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Abstract 
 
The multifocal electroretinogram (mfERG) provides spatial and temporal information 
on the retina’s function in an objective manner, making it a valuable tool for 
monitoring a wide range of retinal abnormalities.  Analysis of this clinical test can 
however be both difficult and subjective, particularly if recordings are contaminated 
with noise, for example muscle movement or blinking. This can sometimes result in 
inconsistencies in the interpretation process. An automated and objective method for 
analysing the mfERG would be beneficial, for example in multi-centre clinical trials 
when large volumes of data require quick and consistent interpretation.  The aim of 
this thesis was therefore to develop a system capable of standardising mfERG analysis.  
A series of methods aimed at achieving this are presented. These include a technique 
for grading the quality of a recording, both during and after a test, and several 
approaches for stating if a waveform contains a physiological response or no 
significant retinal function. Different techniques are also utilised to report if a response 
is within normal latency and amplitude values. 

The integrity of a recording was assessed by viewing the raw, uncorrelated data in the 
frequency domain; clear differences between acceptable and unacceptable recordings 
were revealed. A scale ranging from excellent to unreportable was defined for the 
recording quality, first in terms of noise resulting from blinking and loss of fixation, 
and secondly, for muscle noise. 50 mfERG tests of varying recording quality were 

graded using this method with particular emphasis on the distinction between a test 
which should or should not be reported. Three experts also assessed the mfERG 

recordings independently; the grading provided by the experts was compared with that 
of the system.   

Three approaches were investigated to classify a mfERG waveform as ‘response’ or 
‘no response’ (i.e. whether or not it contained a physiological response): artificial 
neural networks (ANN); analysis of the frequency domain profile; and the signal to 

noise ratio. These techniques were then combined using an ANN to provide a final 
classification for ‘response’ or ‘no response’. Two methods were studied to 

differentiate responses which were delayed from those within normal timing limits: 
ANN; and spline fitting. Again the output of each was combined to provide a latency 

classification for the mfERG waveform.  Finally spline fitting was utilised to classify 
responses as ‘decreased in amplitude’ or ‘not decreased’. 1000 mfERG waveforms 
were subsequently analysed by an expert; these represented a wide variety of retinal 

function and quality. Classifications stated by the system were compared with those of 
the expert to assess its performance. 

An agreement of 94% was achieved between the experts and the system when making 
the distinction between tests which should or should not be reported.  The final system 
classified 95% of the 1000 mfERG waveforms correctly as ‘response’ or ‘no response’.  
Of those said to represent an area of functioning retina it concurred with the expert for 
93% of the responses when categorising them as normal or abnormal in terms of their 
P1 amplitude and latency. The majority of misclassifications were made when 
analysing waveforms with a P1 amplitude or latency close to the boundary between 

normal and abnormal.   

It was evident that the multilayered system has the potential to provide an objective 
and automated assessment of the mfERG test; this would not replace the expert but 
can provide an initial analysis for the expert to review. 
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1 Introduction 

The aim of this thesis was to develop a system capable of automatically analysing the 

multifocal electroretinogram (mfERG). This is a clinical test used to assess the 

function of the retina, the neural tissue lining the back of the eye. Prior to discussing 

the techniques used to achieve this objective analysis, the main parts of the human 

visual pathway are described, in addition to a review of a number of methods used to 

assess the health of this system. Particular attention is paid to tests designed to detect 

functional rather than structural abnormalities as the mfERG, the subject of this thesis, 

is one such test.   

1.1 The eye 

The eye is extremely sophisticated in its function. It receives light from the outside 

world, focuses it on the retina and then processes the information to provide us with a 

meaningful view of the world. The retina enables us to differentiate colours from one 

another, to see very fine detail and to see in conditions ranging from dim light to 

bright sunlight. Many structures in the eye are involved in ensuring that the light 

arriving at the retina is well focused, allowing a clear image to be formed (1). A 

number of these structures are shown below: 

 

Figure  1.1 Schematic of the eye detailing the main structures (adapted from www.healthyeyes.org.uk). 

 
The majority of the surface of the eyeball is surrounded by a dense, fibrous connective 

tissue, referred to as the sclera; this acts as a protective layer for the eye. The cornea is 

a transparent layer at the front of the eye. Light entering the eye must be refracted if 

focussing is to be achieved; almost two-thirds of this takes place at the air-cornea 

interface. The lens is responsible for further refraction, and is also required to make 

continuous adjustments in order to focus on objects at various distances from the eye. 
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When focussing on distant objects the lens becomes elongated in shape, while it 

becomes more spherical when focussing on close objects.  Both the iris and ciliary 

body (mainly consisting of the ciliary muscle) are responsible for this adjustment to the 

shape of the lens. The choroid, which delivers nutrients and oxygen to the outer retina 

is situated between the sclera and the retina (1). 

1.2 The retina 

A simplified schematic of the retina is shown in figure 1.2.  It consists of a number of 

layers of cells, each of which has a different role:   

 

Figure  1.2 Schematic of the retina showing the main structures (reproduced from www.webvision.com). 

 
The pigment epithelium of the retina has various functions, one of which is to absorb 

light entering the retina, thus preventing it from being reflected back through the layers 

of cells.  

1.2.1 The photoreceptors 

The photoreceptors detect light entering the retina. Two groups of photoreceptor exist: 

rods; and cones. The rods are used to see in dim light while the cones provide us with 

colour vision and enable us to form clear, sharp images. The rods are most sensitive to 

blue-green light, with a maximal sensitivity to a light wavelength of approximately 

500nm.  To enable colour vision three types of cone exist: the S-cone; the M-cone; and 

the L-cone. Each cone type is particularly sensitive to a different part of the light 

spectrum, with peak sensitivities of approximately 445nm (blue), 540nm (green) and 

565nm (red) for the S-cone, the M-cone and the L-cone respectively (2). This can be 

seen in figure 1.3:  
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Figure  1.3 A sensitivity plot of the three types of cone to different wavelengths of light (adapted from 
Lewis et al. (2)). The S-cone (blue), the M-cone (green) and the L-cone (red) have peak sensitivities of 

approximately 445nm, 540nm and 565nm respectively. 

 
The number of rods found in the retina far exceeds that of cones; it was shown by 

Curcio et al. that the average human retina contains 92 million rods and 4.6 million 

cones (3). The distribution of these varies markedly over the surface of the retina. The 

following diagram represents the density of each of the two types of photoreceptor 

across the horizontal meridian of the retina:    

 

Figure  1.4 Distribution of rods and cones in the retina (adapted from Osterberg et al. (4)).  The highest 

density of cones is found centrally, at the fovea while the highest rod density is 18 degrees from the 
centre. 

 
It can be seen that at the fovea, the part of the retina responsible for sharp, detailed 

vision there are no rods, only cones. The highest density of cones is found in this 

region to achieve a high central visual acuity. Cones are present throughout the retina, 

but with a lower density than is seen at the fovea. This will become relevant in section 

1.5.5.1. The highest density of rods is found in a ring surrounding the fovea at 

approximately 18 degrees from the foveal pit. No photoreceptors are found where the 

optic nerve is located; this is referred to as the blind spot. 
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1.2.2 Transmission of  information through the retina 

Information is transmitted through the retina in one of two paths: a direct; and an 

indirect path. The former route runs directly from the photoreceptors to the bipolar 

cells, and finally to the ganglion cells. Horizontal and amacrine cells are involved in 

the indirect path. Horizontal cells are located at the synapse between the 

photoreceptors and the bipolar cells, forming lateral connections within the retina; 

these can inhibit communication between the photoreceptors and the bipolar cells. 

The amacrine cells form a layer between the bipolar cells and the ganglion cells and 

like horizontal cells they form lateral connections (1). The retina contains 

approximately 0.7 to 1.5 million ganglion cells (5); considerable processing therefore 

takes place in the retina, thus reducing the amount of information to be processed at a 

later stage (1).    

1.3 Transmission of information from the eye to the brain 

The axons from the ganglion cells form the nerve fibre layer, converging at the optic 

disc. These fibres, which form the optic nerve, penetrate the eye and arrive at the optic 

chiasm.  Approximately half of the fibres from the optic nerve proceed towards the 

lateral geniculate nucleus on the same side of the brain while the other half cross to the 

lateral geniculate nucleus on the opposite side of the brain. Axons from each lateral 

geniculate nucleus then terminate in the primary visual cortex of the cerebral 

hemisphere, where more complex visual processing takes place. This process is shown 

in figure 1.5:  
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Figure  1.5 Schematic of the human visual pathway showing the transmission of information from the 

eye to the brain (adapted from www.cs.nps.navy.mil/people/faculty/capps/4473/projects). 

 

1.4 Methods employed to assess vision 

A number of techniques are utilised to investigate the integrity of the visual pathway, a 

selection of which are discussed in section 1.4. 

1.4.1 Visual acuity 

Visual acuity is a measure of a person’s ability to see fine detail. The Snellen test, 

developed by Snellen in 1868, is commonly used to assess this. The following 

illustration is an example of a Snellen chart: 
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Figure  1.6 The Snellen chart, employed to measure visual acuity (adapted from 

www.prosportsvision.co.uk/images/snellen).  

The card is typically placed 6m from the person; they will read each line in turn, 

starting at the top and continuing until the final line, or the point at which they can no 

longer identify the letters.  Visual acuity is recorded as a fraction, with the numerator 

being the distance between the card and the subject (i.e. 6m) and the denominator 

being the distance from which a normal eye could see the final letter seen by the 

person. When someone is unable to visualise the letters on the chart cruder methods 

are used such as a person’s ability to count fingers, to detect hand movements, or their 

perception to light. One eye is tested at a time. Although the Snellen test is a standard 

method used to assess a person’s visual acuity it remains subjective and is reliant upon 

patient cooperation (6).  

1.4.2 Perimetry 

While the visual acuity evaluates a person’s central vision it provides no information 

on their visual field. The visual field is the space in which a person can detect an object 

when maintaining a steady gaze in one direction. Typically from fixation this extends 

600 superiorly, 750 inferiorly, 600 nasally and 1050 temporally. Damage to any part of 

the visual pathway can cause field defects within this region, therefore by measuring 

the function of the visual field, abnormalities can be detected. The aim of perimetry is 

to plot the sensitivity of the visual field and hence abnormalities can be visualised with 

ease. Essentially patients are presented with light stimuli and indicate when they can 

see the stimulus. Perimetry has an important role to play in the diagnosis and 
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monitoring of various conditions, for example, glaucoma, however it is subjective and 

relies upon the cooperation of the patient. It can also suffer from poor repeatability 

and can be relatively time consuming as the patient is tested monocularly and each 

point in the visual field is tested in a serial fashion (6).   

1.5 Visual electrophysiology 

Electrophysiology, a branch of physiology which studies the electrical phenomena 

associated with physiological processes, offers an objective means of assessing various 

parts of the visual pathway. The mfERG, the subject of this thesis, is one such test.  

The main tests used in this field are presented in section 1.5.  For each of the tests 

described a response is evoked by stimulating the eye with a pattern or flash stimuli. 

This electrical potential is then measured and used to determine if a specific part of the 

visual pathway is intact. The visual evoked cortical potential (VECP) is discussed first. 

1.5.1 The visual evoked cortical potential  

The VECP is the response evoked by a visual stimulus.  It is generated in the occipital 

cortex, the part of the brain responsible for processing visual stimuli, and can be 

measured to establish the function of the central visual pathway. To acquire this 

response the patient looks at a stimulus, commonly a black and white checkerboard 

screen. The black squares switch to white and vice-versa, causing a response to be 

evoked. To record this response an electrode is placed on the patient’s scalp, over the 

visual cortex. Signal averaging is performed to recover the response from both 

electrical noise and noise associated with muscle artefacts. The latency of the 

recovered response is used for the clinical diagnosis of various conditions including 

multiple sclerosis, optic atrophy and optic nerve compression (7).    

The evoked potential can also be used as an objective means of assessing a person’s 

visual acuity.  This is beneficial when communication is a problem or when someone 

is thought to be exaggerating their visual loss. To achieve this the size of the checks 

used for the stimulus is decreased until no response is evoked in the visual cortex.  The 

highest spatial resolution at which a response is recovered can then be correlated to 

their visual acuity (8;9). This objective technique is useful clinically however it only 

provides information on the integrity of the central visual pathway; abnormalities 

affecting the peripheral vision are not therefore detected.  
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1.5.2 The electro-oculogram  

An additional test is the electro-oculogram (EOG), a test used to assess the function of 

the retinal pigment epithelial (RPE) layer and the outer retina. The EOG is an indirect 

measurement of the potential difference across the eye. When in the dark this potential 

decreases, reaching a minimum referred to as the dark trough; in light conditions the 

potential initially decreases and then, in the healthy eye, it increases, reaching a 

maximum termed the light peak. The Arden index, the ratio of the light peak to the 

dark trough is calculated. No international normative range currently exists for this 

ratio however a ratio of less than 1.5 is considered to be abnormal, a ratio of greater 

than 2 is thought to be normal while values in between are equivocal (10). For many 

conditions in which the RPE or photoreceptor layer is affected both the 

electroretinogram (ERG; this is an examination used to assess the function of the 

outer and mid retina and is discussed in section 1.5.3) and the EOG are abnormal, 

meaning that the EOG is not essential.  It is however of importance when diagnosing 

Best’s disease and its variants, as this condition has a normal ERG but an abnormal 

EOG (8). 

1.5.3 The electroretinogram  

The ERG measures the electrical response of the retina to a light stimulus.  A corneal 

electrode is used to measure the potential difference across the cornea while reference 

and ground electrodes are typically placed on the patient’s forehead and ear (or 

temple), respectively.  Several types of ERG tests exist, one of which is the flash ERG.    

1.5.3.1 Flash electroretinogram 

A flash of light evokes a global response from the outer and mid retinal layers (11).  

The intensity of the flash, the frequency at which it is presented and the state to which 

the eye is adapted, (i.e. light or dark adapted) all determine the degree of influence 

from specific cells in the recovered response. When the eye is light adapted, a response 

elicited from a flash of light is predominantly derived from the cone pathway, while 

the presentation of a low intensity flash when the eye is dark adapted provides 

information on the rod pathway (11). International standards are used when 

conducting this examination to ensure consistency of the test (12). The five most 

commonly recovered responses are shown in figure 1.7. The first three responses: the 

rod; the combined rod-cone; and the oscillatory potential, are all obtained when the 
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eye has been adapted to darkened conditions. The flash intensity is 0.01 cd.s/m2 for 

the rod response; this is increased to 3.0 cd.s/m2 for both the rod-cone response and 

the oscillatory potential. The bottom two responses shown in figure 1.7, the cone and 

the flicker responses, are acquired after a period of light adaptation (10 minutes); a 

flash intensity of 3.0 cd.s/m2 is utilised in each case. The former is a single flash while 

the latter is presented at 30Hz.   

 

Figure  1.7 The 5 ERG responses typically recovered, as defined by international standards (12).  The 
three responses recovered from the dark adapted eye are shown in the top line: the rod; the combined 

rod-cone; and the oscillatory potential response.  Two types of response acquired from the light adapted 
eye are shown on the bottom line: the cone; and the flicker response.  The magnitude and latency of the 
b-wave, and when present, the a-wave, are measured to assess if the response is normal.   

 

Two main components make up these responses: the a-wave; and the b-wave. Bush et 

al. suggested that the main part of the retina contributing to the a-wave is the OFF 

bipolar cells (a type of bipolar cell which depolarises when stimulated) (13). ON 

bipolar cells (bipolar cells which are hyperpolarised when stimulated) are considered 

to generate the b-wave (14). It is also likely that the activity of the cones contributes to 

the a-wave (13) and that the OFF bipolar cells contribute to the b-wave (14). The 

amplitude and latency values of the b-wave, and where appropriate the a-wave, are 

measured and compared with normative data to determine if a response is normal.   

The ERG is used to monitor many conditions including retinitis pigmentosa, cone-rod 

dystrophies and vitamin A deficiency (15). It is however a global assessment of 

function thus localised function cannot be measured. When functional loss is highly 

specific, such as in a central scotoma, the person may present with normal ERG 

responses but have very poor visual acuity. This led to the development of the focal 

electroretinogram (FERG).   
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1.5.3.2 Focal electroretinogram  

The FERG was designed to elicit a physiological response from a smaller area of the 

retina. Typically a flickering stimulus of approximately 100 (or smaller) is used to 

evoke the ERG response; this stimulus is surrounded by a background light of 

constant illumination.  The scope of this technique is however limited as responses can 

only be elicited from a small number of areas in one testing session due to time 

constraints (8). 

1.5.3.3 Pattern electroretinogram  

A third variation of the ERG is the pattern electroretinogram (PERG). The PERG 

may reflect the function of the inner retinal layers and can provide information on the 

patient’s central visual function (16;17).  A checkerboard stimulus comprising black 

and white squares is utilised to stimulate the patient; the black squares change to white 

and vice versa, evoking a response. The responses recovered are however very small, 

long recording times are required, and a high degree of variability is seen between 

subjects (8).   

1.5.4 Limitations of  conventional electrophysiology 

Electrophysiology is an objective means of assessing aspects of the visual pathway, 

making it is less dependent upon patient cooperation than tests such as the Snellen 

chart or perimetry.  Local defects can however be missed.  This limitation has led to 

the development of the multifocal electroretinogram (mfERG) and the multifocal 

visual evoked cortical potential (mfVECP), objective methods used to map the 

function of the retina and the visual field of the visual cortex respectively. 

1.5.5 Multifocal techniques 

When using multifocal techniques multiple areas of the retina, or visual field, are 

stimulated simultaneously, yet independently from one another, eliciting responses 

from individual areas. A map of function can therefore be plotted, providing a more 

detailed clinical picture.   
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1.5.5.1 The multifocal electroretinogram  

The mfERG, as first described by Sutter and Tran (18) provides objective spatial and 

temporal information on the function of the outer and the mid retina. Since its 

introduction it has been used widely in both the research and clinical setting. It is a 

valuable tool for monitoring a wide range of retinal abnormalities including retinitis 

pigmentosa (19-21), diabetic retinopathy (22-24), retinal vein occlusions (25;26), 

Stargardt’s macular dystrophy (27), and drug toxicity, for example that associated with 

Vigabatrin (28) or Chloroquine (29).  

The patient preparation is identical to that employed for the ERG, as described in 

section 1.5.3. The main difference lies in the stimulus and the method by which the 

final responses are obtained. An example of a stimulus is shown in figure 1.8, with a 

response corresponding to each stimulating element. In this example 61 scaled 

elements are being used to stimulate the retina therefore evoking 61 individual 

responses.  

   

Figure  1.8 The mfERG stimulus (left) and corresponding trace array (right). Each element in the 

stimulus is used to evoke an individual response in the trace array, thus 61 responses, corresponding to 
the 61 elements, can be seen.    

 

It can be seen that the size of the hexagons increases with eccentricity; this is to obtain 

responses of similar amplitude across the field. This is to account for the density of 

photoreceptor cells across the visual field (figure 1.4) and the adaptation variation 

across the retina. Unique mathematical sequences determine the luminance of each of 

the elements throughout the recording period, switching them between black and 

white. Recordings typically take approximately 4-8 minutes, depending on the length 

of sequences used to drive the luminance of the elements. Each local response is 

recovered by cross correlating the sequence used to control it against the recorded 
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data.  This is done for every area to yield the final trace array. An individual waveform 

taken from a healthy individual is shown: 

 

Figure  1.9 An individual mfERG response with the three main turning points (N1, P1, and N2) 

labelled.  

  
Three clearly defined turning points can be seen, referred to as N1, P1 and N2. The 

amplitude and the latency of each of these are measured to determine if the 

corresponding area of retina is functioning normally. Latency measurements are made 

from the start of the flash. The N1 and N2 amplitudes are measured from the baseline, 

while the P1 amplitude is measured from the N1 trough. Abnormalities are reflected 

as a reduction in amplitude and/or a delay in the response. If no physiological 

response is acquired from an area of the retina, the mfERG waveform will consist 

solely of noise. The mfERG will be discussed in greater detail in chapter two and will 

be the subject of the remainder of this thesis. 

1.5.5.2 The multifocal visual evoked cortical potential  

The multifocal visual evoked cortical potential (mfVECP) enables VECP responses to 

be evoked from many different areas of the visual field simultaneously. It can be useful 

for monitoring patients with conditions such as optic neuritis (30;31) and glaucoma 

(32;33).  It has also been used to test patients suspected of malingering  (34;35).  A 

typical stimulus is shown in figure 1.10, along with the responses obtained from a 

normal individual: 



Alison A Foulis, 2010    Chapter 1, 34 

    

Figure  1.10 The mfVECP stimulus (left) and corresponding trace array (right).  Each of the 60 sectors 

forming the stimulus are used to evoke a response from the visual cortex; these can be seen in the trace 
array.  

 
As for the standard VECP a checkerboard pattern is used to evoke the responses from 

the visual cortex.  The stimulus for the mfVECP typically comprises 60 sectors, each 

of which is made up of 16 squares: 8 white; and 8 black. Each of the 60 sectors is 

controlled by a different pseudo-random binary sequence. As with the mfERG the 

sequences used to control each of the sectors are unique. These are cross correlated 

against the recorded data to reveal the 60 local VECP responses, enabling the 

detection of localised abnormalities.   

1.6 Conclusions 

This chapter has introduced the visual system and a variety of methods used to assess 

its integrity. The advantages and disadvantages of these techniques have been 

considered.  Multifocal techniques used to map the function of the outer/mid retina 

and the visual field have also been discussed. The mfERG is the focus of this thesis 

therefore the following chapter will study this technique in greater detail.  



    

2 The multifocal electroretinogram 

This chapter provides an in depth description of the multifocal electroretinogram 

(mfERG). The properties of the sequences used to control the stimulus and the 

techniques required to recover the waveforms from the recorded data are presented, in 

addition to a number of factors affecting the final responses. These include the type of 

stimulus, the choice of electrode and the filtering bandwidths selected. 

2.1 Hardware 

The hardware utilised to record the mfERG can be seen in figure 2.1: 

 

Figure  2.1 An overview of the mfERG hardware (adapted from Keating et al. (36)).  

 

The computer generates the sequences which determine the luminance of each 

stimulus element throughout the test; these sequences are subsequently transferred to 

the stimulator to enable testing to start. The mfERG signal is recorded from the 

electrodes, typically placed on the cornea. The magnitude of this signal is very small 

(an order of tens of nanovolts) therefore amplification of the signal is required to 

ensure that it is within the operating range of the analogue to digital converter. As a 

result of the low amplitude of the mfERG signal, it is highly susceptible to noise. The 

data are finally converted from an analogue to a digital format and delivered to the 

computer where individual responses are recovered from the signal. To guarantee the 

accurate recovery of responses the computer must synchronise the rate at which the 

stimulus is updated with the data acquired at the electrode. A number of commercial 

mfERG systems are available however a custom built system was used to collect all 

the data for this thesis.  
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To ensure that an individual mfERG response corresponds to one particular area of 

the retina it is essential that the sequences used to control the stimulus are independent 

from one another (orthogonal). 

2.2 The sequences 

A group of pseudo random binary sequences, referred to as m-sequences are utilised 

(18). These are chosen as opposed to random sequences as they have better 

orthogonality, an essential property for use in the mfERG.   

2.2.1  Creating an m-sequence 

The generation of a sequence can be demonstrated using a shift register, a circuit 

which shifts the array stored in it. A primitive polynomial is selected, the terms of 

which determine the feedback taps of the shift register. Modulo 2 addition (an 

exclusive OR operation) is carried out on the bits at the tap positions, thus producing a 

new bit. This bit is shifted into the left hand side of the register. The bit previously at 

this position is then moved out of the register, forming the first term in the m-

sequence. This process is repeated until 2n -1 bits are produced, representing the m-

sequence. Figure 2.2 demonstrates this using x4 + x + 1 as the initial polynomial: 
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Figure  2.2 The method by which an m-sequence is created (adapted from Keating et al. (36)). The 

primitive polynomial, x4 + x + 1, defines the seed pattern entering the shift register. A modulo 2 
addition is performed on this input, producing a new bit, in this case 0. The original bits are shifted left, 

thus the first bit of the original seed pattern forms the first term of the m-sequence. This is continued 
until the sequence is 2n-1 bits long. 

 

2.2.2  Decimation of  the m-sequence 

To form the set of orthogonal sequences the original m-sequence is decimated. This is 

demonstrated in figure 2.3. The sequence is filled into the rows of a predetermined 

number of columns (this must be a power of 2). This process is repeated until the 

length of each column is 2n -1 (i.e. 15 in this case). Each resulting column is a sequence 

which can be used to control an element in the stimulus, hence the number of columns 

used determines the number of elements available to form the stimulus.  
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1001 
0001 
1110 
1011 

0010 
0011 
1101 
0110 
0100 
0111 
1010 

1100 
1000 
1111 
0101 

Figure  2.3 Decimation process employed to create multiple sequences from the original m-sequence. 

The original sequence is used to fill the rows from left to right. This process is continued until each 
column in 2n-l long. The pink highlights the start of the sequence. Each column contains a sequence 
which can be utilised to control an element of the stimulus.  

 

Each sequence is assigned to a particular element of the stimulus, toggling the 

luminance between black and white, depending on the state of the sequence (i.e. 0 or 

1). It should be noted that each sequence is the same however it starts at a different 

point.  

2.2.3  Properties of  an m-sequence 

An m-sequence generated using a polynomial of order n has the following properties: 

• its length is 2n -1; 

• it contains 2(n-1) ones and 2(n-1) -1 zeros; 

• the modulo 2 addition of the sequence with a shifted version of itself produces 

a third shift of the same m-sequence; 

• any bit pattern of length n is unique. 

To ensure orthogonality of the sequences the original polynomial must be chosen with 

care and the shift between the sequences must be greater than the time period of the 

evoked retinal response. The possibility of using contaminated sequences to control 
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the mfRG stimulus is increased when the length of the sequence is decreased. 

Consequently the polynomial utilised to generate the m-sequences for the mfERG is of 

a much higher order than that shown in figure 2.2. The signal to noise ratio of the 

recording is also increased by using a higher order polynomial as the resulting 

sequences are longer thus enhancing recording times. A 15th order polynomial was 

selected for the department’s mfERG system thus a sequence of length 215-1 was 

created (32767 steps). The set of m-sequences were subsequently generated by 

decimating the original sequence over 128 columns thus forming 128 orthogonal 

sequences. There were therefore unused sequences when using a stimulus of 61 or 103 

elements, set ups commonly chosen. 

2.3 Cross correlation 

The signal measured at the corneal electrode is a combination of the responses from 

each area of the retina. To obtain the response evoked by a particular element the raw 

data signal is cross correlated with the m-sequence controlling the element. This is 

done for each element in the stimulus, enabling an individual response to be derived 

for every area of the retina stimulated during testing. The two main responses which 

are reported are the first and the second order response.  

2.3.1  First order response 

The first order waveform represents the evoked response when presented with a high 

luminance. It is attained by: 

Σ responses to a white element – Σ responses to a black element 

Segments of the raw, uncorrelated data, for example 300ms, are added to or subtracted 

from a memory buffer to obtain the final response. In this case the data are added to 

the memory buffer if the first bit in the segment is 1. If the first bit is 0 the data 

segment is subtracted from the memory buffer. This is done for the entire data train to 

acquire the localised response. The final signal is therefore formed from 2n-1 

overlapping segments, 2(n-1) of which are added to the memory buffer and 2(n-1)-1 of 

which are subtracted. An example of such a response is shown below (left). This 

process is carried out for every element thus returning a first order response 

corresponding to each stimulating element. This can be seen in figure 2.4 (right): 
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Figure  2.4 An individual mfERG response (left) and a trace array comprising 61 responses (right). The 

principal measurements (amplitude and latency of N1, P1, and N2) are shown on the individual 
waveform.  

 

2.3.2  Second order response 

The second order response represents the evoked response resulting from a change (∆) 

in luminance. To acquire this waveform the data segment is added when there has 

been a change of state (i.e. 0 to 1 or 1 to 0) and is subtracted when there is no change 

(i.e. 1 to 1 or 0 to 0). The response is therefore obtained by: 

Σ responses when ∆ luminance– Σ responses when no ∆ luminance 

Again to return an array of second order responses the cross correlation process is 

performed for every element in the stimulus. 

2.3.3  Origins of  the response 

It can be seen that the first order mfERG waveform has an initial trough followed by a 

peak, similar to that seen in the conventional ERG. However, unlike the conventional 

ERG the mfERG waveforms are not temporally intact but are instead a composite 

response comprising components from previous and subsequent stimuli (37;38).  

A study by Hood et al. (39) compared the conventional full field ERG with the 

mfERG in an attempt to increase the understanding of the mfERG. They decreased 

the rate of mfERG stimulation and showed that there was good correlation between 

the a-wave of the ERG and the N1 of the mfERG response. The ERG b-wave and P1 

of the mfERG waveform also corresponded well. When the stimulation frequency was 

increased to 75Hz, the frequency commonly used to perform the mfERG, the 



Alison A Foulis, 2010    Chapter 2, 41 

relationship between the ERG a-wave and the N1 of the mfERG remained intact. The 

correlation between the ERG b-wave and the P1 component of the mfERG was 

however less stable at the higher stimulation frequency, indicating that the P1 

component is more influenced by non-linear retinal processing mechanisms.   

A number of animal studies have been conducted to investigate the cellular origins of 

the mfERG. These involved using pharmacological blocking agents to either enhance 

or inhibit activity from particular layers of the retina (40-42). It was suggested that the 

outer and the mid retina are the main contributors to the mfERG. Reports have also 

hypothesised that the inner retina contributes to the second order response (43;44). 

Keating et al. (37) however argued that the first and second order responses are 

recovered from the same data, the only difference being the way in which the 

responses are added and subtracted. Components seen in one should therefore be seen 

in the other. It is predominantly the first order responses which are studied when 

reporting the mfERG test therefore these will be utilised for the remainder of this 

thesis.  

The recovered mfERG responses are influenced by the experimental protocol 

employed to acquire them. A number of these will be discussed, including the choice 

of stimulator, the type of electrode utilised and the frequency bandwidth of the 

amplifier. 

2.4 Type of stimulator 

The mode of stimulation affects the mfERG response characteristics. A standard 

cathode ray tube (CRT) computer monitor is commonly used however a back 

projected liquid crystal display (LCD) was the principal mode of stimulation 

throughout this study. Both of these will be considered in addition to the scanning 

laser ophthalmoscope (SLO) and an array of light emitting diodes (LED), each of 

which can be used as a mode of stimulation.  

2.4.1 CRT and LCD 

The main difference between a CRT and an LCD stimulating device is their output 

during a period of high luminance. This can be seen below where a photodiode was 

used to measure the luminance of an element, illuminated first by a CRT and 
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subsequently by an LCD device. The element was driven at 75Hz by the sequence 1 1 

0; the period between each step of the sequence was 13.3 ms. 

 

Figure  2.5 The output of a photodiode when stimulated with a CRT device (top) and an LCD device 
(bottom) by the sequence 1 1 0 (adapted from Parks et al. (45)). When there is a 1 in the sequence the 

CRT produces a short pulse (2ms) and then a dark period (11.3ms). The LCD differs to this; it produces 

a period of high luminance for the entire on-state of the sequence. When successive 1s are present in the 
sequence a CRT device produces a pulse of high luminance for each 1, whereas the LCD remains at a 
high luminance for the duration of the on-state.   

 

When a pulsed raster based method such as the CRT is used a short pulse of light is 

produced, followed by a longer period of low luminance. In contrast, when using a 

square-wave based method such as the LCD the luminance remains high throughout 

the frame. The transition to a high luminance is the main physiological contributor to 

the mfERG response (45). It can be seen that when two consecutive 1s are present in 

the sequence two separate responses would be evoked by the CRT device while the 

LCD would produce only one response at the start of the period of high luminance. 

The type of stimulator used therefore impacts on the final responses acquired. The 

following simplified schematic diagram illustrates the differences in the final cross 

correlated responses when using the two types of stimulating device. The four possible 

consecutive steps of the m-sequence (1-1, 1-0, 0-1 and 0-0) have been shown in 

isolation to aid this explanation:  
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Figure  2.6 A comparison of the cross correlated responses acquired using a CRT stimulator (top) and an 
LCD stimulator (bottom) (adapted from Parks et al. (45)). The principal difference in the final responses 

acquired using LCD or CRT devices can be attributed to the differences in the illumination profile of 
each when there are successive 1s in a sequence (figure 2.5). ‘A’ shows the elongated response resulting 
from consecutive 1s in the sequence when using a CRT device. ‘B’ demonstrates why a larger N2 
component is evident when using an LCD stimulus; the troughs from the 1-1 and 1-0 part of the 
sequence align with the peak from 0-1.  

 
Two main differences can be seen: the first is the final CRT response is more 

elongated than that acquired using the LCD, while the second is the larger N2 

amplitude of the LCD generated waveform. These variations can mainly be attributed 

to the illumination profiles of each device (figure 2.5) and the way in which the retina 

responds when there are consecutive 1s in the sequence. When there are successive 1s 

in the sequence the response evoked by the CRT is stretched (A in figure 2.6) relative 

to that acquired from the LCD. This is the result of separate flashes stimulating the 

retina within the response time period. The increased N2 amplitude obtained when 
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stimulating with an LCD device can be attributed to the alignment of the troughs for 

the 1-1 and 1-0 parts of the sequence with the positive peak of the 0-1 combination (B 

in figure 2.6). N2 is therefore dominated by the interaction between consecutive 

stimuli and the P1 component of the preceding stimulus (37). Responses evoked using 

a pulsed based stimulus have a greater non-linear contribution. They also have a 

slightly larger amplitude than those acquired from a square-wave based system. This is 

because the CRT device evokes a response for both the 0-1 and 1-1 steps of the 

sequence, while the LCD stimulus only evokes a response for the 0-1 parts of the m-

sequence. Consequently the contributions to the overall mfERG response are 

increased when using a CRT device, thus increasing the response amplitude. On the 

other hand, those evoked using a square-wave based stimulus include information on 

the retina’s ability to recover from a more extensive period of high illumination. 

2.4.2 SLO and LED 

SLO, like CRT, is a raster based technique. It runs at a slower frame rate than a CRT 

and presents the stimulus directly onto the retina. It allows the fixation of the patient 

to be monitored which can be advantageous when testing patients with poor fixation, 

those who fixate eccentrically or those suspected of malingering (46-48). The field of 

stimulation is however smaller than that of other stimulating devices meaning that 

assessment of more peripheral problems is not possible.  

With using an LED stimulus the luminance level is constant and the width of a pulse 

of light can be chosen by the user. This has led to it being used by several researchers 

(37;49) and has led to a greater understanding of the components of the first and 

second order responses (37).  

2.5 Type of electrode 

In addition to the method of stimulation affecting the final responses it has been 

shown that the type of electrode used impacts on the recovered signals. The electrode 

utilised for the mfERG is the same as that used for conventional ERG recordings. 

Researchers have used several different types of electrode to measure 

electrophysiological responses, each of which offers its own advantages and 

disadvantages. The electrodes can be divided into three main categories: contact lens; 

lid hook; and fibre electrodes. Examples of these can be seen in figure 2.7:  
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Figure  2.7 Different types of electrode used for ERG recordings. From left to right: contact lens; lid 

hook; and fibre electrode (adapted from www.webvision.com). 

 
When selecting an electrode a number of factors should be considered, including the 

signal to noise ratio, patient comfort and the reliability and repeatability of the 

recording. Contact lens electrodes are commonly used when recording the mfERG 

(19;50;51). When compared with other electrodes they have been shown to have the 

largest signal amplitude (52) however they can be uncomfortable and have a risk of 

corneal and conjunctival abrasions (53). 

Lid-hook electrodes are inserted into the lower fornix of the eye and are bent over to 

lie on the cheek (54). They are better tolerated by patients and do not interfere with the 

optics of the eye which is important when recording the mfERG. This has led many 

people to use them as an alternative to the contact lens electrode (55;56). They are 

however very flexible and can slip out of the eye. 

The fibre electrode consists of a number of conductive threads which are placed either 

in the tear film on the surface of the cornea or in the lower fornix (57). The largest 

recordings are obtained from the former location however the impact of eye 

movement and blink artefacts is greater. In general fibre electrodes are well tolerated 

by patients and they do not interfere with the eye’s optics. The higher patient tolerance 

has resulted in this being a popular electrode for recording the mfERG (58;59). 

A study carried out by Mohidin et al. (60) compared four types of electrode when 

recording the mfERG. These included the JET contact lens, the gold foil (type of lid 

hood electrode), the fibre electrode and the c-glide (lid hook) electrode. It was found 

that responses acquired from the contact lens had the largest amplitude and that those 

obtained using the c-glide electrode had the greatest variability.  

2.6 Amplifiers and filter bandwidth 

In addition to the choice of stimulus and electrode, the amplification and filter 

bandwidth also affect the final mfERG response. The uncorrelated data are both 
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amplified and filtered prior to being converted from an analogue to a digital format. 

Standard differential physiological amplifiers are typically used for this purpose. These 

should have a high gain to enable the production of clear signals however saturation of 

the signal must be avoided; a gain of 100000 is commonly used (61;62). The amplifiers 

should also have a high common mode rejection ratio. This is a measure of an 

operational amplifier’s ability to reject signals common to both inputs, such as noise. 

To decrease both patient and experimental noise high and low pass filters are used 

when recording the raw mfERG data signal. Cut off frequencies for the high pass and 

low pass filters are typically 10Hz and 100Hz (23;63;64) or 10Hz and 300Hz (65-67). 

It was however shown by Keating et al. that the cut off frequency chosen for the high 

pass filter has a significant affect on the shape of the cross correlated responses; 

waveforms acquired using 10Hz were distorted relative to those acquired using a 3Hz 

high pass filter (68). This was reiterated by Seeliger et al. who reported that negative 

mfERG responses were significantly distorted when using a cut off frequency of 10Hz 

as opposed to 2Hz (69).  

2.7 Patient factors 

In addition to the choice of hardware affecting the final responses, various patient 

factors can impact on the cross correlated waveforms, a number of which are 

described in section 2.7. 

2.7.1  Pupil size 

The diameter of a patient’s pupil affects the mfERG response as the amount of light 

entering the eye is determined by the size of the pupil. A study by Gonzalez et al. 

showed that a smaller diameter results in a decreased P1 amplitude and an increased 

P1 latency (70); dilation is therefore recommended (71). Pupil size can be affected by 

iris colour and age. 

2.7.2  Age 

An increase in latency and a reduction in response amplitudes have been reported in 

older people; (65;72). In the first of these two studies the age of the subjects ranged 

from 9 to 80 years old while for the second study two distinct groups were utilised: one 
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incorporated people ranging from 19-30 while the other included people ranging from 

60-74. A number of studies have demonstrated that the central responses are more 

affected by age than those positioned peripherally (73;74).  

2.7.3  Patient compliance 

Both blinking and losses of fixation can result in saturation of the signal. This 

decreases the portion of raw data available for cross correlation thus impacting on the 

quality of the final responses. Patients are therefore encouraged to minimise these 

during testing. It is also essential that a patient maintains fixation throughout a test to 

ensure spatial accuracy of the test. A number of approaches have been successfully 

used to monitor fixation during testing including the use of an SLO stimulus (10), an 

infrared television fundus camera (11) and an eye tracking device described by 

Chisholm et al. (75).  

2.8 Aims of thesis 

The objectivity of the mfERG and the spatial information it provides make it an 

attractive test for assessing the function of the outer/mid retina. The responses do 

however have a low amplitude (in the order of nanovolts). Consequently they are 

easily contaminated by noise, especially when response amplitudes are decreased as a 

result of compromised retinal function. Differentiating between normal and 

compromised retinal function can for example become difficult when waveforms are 

recovered from a noisy recording. The analysis process can therefore be both difficult 

and subjective, sometimes resulting in inconsistencies in the interpretation of a test. 

The expansion of this technique is therefore limited, as experimental and analytical 

consistency is essential in many circumstances, for example in multicentre clinical 

trials. An intelligent system capable of analysing a mfERG recording in an objective, 

accurate and consistent manner would therefore be advantageous. The aim of this 

project was to develop a technique to achieve this. 

An objective method for grading the recording quality both during and after an 

examination would be beneficial, both to the operator and to those subsequently 

reporting the test. This would enable the operator to be warned of problems during the 

testing session and would provide the person reporting the test with a greater 

knowledge of patient cooperation. Of those recordings deemed to be of a sufficient 
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standard to be reported, the system should be able to differentiate between waveforms 

with and without a physiological response. For those representing an area of retinal 

function the response should ideally be classified as normal or abnormal, both in terms 

of its amplitude and latency. Ideally the system would also have the ability to compare 

trace arrays from sequential visits, allowing a patient’s condition to be monitored.  

A number of methods have been proposed by researchers to decrease the subjectivity 

of the mfERG analysis however there are limitations associated with a number of 

them; these will be discussed in the following chapter. It was also decided to 

investigate techniques applied successfully to the analysis of other similar 

physiological signals, with a view to applying these to the interpretation of the mfERG 

to realise the objective of this research. These will be discussed in chapter 3. 

2.9 Conclusions 

The creation and properties of the sequences used to control the mfERG stimulus have 

been described, in addition to the recovery of the individual responses from the raw 

data signal collected at the electrode. Factors affecting the final cross correlated 

responses have also been considered. Finally, the limitations of the mfERG have been 

discussed in addition to the principal aims of this thesis.  



    

3 Current techniques used to analyse the mfERG and 

other physiological signals 

It was discussed in chapter 2 that analysis of the mfERG can be both difficult and 

subjective when a waveform is obtained from a poor recording, or from an area of 

retinal dysfunction. Differentiating between no significant retinal function and a 

decreased response can for example be problematic; furthermore, determining the 

amplitude and the latency of the main components (N1, P1 and N2) can be subjective. 

Consequently a number of methods have been proposed by researchers to improve the 

objectivity of mfERG analysis. These will be discussed in addition to their limitations.  

Approaches used to analyse other physiological signals such as the electroretinogram 

(ERG), the visual evoked cortical potential (VECP) and the pattern electroretinogram 

(PERG) will also be described. 

3.1 Techniques employed to analyse the mfERG responses 

Techniques used to distinguish waveforms with a physiological response from those 

with no function are described first. 

3.1.1 Peak to tough 

Hood et al. (19) defined a minimum P1 amplitude criterion: waveforms with a peak to 

trough value of less than a defined value were said to have no significant retinal 

function. This method is of limited use as the presence of noise can impact greatly on 

the response amplitude (18).  

3.1.2 Signal to noise ratio  

An alternative method is to calculate the signal to noise ratio (SNR). Different ways of 

deriving the SNR have been proposed.   

3.1.2.1 Noise window and signal window 

Zhang et al. calculated the SNR for the mfVECP  by comparing the latter part of the 

cross correlated wave with the earlier part (76).  The waveform was effectively split 
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into two components: a signal window; and a time window.  This can be seen in figure 

3.1: 

 

Figure  3.1 Calculating the SNR using a noise window and a signal window (adapted from Han et al. 

