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Abstract 

 Anthelmintic resistance in parasitic nematodes of small ruminants is widespread 

and, in some parts of the world, threatens the sustainability of sheep production.  The 

mechanisms whereby parasitic nematodes become resistant to anthelmintics, particularly 

ivermectin, remain to be determined.  The majority of studies to date have investigated 

target site mutations; relatively little attention has been paid to the role of gene expression 

changes.  The present study focused on Teladorsagia circumcincta; the predominant 

parasitic gastrointestinal nematode species in the UK and the predominant resistant 

species.  The role of changes in gene expression were investigated in an ivermectin-

susceptible isolate (CVL) and a multidrug resistant isolate (MOTRI), utilising a range of 

molecular biological techniques. 

 

 In the first experiment, a panel of novel putative ivermectin resistance genes were 

identified from T. circumcincta, comprising 11 partial P-glycoprotein (Pgp) and 3 partial 

Cytochrome P450  (CYP) sequences.  Both Pgps and CYPs have been implicated in the 

handling and metabolism of xenobiotics in other biological systems, but have not been 

investigated in T. circumcincta to date.  Initial results, using semi-quantitative PCR 

identified changes in expression of this panel of genes between the CVL and MOTRI 

isolates.   

 

 Constitutive differences in expression of the Pgps and CYPs between CVL and 

MOTRI were determined using the ΔΔCt TaqMan
®
 real-time PCR method.  A statistically 

significant increase in expression was observed for TeciPgp-9 NBD2 across all life-cycle 

stages but most notably in eggs (55-fold increase).  A statistically significant reduction in 

expression of TeciPgp-2 NBD2 was observed in all but the adult stages of MOTRI 

compared to CVL.  Analysis of a 208 base pair sequence of TeciPgp-9 NBD2 identified 

high levels of polymorphism, with at least four non-coding SNPs evident in the MOTRI 

isolate.  These results merit further investigation.  
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 Inducible changes in the expression of the Pgps and CYPs were investigated in 

MOTRI before and after ivermectin treatment, using real-time PCR.  Statistically 

significant fold changes in expression in most of the genes occurred in at least one life-

cycle stage.  Inducible expression of TeciPgp-2 NBD2 and TeciPgp-9 NBD2 was 

investigated further by comparing adult MOTRI parasites with those recovered three days 

after in vivo ivermectin exposure, and by exposing pools of MOTRI xL3 to ivermectin in 

the larval migration inhibition test.  The survivors of ivermectin exposure exhibited a 

statistically significant reduced 13.68-fold expression of TeciPgp-2 NBD2 compared to 

MOTRI.  Similarly, the MOTRI xL3 able to migrate in the presence of ivermectin in the 

LMIT had a 1.88-fold reduction in TeciPgp-2 NBD2 expression compared to MOTRI xL3 

unexposed to ivermectin.  These results indicate that inducible changes in TeciPgp-2 

NBD2 and TeciPgp-9 NBD2 expression can occur, but the experimental design is critical 

to being able to identify the changes.   

 

 In a more global approach, the transcriptomic response of MOTRI adults to in vitro 

ivermectin exposure was investigated using Roche 454 sequencing, generating 98,685 

novel EST sequences, providing an important resource for a genome resource-poor 

organism.  Objective bioinformatic analysis of the two datasets revealed statistically 

significant differences in the mean expression levels of the KEGG orthologous groups for 

„translation‟, „amino acid metabolism‟ „carbohydrate metabolism‟ and „xenobiotic 

degradation and metabolism‟.  On combining the two datasets, and through application of a 

novel statistical method, 16 clusters of ESTs were identified as containing statistically 

significant differences in the mean proportion of exposed reads compared to unexposed 

reads under the conservative model, whilst a further 355 clusters were found to have 

statistically significant differences under the liberal model.   

 

 One-way suppression subtractive hybridisation (SSH) was used to identify genes 

exhibiting increased expression in MOTRI adults compared to CVL adults.  28 contiguous 

sequences were identified from the SSH experiment; 6 contiguous sequences were selected 

for validation; 5 of these results were confirmed using semi-quantitative PCR.  Each contig 

was BLAST searched against the Roche 454 dataset; contig SSH14 aligned most closely to 

one of the statistically significant clusters in the conservative model, SSHs 5, 6, 10 and 23 
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aligned most closely to statistically significant clusters in the liberal model.  This suggests 

that changes in expression in these sequences occur both constitutively, between CVL and 

MOTRI isolates, and inducibly, following ivermectin exposure.   

 

 This work has shown that changes in gene expression, particularly the 

constitutively reduced expression in TeciPgp-2 NBD2 and the constitutively increased 

expression in TeciPgp-9 NBD2 (coupled with the presence of SNPs) could play a role in 

allowing multidrug resistant T. circumcincta to survive ivermectin exposure.  Roche 454 

sequencing and SSH approaches identified gene expression changes associated with in 

vitro ivermectin exposure and ivermectin resistance.  These could form the basis of a novel 

panel of candidate resistance genes whose altered expression profiles may allow multidrug 

resistant T. circumcincta to survive ivermectin exposure by some, as yet identified, 

mechanism.  Finally, we have also shown that a multidrug T. circumcincta isolate is 

affected by ivermectin exposure and that changes in gene expression could have a role to 

play in the ivermectin resistance phenotype in T. circumcincta.  The genetic changes 

underpinning these changes in gene expression remain to be elucidated, and need to be 

investigated in other isolates.  These changes could form the basis of an ivermectin 

resistance molecular marker, to monitor the spread of resistance, and to evaluate 

management practices aimed at delaying its spread.   
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“True understanding of how genes function requires knowledge of their 

expression patterns, their impact on all other genes and their effects on DNA 

structure and modifications” 

 

A. Kahvejian, J. Quackenbush & J. Thompson (2008).  What would you do if you could 

sequence everything? Nature Biotechnology, 26 (10) 1125-1133 
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M   molar 

MALDT  micro agar larval development test 
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MgCl2   magnesium chloride 
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ML   macrocyclic lactone 
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PGE   parasitic gastroenteritis 
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RNA   ribonucleic acid 

RNAi   ribonucleic acid interference 
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™

  switching mechanism at 5‟ end of RNA template 

SNP   single nucleotide polymorphism 

spp   species 

SSH   suppression subtractive hybridisation 

TAE   tris-acetic acid-EDTA buffer 

TBZ   thiabendazole 

Tm   melting temperature 
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Tyr   tyrosine 
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xL3   exsheathed L3
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Chapter 1: General Introduction 

1.1: Parasitic gastroenteritis (PGE) 

Parasitic gastroenteritis (PGE) is caused by the presence of large numbers of 

gastrointestinal (GI) nematode parasites in the stomach and intestines of ruminants, leading 

to reduced liveweight gain, anaemia, and in some cases, death.  Clinical signs of PGE 

include diarrhoea, lethargy and, in more severe cases, anaemia and submandibular oedema 

(Urquhart et al., 1996; Sargison, Jackson, & Scott, 2002; Nieuwhof & Bishop, 2005; 

Taylor, Coop, & Wall, 2007).  There is a range of costs associated with PGE in sheep, both 

for the farmers and the animals, such as loss of efficient production of meat, milk and wool 

and a reduction in the animals‟ welfare level (Boyne, Stott, & Gunn, 2006; Broughan & 

Wall, 2007).  It is difficult to accurately quantify the economic costs of PGE as the effects 

of nematode infection can cause either clinical or sub-clinical disease, yet parasitism is 

seen as the single most important cause of production losses in small ruminants around the 

world (Molento, 2009).  The cost of GI nematode infection in the UK sheep industry was 

estimated by Nieuwhof & Bishop (2005) to be £84 million per annum, with the range in 

estimates being £48M to £120M.  This is calculated as the cost to the industry due to 

reduced lamb growth rates plus treatment and prevention measures.  It has also been 

estimated that ovine nematodes inflict the greatest net cost to the Australian grazing 

industry (McLeod, 1995).   

 

PGE in sheep is caused by individual or concurrent infections with the nematode 

parasites Teladorsagia circumcincta, Haemonchus contortus, Trichostrongylus spp, 

Nematodirus spp and Cooperia spp.  In cool temperate regions, the principal cause of PGE 

is T. circumcincta whilst in tropical and subtropical regions, H. contortus is more 

important (Sargison, Jackson, & Scott, 2002; Sargison et al., 2005; Stear et al., 2006; 

Taylor, Coop, & Wall, 2007).  PGE caused by T. circumcincta (teladorsagiosis) in sheep 

results in a hyperplastic gastritis which can be loosely described as two different types 

(analogous to type I and type II bovine ostertagiosis caused by Ostertagia ostertagi) 

(Urquhart et al., 1996; Sutherland & Scott, 2010).  Type I is found in lambs in their first 

grazing season usually between August and October, and is due to the ingestion and 

maturation of large numbers of infective larvae from the pasture.  The rarer type II occurs 

during late winter and early spring and is caused by the delayed maturation of worms 
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which had been ingested the previous autumn and entered a period of arrested development 

in the host (Gibbs, 1986; Urquhart et al., 1996).  Alternatively, larvae that have 

overwintered on pasture may also cause type II teladorsagiosis (Sargison, Jackson, & 

Scott, 2002).  Type I is a more acute disease whilst type II was generally seen as a sub-

clinical disease leading to production losses (Abbott, Taylor, & Stubbings, 2004).   

 

Surveillance reports have suggested that cases of PGE in sheep are increasing in 

Scotland, and are mostly due to T. circumcincta infection.  It is thought that this is possibly 

due to a combination of climate change, an increase in anthelmintic resistance and 

extensive animal movement, especially post Foot and Mouth Disease 

(http://www.defra.gov.uk/vla/reports/rep_surv.htm).  In South East Scotland there has been 

a 20% increase in annual rainfall and a 1ºC increase in average monthly temperatures 

between 1961 and 2004 which has led to an extended herbage growing i.e. grazing season 

of 4 weeks (Barnett et al., 2006).  This means that conditions for survival and development 

of the larval stages of nematodes such as T. circumcincta in the environment are becoming 

more favourable.  Type II teladorsagiosis is now becoming more common in South East 

Scotland than in previous years; PGE outbreaks also appear to be becoming more severe 

(Sargison et al., 2007a; Kenyon et al., 2009a). 

 

1.1.1: Immunity to GI nematodes 

PGE is principally a disease of young animals.  Regular exposure to moderate 

burdens of parasites allows the lamb to develop an immune response which prevents the 

parasite from establishing in the host in large numbers (Colditz et al., 1996; Stear et al., 

2009).  Repeated ingestion of larvae by lambs over a period of two to four months from the 

age of four to five months gradually allows a protective immunity to develop (Abbott, 

Taylor, & Stubbings, 2004).  Immunity to T. circumcincta takes two grazing seasons to 

become fully established and adult sheep will generally only harbour a few adult worms 

(Urquhart et al., 1996; Taylor, Coop, & Wall, 2007), suggesting the immunity which 

develops is not a completely sterile immunity (Abbott, Taylor, & Stubbings, 2004; 

Sutherland & Scott, 2010).  The level of immunity appears to vary with age, the genotype 
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of the sheep and also the reproductive status of the ewe (McNeilly, Devaney, & Matthews, 

2009). 

 

GI nematode infection has been associated with an increase in IgE and peripheral 

and mucosal eosinophils (Miller, 1996; Huntley et al., 1998a; Huntley et al., 1998b; 

Sutherland & Scott, 2010).  Infection with GI nematodes causes a specific humoral 

immune response leading to the production of the Th2 subset of CD4+ helper T cells 

characterised by the expression of the cytokines IL-4, -5, -10 and -13 (Miller, 1996; 

McNeilly, Devaney, & Matthews, 2009; Sutherland & Scott, 2010).  This suggests that the 

worm burden is regulated, in part, in immune sheep by an immediate hypersensitivity 

reaction (Stear et al., 1995; Urquhart et al., 1996; McNeilly, Devaney, & Matthews, 2009).  

In abomasal lymph node cells from immune sheep there is a greater predominance of 

mRNA transcripts encoding the Th2 associated cytokines, IL-4, -5 and -13 compared to 

parasite naïve sheep (McNeilly, Devaney, & Matthews, 2009).  A negative correlation 

between anti-larval excretory/ secretory specific mucus IgA levels and the number of GI 

nematodes which establish in the abomasum has been shown (Smith et al., 2009).  

Increased mucosal IgA levels, in both natural and experimental infections, has been shown 

to negatively correlate with adult worm length, adult worm burden and faecal egg count 

(Stear et al., 1995; Miller, 1996; Beraldi et al., 2008; Stear et al., 2009; McNeilly, 

Devaney, & Matthews, 2009).  Overall, the immune response to GI nematode infection 

appears to affect the parasites in a number of ways: preventing the establishment of 

incoming infective third larval stages (L3s); slowing or arresting larval development within 

the wall of the abomasum; affecting the ability for adult worms to grow and reproduce to 

their full potential and increasing the rate at which adult parasites are killed or expelled 

from the abomasum (Taylor, Coop, & Wall, 2007; McNeilly, Devaney, & Matthews, 2009; 

Sutherland & Scott, 2010). 

 

1.2: T. circumcincta 

T. circumcincta is a nematode parasite of small ruminants and is classified in the 

Order Strongylida, Superfamily Trichostrongyloidea and Family Trichostrongylidae 

alongside the other sheep nematode parasites; H. contortus, Trichostrongylus spp, 
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Nematodirus spp and Cooperia spp (Taylor, Coop, & Wall, 2007).  T. circumcincta was 

previously classified as Ostertagia circumcincta but is also known by its common name, 

the brown stomach worm.  T. circumcincta has a worldwide distribution (Taylor, Coop, & 

Wall, 2007) and in temperate regions is the predominant nematode species parasitizing 

sheep (Sargison, Jackson, & Scott, 2002; Bartley et al., 2003; Sargison et al., 2005; 

Broughan & Wall, 2007).  T. circumcincta is a bursate nematode with the adults appearing 

as red-brown slender worms up to 10mm long in the mucosa on the surface of the 

abomasum (Urquhart et al., 1996).  T. circumcincta can be distinguished from other 

species by morphological features such as absence of proconus, bursal ray pattern and, in 

adult males, by the spicules at the posterior end of the worm (Denham, 1969; Lichtenfels 

& Hoberg, 1993; Taylor, Coop, & Wall, 2007). 

 

1.2.1: T. circumcincta life-cycle 

 The direct life-cycle of T. circumcincta, as shown in Figure 1.1, is typical of 

trichostrongylid nematodes.  Eggs are laid by female worms living on the surface of the 

abomasum in the definitive sheep host and are subsequently excreted onto the pasture in 

the faeces.  Eggs develop in the faecal pat to the first larval stage (L1) then moult to the 

second and third larval stages (L2 and L3) in approximately two weeks under optimal 

conditions.  Ideal conditions for parasite development are 18-26°C and a relative humidity 

of approximately 60% (Gruner & Suryahadi, 1993; Urquhart et al., 1996; O'Connor, 

Walkden-Brown, & Kahn, 2006).  T. circumcincta is more tolerant of low temperatures 

than H. contortus and can complete development from the egg to L3 stage between 1°C and 

35°C.  The increasing average monthly temperatures recorded between 1961 and 2004 

means that there is now a longer period of the year where temperatures exceed 10°C, 

giving the parasites a longer period to develop through to the infective stage (Kenyon et 

al., 2009a; van Dijk et al., 2010).  Once at the L3 stage, the parasite is less susceptible to 

changes in climatic conditions due to the retained L2 sheath and can over-winter on the 

pasture for up to two years and still be infective (Kerboeuf, 1985; O'Connor, Walkden-

Brown, & Kahn, 2006; Stenhouse, 2007).  The L3 migrate from the faecal pat to the pasture 

where they are ingested by the host.  Rainfall increases the infectivity of the pasture by 

allowing easier migration of L3 from the faecal pat to the pasture and by reducing the 

chance of desiccation of the larval stages.  However, immersion of the eggs in water is 
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detrimental to their viability (Gruner & Suryahadi, 1993; Abbott, Taylor, & Stubbings, 

2004). 

 

After ingestion, the L3 exsheath in the rumen of the sheep and migrate to the 

abomasal glands where they can be found three to four days post infection (Michel, 1974).  

Once established, the parasite develops through the L4 stage to the final adult stage.  It is 

not possible to distinguish between male and female worms until the L4 stage is reached 

(Denham, 1969).  On emergence from the abomasal glands, the adult parasites become 

sexually mature on the mucosal surface.  Emergence of parasites from the glands causes 

cytolysis and sloughing of the epithelium of the abomasum, which causes the normal 

secretory cells of the gastric glands to be replaced by hyperplastic cells.  This results in the 

loss of the specialised secretory function and junctional integrity of the cells (Scott et al., 

1998), leading to leakage of proteins into the GI tract, resulting in hypoalbuminaemia and 

increased plasma pepsin levels (McKellar, 1993; Sutherland & Scott, 2010).  The time 

taken from ingestion of L3 to the parasites producing eggs, the pre-patent period, is around 

18 days.  The entire life-cycle of T. circumcincta can be completed in as little as three 

weeks (Urquhart et al., 1996). 

 

 Once in the abomasal glands, T. circumcincta can undergo a process known as 

hypobiosis, or arrested larval development.  This is defined as the temporary cessation of 

development, occurring in certain circumstances and times of the year until more suitable 

environmental conditions prevail.  Hypobiosis often only affects a proportion of the worm 

population (Michel, 1974; Urquhart et al., 1996).  In T. circumcincta, a drop in temperature 

in the autumn coincides with an increase in the number of hypobiotic larvae in the 

abomasal gland of the sheep.  The larvae develop to the early L4 stage in the abomasal 

glands and then remain at that point for up to three months, or possibly longer (Michel, 

1974; Urquhart et al., 1996).  The synchronised development of these hypobiotic larvae in 

the spring is a major cause of type II teladorsagiosis (Urquhart et al., 1996).  The numbers 

of larvae undergoing arrested/ inhibited development also seems to be correlated with the 

size of the local IgA immune response of the host and the size of the worm burden within 

the host (Stear et al., 1995).  Hypobiosis may also play a part in the peri-parturient rise 

(PPR) seen in ewes, when an increase in nematode eggs excreted in the faeces occurs 
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around lambing time.  Three mechanisms appear to combine to cause the PPR; a temporary 

relaxation in the immunity to the parasites concurrent with increased prolactin levels in the 

ewe allows hypobiotic larvae to develop; a reduced loss of adult worms and an increased 

establishment of new worms; and an increased fecundity of the existing adult worms 

(Michel, 1974; Urquhart et al., 1996; Taylor, Coop, & Wall, 2007).  The eggs produced 

during the PPR are the source of virtually all the parasites acquired by the lambs; it is these 

parasites which cause type 1 PGE (Heath & Michel, 1969; Gibson, 1973).  The PPR 

usually occurs from two weeks before lambing to six weeks post-lambing (Urquhart et al., 

1996) and ensures the pasture is heavily contaminated with eggs, and hence infective L3s, 

at the point when the lambs are most susceptible to infection. 

 

1.3: Control of parasitic gastroenteritis 

 Control of gastrointestinal infections is attempted through various means but the 

principal method of control of PGE in sheep flocks has been the regular strategic use of 

anthelmintics to prevent disease in lambs which have not yet developed natural immunity 

to the parasites (Abbott, Taylor, & Stubbings, 2004; Prichard et al., 2007).  The aim of 

anthelmintic treatment is to prevent clinical or sub-clinical disease, and hence some of the 

costs associated with PGE, whilst allowing the development of natural immunity (Urquhart 

et al., 1996; Molento, 2009).  An increase in anthelmintic resistance, together with the 

growing popularity of organically produced food and concerns about drug residues 

entering the food chain has generated interest in control strategies that do not solely rely on 

anthelmintics.  However, none of these alternative control strategies discussed below offer 

an effective alternative to anthelmintics on their own (Wolstenholme et al., 2004).  

Another method of controlling PGE, which has been the focus of much research, is the 

development of vaccines that target antigens excreted or secreted by the parasites, or 

molecules localised, or hidden, within the parasites.  These alternative control strategies, 

including vaccination, will be discussed first followed by the anthelmintics.   

 

1.3.1: Alternative control strategies 

Other methods of control include breeding to increase host resilience to parasite 

infection.  Resilience is the ability of the host to remain productive whilst infected with GI 
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nematodes.  Certain breeds of sheep and individuals within a flock appear to be more able 

to sustain growth whilst infected with parasites.  The majority of sheep in a flock will 

harbour few parasites whilst the minority will harbour the majority of the parasite 

population, this is known as over-dispersion (Stear et al., 2006; Mitreva et al., 2007; 

Stafford, Morgan, & Coles, 2009).  Selective breeding for animals more resilient to 

parasite infection (i.e. those able to cope better with the worm burden) or animals relatively 

resistant to parasite infection (i.e. those that harbour fewer parasites than relatively 

susceptible animals) could be used to reduce the impact of GI nematodes (Stear et al., 

2000).  However, this approach is slow and heritability values for traits associated with 

resilience are low and usually come at the expense of more desirable production traits such 

as growth, meat and wool quality (Bisset & Morris, 1996; Woolaston & Baker, 1996; 

Waller & Thamsborg, 2004; Stear, Doligalska, & Donskow-Schmelter, 2007). 

 

Nutrition plays a role in the impact of GI nematodes on an animal‟s health status.  

Amino acids are required by the sheep for maintenance of condition, development of 

immunity, growth and reproduction.  There is a loss of protein in the gut due to the damage 

to the epithelium caused by the parasites‟ emergence and a resulting reduction in the ability 

of the sheep to utilize metabolizable energy.  This will, in turn, result in competition for 

resources between the different body systems (Sykes & Coop, 2001; Waller & Thamsborg, 

2004).  There is evidence that dietary supplementation with urea enhances resistance to T. 

circumcincta as measured by a lower establishment rate of worms in the abomasum (Stear 

et al., 2000).  Lambs will select for a high protein diet when infected with nematode 

parasites but those on a diet supplemented with urea have been shown to eat a higher 

proportion of the food offered (Stear et al., 2000).  Niezen et al (1998) and Heckendorn et 

al (2007) found that feeding plants containing condensed tannins resulted in reduced levels 

of GI nematode infection whilst also improving the performance of sheep.  Other forages, 

not containing condensed tannins, also have an effect on performance levels under 

gastrointestinal nematode challenge.  Lambs grazing chicory compared to a grass/ clover 

mix have been shown to have lower faecal egg counts and a faster growth rate (Waller & 

Thamsborg, 2004; Kidane et al., 2010).  There is increasing interest in the use of plants 

with natural anthelmintic properties, particularly for organic producers or in areas where 

there is not sufficient and reliable access to anthelmintics; studies are ongoing to identify 
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which plants and plant extracts may be of use.  However trials to date on plants, such as 

Albizia anthelmintica, have not been that successful (Grade et al., 2008).   

 

Trials have been carried out on several nematophagous fungi but principally on 

Duddingtonia flagrans, which is fed, as a supplement to the host in the form of 

chlamydospores.  The fungi are then excreted onto the pasture where they destroy the 

parasite larvae before they are able to migrate to the herbage, thus preventing infection of 

the host (Larsen, 1999).  In principle this method has been shown to work but in field trials 

involving D. flagrans against naturally acquired infections in dairy ewes there was shown 

to be no significant parasitological benefit, although productivity was improved compared 

to control groups (Faessler, Torgerson, & Hertzberg, 2007).   

 

Grazing management can be used to reduce the infectivity of the pastures and to 

slow the development of anthelmintic resistance.  Suggested methods in the Sustainable 

Control of Parasites in Sheep (SCOPS) guidelines (Abbott, Taylor, & Stubbings, 2004), 

include grazing sheep and cattle together and grouping animals by age.  Co-grazing sheep 

and goats is not recommended as the same parasites can infect both species.  Other 

methods include reducing stocking densities, alternating pasture with crops to disrupt the 

transmission cycle and rotational grazing (Waller & Thamsborg, 2004; Stear, Doligalska, 

& Donskow-Schmelter, 2007). 

 

1.3.2: Anti-parasite vaccines 

There is a growing interest in the use of vaccines to control parasitic infections.  

Vaccines have some advantages over anthelmintics as they leave no chemical residues that 

would require withdrawal periods for food products and are also seen as more 

environmentally friendly as they are not toxic to dung and marine flora and fauna (Dalton 

& Mulcahy, 2001; Vercruysse et al., 2004; Omura, 2008).  The majority of commercially 

available anti-parasite vaccines are for parasitic protozoa and use live attenuated parasites 

(Dalton & Mulcahy, 2001; Smith & Zarlenga, 2006).  There is only one commercially 

available nematode parasite vaccine, namely Bovilis
®
 Huskvac (formerly known as 



30 

Dictol), for vaccinating calves against the lungworm Dictyocaulus viviparus.  This uses 

irradiation-attenuated L3s from donor calves and has been a financially viable vaccine, 

although there are some ethical concerns about the use of large numbers of donor animals 

(Vercruysse et al., 2004).  The majority of current nematode vaccine work concentrates on 

H. contortus (Sutherland & Scott, 2010). 

 

Natural antigen candidates have been studied to determine whether the immunity 

that develops in sheep following GI nematode infection can be harnessed by exposing the 

sheep to antigens such as those excreted or secreted by the parasite (E/S products).  The 

use of 15kDa and 24kDa proteins from E/S products from adult H. contortus, and thiol-

binding fractions from H. contortus E/S were both found to give strong protective immune 

responses to challenge infections with H. contortus following vaccination (Smith & 

Zarlenga, 2006).  However, large numbers of donor animals are required to obtain 

sufficient quantities of worms to provide E/S material, so attempts have been made to 

make recombinant versions (Smith & Zarlenga, 2006).  The protective immune responses 

to native antigens have been difficult to replicate with recombinant antigens due to the 

complex nature of the molecules involved.  Difficulties in replicating the correct 

conformation and post-translational modifications of the recombinant molecule in artificial 

expression systems like bacteria and yeast have proved to be too challenging (Smith & 

Zarlenga, 2006). 

 

Current focus for vaccine discovery is on the use of “hidden antigens” that reside 

on the gut surface of the parasites and are not normally exposed to the host immune 

response (Knox & Smith, 2001).  The hidden antigen approach is particularly effective 

against blood-feeding parasites such as the cattle tick, Boophilus microplus and in H. 

contortus (Willadsen et al., 1995; Smith & Zarlenga, 2006).  This approach aims to raise a 

circulating antibody response in the host which, once the antibodies are ingested by the 

parasite, interferes with the parasite‟s ability to feed normally, leading to starvation and 

expulsion.  Molecules such as H11 from H. contortus have been identified as strongly 

immunogenic, giving greater than 90% reduction in worm burdens against challenge 

infection (Knox & Smith, 2001).  Another candidate antigen from H. contortus is H-gal-

GP, a complex of putative digestive enzymes extracted from a detergent-soluble, integral 
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membrane protein fraction.  As H11 and H-gal-GP are hidden antigens, repeated doses of 

vaccine have to be given to maintain protection as the antigens are not immunologically 

recognised by the sheep following H. contortus infection (Smith, Van Wyk, & van Strijp, 

2001).  Recombinant versions of H11, expressed in bacterial and insect cell lines, and H-

gal-GP expressed in bacterial, Pichia and insect cell lines, have, however, failed to elicit 

protection in animal trials (Smith & Zarlenga, 2006).  Native homologues of H11 and H-

gal-GP have had limited success in T. circumcincta vaccine trials to date as T. 

circumcincta is a mucosal browser so the parasites are not exposed to sufficiently high 

levels of the effector antibodies; TcH11 and TcH-gal-GP were shown to be protective 

against H. contortus proving their immunogenicity (Knox & Smith, 2001; Smith, Van 

Wyk, & van Strijp, 2001; Sutherland & Scott, 2010).   

 

To compete against anthelmintics, a commercially viable vaccine would have to be 

developed with a broad spectrum of activity, giving protection against at least the three 

major parasites of sheep, namely H. contortus, T. circumcincta and Trichostrongylus spp 

(Dalton & Mulcahy, 2001).  Modelling studies have suggested that a vaccine need only 

have 60% efficacy in 80% of the flock for substantial benefits in terms of reduced lamb 

mortality to be observed so a vaccine does not need to compete against anthelmintics in 

terms of efficacy (Barnes, Dobson, & Barger, 1995).  Developing anti-parasite vaccines 

which are as efficacious as anthelmintics is proving to be problematic.  This is due, in part, 

to the limited availability and complicated nature of the antigens required, difficulties in 

expressing these antigens in recombinant form, antigenic variation and diverse gene 

expression exhibited by the different life-cycle stages of GI nematodes (Vercruysse et al., 

2004).  In the case of mucosal browsers such as T. circumcincta, it is considerably more 

difficult to deliver antibodies effectively as the parasites are not ingesting serum antibodies 

in sufficient quantities to have the desired effect (Vercruysse et al., 2004; Sutherland & 

Scott, 2010).  Also, delivering the antigens to surfaces such as the gut mucosa in sufficient 

quantities to elicit a mucosal immune response is proving to be difficult (Knox & Smith, 

2001). 
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1.3.3: Anthelmintics 

Anthelmintics are the cornerstone of modern GI nematode control.  Until recently, 

there have been three main chemical families of broad spectrum anthelmintics 

commercially available to treat GI nematode infections, namely; the benzimidazoles (BZs); 

levamisole and other imidazothiazoles (LEV); and the macrocyclic lactones (MLs).  These 

are also known, respectively, as the “white drenches”, “yellow drenches” and “clear 

drenches” (Abbott, Taylor, & Stubbings, 2004).  A new class of drugs, the amino-

acetonitrile derivatives (AADs) have recently been discovered (Kaminsky et al., 2008).  

The AADs have been launched onto the small ruminant market in New Zealand and more 

recently in the UK.  Each group of anthelmintics appears to have a different mode of 

action, as discussed below.   

 

The BZs, such as albendazole (ABZ), thiabendazole (TBZ) and fenbendazole 

(FBZ), were introduced in the 1960s.  BZs are effective against a broad range of parasites 

and also have wide safety margins, working at dosages of mg/kg bodyweight (McKellar & 

Jackson, 2004).  Their mode of action appears to be mediated through binding to β-tubulin 

within the parasite, thus inhibiting the formation of microtubules that are central to the 

form and function of the parasite‟s cells.  This prevents various essential cellular processes 

such as the transport of secretory granules and enzymes in the cell cytoplasm, resulting in 

cell lysis, with knock-on detrimental effects on motility and feeding (McKellar & Jackson, 

2004; Mitreva et al., 2007; von Samson-Himmelstjerna et al., 2007).  

 

A decade later, another broad spectrum anthelmintic, LEV, was released onto the 

market.  Like the BZs, the dose is also in the mg/kg bodyweight range, however, LEV also 

acts on the host so care has to be taken with the dosage (McKellar & Jackson, 2004).  LEV 

is a member of the imidazothiazole/ tetrahydropyrimidine class of anthelmintics, which 

also includes pyrantel (PYR) (McKellar & Jackson, 2004).  LEV is a cholinergic agonist at 

the nicotinic neuromuscular junctions that works by first opening and then blocking the 

acetylcholine receptor-mediated cation channels.  This causes a sustained neuromuscular 

depolarisation, leading to a rapid tonic paralysis of the parasite‟s somatic musculature, 

resulting in expulsion from the host (Dobson et al., 1986; Martin et al., 1998; Prichard, 
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2001; McKellar & Jackson, 2004; Rayes et al., 2004; Kopp et al., 2008; Prichard & Geary, 

2008). 

 

The ML, ivermectin (IVM) was isolated from Streptomyces avermectinius in 1974 

and released onto the market in 1981, and is effective at doses of µg/kg bodyweight 

(McKellar & Jackson, 2004; Van Zeveren et al., 2007a; Omura, 2008).  IVM was the first 

commercially available endectocide, being effective against helminths, arachnids and 

insects (Geary, 2005; Omura, 2008).  IVM was found to have high levels of potency, a 

broad spectrum of activity and good persistence, enabling novel application routes such as 

slow release devices (boluses), injectable formulations and topically applied (pour-on) 

IVM to be developed (Geary, 2005).  When fully effective, IVM has an efficacy of almost 

100%, as a result, it is now the largest selling anti-parasitic drug in livestock and has 

essentially revolutionised the animal health industry (McKellar & Jackson, 2004; Geary, 

2005; Van Zeveren, 2009).  IVM binds irreversibly to γ-aminobutyric acid- (GABA) and 

glutamate-gated chloride (GluCl) channels causing the hyperpolarisation and flaccid 

paralysis of pharyngeal and somatic muscle cells, leading to starvation and immobility of 

the worms (Martin et al., 1998; Blackhall et al., 1998a; Blackhall, Prichard, & Beech, 

2003; Gilleard & Beech, 2007; Prichard & Roulet, 2007; Stenhouse, 2007; James & 

Davey, 2008).  Another member of the ML family is moxidectin (MOX), which was also 

isolated from a species of Streptomyces.  MOX appears to have a similar mode of action to 

IVM; the two ML subclasses, the avermectins (e.g. IVM) and milbemycins (e.g. MOX), 

have been shown to competitively displace each other from a GluCl channel in C. elegans 

(Ardelli et al., 2009).  MOX and IVM share the same central ML ring core, only differing 

at the side chains (Lespine et al., 2007; Ardelli et al., 2009).  Compared to IVM, MOX is 

more lipophilic, allowing it to be absorbed faster and persist longer within the host 

(Lespine et al., 2007; Lifschitz et al., 2010). 

 

The AADs are the first new anthelmintic class since the MLs and appear to have a 

novel mode of action, targeting nicotinic acetylcholine receptors that are unique to 

nematodes (Kaminsky et al., 2008; Prichard & Geary, 2008).  The AADs cause the hyper-

contraction of nematode somatic muscle cells, leading to paralysis.  They also cause the 

spasmodic contraction of the anterior portion of the pharynx.  Both these effects ultimately 
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lead to the parasite‟s death (Kaminsky et al., 2008).  The AADs appear to have low 

toxicity against mammals whilst also being efficacious against both the larval and adult 

stages (Besier, 2009). 

 

1.4: Anthelmintic resistance 

Anthelmintic treatment applies a selection pressure on parasitic populations; an 

inevitable consequence of the regular prophylactic use of anthelmintics has been the 

parasites developing resistance.  Anthelmintic resistance is defined as the ability of 

parasites to survive a dose of drug that would normally kill them; it is heritable and non-

reversible (Barton, 1983; Jackson & Coop, 2000; Wolstenholme et al., 2004).  Phenotypic 

resistance can either be seen as a heritable decline in a drug‟s effectiveness or a reduction 

in the length of time that a drug is able to exert its effects on the parasites within the host 

(James, Hudson, & Davey, 2009).  A parasite resistant to one anthelmintic in a drug class 

will usually be resistant to all anthelmintics within that class; this is known as side 

resistance (Kaplan et al., 2007).  The exception to this rule appears to be the ML, MOX, 

which appears to retain efficacy, for several treatment cycles, against parasites exhibiting 

IVM resistance, possibly due to longer persistency within the sheep (Sutherland et al., 

2002; Sutherland et al., 2003; Lespine et al., 2007; Wilson & Sargison, 2007; Lifschitz et 

al., 2010).  Drug resistance has developed rapidly to the three currently available classes of 

drugs, for example within three years of launch for IVM, and is a major threat to livestock 

production in many parts of the world (Van Wyk & Malan, 1988; Kaplan, 2004; Lespine et 

al., 2008; Sutherland, Shaw, & Shaw, 2010).  Anthelmintic resistance is a global 

phenomenon but is more prevalent in the Southern Hemisphere (Jackson & Coop, 2000; 

Bartley et al., 2004; Kaplan, 2004).  It has been estimated that carrying out a monthly 

preventative treatment regime, using a drug that the parasites are resistant to, results in the 

average price of the finished lamb being 14% lower compared to lambs which had been 

treated monthly with an effective drug (Sutherland, Shaw, & Shaw, 2010).  In the absence 

of alternative control strategies, such as those discussed above, high levels of anthelmintic 

resistance may make it impossible to sustain economic sheep production on some farms, in 

some cases this has already occurred (Jackson & Coop, 2000; Sargison et al., 2005).   
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In the UK, BZ resistant T. circumcincta were first reported in sheep in Cheshire in 

1982 (Britt, 1982; Cawthorne & Whitehead, 1983), with the first report of LEV resistance 

in sheep in 1994.  IVM resistance was only relatively recently identified in sheep in 2001 

(Sargison, Scott, & Jackson, 2001), having previously been identified in goats in 1992 

(Jackson, Jackson, & Coop, 1992).  Resistance to IVM appears to be more common in 

small ruminants than in large ruminants, possibly due to different pharmacokinetics and 

the latter being able to mount a stronger immune response to the parasites and, therefore, 

requiring fewer anthelmintic treatments (Geary, 2005).  The predominant nematode species 

exhibiting resistance in the UK appears to be T. circumcincta (Jackson & Coop, 2000; 

Bartley et al., 2003).  The true extent of anthelmintic resistance is not known (Coles, 

2005), as few farmers routinely check the efficacy of the anthelmintics they use and 

resistance is often only diagnosed after the clinical failure of the drugs on the farm 

(Stubbings, 2003; Sargison et al., 2007b).  Large-scale anthelmintic surveys are labour 

intensive, expensive and logistically difficult to perform.  Sixty-four percent of farms 

tested in a survey of Scottish sheep flocks had resistance to benzimidazoles (Bartley et al., 

2003), with the prevalence higher in lowland farms compared to upland or hill farms.  This 

survey found no evidence for LEV and IVM resistance in Scottish sheep flocks at that time 

but a later survey, (Bartley et al., 2006), found IVM resistant T. circumcincta in six out of 

seventeen flocks sampled.  No routine surveillance for resistance is carried out, suggesting 

that anthelmintic resistance may be more widespread than stated in the literature (Sargison, 

Scott, & Jackson, 2001). 

 

Multiple anthelmintic resistance is observed when a parasite population is resistant 

to more than one drug class.  Triple resistance to the BZs, LEV and MLs was first recorded 

in the 1980s in H. contortus in South Africa (Van Wyk & Malan, 1988; Kaplan, 2004).  

Multiple anthelmintic resistance is more prevalent in the Southern Hemisphere (Bartley et 

al., 2004).  The first triple resistant parasites of ovine origin in the UK were reported in 

2001 and triple resistance has now been reported in at least five UK sheep flocks 

(Sargison, Scott, & Jackson, 2001; Bartley et al., 2004; Sargison et al., 2007b).  The 

inability to control T. circumcincta infection due to multiple anthelmintic resistance has 

been seen as a contributory factor in the abandonment of sheep farming on at least two UK 

farms (Sargison et al., 2005; Blake & Coles, 2007). 
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The AADs were released onto the market in New Zealand in 2009 and in the UK in 

2010, against a background of parasites already resistant to existing anthelmintics, as such, 

it will become increasingly important to monitor the efficacy of AAD anthelmintic 

treatment.  Parasites that are already multi-drug resistant in the field, although not 

predisposed to AAD-resistance will inevitably develop resistance to the AADs; AAD-

resistant H. contortus strains have been generated using in vitro and in vivo selection 

experiments whilst laboratory mutagenic experiments were used to generate AAD-resistant 

C. elegans.  From these resources putative AAD resistance markers were identified 

(Kaminsky et al., 2008).  By identifying and monitoring the spread of AAD resistance 

using the putative AAD resistance markers when it inevitably occurs in the field, we will 

be able to better understand the mechanisms involved in AAD resistance and what causes 

its spread. 

 

1.4.1: Factors affecting the development of anthelmintic resistance 

The development of anthelmintic resistance has occurred relatively rapidly.  It is 

facilitated by the large population size and inherent high genetic variability that is typical 

amongst nematode parasites, and compounded by the movement of their host species 

(Blouin et al., 1995; Redman et al., 2008).  It is viewed as the inevitable consequence of 

routine anthelmintic use (Jackson & Coop, 2000; Abbott, Taylor, & Stubbings, 2004; 

James & Davey, 2008).  Suppressive prophylactic parasite control strategies across the 

whole flock, utilising anthelmintics at regular intervals corresponding to the pre-patent 

period of the parasites, have been used to disrupt the parasite life-cycle and prevent clinical 

disease (Stubbings, 2003).  The frequency of treatment determines how rapidly resistance 

will develop (Barton, 1983; Kwa, Veenstra, & Roos, 1994; Prichard, 2001).  Suppressive 

prophylactic parasite control in young lambs has also been shown to prevent the lambs 

from developing a protective immune response to H. contortus meaning they are more at 

risk of developing haemonchosis once the parasites are no longer being controlled by the 

anthelmintics (Colditz et al., 1996).   

 

A study of the sequences of isotype 1 -tubulin alleles of H. contortus and T. 

circumcincta from goat farms in France suggests that BZ resistance in small ruminants has 
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resulted from the selection of pre-existing resistance alleles in addition to spontaneous 

mutations resulting in novel resistance alleles (Silvestre & Humbert, 2002; Silvestre et al., 

2009).  In an open sheep farm in the UK, analysis of the T. circumcincta BZ-resistant 

isolate present on the farm indicated that resistance to BZs has occurred through multiple 

mutations, spread between populations by gene flow as a result of the open nature of the 

UK sheep flock (Skuce et al., 2010).  Resistant parasites do not appear to revert to 

susceptibility once the selection pressure of anthelmintic treatment is removed, suggesting 

that there is no reduction in fitness in resistant parasites (Coles, 2005; James & Davey, 

2008).  No significant difference in egg production, development rate, establishment in the 

host or survival of adults or larvae was found when comparing BZ-resistant and -

susceptible T. circumcincta (Elard, Sauve, & Humbert, 1998). 

 

Some control methods advocated in the past have since been proven to be highly 

selective for anthelmintic resistance.  One such recommendation was to dose sheep with 

anthelmintics and move them to clean pasture in an attempt to reduce the numbers of 

infective larvae available to re-infect the sheep (Boag & Thomas, 1973; Morley & Donald, 

1980).  This “dose and move” strategy has been shown to select more rapidly for resistance 

as all the parasites contributing to the next generation will be those which survived the 

anthelmintic treatment i.e. potentially resistant (Silvestre & Humbert, 2000; Stubbings, 

2003; Waghorn et al., 2009).  This practice is now being actively discouraged.  It is 

recommended that sheep are weighed prior to treatment to reduce the chance of under-

dosing and that sheep are withheld from feed for 24 hours prior to treatment to slow the 

flow of digesta through the gut, which can improve drug efficacy.  It is also important to 

ensure dosing guns are correctly calibrated and the anthelmintics are stored correctly 

(Barnes, Dobson, & Barger, 1995; Dobson, Le Jambre, & Gill, 1996; Silvestre, Cabaret, & 

Humbert, 2001; Abbott, Taylor, & Stubbings, 2004).  The use of anthelmintics with 

persistent activity such as MOX can also hasten the development of anthelmintic resistance 

as the parasites are exposed to declining doses of the drug for a longer period, a process 

called tail selection (Dobson, Le Jambre, & Gill, 1996; Le Jambre et al., 1999).   

 

Another method to increase the bioavailability and, hence, the efficacy of the ML 

anthelmintics, but which has yet to get beyond research applications, is to co-administer an 
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inhibitor of P-glycoproteins (Pgps) alongside IVM.  In the in vitro larval feeding inhibition 

test (LFIT), the use of Pgp interfering agents such as ketoconazole, verapamil and quercitin 

has been shown to drive BZ and IVM resistant T. circumcincta and H. contortus isolates 

towards a susceptible phenotype, as shown by a shift to the left on the dose response curve, 

indicating more larvae are affected by the drug at a lower concentration (Bartley et al., 

2009).  In vivo, it has also been shown that ketoconazole increases the plasma 

concentration of IVM in sheep by reducing the Pgp mediated IVM efflux (Alvinerie et al., 

2008). 

 

A certain proportion of the parasite population will not be exposed to the 

anthelmintic during treatment, these parasites are said to be in refugia, and include the 

environmental stages of the parasite (eggs to L3), encysted larvae in the abomasal glands 

and parasites in sheep which are left untreated (Abbott, Taylor, & Stubbings, 2004).  The 

principle of refugia is now seen as the most important factor in delaying the spread of 

anthelmintic resistance by providing a source of susceptible parasites to dilute out resistant 

individuals (Soulsby, 2007).  Allowing part of the sheep flock to remain untreated, for 

example ewes which have built up natural immunity to parasites, or only treating those 

animals showing clinical symptoms of PGE will increase the numbers of parasites in 

refugia and slow the development of resistance (Abbott, Taylor, & Stubbings, 2004).  The 

use of targeted selective treatment (TST) regimes is being investigated as a refugia-based 

management strategy aimed at maintaining drug efficacies whilst minimizing the loss of 

productivity caused by PGE.  These strategies use indicators such as milk yield, weight 

gain, level of anaemia and faecal egg count to determine which animals in a flock require 

anthelmintic treatment.  Liveweight gain in lambs has been shown to be a good indicator of 

individuals requiring treatment in areas where T. circumcincta predominates, and the 

FAMACHA (Faffa Malan Chart) system in tropical climates, using the level of anaemia, 

where H. contortus is predominant (Stafford, Morgan, & Coles, 2009; Kenyon et al., 

2009a).  Preliminary results show that the TST approach maintains drug efficacy better 

than traditional suppressive treatment regimes whilst also having little effect on lamb 

liveweight gain and only requiring approximately half the amount of anthelmintic 

(Burgess, Bennett, & Kenyon, 2009; Greer et al., 2009; Kenyon et al., 2009b). 
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Anthelmintic resistance appears to be a genetic phenomenon; resistant worms give 

rise to resistant offspring.  The means by which resistance is inherited will also affect how 

quickly resistance develops, for example, anthelmintics with multiple, genetically 

independent sites of action will cause the development of resistance in the parasites to 

occur more slowly compared to an anthelmintic with a single defined point of action 

(Martin et al., 1998).  If resistance is inherited as a dominant trait or is sex-linked, it will 

spread much more rapidly through a population than if it is a recessive trait.  The genetics 

of anthelmintic resistance is complex, with little consensus in the literature; different 

species and sexes of parasites seem to exhibit different patterns of resistance.  Furthermore, 

the different modes of action of the anthelmintic classes is likely to mean each class has a 

distinct mechanism of resistance.  BZ resistance in H. contortus was initially described as 

incompletely dominant and subsequently as a multigenic, recessive autosomal trait whilst 

in T. colubriformis BZ resistance is an incompletely recessive trait (Dobson, Le Jambre, & 

Gill, 1996; Sangster, Redwin, & Bjorn, 1998; Le Jambre et al., 1999; Sutherland & Scott, 

2010).  LEV resistance in T. circumcincta and in T. colubriformis females is a sex-linked 

recessive trait but in H. contortus LEV resistance is an autosomal recessive trait (Dobson, 

Le Jambre, & Gill, 1996; Sangster, Redwin, & Bjorn, 1998; Martin et al., 1998; 

Wolstenholme et al., 2004; Sutherland & Scott, 2010).  LEV and TBZ resistance in an 

isolate of H. contortus was proposed to be controlled by more than one gene (Sangster, 

Redwin, & Bjorn, 1998).  ML resistance in H. contortus and T. circumcincta appears to be 

controlled by dominant traits (Dobson, Le Jambre, & Gill, 1996; Le Jambre et al., 1999; Le 

Jambre et al., 2000; Sutherland et al., 2002; Sutherland et al., 2003; Wolstenholme et al., 

2004). 

 

1.5: Detection of anthelmintic resistance 

Currently, detection of anthelmintic resistance relies on in vitro and in vivo tests.  

However, these tests are limited in their use as not all drugs can be tested using each assay, 

they are time-consuming, expensive, labour intensive and in some cases require the use of 

test animals (Coles et al., 1992).  Some of the current diagnostic tests only work when at 

least 25% of the parasite population under test is phenotypically resistant (Martin, 

Anderson, & Jarrett, 1989; Coles et al., 1992; McKellar & Jackson, 2004).  The exceptions 

to this are DNA-based tests for detecting BZ resistance in which individual parasites and 

pooled samples can be assayed, giving much higher sensitivity.  Details of how each 
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diagnostic test works are given below together with their limitations.  There is a need for 

improved tests for detecting resistance to make the best use of existing anthelmintics, to 

investigate the genetic consequences of different management strategies and ultimately as 

surveillance tools for use in the field. 

 

1.5.1: In vivo tests 

The controlled efficacy test (CET) is seen as the gold standard test to calculate the 

true efficacy of anthelmintics (McKellar & Jackson, 2004; Coles et al., 2006).  Control 

animals are infected with a known number of L3 and then dosed with anthelmintic at a 

range of concentrations.  After a set time period, the animals are culled and worms 

recovered from the abomasum.  Resistance is confirmed when the reduction in worm count 

is less than 90%, or more than 1000 worms survive treatment (Coles et al., 1992; Taylor, 

Hunt, & Goodyear, 2002).  An untreated group is also included as a control.  Details of the 

standardised method for carrying out the CET are given in Wood et al (1995), having 

standardised methods allows drug efficacy trials from around the world to be easily 

compared.  The use of test animals is expensive, time-consuming and labour intensive; 

there are also ethical concerns about the use of experimental animals. 

 

The faecal egg count reduction test (FECRT) compares the faecal egg count of 

individual animals before and after anthelmintic treatment; it is relatively simple to 

perform and can be used to test all groups of anthelmintics but, like the CET, it is 

expensive and time-consuming (Taylor, Hunt, & Goodyear, 2002).  A gap of 10 to 17 days, 

depending on the anthelmintic under test, between treatment and test days is required as a 

drop in egg production occurs directly after anthelmintic treatment.  The inclusion of an 

untreated control group is recommended to identify any natural fluctuations in egg output 

during the test period.  Resistance is confirmed when the reduction in faecal egg count 

post-treatment is less than 95% and when the lower 95% confidence interval of the 

reduction in faecal egg count is less than 90%.  Resistance is suspected when only one of 

the two criteria is met (Coles et al., 1992; Bartley et al., 2006; Van Zeveren et al., 2007a). 
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1.5.2: In vitro tests 

The egg hatch test (EHT) only works with the BZs as LEV and the MLs are not 

ovicidal (Coles, 2005).  Eggs collected from faeces are incubated in serial dilutions of TBZ 

and the percentage hatch rate observed, allowing the discriminating dose to be calculated 

from a dose response curve (Le Jambre, 1976; Taylor, Hunt, & Goodyear, 2002).  The 

EHT performs best on species of nematodes with rapidly hatching eggs (Coles et al., 

1992).  In mixed gastrointestinal nematode infections, species identification of the hatched 

larvae is possible.  Recently, a standardised protocol has been determined to allow easy 

repeatable comparison between laboratories (von Samson-Himmelstjerna et al., 2009b).  

An altered protocol for the egg hatch test is available for the detection of LEV resistance 

(Dobson et al., 1986). 

 

The micro-agar larval development test (MALDT) is used to identify resistance to 

BZs and LEV but cannot be used for the MLs as it is not reliable enough (Coles, 2005).  

The larval development test (LDT) can be used with any anthelmintic group and involves 

the development of L1 into L3 in the presence of the anthelmintic under test, with 

Escherichia coli as a food source (Taylor, Hunt, & Goodyear, 2002).  A commercial larval 

development test called “Drenchrite” has been developed (Coles, 2005). 

 

 The LFIT is used to test for ML and LEV resistance.  Eggs collected from faeces 

are allowed to hatch and the L1 are cultured in serial dilutions of anthelmintic for 2 hours.  

The larvae feed on fluorescein isothiocyanate (FITC)-labelled E. coli and are incubated for 

a further 24 hours.  The numbers of larvae which are fed or unfed at each anthelmintic 

concentration is determined by examining the larvae under a fluorescence microscope and 

this ratio compared to an untreated control group (Alvarez-Sanchez et al., 2005).  Another, 

related, assay for the detection of LEV and ML resistance is the larval migration inhibition 

test (LMIT) (Wagland et al., 1992; Rabel, McGregor, & Douch, 1994).  Like the LFIT, 

exsheathed L3 are incubated in serial dilutions of anthelmintic and then placed, in solution, 

above a 25μm nylon mesh and incubated for a further two hours.  Resistant worms, which 

have not been paralysed by the drug, will be able to actively migrate through the mesh.  By 

counting the number of migrated and non-migrated L3, the percentage migration can be 
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calculated and, hence, provide an idea of an isolate‟s ability to survive anthelmintic 

treatment. 

 

In vitro assays are easier, faster and cheaper to perform than in vivo tests and do not 

require the use of animals, which also removes any inter-host variation (Dobson et al., 

1986; Dobson, Le Jambre, & Gill, 1996).  The tests described above have different uses, 

primarily due to some of the tests being restricted to testing certain classes of drugs such as 

the MALDT and EHT not detecting ML resistance or the LFIT and LMIT not detecting BZ 

resistance.  Like in vivo tests, in vitro tests only work when over 25% of the worm 

population under test is resistant (Coles et al., 1992; McKellar & Jackson, 2004).  One 

challenge to all the tests described is when mixed species infections are present; different 

species may have different sensitivities to a drug, making it difficult to interpret results.   

 

1.5.3: Molecular based tests 

As resistance has a genetic basis, either through qualitative changes (mutations) or 

quantitative changes (alterations in expression of genes), the identification of these changes 

could lead to the development of DNA based tests.  Development of sensitive molecular-

based diagnostic tests has enabled the detection of BZ resistance at lower levels compared 

to in vitro methods.  The tests can allow the identification of individual parasites carrying 

resistance genes within a parasite population (Elard, Cabaret, & Humbert, 1999; von 

Samson-Himmelstjerna, 2006).  The tests also allow species identification in mixed 

populations, and can be adapted to give the prevalence of resistance for each species 

(Silvestre & Humbert, 2000).  Polymerase chain reaction (PCR)-based tests are only 

available for diagnosis of BZ resistance, where single nucleotide polymorphisms (SNPs), 

such as those discussed below, have been identified that are associated with resistance 

(Kwa, Veenstra, & Roos, 1994; Elard, Cabaret, & Humbert, 1999; Silvestre & Humbert, 

2000).  This PCR has been developed further to include PCR-RFLP, allowing the 

simultaneous species identification and determination of the resistance status of individual 

T. circumcincta, H. contortus and T. colubriformis L3.  This PCR has also been adapted for 

real-time PCR applications, which are more rapid than conventional PCR and allow the 

simultaneous detection of susceptible and resistant alleles, even in pooled samples (von 
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Samson-Himmelstjerna, 2006; Walsh et al., 2007; von Samson-Himmelstjerna et al., 

2009a).  When using molecular based tests, as for the in vivo and in vitro methods, the 

challenge is the correct identification of resistance in mixed parasite species infections.  

However, the reliance on only one mutation to diagnose resistance will not take into 

account other non-specific resistance mechanisms which may be enabling populations of 

parasites to exhibit phenotypic resistance (Coles, 2005).  This could mean that a parasite 

not exhibiting a mutation associated with resistance in a molecular-based test may still 

have other gene expression level changes or mutations that enable it to be phenotypically 

resistant.   

 

1.6: Anthelmintic resistance mechanisms 

Resistance is thought to develop in a number of ways (Wolstenholme et al., 2004).  

Firstly, a resistant nematode could have an altered drug target which results in the drug 

being unable to bind, or bind less effectively.  Secondly, there could be a change in the 

metabolism of the drug causing the drug not to be metabolised into its active form, or to be 

removed from its target sites.  Thirdly, a change in distribution of the drug in the parasite 

could prevent it reaching its target site.  Fourthly, a change in the drugs target gene 

expression could overcome the drugs action.  Alternatively, there could be non-specific 

resistance mechanisms (i.e. a mechanism not related to the precise mode of action of the 

drug) such as changes in the expression level of non-target proteins used by the parasite to 

handle drugs and toxins (Wolstenholme et al., 2004).  These mechanisms should be 

identifiable as quantitative and qualitative genetic changes. 

 

Genetic studies have identified a point mutation, a substitution of tyrosine (Tyr) for 

phenylalanine (Phe) at codon 200 (Phe200Tyr or F200Y) in the isotype 1 -tubulin gene, 

which is the major genetic determinant of BZ resistance in T. circumcincta, 

Trichostrongylus colubriformis, H. contortus and Cooperia oncophora (Kwa, Veenstra, & 

Roos, 1994; von Samson-Himmelstjerna et al., 2007).  A second much less common, Phe-

Tyr polymorphism at codon 167 is also associated with BZ resistance, especially in the 

nematode parasites of equines (Silvestre & Cabaret, 2002; Wolstenholme et al., 2004; 

Gilleard, 2006; Hodgkinson et al., 2008).  It appears that, in H. contortus, Tyr is required 
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at codon 200 for BZ resistance but in T. circumcincta, worms can survive BZ treatment 

when Phe/Phe homozygous at codon 200 and either Phe/Tyr heterozygous at codon 167 or 

Tyr/Tyr homozygous at codon 167 (Silvestre & Cabaret, 2002; von Samson-

Himmelstjerna et al., 2007).  Some triple-resistant T. circumcincta with susceptible 

genotypes at codon 200, have been shown to survive BZ treatment in vivo and in vitro, 

suggesting that other resistance mechanisms may also be contributing to the expression of 

BZ resistance (Stenhouse, 2007).  An alternative point mutation in H. contortus capable of 

conferring BZ resistance, was found at codon 198, a substitution of alanine (Ala) for 

glutamic acid (Glu) (Glu198Ala) (Ghisi, Kaminsky, & Maser, 2007; de Lourdes Mottier & 

Prichard, 2008).  This mutation and Phe200Tyr appear to be mutually exclusive; the 

combination of the two may be lethal to the parasites.  Alongside these mutations, it 

appears that binding of BZs to β-tubulin is reduced in resistant compared to susceptible 

isolates (von Samson-Himmelstjerna, 2006). 

 

Resistance mechanisms to LEV and the other imidazothiazole/ 

tetrahydropyrimidines, including PYR, are less well researched (Kopp et al., 2008).  Three 

genes, unc-38, unc-29 and lev-1, identified in C. elegans appear to be involved in LEV 

resistance and were found to encode nicotinic acetylcholine receptors (nAChRs).  

Mutations in unc-29 or unc-38 caused a complete loss of sensitivity to LEV (Fleming et 

al., 1997).  A mutation from glutamic acid (Glu) to glycine (Gly) at amino acid 153 

(Glu153Gly) in the unc-38 gene of C. elegans is required for LEV resistance (Rayes et al., 

2004; Martin & Robertson, 2007).  LEV is a very weak agonist of mammalian muscle, 

resulting in low toxicity, however, the Glu153Gly mutation increases the efficacy of LEV 

as an agonist against mammalian muscle acetylcholine receptors (Rayes et al., 2004).  The 

mutation in the unc-63 gene, changing a glutamine (Gln) to glycine (Gly) at amino acid 57 

(Gln57Gly) in C. elegans, appears to reduce the sensitivity of the receptors to PYR 

(Bartos, Rayes, & Bouzat, 2006).  nAChRs are made up of five glycoprotein subunits 

arranged around a central ion channel; different subunits give the nAChR different 

pharmacological properties (Kopp et al., 2008).  In C. elegans, absence of one type of 

nAChR at the neuromuscular junction can cause LEV resistance whilst absence of the L 

subtype of nAChR from Oesophagostomum dentatum was associated with LEV resistance 

(Martin & Robertson, 2007).  LEV resistant H. contortus and T. colubriformis membrane 

preparations were found to have decreased nAChR affinity for LEV (Sangster, Redwin, & 
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Bjorn, 1998).  A gene fragment, HA17, was found to be differentially expressed between 

LEV-resistant and -susceptible parasites using cDNA-AFLP techniques and has been 

proposed as a potential marker for LEV resistance in H. contortus (Neveu et al., 2007).  

