIE step. Figure 3-26 elaborates more on 

this issue. 

 

 
Figure 3-26 – SEM image of a test sample – no GaAs cap removal etch. 

 

This contamination, which has been observed on the sample’s surface (figure 3-26), 

probed an investigation into the entire fabrication process. The test samples were 

initially cleaned with solvents before depositing a protective layer of 200 nm PECVD 

SiO2. The seed layer of 60 nm Au/10 nm Ti was deposited using E-beam assisted metal 

evaporation, instead of sputtering – the sputtering process requires the sample to be 

taken out of the clean room which itself is a contamination risk. The samples were then 
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patterned with 15%15% PMMA using E-beam, and a gold mask was grown using 

electroplating.  

 

3.6.1 Improved Gold Electroplating 

 

For gold electroplating, some new recommendations were followed, as demonstrated by 

Dr. C. D. Farmer [136]: 

 

1) A new solution of gold electrolyte was obtained to ensure the absence of any 

contamination. 

2) New sample holders (cathode) with Poly-tetra-fluoro-ethylene (PTFE) coated 

wire and screw were used. 

3) A new platinum anode was used. 

4) The anode and the cathode were immersed simultaneously into the 

electroplating solution with voltage-bias enabled.  

5) The anode and the cathode were simultaneously taken out of the electroplating 

solution and placed in a beaker full of RO water before disabling the applied 

voltage-bias.  

 

Table 3-2, summarizes the findings of the gold electroplating tests. The color of the 

electroplating solution and the anode did not change after multiple runs, and the gold 

mask was observed to be very smooth and shiny under the optical microscope. This is in 

contrast to runs performed previously.  
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Gold electroplating 

Initial settings: 

Set temperature 50 °C 

Measured temperature 48 °C 

Set voltage 10 V 

Set current 40 mA 

Feature size 40 µm 

Test 

No. 

Voltage in the 

solution (V) 

Current in the 

solution (mA) 

Electroplating  

time (min) 

Measured 

thickness (µm) 

1 0.71 39 13 1.44 

2 0.74 39 12 1.2 

3 0.75 40 12 1.18 
 

Table 3-2 – Gold electroplating tests. 

 

After electroplating, the PMMA resist was stripped by placing the samples in SVC-14, 

in a hot water bath. The gold mask was partially removed from one of the test samples 

using potassium iodide/iodine (KI/I2) wet etch, and the sample was observed in SEM 

(figure 3-27). The attacked gold mask and the contaminated surface are clearly visible 

in the image. This contamination has been classified in to two categories: 1) caused by 

the resist, 2) caused by the Ti adhesion layer. 

 

3.6.2 Resist Contamination Removal 

 

The resist-based contamination, as identified in figure 2-27, has been observed at the Au 

/ PMMA interface after electroplating. This can possibly be attributed to the change in 

PMMA properties due to higher electric field at the metal/polymer interface. The resist 

was found to be insoluble in generally identified cleaning solutions for polymers, i.e., 

acetone and SVC-14. Two approaches have been used to get rid of this contamination: 

1) oxygen plasma clean [137], otherwise known as O2 Ashing, and 2) placing the 

sample in Methyl-isobutyl-ketone (MIBK) – the latter is a solvent for polymers and is 

widely used as a developer in PMMA based lithography. We have employed MIBK 
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cleaning to remove the resist based contamination in all the later fabrications; a 10 min 

immersion in MIBK solution is recommended followed by a 1 min in IPA. 

 

 
Figure 3-27 – SEM image of a partially gold etched sample. 

 

3.6.3 Ti Layer Contamination Removal 

 

The HF clean which was given initially to remove SiO2 protective cap (underneath the 

Au/Ti seed layer) is also an etchant for Ti. However, cleaning procedures using HF-

based solutions have been found to be unreliable. Therefore, it was mandatory to 

identify a non-HF based etchant for Ti adhesion layer. The test samples for this process 

development were cleaned initially in MIBK solution, and were masked with photo-

resist to perform the gold etch. An image of one of these samples is given in figure 3-

28, in which the masked surface and the exposed surface is clearly visible. Although the 

exposed surface has been attacked with KI/I2, still some contamination is visible in the 

electroplated grating regions, which could be left-over gold, perhaps due to insufficient 

etch time used. Ti adhesion layer is also visible in the image. 
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Figure 3-28 – SEM image of a gold etched sample – masked region and exposed region are visible. 

 

 HF-based Ti etch — Ti layer is employed for adhesion in many thin metal depositions 

on semiconductors. However, Ti is known to diffuse along grain boundaries of Au (Pt, 

Pd) overlayers [138]. Another potential problem arises since, once it is exposed, the 

surface of Ti quickly oxidizes to create a composite of Ti/TiOx. Furthermore, oxides and 

silicides of titanium are able to be formed at the interface between SiO2 and Ti [139].  

HF-based etchants attack the Ti rapidly, but the dissolution process is very slow for 

TiOx; and the same etchant rapidly dissolves the SiO2 protective cap underneath. This 

expected behavior has been observed in the tests performed using HF: H2O (1:26) 

etchant. Figure 3-29 shows the edge-on view of the same sample (figure 3-28), which 

has been processed through Ti wet-etch. The dissolution of SiO2 layer is clearly visible 

in the exposed region; however, the main concern is the presence of Ti/TiOx layer. A 

possible solution would be to perform this wet-etch for a longer time (or at an increased 

temperature), but it would risk the GaAs cap which is critical in an active device [140].  
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Figure 3-29 – Edge-on view of the sample partially exposed to Ti wet-etch. 

 

 

Non-HF-based Ti etch — An alternative and more effective etchant based on non-HF 

chemistry was investigated, as proposed for our application by Dr. C. D. Farmer [141]. 

This etchant has the benefit of having a similar etch rate for Ti and it’s oxide, along 

with a slow etch rate 5 nm/min, that together provide high process controllability when 

etching thin layers [142-143]. Another useful trait is that it does not etch SiO2/SiNx, 

unlike HF acid. However, it does attack GaAs–AlGaAs, so protection of the exposed 

semiconductor surface (e.g., using SiO2/SiNx, photo-resist) is needed to avoid etching of 

those layers. 

 

The preparation of stock solution involved: 1) mixing 93.3 ml NH4OH solution (28-30 

%) in 2 L H2O, 2) adding 50 g EDTA powder into the solution such that it was 

completely dissolved, and finally 3) storing the stock solution in an air tight bottle to 

avoid any loss of NH3 gas.  In order to perform the etch, a fresh solution of 5 g (~4.5 

mL) H2O2 was mixed into 53.1 g (~52 mL) stock EDTA solution. A completely 

protected sample (exposed semiconductor covered with an adhesive tape and photo-

resist) was initially given quick O2 plasma clean, followed by an immersion in H2O to 
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wet its surface. Ti/TiOx wet-etch process was performed immediately after this H2O 

soak. The sample was placed in the solution for 16 mins to completely etch 10 nm Ti 

adhesion layer. It is recommended to perform a Au etch followed by a Ti etch for at 

least two cycles – such that the first cycle is performed for the etch time required to etch 

the thick gold layer, and further iterations are designed to remove any residual Au-Ti 

composites. Figure 3-30 shows the sample’s surface after the said procedure; Ti/TiOx 

based contamination has been significantly removed in this case. 

 

 
Figure 3-30 – Top view of a sample exposed to non-HF-based Ti wet-etch. 

 

In conclusion, during the fabrication process optimization, a number of factors have 

been identified which proved critical in effective realization of monolithic integration of 

our final device. The cleaning procedures which have been thoroughly investigated to 

overcome these factors have shown visible improvements, of which the very last stage 

of Ti contamination removal has been the most significant.  Once the effective removal 

of gold mask and the underneath Ti adhesion layer is established, the later fabrication 

process for the final device is similar to the laser fabrication which has been presented 

in the lasers chapter. 
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This chapter concludes with the demonstration of improved conversion efficiencies in 

various second order nonlinear processes measured in our devices. This proves 

significant improvements in the fabrication process as compared to the work reported 

earlier, and also, it indicates a better control in selectively achieving QWI for the 

required periodic nonlinear modulation. Finally, the fabrication related issues have been 

investigated in complete, and the optimization in each case has been achieved. 
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Di-chroic Multimode Interference Coupler 

on the integrated chip, while keeping 

s fabrication inline with the overall fabrication process of the final device; and 

subsequently establish the monolithic integration. 

mulations. The fabrication process optimizations, specific for 

is component, have been presented. Finally, the device characterization has been 

performed and presented. 

e avoidance of any 

 

 

Our design of a fully integrated OPO requires us to have essential routing components 

on the chip. The simultaneous conversion of different wavelengths in the QPM 

waveguide section would be degraded if the multi-wavelength transmission does not 

follow the designated paths, i.e., the band-gap wavelength has to fully couple into the 

QPM waveguide section to ensure maximum three-wave-mixing, and it has to 

completely couple back into the ring laser cavity for stimulated emission. Similarly, the 

half-band-gap wavelengths must maintain their transmission confined within the 

adjoining resonator, after they have been routed through the QPM waveguide. 

Therefore, it is mandatory to achieve such routing 

it

 

This chapter starts with the MMI coupler design, which is fully understood with the 

beam-propagation-based si

th

 

4.1 Coupler Design 

 

Our OPO design requires a cross coupler for the band-gap wavelengths. The coupler 

should exhibit maximum coupling of the pump mode into the QPM waveguide section, 

as given in figure 4-1 (a). The resonating parametric fluorescence near the half-band-

gap, requires a coupler in a bar configuration, given in figure 4-1 (b). Moreover, the 

constraints include a short cavity length for minimal foot print, and th
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back reflections into the pump cavity. Following subjects, which have been considered 

as p

 

1) upler, as the 

coupling parameters: etch depth, waveguides separation, and device length, do 

 

) MMI couplers can furnish a very broad bandwidth in the same design [59, 145] 

 

3) rformance of even a weakly guiding MMI coupler can satisfy the 

theoretical requirements [52], and has the benefit of lesser back reflections 

 

4) 

he 

spectral response of the device [51-52] [145]. The remedies include: a weakly 

 

riorities in our coupler design, have been found in the literature: 

MMI has been identified as a better design than the directional co

not have a significant effect on the performance in MMI [57, 144].  

2

[56].   

The pe

[145]. 

MMI coupler can be critical in the case of an integrated ring laser. The 

undesirable resonating modes and back reflections in MMI cavity end up in t

guided structure, passive MMI cavity, and tapered access waveguides [145].   

 
Figure 4-1 – Required design: (a) cross coupler near the band-gap (775 nm), (b) bar coupler near 

the half-band-gap (1550 nm). 

 

It has been identified in the previous chapter that the shallow etch waveguides have 

poor confinement; therefore, the access waveguides have to be etched deep enough to 
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cause minimum transmission loss in the bended sections. An acceptable approach 

would be a completely etched waveguide core; however, this will exhibit the scattering 

losses and will bring in the higher order modes. The mode solutions, for the bended 

sections, identified the required etch depth of 1.3-1.4 µm as an acceptable agreement in 

this case. This etch depth will partially expose the superlattice region for the current 

material structure BMH1; however, in the case of lasers, the superlattice core thickness 

has been reduced and an additional layer has been included in the waveguide core to 

circumvent the non-radiative recombinations (this is presented in the lasers chapter). 

nce the etch depth of 1.3-1.4 µm has been established, the mode simulations were 

performed to find the optimum waveguide width of 3 µm, given in figure 4-2. 

O

 

 

gure 4-2 – (a) Mode solutions of the designed waveguide structure for the band-gap and the half-

ary this length in the curved input 

sections; therefore, it was mandatory to identify these limitations. The fabrication 

process optimization is given in the next section.  

Fi

band-gap-wavelengths, (b) the designed access waveguide structure. 

 

Single mode access waveguides to the MMI cavity were designed to have a width of 3 

µm. The width of the MMI cavity has to be less in order to keep the length (which is 

dependent upon the width of the cavity) at the minimum possible. The ideal case would 

be a two-mode interference (TMI) coupler [57], which will result in the cavity width of 

6 µm in our case, and will provide the smallest possible length under restricted 

interference. But fabrication limitations could v
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4.2 Dry Etch Optimization 

 

Reactive ion etching (RIE) is used to achieve the anisotropic etch in the semiconductor 

device fabrication; and it has a better control and reproducibly on the etch depth than 

the isotropic wet etch. Chlorine based plasma is generally employed for GaAs etch 

[146-147] [148] [149], but there are several parameters that effect the anisotropy and the 

etch rate. These parameters include: the gas pressure, gas flow in the RIE chamber, the 

chamber design, and the applied bias across the electrodes; and most critical is the gas 

composition.  

