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Abstract

Keywords: optimum experimental design, linear design, nonlinear design, pa-

rameter dependent, DA-optimality, C-optimality, approximated information ma-

trices, singular information matrices, multiplicative algorithm, skewed or asym-

metrically distributed error, composed error, stochastic frontier model, economic

efficiency.

In this thesis, optimum experimental designs for a statistical model possessing a

skewed error distribution are considered, with particular interest in investigating

possible parameter dependence of the optimum designs. The skewness in the

distribution of the error arises from its assumed structure. The error consists of

two components (i) random error, say V , which is symmetrically distributed with

zero expectation, and (ii) some type of systematic error, say U , which is asym-

metrically distributed with nonzero expectation. Error of this type is sometimes

called ‘composed’ error. A stochastic frontier model is an example of a model

that possesses such an error structure. The systematic error, U , in a stochastic

frontier model represents the economic efficiency of an organisation.

Three methods for approximating information matrices are presented. An

approximation is required since the information matrix contains complicated ex-

pressions, which are difficult to evaluate. However, only one method, ‘Method

1’, is recommended because it guarantees nonnegative definiteness of the infor-

mation matrix. It is suggested that the optimum design is likely to be sensitive
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to the approximation.

For models that are linearly dependent on the β parameters, the information

matrix is independent of the β parameters but depends on the variance parame-

ters of the random and systematic error components. Consequently, the optimum

design is independent of β but may depend on the variance parameters. Thus,

designs for linear models with skewed error may be parameter dependent. For

nonlinear models, the optimum design may be parameter dependent in respect

of both the variance and other parameters, which we will denote by β.

The information matrix is rank deficient. As a result, only subsets or linear

combinations of the parameters are estimable. The rank of the partitioned infor-

mation matrix is such that designs are only admissible for optimal estimation of

the β parameters, excluding any constant term β0, plus one linear combination

of the variance parameters and β0. The linear model is shown to be equivalent

to the usual linear regression model, but with a shifted intercept, say β∗∗0 . This

suggests that the admissible designs should be optimal for estimation of the β

parameters, excluding β0, plus the shifted intercept β∗∗0 .

The shifted intercept β∗∗0 can be viewed as a transformation of the intercept

β0 in the usual linear regression model. Since DA-optimum designs are invari-

ant to linear transformations of the parameters, the DA-optimum design for the

asymmetrically distributed linear model is just the linear, parameter indepen-

dent, DA-optimum design for the usual linear regression model with nonzero

intercept. C-optimum designs are not invariant to linear transformations. How-

ever, if interest is in optimally estimating the β parameters, excluding β0, the

linear transformation of β0 to β∗∗0 is no longer a consideration and the C-optimum

design is just the linear, parameter independent, C-optimum design for the usual

linear regression model with nonzero intercept. If interest is in estimating the

β parameters, and the shifted intercept β∗∗0 , the C-optimum design will depend

on (i) the design region; (ii) the distributional assumption on U ; (iii) the matrix
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used to define admissible linear combinations of parameters; (iv) the variance

parameters of U and V ; (v) the method used to approximate the information

matrix.

Some numerical examples of designs for a cross-sectional log-linear Cobb-

Douglas stochastic production frontier model are presented to demonstrate the

nonlinearity of designs for models with a skewed error distribution. Torsney’s

(1977) multiplicative algorithm was implemented in finding the optimum designs.
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Chapter 1

Introduction

1.1 Models with Skewed Error

Throughout this dissertation, the distinction is made between a random vari-

able, which is written in upper case, and its realisation, written in the correspond-

ing lower case letter. For example, the response Y is a random variable until it

takes its realised value y, which is the observed response. The usual statistical

model, with random error denoted by V , is written

Y = f(x, β) + V.

Typically the random error is symmetrically distributed with E[V ] = 0, giving

expected response

E[Y ] = f(x,β).

An additional assumption under maximum likelihood estimation is that random

error is normally distributed as N(0, σ2). Much research has been carried out on

optimum designs for both linear and nonlinear forms of this statistical model.

In this thesis we consider optimum designs for a statistical model with skewed

error, say E, which has nonzero expectation and is not normally distributed.
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Clearly, the skewness implies that the error E cannot represent statistical noise

alone, if noise is assumed to be symmetrically distributed. The error term E is

composed of two components, U and V . A general structure of the ‘composed’

error is

E = cuU + cvV, E[U ] 6= 0, E[V ] = 0, {cu, cv} ∈ R.

That is, it is a linear combination of the two components U and V . A simpler

and notationally less cumbersome specification would be to consider an error

structure E = V ± U . Any other linear combination of the error components

could then be treated as a transformation of variables. The nominal generality

of the error specification, in terms of the linear combination given in the equa-

tion above, is implemented as a convenient device for the reader. It provides an

alternative method for deriving the required density functions by simply substi-

tuting in values of cu and cv rather than applying an appropriate transformation

of variables. Here V is a symmetrically distributed random error attributable to

statistical noise, hence it has zero expectation. The component U is some type

of systematic error, free from statistical noise, that is asymmetrically distributed

and has nonzero expectation. The skewness in the error term U causes skewness

in the overall composed error E, in the same direction as U . The statistical model

with this asymmetrically distributed error structure is written

Y = f(x,β) + E

= f(x,β) + cuU + cvV,

with expected response given by

E[Y ] = f(x, β) + E[E]

= f(x, β) + cuE[U ].

Interest is in exploring optimum designs for this model, with particular interest

in investigating possible nonlinearity of the optimum designs.
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A special case of this model is an econometric model called a ‘stochastic

frontier model’, used to measure the economic efficiency of organisations. The

asymmetrically distributed systematic error, U , in a frontier model represents

the efficiency of organisations. In recent years there has been a renewed demand

for efficiency analysis. The United Kingdom Government has emphasised the

importance of measuring output, productivity and efficiency of public sector or-

ganisations. The 2004 Spending Review (HM Treasury 2004) details how the

Government has responded to the Gershon Review (Gershon 2004) of public sec-

tor efficiency and outlines efficiency targets to be achieved between 2005-2008.

The Government’s commitment to maximising efficiency within the public sector

is a key element in this agenda. Recommendations from the Atkinson Review

(Atkinson 2005) of the measurement of government output and productivity have

also been incorporated in the 2004 Spending Review and in July 2005, the Of-

fice for National Statistics (ONS) launched the United Kingdom Centre for the

Measurement of Government Activity (UKCeMGA) to take forward the Atkin-

son agenda. In this thesis, optimum designs for frontier models are investigated

for the case where the error structure is E = V − U . This corresponds to a

‘single-output cross-sectional log-linear Cobb-Douglas stochastic production fron-

tier model’ used to measure output-oriented technical efficiency of organisations.

1.2 Outline of this Dissertation

Optimum designs for a model with an asymmetrically distributed skewed com-

posed error have not been developed in the statistics or econometrics literature.

We present some theoretical and numerical results of such designs within this

dissertation.

In Chapter 2, the information matrix used for finding optimum designs is

derived under four possible specifications of the error distribution. The four
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distributions considered for the systematic error, U , are nonnegative half normal,

exponential, nonnegative truncated normal, and gamma. These are the most

common distributions implemented in the econometrics literature. In all cases

the random error, V , is distributed as N(0, σ2
v).

Chapter 3 investigates three possible methods for approximating the infor-

mation matrix. Approximation methods are considered because the information

matrix involves expressions that are difficult to evaluate. Only one of the ap-

proximation methods, ‘Method 1’, is recommended to guarantee nonnegative

definiteness of the information matrix.

An overview of the measurement of economic efficiency is presented in Chap-

ter 4. This chapter includes varying classifications of efficiency, descriptions of

parametric and nonparametric methods for analysing efficiency models, deriva-

tion of formulae for calculating efficiency measures, derivation of information ma-

trices for cross-sectional data, and a discussion on extensions to cross-sectional

models.

Chapter 5 provides the theoretical background to optimum experimental de-

signs. A distinction is made between linear and nonlinear design problems, and

parameter dependence of designs for the asymmetrically distributed model is es-

tablished. Continuous and exact design measures are defined, with the focus in

this dissertation on continuous optimum designs. Conditions of optimality are

given, prefaced with definitions of the Gâteaux and Frèchet directional derivatives

used to determine optimality. Several optimality criteria and their derivatives are

also given. Since the information matrix for the model of interest is rank defi-

cient, designs with singular information matrices are considered. The issue of

invertibility of the information matrix is also dealt with in providing alternative

choices of generalised inverses with some results given for partitioned matrices.
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The chapter concludes with a description of an algorithm used for finding opti-

mum designs.

Although Chapter 6 gives theoretical results for optimum designs for stochas-

tic production frontier models, the theory more generally pertains to an asym-

metrically distributed linear model. Effects of linear transformations of the pa-

rameters on the optimum design are reviewed before establishing the equivalence

of the the usual linear regression model and the linear model with skewed error

through a transformation of the parameter space. The structure and rank of the

partitioned singular information matrix are explored in determining admissible

designs and some theoretical and numerical results for DA- and C-optimality are

presented.

A summary of the conclusions and suggestions for future research are given

in Chapter 7.
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Chapter 2

A General Statistical Model with

Two Error Terms

2.1 Equation for the Statistical Model

Consider the standard statistical model

Y = f(x, β) + V,

where the observed response Y is a real-valued random variable. The true re-

sponse is f(x,β) where β is a vector of p unknown parameters and x is a vector

of m explanatory variables. The true response f(x,β) is subject to random error

V , giving the observed response Y . It is usual to assume that V is normally

distributed, i.e. the distribution of V is symmetric.

Suppose the error in the model is not symmetric. If random error is assumed

to be symmetrically distributed then some other process, apart from random

error, must also be occurring. The error due to this other process must be asym-

metrically distributed for the overall error in the model to be asymmetric. So the

overall (asymmetric) error in the model can be modelled as a linear combination
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of a symmetric random error term V and an asymmetric error term U

Y = f(x,β) + cuU + cvV, {cu, cv} ∈ R. (2.1)

This type of model can be found in the econometrics literature typically with

cu = ±1 and cv = 1. Here we consider the more general case where cu and cv can

take any real value. Because error terms U and V are unobserved quantities, the

contribution from each to the overall error is unknown. Although the two error

terms cannot be observed separately, we shall see later that their moments can

be calculated separately, conditional on the overall error.

If we let random variable E be the combined error such that E = cuU + cvV

then model (2.1) becomes

Y = f(x,β) + E. (2.2)

Different asymmetric distributions for U are considered in the following sec-

tions. Section 2.2 considers the case where U has a nonnegative half normal

distribution. In Section 2.3, random variable U has an exponential distribu-

tion. A generalisation of the half normal distribution is considered in Section 2.4

where U is distributed with a nonnegative truncated normal distribution. Finally,

Section 2.5 explores a generalisation of the exponential distribution where U is

gamma distributed. These are the distributions that dominate the econometrics

literature when the overall error in a stochastic model is a combined asymmetric

term such as E = cuU + cvV above. Symmetric random error V will be normally

distributed with mean zero and constant variance σ2
v .
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2.2 Normal-Half Normal Model

Assume that random variables U and V are distributed as follows

(i) U ∼ N+(0, σ2
u) i.i.d., i.e. nonnegative half normal

(ii) V ∼ N(0, σ2
v) i.i.d.

(iii) U and V are distributed independently of each other.

The nonnegative half normal distribution considered here is the normal distri-

bution truncated from below at µ = 0. It is a special case of the nonnegative

truncated normal distribution which is discussed in Section 2.4. Appendix C.5

provides further details on truncated normal distributions.

The probability density functions of U and V are

fU(u; σu) =
2√

2πσu

exp

{
− u2

2σ2
u

}
, u ≥ 0, σu > 0, (2.3)

fV (v; σv) =
1√

2πσv

exp

{
− v2

2σ2
v

}
, −∞ < v < ∞, σv > 0, (2.4)

with U having mean and variance

E[U ] =

√
2

π
σu,

V ar(U) =
π − 2

π
σ2

u,

and V having mean and variance

E[V ] = 0,

V ar(V ) = σ2
v .

(2.5)

Three different normal distributions are plotted in Figure 2.1, and Figure 2.2

depicts three different half-normal distributions.
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Figure 2.1: Normal distributions.
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Figure 2.2: Half normal distributions.
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The joint probability density function of U and V is

fU,V (u, v) = fU(u) · fV (v)

=
1

πσuσv

exp

{
− u2

2σ2
u

− v2

2σ2
v

}
. (2.6)

For random variable E, where E = cuU + cvV and {cu, cv} ∈ R, the joint density

function of U and E can be derived using equation (C.1) in Appendix C and is

given by

fU,E(u, ε) =
1

|cv|fU,V

(
u,

ε− cuu

cv

)

=
1

|cv|πσuσv

exp

{
− u2

2σ2
u

− (ε− cuu)2

2c2
vσ

2
v

}

=
1

|cv|πσuσv

exp

{
−1

2

[(
1

σ2
u

+
c2
u

c2
vσ

2
v

)
u2 − 2

cuε

c2
vσ

2
v

u +
ε2

c2
vσ

2
v

]}
.

(2.7)

If we let K =
1

|cv|πσuσv

, A =
1

σ2
u

+
c2
u

c2
vσ

2
v

, B =
cuε

c2
vσ

2
v

and C =
ε2

c2
vσ

2
v

then the

joint density function of U and E becomes

fU,E(u, ε) = K exp

{
−1

2

[
Au2 − 2Bu + C

]}
.

When the joint density of U and E is of this form, the marginal density of E is

given by equation (C.6) in Appendix C as

fE(ε) = K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}
Φ

(
B√
A

)
.

If we let σ2
G = c2

uσ
2
u + c2

vσ
2
v and λ = σu/σv then

A =
σ2

G

c2
vσ

2
uσ

2
v

,

K

√
2π

A
=

1

σG

√
2

π
,

C − B2

A
=

ε2

σ2
G

,
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B√
A

=
cuλε

|cv|σG

.

The marginal density of E is then given by

fE(ε) =
1

σG

√
2

π
exp

{
− ε2

2σ2
G

}
Φ

(
cuλε

|cv|σG

)

=
2

σG

φ

(
ε

σG

)
Φ

(
cuλε

|cv|σG

)
, (2.8)

with mean and variance that can be derived using equations (C.7) and (C.8) in

Appendix C and which are given by

E[E] = c̃uσu, (2.9)

V ar(E) = ˜̃cu
2
σ2

u + c2
vσ

2
v , (2.10)

where c̃u = cu

√
2

π
and ˜̃cu

2
= c2

u

π − 2

π
= c2

u − c̃u
2.

The conditional density of U given E can be calculated using equation (C.12)

and is given by

fU |E(u|ε) =

√
Aφ

(
u−B/A

1/
√

A

)

Φ

(
B√
A

) .

The expected value and mode of U given E can be calculated using equa-

tions (C.13) and (C.14) respectively and are given by

E[U |E] =
B

A
+

1√
A

φ

(
− B/A

1/
√

A

)

1− Φ

(
− B/A

1/
√

A

) ,

M(U |E) =
B

A
.
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2.2.1 Log-likelihood function

Under model (2.2), the log-likelihood function of θ = (β, λ, σG) for a sample

of N independent observations can be obtained using equation (2.8) and is given

by

ln L (θ; y) =
N∑

i=1

ln fYi
(yi; θ)

=
N∑

i=1

ln fEi
(yi − f(xi,β); θ)

=
N∑

i=1

{
ln

(
2

σG

)
+ ln φ

(
yi − f(xi,β)

σG

)
+ ln Φ(−ai)

}
,

(2.11)

where

ai = − cuλεi

|cv|σG

= −cuλ[yi − f(xi,β)]

|cv|σG

.

Appendix D.1 provides further information on likelihood functions. To reduce

notational clutter, observation subscripts will henceforth be omitted.

The expected value and variance of a, which will be used in later chapters,

are

E[a] = − cuλ

|cv|σG

E[E],

V ar(a) =

(
cuλ

|cv|σG

)2

V ar(E),

where E[E] and V ar(E) are given in equations (2.9) and (2.10) respectively. The

derivative of a with respect to the parameter vector β, which will also be used

in later chapters, is

∂a

∂β
=

(
cuλ

|cv|σG

)
∂f(x, β)

∂β
.
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In the following equations, some of the derivatives involve the term y − f(x, β),

which can be reparameterised as a function of a. Expressing the derivatives as

functions of a simplifies the approximations that will be applied in Chapter 3.

The first-order derivatives of ln fY (y; θ) are

∂ ln fY

∂β
= −

{
−y − f(x,β)

σ2
G

+
cuλ

|cv|σG

h(a)

}
∂f(x,β)

∂β

= −
{ |cv|

cuλσG

a +
cuλ

|cv|σG

h(a)

}
∂f(x,β)

∂β
,

∂ ln fY

∂λ
=

cu[y − f(x,β)]

|cv|σG

h(a)

= −1

λ
ah(a),

∂ ln fY

∂σ2
G

= − 1

2σ2
G

+
[y − f(x, β)]2

2σ4
G

− cuλ[y − f(x,β)]

2|cv|σ3
G

h(a)

= − 1

2σ2
G

+
1

2

( |cv|
cuλσG

)2

a2 +
1

2σ2
G

ah(a),

where h(.) is the normal hazard function. Appendix C.6 provides further de-

tails on hazard functions and their derivatives. The corresponding second-order

derivatives are

∂2 ln fY

∂β∂βT
=

{
− 1

σ2
G

+

(
cuλ

|cv|σG

)2

h(a)[a− h(a)]

} (
∂f(x,β)

∂β

)(
∂f(x, β)

∂β

)T

−
{ |cv|

cuλσG

a +
cuλ

|cv|σG

h(a)

}
∂2f(x,β)

∂β∂βT

=

{
− 1

σ2
G

+

(
cuλ

|cv|σG

)2

[ah(a)− h(a)2]

} (
∂f(x,β)

∂β

)(
∂f(x, β)

∂β

)T

−
{ |cv|

cuλσG

a +
cuλ

|cv|σG

h(a)

}
∂2f(x,β)

∂β∂βT
,
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∂2 ln fY

∂λ2
=

1

λ2
a2h(a)[a− h(a)]

=
1

λ2
[a3h(a)− a2h(a)2],

∂2 ln fY

∂(σ2
G)2

=
1

2σ4
G

−
( |cv|

cuλσ2
G

)2

a2 − 3

4σ4
G

ah(a) +
1

4σ4
G

a2h(a)[a− h(a)]

=
1

2σ4
G

−
( |cv|

cuλσ2
G

)2

a2 − 1

4σ4
G

[
3ah(a)− a3h(a) + a2h(a)2

]
,

∂2 ln fY

∂β∂λ
= −

{
cu

|cv|σG

h(a)− cu

|cv|σG

ah(a)[a− h(a)]

}
∂f(x,β)

∂β

= − cu

|cv|σG

{
h(a)− a2h(a) + ah(a)2

} ∂f(x, β)

∂β
,

∂2 ln fY

∂β∂σ2
G

= −
{
− |cv|

cuλσ3
G

a− cuλ

2|cv|σ3
G

h(a) +
cuλ

2|cv|σ3
G

ah(a)[a− h(a)]

}
∂f(x, β)

∂β

=

{ |cv|
cuλσ3

G

a +
cuλ

2|cv|σ3
G

[h(a)− a2h(a) + ah(a)2]

}
∂f(x,β)

∂β
,

∂2 ln fY

∂λ∂σ2
G

=
1

2λσ2
G

ah(a)− 1

2λσ2
G

a2h(a)[a− h(a)]

=
1

2λσ2
G

[ah(a)− a3h(a) + a2h(a)2].
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I i
(θ

)
=

E

                 

( ∂
ln

f Y
i

∂
β

)
( ∂

ln
f Y

i

∂
β

) T
( ∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
λ

)
( ∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
σ

2 G

)

{(
∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
λ

)}
T

( ∂
ln

f Y
i

∂
λ

) 2
( ∂

ln
f Y

i

∂
λ

)
( ∂

ln
f Y

i

∂
σ

2 G

)

{(
∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
σ

2 G

)}
T

{(
∂

ln
f Y

i

∂
λ

)
( ∂

ln
f Y

i

∂
σ

2 G

)}
T

( ∂
ln

f Y
i

∂
σ

2 G

) 2

                 .
(2

.1
2)
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2.2.2 Information matrix in terms of first-order partial

derivatives

Appendix D provides background information on information matrices. For

random variable Yi, equation (D.2) gives the per observation expected Fisher

information matrix of θ = (β, λ, σG) as

Ii(θ) = E

[(
∂ ln fYi

∂θ

)(
∂ ln fYi

∂θ

)T
]

.

When the parameter vector θ is partitioned such that θ = (β, τ ), the formula

for the partitioned information matrix is given by equation (D.4) in Appendix D.

Equation (2.12) in Figure 2.3 shows the form of the partitioned information

matrix when τ = (λ, σG). This formulation uses the first-order partial derivatives

of ln fYi
. Dispensing with the observation subscripts, the components of the per

observation expected Fisher information matrix are

E

[(
∂ ln fY

∂β

) (
∂ ln fY

∂β

)T
]

=

{( |cv|
cuλσG

)2

E[a2] +
2

σ2
G

E[ah(a)]

+

(
cuλ

|cv|σG

)2

E[h(a)2]

} (
∂f(x,β)

∂β

)(
∂f(x, β)

∂β

)T

,

E

[(
∂ ln fY

∂λ

)2
]

=
1

λ2
E[a2h(a)2],

E

[(
∂ ln fY

∂σ2
G

)2
]

=

(
1

2σ2
G

)2

− 1

2

( |cv|
cuλσ2

G

)2

E[a2]− 1

2

(
1

σ2
G

)2

E[ah(a)]

+
1

4

( |cv|
cuλσG

)4

E[a4] +
1

2

( |cv|
cuλσ2

G

)2

E[a3h(a)]

+

(
1

2σ2
G

)2

E[a2h(a)2],
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E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂λ

)]
=

∂f(x,β)

∂β
×

{ |cv|
cuλ2σG

E[a2h(a)] +
cu

|cv|σG

E[ah(a)2]

}
,

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂σ2
G

)]
= −

{
− |cv|

2cuλσ3
G

E[a] +
1

2

( |cv|
cuλσG

)3

E[a3]

+
|cv|

2cuλσ3
G

E[a2h(a)]− cuλ

2|cv|σ3
G

E[h(a)] +
|cv|

2cuλσ3
G

E[a2h(a)]

+
cuλ

2|cv|σ3
G

E[ah(a)2]

}
∂f(x,β)

∂β
,

E
[(

∂ ln fY

∂λ

)(
∂ ln fY

∂σ2
G

)]
=

1

2λσ2
G

E[ah(a)]− 1

2λ

( |cv|
cuλσG

)2

E[a3h(a)]

− 1

2λσ2
G

E[a2h(a)2].

Calculation of the expected information matrix requires calculation of the

expectation

E[ar · h(a)s] = E




{
− cuλε

|cv|σG

}r

·





φ

(
cuλε

|cv|σG

)

Φ

(
cuλε

|cv|σG

)





s
 , r, s ∈ N0,

which is a complicated integral. Section 3.2 of Chapter 3 gives an approximation

for this quantity.

An alternative approach for calculating the per observation expected infor-

mation matrix is to first approximate the derivatives
∂ ln fYi

∂θ
by

∂̂ ln fYi

∂θ
. The
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approximated information matrix can then be calculated as

Ii(θ) = E




(
∂̂ ln fYi

∂θ

)(
∂̂ ln fYi

∂θ

)T

 .

This approach eliminates the need to calculate or approximate E[ar · h(a)s] and

will ensure positive semidefiniteness of the information matrix. The details for

approximating the first-order derivatives of ln fY with respect to θ are given in

Section 3.1 of Chapter 3.

2.2.3 Information matrix in terms of second-order partial

derivatives

Equation (D.3) in Appendix D gives an alternative formulation for the per

observation expected Fisher information matrix of θ = (β, λ, σG) as

Ii(θ) = −E
[
∂2 ln fYi

∂θ∂θT

]
.

When the parameter vector θ is partitioned such that θ = (β, τ ), the formula

for the partitioned information matrix is given by equation (D.5) in Appendix D.

If τ = (λ, σG) then the partitioned information matrix is

Ii(θ) = −E




∂2 ln fYi

∂β∂βT

∂2 ln fYi

∂β∂λ

∂2 ln fYi

∂β∂σ2
G

(
∂2 ln fYi

∂β∂λ

)T
∂2 ln fYi

∂λ2

∂2 ln fYi

∂λ∂σ2
G

(
∂2 ln fYi

∂β∂σ2
G

)T (
∂2 ln fYi

∂λ∂σ2
G

)T
∂2 ln fYi

∂(σ2
G)2




. (2.13)

This formulation uses the second-order partial derivatives of ln fYi
. Dispensing

with the observation subscripts, the components of the per observation expected

Fisher information matrix are
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−E
[
∂2 ln fY

∂β∂βT

]
=

−
{
− 1

σ2
G

+

(
cuλ

|cv|σG

)2 (
E[ah(a)]− E[h(a)2]

)
} (

∂f(x,β)

∂β

)(
∂f(x, β)

∂βT

)

+

{ |cv|
cuλσG

E[a] +
cuλ

|cv|σG

E[h(a)]

}
∂2f(x, β)

∂β∂βT
,

−E
[
∂2 ln fY

∂λ2

]
= − 1

λ2

(
E[a3h(a)]− E[a2h(a)2]

)
,

−E
[
∂2 ln fY

∂(σ2
G)2

]
=

− 1

2σ4
G

+

( |cv|
cuλσ2

G

)2

E[a2] +
1

4σ4
G

(
3E[ah(a)]− E[a3h(a)] + E[a2h(a)2]

)
,

−E
[
∂2 ln fY

∂β∂λ

]
=

cu

|cv|σG

{
E[h(a)]− E[a2h(a)] + E[ah(a)2]

} ∂f(x,β)

∂β
,

−E
[
∂2 ln fY

∂β∂σ2
G

]
=

−
{ |cv|

cuλσ3
G

E[a] +
cuλ

2|cv|σ3
G

(
E[h(a)]− E[a2h(a)] + E[ah(a)2]

)} ∂f(x,β)

∂β
,

−E
[
∂2 ln fY

∂λ∂σ2
G

]
= − 1

2λσ2
G

(
E[ah(a)]− E[a3h(a)] + E[a2h(a)2]

)
.

Calculation of the information matrix requires calculation of the expectation

E [ar · h(a)s], r, s ∈ N0. As discussed in Section 2.2.2, this is a complicated ex-

pectation to calculate. An approximation for this quantity is given in Section 3.2

of Chapter 3.
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2.3 Normal-Exponential Model

Assume that random variables U and V are distributed as follows

(i) U ∼ Exponential(1/σu) i.i.d.

(ii) V ∼ N(0, σ2
v) i.i.d.

(iii) U and V are distributed independently of each other.

The exponential distribution is a special case of the gamma distribution which is

discussed in Section 2.5. Figure 2.4 plots three different exponential probability

density functions.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.4

0.8

1.2

1.6

2

u

f(u)

← σu = 0.5

← σu = 2

← σu = 1

Figure 2.4: Exponential distributions.

The derivation of the information matrix for all models in this dissertation

follows a similar procedure as the previous section for the normal-half normal

model. The main results for the normal-exponential model are given below. The

detailed calculations can be found in Appendix A.1.

The probability density function of E = cuU + cvV is given by
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fE(ε) =
1

|cu|σu

exp

{
− ε

cuσu

+
c2
vσ

2
v

2c2
uσ

2
u

}
Φ

(
cuε

|cucv|σv

− |cv|σv

|cu|σu

)
, (2.14)

with mean and variance given by

E[E] = cuσu, (2.15)

V ar(E) = c2
uσ

2
u + c2

vσ
2
v . (2.16)

As with the normal-half normal model, the conditional density of U given E

can be calculated using equation (C.12), but with

K =
1

|cv|
√

2πσuσv

, A =
c2
u

c2
vσ

2
v

, B =
cuε

c2
vσ

2
v

− 1

σu

and C =
ε2

c2
vσ

2
v

.

The expected value and mode of U given E can be calculated using equa-

tions (C.13) and (C.14) respectively.

2.3.1 Log-likelihood function

Under model (2.2), the log-likelihood function of θ = (β, σu, σv) for a sample

of N independent observations can be obtained using equation (2.14) and is given

by

ln L (θ; y) =
N∑

1=1

{
ln

(
1

|cu|σu

)
− yi − f(xi, β)

cuσu

+
c2
vσ

2
v

2c2
uσ

2
u

+ ln Φ(−ai)

}
,

(2.17)

where

ai = − cuεi

|cucv|σv

+
|cv|σv

|cu|σu

.

Omitting observation subscripts, the expected value and variance of a, which will

be used in later chapters, are

E[a] = − cu

|cucv|σv

E[E] +
|cv|σv

|cu|σu

,

V ar(a) =

(
cu

|cucv|σv

)2

V ar(E),
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where E[E] and V ar(E) are given in equations (2.15) and (2.16) respectively.

The derivative of a with respect to the parameter vector β, which will also be

used in later chapters, is

∂a

∂β
=

(
cu

|cucv|σv

)
∂f(x,β)

∂β
.

The first-order derivatives of ln fY (y; θ) are

∂ ln fY

∂β
= −

{
− 1

cuσu

+
cu

|cucv|σv

h(a)

}
∂f(x,β)

∂β
,

∂ ln fY

∂(1/σu)
= σu +

|cv|σv

|cu| [a− h(a)],

∂ ln fY

∂σ2
v

=
c2
v

2c2
uσ

2
u

−
( |cv|
|cu|σuσv

− 1

2σ2
v

a

)
h(a).

Only the first-order derivatives will be used in later chapters, hence the second-

order derivatives are not given here.

2.3.2 Information matrix in terms of first-order partial

derivatives

Equation (2.18) in Figure 2.5 shows the form of the partitioned information

matrix of θ = (β, σu, σv).

The remarks that were made about approximating the information matrix for

the normal-half normal model in Section 2.2 apply with equal force to all models

discussed in this dissertation.
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I i
(θ

)
=

E

                 

( ∂
ln

f Y
i

∂
β

)
( ∂

ln
f Y

i

∂
β

) T
( ∂

ln
f Y

i

∂
β

)
(

∂
ln

f Y
i

∂
(1

/σ
u
))

( ∂
ln

f Y
i

∂
β

)
( ∂

ln
f Y

i

∂
σ

2 v

)

{(
∂

ln
f Y

i

∂
β

)
(

∂
ln

f Y
i

∂
(1

/σ
u
))}

T
(

∂
ln

f Y
i

∂
(1

/σ
u
)) 2

(
∂

ln
f Y

i

∂
(1

/σ
u
))

( ∂
ln

f Y
i

∂
σ

2 v

)

{(
∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
σ

2 v

)}
T

{(
∂

ln
f Y

i

∂
(1

/σ
u
))

( ∂
ln

f Y
i

∂
σ

2 v

)}
T

( ∂
ln

f Y
i

∂
σ

2 v

) 2

                 
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2.3.3 Information matrix in terms of second-order partial

derivatives

An alternative formulation for the partitioned per observation expected Fisher

information matrix of θ = (β, σu, σv) is

Ii(θ) = −E




∂2 ln fYi

∂β∂βT

∂2 ln fYi

∂β∂(1/σu)

∂2 ln fYi

∂β∂σ2
v

(
∂2 ln fYi

∂β∂(1/σu)

)T
∂2 ln fYi

∂(1/σu)2

∂2 ln fYi

∂(1/σu)∂σ2
v

(
∂2 ln fYi

∂β∂σ2
v

)T (
∂2 ln fYi

∂(1/σu)∂σ2
v

)T
∂2 ln fYi

∂(σ2
v)

2




.(2.19)

This formulation uses the second-order partial derivatives of ln fYi
, which are

given in Appendix A.1.

2.4 Normal-Truncated Normal Model

Assume that random variables U and V are distributed as follows

(i) U ∼ N+(µ, σ2
u) i.i.d., i.e. nonnegative truncated normal

(ii) V ∼ N(0, σ2
v) i.i.d.

(iii) U and V are distributed independently of each other.

The nonnegative truncated normal distribution considered here is the normal

distribution, with mean µ ∈ R, which is truncated from below at zero. When

µ = 0 the nonnegative truncated normal distribution simplifies to the nonnegative

half normal distribution of Section 2.2. Appendix C.5 provides further details on
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truncated normal distributions. Three different truncated normal distributions

are plotted in Figure 2.6 where σu = 1 for all densities and µ is negative, zero

(the half normal case) and positive.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

u

f(u)

← µ = −2

← µ = 2

← µ = 0

Figure 2.6: Truncated normal distributions with σu = 1.

As with the normal-half normal model, if we let

σ2
G = c2

uσ
2
u + c2

vσ
2
v , (2.20)

λ =
σu

σv

, (2.21)

then the probability density function of E = cuU + cvV is given by

fE(ε) =
1

σG

φ

(
cuµ− ε

σG

)
Φ

( |cv|µ
λσG

+
cuλε

|cv|σG

)[
Φ

(
µ

σu

)]−1

, (2.22)

with mean and variance given by

E[E] = c̃uσu, (2.23)

V ar(E) = ˜̃cu
2
σ2

u + c2
vσ

2
v , (2.24)

where c̃u =
cuµ

σu

+cuh

(
− µ

σu

)
and ˜̃cu

2
= c2

u

{
1− µ

σu

h

(
− µ

σu

)
−

[
h

(
− µ

σu

)]2
}

.
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The conditional density of U given E can be calculated using equation (C.12)

with

K =
1

|cv|2πσuσv

[
Φ

(
µ

σu

)]−1

, A =
1

σ2
u

+
c2
u

c2
vσ

2
v

, B =
µ

σ2
u

+
cuε

c2
vσ

2
v

and

C =
µ2

σ2
u

+
ε2

c2
vσ

2
v

.

The expected value and mode of U given E can be calculated using equa-

tions (C.13) and (C.14) respectively.

2.4.1 Log-likelihood function

Under model (2.2), the log-likelihood function of θ = (β, µ, λ, σG) for a sample

of N independent observations can be obtained using equation (2.22) and is given

by

ln L (θ; y) =
N∑

i=1

{
− ln σG + ln φ

(
cuµ− [yi − f(xi, β)]

σG

)
+ ln Φ(−a1i)

− ln Φ (−a2)

}
, (2.25)

where

a1i = −|cv|µ
λσG

− cuλεi

|cv|σG

.

The parameter σu can be expressed as a function of λ and σG by solving (2.20)

and (2.21) simultaneously to give

σu =
λσG

(c2
uλ

2 + c2
v)

1/2
,

which can be substituted into the formula for a2 to give

a2 = − µ

σu

= −µ(c2
uλ

2 + c2
v)

1/2

λσG

.
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Omitting observation subscripts, the expected value and variance of a1, which

will be used in later chapters, are

E[a1] = −|cv|µ
λσG

− cuλ

|cv|σG

E[E],

V ar(a1) =

(
cuλ

|cv|σG

)2

V ar(E),

where E[E] and V ar(E) are given in equations (2.23) and (2.24) respectively.

The derivative of a1 with respect to the parameter vector β, which will also be

used in later chapters, is

∂a1

∂β
=

(
cuλ

|cv|σG

)
∂f(x, β)

∂β
.

The first-order derivatives of ln fY (y; θ) are

∂ ln fY

∂β
= −

{
µ(c2

uλ
2 + c2

v)

cuλ2σ2
G

+
|cv|

cuλσG

a1 +
cuλ

|cv|σG

h(a1)

}
∂f(x,β)

∂β
,

∂ ln fY

∂µ
= −µ(c2

uλ
2 + c2

v)

λ2σ2
G

− |cv|
λσG

a1 +
|cv|
λσG

h(a1) +
a2

µ
h(a2),

∂ ln fY

∂λ
=

(
−2|cv|µ

λ2σG

− 1

λ
a1

)
h(a1) +

c2
vµ

(c2
uλ

2 + c2
v)

1/2λ2σG

h(a2),

∂ ln fY

∂σ2
G

= − 1

2σ2
G

+
1

2

(
µ(c2

uλ
2 + c2

v)

cuλ2σ2
G

+
|cv|

cuλσG

a1

)2

+
1

2σ2
G

a1h(a1)− 1

2σ2
G

a2h(a2),

2.4.2 Information matrix in terms of first-order partial

derivatives

Equation (2.26) in Figure 2.7 shows the form of the partitioned information

matrix of θ = (β, µ, λ, σG).
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I i
(θ

)
=

E

                        

( ∂
ln

f Y
i

∂
β

)
( ∂

ln
f Y

i

∂
β

) T
( ∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
µ

)
( ∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
λ

)
( ∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
σ

2 G

)

{(
∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
µ

)}
T

( ∂
ln

f Y
i

∂
µ

) 2
( ∂

ln
f Y

i

∂
µ

)
( ∂

ln
f Y

i

∂
λ

)
( ∂

ln
f Y

i

∂
µ

)
( ∂

ln
f Y

i

∂
σ

2 G

)

{(
∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
λ

)}
T

{(
∂

ln
f Y

i

∂
µ

)
( ∂

ln
f Y

i

∂
λ

)}
T

( ∂
ln

f Y
i

∂
λ

) 2
( ∂

ln
f Y

i

∂
λ

)
( ∂

ln
f Y

i

∂
σ

2 G

)

{(
∂

ln
f Y

i

∂
β

)
( ∂

ln
f Y

i

∂
σ

2 G

)}
T

{(
∂

ln
f Y

i

∂
µ

)
( ∂

ln
f Y

i

∂
σ

2 G

)}
T

{(
∂

ln
f Y

i

∂
λ

)
( ∂

ln
f Y

i

∂
σ

2 G

)}
T

( ∂
ln

f Y
i

∂
σ

2 G

) 2

                        .
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2.4.3 Information matrix in terms of second-order partial

derivatives

An alternative formulation for the partitioned per observation expected Fisher

information matrix of θ = (β, µ, λ, σG) is

Ii(θ) = −E




∂2 ln fYi

∂β∂βT

∂2 ln fYi

∂β∂µ

∂2 ln fYi

∂β∂λ

∂2 ln fYi

∂β∂σ2
G

(
∂2 ln fYi

∂β∂µ

)T
∂2 ln fYi

∂µ2

∂2 ln fYi

∂µ∂λ

∂2 ln fYi

∂µ∂σ2
G

(
∂2 ln fYi

∂β∂λ

)T (
∂2 ln fYi

∂µ∂λ

)T
∂2 ln fYi

∂λ2

∂2 ln fYi

∂λ∂σ2
G

(
∂2 ln fYi

∂β∂σ2
G

)T (
∂2 ln fYi

∂µ∂σ2
G

)T (
∂2 ln fYi

∂λ∂σ2
G

)T
∂2 ln fYi

∂(σ2
G)2




.

(2.27)

This formulation uses the second-order partial derivatives of ln fYi
, which are

given in Appendix A.2.

2.5 Normal-Gamma Model

Assume that random variables U and V are distributed as follows

(i) U ∼ Gamma(α, σu) i.i.d.

(ii) V ∼ N(0, σ2
v) i.i.d.

(iii) U and V are distributed independently of each other.
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When α = 1 the gamma distribution simplifies to the exponential distribution of

Section 2.3. Three different gamma distributions are plotted in Figure 2.8 where

σu = 1 for all densities and α = 1, 2, 3. When 0 < α < 1 the gamma density

looks like an exponential density while α > 1 has a mode farther away from zero

as α increases.
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Figure 2.8: Gamma distributions with σu = 1.

The marginal density of E = cuU + cvV is given by

fE(ε) =
1

|cu|Γ(α)σα
u

exp

{
− ε

cuσu

+
c2
vσ

2
v

2c2
uσ

2
u

}
Φ

(
cuε

|cucv|σv

− |cv|σv

|cu|σu

)
E[Qα−1],

(2.28)

where E[Qα−1] is a fractional moment of the nonnegative truncated normal dis-

tribution of random variable Q. The mean and variance of E are

E[E] = c̃uσu, (2.29)

V ar(E) = ˜̃cu
2
σ2

u + c2
vσ

2
v , (2.30)

where c̃u = cuα and ˜̃cu
2

= c2
uα.
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The conditional density of U given E can be calculated using equation (C.9)

and is given by

fU |E(u|ε) =

uα−1
√

Aφ

(
u−B/A

1/
√

A

)

∫ ∞

0

uα−1
√

Aφ

(
u−B/A

1/
√

A

)
du

=

uα−1
√

Aφ

(
u−B/A

1/
√

A

)

Φ

(
B√
A

)
E[Qα−1]

,

with expected value given by equation (C.10) as

E[U |E] =

∫ ∞

0

uα
√

Aφ

(
u−B/A

1/
√

A

)
du

∫ ∞

0

uα−1
√

Aφ

(
u−B/A

1/
√

A

)
du

=
E[Qα]
E[Qα−1]

,

and where

K =
1

|cv|Γ(α)σα
u

√
2πσv

, A =
c2
u

c2
vσ

2
v

, B =
cuε

c2
vσ

2
v

− 1

σu

and C =
ε2

c2
vσ

2
v

.

When cu = −1 and cv = 1, the marginal density of E given in equation (2.28)

is the marginal density function derived by Greene (1990). Since α need not

be an integer, there is no closed form for E[Qα−1] and hence no closed form for

the density of E. Consequently, approximation methods must be employed in

evaluating the marginal density of E and its log-likelihood function.

Beckers & Hammond (1987) derived a closed form expression for the marginal

density of E, when cu = 1 and cv = 1, which does not restrict α to integer values.

Although their formulation is appealing because the marginal density of E and its

log-likelihood function can be evaluated analytically, it shall not be considered

here due to practical considerations. Beckers & Hammond advise that their

approach is complex and impractical if interest is in evaluating the Hessian matrix

of the log-likelihood function. Additionally, approximation methods are likely to

be needed in calculating the information matrix thus negating the benefits of the

analytical formulation.
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Nakamura (1980) discusses moments of positively truncated normal distribu-

tions. Nakamura’s approximation of E[Qα−1] restricts α to be an integer less than

or equal to zero. However when α originates as a parameter from the gamma

distribution, α is strictly positive.

