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Abstract 

Raf Kinase Inhibitor Protein (RKIP) was originally described as an inhibitor of the 

Ras-Raf-MEK-ERK pathway, exerting its action by the physical inhibition of the 

interaction of Raf with MEK. It has subsequently been shown to play important 

roles in a number of other signalling pathways, including the NFκB pathway and 

in the stability of the mitotic spindle. Not surprisingly given that it impacts on 

many important signalling pathways RKIP levels have been shown to be 

important in the progression of a number of different cancers. RKIP expression is 

lost or decreased in a number of common human cancers and decreased still 

further in tumour metastases.  

One of the tumours in which RKIP is downregulated is colorectal cancer (CRC). 

Importantly it has been shown that not only is RKIP depleted in tumour tissue 

when compared with normal tissue but that the level of RKIP within a tumour is 

inversely correlated with the likelihood of metastatic relapse and with patient 

prognosis. Although we already have a number of very good prognostic indicators 

in CRC, one group of patients for whom new prognostic indicators would be 

useful are patients with Dukes B CRC. These are patients with locally advanced 

but non-metastatic disease and at present there is no firm consensus on their 

correct post-operative management.  Therefore we set out to examine whether 

RKIP is a useful prognosticator in this particular group using a tissue microarray 

(TMA) with samples from over 200 patients with Dukes B CRC. The analysis 

revealed a strong inverse correlation between RKIP levels and disease specific 

survival. Moreover, in a multivariate analysis RKIP emerged as an independent 

prognostic indicator along with lympho-vascular invasion and peritoneal invasion, 
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two well-known and powerful prognosticators. This allowed for the generation of 

a simple prognostic index, using information from the different independent 

indicators, allowing for improved patient risk stratification.  

This led us to examine whether RKIP could also function as a predictive marker 

in CRC. To do this we again used a TMA, this time consisting of a much larger 

cohort of patients across the whole range of tumour stages. The results 

confirmed the prognostic utility of RKIP and indicated that patients whose 

tumours have low levels of RKIP may derive a greater benefit from 

chemotherapy than those patients whose tumours have high levels, although this 

result did not reach statistical significance.    

In the second part of the thesis I have examined the effect of RKIP in previously 

characterised mouse models of CRC. To do this I have used a germline RKIP 

knockout mouse and in the first instance crossed it to the APC580S mouse. In this 

mouse APC is lost conditionally within the intestine and liver. RKIP knockout did 

not have any effect on the rate of tumourigenesis or on the invasiveness of 

tumours in this model. However, in the setting of acute homozygous deletion of 

APC, RKIP knockout resulted in a decrease in apoptoses in the small intestine 

and an increase in aberrant mitotic activity in the liver. To follow this up I have 

examined the effect of RKIP knockout in a mouse model of superficially invasive 

CRC, specifically to see if RKIP knockout can promote invasive and metastatic 

behaviour. In this model the APC580S mouse is crossed to mice which 

conditionally express oncogenic KRas. Although RKIP knockout did not result in 

an increase in invasive tumours in this model there was a shift in tumour 

location from the small intestine to the colon. This shift appeared to be due, at 

least in part to an increase in chromosomal instability in the tumours.   
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The final aim of the thesis was to develop a mouse model of CRC which more 

closely recapitulates the late stages of the human disease, specifically invasion 

and metastasis. To do this we have crossed the APC580S mouse with either a 

conditional p53 knockout or with a mouse that conditionally expresses a point 

mutation of p53 (p53R172H). In human tumours the majority of abnormalities of 

p53 are point mutations that result in the production of mutant protein that 

accumulates in tumour cells. There is evidence that this mutant protein may 

have oncogenic properties beyond the simple loss of normal p53 protein 

function. Therefore we have also used this model to study the differing effects 

of p53 loss and point mutation in CRC. We found that mice homozygous for p53 

deletion (p53fl/fl) and those expressing a single copy of the mutant allele with 

loss of the second copy (p53R172H/fl) developed invasive tumours with nearly 100% 

penetrance and indeed metastasis was observed. Remarkably, although mice 

that were heterozygous for p53 deletion (p53fl/+) only rarely developed invasive 

tumours almost 100% of mice expressing a single copy of the mutant allele 

(p53R172H/+) developed invasive tumours. We went on to show that the increase in 

invasion seen in this model is related to an increase in Wnt signalling, which is 

associated with increased expression of pro-invasive Wnt targets such as fascin. 

We also showed a novel pro-invasive role for ARF in this process. This is also an 

excellent model of Dukes B CRC and therefore the ideal model to test the effect 

of RKIP deletion on invasion and metastasis.  

These studies led us to examine the differences in effect between knockout and 

mutant p53 in another tumour model. In this we used a novel model of the 

aggressive tumour pleomorphic rhabdomyosarcoma to demonstrate that mutant 

p53 can both promote both tumourigenesis and metastasis more potently than 

p53 knockout.  
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These studies have demonstrated the value of RKIP in the clinically important 

Dukes B CRC population and shown its possible utility as a predictive marker in 

this group. Although we have not seen an effect of RKIP knockout in traditional 

mouse models of CRC we have developed a novel model which closely 

recapitulates Dukes B CRC and may be useful in elucidating the effect of RKIP 

knockout. We have also used this model to gain novel insights into the invasive 

process, in particular into the role played by mutant p53.  
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In this introduction I will firstly discuss the role played by Raf Kinase Inhibitor 

protein (RKIP) in cancer and then go on to discuss the role it plays in signal 

transduction and in other relevant pathways. I will then introduce the RKIP 

knockout mouse. 

The second part of the introduction will cover colorectal cancer (CRC) and will 

discuss some of the genes that are important in the genesis and progression of 

this disease, in particular APC and p53.  

In the final part I will discuss mouse models of CRC, as an introduction to our 

work in which we have developed a novel paradigm of this disease and used it to 

study some of the mechanisms underlying invasion in CRC.  
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1.1 Introduction to RKIP 

1.1.1 An overview of RKIP 

RKIP is a member of the phosphatidylethanolamine-binding protein (PEBP) 

family. The family of proteins displays evolutionary conservation and is defined 

by the presence of a shared ligand binding domain (Schoentgen and Jolles 1995). 

The RKIP gene is located on chromosome 12 and encodes a 21 kDa protein, 

comprised of 187 amino acids. The crystal structure for the human protein has 

been solved and was published in 1998 (Figure 1.1) (Banfield, Barker et al. 

1998). RKIP is expressed in the majority of normal mammalian tissues, including 

the intestine, but is expressed at its highest levels in the brain, testis, liver and 

kidney (Frayne, McMillen et al. 1998; Frayne, Ingram et al. 1999). RKIP has been 

shown to play a number of important roles in mammalian physiology (Keller, Fu 

et al. 2004), in particular in neural development, where it is thought to play a 

role in the development of the myelin sheath (Moore, Perry et al. 1996) and in 

spermatogenesis, where high levels of the protein are found in the maturing 

sperm (Perry, Hall et al. 1994).  



 
 

 
 

Figure 1.1: Crystal structure of the human RKIP protein 

Taken from Banfield et al 1998. 
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1.1.2 Role of RKIP in cancer 

RKIP deregulation has been shown to occur in a number of different tumour 

types including CRC, breast, prostate and hepatocellular carcinoma (HCC) as 

well as melanoma and a number of rarer tumours. In breast cancer it has been 

shown that RKIP levels are higher in primary tumours than in lymph node 

metastases (Hagan, Al-Mulla et al. 2005). Similarly in prostate cancer RKIP levels 

are lower in metastases than in primary tumours, RKIP levels are also decreased 

in tumours of higher Gleason grade (Fu, Smith et al. 2003). Similar results have 

been demonstrated in HCC and melanoma (Schuierer, Bataille et al. 2004; 

Schuierer, Bataille et al. 2006) and also in rarer tumours such as gastrointestinal 

stromal tumour (GIST) and pituitary adenomas (Fougner, Bollerslev et al. 2008; 

Martinho, Gouveia et al. 2009).  Therefore, there is a general trend that RKIP 

expression is decreased in cancer tissue compared to normal tissue and 

moreover that it is lower still in metastases. In combination these results have 

lead to the conclusion that in cancer RKIP functions predominantly as a 

metastasis suppressor. 

In vitro and in vivo studies have also helped to elucidate the role of RKIP in 

tumour development. Low RKIP levels have been shown to increase the motility 

and invasive potential of HCC and melanoma cells (Schuierer, Bataille et al. 

2004; Lee, Tian et al. 2006). The idea of RKIP as a metastasis suppressor has 

been further strengthened by studies using orthotopic models of prostate and 

breast cancer (Fu, Smith et al. 2003; Li, Gao et al. 2009). Fu et al used two 

prostate cancer cell lines, C4-2B and LNCaP. The C4-2B cells are derived from 

the parental LNCaP cell line but demonstrate a greater degree of invasive and 

metastatic potential. C4-2B cells show lower levels of RKIP expression, than the 
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parental LNCaP cells. When the C4-2B cells were transfected with an RKIP 

overexpression vector they demonstrated decreased invasion as measured by in 

vitro assays. Furthermore, when these cells were injected into mouse prostates 

the RKIP overexpressing cells developed significantly fewer metastases 

compared with the vector controls. Interestingly, this phenotype occurred 

without any change in the primary tumour size and indeed the level of RKIP in 

the cells appeared to make no difference in proliferation or in colony formation 

assays (Fu, Smith et al. 2003). These results demonstrate that RKIP is a 

metastasis suppressor gene, which has been defined as one which interferes with 

metastasis, without effecting the primary tumour (Steeg, Bevilacqua et al. 

1988).  

1.1.2.1 Role of RKIP in prognosis and prediction 

Not only are RKIP levels decreased in tumours but it has been shown that in 

certain cancers the levels of RKIP protein expression in primary tumours show a 

strong inverse correlation with survival (i.e. patients with low levels of RKIP 

protein have a worse outcome than those patients with higher levels of RKIP). 

This has been shown in prostate cancer (Fu, Kitagawa et al. 2006), GIST 

(Martinho, Gouveia et al. 2009) and, as will be discussed in more detail below, in 

CRC. The ability of RKIP expression levels to predict prognosis in a number of 

different tumour types clearly gives it the potential to be extremely useful in 

clinical practice. However, it would be of even greater value if RKIP expression 

levels were able to predict response to therapy (i.e. act as a predictive marker). 

There is some evidence that RKIP may function as a predictive marker as well as 

being a prognostic marker. It has been shown that in the case of pituitary 

adenomas the level of RKIP expression can predict the response to octreotide 
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therapy (Fougner, Bollerslev et al. 2008). There are also in vitro studies showing 

that RKIP can sensitise cells to chemotherapy induced apoptosis (Chatterjee, Bai 

et al. 2004; Jazirehi, Vega et al. 2004). Taken together, these studies suggest 

that RKIP may have the ability to function in this manner and therefore, it would 

be useful to determine if RKIP could act as a “bone fide” predictive marker in 

CRC.  

1.1.2.2 RKIP in CRC 

The important role played by RKIP in CRC was first elucidated in a study 

performed in our laboratory. It was noted upon examination of RKIP expression 

levels in a wide variety of tissues that they differed significantly between normal 

colonic epithelium and CRC (Al-Mulla, Hagan et al. 2006). Moreover, RKIP 

expression was decreased in lymph node metastases, when compared to primary 

tumours. Of most importance was the observation that the expression level of 

RKIP in the primary tumour was significantly inversely correlated with overall 5-

year survival and that that this relationship was independent of other important 

prognostic indicators that are widely used, including lympho-vascular invasion 

(LVI) and Dukes stage. The authors went on to confirm these findings in a second 

smaller cohort of early stage (Dukes A&B) CRC and were able to reproduce the 

earlier findings and furthermore demonstrate that low RKIP expression 

correlated with an increased risk of metastatic relapse. Interestingly, while the 

effect of RKIP on prognosis was independent of standard prognostic markers 

there was a positive correlation between RKIP expression and apoptotic index 

(Al-Mulla, Hagan et al. 2006). This was not surprising as RKIP has been 

implicated in controlling apoptosis (discussed later) (Chatterjee, Bai et al. 2004; 



Chapter 1 Introduction 24 

Jazirehi, Vega et al. 2004) and provides a potential mechanism for the effect of 

RKIP on prognosis.  

Further studies have confirmed RKIP as a prognostic marker in CRC. Minoo et al 

demonstrated in a very large cohort of over 1000 CRC patients that RKIP 

expression levels correlate with both prognosis and with the presence of 

metastases in both mismatch repair (MMR) proficient and deficient tumours 

(Minoo, Zlobec et al. 2007). Zlobec et al then went on to show that RKIP was an 

independent marker of metastasis in both univariate and multivariate analysis. 

This was also the first study to attempt to combine the RKIP status with another 

independent prognostic indicator in order to provide more prognostic 

information than either alone. They were able to demonstrate that patients 

whose tumours had high RKIP expression, no LVI and negative lymph nodes 

carried the lowest risk of metastatic relapse while those tumours with low RKIP 

expression, LVI and lymph node metastases carried the highest risk (Zlobec, 

Baker et al. 2008).    

From the above it can be seen that RKIP has been established as a prognostic 

marker in a number of different tumours. However in order to understand how it 

is exerting this effect it is important to understand the role that RKIP plays 

within the cell. This will be discussed in the next section.  
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1.1.3 The role of RKIP in signal transduction 

RKIP was originally described as an inhibitor of the Ras/Raf/MEK/ERK  signalling 

cascade (this is the prototypical MAP Kinase (MAPK) cascade and will be referred 

to as MAPK throughout) (Yeung, Seitz et al. 1999). The MAPK signalling cascade 

is a highly conserved pathway which conveys mitogenic and differentiation 

signals from the cell membrane to the nucleus (Yeung, Janosch et al. 2000). It 

plays an important role in a wide variety of cellular processes, including 

proliferation, differentiation, apoptosis, angiogenesis and metastasis (Beeram, 

Patnaik et al. 2005). Therefore, disruption of this pathway has the potential to 

lead to wide ranging consequences and it is not surprising that this pathway is 

found to be deranged in a number of human disease states, including cancer. 

RKIP inhibits this pathway at the level of Raf. In the original study it was 

demonstrated that RKIP inhibits Raf-1 (Yeung, Seitz et al. 1999), it has since 

been shown that RKIP can also inhibit B-Raf (Park, Yeung et al. 2005) although 

this finding has not been replicated by others (Trakul, Menard et al. 2005). The 

mechanism of inhibition is a physical disruption of the binding of Raf-1 to MEK, 

thus preventing phosphorylation of MEK. This is achieved by the fact that 

although RKIP will bind both to Raf-1 and to MEK, it cannot bind to both 

simultaneously as the binding sites for each protein on RKIP overlap (Yeung, 

Janosch et al. 2000). Binding of RKIP to Raf blocks two key Raf activation sites, 

namely Ser388 and Tyr341, which are the sites phosphorylated by p-21 

Associated Kinase (PKA) and Src family kinases respectively (Trakul, Menard et 

al. 2005). When the cell is in a quiescent state RKIP is found bound to Raf, thus 

preventing activation of MEK (Yeung, Seitz et al. 1999; Yeung, Janosch et al. 

2000). Upon stimulation of the cell by growth factors RKIP is released from Raf 

following a phosphorylation event on Ser153 of RKIP by Protein Kinase C (PKC) 



Chapter 1 Introduction 26 

(Corbit, Trakul et al. 2003) (discussed in more detail below). This release of RKIP 

allows for phosphorylation of MEK by Raf and the subsequent downstream 

activation of the pathway. Decrease in the mitogenic signal then allows for the 

re-association of Raf and RKIP (Figure 1.2).  

As mentioned above the phosphorylation of RKIP by PKC leads to its dissociation 

from Raf, freeing Raf to activate signalling via MEK. This is part of a 

complimentary role played by RKIP in the modulation of signal transduction in 

the cell. G-protein coupled receptors (GPCR) are a large family of 

transmembrane receptors. Upon ligand binding to GPCR PKC is activated and 

phosphorylates RKIP on Ser153. This phosphorylation leads not only to the 

dissociation of RKIP from Raf but also to the subsequent binding of RKIP to G-

protein coupled receptor kinase-2 (GRK2), resulting in its inhibition (Lorenz, 

Lohse et al. 2003). GRK2 plays an important regulatory role over GPCR signalling, 

leading to internalisation of the receptor and degradation of the signal (Krupnick 

and Benovic 1998; Ribas, Penela et al. 2007). Thus by inhibiting GRK2 RKIP 

functions to promote the GPCR generated signal. Therefore, it can be seen that 

as well as inhibiting mitogenic signals in the quiescent cell RKIP plays an 

important role in reinforcing these signals in the presence of growth factors or 

other stimuli (Figure 1.2).  
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Figure 1.2: The role of RKIP in MAPK and GPCR signalling 

In quiescent cells RKIP prevents Ras/Raf/MEK/ERK signalling by the inhibition of Raf. Upon 
mitogenic stimulation RKIP can be phosphorylated by Protein Kinase C (PKC). This results in 
cessation of the blockade of Raf and instead RKIP inhibits G-protein coupled receptor kinase 2 
(GRK2) an inhibitor of G-protein coupled receptor (GPCR) signalling. (RTK: Receptor Tyrosine 
Kinase) (Adapted from Zeng et al 2008). 
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RKIP is now known to play an important role in other pathways such as the NFκB 

pathway (Yeung, Rose et al. 2001). It performs this function by its inhibition of 

the IκB Kinase (IKK) complex. In the un-stimulated cell, NFκB is held in the 

cytoplasm by binding to IκB. When cells undergo stimulation by TNF IκB may be 

phosphorylated by IKK (DiDonato, Hayakawa et al. 1997; Mercurio, Zhu et al. 

1997). The phosphorylated form of IκB is recognised by ubiquitin ligases and the 

ubiquitinated form is then targeted for degradation by the proteosome (Brown, 

Gerstberger et al. 1995; Lin, Brown et al. 1995). This allows the now unbound 

NFκB to translocate to the nucleus, where it performs its function as a 

transcription factor. Yeung et al demonstrated that RKIP can physically interact 

with and block the action of IKK (Yeung, Rose et al. 2001). RKIP therefore 

prevents the phosphorylation of IκB; this in turn prevents the degradation of IκB 

which remains bound to NFκB, thus maintaining its location within the 

cytoplasm, where it cannot exert its effect as a transcription factor (Figure 1.3). 

This inhibition of a pathway, known to be important in cell survival implies a 

potential regulatory role for RKIP in this process. This will be discussed in more 

detail below. 
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Figure 1.3: The role of RKIP in NFκB signalling 

In quiescent cells RKIP prevents NFκB signalling by the inhibition of the IKK complex. Upon 
mitogenic stimulation RKIP can be phosphorylated by Protein Kinase C (PKC). This results in 
cessation of the blockade IKK, allowing phosphorylation and degradation of IκB, thus allowing 
NFκB to translocate to the nucleus. (RTK: Receptor Tyrosine Kinase) (Adapted from Zeng et al 
2008). 
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1.1.3.1 The role of RKIP in cell cycle checkpoint integrity and in 

chromosomal stability 

More recently RKIP has been shown to play a role in the regulation of the spindle 

checkpoint (Eves, Shapiro et al. 2006). The cell cycle contains a number of 

checkpoints, which have evolved to maintain an ordered progression through the 

cell cycle. The checkpoints are designed to sense any irregularities in the 

progression through the cycle and arrest the progression, until the irregularities 

can be corrected. The spindle checkpoint is a means by which the cell maintains 

fidelity of the chromosomal number and order during mitosis and the 

observation that phosphorylated RKIP binds to the kinetochore of dividing cells 

suggested a role for RKIP in the process (Eves, Shapiro et al. 2006). In this study 

the authors also demonstrated that RKIP depleted cells show a more rapid 

transition through mitosis and loss of the normal spindle checkpoint response to 

taxol treatment. RKIP was shown to exert this effect through Aurora B kinase. 

This kinase plays a role in both chromosomal alignment and in regulation of the 

spindle checkpoint and is particularly active when spindle tension is reduced in 

response to taxol treatment (Eves, Shapiro et al. 2006). Depletion of RKIP in 

cells leads to decreased levels of Aurora B kinase activity and decreased 

localisation of phosphorylated Aurora B at the kinetochore. The authors further 

showed that the phenotype of RKIP loss could be mimicked by hyperactivity of 

the MAPK pathway and that inhibition of the pathway rescued the effects of RKIP 

loss, therefore strongly implicating a role for MAPK signalling in this phenotype 

(Eves, Shapiro et al. 2006). 

This work leads to the possibility that RKIP depletion in cancer cells could lead 

to an increase in chromosomal instability. This has been tested in human 
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tumours by Al Mulla et al, using both comparative genomic hybridisation (CGH) 

and loss of hetozygosity (LOH) analyses. They were able to demonstrate that low 

levels of RKIP expression correlate with an increase in genomic instability in 

microsatellite stable colorectal cancer (Al-Mulla, Hagan et al. 2008). Although 

this is the only published study examining this question it supports the role for 

RKIP in the maintenance of the spindle checkpoint and therefore in the 

maintenance of chromosomal stability. 

1.1.3.2 RKIP in other cellular processes 

RKIP has also been shown to play a role in other cellular processes which are 

known to be important in the development of cancer, in particular apoptosis, 

differentiation and cell migration. 

Apoptosis or programmed cell death is an important physiological process 

involving the removal of cells which are useless or harmful to the organism 

(Letai 2008). The evidence that RKIP can regulate the apoptotic machinery of 

the cell comes from a number of studies. Initially there was the observation of a 

positive correlation between apoptotic index and RKIP expression in CRC (Al-

Mulla, Hagan et al. 2006). It also emerged that high levels of RKIP could sensitise 

cancer cells to drug induced apoptosis (Chatterjee, Bai et al. 2004; Jazirehi, 

Vega et al. 2004). In prostate and breast cancer cell lines Chaterjee et al 

demonstrated that RKIP levels are induced in treatment-sensitive DU145 cells 

following the administration of DNA damaging drugs. This induction of RKIP 

sensitised the cells to undergo apoptosis. Inhibition of RKIP induction by siRNA 

protected these cells from the apoptosis induced by DNA damaging agents. In 

the DNA-damaging agent insensitive RC-1 cell line no such induction of RKIP 
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occurred in response to treatment and these cells did not undergo apoptosis. 

However, it could be shown that overexpression of exogenous RKIP now rendered 

these cells drug-sensitive. The authors showed that the raised level of RKIP was 

a response to DNA damage. Furthermore, it was shown that the mechanism of 

RKIP induced apoptosis was through inhibition of the NFκB and MAPK pathways 

(Chatterjee, Bai et al. 2004). Subsequently, a similar result was shown in non-

Hodgkin’s B-cell lymphoma cells, where treatment of the cells with Rituximab (a 

monoclonal antibody to CD20, used in the treatment of B-cell lymphoma) led to 

an upregulation of RKIP expression and subsequent sensitisation of the cells to 

chemotherapy induced apoptosis. The authors also demonstrated that RKIP was 

exerting its effects through its action on the MAPK and NFκB pathways. Inhibition 

of these pathways leads to a decrease in activity of the AP-1 and NFκB 

transcription factors, leading to downregulation of the anti-apoptotic Bcl-XL 

gene (Jazirehi, Vega et al. 2004).  

Cellular differentiation is an important physiological process by which cells leave 

the cell cycle and express genes and proteins appropriate for their function and 

location. RKIP has been shown to be involved in this process in a number of 

systems. Mature human keratinocytes express higher levels of RKIP than do cells 

in the immature basal layer and keratinocytes in culture can be induced to 

differentiate following the overexpression of RKIP (Yamazaki, Nakano et al. 

2004). Similarly immature human macrophages exposed to high levels of RKIP 

have been shown to express markers of differentiation such as CD11c and CD36. 

In macrophages this effect of RKIP was shown to be due, at least in part, to its 

effect on NFκB signalling (Schuierer, Heilmeier et al. 2006). Cellular 

differentiation is an important element in cancer development.  
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The ability to move is required by many different types of cell, both in 

physiological and in disease states. In cancer cells motility is particularly 

important in the process of invasion and metastasis. A number of studies have 

reported a role for RKIP in cell motility. However, to date there appears 

contradictory evidence as to whether RKIP functions to enhance or inhibit cell 

motility. Lee et al demonstrated that in HCC cells with low levels of RKIP 

expression, the expression of exogenous RKIP resulted in a decrease in cellular 

motility (Lee, Tian et al. 2006). Similarly, in melanoma cell lines restoration of 

RKIP levels was shown to decrease cell migration and also invasion in in vitro 

assays (Schuierer, Bataille et al. 2004). Fu et al also showed that low levels of 

RKIP was associated with an increase in invasive capacity in prostate cancer cell 

lines (Fu, Smith et al. 2003). 

Other investigators have reported different results with regard to cell motility. 

Both Mc Henry et al and Zhu et al reported a pro-migratory role for RKIP (Zhu, 

Mc Henry et al. 2005; Mc Henry, Montesano et al. 2008). In addition the former 

study showed that raised RKIP levels are associated with a decrease in cell-cell 

interactions, although there was a strengthening of cell-substratum interaction 

(Mc Henry, Montesano et al. 2008). There is not enough data to fully reconcile 

these results at present. It is likely that the differences may be due, at least in 

part, to cell and context specific activities of RKIP. In both of the studies citing 

RKIP as a pro-migratory force the majority of the experiments were carried out 

in Madin-Darby Canine Kidney (MDCK) cells and less dramatic results were 

obtained when the authors shifted to the breast cancer MCF7 cell line. In the 

studies indicating an anti-migratory role for RKIP the experiments were 

preformed in highly invasive, metastatic cell lines. Taken in combination this 

may indicate that the anti-migratory role of RKIP is cancer cell specific. It should 
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also be pointed out that although cell motility is important for tumour cell 

invasion the two processes are distinct. Given that studies have consistently 

shown an anti-invasive function for RKIP it may be the case that other factors 

play a role in the increased invasion seen in cells with low levels of RKIP. RKIP 

has been shown to modulate levels of matrix metaloproteinases (MMP) (Xu, Peng 

et al. 2007; Delassus, Cho et al. 2008); this offers a possible explanation for the 

effect on invasion.  
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1.1.4 Regulation of RKIP expression 

Although the exact mechanisms of the regulation of RKIP expression are not 

known a number of possible binding sites for transcription factors such as AP-1 

have been identified (Odabaei, Chatterjee et al. 2004). This is logical, given that 

AP-1 levels are upregulated upon activation of the MAPK pathway and therefore 

it controls its own activation by activating transcription of a Raf inhibitor, 

thereby creating a negative feedback loop.  

What is also controversial is the mechanism by which RKIP is down-regulated in 

cancer cells. It has been shown that RKIP mRNA and protein levels correlate 

well, indicating that RKIP loss occurs at the levels of RNA production or stability 

(Beach, Tang et al. 2008). To date no mutation in the RKIP gene has been 

reported and therefore other mechanisms of RKIP downregulation have been 

investigated, including epigenetic mechanisms. The RKIP promoter contains a 

number of CpG repeats. In general these CpG dinucleotides are under-

represented in the genome as a whole but are common in the promoter regions 

of many genes. CpG rich regions are termed CpG islands and methylation of 

these has been associated with silencing of the corresponding genes both in a 

physiological setting (McGhee and Ginder 1979) and in cancer cells, where 

methylation has been shown to silence a number of tumour suppressor genes, 

including Rb (Ohtani-Fujita, Dryja et al. 1997) and Mlh-1 (Herman, Umar et al. 

1998; Veigl, Kasturi et al. 1998). This raised the possibility that the RKIP 

promoter may be methylated.  

A number of studies have investigated this possibility and yielded conflicting 

results. Al Mulla et al used methylation specific PCR (MSP) to examine the RKIP 
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promoter in 82 cases of CRC. They reported that over 72% of the cases with low 

or absent RKIP expression demonstrated RKIP promoter methylation (Al-Mulla, 

Hagan et al. 2008). However, Minoo et al also examined cases of CRC using MSP 

and were unable to show methylation of the RKIP promoter in any of the 14 

cases that they examined (Minoo, Zlobec et al. 2007).  Supporting this later view 

was the study by Scuierer et al in which they showed that treatment of 

melanoma cells which had low levels of RKIP expression with the demethylating 

agent 5-azacytidine did not result in any change in the RKIP expression level 

(Schuierer, Bataille et al. 2004). Given the controversy over the role of 

methylation in RKIP silencing it has been suggested that there is a need to apply 

a quantitative methylation analysis approach, such as pyrosequencing, to the 

problem (Al-Mulla, Hagan et al. 2008). 

Another epigenetic mechanism of RKIP silencing has been explored in prostate 

carcinoma. Beach et al noted that RKIP expression levels in prostate cancer cells 

could not be altered by the administration of 5-azacytidine and therefore looked 

for alternative mechanisms of RKIP regulation. They observed that the levels of 

RKIP expression closely correlated with those of E-cadherin (Beach, Tang et al. 

2008). Snail has been shown to be an important regulator of E-cadherin 

expression, acting as a transcriptional repressor (Batlle, Sancho et al. 2000; 

Cano, Perez-Moreno et al. 2000) and given that the RKIP promoter contains a 

Snail recognition E-Box motif the authors investigated whether Snail can also 

affect RKIP transcription. They were able to demonstrate by both overexpression 

and knockdown of Snail that it was indeed directly affecting RKIP levels, both at 

the RNA and protein levels. Chromatin immunoprecipitation (CHIP) assays  

demonstrated a direct interaction between Snail and the RKIP promoter (Beach, 
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Tang et al. 2008). The potential role for Snail in the control of RKIP expression in 

other tumour types has not been tested. 
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1.1.5 Introduction to the RKIP knockout mouse 

In the mouse RKIP is expressed in nearly all tissues, with the highest levels seen 

in the brain and testis (Theroux, Pereira et al. 2007). The mouse genome also 

contains a number of RKIP family members (RKIP2-5). RKIP2 is expressed in the 

testes, but has not been detected in other tissues (Hickox, Gibbs et al. 2002; 

Theroux, Pereira et al. 2007), while expression of RKIP3-5 have not been 

detected in any tissue in the mouse, indicating that these three family members 

are silent pseudogenes (Theroux, Pereira et al. 2007). 

The RKIP knockout mouse was developed using the gene-trap technology. This is 

a high throughput technology, which allows for the knockout of a wide variety of 

genes at random, but has the advantage of incorporating a reporter which allows 

for easy identification of the gene which has been knocked out. Briefly, the 

technique involves the insertion of the “gene trap” into the genome of a mouse 

embryonic stem (ES) cell using either electroporation or a retrovirus (Stanford, 

Cohn et al. 2001). The gene trap consists of a promoterless sequence containing 

a LacZ reporter and a neomycin resistance gene (this allows for selection of cells 

expressing the gene trap). The LacZ and neomycin resistance elements may also 

be combined. In addition there is a splice acceptor site upstream of the LacZ 

reporter (Figure 1.4). The gene trap inserts into an intron and therefore upon 

activation of the gene results in the generation of a fusion mRNA, consisting of 

the upstream exons of the targeted gene and the LacZ reporter.  This results in 

the production of a mutant, loss of function protein.  
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Figure 1.4: Gene-trap strategy 

The “trap” consists of a vector which contains a splice acceptor site (SA), LacZ and a neomycin 
resistance gene (Neo), which is under the control of an autonomous promoter (in this case β-actin), 
this allows for neomycin selection of the embryonic stem cells in which vector integration has 
occurred.  In the example above the trap has inserted into exon 1 of gene X. The presence of the 
splice acceptor in the vector leads to the production of a fusion transcript consisting of exon 1 of 
gene X and LacZ, which is translated to a non-functional fusion protein. The neomycin resistance 
gene, being under the control of an autonomous promoter is transcribed and translated separately 
(Adapted from Stanford et al, 2001). 
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In the case of the RKIP knockout mouse the gene trap is inserted into intron 1 of 

the RKIP gene (Figure 1.5). The RKIP knockout mouse is viable, breeds normally 

and shows transmission of the RKIP mutation in the expected Mendelian ratios. 

The mouse shows only subtle phenotypes with a mild defect in olfactory function 

and in spermatogenesis (Moffit, Boekelheide et al. 2007; Theroux, Pereira et al. 

2007).   

