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Abstract 

 

Extracellular signal-regulated protein kinase 5 (ERK5) is a member of the mitogen 

activated protein (MAP) kinase family which is specifically activated by 

mitogen/extracellular signal regulated kinase kinase-5 (MEK5).  Over recent years, 

abnormal MEK5/ERK5 signalling has been shown to be important in prostate 

carcinogenesis with increased levels of ERK5 immunoreactivity being associated with  

Gleason sum score (p<0.0001), bone metastases (p=0.0044) and locally advanced disease 

at diagnosis (p=0.0023).  In addition PC3 cells over-expressing ERK5 displayed enhanced 

proliferation, migration and invasion.  Taken together, these data suggest MEK5/ERK5 

pathway to be biological important in prostate cancer and a potential target in invasive 

prostate cancer. 

Using siRNA to target ERK5 expression, I found that reduced ERK5 expression 

significantly inhibited cellular proliferation, motility and invasion in prostate cancer PC3 

cells when compared to the controls, (p<0.005).  Our group has previously reported 

upregulated ERK5 expression in primary human prostate cancer specimens.  In this study, 

I was able to validate these results and demonstrate moderate-strong levels of cytoplasmic 

staining in 63% cases of PIN/PIA.  High levels of cytoplasmic (55%) and nucleur (73%) 

immunoreactivity was also shown in a range of metastatic prostate tumours (n=11).   

A number of similarities and interactions between ERK5 and ERK1/2 have recently been 

identified and there is suggestion that ERK5 may in fact regulate some of the cellular 

functions originally attributed to ERK1/2.  Potential ‘cross-talk’ between ERK5 and 

ERK1/2 signalling was investigated using siRNA for each individual isoform of ERK1/2.  

ERK1 knockdown resulted in increased ERK5 activation in addition to prolonged ERK2 

phosphorylation.  Proliferation studies were also performed in PC3 cells, the results of 

which support published data that ERK1 acts as a negative regulator and ERK2 as a 

positive regulator of cell proliferation. 

ERK5 has been shown to regulate the activity of several transcription factors and recent 

evidence suggests that ERK5 may be heat shock protein (HSP) 90 dependent. To further 

investigate the ERK5 signalling network and its interacting proteins, I performed mass 

spectrometry-based quantitative proteomics using SILAC labelled cells.  Results from this 

study support the theory that HSP90 does associate with ERK5 however contrary to 

published data my results show that it is not involved in ERK5 activation.   
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Our results validate the importance of the MEK5-ERK5 signalling pathway as a potential 

target for therapy in prostate cancer and highlight a novel functional and biochemical 

relationship between ERK1 and HSP 90 with ERK5 signalling.   
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1 Introduction 

1.1 Prostate Cancer 

1.1.1 Epidemiology of disease 

Prostate cancer is the most commonly diagnosed cancer and the second commonest 

cause of cancer related death in men in the western world (1) .    In 2005, 34,302 new cases 

of prostate cancer were diagnosed in the UK (2).  A significant increase in incidence has 

been reported since the 1980’s due to an increase in rates of transurethral resection of the 

prostate (TURP) and prostate specific antigen (PSA) testing (3).   

1.1.2 Aetiology of prostate cancer 

There is currently no modifiable risk factor identified for prostate cancer however 

three established risk factors have been found: age, family history and ethnicity.  The 

incidence of prostate cancer increases with age and over 70% of patients with prostate 

cancer are over the age of 65 years (3).  With an aging society, it is therefore inevitable that 

prostate cancer will become an increasing health burden in years to come.   

A family history of prostate cancer is also recognised as a strong risk factor for the 

disease.  Familial forms of prostate cancer, which are those in which at least 2 first degree 

relatives are affected accounts for approximately 20% of cases and genetic susceptibility 

has been shown to play a more significant role in younger patients (4).   

The worldwide variation in incidence rates suggests that the risk of developing 

prostate cancer is affected by ethnicity.  In the UK, black Caribbean and black African men 

have 2-3 times the risk of white men in developing or dying from prostate cancer while 

Asian men generally have a lower risk (5).  Migration studies suggest however that 

lifestyle factors must also play an important role as men who move from a low-risk to a 

higher-risk country show an increase in incidence (6). 
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1.1.3 Pathological Staging and Grading 

The majority of prostate cancers are adenocarcinomas and mainly occur in the 

peripheral zone of the prostate.  Prostate cancers are classified using the tumour-nodes-

metastasis (TNM) staging system (Table I).  This system evaluates the size of the tumour, 

the extent of involved lymph nodes and the presence of any metastasis.  The gleason 

grading system is used to grade prostate tumours and together with TNM staging is used to 

predict prognosis and guide patient management.  A score of 1-5 is given to the cancer 

based on its microscopic appearance.  A higher score indicates a more aggressive tumour 

with a worse prognosis.  A gleason grade is given to the most common tumour and a 

second score given to the next most common tumour.  These grades are added together to 

give a gleason sum score which is used to guide treatment options for men with prostate 

cancer. 
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TABLE I: The TNM grading system 

Evaluation of the (primary) tumour ‘T’ 
 

• TX: cannot evaluate the primary tumor  
• T0: no evidence of tumor  
• T1: tumor present, but not detectable clinically or with imaging  

o T1a: tumor was incidentally found in less than 5% of prostate tissue resected 
(for other reasons)  

o T1b: tumor was incidentally found in greater than 5% of prostate tissue 
resected  

o T1c: tumor was found in a needle biopsy performed due to an elevated serum 
PSA  

• T2: the tumor can be felt (palpated) on examination, but has not spread outside the  
prostate  

o T2a: the tumor is in half or less than half of one of the prostate gland's two 
lobes  

o T2b: the tumor is in more than half of one lobe, but not both  
o T2c: the tumor is in both lobes  

• T3: the tumor has spread through the prostatic capsule (if it is only part-way through, 
it is still T2)  

o T3a: the tumor has spread through the capsule on one or both sides  
o T3b: the tumor has invaded one or both seminal vesicles  

• T4: the tumor has invaded other nearby structures  

 
Evaulation of the regional lymph nodes ‘N’ 

• NX: cannot evaluate the regional lymph nodes  
• N0: there has been no spread to the regional lymph nodes  

• N1: there has been spread to the regional lymph nodes 
 
Evaulation of distant metastasis ‘M’ 

• MX: cannot evaluate distant metastasis  
• M0: there is no distant metastasis  
• M1: there is distant metastasis  

o M1a: the cancer has spread to lymph nodes beyond the regional ones  
o M1b: the cancer has spread to bone   
o M1c: the cancer has spread to other sites (regardless of bone involvement) 
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1.1.4 Clinical management 

Treatment options for men diagnosed with prostate cancer depend on a number of 

factors including patient performance status, disease status (tumour grade and stage) and 

social factors (Table II).  Prostate cancer diagnosed at an early stage (or when organ 

confined) are potentially curable and various options are available for these patients.  

Watchful waiting may be considered if the patient has low grade, small volume disease and 

a life expectancy of less than 10 years.  Follow up for these patients will focus on serial 

serum PSA measurements and clinical symptoms and if disease progression is evident, the 

patient can be considered for intervention such as medical treatment.  

Active surveillance is offered to patients who are found to have prostate cancer, 

which is thought to be clinically insignificant, and at low risk of progression.  Active 

surveillance involves PSA measurements and digital rectal examinations (DRE) every 3 

months with repeat prostate biopsies to re-grade the cancer 12-24 months following initial 

diagnosis or if significant changes are found in the PSA level or DRE.  If these show that 

the cancer is progressing then treatment with curative intent will be recommended, in most 

cases being either surgery or radiotherapy.  However, the optimal protocol for active 

surveillance remains to be validated in a prospective trial. 

Radical treatment is offered for patients who have localised disease and good life 

expectancy.  Surgical options include retropubic radical prostatectomy (RRP) with 

laparoscopic or robotic-assisted approaches gaining popularity in recent years.  Whether 

these novel techniques will translate into better outcome await formal assessment.  

Conformal external beam radiotherapy (EBRT) or brachytherapy represent radiation based 

curative options for patients with early disease. 

Androgens are the primary regulators of prostate cancer cell growth and 

differentiation and prostate cancer is often androgen dependent, with the majority 

regressing following initial androgen ablation treatment.  Current medical therapy for 

patients diagnosed with prostate cancer includes anti-androgens and gonadotrophin-

releasing hormone (GnRH) analogues.  Anti-androgens block the effect of androgens 

directly on target cells by inhibiting their binding to the androgen receptor (AR).  GnRH 

analogues work at the level of the pituitary with continued administration producing down 

regulation of GnRH receptors thereby reducing the release of gonadotophins which leads 

to inhibition of androgen production.  Medical therapy is a treatment option either alone or 

in addition to radiotherapy in patients with locally advanced disease.  Hormone deprivation 
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is the treatment of choice in patients with metastatic disease most often in the form of 

medical therapy but some patients may be offered a subcapsular orchidectomy which has 

the advantage of achieving rapid androgen ablation.  

Unfortunately, approximately 20% of patients do not show a favourable response, 

and even among the responders, there is an 80% risk of relapse at a median period of 24 

months following hormone manipulation.  Patients are diagnosed with castration resistant 

prostate cancer (CRPC) when they show evidence of a rising PSA (PSA > or = 2ng/ml 

above nadir) (7).  Treatment for these patients is limited.  Secondary (and tertiary) 

hormonal manipulation such as discontinuation of steroidal or nonsteroidal hormones or 

the addition of anti-androgens, oestrogens, glucocorticoids or enzymatic inhibitors of the 

adrenal androgen synthesis pathway may produce a transient biochemical response.  In 

addition, patients with clinically localised disease receiving radical treatment have a 

significant failure rate over 5-10 years period of follow up (reported rates of 23% post RRP 

and 63% post EBRT) (8). 

Docetaxel has recently been licensed for use in combination with corticosteroid 

therapy in men with metastatic CRPC following the results of two Phase III trials(9;10).  

The mean survival benefit in these studies only measured 2 and 2.5 months respectively 

and timing of this treatment remains controversial.  Trials are now focusing on improving 

the efficacy of docetaxel by combining it with novel biological agents.  In addition, there is 

now an increasing interest in testing the efficacy of novel agents in hormone naive disease, 

which may result in better overall response and outcome.  The STAMPEDE (Systemic 

Therapy in Advancing or Metastatic Prostate cancer: Evaluation of Drug Efficacy) study, a 

5 arm randomised controlled trial, is one example, aimed to recruit patients with high-risk 

prostate cancer.  This large multicentre trial examines the efficacy of combining androgen 

ablation therapy with a number of agents including docetaxel, zoledronic acid 

(bisphosphonate) and celecoxib (cox-2 inhibitor) (11). 
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TABLE II: Treatment options for prostate cancer                                                                   
(NICE clinical guideline 58) 

Early stage (or organ confined disease,T1/2N0M0) 
 
Conservative managment 

•  Watchful waiting - Suitable for patients with low grade, small volume disease and life 
expectancy <10years.  Treat if rise in PSA.  
 

• Active surveillance – If disease considered clinically insignificant and at low risk of 
progression.  Involves 3 monthly PSA check and DRE.  Repeat biopsy at 12 months.  

 
 
Radical treatment 

• Radiotherapy – External Beam Conformal Radiotherapy or interstitial brachytherapy  
 

• Radical prostatectomy – retropubic, laparoscopic or robotic assisted prostatectomy  
 

• Other experimental methods yet to be validated in formal randomised controlled trials 
include Cryotherapy, High Intensity Focused Ultrasound therapy (HIFU) 

 
 
Locally advanced (T3N0M0) 
 
• Androgen Deprivation Therapy (ADT) – GnRH analogue and/or anti androgen  

 
• Radiotherapy +/- ADT  
 
Metastatic disease 
 
• ADT  

 
• Subcapsular orchidectomy  
 
Castration Resistant Prostate Cancer (CRPC) 
 
• Second or third line hormonal manipulation – Discontinue steroidal or nonsteroidal 

hormones or addition of antiandrogen, oestrogen, glucocorticoid or enzymatic inhibitor 
of adrenal androgen synthesis  
 

• If metastatic disease, consider chemotherapy (docetaxel and prednisolone)  
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1.2 Androgen receptor signalling in prostate cancer 

The androgen receptor (AR) regulates prostate organogenesis as well as the 

development and progression of prostate cancer.  Androgen deprivation leads to apoptosis 

in a proportion of prostate cancer cells and those which do survive arrest in the G1 phase 

of the cell cycle (12).  However, as prostate cancer progresses cells evolve and develop 

mechanisms to survive in an androgen depleted environment.  This progression is 

recognised to involve an active AR and various mechanisms in which this altered 

signalling is implicated in the transition to hormone (or castrate) resistance have been 

described (13). 

Reactivation (or the continued activation) of the AR and AR responsive pathways 

allow tumours to develop a hormone independent phenotype through altered AR 

sensitivity, AR amplification and AR mutations (14;15).  Mutations in the AR can lead to 

activation by non-adrogenic steroid molecules and anti-androgens.  This may explain why 

10-30% of patients who develop resistant cancer following treatment with anti-androgens 

may show a paradoxical drop in PSA levels when the particular anti-androgen is 

discontinued (16).   

Circulating serum androgen levels are not completely eliminated with hormone 

deprivation therapy (HDT).  While serum testosterone levels are significantly reduced, 

serum levels of adrenal androgens remain unaffected.  Intraprostatic androgens are also 

reduced sufficiently with HDT to induce a response in untreated prostate cancer cells.  It is 

interesting to note that CRPC tumours have increased endogenous synthesis of androgens 

(17), along with upregulation of the enzymes required for steroidogenesis (18;19).  Hence, 

tumour cells, particularly in castrate resistant disease, with their increased intracrine 

androgenic production, may be responsible for tumour progression despite low serum 

androgen levels. 

Growth factors and their signalling cascades such as HER2, IGF-1, and EGF can 

also activate the AR via the PI3K/Akt and MAPK pathways and reduce or negate the need 

for ligand binding (Figure 1.1).  Overexpression of these coactivators in prostate cancer 

leads to indirect activation of the AR and many agents currently in trial for use in CRPC 

target these signalling pathways.  

In order for CRPC to establish, prostate cancer cells must also overcome the 

apoptotic effects of androgen depletion.  The induction of AR independent pathways 



 24

including receptor tyrosine kinase (RTK) mediated networks allows prostate cancer cells to 

survive via the upregulation of anti-apoptotic proteins such as survivin and bcl-2. 

Genetic alterations are important in the metastatic progression of tumour cells.  In 

addition to these changes alterations in the tumour microenvironment are required to allow 

local growth and invasion as well as distant metastasis to develop.  It has been suggested 

that cells within the stroma secrete a wide range of growth factors, extracellular matrices, 

metalloproteinases and/or angiogenic molecules to promote prostate cancer cells into a 

tumorigenic and invasive phenotype.  It is now thought that a more efficacious method of 

treatment may involve targeting both the tumour and stroma, blocking both the tumour 

cells’ proliferative ability and also the required support from the microenvironment. 
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FIGURE 1.1 Receptor tyrosine kinase signalling and the androgen receptor 

 

In castration resistant prostate cancer (CRPC), androgen receptor remains functional and 

is thought to significantly contribute to cancer progression.  A number of mechanisms of 

AR activation in an androgen depleted environment have been described (see text for 

further details) and cross talk from receptor tyrosine kinase signalling pathways plays an 

important role in CRPC.  (Abbreviations:  AR - androgen receptor; DHT – 

dihydrotestosterone; EGFR - epidermal growth factor receptor; FGF / R- fibroblast 

growth factor receptor; IGF-1 / -1R - Type I insulin-like growth factor / receptor; MAPK -  

mitogen activated protein kinase; MEK - MAP kinase kinase ; PIP2 – phosphatidyl-

inositol biphosphate; PIP3 - phosphatidylinositol triphoshate; PI3K - phosphoinositide 3-

kinase; RTK -  receptor tyrosine kinase) 

The symbol  signifies the development and evaluation of key inhibitors in clinical trials, 

including PI3 kinase inhibitors (CCI-779, RAD001); EGFR (Erlotinib, Gefitinib, 

Cetuximab); EGFR and HER2 dual inhibitor (Lapatinib); IGF-1R inhibitor (A12, CP-

751,871); Androgen receptor inhibitor (MDV-3100, BMS-641988); 5α-reductase inhibitor 

(Dutasteride); apoptosis/survivin (YM155); CYP17 (Abiraterone, to reduce adrenal and 

intra-tumour androgen biogenesis)(see Table III and text for detail). 
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1.3 Aberrant signalling pathways involved in prostate carcinogenesis 

Abnormal signalling is thought to mediate many of the tumourigenic activities 

involved in cancer development and progression; discoveries in this field offer potential 

targets for new drug development.  The progression of epithelial prostate cells from a 

normal differentiated state in which proliferation and apoptosis are tightly balanced to a 

malignant state involves a combination of events resulting in the activation of oncogenes in 

addition to the loss of tumour suppressor genes, which critically control aspects of the 

hallmarks/phenotypes of cancer (Table III) (20).  Many signalling pathways have been 

found to be important in prostate carcinogenesis and in recent years targeted therapy has 

emerged as a key focus for prostate cancer research.  

RTKs for growth factors are essential for the transduction of extracellular signals to 

their cytoplasmic effectors.  RTKs activate several pathways controlling cell proliferation 

and differentiation as well as migration and apoptosis.  In normal cells the activity of RTKs 

is tightly regulated; however in cancer constitutive activation of RTKs is essential for 

maintaining the malignant phenotype.   

Tumour suppressor genes (TSG) critically regulate the cell cycle, apoptosis, DNA 

repair, senescence and angiogenesis.  Deranged TSG function in carcinogenesis can result 

from two distinct mechanisms. The function of a TSG can be impaired by (1) mutation or 

deletion abnormalities, or (2) binding to a regulatory protein which can either inhibit the 

function or impair the stability of the target TSG. TSGs such as p53 and PTEN are 

important in prostate carcinogenesis (see section 1.7). 
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TABLE III: Hallmarks of cancer and the role of novel agents in prostate cancer  

Hallmark of cancer  Example of targeted therapy  

Self-sufficiency in growth factors Erlotinib (EGFR inhibitor)  

Evading apoptosis  YM155 (Inhibitor of Survivin)  

Tissue invasion and metastasis  Dasatinib (Src inhibitor)  

Sustained angiogenesis  Bevacizumab (VEGF inhibitor)  

Increased cell metabolism  CCI-779 (mTOR inhibitor)  

 

Table III illustrates examples of novel agents that target various phenotypic hallmarks of 

cancer.  Many targeted therapies however act on a number of these phenotypes e.g. 

Atrasentan (ET-A receptor antagonist) is thought to affect the following functions: evading 

apoptosis, tissue invasion and metastasis and sustained angiogenesis.  Androgen ablation 

therapy in prostate cancer also affects distinct aspects of carcinogenesis including 

metabolism, apoptosis and growth.  
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1.4 Molecular mechanisms of targeted therapy 

Different mechanisms have been used to target molecular signalling in cancer with 

inhibition of RTK signalling offering the most success to date.  Currently two classes of 

compounds are commonly used to inhibit RTK activation: small molecule tyrosine kinase 

inhibitors (TKI) and monoclonal antibodies (mAb).  While both inhibit RTK signalling, 

they have distinct targeted epitopes and mechanisms of action (21).  ATP-dependent TKIs 

can translocate through plasma membranes and interact with the cytoplasmic domain of 

cell surface receptors and intracellular signalling molecules.  They competitively bind to 

the ATP-binding site in the catalytic domain of the receptor, inhibiting 

autophosphorylation and the activation of intracellular signal transducers. 

In contrast mAbs can only act on molecules that are expressed on the cell surface or 

secreted, as they are unable to pass through the cell membrane. Different ways mAbs 

inhibit RTK signalling are suggested which can be further separated into direct and indirect 

mechanisms.  Direct action includes the following: blocking the function of target 

signalling molecules or receptors, stimulating function which results in apoptosis and 

targeting function by conjugating mAbs with toxins, radioisotopes or cytokines.  The 

indirect action described involves the binding of immunoglobulins to the surface of the 

cells mediating complement-dependent cytotoxicity and antibody-dependent cellular 

cytotoxicity, both of which eventually lead to cancer cell death. 

TKIs tend to offer the most efficient method of targeted therapy as they block the 

kinase activity of the targeted receptor, significantly inhibiting the activation of 

downstream signalling.  Depending on the selectivity of the candidate compounds, they 

may act as multi target agents as they are prone to bind to different RTKs due to the 

structure of the ATP-binding pocket being highly conserved within the tyrosine kinase 

family.  In contrast mAbs tend to be specific inhibitors and have been shown to only offer 

modest antitumour activity when used alone with more significant effects being noted 

when combined with chemotherapy.   

In addition to TKIs and mAbs, other types of targeted therapy have also been used 

successfully in preclinical studies.  Antisense oligonucleotides target specific sequences in 

the mRNA of interest, implicated to be a causative factor for carcinogenesis, thus 

inhibiting its expression and protein translation.  Antisense oligonucleotides are currently 

in clinical trial as anti-cancer agents however to date none have been approved for use. 
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1.5 Molecular targeted therapy – examples of recent success in selected tumour 

types 

1.5.1 BCR-ABL tyrosine kinase in Chronic Myeloid Leukaemia 

Chronic Myeloid Leukaemia (CML) is a myeloproliferative disease which is 

characterised by the expansion of a clone of haemopoietic cells that carry the Philadelphia 

chromosome (Ph).  The Ph chromosome is due to a reciprocal translocation between the 

long arms of chromosomes 9 and 22.  This translocation results in a novel fusion gene 

BCR-ABL, which encodes a constitutively active protein tyrosine kinase.  The treatment of 

CML has been revolutionised since the discovery of a relatively specific inhibitor of the 

BCR-ABL tyrosine kinase, imatinib (Glivec).  Treatment with this small molecule 

inhibitor in patients diagnosed with chronic phase CML results in high rates of complete 

cytogenetic remission (>87%) and molecular remissions with low or undetectable amounts 

of BCR-ABL transcripts (22).  Imatinib is now established as standard therapy for this 

patient group taking over from its predecessor interferon-α.  Results from a 5 year follow 

up study were recently published confirming durable responses in patients with chronic-

phase CML (23).  This study followed patients who had been initially treated with imatinib 

and then were either continued on treatment with this tyrosine kinase inhibitor or given 

interferon-α and cytarabine.  Patients treated with imatinib had high rates of cytogenetic 

response and the estimated overall survival at 60 months was 89% compared to previous 

studies of interferon-α plus cytarabine with survival rates around 65% (24). 

Approximately 10% of patients treated with imatinib will subsequently develop 

resistance, and between 50-90% of these cases are associated with mutations in the kinase 

domain of BCR-ABL (25).  Over-expression of Src related kinases has also recently been 

implicated in treatment resistance, which may explain the efficacy of some second 

generation BCR-ABL inhibitors such as nilotinib and dasatinib in imatinib relapsed disease 

(26;27).  Novel therapies continue to be developed as advances in the molecular 

understanding of disease progression in CML emerge. 
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1.5.2 Trastuzumab (Herceptin) in Breast Cancer 

Another example of successful targeted therapy is HER2 mediated therapy in breast 

cancer.  The human epidermal growth factor receptors (HER), namely HER 1-4, are a 

group of four transmembrane tyrosine kinase receptors that normally regulate cell growth 

and survival.  HER2 gene amplification and protein overexpression is found in 20-30% of 

invasive breast cancers (28).  HER2 positive breast cancer patients in general have 

decreased overall survival and differential responses to standard chemotherapeutic and 

hormonal regimes (29).  

Trastuzumab (Herceptin) is a monoclonal antibody to the HER2 ectoderm and has 

been shown to significantly improve the outcome for HER2 positive breast cancer patients.  

It acts by binding to the extracellular juxtamembrane domain of HER2, resulting in 

inhibition of proliferation and reduced survival of HER2 dependent tumours.  Trastuzumab 

has been shown to significantly improve patient outcome in both HER-2 positive breast 

cancer of both early stage and metastatic stage (30;31).  Trastuzumab is recommended as 

treatment for women with early-stage HER2 positive breast cancer following surgery, 

chemotherapy (neoadjuvant or adjuvant) and radiotherapy (32). It is also recommended 

that all patients who have HER2 positive advanced breast cancer be considered for 

treatment with trastuzumab either as monotherapy (if metastatic and had previous 

chemotherapy) or in combination with chemotherapy and/or hormonal agents (33;34).  
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1.6 Target signalling in prostate cancer 

Despite the success of targeted therapy in other tumour types and the improved 

understanding of abnormal signalling activities in prostate carcinogenesis, none of the 

novel agents studied so far have shown adequate efficacy to justify their routine use in 

prostate cancer.  Research and drug development programmes therefore continue to strive 

for a better understanding of the signalling network involved and in order to develop a 

more efficacious treatment regime. 

 

1.6.1 PI3K Pathway 

The phosphoinositide 3-kinase pathway has been shown to regulate multiple 

cellular events in prostate cancer.  PI3K activation results in the catalytic conversion of 

phosphatidylinositol biphosphate (PIP2) to phosphatidylinositol triphoshate (PIP3) which 

in turn activates Akt.  Mammalian target of rapamycin (mTOR) is a serine/threonine kinase 

that regulates cell growth and is involved in tumourigenesis.  Akt phosphorylates and 

activates mTOR to enhance cell growth.  PTEN is a tumour suppressor gene which 

negatively regulates the PI3K pathway. In prostate cancer loss of PTEN and/or Akt 

activation is coupled with high Gleason score (towards an undifferentiated phenotype), an 

advanced clinical stage and poorer prognosis (35;36).  The PI3K pathway is also associated 

with hormone resistance and chemotherapeutic insensitivity.  High levels of phosphoAkt 

immunostaining have been shown to be predictive of biochemical recurrence and 

phosphoAkt-1 expression has been suggested to be an independent prognostic marker of 

biochemical recurrence-free survival in a subgroup analysis of patients with Gleason score 

of 6 and 7 (n=488 p=0.0012) (35).  In vitro studies have shown that PTEN loss is 

associated with increased resistance to both doxorubicin and paclitaxel and treatment with 

a PI3K inhibitor reverses this chemoresistance in prostate cancer cells (37). 

Inhibition of PI3K signalling has been studied in vitro using two small molecule 

inhibitors which have been available for some time, namely wortmannin and LY24002.  

Both of these have demonstrated antitumour effects in prostate cancer cell lines (38), 

however both have a relatively broad spectrum of activity inhibiting other kinases related 

to PI3K such as ATM and ATR.  There are a large family of PI3Ks including the four class 

I lipid kinase isoforms p110α, p110β, p110δ and p110γ.  Each of these isoforms is thought 

to have an individual role in cell behaviour.  Of note, p110α protein has been found to be 

overexpressed and mutated in a number of solid tumours including prostate cancer (39).  

Targeting the p110α isoform in cancer is therefore an attractive strategy in drug 
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development for prostate cancer.  PI-103 inhibits the PI3K pathway at multiple sites 

including the p110α isoform as well as mTOR-raptor complex (mTORC1) and mTORC2.  