 

The chemistry generally used for GaAs–AlGaAs etch in the dry etch facility at 

University of Glasgow is SiCl4 based. This chemistry has been identified to produce 

comparable etch rates for both GaAs and AlGaAs [148]. The application of high power 

RF-bias creates a plasma of charged ions and radicals of the injected gas between the 

two electrodes; and the main contributing factor which reacts with the semiconductor is 

chlorine [150]. The chemical reaction for this process is reported in [149], and is given 

below: 

 

3
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3
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3
0

0
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3
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AlClAlCl
and

AsClAsCl

GaClGaCl

atomicClSiClSiCl

→+

→+

→+

+→

 

 

The process parameters which have been used in our experiments were: 18 sccm SiCl4 

gas flow, 9 mT of pressure, and 250 W of power. Although, these parameters were 

ensured in many tests performed initially; however, it has been observed that the 

process is dependent upon the sample size. An available solution is the real time 

monitoring of etch depth using laser reflectometry in an in-situ RIE process.  
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4.2.1 RIE with Laser Reflectometry 

 

Laser reflectometry is a process in which a monochromatic beam is shinned on the 

substrate, normal to its surface, and the reflected light is measured using a photo-

detector, and recorded on an onboard computer. The real time interference in the 

reflected optical signal provides a precise control of the etch depth in an in-situ RIE 

[149, 151]. Using this analysis tool, a number of tests were performed for our material, 

in which the etch depth was monitored by the real time interferometer data (figure 4-3); 

and the resultant etch depth was measured using surface profiler Dektak. Various etch 

tests were performed for different number of oscillations in the reflected signal (figure 

4-4), and an average etch rate of ~85 nm/oscillation has been obtained for our material.  

The etch rate per oscillation has been reported to be 86 nm for GaAs, and 91.5 nm for 

Al0.28Ga0.72As in [149]. Although our material has a higher aluminium concentration 

than these; however, the measured etch rate is in a good agreement with the reported 

values. This in-situ RIE was used in all the later fabrications, and the required etch 

depths have been achieved within ±20 nm tolerance.   

 

 

Figure 4-3 –Recorded plot of a real time RIE signal (the oscillations in the signal are seen as the 

etch depth increases with time). 
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Figure 4-4 – The measured RIE etch depth against the number of oscillations recorded. 

 

4.2.2 RIE Lag 

 

Dry etch is a process in which the ions react with the substrate’s surface under the 

influence of applied process parameters. This process is effected significantly when the 

exposed gaps (in which RIE is desired), are small enough to reduce the ions flux. The 

optimum performance in our coupler requires the gap between the access waveguides to 

be completely etched up to the depth of MMI cavity; however, RIE in its general 

application is not able to completely open the converging gaps. Two options are 

identified to resolve this issue:  

 

1) The optimization of RIE process, in which etch is stopped on the bigger exposed 

surface of the sample, but is continued in the smaller gaps – this is usually done 

by introducing an etch stop layer in the initial epitaxial growth. 

2) The identification of a minimum width for the smaller gaps in which the etch 

depth is practically similar to the large features. 
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This RIE lag in smaller opening has been measured by performing tests on the exposed 

gaps of various widths. The test sample was fabricated by patterning neat (100%) HSQ 

under E-beam, and subsequently etching in SiCl4, using the previously mentioned 

parameters. As expected, the measured gaps were not completely open for the 

decreasing width of the exposed surface, which can be seen in the cross-sectional SEM 

images, figure 4-5. It was found that a gap of 500 nm is practically achievable with the 

similar etch depth as that of the surrounding exposed surface. 

 

Figure 4-5 – Cross-sectional SEM micrographs of the small gaps depicting RIE lag. 

 

4.3 Simulations and Tests near Band-gap 

 

The designed access waveguides which have the width of 3 µm, and the added 

fabrication tolerance as identified in RIE lag tests, has given us the minimum cavity 
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width of 6.5 µm for the MMI coupler. The restricted paired interference has been 

employed, in which the cross operation should occur at the beat length of the first two 

modes. The calculated length of MMI for excitation wavelength 780 nm (near band gap) 

is Lπ = 250 µm. The coupling operation has been optimized by simulating different 

cavity lengths using BeamPROP, and the optimum length has been identified to be 220 

µm, given in figure 4-6.  

 

 

Figure 4-6 – Simulated cross operation at the excitation wavelength of 780 nm (MMI cavity 

dimensions: 6.5 µm wide, 220 µm long, and 1.35 µm deep etched). 

 

MMI cross coupling tests were performed by fabricating couplers of various lengths, 

i.e., 180 – 240 µm long. The E-beam mask was designed with a skew such that the 

cleaved samples will have angled waveguides at the facets; this helps to avoid the FP 

effects in the measurements. The sample fabrication included neat (100%) HSQ 

patterning using E-beam, and subsequent definition using RIE. The fabricated samples 

were measured to have an etch depth of 1.35±0.02 µm. SEM image of one of the test 

samples is given in figure 4-7. The converging gap between access waveguides is 

practically open in the inset (top left corner). 
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Figure 4-7 – SEM image of a test sample with various coupler lengths. 

 

The measurements near the band-gap wavelengths were performed using a tunable Ti: 

Sapphire CW laser, pumped by an argon ion laser. The measured output of the laser was 

in hundreds of mW, but it was reduced down to a few mW using the neutral density 

filters. The light was not set to any polarization for these measurements; however, the 

TE polarized component of the field was significantly dominant. The light was end-fire 

coupled into the waveguides using a microscopic objective lens, and the output of the 

couplers was measured using a silicon photo-detector attached to a lock-in amplifier & 

an optical chopper. The measurement setup is given in figure 4-8. 

 
Figure 4-8 – Measurement setup for the near band-gap wavelengths. 
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The measured cross talk, which in this case is the ratio between the unwanted signal and 

the wanted signal )log10( 10
cross

bar

P
P

dB [152], for the wavelength 797 nm, is given in 

figure 4-9. It has been observed that the coupler is working in a cross configuration for 

190-220 µm long MMI cavities, which is in agreement with the simulated cavity length. 

An unexpected behavior is observed in the case of the 200 µm long coupler, it is 

believed to be damaged. The normalized cross + bar state power is plotted in the figure 

4-10, which identifies the lower transmission for 200 µm long coupler. 

 

The minimum cross talk in the case of simulations is –11 dB, which is lower than the 

minimum cross talk achieved in the measurements. However, the measured coupling 

trend seems to follow the simulated coupling trend. These measurements were repeated 

for 788 nm wavelength, and the coupler performance was found consistent. A minimum 

cross talk of -7 dB has been observed in this case.  The optical bandwidth (2|∂λ|) [56], is 

calculated to be ~100 nm for a 220µm long coupler. 

 
Figure 4-9 – Measurements for 797 nm wavelength, and simulations for 780 nm wavelength (quasi-

TE polarized light in both cases).  Solid lines are a smoothed fit to the data. Solid circles represent 

the measured data, and the empty circles are the simulated data. 
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Figure 4-10 –Cross + bar state power. 

 

4.4 Simulations and Tests near Half-Band-gap 

 

The designed MMI cavity (6.5 µm wide and 220 µm long), has been simulated for the 

bar coupling near the half-band-gap wavelength (1560 nm), which is depicted in figure 

4-11. The calculated beat length Lπ for this excitation wavelength is 114 µm, and the bar 

operation should occur at twice the beat length, i.e., 228 µm, which is within ±10 µm 

tolerance measured for the cross coupling.  
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Figure 4-11 – Simulated bar operation at the excitation wavelength of 1560 nm. 

 

The measurement setup for bar operation was similar to the previous; however, tunable 

Ti: Sapphire laser was replaced with tunable 1.5 µm CW laser. Again, no polarization 

was set for the quasi-TE polarized input light. Input power of 2 mW was end-fire 

coupled into the waveguides using a microscopic objective lens, and a germanium 

photo-detector was used to measure the output power. Two samples, with MMI cavities 

of various lengths, were measured for the cross talk )log10( 10
bar

cross

P
P

dB, given in figure 

4-12. Again, the minimum cross talk has been observed for 210-240 µm long MMI 

cavities, which is in agreement with the optimum cavity length. Moreover, the 

measurements performed using two different samples establish the fabrication process 

repeatability.   
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Figure 4-12 – Measured and simulated performance of the coupler for 1560 nm wavelength (quasi-

TE polarized light). Solid lines are a smoothed fit to the data. Solid circles and squares represent 

the measured data, and the empty circles are the simulated data. 

 

The measurements for both coupling operations demonstrate that the required di-chroic 

behavior is consistent with the designed structure. It is anticipated that the coupler 

would be able to accommodate sufficient tunability and required fabrication tolerance in 

the final integrated devices. The polarization dependent operation of the coupler is 

complimented by the type-II phase-matching of the three-wave-mixing, in which the 

pump wavelength is TE polarized, and there is choice for signal in TE (TM) and idler in 

TM (TE) polarizations.  

 

4.5 Tapered Coupler 

 

It has been found in the literature that the tapered access waveguides improve the 

performance by reducing back reflections in the MMI cavity. In order to asses this 

improvement, the coupler design was modified and tapers were introduced in the inner 
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side of the access waveguides. The modified design and the fabricated couplers in this 

case are given in figure 4-13. 

 

 
Figure 4-13 – Tapered couplers, (a) tapers have been introduced in the inner side of the access 

waveguides, (b) SEM images of the fabricated couplers. 

 

The measurements over a range of MMI cavity lengths in this case are given in figure 4-

14. The minimum cross talk for the half-band-gap wavelength has not been improved in 

this case; however, there is an improvement observed when the coupler cavity is away 

from the designed length (220 µm), as compared to that of the measurements in figure 

4-12. This improvement could be the result of reduced back reflections in the MMI 

cavity.  The cross talk for the band-gap wavelength of 788 nm in this case is measured 

to be –6.9 dB for 210 µm long cavity, which is also consistent with the previous values. 

It should be mentioned here that the actual cavity length is slightly longer in the case of 

tapered couplers due to the RIE lag in the converging gaps on either side. Again, the 

measurements performed using two different samples establish the fabrication process 

repeatability. 
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Figure 4-14 – Measured performance of the tapered coupler for the half-band-gap wavelength 

(quasi-TE polarized light). Solid line is a smoothed fit to the data, solid circles and squares 

represent the measured data. 

 

This chapter has covered the optical routing components in our integrated OPO. 

Required di-chroic coupling has been demonstrated with a MMI coupler – the design 

for which has been optimized using BeamPROP. The fabrication challenges have been 

identified, and achieved, while keeping this process inline with the over-all fabrication 

to demonstrate monolithic integration. The minimum cross talk of -14 dB for the half-

band-gap wavelengths will introduce the transmission loss in the final device, and the 

minimum cross talk of -7 dB for the band-gap wavelength will affect the Q of the ring 

laser.  
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Chapter 5 
Superlattice Lasers 

dly, the fabrication process has 

 be identified in which the complete chip should be processed while protecting the as-

ad to optimize the structure in more than 7 wafers, and above 20 devices 

ere fabricated and tested. The discussion starts with the superlattice heterostructure 

materials.  

n on-chip pump source; therefore, it was pre-

quisite to achieve the laser action in a similar material structure which has been used 

 

 

The inclusion of an integrated pump source in an optoelectronic device has the benefits 

of reduced losses (which are un-avoidable in the case of coupling an external source), 

higher performance (as more power is available for processing), higher irradiance for 

intra-cavity processing, and a reduced size. However, the critical issue of monolithic 

integration of the passive and the active components on a single chip is prevalent. At 

first, a material has to be designed which can incorporate laser action and does not 

compromise the passive processing significantly. Secon

to

grown properties of the material in the active sections.  

 

The identified challenges are completely applicable in our device, where we had to 

incorporate a ring laser in the integrated chip. The foremost challenge was to design a 

lasing material, and the complexity became paramount as the laser action in superlattice 

heterostructures has been reported scarcely. It was identified in initiation that we will be 

requiring a number of wafers for the laser action to be observed, which became true at 

last as we h

w

 

5.1 Materials 

 

The integrated design requires us to have a

re

previously for the nonlinear experiments. 
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The material design initially started with the active version of the wafer BMH1. The 75 

periods 14ML GaAs/14 ML Al0.85Ga0.15As superlattice core was left un-doped, to from 

the active region of a waveguide, which had p– and n–doped upper and lower cladding 

layers respectively. The wafer design identified as BMH3 (table 5-1), was grown using 

BE at EPSRC National Centre for III-V Technologies, Sheffield. The growth 

of 18.8 nm 

om the centre of the wafer. The PL map identified a gradual red shift of ~20 nm as the 

PL is o  from the centre to the edge of the wafe g

 

ss )

M

information, including the impurity concentration, is unavailable. 

 

It has been identified in the previous chapters, that the initial shallow etched device 

design is unable to provide the necessary mode confinement for the wavelength near the 

band-gap, especially in the curved sections. It has also been observed that the increased 

etch depth will partially expose the superlattice active layer. Keeping this in view, the 

wafer design was modified to reduce the superlattice thickness to 300 nm, and 

subsequently adding the buffer layers on each side of the superlattice to keep the core at 

600 nm thickness. The modified design BMH4 is given in table 5-2. This wafer was 

also provided by the MBE growth facility at Sheffield. The measured PL of BMH4 at 

room-temperature is 769.5 nm, with full width at half maximum (FWHM) 

fr

btained r, given in fi ure 5-1.  