The RKIP knockout mouse has not been associated with an increased risk of 

tumour development. At first glance this may raise questions about the 

presumed anti-cancer role of RKIP. However when one looks at the evidence for 

the role that RKIP plays in tumour development this should not come as a 

surprise, given that RKIP has been shown to function as a metastasis suppressor 

rather than a tumour suppressor. As pointed out above metastasis suppressor 

genes do not necessarily play a role in the initiation of tumourigenesis, but 

instead exert their effects at the later stages of tumour progression. Therefore, 

it is most appropriate to test the effect of RKIP loss in the mouse by examining 

its effect in an established model of tumourigenesis.  
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Figure 1.5: Diagrammatic representation of the RKIP Gene Trap knockout 

In the case of the RKIP knockout mouse the LacZ and Neo genes are combined as a β-geo 
element, which is inserted into intron 1 of the mouse RKIP gene, on Chromosome 5. This results in 
the production of a non-functional, truncated fusion protein, which only retains exon 1 of the native 
RKIP (Adapted from Theroux et al, 2007). Neo: Neomycin Resistance Gene. 
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1.2 Introduction to colorectal carcinoma 

Although RKIP has been shown to play an important role in a number of different 

cancer types some of the strongest data linking RKIP to prognosis has been in 

CRC. Therefore, we have decided to focus our studies on the role of RKIP in this 

disease. The next section will introduce some of the important clinical aspects 

and also the underlying biology of CRC. 
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1.2.1 Colorectal carcinoma epidemiology 

CRC is the second most common cancer and the second leading cause of cancer 

deaths in the Western world (Fernandez, La Vecchia et al. 2005; Ferlay, Autier 

et al. 2007). In the UK alone approximately 360,000 new cases are diagnosed 

every year. The incidence of the disease is the same in men and women up to 

the age of 50. However, there is a significant divergence in older individuals 

with the disease more common in men in this age group. Over the past 35 years 

the incidence of the disease has remained almost static (with a slight increase in 

the incidence seen in men). There has, however, been a steady decrease in 

mortality from the disease. This has been the result of a number of factors, 

including improved treatment and earlier detection.  

CRC is predominantly a disease of the Western world and historically has been 

relatively less frequent in Africa and Asia. This observation indicated an 

environmental trigger for the pathogenesis of the disease. And indeed it has 

been shown in epidemiological studies that there is an association between a 

diet high in red meat and low in fibre and CRC (Norat, Bingham et al. 2005). The 

association with diet has been strengthened by the observation of a recent 

increase in the rates of CRC seen in Japan. This increase coincides with a move 

towards a more Western style diet in this country. Other risk factors for the 

disease include obesity (which is thought to increase CRC risk in men by up to 

50%) and low levels of physical exercise (Slattery, Edwards et al. 2003; 

Moghaddam, Woodward et al. 2007). Similar to other types of cancer it has been 

shown that alcohol and cigarette smoking are significant risk factors (Moskal, 

Norat et al. 2007; Botteri, Iodice et al. 2008). There is evidence that type-II 

diabetes mellitus is associated with an increased risk, furthermore it would 
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appear that this association is independent of obesity and level of physical 

activity (Larsson, Orsini et al. 2005).  

Other factors have been reported which are associated with a positive impact on 

CRC risk. These include use of non-steroidal anti-inflammatory (NSAID) 

medication. In back to back studies published in the New England Journal of 

Medicine it was shown that aspirin is associated with a lower incidence of CRC 

(Baron, Cole et al. 2003; Sandler, Halabi et al. 2003). Hormone replacement 

therapy and the oral contraceptive pill are also thought to reduce risk 

(Grodstein, Martinez et al. 1998; Fernandez, La Vecchia et al. 2001).  

Two important medical conditions which are known to increase the risk of CRC 

are ulcerative colitis (UC) and Crohn’s disease (CD). These two conditions are 

often put together under the umbrella term of chronic inflammatory bowel 

disease, but there are important differences between the two, both in terms of 

pathogenesis, clinical features and risk of CRC. Patients with CD are 

approximately twice as likely to develop CRC as the general population (Jess, 

Gamborg et al. 2005). Patients with UC have a further increased risk of 

developing CRC, with a standardised incidence ratio reported to be 5.7 (Ekbom, 

Helmick et al. 1990). The risk of CRC in UC is greater with increased disease 

severity and duration.  

Genetics also plays a strong role in the risk of CRC. There is evidence for this in 

the number of familial CRC syndromes which have been described and also in the 

fact that CRC risk is approximately doubled by having a first degree relative with 

the disease. Moreover, the risk increases almost to approximately fourfold if two 

first degree relatives have had the disease or if one relative has had CRC before 
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the age of 45 (Johns and Houlston 2001). The genetics and molecular biology of 

CRC will be discussed in greater detail below.  
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1.3 Colorectal carcinoma staging and 

treatment  

1.3.1 Normal intestinal anatomy and physiology 

Before discussing the staging of CRC it is important to briefly describe the 

normal anatomy and physiology of the intestine. The intestine consists of three 

layers. The outer layer consists of 2 bands of smooth muscle at right angles to 

one another, between the muscle layers lye nerve plexi which help to control 

the peristaltic function of these muscle layers. Outside the muscle layers there 

is a layer of adipose and connective tissue of variable thickness, this is covered 

by the peritoneum for the majority of the length of the intestine. Moving 

inwards the next layer is the sub-mucosa, which consists of connective tissue, 

blood and lymphatic vessels. Payer’s patches, which are an important part of the 

immune system, also lie within the sub-mucosa (Kumar 2004). Superficial to the 

sub-mucosa is the mucosa. This is the layer of cells which carry out most of the 

varying functions of the intestine. In the small intestine the mucosa is projected 

into folds and invaginations called villi and crypts respectively, in the colon only 

crypts are seen and the villi are replaced by flat inter-crypt spaces (Sancho, 

Batlle et al. 2004).  The purpose of this micro-anatomy is to greatly increase the 

intestinal surface area and therefore increase the absorptive capacity of the 

intestine. The cells lining the crypts and villi are specialised and play very 

specific functions. At the base of the crypts are the Paneth cells; these secrete 

various peptides involved in anti-microbial and other activity (Porter, Bevins et 

al. 2002). Above the Paneth cells are the intestinal stem cells, which give rise to 

all of the cell lineages making up the intestinal epithelium. The stem cell divides 
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to give rise to a population of cells known as the transit amplifying cells. These 

in turn migrate to the crypt-villus junction, where they can differentiate into 

one of three cells lineages (Sancho, Batlle et al. 2004). Enterocytes make up the 

majority of cells in the villus and are predominantly involved in nutrient 

absorption. Goblet cells produce mucus, which forms a protective layer over the 

epithelium and finally the enteroendocrine cells produce hormones including 

Substance P and serotonin (Hocker and Wiedenmann 1998; Sancho, Batlle et al. 

2004).    

1.3.2 Staging of CRC 

As discussed above the outcome for patients with CRC has improved steadily 

over the last 40 years for a number of reasons. The main factor which predicts 

outcome in CRC is the stage of disease at diagnosis (Sobin L. 2002). The stage of 

disease is an indication of the extent of the disease progression i.e. depth of 

invasion and spread to distant sites.  

1.3.3 Dukes Staging of CRC 

The Dukes staging system was devised by Cuthbert Dukes in 1932 (Dukes 1932) 

and remains in use today, with only relatively minor alterations. Dukes staging 

uses the letters A-D to denote progression of the tumour. A Dukes A tumour is 

the earliest stage and can have invaded into, but not through the muscularis 

propria. A Dukes B tumour has extended through the muscularis propria, into the 

surrounding adventitia but importantly it has not metastasised. Dukes C and D 

tumours are associated with lymph node and distant metastases respectively 

(Figure 1.6).  
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Figure 1.6: Dukes Staging of Colorectal Cancer 

A Dukes A tumour can invade into but not beyond the muscularis propria (the bowel wall). A Dukes 
B tumour has invaded beyond the muscularis propria into the surrounding adipose tissue or 
through to the peritoneum. When a tumour metastasises to regional lymph nodes it becomes 
Dukes C. Finally a tumour which metastasises to a distant site such as the liver becomes Dukes D. 
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The reason that the Dukes staging system for CRC has remained virtually 

unchanged for so long is the valuable prognostic information that it provides. 

Patients with a Dukes A tumour have an average 5-year survival of ~85%, 

compared to ~5% for patients with a Dukes D tumour (Table 1.1). The system 

also has the advantages of being simple, widely recognised and highly 

reproducible.  

Dukes Stage 5-Year Survival 

A 83% 

B 64% 

C 38% 

D 3% 

Table 1.1: 5-Year Survival of Patients with Colorectal Cancer, stratified by Dukes 
Stage  

(Adapted from NICE. Improving Outcome in Colorectal Cancers: Manual update 2004) 

The most commonly diagnosed stage of CRC is Dukes stage B, followed by C, 

with the very early and late stages of the disease diagnosed less frequently 

(Burton, Norman et al. 2006). This however is changing with the advent of CRC 

screening. CRC screening has been shown to result in earlier diagnosis and 

improved survival in patient populations. It will therefore result in an increase in 

the diagnosis of early stage CRC (Dukes A&B) and will focus attention on the 

management of these early stages of the disease (Towler, Irwig et al. 2000; 

Lindholm, Brevinge et al. 2008).  

Since the time when Dukes first described the system there have been a number 

of refinements, which provide extra prognostic information and therefore allow 

for improved patient risk stratification. One of these is the TNM system. TNM 
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stands for Tumour, lymph Nodes, Metastases and treats tumour staging in much 

the same way as the Dukes system, but separates the elements (Sobin L. 2002). 

In CRC the T-stage is an important determinant of prognosis, essentially it 

further subdivides Dukes A&B tumours (Table 1.2).  

Dukes Stage Description T-Stage Description 

1 
A tumour confined to the 
Lamina Propria and Sub-

mucosa. 

A 

A tumour confined to the 
Lamina Propria, Sub-
mucosa or Muscularis 

Propria. 
2 

A tumour that has 
invaded into but not 

through the Muscularis 
Propria. 

3 
A tumour that has 

invaded into but not 
through the peritoneal fat.

B 

A tumour that has invaded 
through the muscularis 

propria but has not 
metastasised. 

4 
A tumour that has 

invaded through the 
peritoneum. 

Table 1.2: Comparison of the Dukes and T-Staging systems for CRC. 

 

The importance of this distinction can be seen when one examines the impact of 

the different T-stage on Dukes B tumours. Patients with T3 tumours have a 

significantly improved survival over patients with T4 tumours (Shepherd, Baxter 

et al. 1997; Lennon, Mulcahy et al. 2003). Further observations that prognosis is 

negatively impacted by the presence of tumour cells in blood or lymphatic 

vessels (LVI), tumour budding or having a small number of lymph nodes 

examined histologically have helped to refine patient risk stratification, which 

aids in treatment decisions (Compton 2003). 
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1.3.4 Treatment of CRC  

The mainstay of CRC treatment is surgery, consisting in the majority cases of 

removal of the tumour, the adjacent bowel and the draining lymph nodes (This 

approach may be modified in very early or late stages of the disease). In 

patients with very early stage disease (Dukes A) this surgery is curative in the 

vast majority of cases. In patients who are discovered after surgery to have 

involvement of draining lymph nodes or distant organs there is strong evidence 

that the use of post-operative (adjuvant) treatment will improve survival (NIH 

1990).  For patients with advanced local disease in the absence of metastases 

(Dukes B) the picture is less clear-cut (Figueredo, Coombes et al. 2008).  

Five year survival for Dukes B CRC patients is relatively favourable at 74-80% 

(Eisenberg, Decosse et al. 1982; Petersen, Baxter et al. 2002; O'Connell, Maggard 

et al. 2004). However, this leaves up to 25% of patients with pathologically 

negative lymph nodes (pN0) developing recurrent disease (Nicastri, Doucette et 

al. 2007). This has lead to controversies regarding the use of adjuvant 

chemotherapy in this group (Sobrero and Köhne 2006). Recent large studies have 

shown that adjuvant chemotherapy may confer a small survival benefit (Andre, 

Boni et al. 2004; Kuebler, Wieand et al. 2007; Quasar Collaborative, Gray et al. 

2007), and a recent meta-analysis showed an improvement in disease-free 

survival, although no improvement in overall survival could be shown (Figueredo, 

Coombes et al. 2008). These authors suggested that adjuvant treatment should 

be considered in patients with high-risk features (Figueredo, Coombes et al. 

2008), as it is only these patients who are likely to benefit from adjuvant 

treatment. Although this has yet to be demonstrated in a trial (Petersen, Baxter 

et al. 2002; Figueredo, Coombes et al. 2008), a recent study by Andre et al 
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(Andre, Boni et al. 2009) showed a trend towards a benefit with the addition of 

oxaliplatin to standard chemotherapy in a high-risk subgroup of Dukes B CRC and 

have suggested that further trials should be confined to this subgroup. Their 

high-risk group was broadly defined by featuring at least one of the following: 

peritoneal invasion, tumour perforation, bowel obstruction, poorly 

differentiated tumour, LVI, or <10 lymph nodes examined. These data suggest 

that a refinement of risk assessment could identify the Dukes B group who will 

benefit most from adjuvant therapy and that the extra prognostic information 

provided by RKIP could be beneficial.  
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1.4 The biology of colorectal cancer 

Like many human cancers CRC arises following a multi-step progression from 

dysplastic epithelium, through early and late stage adenomas, to invasive 

carcinomas and finally metastasis.  We have learnt that these steps in the 

progression are usually associated with characteristic genetic events. This 

progression through the different stages was first described in CRC by Vogelstein 

(Vogelstein, Fearon et al. 1988) and has been dubbed the “Vogelgram” (Figure 

1.7). In the majority of CRC the earliest event is mutation and subsequent loss of 

function of the Adenomatous Polyposis Coli (APC) gene. As is the case with many 

tumours much of what we know about APC and other genes involved in CRC 

development comes from our study of autosomal familial cancer syndromes.  
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Figure 1.7: The “Vogelgram” 

The diagram depicts the step-wise progression of the tumour, from the earliest detectable lesion 
(ACF) through to invasive and potentially metastatic carcinoma, as it acquires increasing numbers 
of mutations. While the majority of early lesions will have a mutation in APC, thereafter the 
mutations that are acquired become more variable, it is likely that this contributes to differences in 
biological and clinical behaviour between tumours (Adapted from Kumar et al, 2003). ACF: 
Aberrant Cryt Foci. 

Chapter 1 Introduction 54



Chapter 1 Introduction 55 

 

1.4.1 Familial CRC syndromes 

The two best described familial CRC syndromes are Familial Adenomatous 

Polyposis (FAP) and Hereditary Non-Polyposis Colorectal Cancer (HNPCC, also 

known as Lynch syndrome). Other syndromes have also more recently been 

described such MUTYH (MutY Homologue) associated polyposis (Sieber, Lipton et 

al. 2003) (also termed MYH associated polyposis or Attenuated polyposis).  

1.4.2 Familial Adenomatous Polyposis (FAP) 

FAP was first described in described in the late 1940’s by Gardner (FAP is also 

known as Gardner’s syndrome) (Gardner 1948). Patients with FAP develop 

hundreds of colonic polyps from a very early age. One or more of these polyps 

invariably progress to invasive cancer, so that the rate of CRC in these patients 

is 100% by the age of 40. Although CRC is the major clinical problem associated 

with FAP, patients also suffer other manifestations of the disease. These may be 

enteric, such as duodenal adenomas, gastric fundic gland polyps and tumours of 

the pancreatico-biliary tree, or they may be extra-enteric, such as osteomas and 

brain tumours (Kinzler and Vogelstein 1996).  

The genetic basis underlying FAP first came to light when it was noted that FAP 

patients shared deletion of an area on the long arm of chromosome 5 (Herrera, 

Kakati et al. 1986; Bodmer, Bailey et al. 1987; Solomon, Voss et al. 1987). It was 

subsequently noted that deletions in this region were found to occur commonly 

in patients with sporadic as well as familial CRC and the gene was identified as 

APC (Kinzler, Nilbert et al. 1991; Kinzler, Nilbert et al. 1991; Nishisho, Nakamura 
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et al. 1991). Mutation of the APC gene was shown to occur in both sporadic and 

familial CRC (Nishisho, Nakamura et al. 1991) and it was demonstrated that this 

loss of both copies of APC was the important early event in adenoma formation 

(Ichii, Horii et al. 1992; Levy, Smith et al. 1994). It was subsequently shown that 

this was also the case in the APCMin mouse which is a model of FAP (Levy, Smith 

et al. 1994; Luongo, Moser et al. 1994). Cumulatively these data delivered a 

molecular explanation behind the phenotype seen in patients with FAP. APC is a 

tumour suppressor gene and patients with FAP inherit a germline mutation in 

one of the APC alleles. However, in keeping with Knudson’s “two-hit hypothesis” 

regarding the behaviour of tumour suppressor genes the remaining wild-type 

copy of the gene is capable of performing the tumour suppressive function and 

thus must be lost in order for tumour progression to occur (Knudson 1971). 

1.4.3 Hereditary Non-Polyposis Colorectal Cancer 

(HNPCC) 

As the name suggests patients with hereditary non-polyposis colorectal cancer 

(HNPCC), develop fewer colonic adenomas than do patients with FAP. The 

syndrome was recognised much later than FAP (Lynch, Lynch et al. 1977). The 

tumours that arise in HNPCC have distinct clinical and pathological features. 

Clinically tumours tend to arise later than in FAP, typically around the 5th 

decade (although there is a wide spread, with age at first diagnosis ranging from 

14 to 82 years). The site of the tumours is also specific, with the majority (~70%) 

arising in the ascending (proximal) colon. This is different to FAP, where 

tumours arise throughout the entire length of the bowel and to sporadic CRC 

where only a minority (~30%) of tumours arise in the proximal colon (Lynch, 

Smyrk et al. 1996). At the histological level CRC associated with HNPCC is more 
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likely to be poorly differentiated (Jass, Smyrk et al. 1994; Losi, Fante et al. 

1995), with a significant percentage composed of a continuous sheet of cells 

fringed by a prominent lymphocytic reaction (the so-called medullary carcinoma) 

(Jass, Smyrk et al. 1994). Like FAP, HNPCC is associated with an increased risk of 

other cancers. In the case of HNPCC these tend to occur in stomach, small 

intestine, pancreas, upper urologic tract (renal pelvis and ureter), endometrium 

and ovary (Lynch, Smyrk et al. 1993; Watson and Lynch 1993). Probably the most 

important clinical feature associated with HNPCC tumours is their favourable 

prognosis (Sankila, Aaltonen et al. 1996). The exact mechanism for this more 

indolent behaviour is not known for definite, although it has been shown that 

HNPCC tumours are more likely to be diploid than sporadic CRC (Kouri, Laasonen 

et al. 1990).  

Mutations of Mlh-1, Msh-2, PMS1 and PMS2, all genes involved in DNA mismatch 

repair were found to occur in families with HNPCC (Leach, Nicolaides et al. 

1993; Bronner, Baker et al. 1994; Nicolaides, Papadopoulos et al. 1994; 

Papadopoulos, Nicolaides et al. 1994).  Mutation of these genes leads to 

microsatellite instability (MSI), which is the hallmark of these tumours. As has 

been the case with FAP and APC it has now been shown that although HNPCC 

tumours are rare there is a subset of sporadic CRC which show similar loss of 

DNA mismatch repair genes and consequent MSI. These tumours form a distinct 

clinical and pathological subgroup. Like their counterparts in HNPCC sporadic MSI 

tumours tend to be located in the proximal colon. For reasons that are poorly 

understood they are more likely to occur in older patients and in women and like 

HNPCC tumours are associated with an improved prognosis, when compared to 

CRC as a whole. It has also emerged that the “Vogelgram” for these tumours 

differs from the classical picture.  Firstly, the precursor lesions differ at the 
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histological level. MSI tumours develop in the main from “sessile serrated 

adenomas”; this is a pathological entity that has been described relatively 

recently (Torlakovic and Snover 1996; Goldstein, Bhanot et al. 2003). The 

mutations and other genetic events in MSI tumours also differ. Mutations in B-Raf 

are more common (Jass, Baker et al. 2006) and mutations in APC and p53 less so 

(Salahshor, Kressner et al. 1999). Other mutations may occur in genes such 

Transforming Growth Factor- (TGF-), a gene which contains a microsatellite 

region within its coding sequence (Markowitz, Wang et al. 1995). Moreover, 

these changes generally occur on a background of gene promoter methylation 

(the CpG Island Methylator Phenotype (CIMP)), which results in the epigenetic 

silencing of genes (Hawkins, Norrie et al. 2002). For example the DNA mismatch 

repair genes themselves are often silenced in this way in these tumours. There is 

now a consensus therefore that this represents a different pathway to tumour 

development to the more common APC initiated pathway.  
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1.5 Role of APC in CRC 

Although from the above discussion it is clear that the molecular classification 

has moved on and become more complex than the original “Vogelgram” (A 

classification based on 5 molecular subtypes has been proposed, (Table 1.3)), 

those tumours arising from mutation of APC remain the most common. The APC 

gene was identified by cloning the genetic locus known to be lost in FAP patients 

in chromosome 5 (Groden, Thliveris et al. 1991; Kinzler, Nilbert et al. 1991). The 

gene encodes a large (312 kDa) protein which contains a number of domains. The 

first clues to its role in CRC came to light when it was shown to be a binding 

partner for -catenin, thus implicating a role for APC in the Wnt signalling 

pathway (Rubinfeld, Souza et al. 1993; Su, Vogelstein et al. 1993). The role of 

APC in this pathway will now be discussed in more detail. 

 CIMP 
Status 

Microsatellite 
Status 

Chromosomal 
Instability 

Molecular Events Precursor 
Lesion 

% 
Total 

1 Negative MSS Instable Mutations of APC, 
KRas, p53 

Adenoma 57% 

2 Low MSS/MSI-Low Instable Mutations of APC, 
KRas. MGMT 
methylation 

Adenoma/ 
Serrated 

Polyp 

20% 

3 High MSI-High Stable Methylation MLH-1, 
BRAF mutation 

Serrated 
Polyp 

12% 

4 High MSI-Low Stable Part methylation MLH-
1, BRAF mutation 

Serrated 
Polyp 

8% 

5 Negative MSI-High Stable Mutation of mismatch 
repair genes (HNPCC) 

Serrated 
Polyp 

3% 

Table 1.3: Proposal for Molecular Classification of Colorectal Cancer:  

The classification is based on the levels of tumour methylation as well as microsatellite 
and chromosomal stability (Adapted from Jass, 2007). CIMP: CpG Island Methylator 
Phenotype, MSS: Microsatellite Stable, MSI: Microsatellite Instable.  
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1.5.1 The Wnt signalling pathway 

The Wnt gene was originally described in mice and Drosophila and is conserved 

up to higher organisms (Klaus and Birchmeier 2008). The pathway becomes 

active when a Wnt ligand binds the Frizzled receptor (Bhanot, Brink et al. 1996; 

Wang, Macke et al. 1996), this signals through Dishevelled to inactivate Glycogen 

Synthase Kinase3 (GSK3) (Siegfried, Wilder et al. 1994). GSK3 functions as part 

of the -catenin destruction complex. After -catenin is phosphorylated by 

Casein Kinase 1 (CK1) it is then phosphorylated by GSK3, targeting it for 

destruction by the proteasome (Yost, Torres et al. 1996; Liu, Li et al. 2002). 

Following the inactivation of GSK3 -catenin is free to accumulate in the 

cytoplasm and translocate to the nucleus. Once in the nucleus -catenin binds T-

Cell Factor (TCF) and Lymphoid Enhancer Factor-1 (LEF1) to promote 

transcription of Wnt target genes (Figure 1.8) (Behrens, von Kries et al. 1996; 

Huber, Korn et al. 1996; Molenaar, van de Wetering et al. 1996). Wnt targets 

include Myc and CyclinD1 which, given the role that they play in functions such 

as proliferation and the progress of the cell cycle have clear roles in tumour 

formation (He, Sparks et al. 1998; Shtutman, Zhurinsky et al. 1999; Tetsu and 

McCormick 1999). Therefore, it can be seen that the Wnt signalling pathway is 

pro-proliferative and pro-cell survival and it is in the best interests of the cell to 

closely regulate its activity. 
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Figure 1.8: The Canonical Wnt Signalling Pathway 

In the absence of a Wnt signal (left) β-catenin is bound by the β-catenin destruction complex and 
phosphorylated by GSK3β. Once phosphorylated β-catenin is then recognised by an SCF complex 
which mediates the addition of a polyubiquitin chain to the β-catenin molecule. The ubiquitinated β-
catenin is then recognised and destroyed by the proteosome. Thus β-catenin cannot translocate to 
the nucleus and Groucho represses TCF mediated transcription. Upon the binding of a Wnt ligand 
to the Frizzled receptor (Right) Dishevelled activates GBP, which inhibits the phosphorylation of β-
catenin by GSK3β. β-catenin can now translocate to the nucleus and promote the transcription of 
Wnt target genes. The same process happens when APC is absent as the β-catenin destruction 
complex can now no longer be formed (Adapted from Frodde et al 2001). SCF Complex: 
SKP/Cullin/F-Box Complex, GBP: GSK3 Binding Protein. 
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APC is a key player in the regulation of the pathway. It, along with 

axin/conductin and GSK3 form the -catenin destruction complex, which leads 

to the phosphorylation of -catenin by GSK3 and its subsequent ubiquitination 

and destruction by the proteasome (Aberle, Bauer et al. 1997).  In the absence 

of nuclear -catenin TCF and LEF interact with Groucho proteins and the 

transcription of Wnt target genes is suppressed (Figure 1.8) (Cavallo, Cox et al. 

1998; Roose, Molenaar et al. 1998). As mentioned above the APC protein is large 

with a multiple domains (Figure 1.9). There are several 15 and 20 amino acid 

repeats that play a role in the interaction and subsequent downregulation of -

catenin (Hulsken, Birchmeier et al. 1994). Meanwhile the SAMP (Serine-Alanine-

Methionine-Proline) repeats which are interspersed among the 20 amino acid 

repeats mediate the binding of APC to axin/conductin (Behrens, Jerchow et al. 

1998; Hart, de los Santos et al. 1998). The importance of the SAMP region is 

underlined by the finding that mice with APC mutations that retain the SAMP 

region do not develop polyposis (Smits, Kielman et al. 1999). Mutations of APC 

generally result in the production of a truncated protein, with loss of some or all 

of the 20 amino acid repeats, mutations are most common between codons 1286 

and 1513, this is referred to as the mutation cluster region (MCR) (Polakis 2000). 

As a tumour suppressor APC obeys Knudson’s 2-hit hypothesis so that loss of 

function of the second APC allele is required before tumour initiation can occur. 

Interestingly, in patients with FAP the exact nature of the second hit depends on 

the initial germline mutation, specifically the number of remaining 20 amino 

acid repeats in the mutant protein. Such that if the germline mutant contains no 

20 amino acid repeats the second hit is likely to be a mutant form of the protein 

containing 1-2 20 amino acid repeats. However if the germline mutant contains 

1-2 of the repeats the second hit will be either LOH of a mutation with no 
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remaining 20 amino acid repeats (Fodde, Smits et al. 2001; Pollard, Deheragoda 

et al. 2009).  
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Figure 1.9: Diagrammatic representation of the APC protein 

The protein can be seen to contain a number of regions important for its various functions, 
including binding to microtubules and the microtubule associated protein EB1. Also shown are the 
15 and 20 amino acid repeats, which are important for β-catenin binding and regulation. The 
mutation cluster region occurs among these 15-amino acid repeats (adapted from Fodde et al, 
2001). SAMP: Serine-Alanine-Methionine-Proline. 
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The loss of APC function results in the inability of the destruction complex to 

function and therefore -catenin is not ubiquitinated and destroyed (Ahmed, 

Hayashi et al. 1998). Instead the now stable -catenin accumulates in the 

cytoplasm and then translocates to the nucleus where in conjunction with its co-

factors TCF/LEF it can promote the transcription of Wnt target genes. One 

consequence of this is that the presence of -catenin in the nucleus of a cell 

functions as a readout of dysfunctional APC activity. In a normal intestine 

nuclear -catenin can only be seen in the proliferative cells at the base of the 

crypt (Sansom, Reed et al. 2004). In a tumour however the de-regulated Wnt 

signalling pathway (the result of APC loss) can be detected by the presence of 

nuclear -catenin.  

However, despite the presence of APC gene mutations there is controversy 

regarding the activation of Wnt signalling and the localisation of -catenin in 

CRC. Studies on human tumours have reported that nuclear -catenin can only 

be detected at the invasive front of tumours  (Brabletz, Jung et al. 2001) and 

cannot be detected in adenomas from patients with FAP (Phelps, Chidester et al. 

2009). These data are at odds with our previous studies where we see Wnt 

targets such as c-Myc, CD44 and Cyclin D2 deregulated immediately following 

APC loss (Sansom, Meniel et al. 2007) and with microarray studies from human 

tumors showing increased levels of Wnt target gene expression  (Sabates-Bellver, 

Van der Flier et al. 2007; Van der Flier, Sabates-Bellver et al. 2007). We have 

also seen nuclear -catenin staining throughout adenomas in ApcMin mice. This 

apparent discrepancy between APC mutation and a lack of activation of the Wnt 

signalling pathway has been termed the -catenin paradox and is yet to be fully 

explained.  
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1.5.2 Roles of APC outside the canonical Wnt signalling 

pathway 

There is strong evidence to suggest that the main function of APC loss in early 

CRC is to promote deregulated Wnt signalling. This evidence comes from studies 

showing that other mutations that activate the pathway will lead to a very 

similar phenotype (Harada, Tamai et al. 1999) and that the deletion of key Wnt 

targets such as Myc is capable of rescuing the phenotype induced by APC loss 

(Sansom, Meniel et al. 2007). The rare sporadic human CRCs that are found to 

display mutations in other genes in the pathway, such as axin or -catenin adds 

further weight to the argument (Liu, Dong et al. 2000; Polakis 2007). However, 

there is now evidence emerging that loss of APC in tumours may lead to other 

effects. 

Chromosomal Instability (CIN) is an important event in CRC, occurring in the vast 

majority of tumours outside the MSI pathways (Table 1.3). CIN can take 2 

distinct forms; a quantitative defect, with an increase in chromosome number 

(polyploidy) or a chromosomal rearrangement, resulting from chromosomal 

fragmentation and reunion. There is now growing evidence that APC loss can 

play a significant role in the development of CIN. Kaplan et al showed that APC 

can be found at the kinetochore during mitosis and that cells that contain 

mutant APC are deficient in chromosomal segregation. This deficit in 

chromosomal segregation then leads to an increase in chromosome number 

(Kaplan, Burds et al. 2001). Fodde et al also demonstrated localisation of APC to 

the kinetochore and the presence of supernumerary chromosomes in APC mutant 

cells. In addition they showed the presence of multi-polar mitotic spindles 

(Fodde, Kuipers et al. 2001). It has been shown that multi-polar mitosis can 
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exert multi-directional forces on chromosomes, which can result in chromosomal 

fragmentation and thus allow for chromosomal structural abnormalities (Doxsey 

1998). Thus, it can be seen from these studies that an APC mutation results in 

both types of CIN seen in CRC. The one caveat that has been associated with 

these studies is that they were performed in mouse embryonic stem cells. In 

these cells there is a defect in p53 cell cycle control functions (Aladjem, Spike 

et al. 1998). So it has been suggested that in order to generate CIN in a 

differentiated cell APC mutation must coincide with a loss of p53 function. 

Studies in human adenomas, designed to assess whether CIN occurs at a very 

early stage (prior to the development of p53 or other mutations) have yielded 

contrasting results (Sieber, Heinimann et al. 2002; Cardoso, Molenaar et al. 

2006). Interestingly, in human CRC the tumours that show APC mutation and CIN 

are generally those that are also associated with p53 mutation. This would 

suggest a possible cooperation between APC and p53 mutations in promoting 

CIN, there is evidence in both the mouse and in humans to suggest that this may 

be the case (Alberici, de Pater et al. 2007).  
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1.6 Other genes important in CRC 

From the above discussion the importance of APC loss in CRC is clear. However, 

loss of APC occurs as an early event in the development of CRC and other 

genetic “hits” are required for tumour progression. In human CRC these have 

been shown to include mutations in KRas, the PI3-Kinase (phosphoinositide 3-

kinase) pathway and the p53/ARF pathway. We have used mutations in some of 

these pathways to study the progression of CRC in the mouse, therefore they will 

be discussed in the next section. 

1.6.1 KRas in CRC 

As discussed above KRas is an important effector of the MAPK pathway (Figure 

1.10). Mutation of KRas is found in ~33-43% of human CRC (Bos, Fearon et al. 

1987; Lievre, Bachet et al. 2006; Benvenuti, Sartore-Bianchi et al. 2007; Barault, 

Veyrie et al. 2008). Activation of KRas occurs when it binds GTP at the expense 

of GDP, mutation of KRas commonly maintains the protein in its GTP bound state 

and therefore renders it constitutively active (Dhillon, Hagan et al. 2007). The 

majority of these activating mutations occur in codons 12, 13 and 61 (Bos 1989). 

Mutation of KRas is a relatively early event in CRC development, occurring in a 

significant proportion of large but not small adenomas (Vogelstein, Fearon et al. 