Kopp et al (2008) showed in the dog hookworm, Ancylostoma caninum, that whilst there 

were no polymorphisms of significance in three putative PYR receptor subunits (AAR-29, 

AAR-38 and AAR-63), there was a significantly reduced level of transcription of these 

genes in a highly PYR resistant isolate compared to an isolate with low levels of PYR 

resistance.  These subunits were orthologous to the unc-29, unc-38 and unc-63 genes in C. 

elegans (Kopp et al., 2008). 

 

Genes implicated in IVM resistance are the likely molecular targets of IVM and 

include Glutamate- and GABA- gated Cl channels (Njue et al., 2004; Gilleard, 2006).  

Changes in allele frequencies of Glu- and GABA- Cl subunits in H. contortus have been 

observed but no single allele has been associated with resistance between different IVM 

resistant populations of H. contortus (Blackhall et al., 1998a; Blackhall, Prichard, & 

Beech, 2003).  Only one study has associated a change in an amino acid, from leucine to 

phenylalanine at codon 256, (Leu256Phe) in the GluClα3 subunit of C. oncophora to IVM 

resistance but this has not been found in  H. contortus, T. circumcincta, O. ostertagi or 

other C. oncophora isolates (Njue et al., 2004; Van Zeveren, 2009).  In C. elegans, 

mutations in several GluCl subunit genes are required for ML resistance (McCavera, 

Walsh, & Wolstenholme, 2007).  Concurrent mutations of three genes encoding GluCl α-

type subunits, avr-14, avr-15 and glc-1 in C. elegans are required to confer high levels of 

IVM resistance; mutation of any of the two genes only confers low or no resistance (Dent 

et al., 2000; Cook et al., 2006).  Avr-15 encodes a GluClα2 which is expressed in the 

pharyngeal muscle in C. elegans; avr-14 encodes a GluClα3 and is expressed in the 

extrapharyngeal nervous system:  Significantly, one of the modes of action of IVM is 

starvation of nematodes caused by inhibition of the pharyngeal pump (Dent et al., 2000; 

Cook et al., 2006).   Parasitic nematodes have a different set of GluCl subunit genes 

compared to C. elegans but do share some, such as avr-14, an orthologue of which, in C. 

oncophora, has a polymorphism making the subunit less sensitive to IVM (McCavera, 

Walsh, & Wolstenholme, 2007).  The molecular basis of resistance to IVM in 

trichostrongyle parasites remains to be elucidated (Geary, 2005; Prichard et al., 2007). 
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Even though AADs are a recent discovery and are yet to reach a wider market, 

research has already been carried out to determine if and how resistance to the AADs will 

develop.  AAD resistant populations of C. elegans have been selectively bred by exposing 

them to the drug; this has allowed the AAD target gene to be identified as a nAChR, called 

acr-23 (Prichard & Geary, 2008; Kaminsky et al., 2008; Zarlenga & Gasbarre, 2009).  This 

nAChR is unique to nematodes and is different from those associated with LEV resistance 

(Prichard & Geary, 2008).  Three AAD-resistant H. contortus mutant lines have been 

generated which all appear to have lost at least part of the H. contortus des-2 homologue, 

which is part of the nAChR group.  The two fully AAD-resistant H. contortus mutants had 

also lost part of the H. contortus homologue of the acr-23 gene (Kaminsky et al., 2008). 

 

1.7: Candidate ivermectin resistance genes 

 Most of the anthelmintic resistance mechanisms identified to date have used a 

candidate gene approach to identify qualitative changes conferring resistance.  The limited 

success of this approach is partly because classical genetic linkage studies to identify 

„resistance genes‟ are difficult, especially where the mode of action of the anthelmintics is 

still not clear.  This makes it difficult to propose candidate resistance genes for further 

study.  Alternative mechanisms of resistance such as changes in gene expression level 

remain largely unexplored, particularly in T. circumcincta and will be the focus of this 

thesis.  Differences in expression levels of genes may be constitutive, where a gene is 

always expressed differentially between anthelmintic susceptible and resistant strains of 

parasites at rest, or inducible, where a change in gene expression is observed between 

parasites that have been treated with or exposed to anthelmintic and those that have not.  

Changes in gene expression pattern may be caused by either up or down -regulation of the 

gene or increased or decreased gene copy number.  Details of two gene families, the 

cytochrome P450s and P-glycoproteins, which may be linked to the IVM-resistance 

phenotype and appear to play a pivotal role in the handling and metabolism of drugs, are 

given below. 
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1.7.1: P-glycoproteins 

Pgps are large ~170kDa transmembrane proteins which are part of the ATP binding 

cassette (ABC) superfamily of genes.  These are found throughout the phyla Archaea, 

Eubacteria and Eukarya (Valverde et al., 1992; Kerboeuf, Guegnard, & Le Vern, 2003; 

Jones & George, 2005; Riou et al., 2005).  Pgps are involved in a range of cellular 

processes, including the transport of endogenous and exogenous hydrophobic molecules 

(Valverde et al., 1992; Sangster et al., 1999a; Kerboeuf, Guegnard, & Le Vern, 2003).  

Pgps comprise two symmetrical halves, but they can also exist as half-transporter 

molecules (Sheps et al., 2004; Ardelli, Guerriero, & Prichard, 2006a).  Each half contains a 

transmembrane domain, comprised of six transmembrane α-helices, and a cytoplasmic 

nucleotide binding domain (NBD) at the carboxy end of each half molecule which contains 

an ATP binding site (Sangster, 1994).  Within the cytoplasm of cells, the two halves of the 

molecule are linked by a hydrophilic region of approximately 60 amino acids; together, the 

two transmembrane domains form a membrane channel that acts as a substrate binding site 

(Jones & George, 2005).  The two NBDs are structurally non-identical or functionally 

interchangeable but are highly conserved and show an amino acid homology of 

approximately 70% (Sangster, 1994; Higgins et al., 1997; Sangster et al., 1999a).  Within 

the NBD there is the so-called “Walker motif”, a characteristic amino acid sequence, 

LSGGQ, which is the signature sequence of the NBD in ABC transporters (Higgins et al., 

1997; Jones & George, 2005).  A diagram of a typical Pgp is shown in Figure 1.2. 

 

Compared to the amount of information about Pgps in humans and E. coli, the 

amount of data on parasites is much smaller and appears to concentrate on human parasites 

such as Plasmodium falciparum, trypanosomes and Onchocerca volvulus.  Nematode Pgp 

studies have concentrated on C. elegans, O. volvulus and H. contortus (Sangster, 1994; 

Jones & George, 2005).  Nematodes appear to possess more Pgps than mammals, possibly 

due to parasites living in a more hostile environment (Lespine et al., 2008).  For example 

the eggs and larval stages are exposed to a range of toxins and conditions whilst in the 

faeces or on the pasture, such as xenobiotics from fungi, and the adults are exposed to an 

acidic environment and digestive enzymes in the abomasum of the host (Sutherland & 

Scott, 2010).  Pgps in nematode parasites appear to be expressed in a range of tissues, 

including the pharynx and intestinal tract in H. contortus and C. elegans, sheaths of L3, 

eggshells and cuticles of H. contortus and microfilariae and adults of O. volvulus (Lincke 
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et al., 1993; Broeks et al., 1995; Kwa et al., 1998; Huang & Prichard, 1999; Smith & 

Prichard, 2002; Kerboeuf, Guegnard, & Le Vern, 2003; Kerboeuf et al., 2003; Riou et al., 

2005; Prichard & Roulet, 2007; Riou et al., 2007; Lespine et al., 2008).  Pgps are thought 

to play a pivotal role in handling xenobiotics as the MLs, such as IVM, appear to be 

absorbed into, distributed around and eliminated from parasites under the control of 

multidrug resistant transporters such as Pgps (Lespine et al., 2008). 

 

Over-expression of Pgps is linked to drug resistance in cancerous tumours, malaria 

parasites and the human immunodeficiency virus (Beugnet, Gauthey, & Kerboeuf, 1997; 

Zhang et al., 1998; Loo & Clarke, 1999; Jones & George, 2005).  In human tumours, such 

as sarcomas and neuroblastomas, Pgp expression correlates with a multidrug resistant 

(MDR) phenotype in the cancer cells, leading to a lower response to chemotherapy and 

reduced patient survival.  Interestingly, IVM, which is a known substrate of Pgp, can be 

used as a MDR reversing agent (Pouliot et al., 1997; Loo & Clarke, 1999).  An increase in 

Pgp transcription has also been observed in P. falciparum and is associated with 

chloroquine resistance (Ekong et al., 1993), whilst the use of verapamil, a calcium channel 

blocker that binds to Pgp, reverses chloroquine resistant P. falciparum (Martin, Oduola, & 

Milhous, 1987). 

 

As stated previously, Pgps appear to be abundant in nematodes.  Various PCR and 

probe-based approaches have identified at least 2 Pgp genes from O. volvulus, at least 14 

Pgp genes in C. elegans and at least 12 Pgp genes in H. contortus (Kwa et al., 1998; Huang 

& Prichard, 1999; Le Jambre, Lenane, & Wardrop, 1999; Sangster et al., 1999a; Kerboeuf 

et al., 2003; Sheps et al., 2004; Blackhall, Prichard, & Beech, 2008).  To date, no Pgps 

have been identified in T. circumcincta; this is despite ongoing EST and genome 

sequencing projects.  An increase in Pgp mRNA level has been observed in IVM-selected 

H. contortus (Xu et al., 1998) and changes in Pgp allele frequencies and/ or reductions in 

genetic diversity have been observed between IVM- or MOX-selected isolates of O. 

volvulus and H. contortus (Blackhall et al., 1998b; Ardelli, Guerriero, & Prichard, 2005; 

Ardelli, Guerriero, & Prichard, 2006a; Ardelli, Guerriero, & Prichard, 2006b).  These 

observations would suggest that the anthelmintics, particularly the MLs, are placing the 

Pgps under selection pressure.  Expression of OvPgp-1 in O. volvulus negatively correlates 
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with stage-specific sensitivity to IVM as microfilariae express less Pgp and are more 

sensitive to IVM compared to adults (Huang & Prichard, 1999).  Pgps do appear to be 

implicated in ML resistance, for example, co-administration of verapamil with MOX or 

IVM significantly increases the efficacy of the anthelmintic against a MOX-selected strain 

of H. contortus (Xu et al., 1998).  Resistance to IVM in C. elegans is associated with 

increased expression of Pgps and multidrug resistance proteins, which are members of the 

ABC superfamily, like Pgps (James & Davey, 2008).  No SNPs in Pgps associated with 

ML resistance have been identified thus far, possibly due to the size and number of the 

molecules.  Van Zeveren (2009) showed that there was a 3.4 fold constitutive increase in 

expression of a Pgp, designated PGP2a, in adult O. ostertagi from a laboratory selected 

isolate that was demonstrably resistant to IVM. 

 

Treatment of H. contortus laboratory- and field- isolated populations with BZs also 

appears to exert a selection pressure on Pgp alleles as none of the populations of worms 

were in Hardy-Weinberg equilibrium at the Pgp locus (Blackhall, Prichard, & Beech, 

2008).  There may be an element of “cross-talk” between the two resistance mechanisms; 

Pgps may offer an alternative, or additional,  mechanism of resistance to BZs in addition to 

the aforementioned SNPs in -tubulin (Blackhall, Prichard, & Beech, 2008).  The use of 

Pgp inhibitors, such as Lens culinaris lectin, causes an enhanced susceptibility of H. 

contortus eggs to TBZ (Kerboeuf, Guegnard, & Le Vern, 2002) and the use of verapamil 

increases the toxicity of TBZ and ABZ to H. contortus eggs (Beugnet, Gauthey, & 

Kerboeuf, 1997).  Inhibitors of Pgps cause a reversal towards a susceptible phenotype of 

resistant strains of T. circumcincta and H. contortus when exposed to IVM in the LFIT.  

These inhibitors, many of which are already used therapeutically, although not for parasitic 

nematode control, included pluronic P85, verapamil (used to treat hypertension and cardiac 

arrhythmia), quercitin, ketoconazole (a broad spectrum anti-fungal agent) and valspodar 

(Virkel et al., 2009; Bartley et al., 2009). 

 

1.7.2: Cytochrome P450s 

Cytochrome P450s (CYPs) are a large superfamily of haemproteins which are 

found throughout the Animal Kingdom, suggesting an ancestral gene existed before the 



50 

divergence of prokaryotes and eukaryotes (Nelson et al., 1996; Berge, Feyereisen, & 

Amichot, 1998; Mansuy, 1998; Omura, 1999).  CYPs are the largest gene superfamily 

identified to date and can be classified into over 70 individual families of genes, each 

identified by a number, which have at least 40% amino acid identity.  These can be further 

classified into subfamilies and, finally, genes and alleles (Nelson et al., 1996; Gong et al., 

2005).  Subfamilies are designated by a letter and share at least 55% amino acid identity, 

whilst the numeral at the end of the CYP name denotes the gene (Berge, Feyereisen, & 

Amichot, 1998).   The divergence in protein sequence of alleles is less than or equal to 3% 

(Nelson et al., 1996).  Families of CYPs can be loosely grouped into clans which probably 

represent genes that diverged from a single common ancestor (Nelson, 1998; Nelson, 

1999). 

 

CYPs are single domain proteins which protrude into the cytoplasm and are 

anchored to membranes by an N terminal signal sequence linked to the catalytic domain by 

a highly conserved proline rich region, as shown in Figure 1.3 (Chen & Kemper, 1996; 

Gotoh, 1998; Graham & Peterson, 1999).  In eukaryotes, CYPs are bound to the membrane 

of the endoplasmic reticulum or mitochondria whilst, in most bacteria, CYPs are water 

soluble (Chen & Kemper, 1996; Omura, 1999).  Studies have shown that the structure of 

CYPs generally consists of four β-sheets and thirteen α-helices (Graham & Peterson, 

1999).  Only three amino acid positions are conserved across the whole CYP superfamily, 

two form the amino acid motif E-x-x-R in one of the α-helices which make up the 

structural core of the protein whilst the third conserved amino acid is a cysteine that is the 

fifth ligand for the haem ion (Graham & Peterson, 1999).  CYPs catalyse the oxidative and 

reductive metabolism of a wide range of, predominantly hydrophobic, exogenous and 

endogenous molecules, such as sterols, fatty acids, prostaglandins, drugs and 

environmental toxins (Guengerich, 1991; Nelson et al., 1996; Amichot et al., 1998; 

Barrett, 1998; Mansuy, 1998; Graham & Peterson, 1999; Menzel, Bogaert, & Achazi, 

2001).  One protein is able to catalyse different reactions depending on the substrate 

presented.  Also, there is redundancy in the CYP pathways as more than one CYP can 

metabolize the same substrate (Guengerich, 1991; Menzel et al., 2005). 
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In C. elegans, approximately 80 CYPs have been identified as a result of the C. 

elegans genome sequencing project, and are classified into clans 2, 3 and 4 containing 7, 3 

and 3 gene families, respectively (Barrett, 1998; Gotoh, 1998; Menzel, Bogaert, & Achazi, 

2001).  Within clan 3, the CYP13 family appears to be specific to C. elegans (Gotoh, 1998; 

Nelson, 1998; Nelson, 1999).  It is possible that C. elegans has such a large number of 

CYPs to enable the nematode to cope with environmental toxins.  Few studies to date have 

identified CYPs from parasitic nematodes.  Adult helminth enzyme extracts from a range 

of species, including H. contortus, Heligmosomoides polygyrus and Fasciola hepatica, 

were unable to oxidise known CYP substrates and attempts using spectrophotometry or 

CYP-inducing agents failed to identify CYPs in adult nematodes (Barrett, 1998).  The 

methods used at the time may have lacked the sensitivity to detect CYPs which are only 

present in very low abundance or in the free-living larval stages (Barrett, 1998).  However, 

CYPs have since been found in all life-cycle stages of C. elegans, including adults 

(Menzel, Bogaert, & Achazi, 2001). 

 

There is some evidence that H. contortus larval stages may possess CYPs, through 

the identification of microsomal CYP activity against the substrates aldrin and 7-

ethoxycoumarin that could be inhibited by the CYP inhibitor, piperonyl butoxide, and 

induced by phenobarbitol (Kotze, 1997; Berge, Feyereisen, & Amichot, 1998).  There is 

also evidence that the efficacy of BZs can be improved by the use of the CYP inhibitors 

piperonyl butoxide, ketoconazole and metyrapone and the administration of BZs has been 

shown to increase the catalytic activity of CYP1A in rat hepatocytes (Baliharova et al., 

2003; McKellar & Jackson, 2004; Virkel et al., 2009).  It has also been suggested that CYP 

activity in H. contortus may be restricted to the free-living stages where oxygen is readily 

available (Kotze, 1997).  The CYP activity in adult H. contortus is 10,000-fold lower 

compared to rat liver microsomes, so the assays used may not have been sensitive enough 

to detect this (Kotze, 1997).  Approximately 60 CYP tags have been identified from the H. 

contortus genome sequencing project database but it is anticipated this will reduce in 

number due to the presence of numerous polymorphisms or as tags become assembled (R. 

Laing, Pers. Comm.). 
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It appears that CYPs may also play a role in drug resistance in a range of species 

other than nematode parasites.  Insect CYPs are involved in the metabolism of the majority 

of insecticides, either activating the molecule or as a detoxification mechanism (Berge, 

Feyereisen, & Amichot, 1998).  In insects, over-expression or over-transcription of CYPs 

appear to enable Drosophila spp, Anopheles minimus, Anopheles gambiae and Culex 

pipiens pallens to exhibit insecticide resistance (Amichot et al., 1998; Daborn et al., 2002; 

Le Goff et al., 2003; Nikou, Ranson, & Hemingway, 2003; Gong et al., 2005; Rodpradit et 

al., 2005; Vontas et al., 2005).  For example, Drosophila spp over-expressing Cyp6g1 are 

resistant to various insecticides such as organophosphates, DDT and growth regulators 

(Ffrench-Constant, Daborn, & Le Goff, 2004).  Chloroquine resistance in the malaria 

parasites, P. berghei and P. falciparum, has also been shown to correlate with an increase 

in CYP activity (Ndifor, Ward, & Howells, 1990; Barrett, 1998). 

 

1.8: Summary 

T. circumcincta is the most important nematode parasitizing sheep in the UK and 

contributes significantly to the economic and welfare costs associated with PGE.  In the 

UK, it is also the dominant resistant species yet the full extent of anthelmintic resistance is 

not known due to insensitive diagnostic tests and the absence of active surveillance (Coles, 

2005).  Sheep do eventually build up immunity to T. circumcincta but lambs are very 

vulnerable to infection and the ability of lambs to reach slaughter weight in an 

economically viable length of time relies heavily on the use of anthelmintics, without 

which the sheep industry would not be able to survive in its present form (Sargison et al., 

2005; Blake & Coles, 2007).  As such, it is important that the mechanisms of anthelmintic 

resistance, particularly to the MLs are investigated, molecular markers associated with 

resistance are found and improved techniques for the detection of resistance are developed 

(Prichard & Roulet, 2007).  This would allow enhanced anthelmintic usage management 

strategies to be developed with the aim of prolonging the effective life of the available 

classes. 

 

Candidate gene studies looking at specific genes which are assumed to be the target 

site for anthelmintic drugs have only managed to identify SNPs associated with resistance 
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to the BZs (Gilleard, 2006; von Samson-Himmelstjerna et al., 2007).  As discussed in this 

literature review, other mechanisms of resistance such as changes in gene expression in 

non-target genes like the CYPs and Pgps remain to be investigated, particularly in T. 

circumcincta.  Alongside these classical candidate gene studies focussing on gene 

expression changes as opposed to mutations, the potential of alternative genetic techniques 

such as next generation sequencing and suppression subtractive hybridisation, which do 

not rely on initial assumptions about a gene‟s association with a drug‟s mode of action, 

need to be explored.  Furthermore, a greater understanding of the drug handling 

mechanisms of MDR T. circumcincta will potentially enable the development of molecular 

markers for resistance which will enable a more effective control strategy for T. 

circumcincta to be developed whilst reducing the rate at which anthelmintic resistance 

develops. 

 

1.9: Aims and objectives 

 The overall aim of this research was to gain an insight into how MDR T. 

circumcincta processes anthelmintics, in particular IVM, and using molecular biology 

techniques, to identify the role non-specific drug handling mechanisms, such as CYPs and 

Pgps, play in the expression of resistance with a view to developing sensitive genetic 

markers for resistance detection.  Comparisons were made between a T. circumcincta 

isolate resistant to BZs, LEV and IVM (MOTRI) and the non-related CVL isolate which 

was isolated before exposure to LEV and IVM and is phenotypically BZ susceptible as 

measured by the EHT (D. Bartley, Pers. Comm.).  Alongside this other comparisons were 

made using in vitro and in vivo IVM exposed isolates; further details of the isolates used in 

the different experiments are given in Chapter 2. 

 

 The first objective was to identify a panel of novel Pgp and CYP homologues from 

T. circumcincta for a more detailed genetic analysis.  This was performed on cDNA 

and EST datasets using bioinformatics approaches, and PCR using degenerate 

primers based on available sequences from related nematode species.  At the time 

of writing, no complete genome sequence and only a limited EST dataset was 

available for T. circumcincta.  If T. circumcincta follows the same pattern as C. 
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elegans and H. contortus, then the numbers of Pgps and CYPs is likely to be large.  

It was not anticipated that all Pgps and CYPs will be identified by this approach. 

 

 The second objective was to develop semi-quantitative or real-time quantitative 

PCR assays based on the selected panel of Pgp and CYP genes to investigate 

comparative gene expression in three different T. circumcincta isolates, namely 

susceptible (CVL), triple-resistant (MOTRI) and triple-resistant survivors of in vivo 

IVM treatment (Post IVM MOTRI) and over five life-cycle stages.  The first part of 

this objective was to identify constitutive changes in the expression of the CYPs 

and Pgps between IVM- susceptible and resistant T. circumcincta isolates.  The 

second part of this objective was to identify inducible changes in the expression of 

CYPS and Pgps by stressing different isolates of T. circumcincta with IVM to 

identify genes which display altered expression patterns in response to anthelmintic 

exposure.  Two experiments were carried out, to investigate this: (i) exposing the 

parasite isolates to IVM in vitro, utilising a modified LMIA method, and (ii) 

comparing the Post IVM MOTRI isolate with the MOTRI isolate in vivo. 

 

 The third objective used a more global, non-candidate gene approach, to investigate 

gene expression changes in the MOTRI isolate in response to in vitro IVM 

exposure by comparing an unexposed pool of adult parasites to an IVM exposed 

pool.  Using the next generation Roche 454 sequencing approach, a large amount of 

novel sequence data for T. circumcincta was generated.  Bioinformatic analysis of 

this sequence data allowed the identification of clusters of sequences which 

exhibited altered expression profiles in response to IVM exposure.   

 

 The final approach was to use a non-hypothesis driven one-way suppression 

subtractive hybridisation method, followed by sequencing of the cloned subtracted 

products to investigate constitutive gene expression differences between the CVL 

and MOTRI adult parasites at rest.  This was to identify which genes in the MOTRI 

adults had increased expression compared to the CVL adults, and could potentially 
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be used as markers for anthelmintic resistance, or gene expression changes 

allowing the parasite to exhibit resistance.   
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Figure 1.1: Life-cycle of T. circumcincta. 
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Figure 1.2: Structure of a typical P-glycoprotein.  The P-glycoprotein has been expanded to aid visualisation 

as it normally forms a cylindrical channel within cell membranes.  The transmembrane α helices are 

numbered 1 -12, the two nucleotide binding domains labelled NBD 1 and 2 and the hydrophobic linker 

region is shown at the centre of the diagram, protruding into the lipid bilayer. 
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Figure 1.3: Structure of a Cytochrome P450.  Human CYP46a1 showing it binding to a membrane (blue 

line).  Alpha helices are shown as red coils and beta sheets as yellow ribbons.  From: 

http://opm.phar.umich.edu/ protein.php?pdbid=2q9f 
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Chapter 2: General Parasitological and Molecular Biology Materials and 

Methods 

This chapter describes general parasitological and molecular biology techniques 

used in the completion of more than one experiment.  Specific materials and methods for 

real-time PCR, Roche 454 sequencing and Suppression Subtractive Hybridisation can be 

found in the relevant chapters.   

 

2.1: General parasitological techniques 

 Sheep were euthanized according to Home Office guidelines by individuals holding 

a Personal Licence permitting them to do so.  All animal experimental procedures listed 

below had been previously reviewed and approved by the Moredun Internal Ethics 

Committee prior to commencement. 

 

2.1.1: T. circumcincta isolates 

The cDNA initially used for identification of genes was L4 and xL3 SMART 

cDNA, and single-stranded adult cDNA, kindly provided by Dr A. J. Nisbet and from the 

known IVM susceptible T. circumcincta MTci2 (CVL) isolate.  The CVL isolate was 

isolated prior to the use of LEV and IVM and, in an EHT for BZ resistance status, was 

shown to have an estimated ED50 of 0.09µg/mL where the cut-off for resistance is 

0.1µg/mL, indicating that it is also BZ-susceptible (D. Bartley, Pers. Comm.).  For the 

synthesis of SMART cDNA, T. circumcincta L3 parasites of the same IVM susceptible 

CVL strain were used.  For use in the real-time PCR experiments, three isolates were used; 

the CVL isolate, a triple IVM, BZ and LEV resistant isolate (MOTRI or MTci5) and 

finally a drug-exposed isolate. Controlled efficacy and faecal egg count reduction tests 

revealed that the efficacies of FBZ, LEV and IVM against the MOTRI isolate were 59%, 

88% and 60%, respectively (Bartley et al., 2004).  To obtain the drug-exposed isolate, the 

MOTRI isolate was exposed to a full therapeutic dose of IVM (Oramec ; Merial) at a dose 

of 0.25mg/kg body weight two days after infection.  This isolate was subsequently named 

Post IVM MOTRI.  Eggs, L1, xL3, L4 and adults were obtained from each of the three 

isolates.  MOTRI adult parasites were used in the in vitro drug exposure experiment prior 
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to next generation sequencing.  For the suppression subtractive hybridisation work, 

MOTRI and CVL adults which had previously been collected and stored in liquid nitrogen 

were used.  In vivo IVM survivors were obtained by infecting adult sheep with 30,000 

MOTRI xL3 and then giving the sheep a full therapeutic dose of IVM (Oramec ; Merial) at 

a dose of 0.25mg/kg body weight 28 days post infection.  Three days after IVM treatment 

the sheep were euthanized and adult parasites collected using the method described below.   

 

2.1.2: Recovery of eggs from faeces 

Sheep were orally infected with 10,000 to 15,000 T. circumcincta L3.  Faeces were 

collected by attaching a collection bag via a harness to the rump of male sheep.  Eggs were 

extracted from the faeces by emulsifying the faeces in 5mL tap water per gram of faeces. 

The resulting suspension was washed through a series of sieves with mesh sizes of 1mm, 

212μm, 68μm and 38μm, respectively.  The retentate, containing the parasite eggs, was 

collected and washed from the 38μm sieve, transferred to centrifuge tubes and centrifuged 

at 200 x g for 2 mins.  The supernatant was removed and the pellet re-suspended in 

saturated sodium chloride solution before being centrifuged for a further 2 mins at 200 x g.  

Using forceps, the meniscus of the tubes was clamped off and poured into a beaker then 

transferred to the 38μm sieve and washed with tap water.  The retentate was collected 

using tap water and centrifuged for 2 mins at 200 x g with the supernatant being removed.  

Tap water was used to return the volume in the centrifuge tube to 10mL and an egg count 

performed. The eggs were centrifuged, the supernatant removed and the eggs re-suspended 

in 1X Phosphate Buffered Saline (PBS) before being stored in liquid nitrogen. 

 

2.1.3: Collection of L1 

Eggs extracted from faeces as described above were used to obtain L1 parasites by 

culturing the eggs according to the following procedure.  Eggs were incubated for 18-24 

hours at 25°C and then transferred into the top of a mini Baermann apparatus with 20-

25μm mesh and cultured for a further 2 hours at 25°C.  Hatched L1 were collected from the 

well of a 6 well plate following their migration through the Baermann apparatus during the 

2 hour incubation period.  L1 were stored in 1X PBS in liquid nitrogen. 
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2.1.4: Recovery of L3 from faeces 

L3 were obtained by coproculture.  Faeces were collected as described above for 

recovery of eggs.  Macerated faecal material from T. circumcincta infected sheep was 

mixed with vermiculite at a ratio of 10g faeces to 4g vermiculite, placed in a sample 

container and covered with a plastic bag containing holes to allow gas exchange.  The 

faeces were incubated at 20-27°C for 10 days, the plastic was removed and the vermiculite 

faeces mix flooded with tepid water and incubated at room temperature for 4 hours.  The 

supernatant was then removed and L3 extracted using a Baermann apparatus.  The L3 were 

exsheathed by addition of a 1% sodium hypochlorite solution (Milton sterilising fluid) and 

observed under a microscope until 90% exsheathment had occurred.  Sodium hypochlorite 

was removed from the solution by repeatedly re-suspending the larvae in water, 

centrifuging at 200 x g for 2 mins and removing the supernatant.  This procedure was 

repeated at least three times and the parasites were re-suspended in 1X PBS, then stored in 

liquid nitrogen. 

 

2.1.5: Recovery of L4 from abomasum 

Sheep orally dosed with 150,000 L3 were used to obtain L4 from the abomasum.  

Seven days after infection, the sheep was euthanized and the abomasum removed, cut 

along the greater curvature, and the contents washed out by rinsing three times with warm 

saline.  The abomasum was then pinned out onto a polystyrene board and placed in a large 

funnel containing warm saline so that the internal abomasal surface hung down into the 

saline.  The abomasum was left at 37°C for several hours allowing the L4 to migrate to the 

bottom of the funnel where they were collected, re-suspended in 1X PBS and transferred to 

liquid nitrogen for long term storage. 

 

2.1.6: Recovery of adult parasites from abomasum 

Adult T. circumcincta were collected from the abomasum of sheep 21 days post 

infection with 30,000 to 50,000 L3.  The abomasum was removed from an infected sheep 

and opened up along the greater curvature of the abomasum, collecting the abomasal 

contents.  The surface of the abomasum was washed with as little warm saline as possible, 
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with the abomasal washings in saline being collected with the abomasal contents.  600mL 

of the abomasal contents and washings was mixed with 600mL of 1.8% agarose diluted in 

saline, and allowed to set over a wire mesh at the bottom of a bucket.  Once set, the bucket 

with the agarose-abomasal mix was placed in a large funnel containing warm saline and 

incubated at 37°C for several hours to allow the adults to migrate out of the agarose-

abomasal mix into the saline where they were collected and transferred to liquid nitrogen 

for long term storage 1X PBS. 

 

2.2: In vitro bioassays 

2.2.1: Larval migration inhibition test (LMIT): Standard technique 

 The LMIT works by incubating L3 in serial dilutions of IVM and determining the 

percentage of L3 which are capable of migrating through a mesh submerged in a solution 

containing IVM, as shown in Figure 2.1, part A.  Isolates of parasites most resistant to the 

paralysing effects of IVM will be able to migrate at a greater percentage in a higher dose of 

drug compared to those less resistant isolates (Wagland et al., 1992; Rabel, McGregor, & 

Douch, 1994). 

 

 Approximately 2400 L3 parasites, obtained via coproculture as described 

previously, were allowed to migrate through a Baermann chamber for 1 hour at 26°C using 

a double thickness piece of 25μm mesh, attached to a section of a syringe, placed into a 

well of a 6-well plate containing 10mL tap water.  After the 1 hour incubation was 

completed, the tap water containing the migrated L3 was transferred to a centrifuge tube 

and centrifuged for 2 mins at 200 x g.  The volume in the tube was reduced, the L3 were re-

suspended and a second count made to determine the number of L3.  The volume in the 

centrifuge tube was adjusted to give between 10 and 15 L3 per 10μL.  A serial dilution of 

IVM in Dimethyl Sulphoxide (DMSO) was prepared in darkened Eppendorf tubes from a 

stock solution (3000μg/mL) to give four working concentrations of 300μg/mL, 60μg/mL, 

20μg/mL and 5μg/mL.  In clean darkened Eppendorf tubes, 10μL of each drug 

concentration or neat DMSO (control) was added to 190μL of the L3 suspension to give 

final concentrations of IVM of 150μg/mL, 15μg/mL, 3μg/mL, 1μg/mL, 0.25μg/mL and 

0μg/mL.  The L3 were incubated for 2 hours at 26°C in the above IVM concentrations.   
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 A 24-well plate was set up to contain the migration chambers made from small 

plastic tubes covered at one end with a 20μm mesh.  The layout of the plate is shown in 

Figure 2.1, part B.  210μL of the stock or working concentrations of IVM was mixed with 

3801μL tap water in a darkened Bijou to provide 1910μL of solution to fill each of the 

duplicate wells for each drug concentration.  This was calculated to give the same final 

concentrations of IVM as previously described.  90μL of the drug exposed L3 were added 

down the side of the migration chamber into the well above the mesh and the plate 

incubated for a further 2 hours in the dark at 26°C.  Migrated L3 were washed off the 

bottom of the migration chamber back into the well, the migration chamber was tipped 

upside down into the corresponding empty well below it on the plate and non-migrating L3 

washed back through the mesh.  The L3 were stained with helminthological iodine and 

counted under an inverted microscope at x100 magnification.  Percentage migration for 

each well was determined and an average for each drug concentration calculated. 

 

2.2.2: Larval migration inhibition test (LMIT): Modified technique 

 The LMIT technique described above was modified to enable the protocol to be 

scaled up to give sufficient quantities of L3 for use in molecular experiments.  Following 

several experiments using the standard LMIT method, a dose of 2.5μg/mL IVM was 

chosen as the previous results suggested this would give a migration percentage of 

approximately 10%.  However, using the protocol described below this resulted in an 

average migration of 0.41%, so subsequently a dose of 1μg/mL IVM was used, which had 

been shown to give an average migration of 24% in the standard migration technique. 

 

 The first Baermannisation step (1 hour at 26°C using a 25μm mesh) was not 

performed, instead the L3 were exsheathed by addition of a 1% sodium hypochlorite 

solution (Milton sterilising fluid) into a flask containing the L3 in 70mL water.  A 

subsample of the L3 were observed under a microscope, and when 90% had exsheathed, 

the L3 were washed as described in Section 2.1.4, counted and re-suspended in 240mL 

warm tap water.   
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A serial dilution of IVM in DMSO was prepared in darkened Eppendorf tubes from 

a stock solution (3000μg/mL) to give a final working concentration of 50μg/mL.  In clean 

darkened Falcon tubes, 2.5mL of IVM or neat DMSO (control) was added to 47.5mL of 

the L3 suspension to give final concentrations of IVM of 1μg/mL, and 0μg/mL.  The L3 

were incubated in the dark for 2 hours at 26°C.  Following incubation, the L3 were 

centrifuged for 5 mins at 1500 x g with the brake off to allow the L3 to pellet to the bottom 

of the Falcon tubes without vortexing back into suspension.  The volume in each Falcon 

tube was reduced to 10mL and the L3 were inverted to re-suspend them.   

 

Five migration chambers were set up using clean glass jam jars of identical size, 

capable of holding 320mL.  The Baermann chamber was made using two sample pots with 

their bottoms cut out, placed one inside the other, holding a piece of 20μm mesh in place 

between them.  These were then placed in the jam jars.  Four of the migration chambers 

were to provide replicates of the drug concentration whilst the fifth was for the no drug 

control.  65.6mL of the working concentration of IVM was mixed with 1205.4mL warm 

tap water in a darkened 2L Duran bottle to provide the solution to fill the jam jars.  Each 

IVM jam jar was filled with 310mL of the drug whilst the control jam jar was set up by 

mixing 294mL of tap water and 16mL DMSO.  10mL of the drug exposed L3 were added 

down the side of the sample pot above the mesh and the jam jars incubated for 2 hours at 

26°C in the dark.   

 

Migrated L3 were washed off the bottom of the migration chamber back into the 

jam jar, the migration chamber was tipped upside down onto a Petri dish and non-

migrating L3 washed back through the mesh after removing the mesh from between the 

two sample pots to ensure no non-migrating L3 were caught in the mesh folds.  The 

contents of the jam jars and Petri dishes were sequentially spun down in the centrifuge (2 

mins at 200 x g) until each of the migrating and non-migrating samples were re-suspended 

in a total volume of 10mL.  Five 10μL subsamples from the migrating L3 samples were 

taken and the number of L3 present determined under a microscope.  From this the 

percentage migration of each jam jar was calculated.  Each sample was reduced in volume 

and stored in 1X PBS in liquid nitrogen. 
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2.3: General molecular biological techniques 

2.3.1: Extraction of RNA 

The Trizol
®
 method was used to extract total RNA from parasite material.  

Parasites removed from storage in liquid nitrogen were placed in a pre-chilled pestle and 

mortar (-80°C) and ground to a fine powder using liquid nitrogen to ensure parasites 

remained frozen.  The liquid nitrogen was allowed to evaporate and 8mL Trizol
®

 reagent 

(Invitrogen) added.  Once solidified, the Trizol-parasite mix was ground up until liquid 

then transferred into 1mL aliquots in Eppendorf tubes and allowed to incubate at 15-30°C 

for 5 mins.  200μL chloroform was added to each Eppendorf tube and the Eppendorf tubes 

shaken vigorously and incubated at 15-30°C for 2 mins, then centrifuged at 12000 x g for 

15 mins at 2-8°C.  The RNA was precipitated from the Trizol mix by transferring the 

colourless upper aqueous phase from the Eppendorf tube into a clean Eppendorf tube, 

adding 500μL isopropanol, mixing and incubating for 10 mins at 15-30°C.  A second 

centrifugation at 12000 x g for 10 mins at 2-8°C was performed and the supernatant 

removed without dislodging the RNA pellet.   The RNA was washed by adding 1mL 75% 

ethanol, vortexing and centrifuging at 7500 x g for 5 mins at 2-8°C.  The ethanol was 

removed and the pellet allowed to air dry to remove all traces of the ethanol.  The RNA 

was re-suspended in up to 75μL nuclease free water and stored at -80°C.  Confirmation of 

RNA quality was obtained by running 5μL on a 1% agarose gel to identify the 18S band 

and by determining the RNA concentration using the NanoDrop
®
 ND-1000 

spectrophotometer (Thermo Fisher Scientific Inc).  RNA extracted later in the project had 

1μL RNAse OUT (Invitrogen) added prior to storage at -80°C to prevent possible 

degradation of RNA. 

 

2.3.2: Synthesis of cDNA 

To enable the identification of candidate resistance genes, single-stranded cDNA 

was synthesised from RNA using the Invitrogen Superscript reverse transcriptase kit with 

oligo dT primers, according to the manufacturer‟s instructions.  Briefly 2μL oligo dT 

primer was mixed with 5μg total RNA and the reaction made up to 12μL with PCR-grade 

water, then incubated at 70°C for 10 mins and chilled on ice.  4μL 5x first strand buffer, 

2μL 0·1M DTT and 1μL 10mM dNTP mix was added before the reaction mix was 
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incubated at 42°C for 2 mins.  1μL Superscript II enzyme was added and the reaction mix 

incubated at 25°C for 10 mins then at 42°C for 50 mins. The enzyme was heat inactivated 

at 70°C for 10 mins and the resulting cDNA stored at -20°C. 

 

The Switching Mechanism At 5‟ End of RNA Template (SMART
™

) Rapid 

Amplification of cDNA ends (RACE) cDNA amplification kit (Clontech) and the 

Advantage
®
 2 PCR Enzyme System (Clontech) were used to manufacture RACE-ready 

cDNA.  Two separate reactions were performed to make 5‟ and 3‟ RACE-ready cDNA.  

To manufacture 5‟ RACE-ready cDNA 1μL of RNA was mixed with 1μL 5‟-CDS primer 

and 1μL SMART II A oligo and the final volume made up to 5μL with sterile water.  3‟ 

RACE-ready cDNA was prepared by adding 1μL of RNA to 1μL of 3‟-CDS primer A and 

the final volume made up to 5μL with sterile water.  Both reactions were incubated at 70°C 

for 2 mins and then cooled on ice for 2 mins.  To both the 5‟ and 3‟ reaction mixes, 2μL of 

5X First-Strand buffer, 1μL 20mM DTT, 1μL 10mM dNTP Mix and 1μL MMLV Reverse 

Transcriptase was added and the reaction mix incubated at 42°C for 90 mins.  The starting 

concentration of the total RNA was greater than 200ng/μL so 100μL of Tricine-EDTA 

Buffer was added to each reaction and the tubes incubated at 72°C for 7 mins.  Aliquots of 

the RACE-ready cDNA were made and stored at 20°C. 

 

 cDNA for use in real-time PCR was manufactured using the Invitrogen Superscript 

reverse transcriptase kit as described above with the following modifications: The 

concentration of RNA added in step 1 was 1.5μg total RNA and 2μL random primers were 

used instead of oligo dT primers in the first strand synthesis reaction.  Triplicate cDNA 

synthesis reactions were set up for each isolate and life-cycle stage with the three reactions 

pooled and mixed prior to the cDNA concentration being determined using the NanoDrop
®
 

ND-1000 spectrophotometer.  The cDNA was diluted to 50ng/μL and aliquots made prior 

to storage at -20°C. 
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2.3.3: Standard PCR 

Four different types of primers were used: housekeeping gene primers (Table 2.1), 

degenerate primers to identify Pgps and CYPs (Table 2.2), specific primers to amplify Pgp 

and CYP sequence (Table 2.3) and standard primers for amplification of sequence in 

cloning vectors (Table 2.4).  Primers were designed using the services on MWG Biotech 

and Primer3 (www.eurofinsdna.com and http://frodo.wi.mit.edu/, respectively) to calculate 

Tm.  Primers were ordered from MWG Biotech and diluted to a stock concentration of 

100μM.  The working concentration of all primers for PCR was 10μM. 

 

Standard PCR used the Platinum
®
 Taq DNA polymerase kit (Invitrogen) and 

dNTPs (Roche).   Standard PCR reactions were carried out by combining 12·75μL dH2O 

with 2·5μL 10X PCR buffer, 0·75μL 50mM MgCl2, 1·0μL 10mM dNTP, 0·5μL Platinum
®
 

Taq DNA Polymerase and 2·5μL each of the forward and reverse primers and template to 

give a total reaction volume of 25μL.  All PCR reactions were run on an Applied 

Biosystems 2720 thermal cycler as follows: 5 mins at 94°C for a denaturing step followed 

by 40 cycles of 94°C for 30 secs, X°C for 30 secs and 72°C for 30 secs, (where X is the 

Tm of the primers minus 5°C), followed by 10 mins at 72°C and then a hold at 4°C.  The 

PCR results were visualised by running the whole PCR reaction mix on a 1% agarose gel 

as described below. 

 

2.3.4: Rapid amplification of cDNA ends (RACE) PCR 

RACE PCR primers (Table 2.5) were designed, as described above, to extend the 5‟ 

gene sequence of specific Pgps.  RACE PCR reactions were set up by combining 34·5μL 

PCR grade water with 5μL 10X Advantage 2 PCR buffer, 1μL 10mM dNTP mix, 1μL 50X 

Advantage 2 Polymerase Mix, 2·5μL 5‟ RACE ready cDNA, 5μL 10X Universal Primer 

Mix and 1μL of the specific primer to give a total reaction volume of 50μL.  A touchdown 

PCR protocol was used as follows: 5 cycles of 94°C for 30 secs and 72°C for 3 mins 

followed by 5 cycles of 94°C for 30 secs, 70°C for 30 secs and 72°C for 3 mins followed 

by 25 cycles of 94°C for 30 secs, 68°C for 30 secs and 72°C for 3 mins followed by a hold 

at 72°C for 7 mins and then a hold at 4°C.  The results of the RACE PCR were visualised 

as for the standard PCR, as described below.  PCR product sizes on agarose gels were 
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estimated by comparing the position of the band on the gel to the sizes of bands of the 

DNA Molecular Weight Marker X (Roche) which has a size range of 0.07 to 12.2 kbp. 

 

2.3.5: Semi-quantitative PCR 

 Semi-quantitative PCR was performed by setting up a PCR using the gene-specific 

primers designed for CYPs 1, 2 and 3 and PGPs 2, 3, 5, 6, 7 and 9 (Table 2.3), the actin 

and β-tubulin control primers (Table 2.1) and cDNA generated using random primers from 

eggs, L1, xL3, L4 and adults of the CVL and MOTRI T. circumcincta isolates as follows:  

36µL of nuclease-free water was combined with 5µL 10X PCR buffer, 1.5µL 50mM 

MgCl2, 1·0μL dNTP, 0·5μL Platinum
®
 Taq DNA Polymerase, 1μL each of the forward and 

reverse primers, and 4μL template cDNA diluted to 250ng/µL to give a total reaction 

volume of 50μL.  The PCR reaction conditions were 5 mins at 94°C followed by 30 cycles 

of 94°C for 30 secs, 55°C for 30 secs and 72°C for 30 secs, followed by 10 mins at 72°C 

and then held at 4°C.  After 15, 20, 25 cycles and upon completion of the PCR, 5µL of the 

reaction mix was removed from each tube and stored at 4°C prior to all the samples being 

visualised on an agarose gel as described below. 

 

2.3.6: Visualisation of PCR products: 

 To visualise PCR products between 5μL and the full volume of the PCR reaction 

was loaded onto a 1% agarose gel (containing TAE and Gel Red as described below) 

which had been submerged in an electrophoresis tank filled with 1 x TAE buffer.  

Electrophoresis was carried out on the 1% agarose gels at 70-110V for between 30 to 60 

mins to allow separation of any PCR products according to molecular weight.  The gel was 

examined under UV light and the size of the bands present determined against DNA 

Molecular Weight Marker X (Roche) which has a size range of 0.07 to 12.2 kb or against 

the TrackIt
™ 

1Kb Plus DNA Ladder (Invitrogen) which has a size range of 0.1 to 12 kb.  

Reagents used were prepared as follows: 
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Tris-acetic acid-ethylenediaminetetraacetic acid (TAE) buffer  

A 50X stock solution of TAE was prepared by dissolving 242g Tris base in 500mL 

distilled water (dH2O), to which 57.1mL glacial acetic acid and 100mL 0·5M 

ethylenediaminetetraacetic acid (EDTA) (pH8) was added and the volume topped up to 1L 

with dH2O.  For use as an agarose gel tank buffer the 50X stock solution was diluted to 1X 

in dH2O. 

 

Agarose gel 

 1% agarose gel was prepared by dissolving 4g agarose and 8mL 50X TAE in 

392mL of dH2O using a microwave.  20μL 10000X Gel Red (Biotium Inc) was added to 

enable visualisation of DNA under UV light. 

 

2.3.7: Cloning of PCR products 

Bands visualised under UV on 1% agarose gels were excised using a clean scalpel 

and purified following the protocol for the QIAquick Gel Extraction Kit (Qiagen).  Briefly, 

the gel slice was dissolved in Buffer QG at a ratio of 300μL per 100mg of gel in an 

Eppendorf tube placed in a water bath at 50°C.  The DNA in Buffer QG was bound to the 

spin column by centrifugation at 17900 x g for 1 minute.  The DNA on the column was 

washed by addition of 500μL of buffer QG, centrifuged for 1 minute, addition of 750μL of 

Buffer PE and then centrifuged for 1 minute.  Waste was removed from the collection tube 

between each step and a final centrifugation step of 1 minute carried out to remove all 

residues of Buffer PE.  Purified DNA was eluted by adding 30μL dH2O to the spin column, 

which was allowed to stand for 1 minute before a final centrifugation for 1 minute.  The 

eluted DNA was stored at -20°C. 

 

 Purified PCR product was ligated into pGEM
®
-T vector on ice as follows: 5μL 2X 

ligation buffer was mixed with 1μL pGEM
®

-T vector, 1μL T4 DNA ligase and 3μL of 

purified PCR product.  The ligation mixture was incubated at 4°C overnight.  On day two, 

JM109 competent cells (Stratagene) were transformed with the pGEM
®
-T vector 
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containing the purified PCR product as follows: On ice, 3μL of the ligation mix was added 

to 27μL of JM109 competent cells and incubated on ice for 30 mins.  The cells were heat-

shocked at 42°C in a water bath for 1 minute and returned to ice for 2 mins.  200μL of 

SOC medium was added to each Eppendorf tube and the cells placed in a shaking 

incubator at 37°C for two hours.  After two hours, 150μL of the cell suspension was spread 

onto LB AMP XI plates (manufactured as described below) using an ethanol-sterilised 

glass spreader and the plates placed in a 37°C incubator for overnight culture.  White 

colonies, containing the pGEM
®
-T vector with purified PCR product insert, were selected 

from the plates using sterile pipette tips and placed in glass universals, containing 10mL 

LB broth and 20μL 25mg/mL AMP, and cultured overnight at 37°C in the shaking 

incubator. 

 

 Overnight cultures were pelleted by pouring off the supernatant following 

centrifugation of the universals at 3000 x g for 15 mins.  The plasmids were extracted from 

the cells following the protocol for the Wizard
®
 Plus SV Miniprep DNA purification kit 

(Promega).  Briefly, the cells were re-suspended in 250μL Cell Resuspension Solution and 

transferred to an Eppendorf tube.  The cells were lysed by addition of 250μL Cell Lysis 

solution, mixing, addition of 10μL Alkaline Protease Solution, mixing and incubating at 

room temperature for 5 mins.  The reaction was neutralized by addition of 350μL of 

Neutralization Solution and then centrifuged at 14000 x g for 10 mins at room temperature 

to pellet the cell debris.  The supernatant was carefully removed from the Eppendorf tube 

and placed into the spin column.  Binding of the plasmid to the column was achieved by 

centrifugation of the spin column at 14000 x g for 1 minute, with the waste from the 

column being removed from the collection tube after each step.  Two washes of the column 

were carried out by adding 750μL of Column Wash Solution, centrifuging for 1 minute, 

adding 250μL Column Wash Solution and centrifuging for 1 minute, with the waste being 

removed from the collection tube after each step.  A final centrifugation step for 2 mins at 

14000 x g removed all traces of Column Wash Solution.  The purified plasmid was eluted 

from the column by adding 50μL dH2O and centrifuging at 14000 x g for 1 minute.  The 

extracted plasmid DNA concentration was determined using the NanoDrop
®
 ND-1000 

spectrophotometer and the purified plasmid stored at -20°C.  Reagents used for cloning 

were prepared or obtained as shown below: 
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Cells 

JM109 competent cells (Stratagene) and the pGEM
®
-T vector system (Promega) 

were used to clone PCR products. 

 

Luria Bertani (LB) broth 

 LB broth was prepared by dissolving in 1L dH2O, 10g Bacto
®
-tryptone, 5g Bacto

®
-

yeast extract and 5g sodium chloride.  Sterilisation was achieved through autoclaving at 

121°C for 15 mins. 

 

Luria Bertani (LB) agar 

 LB agar was prepared from LB broth by dissolving 15g Bacto
®

-agar in 1L LB 

broth and autoclaving. 

 

SOC medium 

SOC medium (pH7) was prepared as follows.  1g Bacto
®

-tryptone, 0·25g Bacto
®

-

yeast extract, 0·5mL 1M sodium chloride and 0·125mL 1M potassium chloride was 

dissolved in 48·5mL dH2O, autoclaved and allowed to cool.  0·5mL 2M filter-sterilised 

Mg
2+

 and 0·5mL 2M filter-sterilised glucose was added and the final volume increased to 

50mL with dH2O.  The pH was adjusted to pH7 and the SOC medium divided into 5mL 

aliquots and stored at -20°C. 

 

Ampicillin solution 

 A 25mg/mL stock solution of ampicillin (AMP) was prepared by dissolving a 25mg 

ampicillin tablet (Stratagene) in 1mL dH2O and was stored at -20°C. 
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Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

 1M IPTG was made by adding 238mg IPTG to 1mL dH2O, vortexing and storing at 

-20°C. 

 

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) 

 50mg/mL X-gal in dimethylformamide was obtained from Promega. 

 

LB agar plates containing ampicillin, X-gal and IPTG 

 LB AMP XI plates were prepared by melting LB agar and cooling to 50°C in a 

water bath.  1mL of ampicillin stock solution was added per 500mL LB agar, mixed and 

then poured into 9cm diameter Petri dishes and left to set.  Plates were stored upside down 

at 4°C until required, for a maximum of 2 weeks.  Immediately prior to use, 40μL of 1M 

IPTG and 40μL of X-gal was spread on the surface of the LB agar using an ethanol-

sterilised glass spreader and allowed to absorb into the LB agar at 37°C. 

 

2.3.8: Kits for purification of PCR and cloning products 

Purification of PCR products from agarose gels was performed using the 

QIAquick
®
 Gel Extraction Kit (Qiagen).  Purification of the remaining PCR products, 

which had not been run on agarose gels, was performed using the QIAquick
®
 PCR 

purification kit (Qiagen).  Extraction of plasmids from JM109 cell cultures was performed 

using the Wizard
®

 Plus SV Miniprep DNA purification system (Promega). 

 

2.3.9: Sequencing 

 Purified plasmids were submitted for sequencing to either MWG or GATC 

according to the instructions specified on the companies‟ websites (www.eurofinsdna.com 

and www.gatc-biotech.com, respectively).  The primers chosen were generally either M13 
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For, M13 Rev, M13 Uni, SP6 or T7, as shown in Table 2.4, which amplify the pGEM
®

-T 

vector across the insertion site.  The majority of sequencing used the M13 Uni, SP6 and T7 

primers.  Occasionally, purified PCR products were sequenced directly without first being 

cloned into the pGEM
®
-T vector.  In these cases, the primer chosen for the sequencing 

reaction was the gene specific forward primer for that PCR product. 

 

2.3.10: Analysis of sequencing data 

Sequence data received in ABI format following cloning and sequencing was 

analysed using SeqMan (DNASTAR Lasergene version 8) to enable the accuracy of base 

calls to be checked, to align sequences into contigs and to remove plasmid sequence.  

Consensus sequence was used as the query in BLAST X search engines on EMBL-EBI 

(www.ebi.ac.uk/blast2/parasites.html) and NCBI (www.ncbi.nlm.nih.gov/blast/Blast.cgi) 

(Altschul et al., 1990).  Novel sequences generated using the degenerate primer, cloning 

and sequencing approach with homology to Pgps or CYPs from these databases were 

numbered sequentially.  Translated protein sequences and open reading frames were 

generated using The Sequence Manipulation Suite 

(http://www.ualberta.ca/~stothard/javascript/index.html).  Clustal W analysis, to generate 

alignment files for both nucleotide and protein sequence, was carried out using EMBL-EBI 

(http://www.ebi.ac.uk/Tools/clustalw2/). 

 

Electronic searches to identify potential Pgp and CYP ESTs in T. circumcincta 

were carried out on the following webpages: Nembase2; 

(http://xyala.cap.ed.ac.uk/nematodeESTs/search.php) (Parkinson et al., 2004a), NCBI; 

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore&itool=toolbar) (Wheeler et al., 

2008) and EMBL-EBI (http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-page+top).  Keywords 

such as P-glycoprotein, Pgp, Cytochrome P450, CYP450 and Teladorsagia circumcincta 

were used as search terms. 

 

Individually, the novel Pgp nucleotide sequences, generated using the degenerate 

primers as described above, were aligned against the 15 full-length C. elegans Pgp 
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nucleotide sequences using the very accurate alignment option in CLC DNA Workbench 

version 5.6.1 (www.clcbio.com).  The names and GenBank accession numbers of the 

protein sequences of the 15 C. elegans Pgps are shown in Table 2.6 below and were 

obtained from Sheps et al (, 2004).  The link to the protein sequence was used to trace back 

to the nucleotide sequence.  The alignments were visually inspected and trimmed to only 

display the part of the alignment containing the T. circumcincta Pgp sequence and then 

used to generate phylogenetic trees to enable the closest matching C elegans Pgp sequence 

to be identified for each individual T. circumcincta Pgp.  This was to enable the correct 

naming of the Pgps as suggested in the guidelines on the Caenorhabditis genetics centre 

website (http://www.cbs.umn.edu/CGC/nomenclature/index.html).  Phylogenetic trees 

were generated using the neighbour-joining (NJ) and Un-weighted Pair Group Method 

with Arithmetic mean (UPGMA) methods using a bootstrap value of 1000. 

 

2.3.11: Identification of single nucleotide polymorphisms (SNPs) 

 Using cDNA generated from pools of adult T. circumcincta, SNPs were identified 

by using gene-specific primers (Table 2.3) to selectively amplify cDNA for PGPs 3, 5, 6, 7 

and 9, using the SuperScript
™

 III One-Step RT-PCR System with Platinum
®
 Taq DNA 

Polymerase.  The actin primers (Table 2.1) were used as positive controls.  The template 

was CVL and MOTRI adult RNA extracted as described in Section 2.3.1, and the reaction 

was set up as follows: 25µL of the 2X Reaction Mix was combined with 1µL of the 

Reverse Transcriptase/ Platinum
®
 Taq Mix, 1µL each of the forward and reverse primers 

and 21µL dH2O.  1µL RNA was added to give a total reaction volume of 50µL and the 

PCR reactions run on an Applied Biosystems 2720 thermal cycler programmed as follows: 

50ºC for 30 mins, 94ºC for 2 mins followed by 40 cycles of 94ºC for 15 secs, 55ºC for 30 

secs and 72ºC for 1 minute, followed by 72ºC for 10 mins and a hold at 4ºC.  Following 

the identification of bands on an agarose gel loaded with 10µL PCR product (Section 2.3.6 

above), the remaining 40µL PCR product was cleaned up using the QIAquick
®
 PCR 

purification kit (Qiagen), eluting into 30µL water.  The RNA concentration was 

determined using the NanoDrop
®
 ND-1000 spectrophotometer and the samples submitted 

for sequencing as described above (Section 2.3.9). 
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Analysis of the sequence data was carried out by first confirming the sequence was 

for the correct Pgp by aligning it against the Pgp consensus sequences in Lasergene 

Seqman.  Subsequently, the pairs of sequences for each Pgp in raw .abi file format (CVL 

and MOTRI) were entered into the online SeqDoC programme 

(http://research.imb.uq.edu.au/seqdoc/) to identify the presence of SNPs by comparing the 

sequence chromatograms.  Where SNPs were observed, the individual nucleotide 

sequences from both CVL and MOTRI were translated into protein sequence using the 

Sequence Manipulation Suite (http://www.bioinformatics.org/sms2/).  The nucleotide and 

translated protein sequences were used to determine whether any of the SNPs represented 

coding changes by carrying out Clustal W analysis using EMBL-EBI 

(http://www.ebi.ac.uk/Tools/clustalw2/). 
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Table 2.1: Primers used to amplify T. circumcincta housekeeping genes. 