Layer Thickne Doping (cm-3

Cap GaAs 100 nm P+ 

Outer cladding Al0.60Ga0.40As 800 nm P (~5×1017) 

Core cladding Al0.56Ga0.44As 300 nm P (~5×1017) 

(finishing with) Al0.85Ga0.15As (4 nm) Intrinsic 

14ML GaAs/ 14ML Al0.85Ga0.15As SL layers  

(74 periods) 

596 nm Intrinsic 

Al0.85Ga0.15As 4 nm Intrinsic 

Core cladding Al0.56Ga0.44As 300 nm N (~5×1017) 

Outer cladding Al0.60Ga0.40As 00 nm 5×1017) 8 N (~

Base layer Al0.85Ga0.15As 800 nm N (~5×1017) 

(100) GaAs substr N+ ate  
 

Table 5-1 – Designed active waf  er BMH3.
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Layer Thickness )Doping (cm-3

Cap GaAs 100 nm P+ 

Outer cladding Al0.60Ga0.40As 17) 800 nm P (~5×10

Core cladding Al0.56Ga0.44As 300 nm P (~5×1017) 

Buffer Al0.43Ga0.67As 150 nm Intrinsic 

(finishing with) Al0.85Ga0.15As (4 nm) Intrinsic 

14ML GaAs/ 14ML Al0.85Ga0.15As SL layers  

(37 period) 

296 nm Intrinsic 

Al0.85Ga0.15As 4 nm Intrinsic 

Buffer Al0.43Ga0.67As 150 nm Intrinsic 

Core cladding Al0.56Ga0.44As 300 nm N (~5×1017) 

Outer cladding Al0.60Ga0.40As 00 nm 5×1017) 8 N (~

Base layer Al0.85Ga0.15As 800 nm N (~5×1017) 

(100) GaAs substr N+ ate  

 
Table 5-2 – Designed active wafer BMH4. 

 

The wafer structure BMH4, was also requested to be grown locally (MBE research 

group, University of Glasgow), by Prof. Colin Stanley. The private communication 

resulted in a modification in the structure, in which the outer and the core cladding 

layers were merged into a single cladding of Al0.60Ga0.40As (1100 nm thick). The doping 

profile was also modified. This design (table 5-3), was grown locally using MBE, and 

lso by MOVPE at Sheffield. The wafers were identified as BMH5 & BMH6 

BMH6 is 770 nm. The doping concentration is 2×1019 cm-3 in the GaAs 

ap, and 9×1017 cm-3 in the upper cladding layer. The wafer was grown 10° towards the 

[111] plane.  

 

a

respectively.  

 

The measured PL of BMH5 is 780 nm at room-temperature. Also, the PL measurements 

across the whole wafer are uniform and close to 780 nm. The growth information for 

this wafer (BMH5) is unavailable; whereas, a comprehensive growth information has 

been made available by Sheffield for BMH6. The measured electroluminescence (EL) 

for the wafer 

c
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Figure 5-1 – PL map of the wafer BMH4. 

 

The growth information for BMH6, along with the real time laser reflectometry and the 

surface temperature, is given in figure 5-2. The reflectometry was performed 

simultaneously with two sources: 1) 950 nm source, and 2) 633 nm source. The 

reflectivity oscillations (red oscillations for the longer source, and blue oscillations for 

the shorter source), clearly identify the different growth layers; especially the blue 

oscillations in the case of core layer can count 37 periods of the superlattice. The 

pyrometer measurement shows that the surface temperature has been kept practically 

constant during the wafer growth. 
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Layer Thickness Doping (cm-3) 

Cap GaAs 100 nm P+ [Carbon] (~1×1019)

Cladding Al0.60Ga0.40As 1100 nm P [Carbon] (~2×1018) 

Buffer Al0.43Ga0.67As 150 nm Intrinsic 

(finishing with) Al0.85Ga0.15As (4 nm) Intrinsic 

14ML GaAs/ 14ML Al0.85Ga0.15As SL layers 

(37 period) 

296 nm Intrinsic 

Al0.85Ga0.15As 4 nm Intrinsic 

Buffer Al0.43Ga0.67As 150 nm Intrinsic 

Outer clad Al0.60Ga0.40As 1100 nm N [Silicon] (~2×1018) 

Base layer Al0.85Ga0.15As 800 nm N [Silicon] (~2×1018) 

(100) GaAs substrate  N+ 
 

Table 5-3 – Designed active wafers BMH5 & BMH6. 
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Figure 5-2 – The real time growth information for BMH6. 
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It was instigated that the buffer Al0.43Ga0.67As layers, in conjunction with the 4 nm 

finishing layers of Al0.85Ga0.15As, on either side of the superlattice might end up as 

carrier traps, and degrade the performance. In order to avoid this, the core structure was 

modified. The buffer layers were removed, and the transitional thin layers were 

introduced between the superlattice and the claddings. The supporting argument for the 

selection of the thicknesses of 1 nm and 2 nm for GaAs and Al0.8Ga0.2As in the 

transitional layers comes from the energy band calculation. The ECA research software 

(mentioned earlier), identified that the GaAs quantum well (having thickness less than 3 

nm and bounded by Al0.8Ga0.2As barriers), will posses an indirect energy band. This 3 

nm or less GaAs well, coupled with a 2 nm Al0.8Ga0.2As barrier, will support the smooth 

carrier transport into the superlattice active layer.  

 

This modified design is given in table 5-4 (the transitional thin layers are highlighted), it 

was grown using MOVPE at Sheffield, and was identified as BMH7. This wafer, which 

was grown 10° to the [111] plane, has the measured carbon concentration of 3.3×1019 

cm-3 in the GaAs cap, and 1.6×1018 cm-3 in the upper cladding. The measured PL of the 

wafer is 777 nm from the centre of the wafer.  
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Layer Thickness Doping (cm-3) 

Cap GaAs 100 nm P+ [Carbon] (~1×1019)

Cladding Al0.60Ga0.40As 1250 nm P [Carbon] (~2×1018) 

GaAs 1 nm Intrinsic 

Al0.8Ga0.2As 2 nm Intrinsic 

GaAs 2 nm Intrinsic 

14ML GaAs / 14ML Al0.8Ga0.2As SL layers 

(37 period) 

296 nm Intrinsic 

Al0.8Ga0.2As 4 nm Intrinsic 

GaAs 2 nm Intrinsic 

Al0.8Ga0.2As 2 nm Intrinsic 

GaAs 1 nm Intrinsic 

Cladding Al0.60Ga0.40As 1000 nm N [Silicon] (~2×1018) 

Al0.80Ga0.40As Buffer 1000 nm N [Silicon] (~2×1018) 

GaAs Buffer  N+ 

(100) GaAs substrate  N+ 
 

Table 5-4 – Designed active wafer BMH7. 

 

Another design was also worked out, in the light of previous work done on the 

superlattice lasers by Dr. M. Sorel & Prof. D. Hutchings [153] (the laser action was 

observed in AlAs–GaAs superlattice; however, the information is unavailable on this 

experiment, as the material degraded most likely due to the oxidation of AlAs layers). 

The designed material (in our case), was also a complete superlattice heterostructure in 

which the core and the wave-guiding layers were alternating thin layers of X ML GaAs 

/ Y ML Al0.8Ga0.2As. This design, given in table 5-5, was grown using MBE at 

Sheffield. The initial material tests performed on the first wafer showed a very high 

material resistance (the details of these tests are given in the next section). Therefore, a 

new wafer was made available by Sheffield (The first wafer is identified as BMH8a, 

and the improved second wafer is identified as BMH8b). The room-temperature PL for 

the wafer BMH8a is 774 nm, where as the information for BMH8b is unavailable. 
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 Layer Thickness Doping (cm-3) 

Cap GaAs 100 nm P+ [Carbon] (~1×1019)

Cladding 6ML GaAs / 14ML Al0.8Ga0.2As  

(SL layers XX period) 

1250 nm  

 

P [Carbon] (~1×1018) 

14ML Al0.8Ga0.2As 4 nm Intrinsic 

10ML GaAs 2.8 nm Intrinsic 

14ML GaAs / 14ML Al0.8Ga0.2As SL layers 

(37 period) 

296 nm 

 

Intrinsic 

14ML Al0.8Ga0.2As 4 nm Intrinsic 

10ML GaAs 2.8 nm Intrinsic 

Cladding 6ML GaAs / 14ML Al0.8Ga0.2As  

(SL layers XX period) 

1250 nm  

 

N [Silicon] (~1×1018) 

Base Cladding Al0.8Ga0.2As 1000 nm N [Silicon] (~2×1018) 

(100) GaAs substrate  N+ 
 

Table 5-5 – Designed active wafer BMH8 (a/b). 

 

In concluding this section, one final design is presented which actually demonstrated the 

laser action. The repeated cycle of material design and test, identified a lower gain in 

the thick superlattice core. Therefore, the active layer thickness was reduced down to 

100 nm superlattice (table 5-6). The design of BMH7 was repeated in this case, but the 

intrinsic buffer layers (which were present in BMH6) were brought back. The wafer 

BMH9 was grown using MOVPE at Sheffield, and this wafer (like all other MOVPE 

grown wafers) was grown with a 10° offset to the [111] axis. The growth information 

identifies: 1) the measured EL of 772 nm, from the centre of the wafer, 2) the doping 

concentration of ~4×1019 cm-3 in the GaAs cap, and 3) the doping concentration of 

~2×1019 cm-3 in the upper cladding. The wafer design BMH9 was also grown with a 

slightly thicker superlattice core of 150 nm, which is identified as BMH9_REV in the 

later discussions. 
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Layer Thickness Doping (cm-3) 

Cap GaAs 100nm P+ [Carbon] (~1×1019)

Cladding Al0.60Ga0.40As 1000nm P [Carbon] (~1×1018) 

Buffer Al0.45Ga0.55As 250nm Intrinsic 

GaAs 1nm Intrinsic 

Al0.8Ga0.2As 2nm Intrinsic 

GaAs 2nm Intrinsic 

14ML GaAs / 14ML Al0.8Ga0.2As SL layers

(12 period) 

96nm Intrinsic 

Al0.8Ga0.2As 4nm Intrinsic 

GaAs 2nm Intrinsic 

Al0.8Ga0.2As 2nm Intrinsic 

GaAs 1nm Intrinsic 

Buffer Al0.45Ga0.55As 250nm Intrinsic 

Cladding Al0.60Ga0.20As 1000nm N [Silicon] (~1×1018) 

Al0.80Ga0.40As Buffer 500nm N [Silicon] (~1×1018) 

GaAs Buffer  N+ 

(100) GaAs substrate  N+ 
 

Table 5-6 – Designed active wafer BMH9. 

 

5.2 Material Tests 

 

The material design, as presented in the previous section, had been a repeated process in 

our aim to demonstrate the laser action. Over the period of one and half year, this effort 

drove us to: design, process, and optimize the structure, and subsequently report our 

feed back to the grower. The basic material tests, which include TLM and BAL, are 

highly recommended in the circumstances where optimum structural parameters are 

unknown. These basic tests identify the material gain and the electrical properties of the 

structure in a short period of time; in which the required devices can be easily prepared 

using photolithography.  
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5.2.1 Transmission Line Measurement (TLM) 

 

The specific contact resistance of any ohmic contact is identified with a well known 

model of transmission line measurement. The TLM information helps the selection of a 

thin film (ohmic contact), which subsequently affects the device performance; and also, 

it is a quick test to validate the appropriate doping of the material.  

 

The TLM in our case was performed on most of the wafers, and the measurements were 

reported back to the grower for further optimization. It is necessary to mention that the 

measurements were only performed for the top/polished side (P-contact) of the wafers. 

The sample preparation was a quick photolithographic process, in which: firstly the 

evaporated metal contact pads (240 nm Au/15 nm Pt/15 nm Ti) were deposited using a 

lift-off photo-resist mask, and secondly the shallow etched mesas were defined (in SiCl4 

RIE), also using the photo-resist mask. After the mesa definition, the samples were 

given a 60 s annealing treatment in the RTA at 360 °C (figure 5-3b), with an initial 

ramp of 320 °C for 20 s.  

 

 
Figure 5-3 – Left a) A mesa etch section with 5 contact pads having multiple gaps in between them; 

Right b) RTA profile of the annealing treatment provided to the samples after mesa definition. 

 

A sample used for TLM (given in figure 5-3a), had multiple mesa sections, each having 

5 contact pads (800 µm long and 200 µm wide). These contact pads had a gap of 25 µm, 
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20 µm, 15 µm and 10 µm between them (as shown in the figure, from left to right). It is 

worthy to mention that the above given gaps were defined on the photolithography 

mask; whereas for the TLM, actual gaps on the samples were measured using optical 

microscope. 

 

The prepared samples were measured on the four-probe station. Two probes each were 

brought into contact with the consecutive pads, with one designated for the voltage and 

second for the current. The measurement was done by applying bias voltage across the 

pads, and measuring the current flow from one contact to the other. The automated 

script on the four-probe station calculated the resistance between the two ohmic 

contacts. This process was repeated such that the four measurements (four resistances) 

were obtained for the four individual gaps in a single mesa section. A schematic of the 

four-probe station measurement is given in figure 5-4. Measurements were performed 

on the multiple mesa sections across the sample to obtain a scatter of the resistances. 

 

 
Figure 5-4 – Schematic of the four-probe station measurement. The bias voltage is applied across 

VF & VM, and the current flow is measured from IF to IM. 