1988). The importance of activation of this pathway in CRC can be seen by the 

fact that activating mutations in the BRaf gene occur in ~12-13% of tumours 

(Benvenuti, Sartore-Bianchi et al. 2007; Barault, Veyrie et al. 2008). BRaf is 

directly downstream of KRas (Figure 1.2) and mutations that result in 

constitutive activation will also lead to hyperactivation of the MAPK pathway. It 

would appear that KRas and BRaf mutations are mutually exclusive in CRC 
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(Rajagopalan, Bardelli et al. 2002; Benvenuti, Sartore-Bianchi et al. 2007; Di 

Nicolantonio, Martini et al. 2008). Tumours which show BRaf mutations are also 

more likely to show mismatch repair deficiencies (Rajagopalan, Bardelli et al. 

2002).  

As KRas is commonly mutated in CRC and occupies an important position along 

the path of tumour progression, mouse models which utilise KRas mutations 

would be useful. Indeed studies already exist in which mutation of the 

gatekeeper gene APC has been combined with KRas mutations (Sansom, Meniel 

et al. 2006). In this study the authors demonstrated that the addition of the 

activated KRas not only accelerated tumourigenesis but also promoted the 

formation of invasive tumours (Sansom, Meniel et al. 2006), this makes it an 

appropriate model to study the potential effects of a metastasis suppressor gene 

such as RKIP. 

1.6.2 PI3-Kinase pathway in CRC 

Like the MAPK pathway the PI3-Kinase pathway is downstream of Ras (Figure 

1.10) and activation of the pathway can promote a wide range of cellular 

functions, including cell growth, survival and motility (Courtney, Corcoran et al. 

2010). Inappropriate activation of this pathway can take the form of activating 

mutations of PI3-Kinase itself or alternatively inactivating mutations of the PTEN 

gene which encodes the phosphatase and tensin homolog protein (PTEN), one of 

the main inhibitors of the PI3-Kinase pathway. In CRC PI3-Kinase mutations are 

observed in ~13-32% of tumours (Samuels, Wang et al. 2004; Frattini, Signoroni 

et al. 2005; Velho, Oliveira et al. 2005; Perrone, Lampis et al. 2009). Mutation of 

PI3-Kinase is thought to be a later event in tumour progression, being rare in 
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adenomas (Samuels, Wang et al. 2004). Mutations of PTEN are found in ~10% of 

CRC (Perrone, Lampis et al. 2009) but loss of PTEN protein expression has been 

seen in a greater proportion of CRC (Laurent-Puig, Cayre et al. 2009; Perrone, 

Lampis et al. 2009). As is the case with KRas and BRaf mutation of PI3-Kinase 

and loss of PTEN expression have been reported to be mutually exclusive 

(Frattini, Signoroni et al. 2005). However mutations in the PI3-Kinase and 

KRas/MAPK pathways have been shown to co-exist (Velho, Oliveira et al. 2005).  
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Figure 1.10: MAPK and PI3-Kinase pathways 

Binding of ligand to RTK results in activation of Ras, which can activate the classical MAPK 
pathway but also PI3-Kinase. PI3-Kinase can then phosphorylate PIP2 to PIP3, which activates 
AKT. The phosphatase PTEN can reverse this reaction and thus inhibit the pathway. Activated AKT 
can then promote pro-growth and proliferation and anti-apoptotic signals as shown. In CRC this 
pathway can become constitutively activated by activating mutations in Ras or PI3-Kinase or by 
inactivation mutations of PTEN (Adapted from Courtney et al, 2010 and Siena et al 2009). RTK: 
Receptor Tyrosine Kinase, mTOR: Mammalian Target of Rapamycin. 
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1.7 Role of p53 in CRC 

p53 exerts an influence over a wide variety of cellular processes, including cell 

cycle control and apoptosis. p53 is a key protein in the cell’s response to DNA 

damage, which if left unchecked could lead to DNA replication errors and 

therefore mutation (Levine and Oren 2009).  

As a protein that has been extensively studied much is now known about the 

pathway of p53 activation and about its regulation. In a normally functioning cell 

p53 is continuously produced and turned over at the same rate. The result of 

this is a very low basal level of p53 within the cells and a short half-life of about 

20 minutes (Reich, Oren et al. 1983). The reason for this seemingly futile cycle 

of p53 production and destruction is that it allows the cell to increase the levels 

of p53 extremely rapidly simply by shutting down its degradation. The main 

facilitator of p53 degradation is MDM2 (Murine double minute, HDM2 in humans, 

for simplicity I will refer to MDM2 throughout). MDM2 functions as an E3 ubiquitin 

ligase, facilitating the ubiquitination and subsequent proteasomal degradation of 

p53 (Haupt, Maya et al. 1997; Honda, Tanaka et al. 1997; Kubbutat, Jones et al. 

1997). MDM2 can also function in a number of other ways to antagonise the 

activity of p53, including direct binding and therefore blocking the 

transactivation domain of p53 (Oliner, Pietenpol et al. 1993). Therefore, it can 

be seen that inhibition of MDM2 will lead to an increase in p53 levels. 

p53 is stabilised in response to a number of stimuli, such as genotoxic stress 

(e.g. irradiation), hypoxia, DNA damage or oncogene activation (Maltzman and 

Czyzyk 1984; Graeber, Peterson et al. 1994; Hermeking and Eick 1994; Wagner, 

Kokontis et al. 1994; Serrano, Lin et al. 1997). In response to DNA damage p53 is 
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stabilised by the activity of Ataxia-Telangectasia Mutated (ATM) and Ataxia-

Telangectasia and Rad3 related (ATR). ATM becomes activated in response to 

DNA breaks and can phosphorylate p53 on Ser15 (Banin, Moyal et al. 1998). 

Another target of ATM is Chk-2 Kinase, once activated this kinase can 

phosphorylate p53 on Ser20, which makes up part of the MDM2 binding domain, 

thus protecting it from MDM2 mediated ubiquitination and degradation (Chehab, 

Malikzay et al. 2000; Shieh, Ahn et al. 2000). Once activated p53 translocates to 

the nucleus where it acts as a transcription factor, leading to the transcription 

of target genes, including such as p21 and BAX (Figure 1.11). Depending on the 

cellular context, this can lead to a number of different outcomes, including cell 

cycle arrest (giving the cell an opportunity to repair the damage prior to entry 

into the cell cycle) (Baker, Markowitz et al. 1990; Diller, Kassel et al. 1990; 

Mercer, Shields et al. 1990; Michalovitz, Halevy et al. 1990), senescence (after 

which cells may be cleared by the immune system) (Serrano, Lin et al. 1997; 

Wang, Blandino et al. 1998) or in the most extreme case apoptosis (Yonish-

Rouach, Resnitzky et al. 1991; Shaw, Bovey et al. 1992).  
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Figure 1.11: Activation of p53 

In the absence of stress p53 is constantly turned over as it is ubiquitinated by MDM2 and 
subsequently degraded in the proteosome. In the presence of DNA damage, ATM and ATR are 
activated, these in turn activate CHK1/2 kinases which can phosphorylate p53, reducing the ability 
of MDM2 to ubiquitinated it. Similarly in response to oncogenic stress ARF becomes activated, this 
binds and sequesters MDM2 away from p53. Once p53 is stabilised it translocates to the nucleus, 
where it mediates transcription of genes resulting in a number of outcomes, including cell-cycle 
arrest and apoptosis (Adapted from Sherr 2006). 
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The cells of the intestine are exquisitely sensitive to apoptosis in response to a 

number of stimuli, such as ionising radiation (Potten 1992) and cytotoxic 

chemotherapeutic agents (Ijiri and Potten 1987).  In both cases it has been 

shown that this apoptosis occurs in a p53 dependent manner (Merritt, Potten et 

al. 1994; Pritchard, Watson et al. 1997). Although it seems that the apoptosis 

occurs in different cell populations (Pritchard, Watson et al. 1997).  In the case 

of the cytotoxic agent 5-Flouro-Uracil (5FU) apoptosis is seen predominantly in 

the cells of the transit amplifying zone and is induced via incorporation of the 

drug into RNA (Pritchard, Watson et al. 1997). The response to irradiation is 

thought to be mediated predominantly via DNA damage pathways. The 

observation that the amount of apoptosis in the intestine of irradiated ATM 

knockout mice is initially reduced compared to wild-type controls but then 

recovers over longer time points suggests an important immediate role for ATM 

in this process but that other pathways can then be activated to compensate for 

the lack of ATM (Gurley and Kemp 2007).  Downstream of p53 apoptosis in the 

intestine is induced following the upregulation of pro-apoptotic p53 targets such 

as DR5, Bid, PUMA and Noxa (Fei, Bernhard et al. 2002). However the well 

characterised pro-apoptotic p53 target Bax is not upregulated (Coates, Lorimore 

et al. 2003) nor required for p53 dependent apoptosis in the intestine (Pritchard, 

Potten et al. 1999).  

Given the role of p53 in the response to DNA damage discussed above it is not 

surprising that it has been shown to be important in the development of CIN, 

which is known to occur in the majority of CRC (Issa 2008). It has been shown 

that in cells that have mutation of p53 there is a marked increase in CIN 

(Donehower, Godley et al. 1995; Borel, Lohez et al. 2002; Fujiwara, Bandi et al. 

2005). In these studies it was shown that in the absence of functioning p53 
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tumours developed more rapidly in a mouse model of mammary carcinoma and 

the resulting tumours showed an increase in aneuploidy as well as genetic 

deletions and amplifications (Donehower, Godley et al. 1995). Mechanistically, it 

was demonstrated that in the absence of p53 cells can by-pass the G1 

tetraploidy checkpoint, following incomplete cytokinesis (Borel, Lohez et al. 

2002). The resulting tetraploid cells then show an increase in chromosomal 

deletions, amplifications and aneuploidy (Fujiwara, Bandi et al. 2005). There is 

now evidence that CIN can play a direct role in tumour development (Weaver, 

Silk et al. 2007). This suggests that some of the effect of p53 loss in CRC may be 

mediated in this way.  

It can be seen that p53 plays a vital role in protecting cells against the potential 

tumourigenic effects of both DNA damage and oncogene activation. This activity 

of p53 creates a major hurdle for a potential cancer cell to overcome and 

therefore it is easy to see why the majority of human cancers have been shown 

to develop mutations of p53 or in the p53 pathway (Levine and Oren 2009). As 

has been noted above in the intestine p53 mutation is common in the later 

stages of CRC but rare in the early, adenomatous stage of the disease 

(Vogelstein, Fearon et al. 1988). It has also been reported that there are very 

limited effects of p53 loss in the setting of acute loss of APC (Reed, Meniel et al. 

2008). These data would suggest that in the early stages of intestinal tumour 

development there is no selective pressure to lose function and that this loss of 

p53 only becomes important in the transition from a benign adenoma to an 

invasive carcinoma.  
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1.7.1 p53 mutation in cancer  

When originally discovered it was thought that p53 was an oncogene. This 

resulted from data demonstrating that p53 isolated from cancer cells was 

capable of enhancing the oncogenic properties of other cells (Eliyahu, Raz et al. 

1984; Jenkins, Rudge et al. 1984; Parada, Land et al. 1984; Wolf, Harris et al. 

1984; Eliyahu, Michalovitz et al. 1985). However evidence that p53 was in fact a 

tumour suppressor began to emerge  when it was shown that p53 is deleted in a 

number of different tumour cell lines (Wolf and Rotter 1984; Wolf and Rotter 

1985). This created somewhat of a paradox, which was only resolved by the 

realisation that in the original studies in which the expression of p53 had led to 

an increase in oncogenic properties, this p53 had been cloned from cancer cells 

and was in fact a mutant form of the protein. 

Unlike many tumour suppressors, the mutations that occur in p53 tend to be 

point mutations which result in the expression of a mutant form of the protein, 

which often accumulates in tumour cells (Bartek, Bartkova et al. 1991; Brosh and 

Rotter 2009). Indeed, it has been shown that accumulated p53 as detected by 

immunohistochemistry correlates well with the presence of a p53 mutation 

(Soussi and Beroud 2001). The majority of these mutations occur in the so called 

“hot spot” region, which includes the DNA binding domain (Hollstein, Sidransky 

et al. 1991). Many of these mutations prevent the binding of p53 to DNA and 

therefore prevent it from acting as a transcription factor. The mutations may 

directly prevent DNA binding by altering an amino acid which interacts with the 

DNA (e.g. R273H), these are termed “DNA contact” mutations. Alternatively the 

mutation may result in an alteration of the tertiary structure of the protein and 

prevent DNA binding this way (e.g. R175H), these are termed “conformational” 
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mutations (Brosh and Rotter 2009). What has become increasingly clear is that 

these mutant forms of the p53 protein play an enhanced role in oncogenesis, 

beyond this simple loss of DNA binding function (Sigal and Rotter 2000).  

One explanation for this is that mutant p53 has a dominant negative effect and 

indeed this does seem to occur. When binding to DNA p53 forms a 

homotetramer. Mutant p53 is capable of binding to molecules of wild-type p53, 

thus forming a heterotetramer which is now incapable of binding DNA (Milner 

and Medcalf 1991; Milner, Medcalf et al. 1991). However, the observation that 

transfection of p53 null cells with a mutant form of p53 enhances the oncogenic 

properties of the cells has lead to the “gain of function” hypothesis, i.e. that 

the mutant form of the protein has distinct functions which promote 

tumourigenesis, unrelated to the function of the wild-type protein (Wolf, Harris 

et al. 1984; Shaulsky, Goldfinger et al. 1991). A number of studies have 

supported this hypothesis. Theses include studies showing that although mice 

expressing a mutant form of p53 have a very similar lifespan to mice in which 

p53 is deleted, they show a very different tumour spectrum and also an increase 

in tumour aggressiveness, with an increase in metastasis seen (Lang, Iwakuma et 

al. 2004; Olive, Tuveson et al. 2004).  
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1.7.2 Introduction to ARF 

As mentioned above p53 activation occurs in response to oncogenic stress, 

preventing propagation of the oncogenic stimulus and subsequent tumour 

formation. One of the most important modulators of this response is the protein 

ARF (p14ARF in humans, p19ARF in mice. For simplicity I will refer to ARF 

throughout). The ARF protein is encoded from the CDKN2A locus, on 

chromosome 9 in humans and chromosome 4 in mice. This locus codes for 2 gene 

products, one is the tumour suppressor p16INK4A, which inhibits the cyclin 

dependent kinases CDK4 and CDK6. The coding sequence which gives rise to the 

ARF mRNA originates from a different exon to that of p16INK4A (Exon 1) but 

exons 2 and 3 are common to both although the different initiator codons from 

the two genes result in an Alternate Reading Frame (hence the name ARF) and 

the production of a protein which is completely unrelated to p16INK4A (Quelle, 

Zindy et al. 1995).   

1.7.3 The role of ARF in the p53 pathway 

Following its discovery at the CDKN2A locus it was found that like p16INK4A, ARF is 

also a tumour suppressor (Kamijo, Zindy et al. 1997).  ARF is normally 

undetectable or present at only very low levels in a normal cell, however in the 

presence of an oncogenic stimulus (such as increased levels of c-Myc) levels of 

ARF increase within the cell (Zindy, Eischen et al. 1998). ARF then binds directly 

to the p53 inhibitor MDM2, via an MDM2 binding domain at the N-terminal of the 

protein (Weber, Taylor et al. 1999; Sherr 2001). Binding of ARF to MDM2 has two 

effects; firstly this binding inhibits the E3 ubiquitin ligase activity of MDM2 and 

secondly the ARF/MDM2 complex localises to the nucleolus, thus sequestering 
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MDM2 away from p53 in the nucleoplasm (Weber, Taylor et al. 1999; Lowe and 

Sherr 2003). Therefore, upon the detection of an oncogenic stimulus the 

resulting increased levels of ARF allow for the stabilisation of p53 and 

subsequent cell-cycle arrest or apoptosis (Figure 1.11) (Quelle, Zindy et al. 1995; 

Kamijo, Zindy et al. 1997; Kamijo, Weber et al. 1998; Radfar, Unnikrishnan et 

al. 1998) 

The importance of this pathway in terms of tumour surveillance and prevention 

can be seen in the results of both in vitro and in vivo studies. MEFs which 

overexpress c-Myc will normally undergo apoptosis, as a result of ARF induced 

p53 activation. However, rare immortal clones will emerge and these will 

commonly show mutations in either p53 or ARF (Zindy, Eischen et al. 1998). 

Similarly the Eμ-Myc mouse which develops B-cell lymphoma is initially 

protected from tumourigenesis as the increased levels of proliferation induced 

by high levels of Myc are counterbalanced by high levels of apoptosis induced by 

ARF and p53. In the tumours that almost invariably develop in these mice 

mutations in either ARF or p53 are common (Eischen, Weber et al. 1999; Jacobs, 

Scheijen et al. 1999; Schmitt, McCurrach et al. 1999). Moreover, crossing these 

mice to animals which are heterozygous for ARF leads to acceleration of 

tumourogenesis (Eischen, Weber et al. 1999). Overexpression of Ras in primary 

MEFs results in cell-cycle arrest, rather than apoptosis. Again this effect is 

mediated through the ARF dependent stabilisation of p53. In contrast, in ARF 

null MEFs Ras overexpression results in hyperproliferation and transformation 

(Kamijo, Zindy et al. 1997). 

ARF knockout mice are tumour prone, although initially this was not realised as 

the first ARF knockout mouse utilised a knockout of exons 2 and 3 of the CDKN2A 
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locus (the exons that are common to both p16INK4A and ARF) (Serrano, Lee et al. 

1996). The tumours that these mice developed were predominantly lymphomas 

and sarcomas and since at the time ARF had only just been discovered this 

tumour prone phenotype was ascribed to the deletion of p16INK4A (Serrano, Lee 

et al. 1996). The relative roles played by ARF and p16INK4A in the phenotype of 

the CDKN2A knockout mouse have subsequently been unravelled. The ARF 

knockout mouse was generated by deletion of exon1 and thus leaving p16INK4A 

function intact (Kamijo, Zindy et al. 1997). The ARF knockout mice developed 

tumours at an early age, almost exactly phenocopying the CDKN2A knockout 

mice. The tumours that developed retained detectable levels of p16INK4A 

(Kamijo, Zindy et al. 1997), indicating that much of the phenotype seen in the 

CDKN2A knock mice was in fact due to the loss of ARF rather than p16INK4A. 

Selective p16INK4A knockout mice have also been developed (Krimpenfort, Quon 

et al. 2001; Sharpless, Bardeesy et al. 2001).  Although these mice are tumour 

prone and in particular show an increased sensitivity to the effect of chemical 

carcinogens they do not show the same predisposition to tumours as either the 

CDKN2A or ARF knockout mice (Krimpenfort, Quon et al. 2001; Sharpless, 

Bardeesy et al. 2001). These studies underline both the important role of ARF 

and that ARF and p16INK4A play subtly different roles in tumour suppression.  

ARF function is also lost in a significant percentage of human tumours (Esteller, 

Tortola et al. 2000; Krassenstein, Sauter et al. 2004). As with the mouse there 

has been some difficulty in establishing the exact role played by loss of ARF as it 

is often co-deleted with p16INK4A, however studies in melanoma have shown a 

high proportion of ARF deletions or mutations in tumours with wild-type p16INK4A 

again suggesting an important role for ARF in this disease (Freedberg, Rigas et 

al. 2008). As you would predict from the pathway as a general rule ARF and p53 
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mutations are mutually exclusive (Carr-Wilkinson, O'Toole et al. 2010), again 

indicating that the main effect of ARF in terms of tumour prevention is mediated 

via its activity on p53. 

1.7.4 ARF as a tumour promoter    

Although as has been demonstrated by the above discussion ARF is generally 

seen to act as a tumour suppressor, there is emerging evidence that in certain 

circumstances the reverse may be true and ARF may promote tumour 

development. Humbey et al showed that in the absence of p53 activity ARF can 

indeed promote tumour formation in a mouse model of B-cell lymphoma which is 

driven by constitutively high levels of Myc (Humbey, Pimkina et al. 2008). The 

authors suggested that this may be due to an ARF induced increase in autophagy, 

allowing increased tumour cell survival. Another study has demonstrated that in 

response to oncogenic stress ARF can promote formation of a Myc/Miz complex. 

This complex represses transcription of genes involved in adhesion. Functionally 

this resulted in cell detachment and subsequent apoptosis in p53 proficient cells. 

However, when apoptosis was inhibited the reduction in cell adhesion persisted 

(Herkert, Dwertmann et al. 2010). This would suggest that in the absence of an 

apoptosis signal mediated by p53 increased levels of ARF could reduce cell-cell 

adhesion and promote an invasive phenotype.   
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1.8 Introduction to mouse models of 

colorectal carcinoma 

Mouse models of human disease have become an invaluable tool in furthering our 

understanding of the biological processes underlying a number of common 

human pathologies. In the case of CRC some of the understanding of the step-

wise progression of the disease has come from work on animal models. In a 

reciprocal fashion greater understanding of the biology of CRC has informed the 

generation of animal models and therefore allowed for models that more closely 

recapitulate the human disease. 

In these studies we have utilised a number of existing mouse models of CRC to 

study the role of RKIP in vivo, these models will be described below. Another 

aim of this study was to develop a novel model of late stage CRC. Therefore in 

the final section of this introduction I will discuss models of invasive CRC that 

already exist. 
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1.8.1 ApcMIN mouse 

The Multiple Intestinal Neoplasia (ApcMin) mouse was first published in 1990 

(Moser, Pitot et al. 1990) and is the result of a truncating mutation of Apc at 

codon 850, resulting in a non-functional protein (Su, Kinzler et al. 1992). These 

mice develop generally between 30-100 polyps in both the small and large 

intestine and recapitulate, to some extent, the phenotype of human FAP 

patients. However, there are a number of important differences between the 

mouse and the human, not the least of which is the fact that the tumours in the 

ApcMin mouse only rarely progress beyond the adenoma stage (Moser, Pitot et al. 

1990). Following on from the ApcMin mouse a number of other mouse models 

have been generated by using truncations of the Apc gene of varying lengths 

(Fodde, Edelmann et al. 1994; Oshima, Oshima et al. 1995; Colnot, Niwa-

Kawakita et al. 2004; Pollard, Deheragoda et al. 2009). A number of these have 

lead to different phenotypes, in terms of the number of polyps generated. 

However, the histology in all cases is remarkably similar with mice developing 

benign adenomas with only a small minority progressing to adenocarcinoma.  

1.8.2 Apc580S Mouse 

Although a good model of early tumour development in FAP the ApcMin mouse 

and other similar models do not recapitulate sporadic CRC, in which mutation of 

APC occurs in the adult. In order to address this the Apc580S  mouse (from now on 

referred to as the APCfl mouse) was developed (Shibata, Toyama et al. 1997). 

This is a conditional Apc knock-out mouse which makes use of Cre-Lox 

technology. LoxP sites are inserted into the Apc gene in introns 13 and 14. The 

activation of the bactreriophage enzyme Cre recombinase results in 
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recombination at the LoxP sites and consequent deletion of exon 14 of the Apc 

gene. This results in a frameshift mutation at codon 580 and the generation of a 

premature STOP codon (Shibata, Toyama et al. 1997). The Apc protein that is 

produced is therefore truncated and non-functional. This approach also allows 

for a more tissue specific approach to the study of Apc function. This is achieved 

by having the Cre under the control of a tissue specific promoter. One of these is 

the AhCre, which is under the control of the Cyp1A1 promoter, which yields 

activity of the Cre primarily in the small and large intestines and in the liver 

(Ireland, Kemp et al. 2004). The development of this conditional knock-out 

mouse also allows for the study of the acute effects of Apc loss within the 

intestine, this is not possible using any of the germ-line knock-outs as these 

result in embryonic lethality at day E6.5 (Moser, Shoemaker et al. 1995). The 

conditional heterozygous knockout of Apc therefore produces a better model for 

the study of sporadic intestinal adenomas, however the problem remains that 

only a very small minority of these adenomas will progress to carcinoma 

(Sansom, Meniel et al. 2006). There is a need therefore for development of 

further mouse models, which more closely recapitulate the later stages of the 

disease, specifically invasion and metastasis. Such models will allow for 

delineation of the function of genes involved in tumour progression, such as 

metastasis suppressor genes.  

1.8.3 Carcinogen-induced models of CRC 

Methods other than transgenics have been employed to develop models of 

intestinal tumourigenesis in the mouse. These include tumourigenesis induced by 

chemical carcinogens. One of the best known and studied examples of this 

method employs the administration of the carcinogen azoxymethane (AOM), 
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followed by the repeated oral administration of the irritant dextrane sodium 

sulphate (DSS). In this model AOM acts as the promoter, inducing mutations 

(particularly in the β-catenin gene) and repeated exposure to DSS results 

inflammation and subsequent tumour formation.  

This model has been used successfully in studies to demonstrate the important 

roles played by toll-like rector 4 (TLR4) and tumour necrosis factor-α (TNF-α) in 

inflammation induced CRC (Taketo, Edelmann. 2009). This model like all of the 

other models has a number of advantages and disadvantages. One of the main 

advantages of the model is that the tumours form in quite specifically in the 

colon rather than in the small intestine. The relatively short time to tumour 

formation is another important advantage. A potential drawback of this 

approach is that although the mutations induced by particular mutations are 

generally characteristic (such as the example given above, where β-catenin 

mutations are induced by AOM), it cannot be exactly predicted what other 

genetic events are being induced by the carcinogen.   

1.8.4 Models of invasive and metastatic colorectal 

carcinoma  

A small number of mouse models exist which demonstrate the potential for 

invasion. Sansom et al demonstrated that the conditional deletion of a single 

copy of Apc combined with expression of an activated, oncogenic form of KRas 

results in an increase in the number of invasive carcinomas, when compared to 

deletion of Apc alone  (Sansom, Meniel et al. 2006). However the tumours in this 

study showed only superficial invasion. Subsequently, it was shown that the 

combination of conditional deletion of both Apc and Pten resulted in full 
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thickness invasion (Marsh, Winton et al. 2008). Metastasis did not occur in either 

of these models.  

Two recent models have been published in which the tumours that develop are 

capable of metastasis. In the first of these the tumours developed as a result of 

an inactivating TGFR mutation, combined with the expression of an oncogenic 

form of KRas (Trobridge, Knoblaugh et al. 2009). The tumours that developed in 

this study showed occasional metastasis to the lymph nodes and lungs. The 

authors showed that the tumours developed in a Wnt independent fashion 

(Trobridge, Knoblaugh et al. 2009). This is characteristic of MSI tumours (Issa 

2008), which develop along the so-called “serrated pathway”. In tumours which 

develop along this pathway mutations in APC are less common and TGFR 

mutation is more common than in CRC as a whole. In the second of these studies 

the authors utilised conditional deletion of one copy of Apc with expression of 

oncogenic Ras. They also confined the expression of the mutations to the distal 

colon by administering Adenoviral-Cre per rectum. This resulted in a relatively 

small number of tumours per mouse which showed invasion and occasional 

metastasis to the liver and lymph nodes (Hung, Maricevich et al. 2010).  
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1.9 Thesis aims 

It has been shown previously that RKIP protein level is an important determinant 

of prognosis in CRC as a whole. In this thesis I will address the question of 

whether RKIP status retains its prognostic utility in Dukes B CRC patients. I will 

go on from there to examine the use of RKIP as a predictive marker. In the 

second part of the thesis I will examine the effects of RKIP knockout on known 

mouse models of CRC and attempt to develop a mouse model of CRC which more 

closely recapitulates the later stages of the human disease, particularly invasion 

and metastasis. These studies have led me to study the differing effects of p53 

knockout and point mutation in two different models. Therefore, the aims of the 

thesis are: 

 To study the role of RKIP as a prognostic marker in Dukes B CRC. 

 To study the role of RKIP as a predictive marker in CRC. 

 To investigate the effect of RKIP knockout in existing models of CRC, in 

particular to examine any potential increase in metastatic behaviour. 

 To develop and characterise a model of invasive and metastatic CRC, 

based on the mutation of p53. 

 To use this and a model of aggressive rhabdomyosarcoma to study the 

differing effects of p53 knockout and point mutation. 
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2.1 Immunohistochemistry 

All immunohistochemistry (IHC) was performed on standard paraffin sections. In 

all cases sections were de-waxed in xylene (3 changes of 3 minutes each) and 

then rehydrated through decreasing concentrations of ethanol to distilled water. 

With the exception of RKIP and -catenin antigen retrieval was performed in 

citrate buffer (pH 6) either by the water bath or microwave methods (detailed 

below). Following antigen retrieval endogenous peroxidase activity was blocked 

by incubating the slides in 3% hydrogen peroxide for 10 minutes (with the 

exception of -catenin). All washing steps consisted of 3 5-minute immersions in 

TBST. In all cases (with the exception of ZEB1) staining was visualised using DAB 

(3,3'-diaminobenzidine) chromogen and slides were counterstained with 

haematoxylin, prior to being dehydrated in increasing concentrations of ethanol 

and mounted.  

2.1.1 Water bath antigen retrieval 

5ml of Citrate or EDTA antigen retrieval buffer (Thermo) was diluted 1/10 with 

distilled water to a final volume of 50ml in a coplin jar. This was placed in a cold 

water bath and then heated to 99.9oC, prior to immersion of the slides. Slides 

were then place in the pre-heated solution for 20 minutes before being allowed 

to cool in the solution for 30 minutes at room temperature.  
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2.1.2 Microwave antigen retrieval 

Microwave antigen retrieval was performed by pre-heating 1500ml of EDTA or 

Citrate buffer in an open pressure cooker for ~15minutes until boiling. Slides 

were then placed into the solution and heated with the lid on until the pressure 

was optimised. Slides were then heated for a further 3-4 minutes, before being 

removed and allowed to cool at room temperature for 30 minutes.  

EDTA Buffer  

EDTA (Sigma): 3.7 g 

Distilled water: 1000 ml 

Tween 20: 5ml 

This 10mM stock solution was diluted 1/10 to yield a 1mM working solution with 

distilled water and adjusted to pH 8.   

Citrate Buffer 

Solution A:  

10.5g of citric acid 

500 mls dH20 

Solution B:  

29.4g  SodiumCitrate 

1 litre dH20 

27ml of solution A was mixed with 123ml of solution B and then made up to 

1500ml with distilled water. The solution was adjusted to pH 6 following 

dilution. 
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2.1.3 IHC for p19ARF 

Sections were de-waxed and rehydrated as in 2.1. Antigen retrieval was 

performed using the water bath method. Following endogenous peroxidase 

blocking, slides were blocked in 10% normal goat serum (NGS) for 30 minutes. 

Primary rabbit anti-p19ARF antibody (Abcam, 1/300 in 10% NGS) was applied 

overnight at 4oC. After washing secondary anti-rabbit antibody (Vector ABC Kit) 

was applied for 30 minutes. After washing signal amplification was performed, 

using the ABC Complex (Vector ABC Kit), applied for 30 minutes. After washing 

positivity was visualised and slides mounted as described in 2.1.   

2.1.4 IHC for -catenin 

Samples that were to be used for -catenin staining were fixed for no more than 

24 hours at 4oC. Sections were de-waxed and rehydrated as in 2.1. Peroxidase 

block was carried out in a solution of 1.5% hydrogen peroxide for 45 minutes. 

Antigen retrieval was performed in pre-heated Tris EDTA in a boiling water bath 

for 50 minutes. Slides were then cooled for 1 hour and blocked with 1% BSA for 

30 minutes. Slides were incubated with primary mouse anti--catenin antibody 

(Transduction Laboratories, 1/50 in 1% BSA) for 2 hours at room temperature and 

with HRP-labelled polymer (Mouse Envision+ system, Dako) for 1 hour at room 

temperature. After washing positivity was visualised and slides mounted as 

described in 2.1. 
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2.1.5 IHC for BRDU  

IHC was performed as in 2.1.3 with the following exceptions; Blocking was 

carried out in 1% BSA for 30 minutes. Primary mouse anti-BRDU antibody (BD 

Biosciences, 1/500 in 1% BSA) was applied overnight at 4oC. The mouse Envision 

+ system (Dako) was used for both secondary antibody and signal amplification 

and applied for 1 hour at room temperature.  

2.1.6 IHC for c-Myc 

IHC was performed as in 2.1.3 with the following exceptions; Antigen retrieval 

was performed in the water bath for 50 minutes. Primary rabbit anti-c-Myc 

antibody (Santa Cruz, 1/200) was applied for 48 hours at 4oC. The rabbit Envision 

+ system (Dako) was used for both secondary antibody and signal amplification 

and applied for 2 hours at room temperature. 

2.1.7 IHC for Desmin 

IHC was performed as in 2.1.3 with the following exceptions; Blocking was 

carried out in 10% normal horse serum (NHS). Primary mouse anti-desmin 

antibody (Thermo, 1/50 in Dako antibody diluent) was applied for 1 hour at room 

temperature. 