2.5.1 Log-likelihood function

Under model (2.2), the log-likelihood function of θ = (β, α, σu, σv) for a

sample of N independent observations can be obtained using equation (2.28) and

is given by

ln L (θ; y) =
N∑

i=1

{
− ln (|cu|Γ(α)) + α ln

(
1

σu

)
− yi − f(xi, β)

cuσu

+
c2
vσ

2
v

2c2
uσ

2
u

+ ln

( |cu|
|cv|σv

)
+ ln

(∫ ∞

0

uα−1
i φ(−ai) dui

)}
, (2.31)

where

ai = − |cu|
|cv|σv

ui +
cuεi

|cucv|σv

− |cv|σv

|cu|σu

.

Omitting observation subscripts, the derivative of ε = y − f(x, β) with respect

to the parameter vector β, which will be used in later chapters, is

∂ε

∂β
=

∂

∂β
[y − f(x,β)] = −∂f(x, β)

∂β
.

The first-order derivatives of ln fY (y; θ) with respect to the parameters of interest

are

∂ ln fY

∂β
=

1

c2
vσ

2
v

{ε− cuE[U |E]} ∂f(x,β)

∂β
,

∂ ln fY

∂α
= −ψ(α) + ln

(
1

σu

)
+ E[ln U |E],

∂ ln fY

∂(1/σu)
= ασu − E[U |E],
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∂ ln fY

∂σ2
v

= − 1

2σ2
v

+
1

2c2
vσ

4
v

(
ε2 + c2

uE[U2|E]− 2cuεE[U |E]
)
,

where

ψ(α) =
Γ′(α)

Γ(α)
=

d ln Γ(α)

dα
,

is the digamma function and equation (C.11) in Appendix C gives

E[g(U)|E] =

∫ ∞

0

g(u)uα−1φ(−a) du
∫ ∞

0

uα−1φ(−a) du

.

2.5.2 Information matrix in terms of first-order partial

derivatives

Equation (2.33) in Figure 2.9 shows the form of the partitioned information

matrix of θ = (β, α, σu, σv). Calculation of the expected information matrix

requires the evaluation of complicated integrals. The integrals appear in the

derivatives through the conditional expectation E[g(U)|E]. Although the inte-

grals can be approximated numerically using some form of Gaussian quadrature,

care should be taken in the choice of quadrature rule employed. Abramowitz &

Stegun (1965) give various quadrature rules. Because the integrals in E[g(U)|E]

are over the interval [0,∞), the Gauss-Laguerre formula is one such quadrature

rule that can be applied. However several methods should be implemented so

that the sensitivity of the values in the information matrix to the method of

numerical integration used can be assessed.

As with the model specifications from previous sections of this chapter, an

alternative approach for calculating the per observation expected information ma-

trix is to first approximate the derivatives
∂ ln fY

∂θ
by

∂̂ ln fY

∂θ
. Unlike in previous

sections, this approach does not eliminate the need to calculate or approximate

the expectations appearing in the information matrix. However it does simplify
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calculations somewhat and will ensure positive semidefiniteness of the informa-

tion matrix. Numerical integration is still required and, as before, the resultant

information matrix may be sensitive to the quadrature technique employed. The

details for approximating the first-order derivatives of ln fY with respect to θ are

given in Section 3.1 of Chapter 3.

2.5.3 Information matrix in terms of second-order partial

derivatives

An alternative formulation for the partitioned per observation expected Fisher

information matrix of θ = (β, α, σu, σv) is

Ii(θ) = −E



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∂β∂σ2
v
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)T
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∂α∂σ2
v

(
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)T
∂2 ln fYi
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∂2 ln fYi

∂(1/σu)∂σ2
v

(
∂2 ln fYi
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2




.

(2.32)

This formulation uses the second-order partial derivatives of ln fYi
, which are

given in Appendix A.3. As discussed in Section 2.5.2, calculation of the infor-

mation matrix requires evaluating complicated integrals. The integrals appear in

the derivatives through the conditional expectations, variances and covariances.

Numerical integration can be utilised to approximate these integrals although

care should be taken in determining the choice of quadrature method.
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Chapter 3

Approximation Methods for

Information Matrices

Per observation expected Fisher information matrices were derived in Chap-

ter 2 for the four different model specifications given in Sections 2.2 to 2.5. Under

each model specification, information matrices were derived using the first-order

and second-order partial derivatives of ln fYi
(yi; θ), where ln fYi

(yi; θ) is the log-

likelihood function for the i-th observation. It was noted throughout Chapter 2

that the information matrices for the four model specifications should be approx-

imated. This is because approximation will ease the evaluation of complicated

expectations and integrals appearing in the information matrices.

The formula for the information matrix based on the first-order partial deriva-

tives of ln fYi
(yi; θ) is defined in equation (D.2) of Appendix D and is given by

Ii(θ) = Cov

[(
∂ ln fYi

∂θ

)
,

(
∂ ln fYi

∂θ

)T
]

= E

[(
∂ ln fYi

∂θ

)(
∂ ln fYi

∂θ

)T
]

,

(3.1)

where ln fYi
= ln fYi

(yi; θ). The information matrix based on the second-order

derivatives of ln fYi
(yi; θ) is defined in equation (D.3) of Appendix D and is given
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by

Ii(θ) = −E
[
∂2 ln fYi

∂θ∂θT

]
. (3.2)

Under certain regularity conditions, if the information matrix can be evaluated

exactly, the information matrix derived using the first-order derivatives is equiv-

alent to the information matrix derived using the second-order derivatives, that

is

E

[(
∂ ln fYi

∂θ

)(
∂ ln fYi

∂θ

)T
]

= −E
[
∂2 ln fYi

∂θ∂θT

]
. (3.3)

Therefore, if the information matrix can be evaluated exactly, equations (3.1)

and (3.2) will produce the same information matrix.

If the information matrix cannot be evaluated exactly and is approximated,

equivalence (3.3) may not hold. Consequently, if an approximation method is

used in evaluating the information matrix, equations (3.1) and (3.2) will result

in possibly numerically different information matrices. Additionally, the type of

approximation method used can lead to numerically different information matri-

ces. Clearly, the choice between equations (3.1) and (3.2) in approximating the

information matrix is worthy of discussion and hence is the topic of this chapter.

A good approximation will produce an approximated information matrix Îi(θ)

with values close to the true information matrix Ii(θ), so that Îi(θ) ≈ Ii(θ).

However, if the true information matrix cannot be evaluated then there will be no

way of determining how good the approximation is to the true matrix. A sensible

approach may be to compare different approximations. If the approximations

are reasonably accurate then the information matrices produced by the different

approximation methods should be close. Unfortunately, if the approximations

are all equally bad then they may be close to each other but not to the true

information matrix.

First-order Taylor series approximations are used throughout this chapter. It

may be of interest to investigate the effects of higher-order approximations or
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alternative approximation methods on information matrices, however they are

not discussed here.

3.1 Approximating the Information Matrix of

First-order Derivatives

In this section, the formula for the information matrix that will be utilised

involves the first-order partial derivatives of ln fYi
(yi; θ). Equation (3.1) gives the

form of the per observation expected Fisher information matrix as

Ii(θ) = Cov

[(
∂ ln fYi

∂θ

)
,

(
∂ ln fYi

∂θ

)T
]

= E

[(
∂ ln fYi

∂θ

)(
∂ ln fYi

∂θ

)T
]

.

The two methods for approximating the above information matrix use a first-

order Taylor series approximation. The first method approximates the first-order

derivatives separately whilst the second method approximates the product of the

first-order derivatives.

3.1.1 Method 1: Approximating the first-order deriva-

tives (Recommended)

Consider the statistical model Yi = f(xi, β) + Ei with probability density

function fYi
= fYi

(yi; θ) where the k-dimensional parameter vector θ is parti-

tioned such that θ = (β, τ ). The β parameters originate from the model and

the τ parameters arise from the distributional assumption on Yi.

Let ai be a function of random variable Yi. Using equation (3.1) as the defi-

nition of an information matrix, the per observation expected Fisher information

matrix can be written as

Ii(θ) = Cov

[(
∂ ln fYi

∂θ

)
,

(
∂ ln fYi

∂θ

)T
]

= Cov
[
fθ(ai,xi),f

T
θ (ai,xi)

]
,
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where

∂ ln fYi

∂θ
= fθ(ai,xi).

That is, the first-order derivatives are functions of ai and xi. The following

method approximates the information matrix for the i-th observation by approx-

imating the functions fθ(ai,xi) using a first-order Taylor polynomial.

Let µa = E[ai] and σ2
a = V ar(ai). The first-order Taylor series approximation

of fθ(ai,xi) about ai = µa can be derived using equation (C.20) in Appendix C.7

and is given by

f̂θ(ai,xi) = fθ (µa,xi) + (ai − µa) f ′θ (µa,xi) ,

where

f ′θ (µa,xi) =
∂fθ(ai,xi)

∂ai

∣∣∣∣
ai=µa

=
∂2 ln fYi

∂θ∂ai

∣∣∣∣
ai=µa

.

Thus the approximated per observation expected Fisher information matrix for

the i-th observation is

Îi(θ) = Cov
[
f̂θ(ai,xi), f̂

T
θ (ai,xi)

]

= Cov
[
(ai − µa) f ′θ (µa,xi) , (ai − µa) f ′Tθ (µa,xi)

]

= f ′θ (µa,xi) f ′Tθ (µa,xi) Cov [(ai − µa) , (ai − µa)]

= f ′θ (µa,xi) f ′Tθ (µa,xi) σ2
a. (3.4)

The advantage of the form of this approximated per observation information

matrix is that it is positive semidefinite. As a result, the full information matrix

for all N observations will be either positive definite or positive semidefinite. If

the full information matrix is positive definite, it will be nonsingular and all the

parameters will be estimable. If the full information matrix is positive semidefi-

nite, it will be singular, however subsets or linear combinations of the parameters

will be estimable.
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Calculating the approximated information matrix

Consider the per observation expected Fisher information matrices derived in

Chapter 2. In Sections 2.2 and 2.3, ai is a function of parameter vector β, hence

the chain rule can be used to calculate f ′θ (µa,xi) as

f ′θ (µa,xi) =
∂2 ln fYi

∂θ∂βT
·
(

∂ai

∂β

)−1
∣∣∣∣∣
ai=µa

where
∂2 ln fY

∂β∂θT
=

(
∂2 ln fYi

∂θ∂βT

)T

and
∂ai

∂β
were derived in Sections 2.2 and 2.3.

The derivatives of ln fYi
(yi; θ) in Section 2.4 are given as functions of a1i rather

than functions of ai. This is just a notational difference. The approximation of

the information matrix under the model specification given in Section 2.4 can be

derived in the same manner as detailed above by simply substituting a1i for ai

into the above equations. Similarly, the approximated information matrix under

the model specification given in Section 2.5 can be derived by substituting εi for

ai into the above equations.

Properties of the approximated information matrix

Bhatia (2007) provides details on the properties of positive definite matrices.

Positive semidefiniteness of the approximated per observation information matrix

and the approximated full information matrix are established in the following

theorems.

Theorem 3.1.1 The approximated per observation expected Fisher information

matrix

Îi(θ) = f ′θ (µa,xi) f ′Tθ (µa,xi) σ2
a,

given in equation (3.4) is positive semidefinite with rank Îi(θ) ≤ 1.
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Proof To simplify notation, let f = f ′θ (µa,xi) with the j-th element denoted

by fj, j = 1, . . . , k. For all non-zero vectors v ∈ Rk,

vT ffT v =
(
vT f

) (
vT f

)T

=
(
vT f

)2

≥ 0.

Thus the matrix ffT is positive semidefinite. Consequently, Îi(θ) = ffT σ2
a is

positive semidefinite.

To prove the statement about the rank, we use a standard result from linear

algebra. Note that ffT can be expressed as

ffT = f · [f1, f2, . . . , fk] .

Clearly the k column vectors f · fj are not linearly independent as they are just

proportional to the column vector f , that is

f · fj ∝ f , j = 1, . . . , k.

Hence

rank
{

Îi(θ)
}

= rank
{
ffT σ2

a

}

= rank
{
ffT

}

≤ 1.

The rank will be zero if f is the null vector. ¤

Theorem 3.1.2 Let β = (β1, . . . , βp) be the parameter vector associated with

covariates xi through the model Yi = f(xi,β) + Ei and let τ = (τ1, . . . , τk−p) be

the parameter vector arising from the distributional assumption on Yi.

If the k-dimensional parameter vector θ is partitioned such that θ = (β, τ )

then the approximated expected Fisher information matrix, weighted per obser-
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vation, given by

Î(θ) =
n∑

i=1

wiÎi(θ),

is positive semidefinite with

rank Î(θ) ≤ p + 1,

where 0 ≤ wi ≤ 1,
∑n

i=1 wi = 1.

Proof The sum of positive semidefinite matrices is positive semidefinite. From

Theorem 3.1.1, Îi(θ) is positive semidefinite therefore

Î(θ) =
n∑

i=1

wiÎi(θ),

is positive semidefinite.

To prove the statement about the rank, first note that the rank of the sum of

positive semidefinite matrices is less than or equal to the sum of the rank of each

matrix. Also the rank of a matrix is less than or equal to the smallest dimension

of that matrix.

For β = (β1, . . . , βp), the first-order partial derivatives of ln fYi
(yi; θ) are

calculated using the chain rule and, for the four error specifications considered

in this thesis, can be expressed as functions of ai and xi, that is

∂ ln fYi

∂β
=

(
∂ ln fYi

∂f(xi,β)

)
×

(
∂f(xi,β)

∂β

)

= g(ai) × g(xi)

= fβ(ai, xi).

The first-order derivatives with respect to τ = (τ1, . . . , τk−p) are functions of ai

alone (and not xi), that is

∂ ln fYi

∂τ
= fτ (ai).
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Hence the first-order partial derivatives with respect to the full parameter vector

can be written as

∂ ln fYi

∂θ
=




∂ ln fYi

∂β

∂ ln fYi

∂τ


 =


 fβ(ai,xi)

fτ (ai)


 = fθ(ai,xi).

The derivative f ′θ(µa,xi) is given by

f ′θ(µa, xi) =


 f ′β(µa,xi)

f ′τ (µa)


 ,

where

f ′β (µa,xi) =
∂fβ(ai,xi)

∂ai

∣∣∣∣
ai=µa

=
∂2 ln fYi

∂β∂ai

∣∣∣∣
ai=µa

,

f ′τ (µa) =
∂fτ (ai)

∂ai

∣∣∣∣
ai=µa

=
∂2 ln fYi

∂τ∂ai

∣∣∣∣
ai=µa

.

Using equation (3.4), the approximated per observation information matrix is

Îi(θ) = f ′θ (µa,xi) f ′Tθ (µa,xi) σ2
a

= f ′θ (µa,xi)
[
f ′Tβ (µa,xi)

∣∣ f ′Tτ (µa)
]
σ2

a

=
[
f ′θ (µa,xi) f ′Tβ (µa,xi)

∣∣ f ′θ (µa,xi) f ′Tτ (µa)
]
σ2

a,

giving

n∑
i=1

wiÎi(θ) =

[
n∑

i=1

wif
′
θ(µa,xi)f

′T
β (µa,xi)

∣∣∣∣∣

(
n∑

i=1

wif
′
θ(µa,xi)

)
f ′Tτ (µa)

]
σ2

a.

Clearly the last k − p column vectors, the right partition of the matrix above,

are not linearly independent. The elements of f ′Tτ (µa) are functions of µa alone

(and not xi), therefore the last k−p columns are just proportional to the column

vector
∑n

i=1 wif
′
θ(µa, xi). Hence

rank

{
n∑

i=1

wif
′
θ(µa, xi)f

′T
β (µa,xi)

}
≤ p,

rank

{(
n∑

i=1

wif
′
θ(µa,xi)

)
f ′Tτ (µa)

}
≤ 1,
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giving

rank Î(θ) = rank

{
n∑

i=1

wiÎi(θ)

}
≤ p + 1.

¤

Corollary 3.1.1 Theorem 3.1.2 implies that the information matrix Î(θ) =

Î(β, τ ) can only be of full rank if τ has dimension one, i.e. if there is only

one τ parameter. This is a necessary, but not a sufficient, condition.

If the information matrix is rank deficient, not all parameters will be es-

timable. The rank of the information matrix is less than or equal to p+1, there-

fore the maximum number of parameters (or linear combinations of parameters)

that can be estimated is p + 1.

Writing the approximated information matrix in a more expanded form gives

Î(θ) =
n∑

i=1

wif
′
θ(µa,xi)f

′T
θ (µa,xi)σ

2
a

=
n∑

i=1

wi


 f ′β(µa,xi)

f ′τ (µa)




[
f ′Tβ (µa,xi) f ′Tτ (µa)

]
σ2

a

=




n∑
i=1

wif
′
β(µa,xi)f

′T
β (µa,xi)

(
n∑

i=1

wif
′
β(µa,xi)

)
f ′Tτ (µa)

f ′τ (µa)

(
n∑

i=1

wif
′T
β (µa,xi)

)
f ′τ (µa)f

′T
τ (µa).




σ2
a.

The top left p × p partition of the matrix, associated with the β parameters,

has rank less than or equal to p. Therefore p or less of the β parameters will be

estimable. The bottom right (k− p)× (k− p) partition of the matrix, associated

with the τ parameters, has rank less than or equal to one. Therefore, at best,

only one of the τ parameters will be estimable.
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3.1.2 Method 2: Approximating the product of first-

order derivatives

Again, using equation (3.1) as the definition of an information matrix, the

(j, l)-th element of the per observation expected Fisher information matrix can

be written as

Ii(θ)(j,l) = E
[(

∂ ln fYi

∂θj

)(
∂ ln fYi

∂θl

)]
= E [fj,l(ai, xi)] ,

where

fj,l(ai,xi) =

(
∂ ln fYi

∂θj

)(
∂ ln fYi

∂θl

)
.

That is, the product of the first-order derivatives are functions of ai and xi. The

following method approximates the information matrix for the i-th observation

by approximating the functions fj,l(ai,xi) using a first-order Taylor polynomial.

The first-order Taylor series approximation of fj,l(ai,xi) about ai = µa and its

expected value can be derived using equations (C.20) and (C.21) in Appendix C.7

and are given by

f̂j,l(ai,xi) = fj,l (µa,xi) + (ai − µa) f ′j,l (µa,xi) ,

E
[
f̂j,l(ai,xi)

]
= fj,l (µa,xi) .

Thus the (j, l)-th element of the approximated per observation expected Fisher

information matrix for the i-th observation is

Îi(θ)(j,l) = E
[
f̂j,l(ai,xi)

]
= fj,l (µa,xi) . (3.5)

This simply says that the approximated per observation expected Fisher infor-

mation matrix can be calculated by evaluating any functions of ai at ai = µa.

A drawback of the form of this approximated per observation information ma-

trix is that, even with a higher-order Taylor approximation, it is not guaranteed
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to be positive semidefinite. As a result, the weighted information matrix for n

observations may not be invertible. Hence estimation of the parameters, or even

subsets or linear combinations of the parameters may not be possible.

Calculating the approximated information matrix

The elements of the per observation expected Fisher information matrices

derived in Sections 2.2 and 2.3 of Chapter 2 involve expectations of the form

E[ar
i · h(ai)

s], r, s ∈ N0.

Under the approximation given in equation (3.5), the information matrices can

be calculated using

E[ar
i · h(ai)

s] ≈ µr
a · h(µa)

s,

where µa = E[ai] is given in Sections 2.2 and 2.3.

The elements of the information matrix in Section 2.4 are given as functions

of a1i rather than functions of ai. Hence the approximated information matrix

can be derived in the same fashion as detailed above by simply substituting a1i

for ai.

Similarly, the approximated information matrix under the model specification

of Section 2.5 can be calculated by evaluating any functions of εi at εi = E[Ei].

However, even after the information matrix in Section 2.5 has been approximated,

any remaining integrals will require further numerical approximation.

3.2 Approximating the Information Matrix of

Second-order Derivatives

In this section, the formula for the information matrix that will be utilised

involves the second-order partial derivatives of ln fYi
(yi; θ). Equation (3.2) gives
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the form of the per observation expected Fisher information matrix as

Ii(θ) = −E
[
∂2 ln fYi

∂θ∂θT

]
.

The method for approximating the above information matrix uses a first-order

Taylor series approximation of the second-order derivatives.

3.2.1 Method 3: Approximating the second-order deriva-

tives

The (j, l)-th element of the per observation expected Fisher information ma-

trix can be written as

Ii(θ)(j,l) = −E
[
∂2 ln fYi

∂θj∂θl

]
= E [fj,l(ai,xi)] ,

where

−∂2 ln fYi

∂θj∂θl

= fj,l(ai, xi).

That is, the second-order derivatives are functions of ai and xi. The information

matrix for the i-th observation can then be approximated using the Taylor ap-

proximation derived in Section 3.1.2. The (j, l)-th element of the approximated

per observation expected Fisher information matrix for the i-th observation is

Îi(θ)(j,l) = E
[
f̂j,l(ai,xi)

]
= fj,l (µa,xi) . (3.6)

Thus the approximated information matrix can be calculated by evaluating any

functions of ai in the second-order derivatives at ai = µa and multiplying the

approximated derivative by minus one.

As with Section 3.1.2, a disadvantage of the form of this approximated per

observation information matrix is that it is not guaranteed to be positive semidef-

inite. Hence estimation of the parameters, or subsets or linear combinations of

the parameters may not be possible.
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Calculating the approximated information matrix

The Taylor approximation of the information matrix in this section, given

by equation (3.6), is just the Taylor approximation (3.5) given in Section 3.1.2.

Therefore the comments regarding the calculation of the information matrix in

Section 3.1.2 also apply here. The calculations differ in that, in Section 3.1.2,

the approximations are applied to the product of the first-order derivatives and

in this section, the approximations are applied to the second-order derivatives.
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Chapter 4

Stochastic Frontier Models

In Chapter 2 the usual statistical model with one symmetrically distributed

random error term was extended to a stochastic model consisting of two error

terms, the usual random error term corresponding to statistical noise and an

additional asymmetrically distributed error term. One particular example of

this type of model can be found in the econometric literature and is called a

‘stochastic frontier model.’ The application of stochastic frontier models is in

obtaining measures of efficiency that enable a comparison of performance across

similar organisations. Inefficiency, a measure of the magnitude of sub-optimal

performance, is represented by the asymmetric error term in a stochastic frontier

model.

4.1 Measurement of Efficiency

Units producing outputs, such as goods or services, are commonly called

producers, production units, decision making units or organisations. Because

they are the units being observed, they are also referred to here as observational

units. Production units can vary in size. For example, a production unit can be

a staff member of a university, departments within a university, or universities
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within a country.

A loose definition of efficiency is that efficiency is the relationship between

what an organisation produces and what it could feasibly produce. Quantification

of efficiency measures is useful for several reasons. Relative measures of efficiency

facilitate comparisons across similar production units. Where inefficiency exists,

further analysis can identify the factors causing inefficiency. Additionally, such an

analysis informs policy decisions regarding improvement of efficiencies. It may be

helpful to broadly distinguish between the different types of efficiency measures

discussed in the literature.

4.1.1 Input-oriented versus output-oriented efficiency

Measures of efficiency can be input-oriented or output-oriented. When input

quantities are fixed so that output varies across producers, the efficiency mea-

sure is output-oriented because the objective of producers is to maximise output.

When output quantities are fixed so that inputs vary across producers, the ef-

ficiency measure is input-oriented because the objective of producers is to best

allocate input quantities and minimise input usage.

4.1.2 Technical and economic efficiency

If the only information available are input and output quantities, that is,

there is no information on input or output prices, then the type of efficiency

that can be measured is technical efficiency. Technical efficiency can be input-

oriented or output-oriented, with output-oriented technical efficiency being the

more common measure of the two. Input-oriented technical inefficiency occurs

when more resources than are required are used to produce a given amount

of outputs. Output-oriented technical inefficiency occurs when the amount of

outputs produced is less than the maximum amount possible for a given amount
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of resources. Technical efficiency is also known as X-efficiency.

If price information on the inputs and outputs is available, in addition to in-

put and output quantities, then economic efficiency can be measured. Economic

efficiency is the more general term when some form of pricing information is also

available. Specific types of economic efficiency include cost efficiency, profit effi-

ciency and revenue efficiency. The type of economic efficiency that is measured

will depend on the behavioural objective imposed on producers. For example,

whether the objective of producers is to minimise costs or maximise profits or

revenue. Economic efficiency measures are input-oriented. It is possible to decom-

pose economic efficiency into technical efficiency and allocative efficiency. That

is, if additional information is available on prices then it is possible to obtain a

measure of allocative efficiency in addition to technical efficiency.

Economic Efficiency = Technical Efficiency + Allocative Efficiency

Allocative inefficiency is input-oriented and occurs when the mixture of inputs

used is not the mixture with the lowest possible cost for producing a given amount

of outputs.

4.1.3 Frontiers and relative efficiency

It is important to note that efficiency is a relative measure. Vast amounts

of literature pertaining to the measurement of efficiency are based on the con-

cept of a ‘frontier’. The development of frontier models began with Koopmans’s

(1951) and Debreu’s (1951) definitions of efficiency. Influenced by these defini-

tions, Farrell (1957) was the first to measure efficiency empirically and propose a

decomposition of economic efficiency into technical efficiency and allocative effi-

ciency. The relative efficiency of a producer can be measured relative to a frontier

and hence relative to other producers. There are different types of frontiers cor-

responding to the different types of efficiency measures discussed above.
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A production frontier is a graph of the maximum feasible output producible

given fixed resources. Hence a production frontier envelopes producer outputs

from above. If what a producer actually produces is less than what it could feasi-

bly produce then it will lie below the frontier. The further below the production

frontier a producer lies, the more inefficient it is. The type of efficiency that can

be measured using a production frontier is technical efficiency.

A cost frontier is a graph of the minimum feasible cost for producing a fixed

amount of outputs. Hence a cost frontier envelopes producer costs from below.

The further above the cost frontier a producer lies, the more inefficient they are.

The type of efficiency that can be measured using a cost frontier is cost efficiency.

Other types of frontiers include profit frontiers and revenue frontiers. Profit

efficiency is measured relative to a profit frontier and revenue efficiency is mea-

sured relative to a revenue frontier.

4.1.4 Parametric versus nonparametric efficiency analysis

If the frontier has a functional form, that is, if a parametric model for the

frontier can be formulated, then several parametric approaches have been de-

veloped in the literature for obtaining measurements of efficiency. The type of

parametric technique employed will depend on whether the frontier model is de-

terministic (no random error in the model) or stochastic (random error in the

model). However it has been clearly established that stochastic frontier models

are superior to deterministic frontier models (Aigner, Lovell & Schmidt 1977).

Parametric analyses of deterministic frontier models include goal programming,

modified versions of ordinary least squares estimation and maximum likelihood

estimation (e.g. Aigner et al. 1977, Fried, Lovell & Schmidt 1993, Kumbhakar &

Lovell 2000). For stochastic frontier models, the parametric method of analysis

is called Stochastic Frontier Analysis (SFA) (e.g. Fried et al. 1993, Kumbhakar

& Lovell 2000, Jacobs, Smith & Street 2006).
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If a suitable parametric model for the frontier cannot be specified then non-

parametric approaches for obtaining efficiency measurements are readily avail-

able. The most popular nonparametric technique is called Data Envelopment

Analysis (DEA) (e.g. Charnes, Cooper, Lewin & Seiford 1994, Cooper, Seiford

& Tone 2000, Cooper, Seiford & Zhu 2004).

The primary focus of this chapter is on the stochastic frontier analysis of single-

output cross-sectional stochastic production frontier models used to obtain mea-

sures of output-oriented technical efficiency. The alternative methods listed above

shall be discussed briefly first to provide a historical perspective on the develop-

ment of frontier models.

4.2 Deterministic Production Frontier Models

and Technical Efficiency

The model considered in this section is restricted to a single-output production

frontier for cross-sectional data. For the i-th observational unit, the production

frontier model is

yi = f(xi,β) · TEi, i = 1, . . . , N, (4.1)

where the observed response yi is a scalar output, xi is a vector of m inputs,

β is a vector of p unknown technology parameters, f(xi, β) is the deterministic

production frontier and TEi is the output-oriented technical efficiency. For a

first-order model p = m + 1.

Technical efficiency of the i-th observational unit is the ratio of observed

output to maximum feasible output

TEi =
yi

f(xi, β)
. (4.2)
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If the observed output yi reaches its maximum obtainable value f(xi,β) then

TEi = 1. That is, the producer is operating at the frontier of production and is

100% efficient. Values of TEi < 1 measure the shortfall of observed output from

maximum feasible output. Note that model (4.1) is deterministic (contains no

statistical noise). Therefore, from equation (4.2), any shortfall in output yi from

maximum feasible output f(xi,β) is solely attributable to the inefficiency of the

producer. Letting

TEi = exp{−ui}, ui ≥ 0,

will ensure that 0 ≤ TEi ≤ 1 and that observed output yi for the i-th producer

will lie below the frontier f(xi,β), that is

yi ≤ f(xi,β).

Equation (4.1) can then be rewritten as

yi = f(xi,β) · exp{−ui}, ui ≥ 0,

where ui represents the shortfall of output from the frontier for each observational

unit. If productive technology takes a log-linear Cobb-Douglas form (Cobb &

Douglas 1928) then the single-output deterministic production frontier model

can be represented as

ln yi = β0 +
m∑

j=1

βj ln xij − ui. (4.3)

Deterministic techniques, such as goal programming, can be applied to model (4.3)

to calculate the parameter vector β, the vector ui and hence the technical effi-

ciency TEi. If a distributional assumption is placed on ui, deterministic econo-

metric techniques, such as corrected ordinary least squares (COLS), modified

ordinary least squares (MOLS) and maximum likelihood estimation (MLE), can

be applied to estimate the parameter vector and obtain estimates of ui and hence

of TEi.
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4.2.1 Goal programming

Aigner & Chu (1968) were the first to calculate the parameter vector β in

model (4.3) by solving deterministic optimisation problems. Model (4.3) can be

converted to either a linear programming (LP) model or a quadratic programming

(QP) model. The parameters are calculated using mathematical programming

techniques, rather than estimated in any statistical sense. Hence the drawback of

this method is that it precludes any statistical inference concerning the calculated

parameters.

4.2.2 Maximum Likelihood Estimation (MLE)

If a distributional assumption is imposed on the ui, maximum likelihood es-

timates of the parameters in model (4.3) can be obtained along with a measure

of their precision. Schmidt (1976) showed that if the ui are exponentially dis-

tributed, the maximum likelihood estimates of the parameters are the parameter

values calculated using the linear programming model. If the ui are half nor-

mally distributed, the maximum likelihood estimates of the parameters are the

parameter values calculated using the quadratic programming model.

Greene (1980a) showed that the Hessians of the log-likelihood functions are

singular under the exponential and half normal distributions for the determin-

istic production frontier and proposed an alternative model where ui is gamma

distributed. However, there is no equivalent mathematical programming problem

for a gamma distributed deterministic frontier model.

4.2.3 Corrected Ordinary Least Squares (COLS)

Winsten’s (1957) discussion on Farrell’s (1957) paper suggests a two step ap-

proach to estimate the deterministic production frontier. Step one is to obtain

the ordinary least squares (OLS) estimates. The OLS estimates β̂i (i 6= 0) of the
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slope parameters are consistent and unbiased but the estimate β̂0 for the inter-

cept, although consistent, is biased. Under OLS there will be some producers who

will lie above the frontier. This is undesirable as it implies that some producers

are outputting more than the maximum that is feasible. Step two ‘corrects’ this

by shifting up the intercept so that the estimated frontier bounds the data from

above. The COLS estimate of the intercept is

β̂∗0 = β̂0 + max
i
{ûi},

where the ûi are the OLS residuals. Using this correction, at least one producer

will lie on the frontier with the remaining producers lying below the frontier. The

OLS residuals also require correction giving the COLS residuals

û∗i = max
i
{ûi} − ûi.

Technical efficiency is then estimated using

TEi = exp{−û∗i }.

Because only the OLS intercept is corrected, the estimated COLS frontier is

parallel to the fitted OLS regression line. Applying the same correction to all

producers implies that the structure of ‘best practice’ production technology is

the same as the structure of ‘central tendency’ production technology. This

restrictive property of COLS is undesirable as the production technology of best

practice producers should be permitted to differ from the production technology

of less efficient producers.

4.2.4 Modified Ordinary Least Squares (MOLS)

A variation of the COLS procedure proposed by Afriat (1972) and Richmond

(1974) assumes that the ui > 0 follow an asymmetric distribution such as the half

normal or exponential. As with COLS, the first step is to estimate the parameters
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Figure 4.1: MLE, COLS and MOLS deterministic production frontiers.

via OLS. The ‘modification’ applied in the second step shifts up the intercept by

the mean of the assumed one-sided distribution. The respective MOLS estimates

of the intercept and the residuals are

β̂∗∗0 = β̂0 + E[ûi],

û∗∗i = E[ûi]− ûi.

Technical efficiency is then estimated using

TEi = exp{−û∗∗i }.

Shifting up the intercept by E[ûi] will not guarantee that the frontier is shifted

up far enough to bound all producers from above. If a producer has a sufficiently

large positive OLS residual it is possible that (E[ûi] − ûi) < 0. Conversely, it is

possible that the frontier may be shifted up too far so that no producer is close

to the frontier, hence no producer is technically efficient. Additionally, as in the

COLS case, the MOLS frontier is parallel to the fitted OLS regression line.

MLE, OLS, COLS and MOLS are illustrated in Figure 4.1. An ordinary least
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squares approach does not allow for technical inefficiency because any variation

in outputs not associated with variation in inputs is due to statistical noise.

Conversely, all the above techniques which are applied to the deterministic pro-

duction frontier model (4.3) attribute any shortfall in output entirely to factors

within the control of the producer. A deterministic model does not permit the

amount of output to vary due to random events that are out of the control of the

producer. Clearly what is required is a model that attributes variation in outputs

not due to variation in inputs to a combination of of both inefficiency (control-

lable by a producer) and statistical noise (random events outside the control of

the producer). A stochastic production frontier model is one such model.

4.3 Stochastic Production Frontier Models and

Technical Efficiency

As with the deterministic model, only cross-sectional data, which are observed

at a single point in time, shall be considered in detail. Panel (or longitudinal)

data, which are taken over several time points, shall be discussed briefly later.

Also, the stochastic frontier under consideration is restricted to a single-output

production frontier.

Meeusen & van den Broeck (1977) and Aigner et al. (1977) independently

developed a stochastic production frontier model which improved on the deter-

ministic frontier model of Aigner & Chu (1968) by allowing random events to

contribute to variations in producer output. For the i-th observational unit, the

stochastic frontier model is

yi = f(xi,β) · exp{vi} · TEi, i = 1, . . . , N, (4.4)

where the observed response yi is a scalar output, xi is a vector of m inputs, β is

a vector of p unknown technology parameters, f(xi,β) · exp{vi} is the stochastic
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production frontier and TEi is the output-oriented technical efficiency. Stochas-

ticity of the frontier is due to the term vi which represents statistical noise and is

intended to capture the effects of random events beyond the control of the pro-

ducer. Hence the vi are assumed to be identically and independently distributed

with mean zero. Technical efficiency of the i-th observational unit is the ratio of

observed output to maximum feasible output

TEi =
yi

f(xi, β) · exp{vi} . (4.5)

If the observed output yi reaches its maximum obtainable value f(xi,β)·exp{vi},
accounting for random error, then TEi = 1 and the producer is 100% efficient.

By rearranging equation (4.5) to

TEi · exp{vi} =
yi

f(xi,β)
,

and comparing with equation (4.2), it is clear that the advantage of the stochastic

specification of the frontier is that it allows any shortfall in realised output to be

attributable to both technical inefficiency and random events experienced by the

producer. Letting technical efficiency take the same form as in the deterministic

model

TEi = exp{−ui}, ui ≥ 0,

will ensure that 0 ≤ TEi ≤ 1 and that the observed output yi for the i-th

producer will lie below the stochastic frontier f(xi,β) · exp{vi}, that is

yi ≤ f(xi,β) · exp{vi}.

Equation (4.4) can be rewritten as

yi = f(xi,β) · exp{vi} · exp{−ui}, ui ≥ 0,

where ui represents the difference between the realised output and maximum

output for each observational unit. That is, ui represents technical inefficiency
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and is assumed to have an asymmetric distribution. The most frequently used

distributions for ui are the half normal and exponential distributions truncated

from below at zero. Assuming productive technology takes a log-linear Cobb-

Douglas form, the single-output stochastic frontier model can be represented as

ln yi = β0 +
m∑

j=1

βj ln xij + vi − ui.

The overall error εi = vi − ui is often referred to as a ‘composed error’ term,

composed of the traditional symmetric random noise component vi and an ad-

ditional one-sided inefficiency component ui. The two error terms vi and ui are

assumed to be independent of each other and of the input variables. Separation

of the two error terms allows for efficiency measurement analysis.

Estimation by OLS provides consistent estimates β̂i (i 6= 0) of the slope

parameters but the estimate β̂0 of the intercept is inconsistent. Additionally,

OLS considers only the composed error εi and hence does not provide estimates

of technical efficiency for each producer. OLS is useful however in providing a

test for the presence of inefficiency. If εi = vi then ui = 0 and the OLS residuals

will be symmetrically distributed suggesting an absence of technical inefficiency

in the data. Schmidt & Lin (1984) and Coelli (1995) provide alternative test

statistics to test for possible inefficiency in the data by testing if the data are

skewed using the second and third sample moments of the OLS residuals. Coelli’s

(1995) test statistic is more commonly used as it is asymptotically distributed as

N(0, 1).

While OLS can be used to provide consistent estimates of the slope parame-

ters, additional assumptions and a different estimation technique are required to

obtain consistent estimates of the intercept and estimates of technical efficiency

for each producer. Estimation of all the β parameters and the ui can however be

achieved via maximum likelihood.

Let random variables U and V have respective realisations u and v, where u is
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associated with technical efficiency and v is associated with statistical noise. Esti-

mation of the parameters can be achieved under maximum likelihood estimation

if we assume that random variables U and V are distributed as follows

(i) U ∼ asymmetric i.i.d, e.g. nonnegative half normal, exponential, nonnega-

tive truncated normal, gamma

(ii) V ∼ N(0, σ2
v) i.i.d.

(iii) U and V are distributed independently of each other, and of the input

variables.

Assumption (i), for the half normal and exponential distributions, is based on

the premise that the modal value of technical inefficiency is zero, with increasing

values of technical inefficiency becoming increasingly less likely. The truncated

normal and gamma specifications allow a nonzero modal value of technical in-

efficiency, but still with the premise that increasing values of inefficiency are

increasingly less likely. Assumption (ii) assumes that random error is normally

distributed with zero mean and constant variance. The second part of assumption

(iii) can be problematic since if producers have knowledge of their technical effi-

ciency, this may influence their choice of inputs to production. This assumption

is relaxed when measurements are taken over time.

The log-likelihoods, their derivatives and information matrices were derived

in Chapter 2 for the more general model

yi = f(xi,β) + cuui + cvvi, {cu, cv} ∈ R.

Applying a logarithmic transformation to the response yi and predictors xi, and

letting

f(xi,β) = fT (xi)β, (4.6)
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cu = −1, (4.7)

cv = 1, (4.8)

gives the log-linear Cobb-Douglas form of the single-output stochastic production

frontier model

ln yi = β0 +
m∑

j=1

βj ln xij + vi − ui

= fT (xi)β + vi − ui. (4.9)

In the above equation fT (xi) = (1, ln xi1, ln xi2, . . . , ln xim), β = (β0, β1, . . . , βm)T

and the overall composed error is εi = vi − ui. Hence the maximum likelihood

estimates and information matrices can be derived for the stochastic production

frontier model by substituting equations (4.6) to (4.8) into the equations derived

in Chapter 2. In the remainder of this chapter, yi will be the notation used for the

response (output) although when applying a log-linear Cobb-Douglas stochastic

frontier model to data, logarithms must be applied to the inputs and outputs.

4.3.1 Normal-half normal model

Let U follow a nonnegative half normal distribution, that is U ∼ N+(0, σ2
u).

Properties of the more general form of the composed error term where E =

cuU + cvV were derived in Section 2.2 of Chapter 2. The probability density

functions fU(u) and fV (v) are given in equations (2.3) and (2.4) respectively

with their joint density fU,V (u, v) given in equation (2.6).

For the stochastic production frontier model where the composed error takes

the form E = V − U , the joint density (2.7) simplifies to

fU,E(u, ε) =
1

πσuσv

exp

{
− u2

2σ2
u

− (ε + u)2

2σ2
v

}
.

The marginal density (2.8) simplifies to

fE(ε) =
2

σG

φ

(
ε

σG

)
Φ

(
−λε

σG

)
,
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Figure 4.2: Normal-half normal distributions.

with mean and variance from equations (2.9) and (2.10) simplifying to give

E[E] = −
√

2

π
σu,

V ar(E) =
π − 2

π
σ2

u + σ2
v ,

where σ2
G = σ2

u + σ2
v and λ = σu/σv. Three different normal-half normal distri-

butions are plotted in Figure 4.2. All distributions are negatively skewed with

negative modes and means since σu > 0 for each density. The reparameterisation

of σu and σv to λ gives an indication of the relative contribution of u and v to

ε. As λ → 0 either σ2
v → ∞ or σ2

u → 0, so that statistical noise dominates the

term associated with technical efficiency. As λ → ∞ either σ2
u → ∞ or σ2

v → 0,

so that the technical efficiency component dominates the statistical noise in the

determination of ε. Coelli (1995) gives the appropriate one-sided likelihood ratio

test statistic for testing the hypothesis that λ = 0.

To calculate an estimate of mean technical efficiency for all producers, or

estimates of the technical efficiency for each individual producer, the parameters

must first be estimated. The log-likelihood function (2.11) for N observational
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units simplifies to

ln L (θ; y) =
N∑

i=1

{
ln

(
2

σG

)
+ ln φ

(
yi − fT (xi)β

σG

)
+ ln Φ(−ai)

}
,

where

ai =
λεi

σG

=
λ[yi − fT (xi)β]

σG

.

Maximum likelihood estimates of the parameters can be obtained by maximising

the log-likelihood function with respect to the parameters.

The mean technical efficiency of all producers is given by

E[exp{−U}] = 2[1− Φ(σu)] exp

{
σ2

u

2

}
,

(Lee & Tyler 1978). This estimator is preferred to Aigner et al.’s (1977) original

estimator (1−E[U ]) which is only the first-order term in the Taylor series expan-

sion of exp{−U}. The average technical efficiency of all producers is not usually

of primary interest. Estimates of individual producer efficiencies are desirable to

enable comparison across producers.