Primer 

name 

Primer 

direction 

Sequence Melting 

temp (ºC) 

Target 

Tci actin F Sense GTT GCT GCT CTT GTG GTT GA 57.3 T. circumcincta actin 

Tci actin R Antisense GGA GAG CAC AGC CTG GAT AG 61.4 T. circumcincta actin 

Tci 60S F Sense AAA CAA TGG GTC GCC GGA 56.0 T. circumcincta 60S 

Tci 60S R Antisense GCA GCA ACA ACG GTG CT 55.2 T. circumcincta 60S 

Tci_BTubF Sense TTCCATTCCCTCGTCTTCAC 60.0 T.circumcincta β-tubulin 

Tci_BTubR Antisense AGCCATTTTCAATCCACGAG 60.0 T.circumcincta β-tubulin 
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Table 2.2: Degenerate primers used to identify Pgps and CYPs from T. circumcincta cDNA.  * means the Tm was calculated approximately using W instead of I. 

Primer name Primer 

direction 

Sequence Melting 

temp (ºC) 

Target Source 

1S Sense AGY GGI TGY GGN AAR AGY AC 58.3* H. contortus Pgp (Sangster et al., 1999b) 

2S Sense AGY GGI TGY GGN AAR TCN AC 58.3* H. contortus Pgp (Sangster et al., 1999b) 

3S Sense TCI GGI TGY GGN AAR AGY AC 57.3* H. contortus Pgp (Sangster et al., 1999b) 

4S Sense TCI GGI TGY GGN AAR TCN AC 57.3* H. contortus Pgp (Sangster et al., 1999b) 

1A Antisense AGI GCI GAN GTN GCY TCR TC 59.4* H. contortus Pgp (Sangster et al., 1999b) 

2A Antisense AGI GCR CTN GTN GCY TCR TC 60.4* H. contortus Pgp (Sangster et al., 1999b) 

3A Antisense AAI GCI GAN GTN GCY TCR TC 57.3* H. contortus Pgp (Sangster et al., 1999b) 

4A Antisense AAI GCR CTN GTN GCY TCR TC 58.3* H. contortus Pgp (Sangster et al., 1999b) 

5A Antisense ATI GCD ATI CGY TGY TTY TGN CC 59.5* H. contortus Pgp (Sangster et al., 1999b) 

6A Antisense ATI GCD ATY CTY TGY TTY TGN CC 58.6* H. contortus Pgp (Sangster et al., 1999b) 

13A-1 Sense CAA GAM GAA GTR GAY ARA GAA TG 57.1 
C. elegans CYP13A 

(Menzel, Bogaert, & 

Achazi, 2001) 13A-2 Antisense CCC ATC TYT CIG GYY TRA AC 57.3 

31A-1 Sense TCA AGC GGA ACT GGA TGA AG 57.3 
C. elegans CYP31A 

(Menzel, Bogaert, & 

Achazi, 2001) 31A-2 Antisense GAG CCA TGA TGA CCT TCT CT 57.3 

33C-1 Sense ATG CAK GAA AAI ATY CTD ATD GA 52.9 
C. elegans CYP33C 

(Menzel, Bogaert, & 

Achazi, 2001) 33C-2 Antisense TAM GGW AGA TYA TTY TTA TCA 49.1 

35A-1 Sense ATA TGG GRG TTG GDA ARG AT 53.9 
C. elegans CYP35A 

(Menzel, Bogaert, & 

Achazi, 2001) 35A-2 Antisense GCA TGR CGT TGA ATY TCT CC 57.3 

DegenTcP450For Sense TTG AYY TWT GGA TWG CWG GTC A 56.5 T. circumcincta CYP EST 
 

CypGrp2 Deg For Sense TGG NTN GCT GGT MWD GAR AC 58.0 
T. circumcincta CYP clan2 

 CypGrp2 Deg Rev Antisense TCC TKW CGA GCN ANC CAH ARA TC 61.2 
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Primer name Primer 

direction 

Sequence Melting 

temp (ºC) 

Target Source 

CypGrp3 Deg For Sense GGT GTR GGW CCW MGR CAD TGT 61.4 
T. circumcincta CYP clan3 

 CypGrp3 Deg Rev Antisense ACA CAH TGY CKW GGW CCY ACA 59.5 

CypGrp4 Deg For Sense TGG ADA VRT CGV CGA AAR ATG 57.2 
T. circumcincta CYP clan4 

 CypGrp4 Deg Rev Antisense TGG DGT NAD CAT YTT TCG BCG A 59.0 
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Table 2.3: Gene specific T. circumcincta primers. 

Primer name Primer 

direction 

Sequence Melting 

temp (ºC) 

Target Amplicon 

length (bp) 

Specificity 

Pgp1Tc Rev Antisense GCT CAA TTT CCT CCT GAG AAC 57.9 T. circumcincta PGP1   

Pgp1Tc IntFor Sense GAA GGT GGC ATG TAC CGG 61.4 T. circumcincta PGP1   

Pgp1Tc IntRev Antisense GAG GTT CCT GTG CTG CAG CAC 63.7 T. circumcincta PGP1   

P1TcF Sense GTG CTG CAG CAC AGG AAC 58.2 
T. circumcincta PGP1 676 Failed to amplify 

P1TcR Antisense GCG GCG TGC TCA ATT TCC 58.2 

Pgp2Tc Int For Sense CGA AAA CAT CAG AAA CAT GA 51.2 T. circumcincta PGP2   

Pgp2Tc Int Rev Antisense AAT GTT CTC AAG GAT CGT ACA 54 T. circumcincta PGP2   

P2TcF Sense GAA AGA GCC TCA TCG GGA G 58.8 
T. circumcincta PGP2 649 PGP2 specific 

P2TcR Antisense GGA AGG TTT AGG GTC GTC C 58.8 

P3TcF Sense CCA ATG CAT CCC TGG CTC 58.2 
T. circumcincta PGP3 618 PGP3 specific 

P3TcR Antisense CCT CGT CTG TGG CTG AC 57.6 

Pgp4Tc Int For Sense ACG GTG TGG AAA TCG ACA AG 57.3 T. circumcincta PGP4   

P4TcF Sense GGA AGA CGG CAA ATC GAC 56 
T. circumcincta PGP4 662 Not specific 

Pgp4Tc Int Rev Antisense CCG TGA TTT CAG CAT CTG TG 57.3 

P5TcF Sense CAA GGT TTG AGG CAG CGT TG 59.4 
T. circumcincta PGP5 688 PGP5 specific 

P5TcR Antisense GCT TCC TGG ACC TCT TCC 58.2 

P6TcF Sense GCY TTG GAC GGT TCT GTG G 59.9 
T. circumcincta PGP6 259 PGP6 specific 

P6TcR Antisense GCG CTC CCT TTT CTC CTG 58.2 

P7TcF Sense GTG CGT ACG CCG ACA AG 57.6 
T. circumcincta PGP7 699 

Not specific, 

redesigned P7TcR Antisense CGT TTG ACT GCT CTG CAG C 58.8 
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Primer name Primer 

direction 

Sequence Melting 

temp (ºC) 

Target Amplicon 

length (bp) 

Specificity 

P7TcF2 Sense CGT ACG CCG ACA AGA TTT ACG 59.8 
T. circumcincta PGP7 663 PGP7 specific 

P7TcR2 Antisense CCT CGG TGA TTT TAT CGG GG 59.4 

P8TcF Sense CTG TGG CTG GTG CTG TG 57.6 
T. circumcincta PGP8 315 

Not specific, 

redesigned P8TcR Antisense CTT TCG GGT TAC GGA TCA C 56.7 

P8TcF2 Sense GTT CGA TGA AGT GGA TGC TC 57.3 
T. circumcincta PGP8 246 Not specific 

P8TcR2 Antisense CCA CCG GAC AGC ATG CTA 58.2 

P9TcF Sense CTT GTT GGA CTA CTT CTT CGC 57.9 
T. circumcincta PGP9 352 PGP9 specific 

P9TcR Antisense GCA GAA TTC GCG GAT TTC TC 57.3 

P10TcF Sense CGC CAG TTT ATT GAT GGG C 56.7 
T. circumcincta PGP10 331 

Not specific, 

redesigned P10TcR Antisense CTC GAC CAG CAC GCG C 59.4 

P10TcF2 Sense TAT TGA TGG GCT ATT ACC CGC 57.9 
T. circumcincta PGP10 283 Not specific 

P10TcR2 Antisense CCA ACT GAG AGA TTA TTC CCC 57.9 

P11TcF Sense CGT TGT GTA AAC CTG CTG G 56.7 
T. circumcincta PGP11 347 

Not specific, 

redesigned P11TcR Antisense CAC AGC AAT ACT TTG GGA TTG C 58.4 

P11TcF2 Sense CAG GAA CTG ACC ACG CTG 58.2 
T. circumcincta PGP11 213 Not specific 

P11TcR2 Antisense GTA GCC ATC ATG CTT ATC GC 57.3 

Cyp1For Sense CAG CAC GGG TAG AGG AG 57.6 
T. circumcincta CYP1 366 CYP1 specific 

Cyp1Rev Antisense GTT CTG CYT GAG CAA GTG 54.8 

Cyp2For Sense CAA AAA TCC TGA GGT CAT GC 55.2 
T. circumcincta CYP2 323 CYP2 specific 

Cyp2Rev Antisense GCT GTT CCA GTG TCT TAC C 56.7 

Cyp3For Sense CGT ATG GTT GTT CTA TGC G 54.5 
T. circumcincta CYP3 467 CYP3 specific 

Cyp3Rev Antisense CCT GTA ATG GTC TTC GTA G 54.5 



81 

Table 2.4: Standard primers used to amplify sequence from cloned cDNA.   

Primer name Primer 

direction 

Sequence Melting 

temp (ºC) 

Target 

T7 Sense TAA TAC GAC TCA CTA TAG GG 53.2 pGEM
®
-T vector 

SP6 Antisense CAT TTA GGT GAC ACT ATA G 50.2 pGEM
®
-T vector 

M13 For Sense AGC GGA TAA CAA TTT CAC ACA GGA 47.0 pGEM
®
-T vector 

M13 Rev Antisense CGC CAG GGT TTT CCC AGT CAC GAC 48.0 pGEM
®
-T vector 

M13 Uni (-21)   TGT AAA ACG ACG GCC AGT 53.7 pGEM
®
-T vector 

TrplX for Sense TCG GGA AGC GCG CCA TT 57.6 Phagemid vector 

TrplX rev Antisense TGC GGC CGC ATG CAT AAG 58.2 Phagemid vector 
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Table 2.5: RACE PCR primers used to extend 5‟ sequence of Pgps. 

Primer name Primer 

direction 

Sequence Melting 

temp (ºC) 

Target 

Pgp1Tc 5'race Antisense GTG CGG CGT GCT CAA TTT CCT CCT GAG AAC 70.9 T. circumcincta PGP1 

Pgp2Tc 5'race Antisense CTC GTA GGA AGG TTT AGG GTC GTC CAG TCC 70.9 T. circumcincta PGP2 

Pgp3Tc 5'race Antisense CTC GTC TGT GGC TGA CGG GCG ACC AAA GC 73.7 T. circumcincta PGP3 

Pgp4Tc 5'race Antisense CGG AGT GCC GCC GTG ATT TCA GCA TCT G 71.0 T. circumcincta PGP4 

Pgp5Tc 5'race Antisense GCA ATA CGA CAA GCT TCC TGG ACC TCT TCC 69.5 T. circumcincta PGP5 

Pgp6Tc 5'race Antisense CTA ACG GAW CCT GGW GGR AGR CCG TAG TGG 72.2 T. circumcincta PGP6 

Pgp7Tc 5'race Antisense CGA GAG CGT TTG ACT GCT CTG CAG CCT C 71.0 T. circumcincta PGP7 

Pgp8Tc 5'race Antisense GGG CGT TGG CCA GTC TAG CGG CAT CCT CG 75.2 T. circumcincta PGP8 

Pgp9Tc 5'race Antisense GCC GCG AAA TGT CCA CCC GTC CCA AGC GG 75.2 T. circumcincta PGP9 

Pgp10Tc 5'race Antisense CGC GTT CTT CGG AGA TAT CCC GCC CCA GCG 75.0 T. circumcincta PGP10 

Pgp11Tc 5'race Antisense CCA GCT CCA GCG GCA GAG CCA CGT TGC C 75.4 T. circumcincta PGP11 
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Table 2.6: C elegans Pgp genes and accession numbers used for phylogentic analysis.  All were obtained 

from Sheps et al., 2004 

Gene name GenBank Accession number 

Pgp-1 CAB01232 

Pgp-2 AAB52482 

Pgp-3 CAA91467 

Pgp-4 CAA91463 

Pgp-5 CAA94202 

Pgp-6 CAA94220 

Pgp-7 CAA94219 

Pgp-8 CAA94203 

Pgp-9 CAB03973 

Pgp-10 AAC48149 

Pgp-11 CAA88940 

Pgp-12 CAA91799 

Pgp-13 CAA91800 

Pgp-14 CAA91801 

Pgp-15 CAA91802 
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Figure 2.1: Larval migration inhibition test A: Diagram showing a side view of the migration chamber used 

in the LMIT.  The dotted line represents the mesh which L3 have to actively migrate through whilst exposed 

to a solution of IVM. Larvae affected by IVM are represented by a straight line and larvae resistant to IVM 

by a curved line.  B: Layout of the plate in the standard LMIT.  Non migrating L3 are washed into the empty 

wells below each drug migration well prior to counting. 

Negative 

control

Negative 

control

0.25μg/mL 0.25μg/mL 1μg/mL 1μg/mL

3μg/mL 3μg/mL 15μg/mL 15μg/mL 150μg/mL 150μg/mL

Negative 

control

Negative 

control

0.25μg/mL 0.25μg/mL 1μg/mL 1μg/mL

3μg/mL 3μg/mL 15μg/mL 15μg/mL 150μg/mL 150μg/mL
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Chapter 3: Identification of Candidate Ivermectin Resistance Genes 

3.1: Introduction 

Macrocyclic lactone anthelmintics, and IVM in particular, have been used to treat 

sheep infected with parasitic nematodes like T. circumcincta for over twenty-five years, yet 

the mechanisms of resistance to IVM have yet to be determined (Geary, 2005; Omura, 

2008).  The majority of research on drug resistance in parasitic nematodes has been 

focused on identifying target site mutations associated with resistance, for example, the 

Phe200Tyr SNP which confers resistance to BZs (Wolstenholme et al., 2004; von Samson-

Himmelstjerna et al., 2007).  IVM binds to GABA and GluCl channels and causes the 

hyperpolarisation and flaccid paralysis of the pharyngeal and somatic muscle cells 

(Blackhall et al., 1998a; Blackhall, Prichard, & Beech, 2003), leading to starvation and 

immobility of the worms.  Changes in allele frequencies of these genes in H. contortus 

have been associated with IVM resistance, but no single allele has been shown to confer 

resistance in more than one isolate or population (Blackhall et al., 1998a; Blackhall, 

Prichard, & Beech, 2003).  In C. elegans, three concurrent mutations in GluCl subunits 

(namely, avr-14, avr-15 and glc-1) are required for high levels of IVM resistance.  The 

orthologue of avr-14 in C. oncophora (the GluClα3 subunit) also carries a functional SNP 

(Leu256Phe), which makes the channel less sensitive to IVM (Dent et al., 2000; Njue et 

al., 2004; McCavera, Walsh, & Wolstenholme, 2007).   

 

As has been shown in Chapter 1, candidate IVM resistance genes such as Pgps and 

CYPs have been studied in a range of organisms, although, as yet, there is very little 

information on these genes in T. circumcincta.  They could offer alternative, non-target 

gene mechanisms for parasites to survive drug exposure, either through increased drug 

efflux or metabolism (Wolstenholme et al., 2004).  Pgps are transmembrane proteins 

involved in the active transport of endogenous and exogenous hydrophobic molecules, 

whilst CYPs catalyse the metabolism of a wide range of molecules such as drugs, 

environmental toxins and sterols (Mansuy, 1998; Sangster et al., 1999a).  As such, 

although not definitive targets of IVM, changes in the expression levels of these genes (and 

their gene products) might enable parasites to survive IVM exposure.  Pgps have been 

identified in the model nematode C. elegans and the parasitic nematode H. contortus, along 

with some parasitic nematodes of humans such as O. volvulus, yet none have been 
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identified in T. circumcincta to date (Huang & Prichard, 1999; Jones & George, 2005).  

However a number of experiments have suggested they are implicated in IVM resistance.  

For example, the use of Pgp inhibitors has been shown to cause a shift towards an IVM-

susceptible phenotype in an IVM-resistant T. circumcincta isolate using the LFIT (Bartley 

et al., 2009).  Also, changes in the expression levels or allelic frequencies of Pgps have 

been described in IVM-selected H. contortus, O. volvulus and C. elegans (Xu et al., 1998; 

Blackhall et al., 1998b; James & Davey, 2008), indicating that changes in the expression 

levels of non-target genes could play a role in expression of an IVM-resistance phenotype.   

 

CYPs have been identified in all life-cycle stages of C. elegans, with approximately 

80 identified through the C. elegans genome project (Barrett, 1998; Menzel, Bogaert, & 

Achazi, 2001).  Identification of CYPs in parasitic nematodes has not been so fruitful, in 

Barrett (1998), the author went as far as to claim there was no experimental evidence for 

CYPs in adult helminths, based on mono-oxygenase enzyme activity, but that they may be 

present in low abundance in larval stages.  However, the H. contortus genome sequencing 

project has identified 60 CYP ESTs to date, although these could reduce in number as the 

sequence is further assembled (R. Laing, Pers. Comm.).  No CYPs have been identified in 

T. circumcincta in the literature to date.  In the LFIT experiment described above, the T. 

circumcincta IVM-resistant isolate also showed a shift towards susceptibility when CYP 

inhibitors were used, suggesting the presence of CYPs in T. circumcincta (Bartley et al., 

2009). 

 

In this Chapter, the candidate gene approach was used to investigate the role of 

differential gene expression of Pgps and CYPs in the IVM-resistant phenotype in T. 

circumcincta.  Firstly, a panel of novel Pgp and CYP homologues from T. circumcincta 

were identified prior to a more detailed genetic analysis.  This was performed using 

degenerate PCR and sequencing interfaced with bioinformatics approaches applied to the 

available EST datasets, as described in Chapter 2.  At the time this work was carried out, 

no complete genome sequence was available for T. circumcincta and there was only a 

limited EST dataset available, thus degenerate primers designed to amplify Pgps from H. 

contortus were employed from (Sangster et al., 1999a) and degenerate primers to amplify 

CYPs were designed utilising other nematode CYP sequences.  If T. circumcincta follows 
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the same pattern as C. elegans and H. contortus, then the estimated numbers of Pgps and 

CYPs is likely to be large.  It was not anticipated that all Pgps and CYPs would be 

identified by this approach. 

 

3.2: P-glycoproteins 

3.2.1: Identification of novel P-glycoprotein sequences 

 Identification of Pgps was performed using the degenerate H. contortus PCR 

primers which target the NBD of the Pgp molecule (as shown in Table 2.2, sequences 

obtained from Sangster et al (1999a)).  These were employed in a standard PCR reaction 

followed by cloning and sequencing, as described in Sections 2.3.3 and 2.3.6 to 2.3.10.  

The template for these reactions was L4 and xL3 SMART cDNA, and single-stranded adult 

cDNA (all kindly provided by Dr A. J. Nisbet) and from the known IVM susceptible T. 

circumcincta CVL isolate.  Eleven novel sequences, ranging in size from 395bp to 407bp, 

with BLAST homology to Pgps from H. contortus, O. volvulus, Cyathostomum spp and 

Caenorhabditis briggsae were identified.  None of the BLAST hits aligned to T. 

circumcincta sequence suggesting that all 11 Pgp sequences are novel sequences, which 

are not yet in the public domain, even in EST databases.  Sequences were numbered 

sequentially as they were identified (i.e. PGP1 to PGP11).  The nucleotide sequence was 

translated into the corresponding protein sequence and identification of the correct reading 

frame made.  As the primers used targeted the NBD of Pgps, the presence of the 

characteristic Walker motif (LSGGQ) of ABC transporters in the protein sequence was 

used to confirm the BLAST results (Higgins et al., 1997; Jones & George, 2005).  

Additional cloning and sequencing of PCR products was carried out to derive consensus 

sequences, to improve the accuracy of the sequencing results and to resolve any multiple 

base calls.   

 

3.2.2: Elongation of P-glycoprotein sequence using RACE PCR 

None of the sequences amplified using the degenerate primers encoded a full-length 

coding sequence for any given gene; potentially two sequences could be the two separate 

NBDs of the same gene.  RACE-ready cDNA was synthesised in order to extend the 
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sequences in the 5‟ and 3‟ directions, to provide longer sequence reads and to determine if 

any of the NBDs were parts of the same gene.  The nucleotide sequences identified above 

were aligned in Clustal W (http://www.ebi.ac.uk/Tools/clustalw/index.html) and used to 

design gene-specific RACE primers as shown in Table 2.5.  All the RACE primers were 

designed for 5‟ RACE; NBDs are situated more closely to the 3‟ end so 5‟ RACE would be 

more likely to generate significantly longer products compared to 3‟ RACE.  Use of the 

RACE primers followed by cloning and sequencing enabled the sequences for PGPs 1, 2, 

3, 4, 5 and 7 to be extended whilst also improving the sequence accuracy.  The RACE 

primers for PGPs 6, 8, 9, 10 and 11 were found to be non Pgp-specific (i.e. none of the 

selected clones aligned with Pgp sequence) or to produce no PCR product.  The RACE 

product for PGP1 was cloned into the pGEM
®
-T vector and, when sequenced from both 

ends using the M13 uni and SP6 primers, did not produce a contiguous sequence so 

primers Pgp1Tc IntFor and Pgp1Tc IntRev (Table 2.3) were designed and used in a 

sequencing reaction to enable a complete sequence of the PGP1 RACE product to be 

obtained.  The lengths of the Pgps and the numbers of sequences making up each Pgp 

consensus sequence are shown in Table 3.1. 

 

Individually, each Pgp protein sequence was aligned using Clustal W against H. 

contortus PgpA (Accession number AF003908) and against O. volvulus PGP1 (AF083642) 

to discover whether the region amplified aligned more closely to NBD1 or NBD2.  All, 

apart from PGP1, aligned more closely to either NBD1 or NBD2 whilst PGP1 was found 

to contain both NBDs as shown in Table 3.1.  As eight of the consensus sequences appear 

to align to NBD1 (PGPs 1, 3, 4, 5, 7, 8, 9 & 11), this suggests that there could be at least 

eight Pgps in T. circumcincta, and probably more. 

 

On translating the nucleotide sequence for PGP7, it was discovered that a frame 

shift occurs approximately between amino acids 272 and 277, equating to between 

nucleotides 814 and 829.  Analysis of the nucleotide sequence was unable to identify if a 

sequencing error had caused a deletion or insertion of a nucleotide in the sequence at this 

point.  As a result, no full length protein sequence in one continuous reading frame could 

be made; thus the Clustal W protein alignment (Appendix 2) contains two entries for 

PGP7, one in each of the reading frames.  The nucleotide and protein alignments of the 11 
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T. circumcincta Pgps are shown in the Appendix.  Even though there are some sequences 

for each of the NBDs and one sequence that spans both NBDs, as described above, when 

aligned together, all 11 Pgp sequences align to NBD2. 

 

3.2.3: Design and validation of P-glycoprotein specific primers 

In order to determine the gene expression profiles of the 11 Pgps in the different 

isolates and life-cycle stages of T. circumcincta, pairs of gene-specific primers were 

designed for each Pgp using the Pgp nucleotide alignment (Appendix 1).  The primers 

were designed to give as large an amplicon as possible to increase the coverage of any 

sequence data generated whilst also providing sufficient sequence data to confirm the 

identity of any Pgp sequences generated.  The gene-specific primers and size of amplicons 

are shown in Table 2.3. 

 

The primers were firstly validated against a panel of known Pgp-containing purified 

plasmids to determine whether the primers were specific for the Pgp they were designed 

against.  The gels showing the outcome of this validation are shown in Figure 3.1.  The 

sizes of each of the bands visualised on the gel was estimated by comparing to the Mx 

marker lane and were found to be of the anticipated size.  The primers designed against 

PGP 1, 2, 3, 4, 5, 6, 7 and 9 exclusively amplified their corresponding Pgp plasmids, whilst 

the PGP8 primers also weakly amplified PGPs 6 and 9, and the PGP 10 and 11 primers 

were completely non-specific, amplifying all the PGP-containing plasmids.  Attempts were 

made to optimise the respective reactions by altering the reaction conditions for the PGP 8, 

10 and 11 primers; however, this failed to improve their specificity.  These gene-specific 

primers were redesigned as shown in Table 2.3 but on repeated validation against the Pgp-

containing plasmids, the same pattern of non-specificity was observed (data not shown), so 

these Pgps were excluded from further analysis.   

 

The next stage of the validation of the Pgp-specific primers was to determine 

whether the primers would selectively amplify their particular Pgp from T. circumcincta 

cDNA.  PCRs on IVM-susceptible T. circumcincta exsheathed L3 and L4 SMART cDNA 
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and single-stranded adult cDNA were set up using the primer pairs for PGPs 1, 2, 3, 4, 5, 6, 

7, 9 (Table 2.3) and T. circumcincta actin (Table 2.1) as a positive control.  The results of 

this validation are shown in Figure 3.2, part A.  Only one weak band was identified from 

the PGP1 primers against L3 and no bands were amplified from PGP4 or PGP9.  All the 

main bands identified on the gel were of the anticipated size with the exception of the 

lower band from PGP5 versus adult cDNA and the lowest arrowed band from PGP7 versus 

L4 cDNA.  A second PCR was set up for PGP4 and PGP9 using IVM susceptible adult T. 

circumcincta 5‟ RACE-ready cDNA as template.  The results of this validation are shown 

in Figure 3.2, part B.  Both the PGP4 and PGP9 primers resulted in a single strong band on 

the agarose gel of the expected size. 

 

The bright bands and the three weak bands (arrowed) were excised from the gels in 

Figure 3.2, parts A and B with a clean scalpel, cleaned up using the QIAquick Gel 

Extraction Kit (Qiagen), and cloned into pGEM-T vector in JM109 cells and sequenced, as 

described previously, to determine if the bands were the correct Pgp.  The results of this 

cloning experiment are shown in Table 3.2.  The specificity of the primers was determined 

after sequence analysis by firstly excluding any clones which did not contain an insert.  

Next, the remaining sequences were trimmed in SeqMan (DNASTAR Lasergene, version 

8) to remove any vector sequence and the resulting sequence aligned against the consensus 

sequences for the 11 Pgps.  Any sequences failing to align with the Pgp sequences were 

BLAST searched to give a putative identity.  A primer pair was determined to be non-

specific if a clone which should have aligned to that particular Pgp was found to not have 

that identity, and the primer sequences were found at the start and end of the sequence.  

After several attempts at validation, the PGP1-specific primers were discarded as PCR 

products were either not amplified or failed to clone successfully.  The original primers for 

PGP7 (P7Tc F&R) were not sufficiently specific and so these were redesigned, validated 

against the plasmids and against the life-cycle stage cDNA from the CVL isolate as 

described above.  Although one of the subsequent clones from the xL3 PCR product did not 

align to PGP7 (Table 3.2), these primers were determined to be specific as neither the 

P7TcF2 or P7TcR2 primer sequence was present at the ends of the cloned sequence.  The 

identity of this clone was a ribosomal protein of only 241bp in length compared to the PCR 

product size of ~650bp and, along with the absence of the primer sequences, this suggested 
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that the insert was a contaminant of the cloning process.  The primer pairs for PGPs 2, 3, 5, 

6 and 9 were also shown to be gene-specific as shown in Table 3.2.   

 

3.2.4: Semi-quantitative PCR using P-glycoprotein specific primers 

 Using the gene-specific primers for PGPs 2, 3, 5, 6, 7 and 9 (Table 2.3) and for 

both the actin and β tubulin control genes (Table 2.1), a semi-quantitative PCR, using 

cDNA from eggs, L1, xL3, L4 and adults from the CVL and MOTRI isolates, was set up 

with aliquots of the PCR product collected after 15, 20, 25 and 30 cycles.  The PCR 

products were run on a 1% agarose gel and visualised under UV as shown in Figure 3.3.  

The gel shows that the expression of the control genes (actin and β tubulin) is 

approximately equal between the CVL and MOTRI isolates, however, there is some 

variation in the cycle number where the bands became visible between the life-cycle 

stages.  No bands were present in either isolate, across all life-cycle stages for PGP2.  The 

expression of PGPs 3 and 7 showed no discernable difference between the two isolates 

although there was some variation in band intensity between the life-cycle stages.  The 

band intensity of PGP5 for the adult stage was also approximately equal between CVL and 

MOTRI but in the egg, L1 and xL3 stages the CVL isolate showed a greater intensity 

compared to the MOTRI isolate at 30 cycles.  In the L4 stage for PGP5, the MOTRI band 

at 30 cycles was more intense than the CVL band.  Across all life-cycle stages for PGP6, 

the intensity of the band from MOTRI cDNA was greater than the band from CVL cDNA.  

No bands were present using the PGP9 primers in the egg, xL3 and adult life-cycle stage 

whilst in the L1 and L4 stages the bands from MOTRI cDNA were more intense compared 

to the bands from CVL cDNA.   

 

3.2.5: Correct nomenclature of T. circumcincta P-glycoproteins 

 Phylogenetic analysis of the contiguous T. circumcincta Pgp sequences against C. 

elegans Pgp homologues, as described in Section 2.3.10, was carried out to determine the 

correct nomenclature for the 11 Pgp genes.  The results of this analysis are summarised in 

Table 3.3.  PGP1 aligned most closely to CePgps- 3 and -4 with bootstrapping values of 

1000 for both trees (Figure 3.4).  However, because it aligned equally well to both C. 

elegans sequences this sequence will still be referred to as PGP1.  PGP2 aligned most 
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closely to NBD2 in CePgp-2 with bootstrapping values of 1000 for both trees (Figure 3.5) 

and so from now on will be referred to as TeciPgp-2 NBD2.  PGP4 aligned most closely to 

the NBD1 in CePgp-9 (NJ bootstrap value 887, UPGMA bootstrap value 1000; Figure 3.6) 

and from now on will be referred to as TeciPgp-9 NBD1.  Like TeciPgp-2 NBD2, PGP5 

aligned most closely with CePgp-2 with bootstrapping values of 1000 for both trees 

(Figure 3.7) however, PGP5 aligned against the NBD1.  As a result, PGP5 will now be 

known as TeciPgp-2 NBD1.  Like TeciPgp-9 NBD1, PGP6 aligned most closely with 

CePgp-9 (NJ bootstrap value 850, UPGMA bootstrap value 983; Figure 3.8) however, 

PGP6 aligned against the NBD2.  As a result, PGP6 will now be known as TeciPgp-9 

NBD2.  Like PGP1, PGP9 aligned closest to two C. elegans genes; CePgps -1 and -9 (NJ 

bootstrap value 529, UPGMA bootstrap value 390) and so this sequence will still be called 

PGP9 as it could not be determined which it aligned more closely to.   The alignments 

generated for PGPs 3, 7, 8, 10 and 11 were quite poor, resulting in the T. circumcincta 

sequences being broken up into lots of small sections spread across both NBD areas of the 

C. elegans Pgp nucleotides sequences.  As a result, the trees generated did not indicate 

which C. elegans Pgp was the closest match so these genes will still be referred to by their 

sequence names.  Interestingly, the major sections of the PGP8 sequence aligned in the 

NBD2 region as opposed to the NBD1 region of H. contortus PgpA (Accession number 

AF003908) and O. volvulus PGP1 (AF083642) it had aligned to previously, as described in 

Section 3.2.2.   

 

3.2.6: Identification of single nucleotide polymorphisms 

 Using the gene-specific primers as described in Table 2.3 and the one-step PCR 

protocol described in Section 2.3.11, gene-specific PCR products were obtained from adult 

CVL and MOTRI T. circumcincta pooled RNA for PGP3, TeciPgp-2 NBD1, TeciPgp-9 

NBD2, PGP7 and PGP9.  The resultant PCR products were purified using the QIAquick
®

 

PCR purification kit (Qiagen) and submitted for direct sequencing as described in Section 

2.3.9.  Aligning the sequences using the SeqDoC programme, as described in Section 

2.3.11, showed that for PGP3, TeciPgp-2 NBD1, PGP7 and PGP9 the sequences were 

highly conserved with no significant SNPs over the length of the sequence available for 

analysis.  However, TeciPgp-9 NBD2 proved to be highly polymorphic, with several SNPs 

visible between the CVL and MOTRI sequences.  Figure 3.9 shows a representative 

section of PGP3 and a section of TeciPgp-9 NBD2 where at least four major SNPs are 
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present.  Figure 3.10 shows the nucleotide and protein Clustal W alignments for TeciPgp-9 

NBD2 comparing the CVL and MOTRI sequences.  This shows that, although there are 

SNPs in this gene, they are silent or non-coding and do not result in any amino acid 

changes, although this does not preclude the presence of coding SNPs elsewhere in the 

sequence.  The alignments in Figure 3.10 only show the section of the TeciPgp-9 NBD2 

which was amplified using the gene-specific primers.  As such, the four SNPs are (CVL to 

MOTRI) as follows; A to G at nucleotide 138, C to T at nucleotide 177, A to T at 

nucleotide 201 and A to C at nucleotide 216.  Other smaller peaks also indicate 

polymorphic sites in the TeciPgp-9 NBD2 gene. 

 

3.3: Cytochrome P450s 

3.3.1: Identification of novel Cytochrome P450 sequences 

The first attempt at amplifying CYPs from T. circumcincta utilised the degenerate 

CYP primers from Menzel et al, (2001) as shown in Table 2.2.  These primers failed to 

amplify any CYPs from T. circumcincta cDNA, possible because the primers were not 

sufficiently degenerate, so EST CYP sequences from Ancylostoma ceylanicum, A. caninum 

and O. ostertagi were aligned and used to design a new degenerate primer, 

DegenTcP450For.  The use of this primer (Table 2.2) in conjunction with the TrplX Rev 

vector primer (Table 2.4) followed by cloning into the pGEM
®
-T vector and sequencing of 

the resultant product, identified a CYP from T. circumcincta L4 SMART cDNA.  Whilst 

designing the DegenTcP450For primer, a second sequence from an xL3 enriched SSH EST 

dataset generated at Moredun Research Institute (Nisbet et al., 2008) was found to have 

BLAST similarities to CYPs from other nematodes.  Finally, a bioinformatics search 

identified a third EST (accession number CB037767) from the Nembase cluster 

TDC01265 from a mixed sex T. circumcincta adult cDNA library.  A summary of the 

CYPs found in T. circumcincta is shown in Table 3.4, again sequences were numbered 

sequentially as they were identified (CYP1 to CYP3).   

 

Three further pairs of degenerate CYP primers were designed using a panel of CYP 

EST sequences from a range of nematodes species, such as A. caninum, C. elegans, O. 

ostertagi and T. circumcincta, with each pair of primers being specific for CYP clans 2, 3 
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and 4 (Table 2.2), respectively, in an attempt to increase the chance of finding further T. 

circumcincta CYP sequences.  Again, these primers failed to amplify further CYPs from T. 

circumcincta cDNA. 

 

Alignments of the nucleotide sequences and translated protein sequences for the 

three T. circumcincta CYPs were performed using Clustal W and are shown in Appendices 

3 and 4.  The nucleotide sequences for the three T. circumcincta CYPs were aligned 

against a panel of CYP sequences from H. contortus, C. elegans, A. caninum and O. 

ostertagi using CLC DNA Workbench version 5.6.1 (www.clcbio.com).  The alignment 

was used to generate phylogentic trees as shown in Figure 3.11.  Part A shows a tree 

generated using the UPGMA distance matrix with a bootstrap value of 1000 whilst part B 

shows a tree generated using the NJ distance matrix with a bootstrap value of 1000. 

 

3.3.2: Design and validation of Cytochrome P450 specific primers 

Specific primers were designed, using the nucleotide alignment in Appendix 3, for 

each of the three CYPs to enable their amplification from T. circumcincta cDNA.  The 

primer sequences, melting temperature and expected size of PCR product are shown in 

Table 2.3.  These three primer pairs were used in PCRs on IVM susceptible T. 

circumcincta exsheathed L3 and L4 SMART cDNA and single-stranded adult cDNA 

alongside the T. circumcincta actin primers as a positive control.  Figure 3.12 shows the 

PCR products run on a 1% agarose gel, showing the presence of single bands of the 

expected sizes.  The bands were excised from the gel with a clean scalpel, the gel product 

cleaned up and sent for sequencing.  The results of the sequencing are shown in Table 3.5 

below.  These results show that the primers designed successfully amplified the CYPs from 

cDNA and are specific, only amplifying the CYP they were designed against. 

 

3.3.3: Semi-quantitative PCR using CYP specific primers 

As described previously for the Pgp work, semi-quantitative PCR was set up to 

investigate the relative expression of CYPs 1, 2 and 3 in five life-cycle stages of the CVL 
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and MOTRI isolates of T. circumcincta compared to actin and β-tubulin controls.  Samples 

of the PCR reaction mix were taken after 15, 20, 25 and 30 cycles.  The agarose gels, 

visualised under UV, are shown in Figure 3.13.  As discovered previously, the expression 

levels of actin and β tubulin were approximately equal between the two isolates.  The 

expression of all three CYP genes was low with the majority of the life-cycle gene 

combinations only giving identifiable bands after 30 cycles.  For CYP1, only three very 

weak bands were apparent in the 30 cycle samples, these indicated that expression of this 

gene in the xL3 stage was greater in the CVL isolate compared to the MOTRI isolate and 

the expression in the L4 stage was approximately equal.  No bands were visible in the egg 

and L1 stages for CYP2 and only very weak bands of equal intensity were visible in the L4 

and adult stage.  Bright bands were visible in the xL3 stage but, like those in the L4 and 

adult stage, there was no difference between the CVL and MOTRI samples.  No bands 

were present for CYP3 in the egg, L1 or adult life-cycle stages.  Weak bands were present 

in the xL3 and L4 stages for CYP3; in both cases the MOTRI band was more intense than 

the CVL band.   

 

3.4: Discussion 

 Candidate IVM resistance genes such as the Pgps and CYPs have not been 

investigated previously in T. circumcincta despite extensive investigation in other 

nematodes such as C. elegans, H. contortus and O. volvulus (Nelson, 1998; Huang & 

Prichard, 1999; Sangster et al., 1999a; Sheps et al., 2004; Ardelli, Guerriero, & Prichard, 

2005).  Both have generalised roles within cells; Pgps are involved in the transport of 

endogenous and exogenous hydrophobic molecules whilst CYPs catalyse the metabolism 

of hydrophobic molecules, such as drugs and environmental toxins (Barrett, 1998; Mansuy, 

1998; Sangster et al., 1999a; Kerboeuf, Guegnard, & Le Vern, 2003).   

 

Pgps have been shown to be involved in drug resistance in cancerous tumours, 

malaria parasites and the human immunodeficiency virus (Beugnet, Gauthey, & Kerboeuf, 

1997; Zhang et al., 1998; Loo & Clarke, 1999; Jones & George, 2005), where an increase 

in expression of Pgps allows a drug-resistant phenotype to develop.  It is also known that 

the anthelmintic, IVM, is a substrate of Pgps (Pouliot et al., 1997).  Changes in mRNA 
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levels, allele frequencies and expression of Pgps in H. contortus, O. ostertagi and O. 

volvulus have been observed following IVM selection, or in isolates resistant to IVM (Xu 

et al., 1998; Blackhall et al., 1998b; Ardelli, Guerriero, & Prichard, 2005; Ardelli, 

Guerriero, & Prichard, 2006a; Ardelli, Guerriero, & Prichard, 2006b; Van Zeveren, 2009).  

Inhibitors of Pgps have been shown to cause a reversal towards a susceptible phenotype in 

resistant strains of T. circumcincta and H. contortus when exposed to IVM, as measured by 

the LFIT (Bartley et al., 2009).   

 

In this Chapter, the use of degenerate PCR primers, previously utilised to identify 

Pgps in H. contortus (Sangster et al., 1999a) against cDNA generated from IVM-

susceptible T. circumcincta has allowed the identification of eleven novel partial Pgp 

sequences.  These partial gene sequences are the first time Pgps have been identified in T. 

circumcincta.  Out of the eleven genes identified, seven aligned to the NBD1 from H. 

contortus PgpA and O. volvulus PGP1, three aligned against NBD2 and one sequence 

(PGP1) contained both NBDs, as shown in Table 3.1.  This originally suggested that the 

potential number of Pgps in T. circumcincta was at least eight.  By aligning each individual 

T. circumcincta against the fifteen C. elegans Pgp sequences from Sheps et al (2004), it 

was determined that the two genes that had originally been called PGPs 2 and 5 were both 

the closest homologues of CePgp-2.  As a result, these were re-named TeciPgp-2 NBD2 

and TeciPgp-2 NBD1, respectively.  CePgp-2 has been shown to be homologous to PgpA 

in H. contortus, as such, TeciPgp-2 NBD2 and TeciPgp-2 NBD1 can be assumed to be 

homologous to this gene.  The two partial genes, PGPs 4 and 6 were shown to align most 

closely to CePgp-9 and were subsequently renamed TeciPgp-9 NBD1 and TeciPgp-9 

NBD2, respectively.  If these four partial gene fragments prove to be each half of the 

respective genes, this would indicate T. circumcincta has at least nine Pgps.  In H. 

contortus at least twelve Pgp genes have been identified, whilst at least two have been 

identified in O. volvulus, and at least fifteen in C. elegans; the identification of eight or 

nine in T. circumcincta seems to fit this pattern (Kwa et al., 1998; Huang & Prichard, 

1999; Le Jambre, Lenane, & Wardrop, 1999; Sangster et al., 1999a; Kerboeuf et al., 2003; 

Blackhall, Prichard, & Beech, 2008).  Unequivocally defining the final number of Pgps 

requires the completion of the genome sequence of T. circumcincta.   
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Although not a main component of this thesis, the identification of SNPs in 

TeciPgp-9 NBD2 using SeqDoc analysis is interesting.  TeciPgp-9 NBD2 appears to be 

considerably more polymorphic than the other Pgps identified.  Four main SNPs were 

identified in the 208bp of sequence analysed, although the sequence chromatogram for 

TeciPgp-9 NBD2 does show other minor polymorphisms (Figure 3.9, part B).  The four 

main SNPs are A138G, C177T, A201T and A216C; the numbering of these SNPs is based 

on their position in the gene sequence currently available; when the full length sequence is 

obtained these numbers will change.  All of these SNPs are silent; as shown in Figure 3.10, 

part B, the protein sequence remains unchanged between CVL and MOTRI.  However, as 

previously stated, this does not preclude the presence of coding SNPs elsewhere in this 

gene.  Other polymorphisms in TeciPgp-9 NBD2 could also be SNPs but neither CVL nor 

MOTRI are clonal populations; the presence of individual worms exhibiting a greater 

degree of resistance in the CVL isolate, or the presence of individual worms exhibiting a 

lesser degree of resistance in the MOTRI isolate, could result in some of the nucleotide 

positions being identified as polymorphic within an individual isolate when they are, in 

fact, a SNP between resistant and susceptible worms.  Identifying the presence of a highly 

polymorphic region in TeciPgp-9 NBD2 (the left hand portion of Figure 3.9, part B) could 

also explain why the RACE primer for TeciPgp-9 NBD2 failed to work; the primer, 

Pgp6Tc 5'race, aligns to nucleotides 180 to 208 which includes the silent SNP A201T 

alongside other polymorphisms.  The presence of SNPs, whether silent or coding, could be 

a useful marker to distinguish between susceptible and resistant isolates. They may only 

prove to be isolate-specific so it would be interesting to determine whether these silent 

SNPs are also present in other isolates of T. circumcincta.  Interestingly Kimchi-Sarfaty et 

al (2007) have also found silent, or synonymous, SNPs in a haplotype of the Multidrug 

Resistance 1 (MDR1) gene expressed in a range of cell lines; the MDR1 gene is associated 

with multidrug resistance in cancer cells.  The Pgp encoded by MDR1 exhibits altered drug 

and inhibitor interactions, yet the mRNA and protein levels remain unchanged.  The 

authors hypothesise that the silent SNPs result in the use of rare codons during translation 

that could lead to altered protein translation kinetics which, in turn, affects co-translational 

folding and the structure of substrate and inhibitor interaction sites (Kimchi-Sarfaty et al., 

2007; Komar, 2007).   
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As a first step to determining whether there are changes in the expression of the 

Pgps, as measured by their mRNA levels, which correlate to the resistance status of the T. 

circumcincta isolate, a semi-quantitative PCR approach was adopted (Figure 3.3).  This 

experiment showed that the expression of the six Pgp genes, to which there were validated 

gene-specific primers available, was not uniform across all life-cycle stages.  Pgp 

expression was evident in all life-cycle stages, which correlates with results from other 

nematodes, as reported in the literature.  For example, the expression of Pgps in H. 

contortus has been shown in eggs, L1, L3 and adults using gene probes and in situ 

hybridisation (Kwa et al., 1998; Smith & Prichard, 2002; Riou et al., 2005).  TeciPgp-2 

NBD2 (PGP2) was not detected in the semi-quantitative PCR experiment (Figure 3.3), 

however, this may be related to the low expression level of Pgps in general and this one in 

particular.  In the original PCR experiment to identify Pgps, expression of these genes was 

often only evident after 40 PCR cycles.  There were also discernable differences in the 

expression levels between the MOTRI and CVL isolates.  There was no uniform pattern of 

expression of the Pgps; some appeared to be expressed equally between the CVL and 

MOTRI isolates (PGPs 3 and 7) whilst TeciPgp-9 NBD2 (PGP6) exhibited increased 

expression in MOTRI compared to CVL.  Caution needs to be applied when analysing 

these results, however, as inaccuracies in the method such as pipetting error or amount of 

starting cDNA added to each well prior to PCR cycling could have caused some of the 

slight differences in band intensity observed.  In the case of TeciPgp-2 NBD2 and other 

genes, where no expression was observed at certain life-cycle stages, it may be necessary 

to repeat the experiment with more PCR cycles before it is assumed that these genes are 

not expressed in these life-cycle stages.  Alternatively, the use of methods such as real-time 

PCR could allow the quantification of these genes more accurately.   

 

 Like the Pgps, the CYPs have also been implicated in drug resistance.  In mosquito 

species such as An. minimus, An. gambiae and C. p. pallens, over-expression or over-

transcription of CYPS enables the insects to exhibit resistance to insecticides (Nikou, 

Ranson, & Hemingway, 2003; Rodpradit et al., 2005; Gong et al., 2005).  In malaria 

parasites such as P. berghei and P. falciparum, an increase in CYP activity correlates with 

chloroquine resistance (Ndifor, Ward, & Howells, 1990).  Over 80 CYPs have been 

identified in C. elegans in all life-cycle stages but their identification in parasitic 

nematodes has not been so straightforward, until the increase in genome sequence 
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availability in recent years (Menzel, Bogaert, & Achazi, 2001).  Barrett (1998)  claimed 

that there was no evidence of the presence of CYPs in adult parasitic nematodes, based on 

biochemical measurements of mono-oxygenase enzyme activity and that they would only 

be present at low abundance in larval stages, if present at all.  In a LFIT experiment, 

Bartley et al (2009) were able to show that CYP inhibitors caused a shift towards a 

susceptible phenotype in T. circumcincta, and so CYPs may be implicated in the 

mechanism of IVM resistance in this species.  The efficacy of BZs can also be improved 

by the use of the CYP inhibitors, piperonyl butoxide and metyrapone (McKellar & 

Jackson, 2004), possibly hinting at some generic (i.e. not linked to mutations in β-tubulin) 

resistance mechanisms.   

 

 Using a combination of degenerate PCR, bioinformatic searches of NEMBASE, 

and an EST dataset at Moredun, three distinct CYPs were identified, one each from L3, L4 

and adult T. circumcincta (Table 3.4).  None of the sequences obtained were full-length 

coding sequences.  The presence of a CYP in a mixed sex adult cDNA library contradicts 

the statement from Barrett (1998) that adult parasitic nematodes do not possess CYPs.  

Unlike some of the Pgps, it has not been possible to identify which C. elegans CYP gene is 

the nearest homologue.  The CYP gene superfamily is very large and assigning the correct 

nomenclature to a newly identified CYP is carried out through the P450 Nomenclature 

Committee; as such the sequences identified here remain named as CYP 1, 2 and 3 (Nelson 

et al., 1996).  Identifying the three partial CYPs from T. circumcincta was problematic and 

is possibly due to the low levels at which they are expressed.  Kotze (1997) measured the 

CYP activity towards aldrin and 7-ethoxycoumarin in H. contortus microsomes and found 

it to be 10,000-fold lower compared to rat liver microsomes.  Gene-specific primers were 

designed for each of the three CYPs identified and validated by sequencing the PCR 

products obtained from amplification of L3, L4 and adult cDNA (Figure 3.12).  This proved 

that the primers designed solely amplified their specific CYP target.   

 

 As with the Pgps, the gene-specific primers were used to determine the expression 

profile of the three CYPs across the life-cycle stages (eggs, L1, xL3, L4 and adults) of the 

CVL and MOTRI isolates, compared to the actin and β-tubulin control genes in a semi-

quantitative PCR.  This experiment showed that the level of CYP expression was low; 
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most of the bands obtained were very weak, compared to the bands for actin and β-tubulin, 

even after 30 cycles.  In fact, none of the three genes were amplified from egg cDNA; 

however, it is not possible to conclude at this stage that they are not expressed in eggs.  

The indication that CYP1 was expressed more in CVL xL3 than in MOTRI xL3 and CYP3 

was expressed more in MOTRI L4 compared to CVL L4 (Figure 3.13) suggests that the 

CYP genes are worthy of further investigation in the context of IVM resistance in T. 

circumcincta.  Using real-time PCR would allow a more accurate measure of whether these 

genes do exhibit an altered gene expression profile between CVL and MOTRI; semi-

quantitative PCR only allows a subjective measure of expression differences.   

 

The identification of 11 novel partial Pgp gene fragments and 3 partial CYP gene 

fragments from T. circumcincta gives a good panel of candidate resistance genes for use to 

investigate whether altered expression patterns of these generic drug handling molecules 

have a role to play in the expression of the IVM-resistance phenotype.  Semi-quantitative 

PCR has revealed demonstrable differences in mRNA expression levels for both the CYPs 

and Pgps between a multi-drug resistant and susceptible T. circumcincta isolates; more 

accurate quantification of these genes using real-time PCR is required.  The differences 

observed in the expression of TeciPgp-9 NBD2, indicating a constitutive increase in 

expression across all life-cycle stages in the MOTRI isolate compared to CVL coupled 

with the observation of SNPs in the same gene, make this the priority for further 

investigations.   



101 

Table 3.1: Length and number of sequences aligning to each of the 11 novel Pgp sequences identified from T. 

circumcincta cDNA. 

Pgp name 
Size of nucleotide 

sequence (bp) 

Number of sequences in 

alignment 

Predicted region 

of Pgp 

PGP1 2322 13 NBD 1 & NBD 2 

PGP2 1041 14 NBD 2 

PGP3 945 17 NBD 1 

PGP4 1501 18 NBD 1 

PGP5 935 5 NBD 1 

PGP6 405 4 NBD 2 

PGP7 1892 5 NBD 1 

PGP8 398 2 NBD 1 

PGP9 398 2 NBD 1 

PGP10 395 3 NBD 2 

PGP11 395 2 NBD 1 
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Table 3.2: Results of cloning of Pgp gene-specific primers to determine their specificity.  The sequence of the primers is shown in Table 2.3.  * Remaining clone was a contaminant as no 

P7TcF2 and P7TcR2 primers were present in the sequence and sequence was not correct length compared to original band size on agarose gel. 

Band 

name 

Template Band size 

(approx bp) 

Primers Clone results 

(# correct ID) 

Specificity 

P1L3 CVL xL3 SMART cDNA 650 P1TcF & P1TcR 0/0 Cloning failed 

P1 CVL adult 5‟ RACE 650 P1TcF & P1TcR 0/0 Cloning failed 

P2L3 CVL xL3 SMART cDNA 600 P2TcF & P2TcR 2/2 

PGP2 specific P2L4 CVL L4 SMART cDNA 600 P2TcF & P2TcR 3/3 

P2Ad CVL single-stranded adult cDNA 600 P2TcF & P2TcR 3/3 

P3L3 CVL xL3 SMART cDNA 600 P3TcF & P3TcR 3/3 

PGP3 specific P3L4 CVL L4 SMART cDNA 600 P3TcF & P3TcR 3/3 

P3Ad CVL single-stranded adult cDNA 600 P3TcF & P3TcR 3/3 

P4 CVL adult 5‟ RACE 600 P4TcF & P4TcR 6/7 Not specific 

P5L4 CVL L4 SMART cDNA 600 P5TcF & P5TcR 3/3 
PGP5 specific if 

band of correct size 
P5Ad 1 CVL single-stranded adult cDNA 600 P5TcF & P5TcR 3/3 

P5Ad 2 CVL single-stranded adult cDNA 500 P5TcF & P5TcR 0/3 

P6L3 CVL xL3 SMART cDNA 250 P6TcF & P6TcR 3/3 
PGP6 specific 

P6L4 CVL L4 SMART cDNA 250 P6TcF & P6TcR 3/3 

P7L3 CVL xL3 SMART cDNA 650 P7TcF & P7TcR 3/3 

Not specific 

P7L4 1 CVL L4 SMART cDNA 700 P7TcF & P7TcR 1/1 

P7L4 2 CVL L4 SMART cDNA 650 P7TcF & P7TcR 3/3 

P7L4 3 CVL L4 SMART cDNA 250 P7TcF & P7TcR 1/3 

P7Ad CVL single-stranded adult cDNA 650 P7TcF & P7TcR 2/3 
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Band 

name 

Template Band size 

(approx bp) 

Primers Clone results 

(# correct ID) 

Specificity 

P7L3 CVL xL3 SMART cDNA 650 P7TcF2 & P7TcR2 2/3* 

PGP7 specific P7L4 CVL L4 SMART cDNA 650 P7TcF2 & P7TcR2 1/1 

P7Ad CVL single-stranded adult cDNA 650 P7TcF2 & P7TcR2 3/3 

P9 CVL adult 5‟ RACE 350 P9TcF & P9TcR 9/9 PGP9 specific 
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Table 3.3: Results of the phylogenetic analysis of the 11 T. circumcincta Pgp genes to determine their correct gene identification. * denotes sequence which were reduced in size slightly 

when the alignment was trimmed due to a small proportion of the T. circumcincta sequence aligning a very large distance away from the remaining part of the sequence.   

Gene 

name 

Sequence 

size 

NBD UPGMA 

result 

UPGMA 

bootstrap value 

Neighbour- 

joining result 

Neighbour- joining 

bootstrap value 

Notes Accession 

number 

PGP1 2273* 1&2 CePgp-3or 4 1000 CePgp-3 or 4 1000 Keeps temporary name FR691845 

PGP2 936* 2 CePgp-2 1000 CePgp-2 1000 Gene now called TeciPgp-2 NBD2 FR691846 

PGP3 945 1 Not clear - CePgp-10 1000 Alignment poor quality, keeps temporary name FR691847 

PGP4 1501 1 CePgp-9 1000 CePgp-9 887 Gene now called TeciPgp-9 NBD1 FR691848 

PGP5 935 1 CePgp-2 1000 CePgp-2 1000 Gene now called TeciPgp-2 NBD1 FR691849 

PGP6 405 2 CePgp-9 983 CePgp-9 850 Gene now called TeciPgp-9 NBD2 FR691850 

PGP7 1892 1 Not clear - CePgp-10 646 Alignment poor quality, keeps temporary name FR691851 

PGP8 398 1 Not clear 334 CePgp-10 166 New alignment shows it to be NBD2 FR691852 

PGP9 398 1 CePgp-9or 1 390 CePgp-9 or 1 529 Keeps temporary name FR691853 

PGP10 395 2 Not clear - CePgp-10 - Alignment poor quality, keeps temporary name FR691854 

PGP11 395 1 Not clear - CePgp-10 - Alignment poor quality, keeps temporary name FR691855 
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Table 3.4: A summary of T. circumcincta CYPs found using PCR and bioinformatics approaches. 

CYP Name Identification 

method 

Life cycle stage Size of nucleotide 

sequence (bp) 

CYP 1 Degenerate PCR L4 724 

CYP 2 EST dataset L3 647 

CYP 3 Bioinformatics Mixed sex adult 681 
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Table 3.5: Results of cloning of CYP PCR products to determine the specificity of the specific T. circumcincta CYP primers. 

Primers 
Template 

cDNA 

No. clones 

submitted 

Expected size 

of product 

Actual size 

of product 
Notes 

Primer 

specificity 

CYP 1 L3 6 365 366 100-95% sequence identity to CYP1 
Yes 

CYP 1 L4 6 365 366 100-95% sequence identity to CYP1 

CYP 2 L3 1 323 323 97% identity to CYP2 Yes 

CYP 3 L3 1 467 468 95% identity to CYP3 
Yes 

CYP 3 L4 2 467 468 95% identity to CYP3 
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Figure 3.1: 1% agarose gel electrophoresis of PCR products to determine whether the T. circumcincta Pgp-

specific primers only amplified their target Pgps using plasmids containing the respective partial Pgp 

sequences as template DNA.  The primers designed against PGPs 1, 2, 3, 4, 5, 6, 7 and 9 were specific for 

their target whilst PGP 8, 10 and 11 primers were amplifying non target Pgps.  Each of the bands on the 

agarose gel was the expected size of the PCR product as stated in Table 2.3.  Positive and negative controls 

are not shown.  
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Figure 3.2: 1% agarose gel electrophoresis of PCR products to determine whether the Pgp specific primers 

only amplified their target Pgps.  A: IVM susceptible T. circumcincta exsheathed L3 and L4 SMART cDNA 

and single-stranded adult cDNA used as template against primers for PGPs 1, 2, 3, 4, 5, 6, 7 and 9.  Weak 

bands have been arrowed to aid identification.  B: IVM susceptible adult 5‟ RACE-ready cDNA used as 

template against primers for PGPs 4 and 9. 

