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Abstract

This thesis summarises the work done by myself in the period Oct

2006 - Aug 2010 in relation to data analysis for gravitational wave de-

tection. Most of the personal contribution relates to the assessment

of the detectability of potential burst-type gravitational wave signals

from the galactic population of neutron stars and to the parameter

estimation of the models used to represent these signals. A small part

of the work, contained in the last chapter, describes the experimen-

tal work carried at the beginning of the research period and aimed

to measure the shot-noise level of the modulated laser-light in the

gravitational wave detectors.

Chapter 1 is introductory and presents generic information about

gravitational wave radiation, a postulate of the theory of general rel-

ativity. The polarisation of the radiation and the approximate values

of amplitudes and frequencies of the signals expected from astrophys-

ical events are presented together with most important gravitational

radiation sources for ground-based detectors. General information

about the second and third generation detectors is included and the

astrophysical prospects for the new detectors are reviewed. Phys-

ical mechanisms expected to make compact stars oscillate and the

subsequent generation of short-lived gravitational wave bursts are in-

troduced, bringing the focus onto the oscillation frequency values and

damping times expected.

Chapter 2 presents the study on the detectability of burst-type grav-

itational wave signals incoming from neutron stars located in our

galaxy. Three differently shaped galactic neutron star populations are

introduced and the detectability of ground-based detectors to signals



of different polarisation degree incoming from these source popula-

tions is investigated. Based on the time- and polarisation-averaged

antenna pattern and antenna power values, approximated by Monte

Carlo methods, detectability is measured in terms of a) the geograph-

ical location and orientation of hypothetical detectors, and b) the

current detectors, either working individually or as a part of a net-

work. Also, the sidereal times at which each detector is more sensitive

to the sources of the neutron star populations defined are inferred.

Detectors located in the equator and with geographical orientation

‘×’ were found to have the maximum detectability to galactocentric

populations. The orientation factor becomes negligible for latitudes

higher than |β| > 60◦. This contrasts with a previous study for signals

from the Virgo cluster resulting in a most favourable geographical ‘+’

orientation for equatorial latitudes and orientation factor becoming

negligible for latitudes bigger than |β| > 45◦. The constrast or maxi-

mum differences between the antenna power values in the equator and

the poles is smaller for the galactic centre (18%) than for the Virgo

cluster (46%), indicating that changes in latitude and orientation are

not so drastic for the detection of sources located towards the galactic

centre.

The mean (x̄-value) has been used to compare time- and polarisation-

averaged histograms of antenna factor values and in order to sort

out current detectors in decreasing order of detectability to galacto-

centric populations: PERTH, LIGO-L, LIGO-H, VIRGO, TAMA300,

GEO600. The sidereal times at which each detector is most suitable

for the detection of signals from a galactocentric population have been

calculated based on the evolution of the x̄-value along one rotation

of the Earth. The times at which the sensitivity is maximum differ

slightly for signals of different polarisation degree and all fall within

a maximum uncertainty of 15 minutes. Time intervals between the

peaks of x̄-value curves showing its diurnal evolution match well with

the geographical longitude differences between detectors. Although in



a less quantitatively form that the study of x̄-value, detection prob-

ability curves have shown that it is advantageous to have a detector

located in the southern hemisphere (PERTH), working on its own or

included in a network of detectors, for the detection of signals from

neutron stars in the southern celestial hemisphere.

Chapter 3 introduces a mathematical model of the burst-type gravi-

tational wave ringdown signal investigated in this work. It represents

a short-lived gravitational polarised radiation generated by an oscil-

lating neutron star: an exponentially damped sinusoid comprising a

sine and a cosine component, of the same frequency and different am-

plitude, as the two polarisation components of the signal. The model

of the signal both in the time- and in the frequency-domain are given.

The relation between the discrete Fourier transform (DFT) and the

close-form of the discrete time Fourier transform (DTFT) is presented,

together with their relation to the z-transform of discrete signals in

the time-domain. The derived analytical expression of the modeled

signal in the frequency-domain provides the possibility of avoiding

the lengthy computation of a DFT, to obtain the coefficients of each

frequency point considered, by focusing in the bandwidth of interest

and thus speeding up the calculation of the evidence of the model

in presence of the data. The z-transform and its properties ease the

calculation of the Fourier coefficients for shifted signals based on z-

transforms of non-shifted signals.

3) through Bayesian model comparison and parameter estimation of

signals injected into synthetic noise as seen by a network comprised

of three second generation detectors.

Chapter 4 is devoted to present the Bayesian probability tools neces-

sary to carry out model comparison and parameter estimation for the

study of our particular burst-type signal. Comparing models allows

chosing that one that represents the data best and then focusing on

by computing of the most likely parameter values of that model. Also,

in this section, the way in which the detector data can be simulated



in the frequency domain, combining the signal and a noise realisation

corresponding to the power spectrum of the noise that characterizes

the detector, is explained. The likelihood function for a signal corre-

sponding to one oscillation mode and seen by one detector is derived

both in the time- and in the frequency-domain. The nested sampling

algorithm is summarised, a very useful tool used to compute effec-

tively the marginal likelihood of the hypotheses considered.

Chapter 5 presents the results of the model selection and the parame-

ter estimation exercise. The expression of the likelihood is generalised

so that it can adopt more than one oscillation mode and seen by var-

ious detectors of a network. Depending whether one, f -mode, or two

oscillation modes, f and p, are suspect, two different scenarios of var-

ious hypotheses are considered. For each hypothesis the minimum

strength of the signal to claim a detection is studied and a parameter

estimation exercise is carried out to characterise the signal and define

the location of the source in the sky.

Signals of known parameters and differing strengths were injected

(once modulated in relation to the relative orientation of the detector

and the source location) into the synthetic noise of three advanced

detectors comprising a network. There is little understanding of the

energy channeled into the f and p oscillation modes. This may pro-

voke making assumptions that are not too realistic. The values of the

parameters were estimated using Bayesian inference for two different

scenarios: when only the f -mode is suspect (scenario 1), or when both

f - and p-modes are suspect (scenario 2). To begin with, the strengths

of signals for which the signal hypothesis favour the noise hypothesis

are calculated, and the Bayes factors for 1% false-alarm rates are es-

tablished for both scenarios. Penalization of models containing more

parameters than necessary in the underlying physical model in the

Bayesian approach was demonstrated.

Posterior probabilities of the parameters in Scenario 1 are better de-

fined and constrained than those for Scenario 2, due to the added



uncertainty of including another oscillation mode. As expected, the

uncertainty of the probability distributions of the parameter values

decreases and the mode shifts toward the exact injected value as the

signal strength increases. For both scenarios the frequency value can

be accurately estimated, not so well the damping times, especially for

the p-mode oscillation, which have longer time durations than f-modes

of typically several seconds. The ability to estimate the polarisation

degree of the signal is also quite limited and strong signals are required

for the mode of the distribution to approximate the exact value. Simi-

larly, determining the most probable location for the source is possible

in both scenarios. The two-fold degeneracy of the sky position and

related to the travel time of the signal to the detectors has been bro-

ken; relatively strong (high SNR) signals, specially for scenario 2, are

needed for the source location to be constrained with accuracy.

Chapter 6 presents the experimental work carried out, by which

the measurent of the shot-noise level of differently modulated and

demodulated laser light was intended. Due to the poor outcome of

this experiment and the lack of useful results the emphasis has been

placed on a detailed description of the modulation apparatus, opto-

electronic set up and the control system put together.

Chapter 7 looks to the future and briefly presents how to take this

data analysis work forward.
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Chapter 1

Gravitational waves, sources and

their detection

1.1 Introduction

Serendipitous discoveries like the cosmic microwave background radiation (CMBR)

and signals from pulsars were ground-breaking unexpected surprises that allowed

the development of new branches of astronomy. The eagerly expected detection

of gravitational radiation will also provide a new dimension for the understanding

of the universe. When the second generation gravitational wave detectors start

making detections, this new source of astrophysical information will throw light

upon the mysteries of the universe on a daily basis. Detection and interpretation

of gravitational waves will allow a deeper understanding of astronomical objects

like neutron stars and black holes, together with the validation and refutation of

various gravitational theories.

The theory of general relativity that postulated gravitational radiation is

sound, for the existence of gravitational waves has already been confirmed in-

directly. It is highly probable we are at the doorstep of a new and exciting

science in which secrets of strong field gravity will be elucidated. The first de-

tection of gravitational radiation seems imminent now and, when this occurs, an

exciting path of discoveries will be laid ahead to continue interrogating nature.

1



1.2 The theory of General Relativity

1.2 The theory of General Relativity

It was 1905 when Albert Einstein published his revolutionary theory of Special

Relativity (SR) in which he postulated that a) there is no absolute and well-

defined state of rest or privileged reference frame, so that all uniform motion is

relative, and b) light propagates in empty space with finite velocity c regardless

the state of motion of the emitting body. Einstein introduced relativity of simul-

taneity abandoning the classical notion that time intervals between events are the

same for all observers. Consequently, space and time lost their status as inde-

pendent entities to be entwined as spacetime so that the only invariant quantity

between two events is the fspacetime interval. This revolution of the concepts

of time and space required the profound revision of other physical phenomena,

gravity among them.

The theory of General Relativity (GR) was published by Albert Einstein in

1915; it provided a new and revolutionary geometrical interpretation of gravity

that rivaled the Newtonian interpretation: the new theory embraced the axioms

of special relativity, dispensing with the classical model of force fields acting

instantaneously at a distance and replacing it with information about forces car-

ried at the speed of light. Paraphrasing J. Wheeler, this is condensed in the often

quoted matter tells spacetime how to curve, and spacetime tells matter how to

move. For a mathematical description of gravity, Einstein derived the so-called

field equations that relate the curvature of spacetime of a region to the matter

and energy content within.

The theory of General Relativity has passed very stringent tests so far. It has

been able to explain various physical phenomena, like the precession of the peri-

helion of Mercury, and predict new physics that have subsequently been proven

right, like the deflection of light and the gravitational redshift. One important

consequence of GR is the prediction of the existence of gravitational radiation.

1.3 Gravitational radiation

From the field equations Einstein derived that a moving mass is a source of grav-

itational radiation. The predicted intensity of the radiation was so small that its

2



1.3 Gravitational radiation

detection was regarded close to impossible. Luckily, the inexorable advance of

technology and the consideration of then unknown astronomical sources of strong

gravitational radiation have allowed the possibility of detecting gravitational ra-

diation to be reconsidered.

The Einstein field equations describe the curvature of spacetime in the pres-

ence of mass and energy. Far away from the source, in the weak-field regime,

the deformation of the spacetime can be studied as a small distortion of the flat

spacetime. In this regime, and from the linearized weak-field Einstein equations,

a generic expression for the gravitational wave and its effect on free test-particles

can be derived. For a detailed derivation of the gravitational wave function

see (1; 2).

The analogy between electromagnetic and gravitational waves is tempting but

not straight-forward: electromagnetic signals propagate through spacetime, but

gravitational waves are the propagation of ripples of spacetime itself. Unlike

electromagnetic signals gravitational waves interact very weakly with matter; on

one hand, this makes their detection more difficult but, on the other, assures

that the features of the physical mechanisms that generated the waves, and are

imprinted on the radiation, will not be altered during their long journey through

space before their detection.

Although indirect, the first evidence of the existence of gravitational radiation

came from radio measurements of the binary pulsar PSR B1913+16 (3; 4), a

binary formed of two neutron stars closely orbiting each other at relativistic

speed. For this particular binary, radio pulses of one of the neutron stars can

be seen from Earth, which allows tracking the evolution of their orbital period

precisely. After eight years of careful measurements the actual orbital shrinkage

was accurately established and compared to that which the general relativity

predicted as a consequence of energy loss as gravitational wave reaction. The

discrepancy between the measurement and the prediction was remarkably small

(< 0.5%) and although indirectly, proved the existence of gravitational radiation.

This effect was first observed by R. Hulse and J. Taylor, for which they shared

the Nobel prize in Physics in 1993. Since then, various binary pulsars have been

investigated and the shrinkage of their orbits due to gravitational wave emission

has been confirmed (5). The recent discovery of a binary neutron stars PSR
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J0737-3039 where the pulsations of both members can be detected from Earth

has permitted even more accurate observations (6).

1.3.1 Polarization of gravitational waves

Within the framework of general relativity gravitational waves are transverse

waves that propagate with the speed of light. As in the electromagnetic signals,

gravitational radiation has two independent polarization states; but the angle

between the two states is π/4, rather than π/2. The passage of a wave dis-

torts spacetime and produces changes in length in two orthogonal directions that

oscillate with gravitational wave frequency. Fig. 1.1 shows the action of each

polarization component on a circular ring of test masses. In accordance to the

shape of the distortion produced by the wave its polarization states are called

“plus” (+) and “cross” (×). The respective time function components of the

wave are written as h+ and h×, where h represents the strain or relative deforma-

tion (adimensional) of lengths caused by the gravitational wave. The orientation

and degree of polarization depends on the relative orientation between the ob-

server and the dynamics of the source. The measurement of the polarization

of the gravitational wave can provide information about the orientation of the

source.
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Figure 1.1: Diagram showing the two independent polarizations of a gravitational wave.
A circular ring of test masses is located in the plane of the paper and the effect on it
by a gravitational wave propagating perpendicularly to that plane considered. The
deformation of the ring of test masses helps to visualize how the proper distances
between the test particles change. Left: Effect of the plus ‘+’ polarization. Right:
Effect of the cross ‘×’ polarization. The ring of particles will stretch and squeeze
(the effect is extremely exaggerated in this figure) adopting an alternating circular-
ellipsoidal-circular shape for each half wavelength of the passing gravitational wave.

1.3.2 Strength of gravitational waves

The Einstein field equations are too complicated to be solved analytically and

to infer the amplitude of gravitational waves; these are often solved numerically

with post-Newtonian approximations of various orders. The lowest order post-

Newtonian approximation for the emitted radiation is the quadrupole formula,

which depends on the density ρ and the velocity fields of the Newtonian sys-

tem (7). The amplitude of the gravitational wave is, at its lowest order, the

tensor:

hjk =
2

r

d2Qjk

dt2
, (1.1)
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where Qjk is the second moment of the mass distribution, the spatial tensor

Qjk =

∫
ρ xjxk d

3x. (1.2)

The source that produces gravitational waves is the internal dynamical motion,

but only the shape-changing portion of the system: a perfectly round star pul-

sating spherically would not produce any gravitational radiation, whereas a non-

radial oscillation or spinning of a non-axymmetric object would generate grav-

itational radiation. A measure of the amount of shape-changing motions of a

system is the kinetic energy of the non-spherical part Ens
kin. Shape-changing dy-

namical motions provoke the amplitudes of the gravitational wave field h+ and

h× to oscillate with amplitudes (8; 9):

h ∼ G

c4

Ens
kin

r
∼ 10−20

(
Ens

kin

Msc2

)(
10 Mpc

r

)
(1.3)

where Ms is the mass of the sun, and 10 Mpc is the approximate distance scale

for the local group of galaxies. Eq. 1.3 gives an indication of the small amplitudes

of the gravitational field expected on Earth that need to be detected.

The strongest astrophysical sources are likely to have masses of order that of

the sun or a few factors of ten larger. Similarly for the velocity where maximum

velocities are a few factors of ten smaller than c. Combining both uncertainties

the strongest amplitude expected is a few factors of ten up or down from 10−20,

very small indeed.

The absence of direct detection has allowed to establish upper limits on the

strength of the gravitational wave signals expected. This has proved that the

amplitude is smaller than the aforementioned fiducial figure of 10−20. From the

analysis of science data acquired by ground-based detectors, observational upper

limits of the strength of gravitational waves have been now inferred for different

type of sources: upper limit on the stochastic gravitational-wave background of

cosmological origin (10), upper limits of PSR J1939+2134 (11), upper limits of

78 pulsars (12), beating the spin-down limit on gravitational wave emission (13),

all-sky search for gravitational-wave bursts (14).
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1.3.3 Frequencies of gravitational waves

Estimates of the duration and oscillation frequency of the gravitational waves are

important in order to assess their detectability, for detectors do not have the same

sensitivity across all the detection bandwidth. In some cases the frequency of the

emission is dictated by the existing motion, such as the orbital movement of a

binary or the spinning of a pulsar. Most generally, however, the frequency will

be related to the internal oscillations of the system and therefore to its natural

frequency f0 (7).

f0 =
√
Gρ̄/4π, (1.4)

whereG is the gravitational constant and ρ̄ = 3M/4πR3 is the mean density of the

source. Although Eq. 1.4 is a Newtonian formula, it provides a remarkably good

order-of-magnitude approximation to natural frequency values, even for highly

relativistic sources such as black holes. For a neutron star of mass 1.4Ms and

radius 10 km, the natural frequency is f0 = 1.9 kHz. For a black hole of mass

10Ms and radius 2M ≡ 30 km, f0 = 1 kHz. And for a large black hole of mass

2.5 × 106Ms, such as the one at the center of our galaxy, the frequency goes in

inverse proportion down to the mass to f0 = 4 mHz. In general, the characteristic

frequency of a compact object of mass M and radius R is

f0 =
1

4π

(
3GM

R3

)1/2

' 1kHz

(
10Ms

M

)
. (1.5)

Due to seismic disturbances ground based detectors will not able to detect signals

of frequencies smaller than 10 Hz (second generation detectors). Third generation

detectors’ bandwidth will possibly be stretched in the lower end down to 1 Hz by

reducing the gravity gradient noise using underground locations, and by reducing

the seismic disturbances with special and active suspension systems (15). The

future detector in space (LISA) will be able to detect gravitational waves in the

range of 1 mHz to 100 mHz. The upper limit of this bandwidth is limited by the

long arm distance between LISA’s test masses and corresponds to approximately

the reciprocal of the light travel time down its baseline.
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1.4 Important gravitational radiation sources

Purposely generated man-made gravitational waves are too small to be detected;

this is because huge masses accelerating rapidly are needed to distort the space-

time and thus generate gravitational radiation of sufficient intensity. To get an

estimate of the approximate amplitude of a man-made gravitational wave (16),

imagine creating a wave generator with extreme properties: two masses of 1000

kg each at opposite ends of a beam 10m long, which rotates about an axis in the

centre of the beam 10 times per second. The frequency of the waves will be 20

Hz, since the mass distribution of the system is periodic with a period of 0.05

s, only half the rotation period. The wavelength of the waves will therefore be

∼ 1.5× 107 m, about the diameter of the earth. In order to detect gravitational

waves, not near-zone Newtonian gravity, the detector must be at least one wave-

length from the source. The amplitude is ∼ 5 × 10−43 and it is far too small to

contemplate detecting!

Astrophysical phenomena, including cataclysmic events, are the most promis-

ing sources to generate strong enough waves to be detected from Earth. An

archetypical example includes core-collapse supernovae and coalescing binaries

that inspiral inwards to finally merge at the end of their lifes. Depending on the

type of source and its distance to Earth, the gravitational waves expected are

various in strength, frequency, polarisation and duration.

Conventionally, the different gravitational signals expected from different sources

are classified as compact binary coalescence, burst, continuous and stochastic

signals. In the following sections, we concentrate on the signals detectable for

ground-based detectors, with frequencies in the range of 1Hz to 10 kHz.

1.4.1 Coalescing compact binaries

Compact object binaries, formed by neutron stars and black holes orbiting each

other, are a very promising source of gravitational radiation. These objects are

the result of the evolution of massive star binaries that keep gravitationally bound

after two supernovae explosions. The two objects orbit inspiraling into each other

to end up merging into a unique compact black hole; the inward inspiraling reflects

the energy loss due to the gravitational wave emission (see Section 1.3).
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The frequency of the signal has been expected to be twice the rotation fre-

quency of the source and proportional to the velocity of the objects in the case

of binaries. This means that for most of the time the system will generate a low

intensity and low frequency signal not detectable by gravitational detectors on

Earth. Detectable predicted gravitational waves are only expected in the last

period of the inspiral phase when the objects are close enough and their gravita-

tional signals have a frequency within the detection bandwidth of ground-based

detectors. The compactness of the objects avoids the distortion of the bodies

until they are so close as to start the process of merging to fuse into a black hole

and reach an equilibrium state.

The waveform of the inspiral phase is predicted accurately and allows inference

of interesting astrophysical information like the masses of the binary and orbital

parameters (17). The last stages of the black hole binaries are better understood

than those involving neutron stars; it may be that the neutron star is disrupted

by its companion when close enough. Measuring the gravitational radiation in

the disruptive merging process would make possible to get precious information

about the equations of state of neutron stars (18). Although oscillation modes of

black holes have been studied for extensively, the waveforms expected from the

merges and the subsequent ring-down and relaxation are quite uncertain.

1.4.2 Burst signals

A burst-type signal is a short signal in which the Doppler-shift produced by the

rotation of the Earth can be neglected (19). Typically, they last for less than

a second and their the frequency, polarization and duration is uncertain due to

the random orientation and internal structure of the object. The expected burst

signals are normally related to a sudden gravitational cataclysm like the core-

collapse of massive stars, the sudden change of their internal structure, or binary

coalescences – particularly the merger phase, which may be more amenable to

analysis as an unmodeled burst than by using a matched template approach.
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1.4.2.1 Gravitational collapse

An important source of gravitational burst signals is stellar gravitational collapse.

This occurs at the end of the life of evolved stars that run out of fuel: the internal

pressure that keeps the star in hydrostatic equilibrium vanishes and the star

succumbs to its own gravity with catastrophic consequences. Sometimes the core

of the star bounces back provoking an explosion known as supernovae (type II)

and expels all the outer layers of the star to the interstellar medium. Depending

on the mass and rotation degree of the progenitor different types of collapse are

known and they can leave behind a neutron star or a black hole.

Long-duration γ-ray bursts (GRBs) (> 2 s) are thought to be powered by

the core collapse of highly rotating massive stars, known as collapsars, to a black

hole. The energy extracted from the disc of the black hole drives relativistic jets

of high-energy photons that can be observed (20). Gravitational waves may be

generated during the collapse itself and as a consequence of the oscillations of the

compact object formed (ring-down).

Simulating gravitational core collapse is a very active area of research but

there are still many uncertainties and as yet a fully relativistic 3D core collapse,

including all the physics, cannot be simulated by computers. Waveforms expected

from the collapse and posterior ringdown have been calculated (21; 22) but the

amount of energy released in the form of gravitational waves is not well known.

For a review of the astrophysics that can be learned from the gravitational wave-

forms emitted in the core collapse see (23).

Gamma Ray Bursts (GRBs) may be good allies in order to detect and analyse

gravitational burst radiation generated by gravitational collapse. Given that the

electromagnetic and gravitational signal travel at the same speed, the knowledge

of the approximate time and the sky location of the GRB can greatly facilitate

the search of the burst signal by the detectors.

1.4.3 Continuous signals

These are periodic signals with frequencies limited to narrow bandwidths and

related to orbital rotation or spinning of compact objects like neutron stars and

black holes. A rotating non-axisymmetric neutron star is believed to radiate
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gravitational waves at two times its frequency of rotation. The strength of the

signal emitted depends on the ellipticity of the neutron star, sustained by the

solid crust of the neutron star or by accretion flow from a companion. When

the sky location of the neutron star is known (thanks to its radio pulsations)

the search for this type of signal is simplified, for the position of the source is

mostly known and the frequency expected falls in a narrow range of the pulsat-

ing frequency. However, the rotation of the Earth and its motion around the

solar system barycenter (7) makes the search of the signal more complicated and

computationally very demanding.

1.4.4 Stochastic signals

It is believed that the universe has a random gravitational wave field produced by

the superposition of the emission of miriad of background sources and also from

fundamental processes as the Big Bang. This is basically background noise and

it is characterised by its energy density per unit frequency, typically given as a

fraction of the closure or critical cosmological density (7). Direct measurements

of the amplitude of this background are of fundamental importance for under-

standing the evolution of the universe when it was younger than one minute.

Using science data acquired during two years upper limits on the amplitude of

the stochastic gravitational wave background have been limited and the energy

density constrained (10).

The stochastic signal and the instrumental noise are similar and difficult to

discern. The method for its detection consist in cross-correlating the signals

acquired by two or more instruments (24).

1.5 Gravitational wave detectors

The weak nature of gravitational radiation makes the detection of gravitational

waves difficult and the design of extremely sensitive detectors necessary. Filtering

out the noise background requires sophisticated instruments and is itself a field

that requires great expertise - signals of astrophysical origin need to be isolated.
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There are mainly two classes of effective gravitational wave detectors: laser

interferometric detectors and resonant bar detectors. Interferometric detectors

search for the oscillations caused by the interaction of the gravitational wave with

an electromagnetic light beam, whereas bar detectors measure the vibrations of

a mass to which the gravitational wave transfers energy when passing (7).

J. Weber pioneered the construction of gravitational wave detectors in the

1960s by building the first resonant bar detector at the university of Maryland.

This was a cylindrical bar of aluminium (two meter long and half a meter in

diameter) working at room temperature, and to which piezoelectric transducers

were attached to convert the vibrations into electrical signals. Weber reported

detections but his claims were later discredited by the scientific community which

was unable to reproduce his results (25; 26). His designs, however, were developed

further to include cryogenic technology, new vibration isolators and transducers.

Various resonant bar detectors have been built and operated worldwide since

then. Within the international collaboration group IGEC (27) there are the de-

tectors ALLEGRO (USA), AURIGA (Italy), EXPLORER (CERN), NAUTILUS

(Italy) and NIOBE (Perth, Australia). Unfortunately, due to funding restrictions,

only EXPLORER and AURIGA continue acquiring data currently. The current

generation of resonant-mass detectors exhibit sensitivity as small as 10−21/
√

Hz,

in a narrow band tens of Hertz wide (28).

The archetypal gravitational wave beam detectors are ground-based large scale

Michelson-type laser interferometric instruments comprised of two perpendicular

arms having kilometer-scale lengths. Fabry-Pérot cavities may be used to in-

crease the light travel time in the arms and to increase detection sensitivity. The

detection principle is the measurement of the separation changes between freely

suspended test masses at the extremes of the arms under the influence of a pass-

ing gravitational wave; this can be measured by precise interferometry. Sensitive

measurements of the interferometer are possible thank to sophisticated electro-

optical servo-loops that keep the instrument locked in a stable configuration.

This way, minute light power variations caused by the passage of the wave can

be sensed.

Laser interferometric detectors provide a better sensitivity than the resonant

bars over a wider bandwidth. The approximate detection bandwidth of current
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(first generation) ground-based laser interferometric detectors ranges from 40 Hz

to 10000 Hz. Across this detection bandwidth the spectrum of the instrumen-

tal noise is not flat but shows three distinct regions. Seismic disturbances from

the environment limit the sensitivity at low frequencies (< 40 Hz); in order to

minimise the transmission of vibrations to the test masses, these are suspended

with multi-staged structures. The thermal noise limits sensitivity at intermediate

frequencies; this is related to the thermal vibrations of the test masses and the

suspensions and is counteracted by careful choice of materials and fibers from

which test masses are suspended. The shot-noise is the measurement limitation

at high frequencies (> 200 Hz) where the quantum uncertainty of the light and

its detection by photodetectors dominate. Across the detection band laser in-

terferometric gravitational detectors are most sensitive around 150 Hz. A good

introduction to the fundamentals of bar and laser interferometric detectors can

be found in (29); a comprehensive review of developments of laser interferometer

detectors and the technologies used for their control can be found in (30).

1.5.1 Worldwide network of gravitational wave detectors

A worldwide network of laser interferometric gravitational wave detectors has

been established in the last twenty years. Laser interferometric gravitational wave

detectors have a poor directional sensitivity: as linearly polarized quadrupolar

instruments they measure only a projection of the wave impinging on the detector.

A network of several instruments can reinforce the confidence of a detection and

pinpoint the source’s sky location by triangulation.

Current detectors, of different size and sensitivity, are spread across the five

continents. The two major projects are called Laser Interferometric Gravitational

Observatory (LIGO) (31) with 3 detectors located in the USA, and VIRGO (32)

with one detector in Italy. Another two detectors of no lesser importance, GEO600 (33)

in Germany and TAMA300 (34) in Japan, are smaller in size; they are not as

sensitive as the LIGO and VIRGO detectors, but they have contributed decisively

to the development of the technology incorporated currently in all the interfer-

ometers.
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LIGO is a project led by Caltech/MIT with 3 detectors located in two sites: a

4-km (H1) and a 2-km (H2) instrument in Handford that share the same vacuum

system, in Washington, and a 4-km (L1) instrument in Livingston, in Lousiana.

GEO 600 is a German/British collaboration operating a 600 m instrument located

close to Hanover, Germany. LIGO and GEO600 have collaborated together since

2001 under the LIGO Scientific Collaboration (LSC) (35) and have successfully

exchanged technology, experience and data. Within the LSC, the GEO600 de-

tector is also seen as a prototype where new components and technologies are

developed and tested before taking them to the bigger interferometers.

VIRGO is a Italian/French enterprise operating a 3-km instrument developed

by the VIRGO Collaboration (36) and located within the site of the European

Gravitational Observatory (EGO) (37) in Cascina, Italy. Recently, VIRGO and

LSC have signed an agreement to share data and analyse it jointly; many papers

have been published already as a result of this agreement.

GEO600 has been operational since 2001 and has developed and tested many

technologies that will soon be incorporated into the advanced LIGO and advanced

VIRGO instruments like suspensions, mirror coatings and various interferometer

configurations. Technology developed in GEO600 and considered now mature

is being transferred to LIGO and VIRGO as a part of their planned upgrades,

described in Section 1.5.2.

TAMA300 was the first gravitational wave interferometer to take data, and

the collaboration has now proposed an ambitious second generation detector:

the Large-scale Cryogenic Gravitational-Wave Telescope (LCGT) (38) is being

planned in Japan. It consists of an underground detector of 3-km arms and will

be the first to use cryogenic technology to reduce the effects of thermal noise.

With good prospects, the project has been partially funded already.

All the aforementioned detectors are located in the North hemisphere, but

there is also a small gravitational wave detector working in the South Hemi-

sphere, in Western Australia. Plans for a bigger detector called the Australian

Interferometric Gravitational Observatory (AIGO) (39; 40) are under way, a pro-

posal of the Australian Consortium for Interferometric Gravitational Astronomy

(ACIGA) (41).
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The first generation of detectors (called initial) have progressively achieved

and surpassed their design sensitivities making already possible a few years of

data acquisition and analysis. Currently, the initial LIGO and VIRGO detectors

are going through major upgrades towards their advance configuration (second

generation). The advanced instruments will eventually replace the initial instru-

ments with one ten times more sensitive. This means that the searchable volume

of space will increase by three orders of magnitude.

1.5.2 Status Quo and future detectors

In 2007 the initial LIGO detectors finished a two year long data run (fifth science

run S5) during which a full year of triple-coincidence data was collected at design

sensitivity. Much of this run was also coincident with the data runs of GEO600

and VIRGO, forming the most sensitive worldwide network of gravitational-wave

detectors to date (42). Analysis of S5 data have produced numerous publications

in which, although no gravitational wave detection has been seen, upper limits

on the emission of gravitational wave radiation and rates of various sources have

been established: search of waves from compact binary coalescence (43), from

known pulsars (44), periodic gravitational waves (45; 46).

After completion of S5, and as part of a staged upgrade toward the second

generation instruments, the two 4-km LIGO detectors (L1 and H1) were taken

offline to undergo a number of upgrades and increase the sensitivity by a factor

of two (Enhanced LIGO). The main changes were the increase of light power,

to be more sensitive at high frequencies, and the movement of the dark port

detection system to a seismically isolated vacuum chamber (47). Also, the optics

of the output table were completely changed and an output mode cleaner was

incorporated for the first time. In case a close supernova went off during these

upgrades the third LIGO detector (H2) was left in operation in conjunction with

GEO600 in a program called Astrowatch. Both L1 and H1 are back online now as

Enhanced LIGO and will collect science data for about a year, until completing

the sixth science run (S6), working together with an slightly upgraded VIRGO

and improved GEO (GEO-HF)(48).
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The GEO-HF detector is currently going through alternate states of data ac-

quisition and commissioning to incorporate the most advanced optical and inter-

ferometric techniques, including squeezing. This is an optical technique to reduce

the phase noise below the standard quantum limit, which limits the sensitivity of

the detector at high-frequencies, by injecting squeezed light of unbalanced quan-

tum uncertainty of the two conjugate variables amplitude and phase, through the

dark port. This way it is possible to reduce the shot-noise to lower values than

the so-called Standard Quantum Limit (SQL) (49; 50; 51).

In 2011 all LIGO and VIRGO detectors will be taken offline for major upgrades

(H2 detector will be stretched to have 4-km arms) that will take the four detectors

to their advanced configuration.

1.5.2.1 Second generation (Advanced) detectors

Advanced LIGO and advanced VIRGO will be quantum-limited interferometers

with a significant increase by sensitivity over initial detectors, and will start ac-

quiring data in 2014. They will replace the initial instruments using the same

premises and vacuum tanks but with major hardware changes. The new instru-

ments will incorporate new components and technologies developed in the last

15 years: a more stable and powerful laser, bigger and heavier test masses with

new test mass suspensions, new seismic isolation systems, and state of the art

interferometer control system. The planned upgrades for advanced LIGO are de-

scribed in (52). This modifications will permit to reduce the noise even further

and stretch the detection bandwidth, from 40 Hz down to 10 Hz in its lower range.

The installation of a signal recycling mirror at the sensing port will allow to tune

the interferometer between wideband or narrowband operation (53). By changing

the position and reflectivity of the signal-recycling mirror, the instrument can be

tuned to have much lower shot noise in a specific narrow band, in exchange for

higher combined light-pressure and shot-noise at other frequencies. The locus for

noise amplitude minima for advanced LIGO in narrowband operation is shown

in Fig.1 of (54). The advanced detectors will have a sensitivity 10 times better

than the initial detectors and are expected to switch the science of gravitational

radiation from discovery mode to regular astrophysical observation.
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1.5.2.2 Third generation detectors

Second generation detectors are expected to start acquiring data after 2014. How-

ever, the design study for a ground-based detector is already under way as part of

an ambitious plan to build a third generation detector called the Einstein Tele-

cope (ET). The aim of this detector is to reduce the noise tenfold with respect to

the second generation instruments and to increase the detection bandwidth low-

ering the seismic limitation from 10 Hz down to 1 Hz. Advanced detectors will

be limited by the gravitational gradient noise in the lower part of the detection

bandwidth, the thermal noise of the suspension and test masses in intermediate

frequencies, and quantum noise for higher frequencies. New underground infras-

tructures with arms up to 10 km, cryogenic facilities to cool down the mirrors

and the use of squeezed light will be necessary in order to lower the noise tenfold.

Various topologies are being considered for the ET detector(55; 56).

ET is a project funded by the European commission and its design and fea-

sibility studies are being carried out in conjunction by various European institu-

tions (57) working together. The aim of this collaboration is to set the science

goals of the instrument and to make decisions with respect to its future location,

topology, technologies to incorporate data analysis needs (58).

Fig. 1.2 shows the noise curves for initial and advanced LIGO and VIRGO

instruments, and the noise curve expected for ET.

1.5.3 Scientific goals of second and third generation in-

struments

It is believed that a few weeks of data of the advanced detectors will provide

as much scientific insight as the initial detectors have done during the past 7

years. Given our current astrophysical understanding the detection of gravita-

tional waves should become a near-certainty and regular astrophysical observa-

tions ought to commence (60).

The potential of the new detectors can be summarised in two fronts: more

and better detections. More because the tenfold increase in sensitivity will bring

a thousand-fold increase of space volume to explore; and better because it will

allow for signals to be detected with a bigger signal to noise ratio. The benefit of
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Figure 1.2: Sensitivity curves of ground-based (noise amplitude
√
Sh(f)) for initial,

second and third generation instruments. Note the approximate tenfold increase in
sensitivity from initial to advanced configuration and, in turn, from the advanced to
the third generation instrument noise curve. Data taken from (7), except for advanced
VIRGO (59).

a bigger scope of detection will come particularly from the better sensitivity in

the mid-frequency region (≈ 100 Hz). To learn about the astrophysical prospects

within the range of advanced LIGO, see (54). For a review of the astrophysical

potential of ET we refer the reader to the so-called vision document (58; 61).

To infer rates of detection of gravitational waves it is necessary to know the

distribution of compact objects, the sources. Approximate abundance of neutron

stars and black holes have been inferred from electromagnetic observations: sig-

nals from pulsars have permitted extrapolating the distribution of neutron stars

for example. Although the case of black holes is more controversial, astronomers

now recognize that there is an abundance of black holes in the universe. Obser-

vations across the electromagnetic spectrum have located black holes in X-ray

binary systems in our galaxy, in the centers of star clusters and in the centers of

galaxies (7).

In the following, a short summary of the major science potential of future

detectors is presented (54). Considering archetypical values for neutron stars
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of 1.4Ms and black holes of 10Ms, inspiraling NS-NS binaries will be seen to a

distance of 300 Mpc (z ∼ 0.1), about 15 times further than the initial LIGO, and

with a event rate 3000 times superior (about 10 events per year). NS-BH binaries

will be visible to 650-1000 Mpc (z ∼ 0.2) (about 13 events per year). Inspiraling

BH-BH binaries will be seen to a cosmological distance of 2000 Mpc (z ∼ 0.5)

(about 500 per year) when for initial LIGO was up to 100 Mpc. All these figures

are quite uncertain. Rates for inspiraling coalescences are also uncertain, see (53)

for rates expected in the local universe (z ∼ 0). Frequent detection of coalescing

compact binaries with good SNRs will result not only in the inference of the

masses of the components and their orbital parameters but also their distance.

Provided the host galaxy can be identified an independent distance estimator will

be available to astronomers.

Continuous signals from non-axisymmetrically deformed neutron stars will

benefit from the combined effect of lowering the noise and widening the low

frequency down from 10 Hz, for most of the continuous gravitational signals from

deformed neutron stars (expected at twice the pulsar spin frequency) are in the 1

to 10 Hz region. The detection advantage provided by advanced detectors and ET

are shown in (53). There is great uncertainty on the amplitudes expected from

these sources but a lower sensitivity curve would allow constraining the maximum

eccentricity of neutron stars even more and to learn about their structure.

Gravitational waves emitted by LMXBs (Sco X-1) would be marginally de-

tectable for advanced detectors. The analysis of narrow sub-bands of strain data

over long time durations could elucidate if it is the gravitational wave energy loss

which avoids the neutron star to spin-up to the break-up limit. Assuming that

there is some mechanism for the binary to lose angular momentum, as fast as it is

accreting matter from the companion, the gravitational wave search would need

to allow for the random evolution of the spin of the accreting body. A long enough

integration of the signal acquired in narrowmode would make gravitational wave

signals from LMXBs detectable (54).
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1.5 Gravitational wave detectors

1.5.4 Multimessenger astronomy with future telescopes

Much has been learned in experimental science by studying the same phenomena

with different techniques and instruments. Gravitational waves are expected

to complement the partial perspective of astronomical phenomena obtained in

other disciplines. Electromagnetic and neutrino observations are complementary

to gravitational wave astronomy.

There are celestial objects that will only be probed studying the gravitational

radiation they emit. This is the case of coalescing periods of black holes or

neutron stars, although perturbations of huge magnetic fields could emit electro-

magnetic radiation. Others, like coalescing binaries, core-collapse supernovae and

magnetars are expected to be seen by gamma- and X-ray, visible light, infrared

and radio waves.

Correlation in time and direction between observations that correspond to the

same astrophysical event can greatly help in the search of gravitational waves,

for laser interferometric detectors are very sensitive to the relative orientation

of the source relative to the line of sight to Earth. For example, a core col-

lapse supernova seen by optical telescopes would indicate an event of a few hours

prior to the start of the optical observation, which would facilitate the search im-

mensely. Detecting first the gravitational wave would be even better: if the signal

was strong enough and seen by a network of interferometers, the location of the

source could be inferred by triangulation thanks to the arrival time differences

and optical telescopes could be pointed at the particular location to capture the

glow of the supernovae. Similarly, GRBs detected by satellites would indicate the

time of the cataclysm (core collapse or merger) plus the approximate location of

the event in the sky. This, again, would ease considerably the search by reducing

the parameter space need to be analysed.

The GRB and afterglow are an indirect indication of the engine but only by

detection of their gravitational wave imprint will we have a direct probe of the

internal physics. The predicted rate of NS binaries detected by the third gen-

eration detectors in combination of GRBs will provide redshift values for some

of them that will provide an independent cosmological distance scale. GRBs in
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conjunction of neutrino detections will provide precise time evolution of the cata-

clysm and will improve our understanding of their physics. For more information

about the potential of combined observations and the multimessenger astronomy

potential of the Einstein Telescope, see (61).

1.6 Gravitational burst signals of galactic origin

Sources likely to produce gravitational burst signals have been introduced in Sec-

tion 1.4. Here we focus on those sources in our galaxy likely to generate gravita-

tional burst signals detectable on ground-based laser interferometric gravitational

waves.

Non-axisymetric core-collapse and the subsequent oscillations of the newly

born compact object (neutron star or black hole) are a potential source of de-

tectable signals. However, the expected rate of core-collapse supernovae in our

galaxy, one every 30 years, is so low that the hopes to do science based on these

events are quite dim. That is why here the focus is brought to events with higher

rates and from galactic sources that could potentially be detected with instru-

ments of second and third generation. Galactic neutron stars and mechanisms

able to take them out of equilibirum, and make them oscillate while emitting

exponentially damped ringdown gravitational waves of short duration, take pro-

tagonism here.

1.6.1 Neutron stars and pulsars

Even after 40 years of dedicated study, neutron stars are still mysterious objects.

Their mass and diameter are quite well constrained but their internal structure is

still rather uncertain. Detailed analysis of gravitational radiation from oscillatory

neutron stars will increase the understanding of this exotic objects immensely.

As early as 1934, the existence of a new form of star, the neutron star, was

predicted (62). Current belief is that neutron stars are the corpses of massive

stars that underwent a sudden core-collapse after running out of fuel and being

incapable of standing their own gravity. In case of more massive stars it is believed

that the core-collapse forms a black hole instead. When the fuel runs out, the
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1.6 Gravitational burst signals of galactic origin

sudden lack of internal pressure gives way to a fast gravitational collapse of the

core that compresses up to nuclear densities. In the case of neutron stars, the

enormous gravitational force crushes the electrons and nuclei of ordinary atoms

to form matter consisting mostly of neutrons. Sometimes the compressed core

bounces back resulting in expulsion of the outer layers of the star out in a visible

supernova explosion and giving way to a supernova remnant visible for a few

thousands of years.

The conservation of the magnetic field and angular momentum in the col-

lapse leads to the creation of a compact object of extraordinary characteristics.

Roughly the mass of our sun is compressed into an object of a few kilometers in

diameter and density up to 1014 g cm−3, which rotate rapidly and holds enormous

magnetic fields of up to 1012 G. Although the internal structure of neutron stars

is still a subject of much debate, the accepted simplified belief is that it has a

liquid core surrounded by a solid crust, mostly comprised of neutron but possibly

including other more exotic particles.

More than 30 years elapsed between the prediction of the neutron star and the

serendipitous discovery of the first pulsar (i.e. pulsating radio star) in 1967 (63;

64). Shortly after their discovery, the connection of a rapidly rotating neutron

star with a strong dipolar magnetic field acting as a energetic electric generator

was established (65). The fact that a neutron star could rotate as rapidly as the

period of the radio pulses established the final link between the pulsar and the

neutron star. The radiation of a pulsar is powered by its rotation; particles are

accelerated along the magnetic field lines to emit a beamed radiation that can be

detected from Earth if the orientation of the pulsar is appropriate. This is when

the rotating axis of the neutron star does not coincide with the magnetic dipole

axis and the beamed radiation sweeps across the Earth.

Around 1900 pulsars have been found until now, most of them in the Galaxy

and close the galactic plane. The majority of the pulsars are detectable only

at radio wavelengths, but a few very young and short-period pulsars are also

detectable at optical X-ray, and even γ-ray wavelengths. For a list of the known

pulsars, see the ATNF catalogue (66; 67).
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1.6 Gravitational burst signals of galactic origin

1.6.2 Neutron stars as gravitational radiation sources

Neutron stars, either in isolation or as members of binary systems, are expected

to emit gravitational radiation through diverse mechanisms. Here the focus is

brought to neutron stars in isolation likely to emit strong enough gravitational

wave bursts. Various mechanisms have been proposed in relation with different

known astrophysical phenomena.

1.6.2.1 Pulsar glitches

Overall, pulsars show a very regular rotation rate, but occasional time irregular-

ities have been detected on a few young pulsars. These irregularities point to

sudden structural changes of the neutron stars, which are a penetrating means

of investigating their interior structure (67). Sudden structural changes present

a strong link to the oscillation of neutron stars and the corresponding ringdown

gravitational wave emission. Investigations on gravitational wave data analysis

in the context of pulsar glitches have been carried out in (68).

A glitch is a sudden step on the rotation period of the neutron star that

produces the pulsar time irregularity. These are rare events, observed predom-

inantly in young pulsars. Vela and the Crab pulsars are the ones where most

of the glitches have been seen and they are under continuous surveillance. In a

typical glitch, a sudden rotational speed increase is followed by an exponential

recovery that brings the slow down of the rotation to the values expected in the

absence of the disruption. There are two main hypothesis to explain the glitch

phenomena: a) the progressive reduction of the rotational speed diminishes the

centrifugal force and the equilibrium ellipticity of the crust adjusts in a series of

steps, and b) independent motion of the crust and the fluid interior and variable

degree of coupling between them. The exponential recovery after a glitch is an

indication that the pulsar does not rotate as a single body. The outer crust and

the inner fluid rotate independently but the degree of coupling between them

is not well understood yet. It may be that the external electromagnetic braking

generates a differential rotation between the crust and the inner fluid. Depending

the level of coupling between the two an erratic transfer of angular momentum

from the fluid to the crust may be the cause of the glitch.
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1.6.2.2 Magnetars: Soft gamma repeaters (SGR) and Anomalous X-

ray pulsars (AXP)

Magnetars are slow rotating neutron stars (period of ≈ 8 s) with very strong

magnetic fields (≈ 1015 G). The current belief is that if after a type-II supernova

collapse the hot newborn neutron star spins fast enough, it acquires an intense

magnetic field, which is 1000 times stronger than a pulsar. The strong magnetic

field brakes severely the spinning of the neutron star and the rotation period

decreases very quickly. In its evolution the magnetic field moves through the

solid crust of the magnetar, bending and stretching the crust. This process heats

the interior of the star and occasionally breaks the crust in a powerful starquake.

The accompanying release of magnetic energy creates a sudden burst of γ-rays,

accounting for the fainter bursts that give SGR their name (69). The electro-

magnetic energy released on these flashes is extraordinary (≈ 1046 erg s−1) and

is supported by changes on the magnetic field configuration of the neutron star.

The repetition of the flashes, sometimes after a few years, is one of the features

that differs them from Gamma ray bursts (GRB).

Only five SGRs have been detected so far, most of them in our galaxy and in

isolation. SGRs cease emitting bright bursts after only about 10,000 years and

probably only the youngest few have been detected.

The anomalous X-ray pulsars (AXP) are X-ray pulsars that present pulsations

that fade in and out. In a similar fashion to SGRs the energy released is believed

to come from the strong magnetic field. Magnetars are believed to go through

stages where their magnetic field reconfigures and the neutron star oscillates

emitting short-duration gravitational waves (70). Many millions of magnetars

are believed to exist in our galaxy and in every other galaxy (69).

1.7 Oscillations of stars

Stars oscillate due to the movement of their internal matter. The vibrations of

luminous stars can be studied by measuring the Doppler-shifts of known spectral

lines (asteroseismology), from which information about the primary pulsation
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modes can be obtained. The interior of the Sun has been studied this way (he-

lioseismology) for many years now.

Compact objects (neutron stars and black holes) are also believed to oscillate

after being taken out of their equilibrium configuration. But the oscillations of

a black hole are not easy to visualize, for it does not possess any material to

sustain such oscillations. These are oscillations of the spacetime metric, which

is a dynamical entity itself, just like the fluid of a star. Oscillations caused by

the motion of the fluid of a neutron star are easier to visualize. However, there

are not the only type of oscillation to consider. There exists an additional family

of oscillation modes, which are rather independent of the fluid and involve the

spacetime of the star at equilibrium. In opposition to luminous stars, oscillations

of compact objects are not stationary but dampened over a time period, which

are represented by Quasi Normal Modes (QNMs). These modes play a prominent

role in gravitational radiation emitted in a variety of astrophysical scenarios and

will be seen by the new gravitational wave detectors (71). For a review of the

oscillations expected from BHs and NSs, see (72).