(77)).  The signal epoch represents the signal window while the noise epoch is the noise window.   

 
The assumption was that the signal window contained both noise and signal while the 

noise window comprised only noise.  The following equation was used to calculate the 

SNR for each waveform, i, in the trace array: 
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where RMS is the root mean square. 

An alternative method was also described where the denominator was the average 

noise window RMS for all waves in the trace array: 
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The latter was found to yield a lower false positive rate (i.e. stating there was a 

physiological response when there was not) and has since been applied to the analysis 

of the mfERG (77-79). This technique however assumes that the data in the noise 

window contain no contribution from the evoked retinal response.  

3.1.2.2 Dead sequences 

An alternative method to calculate the SNR utilises unused m-sequences, termed dead 

sequences. When creating m-sequences to control a 60 element mfVECP or a 61 

element mfERG stimulus at least 64 m-sequences are generated using the decimation 

process; this is dependent on the number of columns over which decimation is 

performed (refer to section 2.2.2); consequently there are unused (dead) sequences. By 
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cross correlating one of these dead sequences with the raw, uncorrelated data it can be 

assumed that the recovered response contains only noise. The following equation can 

therefore be used to calculate the SNR: 

)(

)(
log20 10 cewavedeadsequenRMS

waveRMS
SNR i

i =   (3.3) 

MacFarlane et al. (80) used this method to calculate the SNR for mfVECP waveforms 

and showed that there was a good correlation between this approach and the Zhang et 

al. method when healthy people were tested. This technique has also been applied to 

the analysis of the mfERG by Keating et al. (81). Healthy volunteers were tested; the 

length of the m-sequence and the stimulus frequency were both varied and it was 

shown to be a viable method for calculating the SNR. It has not as yet been applied to 

the analysis of clinical mfERG data.   

Several approaches to assess the amplitude and latency of a response have been 

proposed, one of which is described in section 3.1.3.   

3.1.3 Minimum and maximum values 

The minimum and maximum turning points can be used to locate N1, P1 and N2 

when analysing a waveform such as that seen in figure 3.2:   

 

Figure  3.2 A mfERG response which is relatively simple to analyse as it contains three clear turning 

points corresponding to N1, P1 and N2.  

 
It is however often the case that P1 is not the maximum value, and that the two main 

troughs are less clearly defined than those seen in figure 3.2. This can arise when a 

recording is contaminated with patient noise or when retinal function is compromised. 

The following waveform demonstrates this: 
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Figure  3.3 A difficult mfERG response to analyse as it contains no clear turning point at P1 and the 

troughs, N1 and N2, are less clearly defined.  Locating P1 is more subjective in this instance as it does 
not correspond to the maximum value. 

 

3.1.4 Scalar product 

An alternative approach to assess the response amplitude and latency is to calculate 

the scalar product.  This provides a measure of the deviation from an ideal response 

and has been shown to be sensitive to changes in both amplitude and latency (18). It is 

calculated by: 

∑
=

+++==
n

i
nnii babababauctscalarprod

1
2211 ...            (3.4) 

where a is the mfERG waveform vector, b is the ideal response vector and n is the 

number of data points in the vector. Increases in latency or reductions in amplitude are 

reflected as a reduction in the scalar product value. This technique has a relatively 

good immunity to noise however problems can arise if an inappropriate template is 

selected for the ideal response.  Keating et al. showed that the scalar product can detect 

a change in latency but argued that the scalar product is less sensitive than measuring 

the actual latency value (82). It has been shown that the P1 timing is particularly 

important when studying the diseased retina, for example in conditions such as 

retinitis pigmentosa (19;20) and cone dystrophies (83) therefore a technique should 

ideally find the actual P1 latency value, rather than detect a change in latency.  

3.1.5 Template fitting 

Hood et al. (84) proposed a method for measuring the amplitude and the latency of a 

mfERG response.  It involved stretching the template of a normal wave in time as well 

as varying its amplitude until the best fit to the local patient response was found. This 

was established using the least-squares fitting method. It has since been used to 

analyse the data in many studies (23;85;86). This method however relies on the patient 

waveforms being a similar shape to the template response which is not always the 

case. Furthermore, by stretching the template the later components on the waveform 
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are more delayed, relatively, than the earlier components which may not always be the 

case in clinical waveforms.   

The possibility of shifting a template in time has also been investigated. In this case all 

components are delayed by the same value. It has however been shown that the 

stretching method is more sensitive than the shifting method, both in patients with 

retinitis pigmentosa (84) and in those with diabetic eye disease (23;87) although 

Schneck et al. argued that the template stretching method does not fully represent the 

mfERG response in the diabetic eye; the later components were generally not more 

delayed than the earlier components.     

3.1.6 Spatial averaging 

Post processing of the cross correlated responses has also been used with a view to 

easing the interpretation of the mfERG signals. One such technique is spatial 

averaging; this involves averaging the response from each hexagon with the mean of 

its surrounding waveforms.  It is commonly used to improve the appearance of the 

mfERG responses (24;88) but it greatly decreases the spatial resolution of the test, one 

of the greatest advantages of the mfERG technique. 

To avoid compromising spatial resolution artefact removal and digital filtering 

techniques can be utilised with a view to reducing the influence of noise on the 

waveform. 

3.1.7 Artefact removal 

One widely used commercial mfERG device, the VERIS system (developed by 

Electro-Diagnostic Imaging, Inc. USA), has a built-in algorithm which removes 

artefacts caused by patient blinking and eye movements.  The cross correlation process 

used by the VERIS system differs to that described in section 2.3; it is performed using 

the complete uncorrelated data set as opposed to small sections of data.  Consequently 

each of the recovered mfERG responses are distributed along the correlated data. The 

data between each of these correlated responses can be attributed to patient noise; this 

artefact removal method zeroes these parts of the data. A reverse cross correlation is 

then performed, producing an alternative uncorrelated data set.  This is compared with 

that of the original raw data signal; where there are significant differences between the 

two, the original signal is replaced with the new signal. Cross correlation is then 
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repeated; the appearance of the resulting responses should therefore be improved.  

This technique has been applied to the data in many studies (24;74;89) however it has 

been shown that the shape of the cross correlated responses can be distorted when 

using this feature (90).  

3.1.8 Digital filtering 

Seeliger et al. (63) designed a filter for post processing of the mfERG data based on the 

frequency spectrum of the cross correlated waveforms. They found that the principal 

frequencies forming the waveform were within the 10-60Hz range therefore a 

bandpass filter (one which passes frequencies within a specified range and attenuates 

frequencies outwith this region) was designed with lower and upper frequencies of 9.4 

and 56.4Hz respectively.  

Bock et al. (91) investigated using a 50Hz notch filter to minimise the effect of 

electrical noise during a recording. A notch filter is a bandstop filter (one which 

attenuates frequencies within a specified range and passes all other frequencies) with a 

narrow stopband, in this case concentrating on 50Hz. When the first order cross 

correlated responses were compared with those acquired using standard filter settings 

of 10-300Hz it was shown that the shape of the waveform was comparable however 

the P1 component was moderately delayed therefore this method should be used with 

caution.   

3.2 Analysis of electrophysiological signals in vision 

It is also of interest to consider analysis approaches employed in other areas of 

electrophysiology, with a view to applying them to mfERG analysis if appropriate as 

similar problems are encountered when interpreting the signals. Three techniques have 

been selected: 1) analysis of signals in the frequency domain; 2) artificial neural 

networks; 3) wavelet analysis. These were chosen as they have each showed promising 

results when applied to the analysis of other physiological signals, thus may have a 

potential role in reducing the subjectivity of the mfERG interpretation process.   
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3.2.1 Studying signals in the frequency domain 

Physiological responses are often studied in the frequency (Fourier) domain as it 

enables information to be extracted which is not available in the time domain. This is 

the case when reporting a steady-state response (one obtained at a higher rate of 

stimulation meaning that responses evoked by successive stimuli overlap one another).  

Fourier analysis has been utilised to ease the analysis of the steady-state PERG (17), 

the steady-state VECP (92-95) and the oscillatory potentials of the ERG (96).  It was 

shown by Meigan et al. that studying the frequency components of steady-state 

responses can be useful for quantitatively deciding if a waveform contains a true 

physiological signal (97). The stimulus frequency is known in each case therefore 

when a recording is viewed in the frequency domain all frequencies which are not a 

multiple of the stimulus frequency are known to be noise.  This is useful for increasing 

the objectivity of the analysis process. 

Klistorner et al. used the Fourier domain with a view to reducing the intersubject 

variability seen in the mfVECP (98) by viewing the frequency components of the raw 

electroencephalogram (EEG), the electrical activity of the brain data.  The VECP data 

were scaled according to the Fourier spectrum of the EEG signal, resulting in less 

variability between people, hence widening the scope of the technique for serial 

measurements and clinical use. 

3.2.2 Artificial neural networks 

Artificial neural networks (ANNs) are an attempt to emulate tasks unique to the 

human brain, and like humans they learn by example.  Networks can ultimately be 

trained to perform a specific function such as pattern recognition, predicting future 

events based on existing data or the categorisation of data. The idea is that with 

sufficient training a network should be able to provide an accurate output when 

presented with new data. They have been used for a wide range of functions, for 

example predicting cancer survival rates (99-101) and classifying physiological signals 

such as the electrocardiogram (ECG), the electrical activity of the heart (102;103). 

Guven et al. have recently used ANNs to classify the PERG (104), the VECP (105) 

and the EOG (106) into one of two categories: normal; or abnormal. Accuracy rates of 

98%, 97% and 94% respectively were achieved. ANNs have also been applied to the 

analysis of the ERG by Lipoth et al.; responses were classified with a 95% success rate 
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(107). In addition to classifying signals Fisher et al. demonstrated that ANNs can be 

used to identify the latency of PERG responses by cursoring the main peak; a high 

performance was achieved even when signals were contaminated with large amounts 

of noise (108).   

3.2.3 Wavelet analysis 

Wavelet analysis can be utilised to decrease the noise present in a signal. A series of 

high pass and low pass filters are used to decompose the signal: the low pass filters 

produce approximations of the data while the high pass filters provide the detail. 

Wavelet coefficients are obtained for both the detail and the approximations.  

Thresholding is then carried out on the detail data: all wavelet coefficients less than a 

defined threshold are set to zero. The signal is then reconstructed using the remaining 

wavelet coefficients. The idea is that the reconstructed signal should be less noisy 

while maintaining the shape of the original signal. This technique has been applied 

successfully to the analysis of physiological signals such as the ECG (109), the EEG 

(110) and the VECP (111).   

Wavelet analysis has also been used to classify signals, for example the EEG (112) and 

the myoelectric signal, the response representing neuromuscular activity (113). 

Wavelets have since been employed to differentiate between normal and abnormal 

transient PERG responses (those acquired using a lower stimulus frequency therefore 

there is no overlap of responses to successive stimuli) (114;115). These studies 

demonstrated that this technique has the potential to improve the objectivity of the 

analysis process of the PERG. 

A recent study used the wavelet transform for the analysis of the mfERG (116) with a 

view to identifying glaucoma markers. Differences between the wavelet decomposition 

of recordings with and without glaucoma were observed thus making the distinction 

easier than using conventional analysis methods.   

3.3 Overview of techniques employed for this research 

It is evident that many approaches have been utilised to improve the objectivity of 

mfERG analysis but that there are limitations associated with these. Methods applied 

successfully to the interpretation of other physiological signals have been discussed; 
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this thesis investigates the applicability of these to the analysis of the mfERG with a 

view to improving the consistency of mfERG analysis.  

The possibility of using the frequency domain to assess the quality of a recording and 

to differentiate an area of functioning retina from a dysfunctional region is discussed 

in chapter 4. This technique was chosen as the Fourier domain can be used to 

differentiate signal from noise; this is a useful property to realise these two aims.   

Chapter 5 investigates the ability of ANNs to classify mfERG waveforms as delayed, 

within normal timing limits or as no significant response; neural networks were 

selected as their ability to classify data should enable the mfERG data to be 

categorised in a consistent manner.   

Two methods utilised to calculate the SNR were described in section 3.1.2; that using 

a noise window and a signal window, and that using a waveform acquired from an 

unused m-sequence to represent the noise. The first of these has been applied to the 

interpretation of the mfERG however the second approach has thus far only been 

utilised for the analysis of the mfVECP and mfERG data acquired from healthy 

control subjects. The ability of these two approaches to distinguish an area of 

functioning retina from a region with no significant retinal function is therefore 

assessed in chapter 6 with a view to finding the optimal method.  Digital filtering and 

wavelet techniques are also studied in chapter 6; the aim was to improve the 

appearance of the mfERG data prior to analysing it, thus easing the interpretation 

process.  Finally the responses are analysed using curve fitting techniques as opposed 

to defining the maximum and minimum values or fitting templates to the data; the 

aim was to categorise the responses as normal or abnormal, both in terms of their 

amplitude and latency.   

To optimise the performance of the system, each approach is combined in chapter 7 to 

form a multilayered system.   

3.4 Collecting normative data 

Prior to studying the potential of each of these techniques it was essential to establish a 

normal range for the particular experimental set-up used in the department as it was 

shown in chapter 2 that factors such as the type of stimulus and the choice of electrode 
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impact on the final mfERG responses. Normative data were collected using the 

following protocol.  20 healthy subjects ranging in age from 18 to 72 were tested. 

3.4.1  Methods: mfERG protocol 

3.4.1.1 Acquiring the data 

Recordings were conducted using a custom built mfERG system designed to stimulate 

a 900 field of vision and were carried out in accordance with the International Society 

for Clinical Electrophysiology of Vision (ISCEV) guidelines (71). Tests were 

performed binocularaly with pupils maximally dilated using Tropicamide (1%). DTL 

fibre electrodes (Diagnosis LLC) were used to measure the evoked response from each 

eye, while the ground and reference electrodes were attached to the forehead and the 

outer canthi respectively.  The patient fixated on a cross located at the centre of an 

array of 61 empirically scaled hexagons, each controlled by an independent m-

sequence.  Patient fixation was monitored by the operator. The orthogonal sequences 

were created by decimating a 15 bit m-sequence over 128 columns. The stimulus was 

presented by a back projected LCD system at a rate of 75Hz, while data were sampled 

at 1200Hz.  Dual bandpass filters of 10-100Hz and 3-300Hz were selected however all 

analysis was done using the 10-100Hz data as this is more commonly used in the 

literature. A 12 bit analogue to digital convertor with a gain of 100000 was used. The 

recording period was split into 16 equal segments, each lasting approximately 30 

seconds, to improve patient tolerance. 

3.4.1.2 Analysis of the data 

The amplitude and the latency of the N1 and P1 components are the principal 

measurements used when analysing mfERG responses (71) therefore normal ranges 

were calculated for each of these. When interpreting the responses it is typical to 

average the responses in each concentric ring (71); this can be seen for one of the 

participants: 
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Figure  3.4 Analysis of the mfERG using concentric rings. The average P1 amplitude (amp), N1 latency 

(epoch 1) and P1 latency (epoch2) are shown for each concentric ring. 

 
This mode of analysis was utilised for both eyes for each of the 20 volunteers thus 40 

N1 and P1 amplitude and latency values were obtained for each ring. The 5th and 95th 

percentile were subsequently calculated for the four parameters, yielding a normal 

range for each. These were calculated as opposed to standard deviations as the 

mfERG data are typically non-parametric (71). 

3.4.2  Results 

The following table shows the normative range for the N1 and P1 amplitude and 

latency of the central mfERG response and each of the concentric rings: 

 N1 amplitude (nV) 
5th -95th percentile 

N1 latency (ms) 
5th -95th percentile 

P1 amplitude 
(nV) 

5th -95th percentile 

P1 latency (ms) 
5th -95th percentile 

Central 
response 

33-71 23-26 86-180 38-42 

Ring 1 26-54 22-25 66-145 37-42 

Ring 2 23-56 22-26 56-133 37-42 

Ring 3 20-45 24-25 51-111 37-42 

Ring 4 13-28 24-26 30-69 38-42 

Table  3.1 Normative data for the mfERG.  The 5th-95th percentile has been shown for both the N1 and 

P1 amplitude and latency.   
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The overall trend for the N1 component was a reduction in amplitude from the central 

response to ring four. The 95th percentile for the latency varied slightly, with values of 

25ms or 26ms for each of the rings. As was seen with N1, the P1 amplitude of the 

central waveforms was larger than that of the peripheral responses despite the scaling 

of the stimulus. The latency was however consistent across the field. These results 

imply that the latency of the P1 component is slightly more consistent than that of N1; 

this has caused some people to report only the P1 data (23;117). It was therefore 

decided to concentrate on the latency and amplitude of the P1 component throughout 

this thesis: all responses with a P1 latency greater than 42ms, irrespective of their 

location in the trace array will be classified as delayed. The position of a response in 

the trace array must however be considered when determining if it is normal or 

decreased in amplitude. For central waveforms a P1 amplitude of less than 86nV can 

be considered to be decreased while those in rings one, two, three and four with an 

amplitude smaller than 66nV, 56nV, 51nV and 30nV respectively are compromised. It 

is difficult to compare these values directly with studies in the literature as the 

experimental set up used is slightly different in each case, for example the type of 

stimulus or electrodes used. It has however previously been reported that the P1 

latency does not vary greatly across the retina (56) and that the response density 

decreases with eccentricity (18;56), trends which were observed in the current data.   

3.5 Conclusions 

Approaches currently employed for the analysis of the mfERG have been discussed, in 

addition to their limitations. Techniques successfully applied to the interpretation of 

physiological signals other than the mfERG have also been considered; these included 

artificial neural networks, analysis of signals in the frequency domain and wavelet 

analysis. The possibility of applying these techniques to the analysis of the mfERG is 

investigated in the following chapters. Normative data for the mfERG were also 

presented.  

Chapter 4 studies the potential role the Fourier domain has to play in the assessment 

of recording quality and in the classification of mfERG data as ‘response’ or ‘no 

response’. 



    

4 Analysis of the Fourier domain profile 

It was stated in chapter 2 that one of the main aims of this thesis was to develop a 

method for grading the recording quality of the mfERG, both during and after a test. It 

was also important for the system to differentiate a physiological response from a 

waveform with no significant retinal function. This chapter investigates the possibility 

of using the frequency domain to achieve each of these objectives; this approach was 

selected as the frequency domain is commonly used to differentiate signal from noise 

(97;118-120), a valuable property to enable these two aims to be realised. The 

frequency components of the raw, uncorrelated data signal were examined initially 

with a view to establishing a method for assessing the recording quality; an automated 

grading system was subsequently developed based on the findings. To distinguish a 

retinal response from an area of retina with no function, cross correlated responses 

were studied in the frequency domain.  

When studying the uncorrelated data in the Fourier domain the frequency profile 

inherent to the mfERG stimulus was revealed. The experimental factors determining 

this were investigated. Finally the impact of compromised retinal function on the 

Fourier profile was studied. 

4.1 The Fourier transform 

Fourier analysis is used to view the frequencies embedded within a signal. It is based 

on the principle that any signal acquired in the time domain can be decomposed into 

sinusoidal components. This process is achieved by the use of Fourier transforms and 

has been used extensively in many scientific and engineering fields including image 

processing, signal processing, acoustics and communications engineering (121;122). 

To transform a function from the frequency to the time domain, inverse Fourier 

transforms are performed.  

4.1.1 Continuous Fourier transform 

The continuous time Fourier transform transforms a function )(tx which is continuous 

in the time domain to one which is continuous in the frequency domain )(uX , using 
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dtetxuX utj

∫
∞
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where u is the frequency measured in Hz and t is the time measured in seconds. 

)(uX is a complex function. The magnitude of each frequency component (i.e. the 

relative contribution of each) is found, in addition to the phase shift of each frequency.   

The inverse transform is 

dueuXtx utj

∫
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= π2)()(     (4.2) 

4.1.2 Discrete Fourier transform 

It is not always the case that data are continuous. When working with data stored in a 

computer, for example, the data are discrete therefore discrete Fourier transforms 

(DFTs) are more appropriate. DFTs are utilised to transform a signal which is discrete 

in the time domain, ][nx , to one which is discrete in the frequency domain, ][kX .  

∑
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where 1...2,1,0 −= Nk  

The resolution achieved in the frequency domain is determined by 
tN∆

1
where t∆ is 

the interval between each sample in the time domain. It is assumed that the data ][nx  

are periodic, with a fundamental period of N. In other words the interval over which 

the transform is performed, the analysis interval, is one cycle of a repeating series in 

time. The following example, containing both 10Hz and 20Hz is used to demonstrate 

the DFT:  
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Figure  4.1 10Hz and 20Hz signal in the time domain. 

 
The data were sampled at 100Hz while the DFT was performed using an analysis 

interval of one second (i.e. containing an integer number of cycles of the two principal 

frequencies). The resulting frequency plot is shown in figure 4.2: 

 

Figure  4.2 10Hz and 20Hz signal in the frequency domain. This plot is symmetrical around 50Hz, the 

Nyquist frequency. 

 
Both the 10Hz and 20Hz components can clearly be seen in figure 4.2. The frequency-

magnitude plot is symmetrical around the Nyquist frequency (half the sampling 

frequency). This is because the DFT is periodic, with one period extending from 0Hz 

to the sampling frequency; real signals are therefore always symmetric around the 

Nyquist frequency when transformed from the time to the frequency domain. 

Consequently it is common to plot the frequencies between 0 and the Nyquist 

frequency. 

Problems can however be encountered when using DFTs, the most common of which 

are aliasing and leakage. Aliasing, when high frequencies are mistaken for lower 

frequencies, occurs when the sampling frequency is insufficient to represent the highest 

frequency components in the signal. This is avoided by ensuring that the rate at which 

the data are sampled is at least twice that of the highest frequency in the time domain 

data. Leakage arises when the analysis interval does not contain an integer number of 
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cycles of each frequency in the signal. This is reflected as a smearing of the signal’s 

frequencies in the frequency domain. This can be seen in figure 4.3, where the signal 

in figure 4.1 was transformed to the frequency domain using an analysis interval of 

0.93 seconds (i.e. the analysis did not include an integer number of periods of the 

10Hz and 20Hz frequencies). A spread of frequencies can clearly be seen. Again the 

plot is symmetrical around 50Hz: 

 

Figure  4.3 Demonstrating leakage in the frequency domain for a signal comprising 10Hz and 20Hz 

components. The peaks are not limited to 10Hz, 20Hz, 80Hz and 90Hz as in figure 4.2, but have 
spread; this is evidence of leakage.  

 
To reduce the effect of leakage windowing techniques can be used. These involve 

multiplying the signal by a function which starts and finishes with a value of zero and 

reaches a maximum value of one.  

To transform a signal from the frequency to the time domain the inverse transform is 

used: 

∑
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N

nx π    (4.4) 

The computational time required to perform a DFT is considerable, particularly when 

working with large data sets. When evaluating an N point DFT, for each value of k, N 

complex multiplications and N-1 complex additions are performed. The DFT 

therefore requires in the order of N2 calculations.  

4.1.3 Fast Fourier transform 

Fast Fourier transforms (FFTs) have been developed to decrease this computational 

time. A number of different FFT algorithms exist, the most common of which is the 

Cooley-Tukey algorithm. By exploiting the periodic and symmetrical nature of the 



Alison A Foulis, 2010    Chapter 4, 65 

DFT when the length of the signal is 2n the FFT can decrease the number of 

computations to an order of Nlog2N. If the signal is not 2
n long, sequences can be 

filled with zeroes or they can be resampled. FFTs were used for all Fourier transforms 

in this chapter due to the increased computational speed they offer. The use of the 

Fourier domain to assess recording quality is discussed initially.  

4.2 Assessing recording quality 

To monitor the integrity of the mfERG recording the frequency components of the 

raw, uncorrelated data signal were studied. When using the Fourier domain to 

distinguish signal from noise for steady-state responses such as the PERG or the 

VECP the stimulus frequency is known. All frequencies which are not a multiple of 

the stimulus frequency can therefore be identified as noise. Specific frequencies cannot 

however be studied when analysing the mfERG as the stimulus comprises multiple 

stimulating frequencies. Frequency profiles were therefore examined as opposed to 

individual frequencies.  

The aim was to establish patterns inherent to acceptable and unacceptable recording 

conditions, thus enabling an objective grading system to be developed. Complete 

recordings were studied initially to emulate assessing the quality of an entire test. The 

Fourier profile of individual data segments was subsequently analysed to simulate 

grading a test’s integrity during the examination. 

4.2.1  Transforming uncorrelated mfERG data from the time to the Fourier 

domain 

When collecting the uncorrelated data the recording period is split into 16 equal 

segments, each lasting approximately 30 seconds. There is an overlap of these 

segments; the initial 16 points of the m-sequence are repeated at the start while the 

final 16 steps are repeated at the end. This process is illustrated for the first three 

segments in figure 4.4: 
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Figure  4.4 Demonstrating the overlap of segments in the uncorrelated data. The green represents the 

steps of the m-sequence which are repeated; data acquired at these points are removed prior to 
transforming the data to the frequency domain. Data recorded during the orange periods are spliced 

together.    

 
A program was therefore written to remove these sections of uncorrelated data (refer 

to appendix 1). A built in Matlab FFT function, based on the Cooley and Tukey 

algorithm, was then utilised to perform the transformation from the time to the 

Fourier domain. Frequencies greater than the Nyquist frequency were discarded and 

phase information was ignored (appendix 1). It was important to establish if leakage 

and aliasing would be a problem and hence if windowing techniques would require 

consideration. The frequency resolution achieved in the Fourier domain was also 

calculated.  

4.2.2  Assessing for aliasing and leakage 

Upon removal of the overlapping regions of the m-sequence the uncorrelated data 

comprised 524272 data points as the data were sampled 16 times for every step of the 

m-sequence. The analysis interval contained 32767 stimulus periods meaning that 

neither aliasing nor leakage were a problem and hence it was not necessary to employ 

windowing techniques. The majority of mfERG tests used a stimulus frequency of 

75Hz. The resolution achieved in the Fourier domain was calculated by: 

∆f= 
tN∆

1
 (refer to section 4.1.2) = Hz0023.0

1200

1
524272

1 =
×

    

Similarly when a lower stimulation rate of 60.8Hz was selected, leakage and aliasing 

problems were not encountered and a frequency resolution of 0.0019Hz was achieved 

in the Fourier domain. Finally, when one segment of the raw data was transformed to 

the frequency domain aliasing and leakage problems were not encountered; the 

resolution in the frequency domain was 0.0366Hz.  
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4.2.3  Testing the transformation from the time to the frequency domain 

Before transforming patient data to the frequency domain the program written in 

Matlab (detailed in appendix 1) was tested to ensure that it produced the results 

expected of it. The mfERG protocol (section 3.4.1) was used to test the program with 

two exceptions: the stimulus was a light source with a known frequency of 100Hz 

instead of a multi-element mfERG stimulus; and a photodiode was stimulated instead 

of a human eye.   The frequency plot shown in figure 4.5 was obtained: 

 

Figure  4.5 Fourier profile when a photodiode was stimulated with a 100Hz light source. A dominant 

peak was noted at 100Hz therefore the program functioned as required.  

 
A strong 100Hz component can be seen, confirming that the transformation from the 

frequency to the time domain functioned as expected. It was therefore possible to 

apply this technique to the analysis of patient data with confidence. Initial experiments 

were conducted to study both the noise and the signal in isolation, to acquire 

knowledge of the profile specific to each. These were subsequently studied in 

combination. 

4.2.4  Methods 

The mfERG data were acquired in the time domain using the mfERG protocol 

(section 3.4.1). When isolating features such as the noise or the signal, alternations 

were made, each of which will be described. 

4.2.4.1 Isolating the noise from the signal 

A healthy control was set up using the mfERG protocol. To remove the evoked retinal 

responses they were asked to fixate on a green cross instead of the multi-element 
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stimulus described in the protocol. Four tests were conducted. These included good 

compliance (maintaining fixation on the cross throughout the test, minimising 

blinking and remaining still), loss of fixation, excessive blinking and muscle 

movement/jaw clenching, problems commonly encountered when testing patients. 

The exam is typically split into 16 equal segments therefore to investigate the 

possibility of grading the patient noise after each segment, 1/16th of the uncorrelated 

data were transformed into the frequency domain for each of the four tests. Finally the 

Fourier profiles of the entire recordings were viewed to study the viability of grading 

signal quality at the end of a test. The frequency components specific to patient noise 

were identified and the features consistent with reduced patient cooperation were 

noted. 

4.2.4.2 Isolating the signal from the noise 

To acquire data uncontaminated by patient noise a photodiode was stimulated in lieu 

of a human eye using the 61 element stimulus. The testing protocol described in 

section 3.4.1 was utilised, with the exception that an amplifier gain of 100 was chosen. 

This was to minimise saturation of the signal; if a higher gain is chosen the signal 

saturates when using a photodiode. The uncorrelated data were transformed into the 

Fourier domain, allowing the frequency profile specific to the mfERG stimulus to be 

acquired.  

4.2.4.3 mfERG recordings with varying compliance and normal retinal function 

Having established the Fourier profiles particular to the mfERG stimulus and patient 

noise, a healthy control was tested using the mfERG protocol (section 3.4.1). As 

recording quality was of interest the person varied their cooperation, repeating the four 

recording conditions described in section 4.2.4.1. As before, individual segments of the 

data, in addition to entire recordings were viewed in the frequency domain to 

determine if this approach can be used to monitor the recording ‘live’ and upon 

completion of the test.  
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4.2.5  Results 

4.2.5.1 Isolating the noise from the signal 

Figure 4.6 (left) shows the Fourier profile obtained when the complete uncorrelated 

data set was transformed to the frequency domain. Frequency components from 0-

600Hz, the Nyquist frequency, have been included. The range of the y-axis was 

determined by the magnitude of the maximum frequency component, found at 0Hz; 

this is shown in red. The 0Hz contribution is significant relative to all other frequency 

components making it difficult to extract any meaningful information when studying 

the profile.  Figure 4.6 (right) shows a frequency plot with a maximum value at 8x107, 

enabling contributions at frequencies other than 0Hz to be seen: 

 

Figure  4.6 Fourier profiles from a full mfERG recording in a compliant subject when the noise was 

isolated from the signal; the range of each axis for the first profile (left) was defined by the maximum 
values, while the y-axis was limited for the second profile (right). The magnitude of the component at 
0Hz is very large (shown in red) in comparison with that of all other frequencies; consequently when 

the range of the frequency profile (y-axis) is determined by the magnitude of the maximum frequency 
component no other frequencies can be seen (left graph). When the y-axis range is limited to 8x107 

contributions at other frequencies can be seen. These predominantly lie within 0-100Hz. 

 

It is evident that the range of ‘interesting frequencies’ lies within 0-100Hz. All 

subsequent Fourier profiles acquired by transforming the complete data set, with the 

exception of those measured using a photodiode, are shown using a maximum 

magnitude of 8x107 and frequency range of 0-100Hz. A similar problem was 

encountered when one segment of data was viewed in the Fourier domain: the 0Hz 

magnitude (shown in red) dominated all other frequency components. This can be 

seen in figure 4.7 (left). When using a decreased value of 2x107 for the y-axis, 

frequency components in the range 0-100Hz were seen. These magnitude and 

frequency ranges were therefore used to study one segment of data. 
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Figure  4.7 Fourier profiles from one segment of a mfERG recording in a compliant subject when the 

noise was isolated from the signal; the range of each axis for the first profile (left) was defined by the 
maximum x- and y-values, while the y-axis was limited for the second profile (right). The magnitude of 
the component at 0Hz is very large (shown in red) relative to that of all other frequencies; if the range of 
the frequency profile (y-axis) is determined by the maximum frequency component no other frequencies 

can be seen (left graph). When the y-axis range is limited to 2x107 contributions at other frequencies are 
evident. These predominantly lie within 0-100Hz. 

 

The patient noise Fourier profiles obtained from the subject when compliant, looking 

around the stimulus, blinking and increasing their muscle movement (e.g. jaw 

clenching or fidgeting) respectively can be seen in figure 4.8. The frequency and 

magnitude ranges detailed above are used. The first column represents the profiles 

acquired when the complete recording was transformed into the frequency domain 

while the second column shows those attained when one segment of the uncorrelated 

data was utilised:  
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Full recording           One segment of recording        

  

  

     

   

Figure  4.8 Fourier profiles acquired when the noise was isolated from the signal and patient compliance 

was varied. From top left to bottom right: 1) compliant, full recording; 2) compliant, 1 segment; 3) poor 
fixation, full recording; 4) poor fixation, 1 segment; 5) blinking, full recording; 6) blinking, 1 segment; 7) 
muscle movement, full recording; 8) muscle movement, 1 segment. The magnitude of low frequency 
components increased when the person’s compliance decreased; muscle movement was also reflected as 

an increase in the frequency components across the full frequency range. This was seen both for one 
segment of data and for the full recording. 
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It can be seen that the lowest frequencies were the most prominent in each case. For 

those obtained when the person was less cooperative the prevalence of these low 

frequencies increased, reflecting greater amplifier saturation. Those acquired when the 

person increased their muscle movement also showed an increase in the magnitude of 

components across the frequency spectrum. Although the magnitude of the frequency 

contributions differed when one segment of data, as opposed to the whole recording 

was transformed to the Fourier domain, similar patterns were seen.   

4.2.5.2 Isolating the signal from the noise 

The Fourier profile of the uncorrelated data recorded when the photodiode was 

stimulated is shown in figure 4.9: 

 

Figure  4.9 Fourier profile when the signal was isolated from noise. Note the response at 75Hz, the 
stimulus frequency, and the discrete frequency peaks. The separation between the peaks is the stimulus 

frequency/64. 

 
A strong frequency component was observed at the stimulus frequency, 75Hz, in 

addition to a normative type frequency distribution of peaks, each separated by the 

stimulus frequency/64. These represent the main mfERG stimulating frequencies for 

this particular experimental set up.  

4.2.5.3 mfERG recordings with varying compliance 

When a healthy, compliant control subject was stimulated with the mfERG stimulus, 

the following Fourier profile was obtained when the entire uncorrelated signal was 

transformed to the frequency domain:  
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Figure  4.10 Fourier profile acquired from a full mfERG recording when a compliant subject was 

stimulated with the mfERG stimulus. The stimulus frequency and discrete frequency peaks are evident 
(as seen with photodiode), in addition to the noise profile seen in a compliant subject when 

unstimulated.  

 
The features observed when both noise and signal were studied in isolation were 

present: the low frequency noise; the strong contribution at the stimulus frequency; 

and the discrete peaks, each separated by the stimulus frequency/64. It should be 

noted that the exact range of these peaks differed slightly to that of the photodiode. 

When the uncorrelated data from one segment of this recording were viewed in the 

frequency domain the following profile was seen: 

 

Figure  4.11 Fourier profile from one segment of a mfERG recording when a compliant subject was 
stimulated with the mfERG stimulus. The discrete frequency peaks and the stimulus frequency can be 

seen, in addition to the noise profile observed in a compliant subject when unstimulated.  
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The noise profile acquired from the compliant, unstimulated control subject (shown in 

figure 4.8) can be seen in this Fourier profile, in addition to the peak at 75Hz and the 

discrete frequency peaks. The Fourier profiles attained when the control looked 

around the stimulus, blinked and increased their muscle movement respectively can be 

seen, both when the entire raw data signal was transformed to the frequency domain 

and when one segment of the recording was examined in the Fourier domain: 
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Full recording        One segment of recording         

 

 

  

Figure  4.12 Fourier profiles acquired when the subject was stimulated with the mfERG stimulus but 

varied their compliance. From top left to bottom right: 1) poor fixation, full recording; 2) poor fixation, 
1 segment; 3) blinking, full recording; 4) blinking, 1 segment; 5) muscle movement, full recording; 6) 
muscle movement, 1 segment. As for the unstimulated data shown in figure 4.8, the prevalence of low 
frequency components increased as compliance decreased, and muscle movement was reflected as an 
increase in the frequency magnitude in the 0-100Hz range. Frequency peaks, as seen in the photodiode 

test were evident; these decreased in magnitude as compliance was decreased.            

 
The noise profiles were comparable with those seen when the subject was tested 

without the mfERG stimulus; there was an increase in the prevalence of low frequency 

noise when the subject was incompliant and an additional evenly distributed noise 

profile when they clenched their jaw/increased their muscle movement. Again the 

discrete peaks and the peak at the stimulus frequency were seen in each profile, 

although they were smaller in magnitude than those observed when the subject was 



Alison A Foulis, 2010    Chapter 4, 76 

compliant. As was seen when the noise was studied in isolation the frequency 

components were smaller when 1/16th of the data set was visualised in the Fourier 

domain however the features observed were comparable for each recording condition. 

4.2.6  Discussion 

Deciding if a mfERG recording is of a suitable standard to be reported can be difficult 

and subjective. Furthermore, distinguishing between normal and compromised retinal 

function can be problematic when the recording quality is suboptimal. It was therefore 

the initial aim of this chapter to establish if the frequency domain can be used to 

differentiate between a good and a bad recording, and if this could be used as a basis 

for grading recording quality in an objective manner both during and after a test.  

It has been shown that by viewing the raw, uncorrelated data in the Fourier domain 

patient noise can be easily identified from signal and that a good recording is highly 

distinct from a poor one; the prevalence of low frequency noise increased significantly 

when the person blinked excessively or lost fixation. Furthermore, muscle noise could 

be distinguished from eye movement/blinking; an increase in frequency components 

across the frequency spectrum was noted in the case of muscle noise. This was the 

case both when studying the complete data set and when examining a smaller section 

of it, thus enabling it to be used both during and after a test to comment on the 

integrity of a recording. 

As the data were displayed in a highly visual way this method lends itself to providing 

a quick, objective and effective method for measuring the integrity of a recording. By 

defining limits for a good recording and an unreportable test an automated grading of 

quality can be incorporated into a system, therefore providing an operator with a 

continuous assessment of the incoming signal and producing an evaluation of the 

overall recording quality upon completion of the mfERG test. This will be developed, 

tested and discussed in section 4.3, both for the full data set and for one segment of 

data.   

Although the main objective of this section was to assess the recording quality, a 

number of interesting findings relating to the mfERG stimulus were also noted. When 

studying the signal in isolation the stimulation frequencies inherent to the mfERG 

system were revealed: a dominant peak at the stimulus frequency; and discrete peaks 

separated by the stimulus frequency/64. This frequency distribution was also present 
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when the control subject was tested, although the exact profile obtained from the eye 

and the photodiode differed. The photodiode has a linear output whereas the eye is 

non-linear; the non-linearity of the eye results in higher frequencies when there is an 

overlap of the evoked responses from multiple areas of the retina. As the frequency 

profile observed when testing the photodiode was also evident when the control 

subject was stimulated it can be said that these are the retinal stimulation frequencies 

and retinal response frequencies.  

It was noted when testing the stimulated control that the magnitude of the stimulus 

peaks decreased when the subject was less cooperative. This can be credited to large 

sections of the recorded signal containing only patient noise instead of the evoked 

retinal signal, as well as a greater loss of signal due to increased amplifier saturation.  

It was also noted that the magnitude of the frequency components was significantly 

larger when the entire recording was examined than when only one segment of data 

was studied. As a larger sample of data were transformed to the frequency domain the 

contribution at each frequency was greater.  

When studying the uncorrelated data in the Fourier domain it was found that the 

ability of the retina to respond to the main mfERG stimulating frequencies could be 

viewed with ease. This is of particular interest as it may enable a quick and simple 

method of extracting temporal information on the function of the retina. The effect of 

compromised retinal function on the Fourier profile is therefore investigated in section 

4.5 while a more in depth investigation into the factors affecting the stimulus profile 

will be discussed in section 4.4.  

4.2.7  Conclusions 

It has been shown that analysis of the uncorrelated data in the frequency domain is a 

viable method for assessing recording quality both during and after a mfERG 

examination; clear differences between good and bad recordings were observed. 

Furthermore, distinct patterns were seen corresponding to different types of patient 

artefacts. The highly visual nature of these findings suggest that this method will lend 

itself to the development of an objective quality grading for use both during and after a 

test.  
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4.3 Automating findings: grading recording quality 

A method of quantifying the calibre of a recording is proposed in section 4.3. The aim 

was to grade the recording quality into one of four categories: 1) excellent; 2) 

moderate; 3) noisy; and 4) unreportable, for the full recording. This was first done for 

the low frequency noise and then for muscle noise; finally the magnitude of the 50Hz 

component was assessed in recordings contaminated with electrical noise. Each of 

these three noise profiles was studied in isolation and were subsequently combined to 

provide an overall quality grading. This was compared with that of three experts when 

presented with 50 previously unseen mfERG tests.  

4.3.1  Methods: eye movement/blinking for a complete recording 

Grading the recording quality based on low frequency noise present in a complete 

recording is discussed initially.  

4.3.1.1 Defining the limits for excellent and unreportable recordings 

60 clinical mfERG recordings, all obtained using the mfERG protocol described in 

section 3.4.1 were selected. These comprised 30 recordings with very little patient 

noise and 30 tests which had not been reported due to excessive blinking or eye 

movement during testing. The uncorrelated data for each recording were transformed 

from the time domain to the frequency domain. The following trace array and Fourier 

profile show an example of one of the 30 high quality recordings. A small section of 

the uncorrelated data can also be seen in figure 4.13.  
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Figure  4.13 An example of a trace array (top left), a Fourier profile (top right) and a portion of the 

uncorrelated data (bottom) acquired from an excellent recording. The noise profile of the Fourier profile 
corresponds to that obtained from the compliant person in section 4.2.5.1. Red lines, defining the limits 
within which data should remain to obtain a high quality recording, are shown; these are arbitrary 
limits. In this instance the uncorrelated data are within these red lines. 

 

An example of one of the 30 recordings contaminated by low frequency noise is 

shown below. Again the trace array, the Fourier profile and part of the uncorrelated 

data have been included: 

 

 

 

Figure  4.14 An example of a trace array (top left), a Fourier profile (top right) and a section of the 

uncorrelated data (bottom) obtained from an unreportable recording. The noise profile of the Fourier 
profile is comparable with that of the person tested in section 4.2.5.1 when looking around the stimulus 
or blinking excessively: the magnitude of the low frequency components is considerable. It can be seen 
that much of the section of uncorrelated data is outside the red lines; these are arbitrary limits within 
which the recorded data should remain to obtain a high quality recording, thus indicating a degradation 

of recording quality in this instance. 
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It was decided to examine the 0-10Hz part of the Fourier profile as clear differences 

between high and low quality recordings existed in this frequency range: the 

magnitude of the low frequency components increased in the case of blinking and eye 

movement. The data points corresponding to 0-10Hz on the Fourier plot were 

therefore selected; this included the first 4370 data points in the frequency domain. It 

was shown in section 4.2.5.1 that it was only possible to differentiate between a good 

and a bad recording when the Fourier profiles were plotted with a decreased y-axis. 

All magnitude values were therefore limited to 8x107.  