Mx PGP 4 PGP 9

Mx

PGP 1               PGP 2             PGP 3              PGP 4 PGP 5

L3   L4   Ad    L3   L4    Ad    L3   L4    Ad    L3   L4   Ad  L3   L4   Ad

Mx

PGP 6                   PGP 7                  PGP 9      Actin

L3    L4      Ad      L3      L4     Ad     L3     L4     Ad    L3     L4     Ad

Mx

PGP 1               PGP 2             PGP 3              PGP 4 PGP 5

L3   L4   Ad    L3   L4    Ad    L3   L4    Ad    L3   L4   Ad  L3   L4   AdMx

PGP 1               PGP 2             PGP 3              PGP 4 PGP 5

L3   L4   Ad    L3   L4    Ad    L3   L4    Ad    L3   L4   Ad  L3   L4   Ad

Mx

PGP 6                   PGP 7                  PGP 9      Actin

L3    L4      Ad      L3      L4     Ad     L3     L4     Ad    L3     L4     AdMx

PGP 6                   PGP 7                  PGP 9      Actin

L3    L4      Ad      L3      L4     Ad     L3     L4     Ad    L3     L4     Ad
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Figure 3.3: 1% agarose gel of the semi-quantitative PCR products using the Pgp gene specific primers.  Each set of primers was used to amplify cDNA from eggs, L1, xL3, L4 and adult T. 

circumcincta of either the CVL (C) or MOTRI (M) isolate.  5µL of PCR product was removed after 15, 20, 25 and 30 cycles. A negative control (-) was included for each lifecycle stage –

primer combination and the gel marker lane (Mx) containing TrackIt
™

 1Kb Plus DNA Ladder (Invitrogen) is on the left. 
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Figure 3.4: Phylogenetic trees generated using the CLC DNA Workbench package showing the relationship 

of T. circumcincta PGP1 to 15 C. elegans Pgp genes.  A: Tree generated using the UPGMA distance matrix 

with a bootstrap value of 1000. B: Tree generated using the Neighbour-joining distance matrix with a 

bootstrap value of 1000.  Both trees indicate T. circumcincta PGP1 is closest to CePgp-3 and CePgp-4. 
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Figure 3.5: Phylogenetic trees generated using the CLC DNA Workbench package showing the relationship 

of T. circumcincta PGP2 to 15 C. elegans Pgp genes.  A: Tree generated using the UPGMA distance matrix 

with a bootstrap value of 1000. B: Tree generated using the Neighbour-joining distance matrix with a 

bootstrap value of 1000.  Both trees indicate T. circumcincta PGP2 is closest to CePgp-2.  PGP2 will now be 

known as TeciPgp-2 NBD2.   
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Figure 3.6: Phylogenetic trees generated using the CLC DNA Workbench package showing the relationship 

of T. circumcincta PGP4 to 15 C. elegans Pgp genes.  A: Tree generated using the UPGMA distance matrix 

with a bootstrap value of 1000. B: Tree generated using the Neighbour-joining distance matrix with a 

bootstrap value of 1000.  PGP4 will now be known as TeciPgp-9 NBD1 as it aligns most closely in both trees 

to CePgp-9.   
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Figure 3.7: Phylogenetic trees generated using the CLC DNA Workbench package showing the relationship 

of T. circumcincta PGP5 to 15 C. elegans Pgp genes.  A: Tree generated using the UPGMA distance matrix 

with a bootstrap value of 1000. B: Tree generated using the Neighbour-joining distance matrix with a 

bootstrap value of 1000.  Due to this analysis PGP5 will now be known as TeciPgp-2 NBD1 as it aligns most 

closely to CePgp-2.   
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Figure 3.8: Phylogenetic trees generated using the CLC DNA Workbench package showing the relationship 

of T. circumcincta PGP6 to 15 C. elegans Pgp genes.  A: Tree generated using the UPGMA distance matrix 

with a bootstrap value of 1000. B: Tree generated using the Neighbour-joining distance matrix with a 

bootstrap value of 1000.  PGP6 will now be known as TeciPgp-9 NBD2 as it aligns most closely to CePgp-9. 
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Figure 3.9: SeqDoC alignments comparing sequence generated from CVL and MOTRI adult T. circumcincta for PGP3 and TeciPgp-9 NBD2.  A: Partial SeqDoc alignment for PGP3. 

B: Partial SeqDoc alignment for TeciPgp-9 NBD2. In each alignment the top chromatogram was the CVL sequence and the lower chromatogram the MOTRI sequence. The middle 

trace indicates where a SNP has occurred between the two sequences (difference profile).  The regions shown in this figure are not the same parts of the Pgp molecule.   
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Figure 3.10:  Clustal W alignments of the nucleotide and protein sequences of TeciPgp-9 NBD2 comparing 

the sequences derived from adult T. circumcincta from the MOTRI and CVL isolates.  A: Nucleotide 

alignment with the SNPs highlighted in red text. B: Protein alignment of translated coding sequence showing 

that the respective SNPs identified are synonymous. 
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Figure 3.11: Phylogenetic trees showing the relationship of T. circumcincta CYPs to CYP sequences from H. 

contortus (Hc), C. elegans (Ce), A. caninum (Ac) and O. ostertagi (Oo).  The T. circumcincta (Tc) sequences 

are named in the order they were discovered.  The C. elegans CYPs are given their official family name 

whilst A. caninum and O. ostertagi sequences are named according to their accession number. A: Tree 

generated using the UPGMA distance matrix with a bootstrap value of 1000. B: Tree generated using the 

CLC DNA Workbench package using the Neighbour-joining distance matrix with a bootstrap value of 1000. 
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Figure 3.12: 1% agarose gel showing the specific bands for the three T. circumcincta CYP specific primers.  

The white arrows denote bands which were analysed further.  A very weak band could also be observed from 

CYP2 versus L4 
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L3             L4             Ad L3              L4             Ad

CYP2 CYP3

L3            L4             Ad L3             L4 AdMxMxMx
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L3             L4             Ad L3              L4             AdMxMxMx

Actin CYP1

L3             L4             Ad L3              L4             Ad

CYP2 CYP3

L3            L4             Ad L3             L4 Ad
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Figure 3.13: 1% agarose gel of the semi-quantitative PCR products using the CYP gene specific primers.  Each set of primers was used to amplify cDNA from eggs, L1, xL3, L4 and adult T. 

circumcincta of either the CVL (C) or MOTRI (M) isolate.  5µL of PCR product was removed after 15, 20, 25 and 30 cycles. A negative control (-) was included for each lifecycle stage –

primer combination and the gel marker lane (Mx) containing TrackIt
™

 1Kb Plus DNA Ladder (Invitrogen) is on the left. 
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Chapter 4: Quantitative TaqMan
®
 Real-Time PCR to Measure the 

Expression of Candidate Ivermectin Resistance Genes in Teladorsagia 

circumcincta Isolates 

4.1: Introduction 

 The role of candidate IVM resistance genes, such as the Pgps and CYPs, in the 

expression of resistance to the anthelmintics, has not been investigated to date in T. 

circumcincta.  This is despite these genes being implicated in drug resistance in other 

systems, for example, over-expression of Pgps linked to drug resistance in cancerous 

tumours and over-expression of CYPs associated with drug-resistance in mosquitoes (Loo 

& Clarke, 1999; Nikou, Ranson, & Hemingway, 2003).  Alongside this, work carried out 

in related parasitic nematodes such as H. contortus and O. volvulus has also suggested that 

differences in expression of these genes could play a role in the IVM-resistant phenotype, 

as described below.   

 

 The likely molecular targets of IVM appear to be the GABA and GluCl channels; 

concurrent mutations in three GluCl α-type subunits in C. elegans confer high levels of 

IVM resistance (Dent et al., 2000; Njue et al., 2004; Gilleard, 2006).  However, more 

generic drug handling mechanisms, such as the Pgps also seem to play a role in the 

expression of an IVM resistance phenotype as shown by various studies utilising Pgp 

inhibitors.  The co-administration of verapamil (a Pgp inhibitor) with MOX or IVM has 

been shown to significantly increase anthelmintic efficacy against MOX-selected H. 

contortus and the use of Pgp inhibitors in the LFIT caused reversion towards susceptibility 

in IVM-resistant H. contortus and T. circumcincta (Xu et al., 1998; Bartley et al., 2009).  

IVM or MOX selection in H. contortus and O. volvulus appear to place the Pgps under 

selection pressure as indicated by changes in allele frequencies and/ or loss of genetic 

diversity (Blackhall et al., 1998b; Ardelli, Guerriero, & Prichard, 2005; Ardelli, Guerriero, 

& Prichard, 2006b).  An increase in PgpA mRNA level has also been observed in IVM-

selected H. contortus (Xu et al., 1998).   
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 CYPs are a large family of membrane-anchored proteins involved in the 

metabolism of a range of predominantly hydrophobic, exogenous and endogenous 

compounds, including drugs (Guengerich, 1991; Mansuy, 1998).  CYPs appear to play a 

role in insecticide resistance in mosquitoes and Drosophila spp (Daborn et al., 2002; 

Nikou, Ranson, & Hemingway, 2003; Le Goff et al., 2003), whilst chloroquine resistance 

in malaria parasites also appears to be associated with increased CYP activity (Ndifor, 

Ward, & Howells, 1990; Barrett, 1998).  Their role in drug resistance, particularly to IVM, 

which is hydrophobic, has not been extensively investigated in parasitic nematodes.  This 

is possibly due to the enzymatic assays previously used not being sufficiently sensitive to 

detect CYP activity (Kotze, 1997; Barrett, 1998).  The use of the CYP inhibitors, piperonyl 

butoxide and metyrapone has also been shown to increase the efficacy of BZ anthelmintics 

(McKellar & Jackson, 2004), providing further evidence of their role in generic xenobiotic 

metabolism.   

 

If Pgps and CYPs are involved in generic drug handling mechanisms, for example, 

by preventing IVM from reaching its target sites in the pharyngeal and somatic muscle 

cells or by metabolising IVM into an inactive form, then changes in the expression profile 

of these genes would be expected when comparing drug–resistant and –susceptible isolates 

(Gilleard & Beech, 2007; Prichard & Roulet, 2007; Blackhall, Prichard, & Beech, 2008).  

Increased or reduced expression levels, reflected in mRNA levels, could be identified 

depending on the specific role of that particular candidate resistance gene in the parasite.  

A panel of candidate resistance genes, comprising 11 partial Pgp and 3 partial CYP gene 

sequences was identified from T. circumcincta, as described in Chapter 3.  Initial semi-

quantitative PCR results, also described in Chapter 3, indicated that differences in 

expression of these genes were evident when comparing well-characterised T. 

circumcincta isolates with known IVM resistance status.   

 

The expression of the Pgp and CYP genes in the CVL, MOTRI and Post IVM 

MOTRI T. circumcincta isolates was investigated further, using the relative quantification 

(or ΔΔCt) real-time PCR method, as described below.  In this method, the Ct for the test 

gene is normalised to the actin Ct values for the same isolate and life-cycle stage on the 

same reaction plate.  Next, the expression of the gene in MOTRI is expressed relative to 
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the expression in CVL and the expression in Post IVM MOTRI expressed relative to the 

expression in MOTRI.  The value obtained gives a relative fold change in expression.  The 

first comparison (CVL vs. MOTRI) investigated constitutive expression differences i.e. 

those found between the IVM–susceptible and –resistant isolates “at rest” whilst the 

second comparison (MOTRI vs. Post IVM MOTRI) investigated inducible expression 

differences i.e. those found between the pre- and post-IVM exposure isolates.   

 

4.2: Materials and methods 

4.2.1: Design of primers and probes 

TaqMan
®

 primers and TaqMan
®
 Minor Groove Binder (MGB) fluorogenic probes 

were designed using the Primer Express
®
 software version 3.0 (Applied Biosystems).  The 

consensus sequence for each gene, generated using standard and RACE PCR as described 

previously, was entered into Primer Express, and 10 combinations of forward and reverse 

primers and probes designed by the software.  Default parameters were chosen to give 

short amplicons of less than 150bp, primers with a Tm of 58- 60°C, the difference in Tm 

between the primers to be less than 2°C and the primers to have a high G-C content.  

Default parameters were also chosen for the probes, briefly, the probe Tm was designed to 

be 8-10°C higher than the primers, to have no G on the 5‟ end, and to have a maximum of 

30 bases between the primer and the probe.  The primer and probe sets chosen for each 

gene are shown in Table 4.1. 

 

The specificity of the primers and probes was validated by BLASTN searching the 

sequences against the EBI database (http://www.ebi.ac.uk/Tools/blast2/parasites.html) to 

determine if they would align to any other T. circumcincta sequence.  The primer and 

probe sequences were also searched against the Lasergene EditSeq (DNASTAR Lasergene 

version 8) files generated for each of the Pgp and CYP specific gene sequences from the 

Seqman sequence alignments to confirm they were specific for the gene they were 

designed to target.   
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Primers and probes were ordered from Applied Biosystems 

(http://www3.appliedbiosystems.com).  The primers were supplied lyophilised and were 

re-suspended in HPLC water (Sigma) to give a stock concentration of 100μM.  The 

working dilution was 10μM and the primers were stored at -20°C in individual reaction 

aliquots.  FAM labelled MGB probes were supplied in solution at 100μM, again a working 

dilution of 10μM was made, aliquots made and stored at -20°C. 

 

Real-time PCR reagents 

 TaqMan
®

 Gene Expression Master Mix, MicroAmp
™

 Optical 96-well plate and 

MicroAmp
™

 Optical adhesive film were obtained from Applied Biosystems. 

 

4.2.2 Real-time PCR protocol 

 Real-time PCR reactions were set up by combining 10μL TaqMan
®
 Gene 

Expression Master Mix, 1μL each of the forward and reverse primers, 0.25μL of the MGB 

probe and 5.75μL of water to give a total master mix volume of 18μL per reaction.  Due to 

the light sensitivity of MGB probes, these were allowed to thaw in the dark and only 

briefly exposed to light whilst making up the master mix.  The master mix was kept in the 

dark whilst being transferred to the PCR workstation area where it was dispensed into the 

96-well PCR plate in 18μL aliquots.  To each well of the plate, 2μL template, either cloned 

purified PCR product or T. circumcincta cDNA (diluted previously to 50ng/μL) was 

added.  Duplicate wells were set up for each template used.  Following the addition of the 

template, the plate was sealed with an adhesive film, ensuring that the film was pressed 

down firmly to prevent contamination and evaporation of the PCR reactions. 

 

All real-time PCR runs were carried out on an ABI 7000 sequence detection system 

(Applied Biosystems).  The reaction conditions were as follows: 95°C for 12 mins 

followed by 40 cycles of 95°C for 15 secs and 60°C for 60 secs.  Collection of data, by 

detection of the FAM dye attached to the probe, occurred during the final phase of each 

cycle; this enabled a crossing threshold (Ct) value to be determined for each well.  This 
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value shows at how many PCR cycles the linear phase of the PCR reaction crossed a pre-

determined threshold.  Triplicate real-time PCR runs were carried out for each gene under 

test.  The baseline and threshold for each of the three runs for each gene were set 

identically and the Ct values recalculated to enable direct comparisons between the run 

data to be made, as described below. 

 

4.2.3: Validation of efficiency of real-time primers and probes 

 To determine the efficiency of the primers and probes, individual gene fragments 

were cloned into pGEM
®
-T vectors, amplified and purified to provide sufficient plasmid 

template for the real-time PCR reactions.  The gene sequences used to determine the 

efficiency of the primer and probe sets are shown in Table 4.2.  Using the concentration of 

the plasmid and the plasmid size, the copy number for each gene specific plasmid was 

determined.  A 10-fold dilution series (10
^8

 to 10
^3

 copies) for each plasmid was set up to 

enable the efficiency of the primers and probes to be calculated.   

 

Initial PCR reactions using the plasmid standards as template were carried out as 

described previously.  From these reactions, a standard curve was generated for each 

primer and probe set.  From the standard curve, a correlation coefficient (R
2
) and value 

representing the slope of the standard curve were generated.  An R
2
 value of >0.99 was 

determined as showing the individual data points on the standard curve fitted the line 

sufficiently.  From the slope value, the efficiency of the reaction could be calculated and 

expressed as a percentage as follows: 

 

 Efficiency = (10 
^ (-1/slope)

 -1) x 100 

 

Ideally, the efficiency of the reaction should be 100%, this is achieved if the value 

of the slope is -3.33.  If the efficiency was found to be too low or too high then that 

specific gene was removed from further analysis. 
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4.2.4: Analysis of real-time data 

 Relative quantification of the gene expression level was carried out using the 

comparative Ct (ΔΔCt) method.  The raw Ct values for the Pgp or CYP (target) gene and 

the actin (endogenous control) gene for the three parasite isolates (CVL, MOTRI, Post 

IVM MOTRI) and five life-cycles stages (eggs, L1, xL3, L4 and adults) were exported from 

the ABI 7000 SDS program into Excel (Microsoft Windows XP).  The relative fold change 

in expression of a particular gene, as reflected in cDNA level, between two different 

isolates (either CVL vs. MOTRI or MOTRI vs. Post IVM MOTRI) was calculated for each 

life-cycle stage by following the three steps below: 

 

 Firstly, for each isolate and life-cycle stage combination, the target gene was 

normalised to the endogenous control: 

 

  ΔCt = Ct target gene – Ct endogenous control 

 

 Next, the sample was normalised to the calibrator sample: In CVL vs. MOTRI 

comparison, the calibrator was CVL and the sample MOTRI.  In the Post IVM MOTRI vs. 

MOTRI comparison, the calibrator was MOTRI and the sample Post IVM MOTRI.   

 

  ΔΔCt = ΔCt sample – ΔCt calibrator 

 

 Finally, the relative fold change in expression between the two isolates, normalised 

to the endogenous control, was calculated using the formula: 

 

  Fold change = 2 
–ΔΔCt 



127 

4.2.5: Statistical analysis of the real-time results 

 Triplicate real-time runs were carried out for each gene.  To analyse the multiple 

real-time runs, the data were converted to a log scale to control for occasions when one 

replicate could be up-regulated and the next down-regulated.  If the fold changes were 

averaged, a false reading would result. For example:  Replicate 1 = 5-fold up-regulation, 

replicate 2 = 5-fold down-regulation (≈0.2).  Average fold change = (5 + 0.2) / 2 = 2.6 

average fold up-regulation, which is incorrect.  Taking the log of the two fold changes 

shown above gives the following equation (C.-D. Mayer, Pers. Comm.), which calculates 

the correct average: 

 

  Log (5) + log (1/5) = log (5) – log (5) = 0 fold change in expression. 

 

 The ΔCt values were log transformed as follows, where A is the sample and B the 

calibrator: 

 

  Expression A / Expression B = 2^ (-(ΔA – ΔB) 

 

 Applying log2 to each side gives: 

 

  Log2 (Expression A) − Log2 (Expression B) = (-ΔA) - (-ΔB) 

 

 This means to log transform the ΔCt values, a positive ΔCt value becomes negative 

and vice versa.  Hence, the log transformed values for 2 
–ΔΔCt

 were calculated as follows:  

Firstly, the average of the triplicate results was obtained by calculating the average log 

transformed ΔCt value for both the sample and calibrator.  The average log ratio was 

calculated by: 
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  Average log ratio = Average log expressionA – Average log expressionB 

 

 The average fold change was calculated as: 

 

  2^ 
Average log ratio 

 

 A two tailed T-Test was performed in Excel (Microsoft Windows XP) on the 

triplicate log transformed ΔCt values to generate a P-value. 

 

4.3: Validation of real-time primers and probes 

 Each primer and probe set (Table 4.1) was validated against a duplicate 10-fold 

serial dilution, calculated to give 10^8 to 10^3 gene copies, of pGEM
®
-T plasmids 

containing the target gene.  The standard curve, generated using the threshold crossing 

values (Ct) for each plasmid copy number, was used to calculate the efficiency of the 

reaction using the efficiency calculation, as described earlier.  A representative plot of raw 

data obtained for PGP7 from the ABI 7000 sequence detection system is shown in Figure 

4.1 alongside the standard curve generated from the Ct values for PGP7.  Each gene‟s 

primer and probe sets (PGP1, TeciPgp-2 NBD2, PGP3, TeciPgp-9 NBD1, TeciPgp-2 

NBD1, TeciPgp-9 NBD2, PGP7, PGP8, PGP9, PGP10, PGP11, CYP1, CYP2 and CYP3) 

were quantified on a reaction plate alongside the actin containing plasmids.  This allowed 

the relative efficiency of the amplification of the genes to be compared to actin both by 

visual inspection of the standard curves and also by comparing the efficiency values.  The 

efficiency values for the test genes are shown in Table 4.3; actin has more than one set of 

values as it was validated several times against the other genes.  Efficient primer and 

probes sets have an efficiency value close to 100%, indicating that the amount of product 

doubles with each real-time cycle (Bustin et al., 2009).  The TeciPgp-9 NBD1 primer and 

probes were validated twice as the efficiency value for the first run was so low, compared 
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to the other genes.   An example of the difference in standard curves for TeciPgp-9 NBD1 

compared to actin is shown in Figure 4.2.  Due to the relatively low efficiency, the 

expression of this transcript in T. circumcincta was not investigated further.   

 

 Each experimental plate quantified the expression of one of the test genes and actin 

for each isolate and life-cycle stage combination in duplicate alongside a 10-fold serial 

dilution of the actin plasmids.  The serial dilution was made up fresh from a frozen aliquot 

of the actin plasmid for each experimental run.  The efficiency of the actin standards was 

calculated for each run to monitor if there were any significant changes over time.  

Alongside this, the duplicate actin Ct values for each isolate and life-cycle stage were 

recorded and a graph (Figure 4.3) produced showing the average actin Ct values and the 

standard deviation.  To be able to trust the fold changes obtained using the relative 

quantification method, the Ct values for the control gene between the sample and calibrator 

need to be comparable.  From Figure 4.3, it is possible to see that comparisons between 

life-cycle stages were not feasible due to the variation in actin Ct values.  Also, the 

comparison between MOTRI and Post IVM MOTRI in the L4 stage cannot be made due to 

the large difference in actin Ct values between the two samples.   

 

4.4: Relative quantification of expression of P-glycoproteins in T. circumcincta 

4.4.1: Constitutive Pgp expression: CVL vs. MOTRI 

 The expression of Pgps in CVL and MOTRI was compared to investigate the 

constitutive expression of these genes in T. circumcincta.  Using CVL as the calibrator, the 

expression of each gene in MOTRI was calculated as a fold change in expression.  The 

expression of each gene in the CVL isolate was, therefore, always 1, whilst a value greater 

than 1 for MOTRI indicated that the gene had increased expression in MOTRI and a value 

between 0 and 1 for MOTRI indicated that the gene had reduced expression in MOTRI.  

The closer the relative fold change in expression is to 1, the more equal the level of 

expression between the MOTRI and CVL isolate.  Statistical analysis of triplicate runs for 

each gene generated an average fold change in expression together with a P-value; these 

results are shown in Table 4.4.   
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These results show that there was a statistically significant constitutive increase in 

expression of TeciPgp-9 NBD2 across all life-cycle stages, the most dramatic being a 

55.27-fold increase (P<0.01), a 5.06-fold increase (P<0.05), a 17.49-fold increase 

(P<0.01), a 14.04-fold increase (P<0.05) and a 6.75-fold increase (P<0.01) of TeciPgp-9 

NBD2 in MOTRI compared to CVL eggs, L1, xL3, L4 and adults, respectively.  The 

average fold change in expression of TeciPgp-9 NBD2 in MOTRI relative to CVL is 

shown in Figure 4.4; the lines for each bar of the graph show the range in relative 

expression of TeciPgp-9 NBD2 in MOTRI from the triplicate real-time runs.   

 

There was a statistically significant constitutive reduction in expression of TeciPgp-

2 NBD2 of 6.02-fold (P<0.05), 8.50-fold (P<0.01), 7.61-fold (P<0.05) and 7.12-fold 

(P<0.01) in MOTRI eggs, L1, xL3 and L4 compared to CVL, respectively, whilst the 

reduced expression of TeciPgp-2 NBD2 in adults was not statistically significant.  

However, the expression of TeciPgp-2 NBD1 did not follow the same expression pattern as 

TeciPgp-2 NBD2 as shown in Figure 4.5, parts A and B.  The relative fold change in 

expression of TeciPgp-2 NBD1 was a 1.04-fold reduction, a 1.37-fold reduction, 1.07-fold 

increase, 1.37-fold increase and 1.78-fold increase in MOTRI eggs, L1, xL3, L4 and adults 

compared to CVL, respectively, however none of these changes in expression were 

statistically significant, although the change in expression in the adult stage was 

approaching significance at the 5% level.   

 

 Alongside the changes in gene expression across all life-cycle stages observed for 

TeciPgp-9 NBD2 and TeciPgp-2 NBD2, there were also changes in the constitutive 

expression of other genes in individual life-cycle stages, as shown in Table 4.4.  For 

example, the expression of PGP1 in MOTRI eggs was 3.9-fold greater than in CVL eggs 

(P<0.05) whilst in MOTRI L4, the expression of PGP1 was 1.46-fold lower than in CVL 

L4.  In PGP3, only one life-cycle stage had a statistically significant difference (P<0.05) in 

expression between MOTRI and CVL; MOTRI eggs were shown to have a 2-fold increase 

in expression compared to CVL eggs.  The expression of PGP9 in MOTRI L1 was 1.36-

fold higher than in CVL L1 (P<0.05) whilst in MOTRI L4 the expression was 2-fold higher 

than CVL L4 (P<0.01).  The expression of PGPs 10 and 11 in MOTRI varied between life-

cycle stages.  In the xL3 stage, there was a 1.88-fold increase in PGP10 expression in 
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MOTRI compared to CVL (P<0.05) whilst in the L4 stage there was a 3.99-fold reduction 

in PGP10 expression in MOTRI compared to CVL (P<0.01).  In the L4 stage there was a 

2.68-fold reduction in PGP11 expression in MOTRI compared to CVL (P<0.05), whilst in 

the adult stage, there was a 1.6-fold increase in PGP11 expression in MOTRI compared to 

CVL (P<0.05).   

 

4.4.2: Confirmation of primer specificity for TeciPgp-2 NBD2 and TeciPgp-9 NBD2 

 As the most significant results for the constitutive gene expression differences, 

showing statistically significant expression differences across all the life-cycle stages, the 

identity of the real-time PCR products for TeciPgp-2 NBD2 and TeciPgp-9 NBD2 needed 

to be confirmed.  Two real-time PCR products from each of the TeciPgp-2 NBD2 and 

TeciPgp-9 NBD2 real-time runs were selected at random, cloned into pGEM
®
-T vector 

and transformed into JM109 cells as described in Section 2.3.7.  Two white colonies were 

selected for each PCR product and, following overnight culture in LB broth, purified 

plasmids were submitted for sequencing.  The sequences obtained were trimmed to remove 

vector sequence and aligned against the consensus sequences for the eleven partial T. 

circumcincta Pgps identified in Chapter 3, using SeqMan (DNASTAR Lasergene version 

8), as shown in Table 4.5.  Of the four sequences from TeciPgp-2 NBD2 real-time PCR, 

three aligned exclusively to the TeciPgp-2 NBD2 consensus sequence whilst the fourth 

was found not to contain an insert.  Of the three sequences from TeciPgp-9 NBD2, all three 

aligned exclusively to TeciPgp-9 NBD2.  This confirmed the specificity of the TeciPgp-2 

NBD2 and TeciPgp-9 NBD2 primer and probe sets.   

 

4.4.3: Biological replicates of constitutive TeciPgp-2 NBD2 and TeciPgp-9 NBD2 

expression 

 Biological replicates, comprising different pools of T. circumcincta MOTRI and 

CVL eggs, xL3 and adults to those used in the original experiments were obtained, 

processed as described previously, and used to quantify the expression of TeciPgp-2 NBD2 

and TeciPgp-9 NBD2, to confirm the original results.  The actin Ct values for these 

biological replicates were compared to the original actin Ct values as is shown in Figure 

4.6.  This comparison indicated that the actin Ct values for the biological replicates of the 
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CVL and MOTRI eggs were not comparable to each other and also were different to the 

original average actin Ct values.  As such, the constitutive gene expression of TeciPgp-2 

NBD2 and TeciPgp-9 NBD2 in eggs in the biological replicates was excluded from further 

analysis.  The actin Ct values for the xL3 and adult stages between MOTRI and CVL were 

sufficiently close to each other to allow the relative fold changes in expression of TeciPgp-

2 NBD2 and TeciPgp-9 NBD2 in the biological replicates to be calculated, as is shown in 

Table 4.6.  The expression of TeciPgp-2 NBD2 in MOTRI xL3 was 14.71-fold lower than 

in CVL xL3 (P<0.05), compared to the 7.61-fold decrease found in the original triplicate 

results.  The expression of TeciPgp-2 NBD2 in MOTRI adults was 13.28-fold lower than 

in CVL adults (P<0.01), compared to the original 2.72-fold decrease in the original results.  

There was a 14.93-fold increased expression of TeciPgp-9 NBD2 in MOTRI xL3 compared 

to MOTRI (P<0.01) which was similar to the 17.49-fold increased expression in this gene 

found in the original results.  The result for TeciPgp-9 NBD2 for adult constitutive 

expression in the biological replicate samples was not statistically significant.   

 

4.4.4: In vivo inducible Pgp expression: MOTRI vs. Post IVM MOTRI 

 Inducible expression of Pgps was investigated by carrying out the relative 

quantification of these genes in the T. circumcincta Post IVM MOTRI isolate compared to 

the MOTRI isolate.  This was to see whether adult parasites which survived in vivo 

exposure to IVM, as described in Chapter 2, expressed the Pgp genes at a different level 

compared to unselected parasites of the same isolate.  In the same way that the CVL isolate 

was used as a calibrator in the constitutive gene expression comparison above, the MOTRI 

isolate was used as the calibrator in this comparison, such that the expression of the Pgps 

in the Post IVM MOTRI samples was described as a fold change relative to the MOTRI 

sample.  The results of this comparison are shown in Table 4.7.  Due to the difference in 

actin Ct values between MOTRI and Post IVM MOTRI L4 (Figure 4.3), this comparison 

was excluded from any further analysis.   

 

Unlike the constitutive gene expression comparison, there were no changes in 

expression of any one gene across all life-cycle stages.  All the statistically significant 

changes in the larval stages reflected increases in expression, whilst the statistically 
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significant expression changes observed in the adult stage all showed reduced expression 

in the Post IVM MOTRI isolate compared to the MOTRI isolate.  In the L1 stage, there 

was a 3.42-fold increase in TeciPgp-2 NBD2 expression (P<0.05), a 1.58-fold increase in 

PGP3 expression (P<0.05) and a 3.16-fold increase in TeciPgp-2 NBD1 expression in Post 

IVM MOTRI compared to MOTRI (P<0.01).  In the xL3 stage, there was a 1.67-fold 

increase in PGP1 expression (P<0.01), a 1.54-fold increase in TeciPgp-9 NBD2 expression 

(P<0.01) and a 3.84-fold increase in PGP8 expression in Post IVM MOTRI compared to 

MOTRI (P<0.01).  In the adult stage, there was a 1.78-fold reduction in PGP7 expression 

(P<0.05), a 2.12-fold reduction in PGP8 expression (P<0.05) and a 2.27-fold reduction in 

PGP11 expression in Post IVM MOTRI compared to MOTRI (P<0.05).   

 

4.4.5: In vivo inducible TeciPgp-2 NBD2 and TeciPgp-9 NBD2 expression: IVM survivors  

 Surviving adult parasites of the MOTRI isolate were collected from the abomasum 

of donor sheep three days after a full therapeutic dose of IVM, as described in Sections 

2.1.1 and 2.1.6.  This was to investigate whether the expression of Pgps was transiently 

altered during the period of IVM exposure in vivo.  The average actin Ct values for the 

IVM survivors, original CVL and MOTRI adults and the biological replicates CVL and 

MOTRI adults are shown in Figure 4.7.  The biological replicate MOTRI adults were 

chosen as the calibrator sample due to the similarity of their actin Ct values, as shown in 

Figure 4.7, and because they were of the same isolate to the IVM survivors.  The relative 

fold change in expression of TeciPgp-2 NBD2 and TeciPgp-9 NBD2 in the IVM survivors 

was calculated compared to the MOTRI adult biological replicate sample, as shown in 

Figure 4.8.  In the adult IVM survivors there was a 13.68-fold reduction in expression of 

TeciPgp-2 NBD2 relative to the expression in the biological replicates MOTRI adults 

(P<0.05) whilst the 1.82-fold increase in expression of TeciPgp-9 NBD2 in the IVM 

survivors compared to the biological replicates MOTRI adults was not statistically 

significant.   
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4.4.6: In vitro inducible TeciPgp-2 NBD2 and TeciPgp-9 NBD2 expression: Larval 

migration inhibition test 

 The in vitro inducible expression of TeciPgp-2 NBD2 and TeciPgp-9 NBD2 was 

investigated in MOTRI L3 by utilising the LMIT.  Using the standard LMIT method, as 

described in Section 2.2.1, a concentration of 2.5µg/mL IVM was chosen as the 

discriminating dose to allow approximately 10% of the L3s of the MOTRI isolate to 

migrate through a Baermann chamber in the presence of the drug.  However, on scaling up 

the method (Section 2.2.2) and with the larvae also being subsequently exsheathed, this 

concentration was found to be too high as the percentage migration was less than 1%.  

Thus, a lower concentration of 1µg/mL IVM was used.  Three pools of xL3 were obtained 

from this experiment; one pool (unexposed) comprised the xL3s which had successfully 

migrated through the control (no IVM) Baermann chamber, the second pool (migrators) 

comprised the xL3s which had successfully migrated through the Baermann chamber in the 

presence of 1µg/mL IVM and the third pool (non-migrators) comprised the xL3s which 

failed to migrate through the Baermann chamber in the presence of 1µg/mL IVM.  The 

percentage of xL3s which migrated in the presence of IVM was 38.75% whilst in the 

control sample the proportion of xL3s which migrated was 96.25%.   

 

 Real-time PCR was carried out to quantify the expression of TeciPgp-2 NBD2 and 

TeciPgp-9 NBD2 in these three samples and also against the biological replicate MOTRI 

xL3 sample.  For TeciPgp-2 NBD2, there was no statistically significant difference in 

expression between the migrators and non-migrators or between the non-migrators and 

unexposed samples.  There was a statistically significant 1.88-fold increase in TeciPgp-2 

NBD2 expression in the unexposed sample compared to the migrators sample (P<0.05).  

For TeciPgp-9 NBD2, there was no statistically significant difference in expression 

between the unexposed, migrators or non-migrators.  When compared to the biological 

replicate MOTRI sample, there was no statistically significant difference in expression of 

TeciPgp-2 NBD2 in any of the three LMIT samples and for TeciPgp-9 NBD2, the only 

statistically significant difference was a 1.69-fold increase in expression in the unexposed 

sample compared to the MOTRI xL3 biological replicate sample.   
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4.5: Relative quantification of expression of Cytochrome P450s in T. circumcincta 

4.5.1: In vivo constitutive Cytochrome P450 expression: CVL vs. MOTRI 

 As with the Pgps, the relative constitutive expression of CYP1, 2 and 3 was 

investigated in eggs, L1, xL3, L4 and adults of the CVL and MOTRI T. circumcincta 

isolates using real-time PCR.  The specific primers and probes for the three CYP genes are 

shown in Table 4.1.  Following triplicate real-time runs, the data were statistically analysed 

to determine the average fold change in expression of the genes in the MOTRI isolate 

compared to the CVL isolate, the statistical significance of each result and the range in 

relative expression.  As before, a value greater than 1 for MOTRI indicated that the gene 

had increased expression compared to the CVL isolate, whilst a value between 0 and 1 for 

MOTRI indicated that the gene had reduced expression in MOTRI.  The closer the relative 

fold change in expression was to 1, the more equal the level of expression between the 

MOTRI and CVL isolate.  The results of this analysis are shown in Table 4.8.  Statistically 

significant increases in expression of 11.73-fold for CYP1 (P<0.01) and 5.25-fold for 

CYP2 (P<0.01) were observed when comparing CVL and MOTRI eggs.  Statistically 

significant reductions in expression of 1.56-fold for CYP1 (P<0.05), 1.98-fold for CYP2 

(P<0.05) and 2.32-fold for CYP3 (P<0.05) were observed in the L1 stage.  In MOTRI 

adults there was a statistically significant 2.82-fold increase in expression of CYP1 

(P<0.01) and a 2.60-fold increase in expression of CYP2 compared to CVL adults.   

 

4.5.2: In vivo inducible Cytochrome P450 expression: MOTRI vs. Post IVM MOTRI 

 The relative inducible expression of the three CYP genes in T. circumcincta Post 

IVM MOTRI was determined compared to the MOTRI isolate.  No comparison was made 

between the L4 stage of these isolates as the average actin control gene Ct values, used to 

normalise the CYP gene data, was not comparable between the isolates as shown in Figure 

4.3.  As shown in Table 4.9, there were statistically significant reduced relative expression 

levels of 1.88-fold for CYP1 (P<0.05) and 1.86-fold for CYP2 (P<0.05) in Post IVM eggs 

compared to MOTRI eggs.  For the same two CYP genes, in the L1 stage there was an 

increase in relative expression of 2.91-fold (P<0.05) and 3.23-fold (P<0.01), respectively.  

The only statistically significant change in expression in the xL3 stage was a 1.38-fold 

(P<0.05) increase in relative expression of CYP3 in Post IVM MOTRI compared to 
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MOTRI.  Statistically significant reduced fold changes in expression of CYP1, 2 and 3 

when comparing the adult Post IVM MOTRI to adult MOTRI of 1.23-fold (P<0.05), 3.08-

fold (P<0.01) and 2.07-fold (P<0.05) were also observed.   

 

4.6: Discussion 

 Using the relative quantification, or ΔΔCt, real-time PCR method, the expression of 

11 Pgp and 3 CYP genes in three T. circumcincta isolates was investigated.  Real-time 

PCR has advantages over standard PCR methods, being quicker to perform and also being 

considerably more sensitive, allowing the detection of smaller changes in expression, 

particularly in genes expressed at low levels (Pfaffl, 2001; Bustin et al., 2009).  The use of 

a reference gene (in this case actin) in the experimental procedure allows the results of the 

test gene to be normalised to take into account any potential variation in cDNA level, thus 

eliminating sample variation error (Van Zeveren et al., 2007b).  For the ΔΔCt method to be 

valid, the efficiencies of the target and control gene need to be approximately equal (Livak 

& Schmittgen, 2001).  As shown above, this was not the case for TeciPgp-9 NBD1 which 

was, therefore, excluded from further analysis.  At the time of carrying out this experiment, 

actin was chosen as the control gene as it appeared to be more stably expressed between 

different T. circumcincta isolates compared to β-tubulin, as shown in the semi-quantitative 

PCR results in Chapter 3.  However, since carrying out these experiments, the preferred 

method for performing relative quantification of gene expression has recommended that a 

panel of reference genes is investigated and that at least two of the most stably expressed 

genes are then used to normalise the test genes results (Van Zeveren et al., 2007b; Strube 

et al., 2008; Bustin et al., 2009).  One such method is the GeNorm approach which 

assumes that minimally regulated, stably transcribed genes stay in a constant ratio to each 

other and, therefore, provide a better baseline for normalising relative expression data to 

(Van Zeveren et al., 2007b).  Due to stage-specific variation in the control gene chosen for 

this experiment, no comparison of Pgp and CYP expression could be made across the 

respective life-cycle stages, however, this did not preclude the investigation of the relative 

expression between isolates.  Such variability between life-cycle stages is not surprising 

given the extreme physiological changes observed in parasites as they develop from free-

living to parasitic stages (Nisbet et al., 2008).   
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These real-time data have shown that differences in expression of the Pgps and 

CYPs occur both between IVM-susceptible and -resistant T. circumcincta isolates 

(constitutive expression differences) and between pre- and post-IVM treated T. 

circumcincta isolates (inducible expression differences) as revealed through the range of in 

vivo and in vitro drug exposure experiments described above.  Importantly, the constitutive 

expression differences found for TeciPgp-2 NBD2 and TeciPgp-9 NBD2 were (with the 

exception of TeciPgp-2 NBD2 in the adult stage) statistically significant across all life-

cycle stages.  The expression of TeciPgp-2 NBD2 is between 6.02 and 8.50-fold lower in 

the MOTRI isolate compared to the CVL isolate, whilst the expression of TeciPgp-9 

NBD2 is between 5.06 and 55.27-fold greater in the MOTRI isolate compared to the CVL 

isolate.  Adult, L4 and xL3 parasites are exposed to IVM in the gut, eggs will be transiently 

exposed as they are excreted; whilst in the faecal pat, eggs and larval stages will remain 

exposed to IVM as 90% of the administered dose of IVM is excreted in faeces (Canga et 

al., 2009).  Therefore, altered expression of TeciPgp-2 NBD2 and TeciPgp-9 NBD2 across 

all life-cycle stages could allow resistant parasites to survive continued IVM exposure.   

 

Pgps are membrane transporters and IVM is known to be a potential substrate 

(Sangster et al., 1999a; Prichard & Roulet, 2007).  As such, an increase in the expression 

of TeciPgp-9 NBD2 in the triple drug-resistant MOTRI isolate could represent the 

mechanism by which resistant parasites remove the drug, either from inside their bodies or 

away from the IVM target sites, such as the somatic and pharyngeal muscles (Gilleard & 

Beech, 2007; Prichard & Roulet, 2007; Blackhall, Prichard, & Beech, 2008).  The reduced 

expression of TeciPgp-2 NBD2, like the increased expression of TeciPgp-9 NBD2 

associated with the resistant phenotype of MOTRI, could also be related to the parasites 

preventing IVM reaching its target sites.  Pgps are involved in transport of a range of 

endogenous and exogenous hydrophobic molecules into and out of cells, and are therefore 

not specifically designed to transport IVM (Kerboeuf, Guegnard, & Le Vern, 2003; 

Lespine et al., 2008).  Potentially, different Pgps could have different affinities for IVM 

and a parasite could reduce the expression of a particular Pgp with a high affinity to IVM, 

thus preventing the IVM from reaching its target site within the parasite‟s cells.  Recent 

work, using fluorescent protein reporters in transgenic C. elegans, has shown that both 

Pgp-9 and Pgp-2 are expressed in the first and second bulbs of the pharynx and in the 

intestine (Zhao et al., 2004) (http://wormbase.sanger.ac.uk/).  Further work by Schroeder et 
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al (2007) and Nunes et al (2005), showed that in RNAi C. elegans Pgp-2(-) mutants, there 

was a dramatically reduced ability of the worms to store lipids; Pgp-2 was shown to 

localise to the gut granules in the intestines of C. elegans, which are the site of fat storage.    

In this present study, TeciPgp-2 NBD2 shows reduced expression in the resistant T. 

circumcincta isolate; it would be interesting to investigate whether this is linked to reduced 

storage of lipids in these parasites.  Interestingly, experiments in H. contortus eggs have 

shown a link between the degree of anthelmintic resistance and cholesterol content; the 

lipid content of membranes appears to affect Pgp activity and transport of lipophilic 

molecules such as IVM (Riou et al., 2003; Riou, Koch, & Kerboeuf, 2005; Riou et al., 

2007).  Cholesterol depletion in H. contortus eggs resulted in an increase in TBZ resistance 

as measured by EHT (Riou et al., 2003).  Conversely free cholesterol concentration in H. 

contortus eggs was significantly higher in resistant isolates compared to susceptible 

isolates, and the presence of Pgps, as measured with monoclonal antibodies, was 

significantly correlated with the amount of free cholesterol (Riou et al., 2007).  It appears 

from these studies that Pgp function is dependent on the lipid environment of the 

membrane within which they are localised, yet the functional studies in C. elegans implied 

that, in the case of Pgp-2, at least, changes in expression affected the lipid environment 

(Riou, Koch, & Kerboeuf, 2005; Nunes et al., 2005; Schroeder et al., 2007).  The 55.27-

fold increase in expression of TeciPgp-9 NBD2 in eggs in MOTRI compared to CVL is 

very interesting, especially as an increase in fluorescent staining with monoclonal 

antibodies for human and mouse multidrug resistance -1 (mdr1) was observed in 

anthelmintic resistant H. contortus eggs compared to susceptible eggs (Kerboeuf, 

Guegnard, & Le Vern, 2003).  In a similar experiment in T. circumcincta, fluorescence of 

MOTRI eggs was three times greater than in susceptible (Moredun Ovine Susceptible 

Isolate, MOSI) eggs (P. Skuce. Pers. Comm.).  In C. elegans, mdr1 is orthologous to Pgp-2 

(http://wormbase.sanger.ac.uk/).  However, none of the studies on H. contortus, mentioned 

above, investigated individual Pgp genes, and it was not possible to ascertain the Pgp-

specificity of the immunofluorescence observed.  It would be interesting to investigate, in 

the T. circumcincta isolates used in this thesis, the localisation of TeciPgp-2 NBD2 and 

TeciPgp-9 NBD2, possibly through transgenic fluorescent protein reporter studies or the 

generation of specific monoclonal antibodies, and the effect that changes in expression of 

these genes could have on the lipid content of membranes, using RNAi, ultimately to 

elucidate further the role they play in IVM resistance.   
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An increase in PgpA (orthologous to C. elegans Pgp-2) mRNA level has been 

demonstrated using Northern blotting in IVM-selected H. contortus and, in adult O. 

ostertagi, a 3.4-fold increase in expression of a Pgp2 orthologue was found using real-time 

PCR from a laboratory selected IVM resistant isolate (Xu et al., 1998; Van Zeveren, 2009).  

More importantly, TeciPgp-9 has been identified as playing a major role in the IVM 

resistant phenotype in a T. circumcincta near-isogenic anthelmintic-resistant line 

developed in New Zealand (Bisset, 2007).  The near-isogenic line was developed by 

backcrossing an inbred multi-drug resistant isolate with an inbred anthelmintic susceptible 

isolate, with IVM selection at each generation.  This research was conducted independently 

of the present study, and the results only became available at the time of writing.  As in the 

present study, Bisset (2007) found increased polymorphisms in TeciPgp-9 in the IVM 

resistant line.  For example, individual resistant worms possessed three or four TeciPgp-9 

haplotypes compared to no more than two haplotypes in susceptible worms.  Moreover, 

using real-time PCR, resistant worms exhibited a higher expression level of TeciPgp-9 

than susceptible worms, indicative of an increased gene copy number.  Alongside this, 

amino acid substitutions were found when comparing TeciPgp-9 coding sequences from 

resistant and susceptible worms.  Unfortunately, we are not in a position to determine 

whether the same coding SNPs are implicated in our IVM-resistant MOTRI isolate at this 

stage because the regions of the gene where these amino acid substitutions are found in the 

New Zealand T. circumcincta lines are not covered by the sequence generated in this 

thesis.  These amino acid substitutions may also be present in UK IVM-resistant T. 

circumcincta isolates.  The generation of a full-length coding sequence for TeciPgp-9 

would be an obvious starting point for further work to investigate this.  If found, they could 

form the basis of a molecular marker for IVM resistance.   

 

Finding significant fold changes in expression in all life-cycle stages of TeciPgp-9 

NBD2 when comparing two, non-related UK isolates; one multi-drug resistant and the 

other drug-susceptible, becomes far more important in the light of the work carried out in 

New Zealand.  Changes in the expression of TeciPgp-9 could be caused by an increase in 

copy number, as found in the New Zealand study, or as a result of a mutation or change in 

the gene promoter or upstream regulatory element controlling the transcription of that 

gene.  The cause of the change in expression of TeciPgp-9 remains to be determined.  

Regulation of expression is dependent on regions of DNA either upstream of the gene in 
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question or in intronic regions; areas which would need to be investigated to determine 

how the fold change in expression of TeciPgp-9 NBD2 between CVL and MOTRI occurs; 

very little is currently known about these regulatory sequences in nematodes (Prichard & 

Roulet, 2007).  Even though the change in expression of TeciPgp-9 NBD2 associated with 

IVM resistance has been found in both the UK and New Zealand, the next step in 

developing these changes into a marker for IVM resistance is to confirm the presence of 

the expression differences, or the amino acid substitutions, in other UK field isolates of T. 

circumcincta resistant to IVM and potentially in other parasites species too.   

 

Another important step in fully investigating the role TeciPgp-9 NBD2 plays in 

IVM resistance in the UK would be determining whether TeciPgp-9 NBD1 (formerly 

PGP4) exhibits the same expression profile as TeciPgp-9 NBD2, this was not possible in 

this investigation as the primers and probes for TeciPgp-9 NBD1 were not sufficiently 

efficient and so the gene was excluded from the real-time PCR experiments described in 

this Chapter.  More importantly, the generation of a full-length sequence for TeciPgp-9 

would confirm that they are genuinely two halves of the same gene.  Ten NBD1 haplotypes 

and four NBD2 haplotypes for TeciPgp-9 were identified in the New Zealand near-

isogenic T. circumcincta lines, some of which were found exclusively or predominantly in 

the resistant lines.  Some NBD1 haplotypes appeared to correspond to particular NBD2 

haplotypes but have yet to be shown to be parts of the same haplotype (Bisset, 2007).  This 

could be the same with TeciPgp-9 NBD1 and TeciPgp-9 NBD2 if they are found to have a 

different expression profile; the two parts, although potentially from the same gene may, in 

fact, have developed through a gene duplication event and therefore not have been under 

the same selection pressure.  According to the alignments of T. circumcincta sequences 

against the C. elegans Pgps in Chapter 3, TeciPgp-2 NBD1 (formerly PGP5) should 

represent the 5‟ end of the same Pgp molecule as TeciPgp-2 NBD2, yet the gene 

expression profile of these two genes following triplicate real-time PCR runs was not 

identical.  Indeed, for the xL3, L4 and adult stages there were non-statistically significant 

increased expression of TeciPgp-2 NBD1 whilst for TeciPgp-2 NBD2 in these stages there 

was decreased expression in the MOTRI isolate compared to the CVL isolate.  As 

described for TeciPgp-9 from New Zealand, there could be different haplotypes of the two 

NBDs, and so, although both TeciPgp-2 NBD1 and TeciPgp-2 NBD2 aligned most closely 

to the C. elegans Pgp-2; they could be fragments of two copies of the TeciPgp-2 gene.   
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Changes in expression of other genes including the CYPs were also observed, these 

changes were not evident across all life-cycle stages and generally represented smaller fold 

changes than those found for TeciPgp-2 NBD2 and TeciPgp-9 NBD2.  As such, their 

importance in the role of expressing an IVM-resistant phenotype may not be as great.  

Interestingly, compared to the general pattern of expression of the panel of Pgp genes, the 

CYPs seemed to follow a similar pattern of expression to each other, as shown in Tables 

4.8 and 4.9.  For example, the expression of the three CYPs when comparing CVL and 

MOTRI L1 all showed a statistically significant reduction in expression.     

 

The first comparison described in this Chapter, investigating constitutive 

expression differences between the IVM-susceptible CVL and IVM-resistant MOTRI T. 

circumcincta isolates, was the same comparison as that carried out in Chapter 3 using 

semi-quantitative PCR.  Comparing the semi-quantitative and real-time PCR data shows 

that the real-time PCR confirms the majority of the changes in gene expression identified 

whilst also identifying changes not visible in the semi-quantitative PCR, particularly where 

the expression of the genes was too low to be identified using semi-quantitative PCR.  

TeciPgp-2 NBD2 (originally called PGP2 in the semi-quantitative experiment) was not 

amplified using semi-quantitative PCR but in the real-time PCR experiment, reduced 

expression was found in all life-cycle stages of the MOTRI isolate compared to the CVL 

isolate.  PGP3 and PGP7 were the most stably expressed between CVL and MOTRI in the 

semi-quantitative PCR (Figure 3.3) and showed no statistically significant differences in 

expression in the real-time experiment (Table 4.4).   

 

It was hypothesised that a stepwise change in expression going from the IVM-

susceptible (CVL) isolate, through the IVM-resistant (MOTRI) isolate to the IVM 

survivors (Post IVM MOTRI) isolate might be observed.  With the exception of TeciPgp-9 

NBD2 in the xL3 stage, where the change in expression between CVL and MOTRI was a 

17.49-fold increase and the change in expression between MOTRI and Post IVM MOTRI 

was a 1.54-fold increase, this was found not to be the case.  This suggests that any 

increases in constitutive expression in resistant isolates were not enhanced when a resistant 

isolate was further selected with IVM treatment to remove any parasites within that isolate 

exhibiting a drug-susceptible phenotype.  In fact, with the three CYP genes, it was 
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observed that when statistically significant increases in fold change in expression were 

observed between the CVL and MOTRI isolates, a corresponding statistically significant 

reduction in fold change in expression was observed between the MOTRI and Post IVM 

MOTRI (Tables 4.8 and 4.9).   

 

To fully investigate the changes in expression found in isolates of T. circumcincta 

resistant to IVM, various experiments utilising both in vivo and in vitro approaches to IVM 

exposure were carried out.  In all of these comparisons, parasites from the MOTRI isolate 

were compared to parasites of the same isolate which had undergone some form of 

selection with, or exposure to, IVM.  As described above, the comparison between the Post 

IVM MOTRI (in vivo IVM treatment survivors) and MOTRI isolates did not show that 

parasites surviving IVM treatment exhibited any further change in expression of any given 

gene following on from the CVL-MOTRI constitutive gene expression comparison.  

Therefore, it was decided to determine whether any transient inducible changes in the 

expression of TeciPgp-9 NBD2 and TeciPgp-2 NBD2 could be identified.  Utilising a 

modified LMIT method, a four way comparison between (i) MOTRI xL3 able to migrate in 

the presence of IVM, (ii) those unable to migrate in the presence of IVM, (iii) those that 

migrated through a Baermann chamber whilst not exposed to IVM and (iv) the biological 

replicate xL3 MOTRI isolate, was made.  The only statistically significant differences in 

expression were a 1.88-fold increase in TeciPgp-2 NBD2 expression in the unexposed 

sample compared to the migrators sample and a 1.69-fold increase in TeciPgp-9 NBD2 

expression in the unexposed sample compared to the MOTRI xL3 biological replicate 

sample.  Potentially, the LMIT method and the IVM dose chosen for this experiment 

(1µg/mL IVM) may not have been sufficient to induce any changes in expression of the 

two genes investigated.  Alternatively, the non-migrator xL3 could have also been killed by 

the exposure to IVM and, as such, would not have exhibited altered TeciPgp-2 NBD2 and 

TeciPgp-9 NBD2 expression profiles.  However, the actin Ct values between the three 

LMIA samples, and when compared to the biological replicate MOTRI xL3 sample, were 

similar (data not shown); dead or dying parasites would have been expected to have altered 

levels of mRNA.   
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As a final experiment, donor sheep were infected with MOTRI parasites which 

were allowed to develop to the adult stage prior to treatment with a full therapeutic dose of 

IVM.  Three days after drug administration, adult parasites were collected from the 

abomasa, as described previously.  This time course was chosen to give any adults affected 

by the IVM treatment a chance to be expelled by the host whilst those able to resist IVM 

treatment would still be exposed to IVM.  Gill & Lacey (1998) found that 25% of T. 

circumcincta were expelled 8-10 hours after exposure with the rest remaining in the 

abomasum for at least 14 hours post treatment whilst the half-life of IVM is between 61 

and 178 hours (Prichard et al., 1985a; Marriner, Mckinnon, & Bogan, 1987; Canga et al., 

2009).  The statistically significant relative fold change in expression of TeciPgp-2 NBD2 

was 13.69-fold lower in the IVM survivors compared to MOTRI whilst the 1.82-fold 

increase in expression of TeciPgp-9 NBD2 in the IVM survivors compared to MOTRI was 

not statistically significant.  This experiment gives an indication that inducible gene 

expression changes may occur in response to IVM treatment; however, the biggest 

challenge when carrying out these experiments is determining whether any changes 

observed are due to the IVM exposure or a generalised response to the experimental 

procedure.  Roulet and Prichard (2006) showed that over-expression of five H. contortus 

Pgps occurred 24 hours after in vivo IVM exposure.  As such, the experimental protocol 

chosen to investigate the inducible expression of Pgps in T. circumcincta may need to be 

altered to identify changes in expression which occur rapidly following IVM exposure.  

For example, the incubation and processing periods when carrying out the LMIT may have 

allowed altered gene expression patterns to return to baseline levels.   

 

 This work has shown that, in a panel of candidate resistant genes comprising of 

Pgps and CYPs, significant differences in gene expression were evident when comparing 

T. circumcincta isolates resistant and susceptible to IVM, as well as following IVM 

exposure.  Significantly, the constitutive expression differences in TeciPgp-2 NBD2 and 

TeciPgp-9 NBD2 were found across all life-cycle stages and the differences found in 

expression levels of TeciPgp-9 NBD2 were reinforced by similar findings in the same gene 

in laboratory-derived T. circumcincta isogenic lines in New Zealand.  These differences in 

expression, alongside SNPs identified in TeciPgp-9 NBD2 (Chapter 3) need further 

investigation to determine whether they occur in other isolates of T. circumcincta, in other 

parasitic species exhibiting IVM resistance, to determine what is the cause of the 
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differences in expression observed and what is their functional significance.  If found in 

other isolates exhibiting IVM resistance, these differences in expression could form the 

basis of a molecular test for IVM resistance in parasitic nematodes. 
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Table 4.1: Table showing primers and probes designed for real-time PCR.  All probes were fluorescently labelled with FAM. 

Primer name Primer 

direction 

Sequence Melting 

temp (ºC) 

Target 

ActinQTcFor Sense ACG ACG AGG TTG CTG CTC TT 59 

T. circumcincta actin ActinQTcProbe NA TGG TTG ACA ATG GAT CC 69 

ActinQTcRev Antisense GAA TCC GGC TTT GCA CAT TC 59 

P1QTcFor Sense GTG TGG AAA GAG CAC CGT GAT 59 

T. circumcincta PGP1 P1QTcProbe NA CAG CTC GTC GAG AGG T 69 

P1QTcRev Antisense GCC ACA CAA GGC GTC GTA A 59 

P2QTcFor Sense TGC AAA TGC AGT TCG GTA AGA 58 

T. circumcincta PGP2 P2QTcProbe NA AAT GCG GGA CAC AGA A 68 

P2QTcRev Antisense TGC CAG CCT CCT CCA GAA 59 

P3QTcFor Sense CGA GTT GCA ATT GAG AGA TTT CA 58 

T. circumcincta PGP3 P3QTcProbe NA TGG CTG AAT GGC G 69 

P3QTcRev Antisense AGC CAG GGA TGC ATTGGA 59 

P4QTcFor Sense GAA CGT TGG TGA CCG AGG AA 60 

T. circumcincta PGP4 P4QTcProbe NA TGT CTG GTG GCC AAA A 70 

P4QTcRev Antisense GCG GGC AAT GGC TAT ACG 59 

P5QTcFor Sense TCA TCA GCG ACC CAA CAT TG 59 

T. circumcincta PGP5 P5QTcProbe NA ACC GTG GCC GGA TT 69 

P5QTcRev Antisense CAC CGC GAA GAA CAC AGT GA 59 

P6QTcFor Sense GAC GGT TCT GTG GAA GTT GAT G 58 

T. circumcincta PGP6 P6QTcProbe NA CTC ATC TAC GTG CCC ATA T 70 

P6QTcRev Antisense TCG GCT CTT GCG ATA CCA A 59 

P7QTcFor Sense TCC GGC TCT CTG CCA AGT 58 

T. circumcincta PGP7 P7QTcProbe NA ATG TTT GTT GTG ATT CCG 69 

P7QTcRev Antisense CGG CGA AAG TTC CAA CCA TA 60 

P8QTcFor Sense AAG TGG ATG CTC GTG AAC TGA A 58 
T. circumcincta PGP8 

P8QTcProbe NA TTG AGG CAC CTT CG 68 
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Primer name Primer 

direction 

Sequence Melting 

temp (ºC) 

Target 

P8QTcRev Antisense CCC GCT AGG GAG ATT TGT GA 59 

P9QTcFor Sense TCA GGA GCC GGC GTT GT 60 

T. circumcincta PGP9 P9QTcProbe NA TGC TGA TAC AGT TGA AAA T 70 

P9QTcRev Antisense CCC GTC CCA AGC GGA TAT 59 

P10QTcFor Sense CCG CTA ACG GAA GGT GAG ATT 59 

T. circumcincta PGP10 P10QTcProbe NA CCT TGA TGG TCG TCC AT 69 

P10QTcRev Antisense GCG CTG TGA CTT AGC GAA CTT 58 

P11QTcFor Sense CCG CTG GAG CTG GAC AAC 59 

T. circumcincta PGP11 P11QTcProbe NA CAC CGA AAG ACG AGG TC 70 

P11QTcRev Antisense TTC CGT CAC GCG ACG TT 58 

C1QTcFor Sense AAC TGC TCA CGC TCA CAA AGG 59 

T. circumcincta P450 1 C1QTcProbe NA ACA ACG CCT ACT CTC 69 

C1QTcRev Antisense AGT GTT CGG TCT GTC CAC GAT 58 

C2QTcFor Sense CGT TGT CGG TGG ACA TTC TG 59 

T. circumcincta P450 2 C2QTcProbe NA CCC AAA AGG CAC TCC A 69 

C2QTcRev Antisense TTA TTA CCG ACA ATT CAG CTG CAA 60 

C3QTcFor Sense TTT GGA AAG AAC AAC GAC GTG TA 58 
T. circumcincta P450 3 

C3QTcProbe NA CAC TCC AAA TAC TTC G 68 
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Table 4.2: Table showing the plasmids used to validate the efficiency of the gene specific real-time primer 

and probe sets.   