The oscillation modes of a star can be divided into two general classes: po-

lar (spheroidal) and axial (toroidal). The polar ones correspond to spheroidal

deformations of the star, whereas the axial ones are associated with differential

rotation. As far as the stellar fluid is concerned, polar pulsation modes exist for

all conceivable stellar models, whereas the existence of axial modes rely upon

nonzero rotation, magnetic field or shear modulus (73).

1.7.1 Oscillations of black-holes

The quasi-normal modes for various types of black holes have been calculated;

these are quickly damped in a few milliseconds. The best known are for the

Schwarzschild (74) and Kerr Black Holes (72). For other type of black holes they

have not yet been calculated due to the complexity of the perturbation equations

but the existence of infinite number of quasi-normal modes for black-holes has

been demonstrated. Fig. 1.3 shows the frequency and damping values expected

from the quasi normal oscillations of the simplest Schwarzschild black hole. Values
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have been taken from (72; 75; 76) and are function of only the mass of the black

hole.
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Figure 1.3: Frequency and damping times predicted for l = 2, (quadrupole), l = 3, l = 4
modes of quasinormal oscillations of Schwarzschild black holes of different masses (72).
Damping times are very small (less than a msec) and have been plotted in logarithmic
scale to show the range of values more clearly. The mass ratio (MR) shows the mass
of the black hole in solar masses. The dotted line, given by the relation fτ = 0.6 (75),
with f in kHz and τ in ms, is a good approximation for the fundamental modes. The
longest damping value τ of each mode is the fundamental n = 0, but n = 1, 2 and 3 are
shown here too. For a black hole of one solar mass (MR = 1) more frequency modes
are shown for the case of l = 2, taken from (76).

1.7.2 Oscillations of relativistic stars

Study of pulsating relativistic stars is important to understand the stability of

compact objects and to know the gravitational radiation emitted by them. There

are two main families of modes, namely fluid - and spacetime-modes. The fluid

modes correspond to the analogue Newtonian modes but the spacetime or w-

modes are unique to relativistic stars. In the following, the most important

oscillation modes, for the case l = 2 (quadrupole) are described. Fig. 1.6 shows

frequency and damping time values for neutron stars of different internal structure
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(equation of state) from (75). The pulsation modes are named after Cowling’s

work in the 1940s (77).

1.7.2.1 Fluid modes

Unlike black holes, it is expected for neutron stars to have modes of oscillation as-

sociated to their internal fluid structure. These modes also exist in non-relativistic

stars and they would continue forever if there was not a mechanism of dissipation

in place. For neutron stars, one of the dissipation mechanisms will be the emission

of gravitational radiation that carries energy away. The most important families

of fluid modes for gravitational wave emission are the fundamental (f -mode), the

pressure (p-mode) and the gravity (g-mode) (78):

• f -modes (fundamental). This is a stable mode which exists only for non-

radial oscillations with frequency proportional to the mean density of the

star. A typical neutron star has an f -mode of frequency in the range 1.5 – 3

kHz and damping time of less than a second, slowly damped in comparison

to non-fluid modes, in the range of 0.1 – 0.5 s. f -mode frequencies and cor-

responding times for neutron stars have been computed and are tabulated

in (75; 79). Values published by (79) and (75) are shown in Fig. 1.4, where

frequency is plotted versus damping time.

• p-mode (pressure). These are radial or non-radial oscillations where the

internal pressure is the restoring force. The oscillation frequency depends

on the time for acoustic waves to cross the star. For a neutron star the

oscillation frequencies are in the range 4 – 10 kHz (higher than for f -modes)

and the damping times last longer, for a few seconds. Fig. 1.5 shows data

from (75) where the damping time have been plotted versus oscillation

frequency for p-modes.

• g-mode (gravity). This oscillation mode arises due to the gravity trying

to smooth out material inhomogeneities. Buoyancy is the restoring force.

For a typical neutron star the oscillations frequencies are lower than 100 Hz

with very long damping times, up to years long.
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Figure 1.4: Frequency and damping time for f -modes (fundamental) of oscillating neu-
tron stars, computed for various equations of state (EoS) by L&D (79) and A&K (75).
The bottom plot is an inset of the upper plot and helps the visualization of closely
packed data points in the range −1 < log10 τ < −0.5 s. Although the range of the
frequency values is comparable with the oscillations of black holes (c.f. Fig. 1.3) the
damping times are about 3 orders of magnitude bigger for neutron stars and have been
plotted in seconds here. Only data points corresponding to EoSs common to both pa-
pers have been included here. Each data point corresponds to features that characterise
the neutron star, like central density, radius and mass. For increasing central density
values the oscillation frequency increase too but the damping time is shorter.
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Figure 1.5: Frequency and damping times for p-modes (pressure) of neutron stars,
computed for various equations of state (EoS) by A&K (75). The long damping times,
in comparison to the f -modes (c.f. Fig. 1.4) and black holes (c.f. Fig. 1.3), make them
easier to detect but the higher frequencies presents the disadvantage of shifting the
detection region where the laser interferometric detector, limited by the shot-noise, is
not the most sensitive.
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1.7.2.2 Spacetime or w-modes

These modes do not have Newtonian counterparts for non-relativistic stars; they

were first recognised by Kokkotas and Schutz (80). They are called w-modes

for being related to the metric of the spacetime rather than to the fluid of the

star. The energy is radiated quickly and therefore oscillations are damped more

strongly than the fluid oscillations. There are three main families of spacetime

modes: curvature, trapped and interface.
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Figure 1.6: f -mode (fundamental), p-mode (pressure) and w-mode (spacetime) fre-
quencies and damping times predicted for l = 2 (quadrupole) quasinormal oscillations
of neutron stars for 12 different EoSs as published in (75). Note that all values corre-
sponding to a particular mode tend to cluster in a particular region of the f − τ map.
With laser-interferometric gravitational wave detectors with approximate bandwidths
in the range of 10 to 10000 Hz we can foresee that the detection of w-modes is severely
limited to the most compact neutron stars, which present the lower oscillation frequen-
cies. From the comparison of this plot with Fig. 1.3 we can see that the f and τ values
for neutron stars overlay with low-mass black hole’s.
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Figure 1.7: Relation between the mean density of the neutron star and the f -mode
frequencies as given in (75; 79). Note the quasi-proportional relation between the mean
density and the oscillation frequency. This can help constraining the mean density of
the neutron star from the detection of gravitational waves produced by the ringing
of the compact object. In the legend, between square brackets, the range of central
density (in 1015g cm−3) of each EoS is reproduced.
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Chapter 2

Detectability of gravitational

wave burst signals from galactic

neutron stars

For an individual ground-based detector, geographical location and azimuthal

orientation of the detector do not matter when looking for burst signals from

sources that are isotropically distributed in space. When any incoming direction

is equally probable, there is no preferential location or orientation for a detec-

tor. This is not the case, however, for burst signals emitted by galactic neutron

stars, due to their non-isotropic distribution with respect to the Earth and the

detector. In this chapter three spatial models of the galactic populations of neu-

tron stars are described and the detectability of possible burst signals emitted by

these sources is assessed for the main ground-based detectors. Detectability is

quantified by calculating a) the time and polarisation-averaged antenna pattern

values and b) the probability the antenna power value is bigger than a particular

threshold. Detectability of detectors working as single antennas or and for net-

works are studied. Throughout this work neutron stars have been considered as

standard candle sources of gravitational wave burst-signals, so the gravitational

wave amplitude at source is the same for all of them. This is why in this study,

only their relative orientation with respect to the detector and the distance to

Earth can affect their detectability.
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2.1 Introduction

At the time of writing more approximately 1900 galactic pulsars have been dis-

covered and studied (66). From their sky positions and spatial distribution the

total number of galactic neutron stars may be extrapolated. After allowing for

unknowns such as a) weak pulsars are seen out to shorter distances than the

extent of the galaxy and b) the interstellar medium severely limits the propaga-

tion of the radio signals in some directions, an approximate picture of the spatial

distribution of galactic neutron stars can be obtained. Despite the unknowns a

statistically significant result has emerged from pulsar distribution study and it

is believed there are between 105 and 106 active pulsars in the Galaxy (65; 81).

Most pulsars are concentrated close to the galactic plane, within a 1 kpc thick

layer and a distance of about 10 kpc from the centre. Measurement of their mo-

tions show that they have high velocities, presumably achieved at their violent

kicks at birth, causing them to move away from the galactic plane at rates of

about 200 km s−1. As many neutron stars as pulsar must exist in the galaxy and

the conservative number of 105 galactic neutron stars have been considered in the

following sections.

2.2 Neutron star population models

In this section three different galactic neutron star (NS) population models are

introduced. For each of the populations, the galactic locations of the sources

can be sampled from their corresponding statistical spatial distributions, and the

distance to the detector and their relative orientation at a particular time instant

inferred. All the populations are defined on a orthogonal xyz frame centred on

the Earth and where the galactic plane corresponds with the xy plane, and are

shown in Fig. 2.1.

The main population considered has the shape of a disc centred in the galactic

centre, which is compared with two spherical populations: one is also centred in

the galactic centre, the other is centred in the Sun-Earth system. The latter is

probably the least realistic of the three and have mainly been used as a reference

in the comparisons, for it enhances the effect on the detectability of populations
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that are not isotropically distributed around the Earth. The three populations

are approximate, simplified models, for in reality we do not have enough obser-

vational information as to know the real spatial distribution of NS likely to emit

gravitational radiation.

None of the NS populations considered in this work takes into account star

density fluctuations across the Galaxy, like the Gould belt 1 or the galactic spiral

arms with regions of a higher density of neutron stars.

2.2.1 Population 1: Disc-shaped NS population

This is probably the most realistic distribution considered and comprises 105

neutron stars spatially distributed in a disc-shaped galaxy. We will call this pop-

ulation Disc-shaped thereon. Based on previous galactic neutron star population

models (82; 83) it is defined by the combination of two independent exponential

probability distributions of the distance parameters r and z,

p(r)dr =
1

r0

e−r/r0dr and p(z)dz =
1

2z0

e−|z|/z0dz, (2.1)

where r is the distance from a source to the galactic centre in the galactic plane,

and z is the distance to the galactic plane. To specify a random direction con-

strained on the plane, a sample of the direction angle φ is drawn from the uniform

distribution

p(φ)dφ =
1

2π
, (2.2)

so that x = r cosφ and y = r sinφ. This results in a distribution of sources

symmetric to the galactic centre and to the galactic plane. The scale factors of

the exponential distributions are r0 = 3.2 kpc and z0 = 0.075 kpc 2. The figure,

1The Gould belt is described as a thin disc of radius 300 pc and of thickness 60 pc, tilted
at 18◦ with respect to the galactic plane and centred at 100 pc from the Sun in the galactic
anti-centre direction. The Gould belt is characterized by an overabundance of massive stars.

2 An alternative model, proposed in (84) and (85), is to use a Gaussian probability density
function in r,

p(r)dr =
1√
2πr20

e
− (r−rc)2

2r2
0 dr, p(z)dz =

1
2z0

e−|z|/z0dz (2.3)
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2.2 Neutron star population models

adopted here, of 105 neutron stars in total in the Galaxy is rather conservative;

it derives from the belief of there existing approximately 103 neutron stars exist

within a distance of 3 kpc from the Earth. A reference distance of 8.5 kpc from

the Sun-Earth to the galactic centre is assumed.

2.2.2 Population 2 & 3: Spherical NS populations

The two spherical distributions are defined statistically by the combination of

independent distance and direction parameters. The distance r is, again, expo-

nentially distributed

p(r)dr =
1

r0

e−r/r0dr (2.4)

and the 3D random direction is given by sampling the spherical angles (θ, φ)

p(θ)dθ = sin θ and p(φ)dφ =
1

2π
, (2.5)

where θ is the latitudinal and φ is the azimuthal angle, so that x = r cos θ cosφ,

y = r cos θ sinφ and z = r sin θ 1 The corresponding equatorial coordinates of dec-

lination and right ascension (δ,RA) can be thus readily obtained for each source

of the population: the x-axis of the cartesian reference frame is defined in the di-

rection from Earth toward the galactic centre, (θ, φ) are the same as the galactic

coordinates (b, l), and one just needs to carry out the coordinate transformation

(b, l) → (δ,RA) using spherical trigonometry (see, for example, (86)). Again, 105

sources have been considered for each population.

Although spatially identical, one of the two spherical distributions considered

is centred on the galactic centre (called Spherical-GC thereon) and the other is

centred on the Earth-Sun system (called Spherical-ES thereon). The latter is

not the most realistic distribution but it has been included here for the benefit

of the comparison of galactocentric distributions with a geocentric distribution.

Fig. 2.1 and Fig. 2.2 show isometric and galactic plane edge-on views of the three

NS populations. Note the Earth-Sun system is located at (0,0,0) and marked

with a magenta dot.

1Randomized sky coordinates (θ, φ) can be obtained by using uniform deviates between 0
and 2π for φ and uniform deviates between −1 and +1 for sin θ.

35



2.2 Neutron star population models

−10

0

10

20

−10

0

10

−15

−10

−5

0

5

10

15

x (kpc)

Disc−shaped

y (kpc)

z
 (

k
p

c
)

−10

0

10

20

−10

0

10

−15

−10

−5

0

5

10

15

x (kpc)

Spherical−GC

y (kpc)

z
 (

k
p

c
)

−10

0

10

20

−15

−10

−5

0

5

10

15
−15

−10

−5

0

5

10

15

x (kpc)

Spherical−ES

y (kpc)

z
 (

k
p

c
)

Figure 2.1: Isometric perspectives of the three modeled galactic NS populations. Up-
per left : Disc-shaped population. Upper right : Spherical distribution centred on the
galactic centre. Down: Spherical distribution centred on the Sun-Earth. The magenta
dot located at the centre (0,0,0) of the reference frame represents the location of the
Earth-Sun. For an edge-on view of these three plots see Fig. 2.2. Note: To avoid
cluttering this figure only 1 in 50 of the 105 neutron stars have been randomly chosen
and plotted.
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Figure 2.2: Edge-on views of the NS populations shown in Fig.2.1.
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Fig. 2.3 shows the normalised histograms of r and z values for the three

populations of 105 sources described. The plot on the right gives an idea of the

thickness of the population. The spherical distributions enforce the position of

sources to be further away from the galactic plane than the disc-shaped population

(see Fig. 2.2), which encloses all the sources within a 3 kpc thick layer. The plots

in this figure do not provide any information on where the populations are centred.
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Figure 2.3: Histograms of r and z values of the 105 sources from the three NS pop-
ulations considered and depicted in Fig. 2.1. Left : Each curve corresponds to an
exponential distribution of r distance values. Right : Histogram of the distance z from
the sources to the galactic plane.
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Fig. 2.4 shows the distribution of distances to the sources from the Earth.

For the two populations centred in the galactic centre the distribution peaks

approximately at 8.5 kpc, where the density of source is highest; the population

centred on the Earth peaks at r = 0, as expected. The distribution of the

spherical population centred in the galactic centre is slightly narrower than the

disc-shaped population due to the smaller scatter of the sources with respect to

the galactic plane.
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Figure 2.4: Histograms of the distances from Earth to the 105 neutron stars of the
populations considered. Left : Distance distributions for the two populations centred
in the galactic centre are similar and peak around their centres at 8.5 kpc (marked by
a dotted vertical line). Right : Cumulative sum of the histograms given on the left.
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Fig. 2.5 shows the distribution in declination and right ascension (δ,RA) of the

sources of the three NS populations. As expected, the two populations centred

in the galactic centre peak around the declination and right ascension of the

galactic centre [δGC = -29◦ 00’ 28” and RAGC = 17h 45m 40s (J2000 epoch)] ≡ [-

0.506, 4.649] rad. The spherical population centred on the Earth shows a uniform

distribution in RA and sin δ, as expected for sources at random directions.
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Figure 2.5: Distribution of the declination and right ascension (δ,RA) values for the
105 neutron stars of the populations considered. In a similar fashion to the distribution
of distances (c.f. Fig. 2.4) both distributions centred at the galactic centre peak ap-
proximately at the declination and right ascension of the galactic centre (δGC , RAGC),
marked with dotted vertical lines.

2.3 Antenna patterns of laser interferometric grav-

itational wave detectors

The detection of gravitational burst signals is mainly conditioned by two factors:

a) the orientation of the detector at the precise moment of the burst, and b) the

distance to the emitting source. Table 2.1 lists the location/orientation/shape

data of the detectors considered in this work, as published in (87; 88). The
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detector named PERTH is fictional and it has been included for convenience

to have at least one detector located in the southern geographical hemisphere;

it has been located in Perth (Australia) and oriented as ’×’ with respect to

the geographical compass directions. For a recent study of the possibilities of

extending the LIGO network to Australia (89).

DETECTOR Location Orientation Shape

No. Name Lat. (β) Long. (γ) (α) (2Ω)

1 GEO600 52.3◦ -9.8◦ 158.8◦ 94.3◦

2 LIGO-H 46.5◦ 119.4◦ 261.8◦ 90◦

3 LIGO-L 30.6◦ 90.8◦ 333.0◦ 90◦

4 VIRGO 43.6◦ -10.5◦ 206.5◦ 90◦

5 TAMA300 35.7◦ -139.5◦ 315.0◦ 90◦

6 PERTH∗ -31.9◦ 116.0◦ 0◦ 90◦

East longitudes γ are negative here.

α is measured ccw from the local meridian (N-S line) to the bisector of the arms.

2Ω is the angle subtended between the arms of the detector.
∗ A new detector is aimed to be built in the southern hemisphere, near Perth.

Table 2.1: List of the geographical location, orientation and shape of the main laser
gravitational wave detectors considered in this work. PERTH detector is fictitious
and it has been added for the benefit of including at least one detector located in the
southern hemisphere.

Typically, the directional sensitivity of a detector is represented by the an-

tenna pattern functions F+ and F× (−1 ≤ [F+, F×] ≤ 1), which indicate the

factors of the amplitude of the gravitational wave polarisation components that

will be seen by the detector. In general, for a source toward a direction given by

the spherical coordinates (θ, φ) in the local reference frame of the detector 1, the

antenna patterns can be calculated as:

1θ ∈ [0, π] is measured from the vertical of the plane of the detector and φ ∈ [0, 2π) from
the first to second arm of the detector.
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F+(θ, φ, ψ) =
1

2
sin 2Ω

[
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

]
(2.6a)

F×(θ, φ, ψ) =
1

2
sin Ω

[
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ

]
(2.6b)

where ψ is the polarisation angle, and 2Ω is the angle subtended by the arms of

the detector (2Ω = π/2 rad for L-shape detectors). Fig. 9.2–9.9 in (90) provide

a good pictorial representation of the angles (θ, φ, ψ). For a detailed explanation

of the antenna patterns and the derivation of their probability density functions

see Appendix A.

To quantify the sensitivity in a particular direction it is convenient to define

an averaged antenna pattern value F̄ , independent of the polarisation angle ψ:

F̄ = sin(2Ω)
√

1/2(F 2
+ + F 2

×) (2.7a)

=
1

2
sin(2Ω)

[
(1 + cos2 θ)2 cos2(2φ) + cos2 θ sin2(2φ)

]1/2
. (2.7b)

Note that F̄ weights equally both polarisation components (+ and ×) and thus

represents the averaged antenna pattern function for the case of circularly po-

larised signals. Fig. 2.6 shows a sky-map sensitivity by plotting F̄ values as

function of the spherical angles (θ, φ) measured in the local frame of the detector.

The detector has maximum sensitivity at directions normal to the plane of the

detector (θ = 0, π) and minimum sensitivity at directions edge-on to that plane

(θ = π/2), where the detector is blind at directions parallel and perpendicular to

the bisector of the arms (φ = nπ/4 for odd n).

Under the assumption of equal probability for any incoming direction of the

signal, F̄ values in Fig. 2.6 can be histogrammed to infer their distribution. Note

that the contour-plot of F̄ is the result of calculating F+ and F× on a grid in

which any cell corresponds to an equal spherical angle in the sky (cos θ ∼ U[−1, 1]

and φ ∼ U[0, 2π)). The histogrammed values are shown in Fig. 2.7.
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Given our belief that a gravitational burst from a neutron star can occur at

any time, neither the location nor the orientation of the detectors matter when

the spatial distribution of the sources is isotropic. In reality, however, the fact

that most neutron stars are concentrated around the galactic centre and, for the

case of the disc-shaped population, within a narrow strip parallel to the galactic

plane makes the location/orientation of some detectors more suitable than others

for detecting signals from these populations.

2.3.1 Strain and polarisation degree of the gravitational

wave signal

The strain produced on the detector by the gravitational wave depends on the

amplitude of the signal and the attenuation of the antenna pattern function at

the time of the burst-signal. The strain generated can be expressed as a complex

number in the form:

δl

l0
= − sin 2Ω [F+h+ + F×h× exp(iδ)] (2.8)

where δ reflects the phase difference between the + and × components and hence

the degree of polarisation (i.e. linear, elliptical or circular). In general, for an

elliptically polarised wave it is always possible to choose the orientation of the po-

larisation axes so that they coincide with the axes of the polarisation ellipse (91),

δ = ± π/2 and h× = λh+ (2.9)

where λ is the degree of elliptical polarisation and takes values in the range [0,1].

Similarly to polarised electromagnetic signals the ± sign allows for right- or left-

hand polarisation. Throughout this work, detectability for four degrees of polar-

isation of the gravitational burst-signals have been assessed:

• λ = 1 Circularly polarised (h+ and h× are equal).

• λ = 0 Linearly polarised (h+ > 0 and h× = 0, or h+ = 0 and h× > 0).

• λ ∼ U[0, 1] Random degree of polarization, sampled from uniformly dis-

tributed elliptical polarisation.
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• λ = f(ι) Random degree of polarization, function of ι, the angle sub-

tended between the angular momentum of the source (pointing anywhere

with the same probability) and the line of sight from the detector, see (90):

cos ι ∼ U[−1, 1], and λ = f(ι) =
2 cos ι

1 + cos2 ι
(2.10)

See Appendix B for more details and the probability distribution of λ, derived

from the distribution of ι.

2.3.2 Strain and antenna pattern functions

The antenna pattern of a detector, η, is the relative displacement of the test

masses compared to that achieved if the orientation and polarisation of the ra-

diation were ideal (i.e. wave propagating perpendicularly to the plane of the

detector and polarised parallel to its arms):

η =
1

h

δl

l0
, (2.11)

and, hence, ηmax = 1, when δl/l0 = h.

2.3.2.1 Strain calculation on the local frame of the detector

The general expression of the strain induced by the wave can be derived for the

local frame of the detector. An elegant derivation of this equation from first

principles is given in (91):

δl

l0
= − sin 2Ω [F+h+ + F×h× exp(iδ)] (2.12a)

= − sin 2Ω [A(φ, θ, ψ)h+ + A(φ, θ, ψ + π/4)h× exp(iδ)] (2.12b)

= − sin 2Ω [(a11a21 − a12a22)h+ + (a11a22 + a12a21)h× exp(iδ)] (2.12c)

where aij are the elements of the rotation matrix A of Eulerian angles (θ, φ, ψ)

between the wave-frame and the detector-frame. Here, again, the pair of spherical

angles (θ, φ) point toward the direction of the source, and ψ is the polarisation

45



2.3 Antenna patterns of laser interferometric gravitational wave
detectors

angle of the signal. Appendix D shows a detailed derivation of the rotation matrix

A. Using Eq. 2.9, Eq. 2.12 can be written in a compact form as:

η =
1

h

δl

l0
= − sin 2Ω

[
A± iλĀ

]
, (2.13)

where A and Ā are functions valued at polarisation angles ψ shifted by π/4 rad.

The antenna pattern η is by definition a complex number. |η|/
√

2 and F̄ in

Eq. 2.7 are equivalent for circularly polarised signals (λ = 1) and sin 2Ω = 1.

For linearly polarised signals (see Fig. 2.8) the contour lines for η = F+

correspond well with contour lines for η = F×, in the sense that F×(θ, φ, ψ) =

F+(θ, φ, ψ+π/4). The absolute value of the antenna pattern, |η|, is maximum for

directions θ = 0, π and φ = π/4, 3π/4, corresponding to a wave incident normal

to the plane of the detector and with the same polarization as the detector (note

that φ is here measured from the bisector of the two arms, see Appendix D). |η|
is null for any θ and φ = π/4, 3π/4, which is when the vibration direction of the

wave is in the bisector of the arms and its perpendicular direction.

For circularly polarised signals (see Fig. 2.9), again, the maximum values of |η|
are for directions normal to the plane of the detector at θ = 0, π and φ = 0, π/2.

Minimum sensitivity (blind spots) are at θ = π/2 and φ = 0, π/2. Elliptically

polarised signals (λ = 0.5) have higher values of |η| for θ = 0, π but are not

uniform across φ either.
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Figure 2.8: Contour map of the antenna pattern η = F+, and alternative η = F×, for
linearly polarised gravitational waves (λ = 0). F+ and F× for ψ = 0 and for ψ = π/4
are plotted side by side to show that they are equivalent. Note: The two subplots on the
left differ in sign from Fig. 4 and Fig. 5 on (91), to compensate for the believed-to-be
forgotten minus sign at deriving Eq. 2.15 from Eq. 2.14. (c.f. Eq. 2.12).
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Figure 2.9: Contour map of the absolute value of the antenna pattern |η| for non-linearly
polarised gravitational waves. The two upper subplots show results for circularly po-
larised signals (λ = 1), whereas the lower subplots show elliptically polarised signals
for an arbitrary value of λ = 0.5. As expected, the two upper subplots are the same,
for the polarisation angle does not matter when considering circularly polarised signals.
Note: The two upper subplots correspond well with Fig.6 on (91).
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2.3.2.2 Strain calculation on a generic detector frame

The calculation of the antenna patterns for a detector of generic location/orientation

to a source with sky-position given in equatorial coordinates (δ,RA) is not straight

forward with the Eqs. 2.12; Schutz and Tinto (91) devised a systematic way of

computing the antenna pattern η for generic cases:

δl

l0
= − sin 2Ω [F+h+ + F×h× exp(iδ)] (2.14a)

= − sin 2Ω [C([α, β, γ], [φ, θ, ψ])h+ + C([α, β, γ], [φ, θ, ψ + π/4])h× exp(iδ)]
(2.14b)

= − sin 2Ω [(c11c21 − c12c22)h+ + (c11c22 + c12c21)h× exp(iδ)] (2.14c)

where cij are elements of the matrix C that combines two successive Eulerian

rotations A and B of the reference frame where the signal is originally defined.

For a detailed derivation of the generic expression in Eq. 2.14 see (91).

The first rotation matrix A(θ, φ, ψ) transforms the signal amplitude to an

intermediate reference frame rotating fixed to the Earth (θ, φ and ψ are not the

same angles as in Section 2.3.2.1); and the second rotation matrix B(α, β, γ)

transforms the intermediate coordinates into the detector’s frame. The combined

matrix C = BA is a 3×3 matrix that allows for any generic transformation from

the wave frame to the detector frame. In the following we define the Eulerian

angles involved in rotations A and B:

• α Angle between the bisector of arms and local meridian (N-S line).

• β Latitude of detector’s location.

• γ Longitude of detector’s location.

• θ ‘Co-declination’ of the source direction: θ = π/2 + δ, so that θ ∈ [0, π].

• φ Hour-angle of the source from Greenwich, GHA = GLST - RA (GLST

is the local sidereal time at Greenwich and RA is the right ascension of the

source).

• ψ Polarisation angle (see Fig.9.9 on (90)).
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• 2Ω Angle subtended between arms.

For more information about the rotation matrices A and B and explana-

tory figures depicting the frame rotations see Appendix D. Similarly to Eq. 2.12,

Eq. 2.14 can be written in a compact form using Eq. 2.9 to obtain the generic

expression of the antenna pattern:

η =
1

h

δl

l0
= − sin 2Ω

[
C ± iλC̄

]
≡ ηDN (2.15)

where, again, C and C̄ are functions valued at polarisation angles ψ shifted by

π/4 rad. The addition of the subindex DN (for Distance No) is to differentiate

the standard antenna pattern from the antenna pattern in which the distance to

the source will be included ηDY (Distance Yes).

Due to the complex-valued nature of η it is convenient to define the antenna

power X = |η|2,

X = sin2 2Ω
[
C2 + λ2C̄2

]
, (2.16)

and the averaged antenna power (rms value) 〈X〉1/2. Considering the periodicity

properties of C and C̄ the rms of Eq. 2.16 can be expressed as:

〈X〉1/2 = (1 + λ2)1/2〈C2〉1/2. (2.17)

And this, computed over a large number of trials for multiple source positions,

burst-times and polarisation angles, provides a measure to the detectability of a

particular detector.

So far, only the location and orientation of the detector at the time of the burst

have been considered. However, and especially under the assumption of all sources

being standard candles of gravitational radiation, the additional consideration of

the distance from the source to the detector is important, because the strain seen

by the detector is inversely proportional to the distance to the source. See Fig. 2.4

for the distance distribution of the populations of NS described. To account for

the distance to the source, a distance factor referenced in the fiducial distance D0

has been added to the computation of the antenna pattern:

ηDY =
D0

D
ηDN = − sin 2Ω

D0

D

[
C ± iλC̄

]
. (2.18)
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We can readily see that for a source located at the galactic centre: D = D0 →
ηDN = ηDY . Since the antenna pattern is modulated by the distance factor

D0/D, there are instances, especially for the population centred on the Earth,

where ηDY > 1 1. This is the reason why the histograms of the antenna pattern

values presented in the following sections have been calculated and compared in

the range |η| ∈ [0, 1].

2.3.2.3 Directional sensitivity sky-maps

Directional sensitivity of an antenna in its local frame is shown as a contour-map

of F̄ values in Fig. 2.6 with the underlying assumption of considering circularly

polarised signals (see Eq. 2.7). A more generic polarisation-degree dependent

antenna pattern can be defined as:

|η|λ = sin 2Ω
√

(C2 + λ2C̄2)/2. (2.19)

Fig. 2.10 depicts the directional sensitivity map F̄ = |η|λ=1 for the detectors

VIRGO and PERTH. Each detector presents maximum sensitivity for a particu-

lar declination, which depends on the latitude of the detector, and a particular

sidereal time, which depends on the detector’s longitude.

Fig. 2.11 show the time-averaged absolute values of the antenna factor F̄ =

|η|λ=1 and reflects how well a detector can see sources at a particular declination.

1Being faithful to the theoretical definition of the antenna power, η, this is counter-intuitive
but can help understanding the effect of including the distance to each of the sources in the
population.
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Figure 2.10: Sensitivity sky-maps for detectors VIRGO and PERTH depicted by the
contour levels of F̄ = |η|λ=1 computed with Eq. 2.19 (c.f. (88)). Note that the direc-
tional sensitivity is the same for two sources at symmetric locations with respect to the
celestial equator, at 12 sidereal hours apart. The time-averaged values or the generic
sensitivity to a particular declination can be obtained by averaging horizontally the
values of these contour-maps, see Fig. 2.11.
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Figure 2.11: Time-averaged antenna pattern values 〈|η|λ=1〉 for the detectors listed in
Table 2.1. The vertical dotted line marks the declination for the Galactic Centre, which
approximately coincides with one of the maxima of the curve for the PERTH detector
(c.f. Fig. 2 in (88)).
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2.4 Detectability study for the NS populations

- location and orientation

The study of the detectability of burst gravitational wave signals from galactic

NS sources has been divided in two sections. This first section is a study of the

best geographical location and orientation for a L-shaped Michelson type laser

interferometric gravitational wave. The detectability of burst signals of various

polarization degrees, incoming from a particular sky direction have been studied

first, and from neutron stars of the populations described in Section 2.2 later.

Effect of the location (geographical latitude) and orientation (azimuthal angle

with respect to the compass directions) have been studied by computing time-

and polarization angle averaged antenna power values.

2.4.1 Detector’s location and orientation for signals from

a particular sky direction

Two particular sky directions are studied in this section: toward the Virgo cluster

and toward the Galactic centre. The time-averaged antenna pattern values can

be obtained by considering sources at random hour-angle values sampling from

(φ−γ) ∼ U[0, 2π). The random polarization angles are obtained by sampling from

ψ ∼ U[0, 2π). Fig. 2.12 and Fig. 2.13 show the rms antenna power values 〈X〉1/2

as a function of the location (geographical latitude β) and orientation (azimuthal

rotation α, measured ccw from the local meridian) of a ground-based L-shape

detector observing at the direction of the Virgo cluster (θ = π/2 + δ ≈ 102◦)

and at the Galactic centre (θ ≈ 61◦). The plots are the averaged results of 104

samples for each (β, α) cell considered on a 180◦ × 180◦ grid map.

Fig. 2.12 corresponds to the Virgo direction and matches Fig. 8 in (91). Each

subplot represents results for signals of a different polarisation degree λ. The

contour-levels are symmetric to the equator (β = 0): two detectors with the same

orientation α at opposite latitudes β and -β, present symmetrical positions with

respect to a fixed sky-direction at two instants 12 sidereal hours apart. Regardless

of the polarisation degree of the signal, a latitude change has a bigger effect than

the orientation change, and for the higher latitudes (|β| > 45◦) the orientation
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Figure 2.12: Side by side comparison of the rms antenna power 〈X〉1/2 for signals of
different degrees of polarisation λ coming from the Virgo cluster.

55



2.4 Detectability study for the NS populations - location and
orientation

does not matter. The maximum detectability, given by the highest rms antenna

power, is for a detector located in the equator and oriented at α = π/4, 3π/4 –

this is when the arms of the detector are aligned with the N-S and E-W compass

directions (geographical ‘+’). As expected from Eq. 2.17 the smallest values of

〈X〉1/2 are for linearly polarised signals (λ = 0), and the biggest for circularly

polarised signals (λ = 1).
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Figure 2.13: Same as Fig. 2.12 but for signals incoming from the Galactic centre.

The maximum sensitivity toward the galactic centre, depicted in Fig. 2.13, is
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again for detectors located in the equator. There is, however, a notable and inter-

esting difference with respect to the results for the signals coming from the Virgo

cluster (c.f. Fig. 2.12): the ideal azimuthal orientations are for α = 0, π/2 (geo-

graphical ‘×’), and the orientation of the detector does not affect the detectability

for locations at higher values of latitude (|β| > 60◦). Also, the maximum differ-

ences between the antenna power values in the equator and the poles are smaller

(less contrast in the contour map): a reduction of 18% for the galactic centre

versus a reduction of 46% for the Virgo cluster. This shows that the latitude and

orientation changes are not so drastic for the detection of sources towards the

galactic centre as for toward the Virgo cluster.

2.4.2 Detector location and orientation to NS populations

The computation of time- and polarisation-averaged antenna power values 〈X〉1/2

for sources scattered non-isotropically around the detector, as is the case for the

Disc-shaped and Spherical-GC NS populations defined in section 2.2, is more

complicated and computationally more intense than just looking at a particular

direction, as it was done in Section 2.4.1.

For these populations, to average results in time, random hour-angle values

for the sources cannot be sampled from a uniform distribution – this is because at

each particular instant sources are clustered preferentially in certain sky region:

the hour-angle of each source was computed at short intervals of time for a whole

rotation of the Earth (24 sidereal hours).

Each calculation of the antenna pattern η was carried out for a particular

source, time instant, polarisation angle and polarisation degree. As before, a

random polarisation angle was drawn for each source by sampling from ψ ∼
U[0, 2π). For each particular instant and for a source i of a particular population,

θi = π/2 + δi, and the hour-angle from Greenwich is GHAi = GLST - RAi = φi.

For accurate time-averaged results, the consideration of the smallest time

interval possible is desired; also, a statistically significant number of sources and a

finely meshed (α, β) grid map. However, and given constraints in the computation

power, the results shown in the following correspond to a scaled-down simulation
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for time intervals of 60 minutes, populations of 104 sources and a grid map of

(α× β) = 3◦ × 3◦.

Fig. 2.14 and Fig. 2.15 depict the contour-plots of the time and polarisation

rms averaged antenna power values 〈X〉1/2 for the two galactocentric populations

considered. In both cases the pattern is similar to when the incoming direction

of the signal is fixed to the galactic centre (c.f. Fig. 2.13). The tendency of

orientation losing importance for higher latitude values remains. The contour

levels are not completely symmetric with respect to the equator – slightly shifted

toward northern geographical latitudes. Here, again, the maximum values of

〈X〉1/2 are for detectors located close to the equator and azimuthal orientation

of α = 0, π/2, the ‘×’ geograhical locations. The reduction between the equator

and the poles is of about 10% for the two galactocentric populations, showing

less contrast than the contour map for the case of fixed direction to the galactic

centre. This is expected, because a cluster of sources will ‘smear out’ the results

producing a contour map with less contrast than for a unique direction.

2.5 Detectability study for signals from NS pop-

ulations - known detectors

The detectability of each detector listed in Table 2.1 to signals from galactic neu-

tron stars has been measured in two different ways by: a) studying histogrammed

values of antenna pattern values |η| (|η|DN and |η|DY have also been compared),

and by b) approximating detection probability by computing the fraction of tri-

als where the rms value of the antenna power X1/2 is bigger than a particular

threshold X
1/2
∗ .

2.5.1 Histograms of antenna patterns

The appropriateness of a detector to see signals from a particular population can

be assessed by histogramming all the antenna pattern values |η| corresponding to

all the sources of that population. For a quantitative comparison of histograms

the mean of the values histogrammed x̄ have been used (i.e. the first moment

of the probability distribution), for the visual comparison of many overlaying

58



2.5 Detectability study for signals from NS populations - known
detectors

0.5
8

0.5
8

0.58
0.58

0.59 0.59

0.59 0.59

0.6 0.
6

0.
6 0.6

0.61 0.61

0.61 0.61

0.62

0.
62

0.
62

0
.6

2 0
.6

2

0
.6

2

0
.6

3

0
.6

3

0
.6

3

0
.6

3

0
.6

4 0
.6

4

0.64

0
.6

4

0
.6

5

0
.6

5
0.65

0.66

Disc−Shaped (λ = 1)

α (rad)

β
 (

ra
d

)

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

0
.4

1

0.
41

0.4
1

0.41

0.41 0.41
0.41

0.42 0.42

0.42

0.42
0.42

0.43

0.43

0.4
3

0.43
0.43

0.44

0.
44

0
.4

4

0.44

0.44

0
.4

4

0
.4

4

0
.4

5 0
.4

50
.4

5

0
.4

50
.4

5

0
.4

6 0
.4

6

0
.4

6

0
.4

6

Disc−Shaped (λ = 0)

α (rad)

β
 (

ra
d

)

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

0.47
0.47

0.470.47

0.47

0.48
0.48

0.48
0.48

0.48 0.48

0.
49

0.4
9

0.49 0.49

0.5 0.5

0.5 0.
5

0
.5

1 0
.5

1

0
.5

1

0
.5

1

0
.5

1

0
.5

2 0
.5

2

0
.5

2

0
.5

20
.5

3

0
.5

3

0.53

0
.5

3

Disc−Shaped (λ ~ U[0,1])

α (rad)

β
 (

ra
d

)

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

0.
51

0.51

0.51

0.51

0.52
0.5

2

0.
52 0.52

0.52 0.52

0.53

0.53

0.
53 0.53

0.
54 0.

54

0.54

0.54

0
.5

5

0.5
5

0.
550.5

5

0
.5

5

0
.5

5

0
.5

6 0
.5

6

0.5
6

0.
56

0
.5

7 0
.5

7

0.57

0
.5

7

0
.5

8 0
.5

8

0
.5

8
Disc−Shaped (λ = f(ι))

α (rad)

β
 (

ra
d

)

0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 2.14: The rms antenna power 〈X〉1/2 contour plots showing the effect of the
location (latitude β) and orientation (α) of an L-shaped detector observing the Disc-
shaped population of neutron stars. Each subplot represents values for signals of a
degree of polarisation λ.
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Figure 2.15: Same as Fig. 2.14 but for the galactocentric spherical population of neutron
stars.
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histograms is not practical. The computation of the mean is readily done by

multiplying the number of occurrences in each bin with the value of the bin itself.

Thus, two histograms with the same number of elements have the same area

under the curve but generally not the shape and mean values. In general, for

a group of N histogrammed values {x} the mean value x̄ can be computed as

follows:

x̄ =
1

N

m∑
i=1

nixi =
1

N

N∑
k=1

xk, (2.20)

where m is the number of bins, and ni and xi are the number of occurrences in

and the value for the ith bin, respectively. All the x̄ values, corresponding to all

the possible histograms, fall within the range [x1, xm]: x̄ is lowest when all the

values lay in the first bin (x̄ = x1) and highest when all the values lay in the last

bin (x̄ = xm). For more details on the calculation of x̄ and the range of values

taken, see Appendix C.

The histograms of the antenna pattern values |η| have been composed by

computing and binning all their values (105 for each population) in the range

[0,1]: we focus on this range even though a) the maximum value of |η|DN is

never bigger than
√

2/2 (see Fig. 2.7) and b) |η|DY may be bigger than 1 a few

instances).

Fig. 2.16 depicts the sources of each population considered, overlaid on a

sensitivity sky-map (see Eq. 2.7 and Fig. 2.10), for VIRGO (located in the north-

ern geographical hemisphere) and PERTH (located in the southern geographical

hemisphere) at two instants 12 sidereal hours apart: t1 = GLST = 19h30m and t2

= GLST = 07h30m. Note the abscissas have been labelled differently for the two

representations, for they both take values in the range [0, 2π) rad ≡ [0, 24) hour

but GLST is valid to the directional sensitivity map in the background and GHA

(Greenwich Hour Angle) is valid for the scattered sources. From the comparison

of the two plots it is readily seen that, for example, PERTH is better located to

detect signals coming from the galactic centre at instant t1 than at instant t2,

and also that PERTH is better located than VIRGO at instant t1.
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Figure 2.16: Disc-shaped (blue dots) and spherical-GC (magenta dots) populations of
neutron stars overlaid on the directional sensitivity sky-map of VIRGO (upper plot)
and PERTH (lower plot) detectors at two time instants 12 sidereal hours apart: GLST
= 19h30m and 07h30m. The green dots, scattered isotropically all over the directional
sensitivity sky-map in the background correspond to the Spherical-SE population cen-
tred on Earth. The dotted lines mark the location/time of the galactic centre (δ =
-0.51, RA = 17h45m40s ≡ 4.649 rad) at the particular instants studied.
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Fig. 2.17 and Fig. 2.18 depict histograms of log10(|η|) values for the 105 sources

of each population emitting with random polarisation angles at the two instants

considered in Fig. 2.16 (only histograms for λ = 0 and λ = f(ι) are shown). This

exercise has been done for each population and polarisation degree considered,

taking the distance factor into account (|η|DY with Eq. 2.18) and not taking it

(|η|DN with Eq. 2.15).

The same information is shown more in detail in Fig. 2.19 and Fig. 2.20,

by means of normalised histograms of |η| values restricted to the range [0,1],

where most of the values fall. From the comparison of these histograms, it is

noticeable, again, that PERTH is more suitably located than VIRGO for both

instants. Note that the histograms corresponding to the population centred on

the Earth (Spherical-SE ) ‘do not evolve in time’, as expected from a population

distributed isotropically around the detector – any instant is equally suited to

detect the signals from the population.

Table 2.2 lists the x̄ values (mean values) of the histograms calculated corre-

sponding to the two instants studied and shown in Fig. 2.19 and Fig. 2.20. By

comparing the tabulated values it is observed that: a) for the spherical-SE pop-

ulation the mean values hardly differ between the two instants (a sign that the

histogram does not evolve); b) PERTH has higher mean values than VIRGO for

any polarisation degree at both instants (as highlighted by Fig. 2.16); c) there

is a marked reduction of the mean value from t1 to t2 for the spherical-GC pop-

ulation; d) the mean value x̄ is smaller when the distance factor is considered,

especially for the spherical population centred in the Earth.
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Figure 2.17: Histograms of the logarithms of the antenna pattern values |η|DN and
|η|DY at two instants 12 sidereal hours apart. Results are plotted for linearly polarised
signals (λ = 0) from the three populations considered as detected by VIRGO and
PERTH.
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Figure 2.18: Same as Fig. 2.17 but for elliptically polarised signals (λ = f(ι)).
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Figure 2.19: Normalised histograms of the antenna pattern values |η|DN and |η|DY at
two instants 12 sidereal hours apart. Results are plotted for linearly polarised signals
(λ = 0) from the three populations considered as detected by VIRGO and PERTH.
Visual inspection quickly shows the difference in the distribution of antenna pattern
values between the instants t1 and t2 for the galactocentric populations.
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Figure 2.20: Same as Fig. 2.19 but for elliptically polarised signals (λ = f(ι)).
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x̄ values of |η| histograms for instants 12 sidereal hours apart

POPULATION Disc-shaped Spherical-GC Spherical-SE

DETECTOR Polarisation t1 t2 t1 t2 t1 t2

VIRGO

DN λ = 1 0.5004 0.2365 0.5007 0.2617 0.4164 0.4174

DY 0.4647 0.2382 0.4744 0.2496 0.2008 0.2022

DN λ = 0 0.3174 0.1497 0.3184 0.1658 0.2638 0.2648

DY 0.3058 0.1532 0.3060 0.1601 0.2242 0.2241

DN λ ∼ U[0, 1] 0.3920 0.1853 0.3929 0.2053 0.3268 0.3273

DY 0.3744 0.1888 0.3761 0.1975 0.2235 0.2251

DN λ = f(ι) 0.4325 0.2041 0.4329 0.2258 0.3602 0.3613

DY 0.4085 0.2070 0.4131 0.2167 0.2159 0.2163

PERTH

DN λ = 1 0.6648 0.3587 0.6555 0.3580 0.4171 0.4178

DY 0.5934 0.3407 0.6109 0.3406 0.1994 0.1997

DN λ = 0 0.4215 0.2281 0.4173 0.2276 0.2643 0.2658

DY 0.3968 0.2236 0.3975 0.2190 0.2229 0.2231

DN λ ∼ U[0, 1] 0.5216 0.2816 0.5147 0.2805 0.3270 0.3275

DY 0.4857 0.2737 0.4879 0.2695 0.2238 0.2244

DN λ = f(ι) 0.5758 0.3095 0.5675 0.3094 0.3610 0.3614

DY 0.5284 0.2983 0.5347 0.2962 0.2142 0.2150

Table 2.2: x̄ values corresponding to the two instants 12 sidereal hours apart at VIRGO
and PERTH as shown in Fig. 2.20.

Rather than analysing only two instants, the study of the time- and polarisation-

averaged histograms (over a whole rotation of the Earth) is more significant.

Fig. 2.21 and Fig. 2.22 show time- and polarisation-averaged antenna pattern

values 〈|η|〉 for each detector and population. Again, only two polarisation de-

grees are shown, but Table 2.3 shows the x̄ values of all the histograms calculated.

The last curve shown in each of the subplots corresponds to any detector looking

at the spherical-SE population. The histograms are the result of averaging the

antenna power values calculated for 105 sources, with random polarisation angles,

every 1 minute.
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Figure 2.21: Comparison of time- and polarisation(angle)-averaged histograms for |η|
for linearly polarised (λ = 0) signals. Visual observation quickly shows the advantage
of the PERTH detector (particularly in the range 0.2 < |η| < 0.4) in comparison to the
rest of the detectors.
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Figure 2.22: Same as Fig. 2.21 but for elliptically polarised signals (λ = f(ι)).
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x̄ values for time-averaged |η| histograms

Disc-shaped Sph-GC Sph-SE

DET Pol. DN DY DN DY DN DY

GEO600 λ = 1 0.3994 0.3773 0.3961 0.3758 0.4157 0.2014

LIGO-H 0.4102 0.3870 0.4085 0.3874 0.4169 0.2010

LIGO-L 0.4146 0.3912 0.4157 0.3936 0.4170 0.2010

VIRGO 0.4047 0.3816 0.4032 0.3820 0.4169 0.2011

TAMA300 0.4023 0.3794 0.4023 0.3806 0.4169 0.2011

PERTH 0.4299 0.4057 0.4310 0.4086 0.4170 0.2009

GEO600 λ = 0 0.2534 0.2476 0.2513 0.2417 0.2637 0.2244

LIGO-H 0.2603 0.2540 0.2592 0.2492 0.2645 0.2242

LIGO-L 0.2630 0.2567 0.2638 0.2534 0.2646 0.2242

VIRGO 0.2567 0.2506 0.2558 0.2458 0.2645 0.2242

TAMA300 0.2552 0.2492 0.2552 0.2451 0.2645 0.2241

PERTH 0.2727 0.2660 0.2734 0.2629 0.2646 0.2241

GEO600 λ ∼ U[0, 1] 0.3132 0.3033 0.3106 0.2978 0.3259 0.2252

LIGO-H 0.3217 0.3112 0.3203 0.3071 0.3269 0.2249

LIGO-L 0.3251 0.3146 0.3260 0.3122 0.3269 0.2249

VIRGO 0.3173 0.3070 0.3161 0.3029 0.3269 0.2249

TAMA300 0.3155 0.3053 0.3154 0.3019 0.3269 0.2248

PERTH 0.3371 0.3261 0.3379 0.3239 0.3270 0.2247

GEO600 λ = f(ι) 0.3455 0.3315 0.3426 0.3273 0.3595 0.2169

LIGO-H 0.3548 0.3401 0.3533 0.3374 0.3606 0.2165

LIGO-L 0.3586 0.3438 0.3596 0.3430 0.3607 0.2165

VIRGO 0.3500 0.3355 0.3487 0.3328 0.3606 0.2166

TAMA300 0.3480 0.3336 0.3479 0.3317 0.3606 0.2165

PERTH 0.3718 0.3564 0.3728 0.3559 0.3607 0.2164

Table 2.3: x̄ values for time- and polarisation-averaged histograms of 〈|η|λ〉 values.
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By careful analysis of the histograms and the corresponding mu values detec-

tors have been sorted out by their importance for detectability of signals from

galactic neutron stars. In the following, the most important points are sum-

marised:

• x̄ values for the spherical-SE population are similar for all detectors. This

reinforces the point made previously on that for this population the time-

averaged histograms are the same for any detector and they do not ‘evolve

in time’.