From equation (C.12) in Appendix C, the conditional density of U given E

can be rewritten as

fU |E(u|ε) =

1

σ∗
φ

(
u− µ∗

σ∗

)

Φ

(
µ∗
σ∗

) , (4.10)

where µ∗ = − σ2
u

σ2
G

ε and σ∗ =
σuσv

σG

. The conditional density fU |E(u|ε) is dis-

tributed as N+(µ∗, σ2
∗), hence the mean or the mode of this distribution can be

used as a point estimator for ui. Equations (C.13) and (C.14) simplify to give

the conditional mean and mode for the i-th observational unit as

E[Ui|Ei] = µ∗i +

σ∗φ
(
−µ∗i

σ∗

)

Φ

(
µ∗i
σ∗

) = σ∗

[
−ai +

φ (ai)

Φ (−ai)

]
, (4.11)
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M(Ui|Ei) =





µ∗i if µ∗i ≥ 0

0 otherwise.
(4.12)

Estimates of technical efficiency for each observational unit can then be obtained

from

TEi = exp{−ûi}, (4.13)

where ûi is E[Ui|Ei] or M(Ui|Ei). The point estimator ûi = E[Ui|Ei] was origi-

nally proposed by Jondrow, Lovell, Materov & Schmidt (1982). Battese & Coelli

(1988) provide an alternative estimator

TEi = E[exp{−Ui}|Ei] =




Φ

(
−σ∗ +

µ∗i
σ∗

)

Φ

(
µ∗i
σ∗

)


 exp

{−µ∗i + 1
2
σ2
∗
}

. (4.14)

Jondrow et al.’s estimator is the first-order term in the Taylor series expansion

of Battese & Coelli’s estimator, hence Battese & Coelli’s estimator is usually

preferred. Horrace & Schmidt (1996), Bera & Sharma (1999) and Hjalmars-

son, Kumbhakar & Heshmati (1996) obtained confidence intervals for Jondrow

et al.’s estimator. Bera & Sharma also obtained confidence intervals for Battese

& Coelli’s estimator.

The information matrix for the log-linear Cobb-Douglas stochastic produc-

tion frontier model can be derived by substituting cu = −1 and cv = 1 into

the corresponding equations in Section 2.2 of Chapter 2. The information ma-

trix is required to obtain standard errors for the maximum likelihood parameter

estimates. It can also be used to design experiments for the frontier model.

The information matrix and the derivatives used to calculate it are given in Ap-

pendix B.1.



CHAPTER 4. STOCHASTIC FRONTIER MODELS 66

4.3.2 Normal-exponential model

Let U follow an exponential distribution with scale parameter σu (the inverse

scale 1/σu is called the rate parameter), that is U ∼ Exponential(1/σu). Proper-

ties of the more general form of the composed error term where E = cuU + cvV

were derived in Section 2.3 of Chapter 2. The probability density functions fU(u)

and fV (v) are given in equations (A.1) and (2.4) respectively with their joint den-

sity fU,V (u, v) given in equation (A.2).

For the stochastic production frontier model where the composed error takes

the form E = V − U , the joint density (A.3) simplifies to

fU,E(u, ε) =
1√

2πσuσv

exp

{
− u

σu

− (ε + u)2

2σ2
v

}
.

The marginal density (2.14) simplifies to

fE(ε) =
1

σu

exp

{
ε

σu

+
σ2

v

2σ2
u

}
Φ

(
− ε

σv

− σv

σu

)
,

with mean and variance from equations (2.15) and (2.16) simplifying to give

E[E] = −σu,

V ar(E) = σ2
u + σ2

v .

Three different normal-exponential distributions are plotted in Figure 4.3. The

shape of the distribution will depend on σu and σv. As the ratio σu/σv → ∞
the density looks increasingly more like a negative exponential distribution. As

σu/σv → 0 the density looks increasingly more like a normal distribution.

The parameters can be estimated by maximising the log-likelihood function.

The log-likelihood function (2.17) simplifies to

ln L (θ; y) =
N∑

1=1

{
ln

(
1

σu

)
+

yi − fT (xi)β

σu

+
σ2

v

2σ2
u

+ ln Φ(−ai)

}
,

where

ai =
εi

σv

+
σv

σu

=
yi − fT (xi)β

σv

+
σv

σu

.
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Figure 4.3: Normal-exponential distributions.

Given the maximum likelihood parameter estimates, producer specific estimates

of technical efficiency can be obtained from the conditional density of U given E,

which is given in equation (4.10), with

µ∗ = −ε− σ2
v

σu

and σ∗ = σv.

The conditional mean and mode for the i-th observational unit can be calculated

using equations (4.11) and (4.12) respectively. Estimates of technical efficiency

for each observational unit can then be obtained using the conditional mean

or mode to estimate ui and substituting this into equation (4.13), or by using

equation (4.14). Confidence intervals can also be derived in the same manner as

the normal-half normal case. The derivatives of the log-likelihood function are

given in Appendix B.2 along with the information matrix.

4.3.3 Normal-truncated normal model

Let U follow a nonnegative truncated normal distribution, that is U ∼
N+(µ, σ2

u) where µ is the mode. If the distribution was not truncated, µ would

be both the mean and the mode. When µ = 0 the nonnegative truncated normal
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distribution simplifies to the nonnegative half normal distribution. Hence the

nonnegative truncated normal distribution generalises the nonnegative half nor-

mal distribution by allowing the modal value of technical efficiency to be nonzero,

thus permitting a more flexible structure for the pattern of efficiency in the data.

The normal-truncated normal formulation for a stochastic production frontier

was introduced by Stevenson (1980).

Properties of the more general form of the composed error term where E =

cuU + cvV were derived in Section 2.4 of Chapter 2. The probability density

functions fU(u) and fV (v) are given in equations (A.4) and (2.4) respectively

with their joint density fU,V (u, v) given in equation (A.5). For the stochastic

production frontier model where the composed error takes the form E = V − U ,

the joint density (A.6) simplifies to

fU,E(u, ε) =
1

2πσuσv

exp

{
−(u− µ)2

2σ2
u

− (ε + u)2

2σ2
v

}[
Φ

(
µ

σu

)]−1

.

The marginal density (2.22) simplifies to

fE(ε) =
1

σG

φ

(
µ + ε

σG

)
Φ

(
µ

λσG

− λε

σG

)[
Φ

(
µ

σu

)]−1

,

with mean and variance from equations (2.23) and (2.24) simplifying to give

E[E] = −µ− h

(
− µ

σu

)
σu,

V ar(E) =

{
1− µ

σu

h

(
− µ

σu

)
−

[
h

(
− µ

σu

)]2
}

σ2
u + σ2

v ,

where σ2
G = σ2

u + σ2
v and λ = σu/σv. Three different normal-truncated normal

distributions are plotted in Figure 4.4 where σu = σv = 1 for all densities and µ

is negative, zero (the normal-half normal case) and positive.



CHAPTER 4. STOCHASTIC FRONTIER MODELS 69

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

ε

f(ε)

← µ = 0

µ = 2→

← µ = −2

Figure 4.4: Normal-truncated normal distributions with σu = σv = 1.

The parameters can be estimated by maximising the log-likelihood function.

The log-likelihood function (2.25) simplifies to

ln L (θ; y) =
N∑

i=1

{
− ln σG + ln φ

(
µ + [yi − fT (xi)β]

σG

)
+ ln Φ(−a1i)

− ln Φ (−a2)

}
,

where

a1i = − µ

λσG

+
λεi

σG

= − µ

λσG

+
λ[yi − fT (xi)β]

σG

,

a2 = − µ

σu

= −µ(λ2 + 1)1/2

λσG

,

σu =
λσG

(c2
uλ

2 + c2
v)

1/2
.

Once the maximum likelihood estimates have been calculated, producer specific

estimates of technical efficiency can be obtained from the conditional density of

U given E, which is given in equation (4.10), with

µ∗ =
σ2

vµ− σ2
uε

σ2
G

and σ∗ =
σuσv

σG

.
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Estimates of efficiency can then be calculated in the same manner as for the

normal-half normal and normal-exponential cases. The calculations for the in-

formation matrix are given in Appendix B.3.

4.3.4 Normal-gamma model

Let U follow a gamma distribution with shape parameter α and scale pa-

rameter σu (the inverse scale 1/σu is called the rate parameter), that is U ∼
Gamma(α, σu). When α = 1 the gamma distribution simplifies to the expo-

nential distribution. Hence the gamma distribution generalises the exponential

distribution by allowing the shape parameter to take a value other than one. Dif-

ferent values of the shape parameter will produce densities with different modal

values of technical efficiency (the modal value is zero for the exponential distri-

bution) thus permitting a more flexible structure for the pattern of efficiency in

the data. The normal-gamma formulation was introduced by Greene (1980a),

Greene (1980b) and Stevenson (1980), and later extended by Greene (1990).

Properties of the more general form of the composed error term where E =

cuU + cvV were derived in Section 2.5 of Chapter 2. The probability density

functions fU(u) and fV (v) are given in equations (A.7) and (2.4) respectively

with their joint density fU,V (u, v) given in equation (A.8). For the stochastic

production frontier model where the composed error takes the form E = V − U ,

the joint density (A.9) simplifies to

fU,E(u, ε) =
uα−1

Γ(α)σα
u

√
2πσv

exp

{
− u

σu

− (ε + u)2

2σ2
v

}
.

The marginal density (2.28) simplifies to

fE(ε) =
1

Γ(α)σα
u

exp

{
ε

σu

+
σ2

v

2σ2
u

}
Φ

(
− ε

σv

− σv

σu

)
E[Qα−1],

where Q ∼ N+
(−ε− σ2

v/σu, σ
2
v

)
and E[Qα−1] is a fractional moment of the non-

negative truncated normal distribution of Q. The integration inherent in the last
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two terms of fE(ε) poses some problems in estimation. Numerical approxima-

tion is required to evaluate the integral and the estimates can be sensitive to the

quadrature rule used (Greene 1990). Stevenson (1980) and Beckers & Hammond

(1987) provide two alternative (but equivalent) representations of the marginal

density of E. Stevenson also gives a closed form expression for the normal-gamma

density for α = 2 and α = 3. However, integer values of α restrict the gamma

distribution to the Erlang distribution. Beckers & Hammond’s formulation does

not restrict α to integer values.

The mean and variance from equations (2.29) and (2.30) simplify to give

E[E] = −ασu,

V ar(E) = ασ2
u + σ2

v .

Three different normal-gamma distributions are plotted in Figure 4.5 where σu =

σv = 1 for all densities and α = 1, 2, 3. These values of α are convenient for

illustrative purposes; when α = 1, E[Qα−1] = 1 and the density collapses to the

normal-exponential density; when α = 2, E[Qα−1] is the mean of the nonnegative

truncated normal random variable Q; when α = 3, E[Qα−1] can be obtained using

the identity E[Q2] = V ar(Q) + E[Q]2.

The parameters can be estimated by maximising the log-likelihood function.

The log-likelihood function (2.31) simplifies to

ln L (θ; y) =
N∑

i=1

{
− ln Γ(α) + α ln

(
1

σu

)
+

εi

σu

+
σ2

v

2σ2
u

+ ln Φ

(
− εi

σv

− σv

σu

)
+ lnE[Qα−1

i ]

}
,

where εi = yi − fT (xi)β. Given the maximum likelihood parameter estimates,

producer specific estimates of technical efficiency can be obtained from the condi-

tional density of U given E. From equation (C.9) in Appendix C, the conditional
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Figure 4.5: Normal-gamma distributions with σu = σv = 1.

density can be rewritten as

fU |E(u|ε) =

uα−1 1

σ∗
φ

(
u− µ∗

σ∗

)

Φ

(
µ∗
σ∗

)
E[Qα−1]

,

where µ∗ = −ε − σ2
v

σu

and σ∗ = σv. Equation (C.10) gives the conditional mean

for the i-th observational unit as

E[Ui|Ei] =
E[Qα]

E[Qα−1]
,

which can be approximated numerically. Estimates of technical efficiency for each

observational unit can then be obtained using ûi = E[Ui|Ei] and substituting this

into equation (4.13).

The information matrix and the derivatives used to calculate it are given in

Appendix B.4. The elements of the expected information matrix involve com-

plicated integrals which are inherent in the conditional expectations, variances

and covariances appearing in the elements of the matrix. These quantities can

be approximated numerically although the approximation error can pose a seri-

ous problem (Ritter & Simar 1997). Ritter & Simar (1997) also report that the
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sample size needs to be in the hundreds to be able to estimate the shape pa-

rameter α which is required to obtain the efficiency estimates. Similar problems

exist in estimating µ under the normal-truncated normal specification (Ritter &

Simar 1997).

4.3.5 Sensitivity to distributional assumptions

Kumbhakar & Lovell (2000) investigate the concordance of correlation co-

efficients between efficiency rankings under the four distributional assumptions

based on Greene’s (1990) analysis of 123 U.S. electric utilities. Kumbhakar &

Lovell report a strong rank correlation coefficient between the exponential and

gamma estimates and also between the half normal and truncated normal esti-

mates. This provides evidence to support Ritter & Simar’s (1997) argument that

the simpler half normal and exponential specifications should be implemented

over the more flexible truncated normal and gamma distributions. Addition-

ally, Kumbhakar & Lovell suggest that the efficiency estimates are generally not

sensitive to the choice of one-parameter distribution (half normal or exponential).

Although the small number of empirical investigations which explore the sen-

sitivity of rankings based on efficiency measurements report little sensitivity, they

do not provide evidence on the sensitivity of the actual efficiency measurements

themselves. It is only suggested that the actual efficiency measurements may

generally be insensitive to the distributional assumptions. Nor do the studies

discuss the sensitivity of the information matrix to the choice of distributional

assumption imposed on the efficiency term.

4.3.6 Method of Moments Estimation

The details given above for the normal-half normal, normal-exponential,

normal-truncated normal and normal-gamma specifications of composed error
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were based on maximum likelihood estimation of the parameters. Like corrected

ordinary least squares (COLS) and modified ordinary least squares (MOLS),

maximum likelihood estimation (MLE) is carried out in two steps. In the first

step, estimates of all the parameters are obtained via maximum likelihood. In

the second step, estimates of technical efficiency are obtained conditional on the

maximum likelihood estimates of the parameters by decomposing the maximum

likelihood residuals into statistical noise and technical inefficiency.

An alternative estimation method is to obtain estimates of the model param-

eters using MOLS and then use equation (4.13) to obtain estimates of producer

specific technical efficiency (Kumbhakar & Lovell 2000). Recall that the first step

in MOLS estimation is to obtain consistent estimates of the slope parameters us-

ing ordinary least squares (OLS). In the second step of MOLS estimation, the

second and third central moments of the OLS residuals can be used to estimate

σu and σv. The estimate of σu is then used to obtain a consistent estimate of the

intercept parameter. The estimated parameters are then used to obtain estimates

of technical efficiency for each producer using equation (4.13). This procedure is

referred to as ‘method of moments estimation.’

Coelli’s FRONTIER version 4.1 freeware for estimating stochastic frontier

production and cost functions implements the method of moments approach de-

scribed above. At the time of publication of this dissertation, FRONTIER version

4.1 was available for download free of charge with an accompanying manual at

http://www.uq.edu.au/economics/cepa/frontier.htm. Sena (1999) reviews

LIMPDEP 7.0 and FRONTIER 4.1 software used in the estimation of stochastic

frontiers.
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4.4 Extensions to Cross-Sectional Stochastic

Production Frontier Models

The particular form of stochastic frontier model considered in detail above

was restricted to a single-output production model for cross-sectional data.

4.4.1 Multiple-output stochastic distance functions

In situations where multiple inputs produce multiple outputs (rather than pro-

ducing a single output), the single-output model can be extended to a multiple-

output model using a stochastic distance function (Kumbhakar & Lovell 2000).

4.4.2 Stochastic production frontier models for panel data

(Schmidt & Sickles 1984) discuss three problems with cross-sectional stochas-

tic production frontier models; (i) strong distributional assumptions are re-

quired for maximum likelihood estimation; (ii) maximum likelihood estimation

requires that the technical inefficiency component u be independent of the re-

gressors; and (iii) Jondrow et al.’s (1982) producer specific estimates of tech-

nical efficiency are not consistent. These limitations can be resolved if panel

(or longitudinal) data are available (Kumbhakar & Lovell 2000). The stochastic

production frontier model can be extended to allow data to be modelled over

time with time-invariant technical efficiency (e.g. Pitt & Lee 1981, Schmidt &

Sickles 1984, Kumbhakar 1987, Battese & Coelli 1988) or time-varying techni-

cal efficiency (e.g. Cornwell, Schmidt & Sickles 1990, Kumbhakar 1990, Lee &

Schmidt 1993, Battese & Coelli 1992).
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Linear mixed effects models with time-invariant technical efficiency

Assume we have N producers and that observations at times t = 1, . . . , T

are collected for the i-th producer. Additionally, assume that there are no tem-

poral trends. Cross-sectional model (4.9) can then be extended to a log-linear

Cobb-Douglas stochastic production frontier model with time-invariant technical

efficiency, which can be written as

ln yit = β0 +
m∑

j=1

βj ln xijt + vit − ui.

The above model is a linear mixed effects model. If the ui are fixed then the

model is a linear fixed effects model where the ui are allowed to be correlated

with the regressors or with the vit. Since the ui are fixed effects, they become

producer specific intercept parameters.

When the ui are randomly distributed with constant mean and variance, but

are assumed to be uncorrelated with the regressors and with vit, the above model

is a linear random effects model, also called a variance components model. This

one-way random effects model can be estimated by the standard generalised least

squares method. If distributions on the ui and vit can be assumed, maximum

likelihood estimation of the time-invariant model is possible and is structurally

similar to the procedure applied to cross-sectional data. Note that the cross-

sectional model, which is the primary focus of this thesis, can be viewed as a

linear random effects model with a single observation collected at one time point

for each producer.

As in the frontier literature (Coelli 1995), for mixed effects models, the vari-

ance ratio

λ2 =
σ2

u

σ2
v

,

sometimes referred to as the degree of correlation, is used in likelihood ratio

testing of the variance components with null hypothesis λ = 0 (Stram & Lee
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1994, Morrell 1998).

It is also worth noting that there is an existing literature on experimental

design for variance component models. Khuri (2000) provides a comprehen-

sive coverage of the literature on designs for estimating variance components.

Mukerjee & Huda (1988) consider optimal design for the estimation of variance

components, while Giovagnoli & Sebastiani (1989) discuss designs for estimation

of both the mean and variance components. Aigner & Balestra (1988) present

some work on optimum experimental design for error component models. Men-

tre, Mallet & Baccar (1997) report on optimal designs for estimating random

effects regression models under cost constraints. Optimal Bayesian designs for

one-way random effects models are explored in Lohr (1995). In more recent years

Atkinson (2008) constructs optimum designs for random effects nonlinear regres-

sion models. However, the models dealt with in the design literature consider

random effects with zero mean, whereas, stochastic production frontier models

have a random effect ui with nonzero mean.

4.4.3 Heteroskedasticity

It is not uncommon for the variance of the composed error term to be pos-

itively correlated with size-related characteristics of the observations, implying

heteroskedasticity in the data. Heteroskedasticity can appear in either error com-

ponent and can affect inferences about the model parameters and hence affect

inferences about technical inefficiency. Kumbhakar & Lovell (2000) report that,

for cross-sectional models: (i) unmodelled heteroskedasticity in v leads to biased

estimates of technical efficiency although estimates of the model parameters are

unbiased; (ii) unmodelled heteroskedasticity in u causes bias in both efficiency

and model parameter estimates; and (iii) unmodelled heteroskedasticity in both

error components causes bias in opposite directions, so there is hope that the

overall bias may be small.
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4.4.4 New developments: Bayesian techniques

Use of Bayesian techniques provides the researcher with a set of more flexible

models. Bayesian models overcome the need to impose a priori sampling distribu-

tions on the efficiency term u. This approach treats the uncertainty in the choice

of sampling model by mixing over a number of competing inefficiency distribu-

tions proposed in the literature with posterior model probabilities as weights.

The choice of a particular distribution for the inefficiency term most favoured by

the data can be made using Bayes factors or posterior odds ratio as a criterion

for model selection. Bayesian models also allow parametric frontier modelling

to deal with multiple outputs and undesirable outputs. Van den Broeck, Koop,

Osiewalski & Steel (1994) first introduced Bayesian analysis in estimation of

cross-sectional stochastic frontier models.

4.5 Nonparametric Techniques

Charnes, Cooper & Rhodes (1978) built on the pioneering work of Farrell

(1957) by applying linear programming to estimate an empirical production tech-

nology frontier from which measures of efficiency can be obtained. The technique

formally developed by Charnes et al. is known as Data Envelopment Analysis

(DEA).

Data envelopment analysis is a mathematical programming model applied to

observed data that allows construction of a production frontier as well as calcula-

tion of efficiency scores relative to the frontier. Based on the large and continually

growing number of research papers published in this area, data envelopment anal-

ysis appears to be the popular choice for nonparametric efficiency analysis. The

primary advantage of this technique is that there is no need to explicitly specify

a mathematical form for the production function. However, because of its deter-

ministic nature, it (usually) does not distinguish between technical inefficiency
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and statistical noise.

It is important to note that the choice between a parametric approach or a

nonparametric approach to efficiency analysis is not governed by which of these

two approaches is superior; rather it should be determined by which approach is

the most appropriate. For example, if there are only a small number of obser-

vations for analysis or if there is no satisfactory parameterisation of the frontier

model, analysis should be directed towards a nonparametric approach. Charnes

et al. (1994), Cooper et al. (2000) and Cooper et al. (2004) provide a compre-

hensive coverage on the theory and application of data envelopment analysis.

4.6 A Summary of Models and Estimation Tech-

niques

Fried et al. (1993) and Kalirajan & Shand (1999) consider both nonparamet-

ric and parametric approaches to measuring productive and economic efficiency.

Jacobs et al. (2006) considers both nonparametric and parametric approaches

within a health care setting. Murillo-Zamorano (2004) provide a critical and

detailed review of parametric and non-parametric frontier methods.

Figure 4.6 summarises the approaches to estimating production frontiers dis-

cussed in this chapter. For composed error εi = vi − ui in the log-linear Cobb-

Douglas (stochastic) production frontier model: ui = 0 equates to a linear re-

gression model; vi = 0 and ui only restricted by ui ≥ 0 equates to a deterministic

production frontier model with parameters and technical efficiency being ‘calcu-

lated’; vi = 0 and ui ≥ 0 distributed asymmetrically equates to a deterministic

production frontier model with parameters and technical efficiency being ‘esti-

mated’; and vi distributed symmetrically and ui ≥ 0 distributed asymmetrically

equates to a stochastic production frontier model.
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Chapter 5

Optimum Design of Experiments

Consider the following model that was presented in Chapter 2

Yi = f(xi,β) + Ei, i = 1, . . . , N. (5.1)

A distributional assumption is imposed on the Ei with the assumed distribution

having k− p (possibly unknown) parameters τ . For example, if the Ei represent

random error only, and not technical efficiency, with Ei ∼ N(0, σ2) i.i.d. then

τ has just one element, which is σ2. The true response f(x,β) is a function of

β, a vector of p unknown parameters that require estimation, and x, a vector

of m explanatory variables. Thus the full k-dimensional parameter vector θ is

partitioned into the p-dimensional parameter vector β from the model and the

(k−p)-dimensional parameter vector τ arising from the distributional assumption

on the Ei, that is θ = (β, τ ).

If the explanatory variables x can be controlled then experiments can be

performed and the x are design variables with values belonging to a compact set

X known as the design region or design space. The optimum design problem

consists of choosing values for the design variables x ∈ X ⊆ Rm and determining

the frequency or proportion of observations that should be taken at these values

to optimise the estimation of the unknown parameters. Optimality is defined
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using a criterion function Ψ which is to be maximimised. More will be discussed

on criterion functions in later sections.

5.1 Linear Optimum Designs

Typically, linear optimum designs arise from linear models and nonlinear op-

timum designs arise from nonlinear models. The stochastic frontier model is

an exception. The Cobb-Douglas form of a stochastic frontier is a linear model

whose optimum design is nonlinear, that is, parameter dependent. For ease of

comparison between linear and nonlinear optimum designs we consider the situ-

ation where an optimum linear design originates from a linear model.

Model (5.1) is linear when the i-th observation takes the form

Yi = fT (xi)β + Ei, i = 1, . . . , N. (5.2)

If the Ei have zero mean then the linear model can be expressed as

E[Y ] = Fβ,

where Y is the N × 1 vector of responses and F = [f(x1), . . . , f(xN)]T is an

N × p matrix known as the model matrix. The i-th row of F is fT (xi), a known

function of the m explanatory variables. Additionally, assuming that the errors

are independent with constant variance, the covariance matrix of the least squares

estimate of β is

Cov(β̂) = σ2
(
F T F

)−1
.

The p × p matrix F T F is the information matrix of β. The information in the

experiment is greater for ‘larger’ values of F T F . Hence the covariance of β̂ is

‘smaller’ for ‘larger’ F T F . The advantage of least squares estimation is that

it does not require any distributional assumption on the errors to estimate the
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parameters. However, the least squares first order condition E[Ei] = 0 may

not hold, for example, for a stochastic frontier model. An alternative method of

estimation is via maximum likelihood which assumes a distribution on the errors.

For the usual linear statistical model, the residuals are typically assumed to

be independently and normally distributed with Ei ∼ N(0, σ2), giving indepen-

dently and normally distributed responses Yi ∼ N(fT (xi)β, σ2). The probability

density function of the i-th response is

fYi
(yi; θ) =

1√
2πσ

exp

{
− 1

2σ2

[
yi − fT (xi)β

]2
}

,

with log-likelihood function given by

ln L (θ; y) =
N∑

i=1

{
−1

2
ln(2π)− 1

2
ln(σ2)− 1

2σ2
[yi − fT (xi)β]2

}
.

The expected Fisher information matrix of β derived from this log-likelihood

function is

IN(β) =
1

σ2

N∑
i=1

f(xi)f
T (xi) =

1

σ2
F T F, (5.3)

giving the covariance matrix of the maximum likelihood estimate of β as

Cov(β̃) = {IN(β)}−1 = σ2(F T F )−1.

Asymptotically, the variance covariance matrix of the maximum likelihood pa-

rameter estimates is the inverse of the Fisher information matrix. Hence designs

that maximise the information in the experiment, minimise the variance of the

estimates. The information matrix (5.3) is independent of the β parameters that

require estimation but depends on σ2, which may require estimation. Conse-

quently, optimum designs for linear models are independent of the β parameters.

Regardless of whether σ2 is known or not, in comparing experimental designs for

a specific experiment, the value of σ2 is not relevant since the value is the same

for all proposed designs.
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If the parameter vector is extended to θ = (β, σ2) then the expected Fisher

information matrix of θ is the block diagonal matrix

IN(θ) =
1

σ2


 F T F 0

0
N

2σ2


 , (5.4)

giving the covariance matrix of the maximum likelihood estimate of θ as

Cov(θ̃) = {IN(θ)}−1 = σ2




(F T F )−1 0

0
2σ2

N


 .

The lower right element of information matrix (5.4) associated with the param-

eter σ2 is independent of the design variables, thus we cannot design optimally

for σ2. In addition to this and the comments made above, the block diagonal

structure of the information matrix implies that designs for optimal estimation of

β are independent of σ2, when comparing designs for a specific experiment. The

optimum designs will be optimal for β with replicated design points required for

estimation of σ2.

The above example demonstrates some generalisations of linear optimum de-

signs. The key point in comparing linear and nonlinear optimum designs is that

linear optimum designs are independent of the β parameters that require estima-

tion. The following section will demonstrate that this is not the case for nonlinear

designs.

5.2 Nonlinear Optimum Designs

If the residuals in model (5.1) are independently and normally distributed

with Ei ∼ N(0, σ2) then the observed responses are independently and normally

distributed with Yi ∼ N(f(xi,β), σ2). The probability density function of the

i-th response is

fYi
(yi; θ) =

1√
2πσ

exp

{
− 1

2σ2
[yi − f(xi, β)]2

}
,
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with log-likelihood function given by

ln L (θ; y) =
N∑

i=1

{
−1

2
ln(2π)− 1

2
ln(σ2)− 1

2σ2
[yi − f(xi,β)]2

}
.

The expected Fisher information matrix of β derived from this log-likelihood

function is

IN(β) =
1

σ2

N∑
i=1

(
∂f(xi,β)

∂β

)(
∂f(xi, β)

∂β

)T

, (5.5)

giving the covariance matrix of the maximum likelihood estimate of β as

Cov(β̃) = {IN(β)}−1 = σ2

[
N∑

i=1

(
∂f(xi,β)

∂β

)(
∂f(xi,β)

∂β

)T
]−1

.

Information matrix (5.5) may depend on the β parameters through the derivative

of f(xi, β) with respect to β. Consequently, optimum designs for nonlinear

models may depend on the unknown β parameters that require estimation.

If the parameter vector is extended to θ = (β, σ2) then the expected Fisher

information matrix of θ is

IN(θ) =
1

σ2




N∑
i=1

(
∂f(xi,β)

∂β

)(
∂f(xi,β)

∂β

)T

0

0
N

2σ2




. (5.6)

The block diagonal structure of the information matrix simplifies inversion giving

the covariance matrix of the maximum likelihood estimate of θ as

Cov(θ̃) = {IN(θ)}−1 = σ2




[
N∑

i=1

(
∂f(xi,β)

∂β

)(
∂f(xi,β)

∂β

)T
]−1

0

0
2σ2

N




.

The comments in the previous section regarding estimation of the parameter σ2

apply with equal force here. Because the expected Fisher information matrix (5.6)
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is block diagonal, as it is in equation (5.4) for the linear model, experiments can be

designed for optimal estimation of β with replication required for estimation of σ2.

However, unlike linear optimum designs, nonlinear optimum designs may depend

on the unknown β parameters. If prior values of the unknown parameters can be

obtained from past experiments or studies then ‘locally optimum’ designs can be

found. An alternative method is to impose prior distributions on the unknown

parameters and obtain optimum Bayesian designs. Even if prior values of the

unknown parameters are available, an optimum Bayesian design may be preferred

over a locally optimum design as prior distributions on the parameters can reflect

uncertainty in the prior values of the unknown parameters. Atkinson, Donev

& Tobias (2007) discuss both locally optimum designs and optimum Bayesian

designs for nonlinear models.

5.2.1 Nonlinear optimum designs for linear stochastic

frontier models

The log-linear Cobb-Douglas form of the stochastic production frontier

model (4.9), which was the focus of Chapter 4, can be expressed using linear

model (5.2). Although the model is linear, optimum designs for estimating the

unknown parameters are nonlinear due to the assumption of asymmetrically dis-

tributed errors. The same can be said for the more general form of the linear

model (2.1) presented in Chapter 2.

For these linear models the overall error Ei = cuUi + cvVi, {cu, cv} ∈ R, is

composed of an asymmetrically distributed error term Ui and a symmetrically

distributed random error term Vi giving a composed error Ei which is asymmet-

rically distributed. A result of the asymmetrical distribution of the composed

error is that the Ei do not have zero mean. Consequently the information matrix

of the parameters, and hence the covariance matrix of the estimates, are not
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necessarily block diagonal. The expected Fisher information matrix given by

IN(θ) = E




(
∂ ln L

∂β

)(
∂ ln L

∂β

)T (
∂ ln L

∂β

)(
∂ ln L

∂τ

)T

{(
∂ ln L

∂β

)(
∂ ln L

∂τ

)T
}T (

∂ ln L

∂τ

)(
∂ ln L

∂τ

)T




,

or

IN(θ) = −E




∂2 ln L

∂β∂βT

∂2 ln L

∂β∂τ T

∂2 ln L

∂τ∂βT

∂2 ln L

∂τ∂τ T




,

for a log-linear stochastic production frontier model, is of the form

IN(θ) =
N∑

i=1


 fβ(τ )f(xi)f

T (xi) f(xi)f
T
β,τ (τ )

fβ,τ (τ )fT (xi) Fτ (τ )


 . (5.7)

The function fT (xi), which is a function of xi only, is the i-th row of the model

matrix and has length p. The function fβ(τ ) is scalar-valued, and fβ,τ (τ ) is a

vector-valued function of length k− p. Both of the latter functions are functions

of the τ parameters and not the design variables xi. Fτ (τ ) is a symmetric matrix

of dimension k − p whose elements are functions of τ .

Unlike information matrices (5.4) and (5.6), information matrix (5.7) is not

block diagonal, hence calculation of the covariance matrix of the maximum like-

lihood estimate of θ is slightly more complicated. The covariance matrix is the

inverse of the expected Fisher information matrix, that is Cov(θ̃) = {IN(θ)}−1,

where the information matrix is partitioned and Section E.1 in Appendix E gives

the formulae for deriving the inverse of a partitioned matrix.
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Information matrix (5.7) has a non-simple dependence on the τ parameters

only and does not depend on the β parameters. Consequently, optimum designs

for log-linear stochastic frontier models depend on the τ parameters and not the

β parameters. Although model (5.2) is linear, an error term Ei with nonzero

mean results in nonlinear parameter dependent optimum designs. The non-block

diagonal structure of the information matrix implies that designs for optimal

estimation of β may depend on the τ parameters.

Optimum designs based on approximated information matrices

If the expected Fisher information matrix is approximated using, for example,

the approximation methods described in Chapter 3, then it will have the form

ÎN(θ) =
N∑

i=1


 fβ(µa)f(xi)f

T (xi) f(xi)f
T
β,τ (µa)

fβ,τ (µa)f
T (xi) Fτ (µa)


 ,

where µa = E[ai] is a function of the τ parameters only, and not the β parameters

or the design variables x. Hence, ultimately it has the same form and properties

as the exact information matrix (5.7) that is not approximated.

5.3 Continuous and Exact Designs

Continuous designs are represented by the measure ξ ∈ Ξ over X where Ξ is

the class of all design measures on X . Following the general notation of Atkinson

et al. (2007), if the design has N trials at n (n ≤ N) distinct points in X , the

process of determining an optimum design involves choosing a distribution over

X written as

ξ =





x1 x2 . . . xn

w1 w2 . . . wn



 . (5.8)

The first line gives the values of the design variables at the points of support of

the design. The wi are the associated design weights indicating the proportion of
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observations that should be taken at each support point. Since ξ is a measure,
∫

X
ξ dx =

∑n
i=1 wi = 1 and 0 ≤ wi ≤ 1 for all i. The optimum continuous design

is denoted by ξ∗ with design points x∗i and weights w∗
i . The information matrix

for a continuous design is written

M(ξ) =
n∑

i=1

wifθ(xi)f
T
θ (xi) = F T WF,

where

F T = [fθ(x1), . . . , fθ(xn)] ,

W = diag (w1, . . . , wn) .

The subscript θ in fθ(xi) is to emphasise that M(ξ) is the information matrix

of θ, where θ may be the extended parameter vector (β, τ ) and not just the β

parameters.

If Ii (θ) = fθ(xi)f
T
θ (xi), the information matrix M(ξ) is a weighted sum

of per observation expected Fisher information matrices (c.f. Appendix D.2).

The per observation expected Fisher information matrix Ii (θ) may not always

be expressible in the form fθ(xi)f
T
θ (xi); for example, when Ii (θ) is approxi-

mated using Method 2 or 3 in Sections 3.1.2 and 3.2.1 of Chapter 3 respectively.

However the information matrix M(ξ) can always be written as the (weighted

sum of the) product of a column vector multiplied by its own transpose using

an eigenvalue decomposition of the per observation expected Fisher information

matrix. The eigendecomposition of a matrix with a structure like that given in

Sections 3.1.2 or 3.2.1, where the information matrix is approximated, is detailed

in Appendix D.5.

If the measure refers to an exact design, realisable in integer counts for a

specific N , the measure is written as

ξN =





x1 x2 . . . xn

r1/n r2/n . . . rn/N



 ,
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where ri is the integer number of trials at xi and
∑n

i=1 ri = N . Exact designs

can often be found by integer approximation to the optimum continuous design

ξ∗, usually if the design weights w∗
i are rational. For exact N -trial designs the

information matrix is

M(ξN) =
1

N

N∑
i=1

fθ(xi)f
T
θ (xi) =

1

N
F T F.

If Ii (θ) = fθ(xi)f
T
θ (xi) then M(ξN) = 1

N

∑N
i=1 Ii (θ) = 1

N
IN (θ) where IN (θ) is

the (full) expected Fisher information matrix (c.f. Appendix D.3).

Only continuous designs shall be considered in this dissertation, however, all

designs used in practice are exact because an integer number of observations will

be taken at each of the distinct points x1,x2, . . . , xn. For all the parameters that

require estimation to be estimable, the number n of distinct design points must

be at least as large as the number of parameters that require estimation. Thus

for all the β parameters to be estimable n ≥ p and for the full parameter vector

θ to be estimable n ≥ k. The general criterion function Ψ = Ψ{M(ξ)}, which

is a function of the information matrix M(ξ), is a general measure of precision.

The design points x1, . . . , xn and their associated weights w1, . . . , wn are chosen

to maximise Ψ, hence maximising precision and giving optimum estimates of the

parameters.

5.4 Optimality Conditions

The relative merits of a design are typically determined using a scalar criterion

function Ψ{M(ξ)} which is a real-valued concave function defined on the class,

M(Ξ), of information matrices. The objective of optimum design is to

(i) maximise Ψ{M(ξ)} over the set of information matrices M(ξ) ∈ M(Ξ).

(ii) maximise Ψ{M(ξ)} over the set of designs ξ ∈ Ξ.
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(iii) maximise Ψ{M(ξ)} over the set of design weights w ∈ W ,

where W ≡ {w = (w1, w2, . . . , wn) : 0 ≤ wi ≤ 1,
∑n

i=1 wi = 1}. The above

three objectives are equivalent. For the design measure ξ, the search for an

optimum design usually involves finding the associated weights w for a set of fixed

design points x. As it is the design weights that ultimately define the optimum

design, the objective as specified in (iii) shall be the focus for now. This is a

nondegenerate constrained optimisation problem with the full constraint region

being a closed bounded convex set. The criterion function can be written more

explicitly as Ψ(w) to emphasise its dependence on the weights. The conditions for

an optimum design are defined in terms of directional derivatives of the criterion

function Ψ.

5.4.1 Gâteaux directional derivative

Given a function Ψ : Rn → R, the Gâteaux directional derivative of Ψ at

w = (w1, w2, . . . , wn) in the direction v = (v1, v2, . . . , vn) is

GΨ(w,v) = lim
α→0

Ψ(w + αv)−Ψ(w)

α
=

d

dα
Ψ(w + αv)

∣∣∣∣
α=0

,

if the limit exists. If Ψ is differentiable

GΨ(w, v) =

(
dΨ

dw

)T

v.

The Gâteaux derivative is a more general form of the partial derivative, since if

v = ei

GΨ(w, ei) =
∂Ψ

∂wi

∣∣∣∣
w

.

The coordinate vector ei ∈ Rn has a 1 in the i-th position and zeros in the

remaining n− 1 positions.
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5.4.2 Fréchet directional derivative

The Fréchet directional derivative of Ψ at w in the direction v is

FΨ(w,v) = lim
α→0

Ψ ((1− α)w + αv)−Ψ(w)

α

= lim
α→0

Ψ (w + α(v −w))−Ψ(w)

α

= GΨ(w, v −w).

If the Gâteaux derivative is linear and if Ψ is differentiable then

FΨ(w, v) = GΨ(w,v)−GΨ(w,w)

=

(
dΨ

dw

)T

v −
(

dΨ

dw

)T

w

=
n∑

j=1

∂Ψ

∂wj

vj −
n∑

j=1

∂Ψ

∂wj

wj.

When v = ei

FΨ(w, ei) = GΨ(w, ei)−GΨ(w,w)

=
dΨ

dwi

−
(

dΨ

dw

)T

w

=
∂Ψ

∂wi

−
n∑

j=1

∂Ψ

∂wj

wj. (5.9)

FΨ(w, ei) is called the i-th vertex directional derivative of Ψ at w in the direction

of the vertex ei. Assuming that Ψ(w) is differentiable at w∗, where w∗ maximises

Ψ(w), the first-order conditions for a local maximum are

FΨ(w∗, ei)





= 0 for w∗
i > 0

≤ 0 for w∗
i = 0.

(5.10)

This first-order stationarity condition is both necessary and sufficient for opti-

mality.

When w,v ∈ W , they can be interpreted as distributions or sets of weights

that define the design measure ξ. If ξi denotes the measure for the one point
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design putting unit mass wi = 1 at the point xi then the weights for this measure

are given by ei. Hence the directional derivative (5.9) of Ψ at w in the direction

ei can be equivalently represented as

FΨ{M(ξ),M(ξi)} = GΨ{M(ξ),M(ξi)} −GΨ{M(ξ),M(ξ)}

=
∂Ψ

∂wi

−
n∑

j=1

∂Ψ

∂wj

wj.

By use of the chain rule, and for M = M(ξ) =
∑n

i=1 wifθ(xi)f
T
θ (xi),

FΨ{M(ξ),M(ξi)} = fT
θ (xi)

∂Ψ

∂M
fθ(xi)−

n∑
j=1

fT
θ (xj)

∂Ψ

∂M
fθ(xj)wj

= tr

{
∂Ψ

∂M
fθ(xi)f

T
θ (xi)

}
− tr

{
∂Ψ

∂M

n∑
j=1

wjfθ(xj)f
T
θ (xj)

}

= tr

{
∂Ψ

∂M
M(ξi)

}
− tr

{
∂Ψ

∂M
M(ξ)

}
,

where M(ξi) = fθ(xi)f
T
θ (xi) is the information matrix for the one point design

putting unit mass at xi. That is, FΨ{M(ξ),M(ξi)} is the directional derivative

of Ψ at ξ in the direction of a one point design ξi. Atkinson et al. (2007) use this

formulation of the directional derivative.

5.4.3 The General Equivalence Theorem

The following General Equivalence Theorem (Whittle 1973, White 1973,

Kiefer 1974) provides alternative characterisations of an optimum design ξ∗ such

that M(ξ∗) maximises Ψ{M(ξ)}.

Theorem 5.4.1 The following are equivalent

(i) Ψ{M(ξ)} is maximised at M(ξ∗).

(ii) FΨ{M(ξ∗),M(ξ)} ≤ 0 for all ξ ∈ Ξ.
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(iii) If Ψ is differentiable at M(ξ∗) then FΨ{M(ξ∗),M(ξ)} achieves its maximum

at the one-point designs ξx, which put weight 1 at the support points (x)

of ξ∗.