 

The scatter of resistances has been plotted against their respective gaps (between the 

contact pads) in the case of measurements from BMH5, given in figure 5-5. 
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The linear fit to this scatter gives information about the contact resistance and 

eventually the specific contact resistance, which can be calculated as under [154]: 

 

W
R

RL
sheet

c
T =

 

 

• LT = Transfer length (half of the x-intercept of the linear fit). 

• Rc = Contact resistance (half of the y-intercept of the linear fit). 

• Rsheet = Sheet resistance (resistance of the thin semiconductor region in which 

lateral current flows). 

• W = Width of the pad (which in this case is 800 µm). 

• Rsheet/W is the slope of the linear fit. 

 

The specific contact resistance ρc is calculated by: 

 

2
Tsheetc LR=ρ  

 

The above given relation has been used to calculate the specific contact resistances of 

the active wafers, which are given in table 5-7. It can be identified in the table that the 

resistances of the wafers grown using MOVPE technology have very low values; the 

major contribution in this case is the highly doped (~1×1019 cm-3) GaAs cap. The wafers 

grown using MBE technology have very high resistances, with the exception of BMH5 

which was grown locally by MBE research group at Glasgow. The reason for these 

higher values are unclear; however, when these values were reported back to the grower 

(Sheffield), the growth challenges were identified for the AlxGa1-xAs claddings, in 

which the Al compositions were higher than 0.6 [155]. 
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Figure 5-5 – The measured resistances’ scatter, plotted against their respective pads separation. 

 

Active Wafer Specific contact  

resistance (Ωmm2)

Equivalent resistance for  

1 mm long ridge (Ω) 

Growth  

Technology

BMH3 Unavailable - - 

BMH4 6.628×103 3314000 MBE 

BMH5 5.287×10-4 0.264 MBE 

BMH6 9.348×10-5 0.046 MOVPE 

BMH7 3.426×10-5 0.017 MOVPE 

BMH8a 5.772×10-2 28.86 MBE 

BMH8b Unavailable - - 

BMH9 7.601×10-5 0.038 MOVPE 
 

Table 5-7 – Measured specific contact resistances of the different active materials. 

 

After performing the TLM tests, it has been established that the MOVPE growth has 

been a better choice as compared to the MBE. Acceptable electrical conductivity has 

also been achieved for the deposited P-contacts. 
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5.2.2 Broad Area Lasers (BAL)  

 

Broad area laser is a quick and an effective way to identify the gain in any active 

material, in which the laser action is provided by the FP cavity formed between the two 

cleaved facets. The vertical beam confinement results from the wave-guiding layers in 

the material, whereas the lateral beam confinement is provided by the higher gain 

section just under the wide contact pad, caused by the higher current injection. Given 

the simplicity of the device fabrication, the BAL is one of the basic material tests 

performed in our case. 

 

The fabrication process for the BAL involved: 1) the solvent cleaning of the samples, 2) 

the evaporated metal P-contact (240 nm Au/15 nm Pt/15 nm Ti) deposition, using a lift-

off photo-resist mask, 3) mechanical thinning of the substrate, using the calcined 

aluminium-oxide powder, 4) solvent cleaning and the deposition of evaporated metal N-

contact (240 nm Au/11 nm Ni/14 nm Au/14 nm Ge/14 nm Au), and finally 5) a 60 s 

annealing treatment in the RTA at 360 °C. The fabricated samples, which had measured 

P-contact pad-width of 78 µm, were then cleaved to the different lengths and mounted 

(N-side/bottom side) on the brass pads using conductive silver epoxy. The samples were 

measured using Keithley 2520 Pulsed Laser Test system, in which the electrical pulse 

width was set to 10 µs with a 1 ms pulse delay. The laser action was not observed in any 

of the wafers, except BMH9; however, the voltage current (V-I) measurements from the 

different wafers (samples cleaved to the length of 0.5 mm) are give in figure 5-6. It can 

be seen that the turn-on voltage for most of the diodes is in the acceptable limit, with the 

exceptions of BMH6 and BMH8a. The case of BMH8a has been previously discussed, 

and the growth challenges have been concluded for the low quality material structure. A 

peculiar case of BMH4 is apparent in the figure 5-6, in which the turn-on voltage of 3 V 

is observed; however, in the previous section, the same material was measured to have a 

very high specific contact resistance. After this, the TLM was repeated on BMH4 a 

couple of times, and it was found that the dependency of current flow over the applied 

bias is not linear (figure 5-7), which is contrary to an ohmic contact. An explanation for 

this behaviour could be the growth defects in the cladding layers (as identified by the 

grower), which are resulting as a variable sheet resistance to the lateral current flow (in 
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case of TLM); however, the vertical current flow might not be undermined, given that 

these defects are only confined within a region somewhere in the cladding. 

 
Figure 5-6 – V-I curves for the measured BAL. 

 

 
Figure 5-7 – TLM, current flow measurement (BMH4). 

 

BAL fabricated on the wafer BMH9 demonstrated the laser action. Figure 5-8 shows the 

L-I-V curves over a range of the cavity lengths. The light was measured using a silicon 

photo-detector, which has a typical responsivity of 0.505 A/W near the wavelength of 
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interest, i.e., 780 nm. The lower turn-on voltage (~1.8 V) reflects the high quality 

growth of the material. It should be noted that these measurements are crude to some 

extent; however, they were obtained as a quick test to estimate the laser performance.  

 

 
Figure 5-8 – L-I-V curves for the BAL (BMH9). 

 

The threshold current density Jth obtained from the above measurements has been 

plotted against the inverse of the cavity length to determine the Jth(∞) of an infinite 

length laser. The resulting Jth(∞) is 1500 A/cm2, which is tolerable considering it is a 

novel design. 

 

In a separate test where the material BMH9 was initially given a 60 s annealing 

treatment at 775 °C in RTA, a lower threshold has been observed for the similar device 

structures. The L-I-V curves (given in figure 5-9) show this reduced threshold for the 

annealed BMH9; whereas no significant change is observed in the turn-on voltage. The 

detailed investigation in this behavior is presented later in this chapter. 

 

 

  110



 
 

SUPERLATTICE LASERS 

 
Figure 5-9 – L-I-V curves for the BAL (BMH9 annealed at 775 °C). 

 

 
Figure 5-10 – V-I curves for the BAL, fabricated with as-grown and annealed (775 °C) 

BMH9_REV. 
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A final BAL test was performed on the 150 nm thick superlattice core structure 

BMH9_REV. The measurements in this case, and similar to all the previous BAL 

measurements, were done using the pulsed current injection at room-temperature. The 

laser action was not observed in both as-grown and annealed materials. However, a 

negative differential resistance (NDR) zone has been identified in the V-I curves, as 

shown in figure 5-10. This NDR is attributed to the increased carrier transport caused by 

the resonant tunneling. 

 

As for now, it has been established that only BMH9 has demonstrated the laser action; 

therefore, only BMH9 was used for all the later investigation, including the ridge 

waveguide lasers and the ring lasers.  

 

The next section of ridge waveguide lasers starts with the device design, and is 

supported by the simulations which have been performed to achieve an agreement with 

the waveguide design for the passive sections in a fully integrated device. The device 

design is followed by the fabrication process development and its optimization. Finally, 

the characterization and discussions on the results are presented. 

 

5.3 Ridge Waveguide Lasers 

 

Ridge waveguide laser is a class of semiconductor laser in which the light is confined in 

both transverse directions. The optical confinement in the vertical direction is provided 

by the index guiding, and the confinement in horizontal direction is provided by the 

etched surfaces. The laser action is achieved in a Fabry-Pérot cavity formed between the 

two cleaved facets, which makes ridge waveguide laser an edge emitting semiconductor 

laser. The lasers made in this geometry are widely applicable, and can achieve a good 

beam quality. In addition to it, they have a benefit of monolithic integration in a 

photonic integrated circuit, if the optical feedback to achieve the laser action is 

provided, e.g., by bragg reflectors, or in a ring laser.    

 

The designed OPO requires us to achieve the laser action in a ring laser. Therefore, the 

optimum start should be the development of a ridge waveguide laser, and subsequently 
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develop the structure into the ring geometry. But initially, the ridge waveguide 

parameters have to identified, i.e., the width and the etch depth, which ensure the single 

mode operation of the laser and incorporate low losses in the bended sections of the 

ring.  

 

5.3.1 Device Design 

 

The waveguide structure, which has been discussed in the previous chapters of QPM 

waveguides and di-chroic couplers, has been revisited for the lasers; and the new wafer 

design has been incorporated into the simulations for this structure. It was found 

previously that the etch depth required for the bended sections of the device should be 

increased to lower the bending losses, and it should not be increased too much to expose 

the superlattice active medium. Therefore, the optimum starting point for a ridge 

waveguide laser would be a completely etched upper cladding. Such a deep etched 

structure does introduce the transmission loss due to light scattering. This loss is 

reduced in the waveguides which have smooth side walls, and it could be achieved by 

optimizing the RIE during fabrication.  However, it is a compromise that has to be made 

in order to avoid the bending losses which are much higher in the shallow etched 

structures. 

 
Figure 5-11 – Left a) Effective refractive index calculations with varying the waveguide width (the 

upper cladding has been etched completely). Right b) The proceeded ridge structure (also 

highlighted by the green markers in (a)). 
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Further investigation in the design has been supported by the mode solving simulations, 

given in figure 5-11. The increasing effective refractive index with the increasing 

waveguide width, indicates the higher confinement, and more power available for the 

laser action; however, it has been mentioned in the earlier work that the wider structure 

brings the higher order modes in the bended cavity [114]. It was decided to keep the 

width of the waveguides at 3 µm, which is consistent with the width of the QPM 

waveguide and the access waveguides to the di-chroic couplers. 

 

With the above mentioned parameters for the waveguide structure, the simulated mode 

diagram for the fundamental mode is given in the figure 5-12. 

 

 
Figure 5-12 – Mode profile for 3 µm wide waveguide, etched down to the core. 

 

5.3.2 Fabrication Process 

 

The fabrication process in the case of lasers is a lengthy procedure, and it requires 

considerate fragile handling and cleanliness. This multiple lithographic, etching, and 

metallization, process can be categorized into the following stages: 

 

• Pre-fabrication cleaning. 
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• Registration markers.   

• Waveguides patterning and subsequent definition using RIE. 

• Waveguides insulation using PECVD SiO2 deposition. 

• Planarization. 

• Contact windows patterning and subsequent definition using RIE. 

• P-contact metallization. 

• Mechanical thinning. 

• N-contact metallization. 

• RTA treatment and device mount. 

 

The above given process is a standard procedure for any light emitting semiconductor 

device fabrication [114]; however, a new step of planarization has been introduced. This 

step has ensured a better control on the subsequent metallization, which has been 

compared with the standard sputter metal deposition. Moreover, planarization can 

provide a certain degree of protection while probing the waveguides in later device 

characterization. It is recommended to follow the whole process sequentially, where 

subtleties required in each stage, if overlooked, can easily degrade the complete device. 

It should be mentioned that almost all of the fabrication has been performed in the 

James Watt nano fabrication (JWNC) centre, except the thinning and cleaving/device 

mount stages.  

 

5.3.2.1 Sample Cleaning 

 

The solvent cleaning techniques were employed after cleaving the samples to their 

required dimensions – which is a pre-requisite for further fabrication. The ultra-sonic 

assisted solvent cleaning involved: a 5 min soak of the sample in Acetone, a 5 min soak 

in Isopropanol (IPA), a 5 min soak of the sample in RO water, and then N2 blow dry. 

The samples were also given a quick O2 plasma cleaning (commonly known as O2 Ash), 

to ensure any left over contamination removal. In addition to it, the sample boxes for 

subsequent placement were also swipe cleaned with the above given solvents to prevent 

any contamination. This cleaning process was employed before all the sample 

preparation stages of the lithography. A general cleanliness was maintained during any 
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inspection stage, e.g., SEM; however, for any unintentional contamination the samples 

were also cleaned after all the inspections. 

 

5.3.2.2 Registration Markers 

 

As mentioned earlier, the laser fabrication involves multiple lithographic stages. 

Therefore, it is mandatory to define a set of markers that would ensure the required 

alignment of the resist exposures in successive lithography.  

 

The lithography employed in our samples has been Electron Beam (E-beam), so the 

registration/alignment techniques set for the machine were followed accordingly. The 

complete information about the alignment functionality in Leica Vectorbeam (VB63), is 

available in the operator’s manual (chapter 11, page 87) [156]. In summarizing this 

process, an alignment cross is defined on the sample’s surface by the user initially, 

which E-beam identifies through a sequential search assisted by its internal algorithm. 

After the cross identification, a set of global markers is scanned across the surface, 

where the specific co-ordinates of these markers (in reference to the alignment cross) 

are defined by the user. It is mandatory to define the global markers across the substrate 

in four different locations. The E-beam can search these global markers and 

subsequently perform the alignment with 1 µm precision – to achieve a higher precision 

a set of local markers can also be incorporated around a specific pattern. Each 

individual global marker is defined in a set of four markers, which ensures the 

redundancy if the markers’ edges get degraded in subsequent searches by the high 

brightness E-beam.   