This dual p110α/mTOR inhibitor has been shown in PC3 cells to reduce proliferation and 

invasion and has significant anti-tumour activity in xenograft tumour models (40).  Formal 

published results on the use of PI-103 in clinical trial are awaited. 

           Inhibition of Akt is another important strategy for drug development.  A number of 

small molecule inhibitors including A-443654, Akt-I-1 and Akt-I-2 have been tested in 

vitro and in preclinical in vivo models for their anti-tumour effects with promising findings 

(41).  Future investigations of these agents in the clinic will inform us of their potential as 

novel therapies. 

PTEN inactivation results in deregulated signalling through the mTOR pathway.  

mTOR is the target of the antibiotic rapamycin which is used as an immunosuppressant 

following renal transplantation.  At present there are three rapamycin derivatives in 

development: temsirolimus (CCI-779), everolimus (RAD001) and deforolimus (AP23573).  

Both CCI-779 and RAD001 have been shown to have beneficial effects in vivo.  

Transgenic mice with activated Akt or PTEN deficiencies have decreased tumour growth 

when treated with CC1-779 (42). Similarly, RAD001 has been shown to reverse prostate 

neoplastic phenotypes in mice expressing human Akt (43).  AP23573 has been shown to 

have promising antitumour activity in sarcoma and selected haematological malignancies.  

A phase II trial using CCI-779 for patients with CRPC has recently finished recruiting 

however to date no results are available. Both RAD001 and AP23573 and are currently 

being assessed in phase II clinical studies. 

 

1.6.2 Src Family Kinase 

The Src family kinases (SFK) are a group of non-receptor protein tyrosine kinases 

which are involved in tumour adhesion, motility, invasion and angiogenesis.  SFK 

members Src and Lyn are highly expressed in prostate cancer cell lines as well as in the 

majority of prostate cancer specimens (44;45).  Src signalling is involved in androgen 

induced proliferation of prostate cancer cells and recently it has been suggested that Src is 

involved in the transition to androgen independent growth (46).  Bone metastases occur in 

the majority of prostate cancer patients with advanced disease.  Src inhibition in vivo has 

shown reduced morbidity, lethality and incidence of bone metastases in breast cancer 

mouse models (47).  Therefore a small molecule inhibitor targeting Src may have the 
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therapeutic advantage in prostate cancer in minimising morbidity associated with bone 

metastases and possibly improving survival outcome. 

Dasatinib is a SFK/Abl inhibitor and has in vitro activity in prostate cancer cells.  

Proliferation, invasion and migration have been shown to be reduced when DU145 cells 

were pretreated with dasatinib (44).  A significant reduction in tumour growth and 

metastases has also been demonstrated when dasatinib was used in prostate cancer 

xenograft models.  Phase II studies are currently ongoing to assess dasatinib in CRPC as 

well as combination therapy with docetaxel in metastatic disease.  Results from phase II 

trials in imatinib-resistant CML with dasatinib have shown minimal toxicity thus reducing 

concerns that Src inhibition may suppress multiple pathways and be associated with high 

levels of adverse effects (48;49). 

AZD-0530, another Src inhibitor, has been shown to inhibit the growth of prostate 

cell lines and suppress migration in PC3 and DU145 cells (50).  It also suppressed the 

growth and metastasis of androgen-independent LNCaP cells in vivo (51).  Studies in 

healthy volunteers have found only mild side effects with AZD-0530 and a phase II trial in 

CRPC has recently started.  Finally Bosutinib, another Src/Abl inhibitor, which has shown 

in vitro and in vivo activity in models of CML (52), colon cancer (53)  and breast cancer 

(54); no published results are available for prostate cancer to date.   

 

1.6.3 The ErbB receptor family 

The ErbB family of receptor tyrosine kinases include epidermal growth factor 

receptor (EGFR/ErbB1), HER2 (ErbB2), HER3 (ErbB3) and HER4 (ErbB4).  Both EGFR 

and HER2 have critical roles in cell growth, differentiation and the motility of normal and 

cancer cells through the activation of downstream signalling pathways such as the MAPK 

and PI3K/Akt pathway.  EGFR is highly expressed in primary prostate cancer and 

associated metastases (55).  Overexpression of EGFR is associated with poor prognosis 

(56) and the transition of androgen sensitive disease to androgen independence (57).   

Current anti-EGFR therapies include both TKIs and mAb therapy. Small molecule 

TKIs have been the most successful method to date in EGFR targeting with Erlotinib 

(Tarceva) approved for use in the treatment of pancreatic and non-small cell lung cancer 

(NSCLC) after failure of at least one prior chemotherapy regimen (58;59).  Progression 

free survival in NSCLC however is only improved by 2 months with a reported response 

rate of 8.9 % (59). Methods have been investigated to improve patient selection with both 

EGFR mutation and an increase in EGFR copy number recognised as biomarkers for 
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favourable response to Erlotinib in NSCLC (60;61).  Erlotinib has also been studied in 

CRPC in combination with docetaxel.  Results of a phase II study demonstrated no 

beneficial anti-cancer activity with erlotinib added to docetaxel monotherapy (62).  

However, the pre-treatment EGFR status was not available.  Further studies of erlotinib in 

non-metastatic prostate cancer and chemotherapy naïve disease are ongoing.  EGFR 

mutation and amplification of the EGFR gene have been shown to occur frequently in 

advanced prostate cancer however unlike NSCLC there are currently no stratified studies 

to include either EGFR mutation or gene amplification to improve patient selection for 

treatment with anti-EGFR therapy (63).  Erlotinib combined with bevacizumab (vascular 

endothelial growth factor inhibitor) has been shown in NSCLC to increase progression free 

survival and this combination regime is currently being tested in prostate cancer patients 

following radical prostatectomy (64).  

Gefitinib (Iressa) is another orally active EGFR TKI which has been shown to have 

antiproliferative activity in prostate cancer cell lines(65).  EGFR suppression with gefinitib 

results in significant growth inhibition in PC3 xenografts  (66) and has been shown to 

reduce the incidence of prostate cancer metastasis in nude mice (67).  Phase I data of 

gefitinib monotherapy in a range of solid tumours showed promising antitumour activity 

(68); however phase II results in non-metastatic CRPC reported no positive response 

(69;70).  EGFR status was assessed in a subset of patients where moderate-strong staining 

was noted in 12 out of 16 cases (69).  There was no correlation between EGFR expression 

and PSA decline or time to progression suggesting that in prostate cancer EGFR 

overexpression is not indicative of response to gefitinib. 

PD168393 also selectively inhibits EGFR and it has been shown to sensitise 

prostate cancer cells to the cytotoxic activity of paclitaxel (71).  There is currently no in 

vivo or clinical evidence of this small molecule inhibitors effect in prostate cancer. 

A number of anti-EGFR monoclonal antibodies have been introduced over recent 

years with cetuximab being approved for use in patients with colorectal cancer refractory 

or intolerant to irinotecan and in patients with squamous cell carcinoma of the head and 

neck (72;73).  Phase I results of panitumumab, another EGFR mAb in advanced solid 

tumours showed treatment was well tolerated, but patients with prostate cancer showed 

very limited response (74).  Patients with CRPC are currently being recruited for phase II 

trials of cetuximab treatment combined with either docetaxel or mitoxantrone.  Taken 

together, while EGFR inhibitors, namely Erlotinib, Gefitinib and PD168393, all target the 

kinase domain of EGFR and have encouraging data to support their clinical use in a 

number of tumour types, it is disappointing that similar efficacy has not been seen in 
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prostate cancer.  Many factors may contribute to this (see Drug development against 

implicated biological targets, Section 6.1).  The lack of stratification among patients 

according to their EGFR status (namely expression level, mutation and amplification), as 

an indicator of the significance of abnormal EGFR function as a driving event in prostate 

carcinogenesis, may partly explain the negative results in a number of trials.  Future studies 

should focus on targeted assessment of these novel agents in prostate cancer sufferers with 

defined genetic (or epi-genetic) lesions involving EGFR. 

Amplification of the HER2 gene and/or overexpression of the HER2 protein occurs 

in 20-30% breast cancer patients and is associated with an unfavourable outcome (28;29).  

In contrast, the impact of HER2 in prostate cancer is much less clear, with HER2 

overexpression and/or amplification being identified much less frequently in prostate 

cancer (75).  There is also no strong consensus regarding its impact in clinical outcome.  

This may account for the negative findings in a phase II study using trastuzumab 

(herceptin) in CRPC (76), which did not support a phase III trial of herceptin. 

HER2 is an orphan receptor and functions as a coreceptor.  Recent work has shown 

that HER2/HER3 dimerization and activation may stimulate androgen-receptor mediated 

signalling in an androgen depleted environment (77).  Agents, which may target HER2 

dimerisation signalling, include pertuzumab and lapatinib.  Pertuzumab is a monoclonal 

antibody which inhibits HER2 dimerisation with other HER family members including 

EGFR, HER3 and HER4 (78).  Unfortunately, a phase II trial of pertuzumab in CRPC 

showed no PSA response, while the treatment was well tolerated (79).   A phase I study of 

docetaxal and pertuzumab in solid tumours shows promising results in the CRPC patients 

with stable disease observed in half of the patients after 4 cycles (12 weeks) of treatment 

(80).  The dual EGFR/HER2 TKI lapatinib is more potent than gefitinib to inhibiting 

proliferation (81).  A phase II trial of lapatinib in recurrent or metastatic prostate cancer is 

currently being evaluated.  

Despite the infrequency of HER2 overexpression, the kinase activity of this 

receptor is strongly implicated in the progression to CRPC.  Tyrosine phosphorylation of 

HER2 has been shown to play a key role in regulating androgen mediated proliferation in 

human prostate cancer cells (82).  Furthermore the inhibition of HER2 kinase activity by 

lapatinib impairs AR transcriptional activity (83).  The discrepancy for the role of HER2 

(and EGFR) between in vitro analysis and clinical studies requires attention in future 

translational trials to incorporate assessment of target (including expression level, mutation 

and amplification status) and clinical evaluation of efficacy along with validation of drug 

induced effects on the target. 
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HER3 plays an essential role in EGFR and HER2 driven tumourigenesis.  This 

ErbB member is also known to have a central role in mediating PI3K/Akt signalling.  In 

contrast to other ErbB receptors, HER3 is kinase inactive and is not a direct target of 

tyrosine kinase inhibitors.  It is suggested that HER3 may be responsible for the drug 

resistance, which has been observed with EGFR and HER2 inhibitors, and therefore 

research is currently focussing on HER3 as a new target for anticancer therapies.   

 

1.6.4 The Fibroblast growth factor receptor (FGFR) family 

Fibroblast growth factors (FGF) including FGF1, FGF2, FGF6, FGF8 and FGF17 

are all expressed at increased levels in prostate cancer (84-89).  FGFs signal through 

fibroblast growth factor receptors (FGFR1-4) activation, which leads to downstream 

signalling through multiple pathways including the MAPK and PI3K pathways.  FGFR4 is 

overexpressed in prostate cancer with strong expression associated with high grade disease 

and decreased survival (90).  FGFR1 and 2 also show overexpression in prostate cancer 

when compared to BPH; however FGFR2 shows no correlation with tumour grade or stage 

(91).  Recent transgenic models further validate the role of FGFR signalling as key to 

prostate carcinogenesis(92;93). 

Over recent years work has focussed on selective targeting of the receptors 

involved in FGF signalling as a novel therapeutic approach in prostate cancer.  FGFR 

inhibition using siRNA to target FGFR4 in prostate cancer cells shows suppression of 

proliferation and invasion (91).  SU5402 potently blocks FGFR1 tyrosine kinase activity 

while weakly inhibiting PDGF receptor function   In vivo SU5402 has been shown to 

decrease xenograft tumour growth and suppress PSA and promotrilysin expression in a 

prostate cancer model (94).  To date there are no published results of a FGFR inhibitor in a 

clinical trial.   

 

1.6.5 Type I insulin-like growth factor receptor 

Type I insulin-like growth factor receptor (IGF-1R) is activated by insulin-like 

growth factor I or II (IGF-I/II).  The IGF-1R is crucial in maintaining the malignant 

phenotype with evidence showing its role in proliferation, angiogenesis and apoptosis.  

IGF-1R activation is ligand dependent and once activated IGF-1R recruits and 

phosphorylates adaptor proteins, which serve as docking sites for other signalling 

molecules.  This results in activation of intracellular signalling pathways including PI3K 

and ERK1/2 of the MAPK pathway.   
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IGF-1R is significantly up-regulated in prostate cancer when compared to benign 

prostatic epithelium (95) and in vitro work has shown that IGF-1R overexpression is 

associated with androgen independent antiapoptotic and promitotic signalling, processes 

which drive prostate cancer disease progression (96).  

Several approaches have been used to inhibit IGF-1R signalling via reduction or 

neutralisation of circulating IGF-1 or by inhibition of IGF-1R activation. At present the 

most promising method is to use antibodies against IGF-1R.   The human antibody A12 

has been used in prostate xenograft tumours to study the beneficial effects of blocking 

IGF-1R signalling following castration (97).  IGF-1R inhibition enhanced the effect of 

castration and prolonged tumour-specific survival.  Combination treatment was also 

associated with a decrease in AR signalling and nuclear AR localisation.  These results 

suggest that IGF-1R inhibition in conjunction with androgen ablation enhances the 

inhibition of signalling through the AR, which remains important even in CRPC.  IGF-1R 

inhibition in xenografts has also been shown to potentiate the activity of cytotoxics (98).  

A12 and CP-751,871 another monoclonal anti-IGF-1R antibody are currently in phase II 

trial to test their efficacy in combination with docetaxel and prednisone in the treatment of 

CRPC. 

Both IGF-1 and IGF-binding protein-3 (IGFBP-3) have been reported to be 

associated with an increased risk of prostate cancer.  Conflicting evidence for both 

biomarkers has been published however with recent evidence showing no observed 

association for IGFBP-3 (99;100).    

 

1.6.6 Heat Shock Proteins 

Heat shock proteins (HSP) are cellular chaperones involved in the regulation and 

stabilisation of a number of key signal transduction proteins including MAPK, Akt, AR 

and Src kinases (101).   

It has been suggested that HSP27 may be at the centre of many pathways involved 

in the regulation of the response of a cell to treatment induced stress and targeting it may 

lead to silencing of multiple survival pathways.  Apoptosis resistance is associated with 

increased expression of multiple HSPs and small HSP such as HSP27 have been found to 

be important chaperones which protect cancer cells against apoptosis (102).  Cytotoxic 

treatments such as chemotherapy and radiotherapy have a negative effect on cells by 

inducing apoptosis.  HSP27 expression is low or absent in hormone naïve prostate cancer, 

with increasing levels demonstrated in tumours once treatment is commenced.  In CRPC, 
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HSP27 is uniformly overexpressed and it is thought that this molecular chaperone is 

important in the progression of prostate cancer from hormone sensitive to resistant (103).  

The development of hormone resistance is thought to be attributed to decreased apoptotic 

rates rather than an increase in proliferation (104).  The antisense oligonucleotide OGX-

427 which targets HSP27 has been shown to inhibit HSP27 expression and synergises with 

androgen ablation and chemotherapy in prostate cancer xenograft models.  In vitro work 

has also been published showing that down regulation of HSP27 radiosensitises prostate 

cancer cells (105).  A phase I clinical trial of the antisense oligonucleotide OGX-427 either 

alone or with docetaxel is currently recruiting patients.    

HSP90 is a key regulator of ligand-independent nuclear localisation and activation 

of AR in androgen-refractory prostate cancer cells (106).  HER2, Raf-1 and Akt are also 

regulated by HSP90.  Geldanamycin and its derivative 17-AAG are anasmycins that 

interfere with the action of HSP90 leading to the degradation of HSP client proteins.  Both 

have been shown to have anti-tumour effects in prostate cancer cells.  Despite its potential 

use as an effective cancer treatment, geldanamycin presents several major drawbacks as a 

candidate drug, particularly with hepatotoxicity.  17-AAG however has a more favourable 

toxicity profile.  Using an in vivo prostate cancer model, 17-AAG inhibited tumour growth 

as well sensitised tumour responses to taxol treatment (107). 

Phase I data has recently been published of 17-AAG in patients with advanced 

cancer of which 18 of the 54 patients had CRPC (108).   No partial or complete responses 

were observed with only 1 CRPC patient demonstrating a 25% decline in PSA with 

treatment.  17-AAG may however be more beneficial in enhancing the effect of cytotoxic 

therapy rather than as a monotherapy.  Phase I and II trials are therefore currently 

recruiting patients for treatment in combination with docetaxal and other cytotoxics. 

 

1.6.7 Anti-angiogenic agents 

Inhibition of angiogenesis has emerged as a promising therapeutic target for a 

number of solid tumours.  Anti-angiogenic agents can reduce intra-tumoural interstitial 

pressure and increase drug delivery of anti-cancer agents.  This mode of anticancer therapy 

has been successful recently in the treatment of renal cell carcinoma (RCC).  Sorafenib is 

an orally active multikinase inhibitor which seems to have an anti-angiogenic effect in 

RCC due to its inhibitory effect toward vascular endothelial growth factor receptors 

(VEGFR) and their targets.  Increased production of VEGF is implicated in the progression 
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of clear-cell RCC (109).  Sorafenib has been licensed for maintenance treatment of 

metastatic RCC following the positive result in trial in advanced clear cell RCC (110).   

Over-expression of vascular endothelial growth factor (VEGF) and its receptors are 

associated with the progression of prostate cancer (111).  VEGFR-2 inhibition in 

orthotopic prostate cancer models reduced tumourigenicity and metastases, supporting the 

potential use of anti-VEGF agents in prostate cancer (112).  Results of phase II trials using 

Sorafenib in CRPC however have shown minimal effects on PSA response or radiographic 

appearance of bone metastases (113-115). 

Bevacizumab is a humanised murine mAb to VEGF which has been shown to 

provide clinical benefit in colorectal, NSCLC and breast cancer.  Combining bevacizumab 

with 5-fluorouracil inhibits angiogenesis and tumour growth in mouse prostate cancer 

models (116).  Currently bevacizumab is in Phase II studies for use in high risk cases in 

combination with medical or radiotherapy.  A Phase III trial is also recruiting patients with 

CRPC to assess the effect of bevacizumab with docetaxel.   

Platelet derived growth factor (PDGF) is involved in autocrine stimulation of 

tumour cells, regulation of stromal fibroblasts as well as tumour angiogenesis (117).  

Platelet derived growth factor receptor (PDGF-R) is a receptor tyrosine kinase which has 2 

subunits, α and β.  Upon PDGF binding these subunits either homo- or heterodimerize.  

Immunohistochemistry has shown PDGF-R α and β to be expressed in 88% of primary 

prostate tumours and in 80% of bone marrow metastases (118).  Inhibition of this 

signalling pathway appears to be an attractive target in prostate cancer however an initial 

Phase II trial using the PDGF-R inhibitor SU101 showed minimal effect in CRPC (118).   

Imatinib is an inhibitor of PDGF-R signalling as well as the BCR-ABL tyrosine 

kinase.  A number of phase II studies have been done using imatinib in prostate cancer 

patients who have biochemical relapse following radical (radiotherapy or prostatectomy) 

treatment.  As a single agent imatinib has shown limited biochemical activity with a 

significant incidence of grade 3 and 4 toxicity leading in some cases to early trial closure 

(119-121). There has been suggestion that this PDGF-R inhibitor may have a more 

beneficial role if used in combination with taxane based chemotherapy.  Pre-clinical 

models have demonstrated synergistic effects of imatinib and paclitaxel when used in 

mouse models of prostate cancer bone metastases (122).  Recent published results of a 

phase II trial combining imatinib and docetaxel in CRPC patients with bony metastases 

showed no therapeutic benefit despite confirmation of effective p-PDGFR inhibition (123).  

An osteolytic model of bone metastases was used in the preclinical study as opposed to the 
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osteosclerotic lesions typically seen in human prostate cancer, which may contribute to the 

discrepancy in efficacy seen in preclinical model and clinical trial.  High levels of grade 3 

toxicities were also observed in this phase II trial of imatinib and docetaxel and it has been 

recommended that further studies of this combination should not be pursued.   

Other agents with anti-angiogenic properities which may be of clinical benefit in 

CRPC include thalidomide and its analogues.  Thalidomide has multiple mechanisms of 

action including immunomodulatory effects on the tumour microenvironment (124).  

Prostate cancer progression and metastasis has been suggested to be mediated by stromal-

epithelial interactions, which could be targeted by thalidomide.  Thalidomide is also known 

to have anti-angiogenic properties from results of pre clinical studies (125). Phase I and II 

studies showed promising results when thalidomide was used in CRPC patients as well as 

in studies using combination therapy with docetaxel (126-128).  These results support the 

need for additional studies of thalidomide in CRPC either alone or as combination therapy 

and current studies are focussing in particular on the potential effect of thalidomide on 

bone metastases. 

 

1.6.8 The Endothelin Axis 

The endothelin axis (ET axis), comprises of the three peptides endothelin (ET)-1, -

2, -3 and their receptors ET-A and ET-B. Most of the activities of ET-1 are mediated via 

the ET-A receptor.  ET-1 has important roles in a host of biological functions, including 

cellular proliferation, apoptosis and angiogenesis.   It also stimulates osteoblast 

proliferation, leading to osteoblastic bone metastases which is typical of  prostate cancer 

(129).   

In metastatic CRPC endothelin receptors are over-expressed and higher levels of 

endothelin are associated with progressive disease (130).  Atrasentan is a selective 

endothelin-A (ET-A) receptor antagonist that inhibits or reverses the downstream effects of 

endothelin-1 (ET-1).  Phase I and II studies of atrasentan showed encouraging results when 

used in men with metastatic CRPC (131;132).  A phase III trial comparing atrasentan to 

placebo in patients with metastatic CRPC did not show significant delay in disease 

progression (133).  Bone alkaline phosphatase (BAP) was measured as a biomarker of 

disease progression and increases from baseline to final BAP were significantly lower in 

the patients treated with atrasentan.  This suggests that atrasentan may have targeted 

activity in the bone microenvironment and that using this ET-A receptor antagonist may 

potentially prevent bone metastases formation or slow the onset of skeletal related events 
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in CRPC patients.  A phase III trial studying the possible synergistic effect of atrasentan 

and docetaxel is currently recruiting patients with CRPC who have bone metastases.   

 

1.6.9 Anti-apoptotic proteins 

Accelerated or dysregulated proliferation is well recognised as a major causative 

factor in tumour development and progression.  In addition to this, defective apoptosis 

(programmed cell death) has been highlighted as a key factor in carcinogenesis.  

Disruption of these anti-apoptotic signals through selective therapeutic targeting could 

offer a novel strategy for drug development programmes and a number of potential targets 

are currently being reviewed.  Survivin is a proto-oncogene which is a member of the 

inhibitor of apoptosis family and has been associated with phenotypically aggressive 

prostate cancer and androgen resistance (134;135).  Inhibition of this pathway would aim 

to lower the anti-apoptotic threshold in cancer cells.  YM155 is a novel small molecule 

inhibitor of survivin which induces apoptosis in prostate cancer cell lines and regression of 

tumour growth in CRPC xenografts (136).  Phase II trials are currently under way with 

YM155 and docetaxel in CRPC.   

It has recently been shown that IGF-1/ mTOR signalling increases levels of 

survivin in prostate cancer cells (137).  This suggests that suppression of IGF-1/Akt/mTOR 

signalling may be beneficial to lower an anti-apoptotic threshold maintained by survivin in 

aggressive prostate cancer. 

Bcl-2 is another anti-apoptotic regulatory protein, which is associated with poor 

therapeutic response and poor clinical outcome in small cell lung cancer (SCLC).  There is 

also strong in vitro evidence to show that bcl-2 suppression in SCLC is associated with 

enhanced chemosensitivity.  Disappointingly, a phase II study in patients with advanced 

SCLC treated with carboplatin and etoposide +/- G3139 (or oblimersan, a bcl-2 antisense 

oligonucleotide) showed no added effects with the addition of oblimersan; there was in fact 

a potential negative impact on survival. (138).  Of note oblimersan combined with 

chemotherapy has been shown to improve survival in melanoma patients (139).  To explain 

the negative results in SCLC, two possible explanations are: (1) Despite promising data 

from in vitro and in vivo model systems, bcl-2 over-expression does not play a critical role 

in clinical SCLC, which would argue for more relevant in vivo model systems.  (2) 

Oblimersan is not suppressing bcl-2 at a sufficient level for it to enhance chemotherapeutic 

sensitivity.  Tumour biopsy following oblimersan treatment would enable formal 

assessment of the target status, an important consideration for future trial design.  Finally, 



 42

it may also be possible that off-target effects such as immunostimulatory effects may be 

responsible for the effects observed in melanoma but not in SCLC.  

Bcl-2 is over-expressed in CRPC (140), and its inhibition results in delayed 

development of hormone resistance and enhanced effects of chemotherapy in prostate 

cancer mouse models (141).  A Phase II study of docetaxel with oblimersan showed no 

additional benefit in overall survival and PSA response rates to docetaxel monotherapy in 

CRPC (142).  Protein expression of bcl-2 was analysed in peripheral blood mononuclear 

cells pre and post treatment in order to assess the pharmacodynamics of oblimersan 

treatment.  No correlations between bcl-2 levels and response rates or survival were noted.  

However, once again, intra-tumoural biomarker, namely bcl-2 level, was not ascertained.  

Currently there are no trials recruiting prostate cancer patients for treatment with 

oblimersan. 

 

1.6.10 Androgen receptor signalling 

Targeting the reactivation of AR signalling in CRPC is currently the focus of many 

drug development programmes and clinical trials.  Anti-androgens currently approved for 

use in prostate cancer (bicalutamide, flutamide, cyproterone acetate) have limited use in 

hormone resistant disease and all have been observed to convert to agonists in progressive 

disease (143).  A number of novel anti-androgens are currently being introduced which 

have significantly higher affinity than bicalutamide for the AR.  Both novel antiandrogens 

MDV-3100 and BMS-641988 are currently in Phase I clinical trial in CRPC. 

CRPC progression may be due to residual serum androgens as well as upregulated 

intracrine androgen synthesis from the tumour cells.  Therefore methods to further lower 

androgen levels are under investigation.  Ketaconazole is a synthetic anti-fungal agent, 

which is currently used in some centres for patients with CRPC due to its action as a potent 

inhibitor of CYP450-dependent adrenal and testicular androgen production.  Studies have 

shown that ketaconazole has a modest activity in CRPC however its use is associated with 

a rise in adrenal androgen levels at the time of progression (144;145).   

Cytochrome P (CYP) 17 is a microsomal enzyme that catalyses two key steroid 

reactions in both adrenal and tumour intracrine androgen biosynthesis involving 17 alpha-

hydoxylase and C (17,20)-lyase.  Abiraterone acetate is a selective, irreversible inhibitor of 

CYP17, suppressing testosterone to castrate levels in the short term; however there is some 

testosterone recovery with long-term use.  Addition of this CYP17 inhibitor to GnRH 

analogue treatment results in decreases in both testosterone and adrenal androgen levels 
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(146).  Abiraterone has recently been assessed in a phase I study to be safe and may have 

favourable antitumour activity (147).  A phase III study is currently recruiting patients with 

CRPC who have progressive disease despite docetaxel treatment. 