The first-order condition (5.10) is an alternative, more concise, version of

the General Equivalence Theorem, and moreover is now sufficient, as well as

necessary, for global, not just local optimality, of w∗. The General Equivalence

Theorem holds for continuous designs but does not hold for exact designs in

general. The theorem is useful for checking whether or not a proposed design is

optimal and for motivating methods for the sequential construction of optimum

designs. However it does not say anything about the value of n, the number of

support points of the design.

The set M(Ξ) is a convex and compact subset of the linear space, Sym(k),

of symmetric matrices where the latter has dimension 1
2
k(k + 1). Hence a conse-

quence of Carathéodory’s Theorem is that most optimum designs are supported

by at most 1
2
k(k + 1) points (Pukelsheim 1993). This is not true for Bayesian

designs because the nonadditive nature of functions of information matrices pre-

cludes the use of Carathéodory’s Theorem (Atkinson et al. 2007).

5.5 Optimality Criteria

The criterion for determining if a specific design is optimal or for compar-

ing the optimality of different designs is based on the scalar-valued function

Ψ{M(ξ)}, known as the criterion function, which is a function of the information

matrix M(ξ). Asymptotically, the variance covariance matrix of the parameter

estimates is inversely proportional to the information matrix. Hence the covari-

ance of the parameter estimates is smaller and the estimates are more precise

in experiments with larger information. Maximisation of the criterion function

corresponds to maximising information in the experiment. The criteria of op-
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timality are often named using a letter of the alphabet so optimum design is

sometimes referred to as ‘alphabetic optimality’. The following are a selection of

some of the most widely used optimality criteria and are the criteria of relevance

for stochastic frontier models.

5.5.1 D-optimality

The most widely used design criterion is D-optimality where the log of the

generalised variance is minimised so that the criterion function to be maximised

is

Ψ{M(ξ)} = − ln |M−1(ξ)|.

The D-optimum design for a single parameter minimises the width of a confidence

interval for the parameter of a linear model. For a two parameter linear model,

D-optimum designs minimise the area of a confidence ellipse for the parameters.

For a multidimensional parameter space, a D-optimum design minimises the

volume of an ellipsoidal confidence region for the parameters of a linear model.

Hence the criterion of D-optimality is used when interest is in estimating all k

parameters as precisely as possible.

An advantage of D-optimality is that D-optimum designs are invariant to

linear transformations, which is not generally the case for A-optimum designs.

More on linear transformations is covered in the following chapter.

5.5.2 DA-optimality

In DA-optimality, interest is not in all k parameters, but only in s linear

combinations of θ which are the elements of AT θ. The k × s matrix A has rank

s < k. The covariance matrix for the s linear combination of the parameter

estimates is given by

Cov(AT θ̂) = AT M−1(ξ)A.
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DA-optimality is an extension of D-optimality with criterion function

Ψ{M(ξ)} = − ln |AT M−1(ξ)A|.

If AT = [Is,0], where Is is the s×s identity matrix, then interest is in estimating

a subset s of the parameters as precisely as possible. This is a special case of

DA-optimality known as Ds-optimality.

5.5.3 A-optimality

In A-optimality the average variance of the parameter estimates is minimised.

This corresponds to maximising the negative of the average variance giving cri-

terion function

Ψ{M(ξ)} = −tr
{
M−1(ξ)

}
.

A-optimality is a special case of L-optimality.

5.5.4 L-optimality

For the k× q matrix L of coefficients, the criterion function to be maximised

under linear (or L-) optimality is

Ψ{M(ξ)} = −tr
{
M−1(ξ)L

}
.

If the rank of L is s ≤ q then it can be expressed as L = AAT where A is a k× s

matrix of rank s, which gives criterion function

Ψ{M(ξ)} = −tr
{
M−1(ξ)AAT

}
= −tr

{
AT M−1(ξ)A

}
.

This is sometimes referred to as AA-optimality and is an extension of A-

optimality. When s = 1 the matrix A becomes the k × 1 vector c and the

optimality criterion is referred to as c-optimality with criterion function

Ψ{M(ξ)} = −tr
{
cT M−1(ξ)c

}
= −cT M−1(ξ)c.
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Hence, a c-optimum design estimates the linear combination of the parameters

cT β with minimum variance. If interest is in s linear combinations which are the

elements of CT θ, where C is a k × s matrix, then the criterion function is

Ψ{M(ξ)} = −tr
{
CT M−1(ξ)C

}
,

and the criterion of optimality is known as C-optimality.

The above optimality criteria, their criterion functions and Gâteaux direc-

tional derivatives are summarised in Table 5.1. The functions appearing in this

table can be used to calculate the Fréchet directional derivatives that appear in

the General Equivalence Theorem 5.4.1. A general form for the Gâteaux deriva-

tive of Ψ at M(ξ) in the direction of M(ξi) is

GΨ{M(ξ),M(ξi)} = fT
θ (xi)M

−1A
{
AT M−1A

}(t−1)
AT M−1fθ(xi).

For the D-criterion, A = Ik and t = 0; A = A and t = 0 for DA- and Ds-

optimality; A = Ik and t = 1 for A-optimality; A = c and t = 1 for c-optimality;

and for the C-criterion, A = C and t = 1.
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5.5.5 Gâteaux derivatives for approximated information

matrices

If the information matrix for a continuous design is approximated using

Method 2 or 3 of Chapter 3 then it may be of the form

M(ξ) =
n∑

i=1

wifθ(xi)f
T
θ (xi) + C ,

where C is a ‘correction matrix’ (c.f. Appendix D.5). In this case, the Gâteaux

derivatives GΨ{M(ξ),M(ξi)} in Table 5.1 are altered. Denote by Mi = M(ξi),

the information matrix for the one-point design ξi at xi

M(ξi) = fθ(xi)f
T
θ (xi) + C .

If M(ξi) = Ii(θ) then it is the per observation expected Fisher information matrix

of θ at xi. For DA- and Ds-optimality

GΨ{M(ξ),M(ξi)} = tr
{

M−1A
{
AT M−1A

}−1
AT M−1Mi

}

= tr
{

M−1A
{
AT M−1A

}−1
AT M−1

[
fθ(xi)f

T
θ (xi) + C

]}

= fT
θ (xi)M

−1A
{
AT M−1A

}−1
AT M−1fθ(xi)

+tr
{

M−1A
{
AT M−1A

}−1
AT M−1C

}
.

The Gâteaux derivative for the D-criterion can be derived by letting A = Ik,

where Ik is the k × k identity matrix. Similarly for C-optimality

GΨ{M(ξ),M(ξi)} = tr
{
M−1CCT M−1Mi

}

= tr
{
M−1CCT M−1

[
fθ(xi)f

T
θ (xi) + C

]}

= fT
θ (xi)M

−1CCT M−1fθ(xi) + tr
{
M−1CCT M−1C

}
.

If there is only one linear combination of interest then the k×s matrix C becomes

the k × 1 vector c and the appropriate Gâteaux derivative can be found by

simply substituting c for C in the above equation. For A-optimality, the Gâteaux

derivative GΨ{M(ξ),M(ξi)} can be derived by substituting the matrix A for the

matrix C above.
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For optimality criteria in general, the ‘corrected’ Gâteaux derivative

GΨ{M(ξ), M(ξi)} is composed of two terms; the first term has the form of the

Gâteaux derivative GΨ{M(ξ),M(ξi)} for the exact information matrix, like those

that appear in Table 5.1, although it is not the same because fθ(xi) will be

different; the second term is a ‘correction’ to the derivative. Table 5.2 paral-

lels Table 5.1 and summarises the Gâteaux directional derivatives for the afore-

mentioned optimality criteria for approximated M(ξ). Note that the derivative

GΨ{M(ξ), M(ξ)} remains unchanged.

5.6 Optimum Design Measures with Singular

Information Matrices

If M(ξ∗) is singular, for example when the number of support points n is

less than the number of parameters k to be estimated, only certain linear combi-

nations or subsets of the parameters may be estimable. Silvey (1980) considers

optimum design measures with singular information matrices and provides a suf-

ficient condition for a design measure with singular information matrix to be

optimal, for both linear and nonlinear models.

Let M(Ξ) be the set of information matrices generated as ξ ranges over the

set of all distributions Ξ on X . M(Ξ) is a convex set of nonnegative definite

matrices. A typical element of M(Ξ) is denoted by M(ξ). By suppressing the

argument ξ, M(ξ) is denoted simply by M .

Suppose that interest is in certain linear combinations of the unknown pa-

rameters, say the vector AT θ, where A is a k× s matrix of rank s < k. A design

measure ξ with information matrix M allows estimation of AT θ if Mz = 0 implies

AT z = 0, that is, the null space of M is contained in that of A, or equivalently

if A = MY , for some matrix Y . Let MA(Ξ) be the subset of M(Ξ) consist-

ing of those M with this property. It is assumed that X is such that MA(Ξ) is
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nonempty. Some M ∈ MA(Ξ) are singular which can cause considerable problems

in optimum design theory.

The covariance matrix of the least squares estimator of AT θ arising from

a design measure with information matrix M ∈ MA(Ξ) is proportional to

AT M−A, where M− is any generalised inverse of M , that is any matrix such

that MM−M = M . Note that AT M−A does not depend on which generalised

inverse is chosen; also that AT M−A is a positive definite s×s matrix. Interest in

AT θ implies that the design objective will be to make some function of AT M−A

small in some sense.

Typically an optimum design will aim to maximise a criterion function

Ψ{M(ξ)} defined by

Ψ{M(ξ)} =





ϕ(AT M−A), M ∈ MA(Ξ),

−∞, otherwise.
(5.11)

Here ϕ is a real-valued function that is finite on the positive definite s × s ma-

trices. It is assumed that Ψ is convex on MA(Ξ); also that Ψ is differentiable

at nonsingular M , when M− = M−1, and nondifferentiable at singular M , but

the directional derivatives can still be defined. With regards to Table 5.1, if M

is singular, the generalised inverse M− should replace M−1 for DA-, Ds-, c- and

C-optimality.

Silvey (1978) establishes a sufficient condition for a convex criterion function

of the form (5.11) to be maximised by a design measure with singular information

matrix. Extending the work of Silvey (1978), Ford & Silvey (1980) investigate

the properties of a design constructed sequentially for a simple nonlinear problem

where the optimum design measure has singular information matrix. For regres-

sion with uncorrelated observations, Fedorov (1978) gives a test for optimality

using the generalised inverse of M when the matrix for design, M , is degener-

ate. If the experimental design region is augmented, as in extended experiments,

Pázman (1978) proposes that generalised inverses are not needed for computing
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optimum designs when the singularity of the information matrix in unavoidable;

however they are needed for the analysis. Because interest here is not in extended

experiments the problem of which generalised inverse of M to use in calculating

AT M−A requires some consideration.

5.6.1 Generalised inverses

The nomenclature for the various types of generalised inverses are not stan-

dard. Rohde (1965) gives the following definitions for several generalised inverses.

Definition 5.6.1 The generalised inverse of a matrix X is a matrix X(g) such

that

XX(g)X = X.

Definition 5.6.2 X(r) denotes a reflexive generalised inverse or a semi-inverse

if it obeys the relations

XX(r)X = X,

X(r)XX(r) = X(r).

Definition 5.6.3 X(N) denotes a normalised generalised inverse or a weak gen-

eralised inverse if it obeys the relations

XX(N)X = X,

X(N)XX(N) = X(N),

XX(N) = [XX(N)]H ,

i.e. XX(N) is Hermitian.
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Definition 5.6.4 X† denotes a pseudoinverse or a Moore-Penrose generalised

inverse if it obeys the relations

XX†X = X,

X†XX† = X†,

XX† = (XX†)H ,

(X†X) = (X†X)H ,

i.e. XX† and X†X are Hermitian. The pseudoinverse, which is uniquely deter-

mined by X, was independently described by Moore (1920) and later by Penrose

(1955) under the names general reciprocal and generalised inverse, respectively.

Here AH is the conjugate transpose of a matrix A. A Hermitian matrix

is a square matrix with complex entries equal to its own conjugate transpose.

For matrices whose elements are real numbers, rather than complex numbers,

AH = AT . If X is square and non-singular, the above defined generalised inverses

reduce to X−1.

A more general nomenclature for the various types of generalised inverses is

defined by Ben-Israel & Greville (1974) using the following equations:

(1) XX−X = X,

(2) X−XX− = X−,

(3) XX− = (XX−)H , i.e. XX− is Hermitian

(4) X−X = (X−X)H , i.e. X−X is Hermitian.

Definition 5.6.5 In general, if a matrix X− satisfies equations (i), (j), and

(k), then X− is called an (i,j,k)-inverse of X, i.e. the generalised inverse is

a (1)-inverse, X− = X(g); the reflexive generalised inverse is a (1,2)-inverse,

X− = X(r); the normalised generalised inverse is a (1,2,3)-inverse, X− = X(N);

the pseudoinverse is the (1,2,3,4)-inverse, X− = X†.
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It is clear from these definitions that the various types of generalised inverses

are, in general, not equivalent. The (1,2,3,4)-inverse or the pseudoinverse M− =

M † of a matrix M is the only generalised inverse that is uniquely determined by

M . For this reason, the pseudoinverse will be used in calculating AT M−A for

those optimum design measures with singular information matrices.

From Rohde (1965), if M is a nonnegative definite Hermitian matrix then we

can write

M = [X1|X2]
H [X1|X2] =


 A C

CH B


 ,

where A = XH
1 X1, C = XH

1 X2, B = XH
2 X2. A generalised inverse of matrix M

is a matrix

M (g) =


 A(g) + A(g)CQ(g)CHA(g) −A(g)CQ(g)

−Q(g)CHA(g) Q(g)


 , (5.12)

where Q = B − CHA(g)C.

Lemma 5.6.1 If the nonnegative k × k Hermitian matrix M is partitioned as

M =


 A C

CH B


 ,

where A is (k − q) × (k − q) of rank p, B is q × q of rank q, and M is of rank

p + q, then

Q = B − CHA(g)C

is nonsingular.

Theorem 5.6.1 If a nonnegative Hermitian matrix M is partitioned in the form

M =


 A C

CH B


 ,

then
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(i) a generalised inverse of M is given by (5.12),

(ii) a reflexive generalised inverse of M is given by (5.12) with A(g) and Q(g)

replaced by A(r) and Q(r).

Further if rank M = rank A + rank B, where B is nonsingular, then

(iii) a normalised generalised inverse of M is given by (5.12) with A(g) and Q(g)

replaced by A(N) and Q(N),

(iv) a pseudoinverse of M is given by (5.12) with A(g) and Q(g) replaced by A†

and Q†.

Rohde (1966) also gives the following useful theorem.

Theorem 5.6.2 A necessary and sufficient condition that

rank X = rank X(g)

is that X(g) be a reflexive generalised inverse of X.

Pseudoinverse of the information matrix M(ξ)

It was noted earlier that if X is square and nonsingular, the generalised in-

verses reduce to X−1. That is, for the pseudo- or Moore-Penrose generalised

inverse, if the inverse of XT X exists then

X− = (XT X)−1XT .

In general, for X and Y square, (XY )− 6= Y −X− unless X and Y are of full

rank, i.e. rank X = rank Y = number of rows or columns in X or Y .

In Section 5.3, it was shown that the information matrix for any continuous

design can be represented as

M(ξ) = F T WF
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where F is an n × k matrix and W is a diagonal matrix of dimension n. If the

number of distinct design points n is less than the number of parameters k to

be estimated then M = M(ξ) will be singular. M may also be singular if the

information matrix is approximated. For example, under approximation Method

1 of Chapter 3, a k × k information matrix will have at most rank ≤ (p + 1),

p < k. The ranks of the constituent matrices are

rank F = rank F T = rank W = n,

hence

M− = F−W−(F−)T

= F−W−1(F−)T ,

where W− = W−1 since W is a nonsingular diagonal matrix. Now, the pseudoin-

verse of F is

F− = (F T F )−1F T ,

which yields the pseudoinverse

M− = (F T F )−1F T W−1
{
(F T F )−1F T

}T
.

If the information matrix is approximated, using Methods 2 or 3 from Chapter 3

for example, then from Appendix D.5, it can be expressed as

M(ξ) = F T WF + Q22Λ22Q
T
22 = RT SR,

where R is an (n + k − p) × k matrix and S is a diagonal matrix of dimension

(n + k − p). For singular M , similar calculations to those carried out above give

M− = (RT R)−1RT S−1
{
(RT R)−1RT

}T
.
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5.7 A Multiplicative Algorithm for Construct-

ing Optimising Distributions

It was noted earlier that the General Equivalence Theorem can be used to

motivate the construction of optimum designs and to verify if the proposed design

is optimal. We shall consider the General Equivalence Theorem as given by

equation (5.10)

FΨ(w∗, ei)





= 0 for w∗
i > 0

≤ 0 for w∗
i = 0,

where the Fréchet derivative FΨ(w, ei) is the i-th vertex directional derivative of

Ψ at w in the direction ei. From equation (5.9) the Fréchet directional derivative

is

FΨ(w, ei) =
∂Ψ

∂wi

−
n∑

j=1

wj
∂Ψ

∂wj

= GΨ(w, ei)−
n∑

j=1

wjGΨ(w, ej),

where the partial derivative
∂Ψ

∂wi

= GΨ(w, ei) is the Gâteaux directional deriva-

tive of Ψ at w in the direction ei.

A multiplicative algorithm, first proposed by Torsney (1977), for obtaining

the optimum design weights w∗
i ∈ W is

w
(k+1)
i =

w
(k)
i f

{
GΨ(w(k), ei)

}
∑n

i=1 w
(k)
j f {GΨ(w(k), ej)}

, (5.13)

where GΨ(w(k), ei) =
∂Ψ

∂wi

∣∣∣∣
wi=w

(k)
i

and f {GΨ(w, ei)} is a positive and strictly

increasing function of the derivative GΨ(w, ei). The notation w
(k)
i denotes the

value of the i-th weight at iteration k. The numerator
∑

w
(k)
j f

{
GΨ(w(k), ej)

}
is

a scaling factor that ensures that
∑

w
(k+1)
i = 1. A suitable choice of weights to
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initiate the algorithm would be to choose w
(0)
i = 1/n and a suitable stopping cri-

teria for termination of the algorithm is max
1≤i≤n

{FΨ(w, ei)} ≤ 10−n. Appendix F.1

provides further details on implementation of the algorithm including some pseu-

docode.

5.7.1 Properties of the iteration

Torsney’s multiplicative algorithm obeys the following four properties, which

can be useful in monitoring the convergence of the iterations.

Property 1 w(k) is always feasible.

Property 2 FΨ(w(k), w(k+1)) ≥ 0 with equality when the
∂Ψ

∂wi

corresponding to

nonzero wi are all equal (in which case w(k+1) = w(k)). Recall that GΨ(w, ei) =
∂Ψ

∂wi

.

Property 3 supp(w(k+1)) ≡ supp(w(k)) but weights can converge to zero. That

is, the points of support of the design remain the same for all iterates but their

associated weights can converge to zero.

Property 4 An iterate w(k) is a fixed point of the iteration if the derivatives
∂Ψ

∂w
(k)
i

corresponding to nonzero w
(k)
i are all equal. This is a necessary but not a

sufficient condition for w
(k)
i to maximise the criterion function.

Torsney (1977) implemented the following function of the derivative

f {GΨ(w, ei)} = {GΨ(w, ei)}δ , δ ∈ R+,

and reports that the best choices of δ for the determinant and trace criterion

respectively are δ = 1 and δ = 0.5. The choice of δ = 1 for the determinant

criterion is based on the results of Baum & Eagon (1967), and that δ = 0.5 for
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the trace criterion was guided by the results of Fellman (1974). Because δ > 0,

the derivatives GΨ(w, ei) are required to be positive.

Other choices of f(·) and δ have been considered. Silvey, Titterington

& Torsney (1978) explore choices of δ for Torsney’s (1977) initial function

f {GΨ(w, ei)} = {GΨ(w, ei)}δ and propose choosing δ on an ad hoc basis

for both a nonadaptive and an adaptive algorithm. Torsney (1988) considers

f {GΨ(w, ei)} = exp {δGΨ(w, ei)} with applications in design, estimation and

image processing. Torsney & Alahmadi (1992) contribute further algorithmic

developments for the multiplicative algorithm above. Mandal & Torsney (2000)

investigate the use of f {GΨ(w, ei)} and f {FΨ(w, ei)}, for various choices of f(·).
Torsney & Mandal (2001) extend Alahmadi’s (1993) earlier work in which the

constrained optimisation problem is transformed to one of simultaneous maximi-

sation of two objective functions with respect to design weights. In an attempt

to improve convergence, Torsney & Mandal (2004) suggest objective choices of

f(·) which allows the criterion function to have negative derivatives. Mandal &

Torsney (2006) consider developments of the above algorithm based on a cluster-

ing approach motivated by the practical application of the algorithm often giving

the optimum design as a distribution defined on a disjoint cluster of points. Fe-

dorov (1972) and Wynn (1972) also consider vertex direction algorithms which

perturb one weight and change the others proportionately.

5.8 Further Reading

For further reading on optimum experimental design Atkinson & Donev

(1992) provide good coverage on the topic. Their 2007 Atkinson et al. text

is essentially their Atkinson & Donev (1992) text with some additional material,

the inclusion of SAS1 examples and coauthored by an additional author, Randall

1The SAS System (originally Statistical Analysis System) is an integrated system of software
products provided by SAS Institute that enables the programmer to carry out statistical tasks.



CHAPTER 5. OPTIMUM DESIGN OF EXPERIMENTS 111

Tobias. Melas’s (2006) text focusses on a functional approach to optimum ex-

perimental design. Fedorov (1972), Silvey (1980) and Pukelsheim (1993) are also

classic texts in optimum design.

Some articles whose nature is more of a review of optimum design include:

Wynn’s (1984) article summarising Jack Kiefer’s contributions to experimental

design; Atkinson & Fedorov (1989) appears in the supplement of the Encyclopedia

of Statistical Sciences and provides a brief overview of optimum design; Atkinson

(1996) discusses the usefulness of optimum experimental designs; and Atkinson

& Bailey (2001) give a summary of design articles appearing in Biometrika over

a 100 year time span. Fedorov & Läuter (1987), Dodge, Fedorov & Wynn (1988),

Atkinson, Bogacka & Zhigljavsky (2001) and Di Bucchianico, Läuter & Wynn

(2004) are conference proceedings containing useful articles on optimum design.

Areas of optimum design not covered in this dissertation, but that are gaining

considerable popularity due to current environmental issues, are optimum spatial

design and optimum Bayesian design. Müller (2001) is an excellent introductory

text on optimum designs for spatial data and Chaloner & Verdinelli (1995) review

Bayesian experimental designs.

It is somewhat of an annoyance that the mathematical notation used through-

out the literature is inconsistent, particularly prior to Atkinson & Donev’s 1992

edition of their text. However, many author’s have since adopted notation gen-

erally consistent with that in Atkinson & Donev’s (1992) text.
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Chapter 6

Optimum Designs for Stochastic

Production Frontier Models

The log-linear Cobb-Douglas form of the single-output stochastic production

frontier model given in equation (4.9) of Chapter 4 for the i-th observational unit

is

ln yi = β0 +
m∑

j=1

βj ln xij + vi − ui,

with expected log output given by

E[ln Yi] = β0 +
m∑

j=1

βj ln xij − E[Ui],

since random error V ∼ N(0, σ2
v) i.i.d. A logarithmic transform is applied to

the response y and the predictors xj in a log-linear stochastic frontier model.

To simplify notation, the logarithms will not be written explicitly in further

models but it should be noted that a logarithmic transformation of the inputs

and outputs should be carried out prior to estimation of the parameters.

We shall consider only models where technical efficiency, represented by U ,

is half normally or exponentially distributed. This is motivated by Ritter &

Simar’s (1997) argument that the one-parameter half normal and exponential
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specifications should be preferred over the two-parameter truncated normal and

gamma distributions because the resultant efficiency rankings are not sensitive

to distributional assumptions. The information matrix of θ = (β, λ, σ2
G) for

a model with a normal-half normal error specification is given in Section 4.3.1

where λ = σu/σv, σ2
G = σ2

u + σ2
v and σ2

u is the parameter from the half normal

distribution. The information matrix of θ = (β, 1/σu, σ
2
v) for a model with a

normal-exponential error specification is given in Section 4.3.2 where 1/σu is the

rate parameter from the exponential distribution. The parameter vector θ can

be written more generally as θ = (β, τ ) where τ = (λ, σ2
G) for half normally

distributed efficiency and τ = (1/σu, σ
2
v) for exponentially distributed efficiency.

The elements of the information matrix for both error specifications in-

volve complicated expectations, hence the recommended approximation method,

Method 1, from Chapter 3 shall be used to calculate approximated informa-

tion matrices in any numerical examples. Using this method, the first-order

derivatives of the log-likelihood function are approximated by a first-order Tay-

lor polynomial in the covariance definition of the expected Fisher information

matrix. For a log-linear stochastic production frontier model, the approximated

information matrix is of the form

M(ξ) =


 fβ(µa)

2
∑

wif(xi)f
T (xi)

∑
wif(xi)fβ(µa)f

T
τ (µa)

fτ (µa)fβ(µa)
∑

wif
T (xi) fτ (µa)f

T
τ (µa)


 , (6.1)

where µa is a function of the τ parameters only, and not the β parameters or

the design variables x. Properties of these approximated information matrices

are discussed in Section 3.1.1.

If Method 2 or Method 3 from Chapter 3 are used to approximate the in-

formation matrix, the information matrix is not guaranteed to be nonnegative

definite, although the information matrix can be perturbed to ensure nonsigular-
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ity (Atkinson et al. 2007). For a log-linear stochastic production frontier model,

the approximated information matrix is of the form

M(ξ) =


 fβ(µa)

∑
wif(xi)f

T (xi)
∑

wif(xi)f
T
β,τ (µa)

fβ,τ (µa)
∑

wif
T (xi) Fτ (µa)


 . (6.2)

Under approximation Methods 2 and 3, the Gâteaux derivative GΨ{M(ξ),M(ξi)},
used in multiplicative algorithm (5.13) for finding optimising design weights, re-

quires a ‘correction’. The correction to the derivative is discussed in Section 5.5.5.

Some general properties of optimum designs for stochastic frontier models are

discussed briefly in Section 5.2.1. The designs may be parameter dependent due

to a non-simple dependence on the τ parameters. Additionally, the information

matrix is singular. Consequently, only subsets or linear combinations of the pa-

rameters can be estimated. Results on linear transformations of the design space

and parameter space are reviewed in Section 6.1. Admissible transformations for

the stochastic frontier model, which addresses the singularity of the information

matrix, are then presented in Section 6.2. Section 6.3 equates transformations on

a p-dimensional parameter space with transformations on a (k > p)-dimensional

parameter space for frontier models. Finally, theoretical and numerical results

for the determinant and trace criterion functions are presented in Sections 6.4

and 6.5 respectively.

6.1 Linear Transformations

It was noted above that, for log-linear stochastic production frontier models, a

logarithmic transformation of the response y and explanatory variables xj should

be applied prior to estimation of the parameters. Some design criteria are not

invariant to linear transformations. The following considers the effects of linear
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transformations on determinant and trace criterion functions for linear models.

6.1.1 Linear transformation of the design space

Let the information matrix be denoted by

Mf =
∑

wif(xi)f
T (xi).

A linear transformation of the design space can be expressed as

g(xi) = Af(xi), (6.3)

with inverse transformation

f(xi) = A−1g(xi) = Bg(xi),

where A is a k × k matrix and |A| 6= 0. The information matrix can then be

re-expressed as

Mf =
∑

wiBg(xi)g
T (xi)B

T

= B
(∑

wig(xi)g
T (xi)

)
BT

= BMgB
T ,

where

Mg =
∑

wig(xi)g
T (xi).

Determinant criterion functions

Theorem 6.1.1 D-optimum designs are invariant to linear transformations of

the design space.

Proof The criterion function for D-optimality is given by

− ln |M−1
f | = − ln |(BT )−1M−1

g B−1|
= − ln |(BT )−1| − ln |M−1

g | − ln |B−1|
= − ln |B−1|2 − ln |M−1

g |.
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The derivative with respect to the design weights is

− d

dw
ln |M−1

f | = − d

dw
ln |M−1

g |,

since B−1 = A is a matrix that is independent of the design weights. That is, the

optimum design which maximises Ψ{Mf (ξ)} also maximises Ψ{Mg(ξ)}. Hence

D-optimum designs are invariant to linear transformations of the design space.

¤

It is a straightforward extension to show that DA-optimum designs are also

invariant to linear transformations of the design space using

AT M−1
f A = A(BT )−1M−1

g B−1A = ÃT M−1
g Ã,

where Ã = B−1A. Hence DA-optimality transforms to DÃ-optimality.

Corollary 6.1.1 It follows from Theorem 6.1.1 that, D-optimum designs on the

scaled design space [ab, b] can be calculated from the optimum designs on the

interval [a, 1] by multiplying the support points by b (Chang 1999). Hence D-

optimum designs are scale invariant but not necessarily translation invariant.

Trace criterion functions

Theorem 6.1.2 A-optimum designs are not necessarily invariant to linear trans-

formations of the design space.

Proof The criterion function for A-optimality is given by

−tr {M−1
f } = −tr {(BT )−1M−1

g B−1}.

In general, this is not proportional to −tr {M−1
g }, therefore, generally

− d

dw
tr {M−1

f } 6= − d

dw
tr {M−1

g }.

For the A-criterion, the design that maximises Ψ{Mf (ξ)} is not necessarily the

design that maximises Ψ{Mg(ξ)} on the transformed design space. ¤
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Similar arguments apply in showing that the more general C- or L-optimum

designs are not necessarily invariant to linear transformations of the design space.

However, both A- and the more general L-criteria are ‘linear’ since

tr {LM−1
f } = tr {AT M−1

f A}
= tr {ÃT M−1

g Ã}
= tr {ÃÃT M−1

g }
= tr {L̃M−1

g }

for L = AAT and L̃ = ÃÃT , with Ã = B−1A.

6.1.2 Linear transformation of the parameters

A D-optimum design is model dependent, however, the design is invariant to

non-degenerate linear transformations of the model (Atkinson et al. 2007). This

invariance property follows from Theorem 6.1.1 and is proven below.

Theorem 6.1.3 For linear models, a linear transformation of the parameter

space is equivalent to a linear transformation of the design space.

Proof For the linear model

E[Yi] = fT (xi)β.

Let a linear transformation of the parameters β be given by

γ = BT β,

with inverse transformation

β = (BT )−1γ = AT γ,
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where BT is a k × k matrix and |BT | 6= 0. The linear model can then be re-

expressed as

E[Yi] = fT (xi)A
T γ

= gT (xi)γ,

where

g(xi) = Af(xi).

Clearly, from equation (6.3), this is equivalent to a linear transformation of the

design space. ¤

Corollary 6.1.2 From Theorem 6.1.1, a design D-optimum for the model

E[Yi] = fT (xi)β is also D-optimum for the model E[Yi] = gT (xi)γ, if g(xi) =

Af(xi) and |A| 6= 0. However, from Theorem 6.1.2, the trace criterion is not

necessarily invariant to linear transformations of the parameter space.

6.2 Admissible Designs with Singular Informa-

tion Matrices

Recall that the definition of the per observation expected Fisher information

matrix is

Ii(θ) = E

[(
∂ ln fYi

∂θ

)(
∂ ln fYi

∂θ

)T
]

.

Using the above information matrix, the information matrix for designing opti-

mum experiments is

M(ξ) =
∑

wiIi(θ).
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For the log-linear stochastic frontier model (4.9), and indeed for the more general

model (2.2), the first-order partial derivatives of ln fYi
= ln fYi

(yi; θ) can be

written as

∂ ln fYi

∂θ
=




∂ ln fYi

∂β

∂ ln fYi

∂τ


 =


 fβ(ai,xi)

fτ (ai)


 = fθ(ai,xi),

where ai is a function of a random variable with realisation εi. For example,

under a normal-half normal error specification ai = λεi/σG. The derivative with

respect to β is written fβ(ai,xi) because it is a function of both ai and the

explanatory variables xi. For linear models, fβ(ai, xi) = fβ(ai)f(xi). Similarly,

the derivative with respect to τ is written fτ (ai) because it is a function of ai

only. Thus the information matrix M(ξ) can be re-expressed as

M(ξ) =
∑

wiE
[
fθ(ai, xi)f

T
θ (ai,xi)

]

= E
[∑

wifθ(ai,xi)f
T
θ (ai, xi)

]

= E


∑

wi


 fβ(ai)f(xi)

fτ (ai)




[
fβ(ai)f

T (xi) , fT
τ (ai)

]



= E




∑
wifβ(ai)

2f(xi)f
T (xi)

∑
wif(xi)fβ(ai)f

T
τ (ai)

∑
wifβ(ai)fτ (ai)f

T (xi)
∑

wifτ (ai)f
T
τ (ai)




=


 E[fβ(ai)

2]
∑

wif(xi)f
T (xi)

∑
wif(xi)E[fβ(ai)f

T
τ (ai)]

E[fβ(ai)fτ (ai)]
∑

wif
T (xi) E[fτ (ai)f

T
τ (ai)]


 .

(6.4)

Note that, like approximated information matrix (6.1), the exact information

matrix above is independent of the β parameters since expectations are taken

over ai, which is a function of εi = yi − f(xi, β). The expectation of a function

of ai is a function of τ only, that is E[f(ai)] = f(τ ). Hence optimum designs are

independent of β but may have a non-simple dependence on τ .
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Theorem 6.2.1 For parameter vector θ = (β, τ ), let β = (β1, . . . , βp) and

τ = (τ1, . . . , τk−p). If model (2.2) is linear, then its information matrix (6.4) is

nonnegative definite with

rank M(ξ) ≤ p + 1.

Proof Information matrix (6.4) has the same structure as the approximated

information matrix (6.1). Consequently, the proof follows the same argument as

the proof for Theorem 3.1.2 on approximated information matrices. ¤

By similar arguments to the proof of Theorem 3.1.2, it is clear from the third

equality of equation (6.4) that the last k − p column vectors of the information

matrix, associated with the τ parameters, are not linearly independent, hence the

information matrix is singular. Consequently, only subsets or linear combinations

of the parameters, say AT θ, are estimable. Section 5.6 discusses optimum design

measures with singular information matrices. Further to Theorem 6.2.1, if the

model includes an intercept, β0, then p = m + 1 with

f(x) = [f(x1), f(x2), . . . , f(xm), 1]T ,

β = (β1, β2, . . . , βm, β0),

and

rank M(ξ) ≤ p.

If the model does not include β0 then p = m with

f(x) = [f(x1), f(x2), . . . , f(xm)]T ,

β = (β1, β2, . . . , βm),

and

rank M(ξ) ≤ p + 1.
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In general, rank M(ξ) ≤ m + 1; that is, the rank of the information matrix is

equal to the number of β parameters, excluding β0, plus 1. The implication is

that it is only possible to design optimally for (β1, β2, . . . , βm) plus one other

parameter, or a linear combination of parameters, from (β0, τ ), or in general, a

linear combination AT θ. A matrix A which ensures a nonsingular matrix AT M−A

has the form

A =


 A11 0

0 a


 , (6.5)

where A11 is a m×m matrix with |A11| 6= 0 and a is a column vector of length

(k − p + 1). Let β̃ = (β1, β2, . . . , βm) and τ̃ = (β0, τ ) so that θ = (β̃, τ̃ ), then

the set of admissible linear combinations of parameters is

AT θ =


 A11 0

0 a




T 
 β̃

τ̃


 =


 AT

11β̃

aT τ̃


 . (6.6)

6.3 Equivalence of Transformations

The model for a log-linear stochastic production frontier can be expressed as

E[Yi] = β∗∗0 +
m∑

j=1

βjxij

= fT (xi)B
T β, (6.7)

where f(xi) = (xi1, xi2, . . . , xim, 1)T and β = (β1, . . . , βm, β0)
T . When an inter-

cept term, β0, is in the frontier model, β∗∗0 = β0 − E[Ui] and

B =


 Im 0

0 1− E[Ui]/β0


 ,

where Im is the m × m identity matrix. When β0 is not in the frontier model,
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β∗∗0 = −E[Ui] and

B =


 Im 0

0 −E[Ui]/β0


 .

From the first equality in equation (6.7), a log-linear stochastic production fron-

tier model can be viewed as a regression model with a shifted intercept β∗∗0 . The

effect of the shifted intercept can be seen in the second equality which demon-

strates that the frontier model is a regression model with a transformation applied

to the β0 parameter.

Model (6.7) can be re-expressed, in terms of the parameter vector θ = (β̃, τ̃ ),

as

E[Yi] = fT (xi)A
T θ,

where f(xi) = (xi1, xi2, . . . , xim, 1)T is unchanged and A is the k × (m + 1)

matrix (6.5) of rank m+1 < k. The matrix A can be selected to give AT θ = BT β.

6.3.1 Normal-half normal model

A log-linear stochastic production frontier model with a normal-half normal

error specification has

τ̃ =
[

β0, λ, σ2
G

]T

,

where λ = σu/σv and σ2
G = σ2

u + σ2
v . The expected value of U is

E[U ] =

√
2

π
σu =

√
2

π

λσG

(λ2 + 1)1/2
.

For matrix A given in equation (6.5), A11 = Im and either

a =

[
1, −

√
2

π

σG

(λ2 + 1)1/2
, 0

]T

, (6.8)
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or

a =

[
1, 0, −

√
2

π

λ

σG(λ2 + 1)1/2

]T

, (6.9)

will give AT θ = BT β. The linear combination aT τ̃ is the shifted intercept

β∗∗0 = β0 − E[U ].

6.3.2 Normal-exponential model

A normal-exponentially distributed frontier model has

τ̃ =
[

β0, 1/σu, σ2
v

]T

,

and expected value of U given by

E[U ] = σu.

For matrix A given in equation (6.5), A11 = Im and

a =
[

1, −σ2
u, 0

]T

, (6.10)

will give AT θ = BT β.

6.4 Optimum Designs using Determinant Cri-

terion Functions

For polynomial regression in one variable, Atkinson et al. (2007) give the

points of support of D-optimum designs for m-th order polynomials

E[Y ] = β0 +
m∑

j=1

βjx
j,

for m = 2, . . . , 6. For X = [−1, 1], when m = 1, the optimum design places half

the trials at x = 1 and the other half at x = −1. When m = 2, the optimum
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design places a third of the trials at x = −1, 0 and 1. In general, for p = m+1, the

design puts mass 1/p at p distinct design points. Happacher (1995) reports some

results for exact and continuous D-optimum designs for polynomial regression

with degree ≤ 40.

The D-optimum design in not invariant to removal of the intercept term, β0,

from the polynomial regression model. Chang (1999) reports some results on

D-optimum designs over design space X = [a, 1], −1 ≤ a < 1, for polynomial

regression in one variable through the origin. The following example illustrates

the differences in optimum designs between a polynomial regression model with

and without an intercept.

Example 6.4.1 Quadratic regression in one variable.

The D-optimum design over design space X = [a, 1], −1 ≤ a < 1, for model

f(x) = (x, x2, 1)T is

ξ∗ =





a
1 + a

2
1

1/3 1/3 1/3



 .

This design puts equal mass at the three equally spaced support points where the

lower and upper support points are at the boundary of the design space. Removal

of the intercept term from the model produces different D-optimum designs. For

model f(x) = (x, x2)T , if n ≥ 2 and (2 − √
10)/6 ≤ a ≤ 1/2, Chang (1999)

reports that the optimum design is

ξ∗ =





1/2 1

1/2 1/2



 .

Note that this design puts equal weights at two support points but that the lower

interior support point is not at the boundary of the design region, unless a = 1/2.

If 1/2 ≤ a < 1, the optimum design is

ξ∗ =





a 1

1/2 1/2



 ,
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that is, the design puts equal weights at two support points where the support

points are at the boundary of the design space. Removal of the intercept term

from the regression model reduces the number of parameters, hence potentially

the number of support points, by one. Additionally, the support points for the

reduced model may not be at the boundary of the design region. ¤

Unlike regression models, removal of the intercept term from a stochastic

frontier model does not change the optimum design under a determinant crite-

rion. Theorem 6.1.1 gives a powerful result on DA-optimum designs for log-linear

stochastic production frontier models, which is stated in the following corollary.

6.4.1 Equivalence of designs for regression and frontier

models

Corollary 6.4.1 [to Theorem 6.1.1] A design DA-optimum for a log-linear

stochastic production frontier model, with or without an intercept term, is also

DA-optimum for the corresponding regression model E[Yi] = β0+
∑m

j=1 βjxij that

has an intercept term.

Proof Section 6.3 demonstrated that the frontier model is a linear regression

model with a shifted intercept. Thus it might be expected that the DA-optimum

design will be that for a regression model with an intercept. Additionally, the

frontier model is a regression model with a linear transformation applied to β0.

Consequently, Theorem 6.1.1 gives the results that both models are maximised

by the same DA-optimum design, due to the invariance property of D-optimum

designs to linear transformations of the parameters. ¤

The corollary amounts to stating that, if an experimenter wishes to design

a DA-optimum design for a log-linear stochastic production frontier model, it
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will be the same design as a DA-optimum design for the corresponding regres-

sion model with an intercept. This equivalence implies that the DA-optimum

design for optimal estimation of AT
11β̃ and any linear combination aT τ̃ from

equation (6.6), is the DA-optimum design for optimal estimation of AT
11β̃ and

the shifted intercept β∗∗0 . Since DA-optimum designs for linear regression models

are independent of the parameters, so too are DA-optimum designs for log-linear

stochastic production frontier models. Another implication of the corollary is

that DA-optimum designs for the frontier model are independent of any distri-

butional assumption imposed on the efficiency term U .

DA-optimum ⇐⇒ DA-optimum

︸ ︷︷ ︸ ︸ ︷︷ ︸

Log-linear Stochastic Production Linear Regression Model
Frontier Model (4.9) with nonzero intercept

Figure 6.1: Equivalence of DA-optimum designs for log-linear stochastic produc-
tion frontier models and linear regression models with nonzero intercept.

Example 6.4.2 Quadratic regression in one variable.