Gene Plasmid name Plasmid 

size (bp) 

Concentration 

(ng/µL) 

Actin Actin race a 3436 401.19 

PGP1 P1 race 40 1b 3640 308.07 

PGP2 29 Nov 11c 3799 320.18 

PGP3 P3_2a 3752 285.31 

PGP4 (17 Oct) P5b 3368 349.22 

PGP5 25 Mar P5 3Ar 3772 295.69 

PGP7 25 Mar P7 1a 4013 311.81 

PGP6 2S2A1 3402 263.59 

PGP8 1S2A1 3398 328.03 

PGP9 1S1A1 3398 224.39 

PGP10 Pgp1sm1 3395 333.7 

PGP11 Pgp2sm1 3395 616.26 

CYP1 Jan16C3a 3606 332.87 

CYP2 C2L3a 3323 219.99 

CYP3 C3L3a 3468 276.81 
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Table 4.3: Table showing the efficiencies of the reactions for each primer and probe set, as calculated from 

the standard curves.  The percentage efficiency was calculated from the slope of the standard curve using the 

formula described in 2.4.3 whilst the R2 value gives an indication of how close the data points fit to the 

standard curve and the intercept is the point at which the standard curve crosses the y axis (number of real-

time cycles).   

Gene Slope Intercept R2 value Efficiency of 

reaction (%) 

Actin -3.4381 43.1010 0.9939 95.37 

Actin -3.4206 44.1108 0.9977 96.04 

Actin -3.1195 40.6668 0.9981 109.2 

Actin -3.1008 39.9113 0.9989 110.13 

PGP1 -3.2210 41.6619 0.9930 104.39 

TeciPgp-2 NBD2 -3.2791 41.7425 0.9991 101.81 

PGP3 -2.9697 39.8586 0.9964 117.13 

TeciPgp-9 NBD1 -3.6202 51.7543 0.9112 89.5 

TeciPgp-9 NBD1 -4.4088 58.1673 0.9931 68.58 

TeciPgp-2 NBD1 -3.2707 41.2686 0.9859 102.18 

TeciPgp-9 NBD2 -3.3026 39.6582 0.9975 100.81 

PGP7 -3.3170 42.2188 0.9993 100.21 

PGP8 -3.2373 38.3497 0.9979 103.65 

PGP9 -3.3567 39.4773 0.9964 98.568 

PGP10 -3.5396 43.4254 0.9769 91.65 

PGP11 -3.3911 42.1324 0.9982 97.19 

CYP1 -3.3458 39.6981 0.9977 99.01 

CYP2 -3.3274 42.8249 0.9973 99.77 

CYP3 -3.2538 39.5755 0.9963 102.92 
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Table 4.4: Relative constitutive expression of the Pgp genes in T. circumcincta MOTRI compared to CVL.  The fold change in expression in CVL equals 1 and the expression in 

MOTRI is expressed relative to this.  The statistical significance (at either P<0.05 or P<0.01) of each result is shown in brackets below the fold change in expression.  n.s. means the 

result is not statistically significant.   

 PGP1 TeciPgp-2 

NBD2 

PGP3 TeciPgp-2 

NBD1 

TeciPgp-9 

NBD2 

PGP7 PGP8 PGP9 PGP10 PGP11 

Eggs 

3.90 

(P<0.05) 

0.17 

(P<0.05) 

2.00 

(P<0.05) 

0.96 

(n.s.) 

55.27 

(P<0.01) 

1.07 

(n.s.) 

3.50 

(n.s.) 

1.58 

(n.s.) 

1.07 

(n.s.) 

0.39 

(n.s.) 

L1 

0.73 

(n.s.) 

0.12 

(P<0.01) 

0.70 

(n.s.) 

0.73 

(n.s.) 

5.06 

(P<0.05) 

0.64 

(n.s.) 

1.45 

(n.s.) 

1.36 

(P<0.05) 

1.00 

(n.s.) 

0.87 

(n.s.) 

xL3 

0.82 

(n.s.) 

0.13 

(P<0.05) 

1.17 

(n.s.) 

1.07 

(n.s.) 

17.49 

(P<0.01) 

1.11 

(n.s.) 

0.99 

(n.s.) 

0.65 

(n.s.) 

1.88 

(P<0.05) 

0.82 

(n.s.) 

L4 

0.68 

(P<0.01) 

0.14 

(P<0.01) 

0.61 

(n.s.) 

1.37 

(n.s.) 

14.04 

(P<0.05) 

0.90 

(n.s.) 

3.39 

(n.s.) 

2.00 

(P<0.01) 

0.25 

(P<0.01) 

0.37 

(P<0.05) 

Adults 

1.35 

(n.s.) 

0.37 

(n.s.) 

1.07 

(n.s.) 

1.78 

(n.s.) 

6.75 

(P<0.01) 

1.11 

(n.s.) 

1.12 

(n.s.) 

0.86 

(n.s.) 

1.51 

(n.s.) 

1.60 

(P<0.05) 
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Table 4.5: Table showing the results of sequencing to confirm the specificity of the T. circumcincta TeciPgp-

2 NBD2 and TeciPgp-9 NBD2 real-time primers.  The primers and probes used to determine the expression 

of TeciPgp-2 NBD2 were P2QTcFor, P2QTcProbe and P2QTcRev and for TeciPgp-9 NBD2 were 

P6QTcFor, P6QTcProbe and P6QTcRev as shown in Table 4.1.  The percentage identity of each clone to the 

consensus sequence is shown in brackets.   

Clone Name Sequence Result 

P2A1a Aligned to TeciPgp-2 NBD2 (95% identity) 

P2A1b No insert 

P2C9a Aligned to TeciPgp-2 NBD2 (95% identity) 

P2C9b Aligned to TeciPgp-2 NBD2 (96% identity) 

P6A7a Aligned to TeciPgp-9 NBD2 (94% identity) 

P6A7b Aligned to TeciPgp-9 NBD2 (100% identity) 

P6B3a Aligned to TeciPgp-9 NBD2 (100% identity) 
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Table 4.6: Relative constitutive expression of the TeciPgp-2 NBD2 and TeciPgp-9 NBD2 in biological 

replicates of T. circumcincta MOTRI compared to CVL.  The fold change in expression in CVL equals 1 and 

the expression in MOTRI is expressed relative to this.  The statistical significance (at either P<0.05 or 

P<0.01) of each result is shown in brackets below the fold change in expression.  n.s. means the result was 

not statistically significant.   

 TeciPgp-2 NBD2 TeciPgp-9 NBD2 

xL3 

0.07 

(P<0.05) 

14.93 

(P<0.01) 

Adults 

0.08 

(P<0.01) 

1.00 

(n.s) 
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Table 4.7: Relative inducible expression of the Pgp genes in T. circumcincta Post IVM MOTRI compared to MOTRI.  The fold change in expression in MOTRI equals 1 and the 

expression in Post IVM MOTRI is expressed relative to this.  The statistical significance (at either P<0.05 or P<0.01) of each result is shown in brackets below the fold change in 

expression.  n.s. means the result is not statistically significant.   

 PGP1 TeciPgp-2 

NBD2 

PGP3 TeciPgp-2 

NBD1 

TeciPgp-9 

NBD2 

PGP7 PGP8 PGP9 PGP10 PGP11 

Eggs 

0.53 

(n.s.) 

1.67 

(n.s.) 

1.34 

(n.s.) 

1.53 

(n.s.) 

1.10 

(n.s.) 

1.38 

(n.s.) 

0.76 

(n.s.) 

1.93 

(n.s.) 

1.17 

(n.s.) 

1.42 

(n.s.) 

L1 

1.24 

(n.s.) 

3.42 

(P<0.05) 

1.58 

(P<0.05) 

3.16 

(P<0.01) 

1.71 

(n.s.) 

1.33 

(n.s.) 

1.17 

(n.s.) 

0.81 

(n.s.) 

1.60 

(n.s.) 

1.79 

(n.s.) 

xL3 

1.67 

(P<0.01) 

1.25 

(n.s.) 

0.94 

(n.s.) 

0.93 

(n.s.) 

1.54 

(P<0.01) 

0.99 

(n.s.) 

3.84 

(P<0.01) 

0.73 

(n.s.) 

0.84 

(n.s.) 

0.80 

(n.s.) 

Adults 

0.63 

(n.s.) 

0.76 

(n.s.) 

0.49 

(P<0.01) 

0.74 

(n.s.) 

0.69 

(n.s.) 

0.56 

(P<0.05) 

0.47 

(P<0.05) 

0.94 

(n.s.) 

0.65 

(n.s.) 

0.44 

(P<0.05) 
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Table 4.8: Relative constitutive expression of the CYP genes in T. circumcincta MOTRI compared to CVL.  

The fold change in expression in CVL equals 1 and the expression in MOTRI is expressed relative to this.  

The statistical significance (at either P<0.05 or P<0.01) of each result is shown in brackets below the fold 

change in expression.  n.s. means the result is not statistically significant.   

 CYP1 CYP2 CYP3 

Eggs 

11.73 

(P<0.01) 

5.25 

(P<0.01) 

0.95 

n.s. 

L1 

0.64 

(P<0.05) 

0.51 

(P<0.05) 

0.43 

(P<0.05) 

xL3 

1.09 

n.s. 

1.19 

n.s. 

1.09 

n.s. 

L4 

1.16 

n.s. 

1.89 

n.s. 

1.10 

n.s. 

Adults 

2.82 

(P<0.01) 

2.60 

(P<0.05) 

0.78 

n.s. 

 

  



154 

Table 4.9: Relative inducible expression of the CYP genes in T. circumcincta Post IVM MOTRI compared to 

MOTRI.  The fold change in expression in MOTRI equals 1 and the expression in Post IVM MOTRI is 

expressed relative to this.  The statistical significance (at either P<0.05 or P<0.01) of each result is shown in 

brackets below the fold change in expression.  n.s. means the result is not statistically significant.   

 CYP1 CYP2 CYP3 

Eggs 

0.53 

(P<0.05) 

0.54 

(P<0.05) 

0.92 

n.s. 

L1 

2.91 

(P<0.05) 

3.23 

(P<0.01) 

1.92 

n.s 

xL3 

1.56 

n.s. 

1.33 

n.s. 

1.38 

(P<0.05) 

Adults 

0.81 

(P<0.05) 

0.32 

(P<0.01) 

0.48 

(P<0.05) 
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A 

  

B  

Figure 4.1: Graphs showing typical results from the validation of the real-time primer and probe sets.  A: 

Representative graph of the results for PGP7 showing the duplicate results for each of the dilutions in the 

calibration curve.  The point where the amplification curves cross the green line is the Ct value.  B: The 

standard curve for PGP7 generated using the Ct values from the graph in part A.  The standard curve is used 

to calculate the efficiency of the reaction.  Graphs generated using the ABI 7000 sequence detection system. 
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Figure 4.2: Standard curves for TeciPgp-9 NBD1 and actin.  These show that the TeciPgp-9 NBD1 primers 

and probes did not efficiently amplify the plasmid containing the TeciPgp-9 NBD1 gene, meaning accurate 

comparisons between the actin control gene and the TeciPgp-9 NBD1could not be made.  Graphs generated 

using the ABI 7000 sequence detection system.   
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Figure 4.3: Graph showing the average actin Ct values for each isolate and life-cycle combination.  The 

results are a combination of triplicate real-time run carried out to quantify the expression of the ten Pgp and 

three CYP genes in T. circumcincta.  The error bars on the graph show the standard deviation of the actin Ct 

values 
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Figure 4.4: Graph showing the relative constitutive expression of TeciPgp-9 NBD2 in T. circumcincta.  The 

stars above the graph indicate the statistical significance of the relative fold change in expression of TeciPgp-

9 NBD2 in MOTRI compared to CVL.  P<0.01 is represented by *** and P<0.05 is represented by **.  The 

lines for each bar on the graph represent the range in relative expression.  
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A  

B  

Figure 4.5: Graphs showing the relative constitutive expression of TeciPgp-2 NBD 1 and 2 in T. 

circumcincta.  A: Expression of TeciPgp-2 NBD1. B: Expression of TeciPgp-2 NBD2.  The stars above the 

graph indicate the statistical significance of the relative fold change in expression of TeciPgp-2 in MOTRI 

compared to CVL.  P<0.01 is represented by *** and P<0.05 is represented by **, statistically non-

significant results are indicated with n.s.  The lines for each bar on the graph represent the range in relative 

expression.  
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Figure 4.6: Graph showing the average actin Ct values for the biological replicates of the constitutive gene 

expression comparison between MOTRI and CVL T. circumcincta compared to the corresponding (original) 

isolate and life-cycle average actin Ct values.  The error bars on the graph show the standard deviation of the 

actin Ct values.   
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Figure 4.7: Graph showing the average actin Ct values for the adult T. circumcincta IVM survivors compared 

to the Ct values for the adult CVL and MOTRI T. circumcincta biological replicates and original adult CVL 

and MOTRI T. circumcincta.  The error bars on the graph show the standard deviation of the actin Ct values.   

  



162 

A  

B  

Figure 4.8: Graphs showing the relative fold change in expression between MOTRI adults and IVM survivor 

MOTRI adults.  A: Relative expression of TeciPgp-2 NBD2.  B: Relative expression of TeciPgp-9 NBD2.  

P<0.05 is represented by **, statistically non-significant results are indicated with n.s.  The lines for each bar 

on the graph represent the range in relative expression. 
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Chapter 5: Roche 454 Sequencing Analysis Comparing in vitro 

Ivermectin-Exposed and Ivermectin-Unexposed Teladorsagia 

circumcincta Adults* 

5.1: Introduction 

 Anthelmintics are the principal method of control for PGE, yet their mode of action 

and the underlying genetic determinants of resistance exhibited by the parasites are still not 

adequately understood.  Most of the studies in this area to date have used a “candidate gene 

approach” to look for key genetic changes, such as target site mutations, in related parasitic 

species or in the model nematode, C. elegans (Wolstenholme et al., 2004).  However, this 

has largely not been a fruitful exercise (Gilleard, 2006; von Samson-Himmelstjerna et al., 

2007).  Classical genetic linkage studies to identify „resistance genes‟ are challenging, 

particularly in nematode parasite populations made up of individuals with differing levels 

of resistance, where there are no parental anthelmintic-susceptible isolates to compare to 

the resistant populations, and especially when the mode of action of the anthelmintic is still 

not clearly understood (Gilleard, 2006).  This makes it difficult to propose candidate 

resistance genes for further study.  An overview of the current understanding of the modes 

of action of the anthelmintics and the mechanisms of resistance are given below, more 

detail is provided in Chapter 1.   

 

The BZs bind to β-tubulin within the parasite, disrupting various essential cellular 

processes and resulting in cell lysis (McKellar & Jackson, 2004; von Samson-

Himmelstjerna et al., 2007; Mitreva et al., 2007); resistance to the BZs is associated with 

point mutations at codon 200 (Phe200Tyr), codon 167 (Phe167Tyr) and codon 198 

(Glu198Ala) in the isotype 1 β-tubulin gene (Silvestre & Cabaret, 2002; Wolstenholme et 

al., 2004; Ghisi, Kaminsky, & Maser, 2007; de Lourdes Mottier & Prichard, 2008).  

However, some T. circumcincta isolates have been shown to survive BZ treatment in vivo 

and in vitro when they have susceptible genotypes at codon 200, suggesting other, as yet 

unidentified mechanisms, are enabling the parasites to exhibit resistance (Stenhouse, 

2007).   
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LEV, as a cholinergic agonist at the nicotinic neuromuscular junctions, opens and 

blocks the acetylcholine receptor-mediated cation channels resulting in the rapid tonic 

paralysis of the somatic muscles (McKellar & Jackson, 2004; Rayes et al., 2004; Prichard 

& Geary, 2008).  Three nAChR receptors subunits, unc-38, unc-29 and lev-1, identified in 

C. elegans appear to be involved in LEV resistance (Kopp et al., 2008).  Mutations in unc-

29 or unc-38 caused a complete loss of sensitivity to LEV (Fleming et al., 1997).  A 

mutation from glutamic acid (Glu) to glycine (Gly) at amino acid 153 (Glu153Gly) in the 

unc-38 gene of C. elegans was necessary for LEV resistance (Rayes et al., 2004; Martin & 

Robertson, 2007).   

 

IVM binds irreversibly to GABA and GluCl channels causing the hyperpolarisation 

and flaccid paralysis of pharyngeal and somatic muscle cells leading to starvation and 

immobility of the worms (Martin et al., 1998; Blackhall et al., 1998a; Blackhall, Prichard, 

& Beech, 2003; Prichard & Roulet, 2007; Stenhouse, 2007; James & Davey, 2008).  In C. 

elegans, concurrent mutations in several GluCl α-type subunit genes, avr-14, avr-15 and 

glc-1, are required to confer high levels of IVM resistance; mutations of any two of the 

three genes only confers low or no resistance (Dent et al., 2000; Cook et al., 2006; 

McCavera, Walsh, & Wolstenholme, 2007).  The molecular basis of resistance to IVM in 

trichostrongyle parasites, such as T. circumcincta, remains to be elucidated (Geary, 2005; 

Prichard et al., 2007). 

 

 Alternative mechanisms of resistance to those described above, such as changes in 

gene expression levels, remain largely unexplored.  As previously stated in Chapter 1, 

differences in expression levels of genes may be constitutive, where a gene is always 

expressed differentially between anthelmintic-susceptible and -resistant isolates of 

parasites at rest, or inducible, where a change in gene expression is observed between 

parasites that have been exposed to anthelmintic and those that remain unexposed.  Again, 

most research in this area has adopted a “candidate gene approach”, concentrating on genes 

that are suspected of being involved in drug efflux or metabolism, for example the Pgps 

and CYPs (Kotze, 1997; Prichard & Roulet, 2007).  However other, as yet unidentified, 

genes may also be involved in resistance; this provides an opportunity to use a more global 

approach to identify changes in gene expression, which has potentially not been prejudiced 
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by selectively looking for particular genes.  “Next generation” sequencing approaches, 

such as Roche 454, Illumina Solexa and ABI SOLiD technologies, offer an alternative to 

the candidate gene approach as they can offer an unbiased and global analysis of 

quantitative and qualitative genetic changes associated with a particular phenotype or in 

response to treatment (Marguiles et al., 2005).  The digital readout (Expressed Sequence 

Tag; EST) from the sequenced cDNA reflects the mRNA expression level of that particular 

gene or contiguous sequence (Nagaraj, Gasser, & Ranganathan, 2007).  All of these next 

generation sequencing technologies offer advantages over the traditional Sanger 

sequencing method (Sanger, Nicklen, & Coulson, 1977), in terms of cost, throughput and 

amount of data generated, however, the length of the reads produced may be significantly 

shorter (Pop & Salzberg, 2008; Shin et al., 2008; Shendure & Ji, 2008).   

 

 Roche 454 sequencing amplifies cDNA strands which have been attached to 

agarose beads in a picolitre sized emulsion-based pyrosequencing reaction; at each 

sequencing cycle a single type of nucleotide is added, followed by the substrate luciferin 

which causes light to be emitted from the beads where a nucleotide has been incorporated.  

Roche 454 sequencing generates hundreds of thousands of sequences of between 200 and 

400 nucleotides in length in a single run with an average accuracy of 96% (Marguiles et 

al., 2005; Graveley, 2008; Mardis, 2008; Rothberg & Leamon, 2008).  Like the 454 

platform, the ABI SOLiD (Sequencing by Oligo Ligation and Detection) also uses the 

emulsion PCR method, utilising ligase instead of polymerase.  The cDNA is captured on 

paramagnetic beads, immobilized in a solid substrate for the sequencing reaction stage 

which utilises a fluorescently labelled octamer that generates a signal corresponding to 

base 5 of the octamer.  The octamer is then cleaved between bases 5 and 6, removing the 

fluorescent part of the octamer.  Further cycles enable the sequencing of every 5
th

 base.  

The rest of the sequence is generated using other octamers which target different bases 

(Shendure & Ji, 2008).  SOLiD sequencing generates 3-4 gigabases of sequences in 

approximately five days with an average read length of 25-50 bases (Graveley, 2008; 

Mardis, 2008).  Illumina Solexa attaches pieces of cDNA, which are flanked with adaptors, 

to a solid substrate.  These are clonally amplified by bridge PCR to generate a cluster of 

identical amplicons which are then linearized to generate single stranded cDNA.  

Sequencing by synthesis is carried out utilising fluorescently labelled dNTPs with a 

terminating moiety that only allows a single nucleotide to attach at each cycle.  The 
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fluorescence is measured and then the terminating moiety removed, allowing the next 

dNTP to attach (Mardis, 2008; Shendure & Ji, 2008).  This process generates large 

numbers of sequences (1300Mb sequence/ run) of a similar length to those generated using 

the SOLiD method (Shendure & Ji, 2008; Graveley, 2008).   

 

 Utilizing these next generation sequencing approaches allows the rapid generation 

of databases containing novel sequences.  This is particularly important for genomic 

resource-poor organisms such as T. circumcincta, where the amount of sequence data is 

limited; currently the T. circumcincta genome project has generated 14Mb of sequence 

(http://www.sanger.ac.uk/Projects/T_circumcincta/;) and only ~6,000 ESTs are in the 

public domain (http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html).  Although 

the cost of Roche 454 sequencing is higher compared to SOLiD or Solexa sequencing, 

using this method to investigate the transcriptome of T. circumcincta is preferable at this 

point in time as it increases the chance of generating meaningful data with sufficient read 

length to enable correct assembly and identification of ESTs when a genome sequence is 

not available to use as a scaffold (Shendure & Ji, 2008).  The inducible transcriptomic 

response of the MOTRI multi-drug resistant isolate of T. circumcincta (MTci5) following 

in vitro IVM exposure was therefore investigated using Roche 454 sequencing.  In vitro 

IVM exposure was chosen as very little is known about how drug-resistant T. circumcincta 

responds to IVM exposure (Prichard et al., 2007).  As the market leader in terms of 

anthelmintic sales in the livestock market, it is especially important to determine how 

parasites are able to survive IVM treatment (Van Zeveren, 2009).  Using the methods 

described below, two pools of adult parasites were incubated for 5 hours, one pool exposed 

to IVM and the other pool as an unexposed control.  RNA was extracted from each pool 

and subjected to Roche 454 sequencing and bioinformatic analysis of the subsequent EST 

dataset.  

 

5.2: Materials and methods 

5.2.1: In vitro exposure to ivermectin 

Adult MOTRI T. circumcincta were collected from the abomasum of a sheep 

previously infected with 15000 L3 21 days P.I using a modification to the method 
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described previously in Section 2.1.6.  After removal of the abomasum and collection of 

the abomasal contents and washings, individual worms were identified under a compound 

microscope using the x10 objective.  These were removed from the abomasal contents 

using a hypodermic needle bent into an L shape.  Parasites were inspected to confirm they 

were not damaged and sexed under a microscope before being placed in Petri dishes, 

containing 9850μL RPMI and 100μL penicillin/streptomycin (final concentration 1%), 

with an approximate 50:50 sex ratio, a total of approximately 100 parasites in each of 4 

dishes.  50μL DMSO (final concentration 0.05%) was added to two of the petri dishes to 

act as the unexposed controls and 50μL DMSO/ IVM (final concentration DMSO = 0.05%, 

final concentration IVM = 5μg/mL) was added to the other two dishes.  The petri dishes 

were placed in an incubator at 37°C in 5% CO2 for 5 hours before the parasites were 

removed from the culture medium, placed in 1x PBS, and snap frozen in liquid nitrogen. 

 

5.2.2: 454 sequencing reaction 

Total RNA was extracted from one IVM-exposed and one -unexposed pool of 

parasites using Trizol reagent (Invitrogen) according to the manufacturer‟s 

recommendations, as described in Section 2.3.1.  Confirmation of RNA integrity was 

obtained by agarose gel electrophoresis and by determining the RNA concentration using a 

NanoDrop
®
 ND-1000 spectrophotometer.  1µg total RNA from the IVM-exposed and -

unexposed samples was supplied to Cogenics (www.cogenics.com) for cDNA synthesis 

and Roche 454 sequencing.  Adaptors were ligated onto cDNA transcribed from the 

respective samples to aid subsequent transcript identification (exposed vs unexposed) and 

the cDNA subjected to a quarter plate Roche 454 sequencing run on a GS-FLX 454 

genome sequencer.  The basic technique is as described in Marguiles et al (2005).  Briefly, 

individual fragments of the cDNA library were captured onto beads inside an oil emulsion 

containing the PCR reagents.  Following PCR amplification, the emulsion was broken and 

a picolitre- sized pyrosequencing reaction set up for each bead containing amplified DNA 

on a fibre-optic slide.  The light emitted by the individual pyrosequencing reactions in each 

well is converted into a digital read of sequence data.   
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5.2.3: Bioinformatics 

Whole genome sequencing assembly was carried out using the proprietary Roche 

454 Newbler Assembler software.  The identity of contiguous sequences (contigs) was 

sought using BLAST [Basic Local Alignment Search Tool (Altschul et al., 1990)], 

searching against three databases; Swissprot, Wormpep and the “est_others” nucleotide 

database curated by NCBI.  Functional classification was also carried out on the contigs on 

the basis of homology with the KEGG genomes orthology database using KAAS (KEGG 

Automatic Annotation Server: http://www.genome.jp/tools/kaas/) (Kanehisa & Goto, 2000; 

Moriya et al., 2007) with the single direction hit option.  Contigs could be represented in 

more than one functional group.   

 

Comparison of EST abundance was carried out by tagging contigs with identifiers 

to distinguish their origin (IVM-exposed or -unexposed) then pooling and assembling these 

sequences using SeqMan (DNASTAR Lasergene version 8) with the ProAssembler option.  

Sequences with a better than 95% match were assembled into clusters, manually curated 

and/or trimmed to resolve any conflicts arising from sequencing artefacts.  The consensus 

sequences of the clusters were BLAST searched in the NCBInr database to give a putative 

identity.   

 

5.2.4: Statistical analysis of 454 dataset 

A 2 2 Fisher‟s Exact test was conducted to test for differences between the 

proportions of exposed and unexposed contigs for each functional classification as 

identified by KEGG analysis.  The estimated p-values for all functional groups were then 

adjusted using the False Discovery Rate (FDR) approach (Benjamini & Hochberg, 1995) 

to take into account multiple comparisons of treatments. 

 

The methodology used to identify clusters indicated that there was likely to be 

excess clustering or overdispersion in the data.  However, with a single replicate for each 

combination of cluster and treatment, it was not possible to quantify this effect.  Therefore 
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an approach was adopted which combined information from two statistical models that 

together spanned the range of results which would arise from the more appropriate model.  

 

The baseline statistical model was a saturated model that assumed that differences 

observed between treatments for all clusters were fully explained as arising from the 

differences in the treatment means.  This involved fitting a generalised linear model 

(GLM) with a binomial error distribution and logit link function (with cluster, treatment 

and a cluster by treatment interaction as fixed effects) or conducting a Fisher‟s Exact test 

for the number of reads in each cluster where a GLM was inappropriate.  The p-values 

from this model were liberal.  The estimated p-value indicating the level of statistical 

significance for differences between the exposed and unexposed groups in the numbers in 

each cluster was recorded.  These p-values were adjusted using the FDR approach as 

discussed earlier.  Subsequently, an estimate of the overdispersion in the data was obtained 

by refitting the GLM with only a treatment effect, assuming that all other observed 

differences were caused by excess clustering.  This gave an overestimate of the true 

overdispersion in the data. 

 

Finally, an alternative model was fitted, with over-dispersion fixed at the value 

obtained previously.  This involved refitting the GLM with cluster, treatment and the 

cluster by treatment interaction as fixed effects, and overdispersion fixed at the previous 

estimate or conducting a Fisher‟s Exact test for the number of reads in each cluster and 

adjusting the resulting p-value for the previously estimated overdispersion.  These p-values 

were adjusted using the FDR approach as mentioned earlier.  The p-values from this model 

were conservative. 

 

The FDR adjusted p-value for a cluster is the minimum FDR for which the 

observed difference between the mean expression level of exposed and unexposed worms 

would be accepted as statistically significant.  It is possible to interpret these adjusted p-

values as the expected probabilities of the clusters being assessed as showing no 

statistically significant differences, given the unadjusted p-values and a random choice of 

FDR threshold.  The adjusted p-values from the two models were used to categorise each 
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cluster into one of three classes: clusters with statistically significant p-values under the 

conservative model were of prime scientific interest; clusters with non-significant p-values 

under the liberal model were unlikely to be of interest; other clusters were of indeterminate 

status, but could be prioritised for further work with respect to either set of p-values. 

 

All statistical analyses were carried out using the 12
th

 Edition of the GenStat 

statistical package (Payne et al., 2009) except the Fisher‟s Exact test which was performed 

in the R software system version 2.9.2 (R Development Core Team, 2009: www.R-

project.org) 

 

5.3: Results 

 From the two samples (IVM –exposed and –unexposed) submitted for Roche 454 

sequencing, a total of 98,685 reads (= ESTs) were obtained. A summary of these results is 

shown in Table 5.1.  For the IVM-exposed sample, 55,341 individual sequence reads were 

obtained, of which 68.3% were assembled into 2,049 contigs with the remaining 15,488 

reads not aligning to any other sequence (singletons).  For the unexposed sample, a total of 

43,344 individual sequence reads was obtained, of which 65% were assembled into 1,659 

contigs with the remaining 13,857 reads as singletons.   The average read length for the 

exposed and unexposed samples was 251 base pairs (Figure 5.1).  Singletons which failed 

to form a contig were found to be either short sequences of poor quality (but with good 

homology to the sequencing primer); to have a high occurrence of repeats, or to contain 

sequencing errors and so were excluded from any further analyses.   

 

Candidate resistance genes were absent from either dataset with the exception of 

one contig (contig 1062, containing 2 reads and 241bp long) in the IVM-exposed dataset 

with BLAST homology to an ABC transporter; subfamily B (MDR/TAP); member 1.  The 

nucleotide sequence for this contig was aligned against the 11 available T. circumcincta 

Pgp sequences described in Chapter 3 and also against the 15 known C. elegans Pgp 

sequences.  Phylogenetic trees were generated from these alignments using both the NJ and 

UPGMA distance matrices.  Figure 5.2 shows the relationships between contig 1062 and 
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the 11 partial T. circumcincta Pgps previously identified, whilst Figure 5.3 shows the 

relationship between contig 1062 and the 15 C. elegans Pgps.   Contig 1062 does not align 

exclusively to any individual sequence suggesting it may be a novel member of the T. 

circumcincta Pgp family or possibly a different part of one of the genes previously 

identified.   

 

5.3.1: Comparison of transcript levels based on KEGG functional groups 

Figure 5.4 shows the functional classification of each contig as identified using the 

KEGG genomes orthology database.  56.2% of the exposed and 55.8% of the unexposed 

samples were shown as having no orthologous hit.  In the exposed sample 12.6% of the 

contigs were in the group „energy metabolism‟, 8.6% of the contigs were in the group 

„circulatory system‟ and 13% of the contigs in the group „neurodegenerative disease‟.  In 

the unexposed sample, the percentages for these same groups were 12.8%, 8.9% and 

13.1%, respectively.  There was no statistically significant difference between the mean 

proportion of reads in exposed and unexposed samples for these four largest groups so they 

were removed from the data presented (Figure 5.4) to allow for easier visualisation of the 

smaller functional groups.  However, all groups were included in the statistical analysis.  

The KEGG orthologous group for „translation‟ showed a statistically significant increase in 

expression in the IVM-exposed sample compared to the IVM-unexposed sample 

(P<0.001), whereas the orthologous groups for „amino acid metabolism‟, „carbohydrate 

metabolism‟ and „xenobiotic degradation and metabolism‟ showed statistically significant 

(P=0.001, P=0.022 and P=0.042 respectively) decreases in mean proportion of reads in the 

IVM-exposed sample compared to the -unexposed sample.  All other groupings, including 

those with no orthologous hits, were found to have no statistically significant difference in 

the mean proportion of reads between the IVM-exposed and IVM-unexposed samples. 

 

5.3.2: Comparison of transcript levels within clusters 

 2,570 clusters were obtained when the exposed and unexposed contigs were 

combined; individual clusters varied in size from 2 to 5,823 reads per cluster.  Sixteen 

clusters were found to have statistically significant differences in expression level 

(P<0.0001) between the mean proportion of exposed and unexposed reads in the cluster 
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under the conservative statistical model.  Under the liberal statistical model, a further 355 

clusters were found to have statistically significant differences (P<0.05) between the mean 

proportion of exposed and unexposed reads in the cluster.  The remaining 2,199 clusters 

were not statistically significant under either model. 

 

Of the sixteen statistically significant clusters under the conservative model, half of 

these clusters had an increased mean proportion of exposed reads compared to unexposed 

reads.  The change in read numbers and putative identities of these sixteen clusters is 

shown in Table 5.2.  Four of the clusters had no BLAST homology assigned and two were 

un-named or hypothetical proteins.  A further four clusters were identified as vitellogenin, 

however, there was no consistency in expression as one cluster showed an increased mean 

proportion of exposed reads whilst the three other vitellogenin clusters showed a reduced 

mean proportion of exposed reads, compared to unexposed reads.  Cytochrome C oxidase 

subunits were also represented four times, three were of subunit type I and one was a 

subunit type III.  Of the four cytochrome C oxidase subunits, half showed a reduced 

number of exposed reads compared to unexposed reads.  The remaining two clusters were 

identified as a major sperm protein, showing a reduced mean proportion of exposed reads, 

and a NADH dehydrogenase subunit 4, showing an increased mean proportion of exposed 

reads.   

 

 Of the 355 statistically significant clusters under the liberal model, 228 (64%) of 

these clusters showed a reduced mean proportion of exposed reads compared to unexposed 

reads.  Of the 355 clusters, 89 (25%) had no BLAST identity whilst 138 (39%) were 

hypothetical, predicted or putative proteins.  Some cluster identities featured more 

commonly than other clusters; the majority of cluster identities were only represented 

once.  Nine of the clusters were identified as heat shock proteins (HSPs), five showing an 

increased number of exposed reads and four a reduced number of exposed reads.  The next 

most common identities were six clusters representing C-type single domain activation 

associated secreted proteins (ASPs).  Apart from one cluster, all showed a reduced mean 

proportion of exposed reads compared to unexposed reads.  Another five clusters were 

identified as secreted protein precursors; four had a reduced mean proportion of exposed 

reads compared to unexposed reads and were secreted protein 5 precursors.  One showed 
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an increased mean proportion of exposed reads compared to unexposed reads but, unlike 

the previous four secreted protein precursors, was identified as a secreted protein 6 

precursor.  Like the clusters with the statistically significant results under the conservative 

model, vitellogenin also featured in the significant results in the liberal model, with four 

clusters again being assigned this identity and following the same expression pattern.  

Three more clusters were also identified as cytochrome C oxidase subunits, two were 

subunit type I and one subunit type III.  However, compared to the statistically significant 

clusters with the same identity in the conservative model, all of these clusters showed an 

increase in the mean proportion of exposed reads.  The identities of the 355 clusters are 

provided in Appendix 5. 

 

5.4: Discussion 

Limited sequence data are available for T. circumcincta and, although a genome 

sequencing project is underway (http://www.sanger.ac.uk/Projects/Helminths/), it is 

unlikely that an annotated genome sequence will be available in the near future.  Currently, 

the T. circumcincta genomic resource represents ~6,000 ESTs 

(http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html).  Currently, it is estimated 

that parasitic nematodes have approximately 20,000 genes; in C. elegans the genome is 

approximately 100 megabases in size whilst in H. contortus, due to bigger and more 

numerous introns, the genome is estimated to be 200-350 megabases long, although the 

exact genome size has not yet been determined.  The T. circumcincta genome is more 

likely to mirror that of H. contortus as both are parasitic species, although Leroy, Duperray 

& Morand (2003) estimated the genome size of T. circumcincta to be 59 megabases.  

Currently, the T. circumcincta genome sequencing stands at 14 megabases 

(http://www.sanger.ac.uk/Projects/T_circumcincta/) (Parkinson et al., 2004b; Sutherland & 

Scott, 2010).  Although not providing full coverage of the transcriptome, the generation of 

a total of 98,685 novel reads (i.e. ESTs) provides a valuable resource to allow the 

investigation of whether inducible gene expression changes have a role to play in 

resistance to anthelmintics.   
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The majority of the KEGG genome functional classification groups, including the 

largest „no hits‟ group were equally represented in both exposed and unexposed datasets.  

The scale of changes observed following IVM exposure is very different to those observed 

when comparing the gene expression profile of T. circumcincta during profound changes 

in the worms‟ physiology, e.g. transition to a different life cycle stage (Nisbet et al., 2008).  

A statistically significant increase in the expression of genes linked to translation in the 

exposed sample suggests that one of the responses to IVM exposure is a generalised 

increase in protein production.  As expected, translation was one of the larger functional 

groups shown in Figure 5.4; most of the contigs in this group were of ribosomal origin.  

All of the groups showing a statistically significant reduction in expression appear to be 

linked to metabolism, including „amino acid metabolism‟, „carbohydrate metabolism‟ and 

„xenobiotic degradation and metabolism‟.  One way the parasites could be trying to survive 

exposure to IVM could be to stop any non-essential cellular processes; however the 

general reduction in metabolic processes could also indicate the parasites being paralysed 

or killed by IVM.   

 

The functional group „xenobiotic degradation and metabolism‟ showed a reduction 

in expression in the exposed group.  This was where any candidate resistance genes such as 

cytochrome P450s would be expected to sit, and an increase in expression of genes 

potentially involved in generalised drug handling mechanisms was anticipated.  Genes of 

this class are generally expressed at low levels so the majority are likely to be missing from 

this transcriptomic analysis (Kotze, 1997; Barrett, 1998).  This is because an EST dataset is 

subject to sampling bias which leads to under-representation of rare transcript (Nagaraj, 

Gasser, & Ranganathan, 2007).  Interestingly, the only contig identified as a candidate 

resistance gene (IVM-exposed contig 1062) was identified as an ABCB1 which according 

to the KEGG functional classifications used was classified in the „membrane transport‟ 

group not in the „xenobiotic degradation and metabolism‟ group.  This contig was aligned 

against Pgp sequences from both C. elegans and T. circumcincta as Pgps are also part of 

the B subfamily of ABC transporters (Sheps et al., 2004).  The alignment trees (Figures 5.2 

and 5.3) did not indicate that contig 1062 was the same or closely related to any of the T. 

circumcincta previously identified, nor did it align to any particular C. elegans Pgp.   
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None of the putative target genes implicated in IVM resistance, such as the GABA 

and GluCl channels described in the Chapter introduction, were present in the cluster 

analysis.  A more targeted approach such as real-time PCR, or more in-depth sequencing, 

would be required to assay all genes in this class and to provide statistically meaningful 

data on differential expression of these genes.  It is also important to remember that the 

MOTRI isolate represents a spectrum of resistant phenotypes and will include a proportion 

of susceptible individuals that will undoubtedly be killed by the IVM exposure in vitro.  It 

is possible that the level of IVM exposure chosen caused the death of the relatively 

susceptible parasites and induced stress responses in the more resistant parasites.  The 

contribution of dead or dying individuals may have masked the expression of generalised 

drug handling mechanisms such as Pgps and CYPs. 

 

Analysis of the functional classification of the contigs in the exposed and 

unexposed datasets revealed only slight differences between the two datasets.  This 

suggested that any differences in expression levels were subtle and were more likely to be 

found within clusters rather than within functional groups.  HSPs show increased 

expression when cells are exposed to heat or other environmental stresses (Lindquist, 

1986).  However four of the nine clusters identified as HSPs showed a reduced mean 

proportion of exposed reads when exposed to IVM.  Six of the clusters were identified as 

C-type single domain ASPs and the majority were shown to have reduced expression in the 

exposed sample compared to the unexposed sample.  ASPs are nematode-specific proteins 

and are believed to have roles in parasite establishment and maintenance and may also act 

as allergens (Visser et al., 2008).  A reduced expression of these proteins in response to 

IVM could be the adult parasites down-regulating activity associated with their parasitic 

behaviour.   

 

More than one cluster was identified as vitellogenin or cytochrome C oxidase 

subunits; however, no clear pattern of increased or decreased expression of these cluster 

identities could be identified.  Cytochrome C oxidases are part of the mitochondrial 

electron transport chain; changes in expression may be due to changes in the parasite‟s 

respiration rate in response to drug exposure.  The majority of clusters identified as 

vitellogenin (six out of the eight identified as having statistically significant differences in 
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read numbers between the two samples) showed a decreased expression in the exposed 

sample, suggesting a reduction in egg production in response to IVM exposure. 

 

 Unfortunately, we do not have access to the parental susceptible population of T. 

circumcincta from which MOTRI was selected in the field.  This makes meaningful 

genetic comparisons of susceptible and resistant isolates difficult as they do not share a 

common genetic background.  However, in this study we have explored global changes in 

gene expression within one isolate following exposure to IVM in vitro.  This experiment 

has shown that next generation sequencing approaches can be used to investigate gene 

expression changes in pools of complex nematode parasites such as T. circumcincta, for 

which genomic resources are limited.  This small-scale study has facilitated the generation 

of two new sets of ESTs from a multiple drug-resistant T. circumcincta isolate, and 

allowed a comparative investigation into the transcriptomic response of this isolate to IVM 

exposure.  Results clearly show that not all the observed expression changes reflect up-

regulation, many of the changes involved down-regulation.  Results also show that the 

MOTRI isolate, which exhibits an IVM efficacy of 60%, is still affected by IVM treatment. 

 

 In terms of understanding the genetic basis of resistance, next generation 

sequencing approaches have great potential to contribute to this area of research.  These 

high-throughput sequencing technologies now routinely require very small amounts of 

starting material, making them ideal for studies of parasitic helminths for which biological 

material can be limiting.  However, care also needs to be taken when using EST datasets to 

estimate gene numbers; the fragmented nature of the sequence generated (particularly 

those generated using Solexa and SOLiD) can cause over-representation of a gene when 

two non-overlapping fragments of the same gene are taken to be two separate genes 

(Abubucker et al., 2009).  This may be the case with the dataset described above, 

especially in the case of vitellogenin which is a very long transcript (Nisbet & Gasser, 

2004).  Until a full genome is available for T. circumcincta, it will not be possible to 

definitively say whether the gene expression changes identified in this Chapter are real or a 

result of erroneous gene fragmentation.   

 



177 

Although not exploited in this study, the assembly of large sequence datasets into 

contigs allows a precise analysis of qualitative genetic changes, for example SNPs and 

indels, which may be linked to resistance.  Furthermore, detailed network analysis of large 

EST datasets such as those generated by next generation sequencing may contribute to 

making biological sense of complicated inter-related gene expression changes.  The biggest 

challenge when generating large amounts of EST data is the correct application of 

downstream bioinformatic and statistical analysis to answer biologically relevant questions 

(Pop & Salzberg, 2008; Shendure & Ji, 2008).  In this research we have developed a two-

model based statistical method to allow the categorization of a large dataset into more 

refined groups, aiding the identification of the most significant changes.  The application 

of next generation sequencing approaches when applied to the most appropriate biological 

resource should ultimately help identify the genuine genetic determinants underlying 

anthelmintic resistance. 
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Table 5.1: Summary of the results of the Roche 454 sequencing carried out on two pools of MOTRI mixed-

sex T. circumcincta adults, one exposed to ivermectin in vitro and one as an unexposed control. 

Sample Number 

of reads 

%  reads 

assembled 

Number of 

contigs 

Largest contig 

length (BP) 

Number of 

singletons 

IVM exposed 55,341 68.3 2,049 3,735 15,488 

IVM unexposed 43.344 65.0 1,659 2,872 13,857 
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Table 5.2: The sixteen clusters with statistically significant differences in gene expression between IVM-

exposed and –unexposed worms under the conservative model.  The columns show the cluster identity used 

in the analysis (cluster), the number of reads within that cluster (U reads = unexposed and T reads = 

exposed), whether gene expression up (+) or down (-) regulated compared to unexposed reads (change) and 

what the putative cluster identity was (Best BLAST identity). 

Cluster U reads T reads Change Best BLAST identity 

1782 0 863 + 
Cytochrome c oxidase subunit I [Ancylostoma caninum] 

YP_002725710.1 

210 508 1439 + 
Cytochrome c oxidase subunit I [Steinernema rarum] 

AAY22431.1 

538 1893 3930 + 
Hypothetical protein Bm1_17870 [Brugia malayi] 

XP_001895031.1 

1621 0 176 + 
NADH dehydrogenase subunit 4 [Cooperia oncophora] 

NP_851330.1 

378 0 62 + No hits found 

1747 0 253 + No hits found 

175 271 836 + 
Unnamed protein product [Macaca fascicularis] 

BAE89779.1 

1746 0 291 + 
Vitellogenin-6; Flags: Precursor [Oscheius 

brevesophaga] Q94637.1 

2557 516 0 - 
Cytochrome oxidase subunit I [Cooperia oncophora] 

BAE72507.1 

409 347 12 - 
Cytochrome oxidase subunit III [Ancylostoma 

duodenale] CAD10435.1 

672 348 199 - 
Major sperm protein [Dictyocaulus viviparus] 

ACC64398.1 

2550 283 0 - No hits found 

2558 46 0 - No hits found 

574 182 0 - Vitellogenin [Haemonchus contortus] AF305957_1 

102 418 241 - 

Vitellogenin structural genes (yolk protein genes) family 

member (vit-2) [Caenorhabditis elegans] 

NP_001123117.1 

653 783 299 - 
Vitellogenin-6; Flags: Precursor [Oscheius 

brevesophaga] Q94637.1 
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Figure 5.1: Graph showing the average read length of the sequences generated by Cogenics using the two 

pools of RNA generated from MOTRI T. circumcincta adults, one exposed to ivermectin and one unexposed 

in vitro.  Reproduced from 454 run report from Cogenics 
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A  

 

 

B  

Figure 5.2: Relationship of contig 1062 from the IVM-exposed dataset to the 11 partial Pgp gene sequences 

identified in Chapter 3.  A: Tree generated using the UPGMA distance matrix with a bootstrap value of 1000. 

B: Tree generated using the NJ distance matrix with a bootstrap value of 1000. 
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A  

 

 

B  

Figure 5.3: Relationship of contig 1062 from the IVM-exposed dataset to the 15 C. elegans Pgp gene 

sequences.  A: Tree generated using the UPGMA distance matrix with a bootstrap value of 1000. B: Tree 

generated using the NJ distance matrix with a bootstrap value of 1000. 
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Figure 5.4: Functional classification of reads from 454 sequencing of (A) in vitro ivermectin exposed 

MOTRI T. circumcincta adults and (B) unexposed MOTRI T. circumcincta adults identified using KAAS.  

Not shown in the Figure are the 56.2% of exposed reads and 55.8% of unexposed reads with no known hits, 

the 12.6% of exposed reads and 12.8% of unexposed reads in the functional group „energy metabolism‟, the 

8.6% of exposed reads and 8.9% of unexposed reads in the functional group „circulatory system‟ and the 

13% of exposed reads and 13.1% of unexposed reads in the functional group „neurodegenerative disease‟.  

Individual reads may be present in more than one functional group. 
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Chapter 6: Suppression Subtractive Hybridisation Comparison of Gene 

Expression in CVL and MOTRI Teladorsagia circumcincta Isolates  

6.1: Introduction 

Candidate resistance gene studies aimed at identifying the genes associated with 

IVM resistance in parasitic nematodes such as T. circumcincta have not definitively 

identified either the genes involved nor markers associated with resistance (Gilleard, 2006; 

von Samson-Himmelstjerna et al., 2007).  Most of the studies to date have looked for 

mutations associated with IVM resistance, yet other mechanisms of resistance such as 

changes in expression levels of genes potentially involved in drug handling or metabolism 

have largely been ignored.  The work described in Chapters 3 and 4 has investigated the 

role differential gene expression of Pgps and CYPs could play in the IVM resistance 

phenotype exhibited by certain isolates of T. circumcincta.  However, as discussed in 

Chapter 5, changes in the expression of other genes, not classified as candidate resistance 

genes, could potentially enable T. circumcincta to exhibit IVM resistance.  The use of a 

more global “non-hypothesis” driven approach to identify genes exhibiting altered 

expression profiles in response to IVM exposure (see Chapter 5) or in a IVM-resistant 

isolate could enhance the knowledge of how IVM-resistant T. circumcincta is able to 

handle the drug and also survive drug exposure.  One such technique, which can be used to 

investigate changes in gene expression, is described below.   

 

Suppression subtractive hybridisation (SSH) was first described by Diatchenko et 

al (1996) as a method to allow the identification and isolation of differentially expressed 

genes between two pools of cDNA.  Firstly, normalisation of the tester cDNA sample 

equalises the abundance of the cDNAs within that pool, then sequences common to both 

samples are removed by hybridising the driver cDNA to the tester cDNA.  A final PCR 

step selectively amplifies only those cDNAs which are unique to the tester cDNA 

population whilst preventing the amplification of non-unique transcripts.  Identification of 

the unique transcripts in the tester population is then achieved by cloning and sequencing 

the resultant PCR products.  The method is especially useful for identifying transcripts 

with low abundance as the first, normalisation, step equalises the abundance of the 

transcripts, whilst the suppressive PCR step means single-stranded, non-differentially 

expressed double-stranded or driver specific cDNAs fail to amplify.  SSH has advantages 
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over previous methods, such as differential display, as it is less-time consuming and 

requires less starting material (Gasser & Newton, 2000; Cottee et al., 2006).  Compared to 

standard EST library construction, SSH also produces fewer redundant sequences, made up 

of common, abundantly expressed genes and enables the identification of genes expressed 

at low levels by selectively amplifying them (Diatchenko et al., 1996; Nisbet & Gasser, 

2004; Cottee et al., 2006).   

 

Few studies to date have utilised SSH to investigate differences in gene expression 

in parasitic nematodes. Where it has been employed, SSH has been used to investigate 

stage-specific changes in gene expression, particularly those changes associated with the 

transition between the free-living and parasitic stages, whilst other studies have 

investigated gender differences in expression.  Two-way (identifying increased and 

reduced expression of genes between the tester and driver cDNA) stage-specific expression 

of genes has been investigated in Trichinella spiralis, where comparisons were made 

between newly hatched larvae, day 3 adults and day 5 adults; in An. caninum, where genes 

with differential expression between free-living and parasitic larval stages were identified 

and, finally, in T. circumcincta, where gene expression was compared between xL3 and 

early L4 parasites (Liu et al., 2007; Nisbet et al., 2008; Datu et al., 2008).  Comparisons of 

gene expression between male and female adult parasites, using SSH, have been carried 

out in O. dentatum and T. vitrinus (Nisbet & Gasser, 2004; Cottee et al., 2006).  Uniquely, 

one study in T. spiralis has used SSH to investigate differential expression in life-cycle 

stages and between the parasite sexes.  This study investigated the genes induced in T. 

spiralis following in vitro heat shock  and identified 12 genes induced in infective larvae 

following exposure to 43ºC, as compared to 37ºC (Mak, Sun, & Ko, 2001).  No studies, to 

date have employed SSH, in parasitic nematodes to investigate the gene expression 

changes associated with anthelmintic resistance.   

 

The investigation of constitutive expression differences has, until now, focused on 

the panel of candidate resistance genes as described in Chapters 3 and 4.  The final 

comparison in this thesis was to use a „non-hypothesis‟ driven one-way SSH approach to 

identify genes with increased expression in the resistant MOTRI T. circumcincta isolate 

compared to the susceptible CVL isolate.  This was to complement the Roche 454 dataset 
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generated in Chapter 5 comparing the inducible expression of genes in the MOTRI isolate 

which had been exposed to IVM in vitro.  The SSH method was chosen because it 

amplifies unique transcripts with low abundance whereas the methods used prior to SSH 

were inefficient at amplifying transcripts of low abundance (Diatchenko et al., 1996).  To 

identify genes with increased expression in, or unique to MOTRI, MOTRI cDNA was 

chosen as the tester sample while the CVL cDNA was the driver sample.   

 

6.2: Materials and methods 

6.2.1: Extraction of RNA 

 RNA was extracted from two pools of adult worms, one from the known IVM-

susceptible T. circumcincta CVL (MTci2) isolate and the other from the triple BZ, LEV 

and IVM-resistant T. circumcincta isolate (MOTRI or MTci5) using the Trizol
®
 method, as 

described previously (Section 2.3.1).  Estimations of the concentration of the RNA were 

made using a NanoDrop
®
 ND-1000 spectrophotometer.  From these readings it was 

decided that the subtraction experiment would utilise cDNA made using total RNA as 

there were insufficient quantities of total RNA to purify sufficient poly A
+
 RNA for the 

subtraction experiment. 

 

6.2.2: Synthesis of cDNA 

 cDNA was synthesised from the above total RNA using the SMARTer
™

 PCR 

cDNA Synthesis kit (Clontech).  First strand synthesis was carried out by combining, for 

each of the two isolates, 1µg total RNA with 1µL 3‟ SMART™ CDS Primer II A and 

nuclease free water to give a total volume of 4.5µL.  This was incubated at 72ºC for 3 mins 

followed by 42ºC for 2 mins in an Applied Biosystems 2720 thermal cycler.  While this 

reaction was incubating, a master mix for the two reactions was set up by combining; 4µL 

5X First-Strand Buffer, 0.5µL 100mM DTT, 2µL 10mM dNTP mix, 2µL 12µM SMARTer 

II A Oligonucleotide, 0.5µL RNase Inhibitor and 2µL 100U SMARTScribe™ Reverse 

Transcriptase.  5.5µL of the master mix was transferred by pipette into each of the reaction 

tubes as soon as the thermal cycling was completed and the tubes incubated for 90 mins at 

42ºC.  The incubation time was extended to 90 mins to ensure full-length cDNAs were 
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obtained.  The reaction was terminated by heating the tubes to 70ºC for 10 mins and the 

first strand reaction product diluted in 40µL TE buffer. 

 

 cDNA amplification, using long distance PCR, utilised 30µL of each of the first 

strand reaction mixes. A master mix comprising of 666µL sterile deionised water, 90µL 

10X Advantage 2 PCR Buffer, 18µL 50X 10mM dNTP mix, 18µL 12µM 5‟ PCR Primer II 

A and 18µL 50X Advantage 2 Polymerase Mix was set up with 270µL aliquots of this 

master mix placed into each of the two tubes containing the first strand reaction mix.  The 

resulting PCR reaction mix was split into three aliquots of 100µL, labelled A, B, and C, for 

each of the two samples and thermal cycling commenced in an Applied Biosystems 2720 

thermal cycler pre-heated to 95ºC.  Cycling parameters were 95ºC for 1min followed by 15 

cycles of 95ºC for 15 secs, 65ºC for 30 secs and 68ºC for 6 mins.  After the 15 cycles had 

finished, 30µL from each of the tubes labelled C was removed for PCR optimisation, 5µL 

of which was kept for gel analysis, whilst the remainder of tubes C and all of tubes A and 

B were stored at 4ºC.  Further PCR cycles were carried out on the 30µL aliquots from 

tubes C, using the conditions described above.  After 18, 21, 24 and 27 cycles, 5µl aliquots 

were taken for gel analysis.  All of the 5µL aliquots were run on a 1.2% agarose gel and 

the gel visualised under UV.  The results of this gel determined that the samples A, B and 

the remainder of C did not require further PCR cycles; 15 cycles was optimal for 

amplification of the PCR products. 

 

6.2.3: Rsa I digestion of cDNA 

The three tubes for each of the samples were combined and the PCR product 

cleaned up using the QIAquick
®
 PCR purification kit (Qiagen), eluting into 50µL nuclease 

free water.  The DNA was diluted to give a total volume of 322.5µL with 10µL set aside 

for later analysis (pre-digestion sample).  To each sample, 36µL 10X Rsa I restriction 

buffer and 1.5µL Rsa I were added and the samples incubated at 37ºC for three hours.  

Another 10µL aliquot (post-digestion sample) was removed and the rest of the sample 

stored at 4ºC while the pre- and post-digestion samples were run on a 1.2% agarose gel.  

The gel confirmed the Rsa I digestion had worked so the reactions were terminated by the 

addition of 8µL 0.5M EDTA.  The digested cDNA was cleaned up using the QIAquick
®
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PCR purification kit (Qiagen), eluting into 30µL, and the concentration determined using a 

NanoDrop
®
 ND-1000 spectrophotometer.  The more concentrated CVL sample was diluted 

using nuclease free water to the same concentration as the MOTRI sample, namely 

276ng/µL, which was deemed suitable for the subtraction experiment. 

 

6.2.4: Subtraction reaction 

A one-way subtraction was carried out with the MOTRI Rsa I digested cDNA as 

the tester sample and the CVL Rsa I digested cDNA as the driver sample.  The aim of this 

subtraction was to identify sequences which exhibited increased expression in the MOTRI 

sample as compared to the CVL sample.  The kit used for this experiment was the BD 

PCR-Select cDNA Subtraction Kit (Clontech), following the manufacturer‟s protocol.  A 

diagram of the subtraction experiment is shown in Figure 6.1.   