The 30 good recordings were examined first. The magnitude of the frequency 

components at data points 1 to 4370, with values limited to 8x107 were exported from 

Matlab to an Excel file. From this the 5th, 50th and 95th percentiles were calculated at 

each data point (using the data from the 30 recordings), enabling 5th, 50th and 95th 

percentile frequency profile curves to be plotted. In theory it could then be said with a 

confidence of 95% that a test whose frequency-magnitude profile falls below the 95th 

percentile curve is of a high standard. This process was also done for the 30 poor 

recordings. In this case recordings with a frequency profile greater than the 5th 

percentile curve would be considered unreportable.  

The magnitude of the frequency components fluctuates considerably. The following 

example, showing the 0-10Hz range of a recording contaminated with low frequency 

noise illustrates this: 

 

Figure  4.15 Demonstrating the fluctuation in the magnitude of the low frequency components for a 

recording contaminated with low frequency noise.  
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In addition to calculating the percentile curves using every data point it was decided to 

derive them using averaged magnitude values to minimise the impact of this 

fluctuation. An average value was therefore calculated for every 32 data points for 

each of the 60 recordings. Averaging over 32 data points was chosen as preliminary 

investigations showed that when using fewer data points fluctuation remained a 

problem, while averaging over a greater number of points reduced the information 

provided in the frequency domain. 5th, 50th and 95th percentile curves were once again 

acquired for the excellent and unreportable recording groups by calculating the 5th, 50th 

and 95th percentile at each of the averaged data points for the two groups. Ideally there 

would be a clear separation between the 95th percentile for the excellent recordings and 

the 5th percentile for the unreportable recordings. For those recordings with a Fourier 

profile between the 95th percentile of excellent recordings and the 5th percentile of 

unreportable recordings further subclassification would be useful as this region 

encompasses a wide variety of recording qualities. 

4.3.1.2 Defining the limits for moderate and noisy recordings 

A 3rd curve, referred to as the midline, was plotted with a view to dividing the region 

between excellent and unreportable. This was done by calculating the average value at 

each data point of the excellent 95th percentile curve and the unreportable 5th percentile 

limit. Moderate quality was therefore defined as the region between the excellent 95th 

percentile curve and the midline curve, while noisy but reportable recordings had a 

profile between the midline curve and the unreportable 5th percentile curve.  

The aim was to develop a system capable of classifying the quality of a previously 

unseen mfERG recording by comparing its Fourier profile with the limits defined 

using these 60 recordings. It is however not always the case that the profile of a test 

will lie exactly between two limits for the full 0-10Hz range. It was therefore decided 

to calculate the area under each of the three limits (excellent 95th percentile, midline 

and unreportable 5th percentile). The area was then calculated under the 0-10Hz part 

of the Fourier profile for a new recording and compared with that of each of the limits. 

The recording integrity was subsequently classified as: 

Excellent, when Atest < Aexcellent limit 

Moderate, when Aexcellent limit < Atest < Amidline 
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Noisy, when Amidline < Atest < Aunreportable limit 

Unreportable, when Atest > Aunreportable limit, 

where Aexcellent limit was the area under the excellent recordings’ 95
th percentile curve, 

Aunreportable limit was the area under the unreportable recordings’ 5
th percentile curve, 

Amidline was the area under the midline curve and Atest was the area under the Fourier 

profile of the new test in the 0-10Hz region. The area was approximated by calculating 

the summation of the magnitude of each frequency component in the 0-10Hz range.  

4.3.2 Methods: eye movement/blinking for one segment of  a recording 

A smaller section of the uncorrelated data was subsequently studied to enable 

recording quality to be graded during the testing session. Ideally the recording quality 

for each segment would also be categorised into one of the four classes defined for the 

complete recording as similar patterns were seen when studying one segment as all 

sixteen segments. It would however be very difficult to assess the system’s 

performance as the experts would have to grade the integrity of each data segment 

simply by studying the uncorrelated data; this would be a highly subjective process. 

Consequently the number of gradings was decreased to two: ‘acceptable’; and 

‘unreportable’.  

To enable these limits to be defined one segment was selected from each of the 30 

recordings contaminated by low frequency noise utilised when studying the full 

recording. These were transformed from the time to the frequency domain (refer to 

appendix 1), and exported from Matlab to Excel, where the 5th percentile curve was 

calculated and plotted for this group of noisy recordings. The region above this limit 

was defined as ‘unreportable’ while the area under the curve was said to be 

‘acceptable’. The methodology used was similar to that described in section 4.3.1; the 

principal differences were the number of data points in the 0-10Hz range, the value to 

which all frequency magnitudes were limited and the number of data points over 

which averaging was performed to derive the percentile plots: these were 273 points as 

opposed to 4370; 2x107 instead of 8x107; and 2 as opposed to 32, respectively. In this 

case every 2 points were averaged as there were 16 times fewer data points than when 

using the complete recording; this was therefore equivalent to 32 when using the full 

recording. Again the area under the limit was calculated. 
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To enable the recording quality of subsequent tests to be graded the relevant segment 

of the new test was transformed from the time to the frequency domain using the 

program detailed in appendix 1. The initial 273 data points were selected and a plot 

was derived by calculating the average of every 2 data points. The area under this 

profile was calculated and compared with that of the 5th percentile of the unreportable 

recordings. The data segment was categorised as: 

Acceptable, when A test < Aunreportable limit 

Unreportable when Atest > Aunreportable limit 

where A test was the area under the profile of the mfERG recording being graded, and 

Aunreportable limit was the area under the 5
th percentile of the unreportable recordings.  

4.3.3 Methods: muscle movement for a complete recording 

It was shown in section 4.2.5 that muscle noise and jaw clenching are reflected as an 

increase in the magnitude of the frequency components across the spectrum. The aim 

was to grade the recording quality of a complete recording, in terms of muscle noise, 

into one of four categories: 1) excellent; 2) moderate; 3) noisy but reportable; and 4) 

unreportable.  

4.3.3.1 Defining the limits for excellent and unreportable recordings 

30 recordings were selected which were recorded under optimal conditions. An 

additional 30 recordings which an expert was unable to analyse due to patient 

movement were chosen. The following images demonstrate the trace array, the 

Fourier profile and a sample of the uncorrelated data respectively for one of the 30 

poor quality recordings: 
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Figure  4.16 An example of a trace array (top left), a Fourier profile (top right) and a portion of the 
uncorrelated data (bottom) acquired from a recording which was unreportable due to excessive muscle 

movement. The noise profile of the Fourier profile is comparable with that of the person tested in 
section 4.2.5.1 when they increased their muscle movement: the magnitude of the frequency 
components increased across the frequency spectrum. Red lines, indicating the limits within which the 
data should remain to attain a high quality recording are shown. It can be seen that much of this section 
of uncorrelated data is outside these red lines, indicating poor recording quality. 

 
The 25-100Hz frequency range was studied for these 60 recordings. This was to ensure 

the separation of muscle noise and blinking noise as a small number of recordings 

contaminated by ‘blinking’ noise contain frequency components of a significant 

magnitude at frequencies greater than 10Hz. As 50Hz electrical noise was being 

examined separately it was decided to ignore 50Hz and its harmonic 100Hz when 

assessing muscle noise. 

An additional consideration was that the frequency range being examined contains 

both noise and signal in the case of retinal function. The aim of this section was to 

assess the integrity of the recording, irrespective of retinal function, therefore it was 

necessary to ignore the data at each frequency known to be related to the mfERG 

stimulus. This included the principal stimulus frequency, 75Hz, and the discrete 

frequency peaks located every 75/64Hz (refer to figure 4.10), always at the same 

frequencies. The program detailed in appendix 1 was modified to discard all data with 

a frequency of less than 25Hz, after being transformed from the time to the frequency 

domain. Frequency contributions at 50Hz, 100Hz, 75Hz and at the discrete frequency 

peaks were also removed; this was done with a knowledge of the data points at which 

these frequency contributions were present. The data were subsequently exported from 

Matlab to Excel for further analysis. Figure 4.17 demonstrates the removal of the 
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frequency peaks associated with the mfERG stimulus and 50Hz noise, first for a 

recording with very little muscle noise and then for a mfERG test containing 

considerable noise: 

 

 

 

Figure  4.17 Demonstrating the removal of the stimulus associated frequency components from the 25-

100Hz range of the Fourier profile. The original Fourier profile obtained from an excellent recording is 
shown (top left), in addition to its profile after the stimulus peaks have been ignored (top right). The 
bottom left image is the Fourier profile obtained from a poor recording; this profile after the removal of 

the stimulus associated peaks can be seen at the bottom right.  

 
As before the 5th, 50th, and 95th percentile of the uncorrelated data were calculated in 

Excel for the excellent and unreportable recordings. Again magnitude values were 

taken from every data point, as well as an average of every 32 frequency increments. 

Limits for excellent and unreportable recordings were therefore defined. As with eye 

movement/blinking a range of recording quality exists between these classifications.  

4.3.3.2 Defining the limits for moderate and noisy recordings 

A third curve was derived by averaging the value of the excellent 95th percentile and 

the unreportable 5th percentile at each data point. This divided the region between 

excellent and unreportable, thus allowing recordings to be further classified as 

moderate and noisy but reportable. The area under each limit line was subsequently 
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calculated. As when grading the recording quality in terms of low frequency noise this 

value was utilised to classify the recording integrity of all future mfERG tests in terms 

of muscle movement. This was achieved by transforming the entire uncorrelated data 

set for the new test from the time to the frequency domain, isolating the 25-100Hz 

section of the Fourier profile, removing all data associated with the mfERG stimulus 

and calculating the area under the plot. As for the low frequency noise the recording 

quality was categorised as:  

Excellent, when Atest < Aexcellent limit 

Moderate, when Aexcellent limit < Atest < Amidline 

Noisy, when Amidline < Atest < Aunreportable limit 

Unreportable, when Atest > Aunreportable limit, 

where Aexcellent limit was the area under the excellent recordings’ 95
th percentile curve, 

Aunreportable limit was the area under the unreportable recordings’ 5
th percentile curve, 

Amidline was the area under the midline curve and Atest was the area under the Fourier 

profile of the new test.  

4.3.4  Methods: muscle movement for one segment of  a recording 

One segment of the uncorrelated data was chosen from each of the 30 mfERG 

recordings contaminated with patient noise and transformed to the Fourier domain. 

As before the frequency components in the 25-100Hz range were examined while 

peaks associated with the mfERG stimulus, as well as 50Hz and its harmonic at 

100Hz, were removed in Matlab. The 5th percentile was plotted in Excel for these 30 

recordings, enabling the quality to be defined as one of two classifications: those above 

the limit were ‘unreportable’ while those below were ‘acceptable’. As before 

magnitude values were taken from every data point and then from averaged data 

points to plot the 5th percentile curve; an average of every 2nd frequency increment 

was utilised as this was equivalent to every 32 data points for the entire data set. The 

area under this limit was calculated to enable the recording integrity of future tests to 

be categorised by comparing their area with that of the 5th percentile for unreportable 

segments of a recording: those recordings with an area less than that of the 5th 

percentile were classified as ‘acceptable’ while all others were said to be ‘unreportable’.   
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4.3.5 Methods: 50Hz noise for a complete recording and one segment of  a 

recording 

Finally the magnitude of the 50Hz component was assessed. An example of a 

recording containing a large contribution at 50Hz can be seen below. The trace array, 

the Fourier profile and a sample of the uncorrelated data are displayed: 

 
 

 

Figure  4.18 An example of a trace array (top left), a Fourier profile (top right) and a portion of the 

uncorrelated data (bottom) acquired from recording contaminated with 50Hz noise. A strong 50Hz 
component is evident in the Fourier profile. Red lines are shown along with the uncorrelated data. 
These are arbitrary limits within which the recorded data should ideally remain to achieve a high 
quality recording. In this instance the majority of data are within these limits despite the 50Hz noise. 

 

Ten recordings contaminated with 50Hz noise were selected. The uncorrelated data 

were transformed from the time domain to the frequency domain and the magnitude 

of the frequency component at 50Hz was established. The magnitude of the 50Hz 

component was also examined for these ten recordings when one segment of the data 

was studied in the frequency domain.  

4.3.6 Combining and testing the system 

The findings for the three types of noise were subsequently utilised to grade the 

recording quality for 50 previously unseen recordings. The grading provided by the 

system was compared with that of the experts in each instance. The ability of the 

system to grade the overall recording quality was assessed first. 50 previously unseen 

mfERG recordings, all of which were obtained using the mfERG protocol (section 
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3.4.1), were selected retrospectively. These represented a wide variety of recording 

quality and retinal function. The uncorrelated data for each recording (the complete 

data set) were transformed to the frequency domain and subsequently categorised in 

terms of low frequency noise and muscle noise using the methods and limits defined in 

sections 4.3.1 and 4.3.3. The magnitude of the 50Hz component was also established 

allowing comment on electrical noise if appropriate. To provide an overall 

computational classification the worst grading was chosen.  

The tests were examined independently by three experts, each of whom graded the 

overall recording quality as excellent, moderate, noisy or unreportable. This was done 

by viewing the final cross correlated trace array as well as the raw, uncorrelated data 

acquired for all 16 segments of the test (an option made possible using custom built 

software). When there was a discrepancy in the grading the most common answer was 

chosen. This was then compared with that of the computer for each of the 50 

recordings. 

The efficacy of the system to grade the quality of individual data segments was 

subsequently examined; 50 single data segments were selected, transformed into the 

frequency domain and presented to the system; these were graded as either 

‘unreportable’ or ‘acceptable’ both in terms of the low frequency noise and muscle 

artefacts using the methods and limits defined in sections 4.3.2 and 4.3.4. The 

magnitude of the 50Hz component was also assessed. The worst of the three gradings 

was utilised to define the system’s classification. The three experts also assessed the 

quality of these 50 individual segments, categorising them as ‘unreportable’ or 

‘acceptable’. This was achieved by viewing the uncorrelated data. The majority expert 

opinion was then compared with the classification stated by the system for each of the 

50 data segments. 

It was of interest to assess the interobserver variation; to obtain this the Kappa value 

was calculated. This method is often used to quantify the agreement between 

observers (123-125) and takes into account the fact that observers can concur with one 

another simply by chance (126). A Kappa value of 1 corresponds to complete 

agreement between people; 0 states that any agreement is a result of chance while -1 

indicates a systematic level of disagreement between observers. Excel was utilised to 

perform these calculations.  
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4.3.7  Results: eye movement/blinking for a complete recording 

It was shown in section 4.2.4.1 that both eye movement and a loss of fixation are 

reflected as an increase in the magnitude of the low frequency components. The aim 

was therefore to categorise the integrity of a recording as excellent, moderate, noisy or 

unreportable, based upon the magnitude of the low frequency components.  

4.3.7.1 Defining the limits for excellent and unreportable recordings 

The limits for excellent and unreportable are presented initially. When each data point 

was used to establish the 5th, 50th and 95th percentile noise functions for the high 

quality group the following plot was obtained: 

 

Figure  4.19 The 5th (yellow), 50th (pink) and 95th (blue) percentile curves for 30 excellent recordings 
when every data point was utilised to derive the plots. 

 
It could therefore be said that mfERG tests with a noise profile within the 95th 

percentile (derived from the 30 high quality recordings), fulfil the requirement for 

excellent. The equivalent plot for the 30 recordings contaminated by low frequency 

noise is shown in figure 4.20: 

5th, 50th and 95th percentile for good recordings

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

0 2 4 6 8 10

Frequency (Hz)

M
ag

n
itu

d
e 

o
f f

re
q
u
en

cy
 c

o
m

p
o
n
en

ts

Good 95th percentile

Good 50th percentile

Good 5th percentile

5th, 50th and 95th percentile for excellent recordings 



Alison A Foulis, 2010    Chapter 4, 90 

 

Figure  4.20 The 5th (yellow), 50th (pink) and 95th (blue) percentile curves for 30 recordings contaminated 

with low frequency noise when every data point was utilised to plot the curves. 

 

From this it would be said that recordings with a frequency profile of a smaller 

magnitude than the 5th percentile curve would be reportable. The magnitudes of the 5th 

percentile curve were however surprisingly small. When the excellent 95th percentile 

and unreportable 5th percentile curves are shown on the same plot the following can be 

seen: 

 

Figure  4.21 The 95th percentile for the 30 excellent recordings (blue), and the 5th percentile for the 30 

unreportable recordings (pink) when every data point was utilised to derive the plots. An overlap of 

these limits is evident, implying that the magnitude of the frequency components was greater for the 
excellent recordings than the unreportable recordings. 

 
It can be seen that there is an overlap of the limits for excellent and poor recordings 

when calculating the percentiles using every data point. Furthermore, this graph 

implies that magnitudes are greater for excellent recordings than for unreportable 

5th, 50th and 95th percentile for unreportable recordings 
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recordings, which was not found to be the case when noise profiles were studied. It 

should be noted that the 5th percentile of the unreportable group was not representative 

of any of the 30 recordings. This approach could not therefore be used to grade 

recording quality. When the magnitude was averaged for every 32 data points the 

following graph was obtained for the 95th percentile of the excellent group and the 5th 

percentile of the unreportable group: 
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Figure  4.22 The 95th percentile for the 30 excellent recordings (blue), and the 5th percentile for the 30 
unreportable recordings (pink) when every 32 data points were averaged prior to calculating the 

percentiles. The limits defining excellent and unreportable are distinct from one another in this instance. 

 
By averaging the magnitude of every 32 components it can be seen that there is a 

separation between excellent and unreportable recordings. All subsequent grading for 

the complete recording therefore averaged every 32 data points (i.e. when grading the 

quality of previously unseen tests). 

4.3.7.2 Defining the limits for moderate and noisy recordings 

To sub-classify those mfERG tests with a recording quality in the region between 

excellent and unreportable, an additional limit was derived by averaging the excellent 

95th percentile and the unreportable 5th percentile at each point. This enabled the four 

classifications to be defined: 
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Figure  4.23 The four classifications (excellent, moderate, noisy and unreportable) for recording quality 

based upon the magnitude of the low frequency components. The excellent 95th percentile (blue), the 

midline (yellow) and the unreportable 5th percentile (pink) are shown. The quality classifications are 
defined as: those recordings with a frequency profile below the blue limit are ‘excellent’; those between 
the blue and yellow curves are ‘moderate’; those between yellow and pink are ‘noisy’; those with a 
frequency profile greater than the pink limit are ‘unreportable’.  

 

The area under each curve was subsequently calculated; this was to enable the quality 

of additional mfERG tests to be graded by comparing their area with those of the three 

limits. The area under each of the three curves was: 

Aexcellent limit = 4.93x10
8 

Amidline = 10.30x10
8 

A unreportable limit = 15.66x10
8 

These values were utilised to classify the integrity of future recordings in terms of eye 

movement and blinking using the method described in section 4.3.1.  

4.3.8  Results: eye movement/blinking for one segment of  a recording 

The following graph displays the 5th percentile for the group of noisy recordings when 

only one data segment was analysed; this curve was acquired using an average of 

every 2nd data point (the equivalent to every 32 data points when studying the 

complete recording) to minimise the effect of the fluctuation of the frequency 

magnitudes (refer to figure 4.15). The two classifications for signal quality can be seen: 
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Unreportable 5th percentile defining boundary between acceptable 
and unreportable: one data segment
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Figure  4.24 The two classifications (acceptable and unreportable) for one segment of a recording in 

terms of patient noise caused by eye movement and a loss of fixation. Those recordings with a Fourier 
profile above the 5th percentile of the group of unacceptable recordings are categorised as ‘unreportable’ 

while those below the limit are said to be ‘acceptable’.  

 
The area under the curve was 9.02x107 for the unreportable 5th percentile; this value 

was utilised to grade the integrity of future recordings. 

4.3.9  Results: muscle movement for a complete recording 

It was shown in section 4.2.5 that muscle noise and jaw clenching are reflected as an 

increase in the magnitude of the frequency components across the spectrum. As for the 

low frequency noise the aim was to grade the recording quality in terms of muscle 

noise into one of four categories: 1) excellent; 2) moderate; 3) noisy but reportable, 

and 4) unreportable.  

4.3.9.1 Defining limits for excellent and unreportable recordings 

The limits for ‘excellent’ and ‘unreportable’ are discussed initially. As was found when 

0-10Hz frequency components were studied there was an overlap of the excellent 95th 

percentile and unreportable 5th percentile curves when every data point was utilised to 

calculate these limits. This can be seen in figure 4.25: 
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95th percentile for excellent and 5th percentile for unreportable 
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Figure  4.25 The 95th percentile for the 30 excellent recordings (blue), and the 5th percentile for the 30 

unreportable recordings (pink) when every data point was utilised to derive the plots. There is an 

overlap of these plots thus excellent and unacceptable recordings are not distinct from one another 
when using every data point to calculate the 5th and 95th percentiles. 

 
It was not therefore possible to use this method to differentiate excellent from 

unreportable recordings. When the 95th percentile for the excellent recordings and the 

5th percentile for the unreportable recordings were calculated using averaged values 

(every 32 data points) the following plot was obtained: 
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Figure  4.26 The 95th percentile for the excellent recordings (blue) and 5th percentile for the unreportable 

tests (pink) when every 32 data points were averaged prior to calculating the percentiles. It should be 
noted that the limits defining excellent and unreportable are now distinct from one another.  

 
These curves are distinct from one another. All subsequent plots therefore used an 

average of 32 data points prior to plotting the percentile curves (i.e. when categorising 

the recording quality of all future tests).  
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4.3.9.2 Defining limits for moderate and noisy recordings 

The midline, calculated by averaging the value of the excellent 95th percentile and the 

unreportable 5th percentile at each point is shown in figure 4.27: 
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Figure  4.27 The four classifications (excellent, moderate, noisy and unreportable) for recording quality 

based upon the magnitude of the frequency components in the range 25-100Hz. The excellent 95th 

percentile (blue), the midline (yellow) and the unreportable 5th percentile (pink) curves are shown. The 
quality classifications are defined as: those recordings with a frequency profile below the blue limit are 
‘excellent’; those between the blue and yellow curves are ‘moderate’; those between yellow and pink are 
‘noisy’; those with a frequency profile greater than the pink limit are ‘unreportable’.  

 

The area under the curve was 5.22x107, 13.00x107 and 20.77x107 for the excellent 95th 

percentile, the midline and the unreportable 5th percentile plots respectively. These 

values were utilised to classify the integrity of future recordings in terms of patient 

muscle movement during the testing session. 

4.3.10 Results: muscle movement for one segment of  a recording 

When one segment was analysed to define limits for ‘unreportable’ and ‘acceptable’ 

the following plot was obtained: 
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Unreportable 5th percentile defining boundary between acceptable and 
unreportable: one data segment
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Figure  4.28 The two classifications (acceptable and unreportable) for one segment of a recording in 

terms of patient noise caused by muscle movement. Those recordings with a Fourier profile above the 
5th percentile of the group of unacceptable recordings are categorised as ‘unreportable’ while those 
below the limit are said to be ‘acceptable’.  

 
In this instance every two data points were averaged to acquire the 5th percentile curve 

for the unreportable recordings. The area under the curve was 15.49x106; this was 

utilised to define the quality of other mfERG tests.   

4.3.11 Results: 50Hz noise for a complete recording and one segment of  a 

recording 

For all ten recordings it was observed that the magnitude of the 50Hz component 

exceeded 8x107 when studying the full recording and 2x107 when only one data 

segment was viewed in the Fourier domain. The operator can therefore be warned if 

any patient recording contains a 50Hz component greater than these values.  

4.3.12 Combining and testing the system 

Table 4.1 presents the ability of these limits to grade the recording quality of 50 

complete mfERG tests when compared with the opinion of three experts: 
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Computer’s classification  

Excellent       Moderate Noisy Unreportable 

Excellent 12 5 0 0 

Moderate 4 8 4 0 

Noisy 0 3 4 1 

 

Overall 

expert 

grading 

Unreportable 0 0 2 7 

Table  4.1 The agreement between the computer and the experts when grading the recording quality for 

a complete test as excellent, moderate, noisy or unreportable. The computer and the expert agreed for 
31 of the 50 recordings (62%).  

 
It can be seen that the expert and the computer agreed on the grading for 31 of the 50 

recordings (62%). For each of the 19 examinations where there was disagreement in 

the classification of recording quality the computer was always within one grading of 

the overall expert opinion. For 13 of these 19 tests the computer agreed with one of the 

human experts.  

It should be noted that of the 50 recordings assessed by the three experts, a unanimous 

classification was only achieved for 21 of the tests. For each example at least two 

people gave the same classification with the third person grading it either one class 

above or below the others. The overall Kappa value of agreement between the 

observers was 0.47 corresponding to a moderate level of agreement (127). The Kappa 

value for each of the four classifications of recording quality (excellent, moderate, 

noisy and unreportable) was 0.47, 0.23, 0.46 and 0.83 equating to moderate, fair, 

moderate and almost perfect agreement respectively (127). 

It was of interest to assess if the variability between the system and the experts was 

comparable with that between the three experts; overall Kappa values of 0.48, 0.46 

and 0.43 were calculated when each of the two experts and the computer were 

compared; this is similar to that of the three experts (0.47).  

When interpreting the results the most important classification is arguably whether or 

not a test is of a sufficient standard to report. An agreement of 94% between the 

experts and the system was achieved for this distinction; 78% of the mfERG tests said 
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to be unreportable by the experts were given the same classification by the computer 

while 22% were categorised as being noisy but reportable.  

The three experts and the system were then presented with one data segment from 

each of the 50 mfERG recordings, classifying the integrity of these segments as 

acceptable or unreportable. The following table compares the majority expert grading 

with that of the system: 

Computer’s classification  

Acceptable Unreportable 

Acceptable 32 5 Overall 

expert 

grading Unreportable 3 10 

Table  4.2 The agreement between the computer and the experts when classifying the recording quality 

of one segment of the mfERG as acceptable or unreportable. They concurred for 84% of the tests. 

 

An agreement of 84% was observed between the system and the experts. Of those 

eight segments for which there was disagreement, the computer agreed with one of the 

experts for four of them.  

An overall Kappa value of 0.64 was calculated for the agreement between the three 

experts when categorising the data segments into one of two groups; this corresponds 

to a substantial agreement (127). As when studying the complete recording, it was of 

interest to assess the agreement between the system and two of the experts. Overall 

Kappa values of 0.63, 0.61 and 0.60 were calculated; these are similar to that when 

studying the three human experts.  

4.3.13 Discussion 

When defining limits to classify the integrity of a recording there was no clear 

distinction between excellent and unreportable recordings when percentile curves were 

plotted using every data point. However, when values were averaged, excellent and 

unreportable recordings were distinct from one another in the frequency domain. This 

is a reflection of the fluctuation in the magnitude of frequency values; an overall trend 

was required therefore averaging enabled this to be established.  
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Prior to presenting the 50 new mfERG recordings to the system, three experts graded 

the recording quality of each test as excellent, moderate, noisy or unreportable. It 

became evident that this is both a difficult and a subjective task given that there was 

only moderate agreement between the three experts. The most consistent grading 

between the three people was in the case of recordings thought to be too poor to 

report, when the agreement increased to almost perfect. These findings emphasise the 

requirement for a more objective method of assessing the integrity of a mfERG 

recording. 

The 50 mfERG tests were subsequently presented to the system and categorised into 

one of the four groups detailed above. This enabled the classification of the experts 

and the system to be compared for each recording. It was shown that the computer 

and experts only agreed on the classification of recording quality for 31 (62%) of the 

tests. However given the degree of inconsistency between the three people it is difficult 

to argue that the classification provided by the experts is definitive. It should be noted 

that the computer agreed with at least one of the experts for 44 of the 50 (88%) 

recordings. Furthermore, a similar level of agreement was seen between the system 

and two experts as that reported between the three experts (by assessing their Kappa 

values). It is therefore difficult to truly assess the efficacy of the system for grading the 

integrity of a recording, given that its agreement is comparable with that of another 

expert.  

It was of interest that of the 19 cases where there was disagreement between the 

system and the overall expert opinion, ten were said to be one grading worse by the 

computer while nine were classed as one grading better. It would be of greater concern 

if the computer consistently reported the quality as better or worse than the humans as 

this would indicate that the limits defined in section 4.3 were not suitable. It can be 

argued that the method by which the computer defined the recording quality was less 

subjective than that used by the humans as it is simply calculating the magnitude of 

the frequency components in the Fourier domain. The discrepancies could therefore 

be a reflection of the subjectivity of the experts assessing the integrity of a recording by 

viewing the uncorrelated data and the trace array of cross correlated responses in the 

time domain. 

One data segment (1/16th of the recording) was then selected from each of the 50 tests; 

these were presented to the three experts and the system. In this instance each 

categorised these 50 data segments as either acceptable or unreportable in terms of 
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their recording quality. A higher agreement was seen between the three experts 

(substantial, as opposed to moderate), however they were only required to classify the 

data into one of two groups as opposed to four, thus minimising the scope for 

disagreement. The Kappa value of agreement (0.64) was however lower than that 

calculated when the experts made the equivalent distinction between reportable and 

unreportable tests when examining the complete recording (0.83). This is likely to be 

attributed to the fact that when studying the entire recording, both the uncorrelated 

data and the trace array (comprising the 61 cross correlated responses) were viewed, 

whereas only the raw, uncorrelated data were assessed when examining one data 

segment. The raw data were much less familiar than the trace array to the experts thus 

increasing the difficulty of the task for the experts. 

When comparing the system with the overall expert opinion, an agreement of 84% 

was observed. Of those data segments misclassified by the system, five were given a 

worse grading by the system, while three were better. As was seen when examining 

the complete recording, the system’s grading was not therefore consistently better or 

worse than that of the experts.  

Finally, the Kappa value of agreement between the three experts was comparable with 

those values calculated when two experts were compared with the system. It is 

therefore difficult to argue that the classifications provided by the system were 

inherently wrong in those instances when there was a disagreement between it and the 

overall expert opinion. 

These results imply that the system can be used with relative confidence when 

assessing the quality of a recording, both when studying the entire recording and one 

segment of the data. The system performed particularly well when deciding if a 

completed test should be reported. Further investigation is however required to 

improve confidence in the results. The number of examples used to define the limits 

for excellent and unreportable when studying the complete recording could for 

example be increased to encompass a wider variety of recording qualities. Or 

alternatively the number of classifications into which the recording quality is 

categorised could be decreased; this may improve the agreement between the experts 

and the system, thus leading to greater reliance on the computer’s assessment of 

recording integrity.  
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4.3.14 Conclusions 

A method for grading mfERG recording quality based upon the Fourier profile of the 

uncorrelated data has been proposed. Good agreement was seen between the experts 

and the computer when defining if a completed recording should be reported. 

Differences were however observed when subclassifying the recording quality and 

should be the subject of further investigation. A relatively high level of agreement was 

also observed between the experts and the system when assessing the integrity of 

smaller sections of the recorded data.  

4.4 Investigation into the mfERG Fourier profile 

One of the main aims of this chapter was to investigate if the Fourier profile of the raw 

mfERG data can be used to develop a method for grading recording quality, both 

during and after a test. In doing so the frequency profile associated with the mfERG 

stimulus was also found, revealing the frequencies at which the retina was stimulated 

by, and responded to. To fully understand why this particular frequency distribution 

was observed further experiments were conducted. 

4.4.1  Methods 

A number of test parameters fundamental to the stimulus were varied, allowing their 

impact on the Fourier profile to be studied. This enabled the factors determining the 

frequency profile to be established. A photodiode was stimulated, with each 

investigation based on the mfERG protocol described in section 3.4.1. As when 

isolating the signal in section 4.2.4.2 an amplifier gain of 100 was chosen. The shift 

between the m-sequences used to drive the stimulus was changed initially. The 

number of elements forming the stimulus was then varied, followed by the stimulus 

frequency, and finally the type of stimulating device. As before the raw, uncorrelated 

data were transformed into the frequency domain using a FFT (appendix 1), allowing 

the Fourier profiles to be studied.  

4.4.1.1 Alternative shift between m-sequences 

The set of orthogonal m-sequences used in the mfERG protocol were created by 

decimating the original m-sequence over 128 columns. By changing this to 256 
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columns the shift between the m-sequences was altered, therefore changing the 

stimulus pattern throughout the test. These were used to control the stimulus. 

4.4.1.2 Varying the number of stimulus elements 

Thus far all stimuli have comprised 61 stimulating elements. This was changed to 1, 7 

19, 37 and 103 respectively to establish if the number of elements affects the principal 

stimulating frequencies. Figures 4.29 illustrate these alternative set ups: 

       

 

    

Figure  4.29 Illustrating five mfERG stimuli, each comprising a different number of elements. From top 

left to bottom right: 1 element; 7 elements; 19 elements; 37 elements; 61 elements; and 103 elements.  

 

4.4.1.3 Different stimulating frequency 

A stimulus frequency of 60.8Hz was selected as opposed to 75Hz. A sampling 

frequency of 972.8Hz, 16 times the stimulus frequency, was chosen.  

4.4.1.4 Change of stimulating device 

All tests thus far have utilised an LCD stimulus; a CRT device was therefore selected 

to evaluate the impact of the stimulator on the frequency spectrum. Tests were 

conducted using 1, 7, 19, 37, 61 and 103 stimulating elements. 
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4.4.2  Results 

4.4.2.1 Alternative shift between m-sequences 

When these sequences were used to control the stimulus the following frequency 

distribution was obtained: 

 

Figure  4.30 The Fourier profile obtained from a photodiode when the shift between the m-sequences 

controlling the stimulus was changed. A dominant frequency component is evident at 75Hz, the 
stimulation frequency, in addition to frequency peaks separated by a discrete frequency. This separation 

is the stimulus frequency/32. 

 
Again the strongest contribution was at 75Hz, the stimulus frequency. As before 

discrete frequency components were present, however they were now separated by the 

stimulus frequency/32. 

4.4.2.2 Varying the number of stimulus elements 

The following figure demonstrates the Fourier profile when using one stimulating 

element: 
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Figure  4.31 The Fourier profile when one element was utilised to stimulate the photodiode; an LCD 

stimulator was employed. A dominant peak is present at the stimulus frequency (75Hz), in addition to 
discrete frequency peaks, each separated by the stimulus frequency/192. 

 
As before a distinct contribution was observed at 75Hz, the stimulus frequency 

(Fstimulus). Discrete frequency peaks were also noted, however the separation between 

each of the peaks was greatly decreased; each peak was distributed Fstimulus/192 apart. 

It was noted that the magnitude of the stimulus frequency was less than that of the 

largest discrete peak. The following Fourier profile demonstrates the frequency 

spectrum found when the photodiode was stimulated by seven elements. A different 

scale has been utilised; this is to account for the increased magnitude of the 

component at the stimulus frequency: 

 

Figure  4.32 Fourier profile when an LCD stimulator presenting a seven element stimulus was utilised to 

stimulate a photodiode. A dominant peak is evident at 75Hz, the stimulus frequency. Discrete 
frequency peaks were also present, each separated by the stimulus frequency/64. 
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It was noted that the largest peak was at the stimulus frequency, in addition to a 

normative-like distribution of discrete frequency peaks, each separated by the stimulus 

frequency/64. A similar pattern was observed when the stimulus comprised 19, 37 and 

103 elements.  

4.4.2.3 Different stimulating frequency 

Again a prominent contribution was seen at the stimulus frequency, 60.8Hz. 

Frequency peaks, separated by Fstimulus/64 were noted. The pattern seen was similar to 

that when the photodiode was stimulated using 75Hz, the only difference being the 

specific frequencies of the peaks. 

4.4.2.4 Change of stimulating device 

A CRT device was selected to display the mfERG stimulus, while the number of 

elements was varied. Figure 4.33 illustrates the Fourier profile when one element was 

chosen: 

 

Figure  4.33 The Fourier profile when a photodiode was stimulated by a CRT device displaying a one 

element stimulus. Only the peak at the stimulus frequency (75Hz) can be seen as its magnitude is 
significant relative to all other frequency components.  

 

A dominant component was seen at Fstimulus. Discrete frequency peaks were also 

present however their magnitude was significantly smaller than that of the 75Hz peak. 

This was the case for each stimulus pattern therefore all subsequent Fourier profiles 

obtained when using a CRT stimulator are displayed using a decreased y-axis range to 
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allow these peaks to be viewed. The discrete peaks present when one stimulating 

element was used can be seen in figure 4.34:  

 

Figure  4.34 The Fourier profile with a decreased y-axis when a photodiode was stimulated by a CRT 

device displaying a one element stimulus. A peak is present at 75Hz; peaks separated by the stimulus 
frequency/192 are also evident.  

 
As was observed when the LCD device was used, each discrete peak was separated by 

Fstimulus/192. The range over which the peaks were seen was greater than that noted 

when stimulated using the LCD device. When the photodiode was tested using a 

seven element stimulus the following profile was obtained: 

 

Figure  4.35 The Fourier profile when a photodiode was stimulated with a seven element stimulus by a 

CRT device. A peak is present at 75Hz; peaks separated by the stimulus frequency/64 are also evident.  

 
Again the most prominent peak was at 75Hz. Discrete frequency peaks, each 

Fstimulus/64 apart were noted. The frequency range of the peaks was greater than that 
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observed when studying the equivalent LCD Fourier profiles. A similar pattern was 

seen when using a stimulus comprising 19, 37, 61 and 103 elements.  

In summary it was found that: 

• a peak was present at the stimulus frequency for all experiments; 

• discrete frequency peaks were evident for all testing parameters; 

• changing the shift between the underlying m-sequences changed the separation 

between the discrete peaks;  

• using one element as opposed to a multi-element stimulus altered the 

distribution of the frequency peaks; 

• altering the stimulus frequency changed the position of the peaks but the 

separation remained Fstimulus/64 when using a 61 element stimulus; 

• the separation between peaks was the same when using the CRT and LCD 

stimulating devices, however the range of peaks was greater when the CRT 

was chosen; 

• the stimulus frequency was the dominant frequency with the exception of the 

one element LCD experiment; 

• the magnitude of the peak at the stimulus frequency relative to that of the 

peaks was greater when using a CRT device than an LCD stimulator. 

4.4.3  Discussion 

For each experiment there was a peak at the stimulus frequency. This was to be 

expected as it was the rate at which the stimulus patterns were updated during the test. 

Of most interest was the finding that the discrete nature of the frequency peaks was 

altered by changing the shift between the m-sequences or by using one element instead 

of multiple elements.  
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When a single element is chosen one m-sequence is used to control the luminance of 

the screen throughout the test. The transition to high luminance evokes the greatest 

change in potential in the uncorrelated data. This is illustrated below for a very short 

part of a sequence using data acquired from a patient:   

 

Figure  4.36 Demonstrating a small portion of an m-sequence (left) and the corresponding response 

(right). On the left, 5 steps of an m-sequence are illustrated, with white representing the on state (1) and 
black being the off state (0). The trace on the right demonstrates the response evoked from this short 
part of the m-sequence. 

 
The fundamental frequencies observed when the entire raw data trace is transformed 

to the frequency domain are therefore determined by the separation between each 

transition to high luminance. When multiple elements are used each element is driven 

by a shifted version of the original m-sequence. An example of the evoked retinal 

responses for four different sequences can be seen in figure 4.37: 

 

Figure  4.37 Illustrating the responses derived from stimulation at multiple frequencies. On the left, 
small portions of the m-sequence are shown, with black representing the off state (0) and white 

corresponding to the on state (1). The resulting responses are shown on the right.   

 
Again the main evoked response is seen when there is a change to a period of high 

luminance. Each element has a set of fundamental frequencies associated with it, 

determined by its m-sequence. As the uncorrelated data are a global response to the 

stimulus it is a superposition of the response to each element. The frequency 

components of the uncorrelated data were therefore a superposition of the principal 

frequencies for each element. Consequently these were different to that of a single 

element, hence the Fourier profile changed when several elements were chosen to 

stimulate the photodiode instead of one element. 
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When the sequences used to control each element were created using 256 instead of 

128 columns for the decimation process, the relative shift between each of the 

orthogonal sequences was altered; consequently the stimulus patterns throughout the 

test differed to those of the original set up thus affecting the fundamental frequencies 

present. This explains why a different Fourier profile was revealed when using these 

alternative sequences. 

Neither varying the stimulating device nor the stimulating frequency changes the 

underlying m-sequences. The fundamental frequencies associated with each m-

sequence were therefore unaffected and hence the superposition of these fundamental 

frequencies was comparable with that seen using the mfERG protocol. This explains 

why the separation between each discrete peak (in relation to the stimulus frequency) 

was unaffected by the change in stimulation frequency and the method of stimulation.   

The differences observed in the Fourier profiles for the CRT and LCD experiments 

can be explained by the difference in their illumination profile when there are 

consecutive 1s in the m-sequence (figure 2.5): individual flashes of light are produced 

by the CRT whereas the luminance remains constant when using an LCD stimulating 

device.  

When there is a 0-1 step in the m-sequence both the LCD and CRT change to a period 

of high luminance and contribute to the peak at the stimulus frequency seen in the 

photodiode Fourier profiles. However when there are successive 1s in an m-sequence a 

CRT device produces a series of pulses at the stimulus frequency. In contrast the LCD 

device produces a period of high luminance for the duration of the 1s in the sequence. 

The contribution to the stimulus frequency will therefore differ for each device: a peak 

is seen at the stimulus frequency for the CRT but not for the LCD when there is a 1-1 

step in the m-sequence. This explains why the relative magnitude of the peak at Fstimulus 

was greater when using the CRT stimulating device: it was generated for 0-1 and 1-1 

steps in m-sequence as opposed to 0-1 when using an LCD stimulator. This also 

explains why the peak at 75Hz was not the dominant frequency when stimulating the 

photodiode with 1 element driven by an LCD device: for much of the test no 

contribution was made to the 75Hz peak as only a 0-1 step in the m-sequence added to 

the magnitude of the stimulus frequency peak. When using multiple elements it was 

always the case that at least one element was changing from a period of low to high 

luminance therefore each step in the test contributed to the magnitude of the stimulus 

frequency peak thus it was dominant for all multi-element stimulus set ups. The 
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frequency range of the discrete peaks was greater when using the CRT device than the 

LCD device for all numbers of stimulating elements. This is again a result of the 

difference between the illumination profile of each when driven by a 1-1 part of the m-

sequence. The two separate flashes produced by a CRT device as opposed a 

continuous period of high luminance increases the non-linearity of the output thus 

producing higher frequencies.  

4.4.4  Conclusions 

It was demonstrated that using a single as opposed to a multi-element stimulus, or 

changing the shift between the orthogonal sequences altered the frequency spectrum of 

the mfERG stimulus. It was concluded that the Fourier profile is determined by the 

superposition of the fundamental frequencies associated with the orthogonal 

sequences used to control each stimulating element. Differences between CRT and 

LCD devices were apparent and were attributed to differences in the illumination 

profile when set to a period of high luminance.  