• For both the galactocentric populations and regardless the polarisation de-

gree λ, the most suitably located/oriented detector is PERTH and the

worst is GEO600. Order from best to worse is PERTH, LIGO-L, LIGO-H,

VIRGO, TAMA, GEO600.

• The fact that GEO600 is not a perfect L-shaped antenna (see Table 2.1)

biases slightly the comparison between detectors. This bias is most notice-

able on x̄ values for the spherical-SE population: as expected, from the

corresponding non-evolving histograms in time all the detectors show the

same x̄ value within a small tolerance, save GEO600, which has a slightly

higher value due to its slight V-shape.

• For any population and polarisation degree there is a slight difference of x̄

values when the distance factor is taken into consideration and when it is

not. With the distance factor included the x̄ value is slightly smaller, and

for the case of the spherical population centred on the Earth it reduces to

half. The main reason for this is that only antenna pattern values in the

range [0,1] are histogramed and thus the contribution of a small percentage

of the population is neglected.

• When the distance factor is not included, the x̄ values of the histograms

for elliptically polarised signals are intermediate between those obtained for

circularly and linearly polarised signals.
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Histograms and their corresponding x̄ values evolve throughout the sidereal

day differently depending the detector’s location and orientation, the population

considered, and the polarization degree of the signals taken into account. Fig. 2.23

portray the evolution of the x̄ value for VIRGO and PERTH, during one rotation

of the Earth. The times for which the x̄ value is highest show the spells for which

the detector is best oriented to a particular population; these have been marked

by vertical lines.

Fig. 2.24 shows the evolution of the x̄ values for all the detectors and popula-

tions considered; for the sake of briefness, only one polarisation degree (λ = f(ι))

is shown. It is observable that each detector presents a spell in which it is more

suitably oriented to the two galactocentric populations. The times and peaks val-

ues of the x̄-value curves are listed in Table 2.4 and Table 2.5. In the following,

the most important points concluded from the figures and the tables are listed:

• As expected, evolution of the x̄ values corresponding to the spherical pop-

ulation centred on the Sun-Earth are flat and show the uniform exposure

of a detector to the sources during the rotation of the Earth.

• The curves for the two elliptically polarised signals (λ ∼ U[0, 1] and λ =

f(ι)) are flanked by the circular (highest) and linear polarisation (lowest)

curves.

• Overall, given any population and polarisation degree, the x̄ values are

smaller when the distance factor is included; this is especially noticeable in

the much lower DC level for the spherical population centred on Earth.

• The time differences between the peaks of the x̄ value-curves match the

longitude differences between detectors well, with an uncertainty of always

less than 20 and typically less than 5 min. This indicates that the maximum

sensitivity of a detector to the galactocentric populations is around the time

when the galactic centre crosses the meridian in the location of the detector.
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Figure 2.23: Evolution of the x̄ values during one rotation of the Earth (24 sidereal
hours) for VIRGO and PERTH.
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Figure 2.24: Evolution of x̄-values along a sidereal day for the three populations and
all the detectors; in this figure elliptically polarised signals (λ = f(ι)) are considered.
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Peak values and times for evolution curves of x̄ values - I

POPULATION Disc-shaped Spherical-IG Spherical-SE

DETECTOR Polarisation Peak Flat

GLST (x̄ value) (x̄ value)

GEO600

DN λ = 1 23:00:00 (0.6070) 23:09:00 (0.6062) (0.4165)

DY 23:09:00 (0.5533) 23:10:00 (0.5691) (0.2030)

DN λ = 0 22:49:00 (0.3867) 23:05:00 (0.3862) (0.2658)

DY 23:06:00 (0.3683) 23:05:00 (0.3693) (0.2268)

DN λ ∼ U[0, 1] 22:58:00 (0.4769) 23:05:00 (0.4762) (0.3273)

DY 23:14:00 (0.4495) 23:10:00 (0.4538) (0.2276)

DN λ = f(ι) 23:09:00 (0.5260) 23:08:00 (0.5248) (0.3611)

DY 23:09:00 (0.4896) 23:10:00 (0.4976) (0.2192)

LIGO-H

DN λ = 1 07:27:00 (0.6350) 07:41:00 (0.6284) (0.4178)

DY 07:37:00 (0.5728) 07:42:00 (0.5879) (0.2028)

DN λ = 0 07:40:00 (0.4044) 07:37:00 (0.3996) (0.2662)

DY 07:31:00 (0.3834) 07:37:00 (0.3817) (0.2267)

DN λ ∼ U[0, 1] 07:16:00 (0.4994) 07:45:00 (0.4937) (0.3286)

DY 07:34:00 (0.4683) 07:58:00 (0.4695) (0.2275)

DN λ = f(ι) 07:30:00 (0.5503) 07:40:00 (0.5441) (0.3620)

DY 07:31:00 (0.5085) 07:40:00 (0.5150) (0.2187)

LIGO-L

DN λ = 1 05:43:00 (0.6585) 05:45:00 (0.6561) (0.4177)

DY 05:44:00 (0.5895) 05:48:00 (0.6112) (0.2031)

DN λ = 0 05:26:00 (0.4198) 05:41:00 (0.4178) (0.2664)

DY 05:26:00 (0.3965) 05:43:00 (0.3980) (0.2268)

DN λ ∼ U[0, 1]] 05:37:00 (0.5176) 05:46:00 (0.5153) (0.3284)

DY 05:37:00 (0.4826) 05:57:00 (0.4887) (0.2270)

DN λ = f(ι) 05:51:00 (0.5708) 05:43:00 (0.5682) (0.3620)

DY 05:51:00 (0.5245) 05:43:00 (0.5357) (0.2187)

Table 2.4: Part I: Peak values and times of the x̄ value evolution curves for detectors
GEO600, LIGO-L and LIGO-H. Note that the values corresponding to the spherical
neutron star population centred in the Sun-Earth are flat; for these the DC level is
listed.
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Peak values and times for evolution curves of x̄ values - II

POPULATION Disc-shaped Spherical-IG Spherical-SE

DETECTOR Polarisation Peak Flat

GLST (x̄ value) (x̄ value)

VIRGO

DN λ = 1 23:01:00 (0.6475) 22:59:00 (0.6369) (0.4177)

DY 23:04:00 (0.5818) 23:03:00 (0.5951) (0.2026)

DN λ = 0 23:01:00 (0.4124) 23:00:00 (0.4059) (0.2665)

DY 23:01:00 (0.3908) 23:00:00 (0.3872) (0.2266)

DN λ ∼ U[0, 1] 23:00:00 (0.5087) 22:54:00 (0.5005) (0.3282)

DY 22:58:00 (0.4756) 22:54:00 (0.4756) (0.2274)

DN λ = f(ι) 22:59:00 (0.5604) 22:57:00 (0.5517) (0.3620)

DY 23:01:00 (0.5170) 23:04:00 (0.5212) (0.2187)

TAMA300

DN λ = 1 14:29:00 (0.6569) 14:24:00 (0.6521) (0.4176)

DY 14:30:00 (0.5887) 14:25:00 (0.6080) (0.2024)

DN λ = 0 14:30:00 (0.4180) 14:21:00 (0.4157) (0.2662)

DY 14:44:00 (0.3953) 14:21:00 (0.3963) (0.2267)

DN λ ∼ U[0, 1] 14:36:00 (0.5159) 14:29:00 (0.5123) (0.3282)

DY 14:38:00 (0.4818) 14:29:00 (0.4862) (0.2272)

DN λ = f(ι) 14:35:00 (0.5689) 14:32:00 (0.5646) (0.3619)

DY 14:26:00 (0.5235) 14:32:00 (0.5328) (0.2188)

PERTH

DN λ = 1 19:22:00 (0.6650) 19:26:00 (0.6555) (0.4179)

DY 19:29:00 (0.5935) 19:28:00 (0.6109) (0.2021)

DN λ = 0 19:24:00 (0.4232) 19:32:00 (0.4175) (0.2663)

DY 19:13:00 (0.3992) 19:27:00 (0.3977) (0.2264)

DN λ ∼ U[0, 1] 19:23:00 (0.5225) 19:27:00 (0.5151) (0.3284)

DY 19:24:00 (0.4867) 19:27:00 (0.4890) (0.2271)

DN λ = f(ι) 19:30:00 (0.5758) 19:26:00 (0.5679) (0.3622)

DY 19:31:00 (0.5288) 19:26:00 (0.5356) (0.2186)

Table 2.5: Part II: Peak values and times of the x̄ value evolution curves for detectors
VIRGO, TAMA300 and PERTH.
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2.6 Detection probability for signals from NS

populations

In section 2.4 and section 2.5 time- and polarisation-averaged antenna pattern

and power values were used to assess the goodness of the location and orientation

of a particular detector. In this section, we proceed to quantify the detectability

as a probability by calculating the statistics of successful random trials.

An interesting and flexible way of assessing the detectability as a probability

is to compute the fraction of trials (sources) that result on antenna power values

X1/2 over an arbitrary threshold X
1/2
∗ (92). For the lowest threshold possible

(X
1/2
∗ = 0), all the trials fall over and the detection probability is thus one,

whereas there is not one trial over the highest possible threshold (X
1/2
∗ = 1) and

the detection probability is zero. For infinite number of trials, the fraction would

correspond to the exact detection probability, but for a finite number of trials,

the procedure provides an approximate result of the detection probability with a

computable maximum uncertainty.

2.6.1 Detection Probability for a single antenna

Fig. 2.25 to Fig. 2.27 show the detection probability curves of VIRGO and PERTH

for the two instants depicted in Fig. 2.16. Each figure shows the detection proba-

bility curves of the two detectors for a different neutron star population, emitting

with random polarisation angle and the polarisation degrees considered so far,

when the distance factor is considered and when it is not. From the comparison

of their detection probability curves it is obvious that both detectors are better

located/oriented at instant t1 than at instant t2. The curves were obtained by

calculating the antenna power values X1/2 (Eq. 2.16) for each of the 105 sources

and computing the fraction of them resulting over 100 threshold values uniformly

distributed in the range [0,1]. Again, note in Fig. 2.27 that the detection proba-

bility curve corresponding to the spherical geocentric population is the same for

the two time instants (does not evolve in time). The detection probability curves

for the elliptically polarised signals are flanked by the curves corresponding to

circular and linearly polarised signals.
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Figure 2.25: Detection probability curves for the disc-shaped NS population at the two
instants depicted in Fig. 2.16 for VIRGO and PERTH detectors.
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Figure 2.26: Same as Fig. 2.25 but for the galactocentric spherical NS population.
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Figure 2.27: Same as Fig. 2.25 for the geocentric spherical NS population. As expected,
both instants analysed result in the same detection probability curve, highlighting the
fact that there is not preferential time or orientation for this NS population.

To average over one rotation of the Earth, detection probability curves have

been computed at intervals of 5 minutes and results averaged. For the two galac-

tocentric populations shown in Fig. 2.28 and Fig. 2.29, the detection probability

curves indicate that some detectors are better located and oriented than others:

PERTH outperforms the rest and that TAMA300 is the worst. This supports the

opinion that a detector located in the southern geographical hemisphere presents

a better detectability to galactocentric populations. As expected, and generalising

results on Fig. 2.27, Fig. 2.30 shows that the time-averaged detection probability

curve is equal for any detector looking at the spherical population centred on

Earth.

All the detection probability curves shown in the three abovementioned figures

have been characterised by a linear square fit of Chebyshev polynomials in the

range 0 ≤ X
1/2
∗ ≤ 0.5. The coefficients of the fit are shown in Appendix E to

facilitate comparisons.
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Figure 2.28: Time-averaged detection probability curves of all the detectors, for disc-
shaped NS population.
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Figure 2.29: Time-averaged detection probability curves of all the detectors, for the
galactocentric spherical NS population.
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Figure 2.30: Time-averaged detection probability curves of all the detectors, for the
geocentric spherical NS population.
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2.6.2 Detection Probability for a network of antennae

Gravitational wave detectors are often part of a network of detectors, for the

joint analysis of data jointly increases detectability greatly. Correlation analysis

between data sets acquired by detectors at different location/orientation can en-

hance greatly the outcomes of the data analysis process. For example, the source

sky-direction may be located by triangulation, due to the arrival-time differences

and the modulation of the signal due to the unique antenna patterns of each de-

tector. It may be that the burst-signal is well seen (i.e. with a high enough SNR)

by one detector but is poorly detected by another, due to a less ideal orientation

of the second detector at that particular instant. The detection probability of

the network is approximated, again, by computing the fraction of trials for which

their antenna power values X1/2 are bigger than a set up threshold X
1/2
∗ .

2.6.2.1 Detection probability: network of two antennae

Detection probability curves have been computed for all the combinations of pairs

of detectors, populations, and polarization degrees considered. Fig. 2.31 and

Fig. 2.32 show one example, for the VIRGO-PERTH detector pair, with signals

of different polarisation degree and distance factor. The contour lines in these

figures represent the probabilities (i.e. ratios) of the rms antenna power values

independently be bigger than a chosen threshold. The calculation of ratios is

computationally very demanding and it has been carried out only for networks of

two detectors. For networks of more than two detectors, shown in the following

sections, only the ratios for thresholds of rms antenna power values resulting

simultaneously over a chosen threshold have been computed.

The results do not differ much between the two galactocentric populations.

Non-concentric contour levels show a favourable condition of detection for PERTH

over VIRGO, especially for low threshold values (X
1/2
∗ < 0.5): the probability

of detecting a source with (X
1/2
P∗ , X

1/2
V ∗ ) = (0.4,0.2) is bigger than for detecting

(0.2,0.4). This asymmetry smooths out for higher values of X
1/2
∗ . The concentric

contour lines show that all detectors are in equal footing to detect the geocentric

spherical population.
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Figure 2.31: Coincident VIRGO – PERTH detection probability surfaces for the three
source populations, for circular and linearly polarised signals.
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Figure 2.32: Coincident VIRGO – PERTH detection probability surfaces for the three
source populations, for elliptically polarised signals.
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In this section contour lines (2D) have been used to represent results of a

network of two detectors. However, when a network comprises more than two

detectors the representation of the probability is more difficult. A way of simpli-

fying the representation is by representing with a curve (1D) the number of times

for which the antenna power value is over a threshold, simultaneously at all the

detectors in the network. This study has been done in Section 2.6.2.2.

2.6.2.2 Detection probability: networks of more than two antennae

In this section, the time-averaged detection probability curves for networks of

two, three, four, five and six detectors are shown. The statistics for when all the

detectors in the network present antenna power values over a particular threshold

simultaneously have been computed.

Fig. 2.33 to Fig. 2.37 show the detection probability curves for networks with

an increasing number of detectors. For networks of more than two detectors

results are shown for a limited number of combinations to avoid cluttering the

plots: only the case of polarisation degree λ = f(ι) is shown for two of the

NS populations. The legends make reference to the detectors with the numbers

assigned in Table 2.1. The coefficients of the Chebyshev polynomials that fit the

curves are presented in Appendix E.

In Fig. 2.33 the detection probability curves for pairs of detectors comprising

VIRGO or PERTH are shown and compared against the detection probabilities

of all the antennae working individually. Obviously, any combination of a pair

of detectors has a lower coincidence detection probability than detectors working

individually. For the disc-shaped population, Det 2-6 (LIGO-H & PERTH) are

the best located/oriented and Det 5-4 (TAMA & VIRGO) are the worst. Det

1-4 (GEO & VIRGO) show remarkably higher values of detection probability for

thresholds values bigger than 0.5.

For networks of three antennae in Fig. 2.34 the trio Det 1-4-6 (GEO600 &

VIRGO & PERTH) prove to be a network with remarkably high detection prob-

ability values for threshold values bigger than 0.5. For networks of four antennae

in Fig. 2.35 there is no clear network outperforming the rest of combinations.

Something similar happens for networks of five antennae in Fig. 2.36.
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Fig. 2.37 compares the progressively decreasing detecting probability curves,

by each time including an extra detector in the network. The probability for all

the six detectors to show an antenna pattern value higher than 0.5 simultaneously

is negligible, especially when the distance factor is not considered.
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Figure 2.33: Time-averaged detection probability curves for antennae working indi-
vidually and in pairs, for the disc-shaped and spherical-SE populations, and signals
polarised with λ = f(ι).
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Figure 2.34: Time-averaged detection probability curves for antennae working indi-
vidually and in threes, for the disc-shaped and spherical-SE populations, and signals
polarised with λ = f(ι).
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Figure 2.35: Time-averaged detection probability curves for antennae working indi-
vidually and in fours, for the disc-shaped and spherical-SE populations, and signals
polarised with λ = f(ι).
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Figure 2.36: Time-averaged detection probability curves for antennae working indi-
vidually and in fives, for the disc-shaped and spherical-SE populations, and signals
polarised with λ = f(ι).
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Figure 2.37: Detection probability curves for antennae working individually and in
networks of two, three, four, five and six antennae, for disc-shaped and spherical-SE
populations, and signals polarised with λ = f(ι).
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2.7 Review of chapter and conclusions

Three galactic neutron star populations were presented in section 2.2: two are

galactocentric, one disc-shaped and another spherical; the third is spherical geo-

centric. Distributions of the distances to sources from Earth, their declination

and right ascension were inferred for these populations.

In Section 2.3, following (91), a systematic procedure to calculate antenna

pattern and power values and the concept of distance factor is introduced; this

modulates the antenna pattern values depending on the proximity of the source

to the Earth. This leads to the time- and polarisation-averaged antenna patterns

and to the directional sensitivity maps for a detector, first in its own local frame

and then in a more generic frame. A list of the studied detectors is provided: all

are well-known apart from a hypothetical one in the future located in the south

hemisphere to enrich the analysis.

In Section 2.4 the detectability of signals from galactic neutron stars was

studied as a function of the location and orientation of the detector, assuming

signals of various polarisation degrees. The analysis concentrated first on two

particular sky-directions (galactic centre and Virgo cluster) and was extended

subsequently for the case of the NS populations defined previously. A preference

for the location of the detector on the equator and azimuthal ‘×’ orientation was

concluded for the galactocentric populations. Intuitively, this can be understood

by considering that it is a detector located in the equator the one that sweeps

the biggest area in the celestial sphere by the effect of the Earth’s rotation.

Histograms in Section 2.5 of time- and polarisation-averaged antenna pattern

values have been used to compare the detectability of well-known gravitational

wave detectors to burst gravitational waves from neutron stars of the populations

modeled. The sidereal times when the detectors are most sensitive to galacto-

centric NS populations are calculated. In Section 2.6 detection probabilities were

calculated by inferring the fraction of trials for which the antenna power is over a

particular threshold. Results are presented for detectors working as single anten-

nae or as part of a network, where more or less suitable combinations of detectors

are identified. Coefficients of Chebyshev polynomials to fit the detection proba-

bility curves are given in the Appendix F.
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Chapter 3

Signal in the time and frequency

domain

3.1 Introduction

In this chapter a burst gravitational signal is modeled as an exponentially damped

sinusoid, the way chosen to model a gravitational wave ringdown signal emitted by

a neutron star suddenly taken out of equilibrium (see Section 1.4.2). The emission

of gravitational radiation is thought to be an important damping mechanism but

of uncertain duration. Furious boiling of a recently born neutron star after core

collapse or the sudden change in the structure of the neutron star (sometimes

reflected as glitching in the radio signal emitted), may be two examples of the

burst signal modeled here.

The ringdown signal is characterised by the amplitude, oscillation frequency,

damping time and polarization (degree and orientation) of the gravitational sig-

nal. Its detection depends on the strength of the signal projected onto the detector

that results from the relative orientation between the source and the detector.

This chapter presents various time to frequency transformations that are sub-

sequently applied onto our particular signal in question, the exponentially damped

sinusoid or ringdown signal. It is introductory material summarising common

data analysis techniques (see (93)) and applied to our signal in question. In Sec-

tion 3.2 the discrete time version of the signal is derived by a conversion from
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3.2 Signal in the time domain

continuous to discrete time notation - time goes to sample index and the fre-

quency goes to radians per sample. In Section 3.3 the ringdown signal is modeled

in the frequency domain by using the discrete Fourier transforms. Useful re-

lations betweem the Discrete Fourier Transform (DFT) and the Discrete Time

Fourier Transform (DTFT) are presented, showing the possibility of computing

the Fourier coefficients of a finite discrete signal using the analytical form that

provides the Fourier coefficients of the corresponding infinite signal. This allows

a quick computation of the Fourier coefficients for the frequency points desired,

mostly concentrated in narrow bandwidths in the case of our signal. The rela-

tion between the DFT and DTFT with the more generic z-transform is shown in

Section 3.4. This is interesting with regards to the way of obtaining the Fourier

coefficients of a time-shifted version of the signal.

3.2 Signal in the time domain

A gravitational wave signal detected by a laser interferometric gravitational an-

tenna is generally represented as a weighted combination of its two polarisation

components (‘+’ and ‘×’) (91). The continuous adimensional strain inflicted on

the detector by the wave can be written as:

h(t) =
δl(t)

l0
= − sin(2Ω)[F+h+(t) + F× exp(iδ)h×(t)], (3.1)

where, again, 2Ω is the angle subtended between the arms of the interferome-

ter. The antenna pattern functions F+ and F× take values in the range [-1,1]

depending on the relative orientation, between the direction in which the wave

propagates and the detector, and the orientation of the polarisation axes with

respect to the arms of the detector. Appendix D describes a systematic way of

calculating F+ and F×, both when the location of the source is given in the de-

tector’s reference frame, and more generally, when the equatorial coordinates of

the source and time of the event are known.

An elliptically polarised gravitational wave can be described mathematically

in a similar fashion to an electromagnetic wave by the combination of the two

polarisation components. It is always possible to choose the orientation of the
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3.2 Signal in the time domain

polarisation axes ψ to coincide with the axes of the polarisation ellipse, see (91),

so that:

δ = ± π/2, h× = λh+ (3.2)

where λ is a real number in the interval [0,1] called the degree of elliptical polari-

sation. For a ringdown signal let us consider each of the polarisation components,

individually, as sine-exponentials:

h+ = h0+ e
−t/τ sin(Ω0t) (3.3a)

h× = h0× e
−t/τ sin(Ω0t) (3.3b)

where τ is the damping time and Ω0 is the oscillation frequency. Assuming the

detection of the signal by a L-shaped interferometer (2Ω = π/2) and considering

h0+ = h0 and h0× = λh0, Eq. 3.1 can be written as:

h(t) = h0 e
−t/τ [F+ sin(Ω0t) + λF× cos(Ω0t)]. (3.4)

This is the representation of a continuous signal. In practice, detector data is

sampled and recorded discretely in time and as a consequence, the analysis of

the data recorded by the gravitational wave detector is generally carried out in

discrete time.

Let us now introduce our signal model in Eq. 3.4 with a slightly different no-

tation more convenient to handle the discrete signals resulting from the sampling

process of their continuous counterparts. Instead of the continuous time variable

(t), the sample number [n] may be used to represent discrete time values. The

sampling process can be written mathematically as:

h[n] = h(t)|t=nT , for n = 0, 1, 2, ... (3.5)

where T is the sampling interval or the time between two consecutive samples.

The sampling frequency is the inverse of the sampling interval, fs = 1/T , and Ωs =
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3.2 Signal in the time domain

2πfs is known as the sampling angular frequency. Using the discrete notation

Eq. 3.4 converts as:

h[n] = h0e
−a·[n][F+ sin(w0 · [n]) + λF× cos(w0 · [n])] · µ[n], (3.6)

where [n] = −∞, ...,−1, 0, 1, ...,∞ are the discrete sample numbers and µ[n] is

the unitary step at n = 0, so that only positive values of [n] are considered.

w0 = 2πΩ0/Ωs = Ω0T is the discretised oscillation frequency (in rad sample−1)

and a = 2π/(Ωsτ) is the discretised damping time (in samples−1). For a detailed

derivation of the discretised expression of the signal see appendix G. Simplifying

the notation, Eq. 3.6 can be written as:

hSC [n] = e−an[CS sin(w0n) + CC cos(w0n)] (3.7)

where CS = h0F+, CC = λh0F×. Fig. 3.1 shows an example of a discretised signal

as a combination of a sine and a cosine-exponential given by Eq. 3.7.
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Figure 3.1: Discrete version of an exponentially damped sinusoid (Eq. 3.7) of ar-
bitrary parameter values CS = 1 and CC = 0.5, Ωs/Ω0 = 20 samples per cy-
cle (w0 = 2πΩ0/Ωs = π/10 = 0.3142 rad/sample) and inverse damping time of
a = 2π/(Ωsτ) = 1/60 samples−1.
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3.3 Signal in the frequency domain

Throughout this work the frequency representation of discrete exponentially damped

sinusoidal signals have been used repeteadly. These can be readily obtained

through a Fourier transform of the time-domain representation. There are var-

ious types of Fourier transforms depending on whether the signal is continuous

or discrete, and whether the frequency representation is periodic or not. For the

frequency analysis of discrete signals the Discrete Fourier Transform (DFT) and

its fast algorithm called Fast Fourier Transform (FFT) are convenient and often

used.

In the following, the Continuous Time Fourier Transform (CTFT), the discrete

time Fourier transform (DTFT) and its relation to the Discrete Fourier Transform

(DFT) are presented. This is to explain the computational advantage provided

by the close form DTFT with respect to the DFT. For more details and the

conventions used in the following pages, see (93).

In the following sections different Fourier transforms are presented for a ring-

down signal presented in Fig. 3.1 of arbitrary parameter values CS = 1 and

CC = 0.5 (elliptical polarisation of λ = 0.5), Ωs/Ω0 = 20 samples per cycle

(w0 = 2πΩ0/Ωs = π/10 = 0.3142 rad/sample) and inverse damping time of

a = 2π/(Ωsτ) = 1/60 samples−1.

3.3.1 Continuous Time Fourier Transform (CTFT)

Generally, continuous signals in the time-domain can be transformed into the

frequency-domain with the CTFT. The result is a continuous spectrum of infinite

bandwidth of real frequency values (−∞ < Ω <∞). The inverse transformation,

called the Fourier Integral, allows the recovery of the original signal as a sum of

infinitesimally small complex exponential terms of the form 1/(2π)ejΩdΩ. The

continuous Fourier transform Xa(jΩ) and its inverse xa(t) can be written as:

FCTFT{xa(t)} = Xa(jΩ) =

∫ ∞
−∞

xa(t)e
−jΩt dt (3.8a)

F−1
CTFT{Xa(jΩ)} = xa(t) =

1

2π

∫ ∞
−∞

Xa(jΩ)ejΩtdΩ. (3.8b)
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3.3 Signal in the frequency domain

The CTFT of exponentially damped sine and cosine functions are:

xS(t) = e−bt sin(Ω0t)⇐⇒ XS(jΩ) =
Ω0

[b2 + Ω2
0 + Ω2] + j 2bΩ

(3.9a)

xC(t) = e−bt cos(Ω0t)⇐⇒ XC(jΩ) =
j Ω

[b2 + Ω2
0 + Ω2] + j 2bΩ

(3.9b)

where b = 1/τ is the inverse of the damping time and Ω0 is the angular oscillation

frequency. The Fourier transform is commutative and linear and the CTFT of

the combination of two continuous exponential sinusoids defined in Eq. 3.4 can

be written as:

hSC(t) = CSxS(t) + CCxC(t)⇐⇒ HSC(jΩ) = CSXS(jΩ) + CCXC(jΩ) (3.10a)

=
CSΩ0 + j CCΩ

[b2 + Ω2
0 + Ω2] + j 2bΩ

. (3.10b)

The spectrum of the signal defined continuously in Eq. 3.10 is a complex func-

tion of real valued frequencies Ω and can be represented equivalently by the

pairs of Real <{HSC(jΩ)} and Imaginary ={HSC(jΩ)} coefficients, or Magni-

tude |HSC(jΩ)| and Phase Θ(jΩ) components. Fig. 3.2 shows the two pairs of

variables that represent the CTFT of Eq. 3.4 as per Eq. 3.10.

3.3.2 Discrete Time Fourier Transform (DTFT)

The DTFT of a discrete-time sequence x[n] is the representation of the signal in

terms of the complex exponentials e−jwn, where w is the real frequency variable.

If the DTFT exists, it is unique and the original sequence can be recovered by

applying the inverse of the original transformation.

FDTFT{x[n]} = X(ejw) =
∞∑

n=−∞

x[n] e−jwn (3.11a)

F−1
DTFT{X(ejw)} = x[n] =

1

2π

∫ π

−π
X(ejw) ejwndw. (3.11b)

100



3.3 Signal in the frequency domain

−1000 −500 0 500 1000

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

!{X(j")}

" (rad/s)

 

 

Xs(j")
Xc(j")
Cs Xs(j") + Cc Xc(j")

−1000 −500 0 500 1000

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

#{X(j")}

" (rad/s)

−1000 −500 0 500 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
|X(j!)|

! (rad/s)
−1000 −500 0 500 1000
−4

−3

−2

−1

0

1

2

3

4
"(j!)

! (rad/s)

Figure 3.2: Continuous Time Fourier Transform (CTFT) of an exponentially dampened
sinusoidal signal (see Fig. 3.1) given by Eq. 3.10. The spectrum is non-periodic and
defined continuously in the range [−∞,∞]. The upper two subplots show the real and
imaginary coefficients and the lower two subplots show the equivalent pair, magnitude
and phase. The two peaks are located at the positive and negative oscillation frequency
Ω0.
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The result of the DTFT is a complex function X(ejw) (periodic in 2π) that can

be written in rectangular form as a combination of real and imaginary coefficient

functions:

X(ejw) = Xre(e
jw) + j Xim(ejw), where

{
Xre(e

jw) = <[X(ejw)]

Xim(ejw) = =[X(ejw)],
(3.12)

or alternatively, as a combination of magnitude and phase functions:

X(ejw) = |Xre(e
jw)|ejθ(w), where

{
|X(ejw)| = [X2

re(e
jw) +X2

im(ejw)]
−1/2

θ(w) = tan−1{Xim(ejw)/Xre(e
jw)}.

(3.13)

For a real discrete sequence x[n], Xre(e
jw) and |X(ejw)| are even functions,

whereas Xim(ejw) and θ(w) are odd functions. For most practical discrete-time

sequences, the DTFT is a convergent geometric series, which may be summarised

as a simple closed-form. The DTFT of exponentially damped sinusoidal signals

of infinite duration, defined for positive values of [n], can be expressed in closed

form as follows:

xS[n] = e−an sin(w0n)µ[n]⇐⇒ XS(ejw) =
w0

[a2 + w2
0 + w2] + j2aw

(3.14a)

xC [n] = e−an cos(w0n)µ[n]⇐⇒ XC(ejw) =
a+ jw0

[a2 + w2
0 − w2] + j2aw

(3.14b)

Again, due to the commutative and linearity properties of the Fourier transforms,

Eqs. 3.14 can be combined and the corresponding DTFT expression of the discrete

signal in Eq. 3.7 can be written as:

hSC [n] = CSxS[n] + CCxC [n]⇐⇒ HSC(ejw) = CSXS(ejw) + CCXC(ejw)

(3.15a)

=
CSw0 + CCa+ j CCw0

[w2
0 + a2 − w2] + j 2aw

. (3.15b)

Fig. 3.3 shows the real and imaginary coefficients and the equivalent magnitude

and phase pair representation of the expression in Eq. 3.15. The DTFT is periodic
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3.3 Signal in the frequency domain

in 2π and it is customary to present its spectrum on a normalised frequency axis

w/π ∈ [0, 2]. Showing only half of the period w/π ∈ [0, 1] is enough to characterise

the signal because the real coefficients and magnitude values are even functions,

whereas the imaginary coefficients and phase values are odd functions.

3.3.3 Discrete Fourier Transform (DFT)

The DFT provides a transformation from the discrete time-domain to the discrete

frequency-domain. The DFT of a discrete signal x[n] of length N is defined as:

FDFT{x[n]} = X[k] =
N−1∑
n=0

x[n] e−j2πkn/N , 0 ≤ k ≤ N − 1 (3.16a)

F−1
DFT{X[k]} = x[n] =

1

N
X[k] ej2πkn/N , n = 0, ..., N − 1. (3.16b)

The transform results in the mapping of the N time-points to the same number of

frequency-points. It can be efficiently computed with the Fast Fourier Transform

algorithm (FFT).

3.3.4 Relation between DTFT and DFT

The N -point DFT X[k] of a discrete signal x[n] is simply the DTFT X(ejw)

evaluated at N uniformly spaced frequency points wk = 2πk/N , for 0 ≤ k ≤
N − 1. This is an interesting relation, for when the closed form of the DTFT

exists and is known, it allows the computation of the results of a N -point DFT

just by evaluating the analytical function of the DTFT at the desired frequency

points with:

X[k] = X(ejw)|w=2πk/N , for 0 ≤ k ≤ N − 1. (3.17)

The frequency resolution of the DFT depends on the number of points N to be

transformed, fres = fs/N . An increase in the frequency resolution can be gained

at the expense of processing a bigger number of points, zero-padding if required,

but thin turn increases the computation time. If the closed-form of the DTFT is
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3.3 Signal in the frequency domain
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Figure 3.3: Discrete Time Fourier Transform (DTFT) of an exponentially dampened
sinusoidal signal (see Fig. 3.1) plotted using the expression in Eq. 3.15. The spectrum
is periodic in 2π and continuous but only the relevant quarter of the period is shown
here, for clarity.
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3.3 Signal in the frequency domain

known, it is straight-forward and faster to materialise a discrete Fourier transform

and calculate as many frequency points as desired.

Fig. 3.4 shows the comparison of the real and imaginary coefficients of the

DTFT, the curve given by the closed form in Eq. 3.15, corresponding to a signal

of infinite length, with a DFT of N = 1000 point DFT of the discrete signal of

length 15τ given by Eq. 3.7.
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Figure 3.4: Comparison of the DTFT curve with the N = 1000 point DFT. Note that
the DFT points lay exactly on the DTFT curve, showing that the computation of values
at the desired frequency points using the closed form of the DTFT (see Eq. 3.15), is
equivalent to do a DFT of a finite discrete signal (see Eq. 3.16a). Only a quarter of the
period 2π is shown here, for clarity.

In the case of damped signals, the DTFT of a discrete signal of finite length

that captures the non-zero region does not differ significantly from the DTFT

of the corresponding signal of infinite length. This is convenient, for once the

signal decays, it does not add more power to the spectrum and the closed-form

representation for the infinite series (see Eq. 3.15) is valid for the DTF of a finite

and truncated discrete signal that captures the relevant part of the signal. In

Fig. 3.5 the case of an exponentially damped sinusoid is shown and it is observed

that the DTFT of a finite signal of length 5τ is already quite a good approximation

to the closed-form corresponding to the infinite sequence.
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Figure 3.5: Real and imaginary curves of the DTFT of the signal in Fig. 3.1. The
result of the closed form (Eq. 3.15) corresponding to the signal of infinite length is
compared with its truncated (finite duration) versions of τ , 2τ and 5τ . The DTFT for
the truncated signals has been obtained by adding a finite number of exponential terms
(Eq. 3.11a). Note that for signals longer than 5τ the result of the addition of complex
terms is very similar to the closed form, underpinning the decision using the later to
calculate the DFT of damping signals longer than 10τ .
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3.4 The z-transform

3.4 The z-transform

The relation between the z-transform and the discrete time Fourier transform is

presented: the z-transform and its properties provide convenient tools to calculate

the Fourier transform of a discrete shifted signal, once the transform of its non-

shifted version is known.

The generalisation of the Fourier transform of discrete signals leads to the z-

transform, a function of the complex variable z = rejw. For real valued sequences

x[n], the z-transform is a rational function of the complex variable z and is defined

as follows:

Z {x[n]} = G(z) =
∞∑

n=−∞

x[n]z−n =
∞∑

n=−∞

x[n]r−ne−jwn. (3.18)

For the case of r = 1 (|z| = 1) the z-transform G(z) reduces to the DTFT

expression, when this exists. For most of the discrete functions the sum of terms

in z can be expressed in closed analytical form:

G(z) =
p0 + p1z

−1 + ...+ pM−1z
−(M−1) + pMz

−M

d0 + d1z−1 + ...+ dN−1z−(N−1) + dNz−N
. (3.19)

The z-transforms of the discrete damped sinusoidal functions in Eqs. 3.14 are:

xS[n] = rn sin(w0n)µ[n]⇐⇒ XS(z) =
r sinw0z

−1

1− 2r cosw0z−1 + r2z−2
, |z| > |r|

(3.20a)

xC [n] = rn cos(w0n)µ[n]⇐⇒ XC(z) =
1− r cosw0z

−1

1− 2r cosw0z−1 + r2z−2
, |z| > |r|

(3.20b)

where r = e−a = e−2π/(Ωsτ) = e−1/(fsτ) and, again, µ[n] limits the time-domain to

positive values of n, for a causal signal. The region of convergence |z| > |r| assures

that there is a unique relation between the z-transform and the discrete-time

sequence. For a detailed derivation of these formulae, see (93). If the z-transform

can be written in closed form as a rational function, the values corresponding

to the desired discrete frequency points can be readily computed in Matlab (94)

using the freqz command. In Table 3.1, we highlight two important properties of
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3.4 The z-transform

Time domain Frequency domain

Discrete signals z-transform

Linearity α g[n] + β h[n] α G(z) + β H(z)

Time-shift (n0 points) g[n− n0] z−n0G(z)

Table 3.1: Two useful properties of the z-transform.

the z-transform that ease the calculation of the frequency transforms of signals

shifted discretely in time later.

Due to the linearity property the z-transform of the exponentially damped

signal hSC [n] in Eq. 3.15 can be written as a combination of the Eqs. 3.20 to

obtain:

HSC(z) = CSXS(z) + CCXC(z) =
1− r(CS sinw0 − CC cosw0)z−1

1− 2r cosw0z−1 + r2z−2
(3.21)

where, again, CS = h0F+ and CC = λh0F× are the amplitudes of the sine and

cosine exponentials, respectively, and w0 is the angular frequency of the oscillation

in rad sample−1.

3.4.1 Time-shifted signal

Mathematically, the discrete time-shifted version of the modeled signal in Eq. 3.7

can be written in the form:

hSCsh[n] = hSC [n− n0]

= e−a [n−n0][CS sin(w0[n− n0]) + CC cos(w0[n− n0])], (3.22)

where n0 is the number (integer) of samples the signal has been shifted. Fig. 3.6

depicts the same signal as in Fig. 3.1 shifted by n0 = 10 samples to the right. Note

that for a data stretch of finite duration. The time-shift involves zero-padding

n0 samples from the left and truncating n0 samples from the right. However, if a

long enough stretch of data is considered, this is not a problem for exponentially

damped signals, for no relevant data is lost from the right hand side.
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Figure 3.6: Signal in Fig. 3.1 shifted n0 = 10 samples to the right.

Once the z-transform Z (x[n]) of a function is known, the z-transform of its

time-shifted version Z (x[n− n0]) can be readily calculated using the properties

summarised in Table 3.1. Following these rules, the z-transform of a time-shifted

exponentially damped sinusoid can be written as:

xSsh[n] = xS[n− n0]

= rn−n0 sin(w0[n− n0])⇐⇒ XSsh(z) =
r sinw0z

−(n0+1)

1− 2r cosw0z−1 + r2z−2

(3.23a)

xCsh[n] = xC [n− n0]

= rn−n0 cos(w0[n− n0])⇐⇒ XCsh(z) =
z−n0 − r cosw0z

−(n0+1)

1− 2r cosw0z−1 + r2z−2
,

(3.23b)

where the subindex Ssh and Csh stand for sine and cosine shifted signals, re-

spectively. Making use of the linearity property we can write the z-transform of

Eq. 3.7 as:

XSCsh(z) =
z−n0 + r[CS sinw0 + CC cosw0]z−(n0+1)

1− 2r cosw0z−1 + r2z−2
. (3.24)
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3.4 The z-transform

Fig. 3.7 compares the DTFT spectra of exponentially damped signals time-shifted

a different number of samples to the right.
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Figure 3.7: Real and imaginary coefficients of the DTFT spectra of the signal shown
in Fig. 3.1 shifted a different number of samples to the right. The spectra have been
calculated with the expression in Eq. 3.24.
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Chapter 4

Bayesian Data Analysis

4.1 Introduction

Historically, the quantification of the probability has been exemplified by the

frequentist approach, where the repetition of an experiment multiple times can be

done, or at least conceived, and conclusions extracted. The probability assigned

to each of the possible outcomes is stipulated as their rate of realisation. Rolling

a dice and calculating the probability of getting any particular side up is a clear

example: after millions of trials the overall number of positive outcomes would

be expected to be very close to ‘one out of six’.

Bayesian probability, in stark opposition to the frequentist probability, pro-

vides a more natural approach to the quantification of probability. One of the

merits of the Bayesian probability is that its calculation allows the inclusion of

factors (related information known before analysing the data) that may alter the

balance of probability towards full certainty or full uncertainty.

The Bayesian computation of probability combines the information provided

by the data obtained in the experiment with any prior beliefs or assumptions

about the hypothesis being considered. The information given by the data is the

Likelihood and measures the possibility of getting those and no other data. It is

interpreted as the level of fitness between our hypothesis, generally symbolised as

a mathematical function, and the data. The priors are lighter or stronger beliefs

before the acquisition of the data that will shape our final belief.
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4.2 Bayesian Inference

Bayesian inference has been applied for the data analysis in diverse fields,

particularly where the characterization of weak signals masked by noise is re-

quired. Astronomy and particle physics are fields where Bayesian data analysis

has been applied successfully: image reconstruction (95), model selection in Cos-

mology (96), analysis of Cosmic Microwave Background data (97), Extrasolar

planet detection (98), etc.

The astronomical branch of gravitational wave detection have made ample use

of Bayesian inference too, in order to analyse the data obtained by a network of

detectors and carry out model comparison and parameter estimation. Different

type of expected gravitational wave signals have been analysed. In the follow-

ing some references relevant to the work presented in this thesis are mentioned:

Bayesian approach to the detection problem in gravitational wave astronomy (99),

gravitational waves from in-spirals by a network of detectors (100; 101; 102),

white-dwarfs on LISA data (103), estimation of pulsar parameters from gravita-

tional wave data (104), robust Bayesian detection of unmodelled bursts (15; 105),

Bayesian inference with nested sampling algorithm (106).

4.2 Bayesian Inference

In Bayesian inference the likelihood of each of a set of competing hypotheses {Hi}
can be computed in light of the observed data and any previous information prior

to the acquisition of the data – the prior information specifies the hypotheses be-

ing considered and their relation with the data. The Bayesian notation p(Hi|D, I)

expresses the probability of a hypothesis Hi, given the data D and the prior infor-

mation I, where the arguments must be understood as propositions. Two basic

rules build the principles of Bayesian probability calculation: The sum rule,

p(Hi|I) + p(H̄i|I) = 1, (4.1)

where H̄i signifies the proposition that is true if one of the alternatives to Hi is

true; and the product rule,

p(Hi,D|I) = p(Hi|I)p(D|Hi, I) = p(D|I)p(Hi|D, I), (4.2)
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4.2 Bayesian Inference

which splits the combined probability of two propositions in two alternative ways.

Reordering Eq. 4.2 we arrive at the Bayes theorem, the most important equation

to compute probabilities within Bayesian inference,

p(Hi|D, I) =
p(Hi|I)p(D|Hi, I)

p(D|I)
. (4.3)

The Bayes theorem describes a learning process in which the probability of each

hypothesis considered is shaped in light of new data acquired. p(Hi|I) is the prior

probability of the hypothesis Hi before considering the data. After considering the

data the probability of that hypothesis, p(Hi|D, I), is called posterior probability.

p(D|Hi, I) measures the ability of hypothesis Hi to explain the data acquired

and is called the likelihood, and p(D|I) is the evidence or global likelihood for the

set of hypotheses. The sum of the posterior probabilities of all the hypotheses

considered must equal to one
∑

i p(Hi|D, I) = 1. That is why:

p(D|I) =
∑
i

p(Hi|I)p(D|Hi, I). (4.4)

4.2.1 Model comparison

In an effort to understand an experimental result, there may be interest in com-

paring various parameterized models put forward in order to explain the outcome

of the experiment. The models may differ in shape and in number of parameters.

The selection of the most appropriate model to explain the data can be done by

means of a model comparison exercise. It is common to compare two models, Mi

and Mj, by calculating their odds ratio, the ratio of their posterior probabilites:

Oij =
p(Mi|D)

p(Mj|D)
=
p(Mi|I)

p(Mj|I)

p(D|Mi, I)

p(D|Mj, I)
=
p(Mi|I)

p(Mj|I)
Bij, (4.5)

where the first factor is the prior odds ratio (consideration of any belief that

favours one model to the other before considering the data). Bij is called the

Bayes factor and compares the likelihoods of the models trying to explain the

data. If we set the prior odds ratio to unity, reflecting no prior preference for

either model, the odds ratio reduces simply to be the ratio of marginal likelihoods

of the two models.
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4.2 Bayesian Inference

Note that in the context of models described by a set of parameters the

likelihood of a model Mi can be expressed as:

p(D|Mi, I) = p(Θ|I)p(D|Mi,Θ, I) (4.6)

Bayesian inference presents a built-in property by which models ‘more compli-

cated than necessary’ are penalized with respect to the ‘simplest’: the Ockham’s

razor. An intuitive understanding of the mechanism by which this penalization

occurs can be obtained from the following example, taken from (107). Denote by

Mn a model for which Θ = {θ1, ..., θn} is n-dimensional, ranging over a parameter

space Ωn. Now introduce a new model Mn+1 by adding a new parameter θn+1

and going to a new parameter space Ωn+1, in such a way that θn+1 = 0 represents

the old model Mn.

On the subspace Ωn the likelihood is unchanged by this change of model:

p(D|θ,Mn+1, I) = p(D|θ,Mn, I). But the prior probability p(θ|Mn+1) must now

be spread over a larger parameter space than before and will, in general, assign

a lower probability, [p(D|Mn+1, I)], to a neighbourhood Ω′ of a point in Ωn than

did the old model, [p(D|Mn, I)].

For a reasonably informative experiment, we expect that the likelihood will

be rather strongly concentrated in small subregions Ω′n ∈ Ωn and Ω′n+1 ∈ Ωn+1.

Therefore, if with Mn+1 the maximum-likelihood point occurs at or near θn+1 = 0,

Ω′n+1 will be assigned less prior probability than is Ω′n with model Mn, and we

have p(D|Mn, I) > p(D|Mn+1, I); the likelihood ratio generated by the data will

favour Mn over Mn+1. This is Ockham phenomenon. A quantitative detailed

example of the Ockham’s razor follows in (107). Another illustrative quantitative

example can be found in (108) for two different models that assume delta-function

likelihood functions.

4.2.2 Parameter estimation

By a model, a hypothesis that some particular physics governs the system is un-

derstood here. This physics leads to a set of parameters describing the phenom-

ena, for example some fit coefficients, that could take different values within the

context of the model. Are the values of the parameters consistent with the data?
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4.3 Noise and Signal

The likelihood is the integrated probability that the data arose from different

sets of parameter values within the model. This is multiplied by the probability

that those parameters are correct in the context of the model, integrated over

all possible values of the parameters. When a particular model M is assumed to

be true, the hypothesis space {Hi} corresponds with the parameter space {θi} of

the model. The global likelihood of the model L(M,D), given the data D, can

be computed with the continuous version of Eq. 4.4.

p(D|M) =

∫
...

∫
dθ p(Θ|M) p(D|Θ,M) = L(M,D) (4.7)

where p(Θ|M) encloses any prior beliefs about the parameters and p(D|Θ,M)

is the likelihood for a particular curve of the model, shaped by that point in the

parameter space.