2.1.8 IHC for Fascin 

IHC was performed as in 2.1.3 with the following exceptions; Antigen retrieval 

was performed in citrate buffer, using the microwave method. Primary rabbit 

anti-fascin antibody (Atlas antibodies, 1/100 in Dako antibody diluent) was 
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applied for 2 hours at room temperature. The rabbit Envision + system (Dako) 

was used for both secondary antibody and signal amplification and applied for 1 

hour at room temperature. 

2.1.9 IHC for Ki-67 

IHC was performed as in 2.1.3 with the following exceptions; Primary rabbit 

anti-Ki-67 antibody (Thermo, 1/200 in Dako antibody diluent) was applied for 1 

hour at room temperature. The rabbit Envision + system (Dako) was used for 

both secondary antibody and signal amplification and applied for 1 hour at room 

temperature. 

2.1.10 IHC for myogenin 

IHC was performed as in 2.1.3 with the following exceptions; Antigen retrieval 

was performed in citrate buffer, using the microwave method. Blocking was 

carried out in 10% NHS. Primary mouse anti-myogenin antibody (Dako, 1/100 in 

Dako antibody diluent) was applied 1 hour at room temperature. 

2.1.11 IHC for p21 

IHC was performed as in 2.1.3 with the following exceptions; Primary rabbit 

anti-p21 antibody (Santa Cruz, 1/500 in Dako antibody diluent) was applied for 1 

hour at room temperature. The rabbit Envision + system (Dako) was used for 

both secondary antibody and signal amplification and applied for 1 hour at room 

temperature. 
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2.1.12 IHC for p53 

IHC was performed as in 2.1.3 with the following exceptions; Blocking was 

carried out in 10% NHS. Primary mouse anti-p53 antibody (Vector Laboratories, 

1/200 in Dako antibody diluent) was applied for 1 hour at room temperature. 

The mouse Envision + system (Dako) was used for both secondary antibody and 

signal amplification and applied for 1 hour at room temperature. 

2.1.13 IHC for pAktSer473 

IHC was performed as in 2.1.3 with the following exceptions; Primary rabbit 

anti-pAktSer473 antibody (Cell Signalling, 1/25 in 5% NGS) was applied overnight at 

4oC. 

2.1.14 IHC for pERKThr202/Tyr204 

IHC was performed as in 2.1.3 with the following exceptions; Antigen retrieval 

was performed in citrate buffer, using the microwave method. Primary rabbit 

anti-pERKThr202/Tyr204 antibody (Cell Signalling, 1/100 in 10% NGS) was applied 

overnight at 4oC. 

2.1.15 IHC for RKIP 

IHC was performed as in 2.1.3 with the following exceptions; Antigen retrieval 

was performed in EDTA buffer, using the microwave method. Primary rabbit 

anti-RKIP antibody (Ki-69, 1/1500 in 10% NGS) was applied for 1 hour at room 

temperature. 
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2.1.16 IHC for ZEB1 

IHC was performed as in 2.1.3 with the following exceptions; Blocking was 

carried out in 1% BSA. Primary goat anti-ZEB1 antibody (Santa Cruz, 1/100 in 

Dako antibody diluent) was applied overnight at 4oC. Signal was visualised with 

alkaline phosphatase chromogen.  

2.2 ISH for LGR5 

ISH was carried out using labeled riboprobes as has been previously described 

(Poulsom, Longcroft et al. 1998), with SP6 RNA polymerase and EcoRI linearized 

sequence verified templates prepared in pGEM3Z. Mouse Lgr5 562 bp from 5′ UTR 

to exon5 (UCSC chr10:114,915,553-115,024,577), introns excluded. 

2.3 RKIP monoclonal antibody depletion 

experiments 

To demonstrate binding of the RKIP monoclonal antibody we pre-adsorbed the 

antibody prior to application to the tissue section. This was done as follows: 

200μg of purified GST-RKIP protein was added to binding buffer (PBS, 1mM DTT, 

pH 7.5). Protease activity was inhibited by the addition of a protease inhibitor 

tablet (Roche). A 200μl suspension of glutathione sepharose beads was washed 3 

times with binding buffer and finally centrifuged for 1 minute at 1000rpm and 

4oC. GST-RKIP was added to the washed beads and gently agitated for 1 hour at 

4oC to allow GST binding to the beads. The suspension was then centrifuged for 1 
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minute at 1000rpm and 4oC and washed 3 times, prior to re-suspension. RKIP 

monoclonal antibody was then exposed to the beads using 2 different methods.  

Firstly, 50μl of GST-RKIP beads were placed in a column and the RKIP 

monoclonal antibody applied above the beads and allowed to flow through them 

under gentle pressure. The run through was collected and the procedure 

repeated 9 times. The second method used was to incubate 400μl of RKIP 

monoclonal antibody with 150μl of GST-RKIP beads, under gentle agitation for 2 

hours at 4oC. Following incubation the solution was centrifuged for 1 minute at 

1000rpm and 4oC and the supernatant removed. The procedure was repeated 

once and then the supernatant used for slide staining.   

2.4 Tissue Microarrays 

The tissue microarray (TMA) used in 3.2.1 contained 4 cores of tumour and 

normal tissue from 220 patients with Dukes B CRC, all of whom had their primary 

treatment at St. Vincent’s University Hospital, Dublin. The TMA used in 3.2.4 

consisted of tumour and normal tissue from 1034 patients with CRC from the 

Western Australia Tissue Research Network, across all stages. Each sample was 

present in duplicate. All samples were formalin fixed and paraffin embedded. In 

the case of the Dublin TMA the slides contained samples of both normal colonic 

epithelium and normal liver which acted and a positive control, in the case of 

the TMA from the Western Australia Tissue Research Network normal colonic 

epithelium acted as the positive control. A negative control, using normal goat 

serum rather than the primary antibody was included in each staining run. Both 

TMAs were scored independently by 2 people. Both scorers were blinded to the 

clinical outcome data. The results of each independent scorer were compared 
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and any discrepancies were resolved by a review of the sample in question and 

agreement on a final consensus score.  

2.5 Statistical analysis 

Statistical analysis was carried out using Minitab 15 or SPSS (IBM) software 

packages. Survival data was calculated using Kaplan-Meier survival analysis. 

Univariate and multivariate analyses were carried out using the Cox regression 

model. Comparison of tumour number and size in the mouse experiments was 

performed using the Mann-Whitney test for differences in medians. Differences 

in the numbers of aberrant mitoses and rates of metastases across groups were 

compared using the Chi-squared test. Depth of invasion into organotypic assay 

was compared using the Sudent’s t-test, follwing a test to ensure the data 

follwed a normal distribution. In all cases a p-value of less than 0.05 was 

deemed statistically significant.   

2.6 Generation of mouse colonies 

All experiments were performed in accordance with UK Home Office guidelines 

and local ethical approval. Mice were maintained under non-barrier conditions 

and fed a standard diet (Harlan) and water ad libitum.  

The alleles used in the experiments were as follows: RKIP (Theroux, Pereira et 

al. 2007), APCfl (Shibata, Toyama et al. 1997), AhCre (Ireland, Kemp et al. 

2004), KRasG12V (Guerra, Mijimolle et al. 2003), PTENfl (Groszer, Erickson et al. 

2001),  p53fl (Jonkers, Meuwissen et al. 2001), p53R172H (Olive, Tuveson et al. 

2004) ZE/G GFP (Novak, Guo et al. 2000).  
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2.6.1 Mouse experiments for chapter 4 

To examine the effect of RKIP deletion on tumourigenesis in the APCfl mouse 

AhCre+ APCfl/+ mice were crossed with RKIP-/- mice to yield AhCre+ APCfl/+ RKIP+/- 

mice. These were then inter-crossed to yield experimental cohorts of AhCre+ 

APCfl/+ RKIP+/+, AhCre+ APCfl/+ RKIP+/- and AhCre+ APCfl/+ RKIP-/- mice. AhCre 

expression was induced with 3 intra-peritoneal injections of -naphthoflavone 

(80mg/kg), every 4 hours at ~6 weeks of age. Mice were examined 3 times per 

week for signs of intestinal tumours, such as paling feet, hunching and weight 

loss. Upon developing any 2 of these signs mice were euthanized and underwent 

a full necropsy. Tumour invasion was assessed by histology. 

To examine the effect of RKIP deletion on the acute deletion of APC, AhCre+ 

APCfl/+ RKIP+/- mice were inter-crossed to yield cohorts of AhCre+ APCfl/fl RKIP+/+ 

and AhCre+ APCfl/fl RKIP-/- mice. Mice were given 3 intra-peritoneal injections of 

-naphthoflavone, every 4 hours at ~6 weeks of age on day 0. Mice were 

euthanized on day 4 and underwent full necropsy.  

To determine the effect of RKIP deletion on invasive/metastatic behaviour in the 

AhCre+ APCfl/+ KRasG12V mouse AhCre- APCfl/+ KRasG12V were crossed with AhCre+ 

APCfl/+ RKIP-/- to yield AhCre+/- APCfl/+ KRasG12V RKIP+/-. These were then inter-

crossed to yield cohorts of AhCre+ APCfl/+ KRasG12V RKIP+/+ and AhCre+ APCfl/+ 

KRasG12V RKIP-/- mice. Mice were induced and monitored for signs of intestinal 

tumours as described above. Tumour invasion was assessed by histology. 
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2.6.2 Mouse experiments for chapter 5 

To determine the effects of p53 deletion or point mutation on the phenotype of 

the APCfl mouse AhCre+ APCfl/+ mice were crossed to either p53fl/fl or p53R172H/+ 

mice. The progeny were then inter-crossed to yield cohorts of AhCre+ APCfl/+ 

p53+/+, AhCre+ APCfl/+ p53fl/+, AhCre+ APCfl/+ p53R172H/+, AhCre+ APCfl/+ p53fl/fl, 

AhCre+ APCfl/+ p53R172H/fl mice. AhCre expression was induced with 3 intra-

peritoneal injections of -naphthoflavone (80mg/kg), every 4 hours at ~6 weeks 

of age. Mice were monitored for signs of intestinal tumourigenesis as described 

above. Tumour invasion was assessed by histology.  

To assess the response of mutant p53 and p21 to γ-irradiation, mice were 

irradiated with 14 Gy irradiation using a Cs137 source delivered at a dose rate of 

0.423 Gy/min. Mice were euthanized 6 hours post-irradiation and underwent a 

full necropsy.  

To assess the effect of ARF over-expression in vivo HCT116 p53-/- cells + pcDNA3 

vector, or + pcDNA3-p14ARF were injected subcutaneously into the right flank of 

8-10 week old female nude mice (Charles Rivers, Harlan, UK). The mice were 

monitored regularly and upon developing tumours > 1.7cm, or upon tumour 

ulceration, mice were euthanized and underwent a full necropsy. 

2.6.3 Mouse experiments for chapter 6 

To study the differing effects of p53 deletion and point mutation in the mouse 

model of pleomorphic rhabdomyosarcoma AhCre- KRasG12V mice were crossed to 

AhCre+ p53fl/fl or p53R172H/+ mice. The progeny were then inter-crossed to yield 

cohorts of AhCre+ KRasG12V p53fl/+, AhCre+ KRasG12V p53R127H/+, AhCre+ KRasG12V 
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p53fl/fl, AhCre+ KRasG12V p53R172H/fl mice. Mice were aged until they developed 

tumours of 1.7cm or ataxia at which point they were euthanized and underwent 

a full necropsy. Irradiation experiments were carried out as in 2.5.2. 

To demonstrate spontaneous AhCre recombination in the skeletal muscle AhCre+ 

mice were crossed to Lox-STOP-Lox (LSL) ZE/G GFP mice. The Olympus OV100 

Whole Mouse Imaging System (Olympus), containing an MT-20 light source 

(Olympus Biosystems) and DP70 CCD camera (Olympus), was used for imaging 

GFP positivity in euthanized mice. 

2.7 Tissue isolation 

For the analysis of intestinal phenotypes at four days post induction; the small 

intestine was removed and flushed with water. Intestines were dissected as 

follows: The proximal 7cm was mounted ‘en face’ and fixed overnight in 

methacarn (methanol:chloroform:acetic acid; 4:2:1) and paraffin embedded. 

The following 5cm was divided into 1cm lengths, parcelled using surgical tape 

and then fixed in neutral buffered formalin (NBF) at 4oC for no more than 24 

hours before processing. The remainder was fixed in methacarn and then 

paraffin embedded. 

For the tumourigenesis studies the entire intestine was removed and flushed 

with water. Both small intestine and colon were mounted ‘en face’ and fixed 

overnight in either methacarn or NBF. Lesions were then scored macroscopically.  

Intestines were wound into rolls which were subsequently embedded in paraffin, 

sectioned at 5-10m and stained with haematoxylin and eosin prior to 

microscopic analysis. 
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Rhabdomyosarcomas were dissected from underlying tissues and sectioned at 

intervals of ~2mm prior to being fixed in NBF and processed as above. A subset 

of tumour samples was placed in RNALater (Applied Biosystems) and frozen at -

70oC. 

2.8 Scoring of apoptosis, mitosis and 

aberrant mitosis  

Apoptosis was identified morphologically; apoptosis was recognised by the 

appearance of smooth membrane bound apoptotic bodies, the presence of a halo 

around the apoptotic bodies, nuclei displaying clear chromatin condensation and 

red cytoplasm (Kerr, Wyllie et al. 1972).  

Similarly mitotic figures were identified by morphology and counted if the cell 

was in any of the stages of mitosis. Aberrant mitoses were defined as follows; 

Unequal division: gross difference in the amount of nuclear material in the  

daughter cells, Tripolar mitosis: A mitosis in which 3 mitotic spindles could be 

clearly identified, Anaphase bridge: Strictly defined as a mitotic figure in which 

2 well defined parallel anaphase plates had formed and were connected by a 

“bridge” of genetic material (Montgomery, Wilentz et al. 2003).  

2.9 Genotyping of mice 

Mice were genotyped by PCR, with DNA extracted from tail biopsies taken at the 

time of weaning. All PCR reactions were done in 50l volumes using 2.5l of the 



Chapter 2  Materials and Methods 103 

tail DNA preparation, with the exception of RKIP in which 3l was used. PCR 

products were resolved by electrophoresis on a 2% agarose gel in all cases.  

2.9.1 DNA extraction from tails 

DNA was extracted from tails using the puregene DNA extraction kit (Qiagen).  

Tails were lysed overnight in 500μl of cell lysis solution (Puregene) and 10μl of 

proteinase K (20mg/ml, Sigma), shaken at 37ºC.   Tails were left to cool at room 

temperature, 200μl of protein precipitation solution (Puregene) was added to 

each tube. These were vortexed and centrifuged at top speed for 5 minutes in a 

microcentrifuge. 

The supernatant was removed into a clean tube containing 500μl of isopropanol, 

vortexed and centrifuged at top speed for 5 minutes.   The supernatant was 

poured off and the DNA pellet left to dry overnight.  DNA was resuspended in 

500μl DNA hydration solution (Puregene). 

Individual PCR protocols are detailed below: 

2.9.2 Apcfl  PCR Protocol 

PCR Mix μl 

5x Colorless GoTaq Flexi Buffer* 10 

MgCl2 (25mM) 5 

dNTPs (10mM) 0.4 

Primer (100μM) 0.2 (of each) 

Go Taq* 0.2 
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H2O to final volume of 47.5 μl 

*GoTaq Flexi DNA Polymerase from Promega.  

Primers: 

APC P3 = GTT  CTG TAT CAT GGA AAG ATA GGT GGT C 

APC P4 = CAC TCA AAA CGC TTT TGA GGG TTG 

Reaction Conditions: 95°C, 3min (95°C, 30s; 60°C, 30s; 72°C 1min)30, 72°C, 
5min. 4°C, hold. 

Bands: FLOX = 314bp 

WT = 226bp  

2.9.3 Cre PCR Protocol  

PCR Mix μl 

5x Colorless GoTaq Flexi Buffer* 10 

MgCl2 (25mM) 5 

dNTPs (10mM) 0.4 

Primer (100μM) 0.2 (of each) 

Go Taq* 0.2 

H2O to final volume of 47.5 μl 

*GoTaq Flexi DNA Polymerase from Promega.  

Primers: 

CRE A  = TGA CCG TAC ACC AAA ATT TG 

CRE B = ATT GCC CCT GTT TCA CTA TC 

Reaction Conditions: 95°C, 3min (95°C, 30s; 55°C, 30s; 72°C 1min)30, 72°C, 
5min. 15°C, hold. 

Bands: CRE = ~1000bp 
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2.9.4 LacZ PCR Protocol 

PCR Mix μl 

Buffer 5 

MgCl2 (25mM) 2.5 

dNTPs (10mM) 0.4 

Primer (100μM) 0.1 (of each) 

Platinum Taq* 0.2 

H2O to final volume of 47.5 μl 

*Platinum Taq (Invitrogen) 

Primers: 

LACZ A = CTG GCG TTA CCC AAC TTA AT 

LACZ B = ATA ACT GCC GTC ACT CCA AC 

Reaction Conditions: 95°C, 3min (95°C, 30s; 55°C, 30s; 72°C 1min)30, 72°C, 
5min. 15°C, hold. 

Bands: LacZ = ~500bp 

2.9.5 KRasG12V PCR Protocol 

PCR Mix μl 

Buffer 5 

MgCl2 (25mM) 2.5 

dNTPs (10mM) 0.4 

Primer (100μM) 0.1 (of each) 

Go Taq* 0.4 
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H2O to final volume of 47.5 μl 

*Go Taq (Promega) 

Primers: 

F = AGG GTA GGT GTT GGG ATA GC 

R = CTG CTC TTT ACT GAA GGC TC 

Reaction Conditions: 94°C, 5min (94°C, 1min; 60°C, 1min; 72°C, 1min, 25s)30, 

72°C, 10min. 15°C, hold. 

Bands: WT = 403bp 

FLOX = 621bp 

2.9.6 p53fl PCR Protocol 

PCR Mix μl 

Buffer 5 

MgCl2 (25mM) 2.5 

dNTPs (10mM) 0.4 

Primer (100μM) 0.1 (of each) 

Platinum Taq* 0.2 

H2O to final volume of 47.5 μl 

*Platinum Taq (Invitrogen) 

Primers: 

P53 Fl int1 F CAC AAA AAC AGG TTA AAC CCA G 

P53 Fl int1 R AGC ACA TAG GAG GCA GAG AC 

Reaction Conditions: 94°C, 3min (94°C, 30s; 58°C, 20s; 72°C, 1min)30 , 72°C, 
5min. 15ºC hold 

Bands: WT = 431bp 
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FLOX = 584bp  

2.9.7 p53R172H PCR Protocol 

PCR Mix μl 

Buffer 5 

MgCl2 (25mM) 2.5 

dNTPs (10mM) 0.4 

Primer (100μM) 0.1 (of each) 

Platinum Taq* 0.2 

H2O to final volume of 47.5 μl 

Note: This is a split PCR  

WT Reaction use primers P53R172H WT and P53R172H Universal 

LSL Reaction use primers P53R172H Mut and P53R172H Universal 

Primers: 

P53R172H WT = TTA CAC ATC CAG CCT CTG TGG 

P53R172H Universal = CTT GGA GAC ATA GCC ACA CTG 

P53R172H Mut = AGC TAG CCA CCA TGG CTT GAG TAA GTC TGC A 

Reaction Conditions: 94°C 3min (94°C, 30s; 60°C, 1min 30; 72°C 1min)35, 72°C, 
5min. 4°C hold. 

Bands: WT = 170bp 

LSL = 270bp 

2.9.8 RKIP PCR Protocol 

PCR Mix μl 
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10x FastStart Taq Buffer 5 

MgCl2 (25mM) 3 

dNTPs (10mM) 0.4 

Primer (100μM) 0.2 (of each) 

FastStart Taq* 0.2 

H2O to final volume of 47 μl 

*FastStart Taq from Roche 

Primers: 

RKIP F2 = GAG CCC TGG CCG GTC TCC CTT GTC CCA AAC TTT  

RKIP R2 = CCA AAA GGG TCT TTG AGC ACC AGA GGA CAT CCG  

RKIP R4 = AGA CTT CCG TGT CCG GAT GAT AGA TAG CCT CTC C  

Split Reaction use primers: 

WT Reaction 1: RKIP F2 and R4 

HOM Reaction: RKIP F2 and R2 

Reaction Conditions: 94ºC, 5min (94ºC, 1min; 57ºC, 1min; 72ºC, 1min)36; 72ºC, 
7min; 4ºC hold 

Bands: WT = 978bp  

NULL = 630bp 

2.10 RKIP rtPCR 

Reverse transcription was performed using the SuperscriptII reverse transcriptase 

kit (Invitrogen) and Random hexamers (Invitrogen) as per the manufacturer’s 

instructions. rtPCR for RKIP1 and RKIP2 was performed using the following 

primers and reaction conditions: 
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RKIP1 Forward: CTG ACT GGC TGG CTG GTA CT 

RKIP1 Reverse: TCT GGA GGA AGA AAC GAC AG 

RKIP2 Forward: TCT TGA GCT GTT GTA GGG AGG TA 

RKIP2 Reverse: TAA CGA GTC CAT CAC AGT GCC 

Reaction Conditions: 94°C, 6min  (94°C, 30sec; 58°C, 30sec; 72°C 50sec)35  

72°C, 7min. 15°C, hold. 

Amplified PCR product was resolved by electrophoresis on a 2% agarose gel.   

2.11 Pyrosequencing 

2.11.1 DNA Extraction 

DNA from both mouse and human tissue samples was extracted using the 

DNAeasy blood and tissue kit (Qiagen), according to the manufacturer’s 

instructions. 

2.11.2 Bisulphite modification 

Bisulphite modification was carried out using the Epitect Bisulfite kit (Qiagen) 

according to the manufacturer’s instructions. Briefly this involved bisulphite 

modification of the DNA, binding of the modified, single stranded DNA to the 

membrane of a spin column and finally desulphonation and elution of the DNA. 

In order to confirm complete bisulphite conversion PCR for a segment of the 

calponin gene was performed using the primers below. This section contains 

multiple non-CpG cytosine (C) residues. As these cannot be methylated they 
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should all be converted during the bisulphite modification process. The primers 

used will only amplify DNA if all of Cs have been converted to U.  

Calponin Primers: 

Forward: GGA AGG TAG TTG AGG TTG TG  

Reverse: CCC AAA CTC AAA ACT CTA ACC TAA C 

2.11.3 Pyrosequencing 

In the case of the pyrosequencing analysis to determine methylation status, the 

DNA was bisulphite modified as in 2.10.2. Forward (F), Reverse (R) and 

Sequencing (S) primers for DNA amplification and sequencing were designed 

using the PSQ96MA Assay Design Software (Qiagen) and are shown below. DNA 

was amplified by PCR using the reaction conditions below. Specific amplification 

was ensured by running 5μl of PCR product on an agarose gel, ensuring the 

presence of a single clear band of the appropriate size. For the RKIP methylation 

analysis normal human and 100% in vitro methylated DNA were used as negative 

and positive controls respectively. For the p53 LOH analysis normal muscle from 

both a p53+/+ animal and a p53R172H/fl animal were used as controls.  

Primers 

RKIP F: TTT TAG GGC GTT TTT TAT TTT TAT 

RKIP R: AAA CTA ACA AAA CAA AAC CTC TC (Biotinylated) 

RKIP S: TCC ATA CAA CCT ACT CCC 

Reaction Conditions: 94°C, 6min  (94°C, 30sec; 55°C, 30sec; 72°C 50sec)45  

72°C, 7min. 15°C, hold. 

p53 F: GGC CAT CTA CAA GAA GTC ACA GC 
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p53 R: CGG TGT TGA GGG CTT ACC A (Biotinylated) 

p53 S: GAC GGA GGT CGT GAG A 

Reaction Conditions: 94°C, 6min  (94°C, 30sec; 61°C, 30sec; 72°C 50sec)40  

72°C, 7min. 15°C, hold. 

Following amplification 40μl of the PCR product was added to 3μl of streptavidin 

sepharose beads (which bind the biotinylated PCR product) and 37μl of binding 

buffer (Qiagen). The mixture was then agitated to ensure re-suspension of the 

beads. The beads were then incubated for 5 seconds each in 70% ethanol, 0.2M 

NaOH, wash buffer (Qiagen) and high purity water, using the vacuum prep work 

station (Qiagen). This purifies the DNA and renders it single stranded to allow 

the pyrosequncing reaction to occur. The beads were then added to 1.5μl of the 

sequencing primer (10μM solution) and 43.5μl of annealing buffer (Qiagen) and 

incubated at 80oC for 2 minutes. The sample was the analysed on PSQ96MA 

pyrosequencing machine (Qiagen), according to the manufacturer’s instructions. 

The data was analysed using the PSQ96MA software (Qiagen) 

2.12 Cell Culture 

HCT116 cells (wild type and p53-/-) were grown in McCoy’s 5A medium 

supplemented with 10% fetal calf serum (FCS) and 2mM L-glutamine, and 

maintained in a humidified incubator at 37°C with 5% CO2.  Cells were 

transfected with either pcDNA3 vector or pcDNA3-p14ARF  (A kind gift from Prof. 

Karen Vousden) using Lipofectamine 2000 (Invitrogen), according to the 

manufacturer’s instructions, and selected in growth medium containing 

500μg/ml G418 sulfate. 
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2.13 Immunoblotting 

Cells were washed with PBS and then lysed in cell extraction buffer (50mM Tris 

(pH 7.6), 150mM sodium chloride, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS, 

10μg/ml aprotinin, 125mM phenylmethylsulfonyl fluoride, 100μM sodium 

orthovanadate and 0.5mM sodium fluoride). Protein concentration was 

determined by comparison of absorbance against known BSA concentrations. The 

resulting lysates were cleared by centrifugation and then resolved by 10% Bis-

Tris gel electrophoresis (Invitrogen).  Proteins were transferred to PVDF 

membrane, blocked and probed with either 1:200 anti-p14ARF (AbCam) or 

1:10000 anti-ERK (Sigma-Aldrich) antibodies.  Bound antibody was detected by 

incubation with anti-mouse or anti-rabbit horseradish peroxidase-conjugated 

secondary antibody and visualized by Enhanced Chemiluminescence (Amersham). 

2.14 Organotypic Invasion Assay 

Organotypic cultures were set up as previously described (Edward, Gillan et al. 

2005). Briefly, ~7.5x104/ml primary human fibroblasts were embedded in a 3 

dimensional matrix of rat tail collagen І.  Rat tail tendon collagen solution was 

prepared by the extraction of tendons with 0.5 M acetic acid to a concentration 

of ~2mg/ml.  Detached, polymerised matrix was allowed to contract for 

approximately 6 days in complete media (DMEM, supplemented with 10% FCS, 

Invitrogen) until the fibroblasts had contracted the matrix to ~1.5cm diameter. 

Subsequently, 4x104 HCT116 cells were plated on top of the matrix in complete 

media and allowed to grow to confluence for 5 days.  The matrix was then 

mounted on a metal grid and fed from below with complete media that was 
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changed every 2 days.  After 12 days, the cultures were fixed using 4% 

paraformaldehyde and processed by standard methods for haematoxylin and 

eosin (H&E) staining. Depth of invasion was measured from the surface of the 

matrix to the deepest point of a group of invading cells.  
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3.1  Introduction 

It has been shown that RKIP protein levels are reduced in human cancers 

compared to normal tissue. These include common tumours such as breast, 

prostate and CRC and also some rarer tumour such as pituitary adenoma and 

GIST (Fu, Smith et al. 2003; Hagan, Al-Mulla et al. 2005; Al-Mulla, Hagan et al. 

2006; Fougner, Bollerslev et al. 2008; Martinho, Gouveia et al. 2009). 

Interestingly in both CRC and in prostate cancer it has been shown that the level 

of RKIP protein in the tumour correlates inversely with the risk of metastatic 

relapse and therefore with patient prognosis (Al-Mulla, Hagan et al. 2006; Fu, 

Kitagawa et al. 2006). We set out to study the utility of RKIP as a prognostic 

marker in a particular subset of CRC patients, namely Dukes B CRC patients. 

These are patients with locally advanced tumours (the tumour having invaded 

through the bowel wall) but who at the time of primary surgery have no 

detectable metastases. The reason for choosing Dukes B was the current 

controversy regarding the optimal post-operative management of this group, 

specifically whether post-operative (adjuvant) chemotherapy offers any benefit 

to these patients.   

Patients with Dukes B CRC have a reasonably favourable prognosis with a 5-year 

survival of ~74-80% (Eisenberg, Decosse et al. 1982; Petersen, Baxter et al. 2002; 

O'Connell, Maggard et al. 2004). However, this means that although in theory 

these patients should have been completely cured by surgery alone ~25% will 

develop recurrent disease and die as a result. This has lead to a debate about 

the use of adjuvant chemotherapy in this patient group. Recent large-scale 

clinical trials have been performed in an attempt to answer this question (Andre, 

Boni et al. 2004; Kuebler, Wieand et al. 2007; Quasar Collaborative, Gray et al. 
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2007).  However, these studies have not provided a definitive conclusion. 

Clinical guidelines recommend that patients with “high risk” Dukes B CRC should 

be offered adjuvant chemotherapy (Benson, Schrag et al. 2004; Figueredo, 

Coombes et al. 2008). These high risk features are broadly defined and there is 

not yet universal consensus on exactly how the guidelines should be applied. 

This suggests that additional markers which could refine risk assessment would 

be beneficial in selecting those patients who are most likely to benefit from 

adjuvant chemotherapy. We set out to see whether RKIP could act as such a 

marker and therefore, add value to current methods of risk stratification.  

Although there is no doubt that novel prognostic markers in CRC are extremely 

useful there is also a need for predictive markers. These are markers that not 

only predict patient survival but also response to therapy. In CRC a number of 

these already exist, such as testing for KRas mutations to determine the 

response to anti-EGFR therapy, however there is still a need for further markers 

(Siena, Sartore-Bianchi et al. 2009). There are reasons to believe that RKIP may 

function as such a predictive marker in CRC. Studies have shown that RKIP levels 

are elevated in response to chemotherapy and that this rise in RKIP levels 

promotes tumour cell apoptosis (Chatterjee, Bai et al. 2004; Jazirehi, Vega et 

al. 2004). Moreover, it has been shown that cells that cannot upregulate RKIP do 

not undergo chemotherapy induced apoptosis, suggesting that RKIP is important 

for this process (Chatterjee, Bai et al. 2004). Indeed, in a recent study of 

patients with pituitary adenoma RKIP levels were found to correlate with a 

response to octreotide treatment (Fougner, Bollerslev et al. 2008). To study this 

we utilised a TMA comprising of samples from patients on whom information was 

available regarding both treatment and survival. 
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Although it known that RKIP is downregulated in a large number of human 

tumours, the mechanism of downregulation remains unclear. To date no 

mutations have been found in the RKIP gene and this has lead investigators to 

examine epigenetic mechanisms of RKIP silencing. There has been conflicting 

evidence in the literature regarding the role of promoter methylation in the 

silencing of RKIP. Promoter methylation is a process by which CG repeats in the 

promoter regions of genes (so called CpG islands) are methylated, thus 

preventing transcription of the gene (Cedar and Bergman 2009). This is an 

important physiological regulator of gene expression but has also been shown to 

occur in cancer, resulting in the silencing of tumour suppressor genes (Toyota, 

Ahuja et al. 1999; Zhu, Qin et al. 2009). Al Mulla et al have used MSP to show 

increased methylation in the RKIP promoter in CRC (Al-Mulla, Hagan et al. 2008), 

but others have not replicated these results (Minoo, Zlobec et al. 2007). As none 

of these studies have used gold-standard quantitative methods to assess 

methylation there is a recognised need to examine the question using such an 

approach. In the final section of this chapter we have used pyrosequencing to 

determine the methylation status of a cohort of CRC patients.    
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3.2 Results 

3.2.1 RKIP levels correlate inversely with disease-

specific survival in Dukes B CRC. 

Studies previously performed in our laboratory had developed a reliable method 

of staining for RKIP by IHC in human formalin fixed paraffin embedded (FFPE) 

tissue. Similarly, a method for scoring the sections based on area stained and 

staining intensity had previously been developed and verified (Al-Mulla, Hagan et 

al. 2006). Briefly this involved giving a score of 0-3 for both the area stained and 

staining intensity. These were then summed to give a minimum score of 0 and a 

maximum score of 6. Scores of 0-2 were classed as negative, 3-4 weak positive 

and 5-6 strong positive. We stained a TMA consisting of 4 cores of both tumour 

and adjacent normal tissue from 220 patients with Dukes B CRC. All patients had 

their primary treatment at a single centre, between 1990 and 2002, giving a 

median follow-up of 11 years. Median and 5-year survival for the group as a 

whole was 69%. None of the patients in the study had received chemotherapy. 