The DA-optimum design for the parameters (β1, β2, β
∗∗
0 ) has

A =


 Im 0

0 a


 ,

where a is given in equations (6.8) and (6.9) for a normal-half normal frontier

model, and in equation (6.10) for a normal-exponential model. For X = [0, 1]

the optimum design is

ξ∗ =





0 1/2 1

1/3 1/3 1/3



 .
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From Example 6.4.1, this is the DA-optimum design for (β1, β2, β0) in a linear

regression model with an intercept. Note that prior values of σu and σv are

required to calculate the elements of a. However, by Corollary 6.4.1, the DA-

optimum design for the linear regression model is DA-optimum for the equivalent

frontier model, hence the elements of the vector a can take any values for the

determinant criterion.
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x
)}

Figure 6.2: Example 6.4.2: quadratic regression in one variable. Gâteaux
derivative GΨ{M(ξ∗),M(ξx)} for the DA-optimum design for (β1, β2, β

∗∗
0 ) where

GΨ{M(ξ∗),M(ξi)} = 3.

Figure 6.2 confirms that the design is optimal by the General Equivalence

Theorem, since GΨ{M(ξ∗),M(ξ)} ≤ 3 for all ξ ∈ Ξ and achieves its maximum

at the points of support of the design. ¤

The results on D-optimum designs for regression models are well established,

hence will not be given in any further detail here.

6.5 Optimum Designs using Trace Criterion

Functions

Pukelsheim (1980) and Pukelsheim & Torsney (1991) give the A-optimum de-
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sign for (β1, β2, β0) and the C-optimum design for (β1, β2) for quadratic regression

in one variable over the symmetric interval X = [−1, 1]. The optimum designs

are presented in the following example.

Example 6.5.1 Quadratic regression in one variable.

For model f(x) = (x, x2, 1), ξ∗3 gives the A-optimum design for (β1, β2, β0) and

ξ∗2 gives the C-optimum design for (β1, β2) over X = [−1, 1].

ξ∗3 =





−1 0 1

1/4 1/2 1/4



 ξ∗2 =





−1 0 1

0.2929 0.4142 0.2929




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(a) (b)

Figure 6.3: Example 6.5.1: quadratic regression in one variable. Gâteaux
derivative GΨ{M(ξ∗),M(ξx)} for the C-optimum design over X = [−1, 1]
for; (a) (β1, β2, β0) where GΨ{M(ξ∗),M(ξi)} = 8; (b) (β1, β2) where
GΨ{M(ξ∗),M(ξi)} = 5.83

Figures 6.3 (a) and (b) confirm that the respective designs ξ∗3 and ξ∗2 are

optimal by the General Equivalence Theorem. Both designs are symmetric in

the support points and the weights, although the weights differ between the two

designs. ¤

Unlike the determinant criterion, the trace criterion is not invariant to linear

transformations. Hence when the design region is not symmetric, the weights
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may no longer be symmetric. This can be seen in the following example where

the design interval is asymmetric.

Example 6.5.2 Quadratic regression in one variable (Example 6.5.1 continued).

This example follows Example 6.5.1 but here the designs are over the asymmetric

interval X = [0, 1].

ξ∗3 =





0 1/2 1

0.3216 0.4862 0.1922



 ξ∗2 =





0 1/2 1

0.3136 0.4920 0.1944




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Figure 6.4: Example 6.5.2: quadratic regression in one variable. Gâteaux
derivative GΨ{M(ξ∗),M(ξx)} for the C-optimum design over X = [0, 1]
for; (a) (β1, β2, β0) where GΨ{M(ξ∗),M(ξi)} = 135.36; (b) (β1, β2) where
GΨ{M(ξ∗),M(ξi)} = 132.21

Figures 6.4 (a) and (b) confirm that the respective designs ξ∗3 and ξ∗2 are

optimal by the General Equivalence Theorem. Both designs are symmetric in

the support points, however the weights are no longer symmetric. ¤
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6.5.1 Linear C-optimum designs for the β parameters, ex-

cluding β0

From Section 6.3, a log-linear stochastic frontier model can be viewed as a

regression model with a transformation applied to the β0 parameters. Hence if

interest is in estimating all the β parameters, excluding β0, then the C-optimum

design for β̃ = (β1, β2, . . . , βm) for a regression model is also C-optimum for a log-

linear stochastic production frontier model. That is, the C-optimum design will

be that for a regression model but the value of the criterion function will differ.

The criterion function for the stochastic frontier model is likely to increase with

increasing values of σu and σv. However, the values of σu and σv are irrelevant in

finding the optimum design. Since the C-optimum design for the linear regression

model is independent of the parameters, so too is the C-optimum design for the

log-linear stochastic production frontier model. The designs are also independent

of any distributional assumption imposed on the efficiency term U .

C-optimum ⇐⇒ C-optimum
(β1, β2, . . . , βm) (β1, β2, . . . , βm)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Log-linear Stochastic Production Linear Regression Model
Frontier Model (4.9) with nonzero intercept

Figure 6.5: Equivalence of C-optimum designs for β̃ = (β1, β2, . . . , βm) for log-
linear stochastic production frontier models and linear regression models with
nonzero intercept.

Examples 6.5.1 and 6.5.2 for the quadratic regression model thus give some

results on C-optimum designs for log-linear stochastic production frontier models.

For a quadratic stochastic frontier model in one variable, the C-optimum design

over the symmetric interval X = [−1, 1] is ξ∗2 from Example 6.5.1 and the C-
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optimum design over the asymmetric interval X = [0, 1] is ξ∗2 from Example 6.5.2.

6.5.2 Nonlinear C-optimum designs for the β parameters

and shifted intercept β∗∗0

If interest is in estimating the β̃ = (β1, β2, . . . , βm) parameters and the shifted

intercept β∗∗0 , then standard results from designs for linear regression do not

carry over. This is because the trace criterion is not invariant to linear trans-

formations, in this case, of the β0 parameter. Hence the C-optimum design for

(β1, β2, . . . , βm, β∗∗0 ) is dependent on (i) the design region, (ii) the distributional

assumption imposed on the efficiency term U , (iii) the matrix C(= A) used to

define the contrast AT θ and (iv) the values of the parameters σu and σv. The de-

pendence of the C-optimum design on these four factors is demonstrated in the

following examples where Torsney’s (1977) algorithm (5.13) was implemented

to find the optimising weights over a 26 × 26 grid of σu and σv values with

0.1 ≤ σu, σv ≤ 0.35 in increments of 0.01.

Example 6.5.3 Quadratic regression in one variable.

For model f(x) = (x, x2, 1), C-optimum designs for (β1, β2, β
∗∗
0 ) over the sym-

metric interval X = [−1, 1] are presented in Figures 6.6, 6.7, and 6.8; Figure 6.6

gives the optimum designs under a normal-half normal error specification with a

given by equation (6.9); Figure 6.7 gives the optimum designs under a normal-

half normal error specification with a given by equation (6.8); Figure 6.8 gives

the optimum designs under a normal-exponential error specification with a given

by equation (6.10).

Subplot (a) demonstrates that the optimum designs are supported on three

symmetric and evenly spaced points at −1, 0 and 1 for all designs. Subplots (b),

(c) and (d) give the surface of the design weights w∗
1, w∗

2 and w∗
3, respectively,

over the 26 × 26 grid of σu and σv values. In each subplot, the surface is not
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a flat plane, hence the C-optimum design is different for varying values of the

parameters σu and σv. Comparing subplots (b), (c) and (d) across (i) Figures 6.6

and 6.8, and (ii) Figures 6.7 and 6.8, shows that the surface for each weight differs

depending on the distributional assumption placed on the efficiency term U . A

comparison of subplots (b), (c) and (d) across Figures 6.6 and 6.7 shows that the

surface for each weight differs depending on the matrix A used in the contrast

AT θ for a normal-half normal error specification. Subplots (b) and (d) for optimal

design weights w∗
1 and w∗

3, respectively, depict the same surface indicating that

the design weights are symmetric.
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Figure 6.6: Example 6.5.3: quadratic regression in one variable. C-optimum
designs for (β1, β2, β

∗∗
0 ) over X = [−1, 1] under a normal-half normal error spec-

ification with a = [1, 0,−
√

2/πλ/(σG(λ2 + 1)1/2)]T and 0.1 ≤ σu, σv ≤ 0.35; (a)
optimal weights vs. optimal support points; (b) distribution of w∗

1; (c) distribu-
tion of w∗

2; (d) distribution of w∗
3.
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Figure 6.7: Example 6.5.3: quadratic regression in one variable. C-optimum
designs for (β1, β2, β

∗∗
0 ) over X = [−1, 1] under a normal-half normal error spec-

ification with a = [1,−
√

2/πσG/(λ2 + 1)1/2), 0]T and 0.1 ≤ σu, σv ≤ 0.35; (a)
optimal weights vs. optimal support points; (b) distribution of w∗

1; (c) distribu-
tion of w∗

2; (d) distribution of w∗
3.
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Figure 6.8: Example 6.5.3: quadratic regression in one variable. C-optimum
designs for (β1, β2, β

∗∗
0 ) over X = [−1, 1] under a normal-exponential error spec-

ification with a = [1,−σ2
u, 0]T and 0.1 ≤ σu, σv ≤ 0.35; (a) optimal weights

vs. optimal support points; (b) distribution of w∗
1; (c) distribution of w∗

2; (d)
distribution of w∗

3.

¤
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Example 6.5.4 Quadratic regression in one variable (Example 6.5.3 continued).

This example follows Example 6.5.3 but here the designs are over the asymmetric

interval X = [0, 1]. Figure 6.9 gives the optimum designs under a normal-half

normal error specification with a given by equation (6.9); Figure 6.10 gives the

optimum designs under a normal-half normal error specification with a given by

equation (6.8); Figure 6.11 gives the optimum designs under a normal-exponential

error specification with a given by equation (6.10).

As with the symmetric design region of Example 6.5.3, subplot (a) demon-

strates that the optimum designs are supported on three symmetric and evenly

spaced points. Here the support points are at 0, 1/2 and 1 for all designs. Com-

parisons that were made in Example 6.5.3 can be made here. A summary of

the comparisons is similar to that given for the previous example; (i) the surface

for each weight is not a flat plane, hence the C-optimum design is different for

varying values of the parameters σu and σv; (ii) the surface for each weight differs

depending on the distributional assumption placed on the efficiency term U ; (iii)

the surface for each weight differs depending on the matrix A used in the contrast

AT θ for a normal-half normal error specification.

However, subplots (b) and (d) for optimal design weights w∗
1 and w∗

3, respec-

tively, do not depict a common surface, as they did in Example 6.5.3, indicating

that the design weights are asymmetric on the asymmetric interval X = [0, 1].

Further, comparing (i) Figures 6.6 and 6.9, (ii) Figures 6.7 and 6.10, and (iii) Fig-

ures 6.8 and 6.11, gives a comparison of designs over design region X = [−1, 1]

and X = [0, 1]. Such a comparison shows that the surface of each design weight

differs depending on the design region. Hence the C-optimum design is not in-

variant to translational changes in the design region X .
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Figure 6.9: Example 6.5.4: quadratic regression in one variable. C-optimum
designs for (β1, β2, β

∗∗
0 ) over X = [0, 1] under a normal-half normal error speci-

fication with a = [1, 0,−
√

2/πλ/(σG(λ2 + 1)1/2)]T and 0.1 ≤ σu, σv ≤ 0.35; (a)
optimal weights vs. optimal support points; (b) distribution of w∗

1; (c) distribu-
tion of w∗

2; (d) distribution of w∗
3.
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Figure 6.10: Example 6.5.4: quadratic regression in one variable. C-optimum
designs for (β1, β2, β

∗∗
0 ) over X = [0, 1] under a normal-half normal error spec-

ification with a = [1,−
√

2/πσG/(λ2 + 1)1/2), 0]T and 0.1 ≤ σu, σv ≤ 0.35; (a)
optimal weights vs. optimal support points; (b) distribution of w∗

1; (c) distribu-
tion of w∗

2; (d) distribution of w∗
3.
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Figure 6.11: Example 6.5.4: quadratic regression in one variable. C-optimum
designs for (β1, β2, β

∗∗
0 ) over X = [0, 1] under a normal-exponential error spec-

ification with a = [1,−σ2
u, 0]T and 0.1 ≤ σu, σv ≤ 0.35; (a) optimal weights

vs. optimal support points; (b) distribution of w∗
1; (c) distribution of w∗

2; (d)
distribution of w∗

3.
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Designs with approximated and exact information matrices

The designs calculated in Examples 6.5.3 and 6.5.4 were found using the ap-

proximated information matrix (6.1). The C-optimum design depends on the

parameters σu and σv which appear inside functions (or expectations of func-

tions) in each block of the partitioned information matrix. These functions are

different for the approximated information matrix (6.1) and the exact informa-

tion matrix (6.4). Hence the optimum design is also likely to depend on the

approximation method implemented.

Remark Some theoretical results on optimum designs are not affected by the ap-

proximation method applied to the information matrix since the structure of the

approximated information matrix (6.1) and the exact information matrix (6.4)

are similar. Where differences arise, they are due to differences between the ap-

proximations in how they depend on the parameters σu and σv. For example,

any results based on the rank of the information matrix does not depend on the

approximation method used.
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Chapter 7

Conclusions

7.1 A Model with Skewed Composed Error

Optimum designs for a general, possibly nonlinear, statistical model

Y = f(x,β) + E, E[E] 6= 0, (7.1)

with skewed asymmetrically distributed error E, have been explored and designs

developed for the linear case of this model, written

Y = fT (x)β + E, E[E] 6= 0. (7.2)

Since random error, say V , is typically assumed to be symmetrically distributed,

then if an overall error E is to be asymmetrically distributed, it can be viewed

as a symmetric random error V and some other source of error, say U , that

is asymmetrically distributed. That is, the overall or ‘composed’ error can be

modelled as a linear combination of a symmetric random error term V and an

asymmetric error term U , written

E = cuU + cvV, E[U ] 6= 0, E[V ] = 0, {cu, cv} ∈ R.

Linear models with this type of error structure appear in the econometric litera-

ture where V is normally distributed with zero mean and common distributions



CHAPTER 7. CONCLUSIONS 142

for the error term U are the nonnegative half normal, exponential, nonnegative

truncated normal and gamma distributions. Hence the common distributions of

E are called normal-half normal, normal-exponential, normal-truncated normal

and normal-gamma, respectively.

7.2 Derivation of the Information Matrix

The per observation expected Fisher information matrix is required for the

design of optimum experiments. The information matrix of the full parameter

vector θ was derived in Chapter 2 for general model (7.1) under the four error

specifications mentioned above. The information matrix for linear model (7.2)

can be easily found by letting f(x,β) = fT (x)β in the information matrix. The

process of deriving the information matrix is as follows: obtain the joint density

of U and V ; by a transformation of variables, obtain the joint density of U and E;

integrate this joint density with respect to u to obtain the marginal density, f(ε),

of E, and its mean and variance; calculate the per observation log-likelihood func-

tion, ln f(y; θ), of the full parameter vector θ using f(ε); calculate the first-order

and second-order partial derivatives of ln f(y; θ) with respect to the parameters;

use these partial derivatives to obtain the per observation expected Fisher in-

formation matrix using definition (D.2) or (D.3) in Appendix D.2. Additionally,

the conditional density of U |E, and its mean and mode were also derived. They

are not required in the derivation of the information matrix but are required to

obtain measures of efficiency.
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7.3 Structure of the Information Matrix

7.3.1 Nonlinearity of designs with parameter dependent

information matrices

Although model (7.2) is linear, inspection of the information matrix reveals

that optimum designs for this model may be parameter dependent, due to the

asymmetric distribution of the composed error. This is an interesting feature

of this model since parameter dependent nonlinear optimum designs typically

arise from nonlinear models. The elements of information matrix (6.4) of the

extended parameter vector θ = (β, τ ) for model (7.2) are functions of the τ

parameters, but not the β parameters, hence the optimum design may depend

on the τ parameters but does not depend on the β parameters.

7.3.2 Admissible designs with singular information ma-

trices

The k × k information matrix M , derived in the manner discussed above,

is rank deficient. A consequence of the singularity of the information matrix is

that only subsets or s linear combinations of the parameters, AT θ, where A is

a matrix of rank s < k which makes AT M−A nonsingular, are estimable. The

matrix inverse M− can be any generalised inverse, however, the Moore-Penrose

generalised inverse, also called the pseudoinverse or the (1,2,3,4)-inverse, was used

since it is a unique generalised inverse. The rank of the partitioned information

matrix is such that admissible designs are only possible for optimal estimation of

AT θ =


 AT

11β̃

aT τ̃


 ,

that is, at best, the parameters β̃ = (β1, β2, . . . , βm) and one other parameter,

or linear combination of parameters, from τ̃ = (β0, τ ). The asymmetrically
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distributed linear model (7.2), which can be written as

E[Y ] = β∗∗0 +
m∑

j=1

βjxj, (7.3)

is equivalent to the usual symmetrically distributed linear regression model

E[Y ] = β0 +
m∑

j=1

βjxj, (7.4)

but with a shifted intercept β∗∗0 = β0 − E[U ]. The shifted intercept is equivalent

to a transformation applied to the parameter β0 in the usual linear regression

model. This transformation, which depends on the distributional assumption

on U , provides guidance on appropriate choices for the vector a to give linear

combinations aT τ̃ = β∗∗0 . Thus appropriate and admissible linear combinations

are given by

AT θ =


 AT

11β̃

β∗∗0


 .

Any other choice of linear combination aT τ̃ 6= β∗∗0 , although feasible, gives a

biased estimate of the shifted intercept β∗∗0 .

7.4 Linear DA- and C-Optimum Designs

Since DA-optimum designs are invariant to linear transformations, designs

that maximise the criterion function for DA-optimality for the usual linear re-

gression model (7.4) with nonzero intercept also maximise the DA-criterion func-

tion for asymmetrically distributed linear model (7.3). Trace criterion functions

are not invariant to linear transformations, in this case, of the parameter β0.

However, if interest is in estimating the β parameters, excluding β0, then the

C-optimum design criterion for β̃ = (β1, β2, . . . , βm) for the asymmetrically dis-

tributed model (7.3) is maximised by the C-optimum design for β̃ for the usual
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linear regression model (7.4) with nonzero intercept. Hence the DA-optimum

design, and C-optimum design for β̃, for the asymmetrically distributed lin-

ear model are, respectively, just the standard linear, non-parameter dependent,

DA-optimum design, and C-optimum design for β̃, for the usual symmetrically

distributed linear regression model with nonzero intercept.

7.5 Nonlinear C-Optimum Designs

If interest is in designing an experiment for optimal estimation of

β̃ = (β1, β2, . . . , βm) and the shifted intercept β∗∗0 , then C-optimum designs for

(β1, β2, . . . , βm, β∗∗0 ) are not standard linear C-optimum designs for the usual sym-

metrically distributed linear regression model. The nonlinear C-optimum design

depends on: (i) the design region X ; (ii) the distributional assumption on the

efficiency term U ; (iii) the matrix A used to define the contrast AT θ for admis-

sible designs; (iv) the variance parameters σu and σv; (v) the method used to

approximate the information matrix.

7.6 Special Case: Log-Linear Cobb-Douglas

Stochastic Production Frontier Model

A special case of model (7.2) is the econometric cross-sectional Cobb-Douglas

stochastic frontier model

ln Y = β0 +
m∑

j=1

βj ln xj + E.

This is just the asymmetrically distributed linear regression model (7.3) with a

logarithmic transformation applied to the observed response y and predictors xj.

Stochastic frontier models are used to obtain relative measures of efficiency for

organisations with similar characteristics, e.g. within the same industry. Various
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measurements of efficiency that were discussed in Chapter 4 included: input-

oriented and output oriented efficiency; technical and economic efficiency; effi-

ciency measured relative to a ‘frontier’; and parametric and nonparametric mea-

sures of efficiency. These measurements are not necessarily mutually exclusive

but are various ways of classifying efficiency.

The type of model used in the examples of Chapter 6 is a single-output cross-

sectional stochastic production frontier models used to obtain measures of output-

oriented technical efficiency. For this model the composed error has the structure

E = V − U , giving the model

ln Y = β0 +
m∑

j=1

βj ln xj + V − U.

Of the four common distributions of E = V −U , the simpler normal-half normal

and normal-exponential distributions are preferable (Ritter & Simar 1997). Since

this model is a special case of the more general model (7.1), the formulae of

Chapter 2 can be easily simplified to give the appropriate information matrix for

the stochastic production frontier model. These simplifications were carried out

in Chapter 4 to give the corresponding information matrices, which can be used

to obtain optimum designs for the frontier model. Formulae for calculating the

average efficiency across an industry, and the efficiency of individual organisations

relative to each other, were also derived for completeness.

In Chapter 6, some numerical results for a quadratic frontier model in one

variable were presented to demonstrate the nonlinearity of C-optimum designs

for (β1, β2, β
∗∗
0 ). The numerical results also demonstrate the dependence of the

optimum design on the design region X , the distributional assumption on the

efficiency term U , and the matrix A used to define the contrast AT θ for admissible

designs. The parameters σu and σv were allowed to vary over the equally spaced

26 × 26 grid on [0.1,0.35]. Torsney’s (1977) algorithm (5.13) was implemented

to find the optimising design weights. The C-optimum designs over symmetric
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design region X = [−1, 1] and asymmetric design region X = [0, 1] have three

equally spaced and symmetric support points over the grid of σu and σv values.

The optimum design weights were symmetric over the symmetric design region

X = [−1, 1] and asymmetric over the asymmetric design region X = [0, 1]. This

was expected since the trace criterion function is not invariant to translational

transformations of the design space.

7.7 Approximations of the Information Matrix

The information matrix for the asymmetrically distributed statistical model

(7.1) involves expectations of complicated functions, which makes evaluation of

the information matrix difficult. A solution to this problem is to approximate the

information matrix. Three approximation methods were presented in Chapter 3.

Method 1, the recommended method, approximates the information matrix de-

fined by the first-order derivatives of the log-likelihood function, definition (D.2),

by approximating the first-order derivatives. Method 2 also uses definition (D.2)

of the information matrix, but in this case, the approximation is carried out by

approximating the product of the first-order derivatives. Method 3 approximates

the information matrix by approximating the second-order derivatives in defini-

tion (D.3) of the information matrix. The first method is recommended, and was

used in the numerical examples, since it guarantees nonnegative definiteness of

the information matrix, whereas the latter two methods do not.

Properties of the information matrix under approximation Method 1 were

also given. The approximated information matrix under approximation Method

1, given in equation (6.1), has the same structure as the exact information ma-

trix, given in equation (6.4). The similarity in the structure is such that they

have the same rank for any partitioning of the information matrix. Hence any

theoretical results based on the rank of the information matrix apply to both
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the approximated and exact information matrix. The difference between the two

matrices are in the complicated functions (or expectations of functions), which

are functions of σu and σv. Since the optimum design depends on the τ pa-

rameters, which are functions of σu and σv, the optimum design found using a

numerical algorithm, such as Torsney’s (1977) algorithm, may be sensitive to an

approximation of the information matrix. As with the exact information matrix,

optimum designs with approximated information matrices are independent of β

but depend on τ .

Note that, if approximation Methods 2 or 3 are used, the information matrix

is not symmetric. Consequently, a ‘correction’ to the Gâteaux derivatives, used in

the General Equivalence Theorem and in finding the optimising design weights,

is required. However, these two approximation methods are not recommended.

7.8 Further Work

7.8.1 Nonlinear models

The focus in this dissertation was primarily on linear and nonlinear optimum

design problems for the linear model (7.2) with skewed composed error, with nu-

merical examples given for the special case of the log-linear stochastic production

frontier model. It was demonstrated that, for these linear models, the optimum

design may be dependent on the variance parameters. Only general comments

about the parameter dependence of designs for nonlinear model (7.2) were made.

Further insight into the affects of an asymmetric composed error on optimum

designs can be gained by extending the work presented here to nonlinear models.
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7.8.2 Sensitivity to approximation methods

Since the optimum design may depend on the approximation method applied

to the information matrix, it would be beneficial to carry out an assessment of

the effect of approximation methods. This could be achieved through a simu-

lation study. Rather than approximating the information matrix using Method

1 described in this dissertation, another method of approximation would be to

numerically evaluate the complicated functions appearing in the information ma-

trix. This would require a good choice of quadrature method for numerically

evaluating integrals which form part of these functions.

7.8.3 Sensitivity to distributional assumptions

(Ritter & Simar 1997) propose that, for estimation of efficiency, the normal-

half normal or normal-exponential error specifications should be used because

of their simplicity compared to the more flexible normal-truncated normal and

normal-gamma specifications. Their argument is based on the assertion that the

rankings of the efficiencies are not sensitive to the distributional assumption, even

between the normal-half normal and normal-exponential specifications. However,

it was shown that the choice of distributional assumption can affect the optimum

design, thus potentially affecting the precision of the model estimates. It is possi-

ble to carry out a simulation study to investigate the affects of the distributional

assumption on the optimum design with respect to the precision of the parameter

estimates.

7.8.4 Sensitivity to choices of linear combinations

It is also possible to carry out a simulation study on the affects of the choice

of the vector a in the linear combination aT τ̃ under a specific distributional

assumption. For example, under the normal-half normal error specification, there
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were two possible choices for the vector a which produced optimum designs with

the same points of support but with different design weights.

7.8.5 A linear combination for precise estimation of effi-

ciency

The formula for calculating the average efficiency over all organisations, or

for each individual organisation, is nonlinear. Linearisation of this formula, by

use of a Taylor approximation for example, provides a method for designing

optimally for estimation of economic efficiency. The linearised formula can be

used to determine the matrix A in the linear combination AT θ. However, it

would be difficult to assess the affects of the approximation in the linearisation

of the formula, compounded with the approximation of the information matrix.

It might be hoped that an optimum design for good estimation of the β pa-

rameters would give an optimum estimate of economic efficiency, since calculation

of the efficiency requires the β parameters. However, the calculation for efficiency

also requires the variance parameters and it is not possible to design optimally for

both variance parameters since the information matrix is rank deficient. Optimal

estimation of the model parameters may be the best that can be achieved.

7.8.6 Other types of frontier models

The theories and methods presented in this dissertation can be extended for

other types of frontier models, of which some were briefly discussed in Chapter 4.

For example, an extension to the cross-sectional log-linear stochastic cost frontier

is fairly straight forward. The error for the production frontier is E = V −U and

for the cost frontier it is E = V +U . Hence this extension requires some changes

in signs which carry through all the equations.

In Section 4.4.2 it was noted that stochastic production frontier models are
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just random effects or variance component models. Optimum designs have been

investigated in the literature for variance component models when the random

effects have zero mean. This body of work could be extended by considering a

variance component model where one of the random effects has nonzero mean,

such as in a longitudinal time-invariant stochastic production frontier model.

Clearly there is scope for future development on optimum designs for models

with skewed composed error. The suggestions given above are a selection of some

of the possibilities.
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Appendix A

Derivation of Information

Matrices for the General Model

A.1 Calculations for the Normal-Exponential

Model

The detailed calculations for deriving the information matrix for the normal-

exponential model in Section 2.3 of Chapter 2 are given here.

The probability density function of U ∼ Exponential(1/σu) is

fU(u; σu) =
1

σu

exp

{
− u

σu

}
, u ≥ 0, σu > 0, (A.1)

with mean and variance

E[U ] = σu,

V ar(U) = σ2
u.

The density of V is given in equation (2.4) with mean and variance given in

equation (2.5). The joint probability density function of U and V is

fU,V (u, v) = fU(u) · fV (v)



APPENDIX A. DERIVATION OF INFORMATION MATRICES 166

=
1√

2πσuσv

exp

{
− u

σu

− v2

2σ2
v

}
. (A.2)

The joint density function of U and E = cuU + cvV is given by

fU,E(u, ε) =
1

|cv|fU,V

(
u,

ε− cuu

cv

)

=
1

|cv|
√

2πσuσv

exp
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− u

σu

− (ε− cuu)2

2c2
vσ

2
v

}

=
1

|cv|
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2πσuσv
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−1

2
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vσ
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v
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cuε
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vσ
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(A.3)

If we let K =
1

|cv|
√

2πσuσv

, A =
c2
u

c2
vσ

2
v

, B =
cuε

c2
vσ

2
v

− 1

σu

and C =
ε2

c2
vσ

2
v

then the

joint density function of U and E becomes

fU,E(u, ε) = K exp

{
−1

2

[
Au2 − 2Bu + C

]}
.

When the joint density of U and E is of this form, the marginal density of E is

given by equation (C.6) as

fE(ε) = K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}
Φ

(
B√
A

)
,

where

K

√
2π

A
=
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2ε

cuσu
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vσ

2
v

c2
uσ

2
u

,

B√
A

=
cuε
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.

The marginal density of E is then given by

fE(ε) =
1

|cu|σu

exp

{
− ε

cuσu

+
c2
vσ

2
v

2c2
uσ

2
u

}
Φ

(
cuε

|cucv|σv

− |cv|σv

|cu|σu

)
,
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with mean and variance that can be derived using equations (C.7) and (C.8) in

Appendix C and which are given by

E[E] = cuσu,

V ar(E) = c2
uσ

2
u + c2

vσ
2
v .

A.1.1 Log-likelihood function

The log-likelihood function of θ = (β, σu, σv) is given in equation (2.17).

Reparameterising the term ε = y − f(x,β) as a function of the variable a, the

first-order derivatives of ln fY (y; θ) are

∂ ln fY

∂β
= −

{
− 1

cuσu

+
cu

|cucv|σv

h(a)

}
∂f(x,β)

∂β
,

∂ ln fY

∂(1/σu)
= σu − y − f(x,β)

cu

+
c2
vσ

2
v

c2
uσu

− |cv|σv

|cu| h(a)

= σu +
|cv|σv

|cu| [a− h(a)],

∂ ln fY

∂σ2
v

=
c2
v

2c2
uσ

2
u

−
(

cu[y − f(x, β)]

2|cucv|σ3
v

+
|cv|

2|cu|σuσv

)
h(a)

=
c2
v

2c2
uσ

2
u

−
( |cv|
|cu|σuσv

− 1

2σ2
v

a

)
h(a).

The corresponding second-order derivatives are

∂2 ln fY

∂β∂βT
=

{
1

c2
vσ

2
v

h(a)[a− h(a)]

} (
∂f(x, β)

∂β

) (
∂f(x,β)

∂β

)T

−
{
− 1

cuσu

+
cu

|cucv|σv

h(a)

}
∂2f(x,β)

∂β∂βT

=

{
1

c2
vσ

2
v

[ah(a)− h(a)2]

}(
∂f(x, β)

∂β

)(
∂f(x,β)

∂β

)T
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−
{
− 1

cuσu

+
cu

|cucv|σv

h(a)

}
∂2f(x,β)

∂β∂βT
,

∂2 ln fY

∂(1/σu)2
= −σ2

u +

( |cv|σv

|cu|
)2

+

( |cv|σv

|cu|
)2

h(a)[a− h(a)]

= −σ2
u +

( |cv|σv

|cu|
)2

[1 + ah(a)− h(a)2],

∂2 ln fY

∂(σ2
v)

2
=

( |cv|
|cu|σuσ3

v

− 3

4σ4
v

a

)
h(a) +

( |cv|
|cu|σuσv

− 1

2σ2
v

a

)2

h(a)[a− h(a)]

=

( |cv|
|cu|σuσv

)2

[ah(a)− h(a)2]− |cv|
|cu|σuσ3

v

[a2h(a)− ah(a)2 − h(a)]

+
1

4σ4
v

[a3h(a)− a2h(a)2 − 3ah(a)],

∂2 ln fY

∂β∂(1/σu)
=

{
1

cu

+
1

cu

h(a)[a− h(a)]

}
∂f(x,β)

∂β

=
1

cu

{
1 + ah(a)− h(a)2

} ∂f(x,β)

∂β
,

∂2 ln fY

∂β∂σ2
v

=

{
cu

2|cucv|σ3
v

h(a) +

(
1

cuσuσ2
v

− cu

2|cucv|σ3
v

a

)
h(a)[a− h(a)]

}
×

∂f(x,β)

∂β

=

{
cu

2|cucv|σ3
v

[h(a)− a2h(a) + ah(a)2]

+
1

cuσuσ2
v

[ah(a)− h(a)2]

}
∂f(x,β)

∂β
,

∂2 ln fY

∂(1/σu)∂σ2
v

=
c2
v

c2
uσu

− |cv|
2|cu|σv

h(a) +

(
c2
v

c2
uσu

− |cv|
2|cu|σv

a

)
h(a)[a− h(a)]

=
c2
v

c2
uσu

[1 + ah(a)− h(a)2]− |cv|
2|cu|σv

[h(a) + a2h(a)− ah(a)2].
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A.1.2 Information matrix in terms of first-order partial

derivatives

The form of the partitioned per observation expected Fisher information ma-

trix of θ = (β, σu, σv) is given in equation (2.18). Dispensing with the observation

subscripts, the components of the information matrix are

E

[(
∂ ln fY

∂β

)(
∂ ln fY

∂β

)T
]

=

{(
1

cuσu

)2

− 2

|cucv|σuσv

E[h(a)]

+

(
1

|cv|σv

)2

E[h(a)2]

} (
∂f(x,β)

∂β

)(
∂f(x,β)

∂β

)T

,

E

[(
∂ ln fY

∂(1/σu)

)2
]

= σ2
u + 2

|cv|σuσv

|cu| (E[a]− E[h(a)])

+

( |cv|σv

|cu|
)2 (

E[a2]− 2E[ah(a)] + E[h(a)2]
)
,

E

[(
∂ ln fY

∂σ2
v

)2
]

=

(
c2
v

2c2
uσ

2
u

)2

− |cv|3
|cu|3σ3

uσv

E[h(a)] +
c2
v

2c2
uσ

2
uσ

2
v

E[ah(a)]

+

( |cv|
|cu|σuσv

)2

E[h(a)2]− |cv|
|cu|σuσ3

v

E[ah(a)2] +

(
1

2σ2
v

)2

E[a2h(a)2],

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂(1/σu)

)]
=

{
1

cu

(
1− E[ah(a)] + E[h(a)2]

)

+
|cv|σv

c2
uσu

(E[a]− E[h(a)])− cuσu

|cucv|σv

E[h(a)]

}
∂f(x,β)

∂β
,
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E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂σ2
v

)]
=

{
c2
v

2c3
uσ

3
u

− |cv|
|cu|cuσ2

uσv

E[h(a)]

+
1

2cuσuσ2
v

E[ah(a)]− |cv|
2|cu|cuσ2

uσv

E[h(a)] +
1

cuσuσ2
v

E[h(a)2]

− cu

2|cucv|σ3
v

E[ah(a)2]

}
∂f(x,β)

∂β
,

E
[(

∂ ln fY

∂(1/σu)

)(
∂ ln fY

∂σ2
v

)]
=

c2
v

2c2
uσu

− |cv|
|cu|σv

E[h(a)] +
σu

2σ2
v

E[ah(a)]

+
|cv|3σv

2|cu|3σ2
u

(E[a]− E[h(a)])− c2
v

c2
uσu

E[ah(a)] +
|cv|

2|cu|σv

E[a2h(a)]

+
c2
v

c2
uσu

E[h(a)2]− |cv|
2|cu|σv

E[ah(a)2].

A.1.3 Information matrix in terms of second-order partial

derivatives

An alternative formulation for the partitioned per observation expected Fisher

information matrix of θ = (β, σu, σv) is given in equation (2.19). The components

of the per observation expected Fisher information matrix are

−E
[
∂2 ln fY

∂β∂βT

]
= −

{
1

c2
vσ

2
v

(
E[ah(a)]− E[h(a)2]

)}(
∂f(x,β)

∂β

)(
∂f(x, β)

∂βT

)

+

{
− 1

cuσu

+
cu

|cucv|σv

E[h(a)]

}
∂2f(x, β)

∂β∂βT
,

−E
[

∂2 ln fY

∂(1/σu)2

]
= σ2

u −
( |cv|σv

|cu|
)2 (

1 + E[ah(a)]− E[h(a)2]
)
,

−E
[
∂2 ln fY

∂(σ2
v)

2

]
= −

( |cv|
|cu|σuσv

)2 (
E[ah(a)]− E[h(a)2]

)

+
|cv|

|cu|σuσ3
v

(
E[a2h(a)]− E[ah(a)2]− E[h(a)]

)
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− 1

4σ4
v

(
E[a3h(a)]− E[a2h(a)2]− E[3ah(a)]

)
,

−E
[

∂2 ln fY

∂β∂(1/σu)

]
= − 1

cu

{
1 + E[ah(a)]− E[h(a)2]

} ∂f(x,β)

∂β
,

−E
[
∂2 ln fY

∂β∂σ2
v

]
= −

{
cu

2|cucv|σ3
v

(
E[h(a)]− E[a2h(a)] + E[ah(a)2]

)

+
1

cuσuσ2
v

(
E[ah(a)]− E[h(a)2]

)} ∂f(x,β)

∂β
,

−E
[

∂2 ln fY

∂(1/σu)∂σ2
v

]
= − c2

v

c2
uσu

(
1 + E[ah(a)]− E[h(a)2]

)

+
|cv|

2|cu|σv

(
E[h(a)] + E[a2h(a)]− E[ah(a)2]

)
.

A.2 Calculations for the Normal-Truncated Nor-

mal Model

The detailed calculations for deriving the information matrix for the normal-

truncated normal model in Section 2.4 of Chapter 2 are given below.

The probability density function of U ∼ N+(µ, σ2
u) is

fU(u; µ, σu) =
1√

2πσu

exp

{
−(u− µ)2

2σ2
u

}[
Φ

(
µ

σu

)]−1

,

u ≥ 0, −∞ < µ < ∞, σu > 0, (A.4)

with mean and variance

E[U ] = µ + φ

(
µ

σu

)[
Φ

(
µ

σu

)]−1

σu

= µ + h

(
− µ

σu

)
σu,
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V ar(U) =

{
1− µ

σu

φ

(
µ

σu

)[
Φ

(
µ

σu

)]−1

−
[
φ

(
µ

σu

)]2 [
Φ

(
µ

σu

)]−2
}

σ2
u

=

{
1− µ

σu

h

(
− µ

σu

)
−

[
h

(
− µ

σu

)]2
}

σ2
u.

The density of V is given in equation (2.4) with mean and variance given in

equation (2.5). The joint probability density function of U and V is

fU,V (u, v) = fU(u) · fV (v)

=
1

2πσuσv

exp

{
−(u− µ)2

2σ2
u

− v2

2σ2
v

}[
Φ

(
µ

σu

)]−1

. (A.5)

The joint density function of U and E = cuU + cvV is given by

fU,E(u, ε) =
1

|cv|fU,V

(
u,

ε− cuu

cv

)

=
1

|cv|2πσuσv

exp

{
−(u− µ)2

2σ2
u

− (ε− cuu)2

2c2
vσ

2
v

}[
Φ

(
µ

σu

)]−1

=
1

|cv|2πσuσv

[
Φ

(
µ

σu

)]−1

×

exp

{
−1

2

[(
1

σ2
u

+
c2
u

c2
vσ

2
v

)
u2 − 2

(
µ

σ2
u

+
cuε

c2
vσ

2
v

)
u +

µ2

σ2
u

+
ε2

c2
vσ

2
v

]}
.

(A.6)

If we let K =
1

|cv|2πσuσv

[
Φ

(
µ

σu

)]−1

, A =
1

σ2
u

+
c2
u

c2
vσ

2
v

, B =
µ

σ2
u

+
cuε

c2
vσ

2
v

and

C =
µ2

σ2
u

+
ε2

c2
vσ

2
v

then the joint density function of U and E becomes

fU,E(u, ε) = K exp

{
−1

2
[Au2 − 2Bu + C]

}
.

When the joint density of U and E is of this form, the marginal density of E is

given by equation (C.6) as

fE(ε) = K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}
Φ

(
B√
A

)
.
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If we let

σ2
G = c2

uσ
2
u + c2

vσ
2
v ,

λ =
σu

σv

,

then

A =
σ2

G

c2
vσ

2
uσ

2
v

,

K

√
2π

A
=

1√
2πσG

[
Φ

(
µ

σu

)]−1

,

C − B2

A
=

(
cuµ− ε

σG

)2

,

B√
A

=
|cv|µ
λσG

+
cuλε

|cv|σG

.

The marginal density of E is then given by

fE(ε) =
1√

2πσG

[
Φ

(
µ

σu

)]−1

exp

{
−1

2

(
cuµ− ε

σG

)2
}

Φ

( |cv|µ
λσG

+
cuλε

|cv|σG

)

=
1

σG

φ

(
cuµ− ε

σG

)
Φ

( |cv|µ
λσG

+
cuλε

|cv|σG

)[
Φ

(
µ

σu

)]−1

,

with mean and variance that can be derived using equations (C.7) and (C.8) in

Appendix C and which are given by

E[E] = c̃uσu,

V ar(E) = ˜̃cu
2
σ2

u + c2
vσ

2
v ,

where c̃u =
cuµ

σu

+cuh

(
− µ

σu

)
and ˜̃cu

2
= c2

u

{
1− µ

σu

h

(
− µ

σu

)
−

[
h

(
− µ

σu

)]2
}

.
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A.2.1 Log-likelihood function

The log-likelihood function of θ = (β, µ, λ, σG) is given in equation (2.25).

Reparameterising the log-likelihood as a function of the variable a1, the first-

order derivatives of ln fY (y; θ) are

∂ ln fY

∂β
= −

{
cuµ− [y − f(x, β)]

σ2
G

+
cuλ

|cv|σG

h(a1)

}
∂f(x,β)

∂β

= −
{

µ(c2
uλ

2 + c2
v)

cuλ2σ2
G

+
|cv|

cuλσG

a1 +
cuλ

|cv|σG

h(a1)

}
∂f(x,β)

∂β
,

∂ ln fY

∂µ
= −c2

uµ− cu[y − f(x, β)]

σ2
G

+
|cv|
λσG

h(a1) +
a2

µ
h(a2)

= −µ(c2
uλ

2 + c2
v)

λ2σ2
G

− |cv|
λσG

a1 +
|cv|
λσG

h(a1) +
a2

µ
h(a2),

∂ ln fY

∂λ
=

(
− |cv|µ

λ2σG

+
cu[y − f(x, β)]

|cv|σG

)
h(a1) +

c2
vµ

(c2
uλ

2 + c2
v)

1/2λ2σG

h(a2)

=

(
−2|cv|µ

λ2σG

− 1

λ
a1

)
h(a1) +

c2
vµ

(c2
uλ

2 + c2
v)

1/2λ2σG

h(a2),

∂ ln fY

∂σ2
G

= − 1

2σ2
G

+
1

2

(
cuµ− [y − f(x,β)]

σ2
G

)2

+
1

2σ2
G

a1h(a1)− 1

2σ2
G

a2h(a2)

= − 1

2σ2
G

+
1

2

(
µ(c2

uλ
2 + c2

v)

cuλ2σ2
G

+
|cv|

cuλσG

a1

)2

+
1

2σ2
G

a1h(a1)− 1

2σ2
G

a2h(a2).