4.3 Noise and Signal

The measurement of a gravitational wave signal by a detector can never be ideal:

even in the absence of a signal the measurement will result in a noisy output due to

unpredicted displacements, or apparent displacements, of the test masses. This is

the instrumental noise and is caused mainly by seismic and thermal disturbances

and quantum effects of the instrument. Throughout this work instrumental noise

is assumed to be stationary and Gaussian, of zero mean. The validity of the

assumption of the noise to be stationary is stronger for short burst signals, for

neither sudden nor progressive changes on the instrument are expected during

the short duration of these signals.

4.3.1 Adding noise to the signal in the frequency-domain

Realistic data for analysis and testing of algorithms was obtained by adding

the signal and the simulated instrumental synthetic noise together. Creation

of synthetic noise in the time-domain, of known spectral power matching the

sensitivity curve of the detector is not a trivial task. This can be done, however,

by means of an iterative algorithm, first proposed in (109) and later improved

in (110), where the spectrum of the noise desired is defined as a transfer function.
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4.3 Noise and Signal

The improved algorithm has now been included into the LTPDA Matlab Toolbox,

oriented to LISA data analysis, see (111).

Throughout this work the synthetic noise has been directly generated in the

frequency domain by sampling two variables, the magnitude |n[k]| and the phase

θ[k], for each frequency bin [k]. A random phase value is obtained by sampling

from a uniform distribution, whereas the random magnitude is obtained by sam-

pling from a Rayleigh distribution1. Mathematically, this can be written as:

|n[k]| ∼ Rayleigh(n[k];nrms[k]) (4.8a)

θ[k] ∼ U[0, 2π), (4.8b)

where the average noise magnitude nrms[k] for each frequency bin [k] correspond-

ing to a N -point DFT can be computed if the power spectral density value Sn[k]

of that bin is known (see (112)) as follows:

Sn[k] =
2 |nrms[k]|2

fs S2

k = 0, ..., N. (4.9)

fs is the sampling frequency and S2 =
∑N−1

j=0 w2
j is the window sum to account

for the number of points N of the DFT and any gain or attenuation imposed on

the signal by a window. In our case, for a rectangular window covering the whole

length of N points (i.e. no window at all), S2 = N . The important bit is that

knowing the power spectral density of the noise Sn[k], the average or expected

magnitude of the noise |nrms[k]| for each frequency bin can be computed with

Eq. 4.9 .

For independent and uncorrelated gaussian noise, the amplitude of an arbi-

trary frequency bin |n[k]| follows a Rayleigh probability distribution, see Ap-

pendix H. By definition, the uncertainty of a Rayleigh distribution is the mode

value itself; hence, the random noise magnitude for a particular frequency bin

1Interferometer noise can be thought of being a result of a filter operating on an input
consisting of uncorrelated Gaussian noise (the power spectrum of the input has completely
independent samples with random phases). The phase shifts at each bin are determined by the
transfer function of the filter; but since the phase of the input noise is random from bin to bin,
even if the phase shift due to the filter is highly correlated from bin to bin, the phase outputs
are still random and uncorrelated.
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4.3 Noise and Signal

|n[k]| can be readily obtained by drawing a sample from a Rayleigh distribu-

tion of uncertainty proportional to the average magnitude of the noise: σ =√
2/π |nrms[k]| (see Eqs. 4.8).

Once we have the magnitude and phase of the noise in each frequency bin, it

is easy to convert the complex vector sampled ñ[k] = |n[k]|∠θ[k] to its alternative

cartesian representation (n<[k], n=[k]) by:

n<[k] = |n[k]| cos θ[k] (4.10a)

n=[k] = |n[k]| sin θ[k]. (4.10b)

The realistic detector data can be simulated by adding the real and imaginary

coefficients of the signal and the noise. Fig. 4.1 is a graphical representation of

the sampling of the random noise vector and its vectorial addition to the signal.

s<[k] = h<[k] + n<[k] (4.11a)

s=[k] = h=[k] + n=[k] (4.11b)

Figure 4.1: Graphical description of the generation of the complex noise vector ñ[k]
by sampling magnitude |n[k]| from a Rayleigh distribution and the phase θ[k] from a
uniform distribution, see Eq. 4.8. The average magnitude of the noise |nrms[k]| is the
uncertainty parameter of the Rayleigh distribution.
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4.4 Calculation of the Signal to Noise Ratio (SNR)

The signal to noise ratio (SNR) quantifies the relative size of the signal with

respect to the instrumental noise it is embedded in. For a continuous signal

expressed in the frequency domain the signal to noise ratio ρ can be calculated

as:

ρ2 = 2

∫ ∞
0

|h(f)|2

Sh(f)
df. (4.12)

This is the largest SNR achievable with a linear filter applied to the output of the

detector. Eq. 4.12 arises naturally in the context of matched filtering theorem,

see (30). The equivalent of Eq. 4.12 for discrete signals that has been used in this

work:

ρ2 = 2
kmax∑
k=kmin

|h[k]|2

Sh[k]
, (4.13)

where the range of frequencies within the bins [kmin, kmax] is the bandwidth where

the majority of the power of the signal is concentrated.

4.5 An illustrative example of the study method

In the following, a realistic example of a gravitational wave signal detected at

the instant GLST = 0h by a network of second generation ground-based laser

interferometric detectors is presented. The signal corresponds to an oscillating

neutron star located in the galactic centre, which presents two clear oscillation

modes: the f -mode (fundamental) and the p-mode (pressure).

The amount of energy channeled into each oscillation mode is not certain,

and in turn, neither is the amplitude of the gravitational wave incoming from

the oscillating compact object. Here, and for the sake of the illustration, an

arbitrary value of the gravitational wave energy has been considered for the f -

mode (enough as to obtain a significant SNR in the noisiest of the detectors

considered). The amplitude corresponding to the f -mode is calculated as per

the equation published in (75). Quite arbitrarily, and given the uncertainty of
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the energy channeled to the p-mode, its amplitude was taken to be a fifth of the

amplitude corresponding to the f -mode. Polarization degree λ and polarisation

angle ψ are considered independent and again arbitrary values from within their

logical ranges have been assigned to them. All the values of the parameters are

listed in Table 4.1. Fig. 4.3 and Fig. 4.5 show the spectra of the signals as detected

by the second generation detectors considered.

Parameters of the exponentially damped sinusoids

Description Units f-mode p-mode

Energy Egw Msc
2 7× 10−6 -

Amplitude h0 - 1.543× 10−21 3.086×−22

Frequency f0 Hz 3090 7838

Damping Time τ sec 0.109 4.64

Number of cycles n ≈
√
fτ - 336 36368

Polarization degree λ - 0.7 0.3

Polarization angle ψ - 1.2 2.3

Declination δ rad −28◦ 56’ (-0.505 rad)

Right Ascension RA rad 17h56m (4.64 rad)

Distance d kpc 8.5

@ GLST = 0h SNR [F+, F×] SNR [F+, F×]

Detector f -mode p-mode

Adv-LIGO-H 10.13 [-0.330,0.282] 17.9 [0.423,0.101]

Adv-LIGO-L 7.52 [-0.285,0.026] 8.45 [0.188,0.216]

Adv-VIRGO 4.30 [-0.930,0.188] 5.02 [0.699,0.641]

PERTH-ET 89.1 [-0.346,-0.455] 65.7 [-0.164,0.547]

Table 4.1: Parameter values for burst-gravitational waves modeled as exponentially
damped sinusoids. The values of frequency and damping time are taken from (75) where
expected values for f - and p-modes of oscillating neutron stars for different equations
of estate are listed. The source location is the galactic centre and the polarisation
parameters, λ and ψ values, have been chosen randomly.
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Figure 4.2: Spectrum of the exponentially damped sinusoidal gravitational wave signal
expected from the f -mode oscillation of a neutron star as seen by four ground-based
detectors at instant GMST = 0h. Parameter values are listed in Table 2.1.
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Figure 4.3: Same as Fig. 4.2 after considering the noise of each detector.
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Figure 4.4: Spectrum of the exponentially damped sinusoidal gravitational wave signal
expected from the p-mode oscillation of a neutron star as seen by four ground-based
detectors at instant GMST = 0h. Parameter values are listed in Table 2.1.
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Figure 4.5: Same as Fig. 4.2 after considering the noise of each detector.

121



4.6 Calculation of the Likelihood Function

4.6 Calculation of the Likelihood Function

The concept of likelihood has been introduced in section 4.2. Here, the likelihood

function and its computation will be considered. In the process of contrasting

the data acquired against a model, the likelihood quantifies the probability of

the data to be explained by that particular model assumed to be true. The

calculation of likelihood is possible due to the knowledge of the average level of

the instrumental noise, and it may be carried out either in the time or in the

frequency domain, for both domains provide equivalent representations of the

signal. In the following, the two equivalent formulae to compute the likelihood in

both domains are shown. A more detailed derivation of these formulae is included

in Appendix H.

4.6.1 Likelihood in the time domain

The discrepancy between the acquired data-set {s[n]} and the signal model {h[n]}
are the errors {e[n]}. For each datum measured we have:

e[n] = s[n]− h[n], n = 1, ..., N. (4.14)

Under the consideration that the error made on each datum is gaussian of zero

mean and stationary, so that e[n] ∼ N(0, σ[n]), the probability of observing one

particular datum is:

p(e[n]|σ[n], I) =
1

σ[n]
√

2π
exp

[
−(s[n]− h[n])2

2σ[n]2

]
, (4.15)

where I represents any background information or knowledge prior to the ac-

quisition of the data. If all the sample errors are independent and identically

distributed, that is p(e[n], e[n + 1]|·) = p(e[n]|·) p(e[n + 1]|·), the joint probabil-

ity for the set of error values {e[n]} is the result of the multiplication of all the

individual probabilities:

p({e[n]}|{σ[n]}, I) =
N∏
n=1

p(e[n]|σ[n], I). (4.16)
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4.6 Calculation of the Likelihood Function

In general, each sample will have its own particular standard deviation σ[n]. The

joint probability of acquiring a particular set of values {s[n]}, given that the

signal model h[n] = M([n]; {θ}) is true, is equal to the probability of getting the

set of errors {e[n]}. This is known as the global likelihood L of the model M :

L(M) = p({s[n]}|M, {σ[n]}, I) = p({e[n]}|{σ[n]}, I), (4.17)

and can be written as:

L =
N∏
n=1

1

σ[n]
√

2π
exp

[
−(s[n]− h[n])2

2σ[n]2

]
. (4.18)

To keep numerical values under control, it is often convenient to work with the

logarithm of the likelihood instead:

log L = −N/2 log(2π)−N log(σ[n])−
N∑
n=1

(s[n]− h[n])2

2σ[n]2
. (4.19)

4.6.2 Likelihood in the frequency domain

In the frequency domain, a complex number (complex vector) characterises each

harmonic of the spectrum and may be represented as a pair of real and imaginary

coefficients (cartesian) or as a pair of magnitude and phase (polar). Thus, the

probability of obtaining a particular complex value in a frequency bin can be

represented by a bivariate probability density function. The calculation of the

likelihood function in the frequency domain either with the cartesian or polar

representation is discussed more in detail in Appendix H. Again, and assuming

that the only discrepancy between the spectrum of the acquired data and the

modeled signal is due to the instrumental noise, we can write:

ñ[k] = s̃[k]− h̃[k]

{
n<[k] = s<[k]− h<[k]

n=[k] = s=[k]− h=[k]
k = 0, ..., K − 1, (4.20)

where �<[k] = <{�[k]} and �=[k] = ={�[k]} are the real and imaginary coef-

ficients of the complex value �̃ representing the harmonic corresponding to the

kth frequency bin. � represents any of s̃, h̃ or ñ.
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4.6 Calculation of the Likelihood Function

If the noise in the time domain is gaussian with zero mean and uncorre-

lated, the real and imaginary coefficients of a frequency bin of its discrete Fourier

transform are gaussian with zero mean and uncorrelated too; also, the uncer-

tainty of the distribution is equal for the real and imaginary coefficients (i.e.

σ<[k] = σ=[k] = σ[k]). The joint probability of n<[k] and n=[k] is then a bivariate

normal probability distribution function of zero mean µ = [0, 0] and covariance

Σ = [0, σ2[k]; 0, σ2[k]], so that:

p(ñ[k]|σ[k], I) = p(n<[k], n=[k]|σ[k], I) (4.21a)

=
1

2πσ2[k]
exp

[
−(s<[k]− h<[k])2 + (s=[k]− h=[k])2

2σ[k]2

]
. (4.21b)

If all the errors are independent and identically distributed, that is p(ñ[k], ñ[k +

1]|·) = p(ñ[k]|·) p(ñ[k+ 1]|·), the probability for the set of error values {ñ[k]} can

be written as the multiplication of all the individual probabilities:

p({ñ[k]}|{σ[k]}, I) =
K∏
k=1

p(ñ[k]|σ[k], I). (4.22)

Given that the model {h̃[k]} = M([n]; {θ}) is true, the joint probability of ac-

quiring the set of values {s̃[k]} is equal to the probability of obtaining the set of

errors {ñ[k]}. This is the likelihood of the model:

L =
K∏
k=1

1

2πσ2[k]
exp

[
−(s<[k]− h<[k])2 + (s=[k]− h=[k])2

2σ[k]2

]
. (4.23)

Again, to keep numerical values under control the likelihood may be expressed

in logarithmic form as:

log L = −K log(2π)−
K∑
k=1

2 log(σ[k]) +
(s<[k]− h<[k])2 + (s=[k]− h=[k])2

2σ[k]2
.

(4.24)

Equivalently, the likelihood may be computed using the magnitude and phase

(polar representation) of the complex numbers ñ[k], s̃[k] and h̃[k], where:
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4.6 Calculation of the Likelihood Function

ñ[k] ≡ N [k]∠θñ[k]

s̃[k] ≡ S[k]∠θs̃[k]

h̃[k] ≡ H[k]∠θh̃[k].

To simplify the notation, the phase difference between the acquired data and

the modeled signal is defined as α[k] = |θs̃[k] − θh̃[k]|. In analogous form to

Eq. 4.21 the cosine rule in the triangle formed by the vectors ñ, h̃, and s̃ the joint

probability of getting noise of magnitude and phase N [k]∠θñ[k] in the kth bin can

be written as:

p(N [k], α[k]|H[k], σ[k]) =
H[k]

2πσ[k]2
exp

[
−H[k]2 + S[k]2 − 2H[k]S[k] cos(α[k])

2σ[k]2

]
.

(4.25)

The joint probability of acquiring the set of values measured {S̃[k]}, given that

the model {H̃[k]} = M{θ}; [n]) is true, is equal to the probability of the set of

errors. This is the likelihood of the model:

L =
K∏
k=1

p(N [k], α[k]|H[k], σ[k]) (4.26a)

=
K∏
k=1

H[k]

2πσ[k]2
exp

[
−H[k]2 + S[k]2 − 2H[k]S[k] cos(α[k])

2σ[k]2

]
(4.26b)

= (2π)−K exp

[
−

K∑
k=1

2 log(σ[k])− log(H[k]) +
H[k]2 + S[k]2 − 2H[k]S[k] cos(α[k])

2σ[k]2

]
.

(4.26c)

And taking logarithms this is:

log L = (2π)−K−
K∑
k=1

2 log(σ[k])−log(H[k])+
H[k]2 + S[k]2 − 2H[k]S[k] cos(α[k])

2σ[k]2

(4.27)
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4.7 Nested Sampling

Nested sampling is a relatively new Monte Carlo method by Skilling (113) in-

tended for general Bayesian computation. It reverses the usual approach of Monte

Carlo Markov Chain (MCMC) methods, by directly targeting the value of the ev-

idence rather than the posterior probability distribution. Samples from the pos-

terior distribution are an optional by-product of the computation. The nestled

sampling algorithm and its implementation are covered in (114).

In this work the nested sampling method was preferred over the MCMC meth-

ods. This was a personal decision and I do not pretend to claim any overall extra

advantages for one or the other. The decision taken was mainly due to the nested

sampling being a more systematic and clear algorithm to implement for me. I

tried MCMC approaches but the difficulty to ascertain the convergence of the

algorithm and deciding on the convenience of the number of chains to use was a

reason to opt for the nested sampling algorithm, which I implemented in Matlab.

Eq. 4.2 can be written in a slightly different form where the hypothesis under

consideration is a particular model with the set of parameters Θ. Then, the joint

probability of the set of parameters and the data acquired D can be written in

two ways following the product rule (see (114)):

Joint ≡ Prior× Likelihood = Evidence× Posterior (4.28a)

p(Θ,D|I) = p(Θ|I)p(D|Θ, I) = p(D|I)p(Θ|D, I) (4.28b)

= L(Θ)π(Θ) = ZP (Θ), (4.28c)

where the likelihood is L(Θ) = p(D|Θ, I), the prior is π(Θ) = p(Θ|I), the

evidence is Z = p(D|I), and the posterior is P (Θ) = p(Θ|D, I). Due to the

normalization requirement of probability density functions,
∫
P (Θ)dΘ = 1, the

evidence Z can be separated from the shape P (Θ) to be written as:

Z =

∫
L(Θ)π(Θ)dΘ =

∫
L dX (4.29)

where dX = π(Θ)dΘ is the element of probability mass associated with the prior

density π(Θ). As a function of the scalar value of the evidence Z the distribution
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of the posterior mass is:

dP = p(Θ)d(Θ) = Z−1L(Θ)π(Θ)dΘ. (4.30)

The evidence Z measures the goodness of the model to interpret the data and it is

the crux for model comparison through the Bayes factor. However, its calculation

by rastering over all dimensions of Θ becomes rapidly impractical for models with

many dimensions.

The nested sampling provides an efficient way of calculating the integral for Z

in Eq. 4.29, using the prior mass X directly, as a sum of L dX elements following

an iterative process that sweeps over the parameter space. To see how it works,

let us define the fraction of prior mass with likelihood greater than λ:

X(λ) =

∫
L(Θ)>λ

π(Θ)d(Θ). (4.31)

As the bordering likelihood λ increases, the enclosed prior mass X decreases from

X(0) = 1 to X(∞) = 0. Inverting the function as (L(X(λ)) ≡ λ), the evidence

becomes a one-dimensional integral over the unit range:

Z =

∫ 1

0

L(X) dX, (4.32)

where L(X) is a strictly decreasing function.

4.8 Nested Sampling procedure

The nested sampling technique uses a group of n objects (points in the param-

eter space) uniformly sampled with respect to the prior π(Θ) and subject to an

evolving hard constraint L(Θ) > L∗. The objects keep moving toward regions

of higher likelihood through an iterative process and finding the regions of the

parameter space that contribute significantly to the evidence integral in Eq. 4.29.

In terms of X, the objects are uniformly sampled subject to the constraint

X < X∗ (where X∗ corresponds to L∗). At each iteration, the object with the

lowest value of likelihood is replaced with a new object of higher likelihood. This

is usually done by selecting an object randomly and evolving it through a Markov
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Chain to obtain another object with a higher likelihood. The algorithm keeps

iterating inwards in X, upwards in L, to locate the tiny region where most of the

joint distribution is to be found.

On entry of a new iteration, there are n objects restricted to the prior mass

X < X∗. The object with the lowest likelihood, which corresponds to the largest

X, is the largest of n numbers uniformly distributed in (0, X∗). Note that this

likelihood value will not correspond exactly with the prior mass X assigned to

it but it is a approximation when enough objects are involved in the process.

There is an uncertainty on the value of the largest X chosen, and the shrinkage

t = X/X∗ is distributed as:

p(t) = n tn−1. (4.33)

Iterations continue by taking the object with the lowest likelihood (X,L) as the

new limit (X∗,L∗). Throughout the iterative process only one set of shrinkage

factor values t will be correct: that one corresponding to the randomly selected

values Θ. The uncertainty on the shrinkage factors induces an uncertainty on

the computed evicence Z, which can be calculated (see (113)).

The contribution to the evidence at iteration k is the area Lkwk where the

simplest width is wk = Xk−1 −Xk, which keeps accumulating as:

Zk = Zk−1 + Lk(Xk−1 −Xk). (4.34)

During the iterative process Lkwk starts rising, with the likelihood Lk increasing

faster than the widths wk decrease: the important regions of the parameter space

are being found. Eventually, L flattens off and the decreasing width dominates the

increasing likelihood, so the contributions pass across a maximum and start to fall

away. Fig. 4.6 and Fig. 4.7 show graphically the evolution of the nested sampling

algorithm in a two dimensional parameter space and with n = 3 objects. The

evidence Z is the area under the green curve, which is approximated by adding

the areas of the rectangles with height Lk and width wk given by the approximate

prior mass difference assigned through the iterative prior shrinking process.
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Figure 4.6: Likelihood contours shrink by factors of e−1/n in area and are roughly
followed by succesive objects 1,2,3,4,5. Reproduced from (115).

Figure 4.7: Evolution of the nested sampling algorithm for a bivariate probability
distribution function with 3 objects shown in Fig. 4.6. Nested likelihood contours
enclose succesively shrinking prior mass regions and evidence Z is approximated by
adding areas of the rectangles. Increasing the number of objects used in the iterative
process the approximation of the evidence (area under the green curve) is more accurate.
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4.8.1 Terminating the iteration

The algorithm needs to run until most of the evidence Z has been found. The

simplest is to stop the algorithm after a pre-set number of iterations, but this

does not assure the regions of parameter space with the biggest contributions to

Z will be found. A better way of terminating the iteration is to check that the

maximum possible contribution to the evidence (given by the object with the

highest likelihood value) is already smaller than a tiny pre-set fraction f of the

accumulated evidence. When this is fullfilled it means that the contributions to

Z are tailing off and the sum is nearly complete. At iteration k, the check for

termination can be written as:

max(L1, ...,LN)Xk < fZk (4.35)

where Li are the likelihoods of the current N points in the parameter space. The

iterations should be continued for long enough as to practically accumulate all

the evidence. After the last iteration all the objects should be concentrated in a

small region in the parameter space and their contribution to evidence should be

minimal.

4.8.2 Generating a new object by random sampling

At every iteration of the nested sampling algorithm the object with the lowest

likelihood needs to be replaced by a new one, generated from the prior and subject

to the hard constrainst L > L∗. The domain of the prior obeying the constraint

shrinks geometrically and, generally, it is not expected to find an object in this

small domain easily.

With complicated models, particularly those with multiple parameters, it is

rare that the samples from the distribution can be obtained directly. Various

clever strategies have been devised to allow drawing representative samples from

a target distribution. The Markov chain Monte Carlo (MCMC) is one of them

and makes possible to sample iteratively from distributions that converge to the

desired target probability distribution.

In the process of obtaining a new object, guidance provided by previous it-

erates and the active objects may be used: one of the current objects can be
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randomly chosen and evolved through a Markov chain to get a new object that

complies with the constrain and it is far enough from the starting point as to

lose memory of the starting point. A Metropolis-Hastings Markov chain has been

used in this work to evolve a known object to another to replace the one with the

lowest likelihood.

4.8.2.1 Markov chain

A Markov chain refers to a series of values {Θ} obtained sequentially that sat-

isfy the Markov property : Θt+1 is dependent only on its nearest past value Θt.

An adequate transition probability density function q (called “kernel”) maps two

consecutive values q(Θt+1|Θt), where the kernel is considered to be time homo-

geneous (not changing with t).

The convergence of a chain is guaranteed if it is irreducible and aperiodic (116).

It is irreducible if under the transition rule q considered there exists a non-zero

probability of visiting any particular state – from all starting points, the Markov

chain must eventually be able to jump to all states in the target distribution with

positive probability. Aperiodicity implies that the samples of the chain do not

show a repetitive pattern – the chain does not oscillate between different states

in a regular periodic movement.

Many clever methods have been devised to sample from a target distribution

by constructing Markov chains. In the following, the Metropolis-Hastings algo-

rithm is presented, an extensively applied algorithm that has been used in this

work.

4.8.2.2 Metropolis-Hastings algorithm

The Markov chain extends itself by carefully accepting only some of the pro-

posed candidates. The Metropolis-Hastings algorithm defines explicitly the ac-

ceptance/rejection rules for the Markov chain in a two-stage iterative process:

1) value Y is proposed for Θt+1 from a proposal distribution q(Y |Θt) easy to

evaluate; 2) the decision whether to accept or not the candidate Y as the next
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value of the chain Θt+1 is taken on the basis of the ratio given by the Metropolis

ratio:

r =
π(Y )

π(Θt)

q(Θt|Y )

q(Y |Θt)
. (4.36)

The denominator assess the probability of a forward jump Θt → Y whereas

the numerator is the probability of the reverse path Y → Θt. If the proposal

distribution q is symmetric, so that q(Θt|Y ) = q(Y |Θt), then the second factor

in Eq. 4.36 is equal to one and it can be dropped. If r ≥ 1 the value proposed

is accepted and incorporated to the chain Θt+1 = Y . If r < 1 the proposed

value is accepted with probability r: draw a value from an uniform distribution

u ∼ U[0, 1] and set Θt+1 = Y only if r ≥ u; if r < u the proposed value is not

accepted and Θt+1 = Θt (the chain remains in the same point). Mathematically,

this is summarised with the acceptance probability α(Θt, Y ), which is given by:

α(Θt, Y ) = min(1, r) = min

(
1,
π(Y )

π(Θt)

q(Θt|Y )

q(Y |Θt)

)
. (4.37)

For a step by step explanation of the implementation of this algorithm and various

examples see (117). A proof that following this acceptance rule the stationary

distribution of the Markov chain is the desired target distribution is provided

there.

4.8.3 Implementation of the nested sampling algorithm

Steps for the implementation of the algorithm are rather well defined. However,

and depending on the problem at hand, the user has a choice on the ways the

new object to replace the one with the lowest likelihood will be proposed. The

crux is to have enough objects, and to evolve them adequately to sweep all the

parameter space so that all the important regions are considered. One possible

way to find a candidate to replace the object with the lowest likelihood is to evolve

an object through a Markov chain in order to obtain an appropriate candidate.

For an example of its implementation see (114); complementarily a pseudo-code

is presented here in the Appendix in I.
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In this work the implementations of the nested sampling used between n = 100

and n = 300 objects. Mostly, the number of objects used depended on the number

of variables involved. Using as many objects as possible was aimed to improve

accuracy but the long computation times for multidimensional parameter spaces

constrained their number. At each iteration a randomly selected object was

evolved through a Markov chain in order to get a candidate for the replacement.

The transition kernel q consisted on a multivariate normal distribution centred

on the selected object and with a covariance equal to a scaled-down covariance

matrix of all the current objects. The fact that the uncertainty of the proposal

distribution reduces with each iterate – adaptive as the shrinking proceeds –

makes possible to look for a candidate in the region where all the active points

are and in a direction that takes into account the correlations between variables.

The sampling from the multivariate normal distribution can be written as:

Θt+1 ∼ N(Θt,Σ) (4.38)

where the elements of the covariance matrix Σ are:

Σij = c
1

n

n∑
i,j=1

(θi − θ̄i)(θj − θ̄j) (4.39)

and c < 1, for the scaled-down covariance matrix considered. The Markov chain

can have as many links m as desired and the last point is set as the new live

point to replace the one with the lowest likelihood. In our case, and following

parameters used in (118), c = 0.1 and m = 20 were adopted. These are quite

arbitrary values with which the algorithm performed well. Each state is accepted

with the probability shown in Eq. 4.37 when complying the likelihood constraint

L(Θt+1) < L∗. If at the end of the m trials no candidate has yet fullfilled the

requirements, the chain is started from another object and evolved again until

finding an adequate candidate.

4.8.4 Posterior Sampling

In the previous sections it has been shown how the nested sampling algorithm is

focused on calculating the evidence. In the process, a list of objects (points in the
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multidimensional parameter space) are recorded, the one with the lowest likeli-

hood value at each iteration of the algorithm. Since these points have succesively

higher likelihood values obtained by sweeping the parameter space, they are a

representation of the posterior distribution density. It is possible to compute the

contribution of each of the samples to the accumulated evidence Z by:

pk =
Lkwk
Z

=
Lk e

−k/N

Z
. (4.40)

Posterior samples may be generated in proportion to their contribution to Z

during the nested sampling process: those samples that contributed tiny amounts

to the total evidence, and extracted during the process from non-relevant regions

of the parameter space (small likelihood), generate few posterior samples. On

the other hand, those more contributory samples taken from regions where the

likelihood is concentrated, generate more posterior samples.

For example, considering a perfect sweep of the parameter space, if a particu-

lar sample Θi contributed to Z three times as much as Θj did [p(Θi) = 3p(Θj)], it

means that when sampling from the posterior distribution, it is three times more

likely to get Θi than Θj. With this in mind, samples from the posterior distri-

bution can be obtained with ease, for example, with starcaise sampling (114).

Similarly, any statistics Q(Θ) of the posterior distribution can be computed from

the samples.

The number of posterior distribution samples is limited by the number of

iterations done by the algorithm, and this is directly related to the number of

objects used in the simulation. In order to get enough samples for a fair repre-

sentation of the posterior distribution it may be necessary to run the algorithm

with more objects, causing the algorithm to progress more slowly but sweeping

the parameter space more exhaustively and calculating Z more precisely too.
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Chapter 5

Model Comparison and

Parameter estimation

This chapter presents the Bayesian analysis followed in order to extract informa-

tion from data suspected of containing a burst-type gravitational wave. This is

intended as a follow-up analysis to be carried out once the preliminary pipeline

has flagged a gravitational wave signal candidate; for example, from the analysis

of a spectrogram in which a sudden increase of the power of the signal has been

observed.

Generally, the gravitational wave signal will be weak at detection and, most

probably, concealed within the instrumental noise. Quantifying the likelihood of

the presence of a signal is important and justifies the model comparison exercise:

typically, the probability of collected data to be purely instrumental noise is

compared against the probability of the data to contain a signal of a particular

model. Once the presence of the signal is ascertained the model that ‘makes best

justice’ to the data is chosen and the most likely value of its parameters estimated.

Then, the parameter values and their uncertainties need to be translated into

physical language to obtain significant astrophysical information.

5.1 Data for analysis

Detector data analysed throughout this work has been obtained by injecting sig-

nals into synthetic instrumental noise in the frequency domain, as explained in
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Section 4.3. In general, the length of data to process depends on the number

of detectors in the network and the number of frequency points included in the

calculation of the likelihood, which, in turn, depend on the bandwidth and fre-

quency resolution considered. In this chapter, the detector network comprising

the three advanced instruments (Adv-LIGO-L, Adv-LIGO-H and Adv-VIRGO)

was considered and the projections of a signal from the galactic centre at the

particular instant of GLST = 0h were studied.

Adopting the subindex i to consider each of the oscillation modes (i = 1 for

f -mode and i = 2 for p-mode), the generic expression of the Fourier transform of

an exponentially damped sinusoid gravitational wave signal projected onto one

particular detector j can be written using Eq. 3.24 as follows:

h̃(j)(f ; Θ) =
∑
i

h̃
(j)
i (f ; [h0i, f0i, τi, λi, ψi], δ,RA) (5.1a)

=
I∑
i=1

z−n0j + ri[CSij sinw0i + CCij cosw0i]z
−(n0j+1)

1− 2ri cosw0iz−1 + r2
i z
−2

, (5.1b)

where z = ejw and w[k] = 2πf [k]/fs. Here, there is an underlying assumption

that all the detectors of the network have the same frequency resolution. In the

following, the parameters in Eq. 5.1 are explained more in detail:

• n0j is the number of shifted samples for each detector j. The data acquired

by the detector of the network first receiving the signal is modeled as a non-

shifted signal, n01 = 0 (this is the only non zero-padded stretch of data).

The rest of the detectors within the network present a definite time-shift ∆t,

which can be translated into a positive integer number (n0 = round(fs∆t))

corresponding the number of samples elapsed since the signal was detected

in the first detector. The procedure followed to calculate time differences

between detectors is covered in Appendix J.

• w0i = 2πf0i/fs is the oscillation frequency of each mode i in units of rad

sample−1. Fiducial oscillation frequency values for w01 (f -mode) and w02

(p-mode) of neutron stars used in this work have been taken from (75) and

are shown in Table 5.1.
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5.1 Data for analysis

• ri = e−2π/(fsτi) is the damping time for each of the modes i in units of

sample−1.

• CSij = h0iF+ij and CCij = h0iλiF×ij are the amplitudes of the sine and

cosine components, respectively, for each mode i on detector j. The antenna

patterns F+ij and F×ij are functions of the relative orientation of the source

and the detector j at the time of the burst and with the polarisation angle

of each mode ψi. The procedure to calculate the antenna pattern values,

function of the instantaneous location/orientation of the detector, is covered

in Appendix D. λi is the polarisation degree for mode i depending on the

orientation of the source in space ι (see Appendix B).

It is straight-forward to calculate the real and imaginary coefficients of the Fourier

transform of the exponentially damped sinusoidal signal with Eq. 5.1, the generic

DTFT expression. There exists advantages of using this analytical expression:

• The complex value for any particular frequency bin [k] is readily computed,

there is no need to calculate the DFT of the whole data stretch. Thus, it

is easy to focus on any bandwidth of interest with the desired frequency

resolution by simply computing the analytic expression for those frequency

values.

• If required, after a variable change z → z∗ it is possible to calculate the DFT

at non-uniformly spaced frequency points. This is known as the Warped

Discrete Fourier Transform (WDFT) and is a convenient tool for analysing

signals where most of the power is concentrated in one or several nar-

row bandwidths (several oscillation modes, for example) and the frequency

bands between those regions, containing most of the power, are not impor-

tant. The reader is referred to (93; 119; 120) for more information about

the WDFT. Note: in this work the calculation of the likelihood was limited

to uniformly spaced frequency points within appropriate bandwidths.

Eq. 5.1, in combination with Eq. 4.24, allows the calculation of the logarithm

of the likelihood for stretches of data of several detectors that may include one
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5.1 Data for analysis

or more oscillation modes. The total likelihood of the data D acquired by all the

detectors in the network can be then written as:

p(D|M, I) = L(M,D) =
J∏
j=1

L(j). (5.2)

In this work, the amount of data used to compute the likelihood is constrained

to those frequency points within the bandwidths where most of the energy of the

signal has seen to be concentrated in the spectrogram. Fig. 5.1 shows the real

and imaginary coefficients of an arbitrary exponentially damped signal, where

the borders of the bandwidths limiting the frequency points, included in the

computation of the likelihood, are marked with dashed vertical lines. The regions

outwith those delimited by the vertical lines hardly contain any signal energy and

are omitted from the computation of the likelihood.
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Figure 5.1: Real and imaginary coefficients of an exponentially damped sinusoidal
signal of two oscillation modes. The vertical lines show the bandwidths enclosing the
frequency points used in the calculation. The lack of features outwith the two bands
justifies the motivation to compute the likelihood using only the frequency points within
the bandwidths. For a detailed representation of the spectrum corresponding to the
f -mode, see Fig. 4.5.

The f -mode oscillation is short, with an approximate duration of a tenth of a
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second, whereas the p-mode oscillation is larger and it can last for a few seconds.

Consequently, the relevant frequency band that captures the power of the signal

is wider for the f -mode than for the p-mode. Throughout this work bandwidths

of ∆ff/2 = 300 Hz and ∆fp/2 = 100 Hz around the most energetic frequency

bin have been adopted, with a frequency resolution of fres = 0.05 Hz. Thus,

the frequency points at which real and imaginary coefficients are computed fall

in the range wf = 2π/fs[f0 − ∆ff , f0 + ∆ff ] and wp = 2π/fs[f0 − ∆fp, f0 +

∆fp] in increments of ∆w = 2πfres/fs. This means that, in general, when both

oscillations are included, Eq. 5.1 needs to be computed at ∆ff/fres + ∆fp/fres =

600/0.05 + 200/0.05 = 12000 + 4000 = 16000 frequency points per each detector

and likelihood evaluation.

5.2 Priors

Bayesian methods combine the data acquired and any previous information to

infer posterior probabilities. It is important to establish what is known and the

degree of certainty of the hypotheses considered, the values of the parameters of

the model in our case, for there are instances when something is known about one

or more parameters of the model. In the Bayesian inference this is called prior

information and it reflects the knowledge previous to analysing the data. This

information can be incorporated into the Bayesian inference process so that our

final beliefs are shaped in light of the prior information and the acquired data.

In the following, the priors of all the parameters of the models considered are

presented.

• Amplitude h0: The amplitude of the gravitational wave is related to the size

of the oscillation of the compact star. Unfortunately, the energy channeled

into the oscillation modes is not well known, due to the varied mechanisms

expected to make the neutron star ring. In this work, a minimum and a

maximum energy emitted as gravitational radiation were assumed and their

corresponding amplitude values calculated (see Section 5.3). The amplitude

is a scale parameter : it is mapped to the range of energies encompassing a

few orders of magnitude with Eq. 5.12. The state of ignorance within the
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5.2 Priors

range of amplitude values may be represented by Jeffrey’s prior, a uniform

probability distribution in a logarithmic scale (see (117)):

π(h0|I) =

{
1

h0 log(h0max/h0min)
, if h0min < h0 < h0max

0, otherwise.
(5.3)

This prior probability is not defined for the case of h0 = 0 but this was

not a problem, for a minimum non-zero energy/amplitude has always been

considered. The wide range of energy values Egw from 0.001 × 10−6 to

100× 10−6 Msc
2 has been adopted.

• Frequency f0: The search is limited to a range of frequencies around the

most energetic pixel in the spectrogram. A prior distribution biased towards

the central frequency value may be justifiable; however, complete ignorance

within a reasonable range around that value has been preferred, reflected

by a uniform or flat prior of the form:

π(f0|I) =

{
1

(f0max−f0min)
, if f0min < f0 < f0max

0, otherwise.
(5.4)

• Damping time τ : The search is limited to the range of time around the

duration of the signal indicated by the spectrogram. Again, a prior distri-

bution biased to that particular value could be used but complete ignorance

has been assumed within a reasonable range of values by means of a uniform

prior:

π(τ |I) =

{
1

(τmax−τmin)
, if τmin < τ < τmax

0, otherwise.
(5.5)

• Polarisation degree λ: In general, from the spectrogram of gravitational

wave data only, nothing will be known about the polarisation degree. Unless

orientation of the neutron star is known, complete ignorance is assumed
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5.2 Priors

and the search is open to any degree of ellipticity from linear polarisation

λmin = 0 to circular polarisation λmax = 1:

π(λ|I) =

{
1

(λmax−λmin)
= 1, if λmin < λ0 < λmax

0, otherwise.
(5.6)

When the location of the source is known, it may be that from electromag-

netic observations of the nebula around the neutron star the orientation of

its angular momentum vector ι is known with some uncertainty; from here,

in turn, the distribution of λ may be inferred (see Appendix J) and the

prior could be then approximately written as a Gaussian distribution:

π(λ|I) = N(µλ, σλ) =
1

σλ
√

2π
exp

[
−(µλ − λ)2

2σ2
λ

]
, (5.7)

where µλ and σλ are deduced from fitting π(λ) obtained from p(ι).

• Polarisation angle ψ: In general, considering the spectrogram of gravita-

tional wave data only, nothing will be known about the polarisation angle.

Thus, complete ignorance is assumed and the search is open to any polar-

isation angle. Since the antenna pattern functions (F+, F×) are the same

for any two polarisation angles π rad apart, the search is carried out in the

range of values limited between ψmin = 0 and ψmax = π. This is given by

the uniform prior:

π(ψ|I) =

{
1

(ψmax−ψmin)
= 1

π
, if ψmin < ψ < ψmax

0, otherwise.
(5.8)

Here, again, from electromagnetic observations it may be possible to con-

strain the polarisation angle with a Gaussian distribution centred in the

real value of the form:

π(ψ|I) = N(µψ, σψ) =
1

σψ
√

2π
exp

[
−(µψ − ψ)2

2σ2
ψ

]
, (5.9)

where σψ is set to include the real value of ψ within a range of ±5◦ (±0.087

rad) of the mean value with probability higher than 95%.
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5.3 Amplitude, frequency and damping time of the signal

• Declination (δ) and Right Ascension (RA): For a source of unknown location

any direction is taken as equally probable – isotropically distributed. If

the surface of a sphere was meshed for each cell to have the same solid

angle, the source would have the same probability of being in any cell. For

equatorial coordinates with the ranges δ ∈ [−π/2, π/2] and RA ∈ [0, 2π],

the total ignorance about the sky-location can be defined by the following

two independent uniform distributions:

π(sin δ|I) =
1

(sin δmax − sin δmin)
=

1

2
and π(RA|I) =

1

2π
. (5.10)

A random sky location can be defined by selecting (δ,RA) from two uniform

distributions: sin δ ∼ U[-1,1] and RA ∼ U[0, 2π].

Table 5.1 shows the exact parameter values of the injected signals and the

range of the parameter space searched. The amplitude of the signal is a function

of the energy released as gravitational radiation by the oscillations of the neutron

star. The frequency and damping time values are fiducial and have been taken

from tabulated values (75) corresponding to the f - and p-modes of neutron star

oscillations.

Table 5.2 shows the arrival order and the time differences, in milliseconds and

number of samples, to the detectors chosen and the antenna pattern functions

for each mode and detector.

5.3 Amplitude, frequency and damping time of

the signal

The amplitude of the gravitational burst signal reaching the detector depends

on the energy emitted by the source and the distance to it. Rough estimates of

gravitational-wave amplitudes far away from the pulsating star can be obtained

with the standard relation for the energy flux (121):

F =
c3

16πG
|ḣ| = 1

4πr2

dE

dt
, (5.11)
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5.3 Amplitude, frequency and damping time of the signal

PARAMETER VALUES

Description Par. Units min. max. Exact

(Energy) Egw Msc
2 0.001 ×10−6 1 ×100× 10−6 several∗

Amplitude h0f - 1.79 ×10−23 5.67 ×10−21 several∗∗

Osc. frequency f0f Hz 3070 3110 3090

Damping time τf sec 0.01 1 0.109

Pol. degree λf - 0 1 0.4

Pol. angle ψf rad 0 π 1.2

Amplitude h0p - 3.58 ×10−24 1.13 ×10−21 several∗∗∗

Osc. frequency f0p Hz 7818 7858 7838

Damping time τp sec 0.1 10 4.64

Pol. degree λp - 0 1 0.7

Pol. angle ψp rad 0 π 2.4

Declination δ rad −π/2 π/2 -0.5063

Right Ascension RA rad 0 2π 4.6498
∗ function of the energy and distance to the source d = 8.5 kpc (see Eq. 5.12).
∗∗ exact values and SNR can be seen on tables summarising results in Appendix K.
∗∗∗ taken to be a fifth of the amplitud of the f -mode.

Table 5.1: Exact values of the waveforms injected and limits of the searched parameter
space for f - and p-modes.

ARRIVAL ORDER AND TIME DIFFERENCES

Name Arrival f-mode p-mode

Pos. Time (ms) Samples∗ F+ F× F+ F×

Adv-LIGO-H 1 0 0 -0.330 0.282 0.423 0.101

Adv-LIGO-L 2 6.8 111 -0.285 0.026 0.188 0.216

Adv-VIRGO 3 21.5 352 -0.930 0.188 0.699 0.641

Signal incoming from the galactic centre at GLST = 0h.

Polarisation angles for each mode shown in Table 5.1.
∗ Assuming sampling frequency fs = 16384 Hz.

Table 5.2: Arrival order, time differences, and antenna patterns for f - and p-modes
described in Table 5.1 of the detectors.
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5.4 Scenarios and parameters considered

which, in combination with i) dE/dt = E/2τ , ii) the assumption that the signal

is monochromatic, iii) knowledge that the effective amplitude achievable after

matched filtering scales as the square root of the number of observed cycles,

heff = h0

√
n = h0

√
f0τ , provide an estimate of:

heff ≈ 1.294× 10−20

(
E

10−6Msc2

)1/2(
2 kHz

f0

)1/2

×
(

8.5 kpc

d

)
(5.12)

for the f -mode. For the case of a supernova, it is quite conservative to assume

an energy release of 10−6Msc
2 in the form of gravitational radiation (121). For

the fiducial values of f0 = 2 kHz, τ = 0.1 s and d = 8.5 kpc, h0 = 9.15× 10−22.

In the absence of a similar expression to Eq. 5.12 for the calculation of the

amplitude of the p-mode, this has been considered in this work, quite arbitrarily,

as a fifth of the f -modes’ amplitude.

5.4 Scenarios and parameters considered

Several hypotheses grouped in two realistic scenarios have been considered in this

chapter; they represent different states of knowledge/ignorance, summarised in

Table 5.3. Each of the hypotheses considered makes different assumptions with

respect to the shape of the signal, its polarisation and the location of the source.

Two scenarios have been considered depending on whether only one oscillation

mode (f), or two oscillation modes (f and p), are known/suspected. We assume

this information can be inferred from the spectrogram that picked up the burst

candidate in the first instance. Different degrees of knowledge (or ignorance)

about the signal depend on whether, from electromagnetic observations a) the

location of the source is known and b) something about the orientation of the

neutron star in space is known.

It may be that the candidate source is a catalogued pulsar of precisely known

sky-location and that the antenna pattern functions F+ and F× at a particular

instant of time are better defined, although not completely, with the polarisation

angle ψ generally unknown. Knowledge of the location of the source reduces

in two dimensions the parameter space to be studied in two dimensions. For
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those sources with known locations, X-ray images of the nebula region around

the pulsar may be available, from which the orientation of the angular momentum

vector could be estimated (122; 123). If the approximate direction of the angular

momentum is known, a credibility interval for the polarisation degree λ and

the polarisation angle ψ values may be inferred. This information can then be

incorporated into the model selection and parameter estimation by constraining

the priors of λ and ψ to a narrower range.

In the following, the scenarios and hypothesis considered in this work are

listed:

• SCENARIO 1 - One oscillation mode is detected: f -mode.

– H10: NOISE: The data acquired is only instrumental noise. No model

is involved in this hypothesis.

– H1K: SIGNAL + NOISE: The data acquired contains the signal plus

instrumental noise. The sky location of the source is known but noth-

ing about its orientation. The model has 5 unknown parameters of

independent uniform priors: [h0, f0, τ, λ, ψ].

– H1U: SIGNAL + NOISE: The data acquired is the signal plus instru-

mental noise. Neither the source’s sky-location nor anything about

its orientation are known. The model has 7 unknown parameters of

independent uniform priors: ([h0, f0, τ, λ, ψ], [δ,RA]).

– H1G: SIGNAL + NOISE: The data acquired is the signal plus in-

strumental noise. The source’s sky-location and the direction of the

angular momentum are known with some uncertainty. There are 5

unknown parameters, from which three have uniform priors (h0, f0, τ),

and the other two are related to the polarisation of the signal (λ, ψ),

function of a Gaussian distribution of ι.

• SCENARIO 2 - Two oscillations modes are detected: f - and p-modes.

– H20: NOISE: The data acquired is only instrumental noise. No model

is involved in this hypothesis.
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5.5 Model comparison - evaluation of the odds ratio

– H2K: SIGNAL + NOISE: The data acquired contains the signal plus

instrumental noise. The source’s sky-location of the source is known

but nothing about its orientation. The model considers two oscillation

modes with 2×5 = 10 unknown parameters of independent priors:

[h0i, f0i, τi, λi, ψi], for i = 1(f −mode)andi = 2(p−mode).

– H2U: SIGNAL + NOISE: The data acquired contains the signal plus

instrumental noise. Neither the source’s sky- location nor anything

about its spatial orientation are known. The model considers two

oscillations with 2×5 + 2 = 12 unknown parameters of independent

uniform priors: [h0i, f0i, τi, λi, ψi] for i = 1, 2 and [δ,RA].

All the hypotheses of each scenario use the same number of frequency points to

evaluate the likelihood of the model. Cross-scenario hypothesis comparison is not

carried out, due to the different number of frequency points used for hypothesis

considering one or two oscillation modes.

5.5 Model comparison - evaluation of the odds

ratio

The odds ratio is a convenient way of comparing two hypotheses: it measures for

which one of them is the data more favourable. Here, as explained before, each

hypothesis corresponds to a model. Typically, one hypothesis considers the data

acquired to be a combination of signal plus noise, whilst the other considers the

data to be only instrumental noise. The odds ratio can be written:

OS,N =
p(HS|D, I)

p(HN |D, I)
=
p(HS|I)

p(HN |I
p(D|HS, I)

p(D|HN , I)
=
p(HS|I)

p(HN |I)
BS,N . (5.13)

where D is the data acquired by the detectors. HS can be any hypothesis of

scenario 1 (H1K, H1U, or H1G) and HN is H10. Similarly, for scenario 2 HS could

be any of H2K or H2U and HN is H20. Before analysing the data it is common to

consider that the two hypotheses are equally probable, p(HS|I) = p(HN |I); then

the odds ratio OS,N reduces to the Bayes factor BS,N . This way, and without any
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Scenarios and hypotheses considered

Hyp. Sc. S-N Mode Parameters

h0 f0 τ λ ψ δ RA ι

H10 1 N f n/a n/a n/a n/a n/a n/a n/a n/a

H1K 1 S+N f u u u u u k k n/a

H1U 1 S+N f u u u u u u u n/a

H1G 1 S+N f u u u ∼k ∼k k k ∼k

H20 2 N f n/a n/a n/a n/a n/a n/a n/a n/a

p n/a n/a n/a n/a n/a - - -

H2K 2 S+N f u u u u u k k n/a

p u u u u u - - -

H2U 2 S+N f u u u u u u u n/a

p u u u u u - - -

k ≡ known, ∼k ≡ quasi-known (Gaussian prior).

u ≡ unknown (Uniform prior).

n/a ≡ not applicable.