Demographic and clinico-pathological characteristics of the patients in the study 

are shown in Table 3.1. 
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  Number of cases  

(percentage of total) 

Gender Male 118 (56%) 

 Female 91 (44%) 

Age <50 7 (3%) 

 50-59 24 (11%) 

 60-69 58 (28%) 

 70-79 85 (41%) 

 >80 35 (17%) 

Peritoneal Invasion Absent 168 (80%) 

 Present 41 (20%) 

Lympho-vascular Invasion Absent 152 (73%) 

 Present 57 (27%) 

Tumour Location Rectum 63 (30%) 

 Left 62 (30%) 

 Right 84 (40%) 

Table 3.1: Demographic and clinico-pathological data relating to the patients in the 
study.  

 

Two of the most powerful prognosticators currently available in Dukes B CRC are 

the presence of peritoneal invasion (present in 20% of the patients in this 

population, Table 3.1) and LVI (present in 27% of patients in this population, 

Table 3.1) (Shepherd, Baxter et al. 1997; Petersen, Baxter et al. 2002; Lennon, 
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Mulcahy et al. 2003). To confirm that there was nothing unusual about the 

outcomes of this particular patient group we performed a Kaplan-Meier survival 

analysis stratifying patients by the presence or absence of peritoneal invasion 

and LVI. As expected there was a significant difference in median and 5-year 

survival between the 2 groups in each case (Figure 3.1). In the case of peritoneal 

invasion 5-year survival was 50% and 73% for those with and without peritoneal 

invasion respectively (Log-Rank p=0.001). In the case of LVI 5-year survival was 

52% and 75% for those with and without LVI respectively (Log-Rank p=0.017). 

This indicates that this is a typical group of Dukes B CRC patients and therefore 

we proceeded with staining for RKIP.  
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Figure 3.1: Kaplan-Meier analysis of disease-specific survival, stratified by 
peritoneal invasion and LVI 

Tumours in which peritoneal invasion was identified (a, red line) were associated with a 
statistically significant decrease in disease-specific survival compared to tumours without 
peritoneal invasion (a, green line) (Log-Rank p=0.001). Similarly the presence of LVI (b, 
red line was associated with a statistically significant decrease in disease-free survival 
(Log-Rank p=0.017) 
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Staining was similar to that which had been seen previously, with a spectrum of 

RKIP staining seen, from negative through to strongly positive (Figure 3.2). Of 

the 220 samples 11 could not be scored owing to tissue loss during staining, 

leaving 209 for analysis. 14 cases were negative, 99 were weakly positive and 96 

were strongly positive.  
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Figure 3.2: RKIP staining in normal colon and CRC 

Strong cytoplasmic RKIP staining was seen in normal colonic crypts (a) and score for 
RKIP staining was higher in normal colon than in tumour tissue (Mann-Whitney p<0.001). 
In the tumour samples RKIP was scored based both on area stained and staining 
intensity. This scoring system divided tumours into 3 groups, negative (b) with a score of 
0-2), weak positive (c) with a score of 3-4 and strong positive (d) with a score of 5-6. 
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As had been found previously there was a significant difference in the staining 

seen between normal and tumour tissue. The median score for normal colon was 

6 compared to 4 for the tumour tissue, this difference was statistically 

significant (Mann-Whitney p<0.001).  

We then went on to examine the relationship between disease-specific survival 

and RKIP score. The analysis revealed a strong inverse correlation between RKIP 

expression levels and disease-specific survival (Figure 3.3). As there was no 

significant difference between the weak positive and the negative groups these 

2 groups were combined. The newly formed groups will be referred to as RKIP 

positive (previously Strong positive) and RKIP negative (previously Weak positive 

and Negative). 5-year survival was 78% and 60% in the RKIP positive and negative 

groups respectively. This difference was statistically significant (Log-Rank 

p=0.011) (Figure 3.3). 
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Figure 3.3: Kaplan Meier analysis of disease-specific survival, stratified by RKIP 

Disease specific survival was inversely proportional to RKIP score (a). There was no 
significant difference between the negative and weak positive groups (a, green and red 
lines respectively) so these were combined. There was a statistically significant difference 
in disease-specific survival between the 2 newly formed groups (b, Log-Rank p=0.011). 
The 5-year survival for the cohort as a whole is shown in the narrow blue line.  
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3.2.2 RKIP is an independent prognostic indicator in 

multivariate analysis 

As mentioned above a number of good prognostic indicators already exist which 

can accurately predict prognosis in CRC. Therefore, we wanted to examine 

whether knowledge of RKIP status adds value to the information already 

available from traditional markers. These markers include demographic features 

such as age and also clinico-pathological features such as the presence of LVI. 

Therefore, we performed univariate and multivariate analyses to assess which 

indicators were independently prognostic. In univariate analysis sex, peritoneal 

invasion, LVI, tumour grade and RKIP were all significantly associated with 

disease-specific survival, age was borderline significant (p=0.052) (Table 3.2).  

  N Hazard Ratio (95% CI) p-Value 
Age Overall 209  0.052 
 <50 7 1.00  
 50-59 24 0.57 (0.10 – 3.09) 0.512 
 60-69 58 1.08 (0.25 - 4.75) 0.902 
 70-79 85 1.61 (0.38 – 6.71) 0.517 
 ≥80 35 2.41 (0.55 – 10.52) 0.242 
     
Sex Female 91 1.00  
 Male 118 1.64 (1.00 – 2.69) 0.048 
     
Peritoneal Involvement Absent 168 1.00  
 Present 41 2.31 (1.40 – 3.82) 0.001 
     
LVI Absent 152 1.00  
 Present 57 1.78 (1.10 – 2.89) 0.019 
     
Tumour Grade Overall   0.047 
 1 19 1.00  
 2 162 2.36 (0.74 – 7.56) 0.147 
 3 28 4.20 ( 1.19 – 14.76) 0.025 
     
RKIP Positive 96 1.00  
 Negative 113 1.89 (1.15 - 3.09) 0.011 

Table 3.2: Univariate Cox regression analysis of prognostic indicators in this cohort 
of Dukes B colorectal cancers  
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(LVI = Lymphovascular Invasion). p-values in italics represent the overall p-value for a 
given variable. 

In the subsequent multivariate analysis only peritoneal invasion, LVI and RKIP 

were independently predictive of disease-specific survival (Table 3.3).    

 Hazard ratio (95% CI) -Coefficient p-Value 

Peritoneal Invasion  2.4 (1.5-4.0) 0.89 0.001 

LVI Present 1.8 (1.1-3.0) 0.60 0.015 

RKIP Negative 2.0 (1.2-3.3) 0.69 0.006 

Table 3.3: Results of step-wise multivariate Cox regression analysis, demonstrating 
the independent prognostic indicators. 
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3.2.3 Development of a novel prognostic index 

The fact that 3 of the variables were shown by the multivariate analysis to be 

independently prognostic suggests that they give more information together than 

any one individually. Therefore, we designed a simple prognostic index (PI) 

based on these variables. To weight the importance of each variable we used the 

-coefficient from the multivariate analysis (Table 3.3). This is a measure of the 

relative contribution of each variable to the overall effect. This approach has 

previously been used in the development of prognostic indices (Petersen, Baxter 

et al. 2002). Initially we tried the index using the absolute values of the -

coefficients, however we discovered that since the scores for each variable were 

similar there was no difference in the results whether we used the exact score 

or 1. Therefore, for the sake of simplicity we developed the index, assigning a 

score of 1 to each variable present. These were then summed to give a PI, 

between 0-3. 5-year disease-specific survival was strongly inversely correlated to 

the PI (Table 3.4, Figure 3.4).  

Score  No of 
Patients 

No Cancer Deaths (%) 5-year survival (95% CI) Hazard Ratio 

0 56 11 (20%) 89% (80-97%) 1.00 

1 101 30 (30%) 70% (61-79%) 1.68 

2 46 25 (54%) 48% (33-63%) 3.72 

3 6 5 (83%) 17% (0-46%) 8.42 

Table 3.4: 5-year disease-specific survival, stratified by prognostic index score. 

 

We then spilt the cohort into a good prognosis group (Score of 0 or 1), (which 

contained approximately 75% of the patients) and a poor prognosis group (Score 
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of 2 or 3) (Which contained the remaining 25%). There was a dramatic difference 

in disease specific survival between the two groups, with 5-year survival of 77% 

(95% CI 70-84%) and 44% (95% CI 30-58%) in the good and poor prognostic groups 

respectively (Figure 3.4). This difference was highly statistically significant (Log-

Rank p<0.001).  
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Figure 3.4: Kaplan-Meier analysis of disease specific survival, stratified by 
prognostic index 

There was an inverse correlation between disease-specific survival and prognostic index 
(a). When we grouped together those patients with scores of 0/1 and those patients with 
scores of 2/3 this created 2 groups with significantly different disease-specific survival 
(Log-Rank p<0.001). In the good-prognosis group (b, green line) 5-year survival was 77%, 
while in the poor prognosis group (b, red line) 5-year survival was 44%, which is similar to 
patients presenting with Dukes C disease.   
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3.2.4 RKIP as a predictive marker 

Following on from this work demonstrating the utility of RKIP as a prognostic 

marker in Dukes B CRC, we next wanted to assess whether RKIP is also a 

predictive marker in this disease. To do this we utilised a TMA from the Western 

Australia Tissue Research Network. This TMA consisted of 1034 CRC patient 

samples, with cores present in duplicate and included data on treatment with 

chemotherapy in 642 of these patients. Demographic information for this patient 

cohort can be seen in Table 3.5 

Total 1034 

Total for Scoring 915 (88%) 

Male/Female 510/524 (49/51%) 

Median age at diagnosis (Range) 70.8 (18.8-98.3) 

Dukes A 13 (1%) 

Dukes B 629 (61%) 

Dukes C 386 (37%) 

Dukes D  6 (1%) 

Table 3.5: Demographic and clinicopathological data relating to the Western 
Australia cohort. 

 

Firstly, we wished to see whether RKIP retained its prognostic utility in this 

cohort. Kaplan-Meier analysis revealed a statistically significant difference in 

median overall survival between the RKIP positive and RKIP negative groups 

(Median overall survival 102.2 vs 62.2 months in RKIP positive and negative 

patients respectively, Log Rank p<0.001). This translated into 5-year survival of 

62% and 51% in RKIP positive and negative patients respectively and a 10-year 
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survival of 45% and 34% in RKIP positive and negative patients respectively 

(Figure 3.5). In subgroup analysis RKIP was again prognostic in Dukes B patients; 

however, in this cohort the effect was less dramatic than in the Dublin cohort 

(Log-Rank p=0.057). We again performed a multivariate analysis to ascertain 

which factors provided independent prognostic information. Again we found that 

RKIP was an independent prognostic indicator, along with age and Dukes stage 

(Table 3.6). 

 Hazard ratio (95% CI) -Coefficient p-Value 

Dukes Stage C/D 2.2 (1.7-3.0) 0.80 <0.001 

Age (Overall)   <0.001 

<50 1.0 0  

50-59 1.5 (1.1-3.0) 0.39 0.293 

60-69 2.1 (1.1-4.1) 0.75 0.027 

70-79 2.5 (1.3-4.8) 0.91 0.006 

≥80 5.4 (2.8-10.5) 1.7 <0.001 

RKIP Negative 1.4 (1.1-1.8) 0.3 0.004 

Table 3.6: Results of the step-wise multivariate Cox regression analysis, 
demonstrating the independent prognostic indicators.  

Dukes stages A/B and C/D were combined, owing to the low number of Dukes A and 
Dukes D tumours in the cohort.  
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Figure 3.5: Kaplan-Meier analysis of overall survival stratified by RKIP 

Again in this cohort there was an inverse correlation between RKIP levels and survival, 
which resulted in a statistically significant survival difference (p<0.001).  
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Having seen that RKIP was still a useful prognosticator in this cohort we went on 

to examine the subgroup on which information regarding chemotherapy was 

available. This group comprised 642 patients. Firstly we compared response to 

chemotherapy in terms of overall survival separately in the RKIP positive and 

RKIP negative groups. Kaplan-Meier analysis showed that patients who were 

negative for RKIP derived a significant benefit from chemotherapy (Log-Rank, 

p=0.002), whereas patients who were positive for RKIP did not (Log-Rank 

p=0.120) (Figure 3.6). We then went on to examine this by individual stage. In 

Dukes B tumours, again there appeared to be a difference in the response 

between RKIP positive and negative patients. In RKIP positive patients no 

survival benefit was seen from chemotherapy (5-year-survival 60% vs 64%, Log-

Rank, p=0.427). However, in the RKIP negative group a large difference was seen 

in survival (Figure 3.7), which was statistically significant (5-year survival 86% vs 

55%, Log-Rank p=0.050).  In Dukes C all patients derived a survival benefit from 

chemotherapy; however the magnitude of the effect was greater in the RKIP 

negative group (5-year survival 48% vs 25%, Log-Rank p<0.001) than in the RKIP 

positive group (5-year survival 58% vs 44% Log-Rank p=0.020) (Figure 3.7).  
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Figure 3.6: Kaplan-Meier analysis of overall survival stratified by treatment with 
adjuvant chemotherapy and different RKIP status 

Patients with RKIP negative tumours (a) derived a significant survival benefit from 
chemotherapy (Log-Rank p=0.002), whereas patients with RKIP positive tumours did not 
appear to gain any survival benefit (Log-Rank p=0.120).   
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Figure 3.7: Kaplan-Meier analysis of overall survival, stratified by treatment with 
adjuvant chemotherapy, RKIP status and stage 

In Dukes B patients with RKIP negative tumours (a) again there was a statistically 
significant survival advantage associated with treatment with adjuvant chemotherapy 
(Log-Rank p=0.050), which was not seen in patients with RKIP positive tumours (b) (Log-
Rank p=0.427). Not surprisingly all patients with Dukes C tumours derived a survival 
benefit from adjuvant chemotherapy, however the effect was greater in patients with RKIP 
positive tumours (c) than in those with RKIP negative tumours (d).  
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This indicated that there may indeed be a link between RKIP status and the 

response to chemotherapy. Namely, those patients with low levels of RKIP were 

more likely to derive a benefit from systemic chemotherapy than patients with 

high levels of RKIP, particularly in Dukes B disease.  In order to test this more 

formally we did a statistical interaction analysis to see if RKIP was indeed a 

factor in the likelihood to derive benefit from chemotherapy. This demonstrated 

that although RKIP was again an indicator of prognosis in the patient group on 

whom information on chemotherapy was available, there was no interaction 

between RKIP status and chemotherapy in terms of survival (Table 3.7). 

 Hazard ratio (95% CI) -Coefficient p-Value 

RKIP Negative 1.4 (1.1-1.7) 0.32 0.008 

Chemotherapy 0.6 (0.4-0.8) -0.56 0.002 

RKIP*Chemotherapy 1.3 (0.8-2.1) 0.24 0.353 

Table 3.7: Cox regression analysis analysing the possible interaction between RKIP 
and chemotherapy  

The model shows that although survival depends both on RKIP and chemotherapy there 
is no evidence that the effect of chemotherapy depends on RKIP status (*indicates the 
interaction term).  
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3.2.5 Development and characterisation of an anti-RKIP 

monoclonal antibody                

As we have demonstrated the utility of RKIP as a prognostic indicator in Dukes B 

CRC, this raises the possibility that it could be useful in clinical practice. 

However all of these experiments were done using a polyclonal RKIP antibody 

and before RKIP could be used in clinical practice it would be necessary to 

develop a monoclonal antibody. A number of monoclonal antibodies were 

developed by the monoclonal antibody service at the Beatson Institute for 

characterisation. We tested the antibodies on human sections of normal colon, 

prostate and liver, all tissues which express RKIP and in which the pattern of 

staining is well described. Staining was compared to that of the polyclonal 

antibody. Following selection of the clone which showed the best staining we 

went on to compare staining with the polyclonal antibody and to demonstrate 

definite binding of the antibody to RKIP.  

The monoclonal antibody compared well to the polyclonal antibody, resulting in 

specific and crisp cytoplasmic staining of the epithelial cells (Figure 3.8). To 

demonstrate binding we incubated the RKIP monoclonal antibody with purified 

GST-RKIP protein attached to glutathione sepharose beads. If the antibody binds 

RKIP it will bind to the protein attached to the beads. The beads can then be 

centrifuged and the supernatant applied to tissue sections to see if any residual 

staining occurs. We carried out the antibody depletion in two different ways, the 

first passing the antibody solution through a column of the RKIP-GST beads. For 

the second method the antibody was incubated with the RKIP-GST beads under 

constant gentle agitation. In both cases the depletion process resulted in near 
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total removal of the RKIP antibody, as demonstrated by the absence of staining 

on the sections (Figure 3.8).  
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Figure 3.8: Monoclonal anti-RKIP antibody 

Sections of CRC were stained with the polyclonal Anti-RKIP antibody (top left panels), the 
monoclonal anti-RKIP antibody (top right panels) and the monoclonal anti-RKIP antibody, 
following pre-adsorbtion with purified RKIP protein (bottom panels). The monoclonal anti-
RKIP antibody results in sharp cytoplasmic staining, with less background staining than 
with the polyclonal antibody. The staining is almost completely prevented following the 
antibody deletion, demonstrating that the antibody is indeed binding RKIP. 
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3.2.6 Methylation of the RKIP promoter is not an 

important mechanism of downregulation 

In order to determine the importance of promoter methylation as a mechanism 

for RKIP downregulation in CRC we analysed the RKIP promoter of thirty tumours 

and matched normal tissues for the presence of hypermethylation. A full section 

from each tumour was stained for RKIP to determine the level of expression. 

18/30 tumours were positive and 12/30 were negative. DNA was extracted from 

freshly frozen tumour and matching normal tissue. DNA was then subjected to 

chemical bisulphite conversion. This process allows a sequence difference to be 

created between methylated and unmethylated DNA facilitating subsequent 

examination of methylation status. The reaction results in the conversion of 

unmethylated cytosine (C) to uracil (U). However, methylated Cs are resistant to 

the conversion and remain unchanged. The subsequent PCR reaction matches 

thymine (T) to the converted U. Therefore, in the PCR product the methylation 

status of a given CpG dinucleotide may be determined by assessing the ratio of C 

(methylated CpG) to T (unmethylated CpG).  

The RKIP promoter contains a number of CpG islands which are the potential 

sites for methylation. We used the sequence of the RKIP promoter to design PCR 

primers which amplified a region of the promoter containing 4 CpG islands. 

Human unmethylated DNA and 100% in vitro methylated DNA were used as 

negative and positive controls respectively (Figure 3.9) and the presence of a 

PCR product of the correct length was confirmed by running a sample of the 

amplified product on an agarose gel.  As expected all of the normal tissues 

showed low levels of RKIP promoter methylation, similar to that seen in the 

control DNA. Of the tumour samples one tumour could not be sequenced, leaving 
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29 for analysis. Only one of these tumours showed significant methylation of the 

RKIP promoter, this tumour was negative for RKIP by IHC (Table 3.8, Figure 3.9).  

  Tumour Normal 

High 1 0 RKIP Promoter Methylation 

Low 28 30 

Positive 18 30 RKIP Immunohistochemistry 

Negative 11 0 

Table 3.8: RKIP promoter methylation status of tumour and normal samples. 
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Figure 3.9: Methylation pyrosequencing analysis of the RKIP promoter 

Pyrograms demonstrating control (a) normal and 100% in-vitro methylated human DNA. 
All of the samples of normal colon showed low levels of RKIP promoter methylation (b&c, 
upper panels). Of the 29 tumour samples that could be analysed 28 also showed low 
levels of RKIP promoter methylation (b, lower panel). Only 1 tumour (c, lower panel) 
demonstrated significant methylation of the RKIP promoter. 
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3.3 Discussion 

This study demonstrates the potential of RKIP as a prognostic marker in Dukes B 

CRC patients. This group comprises approximately 40% of all CRC patients 

(Shepherd, Baxter et al. 1997; Petersen, Baxter et al. 2002; O'Connell, Maggard 

et al. 2004; Lindholm, Brevinge et al. 2008) and represents an unsolved 

management challenge. Although patients with Dukes B CRC have a relatively 

good outcome, with a 5-year survival of ~75% (Eisenberg, Decosse et al. 1982; 

Petersen, Baxter et al. 2002; O'Connell, Maggard et al. 2004), this still leaves 1 

in 4 patients who should in theory have been cured by surgery developing 

recurrent disease (Nicastri, Doucette et al. 2007). This has led to controversies 

regarding the benefit of adjuvant chemotherapy in this group (Sobrero and 

Köhne 2006). Recent large studies have offered conflicting results with only 

small, often non-statistically significant benefits seen (Andre, Boni et al. 2004; 

Kuebler, Wieand et al. 2007; Quasar Collaborative, Gray et al. 2007). These 

results are summarised in a recent meta-analysis, which showed a small 

improvement in disease-free survival with the addition of adjuvant 

chemotherapy, although no improvement in overall survival could be shown 

(Figueredo, Coombes et al. 2008). The authors suggested that adjuvant 

treatment should be considered in patients with high-risk features (Figueredo, 

Coombes et al. 2008), as it is only these patients who are likely to benefit. 

Andre et al  demonstrated a trend towards a benefit with the addition of 

oxaliplatin to standard chemotherapy in a high-risk subgroup of Dukes B CRC, 

suggesting that further trials should be confined to this subgroup (Andre, Boni et 

al. 2009). Their high-risk group was broadly defined by featuring at least one of 

the following: peritoneal invasion, tumour perforation, bowel obstruction, 
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poorly differentiated tumour, LVI, or <10 lymph nodes examined. These data 

suggest that a refinement of risk assessment could identify a sub-group of Dukes 

B patients who will benefit from adjuvant therapy, and therefore there is a need 

to better define the high-risk group who most likely to derive benefit from 

adjuvant therapy.   

We have shown that low levels of RKIP expression in a tumour is such a high-risk 

feature, being an independent prognostic marker along with peritoneal invasion 

and LVI. Peritoneal invasion and LVI are established prognostic markers in Dukes 

B CRC (Shepherd, Baxter et al. 1997; Petersen, Baxter et al. 2002; Lennon, 

Mulcahy et al. 2003) and are mentioned in all of the above studies as being 

“high-risk” features (Figueredo, Coombes et al. 2008; Andre, Boni et al. 2009). 

As each gives independent prognostic information we have combined them to 

create a simple PI, which can be used to identify ~25% of patients with a poor 

prognosis. This poor prognosis group had a 5-year survival of 44%, which is 

similar to that of patients with lymph node metastases (Dukes C), in whom 

adjuvant chemotherapy has shown proven benefit (NIH 1990). This PI therefore 

provides a useful framework for the selection of high-risk patients for close 

monitoring and for future trials in order to examine the effectiveness of 

adjuvant therapy in Dukes B CRC.  

In the second part of this study we examined RKIP as a potential predictive 

marker, by examining the effects of chemotherapy on survival separately in RKIP 

positive and negative patients. We showed an apparent difference, with RKIP 

negative patients appearing to derive greater benefit from chemotherapy than 

RKIP positive group. Although this did not prove to be significant in the more 

stringent test for a statistical interaction, it is interesting to note that the 
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difference was particularly striking in the Dukes B group. As has been discussed 

this is the group in which the decision to offer adjuvant chemotherapy is most 

difficult and this result would again suggest the potential utility of RKIP as an aid 

in making this decision. The explanation for this result is likely to be that 

patients with low levels of RKIP expression are more likely to develop metastatic 

disease (Minoo, Zlobec et al. 2007; Zlobec, Baker et al. 2008). It is presumed 

that patients with Dukes B CRC who develop metastatic relapse have 

undetectable, micrometastatic disease at the time of diagnosis. These would 

therefore be the patients most likely to benefit from systemic chemotherapy.  

In this particular group of Dukes B patients, very few (38/251) received 

chemotherapy and this is likely to have contributed to the failure of the RKIP 

effect to reach significance in the test for statistical interaction.  Another factor 

which may have affected the result is that there was no standard chemotherapy 

regime used in the study. Therefore future studies would ideally be conducted 

as part of a clinical trial examining the effects of a standardised chemotherapy 

protocol in Dukes B CRC with a large enough sample to allow for the detection of 

any effect. 

In the final section of this study we examined promoter methylation as a 

possible mechanism for RKIP downregulation in CRC. The mechanism of RKIP 

downregulation in CRC is not currently known. This has lead investigators to 

study potential epigenetic mechanisms of downregulation. Al Mulla et al used 

MSP to show methylation to be an important mechanism in RKIP downregulation 

(Al-Mulla, Hagan et al. 2008); however other groups have not been able to 

repeat this (Minoo, Zlobec et al. 2007; Beach, Tang et al. 2008). These, 

conflicting results combined with the potential for false positive results with MSP 
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led us to examine the question using bisulphite conversion and quantitative 

analysis by pyrosequencing, which is acknowledged as gold standard in the study 

of promoter methylation (Clark, Statham et al. 2006). In our study only 1/12 

tumours that were negative for RKIP by IHC showed significant methylation of 

the promoter. The discrepancies between our results and those of others may 

reflect differences in techniques or cohorts, but in summary suggest a multi-

factorial regulation of RKIP expression. For instance, in prostate cancer RKIP 

expression is partly silenced by transcriptional repression through the Snail 

transcriptional repressor (Beach, Tang et al. 2008). Thus, different mechanisms 

alone or in combination may repress RKIP expression in different cancers. 

In summary, we have shown that RKIP can function as a prognostic marker in 

Dukes B CRC. Moreover, it can form part of a prognostic index, including 2 other 

independent prognostic indicators. We have also shown that patients with low 

levels of RKIP may derive a greater benefit from chemotherapy than patients 

with high levels of RKIP, although this would need to be verified in another 

study. Finally we have shown that promoter methylation is not an important 

mechanism of RKIP downregulation, at least in the patient group studied.  
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4.1 Introduction 

The RKIP knockout mouse was first reported in 2007 by Theroux et al (Theroux, 

Pereira et al. 2007). The mouse is a germline knockout of the RKIP1 gene, which 

was created using the gene-trap method. This method in essence involves 

inserting a construct, consisting of a -galactosidase gene, with an upstream 

splice acceptor site and a neomycin resistance gene under the control of an 

autonomous promoter into an intron of the target gene (Stanford, Cohn et al. 

2001). This construct results in the transcription of a fusion RNA consisting of the 

exons upstream from the construct and the -galactosidase. A separate RNA is 

transcribed from the neomycin resistance gene owing to its independent 

promoter and this allows for selection of cells that have incorporated the vector 

(Stanford, Cohn et al. 2001).  

In the mouse there are five RKIP family members (RKIP1-5) (Theroux, Pereira et 

al. 2007). RKIP1 is located on chromosome 5 and contains 3 introns and 

therefore 4 exons. The genetrap inserts into intron 1 of the RKIP gene resulting 

in transcription of a fusion RNA, containing only exon 1 of the native RKIP1 gene. 

Very low levels of RKIP1 RNA have been detected in fibroblasts and tissues from 

these mice. This was thought be due either to read through or to cryptic 

downstream promoters. However, in either case this would not lead to the 

translation of a functional protein (Theroux, Pereira et al. 2007). RKIP3-5 are 

located on chromosomes 9, 10 and 12 respectively. These loci contain open 

reading frames but are intronless. This and the fact that no transcript from any 

of these loci has been detected in any mouse tissue have lead to the conclusion 

that these are silent pseudogenes (Theroux, Pereira et al. 2007). RKIP2 is also 
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intronless but RNA has been detected specifically in the testis of both RKIP+/+ 

and RKIP-/- mice (Moffit, Boekelheide et al. 2007; Theroux, Pereira et al. 2007).  

RKIP-/- mice are viable and reproduce with the expected Mendelian ratios 

(Theroux, Pereira et al. 2007). However, a slight decrease in reproduction rates 

has been observed in RKIP-/- males, which is thought to be due to premature 

sperm capacitation (Moffit, Boekelheide et al. 2007). The other reported 

phenotype of the RKIP-/- mouse is a defect in olfactory function. This is in 

keeping with the high levels of RKIP found in the olfactory neurons of wild-type 

mice (Theroux, Pereira et al. 2007).  

In order to study the role of RKIP knockout in CRC we crossed the RKIP-/- mouse 

to known models of CRC. The first of these was the Apcfl mouse (Shibata, 

Toyama et al. 1997). In this mouse the Apc gene contains loxP sites in introns 13 

and 14. Thus, following recombination by Cre Recombinase enzyme exon 14 is 

deleted, resulting in a frameshift mutation and the generation of a premature 

STOP codon (Shibata, Toyama et al. 1997). When crossed to mice expressing the 

AhCre, which is under the control of the Cyp1A1 promoter this results in 

inducible recombination in the small intestine, colon and liver (Ireland, Kemp et 

al. 2004). Heterozygous APCfl mice (APCfl/+) develop multiple intestinal 

adenomas (Shibata, Toyama et al. 1997). This mouse model also allows for the 

study of the acute effects of homozygous deletion of Apc in the intestine. 

Homozygous deletion results in the so-called crypt progenitor phenotype, with a 

massive increase in size of the crypts, accompanied by an increase in 

proliferation and in apoptosis (Sansom, Reed et al. 2004). The homozygous loss 

of Apc also leads to a proliferative phenotype in the liver, with resulting 

hepatomegaly.   
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Although the APCfl is an excellent model of the early stages of tumourigenesis, 

the tumours that develop only rarely progress to become invasive carcinomas 

(Sansom, Meniel et al. 2006). As RKIP is thought to be a metastasis suppressor 

and therefore its loss is likely to be more important in the later stages of tumour 

development we wanted to examine the effect of RKIP loss in a model of more 

advanced intestinal tumourigenesis. For this we utilised the APCfl/+ KRasG12V 

mouse. 

The APCfl/+ KRasG12V mouse combines the APCfl mouse with a mouse conditionally 

expressing the oncogenic KRasG12V mutation (Guerra, Mijimolle et al. 2003). KRas 

is commonly mutated in human CRC and the G12V mutation is among the more 

common seen in human tumours (Bos 1989). The mutant KRas allele is under the 

control of the endogenous Ras promoter and is preceded by a STOP cassette, 

flanked by LoxP sites. The STOP cassette prevents transcription of the mutant 

allele until it is deleted following Cre recombination. As the same AhCre is used 

the oncogenic Ras is expressed in the small intestine, liver and colon. This 

mouse has been shown to develop intestinal tumours at an increased rate 

compared to the APCfl/+ mouse and also develops superficially invasive tumours 

(Sansom, Meniel et al. 2006).  
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4.2 Results 

4.2.1 RKIP is not detectable in the RKIP-/- mouse 

In order to confirm the absence of RKIP in the tissue that we were studying we 

stained sections of intestine and liver (tissues which are known to express high 

levels of the protein) for RKIP by IHC. The staining showed that while sections 

from the wild-type type mice revealed strong cytoplasmic staining. In contrast 

sections from the RKIP-/- mice showed no staining in the intestine and only weak 

background staining in the liver (Figure 4.1).  

In order to confirm that the weak staining seen in the liver, was indeed non-

specific we performed reverse transcriptase PCR to determine whether RKIP RNA 

could be detected in these tissues. RNA was extracted from freshly frozen tissue 

and converted to cDNA. This was amplified by PCR, using primers that 

specifically amplify RKIP cDNA, using tissue from RKIP+/+ mice as a control. RKIP 

RNA could be clearly detected in control tissues but no RKIP RNA could be 

detected in either the liver or intestine of the RKIP-/- mice (Figure 4.1).  
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Figure 4.1: RKIP protein and mRNA are not detectable in the RKIP-/- mouse 

Immunohistochemistry in the small intestine (a) reveals readily detectable RKIP protein in 
the wild-type mouse (left panel), but not in the RKIP-/- mouse (right panel). The same is 
true in the liver (b) although there is some background staining seen in the RKIP-/- mouse 
(right panel). To ensure that this did not represent low-level RKIP expression rtPCR was 
performed (c) and demonstrated that although RKIP mRNA could be detected in tissues 
from wild-type mice none could be detected in the RKIP-/- mouse. 
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4.2.2 RKIP levels are low in tumours in the mouse 

In addition to confirming the absence of detectable RKIP in the RKIP-/- mouse we 

wanted to confirm that levels of RKIP in the mouse mimic the patterns seen in 

human tumours. Namely, that the level of RKIP is lower in tumours than in 

normal tissue and moreover that RKIP levels are lower still in metastases. To 

test this we stained normal, tumour and metastatic tissue from different tumour 

models in RKIP+/+ mice.  

We showed that in a renal tumour model, in which there is homozygous deletion 

of Apc combined with oncogenic mutation of KRas (APCfl/fl KRasG12V) RKIP was 

expressed at lower levels in the tumour tissue than in normal tissue (Figure 4.2). 