The corresponding second-order derivatives are

∂2 ln fY

∂β∂βT
=

{
− 1

σ2
G

+

(
cuλ

|cv|σG

)2

h(a1)[a1 − h(a1)]

} (
∂f(x,β)

∂β

)(
∂f(x,β)

∂β

)T

−
{

µ(c2
uλ

2 + c2
v)

cuλ2σ2
G

+
|cv|

cuλσG

a1 +
cuλ

|cv|σG

h(a1)

}
∂2f(x, β)

∂β∂βT

=

{
− 1

σ2
G

+

(
cuλ

|cv|σG

)2

[a1h(a1)− h(a1)
2]

} (
∂f(x, β)

∂β

)(
∂f(x,β)

∂β

)T
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−
{

µ(c2
uλ

2 + c2
v)

cuλ2σ2
G

+
|cv|

cuλσG

a1 +
cuλ

|cv|σG

h(a1)

}
∂2f(x, β)

∂β∂βT
,

∂2 ln fY

∂µ2
= −

(
cu

σG

)2

+

( |cv|
λσG

)2

h(a1)[a1 − h(a1)]−
(

a2

µ

)2

h(a2)[a2 − h(a2)]

= −
(

cu

σG

)2

+

( |cv|
λσG

)2

[a1h(a1)− h(a1)
2]−

(
a2

µ

)2

h(a2)[a2 − h(a2)],

∂2 ln fY

∂λ2
=

2|cv|µ
λ3σG

h(a1) +

(
−2|cv|µ

λ2σG

− 1

λ
a1

)2

h(a1)[a1 − h(a1)]

− c2
vµ(3c2

uλ
2 + 2c2

v)

(c2
uλ

2 + c2
v)

3/2λ3σG

h(a2)

−
(

c2
vµ

(c2
uλ

2 + c2
v)

1/2λ2σG

)2

h(a2)[a2 − h(a2)]

=
2|cv|µ
λ3σG

h(a1) +

(
2|cv|µ
λ2σG

)2

[a1h(a1)− h(a1)
2]

+
4|cv|µ
λ3σG

[a2
1h(a1)− a1h(a1)

2] +
1

λ2
[a3

1h(a1)− a2
1h(a1)

2]

− c2
vµ(3c2

uλ
2 + 2c2

v)

(c2
uλ

2 + c2
v)

3/2λ3σG

h(a2)

−
(

c2
vµ

(c2
uλ

2 + c2
v)

1/2λ2σG

)2

h(a2)[a2 − h(a2)],

∂2 ln fY

∂(σ2
G)2

=
1

2σ4
G

−
(

µ(c2
uλ

2 + c2
v)

cuλ2σ3
G

+
|cv|

cuλσ2
G
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)2

− 3

4σ4
G

a1h(a1)

+
1

4σ4
G

a2
1h(a1)[a1 − h(a1)] +

3

4σ4
G

a2h(a2)

− 1

4σ4
G

a2
2h(a2)[a2 − h(a2)]

= −
(

µ(c2
uλ

2 + c2
v)

cuλ2σ3
G

)2

− 2|cv|µ(c2
uλ

2 + c2
v)

c2
uλ

3σ5
G

a1 −
( |cv|

cuλσ2
G

)2

a2
1

+
1

4σ4
G

(
2− 3a1h(a1) + a3

1h(a1)− a2
1h(a1)

2 + 3a2h(a2)

−a2
2h(a2)[a2 − h(a2)]

)
,
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∂2 ln fY

∂β∂µ
= − cu

σ2
G

{1 + h(a1)[a1 − h(a1)]}∂f(x,β)

∂β

= − cu

σ2
G

{1 + a1h(a1)− h(a1)
2}∂f(x,β)

∂β
,

∂2 ln fY

∂β∂λ
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{
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2|cv|µ
λσG

+ a1

)
h(a1)[a1 − h(a1)]

}
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∂β
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{
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[a1h(a1)− h(a1)
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2

}
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,

∂2 ln fY

∂β∂σ2
G

=
1

σ3
G
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uλ
2 + c2

v)

cuλ2σG

+
|cv|
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a1 +
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− cuλ
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∂β

=
1

σ3
G
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uλ
2 + c2
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cuλ2σG

+
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a1

+
cuλ

2|cv| [h(a1)− a2
1h(a1) + a1h(a1)

2]

}
∂f(x,β)

∂β
,

∂2 ln fY

∂µ∂λ
= − |cv|

λ2σG

(
h(a1) +

(
2|cv|µ
λσG

+ a1

)
h(a1)[a1 − h(a1)]

)

+
c2
v

(c2
uλ

2 + c2
v)

1/2λ2σG

(h(a2)− a2h(a2)[a2 − h(a2)])

= − |cv|
λ2σG

(
h(a1) +

2|cv|µ
λσG

[a1h(a1)− h(a1)
2] + a2

1h(a1)− a1h(a1)
2

)

+
c2
v

(c2
uλ

2 + c2
v)

1/2λ2σG

(h(a2)− a2h(a2)[a2 − h(a2)]) ,

∂2 ln fY

∂µ∂σ2
G

=
µ(c2

uλ
2 + c2

v)

λ2σ4
G

+
|cv|
λσ3

G

a1 − |cv|
2λσ3

G

(h(a1)− a1h(a1)[a1 − h(a1)])

− 1

2µσ2
G

a2h(a2) +
1

2µσ2
G

a2
2h(a2)[a2 − h(a2)]

=
µ(c2

uλ
2 + c2

v)

λ2σ4
G

+
|cv|

2λσ3
G

[
2a1 − h(a1) + a2

1h(a1)− a1h(a1)
2
]
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− 1

2µσ2
G

a2h(a2) +
1

2µσ2
G

a2
2h(a2)[a2 − h(a2)],

∂2 ln fY

∂λ∂σ2
G

=
1

2λσ2
G

(
2|cv|µ
λσG

+ a1

)
(h(a1)− a1h(a1)[a1 − h(a1)])

− c2
vµ

2(c2
uλ

2 + c2
v)

1/2λ2σ3
G

(h(a2)− a2h(a2)[a2 − h(a2)])

=
|cv|µ
λ2σ3

G

[
h(a1)− a2

1h(a1) + a1h(a1)
2
]

+
1

2λσ2
G

[
a1h(a1)− a3

1h(a1) + a2
1h(a1)

2
]

− c2
vµ

2(c2
uλ

2 + c2
v)

1/2λ2σ3
G

(h(a2)− a2h(a2)[a2 − h(a2)]) .

A.2.2 Information matrix in terms of first-order partial

derivatives

The form of the partitioned per observation expected Fisher information ma-

trix of θ = (β, µ, λ, σG) is given in equation (2.26). Dispensing with the obser-

vation subscripts, the components of the information matrix are

E

[(
∂ ln fY

∂β

)(
∂ ln fY

∂β

)T
]

=

{(
µ(c2

uλ
2 + c2

v)

cuλ2σ2
G

)2

+
2|cv|µ(c2

uλ
2 + c2

v)

c2
uλ

3σ3
G

E[a1]

+
2µ(c2

uλ
2 + c2

v)

|cv|λσ3
G

E[h(a1)] +

( |cv|
cuλσG

)2

E[a2
1] +

2

σ2
G

E[a1h(a1)]

+

(
cuλ

|cv|σG

)2

E[h(a1)
2]

} (
∂f(x,β)

∂β

)(
∂f(x, β)

∂β

)T

,

E

[(
∂ ln fY

∂µ

)2
]

=

(
a2

µ

)2

[a2 − h(a2)]
2

+
2|cv|
µλσG

a2[a2 − h(a2)] (E[a1]− E[h(a1)])
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+

( |cv|
λσG

)2 (
E[a2

1]− 2E[a1h(a1)] + E[h(a1)
2]

)
,

E

[(
∂ ln fY

∂λ

)2
]

=

(
2|cv|µ
λ2σG

)2

E[h(a1)
2] +

4|cv|µ
λ3σG

E[a1h(a1)
2]

− 4|cv|3µ2

(c2
uλ

2 + c2
v)

1/2λ4σ2
G

h(a2)E[h(a1)] +
1

λ2
E[a2

1h(a1)
2]

− 2c2
vµ

(c2
uλ

2 + c2
v)

1/2λ3σG

h(a2)E[a1h(a1)]

+

(
c2
vµ

(c2
uλ

2 + c2
v)

1/2λ2σG

)2

h(a2)
2,

E

[(
∂ ln fY

∂σ2
G

)2
]

=
1

4σ4
G

[
−

(
µ(c2

uλ
2 + c2

v)

cuλ2σG

)2

+ a2h(a2) + 1

]2

− 1

σ2
G

[
−

(
µ(c2

uλ
2 + c2

v)

cuλ2σG

)2

+ a2h(a2) + 1

]
×

(
|cv|µ(c2

uλ
2 + c2

v)

c2
uλ

3σ3
G

E[a1] +
1

2

( |cv|
cuλσG

)2

E[a2
1] +

1

2σ2
G

E[a1h(a1)]

)

+

( |cv|µ(c2
uλ

2 + c2
v)

c2
uλ

3σ3
G

)2

E[a2
1] +

µ(c2
uλ

2 + c2
v)

cuλ2σ2
G

( |cv|
cuλσG

)3

E[a3
1]

+
|cv|µ(c2

uλ
2 + c2

v)

c2
uλ

3σ5
G

E[a2
1h(a1)] +

1

4

( |cv|
cuλσG

)4

E[a4
1]

+
1

2σ2
G

( |cv|
cuλσG

)2

E[a3
1h(a1)] +

1

4σ4
G

E[a2
1h(a1)

2],

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂µ

)]
=

{[
µ(c2

uλ
2 + c2

v)

λ2σ2
G

− a2

µ
h(a2)

]
×

(
µ(c2

uλ
2 + c2

v)

cuλ2σ2
G

+
|cv|

cuλσG

E[a1] +
cuλ

|cv|σG

E[h(a1)]

)
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+
|cv|µ(c2

uλ
2 + c2

v)

cuλ3σ3
G

(E[a1]− E[h(a1)])

+
1

cu

( |cv|
λσG

)2 (
E[a2

1]− E[a1h(a1)]
)

+
cu

σ2
G

(
E[a1h(a1)− h(a1)

2]
)} ∂f(x,β)

∂β
,

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂λ

)]
=

{
2|cv|µ2(c2

uλ
2 + c2

v)

cuλ4σ3
G

E[h(a1)]

+
µ(c2

uλ
2 + c2

v)

cuλ3σ2
G

E[a1h(a1)]− c2
vµ

2(c2
uλ

2 + c2
v)

1/2

cuλ4σ3
G

h(a2)

+
2c2

vµ

cuλ3σ2
G

E[a1h(a1)] +
|cv|

cuλ2σG

E[a2
1h(a1)]

− |cv|3µ
(c2

uλ
2 + c2

v)
1/2cuλ3σ2

G

h2(a2)E[a1] +
2cuµ

λσ2
G

E[h(a1)
2]

+
cu

|cv|σG

E[a1h(a1)
2]− cu|cv|µ

(c2
uλ

2 + c2
v)

1/2λσ2
G

h2(a2)E[h(a1)]

}
∂f(x,β)

∂β
,

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂σ2
G

)]
=

−
{
− 1

2σ2
G

[
−

(
µ(c2

uλ
2 + c2

v)

cuλ2σG

)2

+ a2h(a2) + 1

]
×

(
µ(c2

uλ
2 + c2

v)

cuλ2σ2
G

+
|cv|

cuλσG

E[a1] +
cuλ

|cv|σG

E[h(a1)]

)

+
|cv|µ2(c2

uλ
2 + c2

v)
2

c3
uλ

5σ5
G

E[a1] +
3c2

vµ(c2
uλ

2 + c2
v)

2c3
uλ

4σ4
G

E[a2
1]

+
3µ(c2

uλ
2 + c2

v)

2cuλ2σ4
G

E[a1h(a1)] +
1

2

( |cv|
cuλσG

)3

E[a3
1]

+
|cv|

cuλσ3
G

E[a2
1h(a1)] +

cuλ

2|cv|σ3
G

E[a1h(a1)
2]

}
∂f(x,β)

∂β
,
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E
[(

∂ ln fY

∂µ

)(
∂ ln fY

∂λ

)]
=

[
µ(c2

uλ
2 + c2

v)

λ2σ2
G

− a2

µ
h(a2)

]
×

(
2|cv|µ
λ2σG

E[h(a1)] +
1

λ
E[a1h(a1)]− c2

vµ

(c2
uλ

2 + c2
v)

1/2λ2σG

h(a2)

)

+
2c2

vµ

λ3σ2
G

(
E[a1h(a1)]− E[h(a1)

2]
)

+
|cv|

λ2σG

(
E[a2

1h(a1)]− E[a1h(a1)
2]

)

− |cv|3µ
(c2

uλ
2 + c2

v)
1/2λ3σ2

G

h(a2) (E[a1]− E[h(a1)]) ,

E
[(

∂ ln fY

∂µ

)(
∂ ln fY

∂σ2
G

)]
=

[
µ(c2

uλ
2 + c2

v)

λ2σ2
G

− a2

µ
h(a2)

]
×

(
1

2σ2
G

[
−

(
µ(c2

uλ
2 + c2

v)

cuλ2σG

)2

+ a2h(a2) + 1

]
− |cv|µ(c2

uλ
2 + c2

v)

c2
uλ

3σ3
G

E[a1]

−1

2

( |cv|
cuλσG

)2

E[a2
1]−

1

2σ2
G

E[a1h(a1)]

)

+
|cv|

2λσ3
G

[
−

(
µ(c2

uλ
2 + c2

v)

cuλ2σG

)2

+ a2h(a2) + 1

]
(E[a1]− E[h(a1)])

−c2
vµ(c2

uλ
2 + c2

v)

c2
uλ

4σ4
G

(
E[a2

1]− E[a1h(a1)]
)

− 1

2c2
u

( |cv|
λσG

)3 (
E[a3

1]− E[a2
1h(a1)]

)

− |cv|
2λσ3

G

(
E[a2

1h(a1)]− E[a1h(a1)
2]

)
,

E
[(

∂ ln fY

∂λ

)(
∂ ln fY

∂σ2
G

)]
=

1

2σ2
G

[
−

(
µ(c2

uλ
2 + c2

v)

cuλ2σG

)2

+ a2h(a2) + 1

]
×

(
2|cv|µ
λ2σG

E[h(a1)] +
1

λ
E[a1h(a1)]− c2

vµ

(c2
uλ

2 + c2
v)

1/2λ2σG

h(a2)

)

−2c2
vµ

2(c2
uλ

2 + c2
v)

c2
uλ

5σ4
G

E[a1h(a1)]− µ

c2
uλ

( |cv|
λσG

)3

E[a2
1h(a1)]

− |cv|µ
λ2σ3

G

E[a1h(a1)
2]− |cv|µ(c2

uλ
2 + c2

v)

c2
uλ

4σ3
G

E[a2
1h(a1)]
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− 1

2λ

( |cv|
cuλσG

)2

E[a3
1h(a1)]− 1

2λσ2
G

E[a2
1h(a1)

2]

+
c2
vµ

(c2
uλ

2 + c2
v)

1/2λ2σG

h(a2)×
(
|cv|µ(c2

uλ
2 + c2

v)

c2
uλ

3σ3
G

E[a1] +
1

2

( |cv|
cuλσG

)2

E[a2
1] +

1

2σ2
G

E[a1h(a1)]

)
.

A.2.3 Information matrix in terms of second-order partial

derivatives

Equation (2.27) gives an alternative formulation for the partitioned per obser-

vation expected Fisher information matrix of θ = (β, µ, λ, σG). The components

of the per observation expected Fisher information matrix are

−E
[
∂2 ln fY

∂β∂βT

]
=

−
{
− 1

σ2
G

+

(
cuλ

|cv|σG

)2 (
E[a1h(a1)]− E[h(a1)

2]
)
} (

∂f(x,β)

∂β

)(
∂f(x, β)

∂βT

)

+

{
µ(c2

uλ
2 + c2

v)

cuλ2σ2
G

+
|cv|

cuλσG

E[a1] +
cuλ

|cv|σG

E[h(a1)]

}
∂2f(x,β)

∂β∂βT
,

−E
[
∂2 ln fY

∂µ2

]
=

(
cu

σG

)2

−
( |cv|

λσG

)2 (
E[a1h(a1)]− E[h(a1)

2]
)

+

(
a2

µ

)2

h(a2)[a2 − h(a2)],

−E
[
∂2 ln fY

∂λ2

]
= −2|cv|µ

λ3σG

E[h(a1)]−
(

2|cv|µ
λ2σG

)2 (
E[a1h(a1)]− E[h(a1)

2]
)

−4|cv|µ
λ3σG

(
E[a2

1h(a1)]− E[a1h(a1)
2]

)

− 1

λ2

(
E[a3

1h(a1)]− E[a2
1h(a1)

2]
)

+
c2
vµ(3c2

uλ
2 + 2c2

v)

(c2
uλ

2 + c2
v)

3/2λ3σG

h(a2)

+

(
c2
vµ

(c2
uλ

2 + c2
v)

1/2λ2σG

)2

h(a2)[a2 − h(a2)],
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−E
[
∂2 ln fY

∂(σ2
G)2

]
=

(
µ(c2

uλ
2 + c2

v)

cuλ2σ3
G

)2

+
2|cv|µ(c2

uλ
2 + c2

v)

c2
uλ

3σ5
G

E[a1] +

( |cv|
cuλσ2

G

)2

E[a2
1]

− 1

4σ4
G

(
2− 3E[a1h(a1)] + E[a3

1h(a1)]− E[a2
1h(a1)

2]

+3a2h(a2)− a2
2h(a2)[a2 − h(a2)]

)
,

−E
[
∂2 ln fY

∂β∂µ

]
=

cu

σ2
G

{1 + E[a1h(a1)]− E[h(a1)
2]}∂f(x, β)

∂β
,

−E
[
∂2 ln fY

∂β∂λ

]
=

cu

|cv|σG

{
E[h(a1)]− 2|cv|µ

λσG

(
E[a1h(a1)]− E[h(a1)

2]
)− E[a2

1h(a1)]

+E[a1h(a1)
2]

}
∂f(x,β)

∂β
,

−E
[
∂2 ln fY

∂β∂σ2
G

]
= − 1

σ3
G

{
µ(c2

uλ
2 + c2

v)

cuλ2σG

+
|cv|
cuλ
E[a1]

+
cuλ

2|cv|
(
E[h(a1)]− E[a2

1h(a1)] + E[a1h(a1)
2]

)} ∂f(x, β)

∂β
,

−E
[
∂2 ln fY

∂µ∂λ

]
=

|cv|
λ2σG

(
E[h(a1)] +

2|cv|µ
λσG

(
E[a1h(a1)]− E[h(a1)

2]
)

+ E[a2
1h(a1)]− E[a1h(a1)

2]

)

− c2
v

(c2
uλ

2 + c2
v)

1/2λ2σG

(h(a2)− a2h(a2)[a2 − h(a2)]) ,

−E
[
∂2 ln fY

∂µ∂σ2
G

]
= −µ(c2

uλ
2 + c2

v)

λ2σ4
G

− |cv|
2λσ3

G

(
2E[a1]− E[h(a1)] + E[a2

1h(a1)]− E[a1h(a1)
2]

)

+
1

2µσ2
G

a2h(a2)− 1

2µσ2
G

a2
2h(a2)[a2 − h(a2)],

−E
[
∂2 ln fY

∂λ∂σ2
G

]
= − |cv|µ

λ2σ3
G

(
E[h(a1)]− E[a2
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)
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− 1

2λσ2
G

(
E[a1h(a1)]− E[a3

1h(a1)] + E[a2
1h(a1)

2]
)

+
c2
vµ

2(c2
uλ

2 + c2
v)

1/2λ2σ3
G

(h(a2)− a2h(a2)[a2 − h(a2)]) .

A.3 Calculations for the Normal-Gamma Model

In this section, the detailed calculations for deriving the information matrix for

the normal-gamma model in Section 2.5 of Chapter 2 are given.

The probability density function of U ∼ Gamma(α, σu) is

fU(u; α, σu) =
uα−1

Γ(α)σα
u

exp

{
− u

σu

}
, u ≥ 0, α, σu > 0, (A.7)

with mean and variance

E(U) = ασu,

V ar(U) = ασ2
u.

The density of V is given in equation (2.4) with mean and variance given in

equation (2.5). The joint probability density function of U and V is

fU,V (u, v) = fU(u) · fV (v)

=
uα−1

Γ(α)σα
u

√
2πσv

exp

{
− u

σu

− v2

2σ2
v

}
. (A.8)

The joint density function of U and E = cuU + cvV can be derived using equa-

tion (C.1) in Appendix C and is given by

fU,E(u, ε) =
1

|cv|fU,V

(
u,

ε− cuu

cv

)

=
uα−1

|cv|Γ(α)σα
u

√
2πσv

exp

{
− u

σu

− (ε− cuu)2

2c2
vσ

2
v

}

=
uα−1

|cv|Γ(α)σα
u

√
2πσv

exp

{
−1

2

[
c2
u

c2
vσ

2
v

u2 − 2

(
cuε

c2
vσ

2
v

− 1

σu

)
u +

ε2

c2
vσ

2
v

]}
.

(A.9)
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If we let K =
1

|cv|Γ(α)σα
u

√
2πσv

, A =
c2
u

c2
vσ

2
v

, B =
cuε

c2
vσ

2
v

− 1

σu

and C =
ε2

c2
vσ

2
v

then

the joint density function of U and E becomes

fU,E(u, ε) = uα−1K exp

{
−1

2
[Au2 − 2Bu + C]

}
.

When the joint density of U and E is of this form, the marginal density of E is

given by equations (C.4) and (C.5) in Appendix C as

fE(ε) = K exp

{
−1

2

(
C − B2

A

)} ∫ ∞

0

uα−1 exp

{
−1

2

(
u−B/A

1/
√

A

)2
}

du

= K

√
2π

A
exp

{
−1

2

(
C − B2

A

)} ∫ ∞

0

uα−1
√

Aφ

(
u−B/A

1/
√

A

)
du

= K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}
Φ

(
B√
A

)
E[Qα−1],

where random variable Q has a normal distribution, with mean B/A and variance

1/A, which is truncated from below at zero, i.e. Q ∼ N+

(
B

A
,

1

A

)
with

B

A
=

ε

cu

− c2
vσ

2
v

c2
uσu

,

1

A
=

c2
vσ

2
v

c2
u

.

E[Qα−1] is a fractional moment of the nonnegative truncated normal distribution

of Q. Appendix C.5 provides further details on truncated normal distributions.

The components of the marginal density of E are

K

√
2π

A
=

1

|cu|Γ(α)σα
u

,

C − B2

A
=

2ε

cuσu

− c2
vσ

2
v

c2
uσ

2
u

,

B√
A

=
cuε

|cucv|σv

− |cv|σv

|cu|σu

,
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thus the marginal density of E is given by

fE(ε) =
1

|cu|Γ(α)σα
u

exp

{
− ε

cuσu

+
c2
vσ

2
v

2c2
uσ

2
u

}
×

∫ ∞

0

uα−1 |cu|
|cv|σv

φ

( |cu|
|cv|σv

u− cuε

|cucv|σv

+
|cv|σv

|cu|σu

)
du

=
1

|cu|Γ(α)σα
u

exp

{
− ε

cuσu

+
c2
vσ

2
v

2c2
uσ

2
u

}
Φ

(
cuε

|cucv|σv

− |cv|σv

|cu|σu

)
E[Qα−1],

with mean and variance that can be derived using equations (C.7) and (C.8) in

Appendix C and which are given by

E[E] = c̃uσu,

V ar(E) = ˜̃cu
2
σ2

u + c2
vσ

2
v ,

where c̃u = cuα and ˜̃cu
2

= c2
uα.

A.3.1 Log-likelihood function

The log-likelihood function of θ = (β, α, σu, σv) is given in equation (2.31).

Because the log-likelihood function under the normal-gamma specification con-

tains an integral, calculation of the derivatives of ln fY (y; θ) require slightly more

working than under the alternative specifications of previous sections. Detailed

calculations for the derivatives of the the integral appearing in the log-likelihood

function have not been shown here but can found in Appendix A.4.

Using the reparameterisation ε = y − f(x, β), the first-order derivatives of

ln fY (y; θ) with respect to the parameters of interest are

∂ ln fY

∂β
=

1

c2
vσ

2
v

{y − f(x,β)− cuE[U |E]} ∂f(x,β)

∂β

=
1

c2
vσ

2
v

{ε− cuE[U |E]} ∂f(x, β)

∂β
,
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∂ ln fY

∂α
= −ψ(α) + ln

(
1

σu

)
+ E[ln U |E],

∂ ln fY

∂(1/σu)
= ασu − E[U |E],

∂ ln fY

∂σ2
v

= − 1

2σ2
v

+
1

2c2
vσ

4
v

×
(
[y − f(x,β)]2 + c2

uE[U2|E]− 2cu[y − f(x,β)]E[U |E]
)

= − 1

2σ2
v

+
1

2c2
vσ

4
v

(
ε2 + c2

uE[U2|E]− 2cuεE[U |E]
)
,

where

ψ(α) =
Γ′(α)

Γ(α)
=

d ln Γ(α)

dα
,

is the digamma function and equation (C.11) in Appendix C gives

E[g(U)|E] =

∫ ∞

0

g(u)uα−1φ(−a) du
∫ ∞

0

uα−1φ(−a) du

.

The corresponding second-order derivatives are

∂2 ln fY

∂β∂βT
=

1

c2
vσ

2
v

{
−1 +

c2
u

c2
vσ

2
v

V ar(U |E)

}(
∂f(x, β)

∂β

)(
∂f(x,β)

∂β

)T

+
1

c2
vσ

2
v

{y − f(x, β)− cuE[U |E]} ∂2f(x,β)

∂β∂βT

=
1

c2
vσ

2
v

{
−1 +

c2
u

c2
vσ

2
v

V ar(U |E)

}(
∂f(x, β)

∂β

)(
∂f(x,β)

∂β

)T

+
1

c2
vσ

2
v

{ε− cuE[U |E]} ∂2f(x, β)

∂β∂βT
,

∂2 ln fY

∂α2
= −ψ1(α) + V ar(ln U |E),
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∂2 ln fY

∂(1/σu)2
= −ασ2

u + V ar(U |E),

∂2 ln fY

∂(σ2
v)

2
=

1

2σ4
v

− 1

c2
vσ

6
v

×
(
[y − f(x,β)]2 + c2

uE[U2|E]− 2cu[y − f(x,β)]E[U |E]
)

+

(
cu

c2
vσ

4
v

)2 [
c2
u

4
V ar(U2|E)− cu[y − f(x,β)]Cov(U,U2|E)

+[y − f(x,β)]2V ar(U |E)

]

=
1

2σ4
v

− 1

c2
vσ

6
v

(
ε2 + c2

uE[U2|E]− 2cuεE[U |E]
)

+

(
cu

c2
vσ

4
v

)2

×
[
c2
u

4
V ar(U2|E)− cuεCov(U,U2|E) + ε2V ar(U |E)

]
,

∂2 ln fY

∂β∂α
= − cu

c2
vσ

2
v

Cov(U, ln U |E)
∂f(x, β)

∂β
,

∂2 ln fY

∂β∂(1/σu)
=

cu

c2
vσ

2
v

V ar(U |E)
∂f(x,β)

∂β
,

∂2 ln fY

∂β∂σ2
v

= − 1

c2
vσ

4
v

{
y − f(x,β)− cuE[U |E] +

c3
u

2c2
vσ

2
v

Cov(U,U2|E)

− c2
u

c2
vσ

2
v

[y − f(x,β)]V ar(U |E)

}
∂f(x,β)

∂β

= − 1

c2
vσ

4
v

{
ε− cuE[U |E] +

c3
u

2c2
vσ

2
v

Cov(U,U2|E)

− c2
u

c2
vσ

2
v

εV ar(U |E)

}
∂f(x,β)

∂β
,

∂2 ln fY

∂α∂(1/σu)
= σu − Cov(U, ln U |E),

∂2 ln fY

∂α∂σ2
v

=
c2
u

2c2
vσ

4
v

Cov(U2, ln U |E)− cu

c2
vσ

4
v

[y − f(x, β)]Cov(U, ln U |E)

=
c2
u

2c2
vσ

4
v

Cov(U2, ln U |E)− cu

c2
vσ

4
v

εCov(U, ln U |E),
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∂2 ln fY

∂(1/σu)∂σ2
v

= − c2
u

2c2
vσ

4
v

Cov(U,U2|E) +
cu

c2
vσ

4
v

[y − f(x,β)]V ar(U |E)

= − c2
u

2c2
vσ

4
v

Cov(U,U2|E) +
cu

c2
vσ

4
v

εV ar(U |E),

where

ψ1(α) =
dψ(α)

dα
=

d2 ln Γ(α)

dα2
,

is the trigamma function.

A.3.2 Information matrix in terms of first-order partial

derivatives

The form of the partitioned per observation expected Fisher information ma-

trix of θ = (β, α, σu, σv) is given in equation (2.33). Dispensing with the obser-

vation subscripts, the components of the information matrix are

E

[(
∂ ln fY

∂β

)(
∂ ln fY

∂β

)T
]

=

(
1

c2
vσ

2
v

)2 {
E[E2]− 2cuE(E · E[U |E])

+c2
uE(E[U |E]2)

}(
∂f(x,β)

∂β

)(
∂f(x,β)

∂β

)T

,

E

[(
∂ ln fY

∂α

)2
]

=

[
−ψ(α) + ln

(
1

σu

)]2

+2

[
−ψ(α) + ln

(
1

σu

)]
E (E[ln U |E]) + E

(
E[ln U |E]2

)
,

E

[(
∂ ln fY

∂(1/σu)

)2
]

= α2σ2
u − 2ασuE (E[U |E]) + E

(
E[U |E]2

)
,
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E

[(
∂ ln fY

∂σ2
v

)2
]

=

(
1

2σ2
v

)2

− 1

2c2
vσ

6
v

{
E[E2] + c2

uE
(
E[U2|E]

)− 2cuE (E · E[U |E])
}

+

(
1

2c2
vσ

4
v

)2 {
E[E4] + 2c2

uE
(
E2 · E[U2|E]

)− 4cuE
(
E3 · E[U |E]

)

+c4
uE

(
E[U2|E]2

)− 2c3
uE

(
E · E[U |E] · E[U2|E]

)

+4c2
uE

(
E2 · E[U |E]2

)}
,

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂α

)]
=

1

c2
vσ

2
v

×
{ [

−ψ(α) + ln

(
1

σu

)]
(E[E]− cuE[U |E])

+E (E · E[ln U |E]) + cuE (E[U |E] · E[ln U |E])

}
∂f(x, β)

∂β
,

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂(1/σu)

)]
=

1

c2
vσ

2
v

×
{ασuE[E]− cuασuE[U |E]− E (E · E[U |E])

+cuE
(
E[U |E]2

)} ∂f(x, β)

∂β
,

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂σ2
v

)]
= − 1

2c2
vσ

4
v

{E[E]− cuE (E[U |E])}

+
1

2c4
vσ

6
v

{
E[E3] + c2

uE
(
E · E[U2|E]

)− 2cuE
(
E2 · E[U |E]

)}

− cu

2c4
vσ

6
v

{
E

(
E2 · E[U |E]

)
+ c2

uE
(
E[U |E] · E[U2|E]

)

−2cuE
(
E · E[U |E]2

)}
,
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E
[(

∂ ln fY

∂α

)(
∂ ln fY

∂(1/σu)

)]
=

[
−ψ(α) + ln

(
1

σu

)]
{ασu − E (E[U |E])}

+ασuE (E[ln U |E])− E (E[U |E] · E[ln U |E]) ,

E
[(

∂ ln fY

∂α

)(
∂ ln fY

∂σ2
v

)]
= − 1

2σ2
v

{
−ψ(α) + ln

(
1

σu

)
+ E (E[ln U |E])

}

+
1

2c2
vσ

4
v

[
−ψ(α) + ln

(
1

σu

)]
×

{
E[E2] + c2

uE
(
E[U2|E]

)− 2cuE (E · E[U |E])
}

+
1

2c2
vσ

4
v

{
E

(
E2 · E[ln U |E]

)
+ c2

uE
(
E[U2|E] · E[ln U |E]

)

−2cuE (E · E[U |E] · E[ln U |E])} ,

E
[(

∂ ln fY

∂(1/σu)

)(
∂ ln fY

∂σ2
v

)]
= − 1

2σ2
v

{ασu − E (E[U |E])}

+
ασu

2c2
vσ

4
v

{
E[E2] + c2

uE
(
E[U2|E]

)− 2cuE (E · E[U |E])
}

− 1

2c2
vσ

4
v

{
E

(
E2 · E[U |E]

)
+ c2

uE
(
E[U |E] · E[U2|E]

)

−2cuE
(
E · E[U |E]2

)}
.

A.3.3 Information matrix in terms of second-order partial

derivatives

An alternative formulation for the partitioned per observation expected Fisher

information matrix of θ = (β, α, σu, σv) is given in equation (2.32). The compo-

nents of this per observation expected Fisher information matrix are

−E
[
∂2 ln fY

∂β∂βT

]
= − 1

c2
vσ

2
v

{
−1 +

c2
u

c2
vσ

2
v

E [V ar(U |E)]

}
×
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(
∂f(x,β)

∂β

)(
∂f(x, β)

∂βT

)

− 1

c2
vσ

2
v

{E[E]− cuE (E[U |E])} ∂2f(x,β)

∂β∂βT
,

−E
[
∂2 ln fY

∂α2

]
= ψ1(α)− E [V ar(ln U |E)] ,

−E
[

∂2 ln fY

∂(1/σu)2

]
= ασ2

u − E [V ar(U |E)] ,

−E
[
∂2 ln fY

∂(σ2
v)

2

]
= − 1

2σ4
v

+
1

c2
vσ

6
v

×
{
E[E2] + c2

uE
(
E[U2|E]

)− 2cuE (E · E[U |E])
}

−
(

cu

c2
vσ

4
v

)2

×
{

c2
u

4
E

[
V ar(U2|E)

]− cuE
[
E · Cov(U,U2|E)

]

+ E
[
E2 · V ar(U |E)

]}
,

−E
[
∂2 ln fY

∂β∂α

]
=

cu

c2
vσ

2
v

E [Cov(U, ln U |E)]
∂f(x, β)

∂β
,

−E
[

∂2 ln fY

∂β∂(1/σu)

]
= − cu

c2
vσ

2
v

E [V ar(U |E)]
∂f(x,β)

∂β
,

−E
[
∂2 ln fY

∂β∂σ2
v

]
=

1

c2
vσ

4
v

{
E[E]− cuE (E[U |E]) +

c3
u

2c2
vσ

2
v

E
[
Cov(U,U2|E)

]

− c2
u

c2
vσ

2
v

E [E · V ar(U |E)]

}
∂f(x,β)

∂β
,

−E
[

∂2 ln fY

∂α∂(1/σu)

]
= −σu + E [Cov(U, ln U |E)] ,

−E
[
∂2 ln fY

∂α∂σ2
v

]
= − c2

u

2c2
vσ

4
v

E
[
Cov(U2, ln U |E)

]
+

cu

c2
vσ

4
v

E [E · Cov(U, ln U |E)] ,
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−E
[

∂2 ln fY

∂(1/σu)∂σ2
v

]
=

c2
u

2c2
vσ

4
v

E
[
Cov(U,U2|E)

]− cu

c2
vσ

4
v

E [E · V ar(U |E)] .

A.4 Further Calculations for the Normal-

Gamma Model

Let

a =
u−B/A

1/
√

A
= − |cu|

|cv|σv

u +
cuε

|cucv|σv

− |cv|σv

|cu|σu

,

and let f(u) be a function such that

f(u) =

∫ ∞

0

g(u)uα−1φ(−a) du,

where g(u) is a function of u, and possibly α. The derivative of ln f(u) with

respect to θ is given by

∂ ln f(u)

∂θ
=

1

f(u)
· ∂f(u)

∂θ
.

The derivative of ln f(u) for g(u) = 1 appears in the first-order derivatives of

ln fY (y; θ) under the normal-gamma specification in Section 2.5 of Chapter 2.

Because the limits of integration do not depend on the parameters, differentiation

can be taken inside the integral. The derivatives of f(u) with respect to the

parameters θ = (β, α, σu, σv) are

∂f(u)

∂β
=

∫ ∞

0

g(u)uα−1

(
− cu

c2
vσ

2
v

u +
ε

c2
vσ

2
v

− 1

cuσu

)
φ(−a) du

= − cu

c2
vσ

2
v

∫ ∞

0

g(u)uαφ(−a) du +

(
ε

c2
vσ

2
v

− 1

cuσu

)
×

∫ ∞

0

g(u)uα−1φ(−a) du,

∂f(u)

∂α
=

∫ ∞

0

(
∂g(u)

∂α
uα−1 + g(u) ln u · uα−1

)
φ(−a) du,
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∂f(u)

∂(1/σu)
=

∫ ∞

0

g(u)uα−1

(
−u +

ε

cu

− c2
vσ

2
v

c2
uσu

)
φ(−a) du

= −
∫ ∞

0

g(u)uαφ(−a) du +

(
ε

cu

− c2
vσ

2
v

c2
uσu

) ∫ ∞

0

g(u)uα−1φ(−a) du,

∂f(u)

∂σ2
v

=

∫ ∞

0

g(u)uα−1

(
c2
u

2c2
vσ

4
v

u2 − cuε

c2
vσ

4
v

u +
ε2

2c2
vσ

4
v

− c2
v

2c2
uσ

2
u

)
φ(−a) du

=
c2
u

2c2
vσ

4
v

∫ ∞

0

g(u)uα+1φ(−a) du− cuε

c2
vσ

4
v

∫ ∞

0

g(u)uαφ(−a) du

+

(
ε2

2c2
vσ

4
v

− c2
v

2c2
uσ

2
u

) ∫ ∞

0

g(u)uα−1φ(−a) du.

Dividing these derivatives by f(u) and letting g(u) = 1 gives

(
1

f(u)
· ∂f(u)

∂β

)∣∣∣∣
g(u)=1

= − cu

c2
vσ

2
v

E[U |E] +
ε

c2
vσ

2
v

− 1

cuσu

,

(
1

f(u)
· ∂f(u)

∂α

)∣∣∣∣
g(u)=1

= E[ln U |E],

(
1

f(u)
· ∂f(u)

∂(1/σu)

)∣∣∣∣
g(u)=1

= −E[U |E] +
ε

cu

− c2
vσ

2
v

c2
uσu

,

(
1

f(u)
· ∂f(u)

∂σ2
v

)∣∣∣∣
g(u)=1

=
c2
u

2c2
vσ

4
v

E[U2|E]− cuε

c2
vσ

4
v

E[U |E] +
ε2

2c2
vσ

4
v

− c2
v

2c2
uσ

2
u

,

where equation (C.11) in Section C.4 gives

E[g(U)|E] =

∫ ∞

0

g(u)uα−1φ(−a) du
∫ ∞

0

uα−1φ(−a) du

.

The second-order derivatives of ln f(u) appear in the second-order derivatives of

ln fY (y; θ) under the normal-gamma specification in Section 2.5 of Chapter 2.

Calculating these derivatives involves calculating the derivatives of E[g(U)|E],
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which are given by

∂

∂β
E[g(U)|E] = −

(
cu

c2
vσ

2
v

)
∫ ∞

0

g(u)uαφ(−a) du
∫ ∞

0

uα−1φ(−a) du

+
cu

c2
vσ

2
v




∫ ∞

0

g(u)uα−1φ(−a) du
∫ ∞

0

uα−1φ(−a) du







∫ ∞

0

uαφ(−a) du
∫ ∞

0

uα−1φ(−a) du




= − cu

c2
vσ

2
v

{E[g(U)U |E]− E[g(U)|E] · E[U |E]}

= − cu

c2
vσ

2
v

Cov (g(U), U |E) ,

∂f

∂α
E[g(U)|E] =

∫ ∞

0

∂g(u)

∂α
uα−1φ(−a) du

∫ ∞

0

uα−1φ(−a) du

+

∫ ∞

0

g(u)uα−1 ln uφ(−a) du
∫ ∞

0

uα−1φ(−a) du

−




∫ ∞

0

g(u)uα−1φ(−a) du
∫ ∞

0

uα−1φ(−a) du







∫ ∞

0

uα−1 ln u φ(−a) du
∫ ∞

0

uα−1φ(−a) du




= E
[

∂g(u)

∂α

∣∣∣∣ E

]
+ E[g(U) ln U |E]− E[g(U)|E] · E[ln U |E]

= E
[

∂g(u)

∂α

∣∣∣∣ E

]
+ Cov (g(U), ln U |E) ,

∂

∂(1/σu)
E[g(U)|E] = −

∫ ∞

0

g(u)uαφ(−a)
∫ ∞

0

uα−1φ(−a) du

+




∫ ∞

0

g(u)uα−1φ(−a) du
∫ ∞

0

uα−1φ(−a) du







∫ ∞

0

uαφ(−a) du
∫ ∞

0

uα−1φ(−a) du




= −E[g(U)U |E] + E[g(U)|E] · E[U |E]

= −Cov (g(U), U |E) ,
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∂

∂σ2
v

E[g(U)|E] =
c2
u

2c2
vσ

4
v

∫ ∞

0

g(u)uα+1φ(−a) du
∫ ∞

0

uα−1φ(−a) du

− cuε

c2
vσ

4
v

∫ ∞

0

g(u)uαφ(−a) du
∫ ∞

0

uα−1φ(−a) du

− c2
u

2c2
vσ

4
v




∫ ∞

0

g(u)uα−1φ(−a) du
∫ ∞

0

uα−1φ(−a) du







∫ ∞

0

uα+1φ(−a) du
∫ ∞

0

uα−1φ(−a) du




+
cuε

c2
vσ

4
v




∫ ∞

0

g(u)uα−1φ(−a) du
∫ ∞

0

uα−1φ(−a) du







∫ ∞

0

uαφ(−a) du
∫ ∞

0

uα−1φ(−a) du




=
c2
u

2c2
vσ

4
v

{
E[g(U)U2|E]− E[g(U)|E] · E[U2|E]

}

− cuε

c2
vσ

4
v

{E[g(U)U |E]− E[g(U)|E] · E[U |E]}

=
c2
u

2c2
vσ

4
v

Cov(g(U), U2|E)− cuε

c2
vσ

4
v

Cov(g(U), U |E).
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Appendix B

Information Matrices for

Stochastic Frontier Models

The information matrix for the log-linear Cobb-Douglas stochastic production

frontier model can be obtained by letting cu = −1, cv = 1 and f(xi,β) = fT (xi)β

in the calculations for the information matrix for the general model (2.1). To

reduce notational clutter, observation subscripts will be omitted.