Testosterone is converted to dihydrotestosterone (DHT) in peripheral androgen 

dependent tissues by two isoforms of 5 α-reductase, SRD5A1 and SRD5A2.  The type 2 

enzyme has been identified as the dominant type in benign prostate tissue and finasteride, a 

specific type 2 inhibitor, is approved for use in BPH.  It was previously suggested that 

finasteride may prevent or delay the development of prostate cancer.  The Prostate Cancer 

Prevention Trial studied men who were prescribed either finasteride or placebo for seven 

years (148).  Although a 24.8% reduction in the prevalence of prostate cancer in men on 

finasteride was observed, treatment with this 5 α-reductase inhibitor was associated with a 

significant increase in high grade disease.  Dutasteride (a dual inhibitor of SRD5A1 and 

SRD5A2) is currently being evaluated as a chemopreventive agent in prostate cancer as 

SRD5A1 has been shown to be upregulated in progressive prostate cancer (149).  

Dutasteride has also been shown to inhibit in vivo tumour growth when combined with 

castration in androgen responsive xenograft models (150).  In addition, Phase II and III 

trials are currently recruiting patients with prostate cancer of various stages for assessment 

of treatment with dutasteride alone or in combination with androgen deprivation therapy. 
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1.7 Targeting tumour suppressor genes 

In addition to inhibiting oncogenic signalling, drug development programmes are 

also targeting tumour suppressor genes through either activation or induced expression as 

an alternative approach for advanced prostate cancer therapy. 

 

1.7.1 p53 and prostate cancer  

While the frequency of p53 mutations in early prostate cancer is low, heterozygous 

loss of function mutations are often observed in advanced disease (151).  Furthermore, p53 

turnover is maintained by the E3 ubiquitin ligase murine double minute 2 (MDM2) which 

binds to the c-terminus of p53 and targets it for degradation.  Over-expression of this p53 

regulator has been observed in several cancer types including prostate cancer (152).  

Inhibition of the interaction between MDM2 and p53 allows reactivation of p53, and this is 

currently a promising anti-cancer strategy.  Small molecule MDM2 inhibitors such as 

nutlin-3 have shown promising anti-tumour activity in LNCaP xenograft models (wild type 

p53) (153).  Recent evidence suggests that p53 signalling is also important in androgen 

signalling with wild type p53 over-expression being associated with decreased androgen 

function (154).  In vitro treatment with nutulin-3 has been shown to have a suppressive 

effect on androgen signalling (155).  Antisense MDM2 oligonucleotide (AS-MDM2) is 

another method of targeting the interaction between MDM2 and p53.  Treatment with AS-

MDM2 enhanced the in vitro efficacy of radiotherapy and chemotherapy in prostate cancer 

cells (156).  In vivo AS-MDM2 sensitises androgen sensitive xenografts to androgen 

deprivation therapy (157).  The MAPK and PI3K pathways are also involved in p53 

regulation.  p53 can activate the Raf/MEK/ERK pathway and ERK can stabilise p53 by 

phosphorylation in cervical cancer cells (158).  On the other hand, Akt phosphorylates 

MDM2, enhancing its activity and destabilising p53 (159).  The p53, PI3K and MAPK 

pathways are connected functionally and targeting these signalling systems either in 

isolation or together may further synergise the effects of specific (conventional) therapies 

in prostate cancer.  Therefore, it is important to incorporate relevant robust patient 

selection and accurate target validation in the design of future trials in the assessment of 

novel therapies. 
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1.7.2 Epigenetics in prostate cancer 

Epigenetic changes encompass a number of reversible cellular events including 

DNA methylation and histone modifications, which can modulate gene expression and 

alter tumour phenotypes.  A number of genes are hypermethylated and silenced in prostate 

cancer such as GSTpi, commonly hypermethylated in prostate cancers (>90%) (160).  

DNA methylation levels can be altered by chemical inhibition of DNA MTase enzymes.  

However, to date, no demethylating agent has shown significant response in solid tumours 

(161;162).  

Modification of the surrounding histones in which the DNA is packaged is another 

important epigenetic mechanism involved in carcinogenesis.  The expression of histone 

deacetylases (HDAC) is frequently upregulated in prostate cancer with increased 

expression being associated with hormone refractory disease (163).  HDAC inhibitors 

induce growth arrest and apoptosis in vivo as well as regulate angiogenic and immune 

functions (164).  Limited response however has been observed with HDAC inhibitors in 

solid tumours (165).  Although an increase in histone acetylation was observed in the 

peripheral-blood mononuclear cells of patients treated, the histone acetylation status in the 

target organ was not assayed.  Overall, HDAC inhibition alone does not appear to be 

effective as a cancer therapy (165). 
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1.8 The MAPK signalling pathway 

The mitogen-activated protein kinases (MAPKs) are a family of serine/threonine 

kinases including the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), 

ERK5, c-Jun NH2-terminal protein kinase (JNKs) and p38 MAPKs.  The MAPK signaling 

cascade is involved in various cellular functions including cell proliferation, differentiation 

and migration.  Each subfamily of MAPKs can be stimulated by a separate protein kinase 

cascade that leads to the activation of a specific MAPK kinase kinase (MAPKKK) and a 

MAPK kinase (MAPKK), leading to the phosphorylation and activation of the downstream 

MAPK.  ERK1 and ERK2 are isoforms of the ‘classical’ MAPK, ERK1/2 which is 

activated by MEK1/2 following stimulation by a variety of mitogens and is known to be 

important in cell proliferation. 

 

1.8.1 MEK5/ERK5 signalling pathway 

Mitogen/extracellular signal regulated kinase kinase-5 (MEK5) is the most recently 

identified MAPKK and has been shown to specifically activate ERK5.   ERK5, also known 

as Big MAP kinase 1 (BMK1) is almost twice the size of other MAPKs (815 amino acids).  

The N-terminal kinase domain of ERK5 is highly homologous to ERK1/2 however its 

large C-terminal domain is unique and is thought to be responsible for its unique biological 

activities.   

Cellular stimulation of ERK5 is induced in response to growth factors, oxidative 

stress, and hyperosmolar conditions. EGF is a potent activator of ERK5 and ERK5 has 

been shown to be required for EGF-induced proliferation and progression through the cell 

cycle(166).  A number of tyrosine kinases are recognised to activate the ERK5 pathway 

including the epidermal growth factor receptor (167), HER2/Neu (168)and Src (169). 

Oncogene products such as Ras (167) and COT (170)can also activate the MEK5/MERK5 

pathway.   

In resting cells, over-expressed ERK5 localises to the cytoplasm.  When co-

expressed with constitutively active MEK5 however ERK5 translocates to the nucleus 

(171).  A proposed mechanism for this nuclear shuttling relies on the nuclear localization 

and export signals (NLS and NES) thought to be located in the C-terminal domain, which 

determine the subcellular localization of ERK5 depending on its phosphorylation status 

(see Figure 1.2) (172).   
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FIGURE 1.2 

 
Mechanism controlling ERK5 nucleocytoplasmic transport 

ERK5 has a nuclear localisation signal (NLS) in its carboxyl-terminal tail.  In 

unstimulated cells, a nucleur export signal (NES) is produced by the interaction between 

the amino- and carboxyl-terminal halves, which results in ERK5 being retained in the 

cytoplasm.  Upon stimulation however this interaction is disrupted, abolishing the NES 

activity and thus ERK5 enters the nucleus. 

Modified from Nishimoto et al 2006 (173) 
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MEK5 phosphorylates and activates ERK5 with activation being shown to be 

accompanied by the phosphorylation of Thr219 and Tyr221, with the former residue being 

phosphorylated preferentially (174).  These residues lie in a Thr-Glu-Tyr (TEY) sequence 

on the N-terminus of ERK5 which is equivalent to the Thr-Xaa-Tyr motifs of other MAPK 

members, whose phosphorylation is required for activation.  The activation and 

phosphorylation of these residues results in the phosphorylation of ERK5 downstream 

effectors as well as the phosphorylation of the C-terminal region of ERK5 itself (see Figure 

1.3) (175).  The role of this autophosphorylation is unclear but is thought in turn to lead to 

increased activity of its target molecules (173).  Further studies are required to uncover 

how this C-terminal region may enhance transcriptional activity. 

 

FIGURE 1.3 

 
Proposed mechanism by which ERK5 transmits signals to downstream effectors 

Upon activation by MEK5, ERK5 phosphorylates both downstream targets and the 

carboxyl-terminal of ERK5 itself (autophosphorylation), which in turn leads to increased 

activity of its downstream effectors. 

Modified from Nishimoto et al 2006 (173) 
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1.8.2 Transcriptional activity of ERK5 

Upon translocation to the nucleus, ERK5 can control the transcription of 

downstream effectors to elicit the desired cell response.  Three members of the myocyte 

enhancer factor (MEF) family, are known to be substrates of ERK5; MEF2A, C and D.   

MEF2D is a specific substrate of ERK5, however both p38 MAPKs and ERK5 mediate the 

transcription of MEF2A and MEF2C (176).  MEF2 activation involves a MEF2-interacting 

region and a transcriptional activation domain both of which are found in the C-terminal 

tail of ERK5 (177).  Other direct substrates of ERK5 include c-Fos and Fra-1, c-Myc and 

Sap1a (167;178).  RSK p90 ribosomal S6 protein kinase (rbS6) has been implicated in the 

downstream signalling of ERK5 (179).   RSK is thought to be involved in the regulation of 

nuclear factor kappa B (NFκB) function which has also been shown to be involved in 

ERK5 signalling (180;181). 

 

1.8.3 ERK5 and ERK1/2 

The ERK5 and ERK1/2 pathways have a number of similarities and interaction 

between the pathways has previously been suggested (182).  Initial work using the 

MEK1/2 specific inhibitors PD98059 and U0126 showed that inhibition of the ERK1/2 

pathway produced a sustained activation of the MEK5/ERK5 pathway following EGF 

stimulation in HeLa cells (182).  More recently enhanced nucleur accumulation of ERK5 

in NIH3T3 cells was observed following suppression of ERK1/2 by low dose (1µM) 

PD184352 (an MEK1/2 inhibitor) (183).   There has also been suggestion that ERK5 may 

in fact regulate some of the cellular functions originally attributed to ERK1/2.  A number 

of studies have demonstrated the ability of MEK1/2 inhibitors to block ERK5 activation at 

high dose (167;182). Treatment with low dose PD184352 (0.3µM) sufficient to block 

ERK1/2 activation only has been shown to have no significant effect on proliferation 

whereas treatment with higher dose (3µM) sufficient to block ERK5 significantly inhibited 

proliferation (184). These results suggest that it is in fact ERK5 rather than ERK1/2, which 

has the major role in cell proliferation. 
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1.8.4  ERK5 and cancer 

1.8.4.1  Activation of ERK5 by oncogenes 

Mutant Ras has been identified in many different cancers and the ERK5 signalling 

cascade is thought to be among the pathways involved in mediating its oncogenic effects.   

Raf-1, which is a downstream effector of Ras, has also been shown to enhance ERK5 

activity (185).  In addition to Ras other oncogenes such as COT and Src have been 

identified as potential ERK5 activators(169;170;183). 

 

1.8.4.2  ERK5 tumour associated angiogenesis 

In vivo studies have shown that ERK5 signalling has a critical role in embryonic 

angiogenesis with embryonic lethality occurring at 10.5 days post coitum due to 

cardiovascular defects in ERK5 knockout mice (186) .  Xenograft studies have also shown 

a crucial role of the ERK5 pathway in tumour associated angiogenesis (187).   Deletion of 

the host ERK5 gene significantly inhibited the development of tumour vasculature and 

growth of tumour xenografts.  Studies in endothelial cells suggest that the ERK5 pathway 

is involved in tumour neovascularisation through its role in regulating the RSK-rbS6 

pathway. 

 

1.8.4.3  ERK5 and breast cancer 

 The MEK5/ERK5 signalling pathway has been shown to be important in human 

breast carcinoma.  As discussed in section 1.5.2, HER2 gene amplification and protein 

overexpression is found in 20-30% of invasive breast cancers (28).  It has been shown that 

the ERK5 pathway is constitutively activated in cancer cells overexpressing HER2 and that 

down regulation of this pathway significantly reduces the malignant growth of these cells 

(188).  ERK5 resides in the nucleus of cells that overexpress the HER2 receptor and recent 

work has found that nuclear ERK5 favours MEF-2 dependant transcriptional activity and 

inhibits TRAIL( tumour necrosis factor related apoptosis)-induced cell death (189). 

 Apoptosis is known to be the primary route of cytotoxicity by many forms of anti-

cancer therapy however chemoresistance can often become a therapeutic problem.  In vitro 

studies have highlighted the importance of the MEK5/ERK5 pathway in mediating breast 

cancer cells sensitivity to apoptotic inducing events (190).  Overexpression of MEK5 in 

APO- MCF7 cells suggests that this MAPK member may represent a significant potent 

survival molecule.  Further work will confirm if inhibition of this signalling pathway could 

promote for sensitising breast cancer cells to chemotherapeutic regimens and if successful 

may be of significance in other chemoresistant cancer.  
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1.8.4.4  ERK5 and prostate cancer 

Over recent years, abnormal MEK5/ERK5 signalling pathway has been shown to 

be important in prostate carcinogenesis.  Strong MEK5 expression correlates with 

aggressive disease and activation of MEK5 signalling induced proliferation, motility and 

invasion in LNCaP prostate cancer cells (191).  

More recently, abnormal ERK5 function has also been suggested to contribute to 

prostate carcinogenesis (184).  ERK5 immunoreactivity is significantly up-regulated in 

prostate cancer when compared to benign prostatic hyperplasia. Increased levels of ERK5 

cytoplasmic signals correlated closely with Gleason sum score (p<0.0001), bone 

metastases (p=0.0044) and locally advanced disease at diagnosis (p=0.0023), with a weak 

association with shorter disease-specific survival. A subgroup of 15 (of 81) patients 

showed strong nuclear ERK5 localisation, which correlated with poor disease-specific 

survival and, on multi-variant analysis, was an independent prognostic factor (p<0.0001).  

In addition PC3 cells over-expressing ERK5 displayed enhanced proliferation, migration 

and invasion.  Taken together, these data suggest MEK5/ERK5 pathway to be biological 

important in prostate cancer and a potential target in invasive prostate cancer. 
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1.9 Aims and Objectives of the Study 

 

The specific aims of this study are: 

• To study ERK5 expression in resected prostate cancer specimens including primary 

tumours and metastatic lesions 

 

• To investigate the functional and biochemical effects  of ERK5 inhibition in 

prostate cancer cells  

 

• To explore potential cross talk between ERK1/2 and ERK5 signalling pathways 
 

• To optimise methodology to study the ERK5 interacting proteome 
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2 Materials & Methods 
2.1 Materials 

Immunohistochemistry 

• Normal rabbit serum     Vector Labs, Peterborough, UK 

• Vectastain       Vector Labs, Peterborough, UK 

• DAB substrate kit     Vector Labs, Peterborough, UK 

• EnVision plus reagents     DAKO, Cambridgeshire, UK 

 

Cell Lines 

• PC3 cells      ECACC, Salisibury, UK 

• PC3 ERK5      Newcastle University, UK (184)  

• PC3 Empty vector     Newcastle University, UK (184) 

• HEK 293      BICR, Glasgow, UK    

 

Tissue Culture 

• RPMI 1640      Invitrogen, Paisley, UK 

• DMEM      Invitrogen, Paisley, UK  

• Fetal Bovine Serum     Invitrogen, Paisley, UK 

• G418        Invitrogen, Paisley, UK  

• L-glutamine      Invitrogen, Paisley, UK 

• Recombinant human EGF    R&D systems, Abingdon, UK 

• PD184352      Strathclyde University, UK 

 

Western analysis 

Protein extraction 

• Calbiochem cocktail mixture    Calbiochem, Nottingham, UK 

• Bio-rad Protein Assay     Bio-rad Labs, Herts, UK 

SDS-PAGE 

• Pageruler prestained protein ladder   Fermentas Life Sciences, York, UK 

• NuPAGE 10% Bis-Tris Gel    Invitrogen, Paisley, UK 

• MOPS Running Buffer    Invitrogen, Paisley, UK 
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Blotting and detection 

• ECL Western Blotting Detection Kit   Amersham, Buckinghamshire, UK 

• Immobilon-P      Millipore, Herts, UK 

• Super RX medical x-ray film    Fujifilm, Bedfordshire, UK 

 

Antibodies      

Antibody against Company 

ERK5, rabbit polyclonal Cell Signalling, Herts, UK 

ERK5, rabbit polyclonal Upstate, Herts, UK 

phospho ERK5, rabbit polyclonal Cell Signalling, Herts, UK 

ERK 1/2, rabbit polyclonal Cell Signalling, Herts, UK 

phospho ERK 1/2, rabbit polyclonal Cell Signalling, Herts, UK 

α tubulin, mouse monoclonal Santa Cruz, Heidelberg, Germany 

actin, mouse monoclonal Sigma-Aldrich, Dorset, UK 

GFP, mouse monoclonal Living colours, Saint-Germain-en-Laye, France 

PCNA, mouse monoclonal Cell Signalling, Herts, UK 

MEK1/2, rabbit polyclonal Cell Signalling, Herts, UK 

NFκB p65, mouse monoclonal Santa Cruz, Heidelberg, Germany 

phospho NFκB p65, rabbit polyclonal Cell Signalling, Herts, UK 

HRP-conjugated anti-mouse IgG Cell Signalling, Herts, UK 

HRP-conjugated anti-rabbit IgG Cell Signalling, Herts, UK 

Biotinylated anti sheep IgG Vector Labs, Peterborough, UK 

     

 

Transient transfection  

• HiPerfect Transfection Reagent   Qiagen, Crawley, UK 

• siRNA suspension buffer    Qiagen, Crawley, UK 

• ERK5 siRNA (custom made)    Eurogentec, Seraing, Belgium 

• ERK1 siRNA      Dharmacon, Chicago, USA 

(MAPK 3 on-TARGET plus  SMARTpool)  

• ERK2 siRNA      Dharmacon, Chicago, USA 

(MAPK 1 on-TARGET plus SMARTpool)  

• All stars negative control siRNA    Qiagen, Crawley, UK 

• Cell line nucleofector Kit V     Amaxa, Cologne, Germany 

• Cell line nucleofector Kit L    Amaxa, Cologne, Germany 
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• Lipofectamine 2000     Invitrogen, Paisley, UK 

• pCMV FLAG tag ERK5    Newcastle University, UK (184) 

• pCMV FLAG tag EV     Newcastle University, UK(184) 

• FLAG peptide      Sigma-Aldrich, Dorset, UK 

 

Invasion assays 

• Biocoat Matrigel Invasion Chamber   Becton Dickinson, Oxford, UK 

 

Immunoprecipatation 

• Leupeptin      Cambridge Bioscience, UK 

• Aprotinin, bovine lung    Sigma-Aldrich, Dorset, UK 

• Protein A Sepharose beads    Sigma-Aldrich, Dorset, UK 

• Protein G Sepharose beads    Sigma-Aldrich, Dorset, UK 

• DMP       Pierce, Rockford, USA  

• SimplyBlue SafeStain     Invitrogen, Paisley, UK 

• Micro Bio-Spin Chromatography Columns   Bio-rad Labs, Herts, UK 

• NuPAGE SDS Running Buffer   Invitrogen, Paisley, UK 

• 4x NuPAGE LDS Sample Buffer    Invitrogen, Paisley, UK 

• 10x NuPAGE sample reducing agent   Invitrogen, Paisley, UK 

• Biomax 5K membrane    Millipore, Herts, UK 

• Anti-FLAG M2-Agarose from mouse  Sigma-Aldrich, Dorset, UK 

 

 

SILAC 

• RPMI Media for SILAC    Pierce, Rockford, USA 

• DMEM Media for SILAC    Pierce, Rockford, USA 

• Dialyzed FBS      Pierce, Rockford, USA  

• 13C6 L-Lysine-2HCl     Pierce, Rockford, USA 

• L-Lysine-2HCl     Pierce, Rockford, USA 

• L-Arginine-HCl     Pierce, Rockford, USA 

• 13C6 15N4 L-Arginine    Pierce, Rockford, USA 
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2.2 Immunohistochemistry  

2.2.1 Preparation of agar cell pellets 

In order to optimise antibody concentrations for immunohistochemistry 

experiments agarose cell pellets were made with PC3-ERK5 (PC3 cells stably 

overexpressing ERK5) and PC3 EV (empty vector) cells (both obtained from Newcastle 

University (184)).  2 x107 cells were used per pellet and following trypsinisation, cells 

were washed twice in PBS before being resuspended in 1 ml neutral buffered formalin and 

being left at room temperature for 1-2 hours.  Following a final spin (5 minutes, 1000rpm) 

cells were resuspended in 1ml 2.5% agarose which had previously been warmed to 50oC.  

These samples were then wax embedded and sections cut (4µm) for immunostaining 

experiments. 

 

2.2.2 ERK5 immunostaining 

Archive paraffin wax-embedded sections (4µm) were used from clinical prostate 

and kidney samples. Xenograft tumours were obtained from Newcastle University (184).  

Mouse heart sections were used as a positive control and no primary antibody was used as 

a negative control.  All sections had previously been baked overnight at 50oC.  Sections 

were deparaffinised in histoclear and rehydrated through graded alcohols before a final 

wash in water.  Endogenous peroxidase activity was blocked by incubating samples in 

0.3% hydrogen peroxide for 15 minutes.  Antigen retrieval was achieved by immersion in 

pre-heated 0.01M pH6 sodium citrate buffer and microwaving for 4.5 minutes at full 

power in a pressure cooker.  Slides were placed into distilled water immediately following 

this.  Sections were then incubated with 150µl of rabbit serum (Vector Labs, Peterborough, 

UK) in 10ml of 0.1% fraction V BSA in 0.15M NaCl PBS for 1 hour before incubation 

with the desired primary antibody overnight at 4oC.  After washing in 0.1% BSA/PBS 

slides were incubated with the secondary antibody (Biotinylated anti sheep IgG, Vector, 

Labs, Peterborough, UK) diluted 1:200 in BSA/PBS for 1 hour at room temperature.  

Slides were then washed again with BSA/PBS before incubation with Vectastain (Vector 

Labs, Peterborough, UK) for 1 hour.  Following a final wash with BSA/PBS, 

diaminobenzidine tetrahydrochoride (DAB substrate kit, Vector Labs, Peterborough, UK) 

was applied to the slides for 5 minutes.  The slides were then washed in distilled water 

before counterstaining with haematoxylin. 
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2.3 Cells and Cell culture 

PC3, PC3M and DU145 cells were maintained in RPMI 1640 (Invitrogen, Paisley, 

UK) and HEK 293 cells in DMEM growth medium (Invitrogen, Paisley, UK).  All medium 

was supplemented with 10% heat-inactivated FBS (Invitrogen, Paisley, UK) and 1% L-

Glutamine (Invitrogen Paisley, UK).  The transfected cell lines PC3 ERK5 and PC3 EV 

were generated as previously described (192), and maintained as the parental cells with the 

culture medium supplemented with 300ug/ml geneticin (G418)(Invitrogen, Paisley, UK).  

All cells were incubated at 37oC and 5% CO2. 

 

2.4 Western blot analysis 

2.4.1 Protein extraction 

Cultured cells were lysed in buffer (50mM Tris pH 7.6, 150mM NaCl, 1% Triton 

X-100, 0.5% sodium deoxycholate, 0.1% SDS, 1mM Na3VO4, 1mM NaF, calbiochem 

protease inhibitor cocktail x1, 0.1µg/ml okadaic acid). 

 

2.4.2 Determination of protein concentration 

The protein concentration of the whole cell and nuclear extracts was determined 

using a colourimetric assay based on the Bradford dye-binding method (193).  5µl of lysate 

was mixed in a cuvette with 1ml of a 4:1 solution of H2O: Bio-rad Protein Assay (Bio-rad 

Laboratories, Herts, UK).  The protein concentration was measured using an Eppendorf 

BioPhotometer (Eppendorf UK Ltd, Cambridge, UK) and the standard curve was drawn 

from six BSA standards at 80, 100, 200, 400, 1000 and 2000µgml-1 in the same buffer as 

the protein samples being measured. 

 

2.4.3 Polyacrylamide gel electrophoresis of proteins 

Proteins were resolved by polyacrylamide gel electrophoresis through a pre cast 

10% Bis-Tris polyacrylamide gel (Invitrogen, Paisley, UK), electrophoresed in MOPS 

running buffer (Invitrogen, Paisley, UK) for 1 hour at 200V.  20µg of protein extract in a 

volume adjusted to 20µl with dH2O was combined with 10µl of 3x sample loading buffer 

(0.187M Tris H-Cl pH 6.8, 6.9% SDS,  0.003 % bromophenol blue, 30 %glycerol, 15% 

mercaptoethanol) and 25µl loaded per lane. 

 

2.4.4 Blotting and hybridisation to antibody 

After separation by polyacrylamide gel electrophoresis, proteins were then 

transferred to Immobilon-P (Millipore, Herts, UK) by semi-dry blotting buffer (3.03g/l Tris 

base, 14.4g/l glycine, 0.1g/l SDS, 20% methanol).  Blots were incubated in blocking 
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solution (TBST containing 5% Marvel) for 30minutes before being incubated in the 

primary antibody diluted at the appropriate concentration in 5% BSA in TBST.  Blots were 

washed five times in TBST and then incubated in 5% Marvel containing anti-rabbit, anti-

mouse or anti-sheep immunoglobulin horseradish peroxidase-linked whole antibody, 

diluted as directed by the manufacturer (Cell Signalling, Herts, UK).  All incubations with 

secondary antibody were for 1 hour at room temperature with gentle agitation.  Blots were 

then washed a further five times in TBST.  Proteins were visualised using ECL western 

blotting chemiluminescent detection reagent (Amersham, Buckinghamshire, UK) followed 

by autoradiography, where the membrane was wrapped in Saranwrap, placed in a medical 

x-ray cassette, and overlayed with xray film.  Exposure was initially for 30seconds to 

determine optimal exposure times.  The autoradiograph was developed using a Kodak X-

OMAT 3000RA x-ray processor. 

 

 

2.5 siRNA transfection 

2.5.1 Transfection test 

In order to optimise technique an initial transfection test was performed using a 

fluorescent labelled siRNA, Alexa Fluor 488, and HiPerfect (all Qiagen, Crawley, UK) as 

the transfection reagant.  Two 12 well plates were seeded with 0.6x105 PC3 cells the day 

before and the day of transfection.  Different ratios of Alexa Fluor 488, serum free medium 

and HiPerfect were used to establish the most efficient transfection in PC3 cells.   After 24 

hours the medium was changed and the cells were observed at 48 hours using a confocal 

microscope.  