 

The registration jobs in our case were mostly performed using the etch-pit markers. The 

samples were deposited with 200 nm of PECVD SiO2 as a hard mask, followed by the 

PMMA resist spinning. After the E-beam exposure and development, the markers were 

defined using the CHF3 RIE (an etch depth of 0.6-1 µm is usually accepted in a 

multilayered GaAs substrate, for which the video level contrast can be easily detected 

by the machine). The resist was removed by the O2 Ash – resist removal at this stage 

                                                 
3 The VB6 E-beam writer was employed in all the electron beam lithography 
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can also be performed by placing the sample in acetone for about an hour in a hot water 

bath. The SiO2 hard mask was finally etched in buffered HF solution, and the samples 

were solvent cleaned for further processing.  

 

An exposed and developed registration job is given in figure 5-13. The sequential E-

beam scan for the etch-pit marker is visible for the bottom left marker on the substrate. 

 

 
Figure 5-13 – Optical micrograph of an exposed and developed E-beam registration job. 

 

5.3.2.3 Waveguides Definition 

 

The negative tone E-beam resist Hydrogen Silsesquioxane (HSQ) was used for the 

waveguides patterning in a single step mask fabrication. The process included:  HSQ 

(neat/100%) spinning, exposure in E-beam, and then development in the 

Tetramethylammonium hydroxide (TMAH) solution. The HSQ patterning is a much 

faster fabrication as compared to that of the PMMA based patterning. HSQ not only has 
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a high etch resistance (similar to that of PECVD SiO2), but also with the proper dose 

selection the sub-micron features with very high resolution can be easily achieved.  

 

The final definition of waveguides was done using the SiCl4 RIE assisted with an in-situ 

laser reflectometry, which has been discussed previously in the dry etch optimization 

section of the di-chroic couplers. The aim was to achieve the etch depths of 1.35 µm for 

the material structure BMH9. It has been identified previously that the deep etched 

waveguides suffer the light scattering, therefore some tests were performed to improve 

the etch process. The process parameters which were identified to give the best results 

are:  13 sccm SiCl4 gas flow, 5 mT of pressure, and 250 W of power. This recipe, which 

is slightly different from the one used for couplers fabrication, was used in all the 

subsequent devices. The recipe not only ensured the side walls verticality, but also an 

improvement was observed in side walls. The edge-on view of an etched ring is given in 

figure 5-14, in which the very smooth side walls are conspicuous. 

 

 
Figure 5-14 – The edge-on SEM image of an etched ring (HSQ mask is visible on the waveguide). 

 

After the waveguides definition, the mask was removed with a wet etch in buffered HF 

solution. The samples were solvent cleaned, and an insulation layer of 200 nm PECVD 

SiO2 was deposited. 
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5.3.2.4 Planarization 

 

The E-beam metal evaporation, which is a highly directional process, was employed to 

deposit the electrical contacts. This electron gun assisted vertical beam is very precise in 

providing the required thin film thickness on a flat surface; however, for a vertical edge 

this relationship cannot be ensured. The resultant thinner contacts covering the side 

walls are unstable at higher current injections. An alternate process of sputter metal 

coating after the evaporated metal deposition has been mentioned earlier [114]. The 

devices which were fabricated using the sputter metal deposition have been reported to 

perform effectively. The only criticism one can argue for this process is that it 

comprises two stages, which not only requires more time, but also, an additional care is 

required to move the samples to the sputter metal coater which is located in the Rankine 

building. For these constraints, a planarization technique was developed, which not only 

reduced the fabrication time for metal contacts, but also, an additional protection was 

ensured during the probe measurements in the later device characterization. The process 

involved the HSQ spinning on the samples, and subsequent oven bake for an hour at 

180 °C. The HSQ formed an insulation on the samples’ surfaces, where the thickness of 

this insulation was lowest in the open areas and gradually increased as it approached the 

waveguides. The thickness of HSQ at the top of the waveguides is dependent upon the 

initial spin speed; however, in our case where we used 4000 RPM, it resulted in 100-

150 nm thick. Finally an additional 100 nm PECVD SiO2 was deposited to provide 

better adhesion to the metal contacts. 

 

5.3.2.5 Contact Windows & P-contact Metallization   

 

The next stage inline after the waveguides definition and the subsequent insulation is 

the contact windows. The samples were prepared for the E-beam registration job by 

spinning bi-layer 15%4% PMMA, and baking it at 180 °C for an hour and a half. After 

expose and solvent development, the samples were given short O2 plasma clean to 

remove any leftover mask. The contact windows were finally defined in RIE using 

CHF3/Ar chemistry. The contaminated PMMA mask can then be removed in O2 plasma 

clean, or it can be dissolved in Acetone placed in a hot water bath. 
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The final E-beam patterning (registration job) for P-contacts was conducted using a bi-

layer 15% (2010) 4% (2041) PMMA mask. The baking and solvent development was 

similar to the previous step. The P-contacts were deposited in E-beam assisted metal 

evaporator Plassys. The metallization recipe was same as used earlier in the broad area 

lasers, i.e., 240 nm Au/15 nm Pt/15 nm Ti. The excess metal was removed by placing 

the samples in Acetone for two hours in a hot water bath, and finally cleaned in IPA.  

 

5.3.2.6 Mechanical Thinning & N-contact Metallization 

 

The semiconductor substrates, used for the laser fabrication, had thicknesses in the 

range of 500-600 µm. Therefore it was mandatory to reduce it down to ~250 µm for a 

low series resistance of the diode. The process employed to achieve this was a 

mechanical thinning procedure. The first step was to mount the samples up-side-down 

on the glass slides using S1818 photo-resist, and baking them in a 90 °C oven for 15 

min (to make sure that the samples were well adhered to the glass slides). The thinning 

process started with gluing the sample-mounted glass slides on a metal rod using wax, 

and then gently sliding the rod on a thick glass plate in a colloid of water and Calcined 

Aluminium-oxide powder. After achieving the required thickness, the samples were 

detached from the metal rod, and were thoroughly cleaned in Opticlear.  

 

The N-contacts deposition was similar to the previously mentioned P-contacts; 

however, the samples were solvent cleaned in Opticlear, Acetone, and IPA (5 min 

each), without any ultra-sonic agitation. The samples were mounted again up-side-down 

on the glass slides to avoid any damage to the waveguides, which could occur if the 

samples are loaded directly on the evaporator’s metallic chucks. The metallization 

recipe in this case was 240 nm Au/11 nm Ni/14 nm Au/14 nm Ge/14 nm Au. Finally, 

the samples were removed from the glass slides, and an annealing treatment of 360 °C 

was given for 60 s in RTA. 

 

The samples were cleaved to the required device dimensions, and were mounted on the 

brass pads using silver epoxy for characterization. A cross-sectional SEM micrograph 
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of one of the fabricated ridge waveguide laser is given in figure 5-15, in which the 

surface planarization is clearly visible. 

 

 
Figure 5-15 – Cross-sectional SEM image of a 3 µm wide ridge waveguide laser. 

 

5.3.3 Basic Device Characterization  

(Annealed semiconductor chip) 

 

The previously discussed optimized process was used in the fabrication of various 

cavity length Fabry-Pérot ridge waveguide lasers. The waveguides were defined in sets 

of three widths, i.e., 3 µm wide, 2.5 µm wide, and 2 µm wide. It is a good practice to 

fabricate multiple device designs in different configurations on a same chip, as it saves 

time on the fabrication, and it also provides the redundancy for establishing the device 

functionality. Keeping this in mind, a range of half ring ridge waveguide lasers were 

also fabricated on the same chip – the half ring lasers will be discussed in the next 

chapter. The semiconductor chip was fabricated using annealed material, for which the 

substrate was given an initial RTA treatment of 775 °C for 60 s – which is a mandatory 

post QWI procedure. The optical micrograph of one of the fabricated chip is given in 

figure 5-16. 
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Figure 5-16 – Optical micrograph of a fabricated chip, using the annealed material. 

 

Continuous wave characterization was conducted for various cavity length ridge 

waveguide lasers. The temperature for measurements was 20 °C, controlled by a 

thermoelectric cooler, and the optical power was measured using an optical power meter 

– the power meter saturated above 12 mW. The L-I curves for 3 µm wide ridge 

waveguide lasers, fabricated using the annealed material with various cavity lengths, are 

given in figure 5-17. 
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Figure 5-17 – L-I curves for various cavity length ridge waveguide lasers (3 µm wide ridges). 

 

The L-I curves for 500 µm long FP cavities with different ridge widths are given in 

figure 5-18. Lasing threshold for 2 µm wide ridge should be less than 2.5 µm and 3 µm 

wide ridges, given that the etch depth and the cavity length is same. This is not the case 

in figure 5-18, and also, the optical power of 2 µm wide ridge saturates at a lower value. 

Theory suggests that the devices of similar dimensions (cavity length) should have a 

similar lasing threshold current density, given that the losses are same. This is clearly 

not the case in the figures 5-18. In order to understand this unexpected behavior, the 

threshold current density over a range of devices is plotted in figure 5-19.  

 

It has been observed that the threshold current density is higher in the case of thinner 

devices, especially the 2 µm wide ridges. This might be caused by a combination of 

increased scattering losses, surface recombination and current spreading effects. 

However, a more detailed investigation is required to establish them. In addition to this, 

the threshold current density increases with a decrease in the cavity length due to the 

higher gain required for short cavity devices (increased mirror loss term in the gain-loss 

equation). The dotted black line in figure 5-19 shows the calculated threshold current 

density using the material gain-curve (gain calculations are presented later in this 

chapter).  
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Figure 5-18 – L-I curves for different ridge widths (500 µm long FP cavities). 

 

 
Figure 5-19 – Room-temperature CW threshold current density for various FP cavity lengths (solid 

lines are a smoothed fit to the data). 
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5.3.4 Material Parameters 

 

The material parameters, including the internal quantum efficiency ηi (which quantifies 

the conversion of electrical carriers into photons), and the material loss factor αi, have 

been obtained by using the L-I curves given in figure 5-17. The external differential 

quantum efficiency ηD above threshold, which is obtained from the slope of the laser 

action, is plotted against the cavity length, given in figure 5-20. This gives us a linear 

relationship [157] (see eq. 7.4-1). 

 

( ) ( )[ ]RLiiD 1ln111 αηη +=  

 

L symbolizes the cavity length in the above equation, and R is the Fresnel reflectivity 

which is calculated to be ~0.3 for the cleaved facets. 

 

The calculated value for ηi in our case using the above given method is ~23 %, and the 

material loss factor αi is calculated to be 3.2 cm-1.  

 

The equation 7.4-4 in reference [157], distinguishes the loss factor into different terms 

as following: 

 

( ) csxfcfci ααααα ++Γ−+Γ= ,1  

 

The symbol Γ identifies the optical confinement factor within the active region, and (1–

Γ) is the confinement outside of it. The free carrier loss αfc for an active region, in which 

the carrier concentration is less than 1017 cm-3 scale, is estimated to be ~10 cm-1 (see 

figure 3.8-9 [157]). Which is applicable in our case, as the measured doping 

concentration in the buffer layers and the superlattice is within 1016 cm-3. Similarly, the 

loss factor αfc,x in the case of buffer layers in our material is estimated to be less than 1 

cm-1 [80]. Scattering losses αs are significant for the waveguide structures which have 

exposed active region. The etch depth in our case is controlled above the superlattice, 

therefore scattering can be neglected. Coupling losses αc effect the laser performance if 
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the optical field can couple into the regions outside of the active medium; however, they 

have been considered negligible for claddings thicker than 1 µm [157] (figure 7.4-13).  

 

In our ridge waveguide lasers, the calculated Γ is less than 0.4 in the superlattice active 

region; whereas the confinement in the buffers layers is around 0.6. The optical field in 

claddings layers is calculated to be less than 0.01 and can be easily disregarded.  These 

calculations, along with the values given for different loss factors, give us the loss factor 

αi of 4 cm−1 which is slightly higher than experimentally observed value of 3.2 cm−1. 

However, the calculated and experimentally observed values for αi are in a good 

agreement. This low optical loss factor is also an indication of an excellent material 

growth, and it has been complimented by typical growth information as given 

previously in figure 5-2. 

 

The internal quantum efficiency ηi, which is experimentally calculated to be 23% in our 

case, is lower than the typical values of 60-80 % for a good quality material. This could 

potentially be caused by a leakage electron/hole current in a diode if the electric 

potential barriers at the cladding/active-medium interface become lower than the 

electron/hole quasi Fermi levels. However, it has been ruled out in our structure where 

the aluminium composition in the claddings is higher than the intrinsic superlattice core 

to result a potential barrier of ~0.554 eV. Another reason for this lower efficiency could 

be the presence of carrier traps, either in the superlattice active region or in the 

surrounding intrinsic buffers. In the later case, these traps would resist the carrier 

transport into the superlattice active region, and would significantly degrade the thermal 

stability acting as localized heating sources. Growth defects can be ruled out as a source 

of these traps, as fairly good optical properties of the material have been established so 

far. However, the existence of traps due to the presence of high potential energy barriers 

cannot be ruled out. Later investigation in this hypothesis indicates the presence of such 

energy barrier at the superlattice/buffer-layer interface, and it is discussed in the 

resonant tunneling experiments in this chapter.  
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Figure 5-20 – The external differential quantum efficiency plotted against the cavity length. 