4.5 Effect of compromised retinal function on the Fourier 

profile 

Having established the frequency profile particular to the mfERG stimulus and why 

this pattern is seen it was of interest to assess the affect of compromised retinal 

function on the frequency spectrum of the uncorrelated data. The hope was that this 

method would enable the simple extraction of temporal information from the mfERG 

data. 

4.5.1  Methods 

50 recordings, acquired using the mfERG protocol (section 3.4.1) were selected 

retrospectively. These recordings encompassed a wide range of retinal function. The 

processed, cross correlated waveforms were analysed by an expert for each test, with 

comments made on the amplitude and latency of the P1 component. The uncorrelated 

data were then transformed into the Fourier domain for each test. Six examples have 

been used to demonstrate the main findings. These include: diffuse amplitude 

reductions; reductions and moderate delays; reductions and significant delays; an 

absent N2 component; no significant retinal function and a recording with a localised 
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area of dysfunction, respectively. The Fourier profile was compared with that acquired 

from a healthy retina in each case. As a reminder the Fourier profile taken from a 

control subject is shown in figure 4.38: 

 

Figure  4.38 The Fourier profile obtained from a healthy and compliant subject. The contribution at the 

low frequencies is relatively small; this is comparable with the noise profile obtained from the compliant 
unstimulated subject (figure 4.8). Again, a dominant peak is present at the stimulus frequency (75Hz), 
in addition to discrete frequency peaks, each of which is separated by the stimulus frequency/64.  

 

4.5.2  Results 

It was found that the various mfERG abnormalities affected the frequency spectrum 

differently. For each example the correlated responses are displayed in the time 

domain along with the uncorrelated data in the frequency domain.  
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4.5.2.1 Case 1: diffuse amplitude reductions 

 

 

Figure  4.39 A trace array with a diffuse reduction in the amplitude of responses. The P1 amplitude of 

the cross correlated responses was decreased relative to the normal range defined in section 3.4.2; this 
was the case for all waveforms.  

 
The trace array showed diffuse P1 reductions, while P1 latencies were within normal 

limits. When the uncorrelated data were transformed into the frequency domain the 

following profile was obtained:  

 

Figure  4.40 The Fourier profile acquired from a test with a diffuse reduction in response amplitudes. 

Both the peak at the stimulus frequency and the discrete peaks can be seen; it should be noted that the 
magnitude of these is decreased relative to that in figure 4.38.  

 
A 75Hz component was seen in addition to discrete peaks within a similar frequency 

range to those of the healthy control (figure 4.38). The magnitude of each of these was 

however noticeably smaller than those seen in the control subject.  
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4.5.2.2 Case 2: diffuse amplitude reductions and moderate delays 

 

Figure  4.41A trace array comprising responses which are decreased in amplitude and moderately 

delayed.  

 
Diffuse P1 reductions and moderate delays were noted. The Fourier profile of the raw 

data is shown in figure 4.42: 

 

Figure  4.42 The Fourier profile obtained from a recording with diffuse amplitude reductions and 
moderate delays. The frequency range of the discrete peaks is decreased relative to that seen in figure 

4.38. Both the discrete frequency peaks and the component at the stimulus frequency were decreased in 
amplitude relative to those in figure 4.38.  

 
Discrete peaks were observed however those greater than approximately 35Hz were 

abolished. Again the peaks present were smaller than those seen in the healthy subject. 

A peak at 75Hz was evident.  

 



Alison A Foulis, 2010   Chapter 4, 114 

4.5.2.3 Case 3: diffuse amplitude reductions and significant delays, decreased 

P1:N2 

 

Figure  4.43 A trace array with diffuse reductions in amplitude and significant delays.  

 
The P1 component of the mfERG responses was decreased and significantly delayed. 

Responses were delayed relative to those in case 2. The amplitude of the N2 

component was also decreased. Figure 4.44 reveals the frequency spectrum of the 

uncorrelated data signal: 

 

Figure  4.44 The Fourier profile acquired from a recording with diffuse amplitude reductions and 

significant delays. The frequency range of the discrete peaks has been further decreased; those greater 
than 30Hz have been abolished. The magnitude of both the discrete peaks and the peak at 75Hz are 

reduced relative to those acquired from the healthy subject. 

 
Discrete frequency peaks were present however those greater than 30Hz were absent. 

A frequency component was evident at the stimulus frequency however this 

contribution was relatively small. 
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4.5.2.4 Case 4: absent N2 component 

 

 

Figure  4.45 A trace array comprising responses with no N2 component. The P1 latency was within 
normal limits for all responses. 

 
As illustrated in figure 4.45, the N2 component of the waveforms was absent. 

Responses were within normal P1 latency limits. When the raw data were transformed 

to the Fourier domain figure 4.46 was acquired: 

 

Figure  4.46 A Fourier profile recovered from a recording for which the N2 component was absent in the 

correlated responses. The peak at the stimulus frequency is not present in this case. The range of the 
discrete frequency peaks was similar to that of the normal subject.  

 
No peak was seen at the stimulus frequency, 75Hz. Discrete frequency peaks were 

present within a frequency range similar to that seen in the healthy control. 
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4.5.2.5 Case 5: no significant retinal function 

 

 

Figure  4.47 A trace array comprising waveforms with no significant retinal function. 

 
No significant responses were observed on the trace array.  The Fourier profile of the 

corneal electrode data is shown in figure 4.48: 

 

Figure  4.48 The Fourier profile acquired in the case of no significant retinal function. Neither the 

discrete peaks nor the peak at the stimulus frequency were evident.  

 
In this instance no peaks associated with the mfERG stimulus were seen.  
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4.5.2.6 Case 6: localised area with no significant response 

 

Figure  4.49 A trace array with poor central function and normal surrounding responses. Both the P1 

amplitude and latency were within normal limits for the peripheral responses.  

 
The central responses were significantly decreased in amplitude, however peripheral 

responses were within normal amplitude and timing limits. When transformed to the 

Fourier domain the following profile was obtained: 

 

Figure  4.50 The Fourier profile obtained from a recording with a localised abnormality. The Fourier 

profile has a similar appearance to that acquired from the normal subject in figure 4.38.  

 
A similar profile to that seen from the healthy control was observed: a dominant peak 

at 75Hz; and discrete peaks in a similar frequency range to those obtained from a 

healthy retina. 
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In summary it was found that: 

• when there were diffuse delays the discrete peaks in the upper frequency range 

of that observed in the control subject were abolished. The more severe the 

delays the greater the loss of the upper frequencies; 

• the magnitude of the peaks was decreased in the case of diffuse P1 reductions; 

• the peak seen at the stimulus frequency was linked to the N2 component of the 

correlated responses. For those waveforms with an absent N2 no 75Hz peak 

was seen while it was decreased for those with a compromised N2; 

• recordings obtained from those with no significant retinal function contained 

no stimulus-associated peaks; 

• when a localised area of dysfunction was present the Fourier profile had a 

similar appearance to that acquired from a healthy retina. 

4.5.3  Discussion 

Earlier in the chapter it was established that the frequency profile provides information 

on the retinal stimulation frequencies and retinal response frequencies. It is interesting 

that for those recordings containing diffuse delays the upper discrete frequency peaks 

were absent. Furthermore it was found that the frequency range of the peaks was 

decreased when more severe delays were reported. This implies that the retina was 

unable to respond to these particular stimulating frequencies. 

Another point of note was the abolishment of the peak at the stimulus frequency in 

recordings with an absent N2 component. This indicates that the retina was unable to 

respond when stimulated at 75Hz. In a study by Keating et al. (37) it was shown that 

N2 is dominated by the interaction between consecutive stimuli and the P1 

component of the preceding stimulus (figure 2.6). When N2 is absent this implies that 

the retina could not respond to successive stimuli, in other words, those presented at 

the stimulus frequency. This would explain why the peak at 75Hz was missing in 

recordings with no N2 component and why it was decreased when N2 was 

compromised.  
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For those recordings with no significant cross correlated responses, peaks associated 

with the mfERG stimulus were absent in the Fourier profile suggesting that the retina 

could not respond to any of the principal stimulation frequencies. 

When there was a gross depression of P1 amplitudes in the time domain a reduction in 

the magnitude of the frequency peaks was seen. The frequency range of the peaks was 

however comparable with that of a healthy retina demonstrating that the retina could 

respond to all of the stimulation frequencies. It is likely that the smaller magnitude can 

be attributed to the reduced strength of the evoked retinal signal. 

The Fourier profile obtained from a recording with compromised central function was 

similar to that acquired from a normal retina. This is unsurprising as the uncorrelated 

data are a global signal containing information from all areas of the retina. If the 

majority of the retina is capable of responding to all stimulation frequencies the 

Fourier profile will reflect this. 

4.5.4  Conclusions 

The mfERG responses are conventionally analysed by measuring the amplitude and 

latency of the three main turning points, P1, N1 and N2. This method of analysis is 

however insufficient to extract all of the information embedded within the mfERG 

signal, for example the retina’s ability to respond to the different stimulation 

frequencies. By studying the Fourier profile of the uncorrelated data temporal 

information can be extracted in a highly simple and visual manner, enabling 

knowledge of the micro adaptive profile of the retina to be obtained. 

4.6 Assessing if a significant mfERG response is present 

Thus far the global retinal function and overall recording quality have been studied. In 

addition to grading the integrity of a recording, one of the principal aims of this thesis 

was to develop an objective method for differentiating a physiological response from a 

waveform with no significant response. Cross correlated responses were therefore 

studied in the frequency domain to investigate if the Fourier profile could be used to 

reduce the subjectivity of this distinction.  
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4.6.1  Transforming correlated data from the time to the frequency domain 

Prior to transforming the cross correlated waveforms from the time domain to the 

frequency domain it was important to establish if aliasing or leakage would be a 

problem; each cross correlated waveform comprised 256 data points with a length of 

0.21333s. The stimulus frequency and sampling rate were 75Hz and 1200Hz 

respectively therefore aliasing was not an issue. Leakage was also irrelevant as the 

analysis interval contained 16 stimulus periods. The resolution in the Fourier domain, 

∆f, was ∆f =1/(0.21333)=4.69Hz. A program was written using Matlab 2007a to 

transform the cross correlated mfERG signals from the time domain to the frequency 

domain using the built in FFT function based on the Cooley and Tukey algorithm 

(refer to appendix 2). All phase information was discarded and frequencies greater 

than the Nyquist frequency were ignored due to the symmetrical nature of the data in 

the Fourier domain. To test that this produced the correct output the following signal 

(75Hz, sampled at 1200Hz over a period of 0.21333s), was transformed from the time 

to the frequency domain: 

 

Figure  4.51 The signal used to test the program designed to transform the correlated data from the time 

to the frequency domain. The signal has a frequency of 75Hz and has been sampled at 1200Hz; the 
analysis interval is 0.21333s. 

 

The output can be seen in figure 4.52: 
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Figure  4.52 The output from the program designed to transform data from the time to the frequency 

domain. A clear peak can be seen at 75Hz therefore the program is functioning as expected. 

 
A frequency component at 75Hz was recovered, thus the program was functioning as 

expected.  

4.6.2  Differences between ‘response’ and ‘no response’ in the frequency domain 

As a preliminary investigation two correlated mfERG waveforms were transformed to 

the Fourier domain: a normal response; and a waveform with no significant function. 

The Fourier profile of each was studied and differences were noted; this was to 

establish if this approach had the potential to be used. The following waveform, 

representing an area of normal retina, is shown in addition to its Fourier profile: 

Normal retinal function
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Figure  4.53 A normal mfERG response (left) and its corresponding Fourier profile (right). A normative-

like frequency distribution is evident in the Fourier profile. The principal contributions are seen in the 0-
100Hz range.  

 
A normative-like frequency distribution can be seen. The discrete nature of the plot 

should not be confused with that observed when the uncorrelated data were visualised 

in the frequency domain; in this instance the peaks are simply a reflection of the 

frequency resolution achieved in the Fourier domain. It is evident that there was no 
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significant contribution from frequencies greater than 100Hz therefore all subsequent 

plots are shown from 0 to 100Hz. When a waveform containing no significant retinal 

response (left, figure 4.54) was visualised in the frequency domain, the profile shown 

on the right of figure 4.54 was obtained:  

No significant retinal function
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Figure  4.54 A mfERG waveform with no significant retinal function (left) and its corresponding Fourier 

profile (right). No significant frequency contributions were noted above 10Hz. This profile is distinct 
from that recovered from a normal response (figure 4.53).  

 
No significant peaks were noted at frequencies higher than 10Hz. It was evident that 

the frequency profile of a normal response is distinct from one with no significant 

function. 

4.6.3  Automating findings: correlated data 

In light of the differences seen in section 4.6.2 it was decided to investigate the 

possibility of using the frequency domain to develop an automated, objective method 

for stating if a waveform should be analysed. 

4.6.3.1 Methods 

1500 mfERG waveforms were taken from mfERG recordings on 200 patients, each of 

whom was tested using the mfERG protocol (section 3.4.1). Waveforms were selected 

from different locations in the trace arrays and ranged from a clear retinal response to 

no significant function. Each waveform was analysed by a human expert and was 

classified as ‘response’ or ‘no response’. A waveform was defined as a retinal response 

when there was an intact P1 component. This category therefore included waveforms 

which were significantly decreased and delayed. All 1500 waves were transformed 

into the frequency domain and were utilised to define the limits for ‘response’ and ‘no 

response’.   
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The Fourier profile for each waveform was compared with that of an ideal response, 

which was defined as the global response taken from a healthy and compliant 

individual. The magnitude of all frequency components was normalised. The 

frequency profiles of the two waves used in section 4.6.2 to demonstrate differences 

between a clear response and no retinal function in the Fourier domain can be seen 

below. In each case the normalised ideal response is shown in green while the 

normalised frequency profile of the wave is shown in blue: 

  

Figure  4.55 A comparison of the Fourier profile from a normal response (left) and ‘no response’ (right) 

with that of an ideal response. The frequency profile of the normal mfERG waveform is comparable 
with that of the ideal response. The Fourier profile of the waveform with no significant function differs 

considerably to that of the ideal response. 

 
The frequency profile of each waveform was compared with that of the ideal response 

by calculating the cumulative difference in the y-coordinate between the two profiles 

at each data point. A single value was therefore obtained for each of the 1500 

waveforms. As the waveforms had been categorised as ‘response’ or ‘no response’ the 

5th-95th percentile was calculated for the group of waveforms said to represent an area 

of function. The same was done for the group of waves with no significant function. 

There would ideally be a separation of these ranges.  

4.6.3.2 Testing the system 

It was important to test the system to assess its potential for classifying the mfERG 

waveforms. An additional 1000 mfERG waveforms were therefore chosen, taken from 

100 different patient trace arrays. Again the quality of these recordings varied, the 

location of the waveforms in the trace array differed and they represented a wide range 

of function. Each of the 1000 waveforms was classified as having a response or 

representing an area of no function by an expert. In cases where this distinction was 

difficult, comment was made. Each waveform was subsequently transformed from the 

time to the frequency domain and normalised. The frequency profile of each response 
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was compared with that of the ideal normalised Fourier profile by summing the 

difference in the y-coordinate between the two profiles at each data point. Based on 

the limits defined in section 4.6.3.1 the waveform was classified; this was compared 

with that of the expert in each case.  

4.6.3.3 Results 

For the 1500 waveforms used to define the limits for ‘response’ and ‘no response’ a 5th-

95th percentile for the deviation from the ideal Fourier profile was calculated for each 

classification. This range was 2.29-6.30 and 5.99-6.92 for the ‘response’ and the ‘no 

response’ groups respectively. A small region of overlap therefore existed.  This can be 

seen in figure 4.56: 

Range of deviation from ideal Fourier profile for response and 
no response group

2.29 3.29 4.29 5.29 6.29

Deviation from ideal

Response group

No response group

Equivocal

No response

Response

 

Figure  4.56 Comparing the deviation from the ideal Fourier profile for all waveforms said to be 

‘response’ with that of those classed as ‘no response’. Those waveforms with a deviation value of less 
than 5.99 (shown in grey) can be classified as ‘response’ while those with a deviation value greater than 

6.30 (orange) can be categorised as ‘no response’. A region of overlap exists (5.99 to 6.30), shown in 
blue, therefore these waveforms are classed as ‘equivocal’.  

 
Using these limits it could be said that a response with a deviation from the ideal 

profile of less than 5.99 has a response, those with a value greater than 6.30 have no 

response and those between these values are equivocal. These limits were subsequently 

utilised to classify the additional 1000 waveforms; the resulting classifications were 

then compared with those of the expert. The results can be seen in table 4.3: 
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Computer’s classification  

Response No response Equivocal 

Response 426 82 151 Expert’s 
classification 

No response 17 215 109 

Table  4.3 A comparison of the expert’s and the system’s classification when categorising the cross 

correlated waveforms as ‘response’ or ‘no response’. There was a 64% agreement between them, with 

26% said to be equivocal; the expert and the system disagreed for 10% of the 1000 waveforms. 

 
Of the 1000 waveforms, 64% were classified correctly by the system while the expert 

and the system disagreed for 10% of the waveforms. 26% were said to be equivocal by 

the system. Of those waveforms classified incorrectly by the computer (not including 

the responses said to be equivocal) 50% were reported as being difficult to categorise 

by the expert.   

4.6.4  Discussion 

When the deviation from ideal was calculated for the ‘response’ and the ‘no response’ 

groups a region of overlap was found; this comprised 7% of the total range of values. 

Ideally there would have been no such region as it required the creation of a third 

classification, ‘equivocal’, thus limiting the potential use of this technique. The 

following examples demonstrate why a clear separation did not exist between the two 

groups. The first waveform was classified as having a response by the expert while the 

second was said to have no response. Each was however categorised as equivocal by 

the computer. The normalised Fourier profile, in addition to that of an ideal response, 

is shown for each waveform:  
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Figure  4.57 A mfERG waveform classified as ‘response’ by the expert (left) and its corresponding 

Fourier profile (right). This example was categorised as equivocal by the system. Small frequency 
contributions are evident across the frequency spectrum in the Fourier profile. 
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Figure  4.58 An example of a waveform classified as ‘no response’ by the expert (left) and its Fourier 

profile (right). This was categorised as equivocal by the system. Small frequency contributions are 
evident across the frequency spectrum in the Fourier profile. These are relatively similar to those seen in 

figure 4.57. 

 

It can be seen that there is very little to distinguish between the two Fourier profiles, 

thus explaining why there was a region where it was not possible to differentiate one 

from the other. Although discrepancies were observed between the expert and the 

system, this method has the potential to be utilised to state if a waveform should be 

analysed or represents an area of no physiological response as only 10% of the 

waveforms were categorised into the wrong group.  

4.6.5  Conclusions 

The expert and the system agreed for 64% of the waveforms analysed, which is 

relatively low; the system’s classification was however only completely incorrect for 

10% of the testing set, with the remainder said to be equivocal. It is apparent that 

analysis of the correlated mfERG waveforms in the frequency domain cannot be used 

in isolation to assess if a waveform contains a physiological response however it could 

potentially be utilised as part of a multilayered system; its classification could be used 

in conjunction with a number of additional approaches, with the importance of each 

of being weighted.  

4.7 Chapter summary and conclusions 

The two main aims of this chapter were to develop a method for grading the calibre of 

a recording, both during and after testing, and to assess if the Fourier domain can be 

used to differentiate a waveform with a physiological response from one with no 

retinal function.  
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It was shown that by viewing the uncorrelated data in the frequency domain good 

recordings were highly distinct from poor tests, both when viewing the entire data set 

and when studying a small section of it. A method for grading the recording quality 

into one of four categories was developed for the complete recording to emulate 

grading upon completion of the test. When tested, a high agreement was seen between 

the experts and the computer when defining if a recording should be reported. 

Differences were however observed when sub-classifying the recording quality and 

should be the subject of further investigation. A technique was also developed for 

categorising the recording quality of one data segment into one of two groups 

(acceptable or unreportable) to simulate grading the integrity in a ‘live’ manner. Again 

a relatively high agreement was observed between the system and the expert. This 

system therefore has the potential to grade the integrity of the recording quality, both 

during and after a test, thus helping the operators and those analysing the results.  

Cross correlated waveforms were analysed in the frequency domain with a view to 

distinguishing between waveforms with a ‘response’ and those with ‘no response’. 

Differences were observed in the Fourier domain between normal physiological 

responses and those with no function however in the case of compromised retinal 

function this distinction was less clear. It is apparent that this method could not be 

used in isolation to state if a waveform should be categorised as ‘response’ or ‘no 

response’, but it could have a role to play as part of a multilayered system.  

When investigating the Fourier profile of the raw uncorrelated data the principal 

mfERG stimulus frequencies were established. By conducting a series of experiments 

it was found that these were determined by the fundamental frequencies of the 

orthogonal sequences utilised, and the superposition of these frequencies when using a 

multi-stimulus element. By viewing this profile the ability of the retina to respond to 

the different stimulation frequencies could be visualised with ease. The selective 

abolition of different frequencies in the case of compromised retinal function was 

noted. Temporal information can therefore be extracted in a highly simple manner.  

As it has been shown that the Fourier domain cannot be used as the sole technique to 

distinguish a physiological response from no significant function, a number of 

additional methods have been investigated to make this distinction. These include 

artificial neural networks (ANNs) and the use of the signal to noise ratio. The 

potential role of ANNs to classify the mfERG waveforms is investigated in the 

following chapter. 



    

5 The artificial neural network 

The previous chapter studied the potential of the Fourier (frequency) domain to 

distinguish a physiological response from a waveform with no significant retinal 

function. When the classifications offered by this approach were compared with those 

of a human expert an agreement of 64% was realised, which is relatively low. Only 

10% of the waveforms were however misclassified, with the remainder said to be 

equivocal based upon their Fourier profiles. Although this technique showed 

potential, it could not be used in isolation to analyse the mfERG data. This chapter 

therefore investigates an alternative method: artificial neural networks (ANNs). The 

aim was to train a network to categorise the mfERG responses into one of three 

classes: responses within normal timing limits; responses which are delayed; or no 

significant retinal function. These classifications were based on the presence of a P1 

peak, and when evident, its latency.  

Real data, in this case clinical mfERG waveforms, are typically used to train 

networks; however acquiring sufficient amounts of data can be problematic. 

Furthermore the analysis process can be very time consuming. One approach used to 

minimise these issues is to form a training set from synthetically generated data, 

created by performing a series of manipulations on a small number of examples; only 

the original data requires analysis. Two data sets were created to train the networks: 

one comprised solely clinical mfERG waveforms while the other was made from 

artificially generated data. The ability of each data set to teach an ANN was 

compared. 

5.1 Introduction to neural networks 

ANNs are an attempt to emulate biological neural networks. They comprise many 

highly interconnected processing elements, analogous to neurons in the biological 

system, working in parallel to solve a particular problem. Representations of a 

biological and an artificial neuron are shown in figure 5.1: 
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Figure  5.1 Comparison of a biological (left) and an artificial neuron (right) (adapted from 

www.hemming.se). 

 
It can be seen that the artificial neuron’s inputs and output correspond to the 

biological neuron’s dendrites and axon, respectively. The axon of the biological 

neuron splits into thousands of branches, synapsing with the dendrites of other 

neurons; learning is achieved by adjusting these synaptic connections. Similarly, the 

weighting value between each of the artificial neurons is changed during the training 

process to enable an ANN to learn patterns. The ANN’s output, when presented with 

an input, is dependent on the weights between each of the elements (artificial 

neurons). The method by which these weights are updated depends on the learning 

paradigm, the type of network utilised and parameters such as the learning rule.  

5.2 Learning paradigms 

Two of the main learning paradigms are supervised and unsupervised learning. When 

using the former paradigm the network is provided with a set of training examples and 

the target answer for each input. In contrast only the inputs are presented to the ANN 

for unsupervised learning; underlying patterns and trends in the data are searched for 

in order to categorise it. Supervised learning was utilised throughout this chapter as 

the target classification was known for the mfERG waveforms therefore all subsequent 

discussions refer to this paradigm.  

5.3 The learning process 

For supervised learning each example has a corresponding answer. The aim is to 

design a network which yields the same output as this target for all training examples. 

At the start of training the weighting value between each element is randomised 
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therefore the outputs generated by the network are likely to differ from the desired 

answers. This discrepancy, termed the error, is used to modify the weights until the 

error is minimised for the entire training set. This process is illustrated in figure 5.2: 

 

Figure  5.2 An overview of the training process used during supervised learning (modified from 

Mathworks Neural Network Tool Box). The objective is for the network’s output and the target output 
to be the same for the complete training set, however a difference (error) normally exists. This difference 
is used to change the weights during training, to reduce the error.  

 
A network may successfully learn the training data however it is essential that it 

performs well when presented with previously unseen data; this is defined as its ability 

to generalise. The network is therefore tested with a data set not used during the 

learning process. The ANN’s output is compared with that of the desired answer in 

each case, enabling the network’s performance to be assessed. Good generalisation is 

dependent on the network parameters and the data presented to the network during 

training. If these are not selected properly the network can overtrain in which case it 

acts more as a memory, thus reducing its ability to analyse new data.   

5.4 Selecting network parameters 

When designing an ANN the type of network, the structure of the network and the 

learning rule must all be selected. Many types of network exist including Hopfield, 

Radial Basis Function, self organising maps and feed-forward. The aim of the work 

presented in this chapter was to categorise the mfERG waveforms. Multilayer feed-

forward ANNs were therefore chosen as these have been applied successfully to 

classification and pattern recognition problems similar to this (102;128). This type of 

network typically comprises three layers: an input; a hidden; and an output layer:  
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Figure  5.3 Structure of a multilayer feed-forward network. The input, the hidden and the output layer 

are all shown. 

 
It can be seen that there are no connections between elements in the same layer or to 

elements in the preceding layer, i.e. they are unidirectional. For the majority of 

problems one hidden layer is sufficient to train a network effectively (129), although 

two hidden layers can be used. This can however compromise the ability of the 

network to generalise. One layer ANNs were therefore chosen throughout this study. 

The type of error correction algorithm (the means by which the error is decreased), the 

method of presenting the data to the network during training and the number of times 

the training data are presented to the network can be chosen, as can the number of 

elements in the hidden layer and the transfer function utilised. Each of these 

parameters affects the ability of the network to perform the task required of it.  

5.4.1 Error correction learning algorithms 

The aim of learning is to decrease the error; the error surface is utilised to achieve this. 

The error surface is a graphical representation of the total error (i.e. the error for each 

training pattern) as a function of the network weights. As the weights are updated 

during training, the error surface should eventually descend to a minimum; the lowest 

point on the surface corresponds to the optimal network solution (i.e. the minimum 

error). The objective during training is therefore to find the combination of weights 

which locate the minimum error for the entire training set. Different methods are 

utilised to achieve this. It would be extremely time consuming and hence inefficient to 

try every possible combination of weights to obtain this minimum therefore the 

gradient descent method was developed to provide a quicker approach. The most 

common error correction algorithm using the gradient descent method is back 

propagation. This assesses the gradient of the error surface during the learning process; 
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the slope of the error surface indicates the sensitivity of the error to a change in the 

network’s weights. The network weights are therefore updated in the direction where 

the error is decreasing most rapidly until the optimal solution is found. This can 

however be very slow to find an optimal solution. Furthermore the network solution 

can stop at local minima, occurring because the algorithm always updates the weights 

to decrease the error; in many instances the error must however rise before it will 

decrease again. If the local minimum is very different from the global minima the 

performance of the network will be very poor. A number of methods have been 

developed in an attempt to overcome these limitations, one of which is the inclusion of 

momentum when updating the network weights. This encourages movement in a 

particular direction; if multiple steps are taken in the same direction the speed of the 

algorithm increases, reducing the risk of a network becoming trapped in a local 

minimum, and decreasing the training time (130). 

Many different learning rules exist, three of which will be described as they, in 

addition to back propagation with momentum, have been applied to the analysis of 

the mfERG in this chapter. The first of these is the quickprop algorithm, proposed by 

Fahlman. This is a rule based on back propagation which utilises the second order 

derivate of the error surface, corresponding to its curvature, in addition to the first 

order derivative of the error surface (i.e. the gradient) to locate the minimum. This 

learning rule has been shown to find a solution more quickly than back propagation 

however it can sometimes fail to converge (131). The second algorithm utilised was 

the delta-bar-delta rule, an alternative modification of the back propagation algorithm. 

Unlike the original rule for which each weight has the same learning rate, this changes 

each weight’s learning rate during training. The learning rate is increased if the error 

decreases in the same direction for several steps whereas it is decreased if the direction 

changes. This offers greater flexibility and improved speed (131). Finally, the 

conjugate gradient descent is a second order algorithm which utilises only the second 

derivative of the error surface to determine the direction in which the weights are 

updated. This algorithm constructs a series of line searches across the error surface and 

locates the minimum along each line. There is an underlying assumption that the error 

surface is quadratic, which is not always the case. However, when close to the 

minimum the quadratic assumption is more appropriate, allowing the algorithm to 

locate the minimum very quickly (131).  



Alison A Foulis, 2010   Chapter 5, 133 

5.4.2 Method of  presenting the input data to the ANN 

The input data can be presented to the network in one of two ways: incremental; or 

batch. When the incremental mode is chosen the network weights are updated after 

each training example is presented whereas the weights are only changed after the 

presentation of the entire training set when using the batch method (131). 

5.4.3 Number of  training iterations 

During the learning process the training data are presented to the network many times. 

If the number of iterations (number of presentations) is insufficient the ANN may be 

unable to detect patterns in the data, however if too large the network can become 

over trained resulting in poor generalisation. 

5.4.4 Number of  elements in each layer of  the network 

The number of elements in the input and the output layers is determined by the nature 

of the problem being solved. The number of elements used in the hidden layer is 

however chosen by the designer and is crucial to the final performance of the network. 

If too few neurons are used, the network may not be able to solve the problem whereas 

if too many neurons are selected the ability of the network to form generalisations may 

be diminished. To establish the optimal number of hidden elements a process of trial 

and error is required.  

5.4.5 Transfer function used by the elements 

Each element has the following structure: 

 

Figure  5.4 The structure of a processing element, including the function which determines its behaviour. 
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The function used by the element governs its behaviour. Three general categories of 

transfer function exist: threshold; linear; and sigmoid. For threshold elements the 

output is restricted to 0 or 1. The output is dependent on the sum of the weights and 

inputs; if less than the threshold value the output is 0, if greater the output is 1. The 

output from a linear element is proportional to the summation of the weighted inputs 

while the output from a sigmoid processing element varies continuously, but not 

linearly as the input changes. Sigmoid elements were utilised throughout this study as 

they enable non-linear problems to be solved (130) and can decrease training times 

(131).  

It is evident that there are a number of network parameters which can be varied when 

training an ANN; a process of trial-and-error is required to establish the optimal 

network.  

5.5 Training and testing data sets  

Prior to training an ANN it is necessary to create two data sets: one to teach the 

network; and another to assess its performance once training is complete. The training 

data should be representative of the problem being solved, exposing the network to all 

possible examples during the learning process. The number of examples used must 

also be considered as this can impact on the network’s ability to solve the problem; if 

too few examples are utilised, the network can overfit to the data. The number of 

training examples should be greater than the number of weights in the network to 

avoid overtraining the ANN. The recommended ratio of training examples to weights 

varies between researchers with values ranging from 30 (132) to 5-10 (133). It has also 

been reported that a ratio of 2 can be utilised (134). An insufficient number of training 

examples is often available thus a number of techniques have been developed with a 

view to preventing overtraining, one of which is early stopping. When using this 

approach the data available for training the network are divided into two data sets: a 

training set; and a validation set. The former is utilised to update the weights during 

the learning process while the error on the latter data set is monitored during training. 

The error on both the training and the validation sets typically decreases at the start of 

training however if the network starts to overfit to the data the error on the training set 

continues to decrease while that on the validation set increases. Training is stopped at 

this point. There is no consensus regarding the optimal ratio of the validation set size 

to the training set size, with ratios ranging from 1:3 (135) to 1:10 (132). A ratio of 1:5 
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was selected throughout this thesis as it was a compromise between these. Wang et al. 

stated that early stopping offers no significant advantage when the ratio of training 

examples to network weights exceeds 20 (132) therefore this technique was only 

utilised in this chapter when the ratio was less than 20. 

A testing set is also required to assess the generalisation of the network once training is 

complete. This previously unseen data set is presented to the network, which provides 

an output; this is compared with that defined by an expert, allowing the performance 

of the network to be established.  

As stated earlier the aim of the study was to investigate the potential application of 

ANNs for classifying mfERG waveforms as being within normal timing limits, 

delayed or as having no significant response. Ideally the network would also state if a 

response is decreased in amplitude or within normal limits. It was however shown in 

section 3.4.2, when establishing the normal range for the mfERG, that the amplitude 

of responses decreases with eccentricity. Five different neural networks (one for the 

central response and one for each of the four concentric rings) would therefore have 

been required, which was impractical at this stage. It was however possible to employ 

a single network when classifying responses as delayed or within normal limits, as the 

95th percentile for the P1 latency was 42ms for all four concentric rings and the central 

response (refer to section 3.4.2).  

For classification problems similar to this, real data are typically used to train the 

ANN as they contain the diversity seen in practice (104;107;136;137). A series of 

networks was therefore trained and tested using clinical data. Working with real 

responses does however have a number of limitations associated with it including the 

laborious nature of classifying the data, the difficulty of obtaining large amounts of 

clinical data and the lack of knowledge of the true underlying signal prior to the 

addition of noise artefacts. An alternative method, utilised by Fisher et al. is to form 

the data set from synthetic data; this data set is generated by performing a series of 

manipulations on the original data set (108). This offers the possibility of creating very 

large data sets thus achieving the desired training set size. Furthermore, only the 

primary waveforms require classification by the expert; each of the secondary 

waveforms are categorised automatically by the program used to generate them as the 

processes used to create them are embedded in the program. Consequently the 

analysis time required by the expert is reduced. Additionally the interpretation process 

is consistent; this is not always the case with humans. The possibility of training 
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ANNs with synthetic mfERG data was therefore investigated; the performance of 

networks trained using synthetic and clinical data was compared. Those trained with 

artificial data are described initially. 

5.6 Methods: training a network with synthetic data 

The synthetic data set was created from 50 mfERG waveforms. These were selected 

from 50 different patient recordings, all of which were acquired using the mfERG 

protocol (section 3.4.1). Responses were chosen from a variety of locations in the trace 

array and represented a wide range of retinal function. 10 of the waveforms had no 

significant response while 40 represented an area of functioning retina. They were 

selected from recordings obtained from compliant patients therefore the signals were 

relatively undistorted by noise thus the location of P1 was easily identifiable for those 

40 waveforms with a physiological response. Each response was analysed by an 

expert; waveforms with no significant function were classified while the latency of the 

P1 component was noted for all other responses. In chapter 3 normative data was 

presented, showing that responses with a P1 latency of 42ms or less were within 

normal limits (section 3.4.2). Each of the responses said to represent an area of 

functioning retina were therefore classified as delayed or not delayed based upon this 

limit. Target values of -0.9, 0 and 0.9 were utilised for the groups ‘no significant 

response’, ‘delayed’ and ‘not delayed’ respectively. 0.9 and -0.9 were chosen instead of 

1 and -1 as the sigmoid transfer function used by the elements cannot attain values of 1 

or -1 (130).  

The aim was to generate a data set from these 50 responses which encompassed the 

amplitude and latency range seen in practice, in addition to some of the artefacts 

found clinically such as baseline drift and 50Hz electrical noise. Random noise was 

also added in an attempt to emulate patient noise. Each mfERG response comprises 

256 data points therefore a network would require 256 processing elements in its input 

layer if presented with the full waveform. The main points of interest are contained 

within the initial 100ms therefore only the first 120 data points of each base wave 

(corresponding to approximately the initial 100ms of the response) were used to 

generate the data set. Fewer processing elements were therefore required in the input 

layer of the ANN and hence the complexity of the network was reduced. Matlab 

2007a was used to create the artificial waves, all of which were written to Excel as 

they were created. 



Alison A Foulis, 2010   Chapter 5, 137 

5.6.1 Creation of  the synthetic data set 

A number of different manipulations were performed on each of the 50 base waves to 

generate the data set, each of which are described in the following section.  

5.6.1.1 Amplitude and latency range 

It has been noted in the department that mfERG responses with a P1 latency range of 

35-67ms are typically seen clinically when using the mfERG protocol described in 

chapter 3 (section 3.4.1) therefore the synthetic data set must comprise waveforms 

with P1 latencies within this range. To achieve this, each of the original waveforms 

was shifted, in increments of 2 data points, (corresponding to approximately 1.67ms) 

until reaching the upper and lower limits of this range.  

The P1 amplitude of mfERG responses was observed to lie between 10nV and 150nV 

when using the mfERG protocol thus the original waveforms were multiplied by a 

scaling factor to encompass this amplitude range. 10 different scaling factors were 

utilised in each instance and were defined with knowledge of the original P1 

amplitude.  

The 10 waveforms defined as ‘no response’ by the expert could not be scaled and 

shifted based upon a P1 value. Each waveform was therefore shifted to the left and 

right in steps of 2 data points until a shift of 20 data points was achieved in either 

direction. They were also multiplied by 10 different scaling factors ranging from 0.5 to 

2.0 (increments of 0.167). The shifting and scaling functions were performed 

simultaneously for each of the 50 waveforms, creating 10000 secondary waveforms. A 

detailed description of this process can be found in appendix 3.  

5.6.1.2 Stretch 

The shape of a waveform is unaffected by shifting it and changing its amplitude 

therefore the original waveforms were also stretched by varying amounts. The aim 

was to shift data points to the right, with those data points at the latter part of the 

waveform experiencing the greatest shift. To achieve this the first 30 data points were 

kept the same. The shift of the final data point (number 120) was varied from 5 to 25 

data points, in increments of 5 while the shift of data points 31 to 120 varied linearly 

from 0 to the value of the maximum shift. The amplitude was also changed, again by 
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multiplying the waveforms by 10 different scaling factors, to achieve an amplitude 

range of approximately 10-150nV. As before, those waveforms with no physiological 

response were multiplied by 0.5 to 2.0 in steps of 0.167 (i.e. 10 different scaling 

factors). The scaling and stretching tasks were performed concurrently on the 50 

primary waveforms, generating 2500 new waveforms. This process is discussed in 

more detail in appendix 4. 

By performing the functions described in sections 5.6.1.1 and 5.6.1.2, 12500 

waveforms were created.  

5.6.1.3 Noise 

It was also important to include waveforms affected by noise in the data set. 2000 

waveforms were selected from the secondary waveforms generated in sections 5.6.1.1 

and 5.6.1.2; noise artefacts were subsequently added to each of these. This group of 

2000 waveforms comprised 1000 waveforms containing a response and 1000 

waveforms with no significant function. The 1000 responses were selected from the 

10000 secondary waveforms produced by stretching, scaling and shifting the 40 

primary clinical responses. 20 shifted and scaled versions of each of the 40 primary 

waveforms were selected at random, in addition to 5 stretched and scaled versions of 

each of the 40 original responses (again selected at random); a group comprising 1000 

responses was thus formed. The group of 1000 waveforms with no retinal function 

was formed by selecting, at random, 80 waveforms from the shifted and scaled version 

of each of the 10 original waveforms with no function. 20 examples were also chosen 

at random from the secondary waveforms created by stretching and scaling each of the 

10 primary waveforms with no significant function. The process by which the 

examples were selected is explained in greater detail in appendix 5. 

One of the noise artefacts added was baseline drift as this is a problem commonly 

encountered when testing patients. It is a low frequency artefact which arises from eye 

movement and blinking. The drift of the uncorrelated data from the baseline can result 

in the raw data moving out with the range of the electronics used for the signal 

acquisition, causing saturation of the signal. This results in a tilt of the final responses 

after the cross correlation process. To mimic this a line of the form y=mx + c, where 

m is the gradient and c is the y-intercept, was created. This was then added to the 

original waveforms. m was varied from -0.75 to 0.75 in steps of 0.5 while c was given 
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the values -20, 0 and 20. 12 different lines were thus created and added to the 

waveforms to mimic different severities of drift.  

In addition to baseline drift, it is often the case that a 50Hz signal (electrical noise) is 

superimposed onto the final responses. This was therefore created in Matlab and 

added to the waveforms. Both the magnitude and phase of this signal were varied; the 

magnitude was defined as 10% or 20% of the P1 amplitude of the original waveform 

while phases of both 00 and 1800 were utilised. The phase of the 50Hz sine wave was 

changed as the addition of a peak or a trough affects the final response differently. 

Patient noise can also degrade the quality of the cross correlated waveform therefore 

random noise was generated in Matlab in an attempt to emulate this. The maximum 

magnitude of this noise was defined as 10% or 20% of a waveform’s P1 amplitude. 

Each of these three noise artefacts were added, resulting in the creation of 96 new 

responses for each waveform. Only drift was superimposed onto those waveforms 

with no significant physiological response as they already comprised solely of noise. 

108000 new waveforms were thus generated. A detailed description of this process is 

included in appendix 5. In total, 120500 synthetically generated waveforms were 

therefore created (12500 in sections 5.6.1.1 and 5.6.1.2 and 108000 in section 5.6.1.3). 

An example of 6 responses produced from one of the original waveforms can be seen 

in figure 5.5:  

 

Figure  5.5 An example of six synthetically generated waveforms, shown in blue, along with the original 

clinical mfERG response, shown in red. These blue responses are shifted and stretched versions of the 
original waveform. 50Hz, random noise and drift have also been superimposed onto the responses. 

 
Waveforms were classified into one of the three groups depending on the processes 

performed to generate them, thus each synthetic waveform had a target value of either 

-0.9 (‘no significant response’), 0 (‘delayed’) or 0.9 (‘not delayed’) associated with it. 
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The method by which a target value was allocated to each waveform is detailed in 

appendices 3, 4, and 5. 

5.6.2 Training and testing set 

It was previously discussed in section 5.5 that the number of examples forming the 

training set must exceed the number of weights in a network. If an ANN with 10 

elements in the hidden layer was chosen the network would comprise 1210 weights as 

there are 120 inputs and 1 output (120x10 + 10x1). Wang et al. stated that the number 

of examples in the training set should ideally be 30 times greater than this, which 

corresponds to 36300 examples. A training set was therefore formed by selecting 

40000 waveforms at random from the synthetic data set. A further 1000 of the 

synthetic waveforms were randomly assigned to a testing set; in this instance a 

validation set was not required as a sufficient number of training examples were 

available. The method by which data were allocated to the training and the testing set 

is described in appendix 6.  

It was also important to assess the performance of the ANNs on real clinical data 

therefore 1000 mfERG responses, representing a wide variety of retinal function and 

signal quality were taken from 100 patients. These were the same as those used to test 

the ability of the Fourier domain to distinguish between ‘response’ and ‘no response’. 

Each clinical wave was classified into one of the three categories (no significant 

physiological response, a delayed response or a response within normal timing limits) 

by a human expert. 

5.6.3 Training the ANN 

As previously stated multilayer feed-forward networks with one hidden layer were 

chosen with all elements utilising the sigmoid transfer function. The learning rule and 

the method by which the data were presented during training were changed initially. 