 

2.5.2 HiPerfect transfection 

The duplex oligonucleotide 5’-GGTGTTGGCTTTGACCTGGAGGAAT-3’ was 

ordered from Eurogentec, (Seraing, Belgium) (preannealed).  All experiments were 

performed using a final concentration of 10nM ERK5 siRNA.  PC3 and PC3 ERK5 cells 

were used for ERK5 siRNA transfection with HiPerfect as the transfection reagent.  All 

stars negative control siRNA (AS-ve, sequence not provided) was used in parallel to 

control for non-specific effects.  Monitoring of gene silencing was done by Western 

blotting and siRNA transfected cells were used for proliferation, migration and invasion 

assays. 
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2.5.3 Amaxa transfection  

siRNA transfection was also carried out using an Amaxa nucleofector kit (Amaxa, 

Cologne, Germany).  Kit V, programme T13 was used for PC3 cells.  1x106 cells were 

used per transfection in 100µl of nucleofector solution (provided by Amaxa).  Once 

combined with the appropriate siRNA, cells were transferred to an amaxa certified cuvette 

and transfection carried out using a Nucleofector II device (Amaxa, Cologne, Germany).  

Cells were then resuspended in 500µl of medium and 250µl of this transferred to a 6cm 

dish already containing 3.7mls full medium.  Initial experiments were performed to 

identify optimal concentrations of ERK1 and ERK2 siRNA (both Dharmacon, Chicago, 

USA) in PC3 cells.  10nM ERK1 and 100nM ERK2 siRNA was then used for subsequent 

experiments. 

 

2.6 Proliferation assay 

1.5x105 cells were seeded in 6 well plates.  siRNA transfection was performed and 

serial cell counts were taken at 24, 48, 72 and 96 hours using a Casey cell counter. Each 

experiment was repeated three times and 3 wells were used per condition each time.   

 

2.7       Migration assays 

Motility assays were performed 48 hours post transfection with ERK5 siRNA.  Cells 

were plated on glass 6 well dishes for optimal visualisation.  PC3 ERK5 cells were studied 

using a Nikon TE2000 time lapse microscope (x20 magnification).  Images were taken 

every 15 minutes over an 18 hour period.  Image J software was used to track motility and 

accumulated and euclidean (direct) distance were measured.  Cell velocity and persistance 

(euclidean distance/accumulated distance) were also calculated.  Persistence is an indicator 

of the randomness in the cells migration.  The closer to one, the more directly the cell 

moved from start to finish.   Eight cells were tracked per field and 3 fields were viewed in 

each experiment (x2).  
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2.8        Invasion assays 

For invasion assays Biocoat Matrigel invasion chambers (Becton Dickinson, Oxford, 

UK) were used.  The matrigel inserts were rehydrated with serum free medium for 2 hours 

before being transferred to a 24 well companion plate which already has 600µl full 

medium per well.  Overnight serum starved PC3 ERK5 cells were trypsinized and washed 

twice with serum free medium containing 0.5% BSA.  An initial experiment was 

performed to assess optimal seeding density comparing 5x104, 7.5x104, 1x105 per chamber.  

The cells were left to attach and invade overnight at 37oC and under 5% CO2/ 95% air 

atmosphere.  Cells were seeded in 300ul of serum free medium per insert and after 22 

hours the medium was aspirated and the cells on the upper surface of the membrane were 

removed using a cotton bud.  The invaded cells were fixed in methanol and left at -20oC 

for 30 minutes prior to staining with haematoxylin.  The chambers were left to air dry 

before the membrane was cut out and mounted on a microscope slide with histomount.  

The migrated cells were then counted using a light microscope at 10x magnification. 

Each experiment was repeated 3 times and each time the mean number of invading cells 

was taken from 4 chambers. 

 

2.9 EGF stimulation 

Cells were serum starved for 24 hours before stimulated with 50ng/ml EGF (R&D 

systems, Abingdon, UK).  Cells were lysed at various time points (15, 30, 60, 90 and 120 

minutes).   
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2.10 Immunoprecipation 

 

Hepes Lysis Buffer 

20mM Hepes-NaOH pH 7.5 1mM Na3VO4 

150Mm NaCl 5ug/ml leupeptin 

1% NP-40 2.2ug/ml aprotinin 

2mM EDTA 1mM Na3P2O7 

1mM PMSF 20mM β-glycerophosphate 

2mM NaF  

 

Hepes Wash Buffer 

20mM Hepes-NaOH pH 7.5 1mM Na3VO4 

50mM NaCl 5ug/ml leupeptin 

1% NP-40 2.2ug/ml aprotinin 

2mM EDTA 20mM β-glycerophosphate 

1mM PMSF  

2mM NaF  

 

Hepes Cross-linking Wash Buffer 

100mM Hepes-NaOH pH 8.5 

 

 

Hepes Cross-linking Buffer 

100mM Hepes-NaOH pH 8.5 

10mg/ml Dimethyl pimelilidate (DMP) 

 

Glycine Elution Buffer 

200 mM glycine-HCl pH 2.5 

500mM NaCl 

0.01% NP-40 
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2.10.1 Dimethyl pimelilidate (DMP) cross-linking of antibodies to Protein A / G beads 

100ul of beads were pipetted into a 1.5ml microfuge tube and washed 3 times in 

1ml Hepes lysis buffer by sequentially mixing the beads with the buffer and then 

centrifuging the beads to the bottom of the tube.  100µl of ERK5 antibody or 10µl of pre-

immunised rabbit serum were then added to the beads.  800µl of Hepes lysis buffer was 

also added and these were then incubated at 4oC overnight.  The next day the beads were 

washed 3 times with 1ml Hepes lysis buffer before washed twice with 1ml Hepes cross-

linking wash buffer.  The beads were then incubated at room temperature with 1ml cross-

linking buffer for 1 hour.  Following this the beads were further washed twice in 1ml 

Hepes cross-linking wash buffer.  The reaction was then quenched by adding 1 ml 100mM 

Tris-HCl pH 7.5 to the beads and mixing at room temperature for 30 minutes.  The beads 

were washed twice with 1ml lysis buffer followed by 2 washes with 1ml elution buffer.  

Following this the beads were washed twice with 1ml Hepes lysis buffer.  200ul lysis 

buffer with sodium azide (0.02%) was added to the slurry.  The cross linked beads were 

then stored at 4oC. 

 

2.10.2 Preparation of lysate for immunoprecipatation from PC3 cells 

PC3 cells were grown to 70% confluence on 14cm plates.  The plates were then 

washed once with ice cold PBS and lysed with 500ul Hepes lysis buffer.  The lysate was 

then incubated on ice with occasional vortexing.  The lysates were cleared by 

centrifugation at 132000rpm in a cooled (4oC) bench top centrifuge for 10 minutes.  The 

lysate was incubated with the cross-linked antibody beads overnight.  The following day 

the beads were transferred to a spin column and washed 3 times with ice-cold Hepes wash 

buffer.  Each time the beads were mixed with the buffer prior to removing the buffer by 

centrifugation into a 2ml microfuge tube at 1000rpm.  The lysate which was collected 

following the first spin was collected and labelled as supernatant (SN).  After the last wash 

the dry beads were incubated on ice with two bead volumes of the glycine elution buffer 

for 5 minutes with occasional vortexing.  The eluate was removed by centrifuging 

(6000rpm) into a clean microfuge tube.  This step was repeated once.  The combined 

eluates was neutralised by adding 1/10th of the eluate volume of 2M Tris-HCl pH 9.  The 

total volume of the eluate was then measured and 20µl was aliquoted and kept at -20oC to 

use for western blotting.  To concentrate the eluate a 5kDa cut off membrane was used 

(Micro Bio-Spin Chromatography Columns, Bio-rad Labs, Herts, UK).  The eluate was 

transferred to this and then centrifuged at 12oC, due to the temperature sensitive nature of 

the filter at 16000rpm for 45 minutes.   
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The concentrated sample was then added to LDS sample buffer and reducing agent.  

The sample was denatured by heating to 57oC for 15 minutes before electrophoresed on a 

10% NuPAGE gel.  The samples were run at constant 100V until the dye front reached the 

end of the gel.  The gel was transferred into a 14cm cell culture dish with a lid and washed 

in 25ml fixing solution (50% ethanol, 10% acetic acid and 40% H2O) for 15 minutes at 

room temperature.  Following this the gel was washed in H2O for 5 minutes, followed by 

an overnight incubation in Simply Blue coomassie stain (Invitrogen, Paisley, UK).  The gel 

was then destained in 25% methanol for 1 minute before being washed several times in 

H2O until the background was clear.  The subsequent mass spectrometry analysis was 

carried out by Dr Willy Bienvenut (Proteomics service, Beatson Institute for Cancer 

Research, Glasgow). 

For each experiment a small amount of eluate was kept pre and post concentration 

and a western blot run to ensure no sample was lost during the concentration step.  A 

sample of the supernatant was also run on the gel to confirm adequate ERK5 pulldown. 

 

2.10.3 Titration of antibody to bead 

In order to optimise the bead to lysate ratio an initial titration experiment was 

performed using the 2 commercially available ERK5 antibodies (Cell Signalling and 

Upstate) and the phospho ERK5 antibody with both Protein A and G sepharose beads (both 

Sigma-Aldrich, Dorset, UK).  A constant ratio of 100µl of antibody crosslinked to 100µl of 

beads was used for the titration experiments.  For each experiment a constant amount of 

lysate was used (100µg) and immunoprecipatation performed as described above.   All 

eluated samples with their corresponding supernatant were then analysed by western 

blotting.  

 

2.10.4 Pre clearing 

Pre-clearing was performed to reduce non-specific binding of proteins to the beads.  

50µl of normal rabbit serum was added to 1ml of lysate.  This was vortexed and incubated 

on ice for 1 hour.  100µl of protein A sepharose beads were then added to this and 

incubated at 4oC for 30 minutes with gentle agitation.  Prior to adding the beads to the 

lysate/serum mixture 3 washes with hepes lysis buffer was performed.   This was then 

centrifuged at 132000rpm at 4oC for 10 minutes.  The bead pellet was discarded and the 

supernatant kept for immunoprecipatation.   
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2.10.5 EGF stimulation for immunoprecipatation 

PC3 cells were grown until 70% confluent in 14cm dishes and then serum starved 

for 24 hours following 2 washes with PBS.  Cells were treated with 50ng/ml EGF before 

the cells were harvested for analysis.  Control cells were lysed after 24 hours and 

immunoprecipatation performed with ERK5 crosslinked beads.   

 

2.10.6 Exogenous ERK5 transfection 

PC3 and HEK293 cells were grown in a 14cm plate until 60% confluent and then 

transfected with 3µg of the plasmid pCMV FLAG ERK5 using Lipofectamine 2000 as a 

transfection reagent.  The plasmid pCMV FLAG EV was used a control.  Cells were lysed 

48hours post transfection and successful transfection validated by western blotting. 

 

2.10.7 FLAG tag immunoprecipatation 

HEK293 cells were used for all FLAG tag immunoprecipatation experiments.  An 

initial experiment was performed with cells grown in full medium on 14cm plates (x10) to 

confirm pull down of ERK5 by mass spectrometry.  Cells were transfected with the 

pCMV5 FLAG ERK5 plasmid and lysed with 1ml per plate HEPES lysis buffer after 48 

hours.  After clearing, the lysate was incubated with 200µl of FLAG beads for 1 hour at 

4oC.   

The beads were then transferred to a spin column and washed 3 times with ice-cold 

Hepes wash buffer as described previously. After the last wash the dry beads were 

incubated on ice with 200µl of FLAG peptide (Sigma-Aldrich, Dorset, UK) for 10 minutes 

with occasional vortexing.  The eluate was removed as before and this step was repeated 

before concentrating the sample to run on the gel. 

As before a western was run with a sample of the lysate, supernatant and eluate pre 

and post concentration to confirm pulldown of ERK5. 

 

2.10.8 Stable isotope labelling with amino acids in cell culture (SILAC) 

Heavy (13C6 L-Lysine-2HCl and 13C6
15N4 L-Arginine-HCl) and light (L-Lysine -

2HCl and L-Arginine-HCl) DMEM media was made up per manufacturers instructions and 

supplemented with 10% dialysed FBS (all Pierce, Rockford, USA).  This was then filtered 

using a 0.2µm filter before being used for cell culture.   

HEK293 cells were grown in each media for a minimum of 5 cell doublings (~7-10 

days) before isotope incorporation efficiency was determined.   
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2.10.9 Determination of Isotope Incorporation Efficiency 

1x106 cells of both heavy and light isotope incorporated cells were plated 

separately on 9cm dishes and lysed the following day with 500µl reducing sample buffer.  

The samples were boiled for 5 minutes and clarified by centrifuging at 14000rpm for 1 

minute.  25µl of the heavy and light samples were then loaded into two separate wells of a 

10% pre-cast polyacrylamide gel and the proteins separated by electrophoresis.  The gel 

was fixed and stained as described previously and incorporation efficiency verified by our 

proteomics department using mass spectrometry. 

 

2.10.10 EGF stimulation in HEK 293 cells 

An initial experiment using the HEK 293 cells confirmed poor adherence following 

a PBS wash and therefore serum starvation prior to EGF simulation would not be possible.  

In order to promote cell adhesion 0.1% poly-L-lysine was used to coat the plates the day 

before cells were plated.  36 hours post transfection cells were serum starved overnight 

before being stimulated with 50ng/ml EGF.  Cells were lysed at various time points (15, 

30, 60 and 90 minutes).   

 

2.10.11  Identification of ERK5 associating proteins 

HEK 293 cells grown in the corresponding SILAC media were transfected with 

either pCMV FLAG ERK5 (Experiment 1 – heavy medium, Experiment 2 – light medium) 

or pCMV FLAG EV (Experiment 2 – light medium, Experiment 2 – heavy medium) 

plasmid and lysed after 48 hours.  Prior to incubating the lysate with the FLAG beads, the 

protein concentration of each lysate was measured.  Equal protein amounts of each cell 

lysate were mixed in a 15ml falcon before adding the beads as described previously.  The 

sample was run on a 10% gel and given to the proteomic department for analysis once 

stained.   

 

2.10.12   Identification of ERK5 binding partners 

Prior to plating the cells, 14cm plates were coated with 0.1% poly-l lysine.  SILAC 

treated HEK293 cells were plated and grown until 60% confluent before cells were 

transfected with pCMV FLAG ERK5 and grown for a further 36 hours in full SILAC 

mediums.  Cells were then serum starved overnight before EGF stimulation.  Cells were 

treated with 50ng/ml EGF and lysed at 2 timepoints: time = 0 minutes (Experiment 1 – 

light medium, Experiment 2 – heavy medium) and time = 15 minutes (Experiment 1 – 

heavy medium, Experiment 2 – light medium).  The lysates were treated as above and the 

stained gel given for mass spectrometry analysis. 
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2.10.13 Analysis of data from mass spectrometry study 

The Scaffold 2 proteome software (Proteome Software Inc., Oregon, USA) was 

used to analyse mass spectrometry results.  This programme is the industry-standard 

MS/MS meta-analysis tool and allows comparison of various factors between samples e.g. 

number of peptide matches, percentage coverage and protein identification probability.  

The dataset was separated into four separate categories for analysis; 1-non-relevant hits 

(mostly due to low peptide number or large standard deviation value), 2- potential positive 

hits (medium number of non-redundant peptides and/or medium ratio and/or low 

reciprocity between two samples) 3 - clear positive hits (large number of non-redundant 

peptides with high ratio and high reciprocity between two samples), 4 - remaining proteins. 

 

2.11 Statistical analysis 

Statistical analysis was performed using SPSS version 15.  Student’s t-test was 

used to compare to compare data that followed the normal (Gaussian) distribution.  A 

statistical significant difference was defined to be a p-value < 0.05.  Where error bars are 

represented on a graph they signify the standard error (SE) of the mean value plotted.  
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3 Target validation – in prostate cancer 
3.1 Introduction 

Molecular targets which are identified as being potentially involved in the 

development of cancer must be validated prior to the initiation of drug development 

programmes.  The target of interest must be shown to be critical in the disease process as 

well as being a valuable point of intervention.  Various methods of target validation are 

used including downregulation of gene expression, protein inhibition and cellular assays.  

Other molecular tools which are commonly used to prioritise targets of interest include 

analysis of proteomic and microarray data. 

 

3.1.1 MEK5/ERK5 signalling in prostate cancer 

Aberrant MEK5/ERK5 signalling is recognised to play an important role in prostate 

carcinogenesis.  Strong MEK5 expression correlates with the presence of bone metastases, 

the most common site of distant metastasis in prostate cancer (191).  In vitro work has also 

shown that MEK5 expression increases matrix metalloproteinase (MMP) 9 expression, an 

enzyme that is implicated in enhancing the metastatic potential of prostate cancer.  In 

addition, immunohistochemistry experiments on human prostate tumours identified 

increased ERK5 cytoplasmic expression to correlate with the presence of bone metastases 

(P=0.0044) (184).  Analysis of ERK5 staining in matched tumour samples (pre and post 

hormone relapse) showed ERK5 nuclear expression to be associated with hormone 

resistant disease (P=0.0078).  ERK5 expression is also upregulated in an androgen 

independent LNCaP subline when compared with the androgen dependent parental cell 

line.    

In order to investigate the role of ERK5 in advanced prostate cancer a tissue 

microarray (TMA) containing both primary and metastatic prostate cancer specimens was 

examined.  The biological effect of suppressing ERK5 expression in prostate cancer was 

also investigated using small interfering RNA (siRNA) in PC3 cells in a number of 

functional assays.  

 

3.1.2 NFκB and ERK5 

There is accumulating evidence implicating the transcription factor Nuclear Factor 

kappa B (NFκB) in carcinogenesis (194).  NFκB is a transcription factor of the Rel protein 

family, which include the p50, p52, p65 (RelA), c-Rel and RelB proteins, and its most 

widely studied form is the p50/p65 heterodimer (195;196).  NFκB is sequestered in the 

cytoplasm bound in an inactive complex with inhibitory IκB proteins, including IκBα and 
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IκBβ (196)[6]. A wide variety of agents activate NFκB, including tumour necrosis factor-α 

(TNF-α), interleukin-1 (IL-1) and lipopolysaccharide (LPS) (195). Most employ the 

canonical pathway of I kappa Kinase (IκΚ) activation, which induces phosphorylation and 

degradation of IκB (see Figure 3.1). This exposes a nuclear translocation signal on the p65 

subunit and permits NFκB transport into the nucleus. There, NFκB controls the 

transcription of numerous genes vital for cell immunity and inflammation, e.g. TNF-α, 

IFNγ, IL-1 and IL-8 (194). Fundamental for tumorigenesis, NFκB also regulates genes 

encoding growth factors (IL-2, IL-6), cell adhesion molecules (intercellular adhesion 

molecule-1, vascular cell adhesion molecule-1), angiogenic factors (VEGF) and 

antiapoptotic factors, (bcl-2 and survivin) (197;198). It also relates with numerous 

components of the cell cycle, including c-myc, cyclins and p53, and acts on the G1/S 

transition (195;199) .  

NFκB is has been shown to be constitutively activated in human prostate cancer, 

and this overexpression, especially of p65, correlates with increased cell invasion and 

tumour stage (200-202). NFκB blockade in PC3M cells decreased invasion, by 

downregulating MMP 9 and collagenase activity, and angiogenesis, through inhibiting 

VEGF and IL-8 expression (203).  Inhibition of NFκB signalling in vivo has also shown 

reduced tumour growth and metastatic potential (203).  

The NFκB pathway has recently been implicated as a downstream target for ERK5 

signalling.  ERK5 is believed not to directly bind to NFκB, but activate it through a non-

canonical pathway (see Figure 3.1).  An intermediate kinase suggested may mitogen-

activated p90 ribosomal S6 protein kinase (RSK) 2, which phosphorylates IκB, targeting it 

for degradation (204;205). This role of RSK2 has been confirmed recently, however it is 

thought that another unidentified kinase is also required for the activation of NFκB by 

ERK5 (206).  ERK5 has been shown to be essential for G2/M progression with NFκB 

being involved at this checkpoint (206).  In fibroblast cells, overactivity of MEK5 and 

MEK1, upstream activators of ERK5 and ERK2 respectively, demonstrated a synergistic 

approach in activating an NFκB-sensitive reporter (207). ERK5 predominantly targets the 

NFκB p65 component, and has been shown to be essential for NFκB-induced survival in 

leukaemic T cells (208).  

Given the fact that NFκB has itself been reported to play an important role in 

prostate cancer, particularly in hormone resistant disease, we aimed to investigate if ERK5 

mediated signalling in prostate cancer cells involves the NFκB pathway. 
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FIGURE 3.1  

 
Normal and alternative pathway for NFκB activation 

Most agents which activate NFκB do so via the canonical pathway of IκK activation which 

induces phosphorylation and degradation of IκB.  Activation by ERK5 however is thought 

to be via an intermediate kinase (RSK2) which phosphorylates IκB, targeting it for 

degradation.  Activated NFκB can then translocate to the cell nucleus and act as a 

transcription factor.  

Modified from Cude et al 2007 (206) 
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3.2 Results 

3.2.1 Antibody optimisation 

Initial experiments were performed using PC3 ERK5 (PC3 cells overexpressing 

ERK5) and PC3 EV (PC3 cells transfected with the corresponding empty vector) cells to 

confirm the specificity of the ERK5 antibody used.  This confirmed strong ERK5 

immunoreactivity in the PC3 ERK5 cells with weaker immunostaining observed in the 

PC3 EV cells (Figure 3.2). All subsequent immunohistochemistry experiments were 

performed using a sheep polyclonal antibody raised against human ERK5 provided by 

Professor Philip Cohen, University of Dundee (182).  Immunostaining with the 

commercial ERK5 and phospho ERK5 antibodies available was also assessed however 

poor results were observed. 

 

3.2.2 ERK5 expression in human prostate cancer and metastases 

To further define the patient cohorts, including those with metastatic lesions that 

may benefit from manipulation of ERK5 status, ERK5 immunoreactivity was studied in a 

prostate cancer TMA consisting of 48 primary prostate tumours. Consistent with data from 

previous TMA analysis, strong cytoplasmic ERK5 expression was found in prostate cancer 

with high levels of positive nuclear staining (moderate-strong cytoplasmic staining = 29%, 

positive nuclear staining = 62.5%).  Though not statistically significant, there was a trend 

between high levels of cytoplasmic ERK5 expression and high Gleason sum score (>7) and 

high serum PSA levels (>10) (data not shown).  Moderate-strong levels of cytoplasmic 

staining were observed in 63% cases of PIN/PIA.  Within the TMA, eleven cores of 

metastatic prostate tumour were examined, including liver (n=5), lung (n=2), lymph node 

(n=1) and soft tissue (n=3).  Among these metastatic lesions, ERK5 expression was 

consistently upregulated with both cytoplasm and nucleus immunoreactivity observed at 

high levels (73%, 8 out 11, Figure 3.3).  Two liver metastases and 1 soft tissue metastases 

showed no nuclear ERK5 immunoreactivity.  Hence, our expression analysis supports 

ERK5 as a potential target for therapy in prostate cancer sufferers particularly in those with 

castrate resistant and/or metastatic disease. 
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FIGURE 3.2 Optimisation of ERK5 antibody for immunohistochemistry 

 
 
 
 
Immunohistochemical analysis of cell pellets (x40 magnification) showing upregulated 
ERK5 expression in PC3-ERK5 cells under optimal growth condition compared to PC3 
cells transfected with empty vector control.  Insets represent control staining omitting 
primary antibody. 
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FIGURE 3.3 Immunohistochemistry of ERK5 expression in human prostate cancer 
and metastases  

 
A BPH (1+ immunoreactivity) 

B PIN (1+ immunoreactivity) 

C Gleason 3+4 prostate cancer (3+ immunoreactivity with positive nuclear staining) 

D Gleason 5+4 prostate cancer (3+ immunoreactivity with positive nuclear staining) 

E  Liver metastasis (3+ immunoreactivity with positive nuclear staining) 

F Soft tissue metastasis (2+ immunoreactivity with positive nuclear staining) 

G Lung metastasis (1+ immunoreactivity with positive nuclear staining) 

H Lymph node metastasis (2+ immunoreactivity with positive nuclear staining) 
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3.2.3 ERK5 in prostate cancer cell lines 

ERK5 expression was examined in a panel of human prostate cancer cell lines 

maintained in full culture medium (Figure 3.4).  DU145 demonstrated the strongest level 

of ERK5 expression.  As shown previously ERK5 is present in both androgen sensitive and 

androgen insensitive LNCaP cells however there is marginal stronger expression in the 

androgen insensitive cell line (184).  Exogenous ERK5 expression in the PC3 ERK5 cell 

line is shown at a higher molecular weight than the endogenous ERK5 due to the presence 

of a GFP tag in the fusion protein, increasing its size by approximately 27kDa. 

High levels of both endogenous and exogenous ERK5 are demonstrated in PC3 

ERK5 cells.  However, with increased passage, I observed that the level of exogenous 

expression decreases (Figure 3.5).  All experiments with this cell line therefore were 

performed with low passage number to ensure optimal levels of ERK5 overexpression.  

There was no GFP expression evident on western blotting in the PC3 ERK5 cell line even 

at low passage.  Low expression levels of GFP were observed using the confocal 

microscope.  The reason for the discrepancy in levels of GFP: ERK5 is unclear. PC3 EV 

cells showed a decrease in GFP expression with increased passage. 

 

3.2.4 ERK5 siRNA - Transfection test 

Using the confocal microscope green fluorescent siRNA (Alexa Fluor 488) 

transfection was observed.  Optimal conditions were regarded as those in which the highest 

rate of transfection was achieved with the lowest rate of cell death, assessed by cell 

adherence.  Various conditions were tested, altering the concentrations of siRNA and the 

transfection reagent (HiPerfect) in each.  Using a 10nM siRNA concentration with the 

lowest volume of transfection reagent appeared to have the highest rate of transfection with 

no significant loss of cells.  Figure 3.6 shows the images taken from this optimal 

transfection well. 

Successful knockdown of exogenous and endogenous ERK5 was achieved from 48 

hours onwards in PC3 ERK5 cells with no associated change in ERK1/2 levels (Figure 

3.7).  Knockdown of endogenous ERK5 was also observed in the parental PC3 cells when 

transfected with ERK5 siRNA.  ERK5 phosphorylation status was examined in PC3 cells 

72 hours post siRNA transfection.  Phosphorylation levels were suppressed in the ERK5 

siRNA cells compared with the controls (Figure 3.8). 
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FIGURE 3.4 ERK5 expression in prostate cancer cell lines 
 

 
FIGURE 3.5 Exogenous ERK5 expression in PC3 ERK5 cells 
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FIGURE 3.6  Optimal transfection with green fluorescent siRNA (Alexa Fluor 488) 
 

 
FIGURE 3.7 ERK5 knockdown in PC3 and PC3 ERK5 cells 
 

 



 76

 

FIGURE 3.8  ERK5 siRNA inhibits ERK5 phosphorylation    
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3.2.5 Proliferation assay 

As ERK5 overexpression has been shown to be associated with increased 

proliferation in vitro, I investigated the effects of siRNA mediated ERK5 knockdown in a 

proliferation assay.  Transfected PC3 ERK5 cells were counted at 24 hour intervals post 

siRNA transfection and a significant reduction in the rate of proliferation was observed 

upon ERK5 knockdown, when compared to the controls, p<0.005 (34.9% (non silencing 

siRNA) and 31.2% (no transfection) at 96 hours post transfection, Figure 3.9). 