 

5.3.5 Gain Calculation 

 

The laser action requires the material gain at the threshold to equate all the losses, which 

include the material losses and the reflection losses. This relation ship is depicted by the 

following equation [157] (eq. 7.4-3).  

 

( ) ( ) ( )[ ]RLg ith 1ln11 +Γ= α  

 

The gain coefficient calculated by the above given method, and using the 

experimentally obtained parameters identified in previous section, is plotted against the 

nominal threshold current density Jnom for different cavity lengths, given in figure 5-21. 

Where Jnom is calculated as following: 

 

( ) dJmcmAJ i
thnom
ηµ =.2
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The idea above is to normalize the threshold current density as a function of internal 

quantum efficiency and the active region thickness d in µm. 

 

 
Figure 5-21 – Gain at threshold is plotted against the Jnom. 

 

The linear relationship between the threshold gain and the Jnom is used to calculate the 

higher gain region in the gain curve, given next – gain curve is the dependence of the 

gain coefficient on the threshold current density. 

 

( )0JJg nomhigh −= β  

 

The symbol β is defined as the gain constant or the gain factor in this case (this should 

not be confused with the propagation constant), and J0 is the current density at which 

the gain coefficient becomes zero. 

 

The gain coefficient calculated for our material is compared with the gain coefficient 

calculated by Stern for an un-doped GaAs [158], given in figure 5-22. Although the 
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comparison is between two completely different material systems; however, a 

satisfactory agreement can be seen at the temperature 300 K.  

 
Figure 5-22 – a) The calculated gain for an un-doped GaAs [158] (Permission to reproduce this 

figure has been granted by IEEE), b) Gain calculated for BMH9 using the experimentally obtained 

parameters. 
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5.3.6 Spectrum Analysis 

 

The optical spectrum was obtained for a 500 µm long ridge waveguide laser by 

coupling the light into a lens fiber and measuring it on the optical spectrum analyzer 

(OSA).  The threshold current for this device is 55 mA (as shown in figure 4-16); 

however, the first noticeable peak is observed at 78 mA. The laser excitation of 801 nm 

for this device is given in figure 5-23.  

 
Figure 5-23 – Excitation wavelength of 801 nm for a 500 µm long annealed FP ridge. 

 

A red shift of 29 nm is observed between the laser excitation and the measured EL of 

772 nm, which has been mentioned earlier for the wafer BMH9. The potential sources 

for this behavior could be the: 1) growth defects, which has been ruled out previously 

by the growth data and a low optical loss factor, 2) relaxation or increase in the 

thickness of superlattice quantum wells which might arise after the initial RTA 

treatment – although this effect is highly unlikely to occur as it is completely against the 

quantum well intermixing observed at the high temperature; however, this hypothesis 

can not be established unless the excitation wavelength for the as-grown structure is 

obtained, 3) non-uniformity of the PL/EL across the wafer - the PL map of this wafer is 

unavailable; however, a PL shift of up to 20 nm has been observed previously in the 
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active wafers from Sheffield (figure 5-1), and 4) localized thermal effects. This last 

explanation requires some initial assessment of the temperature that can cause such 

wavelength shifts. The thermo-optic coefficient ∂n/∂T is calculated to be 3.6×10–4 K–1 

for bulk Al0.22Ga0.78As (which is the equivalent composition for the superlattice in this 

case), using the Gehrsitz model at 300 K [103]. A wavelength shift of 29 nm, which is 

correspondingly equal to the index shift of ∆n=0.033 (calculated using the same model), 

requires a temperature change of 91.6 K. The temperature dependent wavelength shift in 

980 nm GaInAs–AlGaAs QW lasers has been reported to be ~ 0.35 nm/K [159-160]. 

Therefore, in our case, increased temperature of the waveguide core under CW injection 

could induce this wavelength shift. 

 

In order to resolve a possible relaxation in the superlattice quantum wells, the optical 

spectrum of BAL fabricated on as-grown and annealed BMH9 was measured. The laser 

emission, obtained using the pulsed current injection, was coupled into an optical fiber 

by a microscopic objective lens and measured on OSA. The pulsed injection will 

circumvent any thermally induced effects which are observed in the CW injection, 

where as the BAL configuration does not introduce any changes in hetero-structure, 

which have a low probability to occur during ridge waveguide laser fabrication. The 

recorded spectrum for as-grown and annealed BAL is given in figure 5-24 (a) and (b), 

respectively. 

 

The excitation wavelength of 796 nm for the as-grown BAL can confidently rule out 

any occurrence of relaxations in the superlattice quantum wells after the annealing. 

However, a blue shift of ~8 nm is observed in the annealed BAL excitation, which is an 

indication of the intermixing, often originated by high temperature annealing. 

 

The recorded spectrum data for different device configurations can fairly identify the 

existence of a localized heating in the intrinsic core of the material. This heating could 

occur in the presence of carrier traps in the core which resist the carrier transport into 

the active medium. The presence of a high potential energy barrier at the 

superlattice/buffer-layer interface has been observed in the resonant tunneling 

experiments in a similar material structure, and it is found to be the reason for non-

radiative recombinations. These details are presented in the next section. 
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Figure 5-24 – Measured excitation wavelength using pulsed injection for: (a) As-grown BAL, (b) 

Annealed BAL. 

 

5.3.7 As-grown Semiconductor Chip 

 

In concluding this section of ridge waveguide lasers, a final experiment is presented in 

which the chip design given in figure 5-16, was repeated for the as-grown material. The 

fabrication process was similar as in the previous chip; however, the initial RTA 

treatment was excluded. No laser action was observed in any of the ridge waveguide 
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lasers and also the half ring cavities, and the turn-on voltage was at least ~2 V higher 

than the annealed ridges in this case. The V-I curves for a range of cavity lengths are 

given in figure 5-25. The slope of all the curves is approximately similar ahead of turn-

on, and a higher series resistance is seen in the case of as-grown diodes. Whereas, the 

low series resistance for the annealed diode indicates that the initial RTA treatment has 

overcome a structural defect. 

 

 
Figure 5-25 – V-I curves for the as-grown diodes in comparison with the annealed diode. 

 

5.4 Resonant Tunneling in Superlattices 

 

A relatively low performance of the laser diodes in our case, as compared to any good 

quality modern semiconductor light emitting source, has been observed in the previous 

sections. The laser action, which has been quantized with 23 % internal quantum 

efficiency, is observed with a 29 nm red shift from the measured EL of the material. So 

far, the growth defects and the fabrication process have been ruled out as a source for 

this behavior; and the laser action has proven to be improvised with the initial RTA 

treatment. The presence of a high potential energy barrier in the intrinsic core which 
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could act as a carrier trap has been recommended. In this case the laser dynamics could 

be significantly affected by the localized heating as a result of the non-radiative 

recombinations. This hypothesis has been supported by the spectrum analysis and the 

electrical properties of the as-grown and the annealed material. However, a critical test 

which has validated the existence of a structural/design defect is the observation of 

resonant tunneling in a 150 nm thick superlattice material, BMH9_REV.  

 

This section presents the details for the resonant tunneling experiments. But before that, 

the material design of BMH9/BMH_REV has been revisited with the energy band 

calculations. 

 

5.4.1 Energy Band Calculation 

    

The material structures BMH9 and BMH9_REV are simulated with the ECA software 

for the energy band calculations. The software employs the effective-mass model to 

scan for the energy levels using the transfer matrices, and introduces infinite potential 

barriers as the boundary conditions at both ends of the structure. The calculations are 

performed for the electron states from the center of Brillouin zone, for light holes and 

heavy holes, and also for the X- and L-valley electron states. The energy scan is 

performed during these calculations until a value for the wave-function which fulfills 

the boundary conditions is achieved. 

 

The detailed design of the wafer is given earlier in table 5-6, and is repeated 

schematically in figure 5-26. The material has 250 nm thick intrinsic Al0.45Ga0.55As 

layers on either side of the superlattice core, and the thin transitional layers are intended 

to provide smooth carrier transport into the superlattice active medium. 

 

Energy band calculations for BMH9 are initially performed without any applied electric 

field across the superlattice, which reveal the first quantum confined mini-band E0 at 

1.663 eV (bottom of the mini-band). This ground state/mini-band, along with the 

calculated heavy-hole (HH), gives us a direct band-gap transition n=1(e–hh) of 1.69 eV. 
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However, after adding a room temperature red shift of ~43 nm (which has been 

measured during the initial QWI optimization), this transition is 1.6 eV or 772 nm, 

which is equal to the measured EL of the wafer. Similarly, the zero-field excited states 

E1 and E2 have the calculated energies of 1.835 eV and 1.932 eV, respectively. These 

excited states, which are localized in the transitional layers on both sides of the 

superlattice core, occur due to the thin GaAs quantum wells. Among these excited 

states, the state E1 can be a potential trap for the carrier transport into the superlattice 

core due to its ~170 meV energy difference from the ground state E0, and insignificant 

coupling with the next 4 nm wide quantum well. The zero-field calculations for 

BMH9_REV are consistent with the above given values. 

 

 
Figure 5-26 – Schematic representation of BMH9/BMH9_REV. 

 

The doping concentrations, which have been obtained from the real-time growth 

information for BMH9, are: 2×1018 cm-3 carbon in p-type, 1×1018 cm-3 silicon in n-type, 

and the carbon concentration in the intrinsic core is estimated to be 6×1016 cm-3 (this 

value was recorded from the polaron measurements performed for BMH6).  It is worthy 

to mention that all the MOVPE wafers including BMH9 and BMH_REV were grown 

with a 10° tilt to the [111] axis in order to reduce the carbon concentration in the 
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superlattice region, which arises from the aluminium precursor [161]. Using these 

values, the built-in voltage for BMH9 is calculated to be 0.164 V, and under the 

application of an equivalent electric field, the energy shift between the localized excited 

states E1 on either side of superlattice is calculated to be ~500 meV, presented 

schematically in figure 5-27. 

 

 
Figure 5-27 – Schematic representation of the calculated conduction band under the application of 

an electric field in BMH9. 

 

The real-time growth information for BMH9_REV is unavailable; however, assuming 

the similar doping profiles presented earlier, the calculated shift between the excited 

states E1 on either side of a 150 nm thick superlattice is ~440 meV. If the carbon 

concentration is 1×1017 cm-3 in the superlattice core, which is most likely in this case 

[161], the energy difference between the excited states reduces down to 360 meV.  

 

In summarizing, the estimated Stark shift in both the wafers BMH9 and BMH9_REV 

suggests the occurrence of resonant tunneling, if the applied external bias can cause the 

energy bands to align with each other. Especially in the case of BMH9_REV, the 

resonant tunneling is highly plausible, and it has been measured experimentally in the 

later experiments. 
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5.4.2 Experiments   

 

The detailed analysis for the resonant tunneling required the voltage driven sweeps 

across the smaller diodes. For this purpose the mesa etched squares diodes with 80 µm 

edges were fabricated, using the same process which was used for the laser diodes. The 

diodes were measured on the four-probe station using continuous injection – the 

injection current was limited to 100 mA. This measurement should ideally be performed 

at low temperature; however, the expected NDR zone was observed in the voltage range 

2–2.25 V at the room-temperature. Figure 5-28 shows one of these measurements, in 

which the tunneling current peaks at ~2.2 V during the forward scan, and then drops 

when the band alignment is discontinued at a higher bias. The reverse scan shows the 

intrinsic bistability in the form of a hysteresis loop which is attributed to the space-

charge buildup in the wells once the resonant tunneling has been established [162-163]. 

 

 
Figure 5-28 – I-V curves for the resonant tunneling measurements in BMH9_REV which has 150 

nm thick superlattice core. 

 

These experiments establish the hypothesis in which the presence of a high potential 

energy barrier has been proposed in the intrinsic core of the superlattice lasers. This 
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barrier has effected the laser action by significantly reducing the internal quantum 

efficiency; and it has also caused the non-radiative recombinations, which shifted the 

laser excitation at a longer wavelength. These effects have been paramount in the case 

of as-grown devices, whereas the initial RTA treatment in the fabrication of annealed 

lasers has reduced the height of this barrier. 

 

This chapter has covered the details required to develop the monolithic integration in 

our integrated OPO by achieving the laser action in a superlattice core. The active 

wafers, which evolved our superlattice heterostructure design, have been presented and 

tested. The laser action has been achieved in an optimized structure; however, the 

limited performance has been observed, and it has been investigated in detail. The 

reasons for this relatively lower performance have been identified and established 

through detailed experimentation.    
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Chapter 6 
Monolithically Integrated Devices 

onstrate 

e process development for the final monolithically integrated chip, the integrated 

devices are presented which were fabricated using the material system BMH5. 

ious ring radii. The E-beam pattern was initially designed in such a way that 

the final cleaved devices would have the same cavity length of ~2200 µm, given in 

figure 6-1. 