Next we examined intestinal adenomas and carcinomas from mice and again 

demonstrated lower RKIP levels in the tumours when compared to adjacent 

normal tissue (Figure 4.2). In many cases there was a progressive decrease in 

RKIP staining from normal to adenoma to carcinoma. However this was not 

universal with some adenomas showing similar staining to the invasive 

carcinomas. Finally, we examined a metastatic pancreatic cancer model in 

which oncogenic KRas is expressed along with mutant p53 (KRasG12D p53R172H) 

conditionally in the pancreas. Again in this model we saw a similar pattern of 

expression to that seen in human tumours. RKIP was expressed at low levels in 

the primary tumour, but expression was almost completely absent in liver 

metastases (Figure 4.2).  

As we had demonstrated that RKIP is indeed decreased in tumours in a number 

of different mouse models we then went on to examine the effect of RKIP 

deletion in mouse models of CRC.  
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Figure 4.2: RKIP in mouse tumours 

To determine if RKIP expression levels followed a similar pattern in the mouse as in 
human a number of different mouse tumours were stained for RKIP. In the kidney (a) 
normal tissue (right of green line in left panel and arrow in right panel) showed higher 
levels of RKIP expression than tumour tissue. Similarly in the intestine (b) RKIP levels 
were higher in normal intestine (left panel) than in tumours (middle and right panels). 
Finally in a model of pancreatic cancer (c) RKIP levels were lower in liver metastases 
(upper panels) than in the primary tumour (upper panels). Arrows indicate residual normal 
liver. 

Chapter 4 The effect of RKIP knockout in established mouse models of CRC 156



Chapter 4  The effect of RKIP knockout in established mouse models of CRC 157 

4.2.3 RKIP deletion does not alter tumourigenesis in the 

APCfl mouse 

Given that RKIP levels were low in the mouse tumour models we then went on to 

examine the effect of RKIP deletion on intestinal tumourigenesis. To test this we 

crossed RKIP-/- mice to APCfl mice to yield 3 experimental cohorts; APCfl/+ RKIP+/+ 

(N=22), APCfl/+ RKIP+/- (N=21) and APCfl/+ RKIP-/- (N=24). These cohorts were 

induced with -naphthoflavone to activate expression of the AhCre recombinase 

and were then aged until they developed signs of intestinal tumours, such as 

paling of the feet, hunching and development of a “starry coat”. Mice were then 

euthanized and the intestinal tumours examined both grossly and histologically.  

The first parameter that we examined was survival. There was no difference 

seen in survival between the 3 cohorts (Figure 4.3), strongly indicating that RKIP 

deletion has no effect on tumourigenesis following heterozygous deletion of Apc. 

We also assessed tumour number and size both in the small intestine and colon 

and again found no difference in tumour number (Figure 4.3) or average size 

across the different cohorts. This indicates that the mice were euthanized at 

approximately the same stage of tumour development.  
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Figure 4.3: RKIP deletion does not alter tumourigenesis in the APCfl/+ RKIP-/- mouse 

RKIP deletion did not result in any difference in survival in the APCfl/+ RKIP-/- mouse, when 
compared to either the APCfl/+ RKIP+/- or the APCfl/+ RKIP+/+ mouse (a) (Log-Rank p=0.535). 
No difference was seen in tumour number across the different genotypes (b) (* indicates 
outlying values).  
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Although there was no difference between the groups in terms of survival and 

therefore rate of tumourigenesis we wanted to determine if RKIP deletion 

affected the invasive characteristics of the tumours. Therefore we examined 

haematoxylin and eosin (H&E) stained sections of tumours, to determine the 

number of mice developing either high grade dysplasia (HGD) or invasive 

carcinoma. Although mice from the APCfl/+ RKIP -/- cohort did develop occasional 

invasive carcinomas, the proportion was no greater than that seen in the control 

mice (Chi-square p=0.597) (Table 4.1). No metastases were seen in any of the 

cohorts. 

 APCfl/+ RKIP+/+ APCfl/+ RKIP+/- APCfl/+ RKIP-/- 

Invasive Tumour 4 3 7 

No invasive Tumour 16 15 17 

Table 4.1: APCfl/+ RKIP-/- mice do not have an increased incidence of invasive 
carcinoma. 
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4.2.4 Effect of RKIP deletion on homozygous APC 

knockout 

Although RKIP deletion did not lead to a detectable phenotype following 

heterozygous Apc deletion we wanted to determine whether there was any 

effect of RKIP deletion in the setting of acute homozygous deletion of Apc. Given 

that RKIP is seen to be lower in tumour than in normal tissue it is possible that 

tumours may arise in cells with low levels of RKIP. Since intestinal tumours will 

have lost all APC function homozygous deletion of the Apc gene in the mouse 

may reveal the phenotype of RKIP deletion. To examine this we crossed RKIP-/- 

mice to APCfl mice to yield cohorts of APCfl/fl RKIP+/+ mice and APCfl/fl RKIP-/- 

mice. These were induced as before with -naphthoflavone on day 0 and then 

euthanized on day 4. Previous studies in the lab have shown that the APCfl/fl 

mice develop a dramatic crypt progenitor phenotype and also increased liver 

proliferation (Sansom, Reed et al. 2004). As a result these mice cannot be aged 

any longer as they become sick due to the massive phenotype induced by 

deletion of Apc.  

Comparing the small intestine of APCfl/fl RKIP+/+ mice with those of APCfl/fl RKIP-/- 

mice we noted that although there was no difference in crypt size or in the 

number of mitotic figures seen we did see a small but statistically significant 

decrease in apoptoses per crypt (Figure 4.4). This is in keeping with previous 

reports suggesting a pro-apoptotic role for RKIP (Chatterjee, Bai et al. 2004; 

Jazirehi, Vega et al. 2004) and also in keeping with the observation that human 

CRC with low levels of RKIP have decreased apoptoses compared to those with 

high levels of RKIP (Al-Mulla, Hagan et al. 2006).  
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Figure 4.4: RKIP deletion results in a decrease in apoptoses in the small intestine of 
APCfl/fl mice.  

RKIP staining again revealed no RKIP protein in the intestine of APCfl/fl RKIP-/- mice (a). 
Although there was no difference in crypt size or number of mitoses between APCfl/fl RKIP-

/- and APCfl/fl RKIP+/+ mice, the APCfl/fl RKIP-/- mice did show an increased number of 
mitoses per crypt than did the APCfl/fl RKIP+/+ mice (b). 
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As it has also been shown that the APCfl/fl mice develop a liver phenotype with 

increased hepatocellular proliferation we also examined the liver to see if there 

was an effect of RKIP deletion following homozygous Apc deletion in this organ. 

Although no increase in liver mass was seen in the APCfl/fl RKIP-/- mice compared 

to controls there was a massive and statistically significant difference in the 

number of mitotic figures seen in the livers of the APCfl/fl RKIP-/- mice (Mann-

Whitney p=0.04) (Figure 4.5).  

On closer examination it was clear that there was a large number of aberrant 

mitotic figures present in the APCfl/fl RKIP-/- livers. To more precisely quantify 

this we divided aberrant mitoses into 3 classes; unequal divisions, tripolar 

mitoses and anaphase bridges (Figure 4.6). As there was an overall increase in 

mitotic activity in the livers of the APCfl/fl RKIP-/- mice we expressed the amount 

of aberrant mitoses as a percentage of the total mitoses seen. There was a clear 

difference in the proportion of aberrant mitoses, unequal mitoses and anaphase 

bridges between the livers of the APCfl/fl RKIP-/- mice and those of controls 

(Figure 4.6). Given that it has been shown that aberrant mitoses and anaphase 

bridges in particular correspond with the presence of CIN (Montgomery, Wilentz 

et al. 2003) this would suggest that there is an increase in CIN in the livers of the 

APCfl/fl RKIP-/- mice.  
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Figure 4.5: RKIP deletion increases the number of mitotic figures in the livers of 
APCfl/fl mice. 

The number of mitoses per high power field (HPF) was assessed for APCfl/fl RKIP+/+ and 
APCfl/fl RKIP-/- mice. There was a marked increase in mitotic figures seen in the livers of 
the RKIP knockout mice with a median number of mitotic figures per 50HPF of 168.1 
compared to 28.6 in the wild-type mice. This difference was statistically significant (Mann-
Whitney p=0.040). 
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Figure 4.6: RKIP deletion resulted in an increase in aberrant mitoses in the livers of 
APCfl/fl mice. 

Aberrant mitoses (unequal divisions (a), tripolar mitoses (b) and anaphase bridges (c)) 
were counted and expressed as a percentage of the total number of mitoses. There was a 
statistically significant increase in the percentage of aberrant mitoses in the livers of the 
APCfl/fl RKIP-/- mice when compared to controls (d) (Mann-Whitney p=0.040). On 
examining the individual types of aberrant mitoses, there was an increase seen in both 
unequal divisions and anaphase bridges (d). 
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Given the absence of an increase in liver mass this apparent increase in mitotic 

index was puzzling.  

We hypothesised that the increase in mitotic figures may be due to cells being 

arrested in mitosis. To test this we injected mice with bromodeoxyuridine 

(BRDU) either 2 or 24 hours prior to euthanasia. BRDU is incorporated into the 

DNA in S-phase and is retained in the DNA, being passed on to daughter cells 

after mitosis. BRDU can thus be used as a marker of dividing cells and by 

comparing the amount of BRDU incorporation at 2 and 24 hours we can 

determine if the cells that enter S-phase 24 hours prior to euthanasia do indeed 

go on to complete mitosis. 

We saw a marked increase in the number of BRDU positive cells in the livers of 

the APCfl/fl RKIP-/- mice compared to controls at the 2 hour timepoint, 

demonstrating an increase in cells entering S-phase in these mice. However, 

while the number of BRDU positive cells had increased by a factor of ~7 at the 

24 hour timepoint in the APCfl/fl RKIP+/+ mice; there was no significant difference 

in the APCfl/fl RKIP-/- livers between the 2 and 24 hour timepoints, indicating that 

these cells are arrested in mitosis (Figure 4.7).  
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Figure 4.7: Cells in the livers of APCfl/fl RKIP-/- mice appear to be arrested in mitosis. 

To determine whether the increase in mitotic figures seen in the livers of APCfl/fl RKIP-/- 
mice was due to a true increase in mitotic activity mice were injected with BRDU 2 or 24 
hours prior to being euthanized. This marks cells in S-phase and is retained in daughter 
cells, following mitosis. In the RKIP wild-type mice there was a ~7 fold increase in the 
number of BRDU positive cells, between 2 and 24 hours, indicating that these cells are 
progressing through mitosis. However in the RKIP knockout mice there was virtually no 
difference between the number of BRDU positive cells between 2 and 24 hours, indicating 
that these cells are arrested in mitosis. 
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4.2.5 RKIP deletion results in a shift in tumour location 

from the small intestine to the colon in APCfl/+ 

KRasG12V mice 

We have seen that deletion of RKIP did not result in a measurable phenotype in 

the APCfl tumour model. One possible reason for this is that the tumours in this 

model very rarely progress beyond benign adenomas to invasive carcinomas. As 

RKIP is thought to be a metastasis suppressor gene it is possible that any effect 

of RKIP deletion will only be realised in a more advanced tumour. Indeed it has 

been shown in an orthotopic model of prostate carcinoma that reduced levels of 

RKIP led to an increase in lung metastases but had no effect on primary tumour 

formation (Fu, Smith et al. 2003).  

Therefore, we set out to study the effect of RKIP knockout in a model of invasive 

CRC. The model we chose was the APCfl/+ KRasG12V mouse, which combines 

conditional heterozygous deletion of Apc with the expression of an activated, 

oncogenic form of KRas. The mutant KRas is present at the endogenous KRas 

locus, preventing massive overexpression of the mutant (Guerra, Mijimolle et al. 

2003). This mouse develops more invasive tumours than the APCfl mouse 

(Sansom, Meniel et al. 2006). Therefore we crossed APCfl/+ KRasG12V mice to RKIP-

/- mice to yield experimental cohorts of APCfl/+ KRasG12V RKIP+/+ (N=15) and 

APCfl/+ KRasG12V RKIP-/- (N=12) mice. The mice were again aged until they 

developed signs of intestinal tumours.  

Firstly, we examined the effect on survival, we noted that as has been shown 

previously APCfl/+ KRasG12V mice develop tumours much more rapidly than APCfl 

mice (Sansom, Meniel et al. 2006). However, the deletion of RKIP did not lead to 
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an increase in the rate of tumourigenesis (Figure 4.8) (Log-Rank p=0.379). 

Following histological examination of the tumours, no difference in the 

proportion of invasive tumours was seen (3/13 vs 3/12, Chi-square p=0.906). 
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Figure 4.8: RKIP deletion does not affect survival in the APCfl/+ KRasG12V mouse  

Kaplan-Meier survival analysis demonstrates that there is no difference in survival 
between APCfl/+ KRasG12V RKIP+/+ and APCfl/+ KRasG12V RKIP-/- mice (Log-Rank p=0.397).  
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To determine if the there was any difference in tumour number or size between 

the cohorts, these were measured at the time of necropsy. Although there was 

no difference in overall tumour number or size between the 2 cohorts, there was 

a marked increase in the number of colonic tumours seen in the APCfl/+ KRasG12V 

RKIP-/- mice (Mann-Whitney p=0.006) (Figure 4.9). This increase was offset by a 

statistically non-significant decrease in the number of small intestinal tumours 

(Mann-Whitney p=0.075) (Figure 4.9) Histological examination revealed that not 

only was this increase apparent in the number of tumours visible grossly, but 

also in small microscopic tumours (Figure 4.9). 
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Figure 4.9: RKIP deletion results in an increase in colonic tumours in the APCfl/+ 

KRasG12V mouse 

Although there was no difference in the overall tumour number between APCfl/+ KRasG12V 
RKIP+/+ and APCfl/+ KRasG12V RKIP-/- mice there was a marked difference in the number of 
colonic tumours between the 2 cohorts (a, lower panel) (Mann-Whitney p=0.006, * 
indicates outlying values). This could also be demonstrated at the microscopic level, 
where there was a clear difference in the number of very early lesions between the 2 
cohorts (b). In addition to the increase in macroscopically visible tumours there was a 
marked difference in microscopic lesions. In APCfl/+ KRasG12V RKIP+/+ mice any tumours 
seen were single and large (b) whereas in the APCfl/+ KRasG12V RKIP-/- mice many 
microadenomas (c, upper enlargement) and single crypt lesions (c, lower enlargement) 
were seen. 
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4.2.6 RKIP2 is not increased in the tumours from any of 

the models 

In the above studies we did not see the phenotype that we expected in terms of 

increased invasion and metastases in the different tumour models. One possible 

explanation for this would be compensation for the absence of RKIP by 

upregulation one of the RKIP family members. As RKIP3-5 have been shown to be 

silent pseudogenes (Theroux, Pereira et al. 2007) we looked for the expression 

of RKIP2. RKIP2 has been shown to expressed specifically in the testis and has 

not been detected in other organs (Moffit, Boekelheide et al. 2007; Theroux, 

Pereira et al. 2007). However it is possible that in response to stress induced by 

the tumour model that RKIP2 may be elevated to compensate for the low levels 

of RKIP1. As there is no antibody available that will differentiate between 

RKIP1&2 we used reverse transcriptase PCR to test for the presence of RKIP2 

RNA in tumours from the different models, using testis as a positive control. 

Although we could detect strong expression of RKIP2 in the testis, no RKIP2 RNA 

could be detected in any of the tumour samples (Figure 4.10), indicating that 

compensation by RKIP2 is not occurring in these tumours.  
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Figure 4.10: RKIP2 is not upregulated in tumours from the RKIP-/- mice 

rtPCR was performed to determine if there was a compensatory upregulation of RKIP2 in 
tumours from the RKIP-/- mice. RKIP2 was easily detected in the testis as a positive 
control, but despite 35 cycles of PCR no RKIP2 could be detected in the tumours. rtPCR 
for HPRT1 (hypoxanthine phosphoribosyltransferase 1) was performed as a positive 
control (Note no control present for tumour 4). 
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4.3 Discussion 

Although our work and that of others have shown that the loss of RKIP expression 

is a significant event in CRC, very little is known with regards to the mechanisms 

of how this comes about. We were attempting to address this question by 

studying the effect of RKIP knockout in a number of established mouse models of 

CRC. The results of these experiments have been somewhat unexpected as we 

did not observe increased invasion and/or metastasis in the tumour models and 

the phenotypes that we did observe were quite subtle and did not appear to 

relate directly to the known role of RKIP as a metastasis suppressor. The 

phenotypes that we observed are interesting in their own right and appear to 

relate to the role that RKIP is known to play in the maintaining the integrity of 

the spindle checkpoint and preventing the development of CIN (Eves, Shapiro et 

al. 2006; Al-Mulla, Hagan et al. 2008).  

In the liver we saw that deletion of RKIP led to a markedly increased mitotic 

index and an increase in aberrant mitoses and in particular anaphase bridges. It 

has previously been shown in a number of human tumours that the presence of 

anaphase bridges correlates with the presence of CIN (Montgomery, Wilentz et 

al. 2003). This suggests that RKIP deletion is cooperating with homozygous Apc 

deletion to promote CIN in the livers of these mice. RKIP has been shown both in 

vitro (Eves, Shapiro et al. 2006) and in human CRC (Al-Mulla, Hagan et al. 2008) 

to be an important component in regulating CIN. APC can also influence the 

spindle checkpoint and affect the development of CIN. It is known that APC is 

localised to the kinetochore in metaphase chromosomes, where it forms a 

complex with checkpoint proteins BUB (Budding Uninhibited By Benzimidazoles) 

1 and 3, and is thought that this is important for the correct attachment of 
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microtubules to the kinetochore (Fodde, Kuipers et al. 2001; Kaplan, Burds et al. 

2001). Indeed cells that lack APC develop multiple spindle and centrosomal 

defects which can result in CIN both through disjunction defects, resulting in 

aneuploidy (Fodde, Kuipers et al. 2001; Kaplan, Burds et al. 2001) and 

chromosomal translocations, through the formation of multiple centrosomes 

(Kaplan, Burds et al. 2001).  It has also been shown that APC loss leads to CIN 

both in the intestine both in mice and humans (Cardoso, Molenaar et al. 2006; 

Alberici, de Pater et al. 2007). There is no evidence to suggest that in the mouse 

loss of Apc alone in the liver results in CIN; however our data suggest that the 

addition of a second hit, namely RKIP loss is enough to induce this. In these 

studies we also observed a mitotic arrest as measured by a lack of progression 

from S-phase. These data support the previous studies showing that decreased 

RKIP levels are associated with CIN (Eves, Shapiro et al. 2006; Al-Mulla, Hagan et 

al. 2008). However, the finding that cells in the APCfl/fl RKIP-/- livers are arrested 

in mitosis is contrary to the previous report, in which RKIP depletion was shown 

to speed the progression of cells through mitosis (Eves, Shapiro et al. 2006). This 

discrepancy may reflect the cooperation between Apc and RKIP deletion and also 

the differences in experimental approaches used. It is possible that alternative 

checkpoint mechanisms may be activated in vivo that would not be present in 

tumour cells in culture.    

The phenotype of the APCfl/+ KRasG12V RKIP-/- mice was a shift in tumour 

localisation from the small intestine to the colon. Interestingly this is a 

phenotype that has been seen before in a mouse model of CRC, in which the 

ApcMin mouse was crossed to BubR1 knockout mouse. BubR1 is a component of 

the spindle assembly checkpoint, which prevents activation of the anaphase 

promoting complex until chromosomes are appropriately lined up and 
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microtubules from 2 centromeric poles are attached to kinetochores (Kops, 

Weaver et al. 2005). Moreover, reduction of BubR1 has been shown in vitro to 

result in an increase in CIN (Baker, Jeganathan et al. 2004). A similar result has 

also been reported by Baker et al. who showed an increase in colonic tumours in 

the ApcMin mouse following deletion of the checkpoint regulator Bub1 (Baker, Jin 

et al. 2009). This would suggest that on a background of APC heterozygous 

deletion the addition of an element which perturbs the correct functioning of 

the spindle checkpoints, thus promoting CIN will result in a shift of tumour 

location to the colon; this also suggests that colonic cells are more sensitive to 

this kind of insult. We did not see the same result in the APCfl/+ RKIP-/- mice, 

indicating that the effect may be specific to the hyperactivation of the MAPK 

pathway induced by both KRas activation and RKIP deletion.  

A number of possible reasons could account for the fact that the RKIP knockout 

mice did not demonstrate increased invasiveness in any of the models studied. 

One of these is a compensatory increase expression of other members of the 

RKIP family. RKIP3-5 have been shown to be silent pseudogenes, therefore we 

examined the potential upregulation of RKIP2. RKIP2 has previously been shown 

to be expressed specifically in the testis (Moffit, Boekelheide et al. 2007; 

Theroux, Pereira et al. 2007) and even in the RKIP knockout mouse no RKIP2 

could be detected in any other organs, indicating that it does not increase to 

compensate for the loss of RKIP1 (Theroux, Pereira et al. 2007). Despite this 

there is the possibility that increased cellular stresses in a tumour may induce a 

compensatory increase in RKIP2. We examined tumours from all of the different 

models by rtPCR and showed that although we could detect the transcript in the 

testis, none was detectable in any of the tumours, demonstrating that there is 

no compensatory upregulation of RKIP2 in these tumours.  
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A second possibility is that there is a difference in the effect of germline RKIP 

deletion and the loss that occurs during the progression of a tumour. Although 

this is very difficult to prove, in the next chapter we will demonstrate the very 

different effects of p53 germline mutation and p53 mutation in the adult in a 

model of CRC, which could be due, at least in part to such a phenomenon.   

In summary we have shown that deletion of RKIP does not increase the invasive 

or metastatic potential of the tumour models studied. It does however appear to 

potentiate the CIN, induced by loss of Apc and expression of oncogenic KRas. 

The lack of invasive phenotype in the RKIP knockout mice is not due to 

compensatory upregulation of RKIP2. 
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5.1 Introduction 

In addition to studying the role of RKIP knockout in established mouse models of 

CRC an important aim of this project was to develop new models of CRC which 

more closely recapitulate the human disease, particularly the progression from 

adenoma to carcinoma to metastasis. These models will be useful in developing 

a greater understanding of the biology of CRC and in the preclinical testing of 

novel therapies. We attempted to take a rational approach to this problem by 

basing the model on genetic events that are common in human CRC and which 

occur at different stages in the adenoma to carcinoma sequence. To this end we 

have crossed the APCfl mouse with a p53 mutant mouse.  

APC is mutated in the majority of human CRC (Miyoshi, Nagase et al. 1992; 

Powell, Zilz et al. 1992) and is generally considered the gatekeeper mutation in 

CRC, occurring early in the disease process (Vogelstein, Fearon et al. 1988). 

Similarly, p53 is mutated in a large proportion (~50%) of human CRC (Baker, 

Preisinger et al. 1990), however, in contrast to APC, p53 mutations are rare in 

early adenomas and much more common in invasive carcinomas, suggesting that 

they are a later event in tumour progression (Vogelstein, Fearon et al. 1988; 

Baker, Preisinger et al. 1990). While the mutations that occur in many tumour 

suppressor genes (including APC) typically result in the expression of truncated 

and non-functional protein (Cottrell, Bicknell et al. 1992; Miyoshi, Nagase et al. 

1992; Miyaki, Konishi et al. 1994), mutations of p53 tend to be point mutations, 

resulting in the expression of mutant forms of the p53 protein, which often 

accumulate in tumour cells (Bartek, Bartkova et al. 1991; Brosh and Rotter 

2009). The majority of these mutations affect the DNA binding domain, thus 

preventing normal function of p53 as a transcription factor (Hollstein, Sidransky 
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et al. 1991; Brosh and Rotter 2009). It has been shown that these mutant forms 

of p53 can have a dominant negative effect, or can indeed exert an oncogenic 

effect beyond simple loss of the normal protein function (Brosh and Rotter 

2009). For this reason we have used 2 different p53 mutant mice. The first is the 

p53fl mouse (Jonkers, Meuwissen et al. 2001) in which p53 is deleted 

conditionally in a similar manner to the APCfl mouse. The second is the p53R172H 

mouse; in this case a R172H point mutant is conditionally expressed from the 

endogenous locus following deletion of a preceding STOP cassette by Cre 

recombinase (Olive, Tuveson et al. 2004). This has allowed us to compare the 

effects of these 2 different types of p53 mutation in CRC. 

Although it is clear that mutation of p53 occurs regularly in CRC, the reason for 

this remains unclear, indeed Fazeli and colleagues showed that it does not result 

in a decrease in apoptosis in either early or late stage adenomas (Fazeli, Steen 

et al. 1997). Previous studies investigating p53 loss at the early stages of 

intestinal tumorigenesis in vivo, using either the ApcMin mouse or acute Apc loss, 

have found little or no effect of p53 loss (Fazeli, Steen et al. 1997; Halberg, 

Katzung et al. 2000; Reed, Meniel et al. 2008). p53 loss did not affect crypt size, 

proliferation or apoptosis following Apc deletion, reflecting the finding that p53 

expression is only increased in a small number of cells (Reed, Meniel et al. 

2008). Likewise adenomas from ApcMin mice show little p53 accumulation and 

p53 mutations are never observed in the ApcMin polyps, suggesting that there is 

no selective advantage to lose p53 in these tumours. By using the APCfl mouse 

we felt that we could overcome this given the much longer latency of tumour 

development in this mouse. This longer latency and the fact that APCfl mice 

develop occasional invasive carcinomas could produce the environment which 

reveals the transforming properties of p53 mutation. 
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5.2  Results  

 

5.2.1 Loss or mutation of p53 accelerates APC induced 

tumourigenesis 

In order to determine the effect of p53 loss on Apc induced tumourigenesis, 

AhCre+ APCfl/+ mice were crossed to either p53fl/+ mice or to p53R172H/+ mice. In 

the p53fl/+ mice, a LoxP site is present in introns 2 and 11. Thus, on expression of 

the Cre-recombinase exons 2-10 are deleted, resulting in a null allele (Jonkers, 

Meuwissen et al. 2001). Similar to the KRasG12V/+ mice (see chapter 4.2.5), 

expression of the mutant p53R172H allele is prevented by the presence of an 

upstream STOP cassette, which is flanked by LoxP sites. Upon activation of Cre, 

the STOP cassette is deleted and the mutant allele expressed (Olive, Tuveson et 

al. 2004). The breeding strategy resulted in cohorts of AhCre positive APCfl/+ 

p53+/+ (N=15), APCfl/+ p53fl/+ (N=20), APCfl/+ p53R172H/+ (N=14), APCfl/+ p53fl/fl 

(N=15) and APCfl/+ p53R172H/fl (N=18). Mice were induced with -naphthoflavone at 

approximately 6 weeks of age. All of the mice were aged until they developed 

signs of intestinal tumours (such as pale feet, hunching or abdominal swelling).  

Loss or mutation of a single p53 allele led to a significant acceleration in 

tumourigenesis (APCfl/+ p53fl/+ and APCfl/+ p53R172H/+ cohorts) compared with 

controls (APCfl/+ p53+/+) (Log-Rank p=0.008) (Figure 5.1).  Genetic deletion of 

both copies of p53 (APCfl/+ p53fl/fl) or mutation of one copy, with concomitant 

deletion of the second copy (APCfl/+ p53R172H/fl) led to a marked acceleration in 

tumorigenesis compared to both control and heterozygous mice (Log-Rank 

p<0.001) (Figure 5.1). Indeed, median tumour onset was more than halved in 
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APCfl/+ p53fl/fl and APCfl/+ p53R172H/fl mice compared with controls. There was no 

difference in survival between the APCfl/+ p53fl/+ and APCfl/+ p53R172H/+ cohorts or 

between the APCfl/+ p53fl/fl and APCfl/+ p53R172H/fl cohorts. There was no 

difference in tumour number or size across the cohorts, indicating that all of the 

animals were euthanized at approximately the same stage of tumour 

development (Figure 5.1). 

To assess the effect of loss of p53 alone on the development of intestinal 

tumours, AhCre positive APC+/+ p53fl/fl mice were induced and aged in an 

identical manner to the other cohorts. Despite a longer survival time than APCfl/+ 

p53fl/fl mice none of these mice developed intestinal tumours. The majority of 

the tumours were lymphomas or sarcomas with rare mammary tumours, 

squamous cell carcinomas and one endometrial carcinoma (the AhCre transgene 

yields low levels of Cre-mediated recombination in these tissues). This indicates 

that loss of p53 alone is insufficient for intestinal tumour development and an 

initiating event, such as APC loss is required. 
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Figure 5.1: APC driven tumourigenesis is accelerated by p53 mutation  

Kaplan-Meier survival analysis showing the survival of the 5 cohorts studied. There was a 
significant difference in survival between the APCfl/+ p53+/+ cohort and both APCfl/+ p53fl/+ 

and APCfl/+ p53R172H/+ cohorts (Log-Rank p=0.008)). A further acceleration in 
tumourigenesis between these cohorts and both the APCfl/+ p53fl/fl and the APCfl/+ p53R172H/+ 

cohorts (Log-Rank p<0.001) (a). There was no difference in either tumour number or size 
across the 5 cohorts studied (b) (* indicates outlying values).   
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5.2.2 Point mutation of a single copy of p53 is sufficient 

for the progression to invasive carcinoma  

To examine progression, tumours from all genotypes were histologically 

examined. High grade dysplasia (HGD) and invasive carcinoma were identified in 

all cohorts but at very different rates. In the controls (APCfl/+ p53+/+), HGD and 

invasive carcinoma were seen in 5/15 (33%) mice and 4/15 (27%) mice 

respectively. Rates were similar in the APCfl/+ p53fl/+ cohort, with 8/20 (40%) and 

5/20 (25%) mice developing HGD and invasive carcinoma respectively. Strikingly, 

the rates of HGD and invasive carcinoma were much greater in the other 3 

cohorts, at 13/14 (93%) and 12/14 (86%) in the APCfl/+ p53R172H/+ cohort, 13/15 

(87%) and 12/15 (80%) in the APCfl/+ p53fl/fl cohort and 18/18 (100%) and 16/18 

(89%) in the APCfl/+ p53R172H/fl cohort respectively (Figure 5.2).  

These data demonstrate that while deletion of both copies of p53 and the 

mutation of 1 copy with concomitant deletion of the second copy result in an 

identical shortening of lifespan and promote an invasive phenotype, there is a 

marked difference in the heterozygous situation. Despite an almost identical 

lifespan, total tumour number and average tumour size, invasive carcinoma 

developed in almost 90% of the APCfl/+ p53R172H/+ mice, compared with only 25% 

of APCfl/+ p53fl/+ mice (Figure 5.2). This would suggest that while mutant p53 

does not have an effect on tumour initiation it has a profound effect on tumour 

progression, as evidenced by the increase in invasive carcinomas.  
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Figure 5.2: p53 point mutation promotes high grade dysplasia and an invasive 
phenotype 

Tumours were analysed histologically for the presence of high grade dysplasia (HGD) (a) 
and invasive carcinoma (b). The proportion of mice developing invasive carcinoma in the 
control group was approximately 25%. Mutations affecting both copies of p53 (either loss 
of function of both APCfl/+ p53fl/fl, or point mutation of one and loss of function of the other 
APCfl/+ p53R172H/fl) resulted in a dramatic increase in invasion with ~90% of mice 
developing invasive tumours. Interestingly, while there was no difference in survival 
between the APCfl/+ p53fl/+ or APCfl/+ p53R172H/+ cohorts there was a marked increase in 
invasive tumours in the APCfl/+ p53R172H/+ cohort, indicating that point mutation of p53 
promotes invasion but is unlikely to play a role in tumour initiation. 
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As we wanted to develop a model that closely recapitulated the human disease, 

we examined the tumours microscopically to assess similarities at the level of 

histology. Variation in the depth of invasion, similar to the spectrum seen in 

human CRC was observed. Some tumours showed superficial invasion, equivalent 

to T2-T3 human tumours (Figure 5.3). Other tumours invaded through the full 

thickness of the muscularis and peritoneum, resulting in tumour cells in the 

peritoneal cavity and occasional direct invasion into local organs (Figure 5.3). 