Momentum, quickprop, conjugate gradient and delta learning rules were investigated, 

using both batch and incremental learning when appropriate. The number of elements 

in the hidden layer was then varied from 2 to 40 in increments of 2, and finally the 

momentum rate was changed from 0.3 to 0.9 in steps of 0.1. Training was stopped and 

the network was tested after every 50 epochs (i.e. 50 presentations of the data to the 

network); this was continued until 1000 epochs. In the first instance each ANN was 

trained using 10 elements in the hidden layer while the different learning methods and 



Alison A Foulis, 2010   Chapter 5, 141 

learning rules were investigated. All inputs were normalised and the weights were 

randomised prior to starting each training session.  

Upon completion of training, each network was tested on both the synthetic and the 

clinical testing set. The network’s output was compared with that of the expert in each 

case, enabling its performance to be assessed. Its ability to accurately classify the 

waveforms into one of the three categories was studied initially.  

It was also of interest to assess the network’s ability to differentiate ‘response’ from ‘no 

response’ for the optimal networks. All waveforms categorised as being delayed or 

within normal latency limits (by the expert, and then by the ANN) were classified as 

‘response’, while those said to be ‘no response’ were categorised so. The agreement 

between the expert and the network when distinguishing between these two categories 

was assessed. The sensitivity and specificity was also calculated using the following 

equations:  

%100×
+

=
ivesfalsenegatvestruepositi

vestruepositi
ySensitivit    (5.1) 

%100×
+

=
ivesfalsepositvestruenegati

vestruenegati
ySpecificit    (5.2),      

where true positive = abnormal identified as abnormal; 

false positive = normal identified as abnormal; 

true negative = normal identified as normal; 

false negative = abnormal identified as normal. 

The accuracy, sensitivity and specificity of the network to differentiate delayed 

responses from those within normal limits was also calculated; all responses 

categorised as ‘no response’, either by the expert or the ANN were therefore ignored 

in this instance. 

5.6.4 Training a network with a smaller data set 

It was originally stated that ANNs would be trained using both synthetic and clinical 

data; however to directly compare their performance it was important to train them 
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with the same number of examples. It was impractical to individually analyse 40000 

clinical waveforms. A smaller synthetic data set was therefore created to train the 

network; the aim was to establish if similar results could be achieved when training the 

ANN with fewer examples, and hence enabling a fair comparison of a synthetically 

trained network with a clinically trained ANN. 

Masters reported that it was possible to train a network with a data set comprising 

twice as many examples as weights in the network (134). If for example there were 10 

elements in the hidden layer the training set would require 2420 waveforms; a data set 

consisting of 2500 synthetic waveforms was therefore formed. These were selected at 

random from the larger synthetic training set; this was to ensure that the training and 

testing data were independent from one another.  

In section 5.5 it was discussed that a validation data set is required to prevent 

overtraining of a network when the ratio of training examples to network weights is 

less than 20. It was therefore necessary to form a validation set in this instance. It was 

also stated that the ratio of examples in the validation set to those in the training set 

would be 1:5 throughout this chapter. 500 synthetic waveforms (20% of 2500) were 

therefore selected at random from the large synthetic training data set to form the 

validation data set. The same synthetic and clinical testing sets described in section 

5.6.2 were utilised. The optimal network parameters established when teaching ANNs 

with the larger data set were selected originally to assess the possibility of teaching a 

network with a smaller data set. 

5.7 Results: training a network with synthetic data 

5.7.1 Large synthetic training set 

The following table demonstrates the performance of each network when trained using 

the four learning rules. Both batch and incremental learning have been utilised, with 

the exception of the network being taught using the conjugate gradient learning rule, 

which can only learn using the batch mode of learning. In the first instance the hidden 

layer comprised ten elements. The number of epochs for which the optimal 

performance was achieved when tested with the clinical data is shown in each case: 
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Learning 

Rule 

Type of 

training 

Hidden 

elements 

Number 

of epochs 

% agreement 

with expert: 

clinical set 

% agreement 

with expert: 

synthetic set 

Momentum Batch 10 750 62 96 

Momentum Incremental 10 300 68 98 

Quickprop Batch 10 900 59 91 

Quickprop Incremental 10 100 63 97 

Conjugate 

gradient 

Batch 10 450 53 92 

Delta Batch 10 300 64 97 

Delta Incremental 10 150 58 94 

Table  5.1 Agreement between the expert and the ANN trained with synthetic data when tested on 

synthetic and clinical data: varying the learning rule and the mode of learning. Results are displayed for 
four different learning rules, in addition to incremental and batch learning. 

 
It can be seen that the highest performance was yielded when using the momentum 

rule and the incremental learning mode; agreements of 68% and 98% were achieved 

for the clinical and synthetic data sets respectively. In each instance the results were 

significantly better when tested on the synthetic data. It should be noted that the 

ability of each network to classify the synthetic data set improved with an increasing 

number of epochs. This was not however the case when tested on the clinical data set; 

the performance initially increased to a maximum and either fell or stayed constant as 

the number of epochs was increased further.   

Multi layer feed-forward ANNs, trained with the momentum learning rule using a 

momentum rate of 0.7 and one hidden layer were subsequently trained while the 

numbers of elements in the hidden layer was varied. A momentum rate of 0.7 was 

utilised as this was the default when using the momentum learning rule. The results 

achieved are shown in table 5.2: 
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Hidden 

elements 

Number of  

epochs 

% agreement 

with expert: 

clinical set 

% agreement 

with expert: 

synthetic set 

2 50 60 93 

4 100 62 93 

6 50 65 94 

8 200 68 98 

10 300 68 98 

12 300 69 99 

14 250 67 98 

16 300 68 99 

18 250 68 98 

20 200 67 98 

22 150 65 97 

24 150 66 98 

26 200 64 96 

28 150 65 97 

30 200 66 98 

32 150 65 97 

34 150 66 98 

36 150 63 95 

38 100 64 96 

40 50 66 97 

Table  5.2 Agreement between the expert and the ANN trained with synthetic data when tested on 

synthetic and clinical data: changing the number of elements in the hidden layer. The number of 
elements was varied from 2 to 40 in increments of 2, while the learning rule and learning mode 
(momentum and incremental respectively) remained constant. 

 
The performance of the network was optimal when there were twelve elements in the 

hidden layer; the agreement between itself and the expert when presented with the 

clinical and the synthetic data sets was 69% and 99% respectively. The momentum 

rate was subsequently varied. Multi layer feed-forward ANNs, trained with the 

momentum learning rule and one hidden layer comprising twelve elements were 

utilised:  
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Momentum % agreement 

with expert: 

clinical set 

% agreement 

with expert: 

synthetic set 

0.3 68 98 

0.4 68 98 

0.5 69 99 

0.6 70 99 

0.8 67 96 

0.9 66 93 

Table  5.3 Agreement between the expert and the ANN trained with synthetic data when tested on 

synthetic and clinical data: changing the momentum. The momentum value was varied from 0.3 to 0.9 
in steps of 0.1, to optimise the performance, while the learning rule, the learning mode and the number 

of elements in the hidden layer remained constant. 

 
It can be seen that the network correctly classified 70% of the clinical mfERG 

waveforms and 99% of the synthetically generated data. Thus the optimal network 

was a multi layer feed-forward network trained with the momentum learning rule 

using incremental learning with a momentum of 0.6 and twelve sigmoid neurons in its 

hidden layer.  

When making the distinction between ‘response’ (i.e. all ‘delayed’ and ‘not delayed’ 

waveforms were grouped together) and ‘no response’, this network correctly classified 

86% of the clinical data testing set, with sensitivity and specificity values of 80% and 

87% respectively. The lower sensitivity indicates that misclassifying waveforms with 

no significant retinal function as ‘response’ was a greater problem than the reverse 

situation. When distinguishing delayed responses from those within normal timing 

limits (i.e. all waveforms said to have no physiological response were ignored) an 

accuracy of 81% was realised. The sensitivity and specificity values were 84% and 78% 

respectively therefore stating that a waveform was delayed when it had a P1 latency of 

42ms or less was more problematic than the reverse situation. Of those responses 

incorrectly classified, 50% had a P1 latency, as stated by the expert, within 1ms of the 

timing boundary between normal and abnormal (i.e. 42–43ms). Furthermore, 81% 

had a P1 latency within 2ms of this threshold (i.e. 41–44ms), thus the majority of 

misclassifications occurred when close to this timing boundary.  
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5.7.2 Smaller synthetic training set 

This section presents the results achieved when teaching the ANN with fewer 

examples. When an ANN was trained using the same parameters as those used by the 

optimal network in section 5.7.1, the network and the expert provided the same 

classification for 99% of the synthetic testing set. This is the same as that achieved 

when the larger training set was utilised. When tested on the clinical data an 

agreement of 69% was realised, which is comparable with that of the optimal network 

in section 5.7.1. No additional networks were trained as the results were similar to 

those achieved when using large volumes of training data.  

5.8 Methods: training a network with clinical data  

Having established that it was possible to train the ANN with 2500 waveforms when 

using a validation set, networks were trained using real mfERG waveforms. 

5.8.1 Training, testing and validation set 

2500 clinical mfERG waveforms were selected and classified into one of the three 

categories (‘no significant response’, ‘delayed’ or ‘not delayed’) by an expert. These 

were taken from 200 different patient recordings and represented a wide range of 

retinal function and quality. 200 recordings were utilised as opposed to selecting each 

of the 61 waveforms from 41 trace arrays; this was to increase the variety in the basic 

shape of the mfERG waveforms, as responses in a trace array can have a similar 

underlying shape to one another.  

As when training the network using the smaller synthetic data set, a validation set was 

required in this instance to prevent overtraining of the network, as the ratio of training 

examples to weights was less than 20 (refer to section 5.5). Again the ratio of the 

validation set to the training set was 1:5 (see section 5.5); a further 500 (20% of 2500) 

mfERG waveforms were therefore selected. These were subsequently classified into 

one of the three groups by the expert to form the validation set. The testing set utilised 

to test the synthetically trained ANNs, comprising 1000 clinical waveforms, was used 

to assess the performance of the networks.  Again only the first 120 data points were 

selected from each waveform. 
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5.8.2 Training the ANN 

As in section 5.6.3 feed-forward multilayered networks with one hidden layer 

consisting of sigmoid elements were used. The learning rule, the method of presenting 

the data during training, the number of elements in the hidden layer, the duration of 

training and the momentum were all varied to achieve the optimal performance. All 

inputs were normalised and weights were randomised prior to training. Training was 

stopped and the network was tested after every 50 epochs; this was continued until 

1000 epochs or the point at which the ANN stopped training due to overfitting, as 

determined by the error on the validation set. The overall classification accuracy was 

calculated, in addition to the sensitivity and specificity for the distinction between 

‘response’ and ‘no response’ and ‘delayed’ or ‘not delayed’ using equations 5.1 and 

5.2. 

5.9 Results: training a network with clinical data 

Table 5.4 demonstrates the agreement between the ANN and the expert when the 

different learning rules and methods of presenting the training data were investigated: 

Learning Rule Type of 

training 

Hidden 

elements 

Number 

of epochs 

% agreement 

with expert 

Momentum Batch 10 850 72 

Momentum Incremental 10 150 77 

Quickprop Batch 10 200 63 

Quickprop Incremental 10 150 75 

Conjugate gradient Batch 10 50 60 

Delta Batch 10 100 65 

Delta Incremental 10 550 60 

Table  5.4 Agreement between the expert and the ANN trained with clinical data when tested on clinical 

data: varying the learning rule and the mode of learning. Results are displayed for four different 
learning rules, in addition to incremental and batch learning. 

 

As observed in section 5.7.1 the highest agreement was achieved when the momentum 

rule and the incremental learning mode were selected; 77% of waveforms were 

correctly classified into one of the three categories. When the number of elements in 

the hidden layer was varied no improvement upon this result was found. Finally the 
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momentum was changed as a default value of 0.7 had been utilised when teaching 

with the momentum learning rule; the results can be seen in table 5.5: 

Momentum % agreement 

with expert 

0.3 70 

0.4 75 

0.5 78 

0.6 76 

0.8 76 

0.9 73 

Table  5.5 Agreement between the expert and the ANN trained with clinical data when tested on clinical 

data: changing the momentum. The momentum value was varied from 0.3 to 0.9 in steps of 0.1, to 

optimise the performance, while the learning rule, the learning mode and the number of elements in the 
hidden layer remained constant. 

 
The ability of the network to classify the waveforms improved slightly from 77% to 

78% by decreasing the momentum to 0.5. The optimal network found for the 

particular problem was therefore a multi layer feed-forward ANN with ten sigmoid 

elements in its hidden layer, taught with the momentum rule using incremental 

learning. An important decision to be made by the ANN is whether or not a waveform 

represents an area of functioning retina. In this instance the ANN agreed with the 

expert for 90% of the cases, with sensitivity and specificity values of 83% and 92% 

respectively. When differentiating delayed responses from those within normal timing 

limits, an agreement of 86% was realised. The sensitivity was 89%, while the 

specificity was 83%. It was observed that for those responses misclassified as ‘delayed’ 

or ‘not delayed’, 53% were within 1ms of the timing boundary between normal and 

abnormal while 85% were within 2ms of this P1 latency.  In this case networks trained 

with real clinical data yielded superior results to those taught using synthetically 

generated mfERG waveforms. 

5.10 Discussion 

The aim of this study was to investigate the possibility of using ANNs to classify a 

mfERG waveform as delayed, within normal timing limits or as no significant 

response. Networks were initially trained using synthetically generated waveforms in 

an attempt to overcome some of the limitations associated with real clinical data. The 

highest performing synthetically trained ANN classified 99% of the synthetic test set 
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correctly however when presented with clinical data its performance fell to 70%. This 

implies that the synthetic testing set was very similar to the data used to train the 

network while the clinical data differed greatly. Although the training data 

incorporated waveforms with a wide range of P1 amplitude and latency values, in 

addition to different types of noise including baseline drift and 50Hz, the basic 

underlying shape of each artificially generated waveform was similar to that of one of 

the 50 primary waveforms. The synthetic testing set, although not used to train the 

network, was therefore familiar to the ANN, explaining why such a high performance 

was yielded. In contrast the clinical testing set comprised 1000 waveforms unrelated to 

the training set. It may therefore be possible to improve the generalisation of the 

synthetically trained ANN by increasing the number of primary waveforms utilised to 

generate the artificial data set, as greater variety in the underlying shape would be 

incorporated into the learning process.  

The performance attained by the network trained using clinical data was higher than 

that of the ANN taught with artificial data, with an agreement of 78% between itself 

and the expert. It is likely that this improved generalisation can be attributed to the 

greater variety in the basic shape of the training mfERG waveforms. The ability of the 

network to classify the mfERG waveforms into one of three groups was however 

relatively low. The majority of networks reported in the literature are utilised to 

classify physiological signals into one of two groups, for example normal or abnormal. 

It was previously stated in chapter 3 that accuracies of 94%, 97% and 98% have been 

attained when categorising the EOG (136), the VECP (137) and the PERG (104) 

respectively into one of two classes. When the capacity of the clinically trained 

network to distinguish a mfERG with a ‘response’ from one with ‘no significant 

response’ (i.e. one of two categories) was assessed an accuracy of 90% was achieved 

while 86% of responses were correctly classified as delayed or within normal timing 

limits. These results are lower than those presented for other physiological data. It 

should however be noted that each of these three types of physiological signal are in 

an order of microvolts, compared with nanovolts in the case of the mfERG. 

Consequently the responses are in general easier to distinguish from noise thus easing 

their interpretation. Furthermore a single network was trained to categorise the EOG, 

the VECP and the PERG data into one of two categories as opposed to three in the 

case of the mfERG thus simplifying the task for these ANNs. Finally, the number of 

inputs used for the networks taught to classify the EOG, the PERG and the VECP was 

considerably less than that utilised by the ANN developed in this chapter thus 
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reducing the complexity of the problem in each case. For these reasons it is 

unsurprising that a slightly lower performance was achieved when analysing the 

mfERG data. 

Ideally a higher accuracy would have been achieved. It would be assumed that 

increasing the size of the training data set would result in an increased performance as 

the ratio of training examples to weights when teaching the ANN was two, 

considerably less than that recommended by many investigators. However it was 

shown that the networks trained using the two synthetic data sets, one large and one 

small, yielded a similar performance to one another. As the use of the validation set in 

conjunction with the smaller training set was comparable with the larger data set it is 

unlikely that a superior ANN would be obtained by significantly increasing the 

number of training examples. One approach which could however be taken to 

improve the network would be to increase the number of waveforms in the training 

data set which have a P1 latency of 41-44ms (i.e. close to the threshold between 

normal and abnormal). This is likely to improve the network’s capacity to state if a 

response is delayed or within normal timing limits, as 85% of this type of 

misclassification involved responses within this group. Additional examples of 

waveforms with no significant response could also be included in the training data to 

attempt to increase the sensitivity of the network, the principal source of error when 

differentiating ‘response’ from ‘no response’. It is evident that the ANN has a potential 

role to play in the analysis of the mfERG but could not be used in isolation as a higher 

classification accuracy would be required; it could however be used in conjunction 

with other techniques as part of a multilayered system. 

5.11 Conclusions 

ANNs were trained to classify mfERG data into one of three categories: delayed; 

within normal timing limits; or no significant response. Both synthetically generated 

data and real clinical mfERG waveforms were utilised to train the networks. It was 

found that superior results were achieved when using clinical data, with a 

classification accuracy of 78%. When differentiating between ‘response’ and ‘no 

response’ the expert and the ANN concurred for 90% of the examples; an agreement 

of 86% was achieved when stating if the latency of a response was normal or 

abnormal, with 85% of misclassifications occurring close to the threshold between 

normal and delayed. Although it would not be possible to rely solely on this technique 
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to analyse the mfERG it may be possible to incorporate it into a multilayered system. 

Additional methods are investigated in chapter 6 with a view to increasing the 

objectivity of the mfERG analysis, including the use of the signal to noise ratio, digital 

and wavelet filtering and curve fitting techniques. 

 
 
 



    

6 SNR, spline fitting and digital signal processing 

The possibility of using the frequency domain to distinguish a physiological response 

from a waveform with no significant retinal function was studied in chapter 4, while 

chapter 5 investigated the ability of artificial neural networks to classify the mfERG 

data into one of three categories: no significant response; a delayed response; or a 

response within normal latency limits. Each approach showed potential but could not 

be utilised as the sole technique to automatically analyse the data, as a higher 

performance would be required. A number of additional methods were therefore 

studied.  

This chapter initially investigates the efficacy of using the signal to noise ratio (SNR) 

to distinguish a waveform with no significant response from one representing an area 

of functioning retina. Two methods were described for calculating the SNR in chapter 

3; that proposed by Zhang et al. (76) using a noise window and a signal window, and 

that introduced by Keating et al. (81) employing ‘dead’ (unused) m-sequences to 

represent the noise. The former has been used for the analysis of clinical mfERG data 

(77-79) whereas the dead sequence method has thus far only been applied to mfVECP 

recordings (138) and mfERG responses acquired from healthy and compliant 

individuals (81). This chapter therefore directly compares the ability of these two SNR 

techniques to classify clinical waveforms as ‘response’ or ‘no response’ with a view to 

finding an optimal method for making this distinction. 

For those waveforms with retinal function the user must assess if the P1 component is 

delayed or within normal timing limits. This chapter investigates the possibility of 

using spline fitting, a technique used to fit curves to data, to classify responses as 

‘delayed’ or ‘not delayed’. In addition to assessing the latency of a response it is 

necessary to distinguish responses which are decreased in amplitude from those which 

are within normal limits. The ability of the spline fitting technique to make this 

distinction has therefore been studied. 

Finally a number of digital signal processing techniques including digital filtering and 

wavelet analysis, both of which were discussed in chapter 3, were investigated with a 

view to reducing the noise present in the responses as many of the difficulties 

encountered when analysing mfERG waveforms are due to noise. Both the SNR and 
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the spline fitting experiments were then repeated after filtering the responses in the 

hope that the performance of each technique would be improved.  

6.1 SNR for ‘response’ or ‘no response’ classification 

The feasibility of using the SNR value to classify a waveform as ‘response’ or ‘no 

response’ is discussed initially. 

6.1.1 Methods 

1000 mfERG waveforms were chosen from 100 patient trace arrays. The recording 

quality of these varied from excellent to very poor and they incorporated a wide range 

of retinal function ranging from normal to no significant response. Each waveform 

was graded as ‘response’ or ‘no response’ by an expert. These were the same waves as 

those used in chapters 4 and 5 when testing the ability of the Fourier profile and the 

ANN to differentiate between ‘response’ and ‘no response’, thus enabling a fair 

comparison of the techniques.  

6.1.1.1 Noise window and signal window (method 1) 

The SNR value was initially calculated for each of the 1000 mfERG waveforms using 

the noise window and signal window method proposed by Zhang et al.. When using 

the windowing method a time period must be selected for both the signal window and 

the noise window. Previous studies have utilised the first 80ms of the mfERG 

waveform for the signal and the final 80ms for the noise (77) therefore these values 

were chosen. To compare the two approaches for calculating the SNR the following 

equation, based on that employed by the dead sequence method, was used: 

average

i
i wnoisewindoRMS

owsignalwindRMS
SNR

)(

)(
log20 10=   (6.1) 

This differs to that detailed in the literature however it enabled a fairer comparison of 

the two methods, as this is the same as the equation utilised by the dead sequence 

method (refer to equation 3.3). 1000 SNR values were thus obtained. The mfERG 

responses were categorised into one of two classes (‘response’ or ‘no response’) based 

on their SNR value using a number of different thresholds: 0; 1; 2; 3; 4; and 5dB 

respectively. If a waveform had an SNR ratio of less than or equal to the threshold it 



Alison A Foulis, 2010  Chapter 6, 154 

was classified as ‘no response’ while it was said to have a response if its SNR was 

greater than the threshold. The percentage of agreement between the expert and the 

SNR approach was calculated for each threshold value, allowing the optimum cut off 

SNR to be found.  

6.1.1.2 Dead sequence (method 2) 

The SNR was subsequently calculated using the dead sequence approach described by 

Keating et al.. It was stated in chapter 3 that the dead sequence method utilises an 

unused m-sequence when calculating the SNR. One such sequence was therefore 

selected and cross correlated against the raw, uncorrelated data used to recover the 

responses in the trace array. Figure 6.1 shows an example of a response containing 

only noise which was recovered using an unused sequence: 

 

Figure  6.1 A waveform recovered by cross correlating the raw data against an unused (dead) sequence. 

It comprises only noise. 

 

In order to compare methods 1 and 2 (the windowing and the dead sequence methods, 

respectively) the same time window was chosen to represent the signal for each 

approach; the first 80ms of both the response and the dead sequence were therefore 

chosen for the signal and the noise respectively. The SNR of each waveform was 

obtained using equation 3.3 (see chapter 3). Again the threshold value providing the 

best distinction between ‘response’ and ‘no response’ was established by varying it 

until the highest agreement between the expert and the computer was achieved. 

6.1.2 Results 

6.1.2.1 Noise window and signal window (method 1) 

The percentage of waveforms which were given the same classification by both the 

expert and the windowing SNR method can be seen for the following 6 threshold 

values: 
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Cut off (dB) 0 1 2 3 4 5 

% agreement 
with expert 

68 67 63 60 56 53 

Table  6.1 Percentage of waveforms correctly analysed as ‘response’ or ‘no response’ using the 

windowing SNR method. The cut off value defining the threshold between a physiological and no 
significant function was varied. 

 
The highest level of agreement (68%) was found when a cut off of 0dB was chosen; all 

responses with a SNR of 1dB or greater were said to have a response. The sensitivity 

and specificity values for this threshold value were 52% and 75% respectively. Stating 

that a waveform with no significant response contained a physiological signal (i.e. 

false negative) was therefore a considerable problem. The level of disagreement, 32%, 

with the expert was reasonably high. 

6.1.2.2 Dead sequence (method 2) 

The performance achieved using the dead sequence method to calculate the SNR can 

be seen in table 6.2: 

Cut off (dB) 0 1 2 3 4 5 

% agreement 

with expert 

76 77 77 78 77 74 

 Table  6.2 Percentage of waveforms correctly analysed as ‘response’ or ‘no response’ using the dead 

sequence SNR method. The value defining the threshold between a physiological and no significant 
function was altered. 

 
The closest agreement with the expert, 78%, was observed when a 3dB cut off was 

chosen. Sensitivity and specificity values of 47% and 91% respectively were calculated, 

revealing that misclassifying a waveform which had no function as ‘response’ was the 

principal cause of error.  

The following trace array, originally classified by an expert, is used to demonstrate 

pictorially the performance of the two approaches. All responses shaded with pink 

were classified as ‘no response’ by the expert while those in green were said to have a 

response: 
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Figure  6.2 Trace array for which the expert classified each waveform as ‘response’ or ‘no response’. 

Those said to have no significant retinal response are depicted in pink while all those with a 
physiological response are shown in green. 

 
When the trace array in figure 6.2 was classified using method 1, the windowing 

approach, with a threshold value of 0dB, the results shown in figure 6.3 (left) were 

obtained. Again pink indicates no function and green states that there is a 

physiological response. The highlighted waves seen in figure 6.3 (right) represent the 

discrepancies between the expert and the classifications based on the SNR value:  

      

Figure  6.3 Classifications for the trace array in figure 6.2 when the windowing SNR method was 

utilised to categorise each waveform as ‘response’ or ‘no response’ (left). The classification differences 
between the expert and the SNR method are shown (right). Pink equates to ‘no response’ while green 

corresponds to ‘response’. The right trace array highlights the discrepancies between the expert and the 
SNR approach.  

 
27 of the 61 waveforms (44%) were classified differently from the expert when using 

method 1, which is a considerable difference. Figure 6.4 shows the classifications (left) 

and the discrepancies (right) when the SNR was calculated for each waveform in 

figure 6.2 using method 2, the dead sequence technique, with a threshold of 3dB: 
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Figure  6.4 Classifications when the dead sequence SNR method was used to categorise each waveform 

in figure 6.2 as ‘response’ or ‘no response’ (left). The classification differences between the expert and 
the SNR approach are shown (right). Pink equates to ‘no response’ while green corresponds to 
‘response’. The right trace array highlights the discrepancies between the expert and the SNR approach.  

 

In this instance 17 of the mfERG waveforms (28%) were classified differently by the 

expert and method 2. Classifying a waveform as a physiological response when there 

was no significant response was the greatest source of error. This is consistent with the 

relatively low sensitivity found when examining the 1000 individual waveforms. 

It is evident when examining the trace array in figure 6.2 that this was a relatively 

difficult recording to analyse for two reasons. Firstly many of the responses were 

significantly attenuated, thus making the distinction between ‘response’ and ‘no 

response’ challenging. Secondly there was a considerable amount of baseline drift 

present. On closer inspection it was observed that many of the waveforms mistakenly 

identified as representing an area of functioning retina were affected by baseline drift. 

In the following trace array the mfERG waveforms labelled as A and B were both 

classified as ‘no response’ by the expert. It can be seen that the principal difference 

between the two waveforms is the amount of baseline drift present; it is significant on 

wave A while minimal on wave B:  
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Figure  6.5 Trace array highlighting the potential problems arising from baseline drift. Two waveforms 

have been labelled as A and B, both of which represent areas of no significant retinal function. A is 
affected by baseline drift while B is relatively unaffected by drift. A was classified as ‘response’ by each 
SNR method while B was classed as ‘no response’.  

 
When the SNR values were calculated for the waveforms A and B using method 1 

they were 8dB and -5dB respectively. Waveform A was thus categorised as ‘response’. 

Similarly, when using method 2, SNR values of 15dB and -1dB were calculated for A 

and B respectively, again misclassifying A.  

It was found both when studying the 1000 waveforms and the trace array in figure 6.2 

that superior results were achieved when the noise was calculated using a dead 

sequence rather than the latter part of the mfERG wave. The performance was 

however relatively low for each approach, with each method suffering from poor 

sensitivity. By removing baseline drift from the response it may be possible to improve 

the ability of the SNR to discriminate a physiological response from one with no 

significant function. This will be investigated later on in the chapter.  

6.2 Spline fitting  

Section 6.2 explores the possibility of using spline fitting to obtain the P1 latency of a 

mfERG response and hence its ability to classify a response as ‘delayed’ or ‘not 

delayed’. A spline is a common technique used to fit curves to a data set which 

changes in shape along its x-axis. Knot points are defined along the horizontal axis, 

splitting the data into a number of different sections; a polynomial of degree n is then 

fitted to each segment of the data. The optimal fit is found using the least squares 

method, a procedure utilised to establish the curve most appropriate to a data set. This 

is done by calculating the difference between the fitted curve and the actual data at 

each data point, squaring each difference and then summing the results. This process 
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is carried out for each curve; the optimal solution is that with the smallest summation 

value.  

The mfERG system utilised throughout this thesis enables the user to fit a spline to the 

waveforms. The operator dictates both the resolution and the order of the spline. The 

former defines the number of segments into which the data are divided while the latter 

determines the order of polynomial used. To locate P1, the maximum value of the 

spline between data points 42 and 80 (corresponding to 35-67ms when using a 

stimulus frequency of 75Hz) is found. These values were chosen as they encompass 

the range of P1 latencies seen clinically when using the particular experimental 

protocol used for this thesis. The time value at this maximum point was therefore 

defined as the latency of P1. The following image demonstrates a spline fit to a 

mfERG waveform: the blue image is the physiological response while the red curve is 

the spline. Two red circles can be seen, the second of which is where the spline has 

located P1. It can be seen that this is the maximum point on the spline. The first circle, 

the estimation for N1, is simply the minimum value of the mfERG waveform in the 

first 50 data points (41.5ms when the stimulation frequency is 75Hz). The spline 

places cursors for N1 and P1 at the data points on the mfERG response (as opposed to 

on the spline) corresponding to the latencies found by the spline. The latency of P1 

will be concentrated on in this section.  

 

Figure  6.6 The method by which the spline locates P1. The mfERG response is shown in blue while the 

spline fit is red; the first circle, seen at the first trough, is where the spline has located N1. The second 
circle, at the peak of the spline, corresponds to the P1 latency, as found by the spline. It has located P1 
accurately; in this instance the maximum value of the mfERG waveform would have been 
inappropriate for locating P1. 

 
The aim was to establish the most effective spline parameters (polynomial order and 

resolution) for locating P1 and hence distinguishing responses which are delayed from 

those which are within normal timing limits. 

P1 latency 
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6.2.1 ‘Delayed’ or ‘not delayed’ classification 

6.2.1.1 Methods 

The 1000 waveforms utilised in section 6.1 to study the potential of the SNR to 

distinguish between ‘response’ and ‘no response’ were used. 694 of these waveforms 

had been classified as ‘response’; the expert therefore stated the P1 latency for each of 

these. In chapter 3 the normative range was presented for the mfERG, showing that 

responses with a P1 latency of 42ms or less were within normal limits. Each of the 694 

responses was therefore classified as ‘delayed’ or ‘not delayed’ based upon this normal 

range.  

The spline parameters were varied to ascertain the spline which would yield the closest 

agreement with the expert. The mfERG system allows both the order of the 

polynomial and the resolution to be varied from 1 to 15. Upon inspection it was found 

that when using a polynomial with an order of four or less the spline was unable to 

form a suitable fit to the data while a spline using a polynomial with an order of ten or 

greater fitted too closely to the data. The latter therefore lacked the generalisation 

required in cases when P1 was not the maximum value. This can be seen in figure 6.7 

where polynomials of degree four (left) and ten (right) were chosen:  

          

Figure  6.7 Locating P1 with a spline using a fourth order polynomial (left) and a tenth order polynomial 
(right). Again the mfERG response is shown in blue while the spline fit is red. Neither the fourth nor the 

tenth order spline located P1 accurately. 

 
Polynomials with an order of 5, 6, 7, 8 and 9 were therefore investigated. Similarly it 

was observed that when a resolution of less than 6 or greater than 10 was chosen a 

poor fit to the data was obtained therefore resolution values of 6, 7, 8, 9 and 10 were 

considered. 25 different spline parameters were thus evaluated (5 different degrees of 

polynomial, each with one of the 5 resolutions). For each set of parameters a P1 

latency value was determined for a response, enabling it be classified as ‘delayed’ or 

‘not delayed’. The classifications provided by the expert and the spline were compared 

for each of the 694 waveforms allowing the agreement between the expert and the 

P1 latency 
P1 latency 
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spline to be calculated. This was done for all 25 spline parameters to establish those 

most effective for stating if a waveform is delayed or within normal limits.  

6.2.1.2 Results 

The following table details the results obtained when using the 25 different spline 

parameters: 

Polynomial 
Order 

Resolution % agreement 
with expert 

6 80 

7 81 

8 81 

9 82 

 
 

5 

10 85 

6 82 

7 82 

8 83 

9 84 

 
 
6 

10 84 

6 83 

7 79 

8 83 

9 84 

 
 

7 

10 84 

6 78 

7 84 

8 84 

9 83 

 
 

8 

10 82 

6 82 

7 82 

8 80 

9 82 

 
 

9 

10 77 

Table  6.3 Agreement between the expert and the different splines when classifying responses as 

‘delayed’ or ‘not delayed’, based on their P1 latency. The order and the resolution of the spline was 
altered to find the optimal parameters; the highest agreement was found when using a 5th order 
polynomial and a resolution of 10.  

 
It is evident that the most promising results were achieved when using a spline with a 

5th order polynomial and a resolution of 10 (O5_R10); an agreement of 85% between 

the spline and the expert was achieved. The sensitivity and specificity were 90% and 

74% respectively when this particular spline was utilised implying that classifying a 

response as ‘delayed’ when it had a P1 latency of less than 43ms was the greatest 

problem. When those responses which were incorrectly categorised were inspected it 
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was noted that for 59%, the P1 latency (as stated by the expert) was within 1ms of the 

boundary between normal and delayed (i.e. 42-43ms), while 76% were found to be 

within 2ms of this threshold (i.e. 41-44ms).  There was very little difference in 

performance between many of the different splines investigated however as O5_R10 

yielded the optimal results it will be discussed for the remainder of the chapter.  

6.2.2 Ability to locate P1 accurately 

This section investigates the ability of the spline fitting technique to locate P1 

accurately. 

6.2.2.1 Methods 

In section 6.2.1 the expert and the spline O5_R10 stated a P1 latency for each of the 

694 waveforms. These values were exported to Excel where the timing difference 

between the spline’s and the expert’s assessment of P1 was calculated for each 

response. The median discrepancy was calculated for the set of mfERG responses, as 

was the maximum timing difference and the 95th percentile for the discrepancy. 

6.2.2.2 Results 

The median, the maximum and the 95th percentile for the timing difference were 2ms, 

30ms and 15ms respectively. A maximum timing difference of 30ms is significant, as 

is a 95th percentile value of 15ms. These values imply that spline fitting could not be 

used with confidence for stating the actual P1 latency and hence for comparing the 

latency of responses within one trace array or from sequential visits. It was of interest 

to dissect the results further to reveal the cases where spline fitting performed well and 

those for which it made mistakes. Methods of increasing the accuracy of the technique 

could then be investigated. The following table details the errors made, showing the 

percentage of waveforms correctly analysed to within specified time periods: 

Difference (ms) 0 ≤1 ≤2 ≤3 ≤4 ≤5 ≤10 ≤15 ≤20 

% of waveforms correctly 

analysed to within each 
time difference 

12 37 65 75 85 86 93 95 96 

Table  6.4 Examing the difference in P1 latency defined by the spline and the system – the percentage of 

responses correctly analysed to within different time periods are shown. It can be seen that the expert 
and the spline stated the same P1 latency for 12% of the responses. They were within 1ms of each other 
for 37%, while for 65% of responses analysed they were within 2ms of one another etc.  
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It can be seen that only 12% of the waveforms were given the same P1 value by the 

expert and the spline, while the spline and the expert were within 2ms of each other 

for 65% of the responses. The percentage of responses for which a significant error was 

made was considerable with 7% of the mfERG waves having an error of greater than 

10ms and 4% with a difference of more than 20ms. When studying the data it was 

observed that the ability of these splines to locate P1 accurately was dependent on the 

quality of the mfERG response. When the response was clearly defined and relatively 

noise free the spline performed well. This can be seen in figure 6.8, with the expert’s 

estimate of P1 shown first, followed by that of the spline O5_R10: 

  

Figure  6.8 Example 1: comparing the P1 located by the expert (left) with that stated by the spline (right). 

The P1 latency defined by the expert has been underlined in red, while that found by the spline is shown 

inside the box. The spline and the expert agreed in this instance. 

    
The spline also performed well when P1 was not at the maximum value. Figure 6.9 

demonstrates this, again with the expert’s cursor shown first followed by that 

identified by O5_R10: 

  

Figure  6.9 Example 2: the P1 latency as stated by the expert (left) and the spline (right). Both the spline 

and the expert located P1 at 43ms.  

 
It was however seen in table 6.4 that for 7% of the responses an error of more than 

10ms was made by the spline. It was found that baseline drift and noise was a problem 

for this group of waveforms. The following waveform, which has been contaminated 

by both noise and baseline drift has been used to demonstrate this. The location of P1 

as stated by the expert (left) and the spline (right) can be seen: 

 

43ms 

40ms 
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Figure  6.10 Example 3: the location of P1 as stated by the expert (left) and the spline (right). There was 

a 27ms discrepancy between the spline and the expert when analysing this noisy mfERG response. 

 
A significant mistake was made by the spline fit; 27ms in this instance, thus 

misclassifying it as ‘delayed’ when it was within normal timing limits. It is evident that 

in the case of high quality recordings this technique has the potential to provide an 

accurate assessment of the P1 latency but that large errors were often made when 

baseline drift or noise was present. The performance of this approach may be 

improved if the baseline drift was removed from the waveform and if the noise was 

decreased. Various methods commonly used to minimise noise were discussed in 

chapter 3 including digital filtering and wavelet analysis. Each of these will be 

considered with a view to improving the signal quality of the mfERG waveforms. The 

efficacy of using spline fitting to classify responses as ‘delayed’ or ‘not delayed’ and to 

locate P1 successfully will then be tested to ascertain if it is improved by the 

application of digital signal processing techniques.  

6.3 Removal of drift 

The removal of baseline drift is studied initially.  Baseline drift is a low frequency 

artefact caused by patient factors such as blinking and eye movement, resulting in a 

skewing of the waveforms. The following trace array shows an example of such a 

recording: 

 

Figure  6.11 An example of a trace array affected by baseline drift. 

 

67ms 
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High pass filters, those designed to attenuate frequencies lower than a predefined 

frequency can be used to minimise the baseline drift. Figure 6.12 shows the trace array 

in figure 6.11 after the application of a 3Hz high pass filter (left) and the equivalent 

after using a 10Hz high pass filter (right): 

    

Figure  6.12 The effect of high pass filtering on the trace array shown in figure 6.11. The left trace array 

was obtained after the application of a 3Hz high pass filter while that shown on the right was acquired 
by using a 10Hz high pass filter. The baseline drift is still present when using the 3Hz high pass filter but 
it is less evident when using a cut off frequency of 10Hz.  

 
It can be seen that the baseline drift was decreased considerably by using the 10Hz 

high pass filter but that it remained a problem when using the 3Hz filter. There is 

however a limitation associated with this technique; the signal can be distorted by the 

filter, resulting in a shift of P1. To demonstrate this problem an individual waveform 

with a P1 latency of 40ms (top waveform in figure 6.13) is utilised. The same 

waveform after the application of a 3Hz high pass filter (middle) and a 10Hz high pass 

filter (bottom) is shown: 

 

 

 

 

 

Figure  6.13 The effect of filtering on an individual mfERG waveform. A waveform before filtering is 
shown first (top). The same waveform is shown after the application of a 3Hz high pass filter (middle) 

and finally after applying a 10Hz high pass filter (bottom). The P1 latency was unaffected by using the 
3Hz high pass filter but was shifted by 2ms when the 10Hz high pass filter was applied.  
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P1 remained at 40ms when using a 3Hz high pass filter but was shifted to 38ms when 

using the 10Hz filter. As the timing of the P1 component is of particular importance 

when analysing mfERG waveforms a latency shift such as this is unacceptable. A 

decrease in the P1 amplitude was also noted when utilising the 10Hz high pass filter; 

ideally a change in amplitude would be avoided as this measurement is used clinically 

when analysing the responses. An alternative method was therefore investigated to 

remove this low frequency artefact: the use of spline fitting. 

6.3.1 Methods 

The aim was to fit a spline to the mfERG waveform and to subtract the y-value of the 

spline from the y-value of the response at each data point. To demonstrate this a 

waveform affected by baseline drift was selected from the trace array shown in figure 

6.11 This can be seen in figure 6.14 (left). The mfERG waveform is depicted in blue 

while the red curve shows the spline fit; a 2nd order polynomial with a resolution of 

five was chosen in this case. When the value of the spline was subtracted from that of 

the mfERG response at each data point the waveform shown on the right of figure 

6.14 was obtained: 

   

Figure  6.14 Demonstrating the removal of baseline drift from an individual waveform using the spline 

fitting technique. The mfERG waveform affected by drift (left) is shown in blue while the 2nd order 
spline is shown in red. It can be seen from the waveform on the right that the drift has been successfully 

removed. 

 
It is evident from figure 6.14 that the baseline drift originally present on the waveform 

is now absent. In order to select the most appropriate spline for this purpose, 

polynomials with an order of one and two were used while a resolution of five was 

chosen. Only low order polynomials were considered as the aim was to model the 

general trend of the data (e.g. an upwards tilt) rather than to obtain a close fit to the 

data. 20 responses were then selected to ascertain if this technique distorts the 

response; the P1 latency of each waveform was assessed before and after the removal 

of drift to determine if the responses were shifted in time. 15 of these were 

contaminated by baseline drift while 5 had minimal drift. Responses both with and 
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without drift were chosen to ensure that this technique could be applied to all 

waveforms, irrespective of the amount of baseline drift present, if successful. 

6.3.2 Results 

When splines with a polynomial of order 1 (left) and 2 (right) were applied to the trace 

array shown in figure 6.11 the following results were obtained: 

   

Figure  6.15 The removal of baseline drift using a spline with a first order (left) and a second order (right) 

polynomial. Baseline drift is still evident when a first order polynomial was employed whereas it is 
minimal on the right trace array, for which a second order polynomial was utilised.   

 

It can be seen that using a first order polynomial was insufficient to completely 

remove the baseline drift while a spline with a polynomial of degree two removed the 

drift from the signals. When the latter was applied to 15 responses affected by baseline 

drift, the drift was successfully removed from the waves while the latency of P1 was 

unaffected. This can be seen in table 6.5: 
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Original waveform P1 
latency 
(ms) 

Change in P1 
latency (ms) 

New waveform 

 

40 0 

 

 

56 0 

 

 

43 0 

 

 

45 0 

 

 

51 0 

 

 
50 0 

 

 

40 0 

 

 

43 0 

 

 

39 0 

 

 

41 0 

 

 

43 0 

 

 
40 0 

 

 
41 0 

 

 

48 0 

 

 

49 0 

 

Table  6.5 Investigating the effect of subtracting a spline from 15 responses affected by baseline drift. The 

original responses are shown on the left while those on the right have been acquired by subtracting the 
spline. No change in the P1 latency was observed for any of the 15 waveforms.  