Table 5.3: The two scenarios and their hypotheses considered.
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previous bias, we let the data speak by calculating the ratio of the likelihoods of

two models. In logarithmic notation the Bayes factor is:

logBS,N = log(p(D|HS, I))− log(p(D|HN , I)). (5.14)

5.5.1 ‘Signal + noise’ hypotheses

For those hypotheses that consider the acquired data as a combination of signal

plus noise, the computation of the marginal likelihood (likelihood of the model

trying to interpret the data) requires integrating over the prior domain of all the

parameters of the model:

p(D|HS, I) =

∫
Θ

dΘ p(Θ|HS) p(D|HS,Θ, I), (5.15)

where the combined prior of the parameters (a point in the parameter space) is

the multiplication of each individual prior, as defined in section 5.2,

p(Θ|HS) =
∏
i

p(h0i|I) p(f0i|I) p(τi|I) p(λi|I) p(ψi|I), (5.16)

and the logarithm of the likelihood of a particular set of parameter values is:

log L(D, HS) = log(p(D|HS,Θ, I)) = (5.17a)

=
J∑
j=1

[
−K log(2π)−

K∑
k=1

2 log(σ(j)[k]) +
(s

(j)
< [k]− h(j)

< [k])2 + (s
(j)
= [k]− h(j)

= [k])2

2σ(j)[k]2

]
,

(5.17b)

where D ≡ {s̃(j)} is the combination of the Fourier coefficients of the data ac-

quired in the detectors of the network. In turn, [s
(j)
< , s

(j)
= ] and [h

(j)
< , h

(j)
= ] are the

Fourier coefficients of the data acquired and of the signal modeled h̃(j)(f ; Θ) in

Eq. 5.1, for a detector j.

The integration for the calculation of the marginal likelihood in Eq. 5.15 using

brute force over a close parameter space grid is computationally very demanding

and thus impractical. In this work, all the marginal likelihood calculations for

model comparison and parameter estimation have been carried out using the

nested sampling algorithm presented in section 4.7.
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5.5.2 ‘Only noise’ hypothesis

For the hypothesis HN , which assummes that the acquired data is only instru-

mental noise, there are no parameters to integrate over, because the instrumental

noise profile is known. There is no signal expected, (h
(j)
< [k] = h

(j)
= [k] = 0), and

the expression in Eq. 5.17 reduces to:

log(p(D|HN , I)) =
J∑
j=1

[
−K log(2π)−

K∑
k=1

2 log(σ(j)[k]) +
s

(j)
< [k]2 + s

(j)
= [k]2

2σ(j)[k]2

]
.

(5.18)

For the noise only case, evaluating the marginal likelihood with Eq. 5.18 is

straight-forward, for it does not require integration over parameter values.

5.6 Detection and false-alarm rate threshold

The minimum strength of the signal necessary to claim a detection has been

investigated first. The odds ratio between the hypotheses of HS and HN (see

Eq. 5.13) can be used to discern whether a stretch of data is more likely to be

only noise or otherwise contains a particular modeled signal. By considering

equal priors for both hypotheses a threshold value of the Bayes factor can be

established, above which the presence of the signal can be claimed.

The false alarm rate indicates the probability of claiming the presence of the

signal when in reality only noise is present. The probability that this happens can

be inferred from the computation of logBS,N for multiple noise realisations where

purposedly the signal has not been added. Due to the variability of different noise

realisations and to the randomness of the nested sampling algorithm, the resulting

logBS,N values show a distribution and the lower and upper limits enclosing

(1 − α) of the probability mass can be inferred. Taking the upper limit of this

range as a threshold value is the same as saying that a stretch of data resulting in

a Bayes factor higher than this threshold contains the signal with a probability

bigger than (1−α). In other words, there is a probability α to claim a detection

when there is only noise present.
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5.6.1 Scenario 1: f-mode

Fig. 5.2 shows the distribution of the resulting Bayes factor values from 100 differ-

ent noise realisations for each of the hypotheses considered, where the logarithm

of the Bayes factors logB1K,10, logB1U,10 and logB1G,10 have been calculated and

histogrammed. As expected, the fact that logBS,N � 0 for all the trials indicates

that the data containing only noise always favours the hypothesis H10 better than

any of the ‘signal + noise’ hypotheses (H1K, H1U or H1G). The comparison of the

histograms highlights the effect of Occam’s razor, which penalises the more com-

plicated models (H1U has two extra parameters due to the unknown location of

the source) and results in overall lower values of logB1U,10 over logB1K,10.
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Figure 5.2: Normalised distribution of logBS,N factors recovered from running the
algorithm 100 times for different noise realisations. The spread of the distribution
arises from the combination of different noise realisations and the random nature of the
nested sampling algorithm. The dashed curves correspond to the Gaussian distributions
fitted: the vertical lines enclose 98% of the probability mass of the fitted distribution,
delimiting the 1% false alarm rate of logBS,N thresholds at -2.496 and -3.117.

Fig. 5.3 shows Bayes factors when the stretch of data acquired contains in-

strumental noise plus signals of increasing strength, generated by increasing the

amount of energy channeled to the f -mode oscillation. For each of the SNR

150



5.6 Detection and false-alarm rate threshold

values considered the average value of five trials has been computed to reduce

the bias introduced by the uncertainty of their distribution. Values of logBS,N

factor increase rapidly for increasing values of SNR, showing that it is a sensitive

indicator of the presence of the signal. For low values of SNR the factor favours

the ‘only noise’ hypothesis, but as the strength of the signal increases, there is

a point at which the factor crosses the logS,N = 0 threshold, indicating that for

any signal of bigger strength the existence of the modeled signal is favoured. As

expected, for the same value of SNR, the Bayes factor is smaller for the more

complicated models.
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Figure 5.3: The recovered logBS,N (dots) and their mean (joined with continuous
lines) values for progressively stronger signals. The Bayes factor grows quickly for
increasing SNR values showing that it is a sensitive indicator of the presence of a
signal. The horizontal dashed line at logBS,N = 0 marks the borderline between the
regions where noise or signal are more likely. The vertical dashed lines correspond
with the intersections of the curves with the horizontal line and mark the strengths of
the signal where this border is located: at approximate SNR values of 6.44, 6.63 and
7.57. As reflected in Fig. 5.2 for the same SNR value the model with more parameters
presents a lower value of logBS,N , as expected.
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5.6.2 Scenario 2: f- and p-modes

The resulting logBS,N values from 100 different noise realisations when the sig-

nal is not present have been computed and histogrammed for the hypotheses in

scenario 2. The resulting values present a Gaussian-like distribution shown in

Fig. 5.4.
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Figure 5.4: Normalised distribution of logBS,N factors recovered from running the al-
gorithm 100 times for different noise realisations. The uncertainty on the logB arises
from the combination of different noise realisations and the random nature of the nested
sampling algorithm. The dashed curve corresponds to the Gaussian fit and the verti-
cal dotted lines enclose 98% of the probability, delimiting the 1% false alarm rate of
logBS,N thresholds at -2.251.

5.7 Parameter estimation

The results of the parameter estimation exercise with increasing signal strength is

presented in this section. For each of the hypotheses under the two scenarios con-

sidered, the most probable parameter values and the limits of the 95% credibility

intervals have been inferred from their posterior probability distributions.

The procedure followed consisted of injecting a signal of known characteris-

tics into the detector noise and then recover the values of the parameters that
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characterise the injected signal, based on different degrees of knowledge repre-

sented by the hypotheses. To emulate a realistic situation, the data for analysis

was created by projecting a signal of known characteristics and incoming from

a known sky location (galactic centre) to all the detectors of the network at an

arbitrarily chosen time instant (GLST = 0h). The projection of the signal onto

each detector was injected (added) to a noise realisation in accordance with the

noise level expected of each detector, as explained in Section 4.3.

The posterior probability distributions for the parameters of each of the mod-

els considered were computed for signals of increasing strength, several times for

each SNR value. Samples of the posterior probability are generated from the

samples recorded in the course of the nested sampling to compute the evidence,

as explained in section 4.8.4. Values obtained from the resampling have been his-

togrammed and the statistics of their distribution obtained. For the parameter

estimation, the same noise realisation was used for all the trials; this was done so

that the progressive evolution of the statistics of the recovered parameter values

could be observed as the strength of the signal increased.

5.7.1 Scenario 1 - hypothesis 1K

The sky-position of the source is known and only the shape of the signal injected

has to be determined (see summary in Table 5.3). Fig. 5.5 shows the posterior

probability density, resulting from averaging 5 runs of the nested sampling algo-

rithm with the same noise realisation, of the parameters defining the shape of the

waveform. As expected, the dispersion of the probability of each parameter tends

to narrow and shift toward the exact value as the SNR increases. In this respect,

all the parameters behave well, aside from the posterior probability distribution

of the polarisation degree λ, which constrains around the exact value only for

high SNR ∼ 20 values.

In the following, as an example the progress of the nested sampling algorithm

for the calculation of the marginal likelihood of the hypothesis H1K is presented.

The algorithm has been run five times with the same number of objects for the

case of a relatively strong signal (SNR = 12) embedded into instrumental noise

(same noise realisation for all the runs). Fig. 5.6 depicts the successive points of
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Figure 5.5: Posterior probability distributions and parameter estimation of the 5 pa-
rameters of the model for hypothesis H1K. The exact values of the parameters for
the signal injected are marked with a vertical continuous line and tabulated in Ta-
ble 5.1. The modes and 95% credibility intervals for each parameter are listed in the
Appendix K, Table K.1.
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the parameter space visited during the computation of the evidence; these are

the points of the parameter space that contributed to the accumulation of the

evidence and correspond to those with the lowest likelihood discarded, one per

iteration. Note that for all runs the algorithm finished after approximately 2800

iterations: it was stopped when the contribution to the evidence was smaller than

e−5 times its current value.

Fig. 5.7 gives another perspective of the evolution of the algorithm. On the left

hand side, the relation between the likelihood and the prior mass L(X) is shown.

This figure is the realistic counterpart of Fig. 4.7, included here for illustrative

purposes, with the logarithmic x-axis to reflect the geometrical reduction of X

and the sudden increase of likelihood for a small fraction of the prior probability

mass. The right hand side depicts the fraction of the final evidence accumulated

in each iteration.
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Figure 5.6: Evolution of the samples with nested sampling algorithm, for the case of a
signal of SNR = 12. Each subplot shows the evolution of each parameter for five runs
using the same noise realisation and number of objects. The horizontal continuous line
marks the position of the exact value injected, whereas the dotted lines delimit the
borders of the parameter space searched.
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Figure 5.7: Progress of the nested sampling corresponding to the evolution of the
algorithm for 5 runs depicted in Fig. 5.6. The plot on the left shows the evolution of
the likelihood in function of the prior mass X (read from right to left, from 1 to 0). The
plot on the right shows the evolution of the contributory fraction of the evidence pk (see
Eq. 4.40) at each iteration. For any of the runs, the first 1000 iterations, approximately,
were used to locate the contributory region of the parameter space and in the next 1500
iterations most of the evidence was found. The slightly different evolution curves show
the randomness of the algorithm (only of the algorithm, for the same noise realisation
has been used for all), caused by the random position of the objects at onset and their
random evolution to areas of higher likelihood.
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5.7.2 Scenario 1 - hypothesis 1G

The sky-position of the source is assumed to be known and again, as for hy-

pothesis H1K, only the shape of the waveform had to be determined. There is

some prior information regarding the polarisation degree and polarisation angle

(see summary Table 5.3): Gaussian distributions centred on the exact value and

enclosing 95% of the probability mass within a region of ± 5◦ have been adopted

both for ι (λ is derived from there, see Appendix J) and for ψ. Thus, the pri-

ors considered are π(λ) = N(µλ, σλ) = N(0.689, 0.098) and π(ψ) = N(µψ, σψ) =

N(1.2, 0.043). Fig. 5.8 shows the posterior probability densities of the parame-

ters. Again, as for hypothesis H1K, the increasing strengths of the signal move the

mode of the distribution toward the exact value while its uncertainty decreases.

As expected, the uncertainty of λ and ψ are considerably smaller than for the

hypothesis H1K (c.f. Fig. 5.5).
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Figure 5.8: Posterior probability distributions and parameter estimation of the 5 pa-
rameters of the model for hypothesis H1G. The exact values of the parameters for
the signal injected are marked with a vertical continuous line and tabulated in Ta-
ble 5.1. The modes and 95% credibility intervals for each parameter are listed in the
Appendix K, Table K.2.
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5.7.3 Scenario 1 - hypothesis 1U

In this hypothesis the location of the source is not known and hence the pa-

rameter space has two extra dimensions to search for. In an effort to locate

the sky-location of the source, working with declination values in the range

δ ∈ [−π/2, π/2] has been avoided by applying a change of variables, S = π/2− δ,
that shift the range of declination values to S ∈ [π, 0] to the positive axis. The

reason behind this change of variable is that the scale factor of the proposal

distribution to generate the new object candidates during the nested sampling

algorithm (see Section 4.8.3) is based on the covariance matrix of the active ob-

jects; and it may happen that these objects form a cluster of positive and negative

declination values, thus biasing the standard deviation of the proposal distribu-

tion toward zero, which is not desired. On the other hand, the values of the right

ascension have been used as such, but wrapped as a phase value so to be always

defined in the range RA ∈ [0, 2π].

Fig. 5.9 shows how the mode of the posterior distribution of each parameter

shifts towards the exact value and the uncertainty is decreased as the strength of

the signal increases. Again, it is observed that even for quite high SNR values the

polarisation degree λ is not well defined and its probability distribution is rather

ill-behaved. This is most probably related to the uncertainty of the source’s sky-

location. Fig. 5.10 and Fig. 5.11 show the posterior probability distributions of

the two variables defining the sky-location of the source. These figures show that

the two-fold degeneracy caused by the ’time of flight’ has been broken. This

is due to the fact that the detectors sample different superpositions of the two

polarization components, and therefore the expression for the likelihood is able

to break the two-fold degeneracy.
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Figure 5.9: Posterior probability distributions and parameter estimation of the 5 pa-
rameters of the model for hypothesis H1U. The exact values of the parameters for
the signal injected are marked with a vertical continuous line and tabulated in Ta-
ble 5.1. The modes and 95% credibility intervals for each parameter are listed in the
Appendix K, Table K.3.
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Figure 5.10: Posterior probability densities of the two parameters defining the source’s
sky-location. The exact value injected for each parameter is marked with a vertical
continuous line.
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Figure 5.11: Posterior probability densities, as 2D histograms, of the two parameters
defining the source’s sky-location, for signals of various strength.

160



5.7 Parameter estimation

5.7.4 Scenario 2 - hypothesis 2K

In this hypothesis the sky-position of the source is known but nothing much

about the burst gravitational wave that contains two oscillation modes shown

in spectrogram (see summary Table 5.3). In the following the results of the

estimation of the parameter values that define the signal are shown. Fig. 5.12

and Fig. 5.13 show the posterior probability densities (averaged for 5 runs of the

algorithm) of the 10 parameters that define the signal related to the f and p

oscillation modes.

Signals stronger than in scenario 1 were necessary in scenario 2 to get signif-

icant information out of the parameter estimation exercise: for SNR = 10 the

parameters for the f -mode are better constrained for H1K than for H2K. The

added uncertainty of the second oscillation (p-mode) requires a stronger signal to

constraint the values related to the first (f -mode).

5.7.5 Scenario 2 - hypothesis 2U

In this hypothesis the location of the source is not known and hence the parameter

space has two extra dimensions. Again, a change of variable has been applied

to the declination value for the reasons explained in Section 5.7.3. Fig. 5.14 and

Fig. 5.15 show the posterior probability density (results of 5 runs of the algorithm

averaged) of the parameters defining the signal combining the f and p oscillation

modes, respectively, related to the hypothesis H2K. Fig. 5.16 shows the posterior

probability distribution of the two parameters of the location of the source and

Fig. 5.17 their representation as a 2D histogram.

Again, the necessity of signals of high SNR is shown to be able to constrain

the values of the signal, especially for the p mode. Parameters like the damping

time τp and polarisation angle ψp do not get contrained around the exact value

for small values of SNR.
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Figure 5.12: Posterior probability distributions and parameter estimation of the 5
parameters for the f -mode of the model for hypothesis H2K. The exact values of
the parameters for the signal injected are marked with a vertical continuous line and
tabulated in Table 5.1. The modes and 95% credibility intervals for each parameter
are listed in the Appendix K, Table K.4.
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Figure 5.13: Posterior probability distributions and parameter estimation of the 5
parameters for the p-mode of the model for hypothesis H2K. The exact values of
the parameters for the signal injected are marked with a vertical continuous line and
tabulated in Table 5.1. The modes and 95% credibility intervals for each parameter
are listed in the Appendix K, Table K.4.
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5.8 Discussion and Conclusions

5.8.1 Scenario 1

Overall, for all the hypotheses of scenario 1 the posterior probabilities of the

signal parameters are well defined. As expected, the uncertainty of the probability

distributions of the signal parameters narrow down and their mode shifts toward

the exact value for signals of increasing strength.

It is fortunate that the oscillation frequency of the signal can be estimated with

great accuracy. As expected, the estimation is more precise when the location and

the approximate orientation of the source are known. The discrepancy between

the mode and the exact value is always smaller than 0.02% for any of the three

hypotheses considered in scenario 1. This is encouraging keeping in mind the

need to differentiate precisely the values of the oscillation frequencies in order to

discern equations of state in mind.

The polarisation degree λf is the only parameter that requires a considerable

signal strength to constrain its distribution significantly around the exact value.

Estimation of the polarisation degree is poorest when the location of the source

is not known, for which not even with the highest SNR analysed the distribution

shows a preference for the exact value. The correlation between the amplitude

parameter h0 and the degree of polarisation λ is suspect for the inability of

constraining the latter. Equally, the estimation of the amplitude of the signal is

better when the location of the source is known than when it is not known.

It is significant that for the hypothesis H1G (see Fig. 5.8), for which the loca-

tion of the source is known and the orientation of the neutron star ι is known with

an uncertainty of ±5◦ (and thus σλ ≈ 0.1, see Appendix K), that the 95% credi-

bility interval (≈ 2σ for a normal distribution) results in a posterior probability

distribution of σλ ≈ 0.0875 that hardly varies with increasing signal strength.

This shows that even when the rest of the parameters are well known, there is

always a considerable uncertainty on the polarisation degree λ. For the polarisa-

tion angle ψ, where the exact value is assumed to be known with an uncertainty

±5◦ (σψ = 0.043), the uncertainty of its posterior probability distribution is ap-

proximately σψ = 0.0375 rad: a slight narrowing of the uncertainty is observed
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Figure 5.14: Posterior probability distributions and parameter estimation of the 5
parameters for the f -mode of the model for hypothesis H2U. The exact values of
the parameters for the signal injected are marked with a vertical continuous line and
tabulated in Table 5.1. The modes and 95% credibility intervals for each parameter
are listed in the Appendix K, Table K.5.
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Figure 5.15: Posterior probability distributions and parameter estimation of the 5
parameters for the p-mode of the model for hypothesis H2U. The exact values of
the parameters for the signal injected are marked with a vertical continuous line and
tabulated in Table 5.1. The modes and 95% credibility intervals for each parameter
are listed in the Appendix K, Table K.5.
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Figure 5.16: Estimation of the 5 parameters of the f -mode hypothesis. The exact value
injected for each parameter is marked with a vertical continuous line.
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Figure 5.17: Estimation of the 5 parameters of the p-mode hypothesis. The exact value
injected for each parameter is marked with a vertical continuous line.
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for the strongest signal but it is otherwise similar to the uncertainty assigned for

the prior π(ψ) = N(µψ, σψ).

Pinpointing the location of the source is possible but its position is clearly

constrained only for relatively high SNR values. Something interesting and pos-

itive is that the two-fold degeneracy of the source location and related to the

‘flight-time’ is easily broken: once other unknown parameters (apart from the

two source location parameters) are included in the computation, the probability

of source location is constrained to only one patch in the sky. The combination of

sine and cosine components modulated by the antenna patterns at the arrival of

the signal to different detectors, make possible to infer the position of the source

uniquely. Some accuracy may be lost for using a rounded number of samples

instead of dealing with the time shift value itself with the required decimals.

5.8.2 Scenario 2

Generally speaking, a stronger signal is necessary to constrain the values of the

hypotheses in scenario 2 than in scenario 1, particularly to constrain the pa-

rameters that define the p-mode oscillation. The values of damping time τp and

polarisation angle ψp only start showing some preferential values for high SNR

values. Fortunately, for the hypotheses of scenario 2, as for scenario 1, the value

of the oscillation frequency is estimated with great accuracy. The discrepancy

between the mode and the exact value is always smaller than 0.02% for the two

hypotheses considered in scenario 2. Pinpointing the source requires a stronger

signal in scenario 2 than in scenario 1. Here, again, the degeneracy of the source

location is easily broken. This shows that the uncertainty of location is higher

for scenario 2 than for scenario 1. Again, this is for the extra uncertainty that

a second oscillation mode includes, even having a lower amplitude – five times

lower than the main oscillation mode.
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Chapter 6

Shot-noise experiment

This chapter presents the experimental work carried out by myself with the help

of colleagues at the Department of Physics and Astronomy in the University of

Glasgow. It consisted in building a small Mach-Zehnder interferometer in order

to measure the shot-noise level for modulated laser-light at the port of destructive

interference. It is known that the shot-noise level varies depending the modulation

type and demodulation scheme, and the aim of the experiment was to quantify

it.

This chapter contains a detailed description of the interferometer built, the

control system to keep it stable and the electro-optical set up used to achieve laser-

light modulated in various ways. The results of the measurements carried out are

presented at the end of this chapter; these are, unfortunately, not significant due

to the difficulties confronted at the exercise of reducing the electrical noise to a

level lower than that of the shot-noise at the time of taking measurements. Here

I have tried to describe faithfully the work carried out and the difficulties faced,

for the benefit of anyone interested on repeating and extending this experiment

successfully.
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6.1 The context and relevance of the experi-

ment

A direct consequence of propagating gravitational waves is the quadrapolar de-

formation: the space is elongated in a direction while it is compressed in the

orthogonal direction. Laser light interferometers with freely suspended mirrors

are ideally suited device for the detection of these orthogonal minute distortions

of space induced by gravitational waves. The current main gravitational wave

detectors are sophisticated and very sensitive interferometers; they are the most

sensitive position measurement devices ever operated and currently capable of

measuring distance changes of the order of 10−18 m rms (about one-thousandth

of the diameter of a proton) over separations of few kilometres (124).

The distortion of space is function of the amplitude of the gravitational wave,

its polarisation and the orientation of the detector with respect to the source.

However, in relation to the sensitivity of the detector itself, an interferometric

measurement translates the question how small a gravitational wave amplitude

can be detected? into how small a change in optical power can be measured? At

the time of writing this document the design and research of second generation

detectors (advanced detectors) is well advanced. They will start operation in

2014 and are expected to improve the current sensitivity tenfold.

The disturbances seen by the interferometer are the combination of the ac-

tion of the gravitational waves in the space and extraneous displacements of the

test masses provoked by external agents: seismic vibration, thermal excitation,

gravity gradients, etc. There is also an intrinsic noise source, in the measuring

process of space distortions, caused by the use of laser light. This arises from the

quantum nature of the light-particles (i.e. photons), and the resulting random-

ness associated with their detection and with the corresponding random momenta

they transfer to the test masses. Since the output light power is used to monitor

the test mass positions, the statistical fluctuations of the light may be interpreted

as equivalent position fluctuations.

The sensitivity of gravitational wave detectors is often quoted by the ‘Am-

plitude Spectral Density’ (ASD) of the noise – the minute relative displacements

between test masses when the interferometer is in the linear regime, or locked (see
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Section 6.4.4 for a more detailed explanation of the locked state). The sensitivity

of the laser interferometric detectors is limited by different factors depending the

frequency considered: seismic vibrations at low frequencies (< 10 Hz), thermal

random displacements of test masses, mirror coatings, suspensions, etc. at mid-

frequencies (< 200 Hz) and the shot-noise at the higher frequencies. A detailed

derivation of the spectral density of the strain h(f) due to the shot-noise from

the photon arrival uncertainty is given in (29).

The theoretical understanding and calculation of the shot-noise level in the

case of a perfectly coherent and monochromatic light is sound. However, this is

not the case for modulated laser light induced in the gravitational wave detectors

for which a main frequency and other subsidiary frequencies may exist. Thus the

interest of measuring the shot noise level for different modulation/demodulation

schemes and comparison with theory. The ultimate aim of this experiment was

to shed some light upon modulated light shot noise levels.

6.1.1 Standard quantum limit: shot-noise and radiation

pressure noise

The quantum nature of light reveals itself in two effects that limit the precision of

any optical measurement: a) the photon shot noise, dominant at frequencies above

100 Hz, is linked to the uncertainty in the counting of the number of photons at

the interferometer ports, and b) quantum radiation pressure noise, dominant at

frequencies below 100 Hz, which arises from the mirror displacements induced by

quantum radiation pressure fluctuations (124). The former is understood to be

caused by quantum fluctuations of the vacuum electromagnetic field that enters

the antisymmetric port of the interferometer (125). The joint limitation from shot

noise and radiation pressure effects is called Standard Quantum Limit (SQL).

The use of squeezed light, in which much research is being done currently, is a

promising technique to beat the SQL. The term makes reference to the squeezing

of the circular uncertainty region of the two conjugate variables of light amplitude

and phase. It is possible to reduce the uncertainty of one of the conjugate variables

at the expense of the other. In our case, amplitude-squeezed light can have

decreased phase fluctuations at the expense of increased amplitude fluctuations.
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The quantum limit in the laser-interferometric gravitational wave detector can be

overcome by the injection of squeezed states of light into the antisymmetric port

of the interferometer (124). To understand how the squeeze light is implemented

on an interferometer and the achievable sensitivity improvements see (51).

6.1.2 Photon shot-noise

The term shot-noise refers to the random generation and flow of mobile charge

carriers. For a photodetector that converts photon-energy into electron-energy,

the generation, subject to quantum randomness of mobile charges, introduces a

degree of uncertainty on any light-power measurement. The quantum nature of

the light is the underlaying reason for the non-uniform arrival of the photons

to the photodetector. An uncertainty on the measurement is always present no

matter how stable the power of the light to measure, as a combination of the

random arrival of the photons and generation of charges by the photodetector.

Statistically, the expected shot-noise level of a light of arbitrary power can be

calculated. For a detailed derivation from first principles see (126). The power

spectral density function of the current arising from random generation and flow

of charges is:

S(ν) = 2 e Ī (6.1)

where Ī is the average current measured and e = 1.602× 10−19 C is the charge of

the electron. It is convenient to represent this power by an equivalent noise gen-

erator at frequency ν, with a mean-square current amplitude of ī2N ≡ S(ν)∆ν =

2eĪ∆ν.

6.2 Experiment

In the following, a general description of the experiment carried out is given: the

components of the interferometer, the variable modulator to generate different

types of modulation, the opto-electronic system to keep the interferometer stable

and the electronics to take measurements of the shot-noise level. The interfer-

ometer was built inside a clean room, although not in vacuum. The components
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were mounted on seismically isolated table and the laser used was amplitude

estabilised.

6.2.1 General description of the experiment

It was decided that a Mach-Zehnder (see 6.2.2) was the most suitable interfer-

ometer for the execution of the experiment although slightly more complicated

than the well-known Michelson-type interferometer, it provided a bigger flexibil-

ity with respect to permitting the conditioning of the light independently in the

two arms, so that the phase modulation can be applied selectively to only one of

the light beams. One of the arms of the interferometer contained the module to

flexibly modulate the light in various forms (see 6.4.3), while the other arm was

used to condition the light, in intensity and polarisation, and thus improve the

interference conditions between the modulated and non-modulated beams.

The interferometer was locked, or maintained stable, by means of a piezo-

electric transducer (PZT) acting on one of the corner mirrors of the interferometer

(see 6.4.4). A servosystem, comprised of a locking photodiode (6.4.4.1) and the

PZT actuator, worked together to compensate for changes in the relative arm

lengths of the interferometer and to keep one of the ports of the interferometer in

a dark fringe (destructive interference of the two beams) and the other in a bright

fringe (constructive interference). The measurements of the shot-noise level were

taken on the dark fringe with a sensitive photodetector similar to the one used

in the GEO600 detector (see 6.4.5.1).

6.2.2 Mach-Zehnder interferometer (MZI)

The Mach-Zehnder interferometer is a rectangular-shaped optical set-up (see

Fig. 6.1) that splits the incident light beam into two components by means of

a beam-splitter (BS). After following two different L-shaped optical paths the

beams are recombined on a second beam splitter. The phase difference accu-

mulated by the two beams along their respective optical paths is a function of

the arm’s length and the number of internal/external reflections and transmis-

sions that each beam is subjected to. The resulting phase difference between the

two beams establishes the degree of constructive/destructive interference seen at
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each port (see (127) for an enlightening discussion of the phase differences accu-

mulated for general description of a Mach-Zehnder interferometer and the phase

differences accumulated by each beam).

Ein = E0e
iw0t

E1 = ρEin = ρE0e
i(wot−kl1)

E2 = iτEin = iτE0e
i(wot−kl2)

E3 = rE1e
−kl3 = rρE0e

i[w0t−k(L1+l3)]

E4 = rE2e
−kl4 = irτE0e

i[w0t−k(L2+l4)]

EP1 = iτE3 + ρE4 = irρτEo
[
ei[w0t−k(L1+L3)] + ei(w0t−k(L2+L4))

]
EP2 = iτE4 + ρE3 = −rτ 2Eoe

i[w0t−k(L1+L3)] + ρ2rEoe
i[w0t−k(L2+L4)]

where k = 2π/λ is the wave number and Li = f(li) are the physical distances

between optical components. The amplitude reflection and transmission coeffi-

cients of the mirrors and beam splitters are (r, t) and (ρ, τ), respectively. Here

two perfectly reflecting corner mirrors (r = 1 and t = 0) are considered and two

ideal 50/50 beam splitters (ρ = 1/
√

2 and τ = i/
√

2). We can simplify replacing

φ1 = k(L1+L3) and φ2 = k(L2+L4) for the phases accumulated, and compute the

electric fields and optical power of the beams at the output of the interferometer:

EP1 = irρ2Eo
[
ei(w0t−φ1) + ei(w0t−φ2)

]
EP2 = rρ2Eo

[
ei(w0t−φ2) − ei(w0t−φ1)

]

PP1 = EP1E
∗
P1 = 2ρ4r2E2

0(1 + cos ∆φ) =
E2

0

2
(1 + cos ∆φ)

PP2 = EP2E
∗
P2 = 2ρ4r2E2

0(1− cos ∆φ) =
E2

0

2
(1− cos ∆φ)

PT = PP1 + PP2 = E2
0

where the phase difference at the point where beams superpose is ∆φ =

φ2 − φ1.
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Figure 6.1: Left: Schematic diagram of the Mach-Zehnder interferometer. Right: Light
power curves for each of the output ports as function of the phase difference between
the combined beams, for input incident field E0 = 1.

6.3 Modulation of Laser Light

In a similar fashion to low-frequency electromagnetic signals (e.g. broadcast radio

signals) the light at high-frequencies can also be modulated. The result of mod-

ulating a monochromatic light (e.g. laser light) is a multi-frequency light where

some of the energy is transferred from the carrier light into sidebands offset from

the carrier by the modulation frequency.

6.3.1 Gravitational waves and modulation of laser light

Gravitational wave detectors are sophisticated interferometers that use modu-

lated light to measure the contraction of space-time created by the gravitational

waves and to keep the interferometer stable or locked (29). The expected fre-

quency of the gravitational waves falls within the audio bandwidth and is ham-

pered by high laser power and frequency noise level existing in this frequency

range.

The modulation of the light is at a few tens of MHz, significantly higher

than the sensitivity band for gravitational waves, which has its upper bound at

approximately 10 MHz where the period of the gravitational wave drops below

the storage time for photons in the interferometer. Modulation of the light allows

the detection frequency for a signal to be above the range where laser amplitude
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and frequency noise cause the problems, but low enough for photodetectors to

measure both the amplitude and the phase of the modulated light exiting the

interferometer relative to the modulation signal applied at the input.

A technique called Heterodyne detection allows for the electrical signal gen-

erated on the photodetector, and which encodes information of the signal to be

lowered down in frequency. This process is called demodulation and is physically

carried out by multiplying the photodetector signal with a reference frequency or

local oscillator. The resulting signal shows components, and the original signal

information can be recovered by low pass filtering.

6.3.2 Electro-optic modulation of laser beams

A beam of laser light can be modulated when forced to propagate through a

medium where its polarization is altered in an oscillating manner; for example, a

birefringent crystal in which an external and alternating electrical field is applied.

A birefringent crystal is one in which the speed of propagation of light depends

on the direction of propagating of the light beam through the crystal and the

polarization state of the light beam. A linearly polarized light beam entering

the crystal in a certain direction can be decomposed into components parallel to

and perpendicular to the optical axis of the crystal; these two components will

travel at different speeds through the crystal, so by controlling the thickness of

the crystal, an arbitrary rotation of the polarization vector can be achieved. In

the case of waveplates, crystals are deliberately cut to a precise thickness in order

to alter the polarization state of the laser light through the accumulation of the

desired amount of retardation for a particular wavelength.

Electro-optic modulators are composed of birefringent crystals sandwiched

between two electrodes, where the degree of birefringence depends on the electric

field across the crystals. By changing the electric field (applying a voltage to

the electrodes) one can alter the retardation of the beam along one crystal axis

relative to the other. An alternating voltage will cause the light to be modulated

at the output of the crystal.
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6.4 Types of light modulation

6.4 Types of light modulation

Let us now consider different types of light modulation mathematically. For a

graphical and mathematical representation of the modulation types and their cor-

responding carrier and sideband frequency and phase relations see Jun Mizuno’s

PhD thesis (128) and Gerhard Heinzel’s PhD thesis (129).

The scalar representation of the electric field of unmodulated light at a fixed

location in space is:

E(t) = E0 e
i w0t, (6.2)

where w0 = 2πf0 is the angular frequency of the carrier light.

6.4.1 Amplitude Modulation

The intensity of the light and the power of the beam are characterised by the

amplitude of its electric field. If the amplitude is modulated (i.e. changed period-

ically) amplitude-modulated light is obtained. The modulation can be expressed

mathematically as follows:

EAM(t) = E0 (1 +m coswmt) exp(iw0t)

= E0

[
exp(iw0t) +

m

2
exp[i(w0 + wm)t] +

m

2
exp[i(w0 − wm)t]

]
,

(6.3)

where m is the degree of modulation . Eq. 6.3 shows that the amplitude-

modulated laser-light can be described by a pair of sidebands offset by the

modulation-frequency wm from the central frequency component or carrier w0.

The power carried by a modulated light beam –what would be measured on a

photodetector with a conversion efficiency of 100%– can be inferred by calcu-

lating the square of the magnitude of the electric field by multiplying with its

complex conjugate. Colloquially, this exercise is known as the “beating” between

components. The photoconversion of amplitude-modulated light results in three

components at DC and frequencies wm and 2wm.

PAM(t) = EAM(t)E∗AM(t)

= E2
0

[
1 +

m2

2
+ 2m cos(wmt) +

m2

2
cos(2wmt)

]
.

(6.4)
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There is no photodetector dynamically fast enough as to convert a laser light

(frequency w0 = 1.77e15 Hz) to an alternating electric signal. But modulation

frequencies (mostly radio frequencies) are much lower than the frequency of the

light and thus their photoconverted alternating electrical signals can be readily

analysed on an oscilloscope. An alternative and equivalent expression to Eq. 6.3

can be derived by modulating the original optical signal of Eq. 6.2 with sin(wmt)

instead of cos(wmt)
1. The resulting average power carried by the modulated

light beam is the same for both.

6.4.1.1 Physical implementation of Amplitude Modulation

If the polarisation of the incident light is not linear and parallel to one of the

principal axes of the crystal, the two components travelling will be phase-shifted

relative to each other. As a consequence, the polarisation state at the output will

be different to before entering the crystal and the intensity allowed through may

be controlled by means of a polarising beam-splitter. The change in polarisation

state can be controlled by the external electric field applied onto the crystal.

To get a big enough polarisation state change the application of high voltages

is often necessary. It is however possible to get the same net effect with a lower

voltage, by biasing the system locating a quarter-wave plate just after the crys-

tal. A detailed description of the amplitude modulation optical set up and its

corresponding mathematical description can be found in (126).

6.4.2 Phase modulation

In a similar fashion to altering the amplitude sinusoidally, variation of the phase

of the laser-light may be desired to produce phase-modulated light instead. Math-

1

EAM (t) = E0 (1 + sinwmt) exp(iw0t)

= E0

[
exp(iw0t)− i

m

2
exp[i(w0 + wm)t] + i

m

2
exp[i(w0 − wm)t]

] (6.5)

PAM (t) = EAM (t)E∗AM (t) = E2
0

[
1 +

m2

2
+ 2m sin(wmt) +

m2

2
cos(2wmt)

]
(6.6)
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ematically, this can be represented as follows:

EPM(t) = E0 exp[i(w0t+m coswmt)], (6.7)

where, again, m is the modulation index. We can transform Eq. 6.7 to an ex-

pression similar to Eq. 6.3 by developing the second exponential term, for this

term can be expressed as an infinite series of Bessel functions of the first kind
1(see (130)). If the modulation index is small enough (m � 1) we can approxi-

mate the infinite series of terms by taking only the first two terms.

EPM(t) ≈ E0 exp(i w0t) [J0(m) + 2i J1(m) cos(wmt)]

≈ E0 exp(i w0t)[1 + im cos(wmt)]

≈ E0

[
exp(iw0t) + i

m

2
exp[i(w0 + wm)t] + i

m

2
exp[i(w0 − wm)t]

] (6.8)

where the approximations for small m have been used: J0(m) ≈ 1 and J1(m) ≈
m/2. Only the phase is modulated and there is no change in the overall light

power at any frequency.

Again, an alternative equivalent expression to Eq. 6.8 can be derived by mod-

ulating the original optical signal of Eq. 6.2 with sin(wmt) instead of cos(wmt)
2.

The resulting power of the modulated light beam is the same for both.

6.4.2.1 Physical implementation of phase modulation

If the incident laser-light beam is polarised parallel to one the birefringent axes

of the electro-optic crystal, phase modulation results. The application of an

1

exp(im cosα) =
∞∑

k=−∞

ikJk(m) exp(ikα) = J0(m) + 2
∞∑

k=1

Kk(m) cos(kα)

2

EPM (t) = E0 exp[i(w0t+m sinwmt)]

≈ E0 exp(i w0t)[J0(m) + 2i J1(m) sin(wmt)]

≈ E0 exp(i w0t)[1 + im sin(wmt)]

≈ E0

[
exp(iw0t) +

m

2
exp[i(w0 + wm)t]− m

2
exp[i(w0 − wm)t]

] (6.9)
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sinusoidal electric field does not change the state of polarisation; it changes the

refractive index of the crystal, the phase-velocity and thus the light phase at

the output. The value of the phase modulation index m is a function of various

parameters but depends predominantly on the value of the electric field applied.

For more details, see (126).

6.4.3 Laser light electro-optical modulation

The variable modulator permitted achieving various types of modulation and the

easy switch between different modulation schemes without needing to modify or

relocate optical components.

The flexible modulating device was designed and had been tested by colleagues

at the department previously. The core of the modulator is an electro-optic crystal

modulator (EOM) sandwiched between ancillary wave plates; in turn, all this is

confined between crossed polarizer beam splitters (PBS) (see Fig. 6.2). The

incident beam is linearly polarized at 45◦ to the principal axes of the crystal and

modulated when propagating along the crystal. The resulting modulated light

contains the carrier and sidebands, which are successively rid of the undesired

polarization components by using wave plates to filter them out. By rotating the

quarter- and half-wave plates (QWP and HWP, respectively) located after the

crystal, it is possible to obtain amplitude-modulation, phase-modulation, single

sideband-modulation and unbalanced modulation (i.e. two sidebands of different

size) at the output of the variable modulator. By rotating the quarter (QWP) we

get a circularly polarised carrier and one horizontal and one vertical sidebands

just after it. Then, by rotating the HWP this polarisation status is rotated as

a whole to four different states, all with circular polarisation for the carrier and

linear polarisation for the sidebands. The output last beam splitter extinguishes

one of the sidebands or let partially the two depending for which of the four states

the HWP has been positioned for. For clarity the optical set up from (131) have

been duplicated in Fig. 6.2. The interested reader is encouraged to look up the

original paper.

The described modulation system was included in the longer side of the lower

arm, while the upper arm contained a polariser beam splitter (PBS) sandwiched
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Figure 6.2: Set-up of the optical components of the flexible variable modulator used in
the experiment. It was inserted on one of the arms of the Mach-Zehnder interferometer
and allowed selecting from various modulation types and easy switching among them.

by two half-wave plates; this allowed the conditioning of the light power and po-

larisation to improve the interference of the beams. Optical componentry inserted

in both arms can be seen in Fig. 6.2.

6.4.3.1 Electro-Optic crystal

The first electro-optic crystal tried proved not to be adequate for the experiment:

the power of the sidebands obtained was only about 1/160th of the power of

the carrier and insufficient to proceed with the measurements. From theoretical

calculations we established that the half-wave voltage Vπ of this crystal was ≈
4500V and that our resonant circuit could not get the high voltages required to

get strong sidebands. Also, we observed that the modulation of the light was

considerably affected by small fluctuations of the environment temperature, even

inside the temperature-controlled laboratory. The lack of stable modulation, due

to the temperature-dependent polarization changing continuously, was the main

reason to replace the electro-optical crystal by a new one.

The new device comprised of two rectangular-shaped lithium niobate (LiNO3)

crystals, mounted in series within a U-shaped metallic support, and their principal

axes were rotated 90◦ to compensate the temperature expansion. The electrical

connections to the second crystal were cut off and the second-stage modulation

was avoided while keeping the benefit of the temperature expansion/contraction

compensation. Unfortunately, the EOM did not behave like a zeroth-order wave-

plate and to compensate for this an auxiliary circuit which allowed adding a bias
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voltage was fitted as a result later on. Two high-voltage generators were allowed

applying a bias voltage range of ± 600 V.

6.4.3.2 Resonant circuit for the electro optical modulator crystal

The electrical field across the electro-optic crystal is proportional to the volt-

age applied onto the crystal. To obtain the desired light modulation degree, a

minimum modulation index, the electrical field necessary is often quite high and

the voltage required can be up to several hundred volts. One practical way of

obtaining the required high-voltage is to amplify a low voltage signal by means

of a resonant circuit matched to the impedance which the source was designed

to drive (50 Ω). The resonance circuit is in essence an autotransformer with a

inductance that balances the capacitance of the crystal and minimises the overall

impedance of the circuit. An schematic view is shown in see Fig. 6.3.

The resonant circuit and the crystal were mounted on a board. The manu-

facturing of the coil and the selection of the tapping point was a trial and error

process until the measured RF power reflected by the resonant circuit was min-

imum. Our coil consisted of a big air-core copper solenoid of aspect ratio 1:1

with � ≈ L ≈ 6 cm and N ≈ 17 turns. In combination with the EOM crystal

and all the auxiliary resistors and capacitors the resonant circuit board, tested

with the Spectrum Analyzer, presented a resonance frequency at approximately

15.44 MHz , see Fig. 6.3. The circuit was first tried outside the clean room on a

provisional optic bench, where the tuning of the coil (moving tapping point of the

autotransformer) was easier. For the new EOM crystal stronger sidebands were

obtained with a power ratio to the carrier of 1/9. The power on the sidebands was

measured by using an optical spectrum analyser (a confocal Fabry-Pérot cavity

with a piezoelectric actuator on one mirror to scan the cavity length), where the

sidebands were observed clearly and recorded with an oscilloscope, see Fig. 6.4.

Phase and amplitude modulated light show a very similar spectrum when

scanned by the Fabry-Pérot cavity (carrier plus two sidebands) and if the sec-

ond order sidebands are not visible they cannot be easily discerned. They can,

however, easily distinguished with the help of a photodetector by comparing the

frequency components of the electrical signal, for as it was shown by Eq. 6.4 the
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Figure 6.3: Left : Trace of the S11 (input port voltage reflection coefficient) for the board
containing the resonant circuitry: EOM crystal, resonance coil and all the auxiliary
resistors and capacitors. The resonance frequency measured in the spectrum analyser
was fres ≈ 15.44 MHz with a scale factor Q ≈ 170. The two small peak at both
sides of the resonance frequency are the piezoelectric resonances of the crystal. Right :
Schematic of the RF resonant circuit. The 2 × 1k resistors and 2 × 1nF capacitors
were fitted to avoid interference between the Vbias (DC) and the modulation signal
(RF). The other resistances to ground (split into two resistors in series to minimise
their equivalent capacitance) add stability to the response of the circuitry.
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purely phase-modulated light does not have a component at the modulation fre-

quency. When the quarter wave-plate of the flexible modulator shown in Fig. 6.2

is oriented such as to get circular polarization of the carrier just after it, a rota-

tion of the last half wave-plate by 22.5◦ switches alternately the output between

phase and amplitude modulated light. Table 6.1 shows the orientation of the

half-wave plate and the DC and RF measurements taken. When the RF value

is extinguished light is being modulated in phase. The same modulation effect

could be obtained by altering the voltage of the crystal. When just after the

quarter wave plate the carrier is linearly polarised, it is possible to extinguish it

(supressed carrier) and let only the sidebands through.

Switch between AM and PM by rotation of the HWP

αHWP VDC (V) VRFpk−pk
(mV) Modulation.

4◦ 3.65 550-590 AM

... ... ... ...

50◦ 3.96 550-590 AM

72◦ 3.88 ∼ 0 PM

95◦ 3.56 550-590 AM

117◦ 3.52 ∼ 0 PM

140◦ 3.8 550-590 AM

... ... ... ...

226◦ 3.64 550-590 AM

340◦ 3.76 ∼ 0 PM

Table 6.1: Angular values of the half-wave plate (HWV) to switch modulation between
amplitude-modulation (AM) and phase-modulation (PM).

The source of the radio-frequency modulation signal was a signal generator.

The signal was split in two and each branch amplified independently. The power

of the RF signal applied to the crystal (≈ 1 W) was carefully monitored by a

power meter, which indicated both the power consumed and reflected by the

resonant circuit of the electro-optic crystal. Moving the tapping-point on the coil

the impedance was matched to the source impedance to ensure the power forward

was approximately 1 W and the Standing Wave Ratio (SWR) was negligible, an
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Figure 6.4: Oscilloscope traces showing spectrum of the light captured by the scanning
Fabry-Perot cavity. Left : Carrier and sidebands for phase modulated light. The carrier
and the sidebands are visible with a power ratio of ≈ 14 here and the second order
sidebands are not visible. Right : Spectrum of the light with suppressed carrier: the
carrier disappears and sideband power increases twofold. The supression of the carrier
could be achieved by changing the bias voltage (Vbias = 357V). The same trace as on
the left is shown in the background for comparison. For a particular position of HWP
it is possible to cancel both sidebands.

183



6.4 Types of light modulation

indication of very little power being reflected back from the coil attached to the

electro-optic coil.

The source of the modulation signal was a signal generator providing 10 dBm

(10 mW) at a frequency of 14.57 MHz. This was split into two branches of 5

dBm and subsequently amplified independently; one branch was amplified 12 dB

in order to get an adequate local oscillator signal level (17 dBm) for demodulation;

the other branch was amplified to a level considered of strong enough sidebands

(≈ 30 dBm ≈ 1 W). The fact of having the same signal source for both ensured

a synchrony between modulation and demodulation. The power of the RF signal

applied to the crystal (≈ 1 W) was carefully monitored by a power meter, which

indicated both the power absorbed and reflected by the resonant circuit. By

selecting the adequate tapping-point on the coil the impedance was matched to

the source impedance to ensure that the power forward was approximately 1 W

and that the standing wave ratio (SWR) was negligible, an indication of minimum

power being reflected back from the resonance circuit.