 

3.2.6 Migration assay 

We next tested the effects of ERK5 knockdown on cell motility.  Untransfected and 

control transfected PC3-ERK5 cells display high levels of random motility with a 

combination of amoeboid and mesenchymal movement.  Amoeboid movement is a 

crawling-like type of cell movement accomplished by protrusion of the cytoplasm of the 

cell involving the formation of pseudopodia.  Mesenchymal cells on the other hand are 

characterized by a small cell body with a few cell processes that are long and thin.  

Reduction of ERK5 significantly decreased cell motility, when compared to the non-

silencing siRNA and untransfected cells (Figure 3.10A).  Both the accumulated and 

euclidean (directional) distances were significantly reduced when compared to the controls 

(p<0.005, Figures 3.10 B & C).  Hence, ERK5 function in PC3 appears to regulate cellular 

motility. 
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FIGURE 3.9 ERK5 knockdown results in reduced proliferation in PC3 ERK5 cells 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

1.5x105 PC3 cells were transfected with ERK5 siRNA and counted at 24 hour 
intervals up to 96 hours.  Non silencing siRNA (AS-ve) was used a control in 
addition to HiPerfect only.  A significant reduction in proliferation was 
observed in the ERK5 siRNA transfected cells compared to both controls.  
Each experiment was performed in triplicate and repeated 3 times. 
*p<0.005 
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FIGURE 3.10A Migration plots for transfected cell lines 

 
FIGURE 3.10 B & C 
ERK5 knockdown reduces accumulated and euclidean distance in PC3 ERK5 cells 
 

 
 



 80

 

3.2.7 Invasion assay 

Data from our laboratory have recently revealed that ERK5 over-expression is 

closely associated with the presence of metastatic prostate cancer and unfavourable patient 

survival outcome (184).  I therefore wanted to test if ERK5 drives cellular invasion in a 

dose dependent manner and performed in vitro invasion assays using both parental PC3 

and PC3-ERK5 cells.  In keeping with our previous observation, PC3-ERK5 cells have an 

enhanced invasive phenotype when compared to parental PC3 cells, with around 25 (27+/- 

15/9) and 10 (10+/-4) cells per field respectively (Figure 3.11A and B).  Upon transfection 

with ERK5 targeted siRNA, the invasive capability of PC3 was significantly inhibited: 2.1 

and 1.97 fold reduction when compared with control siRNA transfected and untransfected 

PC3 cells (p<0.005) (Figure 3.11 A).  It was interesting to note that PC3-ERK5 cells are 

proportionally more sensitive to ERK5 manipulation in the invasion assay, with a 3.5 and 

3.4 fold reduction when ERK5 expression was knockdown, when compared with control 

siRNA and untransfected PC3-ERK5 cells (p<0.005)(Figure 3.11 B). 

 

FIGURE 3.11 ERK5 inhibition reduces invasion in PC3 and PC3 ERK5 cells 
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3.2.8 ERK5 over- or under-expression does not alter NFκB signalling 

Using PC3 cells as a model system, we tested if siRNA meditated knockdown of 

ERK5 expression may result in reduced NFκB activities, as assessed by the level of 

phospho-p65.  The phospho-p65 antibody (Cell Signalling #3031) used detects p65 only 

when phosphorylated at serine 536 and does not cross-react with the p50 subunit or other 

related proteins.  While ERK5 targeted siRNA drastically suppressed ERK5 expression, 

the level of total and phospho-p65 remained unchanged when compared to negative control 

siRNA and untransfected PC3 cells (Figure 3.12A).  In addition, in PC3-ERK5 cells, the 

level of total and phospho-p65 did not appear to be affected by the presence of increased 

ERK5 expression (Figure 3.12B). 

 

 
FIGURE 3.12  ERK5 expression does not change p65 levels 
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3.2.9 ERK5 overexpression and p65 levels - Xenograft studies 

In order to examine if there was nuclear co-localisation of ERK5 and NFκB we 

used PC3-ERK5 generated subcutaneous xenograft tissue for immunostaining.  This tissue 

was selected as our group have previously demonstrated that ERK5 promotes both in vitro 

and in vivo growth of these cells (184).  Overall, 8 xenografts were studied, at both high 

(x20) and low magnification (x5) and serial sections were stained for ERK5 and total p65 

expression.  p65 immunoreactivity in the PC3-ERK5 xenografts was noted to vary widely 

with different staining intensities within individual tumours and also among different 

tumours.  In addition, there did not appear to be any correlation between p65 and ERK5 

staining patterns.  In Figure 3.13, there was strong and fairly homogeneous nuclear ERK5 

immunoreactivity in the PC3-ERK5 cells, which contrast to the infrequent expression of 

nuclear (activated) p65 with the majority of ERK5 positive expressing detectable p65.  

Xenografts derived from PC3 EV cells were also stained for p65 and did not reveal any 

trend for association between nuclear ERK5 and p65 expression (data not shown).  These 

results suggest that there is no significant relationship between ERK5 and NFκB p65 

protein expression in these prostate cancer xenografts and corroborates the results from 

Western blotting.  This work was carried out by a BSc student whom I supervised during 

her time in the laboratory. 

 
FIGURE 3.13  ERK5 and p65 immunostaining in PC3 ERK5 xenografts 
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3.2.10 Potential downstream markers of ERK5 activity 

In order to monitor ERK5 activity in future drug trials involving an ERK5 inhibitor 

it is necessary that a reliable downstream marker is identified.  Several downstream 

substrates for ERK5 have been described in the literature in addition to NFκB including 

p70S6 kinase, GSK-3, ribosomal-S6 and BAD(209;210). 

Therefore, in order to assess the potential role of these as a marker of activity in 

prostate cancer, their expression levels were examined in PC3 cells where ERK5 

expression was inhibited using siRNA transfection.  Surprisingly none the known ERK5 

targets were altered when ERK5 levels were suppressed. (Figure 3.14)  It may be that these 

targets previously described are not downstream of ERK5 in prostate cancer cells or that 

other upstream pathways which would not be affected by ERK5 knockdown continue to 

have contributory effects.  Complete knockdown of ERK5 was not achieved with ERK5 

siRNA and this may also lead to lack of effect noted on the downstream markers. 

Due to time constraints this was not explored further.  Given more time it would of been 

interesting to reassess the effect of ERK5 knockdown on these known targets by using 

serum starved cells and by performing a timecourse experiment with EGF stimulation. 

 
FIGURE 3.14  Potential downstream markers of ERK5 signalling 
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3.3 Discussion 

Consistent with previous data, ERK5 nuclear expression is shown to be associated 

with aggressive prostate cancer in this study.  In addition strong levels of immunostaining 

have been shown in a range of metastatic tissue suggesting that ERK5 inhibition may be of 

therapeutic interest in both advanced prostate cancer and metastatic disease.  ERK5 

overexpression has previously been shown to enhance proliferation, migration and 

invasion in PC3 cells (184).  By using siRNA as a method of suppressing ERK5, we have 

shown that ERK5 inhibition results in a significant reduction in proliferation, migration 

and invasion in vitro.  This data confirms that targeting ERK5 in prostate cancer is an 

attractive therapeutic candidate.  A Cancer Research Technology Drug Development 

programme is currently focusing on ERK5 as an anti-cancer target.  Of particular interest, 

two MEK5 inhibitors (BIX02188 and BIX02189) have recently been identified.  

Successful inhibition of ERK5 phosphorylation was achieved using these novel 

compounds in HeLa cells (211).  There is currently no data of either of these MEK5 

inhibitors in vivo.  Future work will therefore focus on the biological effect of these 

MEK5/ERK5 inhibitors on prostate cancer both in vitro and in murine models to assess if 

suitable for a future clinical trial.    

NFκB has been shown to be constitutively active in prostate cancer and recent 

evidence suggests that ERK5 and NFκB may interact in tumourigenesis.  The ERK5 

pathway has been shown to mainly target the localisation and activation of the p65 

component of NFκB (208).  

This study is the first to examine the relationship of ERK5 and NFκB in prostate 

cancer cells.  Immunohistochemistry and Western blotting were used to assess the effect on 

NFκB by altering ERK5 expression in PC3 cells.  Expression levels of p65 protein were 

measured because the p65/p50 heterodimer is the most abundant and transcriptionally 

active form of NFκB (196) . Contrary to previous studies, there was no evidence of 

changes in the total NFκB p65 expression caused by over- or under-expression of ERK5. 

In addition, phospho-p65 level was also unchanged by ERK5 siRNA.  Consistent with this 

in vitro data, NFκB p65 and ERK5 staining did not correlate in human prostate cancer 

xenografts.  
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4 The relationship between ERK1/2 and ERK5 mediated signalling 

  in prostate cells  

 
4.1 Introduction  

The MAPK family consists of at least 4 members: ERK 1/2, JNK, p38 and ERK5.   

All are activated by extracellular stimuli such as growth factors and environmental stresses 

and are recognised to have important roles in cell proliferation, migration and 

differentiation.  It is now increasingly appreciated that complex cross talk further refine 

and control the activities of these and other signalling pathways. 

Similarities between the ERK 1/2 and ERK5 pathways are recognised both in their 

activation modes and functions.  It has recently been suggested that there may be cross-talk 

between these pathways as treatment with high dose (10µM) PD184352, a specific MEK1 

inhibitor prevents ERK5 activation (182). Treatment with low dose (1µM) PD184352 has 

also been shown to increase nuclear accumulation of ERK5 and MEF2 promotor driven 

luciferase activity (183) suggesting that when ERK1/2 activation is suppressed, ERK5 

activation is enhanced. 

The current considered model of ERK1/2 regards each isoform as interchangeable 

due to their similar regulation and downstream effects.  It has recently been proposed 

however that there may be significant functional differences between each isoform with 

ERK1 acting as a negative regulator and ERK2 as a positive regulator of cell proliferation 

(212;213).  It is thought that ERK1 may affect the overall signalling by antagonizing 

ERK2 activity. 

My aim in this chapter was to explore if individually ERK1 and ERK2 may ‘cross-

talk’ with ERK5 in prostate cancer cell signalling.   siRNA mediated knock down of each 

isoform was performed and their effects examined, including the effect on phosphorylation 

status as well as ERK5 activation by western blotting.  The functional effects of ERK1 and 

ERK2 knockdown on PC3 proliferation were also assessed. 
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4.2 Results 

4.2.1 ERK5 and PD184352 

PD184352 is a MEK1 inhibitor, which suppresses ERK1/2 activity at low doses (1-

3µM).  It has previously been reported that PD184352 also suppresses ERK5 activity at 

higher dosage (10µM)(182;184).   

ERK5 is activated 15 minutes post EGF stimulation with neglible levels observed 

in serum-starved cells (Figure 4.1).  Serum starved PC3 cells were therefore treated with 5-

50µM PD184352 prior to EGF stimulation in order to assess its role as an ERK5 inhibitor.  

ERK5 phosphorylation is maximal 15 minutes post EGF stimulation and therefore cells 

were harvested at this timepoint in order to highlight the effective reduction in 

phosphorylation when using PD184352.    Complete pERK1/2 inhibition was achieved 

with 5µM treatment with a significant reduction in ERK5 observed at 10µM (Figure 4.2).    

 

 

FIGURE 4.1 EGF activates ERK5 in serum starved PC3 cells 
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FIGURE 4.2 Inhibition of ERK1/2 and ERK5 in PC3 cells by PD184352 (0-50µM) at 
15 minutes post EGF stimulation 

 
 

 

 

 

 

4.2.2 ERK1 and ERK2 knockdown in prostate cancer cell lines 

Successful knockdown of ERK1, ERK2 and ERK1/2 was achieved in PC3 cells 

and using both the HiPerfect and Amaxa method of siRNA transfection (Figure 4.3).  

Analysis of ERK5 status showed that in full medium ERK5 activation was upregulated 

when ERK1 expression was suppressed by siRNA.  Initial results suggested that ERK5 

phosphorylation may be suppressed when ERK2 was knocked down however when 

repeated (2 further times), no change in ERK5 activation levels were observed.  As this 

result was not reproducible it is thought to not be real. 

 

 

 



 88

4.2.3 ERK1 and ERK5 phosphorylation 

To further examine the potential relationship between ERK1 and ERK5 signalling, 

a timecourse experiment with EGF stimulation was performed on the ERK1 and ERK2 

knockdown cells (Figure 4.4).  As reported previously (212), ERK1 knockdown resulted in 

enhanced ERK2 phosphorylation.  The duration of ERK5 activation also appeared 

prolonged in the ERK1 knockdown cells when compared to the non-silencing siRNA 

control.  In contrast when ERK2 was knocked down ERK1 activation was enhanced 

however no significant alteration in ERK5 activation status was observed.  ERK5 

phosphorylation status was also assessed in PC3 cells in which ERK1 and ERK2 were 

simultaneously knocked down.  Surprisingly, there was no alteration in ERK5 activation 

observed. 

In order to further investigate the association between ERK5 and ERK1/2, a 

timecourse experiment with ERK5 siRNA transfected PC3 cells was performed (Figure 

4.5). ERK1/2 phosphorylation appears to suppressed in the ERK5 knockdown cells.  Due 

to time constraints this experiment was only performed once and further work would need 

to be done in order to validate this preliminary finding.   

 

FIGURE 4.3 Effects of siRNA mediated ERK1 and/or ERK2 knockdown on ERK5 
status  
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FIGURE 4.4 ERK1 knockdown results in prolonged ERK5 phosphorylation  
 

 
FIGURE 4.5 ERK5 knockdown has no effect on ERK1 phosphorylation  
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4.2.4 ERK1 and ERK2 knockdown have separate effects on PC3 proliferation 

Recent published data suggests that ERK1 may be a negative regulator and ERK2 a 

positive regulator of proliferation.  In order to study the effects of each individual isoform 

on prostate cancer cell proliferation, serial cell counts were performed on transfected cells 

at 24-hour intervals.   An increase in proliferation was observed in ERK1 knockdown cells 

(p<0.005).  A decrease in proliferation was noted in ERK2 knockdown cells when 

compared to the negative control siRNA (p<0.005) however this was only observed at 96 

hours post transfection (Figure 4.6).   

 

 

FIGURE 4.6 ERK1 and ERK2 have individual effects on PC3 proliferation rates 
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4.3 Discussion  

Both the ERK1/2 and ERK5 MAPK pathways share a number of activators such as 

the EGF receptor (167), HER2 (215) and Src (169) as well as oncogene products such as 

Ras (167) and COT (170).  Studies using MEK inhibitors previously implied roles for 

ERK1/2 activation downstream of Ras and Raf in neoplastic transformation. Recent studies 

have shown however that these inhibitors block ERK5 activation as well at various 

concentrations making it difficult to conclude that only ERK1/2 activation is involved 

(182).   

To date little is known of the relationship between ERK1/2 and ERK5 signalling.  

Previous work suggests that inhibiting ERK1/2 enhanced MEK5 signalling through ERK5.  

Treatment with low dose PD184352 enhanced nuclear accumulation of ERK5 and led to a 

twofold increase in MEF2 promoter driven luciferase activity in Src transformed cells 

(183).  

The results of this study highlight a novel biochemical and functional relationship 

between ERK1 and ERK5.  Future experiments of this project would involve quantitation 

of downstream signalling e.g. by transfection of an ERK5 specific MEF2 luciferase 

construct in addition to ERK1 siRNA in PC3 cells.  In addition immunofluorescence of 

ERK5 in ERK1 knockdown cells may allow further understanding of the effect of ERK1 

on ERK5 phosphorylation and its nuclear trafficking. 
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5 ERK5 proteomics 
5.1 Introduction 

ERK5 has been shown to regulate the activity of several transcription factors 

including MEF2, c-Fos and Fra-1, Sap-1, c-Myc and NFκB (167;170;171;216;217).  In 

order to further investigate the ERK5 signalling network I attempted to immunoprecipate 

endogenous ERK5 in PC3 cells and use mass spectrometry analysis to characterise its 

interacting proteins. 

Exogenous ERK5 was also studied using FLAG tag ERK5 and stable isotope 

labelling with amino acids in cell culture (SILAC) which is a method used to study in vitro 

mass spectrometry (MS)-based quantitative proteomics.  SILAC involves incorporating a 

given ‘light’ or ‘heavy’ form of the amino acid into the proteins (218).  The method relies 

on the incorporation of amino acids with substituted stable isotopic nuclei (e.g. deuterium, 

13C, 15N) (See Figure 5.1).  In an experiment two cell populations are grown in culture 

media that is identical with the exception that one will contain a ‘light’ and the other a 

‘heavy’ form of a particular amino acid (e.g. 12C and 13C labelled L-lysine, respectively).  

The labelled form of the amino acid is then incorporated into all new synthesised proteins 

and after a number of cell divisions this amino acid will be replaced by its isotope labelled 

analogue.  The cells behave exactly like the control cells since there is negligible 

difference between the labelled and natural amino acid isotopes.   
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FIGURE 5.1 Overview of SILAC protocol 

 

The SILAC experiment consists of two distinct phases; an adaptation and an experimental 

phase.  During the adaptation phase, cells are grown in light and heavy SILAC media until 

the cells grown in the heavy media have fully incorporated the heavy amino acids 

(confirmed by MS).  Cell number can also be expanded during this phase to accomodate 

the required number for the desired experiment.  In the experimental phase, the two cell 

populations are treated differently in order to induce changes in the proteome.  The 

samples are then mixed equally and analysed by MS for protein identification and 

quantification. 

Modified from Ong et al 2007(219) 
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5.2 Results 

5.2.1 Titration experiments 

Initial immunoprecipatation experiments involved optimising experimental 

technique and reagents.  Both total and phospho-specific ERK5 antibodies (Cell signalling 

and Upstate) were tested with protein A and G sepharose beads.  For each titration 

experiment a constant antibody:bead ratio was maintained while increasing volumes of 

bead:PC3 lysate were used.  Neither ERK5 antibody worked successfully with protein G 

beads as smearing was observed at higher bead volumes on western blot analysis (Figure 

5.2).  Protein A beads and the phospho ERK5 antibody also demonstrated smearing in the 

bead lane with no significant reduction in the supernatant (SN) lane as the bead 

concentration increased (Figure 5.3).  Successful pulldown of ERK5 was achieved when 

the Cell Signalling antibody and Protein A beads were cross linked resulting in significant 

reduction in total ERK5 levels in the supernatant lane being observed with increasing bead 

concentration (Figure 5.4).  Subsequent experiments were therefore performed using the 

antibody:bead ratio 5:1. 

 

FIGURE 5.2  ERK5 (Cell Signalling and Upstate) and Protein G beads 
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FIGURE 5.3 Phospho ERK5 and Protein A beads  

 
FIGURE 5.4 ERK5 (Cell Signalling) and Protein A beads 
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5.2.2 ERK5 identification 

In order to confirm adequate ERK5 pull down for mass spectrometry, an initial 

immunopreciptation experiment was performed using the results of the titration 

experiment.  PC3 cells maintained in full medium were lysed, incubated with the ERK5 or 

Rabbit IgG cross linked beads overnight and the eluated sample run on a gel.  Samples of 

the lysate post incubation and the eluate pre and post concentration were analysed by 

western blotting in parallel to confirm successful pulldown and optimal technique when 

concentrating the final sample (see section 2.10.2) (Figure 5.5).  Mass spectrometry 

analysis of the area of interest (approximately 95-130kda) confirmed identification of 

ERK5 (Mitogen-activated protein kinase 7 - Homo sapiens) (Figure 5.6).   ERK5 was not 

however the most abundant protein with only 8 peptide matches and 12% sequence 

coverage observed.    

 

FIGURE 5.5 Confirmation of successful ERK5 pulldown and satisfactory 
concentration step 
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FIGURE 5.6 Analysis of initial endogenous ERK5 pulldown 
 

Results

6.6595678155Interleukin enhancer-binding factor 3 - Homo sapiens15

4.8496246201Elongation factor 2 - Homo sapiens 14

6.7566149259Keratin, type II cytoskeletal 1 - Homo sapiens13

8.9789950271Transitional endoplasmic reticulum ATPase -Homo sapiens 12

12889151296Mitogen-activated protein kinase 7 - Homo sapiens111

8.1685006316Heat shock protein HSP 90-alpha - Homo sapiens10

7.4698420373Importin subunit beta-1 - Homo sapiens9

10.5892696390Endoplasmin precursor - Homo sapiens 8

15.81276216526Splicing factor, proline- and glutamine-rich - Homo sapiens7

14.61176625539Nucleolin - Homo sapiens6

13.410105245552Alpha-actinin-4 - Homo sapiens5

17.71383554601Heat shock protein HSP 90-beta - Homo sapiens 4

14.916105398684AP-2 complex subunit beta-1 - Homo sapiens3

24.418103563928Alpha-actinin-1 - Homo sapiens2

21.822108570984AP-2 complex subunit alpha-1 - Homo sapiens1

Sequence
coverage %

Number of peptide
matches

Protein
Mass

Protein
ScoreProtein DescriptionHit

Band 1 (results from SwissProt Human search)

1. ERK-5 is equivalent to Mitogen-activated protein kinase 7

• BSA was also identified with a score of 636 and a 20% sequence coverage in an expanded search
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5.2.3 Pre clearing 

A pre clearing step with rabbit serum was performed prior to immunoprecipatation 

in order to reduce contamination.  An initial experiment was performed using PC3 cell 

lysate incubated with rabbit serum however significant smearing was noted and analysis 

not feasible.  Therefore a second pre clearing experiment was performed with four samples 

of lysis buffer (1ml) instead of cell lysate.  Increasing volumes of rabbit serum were 

incubated with the buffer (5, 10, 25 and 50ul) prior to incubation with a constant volume of 

Protein A beads (100ul). These samples were then run on a gel and stained with coomassie 

blue (Figure 5.7).  All four lanes demonstrated significant levels of the heavy chain and 

therefore this optimisation step was abandoned. 

 

 

FIGURE 5.7 Pre clearing optimisation experiment 
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5.2.4 EGF stimulation 

As shown previously ERK5 is activated 15 minutes post EGF stimulation with 

neglible levels observed in serum-starved cells (Figure 4.1).  Therefore I chose to perform 

immunoprecipatation with EGF treated PC3 cells at 2 time points (0 and 15 minutes) as a 

method of analysing potential ERK5 interacting proteins.  Western blotting was performed 

in parallel to confirm successful ERK5 pull down (Figure 5.8). Streaking and spreading of 

the samples was observed following coomassie staining, which meant that the sample was 

not suitable for analysis below 34kDa (Figure 5.9).  Our proteomics facility (supervised by 

Dr Willy Bienvenut) analysed the section of the gel above 34kDa and ERK5 was once 

again identified.  However, only 2 unique peptide matches were found for ERK5 in the 0 

minute sample with 6 being identified in the 15 minute sample (Figure 5.10) making it 

unclear if any pulled down proteins were authentic.   

 

 

FIGURE 5.8 Successful activation of ERK5 post EGF stimulation and corresponding 
ERK5 immunoprecipatation 
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FIGURE 5.9 EGF stimulation gel for mass spectrometry with marked area of 
analysis 
 

 
 

FIGURE 5.10   Results from exogenous EGF immunoprecipatation experiment 
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5.2.5 Exogenous ERK5 

As endogenous ERK5 pulldown was suboptimal it was decided to try transient 

transfection using a FLAG tag ERK5 expression construct.  Transient transfection was 

assessed in both PC3 and HEK 293 cells.  Western blotting confirmed inefficient 

expression of ERK5 in PC3 cells transfected with the pCMV FLAG tag ERK5 plasmid; 

however high levels of transfected ERK5 expression were noted in the HEK 293 cells 

(Figure 5.11).  HEK293 cells are well recognised to transfect readily and their transfection 

efficacy was therefore evaluated alongside PC3 cells.  Due to time constraints the 

transfection efficacy of other prostate cancer cell lines were not assessed.  The drawback of 

using HEK293 for transfection is that it does not allow assessment of ERK5 in prostate 

cancer and only allows assessment of ERK5 overexpression.  SILAC can also be 

performed using other tagged proteins and therefore I initially considered using the PC3 

ERK5 cells discussed in Chapter 3.   These cells would have been preferable as the 

primary cells would have been a prostate cancer cell line.  GFP expression was not 

abundant in these cells however and pull down would not have been as efficient as the 

FLAG tag protein.  

In order to confirm adequate ERK5 pull down for mass spectrometry analysis an 

initial sample was run on a gel for analysis (Figure 5.12).  After elution with the FLAG 

peptide the beads were boiled in sample buffer in order to assess efficiency of the peptide 

elution step.  The corresponding western is shown in figure 5.13.   

Mass spectrometry analysis of band 1 confirmed identification of ERK5 (Mitogen-

activated protein kinase 7 - Homo sapiens) (Figure 5.12).   ERK5 was the most abundant 

protein in this band with 39 peptide matches and 37% sequence coverage observed.   Band 

2 identified heat shock protein (HSP) 90 α and β with 43 and 24 peptide matches 

respectively.   Keratin was also observed in this band, which is presumed to be a 

contaminant.  As a pilot experiment, no control was included in this initial experiment, and 

therefore it would not be appropriate to compare the relative association between different 

HSP90 subunits and ERK5.   

Following successful pull down of exogenous ERK5, HEK293 cells were grown in 

SILAC media.  After 7 days, cells in both the light and heavy medium were lysed and run 

on a gel (figure not shown).  Mass spectrometry analysis of the heavy labelled lysate 

showed no significant presence of unlabelled material, confirming successful incorporation 

for subsequent experiments. 
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FIGURE 5.11   Transient transfection of FLAG tag ERK5 in HEK293 and PC3 cells 
 

 
 

FIGURE 5.12   FLAGtag ERK5 transfection in HEK293 cells allows successful 
pulldown of ERK5 for mass spectrometry 
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FIGURE 5.13   Transient transfection and pulldown of ERK5 in HEK293 cells 

 

 

 

5.2.6 ERK5 vs EV 
In order to identify ERK5 associating proteins an initial SILAC experiment was 

performed comparing 293 cells transfected with either the pCMV FLAG ERK5 

(Experiment 1 – heavy medium, Experiment 2 – light medium) or pCMV FLAG EV 

(Experiment 1 – light medium, Experiment 2 – heavy medium) plasmid).  Mass 

spectrometry identified unequal loading of samples in experiment 1 which then meant that 

only experiment 2 could be used for analysis and unfortunately due to time constraints I 

was unable to repeat this experiment.  This experiment identified a number of interesting 

proteins including Heat Shock Protein 90 (HSP 90), which has previously been identified 

as being associated with ERK5 activation (220).   
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5.2.7 Identification of ERK5 binding partners upon activation of the MEK5-ERK5 

Pathway 

Initial optimisation experiments using HEK293 cells for EGF stimulation revealed 

that when serum starved the 293 cells had problems with adherence.  Plates were therefore 

coated with poly-l lysine prior to adding the cells.  EGF stimulation of HEK293 transfected 

with pCMV ERK5 at 0 and 15 minutes (Figure 5.14) demonstrated a similar pattern of 

phospho ERK5 activation to that seen in prostate cancer cells (Figure 4.1). 