 
No significant difference in the amplitude of P1 was noted for any of the 15 

waveforms. The equivalent results when applied to responses with negligible drift can 

be seen in table 6.6: 
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Original waveform P1 latency 
(ms) 

Change in 
P1 latency 
(ms) 

New waveform 

 

39 0 

 

 

55 0 

 

 

50 0 

 

 

40 0 

 

 

44 0 

 

Table  6.6 Studying the effect of subtracting a spline from five responses unaffected by baseline drift. The 

responses before (left) and after (right) subtracting the spline are shown. No change in the P1 latency 
was observed for the five responses.  

 

Again none of the responses were shifted in time and the amplitude of the signals was 

unaffected. This technique can therefore be applied effectively to remove the drift from 

the mfERG waveforms without distorting the signal; it will be used for the remainder 

of the chapter.  

6.4 Digital filtering 

In addition to baseline drift, noise on signals caused problems when analysing the data 

therefore section 6.4 investigates the applicability of digital filtering techniques. The 

mfERG system used throughout this thesis offers a number of different digital filtering 

options. These include selecting the filter response, the frequency range of the filter 

and the type of filter. Each of these will be described in the following sections. 

6.4.1 Filter response 

The four types of filter response available to the user are low pass, high pass, bandpass 

and bandstop. A low pass filter is one which passes low frequencies while attenuating 

high frequencies. In contrast a high pass filter passes high frequencies and attenuates 

lower ones. A bandpass filter stops all frequencies out with a frequency range defined 

by the user while a bandstop filter blocks frequencies within a specified range. For 

each type of filter a cut off frequency must be defined. This is the frequency at the 

boundary between a passband and a stopband. For an ideal filter, signals in the 

passband are unaffected while all those in the stopband are attenuated. In practice this 
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is not the case as a real filter decreases the input power by a factor of two at the cut off 

frequency as opposed to eliminating it.  

The order of a filter determines the rate of attenuation of the signal at frequencies in 

the stopband. In the case of a low pass filter, for example, this applies to all 

frequencies greater than the cut off frequency. A first order low pass filter halves the 

signal amplitude for every doubling of the frequency while a second order low pass 

filter attenuates the frequencies at a greater rate; the signal amplitude is quartered each 

time the frequency doubles. The same applies to high pass filters with the exception 

that the amplitude is halved when the frequency is halved for first order filters and 

quartered when the frequency is halved when using a second order filter. The filters 

incorporated into the mfERG system are all first order therefore all subsequent work 

utilises these.  

6.4.2 Filter Type 

The three types of digital filter available in the system are the Bessel, the Butterworth 

and the Chebyshev filter, each digitised versions of these types of analogue filters. The 

Butterworth filter has a frequency response which is flat (theoretically) in the passband 

and then tapers off to zero. Chebyshev filters have a sharper transition from the 

passband to the stopband however the gain in the passband varies. Bessel filters 

neither have an optimally constant gain in the passband nor a sharp transition from 

the passband to the stopband. This linear filter however preserves shapes well when 

filtering signals (139). Bessel filters were chosen for all subsequent analysis as they 

cause the least distortion to the signals.  

6.4.3 Methods 

To design a suitable filter for improving the mfERG signal it was important to 

determine the frequencies associated with signal and those related to noise; digital 

filtering could then be applied to attenuate those specific to noise. A number of cross 

correlated responses ranging in signal quality were therefore selected and transformed 

from the time to the frequency domain using the method described in appendix 2. 

Frequency components associated with both noise and signal were thus identified. 
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6.4.3.1 Frequency profile of mfERG responses 

Three examples have been selected to present the findings, the first of which is a 

normal physiological signal with very little noise: 

  

Figure  6.16 A normal waveform unaffected by noise (left) and its corresponding frequency spectrum 

(right). The Fourier profile predominantly comprises frequencies between 5 and 60Hz.  

 
It is apparent that the most prominent frequency components lie between 

approximately 5 and 60Hz. The following example is taken from a noisy recording: 

   

Figure  6.17 An example of a noisy waveform (left) and its Fourier profile (right). The magnitude of the 

frequency components less than 5Hz and greater than 60Hz was greater than those seen in figure 6.16. 

 

Frequencies within the 5-60Hz range were again seen however those less than 5Hz 

and greater than 60Hz were significantly increased in magnitude relative to those 

observed in the good recording. A 2nd example of a noisy waveform is shown in figure 

6.18: 
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Figure  6.18 A 2nd example of a noisy waveform (left) and its frequency spectrum (right). In this instance 

the magnitude of frequencies at 60Hz and above was significant.  

 
Again strong frequency components were seen above 60Hz. These findings were thus 

used as an initial basis when designing the different filters. 

6.4.3.2 Filter responses and frequency ranges 

It was evident that frequencies less than 5Hz and greater than 60Hz were 

predominantly associated with noise. A bandpass filter was therefore the most 

appropriate type of digital filter as it would attenuate both high and low frequencies. 

The frequency range chosen for the passband can distort a signal therefore 20 mfERG 

waveforms, ranging in both recording quality and retinal function were selected. The 

P1 latency was reported by an expert for each response prior to filtering. A number of 

filters, each with a different passband frequency range were then applied to the 

waveforms. The P1 latency was stated by the expert and compared with that prior to 

filtering. The upper frequency of the filter was varied from 60Hz to 100Hz in 

increments of 10Hz while both 3Hz and 5Hz were utilised for the lower cut off 

frequency. 

6.4.4 Results 

The following table details the impact the different filters had on the P1 latency for 

each of the 20 mfERG responses. The magnitude of the P1 latency change after 

applying the filter has been shown; ‘+’ indicates a shift to the right. Those values 

shaded in orange have been shifted while those which are white have been unaffected 

by filtering: 



 

  Bandpass frequency range (Hz) 

3-60 3-70 3-80 3-90 3-100 5-60 5-70 5-80 5-90 5-100 Wave P1 lat 
(ms) 

Change in P1 latency after digital filtering (ms) 

 40 +3 +3 +2 +1 0 +2 +2 +2 +1 0 

 
51 +1 +1 +1 0 0 +1 +1 +1 0 0 

 
48 +2 +2 +1 +1 0 +2 +2 +1 +1 +1 

 40 +2 +2 +2 +1 0 +2 +2 +2 +1 +1 

 
40 +2 +2 +2 +1 0 +2 +2 +2 +1 +1 

 38 +2 +2 +2 +1 0 +2 +1 +1 0 0 

 
54 +2 +1 +1 +1 0 +2 +1 +1 +1 +1 

 45 +3 +3 +2 +2 +1 +2 +2 +2 +1 +1 

 
42 +2 +2 +2 +1 0 +2 +2 +1 +1` +1 

 
51 +3 +2 +2 +1 +1 +2 +2 +1 0 0 

 47 +4 +3 +2 +1 +1 +3 +2 +2 +1 +1 

 
41 +2 +2 +1 +1 0 +1 +1 +1 0 0 

 
40 +2 +2 +1 +1 0 +2 +2 +1 +1 0 

 51 +3 +2 +1 +1 0 +2 +2 +2 +1 +1 

 
39 +1 +1 +1 0 0 +1 +1 +1 +1 0 

 
41 +3 +2 +1 +1 +1 +2 +2 +1 +1 +1 

 
37 +2 +2 +1 +1 0 +2 +2 +2 +2 +1 

 
45 +1 +1 +1 0 0 +1 +1 +1 0 0 

 
43 +2 +2 +1 0 0 +1 +1 +1 0 0 

 
40 +3 +2 +1 +1 0 +3 +3 +2 +1 +1 

Table  6.7 The effect of different digital filters on the P1 latency of 20 mfERG responses. Those shaded in orange have been shifted to the right whereas those unaffected by 

filtering are white. 



Alison A Foulis, 2010  Chapter 6, 174  

All 20 waves were shifted when using upper cut off frequencies of 60Hz, 70Hz and 

80Hz. The filter using the largest passband (3-100Hz) had the least impact on the P1 

latency of the responses; four of the mfERG waveforms were delayed by 1ms. These 

responses were however noisier than those filtered using a narrower passband as fewer 

of the frequencies associated with noise were attenuated. Figure 6.19 shows the 

original waveform (top) in addition to this response after the application of 3-100Hz 

(middle) and 5-60Hz (bottom) bandpass filters: 

 

 

 

 

 

Figure  6.19 Demonstrating the effect of filtering on the P1 latency of a response. The mfERG waveform 

prior to filtering is shown first (top), and then after being filtered by a 3-100Hz bandpass filter (middle) 

and a 5-60Hz bandpass filter (bottom). The P1 latency of the middle response has been unaffected by 
filtering whereas the P1 latency of the bottom response has been shifted to the right by 2ms. 

 
The waveform obtained after applying the 5-60Hz filter has a cleaner appearance than 

that from the 3-100Hz filter however it is delayed by 2ms relative to the original 

response. The latency of P1 is important when reporting the responses therefore a shift 

of 2ms is unacceptable. Given that the least distortion was observed for the 20 

responses when using the 3-100Hz filter it was decided to utilise this filter, despite the 

slightly noisier appearance of the responses.  

6.5 Wavelet filtering 

Prior to applying the drift removal and digital filtering to the mfERG waveforms a 

final method was investigated to improve signal quality: wavelet filtering. It was 

discussed in chapter 3 that the advantage of wavelet filtering is that it decreases the 

noise present in the signal while maintaining the original shape. The mfERG system 

utilised for this thesis allows both the decomposition level and the order of the wavelet 

to be defined. 
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6.5.1 Decomposition level  

When using wavelet filtering the time domain signal is passed through a series of high 

pass and low pass filters. At the first stage the signal is split into two parts using a high 

and a low pass filter. Two versions of the signal then exist: one contains the low 

frequencies within the signal which corresponds to an approximation, while the other 

contains the high frequencies, the fine detail. The same process is repeated on the low 

pass portion of the signal, again resulting in two versions of the signal; an 

approximation and fine detail. The user defines how many times this process is 

performed. Figure 6.20 illustrates this process: 

 

Figure  6.20 An overview of the wavelet decomposition process. The signals are filtered by both high 

and low pass filters; the high pass part represents the detail while the low pass part corresponds to 
approximations. 

 
The multifocal ERG system allows the decomposition level (i.e. the number of times 

the signal is split using a high and a low pass filter) to be varied from one to four. 

6.5.2 Wavelet Order  

Wavelet analysis is similar to Fourier analysis in that it breaks a signal into its 

constituent parts for analysis. The Fourier transform decomposes the signal into a 

series of sine waves, each of different frequencies whereas the wavelet transform 

breaks the signal into a series of wavelets. While a sine wave is of infinite length and is 

smooth, a wavelet is more irregular in shape and has a finite length. As a result 

wavelet analysis performs well when there are sharp discontinuities in the data being 
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studied. The mfERG system enables the user to select the wavelet function used. Ten 

different wavelet functions are available, each of which is from the Daubechie wavelet 

family. These are translated and dilated versions of one another and are shown in 

figure 6.21: 

 

Figure  6.21 The Daubechie wavelet family (adapted from the Mathworks wavelet toolbox). 10 wavelet 

functions can be seen, each of which is a dilated and translated version of the others.  

 

6.5.3 Methods 

The 20 mfERG responses utilised in section 6.4.3 were once again selected to study 

the efficacy of wavelet filtering. Each waveform was filtered, varying both the 

decomposition level (i.e. from one to four) and the wavelet used (i.e. the ten waves 

shown in figure 6.21). The P1 latency of the waveforms after wavelet filtering was 

assessed by an expert and compared with the original value to determine if they had 

been distorted by this type of filtering. Upon initial inspection it was noted that using a 

decomposition level of one did not impact greatly on the signal whereas a 

decomposition level of four distorted the waveform significantly. All results presented 

therefore used decomposition levels two and three. Similarly when using the first 

wavelet in the family the response had a much less smooth appearance than the 

original wave as the wavelet utilised was a step function. This was not the case when 

using higher orders therefore wavelets two to ten were studied.  

6.5.4 Results 

The following table illustrates the shift of P1 latency after filtering the individual 

waveforms; a minus indicates a shift to the left while a plus is a shift to the right. 

Values have been shaded as grey, pink or white. These represent a shift to the left, the 

right and no shift, respectively: 



 

Decomposition level 2 Decomposition level 3  
Order 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 

Wave P1 lat (ms) Change in P1 latency after wavelet filtering (ms) 

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

51 -1 0 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 -1 -1 0 0 0 -1 

48 +1 +1 +1 +1 +1 +1 +1 +1 +1 0 0 0 +1 +2 +1 0 0 +2 

40 +1 0 0 0 0 0 0 0 0 +1 0 0 0 -1 0 0 0 0 

40 +1 +1 +1 0 +1 +1 +1 0 0 +1 0 0 0 0 +1 0 0 0 

38 0 0 0 0 0 0 0 0 0 +1 +1 0 0 0 0 0 0 0 

54 +1 +1 0 0 +1 +1 +1 0 0 +3 +1 +1 +2 +2 +1 +1 +1 +2 

45 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 0 +1 +1 +1 

42 -1 0 0 0 0 -1 -1 0 0 0 0 -1 0 +1 +1 -1 0 0 

51 +1 0 0 0 0 0 0 0 0 +1 0 0 -1 0 0 0 -1 -1 

47 +1 +1 0 0 0 0 0 0 0 +4 +2 +2 +2 +3 +2 +1 +1 +2 

41 0 0 +1 -1 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 0 

51 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 

39 0 0 0 0 -1 0 0 0 -1 +1 0 0 0 -1 +1 0 0 -1 

41 -1 0 0 0 0 0 0 0 0 0 -1 0 +1 +1 0 0 0 +1 

37 0 0 +1 +1 +1 +1 0 0 +1 +2 -1 +1 +2 +1 0 0 +2 +3 

45 0 0 0 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 

40 0 0 0 0 0 0 0 0 0 +1 +1 +1 +1 +1 0 0 +2 +2 

Table  6.8 The effect of different wavelet filters on the P1 latency of 20 mfERG responses. Those unaffected by the wavelet are shown in white, while those shifted to the right are 

shown in pink. Shifts to the left are depicted in grey. 
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The greatest distortion was noted when using a decomposition level of three and an 

order of two (i.e. the second wavelet). When using a decomposition level of two and 

the ninth wavelet only two of the 20 responses were shifted; neither of these was 

distorted by more than 1ms. Upon observation the waves obtained when using a 

decomposition level of three had a much cleaner appearance than those acquired 

when a decomposition level of two was chosen. This is due to the response being 

passed through an additional layer of high and low pass filters thus removing more 

fine detail (i.e. noise) from the signal. When a decomposition level of three was 

selected the least distortion was achieved when using the eighth wavelet; five of the 

responses were shifted, with a maximum distortion of 1ms. It was thought that these 

responses may be easier to analyse when using spline fitting due to their cleaner 

appearance. Subsequent discussion will therefore concentrate on the best wavelets 

when using both the second and the third decomposition levels.  

The following example shows an unfiltered waveform (top), followed by the same 

waveform filtered using firstly a wavelet with a decomposition level of two and an 

order of none (D2_O9) (middle) and secondly a wavelet with a decomposition level of 

three and an order of eight (D3_O8) (bottom). The P1 latency has been highlighted in 

each case: 

 

 

 

 

 

Figure  6.22 The impact of wavelet filtering on a mfERG response. The original waveform prior to 

filtering is shown initially (top), while that after applying the wavelet filter D2_O9 is shown second 
(middle). The third response shows the same mfERG waveform after applying the wavelet filter D3_O8 
(bottom). The P1 latency of each filtered response is the same as that of the original waveform. Note 
that the response filtered using D3_O8 has a much cleaner appearance than that obtained using D2_O9.  

 
No shift of P1 latency was observed in this case when using either of the wavelet 

parameters. That acquired when using the higher decomposition level has a much 

cleaner appearance than the other two responses, with a clear maximum point. It is 
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evident that wavelet analysis has the ability to decrease the noise present in the 

mfERG responses while the shift of the waveform is minimal.  

6.6 Combining filters, wavelets and drift removal 

Having investigated the removal of baseline drift, the use of digital filtering and 

wavelet analysis it was decided to combine these techniques to decrease the noise 

present in the mfERG responses. Again it was important to examine the distortion 

when combining the three techniques to ensure that it did not result in a significant 

shift of the responses. The same 20 mfERG responses utilised in previous sections 

were chosen. A bandpass filter with a frequency range of 3-100Hz was selected as this 

was shown to produce the least distortion in section 6.4.4. The baseline drift was 

removed using spline fitting with a second order polynomial while two wavelet filters 

were chosen; D2_O9 and D3_O8. D2_O9 was selected as it was shown to cause the 

least distortion to the signal while D3_O8 produced a significant improvement to the 

appearance of the waveforms which may be useful when locating P1. The original 

responses are shown along with the filtered responses and the changes in P1 latency. 

As before a ‘+’ indicates a shift to the right and ‘- ‘denotes a shift to the left. 
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Wave P1 latency 
(ms) 

3-100Hz; 
D2_O9  
Latency 
change 
(ms) 

Filtered wave  3_100Hz,
D 3_O8 
Latency 
change 
(ms) 

Filtered wave 

 
40 0 

 

0 

 

 

51 0 

 

0 

 

 
48 +1 0 

 
40 0 0 

 
40 0 0 

 
38 0 0 

54 0 0 

 
45 0 0 

 

42 0 -1 

 

51 0 +1 

 
47 +1 +1 

 
41 +1 +1 

 
40 0 0 

51 0 0 

 

39 0 0 

41 0 0 

37 0 0 

 

45 0 0 

 

43 0 0 

 

40 0 +1 

Table  6.9 The effect of combining digital filters and wavelet filters on the P1 latency of 20 mfERG 

responses. The shift of the P1 latency is shown for 20 mfERG responses when drift has been removed, a 
3-100Hz filter was applied and the wavelet filters D2_O9 (middle column) or D3_O8 (right column) 
were utilised. Those acquired using D3_O8 have the cleanest appearance however a greater number 
were shifted than when D2_O9 was applied.  

 
As was seen when using only the wavelet filtering, fewer responses were distorted by 

D2_O9 than D3_O8; three responses were shifted to the right when using D2_O9 

while five were affected by applying D3_O8. It can however be seen that those 

waveforms obtained when D3_O8 was chosen had a much less noisy appearance. It 

was observed that the P1 amplitude of the responses was affected by using each of the 
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filtering options. An average change of 3nV and 7nV was noted when using the 

bandpass filter in combination with the D2_O9 and D3_O8 wavelets respectively.  

Different methods have been investigated to decrease the noise present in a trace array 

with a view to easing the interpretation of the test. It has been shown that the 

appearance of the mfERG waveforms can be significantly improved by combining 

filtering and wavelet techniques in addition to removing the baseline drift using spline 

fitting. It was therefore of interest to repeat the experiments conducted in sections 6.1 

and 6.2 to establish if better results could be achieved when applied to less noisy 

signals.  

6.7 SNR for ‘response’ or ‘no response’ classification using 

filtered signals 

The ability of the SNR to distinguishing between a physiological response and no 

retinal function is discussed first. 

6.7.1 Methods 

The 1000 responses for which the SNR was calculated in section 6.1 were used. 

Baseline drift was removed in addition to filtering using a 3-100Hz bandpass filter and 

a D2_O9 wavelet filter. D3_O8 was not investigated as the cleaner signal appearance 

it provided was only thought to be advantageous when locating P1. As before, two 

methods were applied to calculate the SNR: that using a signal window and a time 

window; and that employing an unused sequence to represent the noise.  

6.7.1.1 Noise window and signal window after signal processing (method 3) 

The SNR was calculated using the method described in section 6.1.1.1. As before 

threshold values of 0, 1, 2, 3, 4 and 5dB were chosen to distinguish between ‘response’ 

and ‘no response’; the value yielding the highest agreement with the expert was 

considered the optimum threshold value for stating if a waveform contained a 

physiological response.  
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6.7.1.2 Dead sequence after signal processing (method 4) 

In addition to minimising the drift and filtering the individual mfERG responses, the 

baseline drift was also removed from the dead sequence. The SNR was then calculated 

using equation 3.3, again with a time window of 0-80ms. As before the best threshold 

value was defined by assessing the classification accuracy achieved using a number of 

different cut off values.  

6.7.2 Results 

6.7.2.1 Noise window and signal window after signal processing (method 3) 

Table 6.10 shows the level of agreement between the expert and the classification 

defined by the SNR value for the different cut off values: 

Cut off (dB) 0 1 2 3 4 5 

% agreement 
with expert 

81 84 82 80 73 65 

Table  6.10 Percentage of waveforms correctly analysed as ‘response’ or ‘no response’ using the 

windowing SNR method after the application of signal processing techniques. The value defining the 
threshold between a physiological response and no significant function was altered. 

 

This approach achieved an accuracy of 84% when using a threshold value of 1dB, with 

sensitivity and specificity values of 68% and 91% respectively. It is evident that 

removing the drift from the signal and filtering the waveforms improved the 

performance; an accuracy of 68% was achieved prior to applying signal processing 

techniques.  

6.7.2.2 Dead sequence after signal processing (method 4) 

The ability of the SNR to differentiate between a response and no significant function 

when the SNR was calculated using a dead sequence can be seen in table 6.11: 

Cut off (dB) 0 1 2 3 4 5 

% agreement 
with expert 

76 80 84 89 87 83 

Table  6.11 Percentage agreement between the expert and the dead sequence SNR (after the application 

of signal processing techniques) when categorising waveforms as ‘response’ or ‘no response’. The 
performance for different SNR cut off values is shown. 
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89% of waveforms were given the same classification by both the expert and the 

computer when a threshold of 3dB was chosen. A sensitivity of 72% was found while 

the specificity was 95%. Again an increase in the ability of this technique to classify 

the waveforms into ‘response’ and ‘no response’ was achieved (78% using original 

signals) by applying filtering techniques and removing the drift. The sensitivity of this 

method did however remain relatively poor. Of those waveforms mistakenly identified 

as ‘response’, 40% had a SNR of 4dB; i.e. their SNR was very close to the threshold 

value. It was also noted that 17% of the false negative results were contaminated by 

large amounts of 50Hz noise.  

In section 6.1.2 a trace array was utilised to demonstrate pictorially the performance 

achieved using the two SNR methods. The same trace array was selected to 

demonstrate the ability of methods 3 and 4 to categorise the signals. The classification 

of responses using the noise window and signal window SNR technique with a 

threshold of 1dB is shown in figure 6.23 (left), with pink depicting ‘no response’ and 

green a ‘response’. The discrepancies between these classifications and those of the 

expert are also shown in figure 6.23 (right): 

    

Figure  6.23 Classifications for trace array in figure 6.2 when the windowing SNR method (after the 

application of signal processing techniques) was utilised to categorise each waveform as ‘response’ or 
‘no response’ (left). The classification differences between the expert and the SNR method are shown 

(right). Pink equates to ‘no response’ while green corresponds to ‘response’. The right trace array 
highlights the discrepancies between the expert and the SNR approach.  

 
14 differences of classification were observed between the expert and the SNR 

approach (23% of responses in the trace array). Finally the equivalent plots can be seen 

when using method 4 with a 3dB cut off: 
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Figure  6.24 Classifications when the dead sequence SNR method (after the application of signal 

processing techniques) was used to categorise each waveform in figure 6.2 as ‘response’ or ‘no response’ 

(left). The classification differences between the expert and the SNR approach are shown (right). Pink 
equates to ‘no response’ while green corresponds to ‘response’. The right trace array highlights the 
discrepancies between the expert and the SNR approach.  

 

In this instance ten responses were classified incorrectly (16%). This represented the 

fewest errors of the four approaches studied, although the error rate remained 

relatively high. Of those ten waveforms classified incorrectly six had a SNR value very 

close to the threshold; three of those classified as ‘no response’ by the expert had a 

SNR of 4dB while three which were said to be ‘response’ by the expert had a SNR of 

3dB. 

The largest improvement in performance was seen for waveforms originally affected 

by baseline drift. In section 6.1.2 two responses, both representing areas of no retinal 

function were extracted from a trace array. Only one of these was affected by drift. It 

was shown that the SNR calculated for the waveform with drift was high using both 

methods (8dB and 15dB for methods 1 and 2 respectively) thus misstating that the 

waveform represented an area of functioning retina. The same trace array is shown 

below, after the removal of drift and the application of digital and wavelet filtering:  
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Figure  6.25 The trace array shown in figure 6.5 after the removal of drift; individual waveforms are 

highlighted. After the removal of drift both A and B were correctly identified as ‘no response’ by each 
SNR method.  

 
In this instance the SNR values for A and B were 0dB and -3dB respectively when 

utilising method 3 and 0dB and -1dB respectively when using method 4. Each wave 

was therefore classified correctly as having no physiological response, which was not 

the case prior to applying the various signal processing techniques. 

It has been demonstrated that removing the baseline drift from the mfERG responses 

and applying digital and wavelet filtering techniques improved the ability of the SNR 

to distinguish waves with a physiological response from those with no significant 

function. This was observed both when using the dead sequence method and the noise 

window and signal window approach. As was found when using the original signals, 

the dead sequence technique yielded superior results when compared with those 

achieved using the method proposed by Zhang et al., with 89% of responses being 

correctly classified by the computer.  

6.8 Spline fitting using filtered signals 

This section examines the ability of the spline fitting technique to classify responses as 

‘delayed’ or ‘not delayed’ and to locate the P1 component accurately after reducing 

the noise present in the mfERG responses. 
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6.8.1 ‘Delayed’ or ‘not delayed’ classification 

6.8.1.1 Methods 

The 694 mfERG responses utilised in section 6.2 were used. The noise removal 

techniques employed when calculating the SNR value were applied; these included the 

removal of baseline drift using spline fitting, a Bessel filter with a passband frequency 

range of 3-100Hz and wavelet filtering using a decomposition level of two and an 

order of nine (D2_O9). In section 6.5 it was shown that the wavelet filter with a 

decomposition level of three and an order of eight (D3_O8) shifted a greater number 

of the responses but that the signals produced had a less noisy appearance. It was 

therefore decided to investigate this type of wavelet filter in addition to D2_O9 as the 

recovered responses may be easier to cursor when using spline fitting. Consequently 

two experiments were conducted with a view to finding the best possible solution:  

1) drift removal; 3-100Hz Bessel filter; D2_O9 wavelet; 

2) drift removal; 3-100Hz Bessel filter; D3_O8 wavelet. 

For each of these experiments the filtered waveforms were analysed by the spline 

O5_R10 and were subsequently categorised as ‘delayed’ or ‘not delayed’ based on the 

P1 latency provided by the spline. This classification was compared with that of the 

expert for each of the 694 responses allowing the ability of the spline to analyse the 

responses using the two different filtering options to be assessed. 

6.8.1.2 Results 

The following table details the agreement between the expert and the spline when 

using the different filtering parameters: 

Baseline removal 

3-100Hz Bessel filter 

 

Wavelet D2_O9 Wavelet D3_O8 

% agreement 
with expert 

89 90 

Table  6.12 Agreement between the expert and the spline for different filtering parameters when 

classifying responses as normal or abnormal based upon their P1 latency. 
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It is evident that the ability of the spline to categorise responses as ‘delayed’ or ‘not 

delayed’ was improved by reducing the noise present on the waveforms.  It increased 

from 85% (when using the original data) to 90% when using D3_O8. Sensitivity and 

specificity values of 96% and 81% respectively were calculated. The agreement 

between the spline and the expert was slightly better when using the wavelet D3_O8 

however there was very little to distinguish between the results. It was observed that of 

those waveforms which were misclassified 72% had a P1 value (as stated by the 

expert) within 1ms of the threshold between delayed and normal, while 94% were 

within 2ms of this timing boundary, implying that the majority of responses which 

were misclassified were close to boundary between delayed and normal.  

6.8.2 Ability to locate P1 accurately 

The ability of the spline to provide a reliable value for the P1 latency when applied to 

filtered mfERG waveforms is examined in section 6.8.2. 

6.8.2.1 Methods 

In the previous section the spline stated a P1 latency for each of the 694 waveforms, 

first when filtered using the wavelet D2_O9 and secondly when using the wavelet 

D3_O8 (for each experiment the baseline drift was removed and a 3-100Hz Bessel  

filter was applied). These values were exported to Excel where the timing difference 

between the spline and the expert was calculated for each response for the two filtering 

experiments. The median discrepancy was established for the set of mfERG responses, 

as was the maximum timing difference and the 95th percentile for the timing 

difference.  
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6.8.2.2 Results 

Baseline removal 

3-100Hz Bessel filter 

P1 latency 
differences between 
the spline and the 

expert Wavelet D2_O9 Wavelet D3_O8 

Median (ms) 1 1 

Maximum (ms) 24 22 

95th percentile (ms) 5 5 

Table  6.13 P1 latency differences between the spline and the expert for different filtering parameters. 

The median, the maximum and the 95th percentile for this timing difference are shown for the testing 
data set. 

 
The ability of the spline to state the latency of P1 was improved by reducing the noise 

and the drift present on the responses. The median was decreased from 2ms to 1ms 

while the 95th percentile decreased from 15ms to 5ms using each of the filtering 

options. The maximum timing discrepancy between the expert and the spline was 

however considerable. The results achieved using the two different wavelet filters were 

similar. It was of interest to inspect the results more closely. As the results achieved 

using the different wavelets were similar, only those using the wavelet D3_O8 will be 

considered, as they were slightly superior. The following table depicts the percentage 

of responses analysed correctly to within a specified time period:  

Timing difference (ms) 0 ≤1 ≤2 ≤3 ≤4 ≤5 ≤10 ≤15 ≤20 

% of waveforms correctly 
analysed to within each time 
difference 

17 52 78 88 93 96 98 99 99.4 

Table  6.14 Examing the difference in P1 latency defined by the spline and the system after filtering the 

responses – the percentage of responses correctly analysed to within different time periods are shown. It 
can be seen that the expert and the spline stated the same P1 latency for 17% of the responses. They 
were within 1ms of each other for 52%, while for 78% of responses analysed they were within 2ms of 
one another etc.  

 

17% of the responses were given the same P1 value by the expert and the spline. This 

is slightly better than that achieved when analysing the waveforms prior to the 

removal of drift and the application of filtering, when an agreement of 12% was found. 

Previously an error of greater than 10ms was made for 7% of the responses; this has 

been decreased to 2% by filtering the data. Similarly the percentage for which there 

was a disagreement of more than 20ms was decreased from 4% to 0.6% after the 

application of noise reduction techniques. It is evident that reducing the noise present 

on the waveforms and minimising the baseline drift improved the ability of the splines 
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to locate P1. To demonstrate one such waveform for which this was the case, the 

response selected in section 6.2.2.2 to highlight the problems resulting from baseline 

drift is used. The expert reported a P1 latency of 40ms for this response whereas the 

spline O5_R10 located P1 at 67ms prior to the application of noise removal 

techniques. The original signal, analysed by the expert can be in figure 6.26 (left). On 

the right, the P1 value as found by the spline after the application of baseline drift 

removal, digital filtering and the wavelet D3_O8 is shown: 

   

Figure  6.26 Example 3: the location of P1 as stated by the expert (left), and the spline after filtering the 

response. The expert and spline both identified a P1 latency of 40ms. Prior to the removal of the 
baseline drift and filtering there was a discrepancy of 27ms between the expert and the spline.  

 

The spline located P1 accurately; the error was therefore decreased from 27ms to 0ms 

by applying the various signal processing techniques. For a small number of 

waveforms gross mistakes were however made; the following figure demonstrates one 

such example. The original response, as classified by the expert is shown (left). On the 

right, the location of P1 as stated by the spline after the waveform was filtered using 

the Bessel filter, the wavelet D3_O8 and the baseline drift was removed is depicted: 

   

Figure  6.27 Example 4: the location of P1 as stated by the expert (left) and the spline after filtering the 

response (right). In this instance there was a 22ms discrepancy between the spline and the expert when 
analysing this noisy mfERG response. 

 
It can be seen that the P1 latency defined by the spline is 22ms later than that stated by 

the expert. Despite the reduction of the noise present on the waveform the later part of 

the response remained raised relative to the start thus the spline made a significant 

error when locating P1.   

40ms 

67ms 
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6.8.3 ‘Decreased’ or ‘not decreased’ classification 

When analysing the mfERG it is also important to establish if a response is decreased 

in amplitude or if it is within normal amplitude limits. This section therefore examines 

the possibility of using spline fitting to classify waveforms as ‘decreased’ or ‘not 

decreased’. When using spline fitting both the N1 and P1 components are located by 

the spline (refer to section 6.2). The P1 amplitude is calculated by the difference in the 

y-values (on the mfERG waveform as opposed to the spline) at each of these data 

points. This can be seen in figure 6.28:  

 

Figure  6.28 The method employed by the spline to calculate the P1 amplitude. The spline is shown in 

red while the mfERG response is blue. The difference in y-value (on the mfERG response) between N1 
and P1 defines the P1 amplitude. 

 

6.8.3.1 Methods 

The expert measured the P1 amplitude for each of the 694 mfERG waveforms said to 

have a response. The location of the waveform in the trace array was noted, as it was 

shown in chapter 3 when establishing the mfERG normative range that the P1 

amplitude of responses decreases with eccentricity. The responses were therefore 

classified as ‘decreased’ or ‘not decreased’ based on their P1 amplitude and their 

position in the trace array. The spline O5_R10 was then applied to each waveform, 

calculating its P1 amplitude using the method described above; each response was 

thus categorised as being decreased in amplitude or as being within normal limits 

based upon this value and its location in the trace array. This classification was 

compared with that of the expert for each of the 694 responses, allowing the ability of 

the spline to categorise the responses to be assessed. Different signal processing 

techniques were applied to the mfERG responses prior to analysing them with the 

spline to establish the optimal paramters; these included: 

 

 

P1 amplitude 
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1) baseline drift removal; 

2) baseline drift removal; 3-100Hz filter; D2_O9 wavelet; 

3) baseline drift removal; 3-100Hz filter; D3_O8 wavelet. 

6.8.3.2 Results 

The following table details the agreement between the expert and the spline when 

using the different filtering parameters: 

 Drift removal Drift removal 

3-100Hz filter 

D2_O9 wavelet 

Drift removal 

3-100Hz filter 

D3_O8 wavelet 

% agreement 

with expert 
93 91 90 

Figure  6.29 Agreement between the expert and the spline for different filtering parameters when 

classifying responses as normal or abnormal in terms of their P1 amplitude. 

 

The highest level of agreement was found when drift removal alone was used; the 

spline and the expert concurred for 93% of responses. This was decreased when 

filtering and wavelet techniques were applied. The sensitivity and specificity values for 

experiment 1 (drift removal only) were 86% and 97% respectively. Of those incorrectly 

classified by the spline, 80% had a P1 amplitude (as defined by the expert) within 5nV 

of the boundary between decreased and normal. 

6.9 Discussion 

The first aim of the experiments described in this chapter was to investigate the 

possibility of using the SNR value to discriminate mfERG waveforms containing a 

physiological response from those with no significant function. Two different 

approaches for calculating the SNR were studied and compared, with a view to 

achieving the optimal results. The first of these, the windowing method proposed by 

Zhang et al. (76), (method 1) has been used by various researchers when analysing 

clinical mfERG data (77-79), while the second technique, the dead sequence 

approach, (method 2) has thus far only been utilised to analyse normal mfERG 

responses (81). It was therefore of interest to establish if the latter technique could be 
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applied successfully to clinical data and if it would improve the ability of the SNR to 

classify waveforms.  

When the ability of the two methods to classify a waveform as ‘response’ or ‘no 

response’ was compared it was found that method 2 produced superior results; 78% of 

the 1000 waveforms were categorised correctly as opposed to 68% when using method 

1. The principal difference between the two methodologies was the data used to 

calculate the ‘noise’ component of the SNR; method 1 utilised the last 80ms of the 

mfERG waveform while method 2 employed a waveform recovered from an unused 

m-sequence. That used by method 2 can be assumed to comprise only noise (i.e. no 

physiological signal) as it was obtained from an m-sequence which had not stimulated 

the eye. A similar presumption cannot however be made for method 1 as the same 

mfERG waveform was used to calculate both the signal and the noise; the noise 

component may therefore contain some physiological response. The more 

representative nature of the ‘noise’ data when using method 2 is likely to explain why 

it achieved better results. 

The accuracy of each method was however relatively low. By removing the baseline 

drift and filtering the waveforms the performance of each SNR method improved; 

accuracies of 84% and 89% were realised by the windowing and the dead sequence 

methods respectively. The improvement in performance for the dead sequence method 

was primarily due to a significant increase in the sensitivity; it changed from 47% to 

72%, while the change in specificity was less, with an increase from 91% to 95%. In 

contrast both the sensitivity and the specificity improved by 16% for the windowing 

method; the sensitivity changed from 52% to 68% while the specificity increased from 

75% to 91%. The elevated performance of each technique can predominantly be 

attributed to the removal of baseline drift from the data. This low frequency artefact 

can cause either the start or the end of the mfERG waveform to be raised, with each 

resulting in different problems when calculating the SNR.  

If, for example the latter part of a true physiological response is elevated it can cause a 

deceptively low SNR to be calculated when using the windowing method; the value of 

the data points in the noise window are increased as a result of the upwards tilt 

causing the value of the ‘noise’ RMS to be larger than it should be. This decreases the 

SNR, potentially causing a waveform to be mistakenly classified as ‘no response’. By 

removing the drift, the RMS of the noise window is not falsely inflated, thus 

increasing the SNR. This explains why the specificity of method 1 was increased by 
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removing the low frequency artefact. Equally, when a waveform containing no 

significant response is tilted so that the initial part of the wave is elevated, it can be 

misclassified as ‘response’, as the values in the signal window are misleadingly high. 

This causes the RMS value for the signal to be higher than it should be, potentially 

resulting in the SNR value being above the threshold value. Removing the tilt from the 

waveform results in a smaller, more representative value for the signal RMS, thus 

reducing the calculated SNR value. The sensitivity was thus improved by removing 

the baseline drift from the responses. 

Only the sensitivity of method 2 was noticeably improved when the drift was 

eliminated. In the case of a waveform with no response, the RMS value of the ‘signal’ 

was deceptively high, both when the start or the end of the wave was raised, although 

this affect was more evident when the start of the wave was elevated. By removing the 

tilt the SNR was decreased to a more representative value, thus reducing the rate of 

misclassifying these waveforms as ‘response’. When waveforms containing a 

physiological response were affected by baseline drift, again the RMS value of the 

signal window was increased; the resulting increase of the SNR value did not however 

cause a misclassification of the response. Consequently the specificity of method 2 was 

not significantly affected by the removal of the baseline drift. 

Removing the baseline drift from the signals and calculating the SNR value using the 

dead sequence with a threshold of 3dB achieved the most accurate results, with an 

agreement of 89% between the expert and the system. However, misinterpreting a 

waveform with no significant function as ‘response’ remained a problem. On 

inspection it was found that 40% of these waveforms had an SNR value of 4dB. In 

other words it was very close to the threshold value. The user could potentially be 

warned that the grading of waveforms with an SNR value of 4dB may be incorrect to 

account for this problem. It was also noted that 17% of the responses misclassified as 

‘response’ were contaminated by 50Hz noise. This was because the 50Hz signal was 

superimposed on the waveforms resulting in an increase in the value of the data 

points. The RMS value calculated for the ‘signal’ component of the SNR was therefore 

inflated, thus producing a falsely high SNR value. If this method were to be used in 

practice caution would have to be taken when analysing mfERG waveforms 

contaminated by 50Hz noise.  

An accuracy of 89%, achieved using the dead sequence method after removing the 

baseline drift from the data, is relatively good; it is comparable with that achieved 
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using the ANN (90%) and is superior to that acquired when using the Fourier profile 

(64%). If this technique were to be used clinically it could not however be used in 

isolation to distinguish between ‘response’ and ‘no response’, as a higher success rate 

would ideally be required. It does however have potential and could be used as part of 

a multilayered approach to the analysis of the mfERG test.  

The second aim addressed in this chapter was to investigate the viability of using 

spline fitting to classify responses as ‘delayed’ or ‘not delayed’ based upon their P1 

latency. The spline found to yield the highest concurrence with the expert used a fifth 

order polynomial and a resolution of ten; 85% of responses were given the same 

classification by the expert and the spline. This spline provided a more generalised fit 

to the mfERG waveforms than those using higher ordered polynomials, which was 

particularly useful when P1 was not the maximum data point. As this is often the case 

when analysing mfERG data this spline produced the best results. A number of 

different noise reduction techniques were subsequently applied to the responses, after 

which the ability of this spline to classify responses as ‘delayed’ or ‘not delayed’ 

increased to 90%. This increase in performance can predominantly be attributed to the 

cleaner appearance of the waveforms, thus making it easier for the spline to locate P1. 

This is better than that achieved using the ANN in chapter 5, for which the agreement 

with the expert was 86%.  

Of interest when investigating the different digital filtering parameters, was that those 

filters which attenuated frequencies greater than 60Hz, 70Hz and 80Hz, and less than 

5Hz, caused distortion to the responses, leading to a bandpass filter with a passband of 

3-100Hz being chosen. These findings were however in contrast to results presented by 

Seeliger et al. who used a bandpass filter with a frequency range of 9.4 -56.4Hz, 

reporting that it did not systematically distort the shape of the signals (63). This was 

ascertained by performing an inverse Fourier transform on the attenuated frequencies. 

No N1-P1-N2 complex was seen when these frequencies were viewed in the time 

domain, therefore it was assumed that the mfERG responses were not distorted. The 

timing of the filtered responses was not however examined.  

It was also of interest that similar results were achieved when the spline was presented 

with data filtered by the two different wavelets. It was shown earlier in the chapter that 

D3_O8 produced responses with a much cleaner appearance than D2_O9, therefore it 

had been assumed that the spline would find it easier to locate P1 and hence yield 

more accurate results. However it was also found when studying 20 mfERG 
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waveforms that a greater number of the responses were shifted in time when using 

D3_O8, thus an error would have been introduced before applying the spline fitting 

techniques in many instances. This may explain why significantly better results were 

not achieved when using D3_O8. 