6.4.4 Locking: the interferometer as a null instrument

Vibrations transmitted to the optical bench, air currents across the laser beams

and other unwanted disturbances make the aligned beams of the interferometer

to dither causing oscillating interference: light intensity at each of the two output

ports of the interferometer swing through multiple bright and dark fringes. It is

not possible to take measurements at the dark fringe without stabilising (locking)

the interferometer first, locking the interferometer in such a manner as to get

permanent dark fringe in one of the ports; if one is at the dark fringe the other

would must be at the bright fringe, as required by the principle of conservation

of energy. A servomechanism is used to measure any departure from the working

point and drive the actuator, attached to one of the corner mirrors, to bring the

interferometer back to the selected working point.

A variant of the Pound-Drever-Hall (PDH) control system was used to keep

the interferometer locked. The PDH control system was originally devised for

laser frequency stabilisation by locking the laser light to the cavity. By measuring

the modulated light that gets reflected out of the cavity and comparing this
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with the original modulation signal it is possible to know on which side of the

resonance the cavity is, depending whether the signals are in phase or 180◦ out

of phase (132). The comparison results in a bipolar error signal that can be used

to correct for any deviations from resonance. A detailed explanation of the PDH

technique can be found in (133) and (134).

Variants of the PDH control technique are equally applicable to the case of

interferometers needing to be kept locked. In our case, the demodulated signal

of a dedicated photodetector (locking photodetector), which received some light

picked off the bright port to get the bipolar error signal, and was used to drive

a piezo-electric-transducer (PZT) attached to one of the corner mirrors of the

interferometer (see Fig. 6.5). The closed loop of the servomechanism continuously

driving the actuator made it possible to keep the interferometer locked and to

take measurements in the dark port.

6.4.4.1 Locking photodetector

The locking photodetector was designed to work as a current source into a low

impedance circuit, in the photoconductive mode and with a reverse bias voltage

of 15 V. In contrast to the photovoltaic mode, the photoconductive mode allows

for a faster response and easily measurable amplified output voltage.

A part of the light from the bright port was picked off by a crystal slab

and reduced in intensity with a grey filter before being focused to the locking

photodetector. The photodetector was designed to provide DC and RF volt-

ages proportional to the light frequency components detected. The DC signal

helped to ensure that the light beam was correctly focused within the photodi-

ode detection area, whereas the RF signal served to discern amplitude and phase

modulation (for the phase modulated light does not have a component at the

modulation frequency) and to provide an error signal after demodulating and

low-pass filtering.

Fig. 6.6 shows the schematic of the locking photodetector circuitry with the

DC and RF voltage output terminals. The size of the RF signal is proportional

to the power contained in the sidebands, which is generally quite small and it

needs to be amplified by a resonant circuit to be measured. The resonant circuit
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6.4 Types of light modulation

Figure 6.5: Locking set-up showing the electro-optic components of the servomechanism
(green). A partially transmitting mirror along the bright port picks some light to the
locking photodetector; its demodulated signal is the bipolar error signal that feeds
the servomechanism driving the PZT attached to the corner mirror. The Fabry-Perot
cavity located at the bright port allows visualization of the carrier and the sidebands
in the oscilloscope.
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comprises of a tunable inductor that resonates with the overall capacitance of the

circuit plus that of the photodiode.

By adjusting the tunable inductor the circuitry was made to resonate at the

desired modulation frequency. Checking the output voltage while adjusting the

tunable inductor it was possible to resonate the circuit at our particular modula-

tion frequency. The process consisted of measuring the amplified signal induced

in the circuitry by a radiating air-coil connected to the signal generator and po-

sitioned close to the open box containing the photodiode circuitry. A mathemat-

ical description of the resonance condition for a similar photoconductive detector

mode is analysed in (129).

Figure 6.6: Schematic of the Locking photodetector circuit in the photoconductive mode
with reverse bias. All this was fitted within a box with an aperture to receive the light.
It includes two output terminals for DC and RF current measurements.
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6.4.4.2 Heterodyne demodulation of the signal

The term demodulation refers to the act of recovering the information encoded

in the modulated light. In the heterodyne technique the encoded modulated sig-

nal is multiplied with another of the same frequency as the modulation signal

called local oscillator; i.e. the components on the modulated light are beat with

the local oscillator. This action generates signals at frequencies of added and

subtracted frequencies of the components mixed and proportional to their am-

plitudes, making it easier their recovery. Depending on the phase difference at

which the signals are mixed, the demodulation phase, the result is different too.

In general, we can assume that a light beam (modulated or not) is altered by

the interferometer (suppresed carrier, single sideband) and then detected in the

photodetector. Let us assume we know the amplification/attenuation for each

of the frequency components of the light in the interferometer, represented by

the transfer function T (w). Since, to first order, the electric field of the light is

composed of three discrete frequencies we can use the corresponding particular

complex values of the interferometer.

T0 = T (w0), T+ = T (w0 + wm), T− = T (w0 − wm) (6.10)

The photocurrent generated is proportional to

I ∝ E2
o + 2mE2

0<[T0(T ∗+ − T ∗−)] cos(wmt) + =[T0(T ∗+ + T ∗−)] sin(wmt) (6.11)

and this will be demodulated with a homodyne technique by mixing it with a

local oscillator at the modulation frequency and phase α. After low-passing the

signal the result is:

S = 2<[T0(T ∗+ − T ∗−)] cosα− 2=[T0(T ∗+ + T ∗−)] sinα. (6.12)

The first term, proportional to cosα is called the quadrature (Q) signal and

the second component, proportional to sinα is called the in-phase (I) signal.

Fig. 6.7 depicts the DC signals obtained after demodulating the RF output of

the photodiodes in both ports of the interferometers, obtained by the simulating

software Finesse (135). The demodulated signal of the bright port was used as
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an error signal for the locking control system, whereas the demodulated signal

of the dark port was to take shot-noise level measurements. The error signal

shows bipolar nature at the zero-crossing point, which permits the locking of the

interferometer by means of a servomechanism acting on one of the corner mirrors.

From the comparison of left and right plots we can observe the following points:

a) light power splits into the two ports so that when one is in the bright fringe the

other is in the dark; b) the signal presents the biggest slope at zero-crossing (this

allows for more sensitive control) when the demodulation angle α is smallest; c)

the slope is of opposite sign for the two ports.
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Figure 6.7: DC signals (simulated with Finesse) obtained in the photodiodes located
in the dark (left) and bright (right) ports of the interferometer in function of the
phase change obtained by moving one of the mirror corners, for example. The bigger
signals correspond to the total light power detected, whereas the smaller sinusoids are
the demodulated error signals, for various demodulation angles, used for locking the
interferometer (bright port) and taking the shot-noise level measurements (dark port).

6.4.4.3 Locking servomechanism - PZT driving circuit

As mentioned in the introduction of this section a piezo electric actuator (PZT)

attached to one of the corner mirrors of the MZI was used to keep the interfer-

ometer locked (ref. PZT: PI P-840.10, open-loop travel @ 0-100V of 15µm). The
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corrective action of this actuator made possible to keep one of the ports in the

dark fringe at which to measure the shot-noise level. The bipolar error signal out

of the demodulated and low-pass filtered signal of the locking photodetectors was

filtered and amplified by the servo-control to drive the actuator. The schematic

of the electronic circuitry of the servomechanism are shown Fig. 6.8.

To infer the DC gain needed by the control system the optical and electrical

gains were considered in combination. The stroke of the actuator necessary to

swing the interferometer from dark to bright fringe was approximately half of the

laser’s wavelength (≈ 0.5 µm); this could be achieved by a change of 3.3 V on the

signal to the actuator and measured out as a change of ≈ 1 V on the DC level

of the locking photodetector. This relation yielded an optical gain of Kopt = 0.3

indicating that per 1V applied to the PZT there is a DC voltage change of 0.3V

in the locking photodetector output. An electro-optic gain of about 2000 was

chosen as necessary: an electric amplification of gain 6000 (≈ 60 dB).

The servo-control circuitry shown in Fig. 6.8 was designed by Dr. Borja

Sorazu and built enclosed in a metallic box. This was drilled on one side to

permit the access of a small screwdriver to the tuning potentiometer controlling

the gain and facilitate the locking. It is a proportional control system with a

preliminary low-pass passive filter (first order and 10 kHz cutoff) and a successive

first non-inverting amplification stage of gain×6. The tuning potentiometer trims

the signal out of the first stage before the second and main amplification stage

(first order active low-pass filter with a gain of 20 dB) and the final passive

filter (first order and 1.57 Hz cutoff). The overall design characteristics of the

servomechanism control are a gain of 60 dB and cutoff frequency of 1.57 Hz, with

roll-off of -20 dB/dec down to unity gain at 106 Hz.
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6.4 Types of light modulation

Figure 6.8: Schematic of the 50 Ω impedance matched servomechanism to lock the
interferometer. It is comprised of various filtering stages and two amplification stages.
The input to the servo-amplification is the error signal resulting from the demodulation
of the signal given by the locking photodetector, and the output is the voltage to the
PZT. The error signal is initially low-pass filtered and amplified moderately in the first
amplification stage; a variable resistor (tuneable from the outside of the box with a
screwdriver) allows for the adjusting of the second amplification stage and thus ensures
the adequate amplification for driving the PZT to lock the interferometer.
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Figure 6.9: Left : Low-pass passive filter plus preliminary non-inverter amplification
stage (gain ≈ 6) before the potentiometer. Right : Main amplification stage (gain ≈
1000) and passive low-pass filter.
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The frequency response, operation bandwidth, and stability of the servo con-

trol system were checked by interfering with the system and measuring its re-

sponse. A sweeping sinusoidal signal was injected to the system (added to the

error signal on a commercial pre-amplifier set with no gain and a cutoff frequency

of 1 kHz) and the response of the system was measured at the same point as the

injection on a spectrum analyser. Combining spectra acquired with locked and

unlocked interferometer the open- and close-loop responses (see Fig. 6.10) that

ultimately characterised our control system were obtained.

The phase margin analysis of the open-loop transfer function shows the fact

that control loop is stable up to frequencies over 1kHz. This was considered to

be good enough to provide long-term operation in our laboratory environment.

The coincident valley in gain and phase around 330 Hz seems to be the “reaction

resonance” of the support of the PZT to which the corner mirror was glued to

and that absorbed energy out at a narrow frequency band around that frequency.
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Figure 6.10: Frequency response of the servomechanism control system. Open- and
close-loop systems have been overlaid on a Bode plot for comparison. Open-loop trans-
fer function with unity gain at ≈ 880 Hz and phase margin of ≈ 32◦ shows that the
control system is stable for frequencies up to 1 kHz. Close-loop transfer function with
bandwidth of ≈ 1.72 kHz and a resonance frequency at around 1.62 kHz.
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6.4.5 Measuring the shot-noise level

Shot noise level measurements were carried out at the dark port of the interfer-

ometer by means of a sensitive photodetector (see section 6.4.5.1). The light at

the dark port contained only the sidebands (the carrier was suppressed) and it

was focused onto the sensitive photodiode. Similarly to the locking photodetec-

tor, the GEO600 like sensitive photodetector had a DC and a RF terminal; the

former gave an indication of the light power falling onto it and the RF was the

signal to demodulate and low-pass filter before taking the spectrum and measure

the shot-noise level (see Fig. 6.11).

Although the locking of the interferometer was reliable for long periods of

time a catastrophic failure of the photodetector happened once, after the sudden

loss of lock, and after focusing more than 200 mW onto the photodiode; it got

damaged as a result of the excessive heat generated that burnt the photodiode

in a few seconds. A protection system for the safety of the photodetector was

designed and implemented (see section 6.4.5.2) after the incident.

Once, however, an accidental loss of lock provoked the exposition of the pho-

todiode to full light power;

6.4.5.1 GEO600 like photodetector

To emulate measurements of the GEO600 gravitational wave detector, a simpli-

fied replica of its photodetector was built and used for the measurements. Our

photodetector differed from the original on the lack of resonance lines to measure

higher harmonics of the modulation frequency. In a similar fashion to the lock-

ing photodetector it had a DC and RF output terminals and an input terminal

to inject and emulate photocurrents generated by the photodiode; this allowed

testing the circuitry and getting a transfer function of its response. The original

schematic of the GEO600 photodiode and our simplified version can be compared

side by side in Appendix L.

The response of the photodiode was tested with a spectrum analyser to verify

that the resonance for the modulation frequency and the anti-resonances for its

harmonics were at the desired frequencies. The original design had to be altered

slightly for it included a tunable variable inductor that did not work for us; it did
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Figure 6.11: Shot noise level measuring set-up. The light on the dark fringe is focused to
the GEO-like photodetector and filtered and demodulated. The ancillary components
in the bright port and necessary to get the locking of the interferometer have been
omitted in this diagram.

194



6.4 Types of light modulation

not permit obtaining the desired gain at the modulation frequency and thus was

replaced with a fixed one of carefully calculated value. Fortunately this provided

a much better response. Two spectra measurements of the RF output of the

photodiode corresponding to the variable and fixed inductor are reproduced in

Fig. 6.12. The reduced circuitry to calculate the value of the fixed inductor and

the calculation of the inductor to get a resonance at the modulation frequency

are reproduced in L.
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Figure 6.12: Comparison of the transfer functions of the GEO-style photodetector, with
the preliminary tuneable variable inductance and the final fixed inductor of 1.35 µH.
Note the better response of the resonance peak around the modulation frequency of
14.5 MHz and the attenuation of the second harmonic at 2 × 14.5 ≈ 29 MHz with a
gain 2 orders of magnitude smaller.

6.4.5.2 Photodiode protection system

Overall, the stability of the locked interferometer proved to be reliable and long

lasting: it was capable to mantain itself locked for more than 30 minutes at a time,

even when the optical bench was shaken accidentally. With the aim to safeguard

the photodiode from another loss of lock, a protection system was designed and

implemented. The protection allowed to switch off the reverse bias voltage when
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the light power falling onto the detector was too big. The DC signal given out by

the photodiode was continuously monitored by a voltage comparator that took

action disconnecting the reverse bias from the photodetector whenever the DC

voltage exceeded a previously set-up threshold. The safety circuit implemented

is shown in Fig. 6.13.

Figure 6.13: Protection circuit implemented to protect the GEOstyle photodiode for
unexpected interferometer lock losses. The light power hitting the photodiode is mon-
itored continuously and a comparator disconnects the bias voltage whenever the DC
output of the photodetector surpasses the security threshold. The comparator triggers
the normally-closed relay and opens the switch of the bias voltage in order to protect
the photodiode from excessive heat generation.

The transfer function of the photodetector was tested again, after adding the

external relay that permitted switching off the reverse bias, in order to check

that the resonant peak around the modulation frequency and the attenuation

around the second harmonic were not severely affected by the addition of ancil-

liary componentry. The response (transfer function) of the circuitry after adding

the protection system can be observed in Fig. 6.14
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Figure 6.14: Comparison of the transfer function of the GEO-style photodetector before
and after implementing the safety circuit to safeguard the photodiode from excessive
light power in the accidental lock of loss.

6.4.5.3 Measurements

To ensure that a minimum level of light (and thus a measurable shot-noise level)

existed in the dark port, the light power at the entrance of the interferometer

was increased up to approximately 250 mW. This resulted in approximately 40

mW of light power in the dark port, which allowing for a photodiode efficiency

of η ≈ 75% provided a DC current out of Ī = ηP ≈ 30mA. From Eq. 6.1 a rms

current level for the shot-noise of ī2N ≈ 100pA can be inferred. This is a minute

current, which it needs to be amplified with care to ensure that the shot-noise

level surpasses any electrical noise of the devices taking part in the measurement.

The measurements consisted on taking an averaged spectra of bandwidth 100

Hz at a frequency of about 10 kHz of the demodulated and low-passed signal out of

the GEO-style photodetector. Different cable lengths between the photodetector

and the mixer, where the demodulation takes place, allow for the RF signal to be

combined with the local oscillator at different phase-differences (see Fig. 6.11).

For a signal of frequency wm = 14.5 MHz cables of length λm = 20.8 m are needed

in order to change the demodulation phase 2π.
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By trying different lengths of cables the critical phase at which the power

of the spectrum is the lowest may be revealed; this is taken as a reference and

corresponds to the demodulation in quadrature (Q). Conversely, the length for

which the level is maximum will be for the in-phase (P) quadrature.

6.4.6 Results

All my measurements showed an electrical noise similar or higher than the shot

noise level and, unfortunately, no conclusion could be extracted. Fig. 6.15 shows

side by side one example of the spectra of the RF channel given by the GEO-

style photodiode, taken of two measurements of bandwidth 800 Hz centered at

34.7kHz and 52.6 kHz. Each subplot presents three measurements: a) the lowest

possible noise measurable by the spectrum analyser (when no cables were plugged

to the analyser), b) with no light was projected to the photodiode (measurement

of the electrical noise, only) and c) when the dark fringe light was projected to

the photodiode (measurement of the modulated light). A notable difference was

expected between the electrical noise and the dark fringe measurement; however,

this could not be achieved. My inability of reducing the electric noise to levels

considerably lower than the shot noise conditioned the extraction of conclusions

in this experiment.
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Figure 6.15: Spectrum of 800Hz@52.6kHz taken for ∼ 20mW of light power in the dark
fringe.

199



Chapter 7

Summary and Future work

This thesis contains two separate sections focusing on gravitational wave detec-

tion. The main section is theoretical and summarises the Bayesian data analysis

work, whereas the other describes some experimental work and is shorter. In the

following, a brief summary of the theoretical work is presented and the ways to

take this forward.

A procedure for studying the detectability of burst gravitational wave signals

from galactic neutron stars has been presented in this thesis, based on the calcu-

lation of the time- and polarisation-averaged antenna pattern and power values.

The results of this research could be taken further by considering more realistic

galactic populations of neutron stars and including the exact location of the po-

tential detector, which will be likely built in the southern hemisphere in the near

future.

The modeling of the signal in the frequency domain using the closed form

DTFT (rather than the computationally more demanding DFT) allows for a

quicker computation of the likelihood for the Bayesian inference. Also, it pro-

vides the additional benefit of focusing the attention on those relevant frequency

bandwidths where the signal power is concentrated. The use of the z-transform

and its relation to the DTFT has proved to be very convenient for the com-

putation of the likelihood for combined data stretches recorded by detectors at

different locations that will receive the time-shifted signal. This work has pre-

sented a useful framework that can easily be applied to real data recorded by

a network of detectors. Although it is partially dependent on the information
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provided by the spectrogram of a potential detection candidate, the framework

allows for the efficient modeling of the signal in the frequency domain in order to

carry out model comparison and parameter estimation.

Bayesian inference for model comparison and parameter estimation can be

computationally very demanding, in particular the calculation of the evidence

for models with multiple parameters in combination with long stretches of data,

for example, highly resolved simultaneously acquired data from several detectors.

Hence the importance of efficient programming and modularity of the code to

handle different models (number of oscillations) in combination with data from

several detectors. In this work, the significant computation time required to

calculate the evidence of each hypothesis using the nested sampling technique has

been a major limitation to a) taking decisions dynamically in order to improve

the performance of the code and b) getting enough scenarios and having enough

trials in order to average results and compare different hypotheses. An ever more

efficient way of computing the evidence and conducting Bayesian inference would

open new horizons for some of the investigations carried out in this work. There

follows a few ideas to assist in the reduction of computation time:

• Efficiently programmed code for the multinest algorithm has been made

freely available (136) (tips for the installation of the freely available soft-

ware can be found in Matthew Pitkin’s blog (137)). The use of multinest

sampling will facilitate the more in depth and faster study of multimode

parameter spaces and relations between the model parameters. A relatively

big parameter space has been searched in this work but analysis of an even

bigger volume may be required for real data.

• The computation of the likelihood has been carried out using the real and

imaginary coefficients of the analytic expression of the DTFT of the signal,

evaluated at uniformly distributed frequency points. Limiting the frequency

points to within bandwidths where most of the signal power is expected is a

practical way of reducing the computation time. Another possibility, which

has not been considered in this work, would be to use the whole detection

bandwidth focusing on the regions where the signal power is concentrated.

A practical way of achieving this would be to increase the frequency point
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density in the regions where the signal power is concentrated: this could be

done with the Warped Discrete Fourier Transform (WDFT) by means of a

variable change of the z-transform(see Section 5.1).
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Appendix A

Antenna Pattern study

A.1 Probability density function of F+ and F×

The probability density functions of the antenna pattern functions F+ and F× for

sources isotropically distributed around the detector are derived in this appendix.

For a source of known location (given by the spherical angles θ, φ in the local

frame of the detector) and radiating gravitational waves of polarisation angle ψ,

the antenna pattern functions F+ and F× are functions of the angles (θ, φ, ψ).

However, the probability density function of the antenna patterns function is

independent of the polarisation angle ψ. This is to say:

F+ = f(θ, φ, ψ) and F× = f(θ, φ, ψ), but

p(F+) dF+ = p(F×) dF× = f(θ, φ).

For a particular direction specified on the local frame, the antenna pattern

values can be readily calculated with:

F+(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ (A.1a)

F×(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ. (A.1b)

Taking A = 1
2
(1 + cos2 θ) cos 2φ and B = cos θ sin 2φ, we can write:
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A.1 Probability density function of F+ and F×

F+ = A cos 2ψ −B sin 2ψ (A.2a)

F× = A sin 2ψ +B cos 2ψ (A.2b)

where A ≤ 1 and B ≤ 1. Obliging A = C cosα and B = C sinα (so that

C =
√
A2 +B2 and α = arctanB/A), expressions in Eq. A.2 can be written as:

F+ = C [cosα cos 2ψ − sinα sin 2ψ] = C cos(2ψ + α) (A.3a)

F× = C [cosα sin 2ψ + sinα cos 2ψ] = C sin(2ψ + α) (A.3b)

where C ≤
√

2. The pdf of F+ and F× can be derived from the pdf of ψ. In

general, for a function y = f(x) the probability density distributions of x and y

can be related by equating probability volumes as follows:

p(y)dy = p(x)dx, so that p(y) =
p(x)

|dy/dx|
,

where the absolute values of the differentials are taken for the probabilities to

be always positive. Transcribing this to the case which concerns us here, we can

write:

p(F+) dF+ = p(F×) dF× = p(ψ) dψ.

The probability density function of the polarisation angle ψ is uniform in the range

[0, π/2), so that p(ψ) = 2/π under the normalisation condition of
∫
p(ψ)dψ = 1.

∣∣∣∣dF+

dψ

∣∣∣∣ = | − 2C sin(2ψ + α)| = 2
√
C2 − F 2

+∣∣∣∣dF×dψ
∣∣∣∣ = |2C cos(2ψ + α) = 2

√
C2 − F 2

×,

and putting things together we get:

p(F+) = p(ψ)

∣∣∣∣ dψdF+

∣∣∣∣ =
1

π

1√
C2 − F 2

+

(A.4a)

p(F×) = p(ψ)

∣∣∣∣ dψdF×
∣∣∣∣ =

1

π

1√
C2 − F 2

×
, (A.4b)
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A.2 Probability density function of F̄

Given a probability density function for ψ, an analytic expression for the proba-

bility density functions of F+ and F× can be obtained, where C = f(θ, φ) because

C =
√
A2 +B2 and A = f(θ, φ) and B = f(θ, φ). Fig. A.1 shows the pdf curves

calculated with Eq. A.4 for different values of θ and φ.
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Figure A.1: F+ and F× pdf curves for various directions (θ, φ values measured in the
local frame of the detector).

A.2 Probability density function of F̄

It is straightforward to express F̄ as a function of A and B, hence as a function

of θ and φ:

F̄ =

√
F 2

+ + F 2
×

2
=

√
A2 +B2

2
=

√
[1/2(1 + cos2 θ) cos 2φ ]2 + [cos θ sin 2φ]2

2
.

(A.5)

For isotropically distributed sourcess the pdfs of θ and φ are independent: p(u) =

p(cos θ) = 1/2 (for u ∼ U[-1,1]) and p(φ) = 1/2π. The combined pdf is thus

p(u, φ) = 1/4π. p(F̄ ) can be obtained from the combined probability distribution
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A.2 Probability density function of F̄

p(u, F̄ ) by marginalising with respect to u. Since F̄ = f(θ, φ) probability volumes

can be equated to write:

|p(u, F̄ ) du dF̄ | = |p(θ, φ) dθ dφ|

which can be written as:

|p(u, F̄ ) du dF̄ | = p(θ, φ)× |J | (A.6)

where |J | is the determinant of the Jacobian matrix that relates the differen-

tials.

|J | =
∣∣∣∣∂(u, F̄ )

∂(θ, φ)

∣∣∣∣ =

∣∣∣∣ ∂(θ, φ)

∂(u, F̄ )

∣∣∣∣−1

|J | = (1− u2)3/2

2F̄

[2F̄ 2 − 1/4(1 + u2)2][u2 − 2F̄ 2]

u2 − 1/4(1 + u2)2
,

and substituting this in Eq. A.6 we obtain:

p(u, F̄ ) =
1

4π

(1− u2)3/2

2F̄

[2F̄ 2 − 1/4(1 + u2)2][u2 − 2F̄ 2]

u2 − 1/4(1 + u2)2
.

Marginalising this with respect to u, which takes values in the range [-1,1], we

obtain the desired probability density function for F̄ :

p(F̄ ) =

∫ cos θ=1

cos θ=−1

p(u, F̄ ) du. (A.7)

It is not an easy job to marginalise this expression and find the analytic expression

for p(F̄ ). In Fig. A.2 we show the pdf curve computed numerically as a normalised

histogram of occurrences of F̄ values when considering all directions with equal

probability.
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A.2 Probability density function of F̄
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Figure A.2: Normalised histogram of F̄ values obtained for random directions of incom-
ing gravitational waves. This plot has been obtained numerically by computing and
histogramming F̄ values for 105 sources isotropically distributed (u = cos(θ) ∼ U[-1,1]
and φ = U[0,2π). The maximum value for a fully open L-shaped detector is

√
2/2 and

the most frequent value is 0.352. (c.f. Fig. 2.7 on section 2.3).
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Appendix B

Polarisation degree λ study

B.1 Unknown direction of angular momentum

To infer the probability of detection of a signal is necessary to know the probability

of its degree of polarisation λ. In this section the probability density function

p(λ) of gravitational radiation emitted by a binary system of compact objects is

derived. A neutron star lying in isolation with its angular momentum pointing

in any direction with the same probability has some resemblance with a binary

system randomly oriented in space. In the case of a binary system the polarisation

degree can be calculated as:

λ =
2 cos ι

1 + cos2 ι
=

2v

1 + v2
, (B.1)

where ι ∈ [0, π] is the angle subtended between the angular momentum of the sys-

tem and the line of sight and v = cos ι. If we consider that the angular momentum

vector of the source/system points in any direction with equal probability then

its probability distribution is p(v) = 1/2, because v = cos ι ∼ U[-1,1]. Solving

Eq. B.1 for v we get:

v =
1

λ
±
√

1

λ2
− 1 (B.2)
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B.1 Unknown direction of angular momentum

where “+′′ should be taken for values of λ ∈ [−1, 0] and “−′′ for λ ∈ [0, 1].

Equating probability volumes:

p(λ) dλ = p(v) dv (B.3)

we get:

p(λ) = p(v)

∣∣∣∣dvdλ
∣∣∣∣ =

1

2
·
∣∣∣∣ (1 + u2)2

2(1− u2)

∣∣∣∣ =
1

2
·

∣∣∣∣∣∣∣∣∣
[
1 +

[
1
λ
±
√

1
λ2 − 1

]2
]2

2

[
1−

[
1
λ
±
√

1
λ2 − 1

]2
]
∣∣∣∣∣∣∣∣∣ , (B.4)

which is already a normalised expression. Fig. B.1 shows the curve corresponding

to the analytical expression in Eq. B.4. It has been compared with the result

obtained by normalising the histogram of 105 trials.
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Figure B.1: Comparison of the analytical expression of the probability density function
of λ given by Eq. B.4 and the normalised histogram of 105 trials. The lowest probability
is for linearly polarised signals (λ = 0), whereas the highest probability is for circularly
polarised signals (λ = −1, λ = 1).
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B.2 Known direction of angular momentum

B.2 Known direction of angular momentum

Electromanetic observations of nebulae around pulsars can sometimes help iden-

tifying the direction of the angular momentum and the angle with respect to the

line of sight ι. What can be said about the polarisation degree λ then? Let us

assume here that the value of ι has been constrained and it is represented by a

gaussian probability distribution function:

p(ι) =
1

σι
√

2π
exp

[
−(ι− µι)2

2σ2
ι

]
. (B.5)

It is not easy to infer an analytic expression of p(λ) given the probability distribu-

tion of ι in Eq. B.5 and their relation in Eq. B.1. Fig. B.2 (left) shows a numerical

example to show the relation between the two distributions. For ι ∼ N(µι, σι) ≡
N(1.1501,0.0873) (the uncertainty corresponds to the 95% of probability mass in

the interval ι = µι ± 5◦ in radians). The normalized histogram of the resulting

values of λ (106 trials) and its gaussian fit λ ∼ N(µλ, σλ) = N(0.6891,0.099) are

shown in the right. The mode of the histogram is at λ = 0.7162.
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Figure B.2: Example of the probability distribution of λ and its gaussian fit (right)
given the distribution of ι (left).
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Appendix C

Comparing Histograms: The

mean value of a histogram

This appendix provides insight into the procedure for quantitative comparison

of histograms of comparable populations. This is a way, for example, to decide

which of two countries with the same number of inhabitants is “taller” based

only on their corresponding histograms, which were obtained by binning all the

individual height values. The method is very simple and consists in calculating

the mean value (called x̄-value thereon) of each histogram and sorting them out

by this value. Once the histogram has been created the x̄-value can be calculated

by adding all the individual results of the multiplications of the bin values (not

the bin widths) with the number of occurrences for each bin. For a population of

N values, organised in M bins, the mean or x̄-value can be calculated as follows:

x̄ =
1

N

M∑
m=1

nmxm,

where xm is the value of the mth bin and nm is the number of counts of that same

bin. The set of possible x̄-values is analogous to the different ways of arranging

N balls into M buckets, where the number of possible combinations is
(
N+M−1

N

)
.

Table C.1 shows a simple example to illustrate the procedure, in which 3

values have been arranged into 3 bins. Each possible arrangement is represented

by a different row in the table.
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N = 3 values into M = 3 bins

Set No. Bin 1 Bin 2 Bin 3 x̄ value

1 [3 0 0] 1.000

2 [2 1 0] 1.333

3 [2 0 1] 1.666

4 [1 2 0] 1.666

5 [1 1 1] 2.000

6 [1 0 2] 2.333

7 [0 3 0] 2.000

8 [0 2 1] 2.333

9 [0 1 2] 2.666

10 [0 0 3] 3.000

Table C.1: List of all the possibilities to arrange 3 values into 3 bins and the x̄-value
of each arrangement. In total, there are

(
5
3

)
= 10 possibilities.

All the x̄-values have been plotted in Fig. C.1. It can be observed that the

mean values of subsequent histograms do not form a strictly increasing monotonic

function, and that:

• Two arrangements/histograms can have the same x̄-value. The outcomes

[0 3 0] and [1 1 1] result on the same value x̄ = 6 (written as [0 3 0; 6]

and [1 1 1; 6] thereon). Similarly, the arrangements [1 2 0; 5] and [2 0 1;

5]. The lesson here is that two histograms with the same x̄-value are not

necessarily the same histogram, for it is degenerate.

• Overall, x̄-values present an increasing trend (given that the binning starts

from the left) but it may decrease at points. For example, [1 0 2; 7], and

the next one is [0 3 0; 6].

One conclusion drawn from the above points is that the x̄-value is a subjective

way of comparing histograms. For example, let us think we want to measure the

degree of obesity in two groups of N = 10 children by using their histogramed
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C.1 Extracting information from histograms
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Figure C.1: Normalised x̄-values corresponding to table C.1.

weights (to decide who of the two groups should go on a diet...) using M = 3

bins. Studying all the possible outcomes it is found that [0 9 1; 6], [1 7 2; 6], [2 5

3; 6], [3 3 4; 6],[4 1 5; 6] (see Fig. C.1) result in the same x̄-value. That is to say

that using only the x̄-value as an indicator the same degree of obesity would be

assigned to very different groups. Arguably, this is not fairest but it is a way of

quantifying group of values/histograms nevertheless.

C.1 Extracting information from histograms

The fact that the x̄ function is not a monotonically increasing can cause some

uncertainty on decisions taken based solely on the mean value. One example is to

infer which of two groups has a bigger mean value. Fortunately, the uncertainty

of the decision reduces bigger is the number of values and bins considered. A

simple example was devised to enlighten this and it is presented in the following.

The exercise consisted in sorting the mean x̄ and the scale factor θ of 50 popu-

lations, generated by sampling from gaussian and gamma distributions of known

mean and scale factor, respectively, using only the x̄ of their histograms. For the

gaussian populations the mean was randomly chosen from an uniform distribution
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C.1 Extracting information from histograms
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Figure C.2: Evolution of the normalised x̄-values for all the possible arrangements of
N = 10 values into M = 3 bins.

µ ∼ U[20,25] and the standard deviation is σ = 5. For the gamma distributions

the scale factor was chosen from a uniform distribution θ ∼ U[5,8] with fixed

shape factor k = 2. All the randomly chosen mean and scale factor values were

recorded to later establish the fraction of correctly ordered populations using x̄. A

different number of samples and bins were tried in order to check how this affects

the results: combinations of N = 103, 104, 105 and 106 values arranged into M =

50, 100, 150 and 200 bins were tried. The exercise was repeated 500 times for

each combination (N,M) and the fraction of successes (populations’ mean and

scale factors sorted out correctly) have been plotted. Fig. C.3 and Fig. C.4 show

(N,M) trials each, with 50 gaussian (left) and 50 gamma (right) distributions.

The need of a systematic way of quantifying histograms is shown clearly in the

figures, for it is not easy to establish the order of the means or of the scale factors

visually. Fig. C.5 shows the statistics of inferring the order of means and scale

factors correctly using the x̄-value of the histograms. As expected, bigger are N

and M , the rate for which order is guessed correctly increases.
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C.1 Extracting information from histograms
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Figure C.3: 50 histograms (M = 50 bins) of (N = 103) samples values withdrawn from
gaussian and gamma distributions, with random mean and scale factors, respectively.
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Figure C.4: 50 histograms (M = 200 bins) of (N = 106) samples values withdrawn from
gaussian and gamma distributions, with random mean and scale factors, respectively.
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C.1 Extracting information from histograms
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Figure C.5: Histograms of the 500 trials showing the number of histograms guessed in
the right order. The bigger the number of values N and the number of bins M , the
higher is the number of histograms ordered correctly using the x̄ is higher.
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Appendix D

Calculation of antenna pattern

functions

It is straightforward to calculate the antenna function patterns, F+ and F×, in

the local frame of the detector with the Eqs. D.1:

F+(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ (D.1a)

F×(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ (D.1b)

Eqs. D.1 have been taken from p.417 of Ref. (90) where the direction to the source

(i.e. incoming direction of the gravitational wave) is given by the spherical angles

(θ, φ) in the detector frame (see Fig. 9.2 in p. 366 or Fig. 9.9 in p. 416). Note

that θ (i.e. the co-altitude) is measured from the direction perpendicular to the

detector plane (a source located overhead has θ = 0 and on the horizon has

θ = π/2), φ (i.e. the azimuth) is measured from the first to the second arm and

ψ is the polarisation angle measured from the plane of constant φ (through the

source) and the polarisation ellipse axis.

Eqs. D.1 are derived for a fully open L-shape detector (that is, the angle

between arms 2Ω = π/2 rad). So, more generically, we can write:
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F+(θ, φ, ψ) =
1

2
sin 2Ω

[
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

]
(D.2a)

F×(θ, φ, ψ) =
1

2
sin 2Ω

[
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ

]
. (D.2b)

Schutz - Tinto devised an equivalent and very flexible method to calculate

the antenna patterns F+ and F×. We refer the reader to Ref. (91) and note the

derivation of Eq. 2.14 there (reproduced below in Eqs. D.3) to calculate the strain

produced by the gravitational wave on the detector.

δln
l0

= −1

2
sin 2Ω [(AxXA

y
X − A

x
YA

y
Y )h+ + (AxXA

y
Y + AxYA

y
X) exp(iδ)h×)] (D.3a)

= −1

2
sin 2Ω [(a11a21 − a12a22)h+ + (a11a22 + a12A21) exp(iδ)h×)] (D.3b)

= −1

2
sin 2Ω [F+h+ + F× exp(iδ)h×)] (D.3c)

where aij are the elements of matrix A corresponding to the rotation matrix of

Eulerian angles (θ, φ, ψ). This rotation matrix allows us to transform strain coor-

dinates defined in XYZ (i.e. the wave-frame) into xyz (i.e. the detector-frame),

see Fig. D.1. To know the aij elements it is logical to calculate first the matrix

A−1 corresponding to the opposite transformation (i.e from xyz into XYZ). This

matrix is obtained by the combination (orderly matrix multiplication) of three

individual successive rotations Ri(θi) around the axis x,y, z, see Ref. (138):

A−1 = Rz(φ)Rx(θ)Rz(ψ) (D.4)

=

 cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ sinψ sin θ
− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ

 .

(D.5)

and remembering that for the rotation of orthogonal frames At = A−1 we can

see that the transpose of the above matrix is the same as (A)jK in section 2
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of Ref. (91). Note the usage of the Eulerian angles (φ, θ, ψ) on individual base

rotation matrices of the form:

Rx(θx) =

1 0 0
0 cos θx sin θx
0 − sin θx cos θx

 , Rz(θz) =

 cos θz sin θz 0
− sin θz cos θz 0

0 0 1

 . (D.6)

The multiplication order Rz(φ)Rx(θ)Rz(ψ) = A−1 corresponds to first rotat-

ing ψ counterclockwise, then θ counterclockwise, and lastly φ counterclockwise

again. The second rotation is around the x axis and hence this transformation is

called a x-convention rotation/transformation.

The detector-frame xyz is defined, conveniently but unconventionally, such

that the x and y are contained in the detector plane and x bisects the angle 2Ω

between the detector arms, see Fig. D.1. An important implication is that φ is

measured counterclockwise from the bisector, and not from the first arm of the

detector as it is considered on Eqs. D.2.

From the generic expression to calculate the strain on the arms of the detector

(given Eqs. D.3) we can readily calculate the antenna pattern functions as:

F+ = − sin 2Ω (a11a21 − a12a22) (D.7a)

= − sin 2Ω
[
1/2 (1 + cos2 θ) sin 2φ cos 2ψ + cos θ cos 2φ sin 2ψ

]
(D.7b)

F× = − sin 2Ω (a11a22 + a12a21) (D.7c)

= − sin 2Ω
[
−1/2 (1 + cos2 θ) sin 2φ sin 2ψ + cos θ cos 2φ cos 2ψ

]
(D.7d)

Eqs. D.7 and Eqs. D.2 are equivalent, but not equal. If we were considering

the average value of the antenna pattern F̄ =
√

1/2(F 2
+ + F 2

×) we would have

easily overlooked the difference. To see their equivalency it is important to note

a few subtle points:

• In Eqs. D.7 φ is measured from the bisector of the arms (see Fig. D.1),

whereas in Eqs. D.2 φ is measured from the first arm to the second arm.

For a detector of generic shape, there is a shift of Ω between the two systems.
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Figure D.1: The relation between the detector frame xyz and the wave frame XYZ.
The angles θ and φ are the usual spherical polar coordinates of the wave’s incoming
direction, measured in the detector frame. The angle ψ is a measure of the polarisation
angle of the wave, defined as a rotation about the Z-axis. N is the projection of the
line of nodes of the polarisation ellipse onto the xy plane. Figure taken from Ref. (91).
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• The angle θ is always measured from the perpendicular to the detector

plane. However, on Eqs. D.7, θ is one of the Eulerian angles to tilt the

detector frame toward the source, whereas in Eqs. D.2, θ is the rotation

angle so that the propagation direction of the wave points to the detector

(c.f. see Fig. 9.2 in Ref. (90)). This is why to show the equivalency

between them we need to substitute θ for π − θ. Sources in the Northern

Celestial Hemisphere (NCH) have δ > 0 and θ > π/2, whereas sources in

the South Celestial Hemisphere (SCH) have δ < 0 and θ < π/2. In general,

θ = π/2 + δ, see Fig. D.3.

• It is important to be careful and keep in mind where the angles (θ, φ) are

measured from. If we make the substitution θ → π − θ and φ → φ + Ω in

Eqs. D.7, these reduce to Eqs. D.2. This is shown graphically in Fig. D.2.
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Figure D.2: Comparation of F+ and F× calculated with Eqs. D.2 (two upper panels)
and Eqs. D.7 (two lower panels) for a L-shape detector. It is readily seen that both
ways to calculate the antenna patterns are equivalent: if we take the two upper panels
and first shift the patterns π/4 rad horizontally to the right (emulating φ → φ + Ω),
and then flip the patterns with respect to an horizontal axis at θ = π/2 (emulating the
replacement θ → π − θ) we obtain the two panels below.
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Figure D.3: θ calculation examples for two sources (Virgo Cluster and the Galactic
Centre) where the relation θ = π/2 + δ is obvious. Note that this figure shows only the
partial rotation (of one Eulerian angle θ) on the zy plane; θ is the angle we need to
rotate the wave frame to align it with the detector frame.

The calculation of the angles (θ, φ, ψ) for a particular instant and source loca-

tion, given by equatorial coordinates (δ,RA), is not straightforward using spher-

ical trigonometry. This rather intricate calculation may be alleviated by a sys-

tematic transformation (matrix multiplication) that takes the gravitational wave

amplitude and projects it onto any detector of particular location and orienta-

tion on Earth. The conversion is done in two steps by means of an intermediate

stepping frame.

Let us first define the new intermediate coordinate frame x′y′z′ fixed to the

centre of the Earth and rotating with it around z′ (the axis going through the

poles) so that x′ pierces and follows the rotation of the Greenwich meridian as

shown in Fig. D.4. Having defined an intermediate Earth-fixed frame (called

Earth frame thereon) we are now in the position to compute a rotation matrix

B that transforms coordinates from any detector’s local frame xyz to the Earth

frame. A straight-forward way of calculating B is to follow an analogue procedure

to A and to combine, by orderly multiplication, three successive rotations of the

Eulerian angles (α, β, γ) to rotate the Earth frame to the detector frame. β and
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γ denote the latitude and longitude, respectively, of the geographical location

of the detector and α, the angle subtended between the North-Sourth meridian

of the location and the detector bisector, defines its orientation. Following the

y-convention (the second rotation is with respect to the re-oriented y axis) and

noting the rotation angle as the colatitude π/2− β we get:

B1 = Rz(α)Ry(π/2− β)Rz(γ) (D.8)

=

 cos γ sin β cosα− sin γ sinα cos γ sin β sinα + sin γ cosα − cos γ cos β
−(sin γ sin β cosα + cos γ sinα) − sin γ sin β sinα + cos γ cosα sin γ cos β

cos β cosα cos β sinα sin β


(D.9)

Eq. D.8 is an alternative expression to B calculated in (91) departing from

At in Eq. D.4 and doing the substitutions φ → γ − 3π/2, ψ → α − π/2 and

θ → π/2 − β, as indicated in the paper. It is reproduced here for the benefit of

the reader:

B2 =

 cosα sin β cos γ − sinα sin γ sinα cos γ + cosα sin β sin γ − cosα cos β
−(cosα sin γ + sinα sin β cos γ) − sinα sin β sin γ + cosα cos γ sinα cos β

cos β cos γ cos β sin γ sin β


B1 and B2 look different but correspond to the same rotation: the multipli-

cation with the coordinates of a randomly chosen spatial point yields the same

result and probes that they are indeed equivalent. Also shows that α is measured

from the North-South to the bisector of the detector and not from East-West, as

it might be understood from Fig. 2 of (91). We take B1 = B2 = B.

We can now work out the combined transformation C = BA needed to con-

vert coordinates from XYZ (wave frame) to xyz (detector frame). The relation

between the three reference frames can be seen in Fig. D.4.

For clarity and reference, the meaning of the Eulerian angles partaking in the

two rotation transformation matrices A and B are listed below.

• α angle between the bisector of the detector and the meridian (North-

South line).
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Figure D.4: The relation between the detector’s axes xyz, the Earth’s axes x’y’z’ and
the wave’s axes XYZ. β and γ are the detector’s latitude and longitude, respectively,
and α is the orientation with respect to the local meridian (North-South line). The
angles θ and φ are the usual spherical polar coordinates of the wave’s propagation
direction, which now are measured with respect to the Earth’s axes. The angle ψ

determines the polarisation orientation of the wave. φ and γ are angles measured on
the x’y’ plane.
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• β latitude of detector’s location.

• γ longitude of the detector’s location.

• θ ‘co-declination’ of the source direction θ = π/2 + δ.

• φ Hour-angle of the source from Greenwich (GHA = GLST - RA), where

GLST is the local sidereal time at Greenwich and RA is the right ascension

of the source.

• ψ wave’s polarisation angle.

• Ω half of the angle between arms.
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Appendix E

Chebyshev polynomials

Curves in figures in Section 2.6 have been obtained empirically by calculating

the proportion of the trials that fall over a particular threshold of the antenna

pattern values. Following the custom of (92) the curves can be described by a

linear combination of Chebyshev polynomials. The more polynomials we make

use of the more accurate the description of the curve will be. The following is an

excerpt from (139).

Typically, the Chebyshev polynomials of the first kind are defined in the range

−1 ≤ x ≤ 1 and are of the form:

Tr = cos rθ, cos θ = x, −1 ≤ x ≤ 1. (E.1)

Chebyshev polynomials can be generated from the recurrence system

T0(x) = 1 (E.2)

T1(x) = x (E.3)

Tr+1(x) = 2xTr(x)− Tr−1(x). (E.4)

The Chebyshev polynomials of the first kind defined in the range 0 ≤ x ≤ 1

are more convenient for us here, since our threshold for the antenna power X
1/2
∗

is defined in that range. Following the notation in (139) we use an asterisk to

differentiate the polynomials defined in the range [0,1] from the more commonly

used polynomials in the range [-1,1]. In general, any finite range a ≤ y ≤ b
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can be transformed to the basic range −1 ≤ x ≤ 1 with the change of variable

y = 1/2(b− a)x+ 1/2(b+ a). By applying the corresponding change of variables

the Chebyshev polynomials in the new range T ∗ can be defined as:

T ∗0 = 1 (E.5)

T ∗1 = 2x− 1 (E.6)

T ∗2 = 8x2 − 8x+ 1 (E.7)

T ∗3 = 32x3 − 48x2 + 18x− 1 (E.8)

... (E.9)

T ∗r+1 = 2(2x− 1)T ∗r (x)− T ∗r−1(x) (E.10)
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Figure E.1: Chebyshev polynomials T ∗r , defined in the range [0,1].

The fitting of the curves was done by a linear combination of the orthogonal

Chebyshev polynomials T ∗n by minimising the residuals S between the samples

and the curve to fitted:

S =
N∑
k=0

w(xk)

[
f(xk)−

n∑
r=0

crTr(xk)

]2

, (E.11)

where we have N+1 samples (k = 0, 1, 2, ...N) and wk is the weight given to each

sample f(xk), and cr is the coefficient of the Chebyshev polynomial of degree r.
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The minimisation problem leads to the normal equations:

T′WTc = T′Wf (E.12)

and for W = In, the identity matrix of dimension N , assuming all the samples

have the same importance. c is the vector of constants, f is the vector of given

values, W is the diagonal matrix with elements, and T is the (N + 1)× (n+ 1)

matrix whose rth column is the vector with elements Tr(x0), ....Tr(xN). The prime

denotes matrix transposition. The equation system can be written as:
T0(x0) T1(x0) . . . TN(x0)
T0(x1) T1(x1) . . . TN(x1)

...
...

. . .
...