B.1 Information Matrix for the Normal-Half

Normal Model

The first-order partial derivatives of the log-likelihood function for a single

observation are given by

∂ ln fY

∂β
=

{
1

λσG

a +
λ

σG

h(a)

}
f(x),

∂ ln fY

∂λ
= −1

λ
ah(a),
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∂ ln fY

∂σ2
G

= − 1

2σ2
G

+
1

2

(
1

λσG

)2

a2 +
1

2σ2
G

ah(a).

The corresponding second-order partial derivatives are

∂2 ln fY

∂β∂βT
=

{
− 1

σ2
G

+

(
λ

σG

)2

[ah(a)− h(a)2]

}
f(x)fT (x),

∂2 ln fY

∂λ2
=

1

λ2
[a3h(a)− a2h(a)2],

∂2 ln fY

∂(σ2
G)2

=
1

2σ4
G

−
(

1

λσ2
G

)2

a2 − 1

4σ4
G

[
3ah(a)− a3h(a) + a2h(a)2

]
,

∂2 ln fY

∂β∂λ
=

1

σG

{
h(a)− a2h(a) + ah(a)2

}
f(x),

∂2 ln fY

∂β∂σ2
G

=

{
− 1

λσ3
G

a− λ

2σ3
G

[h(a)− a2h(a) + ah(a)2]

}
f(x),

∂2 ln fY

∂λ∂σ2
G

=
1

2λσ2
G

[ah(a)− a3h(a) + a2h(a)2].

Using the first-order partial derivatives, the components of the per observation

expected Fisher information matrix (2.12) are given by

E

[(
∂ ln fY

∂β

)(
∂ ln fY

∂β

)T
]

=

{(
1

λσG

)2

E[a2] +
2

σ2
G

E[ah(a)] +

(
λ

σG

)2

E[h(a)2]

}
f(x)fT (x),
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E

[(
∂ ln fY

∂λ

)2
]

=
1

λ2
E[a2h(a)2],

E

[(
∂ ln fY

∂σ2
G

)2
]

=

(
1

2σ2
G

)2

− 1

2

(
1

λσ2
G

)2

E[a2]− 1

2

(
1

σ2
G

)2

E[ah(a)]

+
1

4

(
1

λσG

)4

E[a4] +
1

2

(
1

λσ2
G

)2

E[a3h(a)] +

(
1

2σ2
G

)2

E[a2h(a)2],

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂λ

)]
=

{
− 1

λ2σG

E[a2h(a)]− 1

σG

E[ah(a)2]

}
f(x),

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂σ2
G

)]
= −f(x)

{
1

2λσ3
G

E[a] +
1

2

(
− 1

λσG

)3

E[a3]

− 1

2λσ3
G

E[a2h(a)] +
λ

2σ3
G

E[h(a)]− 1

2λσ3
G

E[a2h(a)]− λ

2σ3
G

E[ah(a)2]

}
,

E
[(

∂ ln fY

∂λ

)(
∂ ln fY

∂σ2
G

)]
=

1

2λσ2
G

E[ah(a)]− 1

2λ

(
1

λσG

)2

E[a3h(a)]− 1

2λσ2
G

E[a2h(a)2].

Using the second-order partial derivatives, the components of the per observation

expected Fisher information matrix (2.13) are given by

−E
[
∂2 ln fY

∂β∂βT

]
= −

{
− 1

σ2
G

+

(
λ

σG

)2 (
E[ah(a)]− E[h(a)2]

)
}

f(x)fT (x),

−E
[
∂2 ln fY

∂λ2

]
= − 1

λ2

(
E[a3h(a)]− E[a2h(a)2]

)
,
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−E
[
∂2 ln fY

∂(σ2
G)2

]
=

− 1

2σ4
G

+

(
1

λσ2
G

)2

E[a2] +
1

4σ4
G

(
3E[ah(a)]− E[a3h(a)] + E[a2h(a)2]

)
,

−E
[
∂2 ln fY

∂β∂λ

]
= − 1

σG

{
E[h(a)]− E[a2h(a)] + E[ah(a)2]

}
f(x),

−E
[
∂2 ln fY

∂β∂σ2
G

]
= −

{
− 1

λσ3
G

E[a]− λ

2σ3
G

(
E[h(a)]− E[a2h(a)] + E[ah(a)2]

)}
f(x),

−E
[
∂2 ln fY

∂λ∂σ2
G

]
= − 1

2λσ2
G

(
E[ah(a)]− E[a3h(a)] + E[a2h(a)2]

)
.

The following properties are useful in approximating the information matrix

based on the approximations in Chapter 3

E[a] =
λ

σG

E[E],

V ar(a) =

(
λ

σG

)2

V ar(E),

∂a

∂β
= − λ

σG

f(x).

B.2 Information Matrix for the Normal-

Exponential Model

The first-order partial derivatives of the log-likelihood function for a single

observation are given by

∂ ln fY

∂β
= −

{
1

σu

− 1

σv

h(a)

}
f(x),
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∂ ln fY

∂(1/σu)
= σu + σv[a− h(a)],

∂ ln fY

∂σ2
v

=
1

2σ2
u

−
(

1

σuσv

− 1

2σ2
v

a

)
h(a),

The corresponding second-order partial derivatives are

∂2 ln fY

∂β∂βT
=

{
1

σ2
v

[ah(a)− h(a)2]

}
f(x)fT (x),

∂2 ln fY

∂(1/σu)2
= −σ2

u + σ2
v [1 + ah(a)− h(a)2],

∂2 ln fY

∂(σ2
v)

2
=

1

σ2
uσ

2
v

[ah(a)− h(a)2]− 1

σuσ3
v

[a2h(a)− ah(a)2 − h(a)]

+
1

4σ4
v

[a3h(a)− a2h(a)2 − 3ah(a)],

∂2 ln fY

∂β∂(1/σu)
= −{

1 + ah(a)− h(a)2
}

f(x),

∂2 ln fY

∂β∂σ2
v

=

{
− 1

2σ3
v

[h(a)− a2h(a) + ah(a)2] − 1

σuσ2
v

[ah(a)− h(a)2]

}
f(x),

∂2 ln fY

∂(1/σu)∂σ2
v

=
1

σu

[1 + ah(a)− h(a)2]− 1

2σv

[h(a) + a2h(a)− ah(a)2].

Using the first-order partial derivatives, the components of the per observation

expected Fisher information matrix (2.18) are given by

E

[(
∂ ln fY

∂β

)(
∂ ln fY

∂β

)T
]

= f(x)fT (x)×
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{
1

σ2
u

− 2

σuσv

E[h(a)] +
1

σ2
v

E[h(a)2]

}
,

E

[(
∂ ln fY

∂(1/σu)

)2
]

=

σ2
u + 2σuσv (E[a]− E[h(a)]) + σ2

v

(
E[a2]− 2E[ah(a)] + E[h(a)2]

)
,

E

[(
∂ ln fY

∂σ2
v

)2
]

=

(
1

2σ2
u

)2

− 1

σ3
uσv

E[h(a)] +
1

2σ2
uσ

2
v

E[ah(a)]

+

(
1

σuσv

)2

E[h(a)2]− 1

σuσ3
v

E[ah(a)2] +

(
1

2σ2
v

)2

E[a2h(a)2],

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂(1/σu)

)]
= f(x)×

{− (
1− E[ah(a)] + E[h(a)2]

)
+

σv

σu

(E[a]− E[h(a)]) +
σu

σv

E[h(a)]

}
,

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂σ2
v

)]
=

{
− 1

2σ3
u

+
1

σ2
uσv

E[h(a)]− 1

2σuσ2
v

E[ah(a)]

+
1

2σ2
uσv

E[h(a)]− 1

σuσ2
v

E[h(a)2] +
1

2σ3
v

E[ah(a)2]

}
f(x),

E
[(

∂ ln fY

∂(1/σu)

) (
∂ ln fY

∂σ2
v

)]
=

1

2σu

− 1

σv

E[h(a)] +
σu

2σ2
v

E[ah(a)]

+
σv

2σ2
u

(E[a]− E[h(a)])− 1

σu

E[ah(a)] +
1

2σv

E[a2h(a)]

+
1

σu

E[h(a)2]− 1

2σv

E[ah(a)2].
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Using the second-order partial derivatives, the components of the per observation

expected Fisher information matrix (2.19) are given by

−E
[
∂2 ln fY

∂β∂βT

]
= −

{
1

σ2
v

(
E[ah(a)]− E[h(a)2]

)}
f(x)fT (x),

−E
[

∂2 ln fY

∂(1/σu)2

]
= σ2

u − σ2
v

(
1 + E[ah(a)]− E[h(a)2]

)
,

−E
[
∂2 ln fY

∂(σ2
v)

2

]
= − 1

σ2
uσ

2
v

(
E[ah(a)]− E[h(a)2]

)

+
1

σuσ3
v

(
E[a2h(a)]− E[ah(a)2]− E[h(a)]

)

− 1

4σ4
v

(
E[a3h(a)]− E[a2h(a)2]− E[3ah(a)]

)
,

−E
[

∂2 ln fY

∂β∂(1/σu)

]
=

{
1 + E[ah(a)]− E[h(a)2]

}
f(x),

−E
[
∂2 ln fY

∂β∂σ2
v

]
=

{
1

2σ3
v

(
E[h(a)]− E[a2h(a)] + E[ah(a)2]

)

1

σuσ2
v

(
E[ah(a)]− E[h(a)2]

)}
f(x),

−E
[

∂2 ln fY

∂(1/σu)∂σ2
v

]
= − 1

σu

(
1 + E[ah(a)]− E[h(a)2]

)

+
1

2σv

(
E[h(a)] + E[a2h(a)]− E[ah(a)2]

)
.

The following properties are useful in approximating the information matrix

based on the approximations in Chapter 3

E[a] =
1

σv

E[E] +
σv

σu

,
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V ar(a) =
1

σ2
v

V ar(E),

∂a

∂β
= − 1

σv

f(x).

B.3 Information Matrix for the Normal-

Truncated Normal Model

The first-order partial derivatives of the log-likelihood function for a single

observation are given by

∂ ln fY

∂β
=

{
µ(λ2 + 1)

λ2σ2
G

+
1

λσG

a1 +
λ

σG

h(a1)

}
f(x),

∂ ln fY

∂µ
= −µ(λ2 + 1)

λ2σ2
G

− 1

λσG

a1 +
1

λσG

h(a1) +
a2

µ
h(a2),

∂ ln fY

∂λ
=

(
− 2µ

λ2σG

− 1

λ
a1

)
h(a1) +

µ

(λ2 + 1)1/2λ2σG

h(a2),

∂ ln fY

∂σ2
G

= − 1

2σ2
G

+
1

2

(
µ(λ2 + 1)

λ2σ2
G

+
1

λσG

a1

)2

+
1

2σ2
G

a1h(a1)− 1

2σ2
G

a2h(a2).

The corresponding second-order partial derivatives are

∂2 ln fY

∂β∂βT
=

{
− 1

σ2
G

+
λ2

σ2
G

[a1h(a1)− h(a1)
2]

}
f(x)fT (x),

∂2 ln fY

∂µ2
= − 1

σ2
G

+
1

λ2σ2
G

[a1h(a1)− h(a1)
2]− a2

2

µ2
h(a2)[a2 − h(a2)],
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∂2 ln fY

∂λ2
=

2µ

λ3σG

h(a1) +
4µ2

λ4σ2
G

[a1h(a1)− h(a1)
2] +

4µ

λ3σG

[a2
1h(a1)− a1h(a1)

2]

+
1

λ2
[a3

1h(a1)− a2
1h(a1)

2]− µ(3λ2 + 2)

(λ2 + 1)3/2λ3σG

h(a2)

− µ2

(λ2 + 1)λ4σ2
G

h(a2)[a2 − h(a2)],

∂2 ln fY

∂(σ2
G)2

= −µ2(λ2 + 1)2

λ4σ6
G

− 2µ(λ2 + 1)

λ3σ5
G

a1 − 1

λ2σ4
G

a2
1

+
1

4σ4
G

(
2− 3a1h(a1) + a3

1h(a1)− a2
1h(a1)

2 + 3a2h(a2)

−a2
2h(a2)[a2 − h(a2)]

)
,

∂2 ln fY

∂β∂µ
=

1

σ2
G

{1 + a1h(a1)− h(a1)
2}f(x),

∂2 ln fY

∂β∂λ
=

1

σG

{
h(a1)− 2µ

λσG

[a1h(a1)− h(a1)
2]− a2

1h(a1) +a1h(a1)
2

}
f(x),

∂2 ln fY

∂β∂σ2
G

=
1

σ3
G

{
−µ(λ2 + 1)

λ2σG

− 1

λ
a1 −λ

2
[h(a1)− a2

1h(a1) + a1h(a1)
2]

}
f(x),

∂2 ln fY

∂µ∂λ
= − 1

λ2σG

(
h(a1) +

2µ

λσG

[a1h(a1)− h(a1)
2] + a2

1h(a1)− a1h(a1)
2

)

+
1

(λ2 + 1)1/2λ2σG

(h(a2)− a2h(a2)[a2 − h(a2)]) ,

∂2 ln fY

∂µ∂σ2
G

=
µ(λ2 + 1)

λ2σ4
G

+
1

2λσ3
G

[
2a1 − h(a1) + a2

1h(a1)− a1h(a1)
2
]

− 1

2µσ2
G

a2h(a2) +
1

2µσ2
G

a2
2h(a2)[a2 − h(a2)],

∂2 ln fY

∂λ∂σ2
G

=
µ

λ2σ3
G

[
h(a1)− a2

1h(a1) + a1h(a1)
2
]

+
1

2λσ2
G

[
a1h(a1)− a3

1h(a1) + a2
1h(a1)

2
]
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− µ

2(λ2 + 1)1/2λ2σ3
G

(h(a2)− a2h(a2)[a2 − h(a2)]) .

Using the first-order partial derivatives, the components of the per observation

expected Fisher information matrix (2.26) are given by

E

[(
∂ ln fY

∂β

)(
∂ ln fY

∂β

)T
]

= f(x)fT (x)

{
µ2(λ2 + 1)2

λ4σ4
G

+
2µ(λ2 + 1)

λ3σ3
G

E[a1]

+
2µ(λ2 + 1)

λσ3
G

E[h(a1)] +
1

λ2σ2
G

E[a2
1] +

2

σ2
G

E[a1h(a1)] +
λ2

σ2
G

E[h(a1)
2]

}
,

E

[(
∂ ln fY

∂µ

)2
]

=
a2

2

µ2
[a2 − h(a2)]

2 +
2

µλσG

a2[a2 − h(a2)] (E[a1]− E[h(a1)])

+
1

λ2σ2
G

(
E[a2

1]− 2E[a1h(a1)] + E[h(a1)
2]

)
,

E

[(
∂ ln fY

∂λ

)2
]

=
4µ2

λ4σ2
G

E[h(a1)
2] +

4µ

λ3σG

E[a1h(a1)
2]

− 4µ2

(λ2 + 1)1/2λ4σ2
G

h(a2)E[h(a1)] +
1

λ2
E[a2

1h(a1)
2]

− 2µ

(λ2 + 1)1/2λ3σG

h(a2)E[a1h(a1)] +
µ2

(λ2 + 1)λ4σ2
G

h(a2)
2,

E

[(
∂ ln fY

∂σ2
G

)2
]

=
1

4σ4
G

[
−µ2(λ2 + 1)2

λ4σ2
G

+ a2h(a2) + 1

]2

− 1

σ2
G

[
−µ2(λ2 + 1)2

λ4σ2
G

+ a2h(a2) + 1

]
×

(
µ(λ2 + 1)

λ3σ3
G

E[a1] +
1

2λ2σ2
G

E[a2
1] +

1

2σ2
G

E[a1h(a1)]

)
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+
µ2(λ2 + 1)2

λ6σ6
G

E[a2
1] +

µ(λ2 + 1)

λ5σ5
G

E[a3
1] +

µ(λ2 + 1)

λ3σ5
G

E[a2
1h(a1)]

+
1

4λ4σ4
G

E[a4
1] +

1

2λ2σ4
G

E[a3
1h(a1)] +

1

4σ4
G

E[a2
1h(a1)

2],

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂µ

)]
=

{[
µ(λ2 + 1)

λ2σ2
G

− a2

µ
h(a2)

]
×

(
−µ(λ2 + 1)

λ2σ2
G

− 1

λσG

E[a1]− λ

σG

E[h(a1)]

)

−µ(λ2 + 1)

λ3σ3
G

(E[a1]− E[h(a1)])− 1

λ2σ2
G

(
E[a2

1]− E[a1h(a1)]
)

− 1

σ2
G

(
E[a1h(a1)− h(a1)

2]
)}

f(x),

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂λ

)]
=

{
−2µ2(λ2 + 1)

λ4σ3
G

E[h(a1)]

−µ(λ2 + 1)

λ3σ2
G

E[a1h(a1)] +
µ2(λ2 + 1)1/2

λ4σ3
G

h(a2)− 2µ

λ3σ2
G

E[a1h(a1)]

− 1

λ2σG

E[a2
1h(a1)] +

µ

(λ2 + 1)1/2λ3σ2
G

h(a2)E[a1]− 2µ

λσ2
G

E[h(a1)
2]

− 1

σG

E[a1h(a1)
2] +

µ

(λ2 + 1)1/2λσ2
G

h(a2)E[h(a1)]

}
f(x),

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂σ2
G

)]
= −

{
− 1

2σ2
G

[
−µ2(λ2 + 1)2

λ4σ2
G

+ a2h(a2) + 1

]
×

(
−µ(λ2 + 1)

λ2σ2
G

− 1

λσG

E[a1]− λ

σG

E[h(a1)]

)

−µ2(λ2 + 1)2

λ5σ5
G

E[a1]− 3µ(λ2 + 1)

2λ4σ4
G

E[a2
1]−

3µ(λ2 + 1)

2λ2σ4
G

E[a1h(a1)]

− 1

2λ3σ3
G

E[a3
1] −

1

λσ3
G

E[a2
1h(a1)]− λ

2σ3
G

E[a1h(a1)
2]

}
f(x),
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E
[(

∂ ln fY

∂µ

)(
∂ ln fY

∂λ

)]
=

[
µ(λ2 + 1)

λ2σ2
G

− a2

µ
h(a2)

]
×

(
2µ

λ2σG

E[h(a1)] +
1

λ
E[a1h(a1)]− µ

(λ2 + 1)1/2λ2σG

h(a2)

)

+
2µ

λ3σ2
G

(
E[a1h(a1)]− E[h(a1)

2]
)

+
1

λ2σG

(
E[a2

1h(a1)]− E[a1h(a1)
2]

)

− µ

(λ2 + 1)1/2λ3σ2
G

h(a2) (E[a1]− E[h(a1)]) ,

E
[(

∂ ln fY

∂µ

)(
∂ ln fY

∂σ2
G

)]
=

[
µ(λ2 + 1)

λ2σ2
G

− a2

µ
h(a2)

]
×

(
1

2σ2
G

[
−µ2(λ2 + 1)2

λ4σ2
G

+ a2h(a2) + 1

]
− µ(λ2 + 1)

λ3σ3
G

E[a1]

− 1

2λ2σ2
G

E[a2
1]−

1

2σ2
G

E[a1h(a1)]

)

+
1

2λσ3
G

[
−µ2(λ2 + 1)2

λ4σ2
G

+ a2h(a2) + 1

]
(E[a1]− E[h(a1)])

−µ(λ2 + 1)

λ4σ4
G

(
E[a2

1]− E[a1h(a1)]
)− 1

2λ3σ3
G

(
E[a3

1]− E[a2
1h(a1)]

)

− 1

2λσ3
G

(
E[a2

1h(a1)]− E[a1h(a1)
2]

)
,

E
[(

∂ ln fY

∂λ

)(
∂ ln fY

∂σ2
G

)]
=

1

2σ2
G

[
−µ2(λ2 + 1)2

λ4σ2
G

+ a2h(a2) + 1

]
×

(
2µ

λ2σG

E[h(a1)] +
1

λ
E[a1h(a1)]− µ

(λ2 + 1)1/2λ2σG

h(a2)

)

−2µ2(λ2 + 1)

λ5σ4
G

E[a1h(a1)]− µ

λ4σ3
G

E[a2
1h(a1)]− µ

λ2σ3
G

E[a1h(a1)
2]

−µ(λ2 + 1)

λ4σ3
G

E[a2
1h(a1)]− 1

2λ3σ2
G

E[a3
1h(a1)]− 1

2λσ2
G

E[a2
1h(a1)

2]

+
µ

(λ2 + 1)1/2λ2σG

h(a2)×
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(
µ(λ2 + 1)

λ3σ3
G

E[a1] +
1

2λ2σ2
G

E[a2
1] +

1

2σ2
G

E[a1h(a1)]

)
.

Using the second-order partial derivatives, the components of the per observation

expected Fisher information matrix (2.27) are given by

−E
[
∂2 ln fY

∂β∂βT

]
= −

{
− 1

σ2
G

+
λ2

σ2
G

(
E[a1h(a1)]− E[h(a1)

2]
)}

f(x)fT (x),

−E
[
∂2 ln fY

∂µ2

]
=

1

σ2
G

− 1

λ2σ2
G

(
E[a1h(a1)]− E[h(a1)

2]
)

+
a2

2

µ2
h(a2)[a2 − h(a2)],

−E
[
∂2 ln fY

∂λ2

]
= − 2µ

λ3σG

E[h(a1)]− 4µ2

λ4σ2
G

(
E[a1h(a1)]− E[h(a1)

2]
)

− 4µ

λ3σG

(
E[a2

1h(a1)]− E[a1h(a1)
2]

)

− 1

λ2

(
E[a3

1h(a1)]− E[a2
1h(a1)

2]
)

+
µ(3λ2 + 2)

(λ2 + 1)3/2λ3σG

h(a2)

+
µ2

(λ2 + 1)λ4σ2
G

h(a2)[a2 − h(a2)],

−E
[
∂2 ln fY

∂(σ2
G)2

]
=

µ2(λ2 + 1)2

λ4σ6
G

+
2µ(λ2 + 1)

λ3σ5
G

E[a1] +
1

λ2σ4
G

E[a2
1]

− 1

4σ4
G

(
2− 3E[a1h(a1)] + E[a3

1h(a1)]− E[a2
1h(a1)

2]

+3a2h(a2)− a2
2h(a2)[a2 − h(a2)]

)
,

−E
[
∂2 ln fY

∂β∂µ

]
= − 1

σ2
G

{1 + E[a1h(a1)]− E[h(a1)
2]}f(x),

−E
[
∂2 ln fY

∂β∂λ

]
= f(x)×

− 1

σG

{
E[h(a1)]− 2µ

λσG

(
E[a1h(a1)]− E[h(a1)

2]
)− E[a2

1h(a1)] +E[a1h(a1)
2]

}
,
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−E
[
∂2 ln fY

∂β∂σ2
G

]
= − 1

σ3
G

f(x)×
{
−µ(λ2 + 1)

λ2σG

− 1

λ
E[a1] −λ

2

(
E[h(a1)]− E[a2

1h(a1)] + E[a1h(a1)
2]

)}
,

−E
[
∂2 ln fY

∂µ∂λ

]
=

1

λ2σG

(
E[h(a1)] +

2µ

λσG

(
E[a1h(a1)]− E[h(a1)

2]
)

+ E[a2
1h(a1)]− E[a1h(a1)

2]

)

− 1

(λ2 + 1)1/2λ2σG

(h(a2)− a2h(a2)[a2 − h(a2)]) ,

−E
[
∂2 ln fY

∂µ∂σ2
G

]
= −µ(λ2 + 1)

λ2σ4
G

− 1

2λσ3
G

(
2E[a1]− E[h(a1)] + E[a2

1h(a1)]− E[a1h(a1)
2]

)

+
1

2µσ2
G

a2h(a2)− 1

2µσ2
G

a2
2h(a2)[a2 − h(a2)],

−E
[
∂2 ln fY

∂λ∂σ2
G

]
= − µ

λ2σ3
G

(
E[h(a1)]− E[a2

1h(a1)] + E[a1h(a1)
2]

)

− 1

2λσ2
G

(
E[a1h(a1)]− E[a3

1h(a1)] + E[a2
1h(a1)

2]
)

+
µ

2(λ2 + 1)1/2λ2σ3
G

(h(a2)− a2h(a2)[a2 − h(a2)]) .

The following properties are useful in approximating the information matrix

based on the approximations in Chapter 3

E[a1] = − µ

λσG

+
λ

σG

E[E],

V ar(a1) =
λ2

σ2
G

V ar(E),

∂a1

∂β
= − λ

σG

f(x).

When µ = 0 the nonnegative truncated normal distribution collapses to the
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nonnegative half normal distribution and substituting µ = 0 into the normal-

truncated normal equations above gives the corresponding normal-half normal

equations in Appendix B.1.

B.4 Information Matrix for the Normal-Gamma

Model

The first-order partial derivatives of the log-likelihood function for a single

observation are given by

∂ ln fY

∂β
=

1

σ2
v

{ε + E[U |E]}f(x),

∂ ln fY

∂α
= −ψ(α) + ln

(
1

σu

)
+ E[ln U |E],

∂ ln fY

∂(1/σu)
= ασu − E[U |E],

∂ ln fY

∂σ2
v

= − 1

2σ2
v

+
1

2σ4
v

(
ε2 + E[U2|E] + 2εE[U |E]

)
,

where ψ(α) is the digamma function and E[g(U)|E] =
E[g(Q)Qα−1]

E[Qα−1]
for any given

function g of U . The corresponding second-order partial derivatives are

∂2 ln fY

∂β∂βT
=

1

σ2
v

{
−1 +

1

σ2
v

V ar(U |E)

}
f(x)fT (x),

∂2 ln fY

∂α2
= −ψ1(α) + V ar(ln U |E),
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∂2 ln fY

∂(1/σu)2
= −ασ2

u + V ar(U |E),

∂2 ln fY

∂(σ2
v)

2
=

1

2σ4
v

− 1

σ6
v

(
ε2 + E[U2|E] + 2εE[U |E]

)

+
1

σ8
v

[
1

4
V ar(U2|E) + εCov(U,U2|E) + ε2V ar(U |E)

]
,

∂2 ln fY

∂β∂α
=

1

σ2
v

Cov(U, ln U |E)f(x),

∂2 ln fY

∂β∂(1/σu)
= − 1

σ2
v

V ar(U |E)f(x),

∂2 ln fY

∂β∂σ2
v

= − 1

σ4
v

{
ε + E[U |E]− 1

2σ2
v

Cov(U,U2|E)− 1

σ2
v

εV ar(U |E)

}
f(x),

∂2 ln fY

∂α∂(1/σu)
= σu − Cov(U, ln U |E),

∂2 ln fY

∂α∂σ2
v

=
1

2σ4
v

Cov(U2, ln U |E) +
1

σ4
v

εCov(U, ln U |E),

∂2 ln fY

∂(1/σu)∂σ2
v

= − 1

2σ4
v

Cov(U,U2|E)− 1

σ4
v

εV ar(U |E),

where ψ1(α) is the trigamma function and

V ar(g(U)|E) = E[g(U)2|E]− E[g(U)|E]2,

Cov(f(U), g(U)|E) = E[f(U) · g(U)|E]− E[f(U)|E] · E[g(U)|E],

for given functions f and g of U . Using the first-order partial derivatives, the

components of the per observation expected Fisher information matrix (2.33) are

given by
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E

[(
∂ ln fY

∂β

)(
∂ ln fY

∂β

)T
]

=

1

σ4
v

{
E[E2] + 2E(E · E[U |E]) + E(E[U |E]2)

}
f(x)fT (x),

E

[(
∂ ln fY

∂α

)2
]

=

[−ψ(α)− ln σu]
2 + 2 [−ψ(α)− ln σu]E (E[ln U |E]) + E

(
E[ln U |E]2

)
,

E

[(
∂ ln fY

∂(1/σu)

)2
]

= α2σ2
u − 2ασuE (E[U |E]) + E

(
E[U |E]2

)
,

E

[(
∂ ln fY

∂σ2
v

)2
]

=

1

4σ4
v

− 1

2σ6
v

{
E[E2]E

(
E[U2|E]

)
+ 2E (E · E[U |E])

}

+
1

4σ8
v

{
E[E4] + 2E

(
E2 · E[U2|E]

)
+ 4E

(
E3 · E[U |E]

)

+E
(
E[U2|E]2

)
+ 2E

(
E · E[U |E] · E[U2|E]

)
+ 4E

(
E2 · E[U |E]2

)}
,

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂α

)]
=

1

σ2
v

{[−ψ(α)− ln σu] (E[E] + E[U |E])

+E (E · E[ln U |E])− E (E[U |E] · E[ln U |E])}f(x),

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂(1/σu)

)]
=
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1

σ2
v

{
ασuE[E] + ασuE[U |E]− E (E · E[U |E])− E (

E[U |E]2
)}

f(x),

E
[(

∂ ln fY

∂β

)(
∂ ln fY

∂σ2
v

)]
= − 1

2σ4
v

{E[E] + E (E[U |E])}

+
1

2σ6
v

{
E[E3] + E

(
E · E[U2|E]

)
+ 2E

(
E2 · E[U |E]

)}

+
1

2σ6
v

{
E

(
E2 · E[U |E]

)
+ E

(
E[U |E] · E[U2|E]

)
+ 2E

(
E · E[U |E]2

)}
,

E
[(

∂ ln fY

∂α

)(
∂ ln fY

∂(1/σu)

)]
= [−ψ(α)− ln σu] {ασu − E (E[U |E])}

+ασuE (E[ln U |E])− E (E[U |E] · E[ln U |E]) ,

E
[(

∂ ln fY

∂α

)(
∂ ln fY

∂σ2
v

)]
= − 1

2σ2
v

{−ψ(α)− ln σu + E (E[ln U |E])}

+
1

2σ4
v

[−ψ(α)− ln σu]
{
E[E2] + E

(
E[U2|E]

)
+ 2E (E · E[U |E])

}

+
1

2σ4
v

{
E

(
E2 · E[ln U |E]

)
+ E

(
E[U2|E] · E[ln U |E]

)

+2E (E · E[U |E] · E[ln U |E])} ,

E
[(

∂ ln fY

∂(1/σu)

)(
∂ ln fY

∂σ2
v

)]
= − 1

2σ2
v

{ασu − E (E[U |E])}

+
ασu

2σ4
v

{
E[E2] + E

(
E[U2|E]

)
+ 2E (E · E[U |E])

}

− 1

2σ4
v

{
E

(
E2 · E[U |E]

)
+ E

(
E[U |E] · E[U2|E]

)
+ 2E

(
E · E[U |E]2

)}
.
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Using the second-order partial derivatives, the components of the per observation

expected Fisher information matrix (2.32) are given by

−E
[
∂2 ln fY

∂β∂βT

]
= − 1

σ2
v

{
−1 +

1

σ2
v

E [V ar(U |E)]

}
f(x)fT (x),

−E
[
∂2 ln fY

∂α2

]
= ψ1(α)− E [V ar(ln U |E)] ,

−E
[

∂2 ln fY

∂(1/σu)2

]
= ασ2

u − E [V ar(U |E)] ,

−E
[
∂2 ln fY

∂(σ2
v)

2

]
= − 1

2σ4
v

+
1

σ6
v

{
E[E2] + E

(
E[U2|E]

)
+ 2E (E · E[U |E])

}

− 1

σ8
v

{
1

4
E

[
V ar(U2|E)

]
+ E

[
E · Cov(U,U2|E)

]
+ E

[
E2 · V ar(U |E)

]}
,

−E
[
∂2 ln fY

∂β∂α

]
= − 1

σ2
v

E [Cov(U, ln U |E)] f(x),

−E
[

∂2 ln fY

∂β∂(1/σu)

]
=

1

σ2
v

E [V ar(U |E)] f(x),

−E
[
∂2 ln fY

∂β∂σ2
v

]
=

1

σ4
v

f(x)×
{
E[E] + E (E[U |E]) +

1

2σ2
v

E
[
Cov(U,U2|E)

]− 1

σ2
v

E [E · V ar(U |E)]

}
,

−E
[

∂2 ln fY

∂α∂(1/σu)

]
= −σu + E [Cov(U, ln U |E)] ,

−E
[
∂2 ln fY

∂α∂σ2
v

]
= − 1

2σ4
v

E
[
Cov(U2, ln U |E)

]− 1

σ4
v

E [E · Cov(U, ln U |E)] ,

−E
[

∂2 ln fY

∂(1/σu)∂σ2
v

]
=

1

2σ4
v

E
[
Cov(U,U2|E)

]
+

1

σ4
v

E [E · V ar(U |E)] .
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Along with the expected value and variance of E, the following property is

useful in approximating the information matrix based on the approximations in

Chapter 3
∂ε

∂β
=

∂

∂β

{
y − fT (x)β

}
= −f(x).

When α = 1 the gamma distribution collapses to the exponential distribu-

tion and substituting α = 1 into the normal-gamma equations above gives the

corresponding normal-exponential equations in Section 4.3.2 (after some further

algebraic manipulation).
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Appendix C

Ancillary Equations

C.1 Method for Obtaining the Joint Density

fU,E(u, ε)

The joint probability density function of random variables U and E can be

derived by considering a change (or transformation) of variables. Let U and V

be independent random variables with respective probability density functions

fU(u) and fV (v). Let

u = g1(u, v) = u,

ε = g2(u, v) = cuu + cvv,

define a one-to-one continuously differentiable transformation with inverse

u = h1(u, ε) = u,

v = h2(u, ε) =
ε− cuu

cv

,

where {cu, cv} ∈ R. The determinant of order 2,

J(u, ε) = det

(
∂(u, v)

∂(u, ε)

)
=

∣∣∣∣∣∣∣

∂u

∂u

∂u

∂ε
∂v

∂u

∂v

∂ε

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0

−cu

cv

1

cv

∣∣∣∣∣∣
=

1

cv

,
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is the Jacobian of the transformation. The joint density of U and E is given by

fU,E(u, ε) = fU(h1(u, ε))× fV (h2(u, ε))× |J(u, ε)|
= fU(u)× fV

(
ε− cuu

cv

)
×

∣∣∣∣
1

cv

∣∣∣∣

=
1

|cv|fU,V

(
u,

ε− cuu

cv

)
. (C.1)

C.2 Method for Obtaining the Marginal Den-

sity fE(ε)

For random variables U and E with joint density of the form

fU,E(u, ε) = uα−1K exp

{
−1

2
[Au2 − 2Bu + C]

}
,

u ≥ 0, −∞ < ε < ∞, α > 0,

(C.2)

the marginal density of E can be obtained by integrating u out of fU,E(u, ε).

The coefficients K, A, B and C are functions of various parameters which are

not discussed here. The integration of fU,E(u, ε) with respect to u can be easily

calculated by first completing the square of equation (C.2) as follows

fU,E(u, ε) = uα−1K exp

{
−1

2
[Au2 − 2Bu + C]

}

= uα−1K exp

{
−1

2

[
A

(
u2 − 2

B

A
u

)
+ C

]}

= uα−1K exp

{
−1

2

[
A

(
u− B

A

)2

+ C − B2

A

]}

= uα−1K exp

{
−1

2

(
C − B2

A

)}
exp

{
−A

2

(
u− B

A

)2
}

= uα−1K exp

{
−1

2

(
C − B2

A

)}
exp

{
−1

2

(
u−B/A

1/
√

A

)2
}

.

(C.3)
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If the coefficients K, A, B and C are not functions of u then any terms involv-

ing these coefficients (and not u) can be taken outside of the integration. The

marginal density of E is then given by

fE(ε) =

∫ ∞

0

fU,E(u, ε) du

= K exp

{
−1

2

(
C − B2

A

)} ∫ ∞

0

uα−1 exp

{
−1

2

(
u−B/A

1/
√

A

)2
}

du.

(C.4)

Multiplying and dividing the above equation by both

√
2π

A
and Φ

(
B/A

1/
√

A

)
gives

fE(ε) = K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}
Φ

(
B/A

1/
√

A

)
×

∫ ∞

0

uα−1

√
A

2π
exp

{
−1

2

(
u−B/A

1/
√

A

)2
}

du

Φ

(
B/A

1/
√

A

) ,

where Φ(·) is the standard normal cumulative distribution function.

Let random variable Q have a normal distribution, with mean B/A and vari-

ance 1/A, which is truncated from below at zero, i.e. Q ∼ N+

(
B

A
,

1

A

)
, then

fQ

(
q;

B

A
,

1√
A

)
=

√
A

2π
exp

{
−1

2

(
q −B/A

1/
√

A

)2
}

Φ

(
B/A

1/
√

A

) , q ≥ 0,

is the probability density function of Q and

E[Qα−1] =

∫ ∞

0

qα−1fQ

(
q;

B

A
,

1√
A

)
dq

is a fractional moment of the nonnegative truncated normal distribution of Q.

Appendix C.5 provides further details on truncated normal distributions.
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Thus the marginal density of E can be expressed as

fE(ε) = K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}
Φ

(
B/A

1/
√

A

) ∫ ∞

0

qα−1fQ

(
q;

B

A
,

1√
A

)
dq

= K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}
Φ

(
B/A

1/
√

A

)
E[Qα−1]

= K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}
Φ

(
B√
A

)
E[Qα−1]. (C.5)

When α = 1, the respective joint and marginal densities are

fU,E(u, ε) = K exp

{
−1

2
[Au2 − 2Bu + C]

}

= K exp

{
−1

2

(
C − B2

A

)}
exp

{
−1

2

(
u−B/A

1/
√

A

)2
}

,

fE(ε) = K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}
Φ

(
B√
A

)
. (C.6)

C.3 Expected Value and Variance of E

Suppose that random variable V has a normal distribution with E[V ] = 0

and V ar(V ) = σ2
v , and that random variable U has an unspecified distribution.

If U and V are independent and E = cuU + cvV where {cu, cv} ∈ R, then the

expected value and variance of E are

E[E] = E[cuU + cvV ]

= cuE[U ] + cvE[V ]

= cuE[U ], (C.7)

V ar(E) = V ar(cuU + cvV )

= c2
uV ar(U) + c2

vV ar(V )

= c2
uV ar(U) + c2

vσ
2
v . (C.8)
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C.4 Conditional Density fU |E(u|ε)
If the joint density of U and E is of the form given in equation (C.3)

fU,E(u, ε) = uα−1K exp

{
−1

2

(
C − B2

A

)}
exp

{
−1

2

(
u−B/A

1/
√

A

)2
}

= uα−1K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}√
Aφ

(
u−B/A

1/
√

A

)
,

u ≥ 0, −∞ < ε < ∞, α > 0,

and the marginal density of E is of the form given in equations (C.4) and (C.5)

fE(ε) = K exp

{
−1

2

(
C − B2

A

)} ∫ ∞

0

uα−1 exp

{
−1

2

(
u−B/A

1/
√

A

)2
}

du

= K

√
2π

A
exp

{
−1

2

(
C − B2

A

)} ∫ ∞

0

uα−1
√

Aφ

(
u−B/A

1/
√

A

)
du

= K

√
2π

A
exp

{
−1

2

(
C − B2

A

)}
Φ

(
B√
A

)
E[Qα−1],

then the conditional density of U given E is

fU |E(u|ε) =
fU,E(u, ε)

fE(ε)

=

uα−1
√

Aφ

(
u−B/A

1/
√

A

)

∫ ∞

0

uα−1
√

Aφ

(
u−B/A

1/
√

A

)
du

=

uα−1
√

Aφ

(
u−B/A

1/
√

A

)

Φ

(
B√
A

)
E[Qα−1]

, (C.9)

with expected value given by

E[U |E] =

∫ ∞

0

ufU |E(u|ε)du
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=

∫ ∞

0

uα
√

Aφ

(
u−B/A

1/
√

A

)
du

∫ ∞

0

uα−1
√

Aφ

(
u−B/A

1/
√

A

)
du

=
E[Qα]

E[Qα−1]
. (C.10)

The last two equalities follow from equation (C.18) where Q ∼ N+

(
B

A
,

1√
A

)
.

Thus E [Qα] and E [Qα−1] are fractional moments of the nonnegative truncated

normal distribution of Q. The expected value of a function g of U given E can

be calculated similarly as

E[g(U)|E] =

∫ ∞

0

g(u)uα−1fU |E(u|ε)du

=

∫ ∞

0

g(u)uα−1
√

Aφ

(
u−B/A

1/
√

A

)
du

∫ ∞

0

uα−1
√

Aφ

(
u−B/A

1/
√

A

)
du

=
E[g(Q)Qα−1]

E[Qα−1]
. (C.11)

When α = 1, the conditional density is

fU |E(u|ε) =

√
Aφ

(
u−B/A

1/
√

A

)

Φ

(
B√
A

) . (C.12)

Equation (C.19) gives the expected value of a truncated normal random variable.

Using this equation for Q ∼ N+

(
B

A
,

1√
A

)
, the conditional expectation of U

given E when α = 1 is

E[U |E] = E[Q]

=
B

A
+

1√
A

φ

(
− B/A

1/
√

A

)

1− Φ

(
− B/A

1/
√

A

)

=
1√
A

[
B√
A

+ h

(
− B√

A

)]
, (C.13)
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where h(·) is the normal hazard function. The mode of the conditional density

of U given E is located at the local maximum of fU |E(u|ε). The conditional

density given in equation (C.12) is maximised when
u−B/A

1/
√

A
= 0, that is when

u = B/A, therefore the conditional mode is

M(U |E) =
B

A
. (C.14)

The mode has an appealing interpretation as a maximum likelihood estimator.