It is useful to know if a waveform is delayed since delays are associated with 

dysfunction. However it is also beneficial to know the value of the P1 latency, for 

example when assessing the severity of the delay or when comparing responses from 

different visits to determine if there has been any change in function. The P1 latency 

values stated by the expert and the spline were therefore compared to establish the 

ability of this technique to locate P1 accurately. Their agreement was relatively low; 

12%. This was increased slightly to 17% after the application of noise reduction 

techniques but this is still very low. It was however observed that the timing 

discrepancy was within 2ms for 78% of the responses which is more promising. A 

large timing difference was noted for a small percentage of responses; greater than 

10ms for 2% of the waveforms and more than 20ms for 0.6% of the responses after 

being filtered. Given the poor agreement between the spline and the expert it would 

not be possible to rely on the exact latency stated by the spline. However, gross 

mistakes were only made for a small number of the responses and the timing 

difference was within 2ms for the majority of responses therefore it may be possible to 

sub-classify the delayed waveforms, providing the user with more information than 

simply ‘delayed’ or ‘not delayed’. This will be investigated in the following chapter. 

The third and final aim addressed in this chapter was to determine if spline fitting 

could be used to classify a response as ‘decreased’ or ‘not decreased’. Promising results 

were achieved, with an agreement between the spline and the expert of 93%. 80% of 

those misclassified were within 5nV of the boundary between normal and decreased; 

thus large errors were only made for 1% of the 694 responses. It was noted that poorer 

results were achieved when the waveforms were filtered. It was however stated in 

section 6.6 that filtering affected the P1 amplitude of the responses, explaining why the 

classification accuracy of the spline was decreased when analysing filtered waveforms. 

Unlike approaches such as template fitting, this curve fitting technique does not rely 

on the waveform having a similar shape to the original template; each response is 

treated individually thus widening the scope of the technique. It is evident that spline 

fitting has the potential to classify mfERG responses, both in terms of their P1 latency 

and their P1 amplitude but caution must be taken if stating actual P1 latency values.  
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6.10 Conclusions 

It has been shown that the SNR has the potential to classify a mfERG waveform as 

‘response’ or ‘no response’. Superior results were attained when using the dead 

sequence method as opposed to that using a noise and a signal window.  Optimal 

results were found when the baseline drift was removed prior to calculating the SNR, 

an accuracy of 89% being achieved. Promising results were obtained when spline 

fitting was used to classify responses as ‘delayed’ or ‘not delayed’; the expert and the 

spline agreed for 85% of the waveforms. This was further improved to 90% by 

removing the drift from the responses and applying digital and wavelet filtering 

techniques. Finally, encouraging results were obtained when spline fitting was utilised 

to categorise responses as decreased or within normal amplitude limits based on their 

P1 amplitude. In this instance the expert and the spline concurred for 93% of the 

waveforms. Both the SNR and the spline fitting technique have a potentially 

important role to play in the interpretation of the mfERG. They will each be used as 

part of a multilayered approach to the analysis of this test. Chapter 7 combines each of 

the techniques discussed in chapters 4, 5 and 6 and assesses the ability of this final 

system to interpret mfERG data. 



    

7 Development of a multilayered expert system 

The principal aim of this thesis was to develop a means of reducing the subjectivity of 

the mfERG analysis process. The system should be capable of accurately analysing the 

individual cross correlated waveforms, reporting if they contain a physiological 

response or have no significant function. Furthermore it should state if a response is 

within normal P1 amplitude and latency values. An overview of the process which 

will be employed by the final system to classify the mfERG waveforms is shown in 

figure 7.1: 

 

 

 
 
 
 
 

 
 
 
 

 
 
  

 
 
 
 

 

Figure  7.1 Overview of final system used to classify mfERG waveforms 

 
Waveforms will first be classified as ‘response’ or ‘no response’, with those said to 

contain no physiological response classified so. All other waveforms will subsequently 

be categorised as ‘delayed’ or ‘not delayed’, and finally they will be classed as 

‘decreased’ or ‘not decreased’ in amplitude. Responses will hence be categorised as 

normal, delayed, decreased, or decreased and delayed.  

A number of methods have been investigated in the previous three chapters to perform 

each of these classifications, with each showing potential. However they could not be 

relied upon individually, as a higher performance was expected of the final system. 
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This chapter therefore investigates the possibility of combining the techniques studied 

in chapters 4, 5 and 6 with a view to increasing the accuracy of each classification step 

performed by the system.   

7.1 ‘Response’ or ‘no response’ 

The distinction between ‘response’ and ‘no response’ is examined first. Three methods 

have been studied to distinguish a waveform containing a physiological response from 

one with no significant function. These were: 

1) analysis of waveforms in the frequency domain in chapter 4; 

2)  the use of an artificial neural network (ANN) in chapter 5;  

3) calculation of the signal to noise ratio (SNR) in chapter 6.    

Each approach was tested on the same set of mfERG waveforms, which comprised 

1000 responses taken from 100 different patient trace arrays. The classification 

provided by each technique was compared with that of an expert to assess its 

potential. Table 7.1 summarises the results achieved using each of these three 

techniques: 

Technique applied % agreement 

with expert 

Fourier profile 64 

ANN  90 

SNR  89 

 7.1 Summary of performance achieved by each technique when distinguishing between 'response' and 

'no response'. Results are shown when using the Fourier profile (chapter 4), an individual ANN 

(chapter 5) and the SNR (chapter 6). 

 
When waveforms were studied in the frequency domain the agreement between the 

expert and the system was 64%, which is relatively low. Only 10% were however 

misclassified, with the remainder categorised as equivocal (refer to section 4.6).   

The optimal ANN achieved an agreement with the expert of 90% when distinguishing 

waveforms with a physiological response (i.e. all of those classed as being delayed or 

within normal latency limits) from those with no retinal function.  The sensitivity and 
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specificity values were 83% and 92% respectively. This particular network was a 

multilayer feed-forward ANN with 10 elements in its hidden layer, trained using the 

momentum learning rule with a momentum of 0.5. The clinical data were presented to 

it using incremental learning (refer to section 5.9). This network will be termed ANN 1 

throughout the chapter. 

A classification accuracy of 89% was seen when using the SNR to define a waveform 

as ‘response’ or ‘no response’ (sensitivity = 72%; specificity = 95%). This was obtained 

when the SNR was calculated with the dead sequence method; all waveforms with an 

SNR of 4dB of greater were classed as ‘response’ with the remainder labelled as ‘no 

response’. Prior to calculating the SNR value the baseline drift was removed from both 

the waveform and the ‘noise waveform’ acquired by cross-correlating the uncorrelated 

data with an unused m-sequence; this was achieved by applying a spline with a second 

order polynomial. The waves were also filtered with a 3-100Hz Bessel bandpass filter 

and a wavelet (decomposition level of two and an order of nine) before calculating the 

SNR (refer to section 6.7). This approach will be termed SNR 1 for the remainder of 

the chapter.    

Each technique, particularly the ANN and the SNR value, showed potential to make 

the distinction between ‘response’ and ‘no response’ however they could not be used 

in isolation, as a higher level of agreement was ideally required for the final system. 

Upon closer inspection of the data it was noted that for 96% of the 1000 mfERG 

waveforms at least one of the three techniques concurred with the expert; it was 

therefore decided to combine the techniques with a view to improving the 

performance of the system.  An ANN was utilised for this purpose. The aim was to 

train the ANN to provide a final classification for a waveform based upon the classes 

stated for it by the Fourier approach, ANN 1 and SNR 1.   

7.1.1 Methods 

In chapter 5 it was stated that two data sets are required when designing ANNs: a 

training; and a testing set.    
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7.1.1.1 Training set 

1500 mfERG waveforms were selected from 200 patient trace arrays. Each of these 

was analysed by an expert and grouped as ‘response’ or ‘no response’. Subsequently 

they were: 

1) classified as ‘response’ or ‘no response’ by ANN 1; 

2) categorised as ‘response’, ‘no response’ or ‘equivocal’ based on their frequency 

profile; 

3) classed as ‘response’ or ‘no response’ by SNR 1. 

Three values were thus obtained for each of the 1500 mfERG waveforms. These were 

the data presented to the ANN during training, along with the desired answer (i.e. the 

classification previously defined by the expert).   

For those networks trained using clinical data in chapter 5 it was necessary to use a 

validation set as there were an insufficient number of training examples relative to the 

size of the network. The number of elements in the input layer is considerably less in 

this instance (3 as opposed to 120); if, for example there were 15 elements in the 

hidden layer the network would comprise 60 weights (3*15 + 15*1). The ratio of 

training examples to weights would therefore be 25, thus it is not necessary to include 

a validation set.   

7.1.1.2 Testing set 

The 1000 waveforms used to assess each technique in isolation were utilised to test 

each network after training. This was to determine if agreement with the expert was 

improved by combining the techniques. The 1000 waveforms were classed using the 

Fourier profile approach, ANN 1 and SNR 1. The three values for each waveform, 

along with its classification as defined by the expert formed the testing set. 

7.1.1.3 Training the ANN 

Multilayer feed-forward networks with one hidden layer were chosen; all elements 

utilised a sigmoid transfer function. The learning rule and the method by which the 

data were presented during training were changed initially. Momentum, quickprop, 



Alison A Foulis, 2010   Chapter 7, 201 

conjugate gradient and delta learning rules were investigated, using both batch and 

incremental learning when appropriate. The number of elements in the hidden layer 

was then varied from 2 to 20 in increments of 2, and finally the momentum rate was 

changed from 0.3 to 0.9 in steps of 0.1. Training was stopped and the network was 

tested after every 25 epochs (i.e. 25 presentations of the data to the network); this was 

continued until 1000 epochs. In the first instance each ANN was trained using 15 

elements in the hidden layer while the different learning methods and learning rules 

were investigated.   

7.1.2 Results 

The following table details the ability of each ANN to classify the 1000 testing 

examples into ‘response’ or ‘no response’ when the learning rule and the learning 

method were changed. The number of epochs for which the best result was achieved is 

shown for each network trained: 

Learning Rule Type of 

training 

Elements in 

hidden layer 

Number of 

epochs 

% agreement 

with expert 

Momentum Batch 15 75 91 

Momentum Incremental 15 100 94 

Quickprop Batch 15 100 90 

Quickprop Incremental 15 50 91 

Conjugate 

gradient 

Batch 15 25 91 

Delta Batch 15 25 90 

Delta Incremental 15 50 92 

Table  7.2 Agreement between the expert and the combined ANN when differentiating between 

‘response’ and ‘no response’: varying the learning rule and the mode of learning. Results are displayed 
for four different learning rules, in addition to incremental and batch learning. 

 

The ANN trained using incremental learning and the momentum learning rule yielded 

the most promising result, with an agreement of 94% between itself and the expert; 

this was superior to that achieved by each of individual techniques. In each case the 

performance of the ANN stayed the same or fell when trained using a higher number 

of epochs than those presented in table 7.2.   
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Multi layer feed-forward ANNs, trained with the momentum learning rule using a 

momentum rate of 0.7 and one hidden layer were subsequently trained using different 

numbers of elements in the hidden layer. A momentum rate of 0.7 was utilised as this 

was the default when using the momentum learning rule. The results achieved are 

shown in table 7.3: 

Elements in  

hidden layer 

Number of  

epochs 

% agreement 

with expert 

2 50 89 

4 75 89 

6 75 92 

8 75 91 

10 100 90 

12 125 94 

14 100 95 

16 125 93 

18 125 94 

20 100 92 

Table  7.3 Agreement between the expert and the combined ANN when differentiating between 

‘response’ and ‘no response’: varying the number of elements in the hidden layer from 2 to 20 in steps of 
2, while keeping the learning rule and learning mode (momentum and incremental respectively) 
constant.   

 
A high level of agreement between the expert and the ANN was achieved (95%) when 

14 elements were present in the hidden layer. The following table demonstrates the 

effect of varying the momentum rate. In this instance multi layer feed-forward ANNs, 

trained with the momentum learning rule and one hidden layer comprising 14 

elements were used. A momentum rate of 0.7 was utilised previously, therefore 0.3, 

0.4, 0.5, 0.6, 0.8 and 0.9 were investigated: 
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Momentum % agreement 

with expert 

0.3 89 

0.4 91 

0.5 90 

0.6 93 

0.8 94 

0.9 93 

Table  7.4 Agreement between the expert and the combined ANN when differentiating between 

‘response’ and ‘no response’: varying the momentum from 0.3 to 0.9 in increments of 0.1. The learning 
rule, learning mode and the number of hidden layer elements remained constant.   

 
94% of the waveforms comprising the testing set were classified correctly when using a 

momentum rate of 0.8, however this was slightly lower than that achieved when using 

a momentum of 0.7. It was therefore established that the optimal ANN for this 

particular problem was a multi layer feed-forward network, trained with the 

momentum learning rule with a momentum of 0.7, and 14 sigmoid neurons in its 

hidden layer. The training data were presented to it 100 times during training using 

incremental learning. An agreement with the expert of 95% was realised using this 

ANN; the sensitivity and specificity values were 89% and 97% respectively thus 

misclassifying a waveform with no physiological response as a response was more 

problematic that the reverse situation. The ability of the system to classify a mfERG 

waveform as ‘response’ or ‘no response’ was thus improved by combining the outputs 

from the Fourier profile, ANN 1 and SNR 1. This is summarised in table 7.5: 

Technique applied % agreement 

with expert 

Fourier profile 64 

ANN 1 90 

SNR 1 89 

ANN 2  

(combining above 3 techniques) 

95 

Table  7.5 Summary of performance achieved when distinguishing between 'response' and 'no response’ 

using each individual technique, and a combined approach. Results are shown when using the Fourier 
profile, an individual ANN, the SNR and an ANN combining these three techniques. 

 
The network successfully designed to combine these techniques will be referred to as 

ANN 2 for the remainder of the chapter.   
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7.2  ‘Delayed’ or ‘not delayed’ 

Section 7.2 explores the possibility of combining the techniques investigated in 

chapters 5 and 6 to classify a response as ‘delayed’ or ‘not delayed’. Two approaches 

were studied to make this distinction. These were: 

1) the use of an ANN in chapter 5; 

2) the application of spline fitting, a curve fitting technique, in chapter 6. 

Of the 1000 mfERG waveforms used to test the system’s ability to distinguish retinal 

function from no significant response, the expert classified 694 as ‘response’. Each of 

these was subsequently categorised as ‘delayed’ or ‘not delayed’ by the expert and 

these classifications were compared with those of the ANN 1 and the spline. Table 7.6 

summarises the results achieved using each of these approaches: 

Technique applied % agreement 

with expert 

ANN 1 86 

spline  90 

 7.6 Summary of performance achieved by each technique when distinguishing between 'delayed' and 
'not delayed'. Results are shown when using an individual ANN (chapter 5) and the spline fitting 

technique (chapter 6). 

 
An agreement of 86% was achieved using ANN 1; the sensitivity and specificity were 

89% and 83% respectively (refer to section 5.9).   

When spline fitting was utilised the spline and the expert concurred for 90% of the 

responses analysed, with a sensitivity of 96% and a specificity of 81%. The optimal 

spline for classifying the response as delayed or within normal timing limits had a 

resolution of ten and used a fifth order polynomial. Prior to presenting the mfERG 

responses to the spline the baseline drift was removed from each waveform. A 

bandpass Bessel filter (3-100Hz) and a wavelet with a decomposition level of three and 

an order of eight were also utilised to minimise the noise present on the waveforms 

(refer to section 6.8.1). This method will be referred to as spline1 throughout the 

chapter. 
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The results obtained from each of these approaches were promising, however a higher 

performance was ideally required. As it was noted that at least one of the methods 

agreed with the expert for 94% of the responses it was decided to combine the output 

of the two approaches, with the aim of increasing the ability of the system to classify a 

response as ‘delayed’ or ‘not delayed’. As in section 7.1 an ANN was designed; the 

objective was to train the network to provide a final classification for the waveform 

using the results provided by ANN 1 and spline1. 

7.2.1 Methods 

The data used to form the training and the testing data sets are described in the 

following section. 

7.2.1.1 Training set 

The same data set used in section 7.1, comprising 1500 mfERG waveforms, was 

utilised to train the network. For each of the waveforms said to represent an area of 

functioning retina the expert stated if the responses were delayed or within normal 

timing limits. These were subsequently analysed by ANN 1 and spline1, again 

categorising the responses as ‘delayed’ or ‘not delayed’. These two classifications were 

presented to the network during training, in addition to the desired answer (i.e. the 

expert’s assessment of whether or not a response was delayed). Again a validation set 

was not required as there were a sufficient number of training examples when 

compared with the size of the network. 

7.2.1.2 Testing set 

In order to compare the combined system with the individual techniques the same 

testing set as was used in chapters 5 and 6, composed of 1000 mfERG waveforms, was 

selected. Each of the waveforms reported as ‘response’ by the expert was classified by 

ANN 1 and spline1; these outputs were subsequently presented to the new network 

after each training session to assess the performance of each ANN. The new ANN’s 

output was compared with the expert’s answer.   
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7.2.1.3 Training the ANN 

As before, multilayer feed-forward networks, with one hidden layer comprising 

sigmoid elements were trained. The network parameters were varied until the optimal 

performance was achieved. This was done using the same methodology as that utilised 

in section 7.1.1.3.  Initial networks were trained with 15 elements in their hidden layer 

while the four different learning rules and two learning methods were studied.   

7.2.2 Results 

Table 7.7 details the performance of the ANNs trained using different learning rules 

when presented with the testing set. As before the number of epochs at which each 

individual network’s optimal performance was achieved is shown: 

  Learning Rule Type of training Elements in 

hidden layer 

Number of 

epochs 

% agreement 

with expert 

Momentum Batch 15 200 90 

Momentum Incremental 15 100 89 

Quickprop Batch 15 75 90 

Quickprop Incremental 15 150 92 

Conjugate 

gradient 

Batch 15 250 91 

 

Delta Batch 15 100 89 

Delta Incremental 15 200 91 

Table  7.7 Agreement between the expert and the combined ANN when distinguishing between 

responses which are delayed or not delayed: varying the learning rule and the mode of learning. Results 

are displayed for four different learning rules, in addition to incremental and batch learning. 

 
The highest agreement with the expert (92%) was achieved when the network was 

trained using the quickprop learning rule and when the network weights were updated 

after the presentation of each training example (i.e. incremental learning). The number 

of elements in the hidden layer was then varied with each network trained using the 

quickprop learning rule and incremental learning.  A momentum of 0.5 was initially 

chosen for each ANN as this was the default value for the quickprop learning rule.  

The ability of each network to classify responses as ‘delayed’ or ‘not delayed’ can be 

seen in table 7.8: 
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Elements in  

hidden layer 

Number of  

epochs 

% agreement 

with expert 

2 50 91 

4 125 89 

6 150 92 

8 250 92 

10 150 92 

12 200 93 

14 175 92 

16 200 90 

18 200 92 

20 225 91 

Table  7.8 Agreement between the expert and combined ANN when differentiating between ‘delayed’ 

and ‘not delayed’: varying the number of elements in the hidden layer from 2 to 20 in increments of 2. 
The learning rule and learning mode (quickprop and incremental respectively) were kept constant.  

 
The optimal network was that with 12 elements in its hidden layer, with an agreement 

of 93% between it and the expert.  Finally the momentum was changed and the impact 

on the ability of the network to train was studied.  The results are shown in table 7.9: 

Momentum % agreement 

with expert 

0.3 92 

0.4 92 

0.6 93 

0.7 92 

0.8 90 

0.9 91 

Table  7.9 Agreement between the expert and the combined ANN when differentiating delayed 

responses from those within normal limits: momentum adjusted from 0.3 to 0.9 in steps of 0.1 The 
learning rule, the learning mode and the number of hidden layer elements remained constant.   

 
93% of the testing examples were classified correctly by the ANN trained with a 

momentum of 0.6. The performance of the network using a momentum of 0.5 was 

however slightly higher than that trained with a momentum of 0.6; 646 responses were 

correctly classified (93.1%) as opposed to 643 (92.7%). It was therefore established that 

for this particular problem the optimal network was one trained using the quickprop 

learning algorithm with a momentum of 0.5 and 12 elements in its hidden layer. The 



Alison A Foulis, 2010   Chapter 7, 208 

training data were presented to it 200 times during the learning process, using 

incremental learning. The sensitivity and specificity values achieved by this network 

were 96% and 90% respectively therefore classifying a response as ‘delayed’ when its 

P1 latency was less than 43ms was the principal source of error. Of those incorrectly 

classified 74% had a P1 latency (as defined by the expert) within 1ms of the boundary 

between normal and abnormal while 90% were within 2ms of this threshold.  It has 

thus been demonstrated that the ability of the system to classify mfERG responses as 

‘delayed’ or ‘not delayed’ has been improved by training a network to analyse the 

responses when presented with the outputs from ANN 1 and spline1. This can be seen 

in table 7.10: 

Technique applied % agreement 

with expert 

ANN 1 86 

spline 1 90 

ANN 3 

(combining above 2 techniques) 

93 

Table  7.10 Summary of performance achieved by each individual technique and combined approach 

when distinguishing between 'delayed' and 'not delayed’. Results are shown when using an individual 
ANN, the spline fitting technique, and an ANN combining these two techniques. 

 
The network which yielded the highest accuracy will be termed ANN 3 in all 

subsequent sections.   

7.3 ‘Decreased’ or ‘not decreased’ 

In chapter 6 (section 6.8.3) it was shown that the spline fitting technique was capable 

of correctly classifying a waveform as ‘decreased’ in amplitude or ‘not decreased’ for 

93% of the 1000 responses tested; the baseline drift was removed from each of these 

responses prior to analysis with the spline. The spline had a resolution of ten and 

utilised a fifth order polynomial. Of those waveforms incorrectly classified, 80% had a 

P1 amplitude (as stated by the expert) within 5nV of the boundary between normal 

and abnormal. Clear mistakes were therefore only made for 1% of the responses 

tested. Consequently it was concluded that this technique had the potential to be used 

successfully as part of the multilayered system. This method will be referred to as 

spline2 for the remainder of the chapter. 
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7.4 Testing the multilayered system 

It has been shown that the performance of the system has been improved by 

combining the different techniques investigated thus far in this thesis; when tested on 

1000 waveforms the system classified 95% of waveforms correctly as ‘response’ or ‘no 

response’. Of those said to have a response 93% were categorised accurately, both in 

terms of their latency and their amplitude. The individual approaches and the 

multilayered system were each tested on 1000 individual mfERG waveforms.  

However in clinical practice the system would be utilised to analyse trace arrays.  It 

was therefore important to study the performance of the final, combined system when 

presented with trace arrays of varying recording qualities and with different retinal 

conditions. 

7.4.1 Methods 

20 trace arrays, representing a wide range of retinal function were selected. These were 

chosen from the set of recordings used to test the system’s ability to grade recording 

quality in chapter 4. The group of 20 mfERG tests comprised seven ‘excellent’, six 

‘moderate’, six ‘noisy’ and one ‘unreportable’ recording, as classified by the three 

experts. The system concurred with the experts for each of the ‘excellent’ and 

‘moderate’ recordings and for four of the ‘noisy’ tests. The remaining two ‘noisy’ 

recordings were categorised as ‘moderate’ by the system; one of the three experts did 

however class each of these as ‘noisy’. Finally, a mfERG test which the experts 

thought should not be reported was included, as the system classed it as ‘noisy’.  If 

using this multilayered system the test would have been analysed, therefore it was of 

interest to assess the ability of the system to report a very noisy recording.   

One expert analysed each of the 1220 waveforms within the 20 trace arrays. These 

were initially classified as ‘response’ or ‘no response’; for those said to represent an 

area of functioning retina both the P1 latency and amplitude were measured. The 

location of the response in the trace array was also noted as the normal range for the 

P1 amplitude decreases with eccentricity in the trace array. Responses were therefore 

defined as normal or abnormal both in terms of their amplitude and latency; the 

normative data presented in chapter 3 (section 3.4.2) defined these limits. The 1220 

waveforms were subsequently presented to the multilayered system and analysed. Its 
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assessment of the waveforms was compared with that of the expert in each case. An 

overview of the multilayered system is shown in figure 7.2: 

 

Figure  7.2 An overview of the multilayered system.   

 
Each waveform was initially analysed using the Fourier profile, SNR 1 and ANN 1.  

The three classifications provided by these techniques were presented to ANN 2 which 

stated whether or not a waveform represented an area of functioning retina.  Those 

defined as ‘response’ by ANN 2 were categorised as ‘delayed’ or ‘not delayed’ by 

ANN 1 and spline1.  The output of each of these was then presented to ANN 3 which, 

based on these values, stated if a response was delayed or within normal timing limits.  

The P1 amplitude of a response was subsequently defined as decreased or normal 

using spline2, accounting for the location of the response in the trace array.  Results 

have been grouped in terms of their quality grading to establish if the performance of 

the multilayered system is affected by the quality of a mfERG recording.  
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An initial objective for the system was to state the latency of P1 accurately. It was 

however shown in chapter 6 that when using the spline fitting technique the agreement 

between the spline and the expert was very low; 17%. The system could not therefore 

be relied upon to report an exact latency for P1. The discrepancy between the spline 

and the expert was however within 2ms for 78% of the responses analysed. It was 

therefore decided to investigate the possibility of further sub-classifying the responses 

in terms of their latency. The waveforms classified as delayed by ANN 3 were grouped 

into different time periods based on the P1 latency stated by spline1. The agreement 

between the expert and the spline was investigated when the delayed responses were 

classed into either two or three different time periods; these were:  

1) 43-49ms;   >49ms         when two classifications; 

      2)   43-46ms;   47-50ms;   >50ms,  when three classifications. 

Four trace arrays have then been utilised to show the performance of the multilayered 

system.  

7.4.2 Results 

The following table details the ability of the multilayered system to classify the 

mfERG waveforms, first as ‘response’ or ‘no response’ and then as normal or 

abnormal in terms of their amplitude and latency.  When comparing the amplitude 

and latency classifications of the expert and the system only waveforms classified as 

‘response’ by each were utilised. 

Recording quality  

Excellent Moderate Noisy Unreportable 

% agreement 
response/no response 

97 95 90 90 

% agreement 
decreased/not 
decreased 

96 96 89 82 

% agreement 
delayed/not delayed 

94 94 89 86 

Table  7.11 The agreement between the multilayered system and the expert when classifying mfERG 

tests of different recording qualities, ranging from excellent to unreportable. The ability of the system to 
classify waveforms as response or no response, and normal or abnormal based on their P1 latency and 

amplitude is presented for the four different categories of recording quality.   
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The system performed well when the recording quality was ‘excellent’, with an 

accuracy of 97% when classifying the waveforms as ‘response’ or ‘no response’; this 

fell to 90% when the system was presented with a mfERG test which the experts 

thought should not be reported. It was observed that 69% of those waveforms 

mislabelled as ‘response’ were from ‘noisy’ recordings. When analysing the trace 

arrays the expert stated that 8% of the waveforms were very difficult to categorise as 

‘response’ or ‘no response’.  Of those waveforms incorrectly identified as having no 

significant physiological function 68% had been labelled as challenging to analyse by 

the expert. The expert had only experienced difficulties categorising 6% of responses 

misclassified as ‘response’.   

When stating if the amplitude and latency values were within normal limits, the 

highest level of agreement between the system and the expert was attained when the 

recording quality was ‘excellent’. Accuracies of 96% and 94% were achieved for the 

amplitude and latency classifications respectively. These were decreased to 82% and 

86% when the system was presented with the mfERG test thought to be too noisy to 

report by the experts (i.e. that classified as unreportable).  

When the system was utilised to classify the delayed responses into one of three time 

periods an accuracy of 80% was obtained; this was increased to 89% when the number 

of categories was decreased to two. Despite the increased information provided when 

using three classifications an error rate of 20% was deemed to be unacceptable.  

Ideally an accuracy of greater than 89% would have been achieved when splitting the 

delayed waveforms into one of two categories however it was decided that the extra 

detail provided by having two latency categories for delayed responses justified its 

introduction to the multilayered system if appropriate. Again the classification 

accuracy was related to the quality of the recording; the agreement with the expert 

when allocating the delayed responses to one of two categories was 91%, 89%, 86% 

and 86% when the integrity of the mfERG test was ‘excellent’, ‘moderate’, ‘noisy’ and 

‘unreportable’, respectively.   

It is evident that the proficiency of the multilayered system is affected by the quality of 

a recording - for those recordings classified as ‘excellent’, superior results were 

attained. Four examples have been selected to compare the assessment of an expert 

and the multilayered system when presented with a trace array. The first was classified 

as ‘excellent’, the second as ‘moderate’, the third as ‘noisy’ and finally the fourth was 

said to be ‘unreportable’ by the experts, but was classified as ‘noisy’ by the system. In 
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each instance one expert analysed the waveforms in the trace array; these 

classifications are shown initially, followed by the output of the system. Finally the 

discrepancies between the expert and the system have been highlighted. To simplify 

the results, response latencies have been classified as ‘delayed’ or ‘not delayed’ in the 

first instance.  If it was considered important to sub-classify the delayed responses this 

was also included. 

Example 1 

Waveforms classed by the expert as ‘no response’ are shown in purple while responses 

which were normal are green. Waveforms have been shaded yellow when decreased in 

amplitude, orange when delayed and pink when decreased and delayed:   

    

Figure  7.3 The expert’s analysis of an excellent recording. Purple depicts no response; pink is decreased 
and delayed; orange is delayed; yellow is decreased; green is normal. Diffuse delays were evident while 

there were no significant responses superiorly.  

It can be seen that no significant responses were recovered in the superior region. Of 

those waveforms classified as ‘response’ diffuse delays were noted, with those shown 

in pink also decreased in amplitude. When this trace array was presented to the 

multilayered system the following results were obtained (left); the classification 

discrepancies between the expert and the system can be seen on the right, with each 

difference highlighted: 
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Figure  7.4 The system's analysis of the excellent recording shown in figure 7.3 (left), and the 

discrepancies between the expert and the system (right). Purple is no response, pink is decreased and 
delayed, while orange is delayed. The trace array on the right highlights the four classification 

discrepancies between the expert and the system.    

 
In this instance four of the waveforms in the trace array were misclassified by the 

system, equating to an overall accuracy of 93%. Two waveforms were classed as 

decreased and delayed by the system when they were said to contain no significant 

physiological response by the expert.  Of those correctly identified as ‘response’ ANN 

3 classified each waveform as ‘delayed’; this was in agreement with the expert. The 

amplitude was incorrectly categorised for two waveforms; it was noted that the P1 

amplitude was within 2nV of the boundary between normal and abnormal for each of 

these. It was seen in figure 7.3 that there were diffuse delays in this recording however 

no information regarding the severity of these delays was provided.   

The following trace array demonstrates the latency of the responses in figure 7.3 when 

classified into three categories: normal (<43ms); moderate delays (43-49ms); and 

severe delays (>49ms). These have been depicted in green, orange and pink 

respectively. Waveforms classed as ‘no response’ are shown in purple: 
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Figure  7.5 The expert’s analysis of the excellent recording in figure 7.3 when sub-classifying the 

response latencies as normal, a moderate delay or a severe delay. Purple depicts no significant response, 
pink is a severe delay (P1>49ms), orange is a moderate delay (P1=43-49ms) while green is normal 
latency (P1<43ms).  Moderate delays were seen for the majority of the responses.   

 
It is evident that the majority of responses are moderately delayed in this case. When 

the system categorised the responses based on their P1 latency the following results 

were obtained: 

    

Figure  7.6 The system's analysis when sub-classifying the response latencies of the excellent recording 

shown in figure 7.3 (left). The discrepancies between the expert and the system are also displayed 

(right). Purple defines no response, pink is a severe delay (P1>49ms) and orange is a moderate delay 
(P1=43-49ms). The trace array on the right highlights the four classification discrepancies between the 
expert and the system.    

 
Again the two responses mistakenly identified as ‘response’ can be seen. Of those 

correctly categorised by ANN 2 as representing an area of functioning retina two were 

said to be severely delayed when the expert classified them as being moderately 

delayed. The P1 latency of each of these was 49ms which is within 1ms of the 

threshold between a severe and moderate delay using this grading system. It is evident 

that the multilayered system performed well when presented with this patient trace 

array and that the waveforms on which mistakes were made had amplitude and 



Alison A Foulis, 2010   Chapter 7, 216 

latency values very close to the boundary between normal and abnormal or a 

moderate and a severe abnormality.   

Example 2 

The following example demonstrates the ability of the system to analyse a recording 

graded as being of a moderate quality. Figure 7.7 depicts the classifications as defined 

by the expert: 

     

Figure  7.7 The expert’s analysis of a moderate recording. Purple represents no response, pink is 

decreased and delayed, orange is delayed, yellow is decreased, and green is normal. Peripheral 
waveforms contained no significant physiological response while central responses were decreased in 
amplitude.  

 

It can be seen that no significant responses were obtained from the peripheral regions 

while those waveforms located centrally were decreased in amplitude. A number of 

decreased and delayed responses were also observed. When analysed by the 

multilayered system the following results were obtained (left); again the discrepancies 

are shown (right):  
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Figure  7.8 The system's analysis of the moderate recording shown in figure 7.7 (left), and the 

discrepancies between the expert and the system (right). Purple is no response, pink is decreased and 
delayed, while yellow is decreased. The trace array on the right highlights the six classification 
discrepancies between the expert and the system.    

 
In this instance 55 of the 61 waveforms were correctly analysed by the system, 

corresponding to an agreement of 90%. Three waveforms were incorrectly identified 

by ANN 2 as ‘no response’ while one was mistakenly said to be ‘response’; the expert 

had stated that two of these were very difficult to categorise as either ‘response’ or ‘no 

response’. Spline 2 classified each of the responses as being decreased in amplitude; 

the expert agreed with this in each case.  Two mistakes were however made by ANN 3 

when distinguishing responses which were delayed from those within normal timing 

limits; one was incorrectly said to be delayed while the other was mislabelled as ‘not 

delayed’. The former had a P1 latency (as stated by the expert) of 42ms while the latter 

had a latency of 43ms; this value was within 1ms of the boundary between normal and 

abnormal in each instance. In this case the central responses were within normal 

timing limits while no significant response were obtained from the peripheral areas, 

therefore further classification of the delayed responses was not essential.   

Example 3  

Example 3 illustrates the ability of the multilayered system to interpret a mfERG test 

categorised as a ‘noisy’ recording. The expert’s analysis of the noisy mfERG recording 

can be seen in figure 7.9: 
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Figure  7.9 The expert’s analysis of a noisy recording. Purple shows no response, pink is decreased and 

delayed, orange is delayed, yellow is decreased and green is normal. In general the inferior responses 
were normal while no significant function was observed superiorly.  

 
No significant responses were recovered from the superior areas of the outer/mid 

retina (field view) while the majority of responses in the lower half of the trace array 

were within normal limits. When presented to the multilayered system the following 

results were obtained: 

     

Figure  7.10 The system's analysis of the noisy recording shown in figure 7.9 (left), and the discrepancies 

between the expert and the system (right). The following colour coding system was utilised: purple is no 
response; pink is decreased and delayed; orange is delayed; yellow is decreased; green is normal.  The 
trace array on the right shows the eleven classification differences between the expert and the system.    

 

A greater number of discrepancies were noted in this trace array; eleven, as opposed to 

four and six for examples 1 and 2 respectively. One waveform was incorrectly said to 

have no significant response while five waveforms were mistakenly categorised as 

‘response’ by ANN 2.  The expert and the system disagreed when categorising three of 

the responses based on their P1 latency; each of these had a latency value within 2ms 

of the threshold between normal and abnormal and were difficult waveforms to 

analyse. Spline2 made two mistakes when categorising responses based on their P1 
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amplitude; in each instance the amplitude as stated by the expert was more than 5nV 

from the boundary between normal and abnormal.   

Example 4 

Finally, a recording said to be ‘unreportable’ by the experts in chapter 4, but classed as 

‘noisy’ by the system is presented. An expert’s assessment of the trace array can be 

seen in figure 7.11: 

     

Figure  7.11 The expert’s analysis of the recording considered to be unreportable. Purple depicts no 
response, pink is decreased and delayed, orange is delayed, yellow is decreased, while green is normal.   

 
Figure 7.12 depicts the multilayered system’s interpretation of the test (left) and the 

discrepancies between it and the expert (right): 

   

Figure  7.12 The system's analysis of the unreportable recording shown in figure 7.11 (left), and the 

discrepancies between the expert and the system (right). The following colour coding system has been 

employed: purple is no response; pink is decreased and delayed; orange is delayed; yellow is decreased 
in amplitude; and green is normal. The trace array on the right demonstrates the fifteen classification 
discrepancies between the expert and the system. This is the poorest performance of the four examples.  
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15 of the waveforms were incorrectly analysed by the system in this example. This 

corresponds to a classification accuracy of 75% which is relatively poor. The expert 

and the system disagreed for six of the waveforms when differentiating between 

‘response’ and ‘no response’; five of these were mistakenly identified as ‘response’ 

while one was said to have no significant function. The latter was said to be difficult to 

analyse by the expert. When distinguishing an abnormal from a normal amplitude five 

mistakes were made while four discrepancies were seen when classifying the latency of 

the responses as ‘delayed’ or ‘not delayed’. Of those incorrectly classified by ANN 3, 

two had a P1 latency within 1ms of the boundary between normal and abnormal while 

the remainder were within 3ms.   

It is evident that the multilayered system performed best when presented with high 

quality recordings and that its efficacy fell when the integrity of the recording was 

decreased.  

7.5 Discussion 

The principal aim of this study was to develop an objective method for analysing 

mfERG data. A number of approaches have been explored in the previous three 

chapters to realise this; each showed potential however a higher accuracy was ideally 

required than that achieved by each of the individual methodologies. It was therefore 

decided to combine the techniques using an ANN with a view to yielding a higher 

performance from the system. This approach was taken as at least one of the methods 

agreed with the expert for 96% of the examples classified as ‘response’ or ‘no response’ 

while one technique was correct for 94% of the responses being categorised as 

‘delayed’ or ‘not delayed’.   

ANN 2, (the network trained using the outputs from the original network ANN 1, the 

frequency profile and SNR 1) accurately classified 95% of the waveforms presented to 

it as ‘response’ or ‘no response’. This was superior to that achieved by each technique 

in isolation. Given that for 4% of the 1000 waveforms none of the individual 

techniques agreed with the expert, a performance of 95% was commendably 

successful. The sensitivity and specificity values were 89% and 97% respectively.  

Stating that an area of retina with no significant function contained a physiological 

response was therefore the most common source of error.   
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It was noted that when 20 trace arrays were subsequently examined 69% of those 

waveforms misclassified as ‘response’ were obtained from recordings classified as 

‘noisy’.  In chapter 6 it was found that of the 1000 waveforms classified using the SNR 

method (i.e. one of the inputs into ANN2), 17% of those mistakenly identified as an 

area of functioning retina were contaminated by 50Hz noise; in general, when the 

uncorrelated data of the recordings were studied in the frequency domain, the 

magnitude of the peak at 50Hz was greater in recordings graded as ‘noisy’ than in 

those said to be ‘excellent’. This may therefore explain why 69% of those waveforms 

mistakenly said to be a physiological response were recovered from poor quality 

recordings. The percentage of these waveforms said to be difficult to analyse by the 

expert was very small.  In contrast, the expert experienced difficulties classifying 68% 

of the waveforms mistakenly identified as ‘no response’, implying that this distinction 

was of a more subjective nature.  

The multilayered system and the expert concurred for 93% of the testing examples 

when categorising them as within normal timing limits or delayed, representing an 

increase in performance when compared to that of the two individual techniques.  

Again this was a relatively good performance as both spline1 and ANN 1 were 

incorrect for 6% of the responses presented to them. The sensitivity of ANN 3 was 

96% while the specificity was 90% meaning that classifying a response as delayed 

when it had a P1 latency of less than 43ms was the network’s main mistake.  Both 

ANN 1 and spline1 had a lower specificity than sensitivity therefore it was 

unsurprising that a network training using their combined outputs had a lower 

specificity. It was important to identify if those responses misclassified had a P1 

latency close to the boundary between normal and abnormal or if large errors had 

been made by ANN 3.  It was established that of the responses incorrectly analysed, 

74% had a P1 latency within 1ms of the boundary while 90% were within 2ms of this 

limit.  It is therefore evident that the majority of mistakes made by ANN 3 were not 

gross errors, thus instilling more confidence in the system.   

An original aim was to develop a system capable of automatically stating the exact P1 

latency, thus allowing responses from sequential visits to be compared, and the 

severity of delays in different regions of the trace array to be examined. The spline 

fitting technique was unable to achieve this, however by sub-classifying the delayed 

responses into one of two groups the system could provide the user with slightly more 

detailed information regarding the extent of the delay.   
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It was important to assess the ability of the multilayered system to analyse a full trace 

array as opposed to individual waveforms and to establish the impact of recording 

quality on the system’s capacity to interpret a mfERG test. 20 trace arrays, 

representing a wide range of patient compliance, were therefore selected. The 

multilayered system subsequently classified each of the waveforms into one of five 

groups: 1) normal; 2) decreased in amplitude; 3) delayed; 4) decreased and delayed; or 

5) no significant response. It was shown that the system’s performance was 

significantly better when presented with recordings classified as ‘excellent’ or 

‘moderate’ than when given tests said to be ‘noisy’ or ‘unreportable’.  Four of the trace 

arrays were discussed in greater detail, each taken from one of the four recording 

quality groups.  The system classified 93% of the waveforms correctly for the example 

said to be an excellent recording, while this agreement with the expert was 90%, 82% 

and 75% when the system analysed the trace arrays said to be of a ‘moderate’, ‘noisy’ 

and ‘unreportable’ recording quality, respectively.  These findings imply that the user 

can have more confidence in the interpretation provided by the system when analysing 

recordings obtained from compliant patients.   

Prior to analysing the responses, the multilayered system provides an assessment of 

the recording quality. A grading of the confidence that the user should have in the 

system’s analysis could therefore be developed based on the integrity of the recording. 

Furthermore, the system can provide a grading for the recording quality during the 

test, thus warning the operator of problems with patient compliance.  This could 

enable the operator to rectify the problem, if possible, thus improving the final 

recording quality and consequently increasing the system’s ability to classify the final 

cross correlated waveforms.  

It should be noted that each of the mfERG waveforms used to test the multilayered 

system was only analysed by one human expert, due to the laborious nature of the 

task. Given that locating the exact position of the P1 component can be a very difficult 

task, the classifications provided by the expert may differ to those if the same data had 

been presented to an alternative expert. It is not therefore possible to state with 

complete certainty that the multilayered system was incorrect (or correct) when it 

disagreed (or agreed) with the expert. It would therefore be of interest to ask an 

additional two human experts to analyse the data utilised to test the system. The 

majority opinion could therefore be established, and compared with that of the system 

in each instance.  Additionally, the agreement between the three experts when 

interpreting mfERG data could be established by calculating the Kappa value. This 
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would provide a more in depth assessment of inter-observer differences when 

analysing the mfERG. Finally it would be of interest to calculate the Kappa agreement 

between two experts and the system; this would establish if the current rate of 

classification differences between the one expert and the system is similar to that 

between two humans, or if it a classification problem inherent to the design of the 

system. 