T0(xN) T1(xN) . . . TN(xN)

 ·

c0

c1
...
cN

 =


f(x0)
f(x1)

...
f(xN)

 . (E.13)

This matrix-system is easily solved with a matrix computing program as Mat-

lab.
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Appendix F

Tables of Chebyshev coefficients

In the following tables the coefficients of the Chebyshev polynomials to fit the

most relevant detection probability curves in Section 2.6 are presented. Results

obtained by Monte Carlo simulations for single antennae or a network of detectors

have been approximated for signals of different polarisation degree and when

distance factor is and is not considered. Polynomials of fourth degree have been

used to fit the curve in the range 0 ≤ X
1/2
∗ ≤ 0.5.
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Coefficients of Chebyshev Polynomials T ∗r (x) for x ∈ [0, 1] (see Appendix E)
c0 c1 c2 c3 c4

DET. Factor Disc-shaped
GEO600 DN 7.801e-03 -3.753e-04 -1.513e-02 -1.260e-01 -5.591e+00

DY 7.817e-03 1.073e-04 -9.504e-03 2.574e-02 1.324e+00
LIGO-H DN 7.798e-03 -3.599e-04 -9.600e-03 -9.152e-02 -6.748e+00

DY 7.817e-03 2.048e-04 -2.727e-03 8.449e-02 1.076e+00
LIGO-L DN 7.815e-03 -6.158e-05 -9.915e-03 -6.037e-02 -3.663e+00

DY 7.827e-03 3.439e-04 -6.502e-03 3.807e-02 1.042e+00
VIRGO DN 7.781e-03 -8.589e-04 -1.897e-02 -1.231e-01 -3.780e+00

DY 7.791e-03 -5.477e-04 -1.691e-02 -4.312e-02 4.511e-01
TAMA300 DN 7.802e-03 -5.513e-04 -2.468e-02 -2.481e-01 -7.739e+00

DY 7.807e-03 -3.502e-04 -2.442e-02 -1.996e-01 -4.502e+00
PERTH DN 7.773e-03 -1.225e-03 -2.761e-02 -5.276e-01 -2.365e+01

DY 7.799e-03 -3.700e-04 -1.519e-02 -2.501e-01 -1.248e+01
DET. Factor Sph - GC

GEO600 DN 7.802e-03 -3.640e-04 -1.483e-02 -1.089e-01 -4.760e+00
DY 7.815e-03 1.468e-05 -8.130e-03 3.220e-02 9.678e-01

LIGO-H DN 7.798e-03 -3.685e-04 -9.103e-03 -8.635e-02 -6.830e+00
DY 7.814e-03 1.051e-04 -7.496e-04 8.896e-02 2.101e-01

LIGO-L DN 7.822e-03 1.164e-04 -7.409e-03 -3.140e-02 -3.023e+00
DY 7.829e-03 3.256e-04 -3.618e-03 5.864e-02 8.929e-01

VIRGO DN 7.774e-03 -1.058e-03 -2.158e-02 -1.515e-01 -4.341e+00
DY 7.784e-03 -7.645e-04 -1.650e-02 -4.328e-02 1.045e-01

TAMA300 DN 7.799e-03 -6.870e-04 -2.728e-02 -2.793e-01 -8.201e+00
DY 7.804e-03 -5.106e-04 -2.417e-02 -2.092e-01 -5.196e+00

PERTH DN 7.767e-03 -1.414e-03 -2.989e-02 -5.772e-01 -2.571e+01
DY 7.787e-03 -8.045e-04 -1.897e-02 -3.514e-01 -1.692e+01

DET. Factor Sph-SE
GEO600 DN 7.800e-03 -3.713e-04 -1.354e-02 -1.481e-01 -7.068e+00

DY 7.772e-03 2.013e-02 9.025e-02 7.199e-01 1.549e+01
LIGO-H DN 7.801e-03 -3.499e-04 -1.308e-02 -1.398e-01 -6.726e+00

DY 7.773e-03 2.009e-02 8.999e-02 7.180e-01 1.545e+01
LIGO-L DN 7.801e-03 -3.415e-04 -1.281e-02 -1.343e-01 -6.527e+00

DY 7.775e-03 2.008e-02 8.970e-02 7.127e-01 1.527e+01
VIRGO DN 7.801e-03 -3.533e-04 -1.310e-02 -1.396e-01 -6.713e+00

DY 7.773e-03 2.008e-02 8.981e-02 7.148e-01 1.535e+01
TAMA300 DN 7.801e-03 -3.545e-04 -1.327e-02 -1.426e-01 -6.802e+00

DY 7.774e-03 2.010e-02 8.987e-02 7.147e-01 1.532e+01
PERTH DN 7.800e-03 -3.617e-04 -1.318e-02 -1.420e-01 -6.819e+00

DY 7.775e-03 2.008e-02 8.980e-02 7.140e-01 1.530e+01

Table F.1: Signals of λ = 1 in Fig. 2.28, Fig. 2.29, Fig. 2.30.
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Coefficients of Chebyshev Polynomials T ∗r (x) for x ∈ [0, 1] (see Appendix E)
c0 c1 c2 c3 c4

DET. Factor Disc-shaped
GEO600 DN 7.813e-03 5.884e-03 -7.457e-04 -1.664e-02 -2.331e-01

DY 7.814e-03 6.222e-03 7.712e-04 -7.274e-03 5.463e-01
LIGO-H DN 7.810e-03 5.287e-03 -5.690e-04 2.589e-02 1.123e+00

DY 7.812e-03 5.672e-03 1.580e-03 4.662e-02 2.375e+00
LIGO-L DN 7.818e-03 5.804e-03 1.480e-03 2.082e-02 9.134e-01

DY 7.819e-03 6.188e-03 3.584e-03 3.470e-02 1.643e+00
VIRGO DN 7.803e-03 5.466e-03 -7.041e-03 -1.048e-01 -2.547e+00

DY 7.804e-03 5.803e-03 -5.694e-03 -1.028e-01 -2.177e+00
TAMA300 DN 7.819e-03 6.461e-03 -3.859e-04 -5.921e-02 -1.832e+00

DY 7.818e-03 6.751e-03 1.906e-04 -7.273e-02 -2.085e+00
PERTH DN 7.815e-03 4.910e-03 9.035e-04 1.937e-02 -6.714e-01

DY 7.816e-03 5.342e-03 4.100e-03 6.587e-02 1.669e+00
GEO600 DN 7.812e-03 5.926e-03 -1.092e-03 -2.158e-02 -3.036e-01

DY 7.814e-03 5.864e-03 -1.118e-04 -3.870e-03 6.954e-01
LIGO-H DN 7.810e-03 5.254e-03 -5.350e-04 3.242e-02 1.378e+00

DY 7.812e-03 5.221e-03 7.923e-04 5.780e-02 2.760e+00
LIGO-L DN 7.821e-03 5.859e-03 3.045e-03 4.681e-02 1.716e+00

DY 7.821e-03 5.757e-03 3.175e-03 4.910e-02 2.128e+00
VIRGO DN 7.801e-03 5.395e-03 -8.646e-03 -1.300e-01 -3.300e+00

DY 7.803e-03 5.320e-03 -7.887e-03 -1.169e-01 -2.517e+00
TAMA300 DN 7.819e-03 6.449e-03 -1.612e-03 -8.618e-02 -2.755e+00

DY 7.819e-03 6.341e-03 -1.290e-03 -8.118e-02 -2.338e+00
PERTH DN 7.814e-03 4.773e-03 1.888e-04 1.235e-02 -9.737e-01

DY 7.817e-03 4.772e-03 1.901e-03 4.769e-02 8.701e-01
GEO600 DN 7.813e-03 5.466e-03 4.722e-05 1.684e-03 -4.364e-03

DY 7.373e-03 3.185e-02 2.206e-01 2.321e+00 5.866e+01
LIGO-H DN 7.813e-03 5.448e-03 -6.662e-07 9.041e-04 -2.491e-02

DY 7.374e-03 3.180e-02 2.201e-01 2.315e+00 5.850e+01
LIGO-L DN 7.812e-03 5.443e-03 1.350e-06 1.614e-03 1.265e-02

DY 7.377e-03 3.182e-02 2.201e-01 2.315e+00 5.848e+01
VIRGO DN 7.812e-03 5.443e-03 -6.119e-05 2.634e-04 -3.686e-02

DY 7.375e-03 3.181e-02 2.201e-01 2.315e+00 5.850e+01
TAMA300 DN 7.813e-03 5.473e-03 1.685e-04 1.872e-03 -2.306e-02

DY 7.375e-03 3.183e-02 2.203e-01 2.318e+00 5.858e+01
PERTH DN 7.812e-03 5.428e-03 -9.538e-05 3.402e-04 -4.158e-02

DY 7.377e-03 3.181e-02 2.200e-01 2.314e+00 5.845e+01

Table F.2: Signals of λ = 0 in Fig. 2.28, Fig. 2.29, Fig. 2.30.
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Coefficients of Chebyshev Polynomials T ∗r (x) for x ∈ [0, 1] (see Appendix E)
c0 c1 c2 c3 c4

DET. Factor Disc-shaped
GEO600 DN 7.820e-03 4.128e-04 -2.604e-02 -1.634e-01 -2.983e+00

DY 7.825e-03 6.887e-04 -2.756e-02 -1.874e-01 -2.509e+00
LIGO-H DN 7.814e-03 1.782e-04 -1.912e-02 -2.920e-02 6.509e-01

DY 7.820e-03 5.218e-04 -1.974e-02 -3.654e-02 1.831e+00
LIGO-L DN 7.828e-03 5.865e-04 -2.106e-02 -9.599e-02 -1.053e+00

DY 7.833e-03 9.215e-04 -2.193e-02 -1.181e-01 -8.484e-01
VIRGO DN 7.803e-03 -2.021e-04 -3.513e-02 -2.842e-01 -5.954e+00

DY 7.808e-03 8.306e-05 -3.681e-02 -3.194e-01 -6.134e+00
TAMA300 DN 7.831e-03 7.116e-04 -3.234e-02 -3.057e-01 -7.253e+00

DY 7.834e-03 9.197e-04 -3.533e-02 -3.675e-01 -8.501e+00
PERTH DN 7.819e-03 2.697e-04 -1.368e-02 -3.690e-02 -2.661e+00

DY 7.826e-03 6.863e-04 -1.253e-02 -4.642e-04 3.366e-01
GEO600 DN 7.820e-03 3.769e-04 -2.740e-02 -1.798e-01 -3.317e+00

DY 7.823e-03 4.853e-04 -2.581e-02 -1.522e-01 -1.627e+00
LIGO-H DN 7.813e-03 1.415e-04 -1.873e-02 -1.578e-02 1.083e+00

DY 7.817e-03 2.855e-04 -1.675e-02 2.190e-02 3.320e+00
LIGO-L DN 7.832e-03 7.085e-04 -1.862e-02 -5.912e-02 3.483e-02

DY 7.833e-03 7.386e-04 -1.856e-02 -5.927e-02 6.658e-01
VIRGO DN 7.798e-03 -3.571e-04 -3.777e-02 -3.217e-01 -7.000e+00

DY 7.801e-03 -2.729e-04 -3.665e-02 -3.045e-01 -5.791e+00
TAMA300 DN 7.830e-03 6.392e-04 -3.483e-02 -3.531e-01 -8.771e+00

DY 7.831e-03 6.782e-04 -3.430e-02 -3.480e-01 -8.138e+00
PERTH DN 7.817e-03 1.663e-04 -1.361e-02 -3.491e-02 -2.818e+00

DY 7.822e-03 3.289e-04 -1.133e-02 1.559e-02 7.634e-02
GEO600 DN 7.819e-03 3.565e-04 -2.106e-02 -1.096e-01 -2.234e+00

DY 7.680e-03 2.627e-02 1.498e-01 1.394e+00 3.275e+01
LIGO-H DN 7.818e-03 3.505e-04 -2.100e-02 -1.096e-01 -2.241e+00

DY 7.682e-03 2.623e-02 1.495e-01 1.392e+00 3.271e+01
LIGO-L DN 7.819e-03 3.508e-04 -2.094e-02 -1.078e-01 -2.159e+00

DY 7.684e-03 2.624e-02 1.495e-01 1.392e+00 3.270e+01
VIRGO DN 7.819e-03 3.587e-04 -2.087e-02 -1.069e-01 -2.137e+00

DY 7.682e-03 2.623e-02 1.495e-01 1.391e+00 3.269e+01
TAMA300 DN 7.819e-03 3.623e-04 -2.100e-02 -1.105e-01 -2.274e+00

DY 7.683e-03 2.625e-02 1.496e-01 1.393e+00 3.272e+01
PERTH DN 7.818e-03 3.502e-04 -2.088e-02 -1.079e-01 -2.203e+00

DY 7.683e-03 2.623e-02 1.495e-01 1.391e+00 3.268e+01

Table F.3: Signals of λ ∼ U[0, 1] in Fig. 2.28, Fig. 2.29, Fig. 2.30.
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Coefficients of Chebyshev Polynomials T ∗r (x) for x ∈ [0, 1] (see Appendix E)
c0 c1 c2 c3 c4

DET. Factor Disc-shaped
GEO600 DN 7.812e-03 5.342e-05 -2.076e-02 -1.306e-01 -3.732e+00

DY 7.821e-03 3.968e-04 -1.959e-02 -8.008e-02 -2.313e-01
LIGO-H DN 7.808e-03 -2.052e-05 -1.323e-02 -1.916e-02 -1.614e+00

DY 7.820e-03 4.128e-04 -1.069e-02 5.826e-02 2.991e+00
LIGO-L DN 7.823e-03 3.199e-04 -1.501e-02 -5.192e-02 -1.346e+00

DY 7.831e-03 6.666e-04 -1.443e-02 -2.495e-02 9.221e-01
VIRGO DN 7.792e-03 -5.557e-04 -2.847e-02 -2.120e-01 -5.055e+00

DY 7.799e-03 -2.702e-04 -2.879e-02 -1.979e-01 -3.096e+00
TAMA300 DN 7.820e-03 1.604e-04 -2.860e-02 -2.674e-01 -7.105e+00

DY 7.822e-03 3.319e-04 -3.093e-02 -2.926e-01 -6.633e+00
PERTH DN 7.805e-03 -2.098e-04 -1.605e-02 -1.924e-01 -1.058e+01

DY 7.820e-03 3.804e-04 -1.016e-02 -4.473e-02 -3.358e+00
DET. Spherical-GC

GEO600 DN 7.812e-03 3.165e-05 -2.150e-02 -1.335e-01 -3.575e+00
DY 7.819e-03 2.595e-04 -1.763e-02 -5.172e-02 2.627e-01

LIGO-H DN 7.808e-03 -4.212e-05 -1.270e-02 -7.238e-03 -1.335e+00
DY 7.817e-03 2.605e-04 -7.583e-03 1.023e-01 3.703e+00

LIGO-L DN 7.829e-03 4.831e-04 -1.225e-02 -1.347e-02 -2.834e-01
DY 7.832e-03 5.781e-04 -1.078e-02 2.498e-02 1.928e+00

VIRGO DN 7.786e-03 -7.376e-04 -3.139e-02 -2.519e-01 -6.113e+00
DY 7.792e-03 -5.592e-04 -2.844e-02 -1.895e-01 -3.103e+00

TAMA300 DN 7.817e-03 3.882e-05 -3.158e-02 -3.167e-01 -8.493e+00
DY 7.820e-03 1.281e-04 -3.009e-02 -2.839e-01 -6.710e+00

PERTH DN 7.802e-03 -3.342e-04 -1.675e-02 -2.099e-01 -1.151e+01
DY 7.813e-03 3.042e-05 -1.042e-02 -7.076e-02 -5.284e+00

DET. Spherical-SE
GEO600 DN 7.812e-03 5.986e-05 -1.670e-02 -1.046e-01 -3.904e+00

DY 7.722e-03 2.381e-02 1.251e-01 1.111e+00 2.544e+01
LIGO-H DN 7.811e-03 5.499e-05 -1.662e-02 -1.035e-01 -3.837e+00

DY 7.723e-03 2.376e-02 1.248e-01 1.107e+00 2.534e+01
LIGO-L DN 7.812e-03 5.292e-05 -1.651e-02 -1.005e-01 -3.715e+00

DY 7.725e-03 2.375e-02 1.245e-01 1.102e+00 2.517e+01
VIRGO DN 7.812e-03 6.019e-05 -1.651e-02 -1.014e-01 -3.769e+00

DY 7.724e-03 2.375e-02 1.246e-01 1.104e+00 2.524e+01
TAMA300 DN 7.812e-03 6.640e-05 -1.658e-02 -1.033e-01 -3.826e+00

DY 7.724e-03 2.377e-02 1.248e-01 1.106e+00 2.530e+01
PERTH DN 7.811e-03 5.357e-05 -1.652e-02 -1.023e-01 -3.825e+00

DY 7.725e-03 2.376e-02 1.247e-01 1.105e+00 2.527e+01

Table F.4: Signals of λ = f(ι) in Fig. 2.28, Fig. 2.29, Fig. 2.30.
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Coefficients of Chebyshev Polynomials T ∗r (x) for x ∈ [0, 1] (see Appendix E)
DET Pop. Factor c0 c1 c2 c3 c4

6 Disc DN 7.805e-03 -2.098e-04 -1.605e-02 -1.924e-01 -1.058e+01
DY 7.820e-03 3.804e-04 -1.016e-02 -4.473e-02 -3.358e+00

Sph-SE DN 7.811e-03 5.357e-05 -1.652e-02 -1.023e-01 -3.825e+00
DY 7.725e-03 2.376e-02 1.247e-01 1.105e+00 2.527e+01

1-6 Disc DN 7.822e-03 3.850e-04 -2.604e-02 -9.801e-02 -8.352e-01
DY 7.830e-03 8.249e-04 -2.626e-02 -1.161e-01 -3.734e-02

Sph-SE DN 7.809e-03 6.114e-05 -3.426e-02 -2.201e-01 -3.695e+00
DY 7.636e-03 2.985e-02 1.842e-01 1.782e+00 4.261e+01

1-2-6 Disc DN 7.818e-03 4.282e-04 -3.642e-02 -6.271e-02 5.145e+00
DY 7.826e-03 9.018e-04 -3.945e-02 -1.805e-01 1.940e+00

Sph-SE DN 7.814e-03 3.663e-04 -4.438e-02 -2.760e-01 -2.912e+00
DY 7.566e-03 3.410e-02 2.271e-01 2.279e+00 5.555e+01

1-2-3-6 Disc DN 7.789e-03 -3.782e-04 -7.119e-02 -4.607e-01 1.405e-02
DY 7.812e-03 5.741e-04 -7.055e-02 -6.354e-01 -8.690e+00

Sph-SE DN 7.798e-03 6.389e-06 -6.805e-02 -5.061e-01 -4.018e+00
DY 7.489e-03 3.746e-02 2.654e-01 2.750e+00 6.816e+01

1-2-3-4-6 Disc DN 7.736e-03 -2.038e-03 -1.247e-01 -1.301e+00 -2.302e+01
DY 7.776e-03 -6.098e-04 -1.151e-01 -1.340e+00 -2.856e+01

Sph-SE DN 7.781e-03 -4.798e-04 -9.706e-02 -9.521e-01 -1.517e+01
DY 7.488e-03 3.796e-02 2.684e-01 2.772e+00 6.855e+01

1-2-3-4-5-6 Disc DN 7.783e-03 -6.760e-04 -1.356e-01 -1.655e+00 -3.633e+01
DY 7.832e-03 1.394e-03 -1.139e-01 -1.518e+00 -3.674e+01

Sph-SE DN 7.793e-03 -1.447e-04 -1.134e-01 -1.294e+00 -2.630e+01
DY 7.361e-03 4.144e-02 3.145e-01 3.382e+00 8.556e+01

Table F.5: Signals of λ = f(ι) in Fig. 2.37.
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Appendix G

Discrete signals

Continuous time signals are often discretised to be recorded and analysed digi-

tally; the higher is the sampling frequency the better the resemblance between the

analogical and reconstructed digital signals. A discrete-time signal is generated

by sampling from a continuous signal x(t) as follows:

x[n] ≡ x(t)|t=nT = x(nT ) n = 0, 1, 2, ... (G.1)

where T is the sampling interval, the time interval between two consecutive sam-

ples, and the inverse of the sampling interval fs = 1/T is the sampling frequency.

The continuous time variable t is related to the discrete time variable n as follows:

tn = nT =
n

fs
=

2π

Ωs

n where n = 0, 1, 2, ... (G.2)

where Ωs = 2πfs is the angular sampling frequency.

Let us now consider a generic continuous exponential sinusoidal signal defined

in time as:

x(t) = A e−t/τ sin(Ω0t+ φ), (G.3)

and the transformation of the parameters from the continuous to the discrete

time-domain:
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x[n] = A exp

[
−nT
τ

]
sin(Ω0nT + φ) (G.4a)

= A exp

[
− 2π

Ωsτ
n

]
sin

(
2πΩ0

Ωs

n+ φ

)
(G.4b)

= A exp[−an] sin(w0n+ φ) (G.4c)

where a = 2π/(Ωsτ) is the inverse of the discrete damping time (in units of

samples−1) and w0 = 2πΩ0/Ωs = Ω0T is the normalised digital angular frequency

(in units of rad sample−1). Fig. G.1 compares the continuous time domain with

its discretised version.

0 1 2 3 4 5 6 7
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−3

−0.5

0

0.5

Continuous signal

Time t (sec)

0 20 40 60 80 100 120

−0.5

0

0.5

Discrete signal

Sample Number [n]

Figure G.1: Comparison of a continuous exponentially damped sinusoid (Eq. G.3)
and its discretised version (Eq. G.4). The upper box shows the original continuous
signal and the lower box shows the discrete version as a result of the sampling process.
Parameters: A = 1, Ωs/Ω0 = 20, w0 = π/10 rad sample−1, a = 1/30 samples−1 and
φ = 0.

A discrete-time signal {x[n]} is defined as a set of values uniformly distributed

in time. It may be represented as a sequence of values in which the time variable

takes integer values in the range n ∈ (−∞,∞) as:

{x[n]} = {..., x[−2], x[−1], x[0], x[1], x[2], ...} (G.5)
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When only the values after the sample n ≥ k need to be considered, the signal

can be multiplied with the unitary step function µ[n − k]. Fig. G.2 shows an

unconstrained signal defined for a different range of values.

µ[n− k] =

{
1 n ≥ k,

0 n < k.
(G.6)
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y[n] = x[n] µ[n]
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−4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−2

−1

0

1

2
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n

Figure G.2: Truncation of a signal by a step function of the form µ[n− k]. The three
panes on the left show the truncation of a sinusoidal signal by µ[n−0]. The three panes
on the right show the truncation of the signal at k = 3 by the unitary step function
µ[n− k].

To consider signals the signal can be multiplied by the step function µ[n−0] =

µ[n].
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Appendix H

Signal and noise in the

frequency-domain

In this appendix the instrumental error probability distribution, both in the time

and frequency domain, is studied. The instrumental noise is usually assumed to

be stationary and gaussian of zero mean and thus, when a gravitational wave

signal is suspect, is the same as to say that the most probable thing is to acquire

the model-predicted value for each datum of the set.

The real-valued discrete time sequence {s[n]} acquired can be transformed

into the equivalent representation in the frequency domain {s̃[k]} by means of

the Discrete Fourier Transform (DFT). The transformation of a N -point discrete

time sequence results in a sequence of N complex numbers, where each complex

number represents one harmonic of the signal. Taking the generic symbol �̃ for

either s̃, h̃ or ñ:

�<[k] = <{�̃[k]}, �=[k] = ={�̃[k]}, k = 0, ..., N − 1, (H.1)

or represented in their phasor form as:

ñk ≡ N [k]∠θñ[k], where N [k] = n2
<[k] + n2

=[k] and θñ[k] = arctan(n=/n<)

s̃k ≡ S[k]∠θs̃[k], where S[k] = s2
<[k] + s2

=[k] and θs̃[k] = arctan(s=/s<)

h̃k ≡ H[k]∠θh̃[k], where H[k] = h2
<[k] + h2

=[k] and θh̃[k] = arctan(h=/h<)
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H.1 Cartesian representation: Real and imaginary coefficients

Assuming that the discrepancy between the signal and the data acquired is only

the instrumental noise, for the kth frequency bin:

ñ[k] = s̃[k]− h̃[k]

{
n<[k] = s<[k]− h<[k]

n=[k] = s=[k]− h=[k]
k = 0, ..., K − 1. (H.2)

H.1 Cartesian representation: Real and imagi-

nary coefficients

The probability of getting the noise complex vector ñ[k] is given by a bivariate

normal probability distribution of variables n<[k] and n=[k]:

p(ñ[k]|σ̃[k], I) = p(n<[k], n=[k]|σ<[k], σ=[k], I) ∼ N(µ[k],Σ[k]), (H.3)

with µ[k] = [0, 0] and Σ =

[
σ2
<[k] σ<[k]σ=[k]

σ<[k]σ=[k] σ2
=[k]

]
. (H.4)

Generically, the bivariate normal distribution can be written as (see (140)):

p(n<[k], n=[k]|σ<[k], σ=[k], ρ, I) =
1

2πσ<σ=
√

1− ρ2
exp

[
− z[k]

2(1− ρ2)

]
(H.5)

where ρ ≡ cor(n<[k], n=[k]) = σ<=[k]/(σ<[k]σ=[k]) is the correlation coefficient

between the variables and

z[k] ≡ (s<[k]− h<[k])2

σ2
<[k]

− 2ρ (s<[k]− h<[k])(s=[k]− h=[k])

σ<[k]σ=[k]
+

(s=[k]− h=[k])2

σ2
=[k]

.

(H.6)

For the case of gaussian and stationary noise in the time domain there is no

correlation between the real and imaginary coefficients, so that σ<=[k] = 0 and

ρ = 0. The uncertainty is the same for the two variables σ<[k] = σ=[k] = σ[k]

and Eq. H.5 then reduces to:

p(n<[k], n=[k]|σ[k], I) =
1

2πσ2[k]
exp

[
−(s<[k]− h<[k])2 + (s<[k]− h=[k])2

2σ2[k]

]
.

(H.7)
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H.2 Polar representation: Magnitude and phase

H.2 Polar representation: Magnitude and phase

A complex vector c̃ corresponding to the harmonic of the spectrum can be al-

ternatively represented with cartesian coordinates c̃ ≡ (c<, c=) or polar coordi-

nates of magnitude and phase C∠θ, related by the equations c< = C cos θ and

c= = C sin θ. To transform the joint probability distribution of p(c<, c=) into

p(C, θ) can be done by equating the volumes under the joint probability density

curves:

p(C, θ) dC dθ = p(c<, c=) dc< dc= (H.8)

p(C, θ) = p(c<, c=)

∣∣∣∣dc<dC dc=
dθ

∣∣∣∣ = C p(c<, c=) (H.9)

In the following, the magnitude and phase probability distribution densities are

derived, in the absence and in the presence of the signal (see (141)).

H.2.1 Absence of the signal: noise only acquired

In the absence of signal (h̃[k] = 0;h<[k] = h=[k] = 0) the spectrum of the data

acquired {s̃} includes only noise {ñ}. The complex vector ñ[k] corresponding to

the kth frequency bin points in any direction and its most probable magnitude

depends on the instrumental noise level. Eq. H.7 then reduces to:

p(s̃[k]|σ[k], I) = p(s<[k], s=[k]|σ[k], I) =
1

2πσ2[k]
exp

[
s2
<[k] + s2

=[k]

σ2[k]

]
(H.10)

which, following Eq. H.9, transforms into another bivariate distribution function

of variables magnitude and phase (S[k], θs̃[k]):

p(S[k], θs̃[k]|σ[k], I) =
S[k]

2πσ2[k]
exp

[
− S2[k]

2σ2[k]

]
. (H.11)

To find the univariate probability density functions p(S[k]|·) and p(θs̃[k]|·), we

can marginalise Eq. H.11 over all possible phases θs̃[k] in the range [0, 2π) to get:

p(S[k]|σ[k], I) =

∫ 2π

0

p(S[k], θs̃[k]) d(θs̃[k]) =
S[k]

σ2[k]
exp

[
− S2[k]

2σ2[k]

]
. (H.12)
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H.2 Polar representation: Magnitude and phase

This is called Rayleigh distribution and it is defined only for positive values. As

σ[k] increases, the distribution flattens out and the peak decreases moving to the

right (see Fig. H.1); the most probable value (the mode) is S[k] = σ[k]. The

distribution of the phase p(θd̃[k]|·) can be calculated similarly by marginalising

Eq. H.11 over S[k].

p(θs̃[k]|σk, I) =

∫ ∞
0

p(S[k], θs̃[k]) dS[k] =
1

2π
. (H.13)

This is an expected result: for purely gaussian noise, the phase of each one of the

harmonics has a random phase distributed uniformly θs̃[k] ∼ U[0, 2π).
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Figure H.1: When the signal is absent and only noise is measured the distribution of
the magnitude S[k] follows a Rayleigh distribution, whereas the phase distribution is
uniform. The panel on the left shows various distributions for different values of σ[k].
The panel on the right is the uniform distribution for the phase θs̃[k].

H.2.2 Presence of the signal: signal + noise acquired

Let us consider now the case where the acquired data {s̃[k]} is not only noise but

includes a signal modeled as {h̃[k]} too. What are the probability distributions

of the magnitude and phase for a particular frequency bin? The likelihood of

measuring s̃[k] assuming that h̃[k] is the true value is given by:
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H.2 Polar representation: Magnitude and phase

p(s̃[k]|h̃[k], σ[k]) = p(s<[k], s=[k]|h<[k], h=[k], σ[k]) (H.14)

=
1

2πσ2[k]
exp

[
−(s<[k]− h<[k])2 + (s=[k]− h=[k])2

2σ[k]2

]
(H.15)

=
1

2πσ2[k]
exp

[
−s

2
<[k] + s2

=[k] + h2
<[k] + h2

=[k]− 2(s<[k]h<[k] + s=[k]h=[k])

2σ2[k]

]
(H.16)

=
1

2πσ2[k]
exp

[
−S

2[k] +H2[k]− 2(s̃[k] · h̃[k])

2σ2[k]

]
(H.17)

=
1

2πσ2[k]
exp

[
−S

2[k] +H2[k]− 2S[k]H[k] cos(|θh̃[k]− θs̃[k]|)
2σ2[k]

]
. (H.18)

Introducing α[k] = |θs̃[k]− θh̃[k]| the joint probability is:

p(S[k], α[k]|h̃[k], σ̃[k]) = p(s̃[k]|h̃[k], σ[k]) (H.19)

=
S[k]

2πσ2[k]
exp

[
−S

2[k] +H2[k]− 2S[k]H[k] cosα[k]

2σ2[k]

]
.

(H.20)

To calculate the probability of only the magnitude, the above expression can be

integrated out over all possible values of α[k] in the range [0, 2π):

p(S[k]|h̃[k], σ̃[k]) =

∫ 2π

0

p(S[k], α[k]|h̃[k], σ[k])d(α[k]) (H.21)

=
1

2π

S[k]

σ2[k]
exp

[
−S

2[k] +H2[k]

2σ2[k]

] ∫ 2π

0

exp

[
S[k]H[k]

σ[k]2
cosα[k]

]
d(α[k]).

(H.22)

Both variables are entangled in the exponential within the integral, which is

related to the Bessel function of the first kind. In particular:

I0(z) =
1

π

∫ π

0

e±z cos θ dθ =
1

π

∫ π

0

cosh(z cos θ) dθ, (H.23)
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H.2 Polar representation: Magnitude and phase

is called the modified Bessel function of the first kind and zeroth order 1. Then,

Eq. H.21 reduces to:

p(S[k]|h̃[k], σ[k]) =
S[k]

σ2[k]
exp

[
−S

2[k] +H2[k]

2σ2[k]

]
I0

(
S[k]H[k]

σ2[k]

)
. (H.24)

This probability density function is called the Rician distribution in honour of

S.O. Rice of Bell Telephone Laboratories, who developed and discussed the prop-

erties of this distribution in a pioneering series of papers on random noise (142;

143).

Expression of Eq. H.19 can be marginalised over S[k] to get the probability

distribution of α[k], which is the difference in phase between the measured and

modeled complex vector. It is not expected to be a Gaussian probability func-

tion is not expected because phase values are the result of a non-linear function

(arctan). In fact, the derivation to marginalise over S[k] is not trivial and only

the result is shown below:

p(α[k]|h̃[k], σ̃[k]) =

∫ ∞
0

p(S[k], α[k]|h̃[k], σ̃[k])d(S[k]) (H.25)

=
1

2π
exp

(
− S2[k]

2σ2[k]

)[
1 +

S[k]

σ[k]

√
2π cos(α[k]) exp

(
S2[k] cos2(α[k])

2σ2[k]

)[
1−Q

(
S[k] cosα[k]

σ[k]

)]]
,

(H.26)

where the function Q(·) is closely related to functions erf(·) and erfc(·):

Q(x) =
1

2
erfc

(
x√
2

)
=

1

2

[
1− erf

(
x√
2

)]
(H.27)

erfc(x) =
2√
π

∫ ∞
x

e−y
2

dy = 2Q(x
√

2). (H.28)

Fig. H.2 shows the Rician distribution for the magnitude in Eq. H.24 and the

phase distribution given in Eq. H.25.

1The nth order modified Bessel functions In(x) are ordinary nth order Bessel function Jn(x)
with a purely imaginary argument, see (? ). The Bessel functions of the first kind are related to
the modified Bessel functions of the first kind: In(z) = i−nJn(iz). Unlike the ordinary Bessel
functions Jn, which are oscillating as functions of a real argument, the modified Bessel functions
In are exponentially growing functions.
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H.2 Polar representation: Magnitude and phase
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Figure H.2: For the kth frequency bin of spectra containing noise and signal, the mag-
nitude S[k] of each complex vector (s̃[k] ≡ S[k]∠θs̃[k]) follows a Rician probability
density distribution. When the signal is very weak the distribution of S[k] reduces to
the Rayleigh distribution and the phase distribution reduces to an uniform one. For
a signal of intensity S[k]/σ[k] = 3 the magnitude and phase distributions have been
compared against a gaussian distribution of the same SNR.
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H.2 Polar representation: Magnitude and phase

(H.29)

The general expression for the distribution p(α[k]|h̃[k], σ̃[k]) given in H.21 is

complicated but it can be simplified for two limits, when the signal in comparison

with the noise is a) considerably smaller, S[k]� σ[k], and b) considerably bigger,

S[k]� σ[k] (144).

In the first one, when the measurement hardly contains any signal, S[k] ≈ 0,

Eq. H.25 reduces to:

p(α[k]|0, σ[k]) =

{
1

2π
− π < α[k] < π,

0 otherwise,
(H.30)

showing that in the absence of signal, as in Eq. H.13, the complex vector of the

noise ‘points in all directions’ with the same probability.

When the signal is much bigger than the noise, S[k]� σ[k] (very large SNR),

the deviation in phase α[k] will be very small. The term [1 − Q(·)] in Eq. H.25

will approximate to 1 and the second term in the brackets will dominate the first

term, reducing the equation to:

p(α[k]|h̃[k], σ̃[k]) ≈ S[k] cos(α[k])

σ[k]
√

2π
exp

[
−S2[k](1− cos2(α[k]))

2σ2[k]

]
(H.31)

≈ 1√
2π(σ[k]/S[k])

exp

[
− α[k]2

2(σ[k]/S[k])2

]
. (H.32)

The probability distribution of the phase difference can then be considered as a

zero mean Gaussian when S[k]� σ[k]. This is not surprising, because when the

signal value is large, deviations parallel to the complex coefficient can be ignored.
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Appendix I

MATLAB code - Nested

Sampling Algorithm

The procedural steps of the nested sampling algorithm are standard and well

defined. Adapting them efficiently to the problem at hand, however, is not always

easy. The accuracy required and the dimensions of the parameter space P dictate

the number of necessary objects N and the length of the Markov chains to look

for new object candidates. The crux of the algorithm is the procedure to find a

new object to replace the one with the lowest likelihood. This can be done in

many ways, but choosing an efficient one that will sweep all the relevant regions

of the parameter space where the evidence is concentrated while keeping the

computation time to a minimum, is desired. In this work, a standard procedure

has been followed: one of the objects, save the one with lowest likelihood, is

chosen and evolved through a Markov chain to find a suitable candidate with a

higher likelihood.

In the following the steps of the nested sampling algorithm are presented as

pseudo Matlab code language used throughout this work. The core of the code is

based on the section 9.2.4 of ‘Programming nested sampling in C’ of (114). See

also Appendix in (115).

For real applications evidence and likelihood values can range various orders of

magnitude. It is convenient to work with the logarithms of those values instead. A

repeateadly used function to add to numbers through their logarithms is presented

at the end.
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I.1 Matlab pseudo-code - working with logarithms

The huge range of values for the likelihood and the prior mass make the use of

logarithms necessary to handle the calculations; operations like multiplications

simplify and become additions, whereas other simple operations like additions

become more complicated. In the following, the steps of the nested sampling

algorithm followed in this work are presented as Matlab pseudo-code.

1. Define number of objects N , where n ∈ [1, N ].

N = 200; \% for example

2. Define number of variables P , where p ∈ [1, P ].

P = 10; \% for example

3. Define number of links of the Markov Chain M , where m ∈ [1,M ].

M = 20; \% for example

4. Allocate memory for speed - it is convenient to define each object as a structure
of fields (variables, log likelihood, log weight) in order to replace, interchange and
restore original values during the implementation of the algorithm.

Obj(N).Theta(P) = 0;

Obj(N).logL = 0;

Obj(N).logW = 0;

5. Draw a set of N points {Θn} from prior π(Θ) and calculate their log likelihood
{log L(Θn)}. For the case of variables with independent priors:

for n = 1:N

\% draw a point from the P-dimensional space.

[Obj(n).Theta] = priorpdf(pdf parameters); \% customize prior pdf

\% calculate the log likelihood of that point

Obj(n).logL = loglkh([Obj(n).Theta]);

end

6. Initialise variables
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logZ = -1e-30; \% so that $Z = 0$

logw = 0; \% weight of the worst object at each iteration

c = 0.1; \% The covariance matrix of proposal is

\% the covariance matrix of the objects

t = 0; \% number of iterations

notfound = true;

7. Compute outermost interval of prior mass:

logw = log(1 - exp(-1/N));

8. NESTED SAMPLING LOOP - continue for a fixed number of iterations or un-
til the evidence contribution for a new iteration is negligible. The algorithm is
stopped when the new contribution to the evidence is smaller than a fraction 1/e5

≈ 1/150 of the evidence value accumulated so far.

WHILE max([Obj.logL]) + logw < Z * exp(-5)

• Find the object with the lowest likelihood value

worst = find([Obj.logL] == min([Obj.logL]);

\% we save the object to be replaced in case candidates

\% are not successful and need to revert back to original situation

keep = Obj(worst);

• Compute weight of the worst object in collection (W = L * w)

Obj(worst).logW = Obj(worst).logL + logw;

• Update evidence (Z = Z +W )

logZ = AddUsingLogarithms(logZ,Obj(worst).logW);

• Record the worst object to produce posterior samples if necessary

Samples(k) = Obj(worst);

• Replace worst object by a copy of another random object

copy = unidrnd(N); \% choose any, apart from worst

Obj(worst) = Obj(copy);

• Evolve object (through a Markov Chain, for example).
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WHILE notfound

for m = 1:M \% try M trials (links) of the Markov chain

mu = Obj(worst);

sigma = cov([Obj.Theta(1)’,...,Obj.Theta(P)’]);

new = mvnrnd(mu,c*sigma);

\% Replace worst with new only if conditions are fullfilled

if [loglkh(new) > Obj(worst).logL] &...

[prior(new)/prior(worst) > unifrnd(0,1,1,1)]

Obj(worst) = Obj(new);

notfound = false;

end

end

else \% means none of the M attemps/candidates have been accepted

Obj(worst) = Keep; \% revert to situation before the M trials

copy = unidrnd(N); \% choose another starting point

Obj(worst) = Obj(copy);

end

• Prior mass shrinks with factor e−1/N at each iteration

logw = logw - 1/N;

• Add iteration number

t = t + 1;

end

9. Add the contribution of the remaining points (if the algorithm has not been
stopped prematurely this should be a very small contribution and therefore to
consider the last tiny contribution is not crucial).

for n = 1:N

Obj(n).logW = logw + Obj(n).logL;

logZ = AddUsingLogarithms(logZ,Obj(n).logW);

Samples(k+n) = Obj(n);

end
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**********************************************************

function [c] = AddUsingLogarithms(a,b)

if a > b

c = a + log(1+exp(b-a));

else

c = b + log(1+exp(a-b));

end

**********************************************************
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I.2 Matlab code used for hypothesis comparison

and parameter estimation - working with

logarithms

In the following the Matlab code used for the parameter estimation and model compar-
ison, for the case of 7 parameters in total corresponding to the H1U hypothesis. First
the main script is presented. The functions called are shown after.

% MODEL COMPARISON & PARAMETER ESTIMATION SCRIPT

% Unknown Source location (incoming direction)

% f-mode (N1): 5 parameters (VXN1)

% Source location: 2 parameters

% THE 5 PARAMETERS (h0,f0,tau,lambda,psi)

% h0 is the amplitude

% f0 is the oscillation frequency

% tau is the damping time

% lambda is the degree of elliptization

% psi is the polarisation angle

close all; clear all;

% In the following the type of calculation is chosen, for the same

% script could take a different number of parameters

jmode = ’k’; % source of known location (5 unknown)

% jmode = ’u’; % source of unknown location (7 unknown)

nNR = 1; % number of noise realisations

keepnoise = 1; % yes, keep the noise realisation used previously

% keepnoise = 0; % no, don’t keep the noise realisation used previously

create = 1; % yes, create noise in the first iteration and use that later

% create = 0; % no, don’t create noise in the first iteration

% CONSTANTS

fs = 16384; % Sampling frequency

fres = 0.05; % Frequency resolution
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% Source towards Galactic Centre

SCE.RA = (17 + 45.6/60)/24 * 2*pi;

SCE.Dec = -(28 + 56/60)/180*pi;

SCE.r = 8.5; % in kpc

SCE.Name = ’Galactic Centre’;

SCE.The = pi/2 + SCE.Dec;

GMSTrad = 0; GHAX = GMSTrad - SCE.RA;

SCE.Phi = GHAX;

% DETECTOR NETWORKS

% 1.GEO600 / 2.LIGO-H / 3.LIGO-L / 4.VIRGO / 5.TAMA300 / 6.PERTH

% Chose the detectors involved in the detection

NDET.dets = [2 3 4];

NDET.ndets = size(NDET.dets,2);

% Energy released in 1e-6 Ms c^2 (various SNR values)

Efs = [10 20 30 40 50] * 1e-3;

nE = length(Efs);

%------------------------------------------------------------------

% Allocate memory - Create empty structures

AllocateMemory_N1;

%------------------------------------------------------------------

for e = 1:nE

% Eq.1 of MNRAS 299, 1059-1068

Veval.V2N1 = 3090; Veval.V2N1f = 2*pi*Veval.V2N1/fs;

Veval.V3N1 = 0.109; Veval.V3N1f = 1/(Veval.V3N1*fs);

Veval.V4N1 = 0.7;

Veval.V5N1 = 1.2;

SCE.PsiN1 = Veval.V5N1;

Veval.V1N1 = 2.2e-21 * Efs(e)^0.5 * (2000/Veval.V2N1)^0.5 * (50/SCE.r);

Veval.S1 = pi/2 - SCE.Dec;

Veval.S2 = SCE.RA;
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%------------------------------------------------------------------

% Defines the ranges of the parameter spaces

Print_Calc_Ranges_N1_fixed;

%------------------------------------------------------------------

E(e).Vrmin = Vrmin;

E(e).Vrmax = Vrmax;

E(e).Veval = Veval;

%------------------------------------------------------------------

% Calculates order at which the signal arrives to ALL detectors

ArrivalOrderALL;

%------------------------------------------------------------------

% Calculates/prints order at which the signal arrives to ALL detectors

Print_Calc_Antenna_Patterns_N1;

%------------------------------------------------------------------

% Calculate arrival order and time shifts between detectors

ArrivalOrderSEL;

%------------------------------------------------------------------

% Defines the bandwidth to use for the likelihood calculation

Print_Calc_Frequency_Bandwidth_N1;

%------------------------------------------------------------------

Calc_DTFT_N1;

%------------------------------------------------------------------

for r = 1:nNR

switch keepnoise

case 1

if e==1 && r==1 && create==1

[NoiseN1] = NoiseCurves(af,fminN1,fmaxN1);

Calc_Noise_ALL_N1;

save ./tosave/NoiseN1 NoiseN1

else

load ./tosave/NoiseN1ref

end

case 0

[NoiseN1] = NoiseCurves(af,fminN1,fmaxN1);

Calc_Noise_ALL_N1;
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end

Calc_Add_Noise_N1;

logLN1 = 0;

CN = 0; C1N1 = 0; C2N1 = 0;

for j = 1:nseList

k = seList(j);

C1N1 = -N1p * log(2*pi) - 2*sum(log(NoiseN1(k).sig));

C2N1 = - sum(((NWSCN1(k).r).^2 + (NWSCN1(k).i).^2) ./(2*NoiseN1(k).sig.^2));

logLN1 = logLN1 + C1N1 + C2N1;

end

Calc_SNR_N1;

E(e).NR(r).DE = DE;

E(e).NR(r).NE = NE;

switch jmode

case ’k’

NestedSamplingN1;

logZN1 = logZ;

logBN1 = logZ - logLN1;

display(sprintf(’H1K: log B = log(p(HS)) - log(p(HN)) = ...

%1.6e - %1.6e = %1.6e (%1.6e)’,logZN1,logLN1,logBN1,exp(logBN1)));

case ’u’

NestedSamplingN1S;

logZN1S = logZ;

logBN1S = logZN1S - logLN1;

display(sprintf(’H1U: log B = log(p(HS)) - log(p(HN)) = ...

%1.6e - %1.6e = %1.6e (%1.6e)’,logZN1S,logLN1,logBN1S,exp(logBN1S)));

end

NR(r).Vmean = Vmean;

NR(r).Vstd = Vstd;

NR(r).Sam = Sam;

NR(r).Xs = Xs;
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NR(r).Hlist = Hlist;

NR(r).stepVsN1 = stepVsN1;

NR(r).wks = wks;

NR(r).kn = kn;

NR(r).logLN1 = logLN1;

switch jmode

case ’k’

NR(r).logZN1 = logZN1;

NR(r).logBN1 = logBN1;

case ’u’

NR(r).logZN1S = logZN1S;

NR(r).logBN1S = logBN1S;

end

end

E(e).NR = NR;

end
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%------------------ AllocateMemory_N1.m --------------------

E(nE).NR(nNR).Vmean.V1N1 = 0;

E(nE).NR(nNR).Vmean.V2N1 = 0;

E(nE).NR(nNR).Vmean.V3N1 = 0;

E(nE).NR(nNR).Vmean.V4N1 = 0;

E(nE).NR(nNR).Vmean.V5N1 = 0;

E(nE).NR(nNR).Vstd.V1N1 = 0;

E(nE).NR(nNR).Vstd.V2N1 = 0;

E(nE).NR(nNR).Vstd.V3N1 = 0;

E(nE).NR(nNR).Vstd.V4N1 = 0;

E(nE).NR(nNR).Vstd.V5N1 = 0;

E(nE).NR(nNR).Vstd.S1 = 0;

E(nE).NR(nNR).Vstd.S2 = 0;

logBN1Ss = zeros(nE,nNR);

E(nE).Vrmin = 0;

E(nE).Vrmax = 0;

E(nE).Veval = 0;

E(nE).NR(nNR).DE = 0;

E(nE).NR(nNR).NE = 0;
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%------------------ Print_Calc_Ranges_N1_fixed.m --------------------

% Selecting ranges of values

Ef_min = 1e-3 * 1e-6;

Ef_max = 1e2 * 1e-6;

% Eq.1 of MNRAS 299, 1059-1068

Vrmin.V1N1 = fmodeEtoA(Ef_min,Veval.V2N1,Veval.V3N1,rpc);

Vrmax.V1N1 = fmodeEtoA(Ef_max,Veval.V2N1,Veval.V3N1,rpc);

Vrmin.V2N1 = Veval.V2N1 - 20; Vrmax.V2N1 = Veval.V2N1 + 20;

Vrmin.V3N1 = 0.01; Vrmax.V3N1 = 1;

Vrmin.V4N1 = 0.01; Vrmax.V4N1 = 0.99;

Vrmin.V5N1 = 0; Vrmax.V5N1 = pi;

Vrmin.S1 = 0; Vrmax.S1 = pi;

Vrmin.S2 = 0; Vrmax.S2 = 2*pi;

display(’------------- RANGES N1 ---------------’);

display(sprintf(’%s: Range: [%1.5e / %1.5e], Exact: %1.5e’,...

Vname.V1N1,Vrmin.V1N1,Vrmax.V1N1,Veval.V1N1));

display(sprintf(’%s: Range: [%1.5e / %1.5e], Exact: %1.5e’,...

Vname.V2N1,Vrmin.V2N1,Vrmax.V2N1,Veval.V2N1));

display(sprintf(’%s: Range: [%1.5e / %1.5e], Exact: %1.5e’,...

Vname.V3N1,Vrmin.V3N1,Vrmax.V3N1,Veval.V3N1));

display(sprintf(’%s: Range: [%1.5e / %1.5e], Exact: %1.5e’,...

Vname.V4N1,Vrmin.V4N1,Vrmax.V4N1,Veval.V4N1));

display(sprintf(’%s: Range: [%1.5e / %1.5e], Exact: %1.5e’,...