 

Firstly, the tester cDNA underwent adaptor ligation; 1µL of the tester cDNA was 

diluted in 5µL sterile water and a master mix set up by combining 9µL sterile water, 6µL 

5X Ligation Buffer and 3µL T4 DNA Ligase.  Two reactions were set up as follows; for 

tester1-1, 2µL diluted tester cDNA were mixed with 2µL 10mM Adaptor 1 and 6µL 

master mix whilst for tester 1-2, 2µL diluted tester cDNA were mixed with 2µL 10mM 

Adaptor 2R and 6µL master mix.  For the unsubtracted tester control, 1-c, 2µL of tester 1-1 

and 2µL of tester 1-2 were combined.  The three tubes (1-1, 1-2 and 1-c) were incubated 

overnight at 16ºC.  The samples were stored at -20ºC whilst ligation efficiency analysis 

was carried out.  To stop and inactivate the ligation step, 1µL 0.2M EDTA/ 1mg/mL 

glycogen mix was added to each tube, mixed and the samples heated at 72ºC for 5 mins.   

 

 Ligation efficiency was evaluated by PCR amplification of the T. circumcincta β-

tubulin housekeeping gene.  This gene was chosen as the amplicons obtained using the β-

tubulin forward and reverse primers (Table 2.1) did not contain any Rsa I digestion sites.  

The master mix for the reactions was set up by combining 92.5µL sterile water, 12.5µL 

10X PCR reaction buffer, 2.5µL 10mM dNTP mix and 2.5µL 50X BD Advantage cDNA 

Polymerase Mix.  1µL of each of tester 1-1 and tester 1-2 was diluted in 200µl nuclease 
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free water and four PCR reactions set up.  In reaction tube 1, 1µl each of diluted Tester 1-

1, β-tubulin reverse primer and PCR Primer 1 was mixed with 22µL master mix.  In 

reaction tube 2, 1µl each of diluted Tester 1-1, β-tubulin reverse primer and β-tubulin 

forward primer was mixed with 22µL master mix.  In reaction tube 3, 1µl each of diluted 

Tester 1-2, β-tubulin reverse primer and PCR Primer 1 was mixed with 22µL master mix.  

Finally, in reaction tube 4, 1µl each of diluted Tester 1-2, β-tubulin reverse primer and β-

tubulin forward primer was mixed with 22µL master mix.  The four reaction tubes were 

subjected to PCR on an Applied Biosystems 2720 thermal cycler with the following 

reaction conditions; 94ºC for 30 secs followed by 25 cycles of 94ºC for 10 secs, 59ºC for 

30 secs and 68ºC for 2 mins 30 secs.  5µL of each of the four PCR reactions was analysed 

on a 2% agarose gel. 

 

The first hybridisation between the tester samples (1-1 and 1-2) and the driver 

(CVL) cDNA was carried out by combining the two pools of DNA.  In hybridisation tube 

1, 1.5µL of the Rsa I-digested driver (CVL) cDNA from Section 6.2.3 above was mixed 

with 1.5µL tester 1-1 and 1µL 4X hybridisation buffers which had previously been 

incubated at room temperature for 15 mins.  In hybridisation tube 2, 1.5µL of the Rsa I-

digested driver (CVL) cDNA from Section 6.2.3 above was mixed with 1.5µL tester 1-2 

and 1µL 4X hybridisation buffer which had previously been incubated at room temperature 

for 15 mins.  Both samples were overlaid with a drop of mineral oil and incubated on an 

Applied Biosystems 2720 thermal cycler at 98ºC for 1 min 30 secs followed by 8 hours at 

68ºC. 

 

 The second hybridisation involved the addition of fresh denatured driver cDNA to 

the combined reaction mixes of tubes 1 and 2.  To do this, fresh driver cDNA (CVL from 

Section 6.2.3) was firstly denatured by combining 1µL of the driver cDNA with 1µL of 

room temperature 4X Hybridisation buffer and 2µL of sterile water.  This was overlaid 

with a drop of mineral oil and incubated on a thermal cycler at 98ºC for 1 min 30 secs.  A 

pipette and pipette tips were warmed to 45ºC and the sample in hybridisation tube 2 drawn 

up into the pipette tip followed by a small amount of air and then the freshly denatured 

driver cDNA.  Finally, the contents of the pipette tip were transferred into hybridisation 

tube 1, mixed and incubated in an Applied Biosystems 2720 thermal cycler set at 68ºC 
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overnight.  These steps were carried out as quickly as possible, removing the tubes only 

briefly from the thermal cyclers set at 68ºC to prevent the denatured cDNA from re-

annealing.  After overnight incubation, 200µL pre-warmed dilution buffer was added to the 

sample and mixed; the sample was then heated at 68ºC for 7 mins and stored at -20ºC. 

 

 Amplification of cDNA was carried out by a two-step nested PCR.  In the first PCR 

reaction, a 1µL aliquot of the subtracted cDNA and a 1µL aliquot of the 1-c sample (from 

the adaptor ligation step, which had been diluted in 1mL of water) were placed into 

separate tubes.  24µL of the master mix, made by mixing 58.5µL sterile water with 7.5µL 

of 10X PCR reaction buffer, 1.5µL 10mM dNTP mix, 3µL 10µM PCR primer 1 and 1.5µL 

50X Advantage cDNA Polymerase mix, was added to each reaction tube.  The reaction 

conditions for the PCR were; 75ºC for 5 mins, 94ºC for 25 secs followed by 27 cycles of 

94ºC for 10 secs, 66ºC for 30 secs and 72ºC for 1 min 30 secs.  On completion of the PCR, 

8µL aliquots were taken from each reaction tube for analysis, and a further 3µL of each of 

the amplified cDNAs diluted in 27µL sterile water.  1µL of the resulting diluted cDNAs 

were transferred to a fresh PCR tube ready for the second PCR reaction and the rest of the 

cDNA stored at -20ºC.  The second master mix was made by mixing 55.5µL sterile water, 

7.5µL 10X PCR reaction buffer, 1.5µL 10mM dNTP mix, 3µL 10µM Nested PCR primer 

1, 3µL 10µM Nested PCR primer 2R and 1.5µL 50X Advantage cDNA Polymerase mix.  

24µL of the master mix was aliquoted into the two PCR reaction tubes which were 

subjected to 11 cycles of 94ºC for 10 secs, 68ºC for 30 secs and 72ºC for 1 min 30 secs in 

an Applied Biosystems 2720 thermal cycler.  8µL of the amplified cDNA was removed 

and analysed on a 2% agarose gel alongside the earlier samples.  The final PCR product 

was cleaned up using the QIAquick
®
 PCR purification kit (Qiagen), eluting in a final 

volume of 30µL and stored at -20ºC. 

 

6.2.5: Cloning and sequencing 

 Cloning of the SSH products from the previous section was carried out using 

JM109 competent cells (Stratagene) and the pGEM
®
-T vector system (Promega), as 

described in Sections 2.3.7 and 2.3.8.  Initially, 10 white colonies were selected from each 

of two plates of transformed cells, set up from the ligation mix containing the purified 
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hybridised cDNA.  These were grown up in glass universals containing 10mL LB broth 

and 20μL 25mg/mL AMP, the plasmids purified and sent for sequencing using the T7 

plasmid primer, as described in Section 2.3.9.  Subsequently, a further 10 white colonies 

from each of the two plates were cloned and sequenced. 

 

6.2.6: Analysis of results 

 Analysis of the sequence data was carried out using SeqMan (DNASTAR 

Lasergene version 8) to enable the accuracy of base calls to be checked, to align sequences 

into contigs and to remove plasmid and adaptor sequence.  Consensus sequences were used 

to perform a tBLASTx search on NCBI (www.ncbi.nlm.nih.gov/blast/Blast.cgi) and a 

BLASTn search on EMBL-EBI (www.ebi.ac.uk/blast2/parasites.html).  Consensus 

sequences were BLAST searched, using the local BLAST server, against the Roche 454 

sequencing dataset (Chapter 5) to determine if any of the sequences with constitutive 

expression differences between MOTRI and CVL also exhibited inducible expression 

differences under IVM exposure in vitro.   

 

6.2.7: Confirmation of results using semi-quantitative PCR 

 Specific primers for six of the sequences obtained were designed to allow semi-

quantitative PCR to be carried out to confirm the validity of the SSH results.  The protocol 

was as follows:  32µL of nuclease free water was combined with 5µL 10X PCR buffer, 

1.5µL 50mM MgCl2, 2μL dNTP, 0·5μL Platinum
®
 Taq DNA Polymerase, 2μL each of the 

forward and reverse primers, and 5μL template cDNA to give a total reaction volume of 

50μL.  The template for the PCR reaction was either CVL and MOTRI cDNA, synthesised 

from the original RNA generated for the SSH experiment, using random primers as 

described in Section 2.3.2, diluted to 10ng/μL, or the purified Rsa I digested CVL and 

MOTRI cDNA from Section 6.2.3 which had been diluted to 10ng/µL.  The PCR reaction 

conditions were 5 mins at 94ºC followed by 30 cycles of 94ºC for 30 secs, 58ºC for 30 secs 

and 72ºC for 30 secs, followed by 10 mins at 72ºC and a hold at 4ºC.  After 15, 20, 25 

cycles and on completion of the PCR, 5µL of the reaction mix was removed from each 

tube and stored at 4ºC prior to all the samples being visualised on a 1% agarose gel as 

described previously.  Β tubulin primers (Table 2.1) were used as a positive control and the 
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primers used to amplify the SSH products are shown in Table 6.1.  The protocols described 

above required the following reagents which were not supplied as parts of the kits used: 

 

Agarose gel 

2% agarose gel was prepared by dissolving 8g agarose and 8mL 50X TAE in 392mL of 

dH2O using a microwave.  20μL 10000X Gel Red (Biotium Inc) was added to enable 

visualisation of DNA under UV light.  

1.2% agarose gel was prepared by dissolving 4.8g agarose and 8mL 50X TAE in 392mL of 

dH2O using a microwave.  20μL 10000X Gel Red (Biotium Inc) was added to enable 

visualisation of DNA under UV light.  

 

0.5M Ethylenediaminetetraacetic acid (EDTA) 

18.61g EDTA was diluted in water to a final volume of 100mL.   

 

1M TrisHCl, pH8.0 

12.11g TrisHCl was diluted in water to a final volume of 100mL. The pH was adjusted to 

pH8.0 using sodium hydroxide. 

 

TE buffer (10mM Tris [pH8.0], 0.1mM EDTA) 

1mL of the 1M TrisHCl and 20µl of the 0.5M EDTA was diluted to give a total volume of 

100mL. 

 Other reagents required during the SSH experiment, such as TAE buffer and 

cloning reagents have been previously described in Chapter 2. 
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6.3: Results 

6.3.1: Genes identified using SSH 

 On completion of the subtraction experiment and the cloning of the resultant PCR 

product, a total of 40 colonies were sequenced.  One colony (2g) failed the sequencing 

quality control checks and was excluded from any further analysis.  The results of the 

sequence analysis, as described in Section 6.2.6, are shown in Table 6.2 below.  Of the 39 

remaining colonies, one (colony 2k) was found, upon sequence analysis, to not contain an 

insert in the plasmid whilst the remaining thirty-eight aligned into 28 contigs ranging in 

size from 215 to 742 bp in length.  The contigs were named SSH1 to 28, sequentially as 

they were identified.  The majority of contigs contained a single sequence, with the 

maximum number of sequences within a contig being 4.  The EBI and NCBI best BLAST 

hits for 12 of the 28 contigs gave similar predicted sequence identities while a further 5 

contigs did not have a definitive BLAST identity, being labelled as predicted or 

hypothetical proteins or the BLAST identities were not sufficiently detailed (e.g. SSH11 in 

Table 6.2).  Of 28 contigs, 3 were identified as heat shock protein (HSP) homologues, 2 of 

these were HSP-16 and the third HSP-20.  Three of the contigs had putative BLAST 

identities of ribosomal proteins whilst a further 2 contigs had putative BLAST identities of 

T. circumcincta mitochondrial sequences. 

 

6.3.2: Confirmation of results using semi-quantitative PCR 

 Using the primers in Table 6.1 and the semi-quantitative PCR protocol, as 

described in Section 6.2.7 above, the SSH results for a selection of the contigs were 

confirmed.  The contigs were chosen on the basis of their putative BLAST identities and 

were as follows: SSH3 (axonemal dynein), SSH4 (HSP-16), SSH6 (SXC1), SSH7 (HSP-

16), SSH12 (HSP-20) and SSH17 (Cathepsin B).  The expression of these genes was 

compared to the control gene, β-tubulin (Table 2.1).  The amplification of SSH 6, 7 and 12 

was very weak and for SSH17 not visible at all after completion of the first semi-

quantitative PCR, so a second semi-quantitative PCR was set up, with the number of cycles 

extended to 35 cycles.   The results of the semi-quantitative PCR experiments are shown in 

Figure 6.2.  For SSH 3 and 4, the MOTRI sample showed a greater band intensity 

compared to the CVL sample at 20 cycles whilst even after 35 cycles and using Rsa I-
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digested cDNA as template, no band could be detected in either the MOTRI or CVL 

sample for SSH17.  The first bands visible for SSH 6 and 12 both appeared in the MOTRI 

sample lane after 30 cycles, whilst the difference in intensity of the two bands present at 30 

cycles for SSH7 indicates that this gene was more highly expressed in the MOTRI sample 

compared to the CVL sample.  Therefore, with the exception of SSH17, where no 

expression of the gene could be demonstrated, the semi-quantitative PCR results confirm 

the SSH results, indicating that for SSH 3, 4, 6, 7, and 12, there is increased expression in 

the MOTRI T. circumcincta isolate compared to the CVL isolate.   

 

6.3.3: Comparison of SSH results with Roche 454 sequencing results (Chapter 5). 

 BLAST searches of the nucleotide sequences obtained from the SSH analysis were 

made against the contigs generated using the Roche 454 sequencing platform (Chapter 5) 

to determine whether any of the sequences exhibiting increased expression in MOTRI also 

exhibited an altered expression profile following in vitro IVM exposure of the MOTRI 

isolate.  Once the top BLAST hit (or hits if more than 1 shared the top E score) was 

determined, the identity of the cluster containing that contig was made and the number of 

exposed and unexposed reads in that cluster determined by searching the cluster database 

generated in Chapter 5.  Table 6.3 shows the results of this analysis; from this it is possible 

to see that the E scores for the BLAST searches of SSH 3, 8, 15, 16, 21, 22, 24 and 27 

against the 454 dataset were very poor and so these SSH sequences are not discussed 

further.  The identities for the top BLAST cluster hit in the 454 dataset for the remaining 

SSH contigs was generally very similar to the BLAST hits generated when searching the 

SSH nucleotide sequences against the EBI and NCBI databases.  The exception to this was 

SSH7, which did not align to a HSP as the top 454 cluster BLAST hit; however, other 

clusters with similar E scores to the top cluster BLAST hit were identified as HSPs.  

SSH14, when BLAST searched against the 454 dataset, aligned most closely to cluster 

538, which was one of the 16 clusters in Chapter 5 with a statistically significant difference 

in gene expression in exposed and unexposed reads in the conservative statistical model.  

The results for this gene indicate that it exhibits both inducibly and constitutively increased 

expression in response to IVM.  SSH 5, 6, 10 and 23 aligned most closely to clusters in the 

454 dataset which were statistically significant under the liberal statistical model (clusters 

464, 674, 2274 and 494, respectively), indicating that the genes represented by these SSH 

sequences could exhibit constitutive and, potentially, inducible differences in expression in 
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response to IVM.  However, despite all SSH sequences showing increased expression in 

MOTRI compared to CVL, 2 (SSH 6 and 10) showed decreased numbers of exposed reads 

compared to unexposed reads in the Roche 454 dataset.   Of the remaining SSH sequences, 

13 (SSH 1, 2, 4, 7, 11, 12, 17, 18, 19, 20, 25, 26 and 28) had top BLAST identities of 

clusters exhibiting non statistically significant increases in number of exposed compared to 

unexposed reads whilst 1 top cluster BLAST identity (SSH13) showed no change in 

number of reads and a further 1 top cluster BLAST identity (SSH9) showed a non 

statistically significant decrease in number of exposed compared to unexposed reads.   

 

6.4: Discussion 

The SSH method has identified a panel of 28 sequences exhibiting constitutively 

increased expression in the MOTRI T. circumcincta isolate compared to the CVL isolate.  

BLAST searches in both EBI and NCBI have given putative identities for these sequences.  

In some cases, more than one sequence had the same BLAST identity (e.g. SSH 4 and 7), 

this could be an artefact of the SSH process; cDNA is digested using Rsa I so the two 

sequences may be non-overlapping parts of the same gene.  However, Rsa I digestion is 

recommended as longer cDNA fragments may not hybridise as effectively and smaller 

cDNA fragments also provide a better representation of the genes (Diatchenko et al., 

1996).  The sequence generated was BLAST searched against the 454 datasets also 

generated in this thesis (Chapter 5) to determine whether any constitutive changes in gene 

expression between MOTRI and CVL T. circumcincta adults were mirrored by inducible 

changes in expression as determined by the statistical analysis of the 454 dataset.  

Encouragingly, many of the SSH sequences aligned very closely to sequences generated 

using the 454 sequencing platform, suggesting (particularly in the cases of SSH 5, 6, 10, 14 

and 23, which aligned most closely to clusters identified as exhibiting statistically 

significant differences in the 454 dataset) that both inducible and constitutive changes in 

gene expression could play a role in the IVM-resistance phenotype in MOTRI T. 

circumcincta.  Unfortunately, the function of SSH14 (and cluster 538) is not known and, 

due to the significance in the change observed in the 454 study, alongside the current 

observation, this gene (and others identified in this SSH work) could merit further 

investigation to determine the role its expression plays in the IVM-resistant phenotype in 

T. circumcincta.   
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The accuracy of the SSH results was confirmed using semi-quantitative PCR, this 

is an important step because, if the tester and driver samples are very similar (as is 

potentially the case when comparing two adult stage T. circumcincta isolates), the SSH 

technique is more prone to generating false positives (where a sequence is selectively 

subtracted despite being present in equal proportions in both the tester and driver samples).  

The results for SSH 3, 4, 6, 7 and 12 were all confirmed by semi-quantitative PCR.  

Unfortunately, amplification of SSH17 failed despite using the Rsa I-digested cDNA, 

which had already been amplified as part of the SSH protocol and, therefore, should have 

been enriched for rare transcripts.  Confirmation of the differential expression of SSH17 is 

still required.  The confirmatory results for SSH 3, 4, 6, 7 and 12 suggests that the other 

gene changes here may also be reliable, however, these results would have to be confirmed 

by real-time or semi-quantitative PCR before any further conclusions are made.  These 

genes were chosen for semi-quantitative PCR partially based on their BLAST identities 

and merit further discussion.   

 

SSH 4, 7 and 12 had BLAST identities of HSPs; these are a large gene family 

present in a range of species, including parasitic nematodes.  HSPs are believed to act as 

molecular chaperones, binding and stabilising proteins during folding, assembly, transport 

across membranes and degradation (Vercauteren et al., 2006).  HSPs are both 

constitutively expressed in a range of life-cycle stages and induced in response to heat 

shock and exposure to heavy metals, organic compounds and oxidants (Hartman et al., 

2003; Vercauteren et al., 2006).  Constitutively increased expression of these genes in a T. 

circumcincta isolate resistant to IVM could enable these parasites to more efficiently 

manufacture and transport other proteins required to metabolise and handle the 

anthelmintics.  Alternatively, it could be indicative of a generalised up-regulation of genes 

associated with the parasite‟s stress response, a preconditioning of the resistant parasites 

enabling them to cope with the anthelmintics more easily and rapidly. 

 

SSH3 was also chosen for confirmation of the SSH result with semi-quantitative 

PCR because of its apparent homology with an intermediate chain 1 axonemal dynein; 

however, this identity needs to be used cautiously due to the low E score of the NCBI 

BLAST hit and also because the best EBI and 454 dataset BLAST hits did not support this 
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BLAST identity.  However, dynein may have a role to play in the IVM-resistant phenotype 

and, as such, merits further discussion.   Dynein has been shown to be required for the 

correct structure and function of amphidial neurones which are located on either side of the 

pharynx in nematodes (Wicks et al., 2000; Freeman et al., 2003).   Mutations in dynein 

genes, such as CHE-3, have caused disruption in the structure of these amphidial neurones 

leading to disrupted chemotaxis and reduced uptake of lipophilic dyes (Wicks et al., 2000; 

Freeman et al., 2003; Bisset, 2007).   IVM is a lipophilic drug and disrupted amphidial 

neurones have been associated with IVM-resistant isolates in C. elegans and H. contortus, 

however, this phenomenon appears to be more associated with cytoplasmic dynein rather 

than axonemal dynein (the BLAST identity of SSH3), which appears to have a role in the 

beating of flagella and cilia (Wicks et al., 2000; Freeman et al., 2003; Lespine et al., 2007; 

Bisset, 2007).   

 

Six cysteine (SXC) motif-containing genes (the putative BLAST identity of SSH6) 

are short amino acid sequences with six conserved potentially disulphide-bonded cysteines.  

SXCs are suggested to act as signalling ligands or are involved in protein-protein 

interactions (Blaxter, 1998; De Maere et al., 2002).  They can exist in several forms, as 

genes containing only the SXC motif, as mucin-like genes or with an enzymatic domain 

flanked by SXC motifs.  Those with enzymatic domains have been identified as 

tyrosinases, myeloperoxidases and astacin-like zinc metalloproteases (Blaxter, 1998; De 

Maere et al., 2002).  SXC genes were first identified in Toxocara canis in surface coat 

proteins and are part of the small secreted protein class; as such they are seen as a potential 

vaccine candidate (Daub et al., 2000; De Maere et al., 2002).  Why IVM-resistant T. 

circumcincta adults exhibit constitutively increased expression of an O. ostertagi SXC1 

homologue is not clear but, like the HSPs, this observation could be linked to the role of 

SXC1 in protein interactions and signalling pathways, allowing the parasites to respond 

more rapidly to IVM exposure. 

 

Finally, cathepsin B (the putative identity of SSH17) is a peptidase and part of the 

C1 family of the CA clan of cysteine proteases (Ranjit et al., 2008; Atkinson, Babbitt, & 

Sajid, 2009).  The functions of cysteine proteases include protein processing and turnover, 

degradation of host protein (for example, extracellular dermal matrix during skin 
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penetration by Necator americanus), hydrolysis of haemoglobin (particularly in blood 

feeders like H. contortus and N. americanus) and inhibition of the host protective immune 

responses (Ranjit et al., 2008).  Nisbet et al (2008) identified a cathepsin B-like sequence 

which was highly represented in the L4-specific SSH dataset, whilst immunoscreening of a 

H. contortus cDNA expression library with the protective S3 TSBP fraction identified 

three cathepsin B homologues which localised to the gut microvilli (Skuce et al., 1999).  

Like the SXC genes, cathepsin B molecules are seen as good potential vaccine targets 

(Knox & Smith, 2001; Ranjit et al., 2008).  Again, why genes with potentially 

immunogenic and protein interaction roles exhibit increased expression in the IVM-

resistant MOTRI isolate is not clear but potentially could be a result of a generalised 

increase in the turnover of all proteins enabling the parasites to cope better with IVM 

exposure.   

 

Greater depth, and potential accuracy of the sequences generated could have been 

achieved through re-sequencing of the forty selected clones, whilst selecting further 

colonies from the plates or repeated cloning of the SSH PCR product could have enabled 

the identification of further sequences exhibiting increased expression in the MOTRI 

isolate compared to the CVL isolate.  However, the amount of novel sequence generated 

would have become increasingly small as more sequencing was carried out.  As a result, 

the number of sequences selected was capped at forty.  In comparison, a two-way SSH 

experiment looking at differential gene expression between xL3 and L4 T. circumcincta 

generated 361 and 472 unique sequences, respectively (Nisbet et al., 2008).  This result 

illustrates the scale of gene expression changes associated with the transition from the free-

living xL3 stage to the parasitic L4 stage (Nisbet et al., 2008), in comparison with the more 

subtle gene expression changes associated with an IVM resistance phenotype in the adult 

stage.   

 

One of the challenges in making comparisons between different isolates of the 

same species of parasite which have been identified from different geographical regions is 

proving whether any differences observed are due to the different genetic backgrounds of 

the isolates or are due to the differences in their drug resistance status.  The effective size 

of a parasite population and the rate at which genes flow among sub-populations 
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determines the population genetic structure (Blouin et al., 1995).  Population genetic 

studies of T. circumcincta, using mitochondrial sequence data and microsatellite markers, 

have indicated that the majority of genetic diversity in T. circumcincta is found within the 

populations rather than between populations (Blouin et al., 1995; Grillo et al., 2007).  

Animal movement determines, to a certain extent, how much gene flow occurs in the 

parasite population they harbour and is seen as a major risk factor in the development and 

spread of anthelmintic resistance in the UK (Skuce et al., 2010).  The population genetic 

structure of T. circumcincta suggests that the comparison of different isolates, not sharing a 

common genetic background, is scientifically valid.  As such, identifying constitutively 

expressed differences between the MOTRI and CVL isolates, utilising the “non-

hypothesis” driven SSH approach, has enabled the identification of 28 gene fragments 

which could form the basis of further investigations into how IVM resistant T. 

circumcincta is able to survive anthelmintic exposure.   

 

These results could be investigated further, through increasing the amount of 

sequence generated from this SSH experiment or by carrying out the SSH experiment in 

the opposite direction (CVL as the tester and MOTRI as the driver) to identify genes 

exhibiting constitutive decreased expression in the IVM-resistant MOTRI isolate.  

Utilising the real-time PCR approach, as used for the candidate resistance genes, the Pgps 

and CYPs, in Chapter 4, could provide relative quantification of the expression of the panel 

of 28 sequences identified in this chapter in MOTRI.  The close homology of some of the 

sequences identified in this SSH dataset with sequences generated using the 454 

sequencing approach also indicates that the “non-hypothesis” driven approach is a 

worthwhile addition to understanding the role of gene expression in IVM resistance.  The 

SSH genes also exhibiting statistically significant changes in inducible gene expression 

(SSH 5, 6, 10, 14 and 23) would be the priority for any future studies.   
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Table 6.1: Primers used to amplify T. circumcincta SSH products from the Rsa I digested cDNA. 

Primer 

name 

Primer 

direction 

Sequence Melting 

temp (ºC) 

Target Expected size of 

PCR product (bp) 

SSH3 For Sense CTA CTC CGA TGC CGT TAG GA 59.4 
SSH3 127 

SSH3 Rev Antisense TCC AGA TCG GGA CAA TTG AG 57.3 

SSH4 For Sense TTT TCT GGT AGG GTC CAT CG 57.3 
SSH4  202 

SSH4 Rev Antisense AAG CGC TAA GCG GAC AAT TA 55.3 

SSH6 For Sense CAG TGG CAA CCG GTA ACA AT 57.3 
SSH6 191 

SSH6 Rev Antisense CAA TTA GCC TTC GCA AGA CC 57.3 

SSH7 For Sense TGG ATT GGG ATG GTT CTA GC 57.3 
SSH7 200 

SSH7 Rev Antisense GGC CAA ATC CTT ACC ATT GA 55.3 

SSH12 For Sense CAA GCA GGA GCA CAA AAC TG 57.3 
SSH12 194 

SSH12 Rev Antisense TCT GTG GAG CAG CCA CTA TG 59.4 

SSH17 For Sense CAA TGG CTC GAC CGT TAG TG 59.4 
SSH17 191 

SSH17 Rev Antisense GAC GGC AGC AGT CCT TTT TA 57.3 
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Table 6.2: Results of cloning and sequencing of the PCR product generated from a one-way suppressive subtractive hybridisation of CVL from MOTRI T. circumcincta adults.   

Contig 

name 

Contig 

length 

(bp) 

No. 

seqs 

Best EBI BLAST hit EMBL acc 

no. 

E score Best NCBI tBLASTx hit NCBI acc no. E Score 

SSH1 322 1 

Ostertagia ostertagi L4 pAMP1 v1 

cDNA 5' similar to SW:KAG1_CAEEL 

Q10454 probable arginine kinase 

BM896907  1.4e-60  

Caenorhabditis briggsae 

Hypothetical protein CBG11000 XM_002644962.1 7E-63 

SSH2 302 2 

Necator americanus L3 cDNA clone 

Na_L3_40B03 5' similar to F57B10.3 

CE11302 phosphoglycerate mutase 

status 

BU666597   1.20E-36 

Brugia malayi 2,3-

bisphosphoglycerate-independent 

phosphoglycerate mutase partial 

mRNA 

XM_001892376.1 2E-52 

SSH3 215 3 

Steinernema feltiae IS6 - desiccation 

stress related ESTs cDNA clone S24-3  BQ579856  1.00E-08 

Predicted: Taeniopygia guttata 

similar to dynein, axonemal, 

intermediate chain 1 

XM_002189680.1 1.1 

SSH4 679 4 

Teladorsagia circumcincta adults library 

2 cDNA clone Tc_ad2_32D04 5' similar 

to P06582 Heat shock protein HSP16-2. 

Caenorhabditis elegans 

CB037306  2.00E-89 

Angiostrongylus cantonensis 

mRNA for putative Heat Shock 

Protein (hsp-16.1b) 
FM207717.1 7E-24 

SSH5 401 2 

Teladorsagia circumcincta adults library 

2 cDNA clone Tc_ad2_24G11 5' similar 

to O62337 R06C1.4 protein. 

Caenorhabditis elegans 

CB036677  2.80E-45 

Caenorhabditis briggsae 

Hypothetical protein CBG18692 
XM_002640484.1 3E-22 

SSH6 296 1 

Teladorsagia circumcincta adults library 

2 cDNA clone Tc_ad2_36B08 5' similar 

to Q9GNW3 SXC1 protein Ostertagia 

ostertagi 

CB037620  4.00E-53 

Ostertagia ostertagi partial 

mRNA for SXC1 protein 
AJ302944.1 1E-13 

SSH7 430 1 

Teladorsagia circumcincta adults library 

2 cDNA clone Tc_ad2_32F06 5' similar 

to P06582 Heat shock protein HSP16-2. 

Caenorhabditis elegans 

CB037332  7.2e-44  

Angiostrongylus cantonensis 

mRNA for putative Heat Shock 

Protein (hsp-16.1b gene) 
FM207717.1 9E-11 
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Contig 

name 

Contig 

length 

(bp) 

No. 

seqs 

Best EBI BLAST hit EMBL acc 

no. 

E score Best NCBI tBLASTx hit NCBI acc no. E Score 

SSH8 429 1 

Brugia malayi L3 subtracted cDNA 

library clone SWBmL3SA163 
AA933193  0.21 

Brugia malayi 

Phosphatidylinositol 3- and 4-

kinase family protein partial 

mRNA 

XM_001901052.1 7E-54 

SSH9 452 1 
Teladorsagia circumcincta adults library 

2 cDNA clone Tc_ad2_50B08 5' CB038796  1.8e-91  
Drosophila mojavensis GI14783 

mRNA XM_002010235.1 0.00001 

SSH10 449 1 

Strongyloides ratti L2 pAMP1 v1 

Chiapelli McCarter cDNA 5' similar to 

60S acidic ribosomal protein P1 

BI073294  7.20E-09 

Streptococcus equi subsp. equi 

4047, complete genome FM204883.1 0.8 

SSH11 462 1 

Pristionchus pacificus mixed stage SL2b 

TOPO cDNA 5' 
CN656930   1.40E-07 

Homo sapiens 3 BAC RP11-

143P4 (Roswell Park Cancer 

Institute Human BAC Library) 

complete sequence 

AC092966.6 0.09 

SSH12 536 1 

Teladorsagia circumcincta adults library 

2 cDNA clone Tc_ad2_44E08 5' similar 

to Q07160 Heat shock protein homolog 

(HSP20) Nippostrongylus  

CB038331  1.1e-82  

Ostertagia ostertagi mRNA for 

heat shock protein 20 
AJ310811.2 1E-42 

SSH13 597 1 
Caenorhabditis briggsae mRNA for 

cyclophilin 4 isoform  AJ004826  1.7e-46  
Caenorhabditis elegans 

cyclophilin MOG-6 AF421146.1 9E-76 

SSH14 485 2 

Teladorsagia circumcincta adults library 

2 cDNA clone Tc_ad2_02B09 5' similar 

to AAB81938.1 non-functional folate 

binding protein - Homo sapiens 

BM052010  1.2e-97  

Trichostrongylus colubriformis 

18S rRNA gene 
AJ920350.1 2E-85 

SSH15 423 1 

Teladorsagia circumcincta L3 library 

cDNA clone Tc_L3_18A02 5' similar to 

T27E9.2 CE14265 ubiquinol-

cytochrome c reductase complex 

CB035418  2.4e-52  

Caenorhabditis elegans 

hypothetical protein (T27E9.2) 
NM_067380.3 2E-23 
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Contig 

name 

Contig 

length 

(bp) 

No. 

seqs 

Best EBI BLAST hit EMBL acc 

no. 

E score Best NCBI tBLASTx hit NCBI acc no. E Score 

SSH16 248 1 

Caenorhabditis briggsae contig 

cb25.fpc2220  
CAAC0100

0044  

0.94 

Pig DNA sequence from clone 

CH242-240L11 on chromosome 

13 

CU468995.15 2.1 

SSH17 248 1 
Ostertagia ostertagi partial mRNA for 

putative cathepsin B.4 (catB.4 gene)  AJ296147  6.10E-21 
Ostertagia ostertagi partial 

mRNA for cathepsin B.2 AJ401373.2 1.00E-36 

SSH18 300 1 
Teladorsagia circumcincta adults library 

2 cDNA clone Tc_ad2_29H04 5' CB037096  1.80E-58 
Teladorsagia circumcincta 

mitochondrion GQ888720.1 2.00E-41 

SSH19 303 1 

Teladorsagia circumcincta adults library 

2 cDNA clone Tc_ad2_40H03 5' similar 

to P53014 Myosin, essential light chain 

CB038013  1.5e-60  

Caenorhabditis briggsae CBR-

MLC-3 protein XM_002646977.1 4.00E-43 

SSH20 263 1 

Nippostrongylus brasiliensis uni-zap 

adult library cDNA clone 

Nb_ad1_06A11 5' 

BM279355  9.90E-28 

Teladorsagia circumcincta 

mitochondrion GQ888720.1 7.00E-33 

SSH21 521 1 
Caenorhabditis briggsae contig 

cb25.fpc0091 
CAAC0100

0022 

1.6e-10  
Caenorhabditis briggsae CBR-

MIG-1 protein XM_002638736.1 2.00E-57 

SSH22 489 1 
Teladorsagia circumcincta L4 library 

cDNA clone Tc_L4_18E09 5', CB043721  7.0e-33  
Hirschia baltica ATCC 49814 

CP001678.1 0.26 

SSH23 409 1 
Haemonchus contortus cDNA clone 

Hc_ad_41B01 5', CB012573  7.4e-12  
Dictyostelium discoideum AX4 

actin binding protein XM_641035.1 8.00E-06 

SSH24 742 1 

Ostertagia ostertagi L4 SL1 TOPO v1 

cDNA similar to keratins in a glycine-

rich region 

BQ100330  7.5e-78  

Ostertagia ostertagi partial 

mRNA for keratin AJ429146.1  5.00E-56 

SSH25 656 1 

Ostertagia ostertagi L3 SL1 TOPO v2 

cDNA 5' similar to SW:RHOA_CAEEL 

Q22038 RAS-like GTP-binding protein 

RHOA 

BQ625968  7.4e-50  

Caenorhabditis briggsae CBR-

RHO-1 protein 
XM_002632397.1 3.00E-20 

http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:CAAC01000044%5d%3eembl)|%5bembl-acc:CAAC01000044%5d+-view+EmblEntry+-noSession
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:CAAC01000044%5d%3eembl)|%5bembl-acc:CAAC01000044%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=215262398&dopt=GenBank&RID=SWGZ9KZU014&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:AJ296147%5d%3eembl)|%5bembl-acc:AJ296147%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=10803451&dopt=GenBank&RID=SWHDPUMG016&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:CB037096%5d%3eembl)|%5bembl-acc:CB037096%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=261499516&dopt=GenBank&RID=SWJ5BNWA012&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:CB038013%5d%3eembl)|%5bembl-acc:CB038013%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=268563830&dopt=GenBank&RID=SWJC0H6X01N&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:BM279355%5d%3eembl)|%5bembl-acc:BM279355%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=261499516&dopt=GenBank&RID=SWJFX69301S&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:CAAC01000022%5d%3eembl)|%5bembl-acc:CAAC01000022%5d+-view+EmblEntry+-noSession
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:CAAC01000022%5d%3eembl)|%5bembl-acc:CAAC01000022%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=268563207&dopt=GenBank&RID=SWJKK9VJ014&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:CB043721%5d%3eembl)|%5bembl-acc:CB043721%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=254040907&dopt=GenBank&RID=SWJSE2YG014&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:CB012573%5d%3eembl)|%5bembl-acc:CB012573%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=66825544&dopt=GenBank&RID=SWK0CXG1012&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:BQ100330%5d%3eembl)|%5bembl-acc:BQ100330%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=18496162&dopt=GenBank&RID=SWK43VN0012&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:BQ625968%5d%3eembl)|%5bembl-acc:BQ625968%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=268534623&dopt=GenBank&RID=SWKBFFF0014&log$=nuclalign&blast_rank=1
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Contig 

name 

Contig 

length 

(bp) 

No. 

seqs 

Best EBI BLAST hit EMBL acc 

no. 

E score Best NCBI tBLASTx hit NCBI acc no. E Score 

SSH26 241 2 

Haemonchus contortus cDNA clone 

Hc_L4_24H05 5' similar to F28D1.7 

CE05747 locus:rps-23 ribosomal protein 

S23 

CA994729  2.20E-47 

Caenorhabditis elegans 

Ribosomal Protein, Small subunit 

family 
NM_069964.4 4.00E-32 

SSH27 295 2 

Meloidogyne chitwoodi female SL1 

pGEM cDNA 5' contains PTR5 

repetitive element 

CF801743  3.50E-06 

Mus musculus BAC clone RP23-

377L13 from chromosome 17 AC134908.5 1.7 

SSH28 231 1 

Haemonchus contortus cDNA clone 

Hc_L4_02B08 5' similar to 

NP_001021.1 ribosomal protein S27 

(metallopanstimulin 1) 

BF186770  9.30E-44 

Ancylostoma duodenale ribosomal 

protein S27e mRNA 
EF490130.1  3.00E-27 

  

http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:CA994729%5d%3eembl)|%5bembl-acc:CA994729%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=193206196&dopt=GenBank&RID=SWKHB8WY014&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:CF801743%5d%3eembl)|%5bembl-acc:CF801743%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=46395444&dopt=GenBank&RID=SWKMZG3S01N&log$=nuclalign&blast_rank=1
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+(%5bemblidacc-id:BF186770%5d%3eembl)|%5bembl-acc:BF186770%5d+-view+EmblEntry+-noSession
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=145286315&dopt=GenBank&RID=SWKT9DCC012&log$=nuclalign&blast_rank=1
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Table 6.3: Table showing the top BLAST cluster hits when the nucleotide sequences for each of the SSH contigs was BLAST searched against the contigs generated in the Roche 454 

sequence analysis (Chapter 5).  ∞ represents an E score where the value was so small it registered as 0.00 (to 2 decimal places).  The change in cluster reads indicates whether there 

were more unexposed (-) or exposed (+) or equal (=) reads in the cluster, whilst the statistical significance indicates whether the change in number of reads in that cluster was 

statistically significant under the conservative statistical model (1), statistically significant under the liberal statistical model (2) or not statistically significant under either statistical 

model (3).  If more than one cluster has an identical E score as the best BLAST hit for a particular SSH sequence, then all the clusters with that E score are shown.   

SSH 

sequence 

Best BLAST 

hit (Cluster 

number) 

E score NCBI Cluster best BLAST hit Change in 

cluster 

reads 

Statistical 

significance 

SSH1 215 ∞ Hypothetical protein F46H5.3 Caenorhabditis elegans + 3 

SSH2 1007 e^-115 Independent phosphoglycerate mutase Onchocerca volvulus + 3 

SSH3 634 0.84 S60004 hypothetical protein - common roundworm retrotransposon 

R4 

+ 3 

SSH4 680 e^-123 Heat shock protein 20 Haemonchus contortus + 3 

SSH5 464 e^-177 Hypothetical protein CBG18692 Caenorhabditis briggsae AF16 + 2 

SSH6 674 e^-104 SXC1 protein Ostertagia ostertagi - 2 

SSH7 110 e^-128 Hypothetical protein CBG18371 Caenorhabditis briggsae AF16 + 3 

SSH8 

1756 1.70 No hits found + 3 

1720 1.70 Hypothetical protein Bm1_02090 Brugia malayi + 3 

918 1.70 eXPOrtin (nuclear export receptor) family member (xpo-1) + 2 

SSH9 575 ∞ GH24252 Drosophila grimshawi - 3 

SSH10 2274 e^-109 No hits found - 2 

SSH11 136 e^-124 Hypothetical protein TGME49_048900 Toxoplasma gondii + 3 

SSH12 131 e^-148 Heat shock protein 20 Ostertagia ostertagi + 3 

SSH13 152 e^-130 CYclophyliN family member (cyn-4) Caenorhabditis elegans = 3 

SSH14 538 ∞ Hypothetical protein Bm1_17870 Brugia malayi + 1 

SSH15 537 0.43 Pre-mRNA cleavage complex II protein Clp1 Brugia malayi + 2 

SSH16 369 0.25 Hypothetical protein F40A3.3 Caenorhabditis elegans + 3 

SSH17 201 8e^-60 Cathepsin B-like cysteine proteinase 1 + 3 

SSH18 10 8e^-39 NADH dehydrogenase subu3t 4L Necator americanus + 3 
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SSH 

sequence 

Best BLAST 

hit (Cluster 

number) 

E score NCBI Cluster best BLAST hit Change in 

cluster 

reads 

Statistical 

significance 

SSH19 88 e^-147 C. briggsae CBR-MLC-3 protein Caenorhabditis briggsae + 3 

SSH20 10 4e^-28 NADH dehydrogenase subunit 4L Necator americanus + 3 

SSH21 
121 0.14 Putative zinc metallopeptidase precursor; MEP1b Haemonchus - 3 

654 0.14 Hypothetical protein CBG20630 Caenorhabditis briggsae AF16 - 3 

SSH22 
2140 0.50 Integrin alpha cytoplasmic region family protein Brugia malayi - 3 

349 0.50 No hits found - 3 

SSH23 494 ∞ No hits found + 2 

SSH24 
100 0.77 Hypothetical protein CBG03794 Caenorhabditis briggsae AF16 + 3 

114 0.77 Hypothetical protein Y66H1B.2 Caenorhabditis elegans + 3 

SSH25 1160 ∞ RAS-like GTP-binding protein RhoA Brugia malayi + 3 

SSH26 1649 e^-117 Ribosomal Protein, Small subunit family member (rps-23) + 3 

SSH27 

399 1.20 Hypothetical protein CBG22942 Caenorhabditis briggsae AF16 + 3 

1744 1.20 No hits found + 3 

768 1.20 Hypothetical protein Plasmodium yoelii yoelii str. 17XNL + 3 

SSH28 391 e^-123 Ribosomal protein S27e Ancylostoma duodenale + 3 
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Figure 6.1: Diagram showing the steps involved in the subtraction reaction. cDNA 1 (tester) was MOTRI and 

cDNA 2 (driver) was T. circumcincta CVL.  Both the driver and tester cDNA was Rsa I digested, as 

described in Section 6.2.3 prior to the subtraction experiment.  Diagram modified from the BD PCR-select
™

 

cDNA subtraction kit user manual (http://www.clontech.com/images/pt/PT1117-1.pdf). 
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Figure 6.2: 1% agarose gel electrophoresis of semi-quantitative PCR products for SSHs 3, 4, 6, 7, 12 and 17 against the T. circumcincta CVL (C) or MOTRI (M) isolate.  5µL PCR 

product was removed after 15, 20, 25, 30 and (for SSHs 6, 7, 12 and 17) 35 cycles.  A negative control (-) was included for each gene and the gel marker lane (Mx) containing TrackIt
™

 

1Kb Plus DNA Ladder (Invitrogen) is on the left. 
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Chapter 7: General Discussion and Conclusions 

 This study examined the potential role of changes in gene expression in the 

anthelmintic resistant phenotype of T. circumcincta, particularly in relation to IVM 

resistance.  To understand the role of gene expression in the IVM-resistance phenotype of 

T. circumcincta, a range of experimental approaches were employed.  Identification of the 

expression profile of “candidate resistance” genes potentially involved in drug handling 

and metabolism in different isolates of T. circumcincta, both IVM-resistant and –

susceptible, and IVM-exposed and -unexposed, was carried out using semi-quantitative 

and real-time PCR as described in Chapters 3 and 4, respectively.  Alongside this, two 

further experiments were carried out, as described in Chapters 5 and 6, utilising the Roche 

454 sequencing platform to investigate the expression of genes following in vitro IVM 

exposure, and SSH to identify genes with constitutively increased expression in the 

MOTRI isolate compared to the CVL isolate.  These two approaches were termed “non-

hypothesis” driven as neither technique attempted to focus on particular genes prior to 

carrying out the experiments.   

 

Anthelmintics are the mainstay of modern parasitic nematode control and, in some 

areas of the world, the levels of resistance to the BZs, LEVs and MLs exhibited by 

endoparasites of small ruminants is so high that economically viable farming is becoming 

impossible (Jackson & Coop, 2000; Sargison et al., 2005; Blake & Coles, 2007).  In the 

UK, BZ resistance is widespread, ML resistance is becoming increasingly common and 

MDR parasite isolates are being reported (Bartley et al., 2003; Bartley et al., 2006; 

Sargison et al., 2007b).  No routine surveillance is carried out, so the levels of resistance 

exhibited by T. circumcincta, the predominant parasitic nematode species on UK farms, to 

the different classes of anthelmintics is not known (Sargison, Scott, & Jackson, 2001; 

Bartley et al., 2003).  The detection of resistance is problematic; current diagnostic tests, 

using in vivo and in vitro methods such as the FECRT, EHT and LFIT, can be time-

consuming, expensive and lacking in sensitivity (Coles et al., 1992; McKellar & Jackson, 

2004).  Alongside this, the modes of action of the anthelmintics and mechanisms of 

resistance employed by the parasites they target are still not fully understood, as described 

in Chapter 1.  Naturally, the genes believed to be the targets of the anthelmintics have been 

prioritised for candidate gene studies investigating the mechanisms of anthelmintic 
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resistance.  However, to date, this approach has not been very successful and, in the case of 

IVM, has failed to identify any SNPs or mutations conclusively linked to resistance.  As 

such, it was decided that alternative mechanisms of resistance were worthy of 

investigation.  One alternative mechanism of resistance could be changes in the expression 

of genes, for example, generic drug handling mechanisms allowing T. circumcincta to 

survive exposure to IVM.  These changes would still have a genetic basis, which, if 

identified, could be developed into a molecular-based test for diagnosis of IVM resistance 

in parasitic nematodes.  Genetic tests have advantages over the current, commonly used, 

diagnostic tests, being quicker and easier to perform, more sensitive and able to be 

developed into high-throughput formats (von Samson-Himmelstjerna, 2006; von Samson-

Himmelstjerna et al., 2009a).  Molecular markers for ML resistance, developed into a 

diagnostic test, would enable the spread of anthelmintic resistance to be monitored more 

easily and allow the development of management practices such as the TST approach, 

which could reduce the inevitable spread of anthelmintic resistance, to be investigated 

more thoroughly (Kenyon et al., 2009b).   

 

 In the first series of experiments, described in Chapters 3 and 4, two families of 

genes in T. circumcincta were investigated; the Pgps and CYPs.  These were chosen for 

investigation due to their possible roles in drug transport and metabolism:  Pgps are large 

transmembrane proteins which transport a range of hydrophobic molecules into and out of 

cells (Valverde et al., 1992; Kerboeuf et al., 2003).  Pgps have been implicated in drug 

resistance in human immunodeficiency viruses, malaria parasites and cancerous tumours 

whilst, in parasitic nematodes, a range of experiments have shown that changes in mRNA 

levels and allele frequencies occur in parasites in response to IVM selection and that co-

administration of Pgp inhibitors with IVM can increase the efficacy of IVM against 

phenotypically IVM-resistant parasites isolates (Beugnet, Gauthey, & Kerboeuf, 1997; Xu 

et al., 1998; Blackhall et al., 1998b; Loo & Clarke, 1999; Jones & George, 2005; Ardelli, 

Guerriero, & Prichard, 2006b).  However, the majority of work on Pgps in parasitic 

nematodes has focused on H. contortus and O. volvulus, no work on the role of Pgps in the 

anthelmintic resistant phenotype in T. circumcincta has been found in peer-reviewed 

journals to date.  Investigations into the role of Pgps in anthelmintic resistance in T. 

circumcincta may be hampered by the lack of genomic sequence for this species in 

publically available databases.  In Chapter 3 of this thesis, eleven novel partial Pgp gene 
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sequences from T. circumcincta were identified, eight of which appear to align to NBD1 

indicating that there are at least eight Pgp genes in T. circumcincta.  This is similar to what 

has been identified in other nematode species; for example, in O. volvulus at least 2 Pgp 

genes have been identified, at least 12 from H. contortus and 15 from C. elegans (Huang & 

Prichard, 1999; Sangster et al., 1999a; Sheps et al., 2004).  Alignment of the T. 

circumcincta Pgp sequences against the C. elegans Pgp sequences was carried out to 

determine the correct nomenclature for these genes, as suggested in the guidelines on the 

Caenorhabditis Genetics Centre website (http://www.cbs.umn.edu/CGC/nomenclature/ 

index.html).  

 

Eukaryotic CYPs are single domain membrane-bound proteins that catalyse the 

metabolism of a range of predominantly hydrophobic molecules, such as IVM (Mansuy, 

1998; Graham & Peterson, 1999).  Like the Pgps, the CYPs appear to play a role in drug 

resistance, as over-expression of CYPs or increased CYP activity has been shown to 

correlate with insecticide resistance in Drosophila spp, An. gambiae, and C. p. pallens and 

chloroquine resistance in P. falciparum and P. berghei (Ndifor, Ward, & Howells, 1990; 

Daborn et al., 2002; Vontas et al., 2005; Gong et al., 2005).  In parasitic nematodes, there 

is some evidence that CYPs play a role in anthelmintic resistance, however, CYP activity 

in parasitic nematodes appears to be difficult to measure (Barrett, 1998).  The use of CYP 

inhibitors, such as piperonyl butoxide, ketoconazole and metyrapone has been shown to 

improve the efficacy of the BZs (Kotze, 1997; McKellar & Jackson, 2004; Bartley et al., 

2009; Virkel et al., 2009).  Changes in “non-specific” drug transport affecting one drug 

class could also have an effect with another drug class.  In Chapter 3, three novel CYPs 

were identified from T. circumcincta, using both degenerate PCR and bioinformatic 

approaches.  Assigning the correct nomenclature to these partial genes was not attempted; 

the CYP superfamily is very large and the naming of any newly discovered CYPs is 

carried out through the P450 Nomenclature Committee, following the recommendations in 

Nelson et al. (1996), and also requires full length gene sequences. 

 

 The first step in determining whether any of the genes identified in Chapter 3 could 

play a role in an IVM-resistant phenotype in T. circumcincta involved the design of semi-

quantitative PCR assays.  Validation of the assays for PGPs 2 (subsequently named 
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TeciPgp-2 NBD2), 3, 5 (subsequently named TeciPgp-2 NBD1), 6 (subsequently named 

TeciPgp-9 NBD2), 7 and 9 and CYPs 1, 2 and 3 were successful.  The results of the PCRs, 

comparing the expression of these genes in the egg, L1, xL3, L4 and adult stages of the 

CVL and MOTRI T. circumcincta isolates, indicated that there were differences in the 

expression levels of some of these genes between the isolates (Figures 3.3 and 3.13).  As a 

result, it was decided that quantifying the expression of the 11 Pgp and 3 CYP genes using 

real-time PCR would give a more accurate result compared to the semi-quantitative PCR 

approach; analysis of the real-time results would determine what changes in expression 

were statistically significant, something that was not possible using semi-quantitative PCR.  

Smaller changes in expression are more easily quantified using real-time PCR compared to 

identifying changes in the intensity of bands on agarose gels; real-time PCR is also faster 

to perform than standard PCR (Pfaffl, 2001; Bustin et al., 2009).   

 

 Using the relative quantitative, or ΔΔCt, real-time PCR method, the relative 

expression of PGP1, TeciPgp-2 NBD2, PGP3, TeciPgp-2 NBD1, TeciPgp-9 NBD2, PGP7, 

PGP8, PGP9, PGP10, PGP11, CYP1, CYP2 and CYP3 was determined in several isolates 

and following exposure of some of these isolates to IVM in vitro and in vivo.  One concern 

when comparing isolates which do not share a common genetic background (e.g. CVL and 

MOTRI) was that any differences in expression found are a result of the inherent genetic 

variability between the isolates.  However, population genetic studies of T. circumcincta 

have indicated that the majority of genetic diversity occurs within subpopulations rather 

than between subpopulations (Blouin et al., 1995; Grillo et al., 2007).  Comparing the actin 

control gene Ct values for the different isolate and life-cycle stages (Figure 4.3) indicated 

that, with the exception of the MOTRI L4 and Post IVM MOTRI L4 comparison, the actin 

Ct values were sufficiently similar between isolates to allow valid comparisons of the test 

genes.  Likewise, comparing the actin Ct values between the different life-cycle stages also 

indicated that comparing expression of the test genes between life-cycle stages was not 

feasible; normalisation of the test gene Ct values with the actin Ct values would not give 

accurate results.  However, although academically interesting, determining the relative 

expression of the 3 CYP and 10 validated Pgp genes between life-cycle stages was not part 

of this work.  In future experiments, a different approach to normalising the Pgp and CYP 

expression levels would be recommended.  The GeNorm approach starts with a panel of 

reference genes from which the two most stably expressed genes are selected.  This 
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approach, which has only relatively recently been adopted as the “gold-standard” method, 

assumes that stably transcribed genes stay in a constant ratio to each other and provide a 

better baseline to normalise the test gene expression with (Van Zeveren et al., 2007b; 

Strube et al., 2008; Bustin et al., 2009). 

 

In the first real-time experiment, constitutive relative gene expression was 

investigated by comparing the CVL and MOTRI isolates at rest; the same comparison as 

was carried out using semi-quantitative PCR.  When comparing the real-time and semi-

quantitative data, the majority of the results were in agreement, with the exception of 

TeciPgp-2 NBD2 where no amplification across all life-cycle stages (Chapter 3) was 

observed using semi-quantitative PCR but amplification of this gene was observed using 

real-time PCR.  This reflects the relative sensitivities of the respective methods.  As shown 

in Chapter 4, no statistically significant changes in expression level were found for 

TeciPgp-2 NBD1, PGP7 and PGP8 when comparing CVL and MOTRI; statistically 

significant differences in expression level of PGP1, PGP3, PGP9, PGP10, PGP11, CYP1, 

CYP2 and CYP3 in individual life-cycle stages were observed when comparing CVL and 

MOTRI; but, more importantly, changes in expression across all life-cycle stages were 

observed for TeciPgp-2 NBD2 and TeciPgp-9 NBD2.  For TeciPgp-2 NBD2 there was a 

statistically significant reduction in expression in the IVM-resistant MOTRI isolate 

compared to the IVM-susceptible CVL isolate, whereas, for TeciPgp-9 NBD2, there was a 

statistically significant increase in expression in the MOTRI isolate compared to the CVL 

isolate.  Biological replicates for xL3 and adult stages of the CVL and MOTRI isolates 

were analysed and, with the exception of a non-statistically significant result for TeciPgp-9 

NBD2 in the adult stage, confirmed the findings of the original triplicate real-time 

experiments.  Changes across all life-cycle stages could indicate that genetic changes such 

as altered copy number underlie the expression differences observed, as opposed to 

alterations in the regulation of the gene which would be anticipated to only occur in the 

life-cycle stages exposed to IVM.   

 

Interestingly, despite the phylogenetic analysis of the partial Pgp sequences 

indicating that two halves of the same, TeciPgp-2, gene had been identified, the real-time 

PCR results for TeciPgp-2 NBD1 and 2 did not follow the same pattern, as shown in 
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Figure 4.5.  Further work is required to investigate this; potentially the phylogentic 

analysis and subsequent re-naming of the Pgp sequences could have erroneously classified 

these partial sequences as the two separate NBDs of the same gene.  Unfortunately, the 

relative expression levels of TeciPgp-9 NBD1 could not be determined as the probe and 

primers designed did not amplify TeciPgp-9 NBD1 efficiently.  Therefore, it was not 

possible to determine whether the two partial TeciPgp-9 gene fragments (NBD1 and 

NBD2) exhibited the same expression pattern.  The sequencing of the full-length coding 

sequences of TeciPgp-2 and TeciPgp-9 would conclusively determine whether the 

nomenclature for these genes is correct and would be a priority now that these genes have 

been shown to exhibit statistically significant changes in expression when comparing an 

IVM-resistant and -susceptible T. circumcincta isolate.   

 

It has become apparent, by comparing nucleotide sequences, that TeciPgp-9 NBD2 

is the same gene as identified by Bisset (2007) in New Zealand from laboratory derived 

near-isogenic inbred T. circumcincta lines.  The pattern of allelic, or haplotype, variation 

of TeciPgp -1, -2 and -9 was compared between the drug-susceptible and -resistant lines.  

Analysis of genomic sequence from individual adult male worms showed that five IBDA 

(equivalent to NBD1) and two IBDB (equivalent to NBD2) haplotypes in the New Zealand 

TeciPgp-9 were under positive selection pressure in the MDR line and of these 7 

haplotypes, four IBDA and one IBDB were exclusive to the MDR line.  Alongside this, 

Bisset (2007) showed a large number of SNPs in the New Zealand TeciPgp-9 gene, which, 

with the exception of four, were non-coding or silent.  The finding of changes in 

expression levels of TeciPgp-9 NBD2 in UK field-derived isolates becomes even more 

significant in the light of these independent findings from laboratory-derived isolates from 

the other side of the world.  In this present study, we did not attempt to identify whether 

haplotypes of TeciPgp-9 were present as the full-length genomic sequence was not 

available.  However, as shown in Chapter 3, the presence of at least four silent SNPs 

(A138G, C177T, A201T and A216C) in TeciPgp-9 NBD2 in the UK field-derived, 

unrelated isolates has been shown; unfortunately none of the sequence data obtained from 

the UK isolates for TeciPgp-9 NBD2 covers the regions identified in the New Zealand 

near-isogenic lines containing the four coding SNPs.  In work currently on-going, the 

sequence of TeciPgp-9 NBD2 is being extended through 5‟ and 3‟ RACE PCR and has 
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shown that at least one of the coding SNPs, identified from the New Zealand near-isogenic 

lines, has been identified in the UK CVL and MOTRI isolates (F. Turball, Pers. Comm.).   