Cells were treated with 50ng/ml EGF and then lysed at 2 time points: 0 minutes 

(Experiment 1 – light medium, Experiment 2 – heavy medium) and 15 minutes 

(Experiment 1 – heavy medium, Experiment 2 – light medium).  Mass spectrometry 

identified unequal loading of samples in experiment 1 which then meant that only 

experiment 2 could be used for analysis and unfortunately due to time constraints I was 

unable to repeat this experiment. Once again the sample was analysed by our in house 

proteomic facility and a list of potential ERK5 binding partners generated for review 

(Figure 5.15 and 5.16).  Equal levels of ERK5 were noted in both timepoints (middle 

ratio=0.99, variation=0.01).  Interestingly HSP 90 was not significantly upregulated 

between the serum starved and EGF stimulated cells indicating that although HSP 90 does 

associate with ERK5 it is not involved in its activation.   

Overall, 302 proteins were positively identified, and among 125 of these were 

shown to be recruited by at least 2 fold.  Based on a combination of number of peptide 

matches and confidence of match a further (n=64) subgroup of proteins were thought to 

represent the interacting proteome of activated ERK5. Further bioinformatics and 

validation analysis will be required to formally characterise the individual interacting 

protein of ERK5 and their potential role in carcinogenesis.   

 

 

 

 

 

 

 

 

 

 

 

 



 105

FIGURE 5.14  

EGF stimulation of HEK293 pCMV ERK5 cells leads to ERK5 phosphorylation 
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FIGURE 5.15  Clear positive matches from EGF stimulation experiment 
 

Figure 5.15 and 5.16.  Summary of proteins identified from MS study on EGF stimulation 

experiment   Studied proteins were those with recruitment at 15 minutes following EGF 

stimulation (~2 fold or more) as indicated by signal (peak height) from individual peptide 

hits in MS analysis.  Data from experiments 1 and 2 are presented to show the respective 

fold of recruitment to ERK5.  Identified proteins with a large number of non-redundant 

peptides and a high recruitment ratio are considered to be ‘clear positive’ and are listed in 

figure 5.15.  Other identified proteins with only a medium number of non-redundant 

matches are considered as ‘potential hits’ and are listed in figure 5.16. 

 

  Experiment 1 Experiment 2 
Heterogeneous nuclear ribonucleoprotein D0 8.30 5.10 
Stress-induced-phosphoprotein 1 5.62 3.62 
Proliferation-associated protein 2G4 6.18 2.92 
Heterogeneous nuclear ribonucleoprotein K 4.81 4.08 
Caprin-1 4.42 3.42 
ATP-dependent DNA helicase 2 subunit 1 4.67 3.15 
Poly [ADP-ribose] polymerase 1 4.58 3.25 
Actin, cytoplasmic 1 3.58 4.12 
Heat shock 70 kDa protein 4 4.29 3.31 
Nucleolin 4.27 3.04 
Probable ATP-dependent RNA helicase DDX17 4.08 2.70 
ATP-dependent RNA helicase DDX3X 3.54 3.14 
ATP-dependent DNA helicase 2 subunit 2 4.10 2.40 
Eukaryotic translation initiation factor 4B 2.97 3.42 
Putative elongation factor 1-alpha-like 3 3.44 2.94 
ATP-dependent RNA helicase A 3.37 2.88 
Elongation factor 1-gamma 3.41 2.39 
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FIGURE 5.16 Potential positive matches from EGF stimulation experiment 

 
 
 
 

 Experiment 1 Experiment 2 
RNA-binding protein EWS 7.19 2.83 
ELKS/RAB6-interacting/CAST family member 1 0 4.50 
Heterogeneous nuclear ribonucleoproteins A2/B1 1.99 6.13 
Nuclease-sensitive element-binding protein 1 3.76 0 
KH domain-containing, RNA-binding, signal  
transduction-associated protein 1 

0 3.57 

Structural maintenance of chromosomes protein 1A 3.57 0 
Spliceosome RNA helicase BAT1 3.42 0 
Golgi-specific brefeldin A-resistance guanine nucleotide 
exchange factor 1 

0 3.01 

Heterogeneous nuclear ribonucleoprotein M 2.80 3.12 
Eukaryotic translation initiation factor 2 subunit 1     0 2.83 
Stress-70 protein, mitochondrial 3.18 2.48 
Insulin-like growth factor 2 mRNA-binding protein 3 2.93 2.68 
Polypyrimidine tract-binding protein 1 2.32 3.15 
Insulin-like growth factor 2 mRNA-binding protein 1 3.10 2.34 
Probable ATP-dependent RNA helicase DDX5 3.12 2.31 
Eukaryotic translation initiation factor 3 subunit I     2.77 2.58 
Eukaryotic initiation factor 4A-I 2.67 0 
60S ribosomal protein L3 2.62 0 
Kappa-actin 2.62 0 
40S ribosomal protein S3 2.19 2.97 
Elongation factor 2 2.75 2.41 
Heterogeneous nuclear ribonucleoprotein R 2.74 2.36 
Heat shock protein 105 kDa 2.71 2.38 
60 kDa heat shock protein, mitochondrial 2.97 1.98 
Polyadenylate-binding protein 4 3.23 1.71 
Heterogeneous nuclear ribonucleoprotein U 2.65 2.16 
Eukaryotic translation initiation factor 3 subunit B 2.83 1.92 
78 kDa glucose-regulated protein 2.41 2.26 
Transitional endoplasmic reticulum ATPase 2.42 2.22 
Trifunctional enzyme subunit alpha, mitochondrial 2.30 0 
Nucleolar RNA helicase 2 2.67 1.81 
Heat shock 70 kDa protein 4L 1.82 2.66 
Interleukin enhancer-binding factor 3 2.21 2.23 
FACT complex subunit SSRP1 2.22 0 
Polyadenylate-binding protein 1 2.66 1.76 
Histone H1.4 1.95 2.46 
Eukaryotic translation initiation factor 3 subunit A    2.24 2.14 
Inosine-5'-monophosphate dehydrogenase 2 2.58 1.78 
26S proteasome non-ATPase regulatory subunit 11 2.23 1.99 
T-complex protein 1 subunit alpha 2.50 1.64 
Heterogeneous nuclear ribonucleoprotein H 2.06 2.06 
Clathrin heavy chain 1 2.26 1.75 
Glyceraldehyde-3-phosphate dehydrogenase 1.29 2.71 
26S proteasome non-ATPase regulatory subunit 2 2.24 1.74 
DNA replication licensing factor MCM3 2.01 1.95 
Eukaryotic translation initiation factor 3 subunit E      1.97 0 
T-complex protein 1 subunit theta 2.35 1.58 
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5.3 Discussion  

Endogenous protein immunoprecipatation is the method of choice when analysing 

protein interactions as it allows the most accurate analysis of events in the cell line chosen.  

Unfortunately in our experiments as is often the case inadequate amounts of endogenous 

protein were available despite numerous efforts to increase sample size. 

As an alternative to endogenous pulldown experiments, exogenous tagged cell lines 

can be used to facilitate a larger volume of protein complexes for analysis.  We used 

FLAG-tag epitope labelling, which is one of the most commonly used tags for 

immunoprecipation experiments.   

My experiments highlight some potential interacting proteins however these are 

very early results and future work is required to validate potential interacting proteins.  

Once these were confirmed their functional significance could be explored.  The main aim 

of this section of my work was to develop the methodology required for future ERK5 

proteomics work. 

HSP 90 is part of a chaperone complex for multiple proteins involved in cell 

signalling, proliferation and survival such as HER2, RAF and Src (221).  Previously it was 

thought that HSP90 was not involved in MAP kinase activities however recent evidence 

published suggests that ERK5 may be HSP90 dependent (220).  ERK5 kinase activity was 

abolished by HSP90 inhibition in vitro and ERK5 activity was lost when examined in a 

mutant HSP90 yeast strain.   

Inhibition of HSP90 is currently the focus of a number of phase I and II clinical 

trials.  As mentioned previously 17-AAG, a derivative of geldanamycin, is being 

investigated as an anti-cancer drug however initial results have shown no positive response 

following treatment (222).   

Our results support the theory that HSP90 does associate with ERK5 however 

contrary to Truman et al our results show that it is not involved in ERK5 activation.  The 

initial SILAC experiment performed with FLAG tag empty vector and ERK5 highlighted 

strong association between ERK5 and HSP90.  In the subsequent experiment with EGF 

stimulated FLAG tag ERK5 cells, HSP90 was confirmed to be present in both the 

unstimulated and stimulated cells in equal proportions.  This indicates that it is not 

involved in the activation of ERK5 in these cells.   
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6 Discussion 
6.1 Overview of project and summary of results 

Abnormal MEK5/ERK5 signalling has been shown to be important in prostate 

cancer and is thought to represent a potential target in for novel therapies in invasive 

disease (184).  The primary aim of this study was to validate previous expression data in 

human prostate cancer specimens and to investigate the effect of ERK5 inhibition both 

functionally and biochemically in prostate cancer cancer cell lines. 

As previous work has shown ERK5 to be overexpressed in CRPC (184) 

experiments in my project were performed using the PC3 cell line which is androgen 

independent aswell as the PC3-ERK5 overexpressing clone.  In order to validate these 

results repeat experiments using an androgen resistant cell line should have been 

performed.  

Cellular proliferation, motility and invasion was significantly reduced (p<0.005) 

when ERK5 was knocked down using siRNA.  Previous expression analysis performed by 

our group showed upregulated ERK5 expression in primary human prostate cancer 

specimens (184).  In this study, these results were validated and in addition high levels of 

cytoplasmic (55%) and nucleur (73%) immunoreactivity was also shown in a range of 

metastatic prostate tumours (n=11).   

Potential ‘cross-talk’ between ERK5 and ERK1/2 signalling was investigated in 

this study using siRNA for each individual isoform of ERK1/2.  My results showed that 

ERK1 knockdown resulted in increased ERK5 activation in addition to prolonged ERK2 

phosphorylation.  Proliferation studies were also performed in PC3 cells, the results of 

which support published data that ERK1 acts as a negative regulator and ERK2 as a 

positive regulator of cell proliferation. 

The final aim of my project was to develop a methodology to investigate the ERK5 

interacting proteome.  In order to do this a stepwise approach was adopted to first identify 

the correct antibody: bead ratio and optimal cell line to use.  As discussed in Chapter 5, I 

was unable to pulldown sufficient levels of endogenous ERK5 for immunoprecipation and 

therefore exogenous levels were examined.  A number of potential interacting proteins 

were identified however these preliminary results require validation by repeat experiments 

and further investigation. 

A more detailed discussion of results is included at the end of each of the results 

chapters (3-5).  The remainder of this chapter discusses ERK5 related biology and drug 

development as well as the potential role of an ERK5 inhibitor in clinical practice. 
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6.2 Drug development against implicated biological targets 

Previous clinical trials designed to evaluate novel agents (biological or small 

molecules) were frequently allocating patients to treatment regimes under investigation 

without prior analysis of gene expression and/or genotype.  High throughput gene 

expression profiling can be used to assess gene expression signatures from individual 

tumours.  Such methods of molecular profiling may offer an opportunity to link the 

oncogenic process with potential therapeutic strategies in the context of improved patient 

outcome (223).  Such a global approach will hopefully shed light on how individual 

biological cascades, including various signalling networks, interact to drive prostate 

carcinogenesis – this will have important implications in drug development. 

Another crucial aspect of drug development is the availability of biomarker(s) for a 

number of purposes, including their use in risk assessment, diagnosis - prognostic, 

stratification and therapy monitoring.  It is relevant to highlight the following requirements 

for drug development: (1) Robust method for in vivo assessment of quantifiable effects on 

the target of interest by the candidate agents is important, (2) Patient selection and 

stratification as guided by biologically relevant biomarker(s) will provide strong rationale 

for design of future clinical trials, (3) Clinical effects of the novel treatment on prostate 

cancer growth and progression will be assessed by the appropriate (surrogate) end points.  

Studies using many of the novel agents discussed in Chapter 1 (Sections 1.6 and 1.7) have 

attempted to identify markers as readouts for target inhibition or downstream signalling to 

guide patient selection and follow up e.g. pEGFR and pMAPK with EGFR inhibitors.  

Repeat tissue sampling however is not always feasible; more acceptable methods of 

sampling such as serum or urine would be preferable and may provide useful alternatives.      

Hence, there is an urgent need for validated urine or serum markers to evaluate the status 

of target of interest as well as the tumour as a whole.  Serum PSA is currently used as a 

biomarker in prostate cancer.  Its increasing use in recent years has facilitated early 

diagnosis of prostate cancer, reflected by a global rise in the incidence of prostate cancer 

since the 1990s.  PSA measurement has a number of drawbacks as it can also be elevated 

due to BPH or prostatitis leading to a significant number of false positive results.  There is 

a need for more specific biomarkers for prostate cancer, which can be used alone or in 

conjunction with PSA.  A number of biomarkers (serum and urine) are currently in trial. 

(224).   Prostate cancer antigen 3 (PCA3) is a gene which is overexpressed in prostate 

cancer and has been shown to have a higher specificity than PSA for malignancy (225).  It 

should be measured in the first-catch urine after prostatic massage and has been shown to 

be useful in patients to predict the presence of malignancy in men undergoing repeat 
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prostate biopsies (226).  Currently it is not funded for use in the National Health Service in 

the UK. 

Epigenetic changes have also been studied as both diagnostic and prognostic tools 

in prostate cancer.  It is apparent that genetically identical tumours have differing 

phenotypes due to altered epigenetic arrangements, which encompass a wide range of 

abnormalities at cell and molecular level, including post-translational modification (e.g. 

methylation, acetylation, ubiquitination, sumoylation), gene silencing (e.g. promoter hyper-

methylation) and growth arrest (e.g. senescence).  Hence, analysis of such assays for 

methylation changes or histone modifications in individual tumours has the potential to 

allow clinicians to predict patient prognosis and subsequent treatment stratification or 

direct targeted therapy can be considered.  

Targeted therapy in haematological cancers has proved more amenable than in 

solid tumours.  Haematological malignancies often arise from specific genetic mutations, 

e.g. Philadelphia chromosome with specific oncogenic translocation in bcl-abl, offering 

single molecular candidates for drug targeting.  In contrast solid tumours tend to be 

heterozygous and/or multi-focal involving multiple pathways.  Hence, the identification of 

the ‘single’ molecular target is much more difficult in solid tumours.  Indeed, for the vast 

majority of clinical solid tumour types, the knowledge of a single genetic or epigenetic 

lesion that critically drives carcinogenesis is missing.  In prostate cancer however recent 

studies have shown the majority of patients have a chromosomal rearrangement that fuses 

the gene for an androgen-regulated prostate-specific serine protease, TMPRSS2, with a 

member of the ETS family of transcription factors, most commonly ERG (227).  The 

clinical implications of the fusion products remains unclear however it is anticipated that 

once this is understood TMPRSS2:ERG gene fusions may be used as a screening test or 

molecular target for novel therapies. 

Targeting a single molecule or pathway therefore may not be sufficient to 

significantly influence the malignant phenotype as signalling through other pathways may 

compensate for the effects of a single target affected by treatment.  Different 

pharmacological strategies have therefore been pursued to inhibit multiple pathways or 

multiple steps within the same pathway for use in advanced solid tumours.  Multi targeted 

agents or a combination of single targeted drugs may maximise effective target inhibition 

and have a complementary impact on downstream signalling.   

Sorafenib is a multi targeted TKI which is approved for clinical use in RCC (110).  

Sorafenib blocks receptor tyrosine kinase signalling (VEGFR, PDGFR, c-Kit and b-RAF) 
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and inhibits downstream signalling through the MAPK pathway preventing tumour growth 

by anti-angiogenic, anti-proliferative and /or pro-apoptotic effects.  Other novel muti-target 

inhibitors, which have been developed, include sunitinib, imatinib and lapatinib.  Multi 

targeted TKIs avoids drug-drug interactions and better compliance may be achieved with 

administration a single compound.  On the other hand, combining specific TKIs may 

increase treatment efficacy with exact titration for each agent allowing optimal target 

inhibition.  However, drug-drug interactions may potentially lead to altered responses. 

Another method, which may increase antitumour activity, is to combine different classes of 

inhibitors e.g. a monoclonal antibody and a TKI against the same single target.  In vitro 

and in vivo evidence has shown that combining monoclonal antibody therapy and TKI to 

target different molecular domains of the same receptor can potentiate cellular toxicity due 

to non-overlapping mechanisms of action and partially overcome acquired resistance to 

any single inhibitor.  A number of trials are currently studying the potential effects of 

combination regimes of targeted therapies with docetaxel.  Docetaxel improves survival in 

patients with hormone refractory disease by a mean of only 2.5 months (9;10).  Minimum 

survival improvements in this patient group would therefore convey significant results 

compared to docetaxel monotherapy, which is currently the only effective treatment option 

available. 

Understanding of the signalling pathways involved in prostate carcinogenesis has 

lead to the development of a number of potential new drugs with many reaching clinical 

trials. To date none of the targeted therapy have shown adequate efficacy for approval for 

routine usage. The discrepancy between preclinical and clinical findings may be a 

reflection of the fundamental differences between the currently available preclinical 

(usually murine) models and clinical cancer.  Current research on the development of a 

mouse model of prostate cancer focuses on using the Cre-loxP technology which would 

provide a conditional gene-knockout model.  This method is a more favourable model to 

study than traditional single or multi- gene knockout or knock-in models as it overcomes 

the problems of embryonic lethality, premature death or concerns that the cancer develops 

due to developmental defects (228).  Development of a relevant prostate cancer transgenic 

mouse model driven by validated molecular lesions may provide a meaningful model for 

clinical prostate cancer and may allow more clinically relevant assessment of novel anti-

cancer treatments prior to clinical trial. 

Several promising targets and agents are continuing to emerge and it is imperative 

that multi-disciplinary teams incorporating urological surgeons, oncologists and laboratory 

scientists are involved in bringing these novel treatments to clinical trial. 
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6.3 ERK5 as a drug target 

6.3.1 Which tumour types and which patient groups would be suitable for ERK5                            

             inhibition?                                                      

 Aberrant ERK5 expression has been demonstrated in a range of tumour tissue types, 

however the most significant data focuses on prostate and breast cancer.    

Based on data obtained by my study and previous data from our group, both metastatic and 

hormone (castrate) resistant prostate cancer have upregulated ERK5 expression.  These 

data would argue for benefit for ERK5 targeted therapy in prostate cancer.  When a clinical 

candidate for ERK5 inihibitor is made available, the patient cohort with either metastatic or 

castration resistant disease would be suitable for recruitment to a clinical trial.  The 

presence of ERK5 overexpression in tumour/metastatic tissue may indicate which patients 

should be targeted with an ERK5 inhibitor.  Patients would require repeat biopsies to 

assess ERK5 expression levels if therapy was to be commenced once castration resistant or 

metastatic disease developed. 

 MEK5/ERK5 signalling has been shown to also be important in breast carcinoma.  

High levels of ErbB2, a member of the ErbB family of tyrosine kinases, correlates with 

aggressive growth properties of breast cancer and is found in 20-30% of patients (29).  It 

has been shown that the MEK5/ERK5 pathway is constitutively activated in breast cancer 

cells overexpressing ErbB2 and that down regulation of this pathway significantly reduces 

the malignant growth of these cells (215).  ERK5 resides in the nucleus of cells that 

overexpress the ErbB2 receptor and recent work has shown that nuclear ERK5 favours 

MEF-2 dependant transcriptional activity and inhibits TRAIL  (tumour necrosis factor 

related apoptosis)-induced cell death (229). 

 Apoptosis is the primary route of cytotoxicity by many forms of anti-cancer therapy.  

Chemoresistance is a major therapeutic problem, allowing tumour cells the capability to 

progress and grow further resulting in a more aggressive metastatic phenotype.  Recent in 

vitro studies have highlighted the importance of the MEK5/ERK5 pathway in mediating 

breast cancer cells sensitivity to apoptotic inducing events (230).  Overexpression of 

MEK5 in APO- MCF7 cells suggests that this MAPK member may represent a significant 

potent survival molecule.  Further work will confirm if inhibition of this signalling 

pathway could promote for sensitising breast cancer cells to chemotherapeutic regimens 

and if successful this may be of significance in chemoresistant prostate cancer.  
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6.3.2 How would an ERK5 inhibitor be used: single agent or in combination? 

Many issues arise when developing targeted therapies for use in cancer.  A 

selective small molecule inhibitor of ERK5 would most likely be trialled initially in 

advanced prostate cancer patients in combination with docetaxel.  Docetaxel is currently 

the recommended treatment for men with metastatic CRPC.  Clinical trials for this patient 

group would therefore focus on comparing current recommended therapy against and in 

combination with the novel therapy under review.  As ERK5 has been shown to be 

overexpressed in castration resistant disease it would most likely also be used in clinical 

trials involving castration refractory cases either alone or in combination with other 

targeted therapies in order to tackle the heterogeneity of the disease. 

Crosstalk between ERK5 and ERK1/2 is a focus of current research and is 

discussed in Chapter 4.    Combining ERK5 inhibition with a MEK1/2 inhibitor may 

provide a more significant effect than single agent use.  By using combination therapy it 

may be that a lower dose of the MEK inhibitor could be used, increasing patient 

tolerability.  

 

6.3.3 Downstream biomarkers for ERK5 signalling 

A number of substrates of ERK5 are recognised however to date there is no specific 

and reliable downstream biomarker.  Further work is required to identify a downstream 

biomarker of which could be measured following treatment with an ERK5 inhibitor.  

Assessment of downstream targets of ERK5 was not studied in detail in this project 

however is recognised as an essential area which requires further work. 

 

6.3.4 Why would an ERK5 inhibitor work when MEK1/2 inhibitor in the past have        

not worked? 

The MEK/ERK signalling pathway plays a central role in the regulation of many of 

the cellular processes involved in carcinogenesis.  A number of MEK 1/2 inhibitors have 

entered phase I and II clinical trials.  However, these selective inhibitors have shown 

limited clinical effects in cancer patients with significant associated toxicities.  The first 

MEK 1/2 inhibitor to enter clinical trial was PD-184352 (also known as CI-1040).  One 

partial response in a pancreatic cancer patient was reported with 25% of patients achieving 

disease stabilization for 4 months or longer (231).  These results supported progression into 

a broad phase II study however no objective responses were documented.  

Pharmacokinetic studies showed up to 100-fold variation in drug exposure in different 

patients and the lack of efficacy in this phase II trial was therefore attributed to poor drug 
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bioavailability (214).  Second generation MEK inhibitors (PD0325901 and ARRY-

142886) were developed with reported superior potency and pharmacologic properties.  

Phase II trials of PD0325901 were abandoned due to severe toxicity.  This MEK inhibitor 

has very high potency and it is thought that these severe side effects suggested that 

complete inhibition of this pathway in normal tissues were not desirable.  ARRY-142886 

(AZD6244) however has shown more promising results with a lower incidence of reported 

toxicities and phase II trials are currently recruiting patients (232).   

The main issue, which raises concerns about the use of MEK1/2 inhibitors in 

cancer, is that MEK cannot be inhibited consistently in tumours at tolerable inhibitor 

doses.   It also remains unclear whether successful inhibition correlates with clinical 

outcome.  MEK inhibitors have been shown to have heightened sensitivity in tumours with 

B-Raf mutation and in vitro data shows that an activating RAS mutation showed much 

lower and more variable sensitivity.  Analysis of the tumour gene expression signature may 

therefore be useful to predict pathway activation and suitable patient selection.  

It may be that targeting the MEK/ERK5 pathway would not have the same toxicity 

profile due to their selective target inhibition.  Initial in vitro studies of the MEK5 inhibitor 

BIX02188 and BIX02189 showed inhibition of ERK5 phosphorylation in a dose dependant 

manner without affecting the phosphorylation of ERK1/2 (211). 

 

6.4 ERK5 related biology 

Details of ERK5 mediated carcinogenesis remains to be fully elucidated.  It is 

likely that it plays key roles in cellular migration/invasion, survival (including 

chemoresistance), and angiogensis (186;187;230).   My work on the ERK5 interacting 

proteome has provided a wealth of data on how ERK5 may function and the signalling 

partners involved.  Future validation will need to be performed and their functional 

significance in ERK5 driven phenotype tested.  It is particularly interesting to observe the 

binding of a number of RNA binding proteins to ERK5.  This raised the possibility that 

ERK5 complexed with RNA binding proteins may be important in the processing of RNA 

species.  Hence, future work in this topic and additional validation experiments of the 

ERK5 interacting proteome may yield key insight into the biology of ERK5 mediated 

signalling which may in turn provide hints for important downstream biomarkers that may 

be exploited as ‘read-outs’ for the functional state of ERK5 activities.  This will be very 

useful in the development and evaluation of novel ERK5 inhibitors. 
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6.5 ERK5 signalling interactions 

Increased understanding of ERK5 signalling is required.  A number of activators of 

the ERK5 pathway have been identified including growth factors, tyrosine kinases and 

oncogene products such as Ras and COT (See section 1.8.1) however downstream targets 

of ERK5 are less well understood.   

ERK5 has been implicated in NFκB signalling which has itself been reported to 

play a role in prostate carcinogenesis.  To date there is no published data on their 

interaction in prostate carcinogenesis and therefore I investigated if ERK5 mediated 

signalling in prostate cancer cells involved the NFκB pathway.  Contrary to previous 

studies, NFκB levels in both in vitro and in vivo experiments did not show any correlation 

with ERK5 expression in this study. 

ERK5 and ERK 1/2 have recognised similarities in their activation modes and 

functions and crosstalk between these MAPK family members has been suggested 

(182;183).  This study is the first to demonstrate a novel relationship between ERK1 and 

ERK5 signalling in prostate cancer.  Such interaction may have clinical implications, and 

future trials of novel compounds will need to incorporate such cross talk into the design to 

ensure the in vitro and in vivo mode of action of any candidate compounds are adequately 

examined. 

 

6.6 Conclusion 

This study validates the importance of the ERK5 signalling pathway as a potential 

target for therapy and highlights a novel functional and biochemical relationship between 

ERK1 and ERK5 signalling.  A suitable, reliable downstream biomarker is essential for the 

development of an ERK5 inhibitor and although this study does not highlight such a 

specific target it does provide useful preliminary results for further work in this area.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 117

Reference List 
 
 (1)  Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA et al. Annual 

report to the nation on the status of cancer, 1975-2002, featuring population-based 
trends in cancer treatment. J Natl Cancer Inst 2005; 97(19):1407-1427. 

 (2)  http://info.cancerresearchuk.org/cancerstats/types/prostate/incidence/.   
 

 (3)  Quinn M, Babb P. Patterns and trends in prostate cancer incidence, survival, 
prevalence and mortality. Part I: international comparisons. BJU Int 2002; 
90(2):162-173. 

 (4)  Cancel-Tassin G, Cussenot O.  Genetic susceptibility to prostate cancer.  BJU Int 
2005; 96(9): 1380-1385. 

 (5)  Ben Shlomo Y, Evans S, Patel B, Anson K, Muir G, Persad R et al. Diffences in the 
epidemiology and presentation of prostate cancer in black and white men in 
England: Lessons learnt from the PROCESS study. BJU Int 2008; 103(6):723-724. 