 

 

This chapter covers the experiments and the studies which have been performed to 

demonstrate the monolithic integration for nonlinear optical frequency conversion. The 

chapter starts with the ring design which has been supported by the demonstration of the 

laser action in half ring cavities of various radii, and consequently the bending losses 

have been assessed. The coupler design has been revisited with the beam-propagation-

based simulations for the material system BMH9, and the optical routing in different 

sections of the integrated devices has been evaluated. Finally, the designs for the 

integrated OPO and the integrated nonlinear optical frequency converter have been 

presented, along with their layout on the semiconductor chip. In order to dem

th

 

6.1 Ring Design 

 

The losses which occur due to the propagation of optical field in the bended sections of 

the device are the most critical in the design of a ring structure. One way to observe the 

minimum losses in this case is to completely etch the wave-guiding core; however, this 

could not be incorporated in our design in which the monolithic integration requires the 

waveguide structure to be similar in all sections. For this, an accurate assessment of the 

bending losses for different ring radii in the given waveguide structure (presented 

previously) was performed. The half ring lasers which have been discussed as the most 

accurate method to conduct the bending loss assessment [114], were fabricated in our 

case for var
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Figure 6-1 – The designed E-beam pattern for the half ring lasers. 

 

In such a half ring structure the laser action is achieved in the FP cavity formed between 

the two cleaved facets. As the cavity length and the fabrication is similar for all the half 

rings in our case (figure 6-1), the transmission and the optical loss can be assumed as 

constant. The linear relationship to formulate the external quantum efficiency as a 

function of cavity length [157], with the inclusion of bending loss, is given as: 

 

( ) ( ) ( )[ ]RrrL biiD 1ln)(111 παπαηη +++=  

 

Where L is the length of the straight sections in a device, and πr symbolizes the half 

ring section. Solving the above relationship for αb (bending loss factor), gives us: 
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The half ring lasers fabricated on the annealed chip, and given in figure 5-16, were 

tested for the CW laser action. The calculated external quantum efficiency from the L-I 

curves of these lasers, and the experimentally obtained parameters which are given in 

section 5.3.4, have been used to calculate the bending losses for the different ring radii, 
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given in table 6-1. Although the process parameters were constant for the complete chip 

fabrication, but the placement of the half rings at different sections of the chip resulted 

in slightly different etch depths, which caused higher bending losses for the shallow 

etched devices. 

 

Ring Radius (µm) Etch Depth (µm) Bending Loss – αb (cm–1) 

350 1.3 ± 0.07 25.7 

375 1.25 ± 0.07 45.6 

400 1.25 ± 0.07 44.5 

425 1.25 ± 0.07 45.2 

450 1.3 ± 0.07 14.5 

475 1.3 ± 0.07 10.8 
 

Table 6-1 – Bending losses for various rings. 

 

In order to estimate the sensitivity of the bending losses upon the ring radius and the 

etch depth of the structure; various ring radii have been simulated. These simulations 

have been performed using the simulated bend feature of the BeamPROP, which 

calculates the complex values of the effective refractive index of the guided mode in a 

curved waveguide. These values have been used to calculate the bending losses, and are 

plotted in the figure 6-2. It can be seen in the figure that the bending losses are very 

sensitive to the etch depths, such that, only 25 nm difference from the desired value can 

significantly increase the losses. This could be explained by the higher confinement of 

the mode in a 100 nm thick superlattice core in the laser structure BMH9, as compared 

to that of BMH1. The bending losses calculated in our case using the measured values 

are also given in the figure, and a fair comparison can be seen for 1.20 ± 0.07 µm deep 

etched rings. 

 

The bending losses clearly identify that the etch depth is very critical in the efficient 

performance of the ring laser, and consequently of the final device. Therefore, the 

scattering can be compromised in a slightly deep etched structure, i.e., 1.35-1.45 µm.  

 

  141



 
 

MONOLITHICALLY INTEGRATED DEVICES 

 
Figure 6-2 – The bending losses calculated using the simulations. Solid lines are a smoothed fit to 

the data. The solid circles and squares are the values calculated using measurements from the half 

ring lasers, and the empty circles represent the simulated data. 

 

The L-I curves for the best performing half rings are given in figure 6-3. 

 

 
Figure 6-3 – L-I curves of the half ring lasers with different ring radii (all rings had the same etch 

depth of 1.3 ± 0.07).  
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Another assessment which has to be performed for the ring design is the internal power 

calculation. The threshold condition for the ring dictates that the gain must equalize all 

the losses inside the ring, and in our case this includes: bending loss, linear loss, 

coupling loss, and the loss in the QPM waveguide, figure 6-4. 

 

 
Figure 6-4 – Losses of the ring cavity 

 

The threshold condition for the ring in this case can be written as: 
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The values which have been used to calculate the gain at the threshold are given in table 

6-2; and using these values, the threshold current has been obtained for different ring 

radii using gth/Jnom relationship (figure 5-21). Finally, the internal power of the rings 

(above threshold) has been calculated using the internal quantum efficiency, before the 

saturation effects become significant. The rings have been biased at the same current 

density of 6.6 kA/cm2. These calculations are plotted in figure 6-5. 

 

The internal power is observed to increase monotonically for the large rings in which 

the bending losses are lower. However, one should also recognize that the large rings 

will have a bigger footprint on the semiconductor chip; and the estimated size of the 375 

µm radius ring is 2 mm2, which increases up to 3 mm2 for 475 µm radius ring. 
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Ring dimensions  

L 1760 µm 

LQPM 1000 µm 

R 350-475 µm 

Coupling 0.8336—calculated by the coupler’s throughput (–7 dB cross talk)

Losses  

αi 3.21 cm–1  

αb 10-25 cm–1 (over a range of ring radii)4

αSHG ~25 cm–1 [131] 
 

Table 6-2 – The ring parameters used for the internal power calculation. 

 

 
Figure 6-5 – The internal power estimates of the rings before the saturation effects become 

significant. All the rings are biased at same current density of 6.6 kA/cm2. 

 

The selected radius for the final device is 400 µm for the ring laser cavity. There is 

significant room for improvement in the performance if the laser structure can be 

optimized to increase the internal quantum efficiency from its present value of 23 %; 

                                                 
4 It can be seen in the table 6-1, that the ring radii 375-425 µm have higher bending losses because of 
their lower etch depth. Therefore, for the internal power estimates, the bending loss values are assumed to 
be 17-23 cm–1 for these radii, such that the estimates could be given for the devices of similar etch depths. 
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and also, the MMI coupler must be optimized because the present throughput costs 

about 17 % of the internal power of the ring as a loss. The ring radius for the adjoining 

OPO cavity has been selected to be 300 µm, as the bending losses for the half-band-gap 

wavelengths are estimated to be < 1 cm–1 in this case. 

 

6.2 Coupler Simulations Revisited 

 

The di-chroic MMI coupler, which has been presented in chapter 4, was investigated 

and demonstrated using the 600 nm thick superlattice core material structure (BMH1). 

However, the laser action has been achieved in a 100 nm thick superlattice core 

(BMH9). Therefore, it was mandatory to revisit the coupler design for this modified 

structure; for which the MMI coupler has been simulated with the same dimensions as 

demonstrated previously, i.e., 220 µm long, 6.5 µm wide, and 1.35 µm deep, and it has 

3 µm wide access waveguides to the cavity. The excitation wavelength used in these 

simulations is 801 nm with quasi-TE polarization. The coupler design is found to be 

consistent with the earlier case of 600 nm thick superlattice core – the simulated coupler 

using the new material structure is given in figure 6-6. 

 
Figure 6-6 – Cross coupler for the 801 nm laser excitation (MMI cavity dimensions: 6.5 µm wide, 

220 µm long, and 1.35 µm deep etched). 
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Similarly, the simulations for the half-band-gap wavelengths are also found consistent 

with the earlier case presented in the chapter 4.  

 

It can be assessed from these simulations that the required coupling is unchanged in the 

modified structure BMH9, and that the coupler’s performance will compliment the 

desired functionality of the OPO. 

 

6.3 Integrated OPO Design 

 

The OPO design is given below in figure 6-7, in which the components have been 

optimized after analyzing their measured performance and their fabrication tolerance. 

Most of the individual components in this integrated device have been discussed earlier, 

and are highlighted in the figure. The exceptions are: 1) the QPM period, which will be 

3.1-3.6 µm over a range of devices, 2) excluding the ring laser cavity and the QPM 

section, the whole device will be intermixed, 3) and 350 µm long output directional 

coupler for the longer wavelengths, which has been estimated to couple out 20% of the 

power from the resonating cavity – the simulated coupling in this case is given in figure 

6-8.    

 
Figure 6-7 – The designed integrated OPO. 
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Figure 6-8 – Simulated directional coupler for the longer wavelengths, (a) cross-sectional view of 

the structure,  (b) 350 µm long coupler is estimated to couple out 20% of the power. 

 

6.4 Integrated Frequency Converter Design 

 

The concept of monolithically integrated nonlinear frequency converter has been 

indicated earlier in the section 1.1. The feasibility for such a device is complimented by 

  147



 
 

MONOLITHICALLY INTEGRATED DEVICES 

the DFG we have achieved in our QPM waveguides, and with the inclusion of an on-

chip pump source which has been demonstrated by the laser action in our superlattice 

material structure. The routing of different wavelengths has also been established by the 

di-chroic MMI coupler. Placing all the components together, the detailed design for this 

all-optical frequency converter is given in figure 6-9, which would convert the optical 

frequencies in 1.5 µm telecommunication band. 

 

 
Figure 6-9 – The designed nonlinear optical frequency converter for 1.5 µm telecommunication 

band. 

 

The design for this frequency converter is based on the integrated OPO, in which the 

passive resonator has been replaced by the input channel waveguide λsignal, and the 

output channel waveguide λsignal + λidler. It can be seen that the optical conversion is 

achieved using the three-wave-mixing in nonlinear QPM waveguide, for which our 

DFG experiments have demonstrated direct C-band to L- and U- band wavelength 

conversion [135]. 

 

6.5 Integrated Chip 

 

This section presents the design of the semiconductor chip which includes the 

monolithically integrated devices, i.e., OPO and the nonlinear frequency converter, 

given in figure 6-10. Both of these devices have been designed for the QPM periods of 

3.1-3.3 µm on this chip, and 3.4-3.6 µm on the second chip.  
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Figure 6-10 – The designed semiconductor chip which includes monolithically integrated devices. 

 

The different fabrication layers of the E-beam mask are visible in the above image, 

which is consistent with the multi-layered fabrication performed in case of all the 

devices presented in this thesis – except the couplers. Figure 6-10 also highlights the 

different fabrication steps involved to achieve these single-chip devices, which include: 

1) the definition of registration markers for the alignment of subsequent lithography, 2) 

the formation of the gold mask for ion-implantation, 3) the definition of waveguides 

which realize the device design, and finally 4) the fabrication involved for the device 

metallization, i.e., contact windows definition, P-contact metallization, mechanical 

thinning of the substrate, and finally the N-contact metallization. The details for each of 
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these fabrication steps have been presented earlier in the QPM waveguides and the 

superlattice lasers chapters. 

 

The fabrication for these chips has not been completed at the submission of this thesis 

(May 2010), due to the initial fabrication related issues for which the chips had to be 

revised, and also, over two months of the down time in the case of ion-implantation. 

However, the findings which would be observed from these devices will be reported in 

the near future. 

 

6.6 Monolithic Integration Demonstrated 

 

The fabrication of the final chips could not be completed at the submission; however, 

the process development for this has been demonstrated by the integrated OPO and the 

integrated DFG, which were fabricated on the active wafer BMH5. The improved 

fabrication process, which has been discussed earlier in the QPM waveguides chapter 

and the superlattice lasers chapter, has been employed in this case. Figure 6-11 shows 

the SEM image of the gold mask for the DFG section of this test chip. 

 

 
Figure 6-11 – The SEM image of the gold mask for the integrated DFG. 
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After performing the Au/Ti clean and the RTA stages of the fabrication, the waveguides 

were defined in dry etch, given below in the figure 6-12. The SEM image shows the 

process improvements which have been achieved in order to define the low loss 

waveguides – thin layers of the superlattice core are also visible around this deep etched 

waveguide. 

 

 
Figure 6-12 – The SEM image of the deep etched waveguide. 

 

 
Figure 6-13 – The IR image of an integrated DFG being tested. 
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Finally, after the P- and N-contact metallization, the devices were electrically probed to 

observe any light generation, which was unlikely in this case as the material BMH5 did 

not show any laser action in the first place. However, an IR image of the tested DFG is 

given in figure 6-13, in which the cladding glow is visible from the top. 

 

This chapter concludes with the investigations and the studies which have been 

performed to demonstrate our monolithically integrated OPO, and the monolithically 

integrated nonlinear optical frequency converter. The design for the ring laser has been 

finalized after achieving the laser action in the half ring lasers, and the di-chroic MMI 

coupler has been simulated for the thinner superlattice core material structure. In both of 

these cases, the results have been found highly encouraging towards the monolithic 

integration. The detailed design of the integrated chip has been presented, and the 

fabrication for these devices is incomplete. 
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Chapter 7 
Conclusions & Future Recommendations 

zing such nonlinear sources is the intrinsic requirement to 

hase match the different wavelengths involved, for which, we have employed a quasi 

 

 

This thesis has presented a detailed study into the feasibility of producing a 

monolithically integrated OPO, and a monolithically integrated nonlinear optical 

frequency converter, in a GaAs/AlGaAs superlattice material system. The motivation 

for using GaAs for such nonlinear applications comes from its large nonlinear 

susceptibility, broad transparency range, low absorption, and very mature fabrication 

technologies. Furthermore, selective area intermixing in GaAs/AlGaAs superlattices can 

achieve a substantial modulation in the inherent nonlinearities of the material system; 

and for this purpose, they are highly attractive for nonlinear optical processing. A 

principle challenge in reali

p

phase matching approach.  