 

In the New Zealand study, the expression level of TeciPgp-9 IBDA in individual 

adult male worms was determined using SYBR
®

 green real-time PCR.  Using the ΔΔCt 

method, there was an average of a 3.4 fold increase in TeciPgp-9 in the resistant worms 

compared to the susceptible worms (Bisset, 2007).  In the present study, using pools of 

mixed sex adult T. circumcincta to generate cDNA, a 6.75 fold increase in expression of 

TeciPgp-9 NBD2 (P<0.01) was observed when comparing CVL to MOTRI, whilst the 

increase in expression for this gene in the other life-cycle stages was 55.27 fold (P<0.01), 

5.06 fold (P<0.05), 17.49 fold (P<0.01) and 14.04 fold (P<0.05) for eggs, L1, xL3 and L4, 

respectively.  As such, the change in expression of TeciPgp-9 NBD2 in IVM-resistant UK 

isolates, compared to IVM-susceptible UK isolates is greater than the change in expression 

observed between the New Zealand isolates.  By comparing the results of the SYBR
®
 

green real-time PCR with the haplotype data for the individual worms, Bisset (2007) was 

able to determine that the likely cause of the increase in abundance was an increase in copy 

number of TeciPgp-9 as the MDR worms (exhibiting a higher expression level of TeciPgp-

9) possessed 3 or 4 different haplotypes of TeciPgp-9 IBDA compared to at most 2 

haplotypes in the susceptible worms.  In fact, the presence of different „resistance-

associated‟ haplotypes altered the expression of TeciPgp-9.  For example, the presence of 

IBDA haplotype 10 in resistant worms was related to a 10 fold increase in abundance of 

TeciPgp-9 template in the resistant worms compared to susceptible worms (Bisset, 2007).  

Genes believed to be orthologous to TeciPgp-9 have been studied previously; the gene 

designated as Hcpgp-1 is implicated in ML resistance in H. contortus and ML selection 

was shown to increase the frequency of Hcpgp-1 in a ML-resistant H. contortus isolate 

(Kwa et al., 1998; Le Jambre, Lenane, & Wardrop, 1999; Bisset, 2007).  In C. elegans, 

Pgp-9 has been shown to be expressed in the intestine and the first and second bulbs of the 

pharynx (Zhao et al., 2004) (http://wormbase.sanger.ac.uk/).   

 

 The identification of reduced TeciPgp-2 NBD2 expression across all life-cycle 

stages, when comparing CVL and MOTRI, was unexpected; the role of Pgps as generic 

detoxification pumps suggested that increased expression of these genes would be 
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expected to produce an IVM-resistant phenotype in T. circumcincta (Sangster, 1994; 

Kerboeuf, Guegnard, & Le Vern, 2003).  However, drug resistance could also be mediated 

by reduced uptake of the drug, drug sequestration and/ or by preventing the drug from 

reaching its target site (Wolstenholme et al., 2004; Jones & George, 2005).  TeciPgp-2 

NBD2 could have a high affinity for IVM and so, by reducing expression of this gene (and 

its gene products) parasites are able to reduce the amount of IVM transported into or 

around their tissues.  Although identified in the New Zealand study, no real-time 

quantification of this gene (Tecipgp-2 IBDB) was carried out so it is not possible to 

determine whether reduced expression of this gene is also found in New Zealand.  

Haplotype data for Tecipgp-2 IBDB is available, however, indicating that seven haplotypes 

are present in the New Zealand near-isogenic lines of T. circumcincta, one of which show 

reduced frequencies in the resistant line whilst another was found to be exclusively present 

in the resistant line (Bisset, 2007).  It could be possible that the TeciPgp-2 NBD2 sequence 

obtained in this project is specific for a haplotype which is found more commonly in the 

IVM-susceptible (CVL) isolate than the IVM-resistant (MOTRI) isolate thus, TeciPgp-2 

NBD2 could represent a potential marker for IVM susceptibility.  The PgpA gene from H. 

contortus is believed to be orthologous to C. elegans and T. circumcincta Pgp-2; changes 

in H. contortus PgpA allele frequencies are associated with IVM and MOX resistance and 

this gene is over-expressed in IVM-selected H. contortus (Xu et al., 1998; Blackhall et al., 

1998b; Bisset, 2007).  Interestingly, reduced or disrupted expression of C. elegans Pgp-2, 

which is localised to the gut granule membrane and the first and second bulbs of the 

pharynx, is associated with impaired fat storage (Zhao et al., 2004; Nunes et al., 2005; 

Schroeder et al., 2007); in eggs of H. contortus cholesterol depletion increases TBZ 

resistance (Riou et al., 2003).  It appears that Pgp function, and hence drug resistance, is 

affected by the concentration of lipids (such as cholesterol) in the membrane within which 

it is localised (Riou, Koch, & Kerboeuf, 2005; Nunes et al., 2005; Schroeder et al., 2007).  

As such, like TeciPgp-9 NBD2, the TeciPgp-2 NBD2 gene warrants further investigation, 

particularly to determine why, in T. circumcincta, a reduced expression of this gene is 

associated with IVM-resistance whilst in H. contortus, this gene is over-expressed in IVM-

selected strains.   

 

 The expression of a panel of “candidate resistance” genes was also investigated in 

T. circumcincta isolates which had been exposed to IVM treatment.  This was to determine 
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what changes in gene expression were evident in an IVM-resistant isolate (MOTRI) upon 

exposure to IVM.  A range of experiments was carried out; firstly the IVM-resistant 

MOTRI isolate was compared to the Post IVM MOTRI isolate, generated by collecting the 

survivors of a full therapeutic dose of IVM.  The rationale behind this experiment was that 

MOTRI is known to comprise individuals displaying a range of sensitivities to IVM; 

treatment would select the most resistant sub-population within MOTRI for further 

analysis.  Due to previously described differences in actin Ct values, no comparison 

between the MOTRI and Post IVM MOTRI L4 stages was made.  Fewer statistically 

significant changes in expression between the isolates were observed and no changes in 

expression of any single gene across all life-cycle stages were observed.  Potentially, the 

MOTRI isolate is so resistant to IVM that exposing it to IVM failed to further select 

resistant parasites, although this is counter-intuitive as the efficacy of IVM against MOTRI 

is 60% (Bartley et al., 2004).  Alternatively, if parasites do alter expression of resistance-

associated genes, such as the Pgps and CYPs, this change could occur more rapidly and 

only be detectable whilst the parasites are still exposed to the drug.  Thus, the timing of 

IVM exposure and collection of the surviving parasites may be crucial to being able to 

identify inducible expression differences.  To answer this, two further experiments were 

carried out to investigate inducible changes, as described below. 

 

 The LMIT can be used to determine the phenotypic IVM-resistance status of 

parasite populations (Wagland et al., 1992; Rabel, McGregor, & Douch, 1994).  By scaling 

up the assay, as described in Chapter 2, it was possible to separate IVM-exposed MOTRI 

T. circumcincta into those able to migrate, or not, in the presence of a discriminating dose 

of IVM.  The expression of TeciPgp-9 NBD2 and TeciPgp-2 NBD2 were compared in 

these selected pools of xL3 and a pool of IVM-unexposed xL3.  Only one significant 

change in expression of these genes was found; a statistically significant 1.88-fold increase 

in TeciPgp-2 NBD2 expression in the unexposed sample compared to the migrators sample 

(P<0.05).  Potentially, as described earlier, this could be because the MOTRI isolate is 

constitutively expressing these genes at different levels and does not alter expression 

further in response to IVM exposure.  This could be the case with TeciPgp-9 NBD2, if the 

changes in expression are found to be due to an increase in copy number rather than due to 

increased transcription levels.  Alternatively, the design of the experiment may not have 

been optimal; for example, the dose of IVM chosen could have been insufficient, the 
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length of time taken to collect the xL3 following exposure may have been too long or it 

might have been better to expose the IVM-susceptible CVL isolate. 

 

 As a final attempt to elucidate whether changes in expression of TeciPgp-9 NBD2 

and TeciPgp-2 NBD2 were inducible, adult T. circumcincta MOTRI in a donor sheep were 

exposed to a full therapeutic dose of IVM and subsequently collected at necropsy three 

days post-treatment.  This time scale was chosen as the half-life of IVM is between 61 and 

102 hours, so the adult worms would still be exposed to IVM but any susceptible worms 

should have been killed and expelled from the abomasum (Canga et al., 2009).  Using this 

approach, it was determined that the expression of TeciPgp-2 NBD2 was reduced in the 

MOTRI survivors of IVM treatment and, although not statistically significant, the 

expression of TeciPgp-9 NBD2 was increased in the survivors of IVM treatment.  As 

stated previously, this suggests that the correct design of experiments is crucial to 

identifying inducible gene expression differences.  Alongside this, the majority of genes, 

particularly the three CYPs, did not exhibit significant changes in expression, potentially 

subtle changes in gene expression could still have an effect on the ability of parasites to 

survive anthelmintic treatment.  For example, in a study of IVM-resistance in O. ostertagi, 

a 3.4 fold increase in expression of PGP2a was found in laboratory-derived IVM-resistant 

adults compared to IVM-susceptible adults (Van Zeveren, 2009).  It is possible that, as the 

genes were identified in susceptible parasites, and appear to be expressed at low levels, 

resistance-associated genes may be present in susceptible parasites below the threshold of 

detection (Barrett, 1998).  As such other, as yet unidentified Pgps and CYPs (or previously 

unknown genes) could also be involved in the anthelmintic resistance phenotype in T. 

circumcincta. 

 

The fact that similar changes in TeciPgp-9 NBD2 have been observed in T. 

circumcincta isolates from opposite sides of the globe is potentially significant, especially 

given the fact that the IVM-resistant isolates were generated by two completely different 

methods.  In New Zealand, the multi-drug resistant isolate was derived in the laboratory by 

inbreeding and back-crossing, with IVM selection at each generation whereas in the UK, 

MOTRI was naturally selected over many generations by IVM treatment in the field.  This 

suggests that there is some universal commonality in the IVM-resistance mechanisms and 
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that the polymorphisms and changes in gene expression observed in TeciPgp-9 NBD2 are 

potentially significant in the IVM-resistance phenotype in T. circumcincta.  This study 

provides further evidence that Pgps, especially TeciPgp-9 NBD2, are involved in IVM-

resistance; increased expression of this Pgp is associated with resistance; anthelmintic 

resistant H. contortus eggs were shown to have increased amounts of Pgps, as measured 

through the level of fluorescent monoclonal antibody, measured using flow cytometry 

(Kerboeuf, Guegnard, & Le Vern, 2003).  A priority for further studies on TeciPgp-9 and 

its role in the IVM resistant phenotype in T. circumcincta would be the generation of the 

full-length coding and genomic sequence from the CVL, MOTRI and Post IVM MOTRI 

field-derived isolates, respectively.  This would enable the determination of the presence of 

specific resistance-associated alleles, haplotypes or coding SNPs in this gene; as have 

already been identified in the New Zealand laboratory derived near-isogenic lines.  

Alongside this, the changes in gene expression found in TeciPgp-9 NBD2 between the 

CVL and MOTRI isolates need to be investigated in other isolates with differing levels of 

IVM-resistance and from different geographic locations.  If this was found to be the case, 

then the changes in TeciPgp-9 NBD2 could form the basis of a universal molecular test 

(like those available for the BZs) for IVM resistance in T. circumcincta.  The generation of 

a full-length coding sequence for this gene would also help to determine whether the 

observed changes in gene expression are a result of increased transcription, mediated 

through a mutation in an upstream regulatory element, for example, or, like in the New 

Zealand studies, due to an increase in gene copy number.  As has been shown with some in 

vitro inhibitor studies, the use of Pgp inhibitors causes phenotypically IVM-resistant T. 

circumcincta and H. contortus to shift towards an IVM-susceptible phenotype; the further 

knowledge gained during this study, suggesting that the Pgps may play a role in IVM 

resistance in T. circumcincta, would indicate that studying the co-administration of these 

inhibitors with anthelmintics as a method to overcome MDR parasites could be a viable 

option (Virkel et al., 2009; Bartley et al., 2009).  However, the recently released AAD 

anthelmintic, monepantel, has been shown to be effective against MDR parasites 

(Kaminsky et al., 2008) and may delay the inevitable loss of ability to control parasites, so 

expensive animal trials involving Pgp inhibitors may not, at this present time, be 

commercially viable. 
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 As an alternative method to investigate more global gene expression events in 

relation to IVM resistance, Roche 454 sequencing was used to generate nearly 100,000 

novel sequence reads from two pools of adult T. circumcincta, one of which had been 

exposed to IVM in vitro whilst the other was left unexposed as a control.  The subsequent 

objective bioinformatic and statistical analysis of the in silico sequence data generated, 

enabled the sequences to be classified according to the significance of the change in 

number of reads (reflecting the mRNA level of that sequence in the two samples) and, for 

many sequences, provided a putative BLAST identity.  Sixteen sequence clusters were 

shown to have the most statistically significant changes in expression between the exposed 

and unexposed samples and a further 355 were shown to have statistically significant 

changes in expression under a more liberal statistical model.  Further details of these 

sequences can be found in Chapter 5 and Appendix 5.  To provide more information on the 

putative function of individual contigs, functional classification was assigned using KAAS; 

from this any statistically significant changes in the proportion of functional groupings was 

identified, indicating that for the orthologous groups „translation‟, „amino acid 

metabolism‟, „carbohydrate metabolism‟ and „xenobiotic degradation and metabolism‟, 

statistically significant changes in the mean proportion of reads within these groupings 

between the two samples was observed.  This work is particularly important for organisms 

like T. circumcincta where the amount of sequence data available in the public domain is 

limited; at present there are only ~6,000 ESTs available on the NCBI dbEST website.  

There are a further 14 megabases of genomic sequence available, generated through the 

genome sequencing project, on the Sanger website 

(http://www.sanger.ac.uk/Projects/Helminths/), but candidate resistance genes are 

conspicuously absent to date.  The available sequence does not provide full coverage of the 

T. circumcincta genome; which has been estimated to be in the order of 59 megabases in 

size (Leroy, Duperray, & Morand, 2003).  The generation of nearly 100,000 novel 

sequences in this project is a valuable genetic resource for studying changes that occur in 

T. circumcincta in response to IVM exposure.   

 

One criticism of the approach used to generate this 454 sequencing EST dataset is 

the lack of candidate resistance genes identified, however this could, like the current size 

of the T. circumcincta genome sequencing project be purely due to the depth of coverage 

achieved.  Even with this relatively limited sequencing dataset, the approach would still be 
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anticipated to identify the major changes in gene expression associated with IVM 

exposure.  Only one contig, containing 2 reads, was identified as a Pgp in the IVM-

exposed dataset and the change in expression of this gene was not found to be statistically 

significant.  However, as the approach was designed to be „non-hypothesis‟ driven, 

focusing on finding candidate resistance genes such as the Pgps and CYPs could result in 

ignoring other, more significant, changes in gene expression which do enable the parasites 

to cope with IVM exposure.  As such, a statistically robust objective analysis of the 

changes in gene expression enabled a list of potentially interesting genes to be drawn up 

without any preconceived ideas as to their function in the IVM-resistance phenotype.  

Mainly for financial reasons, there was only one opportunity to perform this experiment, so 

the experimental design was selected to provide the simplest comparison and the best 

possible chance of identifying gene expression changes within an IVM-resistant T. 

circumcincta isolate in response to IVM exposure.  The standard therapeutic dose of IVM 

in sheep is 0.25mg/kg body weight, with a half-life of between 61 and 102 hours (Canga et 

al., 2009).  In one experiment, following intra-ruminal dosing with 0.2mg/kg body weight 

IVM, the peak plasma concentration was approximately 17.6ng/mL (Prichard et al., 

1985b) but how this relates to the concentration T. circumcincta is exposed to in vivo in the 

abomasum is not known.  At least a proportion of the MOTRI isolate is able to survive a 

dose of 0.25mg/kg body weight IVM in vivo, so an in vitro IVM exposure concentration of 

5μg/mL was chosen to ensure that the IVM exposed parasites were stressed.   This is 

reflected in the BLAST identies of the most significant changes in read number which 

included HSPs, which have been shown to increase expression in response to 

environmental stresses; cytochrome oxidases, which are part of the mitochondrial electron 

transport chain; and vitellogenin, which is linked to egg production (Lindquist, 1986).  

However, it is possible that some of the changes in gene expression observed could be due 

to the presence of dead or dying adult worms within the IVM-exposed sample due to 

MOTRI comprising individuals with a range of IVM sensitivities, as previously stated.  

Alternatively, other resistance mechanisms utilised by surviving worms in the IVM-

exposed sample could have been masked by the contribution from dead or dying worms.  If 

this experiment was to be carried out again, an alternative approach could be to select the 

IVM-exposed survivors by either putting the parasites through a phenotypic assay, such as 

the scaled-up LMIT (Chapter 4), or selecting only adult worms which still appeared to be 

motile or alive following exposure to IVM.  This approach could, however, increase the 

time that the parasites are exposed to IVM, and potentially cause degradation in the RNA 

extracted.  Selection of parasites in this experiment was not carried out as only a limited 
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number of worms were exposed to IVM and the priority was to ensure there was sufficient, 

good quality RNA extracted as rapidly as possible.  This was also to ensure that any 

transient, inducible gene expression changes could be identified.   

 

Roche 454 sequencing is one of the “next-generation” sequencing technologies 

which have the potential to revolutionise genome sequencing.  Compared to traditional 

Sanger sequencing, these techniques are cheaper, faster and generate considerably more 

data, although often at the expense of read length, however technical improvements are 

rapidly beginning to overcome this (Marguiles et al., 2005; Pop & Salzberg, 2008; 

Shendure & Ji, 2008).  A novel sequencing method called real-time DNA sequencing, has 

recently been described; this could potentially be an improvement on the “next-generation” 

approaches and could be used to investigate gene expression in genome-poor parasitic 

nematodes, such as T. circumcincta, as the sequence generated is longer compared to the 

current “next generation” approaches (Eid et al., 2009).  The main challenge, however, of 

producing large EST datasets, such as that described in Chapter 5, is the subsequent 

bioinformatic and statistical analysis required to generate meaningful results, in order to 

answer biologically relevant questions.  A novel statistical approach has been applied to 

this dataset and has allowed the identification of a panel of genes showing altered 

expression profiles in MOTRI in response to in vitro IVM exposure; these genes could 

form the basis of further studies to identify how IVM-resistant parasites survive 

anthelmintic treatment.   

 

As a second “non-hypothesis” driven approach to investigate IVM-resistance in T. 

circumcincta, a SSH experiment was undertaken (Chapter 6) specifically designed to 

identify genes exhibiting increased expression in the MOTRI isolate compared to CVL.  

Cloning of the subsequent products identified a panel of 28 contiguous sequences 

exhibiting increased expression in the MOTRI isolate.  Confirmation of the SSH results for 

five out of six selected sequences was obtained by carrying out semi-quantitative PCR, the 

sixth result could not be confirmed as no PCR amplification occurred.  These SSH 

sequences were chosen for further investigation based on their BLAST identities, which 

included HSPs, SXC1, dynein and cathepsin B.  Sequences with HSP homology were also 

prominent in the Roche 454 sequencing dataset, and HSPs are known to be constitutively 
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expressed in a range of parasite life-cycle stages and can be induced in response to various 

physical and chemical challenges (Hartman et al., 2003; Vercauteren et al., 2006).  The 

fact that HSPs have also been identified as exhibiting statistically significant changes in 

expression in response to IVM exposure, as well as in a comparison between IVM-resistant 

and -susceptible T. circumcincta isolates, suggests that this large gene family is worthy of 

further investigations.  Both SXC1 and Cathepsin B are seen as potential vaccine 

candidates in parasitic nematodes; if an effective vaccine was to be developed against these 

genes, it could be even more effective against resistant parasites which have a greater 

expression level of these genes compared to susceptible parasites (Daub et al., 2000; De 

Maere et al., 2002; Ranjit et al., 2008).  The number of sequences identified through this 

subtraction experiment is less than those generated by Nisbet et al (2008) in a study 

investigating gene expression associated with the transition from the free-living to parasitic 

stage in T. circumcincta.  However, a second round of cloning and sequencing of the SSH 

products in this experiment indicated that the yield, in terms of novel sequences obtained, 

was diminishing.  Potentially, further rounds of sequencing of the SSH product could 

identify other sequences exhibiting increased expression in the IVM-resistant isolate 

compared to the IVM-susceptible but, as a method to identify genes for further study, the 

SSH experiment has already generated a panel of 28 potential novel IVM-resistance 

associated genes.   

 

In order to determine whether the two non-candidate approaches had identified any 

of the same, or similar, genes, the sequences identified using SSH were BLAST searched 

against the EST dataset generated using Roche 454 sequencing.  High BLAST E scores for 

some of these searches indicated that the same molecules may be present in the SSH 

dataset as those identified in the Roche 454 dataset.  One SSH sequence aligned to a contig 

which was deemed to be significant in the conservative statistical model of the 454 

sequencing analysis, whilst a further 5 SSH sequences aligned to contigs deemed to be 

significant in the liberal statistical model of the 454 sequencing analysis.  The fact that 

these gene sequences appear to exhibit constitutive expression differences between the 

CVL and MOTRI T. circumcincta isolates, and inducible expression differences following 

IVM expression suggests that these genes need to be investigated further to determine 

whether they enable the expression of an IVM resistance phenotype in T. circumcincta 

through some as yet unidentified resistance mechanism.   
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One concern whilst undertaking this comparison was that the two isolates used 

(CVL and MOTRI) were isolated independently from different regions of the UK.  This 

could mean that background genetic differences between the two isolates could be 

important and lead to the generation of spurious results, linked to the different genetic 

background of the parasites, in the subtraction experiment.  However, using mitochondrial 

sequence data and neutral microsatellite markers, Blouin et al (1995) and Grillo et al 

(2007) were able to determine that the majority of genetic diversity in T. circumcincta is 

found within rather than between populations.  As such, although it is possible to compare 

field-derived isolates, the best possible comparison would still be parental versus field-

derived isolates, or failing that, through the generation of back-crossed near-isogenic lines, 

such as those described in Bisset (2007).  This would enable any non-resistance associated 

gene expression changes to be excluded or, at least, minimised.   

 

The SSH method has proven to be a useful tool to identify a panel of putative IVM-

resistance associated genes for further study.  One criticism of this method is the potential 

to falsely identify differences in gene expression if the tester and driver cDNA are very 

similar to each other (A. Nisbet, Pers. Comm.).  Confirmation of the results using semi-

quantitative PCR is an important control in removing these false positives but whether this 

could be an issue with the comparison described in Chapter 6 is uncertain as the genetic 

relationship of MOTRI and CVL is not known.  If an alternative comparison was to be 

made within an isolate, such as that between the migrators and non-migrators in the LMIT 

experiment, then this tendency of the SSH technique to give false positives could be more 

of a problem.  The panel of genes identified in this SSH experiment provides a starting 

point for further investigations into the role of altered constitutive expression of genes in 

IVM-resistant and -susceptible T. circumcincta isolates.  Following the success of the real-

time PCR assays to determine the relative constitutive expression of a panel of Pgps and 

CYPs in a range of T. circumcincta isolates, this would be the preferred method to fully 

investigate the genes identified through SSH.  It would also be interesting to carry out this 

subtraction experiment in the opposite direction, to identify genes with reduced expression 

in the MOTRI isolate compared to the CVL isolate.  As has been shown using real-time 

PCR, a statistically significant constitutive reduction in expression across all life-cycle 

stages of TeciPgp-2 NBD2 was observed; as such constitutive decreased expression of 
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other, as yet identified, genes could also play a part in the expression of an IVM resistant 

phenotype in T. circumcincta.   

 

Both the “non-hypothesis” driven Roche 454 sequencing and SSH approaches 

attempted to identify other genes which could be associated with the IVM-resistant 

phenotype either through a change in expression in response to IVM exposure or 

constitutively.  The Roche 454 sequencing of IVM-exposed MOTRI adults showed that 

even a drug resistant isolate is affected by exposure to IVM.  A novel method of 

statistically analysing the results has drawn up a panel of genes which warrant further 

investigation; caution has to be applied however as the relatively short sequences generated 

could mean some of the changes observed are false positives due to gene fragmentation.  

This is also a problem which can also occur following the Rsa I digestion used in the SSH 

experiment.  The SSH experiment has identified other genes, not previously investigated in 

the context of anthelmintic resistance, showing increased expression in MOTRI compared 

to CVL.  Both panels of genes identified using these approaches could form the basis of a 

novel panel of “candidate resistance” genes; their role in expression of a IVM-resistant 

phenotype in T. circumcincta investigated further using real-time PCR, as carried out for 

the panel of Pgp and CYP genes in this thesis.   

 

 The work described in this thesis has shown that changes in expression, both in 

genes putatively associated with IVM resistance and other, non-candidate resistance genes, 

do occur as identified in IVM-resistant and -susceptible T. circumcincta isolates and 

following IVM exposure in vitro and in vivo.  The MDR MOTRI isolate is affected by 

exposure to IVM and also shows constitutive differences in expression when compared to 

an unrelated drug susceptible isolate (CVL).  Identification of changes in expression 

associated with IVM resistance could form the basis of a molecular marker for resistance; 

something which is currently impeding the development of targeted control strategies 

aimed at minimising the spread of IVM resistance in T. circumcincta (von Samson-

Himmelstjerna et al., 2009a).  Maintenance of the efficacy of anthelmintics can only be 

achieved if accurate diagnosis of the resistance status of a parasite population can be made 

(von Samson-Himmelstjerna, 2006).  Ultimately, a sensitive and specific molecular 

diagnostic test for IVM resistance needs to be developed, which can discriminate between 
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nematode species in natural infections, and identify the IVM-resistance status of each 

species.  The identification of the mechanisms of IVM-resistance, and genetic changes 

which control it, would be the first step towards this.  Significantly, in this project, two 

partial Pgp genes, namely TeciPgp-2 NBD2 and TeciPgp-9 NBD2, have been shown to 

exhibit a constitutively altered expression profile between IVM-resistant and -susceptible 

isolates and non-coding SNPs in TeciPgp-9 NBD2 have been identified when comparing 

MOTRI and CVL sequences.  The results for TeciPgp-9 NBD2 are even more significant 

in the light of recent findings from New Zealand, as discussed above.  

 

Important questions remain to be answered before these genes are heralded as 

potential molecular markers for IVM resistance in T. circumcincta:  The full-length 

sequence of both these genes needs to be identified so that any further SNPs (silent or 

coding) and alleles or haplotypes, associated with IVM-resistance, can be identified.  

These genetic changes could form the basis of future molecular markers for resistance and 

would also mean that the cause (either a transcriptional change or a change in gene copy 

number) of the altered gene expression profiles of these genes could be determined.  It 

would be interesting to see whether the numerous silent SNPs identified in TeciPgp-9 

NBD2 cause an altered protein conformation which affects its ability to bind to substrates, 

as hypothesised in Kimchi-Sarfaty et al (2007); this would require the codon usage in T. 

circumcincta to be ascertained, if it is not already known.  At the very least, a silent SNP is 

still a useful molecular marker for IVM-resistance, provided it is shown to accurately 

distinguish between resistant and susceptible parasites.  Lastly, and most importantly, the 

changes found in TeciPgp-2 NBD2 and TeciPgp-9 NBD2, when comparing CVL and 

MOTRI, need to be confirmed in other isolates of T. circumcincta.  There is no point in 

developing a molecular marker for resistance which is subsequently found to only be 

present in one or a few isolates.  This was the case with the leucine to phenylalanine 

substitution (Leu256Phe) in the GluClα3 subunit of C. oncophora which was subsequently 

not found in any other parasite species or C. oncophora isolates (Njue et al., 2004; Van 

Zeveren, 2009).   

 

 IVM is still the mainstay of many treatment regimes for reducing the burden of 

PGE in livestock worldwide; it is also used in mass drug treatment programmes for human 
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parasitic nematodes such as O. volvulus (Ardelli, Guerriero, & Prichard, 2006a; Ardelli, 

Guerriero, & Prichard, 2006b; Prichard & Roulet, 2007; Omura, 2008).  As such, the rapid 

development of IVM resistance, coupled with climate change potentially causing an 

increase in disease incidence is a worrying development.  This is compounded by the lack 

of rapid, sensitive and cheap diagnostic tests for IVM resistance; the anthelmintic 

resistance status of parasite populations is generally unknown (Kaplan, 2004; Prichard et 

al., 2007; Kenyon et al., 2009a).  Knowledge of the anthelmintic resistance status of a 

parasite population and the mechanisms by which the parasites exhibit resistance is a 

prerequisite for developing strategies for controlling resistant parasites.  The change in 

gene expression observed in this project could be a step forward in determining how 

nematode parasites, such as T. circumcincta, are affected by IVM exposure, and how 

resistant parasites are able to survive IVM treatment.  The changes in TeciPgp-2 NBD2 

and TeciPgp-9 NBD2 are particularly noteworthy; further work on these genes is required 

but the changes in expression of these genes could form the basis of a much needed 

molecular marker for IVM resistance.  This would be particularly beneficial in being able 

to understand the implications, at the genetic level, of control and management practices, 

such as targeted selective treatments, aimed at slowing down the inevitable spread of IVM 

resistance (Kenyon et al., 2009b). 
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Appendices 

Appendix 1: Clustal W alignment of the nucleotide sequences of the 11 partial Pgp 

genes identified from T. circumcincta 

Pgp1            CTAATACGACTCACTATAGGGCAAGAGTGGTATCAACGCAGAGTACGCGGGGATTCCATT 60 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            ------------------------------------------------------------ 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            ACGAGAATATAATGTGAGGTGGTGGCGTGGAGTAGTCGGCGTTGTTCAGCAGGAACCAGT 120 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            ------------------------------------------------------------ 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            RATATTTCGTGCCACGGTCGCAGAAAATGTTCGAATGGGAGACGACAGCCTAAGTGATGC 180 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            ------------------------------------------------------------ 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            AGATGTTGAAGAAGCGTGTAAAGTTGCGAATGCTTTGGGATTCATCAGGAACCTCAGTGA 240 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            ------------------------------------------------------------ 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            GGGCTTCAACACTGYGATCGGTGAGGGTGCCGTGCAGCTGTCAGGTGGTCAGAAACAACG 300 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            ------------------------------------------------------------ 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 
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Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            AATCGCTATCGCGAGAGCTCTCGTTAGAAACCCACAGATTTTGCTTCTGGACGAGGCGAC 360 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            ------------------------------------------------------------ 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            GAGTGCCCTGGACACAGAAAGCGAACATGCAGTGCAGAAGGCGCTTGACAAGGCACGAGA 420 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            ------------------------------------------------------------ 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            AAATCGAACTACTATATGCATAGCGCATCGGCTTTCTACCATCAGAGATGCTGATAAAAT 480 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGGATTGAG 60 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            CATTGTTTTCGACGAGGGACACGTTGTTGAGCAAGGGACACATGATGAACTGATGGCAGT 540 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            TAGACTTCTTGAGCCTGTTTTCGTCTGCTAAGTGTGTCCACTCCTCATTTCGGTGGAGAT 120 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            TGAAGGTGGCATGTACCGGAGTATGGTAAAAGCACAGGCGATTGATAAAGGCGAAGAGGA 600 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            TTGTTCTACGATGTTCACTTCATTGCTAGTCCGGCGAGCTATTTGTACTCGTTGCTATTC 180 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            CACCACACTAGATGATGTGAATCCCACGGAACTCAAACGAGGTGTGTCGCGAGTGGGATC 660 
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Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            ACTTCCGTCTAGTTCAAAAAGGTTATTCTGTGCTCTACCTCGACAGTCGATTACGCCATC 240 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            GGAGGAAGACACGCATCGTGTCGAAATGGCTAGAGAATCGGCACGACTTCGTCAAAGTAT 720 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            TTTGAAGTTATTAAAAGTCGGTCGAACTCTGTTGAGAAGTCCCTTTGTAAGAAATGTTAC 300 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            GATCAGCACTTCGACACAGGAGCCGGATTGGGAGATAGAAAGTGCCCGTGACAACATGGT 780 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ------------------------------------------------------------ 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            GACTGTGGAGACGAAACGTGCCTCGGTTAAACTTAAAAATGCAACATTCAAAGATCTGAA 360 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            TGAAGAAGGCGCTATGGAAGCCTCTCTCCTCGACATTTTTGGCTACGCCAAGCCAGAACT 840 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            --------------------------------------CTAATACGACTCACTATAGGGC 22 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            GGAGATATTCTCTTTAGCTGGACCGTATAAGTGGAGAATTCTTCTAGGC---CTTTCATT 417 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            TCCAATGGCTGGCATTGCCTTGATCTTCACTTTATTRCGTGGACTCACATGGCCGCTGTT 900 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            AAGCAGTGGTATCAACGCAGAGTACGCGGGAGGACTGCCTATGATGTCTATCATTATGGG 82 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            CCTCGGCGTAAGCAGCTCGATTTTCCTGATAACACCTAGAGTGCTGGGAAAACTAATAGA 477 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            CTCTATAATCTACGGAAAACTGTTTCTGTTGCTCTCAAGTCCGGATCCGGAAACTCTCGC 960 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            CAATATTTCACAAAACTTCATGAGTATCACTGGTAACACAACCTCTATCCAACAATTCGA 142 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 
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Pgp7            TGAGTTCGACGAAACGAAACGAGCCGCTCCAGGATATGAAGATCTATCGCTCAAGATTGC 537 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            TAGTGGTAACATCCTCAATTCGATCTTCTTTCWATTGCTCGCCATCGCTTCCGGTATCAC 1020 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            ACATGATGTGATCCAGAACTGCCTTAAATATGTCTACCTYGGYTGCGGAGTATTCACGGC 202 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            TAGGTATTTAAAGGACAATCCCATTGCACTGGTTGGGTTGCTGTTTCTTGGAGCTGCTGC 597 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            AACTTTCGCTTCTGGATCACTGTTTGGTATCACCGGCGAAAAGATGGCAATGCGATTACG 1080 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            GGCRACGATTCAGGCAATGTGTTTTCTAACGGTMTGCGARAATCTTGTKAATCAACTCAG 262 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            TATAACTGCAAGAGTGTATTGTATGCACACAGCCGGACAACTCATTATAAATGATCTCCG 657 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            AATGGATGTCTTCAAGAATATAATGCGCCAGGATGCTTCCTATTTTGATAATCCGAATCA 1140 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            AAGACAGTTCTTCAAGTCRATTCTTCGTCAAGACATCACGTGGTTCGACAA------RAA 316 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            TAAGAAAGTTTTCAATTCGGTTCTACGCCAAGACATCGCCTTCTTCGATAA------AAA 711 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            CAACACAGGCAACTTGACAGCCCATTTGGCTTCGGACACACCGAATGTGCAAGCTGCGAT 1200 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            CAATTCAGGAACTCTYGCCACRAAACTRTTCGACAATCTGGAACGAGTCAAAGAGGGWAC 376 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            CAAAGTGGGCGAAATTGTCTCTCGTCTATCAACTGATGCCCTCATCGTGGGATACTCGGT 771 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            CGACCAACGACTCGCAGAGGTGTTGCAAGGTGTTTGCGCTTTGGTGGCTGGAATTGTCGT 1260 

Pgp2            ------------------------------------------------------------ 

Pgp3            ------------------------------------------------------------ 

Pgp4            MGGYGACAAACTTGGCCTTATGATCCAATTYGTGGCGCAGTTYTTCGGCGGTTTCATCGT 436 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            -GTCCATGAATTTGAGCGATGGTGCAAGAGCTCTCTSACATGCTTAGGCTCAGGCGGTCT 830 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 
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Pgp1            TGCATTTTCCTACGGTTGGAATGTCGCTCCTATTGGCCTAGCCACCGCTCTTCTATTAGT 1320 

Pgp2            ---------------------------TCTAATACGACTCACTATAGGGCAAGCAGTGGT 33 

Pgp3            ------------------------------------------------------------ 

Pgp4            GGCGTTCACTTACGACTGGAAACTYACTCTGATCATGATGTCATTGGCYCCATTCATGAT 496 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            AATGGTTTACACATCTCCGGCTCTCTGCCAAGTGATGTTTGTTGTGATTCCGATTATGGT 890 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            TTTCGCTCAATCGTCTGTCGCTCAATATCTGAAGTTCAGAGGACAGAGGGATATGGAGTC 1380 

Pgp2            ATCAACGCAGAGTACGCGGGTGCAAATGCAGTTCGGTAAGAAAATGCGGGACACAGAACT 93 

Pgp3            ----------------------------------------------------------CT 2 

Pgp4            YATTTGTGGAGCWTTCATTGCYAAGTTGATGGCCAGTGCAGCTACTCGGGAAGCCAARAA 556 

Pgp5            ------------------------------------------------------------ 

Pgp6            ------------------------------------------------------------ 

Pgp7            TGGAACTTTCGCCGTTTTCGGTAAGCTGCAACGGAAGTACACTCTCCAAATGCAGGAGGC 950 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            TGCAGTGGAAGCCAGTCAGATAGTGACGGAATCAATCTCGAATACACGA----ACGATTC 1436 

Pgp2            TCTGGAGGAGGCTGGCAAGGTTGCATCGCAAGCTGTAGAGAACATCCGC----ACCGTGC 149 

Pgp3            AATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGAGACAGTAA 62 

Pgp4            GTACGCCGTGGCGGGAGGAATTGCTGARGAAGTGCTCACHTCWATGAGA----ACTGTKA 612 

Pgp5            -------------GCGGCTATAGCCGAGGAAACGTTCTCGTCCATACGT----ACTGTGC 43 

Pgp6            ------------------------------------------------------------ 

Pgp7            TGTAGCTGGGGCTAATCAGGTGGCAACAGAACGATTRTCGAATGTTCGA----ACGGTTA 1006 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            AAGCACTCTGTAAGGAGGGCTACATGTACGAAGCATACTGTGCTGCAGCACAGGAACCTC 1496 

Pgp2            ATGCCCTGAATCGGCAAGAGCAATTCCATTTCATGTACTGTGAATATCTGAAAGAGCCTC 209 

Pgp3            AGTACTACGGTAATGAGATGTATGAAGTGGATCGTTTCCGAGTTGCAATTGAGAGATTTC 122 

Pgp4            TCGCATTCAACGGACAGCCTTACGAATGCGAGAGGTACGAAAAAGCAYTGGAAGACGGCA 672 

Pgp5            ATGCATTATGTGGTCATAGAAGAGAGCTTACAAGGTTTGAGGCAGCGTTGGAGAAAGGAC 103 

Pgp6            ------------------------------------------------------------ 

Pgp7            GAATGTTGGTTGCCGAAAAGAAGGAACTAGGTGCGTACGCCGACAAGATTTACGACATCT 1066 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            ATAAACGGGCTCTTGTACGAGGCC-TATGGCAGGCGCTGTCCTTAGCGCTGTCAAATAGT 1555 

Pgp2            ATCGGGAGAATCTTTGCCAAACCCACACTTACGGTGGTGTGTTT-GCATTCTCACAATCG 268 

Pgp3            AGTTGGC-TGAATGGCGMTCCAATGCATCCCTGGCTCTGCTAAACTTTCTGCAAAACGGC 181 

Pgp4            AATCGACMGGAATCAAGAAATCCTTGTACATYGGCATTGGYCTCGGGATCACTTTTCTCA 732 

Pgp5            GTAAGACAGGACTTGTCAAATATTTCTATATGGGCGTAGGTGTCGGATTCGGTCAGATGT 163 

Pgp6            ------------------------------------------------------------ 

Pgp7            GGATGATATCGAGAAAAGAAGGTTTGGCTCGTGGTGCCATGTATGGCTCGTTCCAATTCA 1126 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            TTCGTTGTGGTGAACTTCGCTATCGCCTACGCTTTTGGACTATGGCTCATACGAAACGAA 1615 

Pgp2            TTACTGTTCTTCATGTATGCGATAGCGTTTTGGATTGGTGCAATCTTCGTGGATAACCAT 328 

Pgp3            ACCATTGGTCTCGGRATGACAGCCGGTTCTATACTTGTCGCTTACTTRGTYACAGTTGAC 241 
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Pgp4            TCATGTTCTCKTCGTACTGYCTGGCTTTCTGGGTTGGCACGGATTTTGTCTTCAARAATC 792 

Pgp5            GTACCTACGTGTCGTACGCCTTGGCTTTTTGGTACGGTAGCACACTGATCATCAGCGACC 223 

Pgp6            ------------------------------------------------------------ 

Pgp7            CGGGGTAT-------------ATCGCCCTTTCAACCGTACTGTTCTACGGAAGTAACCTT 1173 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            TGGAGTACACCATTTATAGTTTTCCAGGTGATAGAAGCGT-TAA-ACATGGCGTCAATGA 1673 

Pgp2            AGTATGCAACCGATTGATGTCTWCCGAGTGTTTTTCGCGT-TCATGTTCTGCGGTCAAAT 387 

Pgp3            CACGARCTCACGGTAGGAGATTATGTTCTGTTCACCACTTATATTCTACAGCTGTATTCT 301 

Pgp4            AAATGCAAG---GAGGAACTGTKATGACGGTATTCTTCTC-CGTGATGATGGGYTCWATG 848 

Pgp5            CAACATTGGACCGTGGCCGGATTTTCACTGTGTTCTTCGC-GGTGATGTCCGGCTCATCA 282 

Pgp6            ------------------------------------------------------------ 

Pgp7            ATCAGTCAGGGMTTGCTCACTTACGGTGATTTGTCATCGT-TCTGCCTTTATGCCGTTCT 1232 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            GCGTGAYGATGG-CCGCCTCATATTTTCCGGAGTATATTCGTGCCCGGATATCAGCAGGG 1732 

Pgp2            GGTCGGCAACA--TCTCCTCATTCATTCCGGACGTTGTGAAAGCTCGCCTAGCTGCATCG 445 

Pgp3            CCATTGAACTTTTTTGGGACAGTGTATAGAACTATTCAAAAGTCTTTCATTGATATGGAG 361 

Pgp4            GCGCTCGGWCAGGCYGGACCRCAATTTGCTGTCCTTGGYACAGCTATGGGTGCYGCTGGG 908 

Pgp5            GCTCYAGGTACCTGCCTCCCATATCTTAACACCATATCAATCGCCCAAGGTGCTGTTCGA 342 

Pgp6            ------------------------------------------------------------ 

Pgp7            CTGTGCAGCGAGTTTGTCAAACATATCTGGTTTTTTCATCGAAATCATGAAGGGYTTGGG 1292 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            GTCATGTTCACGATGATGCGACAGCGGCCAAAAATCGACA-ATATGAGTCATCAAGGR-- 1789 

Pgp2            CTCCTGTTTTACCTTATTGAACACCCTACGGAGATCGATA-ATCTATCGGAGGACGGC-- 502 

Pgp3            AATATGTTYGACCTAATGAACGAGGAGGTCGATGTAAGGG---ATGCTCCAAACGCAATT 418 

Pgp4            TCTCTYTATCAGATTATCGMKSGGGAACCAGAAATAGACTCCTACTCCTCCGAAGGAGTT 968 

Pgp5            AGTGTGCTGAAAGTGATCAATAGTCGTCCAAAGATCGATCCATATTCATTGGATGGGATT 402 

Pgp6            ------------------------------------------------------------ 

Pgp7            CGCCAGTTCTAGACTGTTCGAACTTCGCAATACAGTGCCGCGCATCCCTCTTGAGGGA-- 1350 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            GATAAACCGGCGCTCAAAGGCGACATAGCGCTGAGAAACGTCTATTTCTCGTATCCGGTA 1849 

Pgp2            ATTAAGAAGAAACTCTCCGGTCATGTTGTATTCCGCAATGTCTATTTCAATTATCCAACC 562 

Pgp3            GAATACCATCCAACGAATGGGCARATTGTAGTGAAAGATCTTACATTCGCCTAC------ 472 

Pgp4            AGGCCATCGAATCTCAAAGGAAAAATCACTGTCTCAAATCTGAAGTTCACTTATCCAACA 1028 

Pgp5            GTGCTGAACAATATGAGAGGATCTATTCGCTTGAAGAACGTACATTTCTCTTACCCATCT 462 

Pgp6            ------------------------------------------------------------ 

Pgp7            GGTATCAARAAGGGAAATGTCGAGGATRCAATCAGATTTGACCGTGTGGCGTTTGCATAT 1410 

Pgp8            ------------------------------------------------------------ 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            CGACGGCGGCAGCTTGTCTTTCAAGGCATGAACCTGAGCGTCCGACATGGACAGACTGTG 1909 

Pgp2            AGAAAACAGATCAGAGTACTTCGTGGATTAAGCTTAGAGATTCAACCCGGTACTACGGTA 622 

Pgp3            AACGAGAACCGTATAGTRCTGAATGACATCTCGTTYGAAGTCGGCAGTGGACAGTCYATC 532 

Pgp4            CGACCAGATGTCCCGATTCTTAAGGGTGTTTCATTTGAAGCGAAACCCGGTGAGACGATA 1088 

Pgp5            AGAAGTACACTCCCGATATTGAGAGGCGTGTCCCTCCAAGTGGCAGCCGGCCAAAAGATC 522 

Pgp6            ------------------------------------------------------------ 

Pgp7            CCGGGACGAGATCCGCTGTTCCACAATATCTCCTTCACAGTWCCGGCTGGTCAAATCACT 1470 

Pgp8            ------------------------------------------------------------ 



255 

Pgp9            ------------------------------------------------------------ 

Pgp10           ------------------------------------------------------------ 

Pgp11           ------------------------------------------------------------ 

                                                                             

 

Pgp1            GCACTGGTAKGCGCCAGCGGGTGTGGAAAGAGCACCGTGATACAGCTCGTCGAGAGGTAT 1969 

Pgp2            GCACTGGTTGGTCGATGTGGGTGTGGRAARAGCACCGTGATGGCRTTRTTGGAAAGGTTT 682 

Pgp3            GCATTCGTYGGCCCATCRGGTGGTGGGAARAGTACGTTGATTCGTTTGTTGTTCCGTCTG 592 

Pgp4            GCACTGGTAGGTTCTAGTGGRTGTGGAAARAGYACCATAATTCAGCTGCTACTACGGTAC 1148 

Pgp5            GCCCTGGTGGGTTCAAGYGGGTGTGGAAAGTCGACAATCGTTAATTTGCTGCTGAGATTT 582 

Pgp6            ---------------AGTGGGTGTGGGAAGTCWACAGTGATATCGTTACTTGAAMGGCTT 45 

Pgp7            GCAGTGGTCGGATCGTCYGGTAGCGGWAARTCWACCATCGCAAATCTTYTGTTGAGGCTT 1530 

Pgp8            ---------------AGCGGGTGTGGGAAAAGCACCTCCATTCAGTTAATCGAACGATTC 45 

Pgp9            ---------------AGTGGGTGTGGGAAGAGTACCCTTGTTGGACTACTTCTTCGCTTT 45 

Pgp10           ---------------AGYGGGTGYGGGAAGAGYACCCTCGCCAGTTTATTGATGGGCTAT 45 

Pgp11           ---------------AGCGGGTGTGGTAAGAGTACGCTTATACGTTGTGTAAACCTGCTG 45 

                                  **  * ** **    **              *           

 

Pgp1            TACGACGCCTTGTGTGGCAACGTGAGTATCGACACATACGACATACGTGATCTCTCCATT 2029 

Pgp2            TACAATCAAAGCAGGGGTGTCATCACGGTCGATGGCGAAAACATCAGAAACATGAATATC 742 

Pgp3            TTCGAGTGTCCTGAGGGAACTATTTTCYTCGACGGGAAAGATGTACGACATCTGAAGTTG 652 

Pgp4            TACAATCCTGCAGATGGAAAGATTACAATAGACGGTGTGGAAATCGACAAGATTAATATC 1208 

Pgp5            TACGATCCGACCAGRGGSAAGGTAACCATAGATGACATTGACGTCTGCGATCTCAACGTT 642 

Pgp6            TACGATGCYTTGGACGGTTCTGTGGAAGTTGATGGYAATGATCTWCGCSAAGTRAAYCCY 105 

Pgp7            TACGATCCGGACCGTGGTCATATCATGATTGATGATGTCGATTTGAAACAAACAGATCCT 1590 

Pgp8            TACGATCCTGTGGCTGGTGCTGTGCTGTTCGATGAAGTGGATGCTCGTGAACTGAATTTG 105 

Pgp9            TACGAACAGAAATCGGGAAAGATCTCTATCGATGACGTTCCCATATCCGAACTGAATATC 105 

Pgp10           TACCCGCTAACGGAAGGTGAGATTCGCCTTGATGGTCGTCCATTAAGTTCGCTAAGTCAC 105 

Pgp11           GAGCGCCCAACCGAGGGTAGCGTGCTGGCCGATGGCCAGGA-ACTGACCACGCTGTCAGA 104 

                               **     *       **                             

 

Pgp1            CGTTACGTAAGGGACAACATGGCATTAGTTGGACAGGAGCCGACACTATTCAATGTGACG 2089 

Pgp2            CGTGATCTTCGTGAACAAGTGTGCATCGTCAGTCAGGAACCGACGCTGTTYGAYTGTACG 802 

Pgp3            GTATCGCTGCGTAAACAAATTGGAATCGTACCGCAGGATACGGTACTGTTCAACGATACG 712 

Pgp4            GAATTTCTCCGAAATTACGTTGGAGTAGTGTCACAAGAGCCTATGCTGTTTAACACAACG 1268 

Pgp5            CACAAACTTCGTGAACAAATCGGTGTTGTCAGTCAGGAGCCAGTACTATTTGATGGGACA 702 

Pgp6            ACTCATCTACGTGCCCATATAGCYTTGGTATCGCAAGAGCCGATTCTTTTCGACAGATCM 165 

Pgp7            TCTTACTGGCGACGGCARATTGGAACTGTAGGGCAGGAACCAATATTGTTCTCAACCACG 1650 

Pgp8            AGGCACCTTCGATCACAAATCTCCCTAGCGGGCCAGGAGCCTATACTTTTCAACTATTCC 165 

Pgp9            GAACATCTGAGGAACATCGTAGGAGTCGTGTCTCAGGAGCCGGCGTTGTTTGCTGATACA 165 

Pgp10           AGCGCGCTGCGCCAGGGCGTGGCAATGGTGCAGCAAGATCCGGTGGTGCTGGCGGATACC 165 

Pgp11           ATCCGAGTTGACCAAAGCTCGCCGCCAGATTGGTATGATTTTCCAGCATTTTAACCTGCT 164 

                                           *      * **           *        *  

 

Pgp1            ATACGCGAGAACATCATGTATGGTCTTG---AC------AAATGTTCTCAGGAGGAAATT 2140 

Pgp2            ATCCTTGAGAACATYTGCTATGGACTGG---ACGACCCTAAACCTTCCTACGAGAAGGTG 859 

Pgp3            ATACGGTACAATATCCGCTTTGGTCGCC---------CGTCAGCCACAGACGAGGAGGTT 763 

Pgp4            ATTGAACAGAATATCCGTTATGGACGTG---------AAAAAGTCACAGATGCTGAAATC 1319 

Pgp5            TTATTTGAGAATATTCGAATGGGATATG---------AACACGCTACTATGGAAGAGGTC 753 

Pgp6            ATYCGMGACAACATCCTCTACGGYCTY---CCWCCAGGWTCCGTTAGTGAYGCACAAGTK 222 

Pgp7            ATTCGGGAGAATATYCTCTATGGTGCTGAGTACCCCGATAAAATCACGGAGGCTAAGATA 1710 

Pgp8            ATAAGAGAGAATATTGCGTACGGTTTCG---AG------GAAGCAACTACAGCTCAAATC 216 

Pgp9            GTTGAAAATAATATCCGCTTGGGACGGG---------TGGACATT-TCGCGGCAGGAAAT 215 

Pgp10           TTCCTCGCCAACGTGACGCTGGGGCGGG---------ATATC--T-CCGAAGAACGCGTC 213 

Pgp11           CTCTTCGCG--TACTGTTTTTGGCAACG----------TGGCTCTGCCGCTG--GAGCTG 210 

                 *                   **                            *         

 

Pgp1            GAGCACGCCGCACGTCTCGCCAATATTCATGATTTTATTAATAGCCTTCCT---GAGCGT 2197 

Pgp2            GTCGCTGCGGCAAAAATGGCMAATATYCACAACTTTGTGCTRGGGCTGCCA---GAGGGT 916 

Pgp3            TATGAAGCCGCAAAAGCTGCAATGATTCACGATAAGATCATGACCCTTCCT---GAAGGC 820 

Pgp4            ACGGCGGCACTCCGTAAAGCAAACGCCTACAATTTTGTGCAGTCATTCCCT---GACGGA 1376 

Pgp5            CAGGAAGCTTGTCGTATTGCAAATGCRGCTGATTTTATCAAACGACTTCCG---GACGGT 810 

Pgp6            CACGAAGTCGCTCAACGTGCYAACATTCACAGCTTCATCATAGGMCTGCCT---GATGGM 279 

Pgp7            GAAGAGGCTGCAGAGCAGTCAAACGCTCTCGATTTCATCCAAGCGTTCTCT---GAAAAA 1767 

Pgp8            GAGGATGCCGCTAGACTGGCCAACGCCCACAACTTCATTGTCAAATTGCCA---GCAGGC 273 

Pgp9            GGAAGATTGTTGCAAGATGGCAAATGCGCATGATTTCATCATGAATTTAAGT--CAGGGC 273 

Pgp10           TGGCAGGCGCTGGAAACCGTGCAACTGGCGGAGCTGGCGCGT-AGCATGAGC--GACGGT 270 

Pgp11           GACAACACACCGAAAGACGAGGTCAAACGTCGCGTGACGGAATTGCTGTCATTGGTTGGT 270 
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Pgp1            TACAATACGGTGGTTGGAGCAAAAGGTGCACTGTTGTCGGGCGGTCAAAAGCAGCGCATC 2257 

Pgp2            TAYGACACACGTGTGGGCGAGAAAGGCACACARTTATCGGGCGGGCAGAAGCAGCGAATC 976 

Pgp3            TATGAAACGATGGTTGGTGAGCGGGGATTGAAGCTATCTGGTGGTGAGAAACAACGTGTC 880 

Pgp4            ATTTACACGAACGTTGGTGACCGAGGAACCCAGATGTCTGGTGGCCAAAAGCAACGTATA 1436 

Pgp5            TACGGTACYCGCGTTGGSGAGCGTGGTGTGCAGCTGAGTGGTGGACAAAAACAGCGAATA 870 

Pgp6            TAYAACACGCGTGCAGGAGAAAAGGGRGCGCAGCTRTCTGGKGGGCAGAAACAACGGATC 339 

Pgp7            TTCGATACTATGGTCGGTGAACAGGGATCAATGCTCAGTGGCGGCCAGAAACAGCGAATA 1827 

Pgp8            TACGACACGGTCGTCGGTGAGCGAGGTAGCATGCTGTCCGGTGGCCAAAAGCAGCGAATC 333 

Pgp9            TACCAGACAAGGATAGGAGACGGTGGAGTTCAGCTGTCTGGTGGTCGAAAGCAGCGAGTT 333 

Pgp10           ATTTACACGCCGCTGGGCGAGCAGGGGAATAATCTCTCAGTTGGGCAAAAGCAACTGCTG 330 

Pgp11           CTTGGCGATAAGCATGATGGCTACCCGTCGAATCTTTCCGGTGGGCAGAAACAACGTGTG 330 

                               *  *               *    *  **    ** ** *   *  

 

Pgp1            GCCATCGCTCGTGCTATCGTCAGAGATCCAAAGATACTACTACTTGACGAAGCCACCTCC 2317 

Pgp2            GCGATCGCTCGGGCGTTGATYCGAGATCCACCTATACTTCTTCTTGACGAGGCAACCWSC 1036 

Pgp3            GCGATTGCACGAACCATTCTGAAGAAACCACAGTTTATATTTTTGGACGAAGCAACCAGC 940 

Pgp4            GCCATTGCCCGCGCTTTGGTCAGAGACCCAAAAATTCTTCTACTCGACGAAGCCACATCC 1496 

Pgp5            GCCATTGCTCGTGCRATYATCAARAAYCCACGTATACTYTTGCTCGAYGAAGCAACCWSC 930 

Pgp6            GCCATYGCACRTGCACTTGTTCGGAATCCAAAAATCCTACTACTTGACGARGCCACAWSY 399 

Pgp7            GCAATTGCGAGAGCACTGGTCACGAATCCAAGGATTCTAATCCTCGATGAAGCCACTAGC 1887 

Pgp8            GCAATAGCTCGAGCTGTGATCCGTAACCCGAAAGTTCTTCTATTGGACGAGGCAACCAGT 393 

Pgp9            GCTATAGCTCGAGCTCTGGTGAGAAATCCGCGAATTCTGCTACTGGACGAGGCCACATCC 393 

Pgp10           GCACTGGCGCGCGTGCTGGTCGAGACGCCGCAAATCCTGATCCTTGATGAAGCCACATCC 390 

Pgp11           GCAATTGCCCGTGCGTTAGCCAGCAATCCCAAAGTATTGCTGTGTGACGAAGCAACCAGT 390 

                **  * **        *          **     *  *  *    ** ** ** **     

 

Pgp1            GCCCT 2322 

Pgp2            GCCCT 1041 

Pgp3            GCCCT 945 

Pgp4            GCCCT 1501 

Pgp5            GCCCT 935 

Pgp6            GCCCT 404 

Pgp7            GCCCT 1892 

Pgp8            GCCCT 398 

Pgp9            GCCCT 398 

Pgp10           GCCCT 395 

Pgp11           GCCCT 395 

                ***** 
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Appendix 2: Clustal W alignment of the translated protein sequences of the 11 partial 

Pgp genes identified from T. circumcincta 

PGP7 has two alignments due to the frame shift that occurs in the nucleotide sequence.  Rf after the Pgp 

name stands for reading frame, with the end number denoting whether the reading frame was 1, 2 or 3. 