 (6)  Ben Shlomo Y, Evans S, Ibrahim F, Patel B, Anson K, Chinegwundoh F et al. The 
risk of prostate cancer amongst black men in the United Kingdom: the PROCESS 
cohort study. Eur Urol 2008; 53(1):99-105. 

 (7)  Coen JJ, Chung CS, Shipley WU, Zietman AL. Influence of follow-up bias on PSA 
failure after external beam radiotherapy for localized prostate cancer: results from a 
10-year cohort analysis. Int J Radiat Oncol Biol Phys 2003; 57(3):621-628. 

 (8)  Agarwal PK, Sadetsky N, Konety BR, Resnick MI, Carroll PR. Treatment failure 
after primary and salvage therapy for prostate cancer: likelihood, patterns of care, 
and outcomes. Cancer 2008; 112(2):307-314. 

 (9)  Petrylak DP, Tangen CM, Hussain MH, Lara PN, Jr., Jones JA, Taplin ME et al. 
Docetaxel and estramustine compared with mitoxantrone and prednisone for 
advanced refractory prostate cancer. N Engl J Med 2004; 351(15):1513-1520. 

 (10)  Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN et al. Docetaxel 
plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N 
Engl J Med 2004; 351(15):1502-1512. 

 (11)  James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Anderson J et al. 
Systemic therapy for advancing or metastatic prostate cancer (STAMPEDE): a 
multi-arm, multistage randomized controlled trial. BJU Int 2008. 

 (12)  Agus DB, Cordon-Cardo C, Fox W, Drobnjak M, Koff A, Golde DW et al. Prostate 
cancer cell cycle regulators: response to androgen withdrawal and development of 
androgen independence. J Natl Cancer Inst 1999; 91(21):1869-1876. 

 (13)  Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: 
directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 
2005; 23(32):8253-8261. 

 (14)  Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and 
dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 
2005; 11(13):4653-4657. 



 118

 (15)  Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T. 
Amplification and overexpression of androgen receptor gene in hormone-refractory 
prostate cancer. Cancer Res 2001; 61(9):3550-3555. 

 (16)  Small EJ, Halabi S, Dawson NA, Stadler WM, Rini BI, Picus J et al. Antiandrogen 
withdrawal alone or in combination with ketoconazole in androgen-independent 
prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol 2004; 
22(6):1025-1033. 

 (17)  Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L et al. Gene 
expression analysis of human prostate carcinoma during hormonal therapy 
identifies androgen-responsive genes and mechanisms of therapy resistance. Am J 
Pathol 2004; 164(1):217-227. 

 (18)  Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM et al. 
Increased expression of genes converting adrenal androgens to testosterone in 
androgen-independent prostate cancer. Cancer Res 2006; 66(5):2815-2825. 

 (19)  Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS et 
al. Maintenance of intratumoral androgens in metastatic prostate cancer: a 
mechanism for castration-resistant tumor growth. Cancer Res 2008; 68(11):4447-
4454. 

 (20)  Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1):57-70. 

 (21)  Sebolt-Leopold JS, English JM. Mechanisms of drug inhibition of signalling 
molecules. Nature 2006; 441(7092):457-462. 

 (22)  O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. 
Imatinib compared with interferon and low-dose cytarabine for newly diagnosed 
chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348(11):994-1004. 

 (23)  Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. 
Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N 
Engl J Med 2006; 355(23):2408-2417. 

 (24)  Baccarani M, Rosti G, De Vivo A, Bonifazi F, Russo D, Martinelli G et al. A 
randomized study of interferon-alpha versus interferon-alpha and low-dose 
arabinosyl cytosine in chronic myeloid leukemia. Blood 2002; 99(5):1527-1535. 

 (25)  Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J et al. Detection of 
BCR-ABL mutations in patients with CML treated with imatinib is virtually always 
accompanied by clinical resistance, and mutations in the ATP phosphate-binding 
loop (P-loop) are associated with a poor prognosis. Blood 2003; 102(1):276-283. 

 (26)  Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B et al. 
Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N 
Engl J Med 2006; 354(24):2542-2551. 

 (27)  Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al. Dasatinib 
in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 
2006; 354(24):2531-2541. 



 119

 (28)  Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of 
the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 
244(4905):707-712. 

 (29)  Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human 
breast cancer: correlation of relapse and survival with amplification of the HER-
2/neu oncogene. Science 1987; 235(4785):177-182. 

 (30)  Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L et al. 
Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal 
antibody in women who have HER2-overexpressing metastatic breast cancer that 
has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 
17(9):2639-2648. 

 (31)  Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I 
et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N 
Engl J Med 2005; 353(16):1659-1672. 

 (32)  Viani GA, Afonso SL, Stefano EJ, De Fendi LI, Soares FV. Adjuvant trastuzumab 
in the treatment of her-2-positive early breast cancer: a meta-analysis of published 
randomized trials. BMC Cancer 2007; 7:153. 

 (33)  Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use 
of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast 
cancer that overexpresses HER2. N Engl J Med 2001; 344(11):783-792. 

 (34)  http://www.nice.org.uk/nicemedia/pdf/advancedbreastcancerno34PDF.pdf.   
 

 (35)  Ayala G, Thompson T, Yang G, Frolov A, Li R, Scardino P et al. High levels of 
phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues 
are strong predictors of biochemical recurrence. Clin Cancer Res 2004; 
10(19):6572-6578. 

 (36)  McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR. Loss of PTEN 
expression in paraffin-embedded primary prostate cancer correlates with high 
Gleason score and advanced stage. Cancer Res 1999; 59(17):4291-4296. 

 (37)  Lee JT, Jr., Steelman LS, McCubrey JA. Phosphatidylinositol 3'-kinase activation 
leads to multidrug resistance protein-1 expression and subsequent chemoresistance 
in advanced prostate cancer cells. Cancer Res 2004; 64(22):8397-8404. 

 (38)  Lin J, Adam RM, Santiestevan E, Freeman MR. The phosphatidylinositol 3'-kinase 
pathway is a dominant growth factor-activated cell survival pathway in LNCaP 
human prostate carcinoma cells. Cancer Res 1999; 59(12):2891-2897. 

 (39)  Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of 
phosphatidylinositol 3-kinase induce gain of function by different mechanisms. 
Proc Natl Acad Sci U S A 2008; 105(7):2652-2657. 

 (40)  Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S et al. Pharmacologic 
characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. 
Cancer Res 2007; 67(12):5840-5850. 



 120

 (41)  Majumder PK, Sellers WR. Akt-regulated pathways in prostate cancer. Oncogene 
2005; 24(50):7465-7474. 

 (42)  Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R et al. 
Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc 
Natl Acad Sci U S A 2001; 98(18):10314-10319. 

 (43)  Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM et al. mTOR 
inhibition reverses Akt-dependent prostate intraepithelial neoplasia through 
regulation of apoptotic and HIF-1-dependent pathways. Nat Med 2004; 10(6):594-
601. 

 (44)  Nam S, Kim D, Cheng JQ, Zhang S, Lee JH, Buettner R et al. Action of the Src 
family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. 
Cancer Res 2005; 65(20):9185-9189. 

 (45)  Goldenberg-Furmanov M, Stein I, Pikarsky E, Rubin H, Kasem S, Wygoda M et al. 
Lyn is a target gene for prostate cancer: sequence-based inhibition induces 
regression of human tumor xenografts. Cancer Res 2004; 64(3):1058-1066. 

 (46)  Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA et al. Changes in 
androgen receptor nongenotropic signaling correlate with transition of LNCaP cells 
to androgen independence. Cancer Res 2004; 64(19):7156-7168. 

 (47)  Rucci N, Recchia I, Angelucci A, Alamanou M, Del Fattore A, Fortunati D et al. 
Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases 
and increases survival in mice: implications for therapy. J Pharmacol Exp Ther 
2006; 318(1):161-172. 

 (48)  Cortes J, Rousselot P, Kim DW, Ritchie E, Hamerschlak N, Coutre S et al. 
Dasatinib induces complete hematologic and cytogenetic responses in patients with 
imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood 
2007; 109(8):3207-3213. 

 (49)  Kantarjian H, Pasquini R, Hamerschlak N, Rousselot P, Holowiecki J, Jootar S et 
al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia 
after failure of first-line imatinib: a randomized phase 2 trial. Blood 2007; 
109(12):5143-5150. 

 (50)  Chang YM. Survey of Src activity and Src-related growth and migration in prostate 
cancer cell lines. Proc Am Assoc Cancer Res 47, Abstr 2505. 2006.  

 
 (51)  Evans CP, Lara PN, Kung H, Yang JC. Activity of the Src-kinase inhibitor 

AZD0530 in androgen-independent prostate cacner (AIPC): Pre-clinical rationale 
for a phase II trial. J Clin Oncol (ASCO Annual Meeting Proceedings) 24, Abstr 
14542. 2006.  

 
 (52)  Golas JM, Arndt K, Etienne C, Lucas J, Nardin D, Gibbons J et al. SKI-606, a 4-

anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent 
antiproliferative agent against chronic myelogenous leukemia cells in culture and 
causes regression of K562 xenografts in nude mice. Cancer Res 2003; 63(2):375-
381. 



 121

 (53)  Golas JM, Lucas J, Etienne C, Golas J, Discafani C, Sridharan L et al. SKI-606, a 
Src/Abl inhibitor with in vivo activity in colon tumor xenograft models. Cancer Res 
2005; 65(12):5358-5364. 

 (54)  Jallal H, Valentino ML, Chen G, Boschelli F, Ali S, Rabbani SA. A Src/Abl kinase 
inhibitor, SKI-606, blocks breast cancer invasion, growth, and metastasis in vitro 
and in vivo. Cancer Res 2007; 67(4):1580-1588. 

 (55)  Zellweger T, Ninck C, Bloch M, Mirlacher M, Koivisto PA, Helin HJ et al. 
Expression patterns of potential therapeutic targets in prostate cancer. Int J Cancer 
2005; 113(4):619-628. 

 (56)  Di Lorenzo G, Tortora G, D'Armiento FP, De Rosa G, Staibano S, Autorino R et al. 
Expression of epidermal growth factor receptor correlates with disease relapse and 
progression to androgen-independence in human prostate cancer. Clin Cancer Res 
2002; 8(11):3438-3444. 

 (57)  Sherwood ER, Lee C. Epidermal growth factor-related peptides and the epidermal 
growth factor receptor in normal and malignant prostate. World J Urol 1995; 
13(5):290-296. 

 (58)  Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S et al. Erlotinib 
plus gemcitabine compared with gemcitabine alone in patients with advanced 
pancreatic cancer: a phase III trial of the National Cancer Institute of Canada 
Clinical Trials Group. J Clin Oncol 2007; 25(15):1960-1966. 

 (59)  Shepherd FA, Rodrigues PJ, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S et al. 
Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005; 
353(2):123-132. 

 (60)  Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES et al. Clinical course 
of patients with non-small cell lung cancer and epidermal growth factor receptor 
exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res 
2006; 12(3 Pt 1):839-844. 

 (61)  Hirsch FR, Varella-Garcia M, Dziadziuszko R, Xiao Y, Gajapathy S, Skokan M et 
al. Fluorescence in situ hybridization subgroup analysis of TRIBUTE, a phase III 
trial of erlotinib plus carboplatin and paclitaxel in non-small cell lung cancer. Clin 
Cancer Res 2008; 14(19):6317-6323. 

 (62)  Gross M, Higano C, Pantuck A, Castellanos O, Green E, Nguyen K et al. A phase 
II trial of docetaxel and erlotinib as first-line therapy for elderly patients with 
androgen-independent prostate cancer. BMC Cancer 2007; 7:142. 

 (63)  Cho KS, Lee JS, Cho NH, Park K, Ham WS, Choi YD. Gene amplification and 
mutation analysis of epidermal growth factor receptor in hormone refractory 
prostate cancer. Prostate 2008; 68(8):803-808. 

 (64)  Felip E, Rojo F, Reck M, Heller A, Klughammer B, Sala G et al. A phase II 
pharmacodynamic study of erlotinib in patients with advanced non-small cell lung 
cancer previously treated with platinum-based chemotherapy. Clin Cancer Res 
2008; 14(12):3867-3874. 

 (65)  Sgambato A, Camerini A, Faraglia B, Ardito R, Bianchino G, Spada D et al. 
Targeted inhibition of the epidermal growth factor receptor-tyrosine kinase by 



 122

ZD1839 ('Iressa') induces cell-cycle arrest and inhibits proliferation in prostate 
cancer cells. J Cell Physiol 2004; 201(1):97-105. 

 (66)  Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG. Efficacy of cytotoxic 
agents against human tumor xenografts is markedly enhanced by coadministration 
of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 2000; 
6(12):4885-4892. 

 (67)  Angelucci A, Gravina GL, Rucci N, Millimaggi D, Festuccia C, Muzi P et al. 
Suppression of EGF-R signaling reduces the incidence of prostate cancer metastasis 
in nude mice. Endocr Relat Cancer 2006; 13(1):197-210. 

 (68)  Baselga J, Rischin D, Ranson M, Calvert H, Raymond E, Kieback DG et al. Phase I 
safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral 
epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five 
selected solid tumor types. J Clin Oncol 2002; 20(21):4292-4302. 

 (69)  Small EJ, Fontana J, Tannir N, DiPaola RS, Wilding G, Rubin M et al. A phase II 
trial of gefitinib in patients with non-metastatic hormone-refractory prostate cancer. 
BJU Int 2007; 100(4):765-769. 

 (70)  Canil CM, Moore MJ, Winquist E, Baetz T, Pollak M, Chi KN et al. Randomized 
phase II study of two doses of gefitinib in hormone-refractory prostate cancer: a 
trial of the National Cancer Institute of Canada-Clinical Trials Group. J Clin Oncol 
2005; 23(3):455-460. 

 (71)  Pu YS, Hsieh MW, Wang CW, Liu GY, Huang CY, Lin CC et al. Epidermal 
growth factor receptor inhibitor (PD168393) potentiates cytotoxic effects of 
paclitaxel against androgen-independent prostate cancer cells. Biochem Pharmacol 
2006; 71(6):751-760. 

 (72)  Jonker DJ, O'Callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au HJ et al. 
Cetuximab for the treatment of colorectal cancer. N Engl J Med 2007; 
357(20):2040-2048. 

 (73)  Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB et al. 
Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N 
Engl J Med 2006; 354(6):567-578. 

 (74)  Weiner LM, Belldegrun AS, Crawford J, Tolcher AW, Lockbaum P, Arends RH et 
al. Dose and schedule study of panitumumab monotherapy in patients with 
advanced solid malignancies. Clin Cancer Res 2008; 14(2):502-508. 

 (75)  Osman I, Scher HI, Drobnjak M, Verbel D, Morris M, Agus D et al. HER-2/neu 
(p185neu) protein expression in the natural or treated history of prostate cancer. 
Clin Cancer Res 2001; 7(9):2643-2647. 

 (76)  Lara PN, Jr., Chee KG, Longmate J, Ruel C, Meyers FJ, Gray CR et al. 
Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results 
from the California Cancer Consortium Screening and Phase II Trial. Cancer 2004; 
100(10):2125-2131. 

 (77)  Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J, Sawyers CL. HER2/neu 
kinase-dependent modulation of androgen receptor function through effects on 
DNA binding and stability. Cancer Cell 2004; 6(5):517-527. 



 123

 (78)  Adams CW, Allison DE, Flagella K, Presta L, Clarke J, Dybdal N et al. 
Humanization of a recombinant monoclonal antibody to produce a therapeutic HER 
dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 2006; 55(6):717-
727. 

 (79)  de Bono JS, Bellmunt J, Attard G, Droz JP, Miller K, Flechon A et al. Open-label 
phase II study evaluating the efficacy and safety of two doses of pertuzumab in 
castrate chemotherapy-naive patients with hormone-refractory prostate cancer. J 
Clin Oncol 2007; 25(3):257-262. 

 (80)  Attard G, Kitzen J, Blagden SP, Fong PC, Pronk LC, Zhi J et al. A phase Ib study 
of pertuzumab, a recombinant humanised antibody to HER2, and docetaxel in 
patients with advanced solid tumours. Br J Cancer 2007; 97(10):1338-1343. 

 (81)  Gregory CW, Whang YE, McCall W, Fei X, Liu Y, Ponguta LA et al. Heregulin-
induced activation of HER2 and HER3 increases androgen receptor transactivation 
and CWR-R1 human recurrent prostate cancer cell growth. Clin Cancer Res 2005; 
11(5):1704-1712. 

 (82)  Meng TC, Lee MS, Lin MF. Interaction between protein tyrosine phosphatase and 
protein tyrosine kinase is involved in androgen-promoted growth of human prostate 
cancer cells. Oncogene 2000; 19(22):2664-2677. 

 (83)  Liu Y, Majumder S, McCall W, Sartor CI, Mohler JL, Gregory CW et al. Inhibition 
of HER-2/neu kinase impairs androgen receptor recruitment to the androgen 
responsive enhancer. Cancer Res 2005; 65(8):3404-3409. 

 (84)  Dorkin TJ, Robinson MC, Marsh C, Neal DE, Leung HY. aFGF immunoreactivity 
in prostate cancer and its co-localization with bFGF and FGF8. J Pathol 1999; 
189(4):564-569. 

 (85)  Dorkin TJ, Robinson MC, Marsh C, Bjartell A, Neal DE, Leung HY. FGF8 over-
expression in prostate cancer is associated with decreased patient survival and 
persists in androgen independent disease. Oncogene 1999; 18(17):2755-2761. 

 (86)  Giri D, Ropiquet F, Ittmann M. Alterations in expression of basic fibroblast growth 
factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res 
1999; 5(5):1063-1071. 

 (87)  Ropiquet F, Giri D, Kwabi-Addo B, Mansukhani A, Ittmann M. Increased 
expression of fibroblast growth factor 6 in human prostatic intraepithelial neoplasia 
and prostate cancer. Cancer Res 2000; 60(15):4245-4250. 

 (88)  Leung HY, Dickson C, Robson CN, Neal DE. Over-expression of fibroblast growth 
factor-8 in human prostate cancer. Oncogene 1996; 12(8):1833-1835. 

 (89)  Heer R, Douglas D, Mathers ME, Robson CN, Leung HY. Fibroblast growth factor 
17 is over-expressed in human prostate cancer. J Pathol 2004; 204(5):578-586. 

 (90)  Gowardhan B, Douglas DA, Mathers ME, McKie AB, McCracken SR, Robson CN 
et al. Evaluation of the fibroblast growth factor system as a potential target for 
therapy in human prostate cancer. Br J Cancer 2005; 92(2):320-327. 



 124

 (91)  Sahadevan K, Darby S, Leung HY, Mathers ME, Robson CN, Gnanapragasam VJ. 
Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical 
prostate cancer. J Pathol 2007; 213(1):82-90. 

 (92)  Huss WJ, Barrios RJ, Foster BA, Greenberg NM. Differential expression of 
specific FGF ligand and receptor isoforms during angiogenesis associated with 
prostate cancer progression. Prostate 2003; 54(1):8-16. 

 (93)  Freeman KW, Welm BE, Gangula RD, Rosen JM, Ittmann M, Greenberg NM et al. 
Inducible prostate intraepithelial neoplasia with reversible hyperplasia in 
conditional FGFR1-expressing mice. Cancer Res 2003; 63(23):8256-8263. 

 (94)  Udayakumar TS, Bair EL, Nagle RB, Bowden GT. Pharmacological inhibition of 
FGF receptor signaling inhibits LNCaP prostate tumor growth, promatrilysin, and 
PSA expression. Mol Carcinog 2003; 38(2):70-77. 

 (95)  Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM. 
Expression of the type 1 insulin-like growth factor receptor is up-regulated in 
primary prostate cancer and commonly persists in metastatic disease. Cancer Res 
2002; 62(10):2942-2950. 

 (96)  Krueckl SL, Sikes RA, Edlund NM, Bell RH, Hurtado-Coll A, Fazli L et al. 
Increased insulin-like growth factor I receptor expression and signaling are 
components of androgen-independent progression in a lineage-derived prostate 
cancer progression model. Cancer Res 2004; 64(23):8620-8629. 

 (97)  Plymate SR, Haugk K, Coleman I, Woodke L, Vessella R, Nelson P et al. An 
antibody targeting the type I insulin-like growth factor receptor enhances the 
castration-induced response in androgen-dependent prostate cancer. Clin Cancer 
Res 2007; 13(21):6429-6439. 

 (98)  Cohen BD, Baker DA, Soderstrom C, Tkalcevic G, Rossi AM, Miller PE et al. 
Combination therapy enhances the inhibition of tumor growth with the fully human 
anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. 
Clin Cancer Res 2005; 11(5):2063-2073. 

 (99)  Allen NE, Key TJ, Appleby PN, Travis RC, Roddam AW, Rinaldi S et al. Serum 
insulin-like growth factor (IGF)-I and IGF-binding protein-3 concentrations and 
prostate cancer risk: results from the European Prospective Investigation into 
Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev 2007; 16(6):1121-1127. 

 (100)  Borugian MJ, Spinelli JJ, Sun Z, Kolonel LN, Oakley-Girvan I, Pollak MD et al. 
Prostate cancer risk in relation to insulin-like growth factor (IGF)-I and IGF-
binding protein-3: a prospective multiethnic study. Cancer Epidemiol Biomarkers 
Prev 2008; 17(1):252-254. 

 (101)  Chen L, Meng S, Wang H, Bali P, Bai W, Li B et al. Chemical ablation of 
androgen receptor in prostate cancer cells by the histone deacetylase inhibitor 
LAQ824. Mol Cancer Ther 2005; 4(9):1311-1319. 

 (102)  Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L et al. Small interference 
RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and 
induces apoptosis via caspase-3 activation in vitro. BJU Int 2006; 98(5):1082-1089. 



 125

 (103)  Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L et al. Heat shock 
protein 27 increases after androgen ablation and plays a cytoprotective role in 
hormone-refractory prostate cancer. Cancer Res 2004; 64(18):6595-6602. 

 (104)  Berges RR, Vukanovic J, Epstein JI, CarMichel M, Cisek L, Johnson DE et al. 
Implication of cell kinetic changes during the progression of human prostatic 
cancer. Clin Cancer Res 1995; 1(5):473-480. 

 (105)  Teimourian S, Jalal R, Sohrabpour M, Goliaei B. Down-regulation of Hsp27 
radiosensitizes human prostate cancer cells. Int J Urol 2006; 13(9):1221-1225. 

 (106)  Saporita AJ, Ai J, Wang Z. The Hsp90 inhibitor, 17-AAG, prevents the ligand-
independent nuclear localization of androgen receptor in refractory prostate cancer 
cells. Prostate 2007; 67(5):509-520. 

 (107)  Williams CR, Tabios R, Linehan WM, Neckers L. Intratumor injection of the 
Hsp90 inhibitor 17AAG decreases tumor growth and induces apoptosis in a 
prostate cancer xenograft model. J Urol 2007; 178(4 Pt 1):1528-1532. 

 (108)  Solit DB, Ivy SP, Kopil C, Sikorski R, Morris MJ, Slovin SF et al. Phase I trial of 
17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin 
Cancer Res 2007; 13(6):1775-1782. 

 (109)  Jacobsen J, Rasmuson T, Grankvist K, Ljungberg B. Vascular endothelial growth 
factor as prognostic factor in renal cell carcinoma. J Urol 2000; 163(1):343-347. 

 (110)  Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M et al. Sorafenib 
in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356(2):125-134. 

 (111)  Kaushal V, Mukunyadzi P, Dennis RA, Siegel ER, Johnson DE, Kohli M. Stage-
specific characterization of the vascular endothelial growth factor axis in prostate 
cancer: expression of lymphangiogenic markers is associated with advanced-stage 
disease. Clin Cancer Res 2005; 11(2 Pt 1):584-593. 

 (112)  Sweeney P, Karashima T, Kim SJ, Kedar D, Mian B, Huang S et al. Anti-vascular 
endothelial growth factor receptor 2 antibody reduces tumorigenicity and 
metastasis in orthotopic prostate cancer xenografts via induction of endothelial cell 
apoptosis and reduction of endothelial cell matrix metalloproteinase type 9 
production. Clin Cancer Res 2002; 8(8):2714-2724. 

 (113)  Chi KN, Ellard SL, Hotte SJ, Czaykowski P, Moore M, Ruether JD et al. A phase II 
study of sorafenib in patients with chemo-naive castration-resistant prostate cancer. 
Ann Oncol 2008; 19(4):746-751. 

 (114)  Steinbild S, Mross K, Frost A, Morant R, Gillessen S, Dittrich C et al. A clinical 
phase II study with sorafenib in patients with progressive hormone-refractory 
prostate cancer: a study of the CESAR Central European Society for Anticancer 
Drug Research-EWIV. Br J Cancer 2007; 97(11):1480-1485. 

 (115)  Dahut WL, Scripture C, Posadas E, Jain L, Gulley JL, Arlen PM et al. A phase II 
clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res 
2008; 14(1):209-214. 



 126

 (116)  Hung H. Bevacizumab plus 5-fluorouracil induce growth suppression in the CWR-
22 and CWR-22R prostate cancer xenografts. Mol Cancer Ther 2007; 6(8):2149-
2157. 

 (117)  Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A. PDGF receptors as cancer 
drug targets. Cancer Cell 2003; 3(5):439-443. 

 (118)  Ko YJ, Small EJ, Kabbinavar F, Chachoua A, Taneja S, Reese D et al. A multi-
institutional phase ii study of SU101, a platelet-derived growth factor receptor 
inhibitor, for patients with hormone-refractory prostate cancer. Clin Cancer Res 
2001; 7(4):800-805. 

 (119)  Lin AM, Rini BI, Weinberg V, Fong K, Ryan CJ, Rosenberg JE et al. A phase II 
trial of imatinib mesylate in patients with biochemical relapse of prostate cancer 
after definitive local therapy. BJU Int 2006; 98(4):763-769. 

 (120)  Rao K, Goodin S, Levitt MJ, Dave N, Shih WJ, Lin Y et al. A phase II trial of 
imatinib mesylate in patients with prostate specific antigen progression after local 
therapy for prostate cancer. Prostate 2005; 62(2):115-122. 

 (121)  Bajaj GK, Zhang Z, Garrett-Mayer E, Drew R, Sinibaldi V, Pili R et al. Phase II 
study of imatinib mesylate in patients with prostate cancer with evidence of 
biochemical relapse after definitive radical retropubic prostatectomy or 
radiotherapy. Urology 2007; 69(3):526-531. 

 (122)  Uehara H, Kim SJ, Karashima T, Shepherd DL, Fan D, Tsan R et al. Effects of 
blocking platelet-derived growth factor-receptor signaling in a mouse model of 
experimental prostate cancer bone metastases. J Natl Cancer Inst 2003; 95(6):458-
470. 

 (123)  Mathew P, Thall PF, Bucana CD, Oh WK, Morris MJ, Jones DM et al. Platelet-
derived growth factor receptor inhibition and chemotherapy for castration-resistant 
prostate cancer with bone metastases. Clin Cancer Res 2007; 13(19):5816-5824. 

 (124)  Efstathiou E, Troncoso P, Wen S, Do KA, Pettaway CA, Pisters LL et al. Initial 
modulation of the tumor microenvironment accounts for thalidomide activity in 
prostate cancer. Clin Cancer Res 2007; 13(4):1224-1231. 