It is evident that the multilayered system developed has the potential to provide an 

objective and automated assessment of the mfERG test, particularly when the integrity 

of the recording has been classified as either ‘excellent’ or ‘moderate’.  This would be 

particularly useful when large volumes of data require processing, both quickly and 

consistently, for example in multi centre trials.  Given that the human and the system 

disagreed when analysing a number of the waveforms this multilayered system would 

not replace the human, but could provide an initial analysis for an expert to review.   

7.6 Conclusions 

The performance of the system was improved considerably by combining each of the 

techniques investigated in chapters 4, 5 and 6 (analysis of data in the frequency 

domain, the use of neural networks and the SNR value, respectively). When 

distinguishing between ‘response’ and ‘no response’ the expert and the system agreed 

for 95% of the 1000 mfERG waveforms. Of those said to represent an area of 

functioning retina both the expert and the system categorised them as normal or 

abnormal in terms of their P1 amplitude and latency. They concurred for 93% of 

responses for each of these classifications, with the majority of mistakes made when 

analysing waveforms with a P1 amplitude or latency close to the boundary between 

normal and abnormal.  Finally it was demonstrated that a superior performance was 

realised by this multilayered system when presented with recordings classified as 

‘excellent’ or ‘moderate’ by the experts than when analysing those said to be ‘noisy’ or 

‘unreportable’. This multilayered system has the potential to be employed for the 

analysis of the mfERG. 

 



    

8 Conclusions and further work 

In recent years the mfERG has become more widely used as an objective method for 

monitoring the function of the outer/mid retina, however it is limited by the subjective 

nature of its interpretation process. This technique has a potentially important role to 

play in multicentre clinical trials but even experts in the field often disagree when 

interpreting the data. Furthermore the experience of operators varies considerably; 

analysis of the responses is relatively simple when recordings are obtained under 

optimal conditions however difficulties can arise when patient cooperation is reduced.  

A technique for improving the objectivity and consistency of the analysis process is 

therefore required. A number of approaches, discussed in chapter 3, have been 

proposed to achieve this; however each has particular limitations associated with it.  

Consequently the aim of this thesis was to develop an automated and objective 

method for interpreting a mfERG recording. 

Ideally the system should provide a consistent and objective method for grading the 

integrity of the recording, both during and after the test. The former would warn the 

operator if the recording was of an insufficient standard, allowing them an opportunity 

to address the problem while the patient was still available. The latter would 

determine whether or not a test should be analysed. Of those mfERG recordings said 

to be of a suitable quality to report, the system should state if the cross correlated 

waveforms contain a physiological response or indicate if they represent an area with 

no significant retinal function. Finally it should report if a response is within normal 

P1 amplitude and latency values. It would ideally allow P1 to be located accurately to 

enable responses from sequential visits to be compared, and in the case of delays, 

provide knowledge of the severity of this delay. 

A technique was presented in chapter 4 for grading the quality of a recording.  This 

involved studying the raw, uncorrelated data in the frequency domain.  The efficacy of 

the approach was assessed by presenting 50 mfERG tests to three experts and the 

system; an agreement of 94% was achieved between the four analyses when making 

the distinction between which tests should or should not be reported, which was 

concluded to be acceptable. The agreement between the system and the experts was 

however poorer when the quality was categorised into one of four groups (excellent, 

moderate, noisy or unreportable); it fell to 62%. When classifying the integrity of one 

segment of a recording the experts and the system concurred for 84% of the testing set 
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when categorising the data into one of two groups: acceptable; or unreportable.  It was 

of interest to note that when classifying the recording integrity, both for the full 

recording and for one data segment, the agreement between the three experts was 

similar to that between two experts and the system. The inconsistencies seen between 

the three human experts highlight the problems associated with using humans as the 

gold standard as there were many instances of disagreement between the three people.  

Three techniques were subsequently investigated to distinguish between ‘response’ and 

‘no response’: analysis of the Fourier domain profile; artificial neural networks 

(ANN); and the signal to noise ratio (SNR). The performance of each approach was 

insufficient when used in isolation however when combined an agreement of 95% 

between the system and the expert was achieved when tested on 1000 waveforms.   

The P1 latency of the mfERG response is the principal measure used to determine if 

an area of functioning retina is normal or compromised; a delay indicates an area of 

disease. Two methods were therefore studied to state if the P1 latency was delayed or 

within normal timing limits: ANNs; and spline fitting. Again a higher performance 

was required than that yielded by either technique. However when their outputs were 

combined, an agreement with the expert of 93% was achieved, with the majority of 

disagreements occurring close to the boundary between normal and abnormal.  Finally 

spline fitting was used to determine if the P1 amplitude of a response was within 

normal limits. The normal range for the P1 amplitude has been shown to decrease 

with eccentricity in the trace array therefore a correction was made for this.  Again the 

expert and the spline agreed with one another for 93% of the responses when 

classifying them as decreased or within normal amplitude limits. The majority of those 

misclassified had an amplitude value within 5nV of the threshold between normal and 

decreased.  

When testing the system’s ability to analyse the 1000 individual waveforms its 

classification was compared with that of one human expert in each instance. Using a 

human expert as a gold standard does however have a number of problems associated 

with it, one of which is the differences in opinion offered by experts when analysing 

the data. A relatively poor consensus was for example seen between experts in chapter 

4 when three people were asked to grade the recording quality of 50 mfERG 

recordings. It is therefore likely that if an alternative human expert, for example one 

working in a different visual electrophysiology department, had been asked to analyse 

the 1000 mfERG waveforms, a certain portion of them would have been graded 
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differently. Consequently it is difficult to truly assess the ability of the system to 

interpret the mfERG data as the gold standard itself is subjective and prone to 

inconsistencies. Furthermore, a human expert may provide a different assessment of 

the same waveform if presented it on two separate occasions; the system would 

however provide the same interpretation on each presentation of the data. It is 

therefore possible that the analysis provided by the system is superior to that of the 

expert as it is more consistent, always using the same mode of interpretation.  

To provide a fairer assessment of the system’s performance it would be useful to 

present the testing data set to additional human experts. Ideally these people would be 

selected from a variety of centres in the UK. The experts would first have to agree on 

the main parameters of interest and the basic method of interpretation; once this was 

decided they would analyse each waveform. The majority opinion could then be 

compared with that of the system, possibly enabling a fairer assessment of the system’s 

performance. This would reveal if current discrepancies seen between the expert and 

the system were genuine mistakes, or simply a reflection of the current expert’s 

interpretation. It would also be of interest to ask each additional expert to reanalyse 

the data on a separate occasion to quantify the repeatability of their analysis. 

It is evident from the results presented in chapter 7 that this multilayered system has 

the potential to provide an automated and objective assessment of the mfERG test. 

This would provide an initial mode of analysis, which would then be reviewed by a 

clinician who would also take the patient’s clinical history and all other test results 

into account. Although the system showed good potential it would be prudent to 

refine each of the individual techniques with a view to increasing the overall 

performance; a number of methods were suggested in previous chapters to improve 

each approach. It would also be beneficial to incorporate additional techniques into 

the system to yield more accurate classifications. One such modification would be to 

compare the amplitude and latency classification of a response with that of its 

neighbours; it is for example very unlikely that an individual response would be 

delayed if all surrounding responses were normal, therefore a possible mistake could 

be highlighted to the operator if this classification was different. 

Chapter 5 utilised ANNs to classify the mfERG data into one of three categories (no 

significant function, delayed response or response within normal latency limits). The 

P1 amplitude of a response is also important when analysing the data. It would 

therefore be useful to develop a neural network dedicated to classifying a response as 
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decreased in amplitude or within normal limits. It was shown in chapter 3, when a 

group of 20 healthy individuals were tested to establish a normative range for the 

mfERG test, that response amplitudes decrease with eccentricity (section 3.4.2). Five 

different networks would therefore be required to state whether or not a response is 

decreased in amplitude: one for the central response; and one for each of the four 

concentric rings.   

It would also be of interest to investigate the possible role of principal component 

analysis in the interpretation of the mfERG. This technique has been successfully 

applied to the analysis of physiological signals similar to the mfERG; its advantage is 

that it can reduce the noise present on a response while maintaining the shape of the 

underlying data. Its aim is to decrease the number of variables in a data set while 

retaining most of the information in the original data set. Similar to the process used in 

wavelet analysis the data is decomposed into a number of principal components, with 

the first components accounting for most of the variance in the data. All components 

higher than a certain number, for example the third principal component, are 

discarded as their contribution to the data set is minimal. The data is then 

reconstructed using the remaining principal components. Zhang et al. applied this 

method of analysis to the mfVECP (140;141), demonstrating that the noise present in 

the reconstructed mfVECP signal was decreased while its shape was similar to that of 

the original waveform. This property of principal component analysis would 

potentially be very useful when analysing the mfERG as the presence of noise causes 

difficulties when interpreting the waveforms.  To ensure that the response was not 

significantly distorted the latency of the P1 component would have to be compared 

before and after the application of this technique.  If superior results were obtained to 

those reported using digital and wavelet filtering (sections 6.4 and 6.5) principal 

component analysis could usurp these approaches. Consequently the ability of the 

spline fitting technique to locate P1 may be improved if the P1 latency is unaffected 

and if greater noise reduction is seen. This could potentially fulfil the original objective 

which was to compare test results from sequential visits, a function not thus far 

realised as the spline fitting technique is not sufficiently accurate at locating P1.  

It was shown that the performance of the multilayered system increased when 

presented with recordings said to be ‘excellent’, both by the system and the experts, 

but fell when analysing tests classified as ‘noisy’.  It would therefore be appropriate to 

develop an index detailing the confidence a user should have in the system’s 

interpretation; this would increase in instances when the recording was of a high 
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standard. To achieve this objective a large number of recordings would have to be 

studied.  150 tests (50 excellent; 50 moderate; and 50 noisy) could for example be 

utilised; the classifications provided by the expert and the system would be compared 

in each case. An overall performance would be obtained for each category of 

recording quality, both in terms of the system’s ability to categorise a waveform as 

‘response’ or ‘no response’ and to classify responses as normal or abnormal based 

upon the P1 amplitude and latency. These values could be used to define the 

confidence an operator should have in the system’s analysis for each type of 

classification; this could be depicted as a percentage, with 100% being completely 

confident that the system is correct in all instances.   

To enable this multilayered system to be used it would have to be incorporated into 

the mfERG system; this would ensure that the analysis tools used by different groups, 

for example in multi-centre trials, were identical. Prior to integrating this analysis 

package into a mfERG system the experimental set up employed would have to be 

accounted for as the amplitude and latency values used to define normal and 

abnormal in this thesis are reflective of the particular mfERG set up utilised to acquire 

the data. If parameters such as the type of electrode, stimulus or amplifier settings 

were different to those described in the mfERG protocol (section 3.4.1) the system 

would have to be modified accordingly to account for the differences in the final 

responses.    

The principal aim of this thesis was to improve the objectivity and consistency of the 

analysis process for the mfERG.  An additional factor limiting the expansion of this 

test is the difference in experimental set up used by different departments.  A number 

of these factors were discussed in chapter 2, including the choice of stimulator, 

electrode and filter bandwidths for the amplifier. Each of these was shown to affect the 

final responses slightly differently. Consequently it is impossible to have a standard 

normal range for the technique. One of the principal differences in testing protocols is 

the type of stimulus utilised. Many groups use a CRT device to display the stimulus 

but this is a redundant technology, with problems of equipment replacement. A 

standard stimulus is therefore required to enable the expansion of this objective 

clinical technique. To achieve standardisation of the mfERG test a new stimulus is 

currently being developed and built in Glasgow. It is primarily being developed as a 

stand-alone device, enabling the different manufacturers to incorporate it into their 

own systems. As well as improving the consistency of the testing protocol this stimulus 

will enable temporal aspects of the physiological responses to be investigated as it can 
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be run at different stimulating frequencies, ranging up to 1kHz.  This may lead to a 

tailoring of the test to specific retinal conditions. The stimulus utilises LEDs and 

allows the user to state both the intensity and the duration of the pulse of light for 

every 1ms throughout the test.   

Finally, chapter 4 studied the Fourier profile of the uncorrelated data with a view to 

grading the integrity of a mfERG recording.  In doing so the frequencies at which the 

retina is stimulated during testing were revealed, in addition to the frequencies to 

which it responded.  It was shown that when there were diffuse delays of the cross 

correlated responses, the retina was unable to respond to the higher stimulation 

frequencies. Furthermore, the more severe the delays, the greater the loss of the upper 

frequencies in the Fourier profile. It was also observed that for those mfERG 

responses with no N2 component, the peak at the stimulus frequency in the Fourier 

profile was absent, while for those with no significant function, no stimulus-associated 

peaks were present, implying that the retina could not respond to any of the principal 

stimulation frequencies.  It was therefore found that by viewing the uncorrelated data 

in the frequency domain, both the temporal and adaptation properties of the retina can 

be visualised in a very simple manner. This is a considerable advancement as the 

current method of analysis (measuring the amplitude and latency of P1 and N1 (71)), 

provides no information on the retina’s ability to respond to the different stimulation 

frequencies. It would therefore be of interest to pursue further investigation into 

analysis of the Fourier profile as it may reveal important information embedded 

within the mfERG data, which remains elusive using current analysis techniques, 

regarding the function of the outer/mid retina. The staging and rate of progression of 

degenerative retinal conditions such as retinitis pigmentosa could, for example, be 

studied. The possible quantification of new treatment strategies using this mode of 

analysis could also be investigated. 

In conclusion, the work presented in this thesis has demonstrated the successful 

development of an objective and automated method for analysing the mfERG data by 

combining a number of techniques. These included artificial neural networks, analysis 

of the data in the frequency domain, calculation of the signal to noise ratio, digital 

filtering, wavelet analysis and the use of curve fitting. This multilayered system can 

potentially (subject to widespread testing against a more standardised definition of a 

gold standard drawn from a larger panel of experts) provide a consistent and objective 

mode of analysis for the mfERG, thus removing some of the problems associated with 

human experts interpreting the data.  



Alison A Foulis, 2010  Appendices, 230 

Appendices 

Appendix 1 

 
Transforming the uncorrelated data from the time to the frequency domain 
 
This program removes sections of the uncorrelated data obtained from overlapping 

parts in the m-sequence, and then transforms the data to the Fourier domain.  Prior to 

this transformation the uncorrelated data must be exported from the mfERG program 

and saved as a raw file (in this case it has been called ‘recording1.raw’); this option is 

available when using the custom built mfERG system.  

 

The raw file is opened and the data are read into Matlab; each overlapping part is 

named ‘ignore’ while all other parts are named ‘data’.  The ‘data’ parts are then 

spliced together to form ‘y’, the uncorrelated data set, which is transformed from the 

time to the frequency domain. As a reminder the following image demonstrates the 

overlap of the sequence, with the green areas representing the repetition; the aim is to 

splice the orange segments together. 

 
 

 
fid = fopen (‘recording1.raw','rb')      opens raw file called ‘recording 1’ 

ignore1=fread(fid,2,'uint16');  read in first two data samples from ‘recording 1’ 
file; called ‘ignore1’ as not required; ‘uint16’ is 
the format in which the data are read in (i.e. an 

unsigned 16 bit integer).  

 
ignore2=fread(fid,256,'uint16');    read in next 256 data samples (i.e. first 16 

points, each sampled 16 times. As these are 
repeated in segment, they are ignored. 

        
data1   = fread(fid,32768, 'uint16'); read in next 32768 data points (i.e. steps 1 to 

2048 in sequence, each sampled 16 times);  
named ‘data1’ as these are the data acquired 

from segment 1, therefore they are utilised.  

 
ignore3=fread(fid,512,'uint16');  read in next 512 data points (2032: 2048, each 

sampled 16 times). An overlap with segment 1, 
therefore it is ignored. 

 

% This process is repeated until reaching the end of the uncorrelated data set 

 
data2 = fread(fid,32768, 'uint16'); 
ignore4=fread(fid,512,'uint16'); 

 
1:16 4097:

4112 

 Segment 1 
(1:2048) 1:16 

2032:
2048 

Segment 2 
(2049:4096) 

4080:
4096 

Segment 3 
(4097:6144) 

6128:
6144 

 2049:
2064 
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data3 = fread(fid,32768, 'uint16'); 
ignore5=fread(fid,512,'uint16'); 
data4 = fread(fid,32768, 'uint16'); 
ignore6=fread(fid,512,'uint16'); 
data5 = fread(fid,32768, 'uint16'); 
ignore7=fread(fid,512,'uint16'); 
data6 = fread(fid,32768, 'uint16'); 
ignore8=fread(fid,512,'uint16'); 
data7 = fread(fid,32768, 'uint16'); 
ignore9 =fread(fid,512,'uint16'); 
data8 = fread(fid,32768, 'uint16'); 
ignore10=fread(fid,512,'uint16'); 
data9 = fread(fid,32768, 'uint16'); 
ignore11=fread(fid,512,'uint16'); 
data10 = fread(fid,32768, 'uint16'); 
ignore12=fread(fid,512,'uint16'); 
data11 = fread(fid,32768, 'uint16'); 
ignore13=fread(fid,512,'uint16'); 
data12 = fread(fid,32768, 'uint16'); 
ignore14=fread(fid,512,'uint16'); 
data13 = fread(fid,32768, 'uint16'); 

ignore15=fread(fid,512,'uint16'); 
data14 = fread(fid,32768, 'uint16'); 
ignore16=fread(fid,512,'uint16'); 

data15 = fread(fid,32768, 'uint16'); 
ignore17=fread(fid,512,'uint16'); 

data16 = fread(fid,32768, 'uint16'); 
ignore18=fread(fid,256,'uint16'); 
 
 
x=[data1;data2;data3;data4;data5;data6;data7;data8;data9;data10;data11;data12;data

13;data14;data15;data16];    each of the data segments combined to form 
 ‘x’; this is the complete uncorrelated data set 

with overlapping segments removed and 
comprises 524288 values. 

 
fclose(fid)        closes the file ‘recording1’. 

 
 
% The uncorrelated data, with overlapping segments removed, is subsequently transformed from 
the time to the frequency domain. 

 
 
Fs =1200;           sampling frequency = 1200Hz;  

t=0:1/Fs:524287*1/Fs;         analysis interval in steps of 1/sampling freq;    

n= 2^(nextpow2(length(x)));  use next highest power of 2 greater than or equal 

to length(x) to calculate the fast Fourier 
transform (FFT); this is essential when using the 
FFT ( section 4.1.3); 

 
Y = fft(x,n);  Y is the transformed data in the frequency 

domain; fft is a built in Matlab function for the 
fast Fourier transform; x is padded with zeros so 

that length(Y) is equal to n (i.e. a power of 2); 
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NumUniquePts = ceil((n+1)/2);  calculates the number of unique points (i.e. 

accounting for symmetry around the Nyquist 

frequency (section 4.1.2));  

 
Y = Y(1:NumUniquePts);  discards data at frequencies greater than Nyquist 

frequency; 

 
Y2=Y.*conj(Y)/n; to acquire the power spectral density (measure of 

the energy at each frequency) the complex 
conjugate is utilised; 

               
f = (0:NumUniquePts-1)*1200/n;  this provides an evenly spaced frequency vector 

with ‘NumUniquePts’ data points;  

 
stem (f,Y2); plots a stem plot of the frequency against the 

power spectrum for the uncorrelated data. 
 
 
  

Transforming one segment of the uncorrelated data from the time to the frequency 

domain 
 

The above program was utilised to transform one segment of data to the frequency 

domain, with several minor modifications: 

 

1) Instead of splicing all 16 ‘data’ parts together to form x, x comprised only one 

‘data’ part, for example: 

 

X = [data1]; 
 
 

2) The analysis interval was also altered to: 
 

 
t=0:1/Fs:32768*1/Fs;       
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Appendix 2 
 
Transforming the correlated data from the time to the frequency domain 
 
The cross correlated data for each eye (i.e. the value of each of the 256 data points for 

every recovered response), are stored within an ascii file. Additional information such 

as the patient name is also stored within this file.  The cross correlated data were 

imported into a new Excel spreadsheet and saved as a text file, in this case 

‘recording2’. This comprised a 256 X 61 matrix (i.e. 61 responses, each of length 256 

data points). This was then loaded into Matlab using the following program, either as 

an individual wave, or as the entire text file; data were then transformed from the time 

to the frequency domain.   

 
in_x= load (recording2.txt');   loading data from text file ‘recording2’;   

a=[1]    in this case only the 1st response is selected to 

transform, but can do all 61   (a=[1:61]); 

     
x=(in_x1(:,a)); the data to be transformed to frequency domain; 

Fs = 1200;           sampling frequency of 1200Hz; 

t=0:1/Fs:255*1/Fs;       analysis interval of 256 data points in steps of 

1/Fsampling;   

  
n= 2^(nextpow2(length(x)));  uses next highest power of 2 greater than or equal 

to length(x) to calculate FFT; this is essential 
when using FFT ( section 4.1.3).  

 

Y = fft(x,n);  Y is the transformed data in the frequency 
domain; fft is a built in Matlab function for the 
fast Fourier transform; x is padded with zeros so 

that length(Y) is equal to n (i.e. a power of 2); 

 
NumUniquePts = ceil((n+1)/2);  calculates the number of unique points around 

the Nyquist frequency; 

 
Y = Y(1:NumUniquePts);  discards data at frequencies greater than the 

Nyquist frequency; 

 
Y2=Y.*conj(Y)/n; to acquire the power spectral density (measure of 

the energy at each frequency) the complex 
conjugate is utilised; 

 
f = (0:NumUniquePts-1)*1200/n;  this provides an evenly spaced frequency vector 

with ‘NumUniquePts’ data points;  

 
stem(f,Y2); plot a stem plot of the frequency against the 

power spectrum for the uncorrelated data. 
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Appendix 3 
 
Creating synthetic data set: shifting and multiplying by a scaling factor 
 
The original waveform is shifted to the left and the right in increments of 2 data points 

(1.67ms) until the P1 latency of the secondary waveforms ranges from 35-67ms. They 

are also multiplied by a scaling factor, generating waveforms with P1 amplitudes 

ranging from approximately 10nV to 150nV.   

 

To shift a waveform to the right, for example by 4 data points, data point 1 of the 

original waveform becomes data point 5 on the new wave.  Values must therefore be 

generated for data points 1 to 4.  This is done by generating a matrix of random 

numbers (in this case a 1 by 4 matrix), and adding these to the values of the original 

data points 1 to 4.   

 
The expert analysed each of the original waveforms, stating the P1 latency and 

amplitude if the P1 component was present. These values determined the scaling 

factors chosen and the number of shifts to the right and left.  For this example the P1 

latency and amplitude are 47ms and 94nV respectively. The following program was 

written to generate secondary waveforms from this waveform.  The values for ‘a’, ‘b’ 

and ‘d’ were determined by the amplitude and latency of the P1 component.   

 
fid = fopen ('wave1_shift_scale.xls','w');  opens Excel file to write data to; 

 

if (fid==-1) fid is a file identifier; if fopen cannot open the 
Excel file ‘wave1_shift_scale.xls’ it  

error ('cannot open file for writing');          returns the value -1 and a message stating 

end      that it cannot open the file is shown ; 

       
 
% shift to right first.  Original response has a P1 latency of 47ms therefore it is shifted by up to 24 
data points (corresponds to approximately 20ms). 

 

 
for a = [0: 2: 24]    for shifting right (0 to 24 in increment of 2); 

for b = [0.1 : 0.16: 1.54] for multiplying by 10 different scaling factors;   

c = (2*rand(1,a)-1); matrix with dimensions 1 X a, filled with 

random numbers ranging from -1 to 1. 

 
for n = a + 1 : 120    for data points ‘a’ to 120 each point on wave 

     y2(n) = b * (wave1 (n-a));  shifted by ‘a’; also multiplied by ‘b’; 

     fprintf (fid, '%f\t', y2(n))   writing each new data point to the Excel  

end      sheet; tab after each one, i.e. filled into a row  

 
for n = 1 : a for data points 1 to ‘a’ random number added to 

the original value; 
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     y2(n) = b * (wave1 (n) + c (n)');  also multiplied by ‘b’; 

     fprintf (fid, '%f\t', y2(n))   writing each new data point to the Excel  

end      sheet; tab after each one, i.e. filled into a row  

 
fprintf (fid, '%f\n', y2(n))   new line; then returns to start of loop again;  

end  
end 
 
 
%130 secondary waveforms are thus created (13 different shifts, with 10 scaling factors).  Each is 

delayed. 
 
 
% shift to left – in this instance it is shifted by up to 14 data points (corresponding to 

approximately 12ms). 
 

 
for d = [2: 2: 14]    for shifting left (2 to 14 in increment of 2); 

for b = [0.1: 0.16: 1.54] for multiplying by 10 different scaling factors;   

e = = (2*rand(1,d)-1); matrix with dimensions 1 X d, filled with 

random numbers ranging from -1 to 1; 

 

for n = 1 : 120 – d    for data points 1 to (120-d), each point is  

    y2(n) = b * (wave1(n+d));   shifted by ‘d’ points; also multiplied by ’b.’  

    fprintf (fid, '%f\t', y2(n))   writing each new data point to Excel file-tab  

end after each new value thus new waveform written 

to a row; 

 
for n = 120-d+1 : 120 for data points (120)-d to 120, random number, e 

, added to original value; 

    y2(n) = b * (wave1 (n-1) + e (d)'); also scaled by ‘b;.   

    fprintf (fid, '%f\t', y2(n))   writing each new data point to Excel file-tab  

end after each new value thus new waveform written 
to a row; 

     
fprintf (fid, '%f\n', y2(n)) new line therefore next waveform written to next 

line during next round of this ‘for’ loop; 

end 
end 
 
 
% An additional 70 secondary waveforms are thus created (7 different shifts, with 10 scaling 

factors). The first 20 are delayed while the last 50 are within normal P1 latency limits. 
 

 
fclose(fid);    closes Excel file secondary waveforms have been 

written to. 
 

 
Assigning target values (i.e. a classification) to each of the secondary waveforms 
 
The target value assigned to each secondary wave is determined by the process 

performed to generate it.  In this instance the first 150 secondary waveforms are 
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delayed while numbers 151 to 200 are within normal timing limits.  A target value of 0 

is therefore assigned to waveforms 1 to 150, while the last 50 responses are given a 

target value of 0.9.   

 
fid = fopen (‘TARGETS_shift_scale_wave1.xls’,’w’);  Opens a new Excel file to write 

target values to; 
 

if (fid==-1) fid is a file identifier; if fopen cannot open the 

Excel file ‘wave1_shift_scale.xls’ it  

error ('cannot open file for writing');          returns the value -1 and a message stating 

end      that it cannot open the file is shown  

 
for k = [ 1 : 150] k will change, depending on original P1 latency; 

     target = 0 assigns a target value ‘0’ to first 150 waves; 

     fprintf (fid, ‘%f\t’, target) writing target value to Excel file; 

     fprintf (fid, ‘\n’) new line- then returns to start of loop; 

end 
 
for k = [ 151 : 200] k will change, depending on original P1 latency; 

     target = 0.9 assigns a target value ‘0.9’ to last 50 waves; 

     fprintf (fid, ‘%f\t’, target) writing target value to Excel file; 

     fprintf (fid, ‘\n’) new line - then returns to start of loop; 

end 
 

fclose (fid); closes Excel file which target values have been 
written to. 
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Appendix 4 
 

Creating synthetic data set: stretching and multiplying by a scaling factor 
 

To generate a stretch the first 30 data points on the waveform are not shifted. The 

latter 90 data points are however shifted to the right, by varying amounts. The shift on 

data point 120 is greatest, while it is zero at point 30; it varies linearly between data 

points 31 and 120. Each shifted waveform is also multiplied by a scaling factor – this is 

determined by the P1 amplitude of the original waveform as stated by the expert. The 

classification of the secondary waveforms is determined by the P1 latency of the 

original waveform, and the amount by which it is stretched.  

 

The aim was to generate waveforms with an amplitude range varying from 10nV to 

150nV. In this instance the original waveform, termed ‘wave1’, had a P1 latency of 

47ms and an amplitude of 94nV.    

 

fid = fopen ('stretch_wave1.xls','w');  opens the Excel file to write data to; 

if (fid==-1) fid is a file identifier- if fopen cannot open 
 the Excel file it returns the value -1, in 

error ('cannot open file for writing'); addition to a message stating that it cannot 

end open the file; 

      
 
for m=5:5:25  stretch factor - this ranges from 5 to 25 data 

points, in increments of 5; 
 

for b = 0.1: 0.16: 1.54  scaling factor (dependent on the P1 amplitude of 

original signal); 

     
 

%first 30 data points are only multiplied by a scaling factor – they are not shifted.  
 

 
for n=1:30 selecting the first 30 data points of wave 1; 

    y2(n)=b*wave1(n);  first 30 data points of all secondary waveforms 

are multiplied by a scaling factor, but not shifted; 

    fprintf (fid,'%f\t',y2(n));  writing to the Excel file’stretch_wave1.xls’; 

end 
 
 
%the stretch is incorporated at this point – the shift of the final point is varied from 5 to 25 in 

increments of 5.  The shift for the 90 previous data points varies linearly from 0 to that at point 
120 (e.g. shift of 25).   
 

for n=31:120 selecting data points 31 to 120 of wave 1; 

     y(n)=del2(round(n-(m*((n-30)/90)))); stretching the signal – the shift is varied linearly 
along the waveform;  
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     y1(n)=(y(n)+y(n-1))/2;  smoothing the signal by averaging neighbouring 
points; 

     y2(n)=b*y1(n); multiplying by a scaling factor; 

     fprintf (fid, '%f\t', y2(n));   writing the data to the Excel file (in a row) 

end 
 
fprintf(fid, '%f\n',y2(n));  new line, then returns to the start of the loop; 

end 
end 
 
fclose(fid);   closes the Excel file. 

 
 
% The target value assigned to each secondary wave is determined by the process performed to 
generate it. In this instance all secondary waveforms are delayed.  A target value of 0 is therefore 

assigned to each response.   

 

 
fid = fopen (‘TARGETS_stretch_scale_wave1.xls’,’w’); Opens a new Excel file to write 

the target values to; 
 

if (fid==-1) fid is a file identifier- if fopen cannot open 

 the Excel file it returns the value -1, in 

error ('cannot open file for writing'); addition to a message stating that it cannot 

end open the file; 

 
 

for k = [ 1 : 50] k will change, depending on the original P1 
latency; 

     target = 0 assigning a target value ‘0’ to all 50 waves; 

     fprintf (fid, ‘%f\t’, target) writing target value to the Excel file; 

     fprintf (fid, ‘\n’) new line, then returns to the start of loop to write 

to file; 

end 
 

fclose (fid); closes the Excel file which the target values have 
been written to. 
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Appendix 5 

 
Adding 50Hz noise, random noise and drift to the waveforms  

 
Waveforms are randomly selected by this program; 50Hz and random noise are then 

added to the waveforms. The amplitude of the noise is varied from 10% to 20% of the 

P1 amplitude of the response (step of 10%), while the phase of the 50Hz is changed 

from 00 to 1800.  8 waveforms are generated for each waveform selected.  Drift is then 

added to these, creating an additional 12 waveforms for each of the noisy responses.   

 

In this case responses generated from wave 1 using the program detailed in appendix 3 

are selected (i.e. shifted and scaled versions of wave 1). 20 responses are selected from 

a possible 200. 

 
shiftedandscaledwaves = load ('wave1_shift_scale.xls');  loads  file from appendix 3; 

 
fid=fopen ('noisy_wave1_shift_scale.xls','w');  creates a new file to write data to; 

 
if (fid==-1) fid is a file identifier- if fopen cannot open 
 the Excel file it returns the value -1, in 

error ('cannot open file for writing'); addition to a message stating that it cannot 

end open the file; 

 
P1amp=94;              this is the P1 amplitude of wave 1; 

b=[0.1:0.16:1.54];            the scaling factors used in appendix 3;   

for k=randsample (200,20)’ selecting 20 of the 200 scaled and shifted 
responses to add the noise to - the randsample 

command ensures there is no repetition of the 
random numbers generated; 

 
% 50Hz and random noise are both added to the selected waveforms.  The magnitude of this 

noise is determined by the P1 amplitude of the response to which it is being added. When shifting 
and scaling wave 1, the wave was shifted and then 10 different scaling factors were applied; it 
was then shifted again, and scaled 10 times. Consequently waveforms with the same amplitude 
are to be found in every 10 rows in the file ‘wave1_shift_scale’.     

 
% The examples selected from ‘wave1_shift_scale’ are determined by ‘k’ (the random number), 
thus it is different each time the program is run.  A switch and case statement is therefore used to 
direct the program to the appropriate part, ensuring that the correct amplitude of noise is chosen 

each time the program is run. 
 
 

switch (k) 
 
% If the example selected is from rows 1, 11....191 of ‘wave1_shift_scale’ this loop will be 
executed.  The amplitude is b(1) * P1 amp in this case, where b (1) = 0.1: 

  

 case {1,11,21,31,41,51,61,71,81,91,101,111,121,131,141,151,161,171,181,191} 
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for a = P1amp*b(1)*0.1 : P1amp*b(1)*0.1 : P1amp*b(1)*0.2   10% - 20% of P1amp  

for h = P1amp*b(1)*0.1 : P1amp*b(1)*0.1 : P1amp*b(1)*0.2   10% - 20% of P1amp 

            for g=0:pi:pi    00 and 1800                        

                y=(h*sin(2*pi*50*t -g));    generating 50Hz signal (t is in seconds) 

                outy = a * (2*rand(1,120)-1); generating random signal  

     outpy(1:120)=y(1:120) + outy'; adding 50Hz and random signal together 

    outputy =outpy + shiftedandscaledwaves (k,(1:120)); adding noise to wave 

                fprintf(fid,'%f\t',outputy)  writing data to Excel file (wave in a row) 

                fprintf(fid,'\n')   new line, then starts the loop again 

            end 
            end 
            end 

 
 
% If the example selected is from rows 2, 12....192 of ‘wave1_shift_scale’ the following loop will 
be executed.  The only difference between it and the previous loop is that the amplitude of the 

noise is determined by the second scaling factor used, b(2), instead of b(1) (i.e. 0.26 rather than 
0.1): 
 

 
 case {2,12,22,32,42,52,62,72,82,92,102,112,122,132,142,152,162,172,182,192} 
 

            for a = P1amp*b(2)*0.1 : P1amp*b(2)*0.1 : P1amp*b(2)*0.2  
            for h = P1amp*b(2)*0.1 : P1amp*b(2)*0.1 : P1amp*b(2)*0.2  
            for g=0:pi:pi       

                     
                y=(h*sin(2*pi*50*t -g)); 

                outy = a * (2*rand(1,120)-1); 
    outpy(1:120)=y(1:120) + outy'; 

    outputy =outpy + shiftedandscaledwaves (k,(1:120));                  
                 fprintf(fid,'%f\t',outputy) 
                fprintf(fid,'\n') 

           end 
           end 
           end 
 
 
% This is continued, until that starting with 10, as shown below (i.e. 7 additional ones in 
between these).  In this case the P1 amplitude of the responses to which noise is added is 
b(10)*P1amp, where b(10) is 1.54:    

 
  
case {10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200} 
 

for a = P1amp*b(10)*0.1 : P1amp*b(10)*0.1 : P1amp*b(10)*0.2 
            for h = P1amp*b(10)*0.1 : P1amp*b(10)*0.1 : P1amp*b(10)*0.2 
            for g=0:pi:pi 
                     
                y=(h*sin(2*pi*50*t -g)); 
                outy = a * (2*rand(1,120)-1); 

    outpy(1:120)=y(1:120) + outy'; 
    outputy =outpy + shiftedandscaledwaves (k,(1:120));                  

                 fprintf(fid,'%f\t',outputy) 
                fprintf(fid,'\n') 
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           end 
           end 
           end 
      
end 
end 
 
fclose(fid); 
 
 
% 8 waves are thus created for each of the 20 waveforms selected (2 amplitudes for random noise, 
2 for 50Hz and 2 phases for 50Hz) therefore 160 waveforms are generated.  Drift is then added to 
each of these 160 responses. 

 

 
noisyshiftedandscaledwaves=load('noisy_wave1_shift_scale.xls’); loading file created  
      above when adding 50Hz and random noise; 

 
fid=fopen('Drift_noisy_wave1_shift_scale.xls','w'); creates new file to write data to; 

if (fid==-1) fid is a file identifier- if fopen cannot open 
 the Excel file it returns the value -1, in 

error ('cannot open file for writing'); addition to a message stating that it cannot 

end open the file; 

 
 
% A line of the form y=mx + c is created – this is then added to the waveform to emulate drift. 

  

for g=1:160  wanting to add drift to all 160 responses; 

 

for m=-0.75:0.5:0.75   the gradient of the line is varied from-0.75 to 
0.75, in steps of 0.5; 

for c=-20:20:20   the y-intercept of the line is varied from -20 to 20, 
in steps of 20; 

 
 for i=1:120     generating a line with 120 data points; 

        ydrift(i)=(m*0.83*(i)) + c;   y=mx+c;                                       

outputydrift(1:120)=ydrift(1:120) + noisyshiftedandscaledwaves (g,(1:120));  
      adding line of form y=mx+c to waveform 

fprintf(fid,'%f\t',outputydrift(i));  writing to the Excel file (waveform fills one row); 

end 
            fprintf(fid,'%f\n',outputydrift(i)); new line -  then returns to the start of loop; 

end 
end 
end 
fclose(fid);       closes the Excel file. 
%An additional 12 waveforms are therefore created for each of the responses to which 50Hz and 

random noise were added, therefore 96 responses are created in total for each of the 20 waveforms 
selected from the file ‘shift_scale_wave1’.   
 
Finally a file containing the target value for each of these waveforms was created. 

 
 

Assigning target values to each of the noisy waveforms 
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The P1 latency is unaffected by adding noise and drift therefore the target value of 

each new response is the same as that of the wave selected from the file 

‘wave1_shift_scale’ to create it.  It was shown in appendix 3 that for wave 1, the first 

150 waveforms created were delayed (therefore classified as 0) while numbers 151 to 

200 were within normal latency limits (therefore classified as 0.9).  ‘k’, the array of 

random numbers utilised to choose the 20 responses to which noise were added, is 

referred to as this determines the target value.   

 
 
fid = fopen ('TARGETS_drift_noisy_wave1_shift_scale.xls','w');   creates new file; 

 
if (fid==-1) fid is a file identifier- if fopen cannot open 
 the Excel file it returns the value -1, in 

error ('cannot open file for writing'); addition to a message stating that it cannot 

end open the file; 

 
for j=1:20     for each of the 20 responses selected;  

if k(j) > 150     if the row number of the wave selected >150;  

target = 0.9*ones(1,96)’ the target value for the following 96 responses is 

0.9 (i.e. not delayed); 

fprintf(fid, ‘%f\n’,target)   write this to the target Excel file 

else      if the row number of the wave is 150 or less; 

target = zeros(1,96)’ the target value for the following 96 responses is 0 

(i.e. delayed); 

fprint(fid, ‘%f\n’,target)   write this to the target Excel file 

end 
end 

fclose(fid);     closes Excel file. 
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Appendix 6 

 
Assigning synthetic data to training and testing set at random 

 
The secondary waveforms created using the methods described in appendices 3-5 were 

collated into one Excel spreadsheet, named ‘syntheticwaves’. Similarly the target 

values were collected into one Excel file, named ‘targetanswer’.  The former 

comprised 120500 rows and 120 columns (120500 waveforms, each of 120 data 

points), while the latter consisted of 120500 rows. Waveforms and their corresponding 

target answers (i.e. classification) were selected at random using the following short 

program, to form the training set (40000 examples) and the testing set (1000 

examples): 

 

waves = load (‘syntheticwaves.xls’); loads synthetic waves from Excel file into Matlab 
– this matrix has been named ‘waves’; 

targets = load (‘targetanswers.xls’); loads answers for waves from Excel into Matlab 

– this matrix has been named ‘targets’; 
 

% The aim was to select 41000 examples and their corresponding answers at random from the 

120500 waveforms. It was essential to select a random number generator which avoided 
repetition of numbers, to ensure that the same examples did not appear multiple times in the 

training set, and that no examples used to train the network featured in the testing set. The 
Matlab command ‘randsample’ was selected as this fulfils this requirement. 

 
Y=randsample (120500, 41000); a 1 by 41000 matrix (Y) is generated – this 

encompasses random integers with values 
ranging from 1 to 120500, with no repetition (i.e. 
this is used to dictate which waveforms are 

selected from the complete data set); 

 
Y_training = Y (1:40000); selects the first 40000 of these random numbers; 

Y_testing = Y (40001:41000); selects the last 1000 of these random numbers; 

 

trainingwaves = waves (Y_training, (1:120)); 40000 waves selected for the training set; 

trainingtargets = targets (Y_training, (1:120));40000 answers selected for training set;  

first 40000 values of Y determined the waves 
(and their targets) chosen; 

 
testwaves = waves (Y_testing, (1:120)); 1000 waves selected for the testing set; 

testtargets = targets (Y_testing,(1:120)); 1000 answers selected for the testing set; last 1000 

values of Y determined the waves (and their 
targets) chosen; 

 
% These four data sets were subsequently written to four separate Excel files, which could then be 

used to train and test the neural networks.   

 
fid = fopen ( ‘trainingset.xls’, ’w’); Opens a new Excel file to write training examples 

to; 
 

if (fid==-1) fid is a file identifier- if fopen cannot open 
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 the Excel file it returns the value -1, in 

error ('cannot open file for writing'); addition to a message stating that it cannot 

end open the file; 

 
fprintf (fid, '%f\n', trainingwaves ); writes the training waves data to the Excel file; 
 

fclose (fid); closes the Excel file to which the training 

examples have been written. 

 
fid = fopen ( ‘traininganswers.xls’, ’w’); Opens a new Excel file to write the training 

example answers to; 

 
if (fid==-1) fid is a file identifier- if fopen cannot open 
 the Excel file it returns the value -1, in 

error ('cannot open file for writing'); addition to a message stating that it cannot 

end open the file; 

 
fprintf (fid, '%f\n', trainingtargets ); writes the training answers to the Excel file; 

fclose (fid); closes the Excel file to which the training example 
answers have been written. 

 
fid = fopen ( ‘testingset.xls’, ’w’); Opens a new Excel file to write the testing 

examples to; 
 

if (fid==-1) fid is a file identifier- if fopen cannot open 

 the Excel file it returns the value -1, in 

error ('cannot open file for writing'); addition to a message stating that it cannot 

end open the file; 

 
fprintf (fid, '%f\n', testwaves );  writing the testing data to the Excel file; 

 
fclose (fid);  closes the Excel file to which the testing examples 

have been written. 
 

fid = fopen ( ‘testinganswers.xls’, ’w’); Opens a new Excel file to write testing example 
answers to; 

 

if (fid==-1) fid is a file identifier- if fopen cannot open 
 the Excel file it returns the value -1, in 

error ('cannot open file for writing'); addition to a message stating that it cannot 

end open the file; 
 

fprintf (fid, '%f\n', testtargets );   writing the testing answers to the Excel file; 

fclose (fid); closes the Excel file to which the testing example 

answers have been written. 
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