 
Pgp1Rf2         YDSLGKSGINAEYAGIPLREYNVRWWRGVVGVVQQEPVIFRATVAENVRMGDDSLSDADV 60 

Pgp2Rf2         ------------------------------------------------------------ 

Pgp3Rf2         ------------------------------------------------------------ 

Pgp4Rf3         ------------------------------------------------------------ 

Pgp5Rf1         ------------------------------------------------------------ 

Pgp6Rf1         ------------------------------------------------------------ 

Pgp7Rf2         ------------------------------------------------------------ 

Pgp7Rf1         ------------------------------------------------------------ 

Pgp8Rf1         ------------------------------------------------------------ 

Pgp9Rf1         ------------------------------------------------------------ 

Pgp10Rf1        ------------------------------------------------------------ 

Pgp11Rf1        ------------------------------------------------------------ 

                                                                             

 

Pgp1Rf2         EEACKVANALGFIRNLSEGFNTXIGEGAVQLSGGQKQRIAIARALVRNPQILLLDEATSA 120 

Pgp2Rf2         ------------------------------------------------------------ 

Pgp3Rf2         ------------------------------------------------------------ 

Pgp4Rf3         ------------------------------------------------------------ 

Pgp5Rf1         ------------------------------------------------------------ 

Pgp6Rf1         ------------------------------------------------------------ 

Pgp7Rf2         ------------------------------------------------------------ 

Pgp7Rf1         ------------------------------------------------------------ 

Pgp8Rf1         ------------------------------------------------------------ 

Pgp9Rf1         ------------------------------------------------------------ 

Pgp10Rf1        ------------------------------------------------------------ 

Pgp11Rf1        ------------------------------------------------------------ 

                                                                             

 

Pgp1Rf2         LDTESEHAVQKALDKARENRTTICIAHRLSTIRDADKIIVFDEGHVVEQGTHDELMAVEG 180 

Pgp2Rf2         ------------------------------------------------------------ 

Pgp3Rf2         ------------------------------------------------------------ 

Pgp4Rf3         ------------------------------------------------------------ 

Pgp5Rf1         ------------------------------------------------------------ 

Pgp6Rf1         ------------------------------------------------------------ 

Pgp7Rf2         ------------------------------------------------------YDSLGK 6 

Pgp7Rf1         ----------------------------LIRLTIGQAVVSTQSTRGIETSACFRLLSVST 32 

Pgp8Rf1         ------------------------------------------------------------ 

Pgp9Rf1         ------------------------------------------------------------ 

Pgp10Rf1        ------------------------------------------------------------ 

Pgp11Rf1        ------------------------------------------------------------ 

                                                                             

 

Pgp1Rf2         GMYRSMVKAQAIDKGEEDTTLDDVNPTELKRGVSRVGSEEDTHRVEMARESARLRQSMIS 240 

Pgp2Rf2         ------------------------------------------------------------ 

Pgp3Rf2         ------------------------------------------------------------ 

Pgp4Rf3         ------------------------------------------------------------ 

Pgp5Rf1         ------------------------------------------------------------ 

Pgp6Rf1         ------------------------------------------------------------ 

Pgp7Rf2         QWYQRRVRGGLSRLLEPVFVCVCPLLISVEICSTMFTSLLVRRAICTR------------ 54 

Pgp7Rf1         PHFGGDLFYDVHFIASPASYLYSLLFTSVFKKVILCSTSTVDYAIFEVIKSR-------- 84 

Pgp8Rf1         ------------------------------------------------------------ 

Pgp9Rf1         ------------------------------------------------------------ 

Pgp10Rf1        ------------------------------------------------------------ 

Pgp11Rf1        ------------------------------------------------------------ 

                                                                             

 

Pgp1Rf2         TSTQEPDWEIESARDNMVEEGAMEASLLDIFGYAKPELPMAGIALIFTLLRGLTWPLFSI 300 

Pgp2Rf2         ------------------------------------------------------------ 

Pgp3Rf2         ------------------------------------------------------------ 

Pgp4Rf3         ------------------------NTTHYRASSGINAEYAGGLPMMSIIMGNISQNFMSI 36 
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Pgp5Rf1         ------------------------------------------------------------ 

Pgp6Rf1         ------------------------------------------------------------ 

Pgp7Rf2         ------------------------CYSLPSSSKRLFCALPRQSITPSLKLLKVGRTLLRS 90 

Pgp7Rf1         ---------SNSVEKSLCKKCYDCGDETCLGTKCNIQRSEGDILFSWTVVENSSRPFIPR 135 

Pgp8Rf1         ------------------------------------------------------------ 

Pgp9Rf1         ------------------------------------------------------------ 

Pgp10Rf1        ------------------------------------------------------------ 

Pgp11Rf1        ------------------------------------------------------------ 

                                                                             

 

Pgp1Rf2         IYGKLFLLLSSPDPETLASGNILNSIFFXLLAIASGITTFASGSLFGITGEKMAMRLRMD 360 

Pgp2Rf2         ------------------------------------------------------------ 

Pgp3Rf2         ------------------------------------------------------------ 

Pgp4Rf3         TG-------NTTSIQQFEHDVIQNCLKYVYLGCGVFTAATIQAMCFLTVCENLVNQLRRQ 89 

Pgp5Rf1         ------------------------------------------------------------ 

Pgp6Rf1         ------------------------------------------------------------ 

Pgp7Rf2         PFVRNVTTVETKRASVKLKNATFKDLKEIFSLAGPYKWRILLGLSFLGVSSSIFLITPRV 150 

Pgp7Rf1         RKQLDFPDNTSAGKTNRVRRNETSRSRIRSIAQDCVFKGQSHCTGWVAVSWSCCYNCKSV 195 

Pgp8Rf1         ------------------------------------------------------------ 

Pgp9Rf1         ------------------------------------------------------------ 

Pgp10Rf1        ------------------------------------------------------------ 

Pgp11Rf1        ------------------------------------------------------------ 

                                                                             

 

Pgp1Rf2         VFKNIMRQDASYFDNPNHNTGNLTAHLASDTPNVQAAIDQRLAEVLQGVCALVAGIVVAF 420 

Pgp2Rf2         ------------------------------------------------------------ 

Pgp3Rf2         ------------------------------------------------------------ 

Pgp4Rf3         FFKSILRQDITWFDKNNSGT--LATKLFDNLERVKEGTGDKLGLMIQFVAQFFGGFIVAF 147 

Pgp5Rf1         ------------------------------------------------------------ 

Pgp6Rf1         ------------------------------------------------------------ 

Pgp7Rf2         LGKLIDEFDETKRAAPGYEDLSLKIARYLKDNPIALVGLLFLGAAAITARVYCMHTAGQL 210 

Pgp7Rf1         LYAHSRTTHYKSPESFQFGSTPRHRLLRKQSGRNCLSSINCPHRGILGVHEFERWCKSSL 255 

Pgp8Rf1         ------------------------------------------------------------ 

Pgp9Rf1         ------------------------------------------------------------ 

Pgp10Rf1        ------------------------------------------------------------ 

Pgp11Rf1        ------------------------------------------------------------ 

                                                                             

 

Pgp1Rf2         SYGWN----------VAPIGLATALLLVFAQSSVAQYLKFRGQRDMESAVEASQIVTESI 470 

Pgp2Rf2         -----------------LIRLTIGQAVVSTQSTRVQMQFGKKMRDTELLEEAGKVASQAV 43 

Pgp3Rf2         ------------------------------------------------YDSLGKQWYQRR 12 

Pgp4Rf3         TYDWK----------LTLIMMSLAPFMIICGAFIAKLMASAATREAKKYAVAGGIAEEVL 197 

Pgp5Rf1         ----------------------------------------------------AAIAEETF 8 

Pgp6Rf1         ------------------------------------------------------------ 

Pgp7Rf2         IINDLRKKVFNSVLRQDIAFFDKNKVGEIVSRLSTDALIVGYSVSMNLSDGARALXHAAQ 270 

Pgp7Rf1         TCLGSGGLMVYTSPALCQVMFVVIPIMVGTFAVFGKLQRKYTLQMQEAVAGANQVATERL 315 

Pgp8Rf1         ------------------------------------------------------------ 

Pgp9Rf1         ------------------------------------------------------------ 

Pgp10Rf1        ------------------------------------------------------------ 

Pgp11Rf1        ------------------------------------------------------------ 

                                                                             

 

Pgp1Rf2         SNTRTIQALCKEGYMYEAYCAAAQEPHKRALVRGLWQALSLALSNSFVVVNFAIAYAFG- 529 

Pgp2Rf2         ENIRTVHALNRQEQFHFMYCEYLKEPHRENLCQTHTYGGVFAFSQSLLFFMYAIAFWIG- 102 

Pgp3Rf2         VRGETVKYYGNEMYEVDRFRVAIERFQLAEWRSNASLALLNFLQNGTIGLGMTAGSILVA 72 

Pgp4Rf3         TSMRTVIAFNGQPYECERYEKALEDGKSTGIKKSLYIGIGLGITFLIMFSSYCLAFWVGT 257 

Pgp5Rf1         SSIRTVHALCGHRRELTRFEAALEKGRKTGLVKYFYMGVGVGFGQMCTYVSYALAFWYGS 68 

Pgp6Rf1         ------------------------------------------------------------ 

Pgp7Rf2         AVWFTHLRLSAKCLLFRLWLELSPFSVSCNGSTLSKCRRLLGLIRWQQNDXRMFERLECW 330 

Pgp7Rf1         SNVRTVRMLVAEKKELGAYADKIYDIWMISRKEGLARGAMYGSFQFTGYIALSTVLFYG- 374 

Pgp8Rf1         ------------------------------------------------------------ 

Pgp9Rf1         ------------------------------------------------------------ 

Pgp10Rf1        ------------------------------------------------------------ 

Pgp11Rf1        ------------------------------------------------------------ 

                                                                             

 

Pgp1Rf2         LWLIRNEWSTPFIVFQVIEALNMASMSVXMAASYFPEYIRARISAGVMFTMMRQRPKIDN 589 

Pgp2Rf2         AIFVDNHSMQPIDVXRVFFAFMFCGQMVGNISSFIPDVVKARLAASLLFYLIEHPTEIDN 162 

Pgp3Rf2         YLVTVDHELTVGDYVLFTTYILQLYSPLNFFGTVYRTIQKSFIDMENMFDLMNEEVDVR- 131 

Pgp4Rf3         DFVFKN-QMQGGTVMTVFFSVMMGSMALGQAGPQFAVLGTAMGAAGSLYQIIXXEPEIDS 316 
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Pgp5Rf1         TLIISDPTLDRGRIFTVFFAVMSGSSAXGTCLPYLNTISIAQGAVRSVLKVINSRPKIDP 128 

Pgp6Rf1         ------------------------------------------------------------ 

Pgp7Rf2         LPKRRNVRTPTRFTTSGYREKKVWLVVPCMARSNSRGISPFQPYCSTEVTLSVRXCSLTV 390 

Pgp7Rf1         SNLISQGLLTYGDLSSFCLYAVLCAASLSNISGFFIEIMKGLGASSRLFELRNTVPRIP- 433 

Pgp8Rf1         ------------------------------------------------------------ 

Pgp9Rf1         ------------------------------------------------------------ 

Pgp10Rf1        ------------------------------------------------------------ 

Pgp11Rf1        ------------------------------------------------------------ 

                                                                             

 

Pgp1Rf2         MSHQGDKPA-LKGDIALRNVYFSYPVRRRQLVFQGMNLSVRHGQTVALVXA---SGCGKS 645 

Pgp2Rf2         LSEDGIKKK-LSGHVVFRNVYFNYPTRKQIRVLRGLSLEIQPGTTVALVGR---CGCGKS 218 

Pgp3Rf2         DAPNAIEYHPTNGQIVVKDLTFAYNENR--IVLNDISFEVGSGQSIAFVGP---SGGGKS 186 

Pgp4Rf3         YSSEGVRPSNLKGKITVSNLKFTYPTRPDVPILKGVSFEAKPGETIALVGS---SGCGKX 373 

Pgp5Rf1         YSLDGIVLNNMRGSIRLKNVHFSYPSRSTLPILRGVSLQVAAGQKIALVGS---XGCGKS 185 

Pgp6Rf1         ------------------------------------------------------SGCGKS 6 

Pgp7Rf2         ICHRSAFMPFSVQRVCQTYLVFSSKSRXWAPVLDCSNFAIQCRASLLREVSXREMSRXQS 450 

Pgp7Rf1         -LEGGIKKGNVEDXIRFDRVAFAYPGRD--PLFHNISFTVPAGQITAVVGS---SGSGKS 487 

Pgp8Rf1         ------------------------------------------------------SGCGKS 6 

Pgp9Rf1         ------------------------------------------------------SGCGKS 6 

Pgp10Rf1        ------------------------------------------------------XGCGKX 6 

Pgp11Rf1        ------------------------------------------------------SGCGKS 6 

                                                                       .  :  

 

Pgp1Rf2         TVIQLVERYYDALCGNVSIDTYDIRDLSIRYVRDNMA-----------LVGQEPTLFNVT 694 

Pgp2Rf2         TVMALLERFYNQSRGVITVDGENIRNMNIRDLREQVC-----------IVSQEPTLFDCT 267 

Pgp3Rf2         TLIRLLFRLFECPEGTIFXDGKDVRHLKLVSLRKQIG-----------IVPQDTVLFNDT 235 

Pgp4Rf3         TIIQLLLRYYNPADGKITIDGVEIDKINIEFLRNYVG-----------VVSQEPMLFNTT 422 

Pgp5Rf1         TIVNLLLRFYDPTRGKVTIDDIDVCDLNVHKLREQIG-----------VVSQEPVLFDGT 234 

Pgp6Rf1         TVISLLERLYDALDGSVEVDGNDLRXVNPTHLRAHIA-----------LVSQEPILFDRS 55 

Pgp7Rf2         DLTVWRLHIRDEIRCSTISPSQXRLVKSLQWSDRXVAXXXPSQIFCGFTIRTVVISLMMS 510 

Pgp7Rf1         TIANLLLRLYDPDRGHIMIDDVDLKQTDPSYWRRQIG-----------TVGQEPILFSTT 536 

Pgp8Rf1         TSIQLIERFYDPVAGAVLFDEVDARELNLRHLRSQIS-----------LAGQEPILFNYS 55 

Pgp9Rf1         TLVGLLLRFYEQKSGKISIDDVPISELNIEHLRNIVG-----------VVSQEPALFADT 55 

Pgp10Rf1        TLASLLMGYYPLTEGEIRLDGRPLSSLSHSALRQGVA-----------MVQQDPVVLADT 55 

Pgp11Rf1        TLIRCVNLLERPTEGSVLADGQELTTLSESELTKARR-----------QIGMIFQHFNLL 55 

                                           .                            :    

 

Pgp1Rf2         IRENIMYGLD---KCSQEEIEHAARLANIHDFINSLPER----YNTVVGAKGALLSGGQK 747 

Pgp2Rf2         ILENICYGLDD-PKPSYEKVVAAAKMANIHNFVLGLPEG----YDTRVGEKGTQLSGGQK 322 

Pgp3Rf2         IRYNIRFGRP---SATDEEVYEAAKAAMIHDKIMTLPEG----YETMVGERGLKLSGGEK 288 

Pgp4Rf3         IEQNIRYGRE---KVTDAEITAALRKANAYNFVQSFPDG----IYTNVGDRGTQMSGGQK 475 

Pgp5Rf1         LFENIRMGYE---HATMEEVQEACRIANAADFIKRLPDG----YGTRVGERGVQLSGGQK 287 

Pgp6Rf1         IRDNILYGLPP-GSVSDAQVHEVAQRANIHSFIIGLPDG----YNTRAGEKGAQLSGGQK 110 

Pgp7Rf2         INKQILLTGDGXLELGRNQYCSQPRFGRIXSMVLSTPIKSRRLRKRLQSSQTLSISSKRS 570 

Pgp7Rf1         IRENILYGAEYPDKITEAKIEEAAEQSNALDFIQAFSEK----FDTMVGEQGSMLSGGQK 592 

Pgp8Rf1         IRENIAYGFE---EATTAQIEDAARLANAHNFIVKLPAG----YDTVVGERGSMLSGGQK 108 

Pgp9Rf1         VENNIRLGRV---DISRQEMEDCCKMANAHDFIMNLSQG----YQTRIGDGGVQLSGGRK 108 

Pgp10Rf1        FLANVTLGRD----ISEERVWQALETVQLAELARSMSDG----IYTPLGEQGNNLSVGQK 107 

Pgp11Rf1        SSRTVFGNVALPLELDNTPKDEVKRRVTELLSLVGLGDK----HDGYPSN----LSGGQK 107 

                    :                   .                       .     :*  .. 

 

Pgp1Rf2         QRIAIARAIVRDPKILLLDEATSA------------------ 771 

Pgp2Rf2         QRIAIARALIRDPPILLLDEATXA------------------ 346 

Pgp3Rf2         QRVAIARTILKKPQFIFLDEATSA------------------ 312 

Pgp4Rf3         QRIAIARALVRDPKILLLDEATSA------------------ 499 

Pgp5Rf1         QRIAIARAIIKNPRILLLDEATXA------------------ 311 

Pgp6Rf1         QRIAIAXALVRNPKILLLDEATXA------------------ 134 

Pgp7Rf2         LKNSILWSVNRDQCSVAARNSEQLREHWSRIQGFSSMKPLAP 612 

Pgp7Rf1         QRIAIARALVTNPRILILDEATSA------------------ 616 

Pgp8Rf1         QRIAIARAVIRNPKVLLLDEATSA------------------ 132 

Pgp9Rf1         QRVAIARALVRNPRILLLDEATSA------------------ 132 

Pgp10Rf1        QLLALARVLVETPQILILDEATSA------------------ 131 

Pgp11Rf1        QRVAIARALASNPKVLLCDEATSA------------------ 131 

                   ::   :      :   ::                      
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Appendix 3: Clustal W alignment of the nucleotide sequences of the 3 partial CYP 

genes identified from T. circumcincta 

CYP1TC          ------------------------------------------------------------ 

CYP2TC          CAAAGAAAAGACGATATCGCATCTGGACAACACACGTTAGATGGTGATGGCAATGATTTT 60 

CYP3TC          ------------------------------------------------------------ 

                                                                             

 

CYP1TC          ------------------------------------------------------------ 

CYP2TC          GTTGATGCCTTCTTTATCAAGATGGAGAAAGATAACAAAGAAGGCCGATCTCCCAACGAA 120 

CYP3TC          -------------------------------GATAGCAATATGTTTGCCGTCGTGATTCT 29 

                                                                             

 

CYP1TC          ---------------------------------TTTGATCTTTG-GATTGCAGGTCAGGA 26 

CYP2TC          TCATACAAAGAAGAGGAGCTGCTCTATGATATATTTGATCTTTG-GATTGCTGGTCAGGA 179 

CYP3TC          TTTCCTGTTATCGTTTGTCGTCTACTACGTATGGTTGTTCTATGCGAACGTGAAACGTTA 89 

                                                  *** *** ** **  *     *   * 

 

CYP1TC          AACCACAATAACTACGCTGGAGTGGGCGTTTTCCTACTTACTACTTAATCCACAGGTAAC 86 

CYP2TC          AACGACAACAATCACAATATTGTGGGGAATGATGCATCTCATCAAAAATCCTGAGGTCAT 239 

CYP3TC          CCCCAAAGGACCAACACCTCTGCCAGTTGTCGGAAATCTTTTG-TCGATCAAC------T 142 

                  * * *  *   **      *   *   *     *  *  *     ***           

 

CYP1TC          AGCACGGGTAGAGGAGGAACTGCTCACGCTCACAAAGGGACAACGCCTACTCTCTATCGT 146 

CYP2TC          GCATAAAATTCGAACAGAGTTGAACACAGTCACTGGTGGCAACAGATTGATCTCCTTATC 299 

CYP3TC          TGCGGAAGCTCAATGATGACTTCGTGCACATATCAAAGGATTATGG-TGATATCTTTACT 201 

                                    *     *    *     **     *  *  * **  *    

 

CYP1TC          GGACAGACCGAACACTCCATACTACAACGCCACTTTGAACGAAGTCCATAGATGCGCTAC 206 

CYP2TC          CGACAGAGAACACACTCACTACCTGAACTGGACAATACTGGAAATACATCGGCTTGCGTC 359 

CYP3TC          GTTTGGC-------TTCCAAAGCCGTATGTGGTGAT-CATGAACTACGACAAT--ATTAA 251 

                     *         **   *     *        *    *** * *              

 

CYP1TC          ATTAGTGCCCATGAATTTGTGGCGTGATACCTCTGAAGATACTGTTGTTGGATCTTATGT 266 

CYP2TC          TATTCTGAATTTGAATCTGTTCCGTAAAACCAAGGAAAATCTCGTTGTCGGTGGACATTC 419 

CYP3TC          GGAGGCGTTCGCGAAAAAAGGAGATGACTTTAACGGACGGTCTGGTCTCTTTCCTGACAC 311 

                      *     ***         * *       * *      * * *        *    

 

CYP1TC          GAT-TCCCAAAGGAACCGCAATCACAGCTCAAATCTCACTCATTATGACTGACGAGAAAT 325 

CYP2TC          TGT-CCCAAAAGGCACTCCAATTGCAGCTGAATTGTCGGTAATAATGCAAGATGAACAAC 478 

CYP3TC          ATTGTACCAAAGCATGCACAATGGAGGCATTGTTTTCTCCCAGGGAGACCTTTGGAAAGA 371 

                  *   * ****      ****    **     * **    *    *      *   *   

 

CYP1TC          ACTTCGAAAATTSCAAAGAGTTCAATCCTGACCGYTATTTCRATGGCAAYAA----ATTG 381 

CYP2TC          GCTTCGAGGAGGCTAACAAGTTCAATCCAGAACGGTATAAACATGGCGGTAAG-ACACTG 537 

CYP3TC          ACAACGACG--TGTATCACTCCAAATACTTCGCGATTTTGGAATGGGAAAGAGCGCAATG 429 

                 *  ***       *        *** *    ** * *    ****     *    * ** 

 

CYP1TC          GAGCAAAAGGTGGTCGCTTTCGGTTTAGGAAAGCGATCCTGTTTGGGTGAATCACTTGCT 441 

CYP2TC          GAACAGCAAGTGATTCCTTTTGGTCTTGGTAAACGATCGTGTATTGGCGAGAATTTGGCA 597 

CYP3TC          GAGGAACAGGTT-TCTCTTTCTGCACAAGAATT---TCTCAATCATATGAACAGCAT-CA 484 

                **  *  * **  *  ****  *     * *     **          **        *  

 

CYP1TC          CARGCAGAACTSTATCTGATCAYYGCRAAC---TTCCTGCTTCKCTACAAAATCTCGGCA 498 

CYP2TC          AGAGCGGAAATTTTCTTGATTTTGGCCAAC---TTGATTTCACGCTACGAAAT------- 647 

CYP3TC          AAAACAAGGATGAAGTTGATCTACGAAGACCATTACAGGTTTTTGTCGGGAACGTTATCA 544 

                    *     *     ****    *   **   *           *    **         

 

CYP1TC          GATCCTCTACATATGCCAAGGACGAAAGCCACAAATGAAATGGGAACCATGAGAAAAC-- 556 

CYP2TC          ------------------------------------------------------------ 

CYP3TC          ACCGAACATTATTCGGATACGGATACAGTTACGATAACAGCGATCGCCTTATGAAAGTGG 604 

                                                                             

 

CYP1TC          CATACCCCTATCACATGCARTT---TGAACKTCGATAAAATGCCTTGACTTTTTTGCTTT 613 

CYP2TC          ------------------------------------------------------------ 

CYP3TC          CGGATACTTTAGCCATATTATTCGATGAAACGAGGAGCAGCAAGATGGTATTTCTAGCTC 664 
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CYP1TC          TCGTTATGCCTTGCTCATTTTTTGTTGTTGTTTATTATGCCTGTATTGTCTCAGTTGTTG 673 

CYP2TC          ------------------------------------------------------------ 

CYP3TC          AACTTATGCCTTTCATA------------------------------------------- 681 

                                                                             

 

CYP1TC          TCTATTTTTTCAACGTGAGCCACCTTCATTTTCGCTGAAAAAACCTGCGAG 724 

CYP2TC          --------------------------------------------------- 

CYP3TC          --------------------------------------------------- 
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Appendix 4: Clustal W alignment of the translated protein sequences of the 3 CYP 

genes identified from T. circumcincta.   

Rf after the CYP name stands for reading frame, with the end number denoting whether the reading frame 

was 1, 2 or 3. 

 
CYP1TcRf1       ---------------------------------------------------------FDL 3 

CYP2TcRf1       QRKDDIASGQHTLDGDGNDFVDAFFIKMEKDNKEGRSPNESY------KEEELLYDIFDL 54 

CYP3TcRf1       -DSNMFAVVILFLLSFVVYYVWLFYANVKRYPK-GPTPLPVVGNLLSINLRKLNDDFVHI 58 

                                                                         ..: 

 

CYP1TcRf1       WIAGQETTITTLEWAFSYLLLNPQVTARVEEELLTLTKGQRLLS--IVDRPNTPYYNATL 61 

CYP2TcRf1       WIAGQETTTITILWGMMHLIKNPEVMHKIRTELNTVTGGNRLIS--LSDREHTHYLNWTI 112 

CYP3TcRf1       SKDYGDIFTVWLPKPYVVIMNYDNIKEAFAKKGDDFNGRSGLFPDTLYQSMHNGGIVFSQ 118 

                     :     :      ::   ::   .  :   ..  . *:.  : :  :.     :  

 

CYP1TcRf1       NEVHRCATLVPMNLWRDTSEDTVVGSYVIPKGTAITAQISLIMTDEKYFENXKEFNPDRY 121 

CYP2TcRf1       LEIHRLASILNLNLFRKTKENLVVGGHSVPKGTPIAAELSVIMQDEQRFEEANKFNPERY 172 

CYP3TcRf1       GDLWKEQRRVSLQILR----DFGMGKSAMEEQVSLSAQEFLNHMNSIKNKDEVDLRRPLQ 174 

                 :: :    : ::: *    :  :*   : : ..::*:  :   :.   ::  .:.     

 

CYP1TcRf1       FX-GNKLEQKVVAFGLGKRSCLGESLAQAELYLIXANFLLXYKISADPLHMPRTKATNEM 180 

CYP2TcRf1       KHGGKTLEQQVIPFGLGKRSCIGENLARAEIFLILANLISRYE----------------- 215 

CYP3TcRf1       VFVGNVINRTLFGYGYSYDNSD-RLMKVADTLAILFDETRSSKMVFLAQLMPFI------ 227 

                   *: ::: :. :* .  ..  . :  *:   *  :     :                  

 

CYP1TcRf1       GTMRKPYPYHMQFEXRNALTFLLFVMPCSFFVVVYYACIVSVVVYFFNVSHLHFRKNLR 239 

CYP2TcRf1       ----------------------------------------------------------- 

CYP3TcRf1       ----------------------------------------------------------- 
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Appendix 5: Table showing the 355 clusters that were statistically significant under the liberal model following bioinformatic and statistical 

analysis of the sequences generated using Roche 454 sequencing 

The columns show the cluster identity used in the analysis (cluster), the number of reads within that cluster (U reads = unexposed and T reads = exposed), whether gene expression up 

(+) or down (-) regulated compared to unexposed reads (change) and what the putative cluster identity was (BLAST identity). 

 

Cluster U reads T reads Change BLAST Identity 

803 0 15 + 14-3-3 protein [Caenorhabditis brenneri] ACE74683.1 

552 13 40 + 24 kDa excretory/secretory protein [Haemonchus contortus] AAV83999.1 

1661 0 19 + 60S ribosomal protein L3 [Caenorhabditis briggsae] Q9NBK4 

691 0 19 + Abnormal cell lineage family member (lin-2) [Caenorhabditis elegans] NP_001024588.1 

798 0 9 + Abnormal cell Lineage family member (lin-53) [Caenorhabditis elegans] NP_492552.1 

900 0 11 + ADAM (disintegrin plus metalloprotease) family member (adm-4) [Caenorhabditis elegans] NP_509318.1 

2 77 157 + ATP synthase F0 subunit 6 [Cooperia oncophora] NP_851326.1 

1105 0 13 + ATP synthase subunit family member (atp-2) [Caenorhabditis elegans] NP_498111.2 

1729 0 13 + Bifunctional glyoxylate cycle protein [Caenorhabditis elegans] AAA85857.1 

840 0 9 + cDNA sequence BC017158 [Brugia malayi] XP_001896227.1 

1771 0 12 + Chain A, Glutathione Transferase-2, Apo Form [Heligmosomoides polygyrus] 1TW9_A  

1345 0 9 + Chaperonin Containing TCP-1 family member (cct-8) [Caenorhabditis elegans] NP_500035.2 

858 0 15 + Chitin-Binding Domain protein family member (cbd-1) [Caenorhabditis elegans] NP_502145.2 

455 5 39 + Conserved Germline Helicase family member (cgh-1) [Caenorhabditis elegans] NP_498646.1 

1653 0 10 + C-type single domain activation associated secreted protein [Ostertagia ostertagi] CAO00416.1 

410 982 1531 + Cytochrome c oxidase subunit I [Cooperia oncophora] NP_851331.1 

117 306 538 + Cytochrome c oxidase subunit I [Cooperia oncophora] NP_851331.1 



264 

Cluster U reads T reads Change BLAST Identity 

99 422 703 + Cytochrome c oxidase subunit III [Cooperia oncophora] NP_851329.1 

1260 0 9 + Delta6-fatty-acid-desaturase [Caenorhabditis elegans] AAC15586.1 

1133 0 9 + 
DNaJ domain (prokaryotic heat shock protein) family member (dnj-13) [Caenorhabditis elegans]  

NP_496468.1 

649 124 239 + Elongation FacTor family member (eft-2) [Caenorhabditis elegans] NP_492457.1 

1187 0 13 + Enhancer of PolyComb-like family member (epc-1) [Caenorhabditis elegans] NP_499642.2 

652 16 73 + Eukaryotic translation elongation factor 1A [Ancylostoma ceylanicum] DAA05878.1 

918 0 9 + Exportin (nuclear export receptor) family member (xpo-1) [Caenorhabditis elegans] NP_741567.1 

874 0 12 + F-box/LRR-repeat protein, putative [Pediculus humanus corporis] EEB16685.1 

1728 0 9 + GF24664 [Drosophila ananassae] XP_001956296.1 

1266 0 11 + GJ11426 [Drosophila virilis] XP_002048294.1 

1110 0 10 + GJ11487 [Drosophila virilis] XP_002048175.1 

1149 0 9 + GK13711 [Drosophila willistoni] XP_002072638.1 

934 0 31 + Globin-like ES protein F6 [Ostertagia ostertagi] CAD20463.1 

1082 0 9 + Groucho/TLE N-terminal Q-rich domain containing protein [Brugia malayi] XP_001901168.1 

969 0 9 + GTP-binding nuclear protein RAN/TC4 [Brugia malayi] XP_001900408.1 

1671 0 16 + Heat shock protein 20 [Haemonchus contortus] AAN05752.1 

1739 0 27 + Heat shock protein 20 [Ostertagia ostertagi] CAG25499.1 

358 0 25 + Heat shock protein 20 [Ostertagia ostertagi] CAG25499.1 

60 12 38 + Heat shock protein 20 [Ostertagia ostertagi] CAG25499.1 

630 106 256 + Heat Shock Protein family member (hsp-16.2) [Caenorhabditis elegans] NP_503507.1 

765 0 10 + Histone family member (his-35) [Caenorhabditis elegans] NP_505463.1 

925 0 9 + Hypothetical protein [Brugia malayi] XP_001896639.1 
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Cluster U reads T reads Change BLAST Identity 

1705 0 11 + Hypothetical protein [Leishmania infantum JPCM5] XP_001464917.1 

522 23 64 + Hypothetical protein [Tetrahymena thermophila SB210] XP_001028745.1 

773 0 9 + Hypothetical protein B0365.1 [Caenorhabditis elegans] NP_506267.1 

1636 0 12 + Hypothetical protein BRAFLDRAFT_124962 [Branchiostoma floridae] XP_002225324.1 

1011 0 9 + Hypothetical protein C05C8.2 [Caenorhabditis elegans] NP_504837.1 

893 0 11 + Hypothetical protein C07E3.9 [Caenorhabditis elegans] NP_496228.1 

1066 0 10 + Hypothetical protein C28H8.3 [Caenorhabditis elegans] NP_498283.1 

1740 0 13 + Hypothetical protein C39D10.7 [Caenorhabditis elegans] NP_509334.2 

1044 0 11 + Hypothetical protein C50F4.14 [Caenorhabditis elegans] NP_505467.2 

1703 0 14 + Hypothetical protein CBG00021 [Caenorhabditis briggsae AF16] XP_001666234.1 

1710 0 10 + Hypothetical protein CBG01069 [Caenorhabditis briggsae AF16] XP_001672943.1 

454 236 395 + Hypothetical protein CBG01578 [Caenorhabditis briggsae AF16] XP_001671326.1 

1002 0 16 + Hypothetical protein CBG01670 [Caenorhabditis briggsae AF16] XP_001671249.1 

266 2 32 + Hypothetical protein CBG02470 [Caenorhabditis briggsae AF16] XP_001679726.1 

623 0 12 + Hypothetical protein CBG02815 [Caenorhabditis briggsae AF16] XP_001679448.1 

457 162 348 + Hypothetical protein CBG03358 [Caenorhabditis briggsae AF16] XP_001670763.1 

1719 0 9 + Hypothetical protein CBG07973 [Caenorhabditis briggsae] CAP27887.1 

502 336 349 + Hypothetical protein CBG09272 [Caenorhabditis briggsae AF16] XP_001674277.1 

275 130 301 + Hypothetical protein CBG12450 [Caenorhabditis briggsae AF16] XP_001668445.1 

788 0 10 + Hypothetical protein CBG12789 [Caenorhabditis briggsae AF16] XP_001668986.1 

687 0 9 + Hypothetical protein CBG13605 [Caenorhabditis briggsae AF16] XP_001669195.1 

839 0 12 + Hypothetical protein CBG17994 [Caenorhabditis briggsae AF16] XP_001665645.1 

464 84 284 + Hypothetical protein CBG18692 [Caenorhabditis briggsae AF16] XP_001669248.1 
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Cluster U reads T reads Change BLAST Identity 

1648 0 14 + Hypothetical protein CBG18692 [Caenorhabditis briggsae AF16] XP_001669248.1 

1669 0 15 + Hypothetical protein CBG19186 [Caenorhabditis briggsae AF16] XP_001674556.1 

181 0 16 + Hypothetical protein CBG21168 [Caenorhabditis briggsae AF16] XP_001666373.1 

1094 0 9 + Hypothetical protein Csp3_JD02.002 [Caenorhabditis sp. PS1010] ACI49174.1 

1690 0 13 + Hypothetical protein Csp3_JD03.008 [Caenorhabditis sp. PS1010] ACI49199.1 

1633 0 9 + Hypothetical protein Csp3_JD05.001 [Caenorhabditis sp. PS1010] ACI49216.1 

910 0 11 + Hypothetical protein F25B4.6 [Caenorhabditis elegans] NP_504496.1 

571 0 10 + Hypothetical protein F41C3.5 [Caenorhabditis elegans] NP_494846.1 

1664 0 15 + Hypothetical protein F42A8.3 [Caenorhabditis elegans] NP_495993.2 

1763 0 30 + Hypothetical protein L3ni51 [Dictyocaulus viviparus] AAT02162.1 

933 0 9 + Hypothetical protein Y46G5A.13 [Caenorhabditis elegans] NP_496718.1 

1190 0 10 + Hypothetical protein Y57G11C.9 [Caenorhabditis elegans] NP_502785.2 

1229 0 9 + Hypothetical protein Y69E1A.1 [Caenorhabditis elegans] NP_502038.1 

1078 0 9 + Hypothetical protein ZC416.2 [Caenorhabditis elegans] NP_500388.2 

1344 0 9 + Metalloprotease IV [Ostertagia ostertagi] AAS47831.1 

1134 0 11 + Myosin heavy chain [Trypanosoma cruzi strain CL Brener] XP_808187.1 

78 197 449 + NADH dehydrogenase subunit 1 [Cooperia oncophora] NP_851325.1 

666 278 532 + NADH dehydrogenase subunit 2 [Bunostomum phlebotomum] YP_002725706.1 

412 373 677 + No hits found 

1686 0 28 + No hits found 

1783 0 21 + No hits found 

1008 0 17 + No hits found 

750 0 16 + No hits found 
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Cluster U reads T reads Change BLAST Identity 

647 338 540 + No hits found 

721 0 12 + No hits found 

1780 0 10 + No hits found 

1726 0 10 + No hits found 

1632 0 10 + No hits found 

822 0 10 + No hits found 

903 0 11 + No hits found 

310 0 11 + No hits found 

1775 0 11 + No hits found 

494 31 73 + No hits found 

1076 0 9 + No hits found 

772 0 9 + No hits found 

957 0 9 + No hits found 

749 0 9 + No hits found 

882 0 9 + No hits found 

889 0 9 + No hits found 

805 0 9 + No hits found 

1742 0 9 + No hits found 

1051 0 9 + No hits found 

37 11 41 + Paralysed Arrest at Two-fold family member (pat-10) [Caenorhabditis elegans] NP_491501.1 

1693 0 14 + 
PCNA (Proliferating Cell Nuclear Antigen) homolog family member (pcn-1) [Caenorhabditis elegans] 

NP_500466.2 

932 0 9 + Peptidase family M1 containing protein [Brugia malayi] XP_001897028.1 
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Cluster U reads T reads Change BLAST Identity 

1135 0 10 + Predicted protein [Nematostella vectensis] XP_001633893.1 

668 28 91 + Predicted: hypothetical protein [Monodelphis domestica] XP_001375856.1 

711 0 14 + Predicted: similar to Aconitase CG9244-PB [Apis mellifera] XP_391994.1 

537 3 24 + Pre-mRNA cleavage complex II protein Clp1 [Brugia malayi] XP_001895648.1 

1716 0 10 + Putative hexose transporter 2 [Babesia bovis] ABY75261.1 

1663 0 10 + Putative secretory protein precursor; HC40 [Haemonchus contortus] AAC03562.1 

753 0 9 + Putative ubiquitin conjugating enzyme 2 [Oesophagostomum dentatum] CAJ57642.1 

961 0 9 + Receptor Mediated Endocytosis family member (rme-2) [Caenorhabditis elegans]  NP_500815.2 

1065 0 9 + Ribosomal protein S9 [Danio rerio] NP_957146.1 

1701 0 11 + Ribosomal Protein, Large subunit family member (rpl-11.2) [Caenorhabditis elegans] NP_508413.1 

1761 0 10 + RNA recognition motif domain containing protein [Brugia malayi] XP_001894321.1 

629 490 925 + rRNA promoter binding protein [Brugia malayi] XP_001891902.1 

1665 0 21 + Secreted protein 6 precursor [Ancylostoma caninum] AAO63578.1 

793 0 9 + 
SideroFleXiN (mitochondrial iron transporter) family member (sfxn-1.4) [Caenorhabditis elegans] 

NP_496493.1 

789 0 9 + SUMO (ubiquitin-related) homolog family member (smo-1) [Caenorhabditis elegans] NP_490842.1 

1170 0 10 + Troponin T [Brugia malayi] XP_001902458.1 

1631 0 11 + Ubiquitin Conjugating enzyme family member (ubc-3) [Caenorhabditis elegans] NP_490882.3 

700 0 10 + Venom-Allergen-like Protein family member (vap-1) [Caenorhabditis elegans] NP_001024553.1 

287 66 200 + Vitellogenin [Haemonchus contortus] AF305957_1 

591 65 173 + Vitellogenin-6; Flags: Precursor [Oscheius brevesophaga] Q94637.1 

2039 9 0 - Alpha-1,6-mannosyltransferase subunit (Och1), putative [Talaromyces stipitatus ATCC 10500] EED17616.1 

17 24 11 - Amino acid Transporter GlycoProtein subunit family member (atgp-2) [Caenorhabditis elegans] 
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Cluster U reads T reads Change BLAST Identity 

NP_497043.2 

1804 6 0 - Anaphase-promoting complex subunit 2-like [Brugia malayi] XP_001894849.1 

626 98 73 - Ancyclostoma-secreted protein-like protein [Ostertagia ostertagi] CAD56659.1 

2233 9 0 - Argonaute protein [Brugia malayi] XP_001892201.1 

2529 7 0 - Aspartic protease [Ostertagia ostertagi] CAC14005.1 

2098 7 0 - BESS motif family protein [Brugia malayi] XP_001900724.1 

1840 8 0 - Bifunctional glyoxylate cycle protein [Caenorhabditis elegans] AAA85857.1 

87 10 0 - C. briggsae CBR-ATG-2 protein [Caenorhabditis briggsae] CAP30290.1 

1919 9 0 - C. briggsae CBR-PRX-11 protein [Caenorhabditis briggsae] CAP27856.1 

447 37 17 - C. elegans protein F53B2.5, partially confirmed by transcrip [Caenorhbditis elegans] CAA98127.3 

2473 6 0 - CD151 antigen, putative [Ixodes scapularis] EEC13496.1 

2511 7 0 - Chitin binding Peritrophin-A domain containing protein [Brugia malayi] XP_001895704.1 

2498 10 0 - Conserved hypothetical protein [Brugia malayi] XP_001898151.1 

1903 6 0 - Conserved hypothetical protein [Brugia malayi] XP_001900985.1 

605 29 0 - C-type single domain activation associated secreted protein [Ostertagia ostertagi] CAO00416.1 

2547 6 0 - 
C-type single domain activation associated secreted protein ASP3 precursor [Ostertagia ostertagi]  

CAO00416.1 

456 172 116 - 
C-type single domain activation associated secreted protein ASP3 precursor [Ostertagia ostertagi] 

CAO00416.1 

646 166 113 - 
C-type single domain activation associated secreted protein ASP3 precursor [Ostertagia ostertagi] 

CAO00416.1 

616 61 31 - 
C-type single domain activation associated secreted protein ASP3 precursor [Ostertagia ostertagi] 

CAO00416.1 
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Cluster U reads T reads Change BLAST Identity 

2116 10 0 - Cyclin, N-terminal domain containing protein [Brugia malayi] XP_001891912.1 

1918 6 0 - Cyclophylin family member (cyn-1) [Caenorhabditis elegans] NP_506561.1 

1912 6 0 - DIRP family protein [Brugia malayi] XP_001900735.1 

2567 8 0 - E5 [Human papillomavirus type 69] BAA90732.1 

2518 24 0 - Endochitinase [Schizosaccharomyces japonicus yFS275] XP_002171895.1 

1983 11 0 - Fatty Acid CoA Synthetase family member (acs-16) [Caenorhabditis elegans] NP_498568.1 

1947 6 0 - FHA domain-containing protein [Myxococcus xanthus DK 1622] YP_632168.1 

2109 9 0 - Fructose-bisphosphate aldolase 1 [Brugia malayi] XP_001894530.1 

1936 6 0 - GABA TransAminase family member (gta-1) [Caenorhabditis elegans] NP_501862.1 

2541 15 0 - Gag-pol polyprotein [Schistosoma mansoni] CAJ00230.1 

435 30 10 - GEX Interacting protein family member (gei-7) [Caenorhabditis elegans] NP_503306.1 

1964 18 0 - Globin-like host-protective antigen; Flags: Precursor [Trichostrongylus colubriformis] P27613.1 

2488 10 0 - Glycerol-3-phosphate dehydrogenase [Ctenolepisma longicaudata] AAR13229.1 

2521 8 0 - Heat shock protein 20 [Haemonchus contortus] AAN05752.1 

1871 15 0 - Heat shock protein 20 [Ostertagia ostertagi] CAG25499.1 

651 85 49 - Heat Shock Protein family member (hsp-16.1) [Caenorhabditis elegans] NP_505354.1 

2060 8 0 - Heat Shock Protein family member (hsp-16.2) [Caenorhabditis elegans] NP_503507.1 

2212 6 0 - Helicase conserved C-terminal domain containing protein [Brugia malayi] XP_001901253.1 

2153 8 0 - Hypothetical protein [Monosiga brevicollis MX1] XP_001743138.1 

1985 9 0 - Hypothetical protein [Plasmodium falciparum 3D7] XP_001350649.1 

1920 6 0 - Hypothetical protein Bm1_13905 [Brugia malayi] XP_001894245.1 

2035 11 0 - Hypothetical protein BRAFLDRAFT_233880 [Branchiostoma floridae] XP_002235185.1 

664 87 72 - Hypothetical protein C04G2.9 [Caenorhabditis elegans] NP_501838.2 
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94 50 34 - Hypothetical protein C07D8.6 [Caenorhabditis elegans] NP_509242.1 

2013 6 0 - Hypothetical protein C08H9.2 [Caenorhabditis elegans] NP_001129807.1 

1786 6 0 - Hypothetical protein C10G11.8 [Caenorhabditis elegans] NP_491811.1 

1905 7 0 - Hypothetical protein C14B1.10 [Caenorhabditis elegans] NP_497751.1 

1990 7 0 - Hypothetical protein C16C8.18 [Caenorhabditis elegans] NP_494539.1 

2234 6 0 - Hypothetical protein CBG00644 [Caenorhabditis briggsae AF16] XP_001678643.1 

2371 6 0 - Hypothetical protein CBG00694 [Caenorhabditis briggsae AF16] XP_001678605.1 

2475 7 0 - Hypothetical protein CBG01426 [Caenorhabditis briggsae AF16] XP_001673254.1 

543 354 260 - Hypothetical protein CBG01578 [Caenorhabditis briggsae AF16] XP_001671326.1 

2503 6 0 - Hypothetical protein CBG02238 [Caenorhabditis briggsae AF16] XP_001668494.1 

588 8 0 - Hypothetical protein CBG02304 [Caenorhabditis briggsae AF16] XP_001679863.1 

1927 6 0 - Hypothetical protein CBG02746 [Caenorhabditis briggsae AF16] XP_001679501.1 

2263 8 0 - Hypothetical protein CBG03108 [Caenorhabditis briggsae AF16] XP_001679208.1 

2524 11 0 - Hypothetical protein CBG04059 [Caenorhabditis briggsae AF16] XP_001668188.1 

2015 6 0 - Hypothetical protein CBG04059 [Caenorhabditis briggsae AF16] XP_001668188.1 

2120 9 0 - Hypothetical protein CBG04320 [Caenorhabditis briggsae AF16] XP_001678833.1 

2122 9 0 - Hypothetical protein CBG04454 [Caenorhabditis briggsae AF16] XP_001671526.1 

1948 6 0 - Hypothetical protein CBG05408 [Caenorhabditis briggsae AF16] XP_001670625.1 

2175 11 0 - Hypothetical protein CBG08653 [Caenorhabditis briggsae AF16] XP_001673371.1 

1806 13 0 - Hypothetical protein CBG08658 [Caenorhabditis briggsae AF16] XP_001673367.1 

361 82 67 - Hypothetical protein CBG08717 [Caenorhabditis briggsae AF16] XP_001669329.1 

2214 7 0 - Hypothetical protein CBG08774 [Caenorhabditis briggsae AF16] XP_001672562.1 

2520 7 0 - Hypothetical protein CBG09451 [Caenorhabditis briggsae AF16] XP_001674131.1 
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2528 6 0 - Hypothetical protein CBG09806 [Caenorhabditis briggsae AF16] XP_001665103.1 

1908 10 0 - Hypothetical protein CBG09896 [Caenorhabditis briggsae AF16] XP_001665184.1 

2378 6 0 - Hypothetical protein CBG11896 [Caenorhabditis briggsae AF16] XP_001667421.1 

2133 9 0 - Hypothetical protein CBG12251 [Caenorhabditis briggsae AF16] XP_001666259.1 

1922 8 0 - Hypothetical protein CBG12316 [Caenorhabditis briggsae AF16] XP_001668329.1 

2157 8 0 - Hypothetical protein CBG12597 [Caenorhabditis briggsae AF16] XP_001668827.1 

1866 7 0 - Hypothetical protein CBG13426 [Caenorhabditis briggsae AF16] XP_001678475.1 

2526 8 0 - Hypothetical protein CBG15925 [Caenorhabditis briggsae AF16] XP_001667359.1 

2132 10 0 - Hypothetical protein CBG16572 [Caenorhabditis briggsae AF16] XP_001665476.1 

2089 6 0 - Hypothetical protein CBG17431 [Caenorhabditis briggsae AF16] XP_001676058.1 

2199 6 0 - Hypothetical protein CBG17919 [Caenorhabditis briggsae] CAP35459.1 

2048 18 0 - Hypothetical protein CBG17992 [Caenorhabditis briggsae AF16] XP_001665643.1 

1994 7 0 - Hypothetical protein CBG18189 [Caenorhabditis briggsae AF16] XP_001665804.1 

2522 8 0 - Hypothetical protein CBG18268 [Caenorhabditis briggsae AF16] XP_001665868.1 

2561 6 0 - Hypothetical protein CBG19105 [Caenorhabditis briggsae AF16] XP_001674484.1 

1813 7 0 - Hypothetical protein CBG21198 [Caenorhabditis briggsae AF16] XP_001666345.1 

1837 7 0 - Hypothetical protein CBG22304 [Caenorhabditis briggsae AF16] XP_001667777.1 

2381 6 0 - Hypothetical protein CBG24043 [Caenorhabditis briggsae] CAP20747.1 

1961 7 0 - Hypothetical protein CBG24742 [Caenorhabditis briggsae AF16] XP_001678957.1 

1896 8 0 - Hypothetical protein D1037.1 [Caenorhabditis elegans] NP_491200.1 

2069 14 0 - Hypothetical protein F11C1.1 [Caenorhabditis elegans] NP_510159.1 

1923 6 0 - Hypothetical protein F13H8.7 [Caenorhabditis elegans] NP_495261.1 

499 22 10 - Hypothetical protein F23B12.4 [Caenorhabditis elegans] NP_001122926.2 
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1889 10 0 - Hypothetical protein F52E1.2 [Caenorhabditis elegans] NP_505170.2 

321 22 9 - Hypothetical protein F53B6.7 [Caenorhabditis elegans] NP_492409.2 

507 70 40 - Hypothetical protein F54H12.6 [Caenorhabditis elegans] NP_498737.1 

2523 9 0 - Hypothetical protein HcanM9_03085 [Helicobacter canadensis MIT 98-5491]  ZP_03656248.1 

65 20 6 - Hypothetical protein K03E5.2d [Caenorhabditis elegans] ACO15785.1 

1930 15 0 - Hypothetical protein K09E9.4 [Caenorhabditis elegans] NP_001024780.1 

2554 9 0 - Hypothetical protein K12G11.6 [Caenorhabditis elegans] CAF31481.2 

1827 23 0 - Hypothetical protein L3ni51 [Dictyocaulus viviparus] AAT02162.1 

2462 8 0 - Hypothetical protein M176.4 [Caenorhabditis elegans] NP_496013.2 

2497 11 0 - Hypothetical protein NEMVEDRAFT_v1g141408 [Nematostella vectensis]  XP_001622397.1 

419 24 2 - Hypothetical protein PC101070.00.0 [Plasmodium chabaudi chabaudi] CAH88354.1 

84 58 28 - Hypothetical protein R09E10.6 [Caenorhabditis elegans] NP_501889.1 

116 7 0 - Hypothetical protein SS1G_07081 [Sclerotinia sclerotiorum 1980 UF-70] XP_001591635.1 

1873 7 0 - Hypothetical protein T10G3.3 [Caenorhabditis elegans] NP_506346.2 

2224 8 0 - Hypothetical protein Y110A7A.19 [Caenorhabditis elegans] NP_491536.1 

1812 6 0 - Hypothetical protein Y1A5A.1 [Caenorhabditis elegans] NP_497801.1 

394 23 6 - Hypothetical protein Y38F1A.2 [Caenorhabditis elegans] NP_496760.1 

527 27 10 - Hypothetical protein Y69A2AR.7 [Caenorhabditis elegans] NP_741338.1 

2144 9 0 - Hypothetical protein ZK1307.8 [Caenorhabditis elegans] NP_496073.1 

2169 6 0 - Hypothetical protein ZK795.4 [Caenorhabditis elegans] NP_001023622.1 

2551 8 0 - Hypothetical protein ZK970.8 [Caenorhabditis elegans] NP_001022541.1 

1808 10 0 - IntraMembrane Protease (IMPAS) family member (imp-2) [Caenorhabditis elegans] NP_502079.1 

14 22 8 - Kelch-like protein X [Brugia malayi] XP_001898633.1 
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1834 6 0 - Lipid Binding Protein family member (lbp-9) [Caenorhabditis elegans] NP_001033511.1 

1797 6 0 - Lysozyme family member (lys-10) [Caenorhabditis elegans] NP_501405.1 

2552 7 0 - Maternal Effect Lethal family member (mel-11) [Caenorhabditis elegans] NP_001021928.1 

2508 7 0 - Metalloprotease I [Ostertagia ostertagi] CAD28559.2 

2052 7 0 - MSP domain containing protein [Brugia malayi] XP_001898260.1 

2559 9 0 - Multiple PDZ domain protein family member (mpz-1) [Caenorhabditis elegans] NP_001122601.1 

2570 26 0 - No hits found 

243 75 24 - No hits found 

2531 21 0 - No hits found 

1799 18 0 - No hits found 

2516 15 0 - No hits found 

193 45 18 - No hits found 

2515 12 0 - No hits found 

178 33 11 - No hits found 

2500 11 0 - No hits found 

2501 10 0 - No hits found 

2509 10 0 - No hits found 

2539 10 0 - No hits found 

608 10 0 - No hits found 

204 77 52 - No hits found 

1819 9 0 - No hits found 

1789 9 0 - No hits found 

2544 9 0 - No hits found 
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514 9 0 - No hits found 

1845 8 0 - No hits found 

2215 8 0 - No hits found 

2002 7 0 - No hits found 

569 7 0 - No hits found 

1921 7 0 - No hits found 

1976 7 0 - No hits found 

2560 7 0 - No hits found 

2198 7 0 - No hits found 

2077 7 0 - No hits found 

2171 7 0 - No hits found 

1928 7 0 - No hits found 

1856 7 0 - No hits found 

2566 7 0 - No hits found 

235 101 87 - No hits found 

2274 6 0 - No hits found 

2093 6 0 - No hits found 

2321 6 0 - No hits found 

1851 6 0 - No hits found 

2279 6 0 - No hits found 

2569 6 0 - No hits found 

2032 6 0 - No hits found 

2377 6 0 - No hits found 
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64 6 0 - No hits found 

2242 6 0 - No hits found 

2055 6 0 - No hits found 

2064 6 0 - No hits found 

2080 6 0 - No hits found 

2513 6 0 - No hits found 

2165 6 0 - No hits found 

1906 6 0 - No hits found 

1830 6 0 - No hits found 

1917 6 0 - No hits found 

2328 6 0 - No hits found 

2148 6 0 - No hits found 

2176 6 0 - No hits found 

612 6 0 - No hits found 

2272 6 0 - No hits found 

2542 6 0 - No hits found 

2091 6 0 - No hits found 

1999 6 0 - No hits found 

2117 6 0 - No hits found 

2143 6 0 - No hits found 

1931 6 0 - No hits found 

1878 6 0 - No hits found 

1965 6 0 - No hits found 
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2268 6 0 - No hits found 

2155 6 0 - No hits found 

1816 7 0 - Paramyosin [Dictyocaulus viviparus] ABO07440.1 

2555 6 0 - Precursor transthyretin like protein 1 [Ostertagia ostertagi] CAP45649.1 

2510 6 0 - Predicted protein [Nematostella vectensis] XP_001627195.1 

1824 10 0 - Predicted: hypothetical protein [Apis mellifera] XP_001121281.1 

353 24 4 - 
Predicted: similar to AGRin (synaptic protein) homolog family member (agr-1) [Hydra magnipapillata] 

XP_002157711.1 

49 101 44 - Predicted: similar to cell division cycle 2-like 5 isoform 2 [Rattus norvegicus] XP_001053609.1 

2266 6 0 - Predicted: similar to collagen, type XXVIII [Hydra magnipapillata] XP_002166419.1 

2273 6 0 - Predicted: similar to conserved hypothetical protein [Tribolium castaneum] XP_971602.1 

1795 7 0 - 
Predicted: similar to DEAD (Asp-Glu-Ala-Asp) box polypeptide [Strongylocentrotus purpuratus] 

XP_785431.2 

2478 13 0 - 
Predicted: similar to egg bindin receptor 1 precursor, partial [Strongylocentrotus purpuratus] 

XP_001177184.1 

290 113 64 - 
Predicted: similar to hect (homologous to the E6-AP (UBE3A) [Ornithorhynchus anatinus] 

XP_001514757.1 

2545 6 0 - Predicted: similar to nahoda CG12781-PA [Danio rerio] XP_698035.3 

620 21 3 - Predicted: similar to polyubiquitin [Nasonia vitripennis] XP_001599434.1 

2241 6 0 - Predicted: similar to predicted protein [Hydra magnipapillata] XP_002160784.1 

1933 7 0 - Predicted: similar to predicted protein, partial [Hydra magnipapillata] XP_002164783.1 

1978 9 0 - Predicted: similar to Protein phosphatase 1 regulatory subunit 11 [Ciona intestinalis] XP_002120515.1 

1833 7 0 - Predicted: similar to spen homolog, transcriptional regulator (Drosophila) [Equus caballus]  
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XP_001914854.1 

1979 6 0 - Protein kinase domain containing protein [Brugia malayi] XP_001900551.1 

1988 7 0 - Protein RIO1 kinase [Trichostrongylus vitrinus] CAR64255.1 

1898 6 0 - Putative cathepsin B.1 [Ostertagia ostertagi] CAB97364.2 

1874 7 0 - Putative L3 ES protein [Ostertagia ostertagi] CAH23216.1 

2525 8 0 - Putative secretory protein precursor; HC40 [Haemonchus contortus] AAC03562.1 

673 47 28 - Putative secretory protein precursor; HC40 [Haemonchus contortus] AAC03562.1 

1916 16 0 - Putative serine/threonine phosphatase [Oesophagostomum dentatum] AF496634_1 

140 21 8 - Regulator of Microtubule Dynamics family member (rmd-2) [Caenorhabditis elegans] NP_741608.1 

1893 6 0 - RiboNucleotide Reductase family member (rnr-1) [Caenorhabditis elegans] NP_499039.1 

2472 16 0 - RNA recognition motif domain containing protein [Brugia malayi] XP_001894321.1 

2530 12 0 - Secreted protein 5 precursor [Ancylostoma caninum] AAO63577.1 

1910 9 0 - Secreted protein 5 precursor [Ancylostoma caninum] AAO63577.1 

2482 8 0 - Secreted protein 5 precursor [Ancylostoma caninum] AAO63577.1 

2477 14 0 - Secreted protein 5 precursor [Ancylostoma ceylanicum] ABB53347.1 

2262 6 0 - Splicing factor, arginine/serine-rich 4 [Brugia malayi] XP_001902042.1 

669 20 6 - SXC1 protein [Ostertagia ostertagi] CAC17797.1 

674 31 17 - SXC1 protein [Ostertagia ostertagi] CAC17797.1 

2070 11 0 - TBC (Tre-2/Bub2/Cdc16) domain family member (tbc-3) [Caenorhabditis elegans] NP_001023165.1 

1998 7 0 - Temporarily Assigned Gene name family member (tag-192) [Caenorhabditis elegans] NP_491426.2 

2496 9 0 - Trypsin-like Protease family member (try-1) [Caenorhabditis elegans] NP_494910.2 

2023 8 0 - Tubulin alpha chain [Haemonchus contortus]  P50719.1 

2504 6 0 - Ubiquitin [Lepeophtheirus salmonis] ACO11811.1 
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1890 6 0 - Ubiquitin, putative [Pediculus humanus corporis] EEB18688.1 

418 226 160 - Vitellogenin [Haemonchus contortus] AF305957_1 

583 64 24 - 
Vitellogenin structural genes (yolk protein genes) family member (vit-6) [Caenorhabditis elegans]. 

NP_001023274.1 

169 310 233 - Vitellogenin-6; Flags: Precursor [Oscheius brevesophaga] Q94637.1 

2033 6 0 - Zinc finger, C2H2 type family protein [Brugia malayi] XP_001901497.1 

1963 7 0 - Zinc finger, C2H2 type family protein [Brugia malayi] XP_001901967.1 

 

 