 (125)  D'Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of 
angiogenesis. Proc Natl Acad Sci U S A 1994; 91(9):4082-4085. 

 (126)  Figg WD, Dahut W, Duray P, Hamilton M, Tompkins A, Steinberg SM et al. A 
randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with 
androgen-independent prostate cancer. Clin Cancer Res 2001; 7(7):1888-1893. 

 (127)  Dahut WL, Gulley JL, Arlen PM, Liu Y, Fedenko KM, Steinberg SM et al. 
Randomized phase II trial of docetaxel plus thalidomide in androgen-independent 
prostate cancer. J Clin Oncol 2004; 22(13):2532-2539. 

 (128)  Figg WD, Li H, Sissung T, Retter A, Wu S, Gulley JL et al. Pre-clinical and 
clinical evaluation of estramustine, docetaxel and thalidomide combination in 
androgen-independent prostate cancer. BJU Int 2007; 99(5):1047-1055. 

 (129)  Guise TA, Yin JJ, Mohammad KS. Role of endothelin-1 in osteoblastic bone 
metastases. Cancer 2003; 97(3 Suppl):779-784. 



 127

 (130)  Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: emerging role in 
cancer. Nat Rev Cancer 2003; 3(2):110-116. 

 (131)  Carducci MA, Nelson JB, Bowling MK, Rogers T, Eisenberger MA, Sinibaldi V et 
al. Atrasentan, an endothelin-receptor antagonist for refractory adenocarcinomas: 
safety and pharmacokinetics. J Clin Oncol 2002; 20(8):2171-2180. 

 (132)  Carducci MA, Padley RJ, Breul J, Vogelzang NJ, Zonnenberg BA, Daliani DD et 
al. Effect of endothelin-A receptor blockade with atrasentan on tumor progression 
in men with hormone-refractory prostate cancer: a randomized, phase II, placebo-
controlled trial. J Clin Oncol 2003; 21(4):679-689. 

 (133)  Carducci MA, Saad F, Abrahamsson PA, Dearnaley DP, Schulman CC, North SA 
et al. A phase 3 randomized controlled trial of the efficacy and safety of atrasentan 
in men with metastatic hormone-refractory prostate cancer. Cancer 2007; 
110(9):1959-1966. 

 (134)  Shariat SF, Lotan Y, Saboorian H, Khoddami SM, Roehrborn CG, Slawin KM et 
al. Survivin expression is associated with features of biologically aggressive 
prostate carcinoma. Cancer 2004; 100(4):751-757. 

 (135)  Zhang M, Latham DE, Delaney MA, Chakravarti A. Survivin mediates resistance 
to antiandrogen therapy in prostate cancer. Oncogene 2005; 24(15):2474-2482. 

 (136)  Nakahara T, Takeuchi M, Kinoyama I, Minematsu T, Shirasuna K, Matsuhisa A et 
al. YM155, a novel small-molecule survivin suppressant, induces regression of 
established human hormone-refractory prostate tumor xenografts. Cancer Res 
2007; 67(17):8014-8021. 

 (137)  Vaira V, Lee CW, Goel HL, Bosari S, Languino LR, Altieri DC. Regulation of 
survivin expression by IGF-1/mTOR signaling. Oncogene 2007; 26(19):2678-2684. 

 (138)  Rudin CM, Salgia R, Wang X, Hodgson LD, Masters GA, Green M et al. 
Randomized phase II Study of carboplatin and etoposide with or without the bcl-2 
antisense oligonucleotide oblimersen for extensive-stage small-cell lung cancer: 
CALGB 30103. J Clin Oncol 2008; 26(6):870-876. 

 (139)  Bedikian AY, Millward M, Pehamberger H, Conry R, Gore M, Trefzer U et al. Bcl-
2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced 
melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 2006; 
24(29):4738-4745. 

 (140)  McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT et al. 
Expression of the protooncogene bcl-2 in the prostate and its association with 
emergence of androgen-independent prostate cancer. Cancer Res 1992; 
52(24):6940-6944. 

 (141)  Tolcher AW. Preliminary phase I results of G3139 (bcl-2 antisense 
oligonucleotide) therapy in combination with docetaxel in hormone-refractory 
prostate cancer. Semin Oncol 2001; 28(4 Suppl 15):67-70. 

 (142)  Tolcher AW, Chi K, Kuhn J, Gleave M, Patnaik A, Takimoto C et al. A phase II, 
pharmacokinetic, and biological correlative study of oblimersen sodium and 
docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 
2005; 11(10):3854-3861. 



 128

 (143)  Kelly WK, Scher HI. Prostate specific antigen decline after antiandrogen 
withdrawal: the flutamide withdrawal syndrome. J Urol 1993; 149(3):607-609. 

 (144)  Millikan R, Baez L, Banerjee T, Wade J, Edwards K, Winn R et al. Randomized 
phase 2 trial of ketoconazole and ketoconazole/doxorubicin in androgen 
independent prostate cancer. Urol Oncol 2001; 6(3):111-115. 

 (145)  Small EJ, Halabi S, Dawson NA, Stadler WM, Rini BI, Picus J et al. Antiandrogen 
withdrawal alone or in combination with ketoconazole in androgen-independent 
prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol 2004; 
22(6):1025-1033. 

 (146)  O'Donnell A, Judson I, Dowsett M, Raynaud F, Dearnaley D, Mason M et al. 
Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone 
acetate (CB7630) in patients with prostate cancer. Br J Cancer 2004; 90(12):2317-
2325. 

 (147)  Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S et al. Phase I 
clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that 
castration-resistant prostate cancer commonly remains hormone driven. J Clin 
Oncol 2008; 26(28):4563-4571. 

 (148)  Thompson IM, Goodman PJ, Tangen CM, Lucia MS, Miller GJ, Ford LG et al. The 
influence of finasteride on the development of prostate cancer. N Engl J Med 2003; 
349(3):215-224. 

 (149)  Thomas LN, Lazier CB, Gupta R, Norman RW, Troyer DA, O'Brien SP et al. 
Differential alterations in 5alpha-reductase type 1 and type 2 levels during 
development and progression of prostate cancer. Prostate 2005; 63(3):231-239. 

 (150)  Xu Y, Dalrymple SL, Becker RE, Denmeade SR, Isaacs JT. Pharmacologic basis 
for the enhanced efficacy of dutasteride against prostatic cancers. Clin Cancer Res 
2006; 12(13):4072-4079. 

 (151)  Grignon DJ, Caplan R, Sarkar FH, Lawton CA, Hammond EH, Pilepich MV et al. 
p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study 
based on RTOG 8610. J Natl Cancer Inst 1997; 89(2):158-165. 

 (152)  Leite KR, Franco MF, Srougi M, Nesrallah LJ, Nesrallah A, Bevilacqua RG et al. 
Abnormal expression of MDM2 in prostate carcinoma. Mod Pathol 2001; 
14(5):428-436. 

 (153)  Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H et al. Small-
molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications 
for therapy. Proc Natl Acad Sci U S A 2006; 103(6):1888-1893. 

 (154)  Cronauer MV, Schulz WA, Burchardt T, Ackermann R, Burchardt M. Inhibition of 
p53 function diminishes androgen receptor-mediated signaling in prostate cancer 
cell lines. Oncogene 2004; 23(20):3541-3549. 

 (155)  Logan IR, McNeill HV, Cook S, Lu X, Lunec J, Robson CN. Analysis of the 
MDM2 antagonist nutlin-3 in human prostate cancer cells. Prostate 2007; 
67(8):900-906. 



 129

 (156)  Mu Z, Hachem P, Agrawal S, Pollack A. Antisense MDM2 sensitizes prostate 
cancer cells to androgen deprivation, radiation, and the combination. Int J Radiat 
Oncol Biol Phys 2004; 58(2):336-343. 

 (157)  Stoyanova R, Hachem P, Hensley H, Khor LY, Mu Z, Hammond ME et al. 
Antisense-MDM2 sensitizes LNCaP prostate cancer cells to androgen deprivation, 
radiation, and the combination in vivo. Int J Radiat Oncol Biol Phys 2007; 
68(4):1151-1160. 

 (158)  Singh S, Upadhyay AK, Ajay AK, Bhat MK. p53 regulates ERK activation in 
carboplatin induced apoptosis in cervical carcinoma: a novel target of p53 in 
apoptosis. FEBS Lett 2007; 581(2):289-295. 

 (159)  Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K et al. Akt 
enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 
2002; 277(24):21843-21850. 

 (160)  Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh 
PC et al. Hypermethylation of CpG islands in primary and metastatic human 
prostate cancer. Cancer Res 2004; 64(6):1975-1986. 

 (161)  Davis AJ, Gelmon KA, Siu LL, Moore MJ, Britten CD, Mistry N et al. Phase I and 
pharmacologic study of the human DNA methyltransferase antisense 
oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. 
Invest New Drugs 2003; 21(1):85-97. 

 (162)  Winquist E, Knox J, Ayoub JP, Wood L, Wainman N, Reid GK et al. Phase II trial 
of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in 
patients with metastatic renal carcinoma: a National Cancer Institute of Canada 
Clinical Trials Group investigational new drug study. Invest New Drugs 2006; 
24(2):159-167. 

 (163)  Halkidou K, Cook S, Leung HY, Neal DE, Robson CN. Nuclear accumulation of 
histone deacetylase 4 (HDAC4) coincides with the loss of androgen sensitivity in 
hormone refractory cancer of the prostate. Eur Urol 2004; 45(3):382-389. 

 (164)  Kouraklis G, Theocharis S. Histone deacetylase inhibitors: a novel target of 
anticancer therapy (review). Oncol Rep 2006; 15(2):489-494. 

 (165)  Kelly WK, O'Connor OA, Krug LM, Chiao JH, Heaney M, Curley T et al. Phase I 
study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in 
patients with advanced cancer. J Clin Oncol 2005; 23(17):3923-3931. 

 (166)  Kato Y, Tapping RI, Huang S, Watson MH, Ulevitch RJ, Lee JD. Bmk1/Erk5 is 
required for cell proliferation induced by epidermal growth factor. Nature 1998; 
395(6703):713-716. 

 (167)  Kamakura S, Moriguchi T, Nishida E. Activation of the protein kinase 
ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a 
signaling pathway to the nucleus. J Biol Chem 1999; 274(37):26563-26571. 

 (168)  Esparis-Ogando A, Diaz-Rodriguez E, Montero JC, Yuste L, Crespo P, Pandiella 
A. Erk5 participates in neuregulin signal transduction and is constitutively active in 
breast cancer cells overexpressing ErbB2. Mol Cell Biol 2002; 22(1):270-285. 



 130

 (169)  Abe J, Takahashi M, Ishida M, Lee JD, Berk BC. c-Src is required for oxidative 
stress-mediated activation of big mitogen-activated protein kinase 1. J Biol Chem 
1997; 272(33):20389-20394. 

 (170)  Chiariello M, Marinissen MJ, Gutkind JS. Multiple mitogen-activated protein 
kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to 
cellular transformation. Mol Cell Biol 2000; 20(5):1747-1758. 

 (171)  Kato Y, Kravchenko VV, Tapping RI, Han J, Ulevitch RJ, Lee JD. BMK1/ERK5 
regulates serum-induced early gene expression through transcription factor 
MEF2C. EMBO J 1997; 16(23):7054-7066. 

 (172)  Kondoh K, Terasawa K, Morimoto H, Nishida E. Regulation of nuclear 
translocation of extracellular signal-regulated kinase 5 by active nuclear import and 
export mechanisms. Mol Cell Biol 2006; 26(5):1679-1690. 

 (173)  Nishimoto S, Nishida E. MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 
2006; 7(8):782-786. 

 (174)  Mody N, Campbell DG, Morrice N, Peggie M, Cohen P. An analysis of the 
phosphorylation and activation of extracellular-signal-regulated protein kinase 5 
(ERK5) by mitogen-activated protein kinase kinase 5 (MKK5) in vitro. Biochem J 
2003; 372(Pt 2):567-575. 

 (175)  Morimoto H, Kondoh K, Nishimoto S, Terasawa K, Nishida E. Activation of a C-
terminal transcriptional activation domain of ERK5 by autophosphorylation. J Biol 
Chem 2007; 282(49):35449-35456. 

 (176)  Kato Y, Zhao M, Morikawa A, Sugiyama T, Chakravortty D, Koide N et al. Big 
mitogen-activated kinase regulates multiple members of the MEF2 protein family. J 
Biol Chem 2000; 275(24):18534-18540. 

 (177)  Kasler HG, Victoria J, Duramad O, Winoto A. ERK5 is a novel type of mitogen-
activated protein kinase containing a transcriptional activation domain. Mol Cell 
Biol 2000; 20(22):8382-8389. 

 (178)  English JM, Pearson G, Baer R, Cobb MH. Identification of substrates and 
regulators of the mitogen-activated protein kinase ERK5 using chimeric protein 
kinases. J Biol Chem 1998; 273(7):3854-3860. 

 (179)  Terasawa K, Okazaki K, Nishida E. Regulation of c-Fos and Fra-1 by the MEK5-
ERK5 pathway. Genes Cells 2003; 8(3):263-273. 

 (180)  Pearson G, English JM, White MA, Cobb MH. ERK5 and ERK2 cooperate to 
regulate NF-kappaB and cell transformation. J Biol Chem 2001; 276(11):7927-
7931. 

 (181)  Cude K, Wang Y, Choi HJ, Hsuan SL, Zhang H, Wang CY et al. Regulation of the 
G2-M cell cycle progression by the ERK5-NFkappaB signaling pathway. J Cell 
Biol 2007; 177(2):253-264. 

 (182)  Mody N, Leitch J, Armstrong C, Dixon J, Cohen P. Effects of MAP kinase cascade 
inhibitors on the MKK5/ERK5 pathway. FEBS Lett 2001; 502(1-2):21-24. 



 131

 (183)  Barros JC, Marshall CJ. Activation of either ERK1/2 or ERK5 MAP kinase 
pathways can lead to disruption of the actin cytoskeleton. J Cell Sci 2005; 118(Pt 
8):1663-1671. 

 (184)  McCracken SR, Ramsay A, Heer R, Mathers ME, Jenkins BL, Edwards J et al. 
Aberrant expression of extracellular signal-regulated kinase 5 in human prostate 
cancer. Oncogene 2008; 27(21):2978-2988. 

 (185)  English JM, Pearson G, Hockenberry T, Shivakumar L, White MA, Cobb MH. 
Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control. 
J Biol Chem 1999; 274(44):31588-31592. 

 (186)  Regan CP, Li W, Boucher DM, Spatz S, Su MS, Kuida K. Erk5 null mice display 
multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl 
Acad Sci U S A 2002; 99(14):9248-9253. 

 (187)  Hayashi M, Fearns C, Eliceiri B, Yang Y, Lee JD. Big mitogen-activated protein 
kinase 1/extracellular signal-regulated kinase 5 signaling pathway is essential for 
tumor-associated angiogenesis. Cancer Res 2005; 65(17):7699-7706. 

 (188)  Esparis-Ogando A, Diaz-Rodriguez E, Montero JC, Yuste L, Crespo P, Pandiella 
A. Erk5 participates in neuregulin signal transduction and is constitutively active in 
breast cancer cells overexpressing ErbB2. Mol Cell Biol 2002; 22(1):270-285. 

 (189)  Borges J, Pandiella A, Esparis-Ogando A. Erk5 nuclear location is independent on 
dual phosphorylation, and favours resistance to TRAIL-induced apoptosis. Cell 
Signal 2007; 19(7):1473-1487. 

 (190)  Weldon CB, Scandurro AB, Rolfe KW, Clayton JL, Elliott S, Butler NN et al. 
Identification of mitogen-activated protein kinase kinase as a chemoresistant 
pathway in MCF-7 cells by using gene expression microarray. Surgery 2002; 
132(2):293-301. 

 (191)  Mehta PB, Jenkins BL, McCarthy L, Thilak L, Robson CN, Neal DE et al. MEK5 
overexpression is associated with metastatic prostate cancer, and stimulates 
proliferation, MMP-9 expression and invasion. Oncogene 2003; 22(9):1381-1389. 

 (192)  McCracken SR, Ramsay A, Heer R, Mathers ME, Jenkins BL, Edwards J et al. 
Aberrant expression of extracellular signal-regulated kinase 5 in human prostate 
cancer. Oncogene 2008; 27(21):2978-2988. 

 (193)  Bradford MM. A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 
1976; 72:248-254. 

 (194)  Karin M. Nuclear factor-kappaB in cancer development and progression. Nature 
2006; 441(7092):431-436. 

 (195)  Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK 
function. Nat Rev Mol Cell Biol 2007; 8(1):49-62. 

 (196)  Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008; 
132(3):344-362. 



 132

 (197)  Shishodia S, Aggarwal BB. Nuclear factor-kappaB activation: a question of life or 
death. J Biochem Mol Biol 2002; 35(1):28-40. 

 (198)  Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent 
bystander to major culprit. Nat Rev Cancer 2002; 2(4):301-310. 

 (199)  Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M. NF-kappaB 
function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-
phase transition. Mol Cell Biol 1999; 19(4):2690-2698. 

 (200)  Shukla S, MacLennan GT, Fu P, Patel J, Marengo SR, Resnick MI et al. Nuclear 
factor-kappaB/p65 (Rel A) is constitutively activated in human prostate 
adenocarcinoma and correlates with disease progression. Neoplasia 2004; 6(4):390-
400. 

 (201)  Lindholm PF, Bub J, Kaul S, Shidham VB, Kajdacsy-Balla A. The role of 
constitutive NF-kappaB activity in PC-3 human prostate cancer cell invasive 
behavior. Clin Exp Metastasis 2000; 18(6):471-479. 

 (202)  Sweeney C, Li L, Shanmugam R, Bhat-Nakshatri P, Jayaprakasan V, Baldridge LA 
et al. Nuclear factor-kappaB is constitutively activated in prostate cancer in vitro 
and is overexpressed in prostatic intraepithelial neoplasia and adenocarcinoma of 
the prostate. Clin Cancer Res 2004; 10(16):5501-5507. 

 (203)  Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB 
activity in human prostate cancer cells is associated with suppression of 
angiogenesis, invasion, and metastasis. Oncogene 2001; 20(31):4188-4197. 

 (204)  Ranganathan A, Pearson GW, Chrestensen CA, Sturgill TW, Cobb MH. The MAP 
kinase ERK5 binds to and phosphorylates p90 RSK. Arch Biochem Biophys 2006; 
449(1-2):8-16. 

 (205)  Schouten GJ, Vertegaal AC, Whiteside ST, Israel A, Toebes M, Dorsman JC et al. 
IkappaB alpha is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. 
EMBO J 1997; 16(11):3133-3144. 

 (206)  Cude K, Wang Y, Choi HJ, Hsuan SL, Zhang H, Wang CY et al. Regulation of the 
G2-M cell cycle progression by the ERK5-NFkappaB signaling pathway. J Cell 
Biol 2007; 177(2):253-264. 

 (207)  Pearson G, English JM, White MA, Cobb MH. ERK5 and ERK2 cooperate to 
regulate NF-kappaB and cell transformation. J Biol Chem 2001; 276(11):7927-
7931. 

 (208)  Garaude J, Cherni S, Kaminski S, Delepine E, Chable-Bessia C, Benkirane M et al. 
ERK5 activates NF-kappaB in leukemic T cells and is essential for their growth in 
vivo. J Immunol 2006; 177(11):7607-7617. 

 (209)  Finegan KG, Wang X, Lee EJ, Robinson AC, Tournier C. Regulation of neuronal 
survival by the extracellular signal-regulated protein kinase 5. Cell Death Differ 
2009; 16(5):674-683. 

 (210)  Marchetti A, Colletti M, Cozzolino AM, Steindler C, Lunadei M, Mancone C et al. 
ERK5/MAPK is activated by TGFbeta in hepatocytes and required for the GSK-
3beta-mediated Snail protein stabilization. Cell Signal 2008; 20(11):2113-2118. 



 133

 (211)  Tatake RJ, O'Neill MM, Kennedy CA, Wayne AL, Jakes S, Wu D et al. 
Identification of pharmacological inhibitors of the MEK5/ERK5 pathway. Biochem 
Biophys Res Commun 2008; 377(1):120-125. 

 (212)  Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R. 
ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell 
signaling differentially. J Biol 2006; 5(5):14. 

 (213)  Bessard A, Fremin C, Ezan F, Fautrel A, Gailhouste L, Baffet G. RNAi-mediated 
ERK2 knockdown inhibits growth of tumor cells in vitro and in vivo. Oncogene 
2008; 27(40):5315-5325. 

 (214)  Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB et al. 
Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with 
advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 
2004; 22(22):4456-4462. 

 (215)  Esparis-Ogando A, Diaz-Rodriguez E, Montero JC, Yuste L, Crespo P, Pandiella 
A. Erk5 participates in neuregulin signal transduction and is constitutively active in 
breast cancer cells overexpressing ErbB2. Mol Cell Biol 2002; 22(1):270-285. 

 (216)  English JM, Pearson G, Baer R, Cobb MH. Identification of substrates and 
regulators of the mitogen-activated protein kinase ERK5 using chimeric protein 
kinases. J Biol Chem 1998; 273(7):3854-3860. 

 (217)  Terasawa K, Okazaki K, Nishida E. Regulation of c-Fos and Fra-1 by the MEK5-
ERK5 pathway. Genes Cells 2003; 8(3):263-273. 

 (218)  Blagoev B, Mann M. Quantitative proteomics to study mitogen-activated protein 
kinases. Methods 2006; 40(3):243-250. 

 (219)  Ong SE, Mann M. A practical recipe for stable isotope labeling by amino acids in 
cell culture (SILAC). Nat Protoc 2006; 1(6):2650-2660. 

 (220)  Truman AW, Millson SH, Nuttall JM, King V, Mollapour M, Prodromou C et al. 
Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the 
Hsp90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-
activated protein kinase. Eukaryot Cell 2006; 5(11):1914-1924. 

 (221)  Goetz MP, Toft DO, Ames MM, Erlichman C. The Hsp90 chaperone complex as a 
novel target for cancer therapy. Ann Oncol 2003; 14(8):1169-1176. 

 (222)  Solit DB, Ivy SP, Kopil C, Sikorski R, Morris MJ, Slovin SF et al. Phase I trial of 
17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin 
Cancer Res 2007; 13(6):1775-1782. 

 (223)  Bild AH, Potti A, Nevins JR. Linking oncogenic pathways with therapeutic 
opportunities. Nat Rev Cancer 2006; 6(9):735-741. 

 (224)  Parekh DJ, Ankerst DP, Troyer D, Srivastava S, Thompson IM. Biomarkers for 
prostate cancer detection. J Urol 2007; 178(6):2252-2259. 

 (225)  van Gils MP, Hessels D, van Hooij O, Jannink SA, Peelen WP, Hanssen SL et al. 
The time-resolved fluorescence-based PCA3 test on urinary sediments after digital 



 134

rectal examination; a Dutch multicenter validation of the diagnostic performance. 
Clin Cancer Res 2007; 13(3):939-943. 

 (226)  Haese A, de la TA, van Poppel H, Marberger M, Stenzl A, Mulders PF et al. 
Clinical utility of the PCA3 urine assay in European men scheduled for repeat 
biopsy. Eur Urol 2008; 54(5):1081-1088. 

 (227)  Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. 
Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate 
cancer. Science 2005; 310(5748):644-648. 

 (228)  Ahmad I, Sansom OJ, Leung HY. Advances in mouse models of prostate cancer. 
Expert Rev Mol Med 2008; 10:e16. 

 (229)  Borges J, Pandiella A, Esparis-Ogando A. Erk5 nuclear location is independent on 
dual phosphorylation, and favours resistance to TRAIL-induced apoptosis. Cell 
Signal 2007; 19(7):1473-1487. 

 (230)  Weldon CB, Scandurro AB, Rolfe KW, Clayton JL, Elliott S, Butler NN et al. 
Identification of mitogen-activated protein kinase kinase as a chemoresistant 
pathway in MCF-7 cells by using gene expression microarray. Surgery 2002; 
132(2):293-301. 

 (231)  Lorusso PM, Adjei AA, Varterasian M, Gadgeel S, Reid J, Mitchell DY et al. Phase 
I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with 
advanced malignancies. J Clin Oncol 2005; 23(23):5281-5293. 

 (232)  Adjei AA, Cohen RB, Franklin W, Morris C, Wilson D, Molina JR et al. Phase I 
pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-
activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients 
with advanced cancers. J Clin Oncol 2008; 26(13):2139-2146. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 135

 
 
 
 
 
 
 
 
 

Appendix:  Publications 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 136

Publications 
 

McCracken SR, Ramsay A, Heer R, Mathers ME, Jenkins BL, Edwards J et al. Aberrant 

expression of extracellular signal-regulated kinase 5 in human prostate cancer. Oncogene 

2008; 27(21):2978-2988.  doi:10.1038/sj.onc.1210963 

http:www.nature.com/onc/journal/v27/n21/pdf/1210963a.pdf 

 

Ramsay AK, Leung HY (2009) Signalling pathways in prostate carcinogenesis: potentials 

for molecular-targeted therapy Clinical Science, 117 209-228. 

Reproduced with permission, from Ramsay AK, Leung HY, (2009), (Clinical Science), 

(117), (209-228). © the Biochemical Society. 


	ramsay md 090111.pdf
	Oncogene%202007%20McCracken.pdf
	Aberrant expression of extracellular signal-regulated kinase 5 in human prostate cancer
	Introduction
	Results
	ERK5 protein expression in resected human prostate cancer
	ERK5 nuclear staining is an independent prognostic marker in prostate cancer
	Upregulated ERK5 expression in androgen-independent prostate cancer
	Localization of ERK5 expression in human prostate cancer
	Overexpression of ERK5 enhances prostate carcinogenesis
	Inhibition of ERK1sol2 activation alone is insufficient to decrease proliferation

	Discussion
	Materials and methods
	Human prostate tissue samples
	Immunohistochemical analysis
	Cells and cell culture
	Plasmids and generation of stable clones
	Xenograft tumor formation
	Fluorescent microscopy
	Western blotting
	WST-1 proliferation assay
	Cell migration and invasion
	Statistical analysis

	Figure 1 Immunohistochemistry of ERK5 expression in human CaP.
	Figure 2 Analysis of extracellular signal-regulated kinase (ERK5) expression and clinicopathological parameters.
	Figure 3 (a) Extracellular signal-regulated kinase (ERK5) protein expression in the androgen-dependent prostatic cell line, LNCaP, and its androgen-independent derivative, LNCaP-AI.
	Figure 4 Generation of an extracellular signal-regulated kinase (ERK5)-overexpressing stable clone demonstrates increased proliferation, migration and invasion.
	Figure 5 Xenograft study showing the in vivo growth characteristics of PC3-ERK5 and PC3-EmptyVector (EV) cells.
	Figure 6 Inhibition of extracellular signal-regulated kinase (ERK)1sol2 activation alone is insufficient to decrease proliferation.
	Table 1 ERK5 immunoreactivity and clinicopathological parameters
	Acknowledgements
	References


	Clinicalscience.pdf