 

Our GaAs/AlGaAs superlattice core material system has initially been studied with the 

help of energy band calculations, and an understanding of the mini-bands formation has 

been developed. We have engineered a domain-disordered quasi phase matching (DD-

QPM) technique to periodically intermix the superlattice core. In order to achieve this 

periodic quantum well intermixing (QWI), two different QWI techniques have been 

investigated in detail: 1) sputtered SiO2, and 2) Ion Implantation. A large band-edge 

shift has been observed in the case of sputtered SiO2; however, the relatively low spatial 

resolution achievable using this intermixing technique has been identified as a shortfall 

in its application. In the case of ion implantation, a comprehensive study has been 

conducted to understand the intermixed material parameters, i.e., the band-edge shift, 

and the optical loss factor, by using various implantation doses and annealing treatments 

at different temperatures. In addition, the tests performed to quantify the spatial 

resolution of ion implantation strongly favor its application in achieving a sub-micron 

control of the intermixing. Through a detailed characterization of the second harmonic 
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generation (SHG) produced in test samples, using various phase matching periods, each 

with different duty cycles, we have optimized the design of the QPM period and duty 

factor. Our optimized fabrication process, and greatly improved periodic QWI, has 

enabled us to achieve enhanced conversion efficiency in various second order nonlinear 

processes. We have achieved: 1) Type-I pulsed SHG up to 3.65 µW, 2) continuous 

wave (CW) type-I SHG up to 1.6 µW, for the very first time in GaAs/AlGaAs 

superlattice waveguides, 3) Type-II pulsed SHG up to 2.0 µW, again for the very first 

time, and recently 4) we have demonstrated difference frequency generation (DFG), 

which converts C-band wavelengths into L- and U- band wavelengths – the conversion 

bandwidth is 20 nm with 5dB conversion efficiency. This last result is of critical 

importance when considering the feasibility of an all-optical nonlinear frequency 

converter for 1.5 µm telecommunication band. Lastly, the fabrication process for QPM 

waveguides has been completely reevaluated to identify the optimization of each step. 

he resulting, significantly improved fabrication processes which have been developed 

half-band-gap 

avelengths, and a minimum cross-talk of –14 dB has been achieved for the half-band-

T

are a pre-requisite for the potential performance of a monolithically integrated device.  

 

The wavelength dependent optical routing, which is required in our integrated devices, 

has been designed and demonstrated using a di-chroic MMI coupler. Fabrication 

challenges have been identified for the designed MMI structure, and an improved dry-

etch process has been developed to overcome these – this dry-etch process has been 

developed towards the monolithic integration of the final device. The coupler 

characterization has been performed for the band-gap and the 

w

gap wavelengths, which is found to be consistent with the initial design.  

 

The material structure for the superlattice core laser has been designed and presented in 

the thesis. The final design has been achieved by incremental improvements identified 

in growth of more than seven wafers, and also by employing different growth 

technologies – in latter, the challenges faced in each of the growth technologies have 

also been discussed, and metalorganic vapour phase epitaxy (MOVPE) has been found 

to offer a highly promising approach for the growth of such complex heterostructures. 

The material tests which have been performed using several wafers include: 1) 

transmission line measurements, and 2) broad area laser characterization. Laser action 
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has been achieved in a 100 nm thick superlattice core material structure, as a result of 

these tests and the improvements achieved in the growth of active wafers. Ridge 

waveguide lasers have been developed initially to achieve lasing action in a ring laser – 

which has been designed as an on-chip pump source. The ridge waveguide design has 

been kept consistent with the overall waveguide structure of the complete device. The 

fabrication process for the ridge waveguide laser has been developed, and it has been 

presented in detail in the thesis. A new step of waveguide planarization has been 

incorporated into the fabrication process, in order to achieve an overall process 

optimization through improved contact deposition. The lasers have been tested CW at 

room-temperature, and the results from various devices of different dimensions have 

been discussed in detail. The characteristics of these lasers, e.g., the optical loss factor, 

the internal quantum efficiency, and the material gain, have been evaluated using the 

experimentally obtained values. A good agreement has been observed between the 

experimentally evaluated parameters and theoretically predicted values. The reduced 

device performance, in lasers with 23% internal quantum efficiency, is attributed to 

several causes. In order to understand each of these, the required measurements have 

been performed and are presented, including information relating to the growth 

conditions and also the pulsed spectrum. However, the reason for this behavior is 

suggested to be the presence of a high energy barrier in the intrinsic core. The presence 

for this barrier has been established by the observation of resonant tunneling in a 

slightly thicker superlattice core of 150 nm. The band alignment calculations, and the 

-I measurements, are in an agreement for the resonant tunneling to occur at ~2 V 

 solution could be the inclusion of graded alloys in the wave-guiding core, 

hich have been employed to provide a smooth carrier transport in the quantum cascade 

V

applied bias. 

 

Consequently, it seems that the laser action in our superlattice core material may be 

improved, as much as, any commercially available light source in a GaAs–AlGaAs 

material system. This requires further study, and it is recommended as a future course of 

action. One

w

lasers [6]. 

 

The final part of this thesis covers the monolithically integrated devices, i.e., integrated 

OPO, and the nonlinear optical frequency converter. The ring design, in these devices, 
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has been achieved by the demonstration of lasing action in half ring lasers. In these 

tests, the etch-depth has been found critical in reducing the bending losses; hence, a 

slightly deep etched structure has been recommended for the final devices. The coupler 

design has also been revisited for the 100 nm thick superlattice core, and the required 

coupling is found consistent with the previously measured behavior. Finally, the 

detailed design of our OPO and the optical frequency converter has been presented, 

along with the semiconductor chip layout for the final design, the fabrication of which is 

incomplete at the submission of this thesis, primarily due to machine downtime at the 

University of Surrey and also at the JWNC. However, the fabrication processes and 

esign of a fully integrated device have been developed, and it is highly recommended 

own on 

e top of GaAs/AlGaAs substrate. The lateral wave-guiding in this structure could be 

chieved by the asymmetric waveguide coupling technology (AWG) [40-41].     

 

  

d

as a near term future activity that these devices be completed and characterized.  

 

A dual core, mid-infrared wavelength source is proposed as a future extension of this 

research. Orientation patterned growth (OPG) GaAs has previously been employed to 

demonstrate this [34]; however, to achieve a monolithically integrated source, a longer 

wavelength on-chip pump is required. InP could be employed to provide this on-chip 

pump, and its high quality growth on [001] GaAs has recently been demonstrated [164]. 

In this device, the QPM waveguide would be formed in the superlattice GaAs/AlGaAs 

material, for which the phase matching period has to be studied in detail for mid-

infrared generation. The laser pump would then be provided by the InP source gr

th

a
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APPENDIX I 
 

Prints of the selected articles published in collaboration with University of Toronto. 

 

The physical prints of the journal articles have been included in the printed version of 

the thesis; however, the live links (hyperlinks) are provided for the online version, in 

order to comply with the University’s copyright policy.  

 

1) Sean J. Wagner, Barry M. Holmes, Usman Younis, Amr S. Helmy, J. Stewart 

Aitchison, and David C. Hutchings, “Continuous wave second-harmonic 

generation using domain-disordered quasi-phase matching waveguides”, 

Applied Physics Letters, vol. 94, pp. 151107, Apr. 14 2009. 

 

2) David C. Hutchings, Sean J. Wagner, Barry M. Holmes, Usman Younis, Amr S. 

Helmy, and J. Stewart Aitchison, “Type-II quasi phase matching in periodically 

intermixed semiconductor superlattice waveguides,” Optics Letters, vol. 35, pp. 

1299-1301, Apr. 15 2010. 

 

3) S. J. Wagner, I. Sigal, A. S. Helmy, J. S. Aitchison, U. Younis, B. Holmes, and 

D. C. Hutchings, “Difference Frequency Generation in Domain-Disordered 

Quasi-Phase-Matched Semiconductor Waveguides,” Conference on Lasers and 

Electro-optics (CLEO), San Jose, CA, May 2010.  
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APPENDIX II 
 

Ion Implantation Tests 

 

The masked and the exposed ratios are designed figures, and there is a fabrication 

tolerance which has to be included. E-beam dose has been kept higher to fully expose 

the 2.5 µm thick bi-layer PMMA resist – this higher dose increases the pattern 

dimensions.  

 

1) 50 : 50 (50 % Gold Mask: 50 % Exposed) 

2) 55 : 45 (55 % Gold Mask: 45 % Exposed) 

3) 60 : 40 (60 % Gold Mask: 40 % Exposed) 

4) 65 : 35 (65 % Gold Mask: 35 % Exposed) 

5) 70 : 30 (70 % Gold Mask: 30 % Exposed) 

 

 
Cross-sectional SEM micrograph of a dose test for 15%15% PMMA 

 

  II



 

1) 50: 50 (50 % Gold Mask: 50 % Exposed) 

 

 
Gold mask (top view) 

 

 
Implanted sample (cross-sectional view) 
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2) 55: 45 (55 % Gold Mask: 45 % Exposed) 

 

 
Gold mask (top view) 

 

 
Implanted sample (cross-sectional view) 
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3) 60: 40 (60 % Gold Mask: 40 % Exposed) 

 

 
Gold mask (top view) 

 

 
Implanted sample (cross-sectional view) 
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4) 65: 45 (65 % Gold Mask: 45 % Exposed) 

 

 
Gold mask (top view) 

 

 
Implanted sample (cross-sectional view) 
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5) 70: 30 (70% Gold Mask: 30 % Exposed) 

 

 
Gold mask (top view) 

 

 
Implanted sample (cross-sectional view) 
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APPENDIX III 
 

S18 Photo-resists 

 

• Motive was to achieve the best vertical sidewall profile with S18 resists 

• Designed features were 3 µm wide 

• Optimum recipe used for S1818 (1.8 µm thickness) is 90 °C oven baking  for 30 

min, 4 sec exposure and 75 sec development  

• S18 manufacturer specification is 115 °C bake for 1 min at hotplate 

 

R1 Category Spin Speed Thickness Bake 

Resist S1828 5000 RPM x 

30 sec 

2.5-2.6 

µm 

90 °C /  

20 min 

(Hotplate) 

Exposure 

 

4.8 sec exposure (MA-6) 

Development 75 sec (1:1 Micro Dev:H2O) 

 

 

R2 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 90 °C /  

20 min 

(Hotplate) 

Exposure  

 

3.9 sec exposure (MA-6) 

Development 75 sec (1:1 Micro Dev:H2O) 
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R3 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 90 °C /  

20 min 

(Hotplate) 

Exposure 

 

3.7 sec exposure (MA-6) 

Development 75 sec (1:1 Micro Dev:H2O) 

 

 

R4 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 115 °C /  

1 min 

(Hotplate) 

Exposure 

 

3.9 sec exposure (MA-6) 

Development 75 sec (1:1 Micro Dev:H2O) 

 

 

R5 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 90 °C /  

30 min 

(Oven 

bake) 

Exposure 

 

3.9 sec exposure (MA-6) 

Development 75 sec (1:1 Micro Dev:H2O) 
 

 

R6 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 90 °C /  

30 min 

(Oven 

bake) 

Exposure 

 

3.9 sec exposure (MA-6) 

Development 60 sec (1:1 Micro Dev:H2O) 
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R7 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 125 °C /  

1 min 

(Hotplate) 

Exposure 

 

4 sec exposure (MA-6) 

Development 60 sec (1:1 Micro Dev:H2O) 

 

 

R8 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 125 °C /  

1 min 

(Hotplate) 

Exposure 

 

4 sec exposure (MA-6) 

Development 50 sec (1:1 Micro Dev:H2O) 

 

 

R9 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 125 °C /  

2 min 

(Hotplate) 

Exposure 

 

4 sec exposure (MA-6) 

Development 60 sec (1:1 Micro Dev:H2O) 

 

 

R10 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 125 °C /  

1 min 

(Hotplate) 

Exposure 

 

4.5 sec exposure (MA-6) 

Development 50 sec (1:1 Micro Dev:H2O) 
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R11 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 125 °C /  

1 min 

(Hotplate) 

Exposure 

 

5 sec exposure (MA-6) 

Development 40 sec (1:1 Micro Dev:H2O) 

 

 

R12 Category Spin Speed Thickness Bake 

Resist S1818 4000 RPM x 

30 sec 

1.8 µm 125 °C /  

1 min 

(Hotplate) 

Exposure 

 

5.5 sec exposure (MA-6) 

Development 30 sec (1:1 Micro Dev:H2O) 
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Side wall S1818 photo-resist 

• Recipe R9 was found to be the most appropriate. 

 Rankine building) to cross 

 
 

• Exposure was also performed using HTG (level-6

check MA-6 – again pyramids were found. 
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