C.5 Truncated Normal Distributions

The probability density function of a truncated normally distributed random

variable X is given in Johnson & Kotz (1970) as

fX(x; µ, σ) =

1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}

1√
2πσ

∫ B

A

exp

{
−1

2

(
t− µ

σ

)2
}

dt

=

1

σ
φ

(
x− µ

σ

)

Φ

(
B − µ

σ

)
− Φ

(
A− µ

σ

) , A ≤ X ≤ B. (C.15)

The lower and upper truncation points are A and B respectively. The distribution

is doubly truncated if −∞ < A < B < ∞. If A = −∞, the distribution is singly

truncated from above. If B = ∞, the distribution is singly truncated from

below. A half normal distribution arises when A = µ and B = ∞ and so it is a

singly truncated normal distribution, truncated from below at µ. The notation

X ∼ N+(µ, σ2) indicates that X has a normal distribution, with mean µ and

variance σ2, which is truncated from below at X = 0, i.e. X ≥ 0.

The expected value and variance of X can be easily obtained using the mo-

ment generating function of X

MX(t) = E
[
etX

]
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=

∫ B

A

etx 1

σ
φ

(
x− µ

σ

)
dx

Φ

(
B − µ

σ

)
− Φ

(
A− µ

σ

)

= exp

{
µt +

1

2
σ2t2

}



Φ

(
B − µ

σ
− σt

)
− Φ

(
A− µ

σ
− σt

)

Φ

(
B − µ

σ

)
− Φ

(
A− µ

σ

)


 .

The last equality follows from

∫ B

A

exp {tx} 1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}

dx

=

∫ B

A

1√
2πσ

exp

{
tx− 1

2

(
x− µ

σ

)2
}

dx

=

∫ B

A

1√
2πσ

exp

{
− 1

2σ2

[−2σ2tx + x2 − 2xµ + µ2
]}

dx

=

∫ B

A

1√
2πσ

exp

{
− [x− (µ + σ2t)]

2

2σ2
− µ2 − (µ + σ2t)2

2σ2

}
dx

= exp

{
− 1

2σ2

[
µ2 − (µ + σ2t)2

]}∫ B

A

1√
2πσ

exp

{
−1

2

(
x− µ̃

σ

)2
}

dx

= exp

{
µt +

1

2
σ2t2

} ∫ B

A

1

σ
φ

(
x− µ̃

σ

)
dx

= exp

{
µt +

1

2
σ2t2

}[
Φ

(
B − µ̃

σ

)
− Φ

(
A− µ̃

σ

)]

= exp

{
µt +

1

2
σ2t2

}[
Φ

(
B − µ

σ
− σt

)
− Φ

(
A− µ

σ
− σt

)]
,

where µ̃ = µ + σ2t. The n-th moment is given by

E[Xn] = M
(n)
X (0) =

dnMX(t)

dtn

∣∣∣∣
t=0

.

The first-order derivative of the moment generating function is

M
(1)
X (t) =

(
µ + σ2t

)
exp

{
µt +

1

2
σ2t2

}[
Φ(αB − σt)− Φ(αA − σt)

Φ(αB)− Φ(αA)

]

−σ exp

{
µt +

1

2
σ2t2

}[
φ(αB − σt)− φ(αA − σt)

Φ(αB)− Φ(αA)

]
,
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where αA =
A− µ

σ
and αB =

B − µ

σ
. Evaluating this derivative at t = 0 gives

the first moment, or expected value, as

E[X] = M
(1)
X (0) = µ− φ(αB)− φ(αA)

Φ(αB)− Φ(αA)
σ. (C.16)

The second-order derivative of the moment generating is

M
(2)
X (t) = [σ2 + (µ + σ2t)2] exp

{
µt +

1

2
σ2t2

}[
Φ(αB − σt)− Φ(αA − σt)

Φ(αB)− Φ(αA)

]

−2σ(µ + σ2t) exp

{
µt +

1

2
σ2t2

}[
φ(αB − σt)− φ(αA − σt)

Φ(αB)− Φ(αA)

]

−σ2 exp

{
µt +

1

2
σ2t2

}
×

[
(αB − σt)φ(αB − σt)− (αA − σt)φ(αA − σt)

Φ(αB)− Φ(αA)

]
.

Evaluating this derivative at t = 0 gives the second moment as

E
[
X2

]
= M

(2)
X (0) = σ2+µ2−2µσ

φ(αB)− φ(αA)

Φ(αB)− Φ(αA)
−σ2αBφ(αB)− αAφ(αA)

Φ(αB)− Φ(αA)
.

(C.17)

Higher-order moments can be derived in a similar fashion. An alternative, but

equivalent, formula for the n-th moment is

E [Xn] =

∫ B

A

xnfX(x; µ, σ)dx =

∫ B

A

xn 1

σ
φ

(
x− µ

σ

)
dx

Φ

(
B − µ

σ

)
− Φ

(
A− µ

σ

) . (C.18)

Using the first and second moments, the variance of X is

V ar(X) = E
[
X2

]− E [X]2

=

{
1− αBφ(αB)− αAφ(αA)

Φ(αB)− Φ(αA)
−

[
φ(αB)− φ(αA)

Φ(αB)− Φ(αA)

]2
}

σ2.

Substituting the values of αA and αB into equations (C.16) and (C.17) gives the

expected value and variance of X as

E[X] = µ−
φ

(
B − µ

σ

)
− φ

(
A− µ

σ

)

Φ

(
B − µ

σ

)
− Φ

(
A− µ

σ

)σ, (C.19)
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V ar(X) =





1−

(
B − µ

σ

)
φ

(
B − µ

σ

)
−

(
A− µ

σ

)
φ

(
A− µ

σ

)

Φ

(
B − µ

σ

)
− Φ

(
A− µ

σ

)

−




φ

(
B − µ

σ

)
− φ

(
A− µ

σ

)

Φ

(
B − µ

σ

)
− Φ

(
A− µ

σ

)




2




σ2.

These agree with the formulae for the expected value and variance of X given in

Johnson & Kotz (1970).

C.6 Hazard Functions

The hazard function is the ratio of the probability density function f(x) to

the survival function S(x).

h(x) =
f(x)

S(x)
=

f(x)

1− F (x)
,

where S(x) = 1 − F (x) and F (x) is the cumulative distribution function. The

formula for the hazard function of the normal distribution is

h(x) =
φ(x)

1− Φ(x)
,

where φ(x) is the probability density function of the standard normal distribu-

tion and Φ(x) is the cumulative distribution function of the standard normal

distribution.

The derivative of the hazard function with respect to x is

h′(x) = h(x)

[
f ′(x)

f(x)
+ h(x)

]
,

and for the normal hazard function, the derivative simplifies to

h′(x) = h(x)[−x + h(x)].
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Elandt-Johnson & Johnson (1980) provide further details on hazard functions

and their use in the analysis of survival models.

C.7 Taylor Approximations

Let X be a random variable with realisation x. Also let µx = E[X] and

σ2
x = V ar(X). A smooth function f(x) can be approximated using a Taylor

polynomial centred around its mean. The Taylor series expansion of f(x) about

the point µx is

f(x) =
∞∑

n=0

f (n)(µx)

n!
(x− µx)

n,

where f (n)(x) is the n-th order derivative of f(x).

Let the Taylor approximation of f(x) be denoted by f̂(x). The first-order

Taylor series expansion of f(x) and its expected value are

f̂(x) = f (µx) + (x− µx) f ′ (µx) , (C.20)

E
[
f̂(x)

]
= f (µx) + (µx − µx) f ′ (µx)

= f (µx) , (C.21)

where

f ′ (µx) =
∂f(x)

∂x

∣∣∣∣
x=µx

.

The second-order Taylor series expansion of f(x) and its expected value are

f̂(x) = f (µx) + (x− µx) f ′ (µx) +
1

2
(x− µx)

2 f ′′ (µx) ,

E
[
f̂(x)

]
= f (µx) + (µx − µx) f ′ (µx) +

1

2
E

[
(x− µx)

2] f ′′ (µx)

= f (µx) +
σ2

x

2
f ′′ (µx) ,



APPENDIX C. ANCILLARY EQUATIONS 227

where

f ′′ (µx) =
∂2f(x)

∂x2

∣∣∣∣
x=µx

.

Stewart (1995) gives a summary of Taylor series.
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Appendix D

Information Matrices

D.1 Log-likelihood Function

The likelihood function of θ is the joint probability density function of N

random variables Y1, . . . , YN conditional on θ. For a sample of N independent

observations the likelihood function is given by

L (θ; y) = fY (y; θ)

= fY1,...,YN
(y1, . . . , yN ; θ)

=
N∏

i=1

fYi
(yi; θ),

where θ = (θ1, . . . , θk)
T is a vector of k parameters that require estimation and

fYi
(yi; θ) is the probability density function of random variable Yi. Taking a

logarithmic transformation gives the log-likelihood function

ln L (θ; y) =
N∑

i=1

ln fYi
(yi; θ).

For the statistical model

Yi = f(xi,β) + Ei, (D.1)
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the probability density function of Yi, derived using a transformation of variables,

is

fYi
(yi) = fEi

(yi − f(xi, β)),

where fYi
(yi) is the density of Yi evaluated at yi and fEi

(yi − f(xi,β)) is the

density of Ei evaluated at εi = yi − f(xi,β). Under model (D.1), the likelihood

function is

L (θ; y) =
N∏

i=1

fEi
(yi − f(xi, β); θ),

and the log-likelihood function is

ln L (θ; y) =
N∑

i=1

ln fEi
(yi − f(xi, β); θ).

D.2 Information Matrix for a Single Observa-

tion

The per observation expected Fisher information matrix of θ for the i-th

observation yi taken at xi is given by the k × k symmetric matrix

Ii(θ) = Cov

[(
∂ ln fYi

∂θ

)
,

(
∂ ln fYi

∂θ

)T
]

= E

[(
∂ ln fYi

∂θ

)(
∂ ln fYi

∂θ

)T
]

,

(D.2)

where fYi
= fYi

(yi; θ) is the probability density function of random variable Yi.

The likelihood for a single observation is just the density function

L (θ; yi) = fYi
(yi; θ),

hence the partial derivative
∂ ln fYi

∂θ
is the score (of the log-likelihood). The expec-

tation of the score is zero, hence the per observation expected Fisher information

matrix is just the covariance of the score. The (j, l)-th element is given by

Ii(θ)(j,l) = Cov

[(
∂ ln fYi

∂θj

)
,

(
∂ ln fYi

∂θl

)]
= E

[(
∂ ln fYi

∂θj

)(
∂ ln fYi

∂θl

)]
.
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Under certain regularity conditions

Ii(θ) = −E
[
∂2 ln fYi

∂θ∂θT

]
, (D.3)

i.e. the (j, l)-th element is given by

Ii(θ)(j,l) = −E
[
∂2 ln fYi

∂θj∂θl

]
.

D.3 Information Matrix for N Observations

The expected Fisher information matrix of θ for N observations y1, . . . , yN

taken at x1, . . . , xN is given by the k × k symmetric matrix

IN(θ) = Cov

[(
∂ ln L

∂θ

)
,

(
∂ ln L

∂θ

)T
]

= E

[(
∂ ln L

∂θ

) (
∂ ln L

∂θ

)T
]

,

where L = L (θ; y) is the likelihood function for the N observations. The partial

derivative
∂ ln L

∂θ
is known as the score (of the log-likelihood). The expectation

of the score is zero, hence the expected Fisher information matrix is just the

covariance of the score. The (j, l)-th element of the Fisher information matrix is

given by

IN(θ)(j,l) = Cov

[(
∂ ln L

∂θj

)
,

(
∂ ln L

∂θl

)]
= E

[(
∂ ln L

∂θj

) (
∂ ln L

∂θl

)]
.

Under certain regularity conditions

IN(θ) = −E
[
∂2 ln L

∂θ∂θT

]
,

i.e. the (j, l)-th element is given by

IN(θ)(j,l) = −E
[
∂2 ln L

∂θj∂θl

]
.

If θ̂ is an estimator for θ, then the covariance matrix of θ̂ can be obtained by

inverting the expected Fisher information matrix of θ, i.e.

Cov(θ̂) = IN(θ)−1.
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It is also worth noting two useful properties of the expected Fisher information

matrix. Firstly, the expected Fisher information for a sample of N independent

observations is equal to N times the Fisher information for a single observation,

i.e.

IN(θ) = NIi(θ).

Secondly, it is dependent on the choice of parameterisation. Suppose the param-

eter θ is reparameterised to η = (η1, . . . , ηk) with ηj = gj(θ) where each gj is

one-to-one so its inverse g−1
j (η) = θj exists. The Fisher information I∗N(η) for the

new parameterisation is obtained using the chain rule and is given by Schervish

(1995) as

I∗N(η) = J(η)T IN(θ(η))J(η),

where J(η) is the Jacobian matrix with elements

J(η)(j,l) =
∂g−1

j (η)

∂ηl

, (j, l = 1, . . . , k)

and θ(η) = (g−1
1 (η), . . . , g−1

k (η)).

D.4 Partitioned Information Matrix

Let β be a vector of p parameters and let τ be a vector of k − p parameters.

If θ = (β, τ ) then θ is a k-dimensional parameter vector with partitioned per

observation expected Fisher information matrix

Ii(θ) = E




(
∂ ln fYi

∂β

) (
∂ ln fYi

∂β

)T (
∂ ln fYi

∂β

)(
∂ ln fYi

∂τ

)T

{(
∂ ln fYi

∂β

)(
∂ ln fYi

∂τ

)T
}T (

∂ ln fYi

∂τ

)(
∂ ln fYi

∂τ

)T




.

(D.4)
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Under certain regularity conditions the expected Fisher information matrix can

be written equivalently as

Ii(θ) = −E




∂2 ln fYi

∂β∂βT

∂2 ln fYi

∂β∂τ T

(
∂2 ln fYi

∂β∂τ T

)T
∂2 ln fYi

∂τ∂τ T




. (D.5)

D.5 Eigendecomposition of Partitioned Infor-

mation

Matrices

Suppose the partitioned per observation expected Fisher information ma-

trix (D.4) or (D.5) has the form

Ii(θ) =


 fβf(xi)f

T (xi) f(xi)f
T
β,τ

fβ,τf
T (xi) Fτ


 , (D.6)

where fβ is a scalar-valued function, f(xi) is a vector of length p, fβ,τ is a vector-

valued function of length k − p and Fτ is a (k − p)-dimensional square matrix.

An information matrix of this form may arise from a linear model

Yi = fT (xi)β + Ei, i = 1, . . . , N,

where a distributional assumption is placed on the Ei with the distribution

having parameters τ . Thus the full parameter vector is θ = (β, τ ) where

β = (β1, . . . , βp) and τ = (τ1, . . . , τk−p).

Let fθ(xi) be the k × 1 vector with

fT
θ (xi) =

[ √
fβfT (xi)

1√
fβ

fT
β,τ

]
,



APPENDIX D. INFORMATION MATRICES 233

where fT
θ (xi) is the non-Hermitian or non-conjugate transpose of fθ(xi)

1. The

symmetric k × k matrix fθ(xi)f
T
θ (xi) is

fθ(xi)f
T
θ (xi) =




fβf(xi)f
T (xi) f(xi)f

T
β,τ

fβ,τf
T (xi)

1

fβ

fβ,τf
T
β,τ


 .

If Fτ = (1/fβ)fβ,τf
T
β,τ then information matrix (D.6) can be expressed as

Ii(θ) = fθ(xi)f
T
θ (xi).

For continuous design (5.8) with n distinct design points, if the information

matrix M(ξ) is a weighted sum of per observation expected Fisher information

matrices, then

M(ξ) =
n∑

i=1

wiIi(θ)

=
n∑

i=1

wifθ(xi)f
T
θ (xi)

= F T WF,

where
∑n

i=1 wi = 1 and

F T = [fθ(x1), . . . , fθ(xn)] ,

W = diag (w1, . . . , wn) .

Usually interest is in estimating the β parameters. However, when considering

the extended full parameter vector θ = (β, τ ), the matrix Fτ will not necessarily

equal (1/fβ)fβ,τf
T
β,τ . This situation occurs for example in the case of simple

linear regression which has per observation expected Fisher information matrix

Ii(θ) =




1

σ2
f(xi)f

T (xi) 0

0
1

2σ4


 .

1The complex conjugate transpose of x is usually denoted xT whereas the non-conjugate or
non-Hermitian transpose is usually denoted x.T . For x =

√−c, using the complex conjugate
transpose gives xxT = c while the non-conjugate transpose gives xx.T = −c.



APPENDIX D. INFORMATION MATRICES 234

It may also occur when the per observation expected Fisher information matrix

is approximated using Method 2 or 3 of Chapter 3.

Let C be a symmetric k × k ‘correction matrix’ given by

C =




0p×p 0p×(k−p)

0(k−p)×p Fτ − 1

fβ

fβ,τf
T
β,τ


 ,

then information matrix (D.6) becomes

Ii(θ) = fθ(xi)f
T
θ (xi) + C . (D.7)

The eigenvalue decomposition of C is

C = QkΛkQ
T
k =

∑k
j=1 λjqjq

T
j ,

where

Qk = [q1, . . . , qk]

= [e1, . . . , ep, qp+1, . . . , qk] ,

Λk = diag (λ1, . . . , λk)

= diag
(
0T

p , λp+1, . . . , λk

)
.

The λj and qj are the eigenvalues and eigenvectors of C respectively and ej is a

k× 1 coordinate or unit vector with a 1 in the j-th position and zeros elsewhere.

Because the last k − p columns of C are the only linearly independent columns,

λp+1, . . . , λk are the only nonzero eigenvalues.

The structure of C can be exploited to improve computational efficiency. Let

C22 be the nonzero submatrix of C ,

C22 = Fτ − 1

fβ

fβ,τf
T
β,τ .
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If the eigenvalue decomposition of C22 is

C22 = ZΛ22Z
T =

∑k
j=p+1 λjzjz

T
j ,

where

Z = [zp+1, . . . , zk] ,

Λ22 = diag (λp+1, . . . , λk) ,

and λj and zj are the respective eigenvalues and eigenvectors of C22 then

qT
j =

[
0T

p , zT
j

]
, j = p + 1, . . . , k,

and

Λk = diag
(
0T

p , diag(Λ22)
)

=


 0p×p 0p×(k−p)

0(k−p)×p Λ22


 .

Letting

Q22 = [qp+1, . . . , qk] =


 0p×(k−p)

Z


 ,

then

Qk = [e1, . . . , ep, Q22] =


 Ip 0p×(k−p)

0(k−p)×p Z


 ,

and it follows that

C = QkΛkQ
T
k

= Q22Λ22Q
T
22

=
k∑

j=p+1

λjqjq
T
j . (D.8)

Finally, substituting equation (D.8) into equation (D.7) gives the per obser-

vation expected Fisher information matrix as

Ii(θ) = fθ(xi)f
T
θ (xi) +

k∑
j=p+1

λjqjq
T
j .
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If the information matrix M(ξ) is a weighted sum of per observation expected

Fisher information matrices, the above eigenvalue decomposition gives

M(ξ) =
n∑

i=1

wiIi(θ)

=
n∑

i=1

wi

{
fθ(xi)f

T
θ (xi) + C

}

=
n∑

i=1

wifθ(xi)f
T
θ (xi) + C

=
n∑

i=1

wifθ(xi)f
T
θ (xi) +

k∑
j=p+1

λjqjq
T
j

= F T WF + Q22Λ22Q
T
22.

Let

RT = [r1, . . . , rn, rn+1, . . . , rn+k−p]

= [fθ(x1), . . . , fθ(xn), qp+1, . . . , qk]

= [F, Q22] ,

S = diag (s1, . . . , sn, sn+1, . . . , sn+k−p)

= diag (w1, . . . , wn, λp+1, . . . , λk)

= diag (diag(W ), diag(Λ22)) ,

then

M(ξ) = RT SR =
∑n+k−p

i=1 sirir
T
i .

This shows that, although the per observation expected Fisher information matrix

Ii(θ) may not always be expressible as a column vector multiplied by its own

transpose, the information matrix M(ξ) can be expressed in such a manner using

an eigenvalue decomposition and a little algebra.
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If k − p = 2 then the eigenvalues of C are

diag(Λ22) =


 λk−1

λk


 =

1

2g1


 g1 + g2 +

√
g3

g1 + g2 −√g3,




and the eigenvectors Q22 = [qk−1, qk] are

qk−1 =
|g4|

g4

(|g1 − g2 −√g3|2 + 4|g4|2
)1/2


 g1 − g2 −√g3

2g4


 ,

qk =
|g4|

g4

(|g1 − g2 +
√

g3|2 + 4|g4|2
)1/2


 g1 − g2 +

√
g3

2g4


 ,

where

g1 = fβFτ (2, 2)− fβ,τ (2)2,

g2 = fβFτ (1, 1)− fβ,τ (1)2,

g3 = f 2
β {Fτ (2, 2)− Fτ (1, 1)}2 + 4fβFτ (1, 2)2 + 2fβfβ,τ (1)2 {Fτ (2, 2)− Fτ (1, 1)}

−2fβfβ,τ (2)2 {Fτ (2, 2)− Fτ (1, 1)} − 8fβfβ,τ (1)fβ,τ (2)Fτ (1, 2)

+
{
fβ,τ (1)2 + fβ,τ (2)2

}2

g4 = −fβFτ (1, 2) + fβ,τ (1)fβ,τ (2).

The notation Fτ (i, j) refers to the (i, j)-th element of the matrix Fτ and fβ,τ (i)

refers to the i-th element of the vector fβ,τ .
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Appendix E

Matrix Inverses

E.1 Inverse of a Partitioned Matrix

Suppose we wish to invert the partitioned k × k matrix

A =


 A11 A12

A21 A22




with A11 and A22 both square and with respective sizes p×p and (k − p)×(k − p)

say. Suppose we partition the inverse in the same way and write

A−1 =


 A11 A12

A21 A22


 .

Then we can treat the submatrices as if they were elements and derive

A11 =
(
A11 − A12A

−1
22 A21

)−1
,

A12 = −A11A12A
−1
22 ,

A21 = −A−1
22 A21A

11,

A22 = A−1
22 − A21A12A

−1
22 ,

assuming that A22 and
(
A11 − A12A

−1
22 A21

)
are nonsingular. The matrix

(
A11 − A12A

−1
22 A21

)
is the Schur complement of the block A22. This matrix in-
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verse is given in Healy (2000). Alternatively, the blocks of the inverse may be

expressed as

A11 = A−1
11 − A12A21A

−1
11 ,

A12 = −A−1
11 A12A

22,

A21 = −A22A21A
−1
11 ,

A22 =
(
A22 − A21A

−1
11 A12

)−1
,

assuming that A11 and its Schur complement
(
A22 − A21A

−1
11 A12

)
are nonsingular

(Watt 2006).

E.2 Inverse of a Sum of Two Matrices

If A is positive definite and symmetric and

B = A + dxxT ,

with d a scalar, x a vector and B positive definite (e.g. if d > 0) then Anderson

(1984) gives the determinant and inverse of B respectively as

|B| =
(
1 + dxT A−1x

) |A|, (E.1)

B−1 = A−1 − d

1 + dxT A−1x
A−1xxT A−1. (E.2)

If a nonsingular matrix M can be obtained in the iterative manner

M(k) = M(k−1) + dxxT ,

where M(k) is the matrix M at the k-th iteration, then equations (E.1) and (E.2)

can be used iteratively to find the determinant and inverse of M at the k-th

iteration. They are given respectively by

|M(k)| =
(
1 + dxT M−1

(k−1)x
)
|M(k−1)|,
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M−1
(k) = M−1

(k−1) −
d

1 + dxT M−1
(k−1)x

M−1
(k−1)xxT M−1

(k−1).
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Appendix F

Optimum Design

F.1 Pseudocode for Torsney’s Multiplicative Al-

gorithm

Algorithm (5.13) provides a method for finding optimising distributions for

optimum experimental designs. More specifically, it is a multiplicative algorithm

for finding the optimal design weights for a selection of candidate design points.

The candidate points are usually, but not necessarily, a grid of points over the

design space X . The weights converge to zero for any points that are not support

points of the optimum design. The algorithm often gives a distribution defined on

a disjoint cluster of points. Typically, within each cluster is a single true support

point with nonzero weight. If the algorithm were to carry on indefinitely, the

weights for the remaining points in each cluster would ideally converge to zero.

Clearly limitations of time and computational resources mean that rules should

be set when running the algorithm to speed up convergence.
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Figure F.1: Stopping criteria for algorithm (5.13).

F.1.1 Stopping criteria

The first condition of the General Equivalence Theorem (5.10), that

FΨ(w∗, ei) = 0 for w∗
i > 0, states that the derivative is zero at the optimum

design points, which have nonzero weight. With regards to algorithm (5.13), the

derivative will converge to zero at the support points. Hence a tolerance, tolF ,

must be set for determining computational convergence. A stopping rule for the

algorithm is thus

max
1≤i≤n

{
FΨ(w(k), ei)

} ≤ 10−tolF .

That is, the algorithm will terminate when the maximum value of the derivative

F
(k)
i = FΨ(w(k), ei) is close to zero, ≤ 10−tolF . Torsney (1977) suggests tolF = n,

however if the candidate support points are a fine grid then n will be large

and tolF = 6 may be suitable. If tolF = 6, the algorithm will terminate when

the maximum value of the derivative is less than 0.000001. In Figure F.1 the

algorithm terminates when the maxima of the curve hits the dashed line where

Fi = 10−tolF .
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F.1.2 Assigning zero weights

From the second condition of the General Equivalence Theorem (5.10), that

FΨ(w∗, ei) ≤ 0 for w∗
i = 0, it follows that

w
(k)
i < 10−tol1 and FΨ(w(k), ei) < −10−tol2 −→ w

(k)
i = 0,

for tolerance values tol1, tol2 > 0. That is, if the weight w
(k)
i at the k-th iteration

is small, < 10−tol1 say, and the derivative F
(k)
i is large and negative, < −10−tol2

say, then assign a value of zero to the weight w
(k)
i . If the tolerances tol1 or tol2

are set too high then the algorithm will require many iterations to converge.

However, if the tolerances are set too low, there may be many points within each

cluster of support points, i.e. the algorithm hasn’t converged satisfactorily. If

tol1 is too low then weights are more easily set to zero. Conversely, if tol1 is too

high then some weights may not be set to zero that should be set to zero. A

weight should be set to zero if its derivative is not close to zero, so if tol2 is set

too low then some weights may be set to zero that should not be set to zero.

Conversely, if tol2 is too high then some weights may not be set to zero that

should be set to zero. Empirical evidence suggests that tol1 = 4 and tol2 = 4

are suitable choices. In this case a weight will only be set to zero if the weight

has a small value, w
(k)
i < 0.0001, and the magnitude of the derivative is large,

F
(k)
i < −0.0001.

In Figure F.2 there should clearly be one support point at x = 0 with weight

1. The arrows point to candidate points that have very small weights close to

zero and derivatives not close to zero. If these candidate points are in the cluster

of support points at iteration k then their weight should be set to zero because

they are not support points.
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wi ≈ 0 and FΨ(w, ei) << 0

Figure F.2: Rule for assigning a value of zero to weights in algorithm (5.13).

F.1.3 Psuedocode

The procedure for finding the optimising distribution of weights using algo-

rithm (5.13) and the above rules is as follows.

1. Initialise algorithm at k = 0 with w
(0)
i = 1/n and F

(0)
i = −1.

2. Calculate M(ξ(k)).

3. Calculate F
(k)
i .

4. If w
(k)
i < 10−tol1 and F

(k)
i < −10−tol2 then w

(k)
i = 0.

5. Ensure
∑

w
(k)
i = 1 by calculating w

(k)
i =

w
(k)
i∑
w

(k)
j

.

6. Calculate new weights w
(k+1)
i =

w
(k)
i

{
GΨ(w(k), ei)

}δ

∑n
i=1 w

(k)
j {GΨ(w(k), ej)}δ

.

7. If max{F (k)
i } ≤ 10−tolF then STOP. Final weights are wi = w

(k)
i . Else if

max{F (k)
i } > 10−tolF then k = k + 1 and go to step 2.
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F.1.4 A check for the coded algorithm

Using definition (5.9) of the Fréchet directional derivative

FΨ(w, ei) =
∂Ψ

∂wi

−
n∑

j=1

∂Ψ

∂wj

wj,

gives the weighted sum

∑n
j=1 wjFΨ(w, ej) =

n∑
j=1

∂Ψ

∂wj

wj −
n∑

j=1

∂Ψ

∂wj

wj = 0.

This may be helpful in verifying if the algorithm has been coded correctly.

F.2 Some Useful Matrix Properties

The following properties are useful in proving some results about optimum

designs.

Theorem F.2.1 Let f(xi) = [f(x1i), f(x2i), . . . , f(xji), . . . , f(xpi)]
T . For ma-

trix A =
∑

wif(xi)f
T (xi), the vector v =

∑
wif(xi) is the j-th column of A if

f(xi) = [f(x1i), f(x2i), . . . , 1, . . . , f(xpi)]
T , that is, if f(xji) = 1.

Proof If f(xi) = [f(x1i), f(x2i), . . . , f(xji), . . . , f(xpi)]
T then A is the symmetric

p× p matrix

A =
∑

wi




f(x1i)
2 f(x1i)f(x2i) . . . f(x1i)f(xji) . . . f(x1i)f(xpi)

f(x2i)
2 . . . f(x2i)f(xji) . . . f(x2i)f(xpi)

...
...

f(xji)
2 . . . f(xji)f(xpi)

...

f(xpi)
2




The vector v is more explicitly written

v =
∑

wi[f(x1i), f(x2i), . . . , f(xji), . . . , f(xpi)]
T .
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Clearly, v is the j-th column of A only if f(xji) = 1, that is, if the j-th element

of v =
∑

wi. ¤

Theorem F.2.2 For nonsingular p×p matrix A, if the p×1 vector v is the j-th

column of A then

A−1v = ej,

where ej is the coordinate vector.

Proof Let the columns of A be denoted by aj, then

A = [ a1 a2 . . . ap ].

Assume that v is a column vector of A, that is

A = [ a1 a2 . . . v . . . ap ].

For nonsingular A, premultiplication of A by A−1 gives the identity matrix

A−1A = Ip = [ e1 e2 . . . ej . . . ep ]

= [ A−1a1 A−1a2 . . . A−1v . . . A−1ap ].

Therefore, if the j-th column is v then A−1v = ej. ¤

Corollary F.2.1 The scalar vT A−1v is the j-th element of v since

vT A−1v = vT ej = vj.

Thus if v =
∑

wif(xi) and A =
∑

wif(xi)f
T (xi) with

f(xi) =
∑

wi[f(x1i), f(x2i), . . . , 1, . . . , f(xpi)]
T ,

then

vT A−1v =
∑

wi,

since
∑

wi is the j-th element of v.
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Proposition F.2.1 If v =
∑

wif(xi) and A =
∑

wif(xi)f
T (xi) with

f(xi) =
∑

wi[f(x1i), f(x2i), . . . , f(xji), . . . , f(xpi)]
T ,

that is, f(xji) is not necessarily a constant, then

vT A−1v =
∑

wi,

although A−1v 6= ej unless f(xji) = 1.

Theorem F.2.3 If A is nonsingular but has generalised inverse A−, then

AA−v = v.

Proof For singular A, a generalised inverse of A is such that

AA−A = A = [ a1 a2 . . . v . . . ap ]

= [ AA−a1 AA−a2 . . . AA−v . . . AA−ap ].

Therefore, if the j-th column is v then AA−v = v. ¤

Corollary F.2.2 The scalar vT A−v is the (j, j)-th element of A since

A = AA−A =




aT
1

aT
2

...

vT

...

aT
p




[ A−a1 A−a2 . . . A−v . . . A−ap ].

Thus if v =
∑

wif(xi) and A =
∑

wif(xi)f
T (xi) with

f(xi) =
∑

wi[f(x1i), f(x2i), . . . , 1, . . . , f(xpi)]
T ,

then

vT A−v =
∑

wi,

since
∑

wi is the (j, j)-th element of A.
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F.3 Equivalence of Designs for Linear Regres-

sion Models

F.3.1 Equivalence of D-optimum and Ds-optimum designs

Theorem F.3.1 For linear regression models with full parameter vector θ =

(β, σ2), D-optimum and Ds-optimum designs are equivalent.

Proof The information matrix M for a linear regression model, and consequently

its inverse M−1, are block diagonal and can be written

M =


 M11 0

0 M22


 , M−1 =


 M−1

11 0

0 M−1
22


 .

Since M12 = MT
21 = 0 in the partitioned information matrix of θ (c.f. Section 5.1),

the criterion function for D-optimality is given by

− ln |M−1| = − ln |M−1
11 | − ln |M−1

22 |
= ln |(1/σ2)

∑
wif(xi)f

T (xi)|+ ln(1/2σ4).

The derivative of the criterion function with respect to the design weights is

− d

dw
ln |M−1| = − d

dw
ln |M−1

11 |,

since M22 = 1/2σ4 is independent of the design weights w. Hence, for linear

regression models, the criterion function for D-optimality is maximised when the

criterion function for Ds-optimality is maximised. Consequently, experiments

can only be optimal for estimation of β and not σ2. ¤

F.3.2 Equivalence of A-optimum and C-optimum designs

Theorem F.3.2 For linear regression models with full parameter vector θ =

(β, σ2), A-optimum and C-optimum designs with CT = [Is, 0] are equivalent.
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Proof The proof follows in a similar vein to the above proof for D-optimality.

The criterion function for A-optimality is given by

−tr {M−1} = −tr {M−1
11 } − tr {M−1

22 }
= −tr {(1/σ2)

∑
wif(xi)f

T (xi)} − 2σ4,

with derivative

− d

dw
tr {M−1} = − d

dw
tr {M−1

11 }.

¤

Note that when considering the parameter vector θ = β, a Ds-optimum design

is used if interest is in good estimation of a subset of s of the β parameters. Here

we are considering the extended parameter vector θ = (β, σ2). A Ds-optimum

design in this case is used if interest is in good estimation of a subset of s of the

θ parameters.

F.4 Further Proofs for Stochastic Frontier Mod-

els

The following results pertain only to information matrices with nonsingular

submatrix Fτ (µa), which is the (2, 2) block of the information matrix associated

with the τ parameters. Nonsingularity of this (2, 2) block may occur if Methods

2 or 3 of Chapter 3 are used to approximate the information matrix. The (2, 2)

block is singular under approximation Method 1.
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F.4.1 Determinant criterion function

Theorem F.4.1 If the (2, 2) block ,Fτ (µa), of approximated information ma-

trix (6.2) is nonsingular, then DA-optimum designs for the linear model

Y = β0 +
m∑

j=1

βjxj + E, E[E] = E[−U ], (F.1)

are also DA-optimum for the equivalent linear regression model with an intercept,

given by

Y = β0 +
m∑

j=1

βjxj + E, E[E] = 0. (F.2)

Proof The proof requires showing that

d

dw
ln |M11| =

d

dw
ln |M−1

11 |,

that is, that a design that is DA-optimum for stochastic frontier model (4.9) is

DA-optimum, for an equivalent linear regression model. The criterion of DA-

optimality here has matrix A = [Ip, 0]T , where p = m + 1, so that interest is in

optimal estimation of the β parameters.

Part (i) of the proof:

The first part of the proof equates the M11 partitions of linear regression models

and stochastic frontier models.

Let the matrix M , and its generalised inverse M−, be partitioned as

M =


 M11 M12

M12 M22


 , M− =


 M11 M12

M12 M22


 .

For the log-linear stochastic production frontier model (4.9), let its approximated

information matrix (6.2) be partitioned with

M11 = fβ(µa)
∑

wif(xi)f
T (xi),
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M12 = MT
21,

M21 = fβ,τ (µa)
∑

wif
T (xi),

M22 = Fτ (µa).

It follows that

− ln |M−1
11 | = p ln fβ(µa) + ln

∣∣∣
∑

wif(xi)f
T (xi)

∣∣∣ ,

− d

dw
ln |M−1

11 | =
d

dw
ln

∣∣∣
∑

wif(xi)f
T (xi)

∣∣∣ .

From Section 5.1, the M11 block of the information matrix for a linear regression

model with parameter vector θ = (β, σ2) is given by

M11 =
1

σ2

∑
wif(xi)f

T (xi).

Hence the DA-optimum criterion function for optimal estimation of β, and its

derivative with respect to the weights, are

− ln |M−1
11 | = −p ln σ2 + ln

∣∣∣
∑

wif(xi)f
T (xi)

∣∣∣ ,

− d

dw
ln |M−1

11 | =
d

dw
ln

∣∣∣
∑

wif(xi)f
T (xi)

∣∣∣ .

Since the M11 partition of the information matrix for a stochastic frontier model is

proportional to the M11 partition of the information matrix for a linear regression

model, the derivative of ln |M−1
11 | with respect to the weights are equal for both

models.

Another equivalent argument is that the M11 element of the information ma-

trix for the stochastic frontier model can be derived through a linear transfor-

mation of the design space for the linear regression model using transformation

g(xi) =
√

fβ(µa)σIpf(xi). Therefore, by Theorem 6.1.1, − ln |M−1
11 | for the

stochastic frontier model is maximised when − ln |M−1
11 | for the linear regression

model is maximised.

Part (ii) of the proof:
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The second part of the proof demonstrates that |M11| for the stochastic frontier

model is proportional to |M−1
11 |.

From the results on inverses of partitioned information matrices given in Ap-

pendix E.1, if M22 and (M11 −M12M
−1
22 M21) are nonsingular then

M11 =
[
M11 −M12M

−1
22 M21

]−1

=
[
M11 − d

∑
wif(xi)

∑
wif

T (xi)
]−1

,

where d = fT
β,τ (µa) · [Fτ (µa)]

−1 · fβ,τ (µa). Using equation (E.2) in Appendix E.2

M11 = M−1
11 +

d{M−1
11

∑
wif(xi)}{M−1

11

∑
wif(xi)}T

1− d
∑

wifT (xi){M−1
11

∑
wif(xi)}

,

where {M−1
11 }T = M−1

11 since M11 is symmetric. By Theorem F.2.1, if the j-th

element of f(xi) is 1, that is, if there is an intercept term in the model, then

fβ(µa)
∑

wif(xi) is the j-th column of M11 = fβ(µa)
∑

wif(xi)f
T (xi). Theo-

rem F.2.2 then gives the result that M−1
11

∑
wif(xi) = fβ(µa)

−1ej. Substituting

this into the equation above gives

M11 = M−1
11 +

dfβ(µa)
−2

1− dfβ(µa)−1
∑

wifT (xi)ej

eje
T
j

= M−1
11 + κfβ(µa)

−1eje
T
j , (F.3)

where
∑

wif
T (xi)ej = 1 by Corollary F.2.1, and κ =

dfβ(µa)
−1

1− dfβ(µa)−1
. The de-

terminant can be derived using equation (E.1) in Appendix E.2 and is given

by

|M11| =
{
1 + κfβ(µa)

−1eT
j M11ej

} |M−1
11 |

= {1 + κ} |M−1
11 |,

where eT
j M11ej = fβ(µa) since the j-th element of f(xi) is 1. Taking negative

logarithms on both sides gives the criterion function for DA-optimality as

− ln |M11| = − ln {1 + κ} − ln |M−1
11 |.
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The derivative with respect to the weights is then given by

− d

dw
ln |M11| = − d

dw
ln |M−1

11 |,

since κ is independent of the design weights w. Therefore a design that is DA-

optimum, for a linear regression model with nonzero intercept is also DA-optimum

for the equivalent stochastic frontier model, since, from part (i) of the proof,

− d

dw
ln |M−1

11 | is equivalent for the two models. ¤

Remark Corollary 6.4.1, which is less technically complicated, would also be

sufficient in proving the above theorem.

F.4.2 Trace criterion function

Theorem F.4.2 If the (2, 2) block ,Fτ (µa), of approximated information ma-

trix (6.2) is nonsingular, then C-optimum designs for the linear model (F.1) are

also C-optimum for the equivalent linear regression model (F.2) with an intercept.

Proof The proof follows the proof above for the determinant criterion but re-

quires showing that

d

dw
tr M11 =

d

dw
tr M−1

11 .

The criterion of C-optimality here has matrix A = [Ip, 0]T , where p = m + 1, so

that interest is in optimal estimation of the β parameters.

Part (i) of the proof:

For the log-linear stochastic production frontier model (4.9)

−tr {M−1
11 } = −fβ(µa)

−1tr

{[∑
wif(xi)f

T (xi)
]−1

}
,

− d

dw
tr {M−1

11 } = −fβ(µa)
−1 d

dw
tr

{[∑
wif(xi)f

T (xi)
]−1

}
.



APPENDIX F. OPTIMUM DESIGN 254

The C-optimum criterion function for optimal estimation of β in a linear regres-

sion model, and its derivative with respect to the weights, are

−tr {M−1
11 } = −σ2tr

{[∑
wif(xi)f

T (xi)
]−1

}
,

− d

dw
tr {M−1

11 } = −σ2 d

dw
tr

{[∑
wif(xi)f

T (xi)
]−1

}
.

Hence the derivative of −tr {M−1
11 } with respect to the weights for both models

are maximised by the same design.

Part (ii) of the proof:

From equation (F.3)

−tr {M11} = −tr {M−1
11 + κfβ(µa)

−1eje
T
j }

= −tr {M−1
11 }+ κfβ(µa)

−1.

The derivative with respect to the weights is then given by

− d

dw
tr {M11} = − d

dw
tr {M−1

11 },

since κ is independent of the design weights w. Therefore a design that is C-

optimum, for a linear regression model with nonzero intercept is also C-optimum

for the equivalent stochastic frontier model, since, from part (i) of the proof,

− d

dw
tr {M−1

11 } is equivalent for the two models. ¤

Remark The pivotal assumption in Theorems F.4.1 and F.4.2 is nonsingularity

of the (2, 2) block of the information matrix. The results on the trace criterion

in Section 6.5 do not agree with Theorem F.4.2 since the (2, 2) block of the

information matrix is singular for the non-approximated information matrix. It

is also singular when the information matrix is approximated using Method 1 of

Chapter 3. Use of approximation methods 2 and 3 in Chapter 3, for which the

theorem above holds, is not advisable since positive definiteness of the information
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matrix cannot be guaranteed. Additionally, it is not desirable for the optimum

design using an approximated information matrix to differ greatly to the optimum

design using the non-approximated information matrix.