This would be equivalent to T4 disease in human CRC. The abdominal organs and 

lymph nodes were harvested for histology at necropsy. A single APCfl/+ p53fl/fl 

mouse was found to harbour a metastasis in a pancreatic lymph node (Figure 

5.3). The primary tumour was a moderate-poorly differentiated invasive 

carcinoma. This demonstrates that the invasive tumours that developed in this 

model are capable of metastasising. However, the fact that only one metastasis 

was detected indicates that somatic events other than those induced are 

necessary before this occurs.  Aside from this single metastasis in the APCfl/+ 

p53fl/fl cohort the invasive tumours that developed in the APCfl/+ p53R172H/+, 

APCfl/+ p53fl/fl and APCfl/+ p53R172H/fl mouse cohorts showed similar differentiation 

and depth of invasion.  
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Figure 5.3: Examples of invasive tumours and metastasis 

As in human CRC the invasive tumours that developed in this model showed a variety of 
depth of invasion, ranging from superficial muscle invasion (a), through complete muscle 
invasion to reach the peritoneal surface (b). A number of tumours perforated the bowel 
wall, resulting in a massive inflammatory reaction and direct invasion of local structures 
(c). A single metastasis was identified in a pancreatic lymph node (d). 
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Having seen that the tumours in the mice bare a close resemblance to human 

CRC at the level of histology we wanted to determine if those similarities were 

also present at the molecular level. Firstly we examined the epithelial to 

mesenchymal transition (EMT). EMT is thought to be a key step in the 

development of invasive carcinoma and in the progress towards metastasis. Two 

markers of EMT are loss of E-cadherin and expression of ZEB1 (Schmalhofer, 

Brabletz et al. 2009), a member of the zinc finger homeobox family, which 

represses E-cadherin transcription and has been reported to be upregulated at 

the invasive front of CRC (Spaderna, Schmalhofer et al. 2006). To see if this was 

the case in the tumours from this study, we performed ZEB1 and E-cadherin IHC 

on a subset of invasive tumours. We observed selective elevation of ZEB1 

expression and a decrease in E-cadherin expression (Figure 5.4) at the invasive 

front. These data suggest that EMT is occurring at the invasive front of these 

tumours, and further demonstrates the similarity between the tumours in this 

model and human CRC. The expression of these markers was similar in the 

invasive tumours from the APCfl/+ p53R172H/+, APCfl/+ p53fl/fl or APCfl/+ p53R172H/fl 

cohorts. 
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Figure 5.4: EMT markers are present at invasive edge of the tumours 

ZEB1 is a repressor of e-cadherin and has been shown to be a marker of EMT and raised 
at the invasive edge of human CRC. Staining for ZEB1 in the invasive tumours from our 
model demonstrated a positivity for ZEB1 at the invasive front of the tumour (a, ^ & *) 
when compared to the centre of the tumour (a, #). Similarly, the loss of nuclear e-cadherin 
is associated with EMT. Tumours from our model showed high levels of membranous e-
cadherin on the surface and in the centre of tumours (b, #) but much lower levels at the 
invasive front (b, *). 

Chapter 5 p53 promotes invasion in a novel model of CRC 189



Chapter 5  p53 promotes invasion in a novel model of CRC 190 

CIN also occurs in the majority of human CRC (Issa 2008). To determine if this 

was the case in the mouse tumours we examined them for evidence of CIN by 

quantifying abnormal mitoses, in particular tripolar mitoses and anaphase 

bridges (Figure 5.5). These have been shown to correlate with the presence of 

CIN in CRC and other tumours (Montgomery, Wilentz et al. 2003; Petersen, Kotb 

et al. 2009). A higher percentage of tripolar mitoses and anaphase bridges were 

seen in tumours taken from the APCfl/+ p53R172H/+, APCfl/+ p53fl/fl and APCfl/+ 

p53R172H/fl cohorts when compared to APCfl/+ p53+/+ and APCfl/+ p53fl/+ cohorts 

(Chi square p=0.002) (Table 5.1).  

 APCfl/+ 
p53+/+ 

APCfl/+ 
p53fl/+ 

APCfl/+ 
p53R172H/+ 

APCfl/+ 
p53fl/fl 

APCfl/+ 
p53fl/R172H 

Total Mitoses 198 251 223 188 214 

Aberrant Mitoses (% of Total) 0 (0%) 2 (0.8%) 9 (4.0%) 5 (2.7%) 6 (2.8%) 

Table 5.1: Chromosomal instability is increased in those cohorts with a high 
proportion of invasive carcinomas.  

Aberrant mitoses were defined as either tripolar mitoses or those showing definite 
anaphase bridges. The difference in aberrant mitoses between those cohorts with a high 
frequency of invasive carcinoma (APCfl/+ p53R172H/+, APCfl/+ p53fl/fl and APCfl/+ p53R172H/fl) 
and those with a low frequency of invasive carcinoma (APCfl/+ p53+/+ and APCfl/+ p53fl/+) 
was statistically significant (Chi square: p=0.002). 
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Figure 5.5: Example of a tripolar mitosis and an anaphase bridge 

Tumours were studied for the presence of tripolar mitoses (a), in which 3 mitotic spindle 
poles can clearly be seen and for anaphase bridges (b), in which 2 parallel anaphase 
plates have formed but remain joined by a bridge of nuclear material (arrow).  
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5.2.3 p53 and p21 levels in the tumours 

In human CRC p53 accumulation has been shown to be associated both with p53 

mutation and with poorer prognosis (Munro, Lain et al. 2005). In order to see if 

this was the case in the mouse tumours, we stained a selection of both invasive 

and non-invasive tumours for p53. Tumours from the APCfl/+ p53+/+ and APCfl/+ 

p53fl/+ cohorts showed generally low levels of p53 expression (Figure 5.6). Not 

surprisingly no p53 expression was seen in the APCfl/+ p53fl/fl cohort indicating 

total loss of p53 protein in these tumours (Figure 5.6). In the APCfl/+ p53R127H/fl 

cohort there was almost universally high levels of p53 protein seen within 

tumour cells but not in normal cells (Figure 5.6). In the APCfl/+ p53R172H/+ cohort 

two patterns of p53 staining were observed. In 2/7 tumours low levels of p53 

staining, similar to that seen in control tumours, was observed. The remaining 5 

tumours showed at least focally high levels of p53 staining (Figure 5.6), but 

interestingly there was a wide variation in the percentage of tumours cells 

staining (10-70%). 

As it has been previously reported that loss of the wild-type allele of p53 occurs 

in a proportion of tumours which develop in the setting of p53 mutation in the 

mouse (Olive, Tuveson et al. 2004), we were interested to see if the APCfl/+ 

p53R172H/+ tumours still express wild-type p53. This was assessed functionally, by 

examining levels of p21 by IHC. p21 is a recognised downstream target of p53 

but the R172H mutant used in these experiments is not capable of inducing 

transcription of p21. In the APCfl/+ p53+/+ and APCfl/+ p53fl/+ cohorts, although 

p53 was strongly expressed in only a small number of cells, back to back sections 

demonstrated high levels of p21 staining in those cells in which p53 expression 

was high (Figure 5.6). The APCfl/+ p53fl/fl tumours showed no p53 expression and 
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little or no p21 expression (Figure 5.6), consistent with the total loss of p53 

protein in these tumours. APCfl/+ p53R172H/fl tumours demonstrated high levels of 

p53 staining but little or no p21 staining (Figure 5.6); this is consistent with 

there being only mutant p53 present in these cells. In the APCfl/+ p53R172H/+ 

cohort, back to back sections revealed that those cells which showed high levels 

of p53 staining also showed high levels of p21 staining (Figure 5.6). This was also 

the case, even in those tumours where the overall levels of p53 were low. This 

would indicate that these tumours retain p53 protein which is transcriptionally 

active and is able to bring about the upregulation of p21.  

Interestingly, although high levels of p53 were seen in tumours from both 

cohorts expressing the mutant protein, there was a concentration of expression 

at the invasive front of many of the tumours (Figure 5.7). This may suggest 

selection for cells expressing mutant p53 in these regions. 



a

c

d

e

b

p53 p21

APCfl/+ p53+/+

APCfl/+ p53fl/+

APCfl/+ p53R172H/+

APCfl/+ p53fl/fl

APCfl/+ p53R172H/fl

  

Figure 5.6 p21 levels mirror p53 in tumours from the APCfl/+ p53R172H/+ mice 

To test whether functional p53 was present in the tumours they were stained for both p53 
and p21. In APCfl/+ p53+/+ and APCfl/+ p53fl/+ tumours only low levels of p53 were seen 
(a&b, left panels). Staining of back to back sections revealed p21 staining in these cells 
(a&b, right panels), indicating the presence of functional p53. In the APCfl/+ p53fl/fl tumours 
no p53 or p21 could be detected (d), while in the APCfl/+ p53R172H/fl tumours there was 
accumulation of mutant p53 but no p21 staining (e), confirming that this p53 point 
mutation cannot activate p21 transcription. Interestingly, in the APCfl/+ p53R172H/+ tumours 
high levels of p53 staining was seen, at least focally and in these areas the p53 staining 
was mirrored by p21 (c), indicating that in these tumours the cells retain a functioning 
(wild-type) copy of p53. 
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Figure 5.7: Mutant p53 accumulation is greatest at the invasive front 

Although mutant p53 was seen to accumulate throughout tumours from the APCfl/+ 
p53R172H/+ and APCfl/+ p53R172H/fl cohorts, the staining was at its most intense at the 
invasive front of the tumours. This can be seen in the above examples where the red 
arrow indicates the direction of invasion. 
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In order to confirm these findings, a subset of mice were irradiated with 14Gy 6 

hours prior to being euthanized. Irradiation leads to stabilisation of p53, 

expression of p21 and apoptosis in the mouse intestine (Wilson, Pritchard et al. 

1998). Tumours from the APCfl/+ p53fl/+ cohort showed an increase in p53 

expression when compared to unirradiated animals, which was mirrored by an 

increase in p21 levels (Figure 5.8). Tumours from the APCfl/+ p53R172H/fl cohort 

showed high levels of p53 with little or no p21 expression (Figure 5.8). In 

tumours from the APCfl/+ p53R172H/+ cohort there was an increase in p53 

expression levels, when compared to unirradiated animals and this was closely 

mirrored by an increase in p21 levels in these cells (Figure 5.8). This would 

suggest that the wild type copy of p53 is not lost in these tumours and therefore 

that the loss of wild type p53 is not necessary for the development of an invasive 

tumour in this setting. 
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Figure 5.8: p21 is increased in APCfl/+ p53R172H/+ tumours following irradiation 

To confirm the earlier result showing that p21 is upregulated along with p53 in APCfl/+ 
p53R172H/+ tumours a subset of mice were treated with 14Gy irradiation. Tumours from the 
APCfl/+ p53fl/+ mice showed increased staining with both p53 and p21 (a), while tumours 
from the APCfl/+ p53R172H/fl tumours mice showed high p53 but no p21 (c), again showing 
that the point mutant cannot activate transcription of p21. As with the earlier result in the 
APCfl/+ p53R172H/+ tumours p53 and p21 were both seen (b) again indicating the presence 
of functional p53 in these tumours. 
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5.2.4 Levels of catenin and Wnt target genes are 

highest at invasive fronts  

As mentioned previously, there is debate over the levels of Wnt signalling in 

human CRC, as despite APC mutation, nuclear -catenin only appears to be 

localised at the leading edges of tumours (Brabletz, Jung et al. 2001). This has 

been described as the -catenin paradox. In our previous studies we have found 

that both adenomas and invasive carcinomas that develop within AhCre APCfl/+ 

mice have nuclear -catenin. To investigate whether the levels of -catenin and 

downstream Wnt target genes are altered by p53 mutation we first stained for 

levels of -catenin by IHC. There was a marked increase in levels of -catenin 

(both in the nucleus and the cytoplasm) at the invasive fronts of tumours, in a 

manner analogous to human CRC. Interestingly, using our IHC protocol we still 

detect clear nuclear positivity throughout the tumours (Figure 5.9).  

To test if this increase in -catenin was functionally active, we performed IHC 

for a subset of Wnt targets. We were able to show markedly higher levels of c-

Myc and Sox9 at the invasive fronts by IHC, and of the Wnt target/stem cell 

marker LGR5 by in-situ hybridisation (ISH). Once again, these Wnt target genes 

are still expressed in the centre of tumours though expression is higher at the 

leading edge (Figure 5.9).  
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Figure 5.9: β-catenin and Wnt targets are increased at the invasive front 

In the normal intestine β-catenin can be seen at cell membranes (a), in the tumours we 
noted that although nuclear β-catenin could be seen throughout the tumour it was highest 
at the invasive front (b). To confirm that this increase in nuclear β-catenin was functional 
we stained for Wnt targets and saw increases in c-Myc (c) and Sox9 (d) were increased at 
the invasive front (*) compared to the centre of the tumour (#). We also stained for the 
Wnt target and intestinal stem cell marker LGR5 by ISH (e). Staining could seen in the 
invasive component of the tumour (e, left panels, below the line) but not in the 
adenomatous component (e, left panels, above the line). Staining was most intense at the 
invasive front (e, right panels).  
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5.2.5 Fascin, pERK and ARF levels are highest at the 

invasive edge  

From previous microarray studies in our laboratory, we found that a number of 

Wnt targets such as Cyclin D1 and Fascin are not immediately deregulated 

following APC loss (Sansom, Meniel et al. 2007).  This is consistent with human 

CRC where both have been associated with activation at the invasive front of 

tumours and a poor prognosis (Jung, Schrauder et al. 2001; Vignjevic, 

Schoumacher et al. 2007; Ogino, Nosho et al. 2009). To assess if these higher 

levels of -catenin signalling were driving expression of a wider repertoire of 

targets we examined a number of these by IHC. Fascin and pERK, both of which 

can promote invasion (Pollock, Shirasawa et al. 2005; Vignjevic, Schoumacher et 

al. 2007), were upregulated at the invasive front of tumours (Figure 5.10).  

Studies have shown that increased levels of c-Myc lead to heightened ARF 

activity, which, in the presence of functional p53 leads to apoptosis (Zindy, 

Eischen et al. 1998). IHC for p19ARF showed a dramatic upregulation at the 

invasive edge of tumours from the APCfl/+ p53R172H/+, APCfl/+ p53fl/fl and APCfl/+ 

p53R172H/fl cohorts (Figure 5.11) but not APCfl/+ p53+/+ tumours (Figure 5.11).  

To show that this was specific to invasive carcinomas lacking p53, we stained 

invasive carcinomas from APCfl/+ PTENfl/fl mice. Tumours from these mice failed 

to show any upregulation of Myc, ARF or pERK at the leading edge, and instead 

showed massive upregulation of pAkt (Figure 5.12).  
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Figure 5.10: Fascin and pERK are increased at the invasive front 

Both fascin (a) and pERK (b) showed specific upregulation at the invasive front of 
tumours. In the case of fascin there is virtually no staining seen in the tumour cells at the 
centre of the tumour (a, #), while clear cytoplasmic staining can be seen in the cells at the 
invasive front (a, *). Similarly in the case of pERK (b) the low power view shows clear 
selective upregulation at the invasive front, the enlargement shows that the staining is 
both cytoplasmic and nuclear.   
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Figure 5.11: ARF is upregulated specifically at the invasive front 

In normal cells ARF is undetectable (a). However in invasive tumours ARF was seen 
staining in a characteristic nucleolar pattern in tumour cells and glands specifically at the 
invasive front (b). In the centre of tumours (c, above line) although many prominent 
nucleoli can be seen no ARF staining is present, while in the adjacent tumour gland form 
the invasive front most of the cells show nucleolar staining (c, #). Tumour buds (small 
groups of cells separate from the main tumour mass) ARF staining was particularly 
prominent (d). In contrast in the few invasive tumours that developed in APCfl/+ p53+/+ mice 
although there was an upregulation of β-catenin at the invasive front (e) no upregulation of 
ARF was seen (f). 
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Figure 5.12: ARF is not upregulated at the invasive front of APCfl/+ PTENfl/+ tumours 

To see if the increase in ARF and Wnt targets at the invasive front was specific to the 
model studied, sections of invasive tumours from APCfl/+ PTENfl/+ mice were stained for 
ARF, pERK and c-Myc. These tumours did not show any detectable ARF (a) and levels of 
pERK (b) and c-Myc (c) showed no appreciable difference between the tumour centre and 
invasive front. Instead these tumours showed high levels of pAKT (d) indicating strong 
activation of the PI-3Kinase pathway.  
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5.2.6 p14/19ARF as a potential regulator of invasive 

tumours in the absence of p53. 

Unlike many human cancers, the CDKN2A locus encoding the p16INK4A and p14ARF 

gene products is neither mutated nor epigenetically inactivated in the majority 

of sporadic CRC (Burri, Shaw et al. 2001; Konishi, Shen et al. 2009).  Indeed 

previous studies have shown that p16 is expressed at the invasive front of human 

CRC and may correlate with a poor prognosis (Wassermann, Scheel et al. 2009).  

These findings suggested that this distinctive upregulation of ARF at invasive 

edges, rather than simply marking deregulated c-Myc, may play a functional 

role. A previous study has suggested that ARF may have tumour promoting 

functions in the absence of p53 (Humbey, Pimkina et al. 2008) despite the fact 

that it is mainly seen as a tumour suppressor.   

Therefore we wished to test whether ARF can confer a selective advantage in 

the absence of p53.  To assess this, we transfected p53-/- HCT116 cells with 

either p14ARF or vector control, and grew the cells under identical conditions of 

serum starvation. The expression of p14ARF was confirmed by western blot 

analysis (Figure 5.13). Cells in the control group showed a dramatic drop in 

number between days 3-5, with a slight recovery by day 7. In the p14ARF group 

the drop in cell numbers was much less and they also made a stronger recovery, 

so that by day 7 there was a statistically significant increase in cell numbers 

over controls, indicating that upregulation of p14ARF may confer a survival 

advantage in p53-/- cells (Figure 5.13). To test this more rigorously we then 

assessed if p14ARF p53-/- HCT116 cells had a growth advantage in vivo. To do this 

we injected stably transfected cell lines subcutaneously in nude mice and aged 

the mice until tumours reached 1.7cm in size. We found that the p14ARF tumours 
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grew much more rapidly than vector controls (Figure 5.13, Log-Rank p=0.003). 

The resulting tumours were examined for invasive potential. 3/6 tumours from 

the p14ARF group resulted in skin ulceration, requiring early euthanasia, before 

they could reach 1.7cm. The remaining tumours demonstrated invasion and 

adherence to the body wall and ribcage that was not seen in any of the controls. 

This body wall invasion was confirmed microscopically, where it was also seen 

that the tumours displayed poorly defined edges and both vascular and 

perineural invasion. In contrast, control tumours were well circumscribed and 

did not invade the muscle of the body wall (Figure 5.13). 
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Figure 5.13: ARF promotes cell viability in p53-/- HCT116 cells 

To determine if ARF was playing a functional role at the invasive edge p53-/- HCT116 cells 
were transfected with exogenous ARF (referred to as ARF cells) or an empty vector 
control (referred to as control cells). The presence of ARF in the cells was confirmed by 
western blot analysis (a). After 7 days of serum starvation ARF cells showed a statistically 
significant increase in survival compared to controls (b). To confirm this result both ARF 
and control cells were injected into the flank of nude mice, which were culled when 
tumours reached 1.7cm. The ARF cells grew significantly more rapidly, resulting in a 
shorter lifespan for these mice (c). In addition to growing more rapidly the tumours formed 
by the ARF cells demonstrated marked invasion of the body muscle wall (d, small arrows) 
in some cases reaching the ribs (d, large arrow). These tumours also demonstrated 
perineural (e) and vascular (f) invasion. In contrast the tumours formed by the control cells 
were well circumscribed and did not invade (g). 
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As we have suggested that the increase in ARF levels may play a role in the 

development of invasion, we went on to examine the effect of increased ARF 

levels in p53-/- cells in an in vitro invasion assay. p53-/- HCT116 cells transfected 

either with p14ARF or vector control were seeded as a monolayer on the surface a 

matrix, consisting of rat tail collagen and human fibroblasts. An EGF gradient 

across the matrix encouraged cells to invade. Both the p14ARF and vector control 

cells invaded into the matrix. However, the depth of invasion was almost 

doubled in the p14ARF group compared with controls (Mean depth of invasion 

198.80μm vs 102.00μm, Student’s T-test p<0.001) (Figure 5.14). Furthermore, 

although both sets of cells invaded as groups, in many cases cells from the p14ARF 

group were seen to break off into smaller groups at the invading edge (Figure 

5.14). To ensure that this difference was not due merely to an increase in 

proliferation Ki-67 staining was performed and showed no difference in the 

proliferative index between the two groups (43% vs 37%, Chi-square p=0.87). 
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Figure 5.14: ARF promotes invasion in an organotypic invasion assay 

HCT116 p53-/- cells stably transfected with ARF (a, left panel) invaded deeper into the 
matrix than identical cells transfected with vector control (a, right panel). Although both the 
ARF and control cells invaded as groups, in the case of the ARF over-expressing group, 
small groups of cells were seen to break off from the main group in many cases (d, left 
panel, arrow), similar to the tumour budding seen in invasive tumours in vivo. This 
phenomenon was not seen in the control cells. The increase in maximal depth of invasion 
is quantified in b. The depth of invasion was nearly doubled in the ARF over-expressing 
cells (Student’s T-test p<0.001). 

Chapter 5 p53 promotes invasion in a novel model of CRC 208



Chapter 5  p53 promotes invasion in a novel model of CRC 209 

5.3 Discussion 

Although many excellent animal models of the early stages of CRC exist there is 

a recognised need for new paradigms, which recapitulate the later stages of the 

disease, particularly invasion and metastasis (Taketo and Edelmann 2009). In this 

study we have used mutations in APC and p53, 2 of the most commonly mutated 

genes in human CRC to develop a mouse model of CRC which invades in ~90% of 

cases and is capable of metastasis.  

While invasive tumours consistently developed in both the APCfl/+ p53fl/fl and 

APCfl/+ p53R172H/fl cohorts, there was a dramatic difference between the APCfl/+ 

p53fl/+ and APCfl/+ p53R172H/+ cohorts, demonstrating the enhanced oncogenic 

effect of p53 point mutation over loss in the setting of CRC. The fact that these 

2 cohorts had almost identical lifespans and developed very similar numbers of 

tumours suggests that the difference is not in tumour initiation, but instead in 

tumour progression and invasion. The accumulation of mutant p53 at invasive 

fronts also supports this. This observation is in keeping with previous reports on 

the differences between p53 deletion and mutation. Both Olive et al and Lang et 

al showed that in a model of Li-Fraumeni syndrome p53 knockout mice and mice 

expressing mutant p53 have identical lifespans but develop a different tumour 

spectrum. They also observed an increase in aggressiveness in the mutant p53 

group (Lang, Iwakuma et al. 2004; Olive, Tuveson et al. 2004). Other studies, in 

mouse models of both skin and pancreatic cancer have also shown a more 

aggressive phenotype associated with p53 mutation (Caulin, Nguyen et al. 2007; 

Morton, Timpson et al. 2010).   



Chapter 5  p53 promotes invasion in a novel model of CRC 210 

Although it has long been known that APC and p53 mutations co-exist in human 

CRC, this is the first time that this cooperation has been demonstrated in an 

animal model. Previous studies have examined the potential in vivo cooperation 

between APC and p53 (Clarke, Cummings et al. 1995; Fazeli, Steen et al. 1997; 

Halberg, Katzung et al. 2000). In only one of these studies was a slight 

difference in tumour invasiveness demonstrated (Halberg, Katzung et al. 2000). 

However, the number of invasive carcinomas in that study was very small (only 4 

were identified), and the effects observed were strain specific. Although our 

model utilises similar genetic events to these previous studies, we observed a 

dramatic difference in invasion. A possible explanation for this is the tumour 

burden in the different models. Previous studies used the ApcMin mouse, which 

develops 100’s of tumours and the animals succumb to the overall tumour 

burden rather than tumour progression. Consistent with this is the finding that 

adenomas from the ApcMin mouse do not show CIN (Haigis, Caya et al. 2002). In 

our model the animals develop fewer tumours (median 20). This decreased 

overall tumour burden allows for the progression of individual tumours. 

Moreover, this is closer to the situation in humans, where only a small number of 

tumours initiate, allowing progression to occur. 

While the invasive tumours occurred across 3 different genotypes, they were all 

remarkably similar. The tumours also resembled the human disease on a number 

of levels. Histologically the tumours demonstrated variation in depth of invasion, 

with tumours ranging from superficially invasive, through to tumours that 

resulted in bowel perforation and extension into surrounding organs. These 

tumours also demonstrated the capacity to metastasise, although the fact that 

only one metastasis was identified in the study, indicates that other somatic 

events are necessary before this occurs.  
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At the molecular level the tumours also demonstrated similarities. Firstly we saw 

evidence of increased CIN in the tumours arising from the APCfl/+ p53R172H/+, 

APCfl/+ p53fl/fl and APCfl/+ p53R172H/fl cohorts, compared to those from the APCfl/+ 

p53+/+ and APCfl/+ p53fl/+cohorts. As it has been shown that CIN can contribute to 

tumour development (Weaver and Cleveland 2007), this would suggest that this 

increase in CIN may contribute to the increase in invasiveness seen. We went on 

to look at ZEB1 and E-cadherin, 2 known markers of EMT and showed that as 

with human tumours, there was an increase in ZEB1, with a reciprocal decrease 

in E-cadherin levels at the invasive front of the tumour. This suggests that many 

of the same processes which promote invasion in human CRC are also active in 

the invasive tumours from this model. 

As well as increases in EMT markers at the invasive edge of tumours, we also saw 

a robust increase in nuclear -catenin staining. This is similar to previous reports 

demonstrating high nuclear -catenin at the invasive front of human CRC 

(Brabletz, Jung et al. 2001). However in that study the authors did not see 

nuclear -catenin in the middle portion of tumours, whereas we saw staining 

throughout, with a marked increase at the invasive front. We also showed that 

the Wnt targets c-Myc and Sox9 were present throughout the tumours with the 

most intense staining seen at the invasive front, mirroring -catenin. This may 

go some way to addressing the “-catenin paradox” and indicates 2 thresholds of 

Wnt activity in tumours, the first which initiates adenoma formation and a 

second stronger Wnt activation, which promotes invasion. To support this we 

have subsequently stained human CRC for -catenin and have been able to 

demonstrate nuclear staining throughout the tumour, with increased intensity at 

the invasive front. This also fits with previous studies from our laboratory, where 

we see Wnt targets such as c-Myc, CD44 and Cyclin D2 deregulated immediately 
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following APC loss (Sansom, Meniel et al. 2007) and with microarray studies from 

human tumours showing increased levels of Wnt target gene expression  

(Sabates-Bellver, Van der Flier et al. 2007; Van der Flier, Sabates-Bellver et al. 

2007).  

Two pro-invasive proteins were also found to be upregulated at invasive fronts. 

These were fascin, which is a key actin regulator and has been implicated in 

invasion (Vignjevic, Schoumacher et al. 2007), and pERK, which is known to play 

a pro-migratory and invasive role (Pollock, Shirasawa et al. 2005), but 

interestingly is not upregulated following APC loss, even in the presence of 

oncogenic KRas (Sansom, Meniel et al. 2006; Haigis, Kendall et al. 2008). This is 

interesting given that fascin has been shown to be upregulated at the invasive 

front of human CRC (Vignjevic, Schoumacher et al. 2007). The presence of pERK 

specifically at the invasive front of the tumour indicates activation of the MAPK 

pathway. It has been shown in vitro that APC deletion can activate ERK (Jeon, 

Yoon et al. 2007; Kim, Rath et al. 2007), however as mentioned above studies in 

vivo have shown that that ERK is not activated following APC deletion and 

activation of KRas (Sansom, Meniel et al. 2006; Haigis, Kendall et al. 2008). This 

suggests that the additional loss of p53 function permits activation of the MAPK 

pathway at the invasive front, allowing it to exert its pro-invasive effect.    

The final protein that we found upregulated at the invasive front was ARF. At 

first glance this was somewhat surprising, given that ARF is generally considered 

a tumour suppressor. However it makes sense when one considers the pathways 

that we have shown to be active at the invasive front. It is known that high 

levels of c-Myc will activate ARF (Zindy, Eischen et al. 1998). This is an 

important tumour suppressor mechanism as in a normal cell this increase in ARF 
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promotes the stabilisation of p53 and a selective survival disadvantage (Zindy, 

Eischen et al. 1998), preventing the establishment of an invasive front. Indeed, 

this has been shown to occur in a mouse model of lymphomagenesis (Zindy, 

Williams et al. 2003). However in the absence of functional p53, this cannot 

happen and the cell derives a selective growth advantage through upregulated -

catenin and c-Myc, allowing the development of the invasive front. 

We then went on to demonstrate that this increased level of ARF is not just 

marking aberrant activation of c-Myc but instead appears to have a functional 

role, promoting both cell survival and invasion in the absence of p53. To our 

knowledge this is the first report of ARF acting in a pro-invasive role in a solid 

tumour. However, there are some recent data supporting a tumourigenic role for 

ARF. Humbey et al reported that ARF can support tumour development in a 

mouse model of B-cell lymphoma, possibly by promoting autophagy in the 

tumour cells (Humbey, Pimkina et al. 2008). Intriguingly, this B-cell lymphoma 

model is driven by overexpression of Myc and mutation of p53 (events reflected 

in our model), however, the authors did not observe the same effect of ARF 

when studying different oncogenic drivers (Humbey, Pimkina et al. 2008). The 

mechanism by which ARF promotes invasion is not clear; however, data from 

Herkert et al suggest a possibility. They have shown that in response to 

oncogenic stress ARF can promote formation of a Myc/Miz complex. This 

complex represses transcription of genes involved in adhesion. Functionally this 

resulted in cell detachment and subsequent apoptosis in p53 proficient cells. 

However, when apoptosis was inhibited the reduction in cell adhesion persisted 

(Herkert, Dwertmann et al. 2010). In our system this loss of the cell adhesion 

signature could promote invasion and the formation of “tumour buds” (which we 

witnessed both in vitro and in vivo), with the absence of p53 abrogating 
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subsequent apoptosis and allowing survival of the detached cells. The fact that 

we see EMT markers (including decreased E-cadherin expression) at the invasive 

front is consistent with this hypothesis.  

A small number of mouse models of invasive intestinal carcinoma exist in the 

literature (Hung, Maricevich et al.; Sansom, Meniel et al. 2006; Marsh, Winton et 

al. 2008; Trobridge, Knoblaugh et al. 2009), so it is important to place the 

current model in context. Sansom et al reported superficial invasion upon 

mutation of Apc and expression of oncogenic KRas (Sansom, Meniel et al. 2006). 

Subsequently, full thickness invasion has been seen in tumours possessing Apc 

and Pten mutations (Marsh, Winton et al. 2008). Metastasis did not occur in 

either of these models. A recent model has been published which is capable of 

metastasising. In this model the tumours developed on a background of TGFR 

mutation, in a Wnt independent fashion (Trobridge, Knoblaugh et al. 2009). This 

probably best represents a model of progression along the “serrated pathway”, 

in which TGFR mutation is common and APC mutation less common than in CRC 

as a whole. Tumours that arise along this route frequently occur on a 

background of microsatellite instability. Another, very recent study has 

overcome many of these issues, by combining Apc and KRas mutations in the 

distal colon. Tumours from this model showed invasion and occasional metastasis 

(Hung, Maricevich et al. 2010). Consistent with the activation of KRas the 

authors saw an upregulation of pERK in the tumours. The current model also 

generates deeply invasive tumours and metastasis. It is interesting to note that 

although we have deleted p53 rather than activating KRas we also see pERK 

upregulation, suggesting that this is an important event in the development of 

invasive carcinoma.  
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In summary, in this study we have demonstrated that APC and p53 mutation, 

which are two of the most common genetic events in human CRC, can co-

operate to strongly promote an invasive phenotype. This yields a novel mouse 

model of CRC which resembles the human disease at both the histological and 

molecular levels. We show that heterozygous point mutation is a more potent 

inducer of tumour invasion than heterozygous p53 deletion. Finally, we present 

evidence for a mechanism for the increase in invasion seen in the setting of p53 

loss, based on a novel pro-invasive role for ARF.  
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6.1 Introduction 

The results of chapter 5, demonstrating a clear difference in the effect of p53 

deletion and mutation led us to study this effect in another system. We used a 

mouse model of pleomorphic rhabdomyosarcoma in which an oncogenic KRas 

mutant is co-expressed with either p53 deletion or mutation. 

Rhabdomyosarcoma is the most common soft tissue malignancy of childhood 

(Xia, Pressey et al. 2002), but is rarer in adults (Cormier and Pollock 2004). 

Three histological subtypes are recognised; Embryonal, Alveolar and 

Pleomorphic. The former 2 are most commonly associated with paediatric cases 

and have a relatively favourable prognosis, with overall survival approaching 80% 

(Ruymann and Grovas 2000). Pleomorphic rhabdomyosarcoma is seen largely in 

adults and the incidence increases with age (Simon, Paulino et al. 2003). 

Rhabdomyosarcoma in adults is associated with a worse prognosis, with a 5-year 

survival approximately 27-52% (Stock, Chibon et al. 2009; Sultan, Qaddoumi et 

al. 2009). Moreover, among adults the pleomorphic variant is associated with the 

worst prognosis (Sultan, Qaddoumi et al. 2009). Animal models of this variant 

would therefore be valuable, both in understanding the basic biology of the 

disease, and in the development of novel approaches to management. 

The KRas oncogene has been implicated in a wide variety of human neoplasms, 

with up to one third of rhabdomyosarcomas displaying activation of one of the 

three Ras isoforms, including KRas (Stratton, Fisher et al. 1989; Wilke, Maillet et 

al. 1993; Garcia, Gonzalez et al. 2000). Similarly, the loss of function of the p53 

tumour suppressor protein has been shown to be a vital event in the progression 

of many human malignancies, including rhabdomyosarcoma (Felix, Kappel et al. 
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1992; Wexler and Helman 1994; Naini, Etheridge et al. 2008). Indeed this was 

the tumour that was initially investigated by Li and Fraumeni in studies which 

led to the characterisation of the eponymous syndrome (Li and Fraumeni 1969).  

It has been shown that mutation and activation of Ras alone may not be enough 

to induce tumour formation, as the growth promoting effects can be counter-

balanced by protective elements in the cell (Serrano, Lin et al. 1997). These 

mechanisms, which are activated following the activation of Ras, can send the 

cell into a state of growth arrest and thus prevent tumour formation and are 

dependent upon the activities of tumour suppressor proteins such as RB and p53 

(Courtois-Cox, Jones et al. 2008).  

In this study we demonstrate, through a novel mouse model of pleomorphic 

rhabdomyosarcoma, that oncogenic KRasG12V can co-operate with p53 loss in 

tumour development. Moreover, we show that a point mutation in the DNA 

binding domain of p53 is a more potent activator of tumourigenesis and 

promoter of metastasis than simple p53 loss. This supports data showing a role 

for mutant p53 over and above simple loss of its normal function.  
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6.2 Results 

6.2.1 AhCre is active in skeletal muscle 

The use of Cre-LoxP technology has allowed for a much more tissue specific 

approach to animal model studies. This is achieved by the use of tissue specific 

promoters to control Cre expression. AhCre, under the control of the Cyp1A1 

promoter was originally described as showing inducible expression in the small 

intestine, liver and colon (Ireland, Kemp et al. 2004). However sporadic 

expression (in the absence of Cyp1A1) has been seen in other organs, including 

the kidney (Sansom, Griffiths et al. 2005). In order to examine other potential 

sites of AhCre activity, mice expressing AhCre were crossed to mice expressing 

the conditional Z/EG GFP transgene. The GFP is preceded by a LoxP flanked -

geo insert, which is excised in the presence of Cre-recombinase. Thus the GFP is 

expressed only in tissues in which the Cre-recombinase is active (Novak, Guo et 

al. 2000). Mice that expressed both the AhCre and the GFP protein were 

euthanized and imaged using the OV-100 imaging system. GFP expression was 

seen throughout skeletal muscle and also in the cerebellum (Figure 6.1). Given 

this expression profile, AhCre is a useful tool for studying tumourigenesis in the 

skeletal muscle.  
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Figure 6.1: AhCre is active in skeletal muscle and in the cerebellum 

Mice expressing the AhCre and a Z/EG GFP transgene were imaged using the Olympus 
OV100. As the GFP is preceded by a STOP cassette, signal will only be seen in organs in 
which the AhCre is active. Clear GFP positivity was seen in both the skeletal muscle (a) 
and in the cerebellum (b). 
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6.2.2 The combination of oncogenic KRasG12V and loss 

of p53 activity accelerates tumour formation   

Mice expressing AhCre were crossed to mice expressing the KRasG12V allele under 

the control of the endogenous KRas promoter (See chapter 4.2.5). The KRasG12V 

allele is linked bicistronically to a -galactosidase reporter, which allows for 

identification of those tissues which express the oncogenic KRas allele. These 

mice were crossed to either p53fl/+ mice or to p53R172H/+ mice (see chapter 

5.2.1). The breeding strategy yielded four experimental cohorts; all of which 

expressed the mutant KRasG12V allele and the four cohorts were made up of mice 

expressing one wild type p53 allele with loss of the second allele (KRasG12V/+ 

p53fl/+), one wild type p53 allele and one mutant p53 allele (KRasG12V/+ 

p53R172H/+), loss of both p53 alleles (KRasG12V/+ p53fl/fl) and one mutant p53 allele, 

with loss of the second allele (KRasG12V/+ p53R172H/fl).  

There was a marked difference in lifespan between the four cohorts (Figure 6.2). 

The shortest lifespan was in the KRasG12V p53fl/fl mice and the KRasG12V p53R172H/fl 

groups, with a median lifespan of 48 and 51 days respectively. The KRasG12V 

p53R172H/+ group had a statistically significantly longer lifespan, with a median of 

62 days (Log-Rank p=0.001). The KRasG12V p53fl/+ had the longest lifespan with a 

median of 112 days, which was statistically significantly different to all of the 

other groups (Log-Rank p<0.001).  
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Figure 6.2: Kaplan-Meier survival analysis, stratified by genotype 

There was a significant difference in survival between the KRasG12V p53fl/+ (Black line) and 
the remaining 3 cohorts (Log-Rank p<0.001). The KRasG12V p53R172H/+ (Red line) cohort 
also showed a significantly longer survival than either the KRasG12V p53fl/fl (Green line) or 
KRasG12V p53R172H/fl (Blue Line) cohorts (Log-Rank p=0.001). 
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The tumours that developed were predominantly on the limbs, with occasional 

tumours seen within the abdominal and thoracic cavity. On gross inspection the 

tumours were firm, well circumscribed masses (Figure 6.3). Areas of necrosis and 

haemorrhage were often seen. Histologically, the tumours were composed of a 

mixture of spindle shaped cells and bizarre, giant pleomorphic cells (Figure 6.3). 

A high mitotic rate was seen in all of the tumours. The tumour cells were seen to 

intermingle with normal skeletal muscle cells and appeared to originate from 

the skeletal muscle. Detailed inspection revealed the presence of cross striations 

and myotubes (Figure 6.3). This histological pattern was seen in the tumours 

from all three genotypes. IHC analysis of the tumour cells revealed positivity for 

both desmin and myogenin (Figure 6.3). The tumours were therefore classified 

as pleomorphic rhabdomyosarcoma. 
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Figure 6.3: Point mutation or loss of function mutation results in the formation of 
pleomorphic rhabdomyosarcoma  

The majority of the tumours developed from the muscles of the upper (a) or lower limbs, 
with occasional tumours developing in the abdominal or thoracic cavity. The tumours 
consisted of interlacing sheets of round to spindle shaped cells interspersed with large 
bizarre pleomorphic cells (b). Evidence of rhabdoid origin was seen in the presence of 
cross striations (c) and myotubes (d). Tumours from the KRasG12V p53R172H/+, KRasG12V 
p53fl/fl and KRasG12V p53R172H/fl cohorts all showed this pleomorphic histology. Positive 
immunohistochemical staining for desmin (e) and myogenin (f) further supports the 
myogenic origin of the tumour.  
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6.2.3 Mutation but not loss of a single p53 allele is 

sufficient for tumour development 

As well as having an almost identical lifespan, mice in the KRasG12V p53fl/fl and 

KRasG12V p53R172H/fl cohorts consistently developed rhabdomyosarcoma (Table 

6.1). This indicates that deletion of both p53 alleles (p53fl/fl) has a similar effect 

on tumourigenesis as the mutation of a single allele, with concomitant deletion 

of the second p53 allele (p53R172H/fl). In contrast, there was a statistically 

significant difference in lifespan between mice in the KRasG12V p53R172H/+ cohort 

and those in the KRasG12V p53fl/+ cohort. This difference in lifespan coincided 

with a marked difference in tumour profile between the 2 groups (Table 6.1). 

88% of mice in the KRasG12V p53R172H/+ cohort developed rhabdomyosarcoma, 

compared to 6% in the KRasG12V p53fl/+ cohort (Chi square p<0.001). The vast 

majority of mice in the KRasG12V p53fl/+ cohort did not develop any tumours, 

despite their longer lifespan, and instead had to be euthanized due to ataxia. It 

has previously been demonstrated that ataxia may result from cerebellar defects 

in mice (Vogel, Caston et al. 2007). To test for cerebellar recombination, the 

brains of these animals were stained for -galactosidase, which acted as a 

reporter for the presence of the mutant KRasG12V allele. The staining was 

positive, specifically in the cerebellum, without staining in the rest of the brain. 

Brains from mice which had developed rhabdomyosarcoma did not show any 

staining (Figure 6.4). This is also in keeping with the GFP positivity previously 

seen in the cerebellum (Figure 6.1). Given that no cerebellar tumours developed 

in these mice, the exact cause for the ataxia is unclear. However, they do 

express the mutant KRas, which is constitutively active. In our previous studies 

we have aged AhCre positive KRasG12V p53+/+ mice for up to a year without them 
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developing ataxia, this would suggest that both activation of Ras and p53 

heterozygocity contribute to this phenotype. 

Genotype Number of Mice Developing Rhabdomyosarcoma (%) 
KRasG12V/+ p53fl/+ 2/31 (6%) 
KRasG12V/+ p53R172H/+ 14/16 (88%) 
KRasG12V/+ p53fl/fl 15/16 (94%) 
KRasG12V/+ p53R172H/fl 19/19 (100%) 

Table 6.1: The incidence of rhabdomyosarcoma formation in the different 
genotypes studied.  

Similar incidences were seen in the KRasG12V/+ p53R172H/+, KRasG12V/+ p53fl/fl and KRasG12V/+ 
p53R172H/fl cohorts. Mice in the KRasG12V/+ p53fl/+ cohort developed significantly fewer 
tumours than in any of the other cohorts (Chi square p<0.001). 
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Figure 6.4: Mutant KRas is active in the cerebella of KRasG12V p53fl/+ mice 

The great majority of mice from the KRasG12V p53fl/+ cohort did not develop tumours, 
instead they developed ataxia. Although no tumours could be detected in the cerebella of 
these mice, the positive LacZ staining (a) indicates that there is expression of the mutant 
Ras allele specifically in this area of the brain, while the cerebral hemispheres did not 
show any staining. No staining could be detected in the brains of the mice that developed 
tumours (b). A rhabdomyosarcoma and normal muscle are included as positive and 
negative controls respectively. 
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Given that the mutant p53 allele is preceded by a STOP cassette and engineered 

into the endogenous locus, the mice in the KRasG12V p53R172H/+ cohort are 

essentially rendered p53 heterozygote in the tissues where Cre is not expressed. 

To ensure that the phenotype that we observed was not due simply to this, we 

crossed p53fl/+ mice to mice expressing a general Deletor Cre (Nagy 2000), which 

results in Cre recombinase activity in all tissues, thus generating p53+/- mice. 

These were then crossed to AhCre positive KRasG12V mice to yield a KRasG12V 

p53+/- cohort. These mice were aged until they developed any signs of ill-health. 

Despite having a longer median survival than the KRasG12V p53R172H/+ mice (Figure 

6.5), only 1/7 mice from this cohort developed rhabdomyosarcoma. This 

difference in the incidence of rhabdomyosarcoma between the KRasG12V p53+/- 

and KRasG12V p53R172H/+ cohorts was statistically significant (Chi-square p=0.002). 

The remainder of the mice died of various causes, including lymphoma and renal 

tumours (Figure 6.5). This data indicates that the increased incidence of 

rhabdomyosarcoma in the KRasG12V p53R172H/+ cohort is as a result of the mutant 

p53 activity rather than simple p53 heterozygosity. 
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Figure 6.5: KRasG12V p53+/- mice only rarely develop pleomorphic 
rhabdomyosarcoma  

Although survival in the KRasG12V/+ p53+/- cohort (a, Red line, median survival 93 days) 
was longer than that of the Kaplan-Meier curve KRasG12V/+ p53R172H/+ (a, Black line, 
median survival 62 days). Only 1/7 mice in the KRasG12V/+ p53+/- cohort (b) developed 
rhabdomyosarcoma, compared with 14/16 (88%) in the KRasG12V/+ p53R172H/+ cohort. This 
difference in incidence was statistically significant (Chi-square p=0.002). 
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6.2.4 Tumours from KRasG12V p53R172H/+ mice undergo 

loss of heterozygosity (LOH) 

Although the mice in the KRasG12V p53R172H/+ cohort developed 

rhabdomyosarcoma at a similar incidence to the mice in the KRasG12V p53fl/fl and 

KRasG12V p53R172H/fl cohorts, they did so at a longer latency. One possible 

explanation for this is that in order for a tumour to develop it is necessary to 

lose the wild-type p53 allele. In order to investigate this possibility, we used p21 

activation as a functional assay of p53 activity. p21 is a recognised downstream 

target of p53. However, the mutant p53R172H used in this study is not capable of 

activating p21 transcription. Therefore, we stained the tumours for p53 and p21. 

Unsurprisingly, tumours from the KRasG12V p53fl/fl cohort showed no p53 staining. 

p21 staining in these tumours revealed occasional positive cells (Figure 6.6). This 

is presumably due to p53 independent mechanisms of p21 upregulation. It was 

interesting to note that the majority of cells that stained positive for p21 were 

the very large bizarre cells. These cells are likely to be aneuploid and it has 

been shown that p21 is a marker of aneuploidy, independent of p53 (Dikovskaya, 

Schiffmann et al. 2007). Tumours from the KRasG12V p53R172H/fl cohort showed 

high levels of p53 staining, in keeping with the accumulation of mutant p53 

often seen in human tumours with p53 mutations. However, low levels of p21 

staining (similar to that seen in the tumours from the KRasG12V p53fl/fl cohort) 

were seen, confirming the inability of the mutant p53 to activate p21 (Figure 

6.6). In tumours from the KRasG12V p53R172H/+ cohort, high levels of p53 staining 

were seen, consistent with the accumulation of the mutant p53. p21 staining did 

not match p53 staining, however it was slightly increased when compared with 

the 2 cohorts which lacked functional p53 (Figure 6.6). In order to clarify 
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whether this increase was due to the presence of functional p53, we irradiated a 

subset of the mice with 14Gy and euthanized them after 6 hours. The results for 

the KRasG12V p53fl/fl and KRasG12V p53R172H/fl mice revealed no p21 induction, 

similar to the staining patterns seen in the unirradiated animals. Crucially, in the 

irradiated KRasG12V p53R172H/+ mice no upregulation of p21 was seen (Figure 6.6). 

These results indicate that loss of the wild-type copy of p53 had occurred in the 

tumour. 

 



p53 p21

KRasG12V p53fl/fl

KRasG12V p53R172H/+ 14Gy

KRasG12V p53R172Hl/fl

KRasG12V p53R172H/+

a

b

c

d

 

Figure 6.6: p21 is not upregulated with p53 in tumours form KRasG12V p53R172H/+ mice 

In tumours from the KRasG12V p53fl/fl cohort there was no p53 staining (a, left panel) and 
little p21 staining (a, right panel). Those cells which did stain positive tended to be large 
pleomorphic cells (arrow). In tumours from the KRasG12V p53R172H/fl cohort there was 
widespread staining of p53 (c. left panel), however the lack of corresponding p21 staining 
(c, right panel) highlights that this is detecting the mutant, non-functional form of p53. 
There was similar p53 staining in the tumours from the KRasG12V p53R172H/+ cohort (b, left 
panel), and this was associated with low levels of p21 in the majority of tumours (b, right 
panel), even following irradiation (d). 
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These results suggested that LOH had occurred in the KRasG12V p53R172H/+ 

tumours, however this is not the only possibility. It has been shown that mutant 

p53 can have a dominant negative effect, which could prevent activation of p21 

by any remaining wild-type p53 (Ohnishi, Wang et al. 1998; Tang, Zhao et al. 

1998). Therefore, in order to confirm these findings we assessed LOH using a 

different method. We performed pyrosequencing on DNA extracted from a 

subset of tumours from the KRasG12V p53R172H/+ mice. The R172H mutation is the 

result of a G to A point mutation in exon 5 of the p53 gene. Pyrosequencing 

allows for quantification of allele frequency and therefore we were able to 

accurately measure the percentage of wild type (G) and mutant (A) alleles 

present in a given tumour. 4/5 tumours analysed showed evidence of loss of the 

wild-type p53 allele, with overrepresentation of the mutant allele (Figure 6.7). 

In one case the mutant and wild-type alleles were present at equal frequency.  
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Figure 6.7: LOH occurs in the majority of KRasG12V p53R172H/+ tumours 

Pyrograms demonstrating the LOH analysis performed on 5 tumours from the KRasG12V 
p53R172H/+ cohort. There was evidence of LOH in 4/5 tumours (a-d) with overrepresentation 
of the mutant (A) allele. In one tumour (e) the alleles were present at almost exactly equal 
frequency, indicating that LOH had not occurred in this tumour. 100% of the wild-type (G) 
allele can be seen in the normal muscle control (f). 
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6.2.5 Metastases developed only in mice expressing 

mutant p53 

It has been shown previously in animal models that p53 mutation can co-operate 

with activating KRas mutation to promote metastasis (Caulin, Nguyen et al. 

2007; Morton, Timpson et al. 2010). We therefore investigated whether 

metastasis occurred in our model and in which groups. We examined lungs of the 

mice from the different tumour cohorts by histology. The rate of metastasis was 

low, with only 4 of the 31 mice examined developing lung metastases. All of the 

lesions detected were microscopic intravascular metastases that could not be 

seen grossly (Figure 6.8). Desmin IHC was performed to confirm that these were 

indeed metastases from a rhabdomyosarcoma (Figure 6.8). Interestingly, all of 

the mice that developed lung metastases were from either the KRasG12V 

p53R172H/+ (1/4) or KRasG12V p53R172H/fl (3/4) cohorts, with no metastases seen in 

the KRasG12V p53fl/fl cohort. Even with the low overall rate of metastasis there 

was a statistically significant difference in metastasis rate between the KRasG12V 

p53fl/fl cohort and the two cohorts with the p53 mutation (Chi-square p=0.038). 



ba

 

Figure 6.8: Metastases only occurred in mice expressing the mutant form of p53 

An example of a metastasis from one of the KRasG12V p53R172H/fl tumours. The 
intravascular lung metastasis can be seen in the H&E image (a), the cells were positive 
for the muscle marker desmin (b). 
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6.3 Discussion 

Pleomorphic rhabdomyosarcoma is an aggressive histological variant of 

rhabdomyosarcoma, which occurs predominantly in adults. Although there has 

been significant progress in improving patient outcome in paediatric 

rhabdomyosarcoma, the outcome in adults remains poor (Stock, Chibon et al. 

2009; Sultan, Qaddoumi et al. 2009). Novel mouse models of this disease are 

therefore desirable to improve understanding of the basic biology and 

potentially improve outcome. In this study we demonstrate that mutation of 

KRas and p53 can co-operate in a novel mouse model of pleomorphic 

rhabdomyosarcoma, which shows high penetrance and short tumour latency. 

A number of authors have described models of pleomorphic rhabdomyosarcoma. 

Generally, these have occurred at a low incidence in studies of germline loss of 

tumour suppressor genes, for example, Jacks et al described pleomorphic 

rhabdomyosarcoma formation in a small percentage of mice in their model of Li-

Fraumeni syndrome (Jacks, Remington et al. 1994). More recently, Tsumura et al 

described a more specific model based on the expression of oncogenic KRasG12V 

and either heterozygous or homozygous knockout of p53 (Tsumura, Yoshida et al. 

2006). The authors reported rhabdomyosarcomagenesis in all of the mice in the 

KRasG12V p53-/- group and a significantly smaller percentage in the KRasG12V p53+/- 

group. In the current study we have been able to replicate these results but we 

have also gone further by adding cohorts of mice which express a p53 point 

mutation.  This has allowed us to examine potential additional effects of the p53 

mutant protein, bearing in mind that the point mutation is the more commonly 

occurring scenario in human tumours.   
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It has been shown that in animal models, that replacing p53 knockout with a 

point mutation can alter the phenotype. Lang et al and Olive et al both 

demonstrated that p53 knockout resulted in a different tumour spectrum to 

mutant p53 expression in mouse models of Li-Fraumeni syndrome (Lang, 

Iwakuma et al. 2004; Olive, Tuveson et al. 2004). Moreover, they showed that 

the mutant p53 more closely modelled the human syndrome. In this study, we 

have also seen a different and more aggressive phenotype associated with p53 

point mutation. In our model, mutation of a single allele of p53 was enough to 

promote tumourigenesis in co-operation with oncogenic KRas. In contrast 

rhabdomyosarcoma was extremely rare in those animals which were 

heterozygous for p53 loss even though they also carried the KRas mutation. 

Moreover, although there was no difference seen in tumourigenesis between 

KRasG12V p53R172H/fl and KRasG12V p53fl/fl mice, it is interesting to note that 

metastases only developed in mice expressing the mutant form of p53. Similar 

results have been reported in different tumour models. Morton et al have shown 

that expression of mutant p53 results in an increase in metastatic behaviour in a 

mouse model of pancreatic ductal adenocarcinoma (Morton, Timpson et al. 

2010), and similar results were seen in a mouse model of squamous cell 

carcinoma (Caulin, Nguyen et al. 2007). Our results fit well with these and 

support, for the first time in a sarcoma model, the important role of p53 

mutation in both the early and late stages of tumour development.  

LOH following an initial mutation of one allele of a tumour suppressor gene is an 

important event in the development of a tumour. In the case of p53 it has been 

shown that such an LOH event occurs, at least in a proportion of both human 

(Varley, Thorncroft et al. 1997; Sedlacek, Kodet et al. 1998) and mouse tumours 
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(Lang, Iwakuma et al. 2004; Olive, Tuveson et al. 2004). We have postulated 

that the longer tumour latency seen in the KRasG12V p53R172H/+ cohort may have 

been due to the need to lose the wild-type p53 allele prior to tumour initiation. 

We have taken two approaches to evaluate this. The first being a functional 

approach, relying on the fact that while the mutant form of p53 is known to 

accumulate in cells and is detectable by IHC, it is non-functional and therefore 

cannot activate transcription of target genes such as p21. However, since it is 

possible that other mechanisms (such as a dominant negative effect of the 

mutant p53) could explain the absence of p21 staining in the KRasG12V p53R172H/+ 

tumours, we also performed this analysis by another method. The second 

method relied on allele quantification by pyrosequencing. Both methods 

indicated that LOH occurred in the majority of these tumours. The speed at 

which these tumours develop would suggest that this LOH is quite an early event 

in tumour development.  

In summary we have shown that the AhCre model can be used to study gene 

expression effects in the muscle of transgenic mice. We have used this model to 

demonstrate co-operation between an activating KRas mutation and p53 

mutation. Moreover, we show that this co-operation is stronger, both in terms of 

tumour development and tumour dissemination, when a p53 null allele is 

replaced by a p53 point mutant, thus strengthening the argument for an 

oncogenic role for mutant p53 beyond simple loss of normal function.  
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Chapter 7 Summary  
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This section will give a brief overview of the major conclusions reached in this 

thesis: 

The first aim of the thesis was to demonstrate that RKIP is a prognostic marker 

in Dukes B CRC. We have shown in a large, well characterised cohort of over 200 

Dukes B patients that low levels of RKIP do indeed correlate with a poor 

prognosis. Moreover, we have shown in multivariate analysis that low RKIP level 

along with the presence of peritoneal invasion and LVI were the only 

independent prognostic markers in this cohort. Using these independent markers 

we have been able to construct a simple prognostic index. This allows for the 

selection of a poor prognosis group, comprising ~25% of patients whose 5-year 

survival is almost identical to patients presenting with lymph node metastases. It 

is likely that these are the patients who would derive the most benefit from 

close post-operative monitoring and therapy. The clinical relevance of this 

relates to the current controversy regarding adjuvant therapy in patients with 

Dukes B CRC. There is agreement that patients with “high risk” tumours should 

receive adjuvant treatment and we would propose that this prognostic index 

could form a framework for future trials to better define this high-risk group. 

Following on from this the second aim of this thesis was to investigate the 

potential of RKIP to function as a predictive marker (i.e. to predict the response 

to therapy). What we saw was that patients with low levels of RKIP derived a 

significant survival benefit from chemotherapy while those patients with high 

levels of RKIP did not. Importantly, this result held true in Dukes B tumours. This 

again indicates the potential utility of RKIP as a marker in this group of patients. 

Although this result is interesting, this was a retrospective study without a 
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standardised chemotherapy regime and therefore the results would need to be 

replicated in further prospective studies. 

The next aim was to analyse the effect of RKIP knockout in vivo, by studying its 

effect in established mouse models of CRC. Although RKIP knockout did not have 

the expected effect of increasing the invasive and metastatic properties of these 

tumours a number of interesting phenotypes were observed. These effects 

appeared to be linked by the known role for RKIP in promoting the stability of 

the spindle checkpoint and in preventing chromosomal instability. We observed 

that RKIP knockout can co-operate with Apc deletion to promote chromosomal 

instability in the liver.  We also saw that in the presence of heterozygous 

deletion of Apc and an activating KRas mutation there was a shift in tumour 

location from the small intestine to the colon, a phenotype that has been seen 

previously to be associated with loss of spindle checkpoint regulators such as 

BubR1 and Bub1.  

Although it is not yet clear why RKIP deletion does not result in an increase in 

invasive and metastatic behaviour in the models studied it does not appear to be 

due to a compensatory increase in RKIP2, as this could not be detected in the 

tumours. Another possible explanation is that since the main role of RKIP 

appears to be in the prevention of metastasis it may be that the effect of its 

deletion will only be revealed in a more aggressive model of CRC. To this end 

the next aim of this thesis was to develop such a model.  

A novel mouse model of CRC would be useful both to study the effect of RKIP 

deletion in the later stages of the disease but would also aid in developing new 

insights into the biology of CRC and potentially in pre-clinical testing of novel 

therapies. We took a rational approach to this by conditionally mutating both 
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Apc and p53 in the intestine. These are two of the most commonly mutated 

genes in human CRC and mutation occurs at different points in the adenoma to 

carcinoma progression. As p53 loss of function and point mutations have been 

shown to have different effects we also used the opportunity to study this 

potential difference in the setting of intestinal tumours in vivo.  

We showed that p53 and Apc mutations can co-operate to promote a dramatic 

phenotype in the intestine, with a rapid increase in tumourigenesis seen. This 

was accompanied by a marked increase in invasion and metastasis. Moreover, we 

saw that p53 point mutation was a more potent driver of invasion than the loss 

of function mutation. This was demonstrated by the fact that over 90% of mice 

heterozygote for the point mutation developed invasive carcinoma, compared to 

~20% of mice that were heterozygous for the loss of function mutation. Our 

results also suggest that LOH does not occur in these tumours, although this will 

need to be confirmed by further studies.  

We have shown that both at the histological and molecular levels this model 

bares a close resemblance to human CRC. The tumours showed local invasion, 

with perforation of the bowel wall in many cases and therefore, probably best 

represent a model of Dukes B CRC. Therefore, it should be an ideal model in 

which to test the effect of RKIP deletion.   

One of the aims of developing this model was to gain some insight into the 

process of invasion in CRC. We have been able to show in vivo that although Wnt 

signalling is active throughout the tumour there is a massive increase in this 

signal at the invasive front. This results in an increase in Wnt targets and pro-

invasive proteins such as c-Myc, fascin and pERK. We also demonstrated an 

upregulation of ARF, specifically at the invasive front. We have gone on to show 
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that this increase in ARF is playing a functional role in promoting invasion in a 

p53 null environment. This is the first time that ARF has been shown to play such 

a pro-invasive role and further studies will be useful to determine both its 

downstream effectors and how it is interacting with the other pro-invasive 

proteins identified.  

The final aim of the thesis was to build on the finding of the differing effects of 

p53 loss of function and point mutation by studying this effect in another model, 

namely pleomorphic rhabdomyosarcoma. We showed that tumours developed in 

almost 100% of mice heterozygous for the point mutation but only rarely in those 

mice that were heterozygous for the loss of function mutation. Moreover 

metastases only developed in those mice expressing the p53 point mutation. This 

demonstrated that p53 point mutation promotes both tumour formation and 

progression in this system. 

In the course of these studies we have relied heavily on the use of conditional 

animal models and on IHC. These techniques are powerful and associated with 

significant advantages; however it is also important to recognise the limitations 

associated with them. Below I will discuss the main advantages and 

disadvantages associated with these methods. 

The use of conditional mouse models has allowed us to examine the role of p53 

loss and mutation in vivo and allowed us for the first time to show the important 

role played by p53 mutation in CRC. This has been facilitated by the use of 

conditional expression of mutant genes in adult animals and in the specific tissue 

of interest. This is important as, in order to be relevant, a model system should 

closely recapitulate the events that occur in the native disease. In this setting 

conditional knockout has some advantages over germ line knockout in modelling 
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sporadic disease. While germ line knockouts are excellent models of familial 

cancer syndromes in which mutations are present from birth, there is the 

possibility that compensatory mechanisms arise which give result in a different 

phenotype than would occur in the case of a sporadic knockout. The differences 

that we have seen between our studies of the conditional APC p53 intestinal 

knockout mouse with previous studies using APC p53 germ line knockouts would 

seem to bare this point out.  It also must be acknowledged that the model we 

have used is not a perfect model of sporadic CRC. Firstly, the majority of the 

tumours arise in the small bowel (human small bowel tumours are rare) rather 

than in the colon. Although, the fact that they are histologically similar to the 

human tumours and the previous studies from our laboratory showing similarities 

between tumours from the mouse small bowel, mouse colon and human colon 

supports their validity as a model system. A second disadvantage of this model is 

the temporal relation of the mutations. We know that in human CRC mutation of 

APC is an early event with p53 mutation occurring at a later stage in the 

progression to carcinoma. However, in our model these two events occur 

simultaneously. This is a technical limitation of the system that we have used 

and further study will be required to develop novel systems, allowing different 

genetic events to occur at different time points. 

The major advantage of using IHC in the initial studies showing the potential 

utility of RKIP as a prognostic marker is the fact that is a technique that is 

almost universally employed in all diagnostic pathology laboratories, thus making 

the results more easily transferable from the research to the clinical 

environment. The other great advantage of IHC is that it combines data 

regarding protein expression with morphology, thus allowing for the kind of 

analysis seen in Chapter 5 where differential protein expression was seen in 
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different areas of the tumour. The potential weakness of IHC is that it is not 

truly quantitative and the staining intensity depends not only on the amount of 

the protein being tested in the sample but also on a number of other factors 

such as chromogen incubation time. Therefore, when interpreting results it is 

important to have appropriate positive and negative controls with known 

staining intensities with which one can compare the test specimen. If possible 

these should be tissues on the same microscopic slide as the test tissue (for 

example we use normal colonic epithelium as a positive control for RKIP 

staining). In addition to the above measures we have, where possible, used 

automated staining to further minimise variability. 

Overall, these studies have shown the important role for RKIP as a prognostic 

and potentially as a predictive marker in Dukes B CRC. Although we did not see 

the expected effect of RKIP deletion in established mouse models of CRC, we 

have been able to develop an ideal model in which to test its effect in the later 

stages of tumour development. In this model we have demonstrated the 

important role of Wnt signalling and its downstream targets in the establishment 

of an invasive front and have demonstrated a novel pro-invasive role for ARF. 

Finally, we have used both this and a novel model of rhabdomyosarcoma to 

demonstrate the differing effects of p53 point mutation and loss of function 

mutations in vivo.  
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Future Work 

Given the opportunity to bring this work forward there are a number of areas 

that I believe warrant further study. Firstly, I would like to further examine the 

role of RKIP as a prognostic and predictive marker in Dukes B CRC. It is 

important to validate the prognostic index developed in these studies. Ideally I 

would perform this analysis on a cohort of Dukes B patients who had been part of 

a well designed clinical trial, examining the effect of adjuvant therapy in Dukes 

B CRC. This would allow not only validation of the index, but also further 

investigation of the potential role of RKIP as a predictive marker in this patient 

cohort. 

The second area from these studies that I would like to pursue relates to the 

findings on the differential expression of certain proteins at the invasive front of 

the mouse intestinal tumours compared to the superficial component. Of 

particular interest is the finding of increased β-catenin and ARF levels at the 

invasive fronts of tumours and the fact that ARF appears to contribute to the 

invasive phenotype in the setting of p53 deficiency. The finding of increased β-

catenin at the invasive front suggests a possible solution to the β-catenin 

paradox. I would like to do more work to confirm this (particularly in human 

cancers) and also try to establish the mechanistic link between p53 mutation and 

elevated β-catenin. Following confirmation of the potentially exciting role for 

ARF in an independent system the next step in these studies would be to try to 

understand the mechanism of this novel function. In particular I would like to go 

on and investigate the downstream pathways that are involved in this shift from 

a tumour suppressive to pro-invasive function.  
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