Vname.V5N1,Vrmin.V5N1,Vrmax.V5N1,Veval.V5N1));
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%------------------ fmodeEtoA.m --------------------

function A = fmodeEtoA(E,f,tau,r)

% convert energy in units of Ms c^2 to gravitational wave amplitude

% for f modes

% from MNRAS 299, 1059-1068

% E(Ms c^2), f (Hz), tau (sec) and r(kpc)

heff = 2.2e-21 * (E/1e-6)^0.5 * (2000/f)^0.5 * (50/r);

A = heff / sqrt(f*tau);
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%------------------ ArrivalOrderALL.m --------------------

% This script calculates the order of the detectors at signal arrival.

nDET = 6;

DET(nDET).kr = 0; DET(nDET).di = 0; DET(nDET).No = 0;

DET(nDET).name = ’namehere’;

c = 3e8; % Speed of light

REarth = 6.5e6; % Earth radius

% k vector points to the source

[SCE.kx,SCE.ky,SCE.kz] = sph2cart(SCE.Phi, SCE.Dec,1);

SCE.k = [SCE.kx SCE.ky SCE.kz];

for j = 1:nDET

% Detector’s position vector on Earth (from Latitude and Longitude)

[ONE] = LatLongBisXiC(j);

[kx,ky,kz] = sph2cart(ONE.Long,ONE.Lat,1);

DET(j).kr = [kx ky kz];

DET(j).No = ONE.No;

DET(j).name = ONE.name;

% calculate d distance from Earth centre

DET(j).di = dot(SCE.k,DET(j).kr);

end

% Ordering and Assigning numbers to all available detectors

% Create two columns with distance and detector number (to sort)

List = zeros(nDET,2);

for j = 1:nDET

List(j,1) = DET(j).di;

List(j,2) = DET(j).No;

end

% Detector location (North Pole) would have DET(NP).d = 1

% Detector location (South Pole) would have DET(SP).d = -1
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soList = sortrows(List,-1);

% printing arrival order to ALL detectors

display(’------------------------------------------------------------------’);

display(sprintf(’At instant: GMST (rad): %1.2f, GHAX (rad) = %1.2f’,...

GMSTrad,GHAX));

display(’Signal order arrival to (ALL) detectors’);

for j = 1:nDET

display(sprintf(’Detection %1.0f @ D%1.0f: %s’,...

j,soList(j,2),DET(soList(j,2)).name));

end

% time shifts between ALL detectors

Veval.Tall(nDET) = 0;

% soList(1,2) is the number of the detector seeing the signal first

for j= 2:nDET

tsh = dot(SCE.k,(DET(soList(1,2)).kr - DET(soList(j,2)).kr))*REarth/c;

atsh = abs(tsh);

cnsh = round(atsh*fs);

display(sprintf(’T1%1.0f: Time lapse: %1.1f ms (%1.0f samples)’,...

j,atsh*1000,cnsh));

Veval.Tall(j) = cnsh + Veval.Tall(1);

end
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%------------------ Print_Calc_Antenna_Patterns_N1.m --------------------

% Antenna Function Patterns calculation

DET(nDET).Omega = 0;

DET(nDET).Alpha = 0;

DET(nDET).Beta = 0;

DET(nDET).Gamma = 0;

DET(nDET).FpN1 = 0;

DET(nDET).FcN1 = 0;

display(’-----------------------------------------------------------------’);

for j = 1:nDET

[RST] = LatLongBisXiC(j);

DET(j).Omega = RST.Xi / 2;

DET(j).Alpha = RST.Bis;

DET(j).Beta = RST.Lat;

DET(j).Gamma = RST.Long;

[DET(j).FpN1,DET(j).FcN1] = FpFcST(SCE.The,SCE.Phi,SCE.PsiN1,...

DET(j).Alpha,DET(j).Beta,DET(j).Gamma,DET(j).Omega);

display(sprintf(’@ D%1.0f: FpN1 = %1.3f, FcN1 = %1.3f’,...

j,DET(j).FpN1,DET(j).FcN1));

end
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%------------------ LatLongBisXiC.m --------------------

function[DETrad] = LatLongBisXiC(det)

% this script is just to do the code more concise.

% just choose the number that idenfies the detector and get out

% the location/orientation parameters that define that detector.

% Detrad contains: Detrad.name, Detrad.Lat,...

% Detrad.Long, Detrad.Bis, Detrad.Xi

% from PRD 58, 063001

% Detrad.Lat = latitude of Detector

% Detrad.Long = longitude of Detector

% Detrad.Bis = from East to bisector (counterclockwise)

% Detrad.Xi = angle between arms

% 1. GEO600

% 2. LIGO Handford;

% 3. LIGO Livingston

% 4. VIRGO

% 5. TAMA300

% 6. Customized 1

switch det

case 1

% GEO-600

DETdeg.Lat = 52.3; DETdeg.Long = -9.8; DETdeg.Bis = 158.8; DETdeg.Xi = 94.3;

DETdeg.name = ’GEO600’;

DETdeg.No = 1;

case 2

% LIGO Hanford

DETdeg.Lat = 46.5; DETdeg.Long = 119.4; DETdeg.Bis = 261.8; DETdeg.Xi = 90;

DETdeg.name = ’LIGO-H’;

DETdeg.No = 2;

case 3
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% LIGO Livingston

DETdeg.Lat = 30.6; DETdeg.Long = 90.8; DETdeg.Bis = 333.0; DETdeg.Xi = 90;

DETdeg.name = ’LIGO-L’;

DETdeg.No = 3;

case 4

% VIRGO

DETdeg.Lat = 43.6; DETdeg.Long = -10.5; DETdeg.Bis = 206.5; DETdeg.Xi = 90;

DETdeg.name = ’VIRGO’;

DETdeg.No = 4;

case 5

% TAMA300

DETdeg.Lat = 35.7; DETdeg.Long = -139.5; DETdeg.Bis = 315; DETdeg.Xi = 90;

DETdeg.name = ’TAMA300’;

DETdeg.No = 5;

case 6

% Custom (PERTH)

DETdeg.Lat = -31.9; DETdeg.Long = 116; DETdeg.Bis = 0; DETdeg.Xi = 90;

DETdeg.name = ’PERTH’;

DETdeg.No = 6;

end

DETrad.Lat = DETdeg.Lat/180*pi;

DETrad.Long = DETdeg.Long/180*pi;

DETrad.Bis = DETdeg.Bis/180*pi;

DETrad.Xi = DETdeg.Xi/180*pi;

DETrad.name = DETdeg.name;

DETrad.No = DETdeg.No;
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%------------------ FpFcST.m --------------------

function[Ep,Ec] = FpFcST(the,phi,psi,alpha,beta,gamma,omega)

% DETECTOR LOCATION/ORIENTATION

% alpha - orientation (bisector to E-W line)

% beta - latitude

% gamma - longitude

% SOURCE LOCATION

% the - co-declination

% phi - GHA (HA in Greenwich)

% psi - so to get ’+’ and ’x’ dephased pi/2

% see MNRAS 224, 131-154

% Rotation matrix A to go from ’Wave’ to ’Earth’ frame

[A] = RotMatA(the,phi,psi);

% Rotation matrix B to go from ’Earth’ to ’Detector’ frame

[B] = RotMatB(alpha,beta,gamma);

% Combined rotation C to go from ’Wave’ to ’Detector’

C = B*A;

Ep = sin(2*omega) * (C(1,1)*C(2,1) - C(1,2)*C(2,2));

Ec = sin(2*omega) * (C(1,1)*C(2,2) + C(1,2)*C(2,1));
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%------------------ RotMatA.m --------------------

function[A] = RotMatA(the,phi,psi)

% Rotation matrix

% Wave frame to Detector frame

% matrix A in MNRAS 224, 131 (page 136)

% from (X,Y,Z) to (x,y,z), see fig.3

A11 = cos(psi)*cos(phi) - cos(the)*sin(phi)*sin(psi);

A12 = -(sin(psi)*cos(phi) + cos(the)*sin(phi)*cos(psi));

A13 = sin(the)*sin(phi);

A21 = cos(psi)*sin(phi) + cos(the)*cos(phi)*sin(psi);

A22 = -sin(psi)*sin(phi) + cos(the)*cos(phi)*cos(psi);

A23 = -sin(the)*cos(phi);

A31 = sin(the)*sin(psi);

A32 = sin(the)*cos(psi);

A33 = cos(the);

A = [A11 A12 A13; A21 A22 A23; A31 A32 A33];
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%------------------ RotMatB.m --------------------

function[B] = RotMatB(alpha,beta,gamma)

% Rotation matrix from ’Earth’ to ’Detector’ frame

% matrix B in MNRAS 224, 131 (page 141)

% from (x’,y’,z’) to (x,y,z), see fig.3

B11 = cos(alpha)*sin(beta)*cos(gamma) - sin(alpha)*sin(gamma);

B12 = sin(alpha)*cos(gamma) + cos(alpha)*sin(beta)*sin(gamma);

B13 = -cos(alpha)*cos(beta);

B21 = -(cos(alpha)*sin(gamma)+sin(alpha)*sin(beta)*cos(gamma));

B22 = -sin(alpha)*sin(beta)*sin(gamma) + cos(alpha)*cos(gamma);

B23 = sin(alpha)*cos(beta);

B31 = cos(beta)*cos(gamma);

B32 = cos(beta)*sin(gamma);

B33 = sin(beta);

B = [B11 B12 B13; B21 B22 B23; B31 B32 B33];
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%------------------ Print_Calc_Frequency_Bandwidth_N1.m --------------------

N = fs/fres; S2 = N;

aw = 0:2*pi/N:2*pi*(1-1/N);

af = aw/(2*pi)*fs;

% select bandwidth

bdwN1 = 200;

fminN1 = Veval.V2N1 - bdwN1;

fmaxN1 = Veval.V2N1 + bdwN1;

takefN1 = (af >= fminN1 & af <= fmaxN1);

fN1 = af(takefN1);

wN1 = aw(takefN1);

N1p = length(fN1);

display(’---------------- FREQUENCY DOMAIN FEATURES --------------’);

display(sprintf(’Freq. Resolution: %1.2f Hz’,fres));

display(sprintf(’Bandwidth: %1.0f Hz [%1.0f - %1.0f]’,bdwN1,fminN1,fmaxN1));
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%------------------ Calc_DTFT_N1.m --------------------

%% DTFT Calculations

WN1(nDET).Zsin = zeros(1,N1p);

WN1(nDET).Zcos = zeros(1,N1p);

WN1(nDET).Cs = 0;

WN1(nDET).Cc = 0;

WSCN1(nseList).Zsincos = zeros(1,N1p);

WSCN1(nseList).r = zeros(1,N1p);

WSCN1(nseList).i = zeros(1,N1p);

WSCN1(nseList).m = zeros(1,N1p);

for j = 1:nseList

k = seList(j);

WN1(k).Zsin = Zreimsinsh(Veval.V2N1f,Veval.V3N1f,Veval.Tsh(j),wN1);

WN1(k).Zcos = Zreimcossh(Veval.V2N1f,Veval.V3N1f,Veval.Tsh(j),wN1);

WN1(k).Cs = DET(k).FpN1 * E(e).Veval.V1N1;

WN1(k).Cc = DET(k).FcN1 * E(e).Veval.V1N1 * Veval.V4N1;

WSCN1(k).Zsincos = WN1(k).Cs * WN1(k).Zsin + WN1(k).Cc * WN1(k).Zcos;

WSCN1(k).r = real(WSCN1(k).Zsincos);

WSCN1(k).i = imag(WSCN1(k).Zsincos);

WSCN1(k).m = abs(complex(WSCN1(k).r,WSCN1(k).i));

WSCN1(k).psd = 2* abs(WSCN1(k).Zsincos).^2/fs;

end
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%------------------ NestedSamplingN1.m --------------------

% NESTED SAMPLING

constVN = [1 2 3 4 5];

% Declare

kn = 0; KN = 1e4;

n = 100; % number of objects

mmax = 20; % number of trials to find a new object

nVN1 = 7; % number of variables

H = 0;

logZ = -1e30;

logmax = -1e31;

cV = 0.1; % to reduce covariance

% To stop loop at

f = exp(-5);

% Memory allocation

stepVsN1 = zeros(nVN1);

Hlist = zeros(1,KN);

Xs = zeros(1,KN);

Obj(n).V1N1 = 0; Obj(n).V2N1 = 0; Obj(n).V3N1 = 0;

Obj(n).V4N1 = 0; Obj(n).V5N1 = 0; Obj(n).V2fN1 = 0; Obj(n).V3fN1 = 0;

Obj(n).S1 = 0; Obj(n).S2 = 0; Obj(n).Dec = 0; Obj(n).RA = 0;

Obj(n).logL = 0; Obj(n).logWt = 0;

Try.V1N1 = 0; Try.V2N1 = 0; Try.V3N1 = 0; Try.V4N1 = 0;

Try.V5N1 = 0; Try.V2fN1 = 0; Try.V3fN1 = 0;

Try.S1 = 0; Try.S2 = 0; Try.Dec = 0; Try.RA = 0;

Try.logL = 0; Try.logWt = 0;

Keep.V1N1 = 0; Keep.V2N1 = 0; Keep.V3N1 = 0; Keep.V4N1 = 0;

Keep.V5N1 = 0; Keep.V2fN1 = 0; Keep.V3fN1 = 0;
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Keep.S1 = 0; Keep.S2 = 0; Keep.Dec = 0; Keep.RA = 0;

Keep.logL = 0; Keep.logWt = 0;

Sam(KN).V1N1 = 0; Sam(KN).V2N1 = 0; Sam(KN).V3N1 = 0;

Sam(KN).V4N1 = 0; Sam(KN).V5N1 = 0; Sam(KN).V2fN1 = 0;

Sam(KN).V3fN1 = 0;

Sam(KN).S1 = 0; Sam(KN).S2 = 0; Sam(KN).Dec = 0; Sam(KN).RA = 0;

Sam(KN).logL = 0; Sam(KN).logWt = 0;

% Set priors for n objects

for i = 1:n

if sum(constVN==1)==0;

Obj(i).V1N1 = unifrnd(E(e).Vrmin.V1N1,E(e).Vrmax.V1N1,1,1);

else Obj(i).V1N1 = E(e).Veval.V1N1; end

if sum(constVN==2)==0;

Obj(i).V2N1 = unifrnd(E(e).Vrmin.V2N1,E(e).Vrmax.V2N1,1,1);

else Obj(i).V2N1 = E(e).Veval.V2N1; end

if sum(constVN==3)==0;

Obj(i).V3N1 = unifrnd(E(e).Vrmin.V3N1,E(e).Vrmax.V3N1,1,1);

else Obj(i).V3N1 = E(e).Veval.V3N1; end

if sum(constVN==4)==0;

Obj(i).V4N1 = unifrnd(E(e).Vrmin.V4N1,E(e).Vrmax.V4N1,1,1);

else Obj(i).V4N1 = E(e).Veval.V4N1; end

if sum(constVN==5)==0;

Obj(i).V5N1 = unifrnd(E(e).Vrmin.V5N1,E(e).Vrmax.V5N1,1,1);

else Obj(i).V5N1 = E(e).Veval.V5N1; end

if sum(constVN==6)==0;

Obj(i).S1 = unifrnd(E(e).Vrmin.S1,E(e).Vrmax.S1,1,1);

else Obj(i).S1 = E(e).Veval.S1; end

if sum(constVN==7)==0;

Obj(i).S2 = unifrnd(E(e).Vrmin.S2,E(e).Vrmax.S2,1,1);

else Obj(i).S2 = E(e).Veval.S2; end

Obj(i).V2fN1 = Obj(i).V2N1 * 2*pi/fs;
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Obj(i).V3fN1 = 1/(Obj(i).V3N1 * fs);

Obj(i).Dec = pi/2 - Obj(i).S1;

Obj(i).RA = mod(Obj(i).S2,2*pi);

[Tsh,seList] = ArrivalOrderTimeShifts(DET,NDET,...

Obj(i).Dec,Obj(i).RA,GMSTrad,fs);

CN = 0; C1N1 = 0; C2N1 = 0;

for j = 1:nseList

k = seList(j);

cWSN1 = Zreimsinsh(Obj(i).V2fN1,Obj(i).V3fN1,Veval.Tsh(j),wN1);

cWCN1 = Zreimcossh(Obj(i).V2fN1,Obj(i).V3fN1,Veval.Tsh(j),wN1);

cThe = pi/2 + Obj(i).Dec;

cPhi = GMSTrad - Obj(i).RA;

[cFpN1,cFcN1] = FpFcST(cThe,cPhi,Obj(i).V5N1,DET(k).Alpha,...

DET(k).Beta,DET(k).Gamma,DET(k).Omega);

CpN1 = cFpN1 * Obj(i).V1N1;

CcN1 = cFcN1 * Obj(i).V1N1 * Obj(i).V4N1;

cWSCN1 = 1/1 * (CpN1 * cWSN1 + CcN1 * cWCN1);

cWSCN1r = real(cWSCN1);

cWSCN1i = imag(cWSCN1);

C1N1 = -N1p * log(2*pi) - 2*sum(log(NoiseN1(k).sig));

C2N1 = - sum(((cWSCN1r - NWSCN1(k).r).^2 +...

(cWSCN1i - NWSCN1(k).i).^2) ./(2*NoiseN1(k).sig.^2));

CN = CN + C1N1 + C2N1;

end

Obj(i).logL = CN;

end

% Outermost interval of prior mass

% because \xi_k = exp(-k/n), thus logw = log(1 - \xi_k)

logw = log(1 - exp(-1/n));

w = exp(logw); X = 1 - w; log10X = log10(X);

display(’%-----------------------------------------------%’);
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display(’NESTED SAMPLING RUNNING...’);

display(sprintf(’Number of Objects = %1.0f’,n));

display(sprintf(’Stop when exp(%1.2f) Evidence to stop’,log(f)));

display(sprintf(’logw = %1.3f (w = %1.5e), ...

so X = %1.5e (log10X = %1.3f)’,logw,w,X,log10X));

% NESTED SAMPLING LOOP

% continue while the contribution to evidence is bigger than f

while (kn==0) || (az > log(f) + bz)

kn = kn + 1;

worst = find(min([Obj.logL]) == [Obj.logL]);

% in case two or more objects are found...

worst = worst(unidrnd(length(worst)));

Obj(worst).logWt = logw + Obj(worst).logL;

% Update evidence Z and information H

logZnew = aplusb(logZ,Obj(worst).logWt);

Hlist(kn) = H; H = exp(Obj(worst).logWt - logZnew) * Obj(worst).logL + ...

exp(logZ - logZnew) * (H + logZ) - logZnew;

logZ = logZnew;

% save the worst sample before replacing it (for posterior samples)

Sam(kn) = Obj(worst);

display(sprintf(’N1 values: [%1.6e, %1.6e, %1.6e, %1.6e,... 1.6e]’,...

Sam(kn).V1N1,Sam(kn).V2N1,Sam(kn).V3N1,...

Sam(kn).V4N1,Sam(kn).V5N1));

display(sprintf(’N1 values: [%1.6e, %1.6e]’,Sam(kn).S1,Sam(kn).S2));

inm = false;

ntrial = 0;

while ~inm

copy = unidrnd(n); while (copy==worst); copy = unidrnd(n); end

Keep = Obj(worst); % in case we a replacement is not found

Obj(worst) = Obj(copy);

am = 0;
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for m = 1:mmax

isin = false;

while ~isin

if (mod(kn,1)==0 || kn==1)

Calc_Mu_Sigma_N1S;

TryVN1 = mvnrnd(muVN1,cV*CCVN1);

Try.V1N1 = TryVN1(1); Try.V2N1 = TryVN1(2); Try.V3N1 = TryVN1(3);

Try.V4N1 = TryVN1(4); Try.V5N1 = TryVN1(5);

Try.S1 = TryVN1(6); Try.S2 = TryVN1(7);

end

if sum(constVN==1) == 0;

isV1N1in = (Try.V1N1 > E(e).Vrmin.V1N1) & (Try.V1N1 < E(e).Vrmax.V1N1);

else isV1N1in = 1; end;

if sum(constVN==2) == 0;

isV2N1in = (Try.V2N1 > E(e).Vrmin.V2N1) & (Try.V2N1 < E(e).Vrmax.V2N1);

else isV2N1in = 1; end;

if sum(constVN==3) == 0;

isV3N1in = (Try.V3N1 > E(e).Vrmin.V3N1) & (Try.V3N1 < E(e).Vrmax.V3N1);

else isV3N1in = 1; end;

if sum(constVN==4) == 0;

isV4N1in = (Try.V4N1 > E(e).Vrmin.V4N1) & (Try.V4N1 < E(e).Vrmax.V4N1);

else isV4N1in = 1; end;

if sum(constVN==5) == 0;

isV5N1in = (Try.V5N1 > E(e).Vrmin.V5N1) & (Try.V5N1 < E(e).Vrmax.V5N1);

else isV5N1in = 1; end;

if sum(constVN==6) == 0;

isS1in = (Try.S1 > E(e).Vrmin.S1) & (Try.S1 < E(e).Vrmax.S1);

else isS1in = 1; end;

if sum(constVN==7) == 0;

isS2in = (Try.S2 > E(e).Vrmin.S2) & (Try.S2 < E(e).Vrmax.S2);

else isS2in = 1; end;

isinN1 = isV1N1in .* isV2N1in .* isV3N1in .* isV4N1in ...

* isV5N1in * isS1in * isS2in;
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isin = isinN1;

end

Try.V2fN1 = Try.V2N1 *2*pi/fs;

Try.V3fN1 = 1/(Try.V3N1 * fs);

Try.Dec = pi/2 - Try.S1;

Try.RA = mod(Try.S2,2*pi);

[Tsh,seList] = ArrivalOrderTimeShifts(DET,NDET,...

Try.Dec,Try.RA,GMSTrad,fs);

CN = 0; C1N1 = 0; C2N1 = 0;

for j = 1:nseList

k = seList(j);

cWSN1 = Zreimsinsh(Try.V2fN1,Try.V3fN1,Veval.Tsh(j),wN1);

cWCN1= Zreimcossh(Try.V2fN1,Try.V3fN1,Veval.Tsh(j),wN1);

cThe = pi/2 + Try.Dec;

cPhi = GMSTrad - Try.RA;

[cFpN1,cFcN1] = FpFcST(cThe,cPhi,Try.V5N1,DET(k).Alpha,...

DET(k).Beta,DET(k).Gamma,DET(k).Omega);

CpN1 = cFpN1 * Try.V1N1;

CcN1 = cFcN1 * Try.V1N1 * Try.V4N1;

cWSCN1 = 1/1 * (CpN1 * cWSN1 + CcN1 * cWCN1);

cWSCN1r = real(cWSCN1);

cWSCN1i = imag(cWSCN1);

C1N1 = -N1p * log(2*pi) - 2*sum(log(NoiseN1(k).sig));

C2N1 = - sum(((cWSCN1r - NWSCN1(k).r).^2 + ...

(cWSCN1i - NWSCN1(k).i).^2) ./(2*NoiseN1(k).sig.^2));

CN = CN + C1N1 + C2N1;

end

Try.logL = CN;

if Try.logL > Keep.logL
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alpha = Obj(worst).V1N1 / Try.V1N1;

u = rand;

if alpha > u

Obj(worst) = Try;

inm = true;

am = am + 1;

end

end

end

ntrial = ntrial + 1;

if ~inm; Obj(worst) = Keep; end

end

% Shrink interval

logw = logw - 1/n; w = exp(logw);

logX = -kn/n; X = 10^logX; Xs(kn) = X;

% from Eq.16 of Skilling’s document on Nested Sampling

az = max([Obj.logL]) + (-kn/n);

bz = logZ;

factor = exp(az - bz);

if mod(kn,5)==0 || kn==1

display(sprintf(’Run type: %s’,jmode));

display(sprintf(’E = %1.0f/%1.0f, NR = %1.0f/%1.0f,...

Iteration No. = %1.0f, Trials = %1.0f, Accepted: %1.0f/%1.0f’,...

e,nE,r,nNR,kn,ntrial,am,mmax));

display(sprintf(’logw = %1.3f (w = %1.5e), so X = %1.5e (log10X = %1.3f)’,...

logw,w,X,logX));

display(sprintf(’logZ = %1.5e, H = %1.5e’,logZ,H));

display(sprintf(’Contribution to Z is %1.5e (stop at %1.5e)’,...

log(factor),log(f)));

end

end

% Add remaining
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for i = 1:n

Obj(i).logWt = logw + Obj(i).logL;

logZnew = aplusb(logZ,Obj(i).logWt);

H = exp(Obj(i).logWt - logZnew) * Obj(i).logL + exp(logZ - logZnew)...

* (H + logZ) - logZnew;

logZ = logZnew;

Sam(kn+1) = Obj(i);

end

% RESULTS

% take only the relevant part (kn iterations recorded)

Sam = Sam(1:kn);

Xs = Xs(1:kn);

Hlist = Hlist(1:kn);

stepVsN1 = stepVsN1(:,1:kn);

wks = exp([Sam.logWt] - logZ);

Vmean.V1N1 = sum(wks .* [Sam.V1N1]);

Vmean.V2N1 = sum(wks .* [Sam.V2N1]);

Vmean.V3N1 = sum(wks .* [Sam.V3N1]);

Vmean.V4N1 = sum(wks .* [Sam.V4N1]);

Vmean.V5N1 = sum(wks .* [Sam.V5N1]);

Vstd.V1N1 = sqrt(sum(wks .* ([Sam.V1N1] - Vmean.V1N1).^2));

Vstd.V2N1 = sqrt(sum(wks .* ([Sam.V2N1] - Vmean.V2N1).^2));

Vstd.V3N1 = sqrt(sum(wks .* ([Sam.V3N1] - Vmean.V3N1).^2));

Vstd.V4N1 = sqrt(sum(wks .* ([Sam.V4N1] - Vmean.V4N1).^2));

Vstd.V5N1 = sqrt(sum(wks .* ([Sam.V5N1] - Vmean.V5N1).^2));

display(’****************** Results ***********************’);

display(sprintf(’Number of iterates = %1.0f’,kn));

display(sprintf(’Evidence: ln(Z) = %1.5e +/- %1.5f’,logZ,sqrt(H/n)));

display(’%-----------------------------------------------------------’);

display(sprintf(’ Exact/Mean/Std V1N1 = %1.5e/%1.5e/%1.5e’,...

E(e).Veval.V1N1,Vmean.V1N1,Vstd.V1N1));

display(sprintf(’ Exact/Mean/Std V2N1 = %1.5f/%1.5f/%1.5f’,...
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Veval.V2N1,Vmean.V2N1,Vstd.V2N1));

display(sprintf(’ Exact/Mean/Std V3N1 = %1.5f/%1.5f/%1.5f’,...

Veval.V3N1,Vmean.V3N1,Vstd.V3N1));

display(sprintf(’ Exact/Mean/Std V4N1 = %1.5f/%1.5f/%1.5f’,...

Veval.V4N1,Vmean.V4N1,Vstd.V4N1));

display(sprintf(’ Exact/Mean/Std V5N1 = %1.5f/%1.5f/%1.5f’,...

Veval.V5N1,Vmean.V5N1,Vstd.V5N1));

display(’%-----------------------------------------------------------’);

toc
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%------------------ ArrivalOrderTimeShifts.m --------------------

function [Tsh,seList] = ArrivalOrderTimeShifts(DET,NDET,TDec,TRA,GMSTrad,fs)

% script to calculate arrival order and time shifts between sel. detectors

c = 3e8; % Speed of light

REarth = 6.5e6; % Earth radius

nDET = size(DET,2);

% [X,Y,Z] = SPH2CART(TH,PHI,R)

% TH is the counterclockwise angle in the xy plane

% measured from the positive x axis.

% PHI is the elevation angle from the xy plane.

TSCE.Phi = GMSTrad - TRA;

TSCE.Dec = TDec;

[TSCE.kx,TSCE.ky,TSCE.kz] = sph2cart(TSCE.Phi, TSCE.Dec,1);

TSCE.k = [TSCE.kx TSCE.ky TSCE.kz];

for j = 1:nDET; DET(j).di = dot(TSCE.k,DET(j).kr); end

% Ordering and Assigning numbers to all available detectors

% Create two columns with distance and detector number (to sort)

List(:,1) = [DET.di];

List(:,2) = 1:nDET;

soList = sortrows(List,-1);

% time shifts between selected detectors

seList = [];

%display(’---------- Arrival Order -------------’);

for k = 1:size(soList,1)

if sum(soList(k,2)==NDET.dets)==1

seList = [seList soList(k,2)];

end
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end

% display(’---------- Time Delays -------------’);

Tsh(nDET) = 0;

for k = 1:length(seList)

tsh = dot(TSCE.k,(DET(seList(1)).kr - DET(seList(k)).kr))*REarth/c;

atsh = abs(tsh);

Tsh(k) = round(atsh*fs);

end
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%------------------ Calc_SNR_N1.m --------------------

% SNR calculation

for j = 1:nDET

DE(j).SNRN1 = 0;

end

for j = 1:nseList

k = seList(j);

DE(k).SNRN1 = SNRSchutz(WSCN1(k).m,NoiseN1(k).PSD,fs,fres);

display(sprintf(’SNR (Schutz) for N1 on Det %1.0f (%s) is %1.2f’,...

k,DET(k).name,DE(k).SNRN1));

end

NE.SNRN1 = sqrt(sum([DE.SNRN1].^2));

display(sprintf(’SNR (Schutz) for N1 on Network SNRN1: %1.2f’,...

NE.SNRN1));
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Signal arrival order to detectors

Gravitational wave signals are expected to travel at the speed of light. Hence, if a

signal is detected in a network of various antennae logically there will be a signal

arrival order to the detectors. This order is important in the implementation

of our algorithms, in order to include the time-shifts between the detectors. To

determine the arrival order the following procedure was used:

• Define a reference frame x,y, z fixed to the Earth and rotating with it (it

is the same reference as x′y′z′ defined in Appendix D ) so that z is the axis

going through the north-pole and x pierces the intersection point between

the equator and the Greenwich meridian.

• Determine the unit vectors k̂ that point from the centre of the Earth to each

of the ground-based detectors defined. (e.g. a detector located in the north

pole is [0,0,1]). In general, k̂ = [kx, ky, kz] = sph2cart(γ, β, 1), where γ is the

longitude and β the latitude of the detector’s location. Note: “sph2cart” is

a matlab command to convert spherical angles into cartesian coordinates.

• Determine the unit vector pointing at the source ŝ = [sx, sy, sz] = sph2cart(φ, δ, 1),

where φ = GLST - RA is the hour-angle in Greenwich of the source at the

particular instant and δ is its declination.

• Determine the projection of each detector unitary vector k̂i onto the di-

rection toward the source: di = k̂i · ŝ (e.g. for two detectors in antipodal
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points with a source overhead d will be 1 and -1). We just need to sort out

di values to infer the arrival order of the signal to the detectors considered.

• Time-shifts between detectors can be readily calculated by considering that

the gravitational wave signal is a plane wave by the time it reaches the

network. The time shift between detector i and j is given in seconds by

∆tij = Re/c
[
(k̂i − k̂j · ŝ

]
, where the speed of light is c = 3 ×108 m/s and

the mean radius for the Earth Re = 6.5 ×106 m. Time shift is measured in

number of samples by rounding to the closest integer the operation ∆nij =

fs ∆tij.

As an example, Table J.1 shows the arrival order for the six detectors consid-

ered, together with the time shifts, in milliseconds and number of samples,

for a signal coming from the galactic centre at the instant GLST = 0h.

The antenna pattern functions for each oscillation mode and detector are

included here for reference.

DET Name Arrival

Pos. Time (ms) Samples∗

1 GEO600 5 31.4 515

2 Adv-LIGO-H 3 16.3 267

3 Adv-LIGO-L 2 9.5 155

4 Adv-VIRGO 4 31 508

5 TAMA300 6 35.8 586

6 PERTH 1 0 0

Signal incoming from the galactic centre at GLST = 0h.
∗ Assuming sampling frequency fs = 16384 Hz.

Table J.1: Arrival order and antenna patterns of the detectors for f - and p-modes.

Fig. J.1 shows a time-shift contour-map for a grid of geographical location on

Earth for the particular time instant of GLST = 0h. The geographical position

of each detector is pinpointed and it is easy to establish the arrival order of the

signal from the graph. The order of signal detection varies as the Earth turns

(sidereal day periodicity) depending the source’s sky-location. Fig. J.2 depicts
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the detection time differences between each of the detector and the centre of the

Earth during a sidereal day.

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

2.5

2.5

55

5

7.5

7.5

7.5

10

10

10

10
12.5 12

.5

12
.5 12.5

15

15

15

15

17.5

17
.5

17.5

17.5

20

20
20

20

22.5

22.5
22

.5

22.5

25

25
25

25

27.5

27.5
27

.5

27.5

30 30

30 30

32.5 32.5
32

.5

32.5

35 35
35

35

37.5

37
.5

37.5

40

40

42.5

Time−shift map @ GLST = 0h 
 for a source at (RA,Dec) = (4.650,−0.505) 

Longitude ! (rad)

La
tit

ud
e 
" 

(ra
d)

 

 

Source overhead
GEO600
LIGO−H
LIGO−L
VIRGO
TAMA300
PERTH

Figure J.1: Time-shift map for a grid of locations on Earth for a signal coming from the
galactic centre (δGC = -0.51 rad, RA = 4.65 rad). The green cross marks the location
for zero time-shift, a position corresponding to a detector located at latitude β = δGC

and longitude γ = φGC = GLST - RAGC = 1.63 rad. Contour levels depict time shifts
in seconds.
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Time differences between two detectors Tij and Tji are the same but with different
sign, as expected.
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Appendix K

Parameter Estimation Results

This appendix groups the parameter estimation results in tabulated form for

the scenarios and hypothesis considered in Chapter 5. Each table reports the

mode of the probability distribution and 95 % credibility interval for each of the

parameters depending the strength of the signal (SNR).

286



Parameter Estimation H1K

SNR P Exact Mode Range Diff. %

8 h0 9.2597e-22 7.2561e-22 [2.9534e-22 - 1.3471e-21] %-21.64

f0 3.0900e+03 3.0895e+03 [3.0878e+03 - 3.0908e+03] %-0.01

τ 1.0900e-01 8.9573e-02 [2.4920e-02 - 2.5369e-01] %-17.82

λ 7.0000e-01 2.1000e-01 [3.0000e-02 - 9.1000e-01] %-70.00

ψ 1.2000e+00 1.0794e+00 [5.6857e-01 - 1.4845e+00] %-10.05

10 h0 1.1570e-21 1.0125e-21 [5.3438e-22 - 1.5383e-21] %-12.49

f0 3.0900e+03 3.0896e+03 [3.0883e+03 - 3.0906e+03] %-0.01

τ 1.0900e-01 9.4546e-02 [4.9786e-02 - 1.8407e-01] %-13.26

λ 7.0000e-01 7.3000e-01 [3.0000e-02 - 9.5000e-01] %4.29

ψ 1.2000e+00 1.1178e+00 [7.4575e-01 - 1.4367e+00] %-6.85

12 h0 1.3891e-21 1.2374e-21 [8.5967e-22 - 1.8513e-21] %-10.91

f0 3.0900e+03 3.0897e+03 [3.0888e+03 - 3.0906e+03] %-0.01

τ 1.0900e-01 9.4546e-02 [5.4760e-02 - 1.5423e-01] %-13.26

λ 7.0000e-01 6.3000e-01 [7.0000e-02 - 9.7000e-01] %-10.00

ψ 1.2000e+00 1.1412e+00 [8.7491e-01 - 1.3898e+00] %-4.90

20 h0 2.3152e-21 2.2677e-21 [1.7955e-21 - 2.7872e-21] %-2.05

f0 3.0900e+03 3.0899e+03 [3.0894e+03 - 3.0903e+03] %-0.00

τ 1.0900e-01 1.0092e-01 [7.5663e-02 - 1.3122e-01] %-7.41

λ 7.0000e-01 6.7000e-01 [4.1000e-01 - 9.7000e-01] %-4.29

ψ 1.2000e+00 1.1630e+00 [1.0556e+00 - 1.3061e+00] %-3.08

Table K.1: Parameter estimation from the posterior probability density distribution in
Fig. 5.5 corresponding to the hypothesis H1K in Scenario 1.
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Parameter Estimation H1G

SNR P Exact Mode Range Diff. %

8 h0 9.2597e-22 7.3517e-22 [3.0132e-22 - 1.3268e-21] %-20.61

f0 3.0900e+03 3.0899e+03 [3.0888e+03 - 3.0909e+03] %-0.00

τ 1.0900e-01 8.9573e-02 [3.4867e-02 - 2.2883e-01] %-17.82

λ 7.0000e-01 6.7000e-01 [5.0158e-01 - 8.5526e-01] %-4.29

ψ 1.2000e+00 1.1898e+00 [1.1183e+00 - 1.2742e+00] %-0.85

10 h0 1.1570e-21 1.0390e-21 [6.1052e-22 - 1.5454e-21] %-10.20

f0 3.0900e+03 3.0899e+03 [3.0891e+03 - 3.0907e+03] %-0.00

τ 1.0900e-01 9.4546e-02 [4.9786e-02 - 1.7412e-01] %-13.26

λ 7.0000e-01 6.8368e-01 [5.1526e-01 - 8.6895e-01] %-2.33

ψ 1.2000e+00 1.1898e+00 [1.1183e+00 - 1.2807e+00] %-0.85

12 h0 1.3891e-21 1.2414e-21 [8.1004e-22 - 1.7513e-21] %-10.63

f0 3.0900e+03 3.0899e+03 [3.0893e+03 - 3.0905e+03] %-0.00

τ 1.0900e-01 1.0452e-01 [5.9749e-02 - 1.5925e-01] %-4.11

λ 7.0000e-01 6.8368e-01 [5.1526e-01 - 8.6895e-01] %-2.33

ψ 1.2000e+00 1.1898e+00 [1.1183e+00 - 1.2677e+00] %-0.85

20 h0 2.3152e-21 2.1687e-21 [1.7791e-21 - 2.7140e-21] %-6.33

f0 3.0900e+03 3.0898e+03 [3.0895e+03 - 3.0903e+03] %-0.01

τ 1.0900e-01 1.0092e-01 [7.5663e-02 - 1.3122e-01] %-7.41

λ 7.0000e-01 6.8143e-01 [5.1000e-01 - 8.3571e-01] %-2.65

ψ 1.2000e+00 1.1768e+00 [1.1248e+00 - 1.2612e+00] %-1.94

Table K.2: Parameter estimation from the posterior probability density distribution in
Fig. 5.8 corresponding to the hypothesis H1G in Scenario 1.
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Parameter Estimation H1U

SNR P Exact Mode Range Diff. %

8 h0 9.2597e-22 5.1031e-22 [1.0411e-22 - 1.0906e-21] %-44.89

f0 3.0900e+03 3.0893e+03 [3.0874e+03 - 3.0909e+03] %-0.02

τ 1.0900e-01 7.6607e-02 [2.3321e-02 - 2.2980e-01] %-29.72

λ 7.0000e-01 1.6077e-01 [1.0000e-02 - 8.1410e-01] %-77.03

ψ 1.2000e+00 1.1107e+00 [9.5200e-02 - 3.1099e+00] %-7.44

δ 2.0758e+00 2.1085e+00 [1.0542e-01 - 3.0994e+00] %1.57

RA 4.6496e+00 4.7229e+00 [4.2169e-01 - 6.1988e+00] %1.58

10 h0 1.1570e-21 5.6307e-22 [2.1885e-22 - 1.2515e-21] %-51.34

f0 3.0900e+03 3.0893e+03 [3.0884e+03 - 3.0903e+03] %-0.02

τ 1.0900e-01 9.0816e-02 [5.0408e-02 - 2.1204e-01] %-16.68

λ 7.0000e-01 1.1051e-01 [1.0000e-02 - 7.6385e-01] %-84.21

ψ 1.2000e+00 1.1741e+00 [0.0000e+00 - 3.1099e+00] %-2.16

δ 2.0758e+00 2.9097e+00 [8.4338e-02 - 3.0994e+00] %40.17

RA 4.6496e+00 4.7229e+00 [2.3615e+00 - 6.2410e+00] %1.58

12 h0 1.3891e-21 9.1397e-22 [5.0904e-22 - 1.6660e-21] %-34.20

f0 3.0900e+03 3.0893e+03 [3.0886e+03 - 3.0902e+03] %-0.02

τ 1.0900e-01 9.7551e-02 [5.7143e-02 - 1.5816e-01] %-10.50

λ 7.0000e-01 1.6077e-01 [1.0000e-02 - 7.6385e-01] %-77.03

ψ 1.2000e+00 1.1741e+00 [6.3467e-02 - 3.0147e+00] %-2.16

δ 2.0758e+00 2.0452e+00 [1.9187e+00 - 3.0783e+00] %-1.47

RA 4.6496e+00 4.6808e+00 [2.3193e+00 - 5.1868e+00] %0.67

20 h0 2.3152e-21 2.3503e-21 [1.2094e-21 - 2.9777e-21] %1.51

f0 3.0900e+03 3.0897e+03 [3.0892e+03 - 3.0902e+03] %-0.01

τ 1.0900e-01 9.7551e-02 [7.7347e-02 - 1.3122e-01] %-10.50

λ 7.0000e-01 4.6231e-01 [1.1051e-01 - 9.1462e-01] %-33.96

ψ 1.2000e+00 1.2376e+00 [7.9333e-01 - 2.9195e+00] %3.13

δ 2.0758e+00 2.0452e+00 [1.9187e+00 - 3.0783e+00] %-1.47

RA 4.6496e+00 4.6808e+00 [2.3193e+00 - 4.9338e+00] %0.67

Table K.3: Parameter estimation from the posterior probability density distribution in
Fig. 5.9 corresponding to the hypothesis H1U in Scenario 1.
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Parameter Estimation H2U

SNR P Exact Mode Range Diff. %

20 h0f 2.0689e-21 1.8468e-21 [1.4443e-21 - 2.3498e-21] %-10.74

f0f 3.0900e+03 3.0899e+03 [3.0893e+03 - 3.0906e+03] %-0.00

τf 1.0900e-01 9.4490e-02 [6.8493e-02 - 1.2699e-01] %-13.31

λf 7.0000e-01 8.7286e-01 [4.0429e-01 - 9.7327e-01] %24.69

ψf 1.2000e+00 1.1249e+00 [9.8503e-01 - 1.2881e+00] %-6.26

h0p 4.1378e-22 2.6903e-22 [3.5880e-24 - 4.3493e-22] %-34.98

f0p 7.8380e+03 7.8380e+03 [7.8380e+03 - 7.8380e+03] %-0.00

τp 4.6400e+00 6.1152e+00 [3.4835e+00 - 9.7494e+00] %31.79

λp 3.0000e-01 1.9271e-01 [1.0000e-02 - 8.7373e-01] %-35.76

ψp 2.3000e+00 2.3800e+00 [5.3947e-01 - 2.9195e+00] %3.48

30 h0f 3.0969e-21 2.8854e-21 [2.4830e-21 - 3.3885e-21] %-6.83

f0f 3.0900e+03 3.0900e+03 [3.0896e+03 - 3.0903e+03] %-0.00

τf 1.0900e-01 9.4583e-02 [7.5064e-02 - 1.1410e-01] %-13.23

λf 7.0000e-01 7.9000e-01 [5.7333e-01 - 9.7333e-01] %12.86

ψf 1.2000e+00 1.1281e+00 [1.0375e+00 - 1.2415e+00] %-5.99

h0p 6.1938e-22 4.9088e-22 [3.2417e-22 - 6.9092e-22] %-20.75

f0p 7.8380e+03 7.8380e+03 [7.8380e+03 - 7.8380e+03] %-0.00

τp 4.6400e+00 5.4387e+00 [3.5381e+00 - 8.6063e+00] %17.21

λp 3.0000e-01 2.5915e-01 [1.0000e-02 - 7.5746e-01] %-13.62

ψp 2.3000e+00 2.3722e+00 [2.1478e+00 - 2.5966e+00] %3.14

40 h0f 4.1300e-21 3.9597e-21 [3.4566e-21 - 4.4124e-21] %-4.13

f0f 3.0900e+03 3.0899e+03 [3.0897e+03 - 3.0902e+03] %-0.00

τf 1.0900e-01 9.7551e-02 [8.4082e-02 - 1.1102e-01] %-10.50

λf 7.0000e-01 8.4000e-01 [6.0667e-01 - 9.7333e-01] %20.00

ψf 1.2000e+00 1.1307e+00 [1.0841e+00 - 1.2240e+00] %-5.77

h0p 8.2601e-22 7.0079e-22 [5.3507e-22 - 9.3279e-22] %-15.16

f0p 7.8380e+03 7.8380e+03 [7.8380e+03 - 7.8380e+03] %-0.00

τp 4.6400e+00 5.3394e+00 [3.8189e+00 - 7.3666e+00] %15.07

λp 3.0000e-01 2.2593e-01 [1.0000e-02 - 6.0797e-01] %-24.69

ψp 2.3000e+00 2.3402e+00 [2.1478e+00 - 2.5325e+00] %1.75

Table K.4: Parameter estimation from the posterior probability density distribution in
Fig. 5.12 and Fig. 5.13 corresponding to the hypothesis H22K in Scenario 2.
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Parameter Estimation H2U

SNR P Exact Mode Range Diff. %

20 h0f 2.0689e-21 8.7056e-22 [7.0098e-22 - 2.2272e-21] %-57.92

f0f 3.0900e+03 3.0896e+03 [3.0892e+03 - 3.0902e+03] %-0.01

τf 1.0900e-01 9.4330e-02 [7.3248e-02 - 1.4704e-01] %-13.46

λf 7.0000e-01 4.0895e-01 [2.0684e-01 - 8.6368e-01] %-41.58

ψf 1.2000e+00 1.2059e+00 [2.8560e-01 - 3.1099e+00] %0.49

h0p 4.1378e-22 3.5880e-24 [3.5880e-24 - 3.5424e-22] %-99.13

f0p 7.8380e+03 7.8380e+03 [7.8380e+03 - 7.8380e+03] %-0.00

τp 4.6400e+00 6.4000e+00 [5.0000e-01 - 9.4000e+00] %37.93

ψp 3.0000e-01 2.6128e-01 [1.0000e-02 - 8.3923e-01] %-12.91

λp 2.3000e+00 2.4435e+00 [4.7600e-01 - 3.1099e+00] %6.24

δ 2.0758e+00 2.1261e+00 [2.0309e+00 - 3.0781e+00] %2.43

RA 4.6496e+00 4.6965e+00 [2.4117e+00 - 5.0139e+00] %1.01

30 h0f 3.0969e-21 2.8152e-21 [1.4537e-21 - 3.6661e-21] %-9.10

f0f 3.0900e+03 3.0898e+03 [3.0894e+03 - 3.0902e+03] %-0.01

τf 1.0900e-01 9.6204e-02 7.4653e-02 - 1.1776e-01] %-11.74

λf 7.0000e-01 3.6143e-01 [2.3571e-01 - 8.8943e-01] %-48.37

ψf 1.2000e+00 1.1489e+00 [1.0224e+00 - 3.0783e+00] %-4.26

h0p 6.1938e-22 4.2689e-22 [2.3363e-22 - 6.3033e-22] %-31.08

f0p 7.8380e+03 7.8380e+03 [7.8380e+03 - 7.8380e+03] %-0.00

τp 4.6400e+00 5.1127e+00 [3.7163e+00 - 9.1023e+00] %10.19

λp 3.0000e-01 8.5385e-02 [1.0000e-02 - 6.3821e-01] %-71.54

ψp 2.3000e+00 2.4128e+00 [7.0157e-01 - 2.8247e+00] %4.90

δ 2.0758e+00 2.0944e+00 [2.0309e+00 - 3.0781e+00] %0.90

RA 4.6496e+00 4.6331e+00 [2.4752e+00 - 4.8235e+00] %-0.35

40 h0f 4.1300e-21 3.9419e-21 [3.3648e-21 - 4.5767e-21] %-4.56

f0f 3.0900e+03 3.0899e+03 [3.0897e+03 - 3.0902e+03] %-0.00

τf 1.0900e-01 1.0019e-01 [8.0194e-02 - 1.1019e-01] %-8.08

λf 7.0000e-01 6.3276e-01 [4.2862e-01 - 9.3897e-01] %-9.61

ψf 1.2000e+00 1.1693e+00 [1.0686e+00 - 1.3372e+00] %-2.56

h0p 8.2601e-22 6.8079e-22 [5.0787e-22 - 8.6389e-22] %-17.58

f0p 7.8380e+03 7.8380e+03 [7.8380e+03 - 7.8380e+03] %-0.00

τp 4.6400e+00 5.3531e+00 [3.7367e+00 - 7.0704e+00] %15.37

λp 3.0000e-01 2.1103e-01 [1.0000e-02 - 5.6282e-01] %-29.66

ψp 2.3000e+00 2.4043e+00 [2.2119e+00 - 2.6928e+00] %4.53

δ 2.0758e+00 2.0944e+00 [2.0309e+00 - 2.1896e+00] %0.90

RA 4.6496e+00 4.6331e+00 [4.5696e+00 - 4.6965e+00] %-0.35

Table K.5: Parameter estimation from the posterior probability density distribution in
Fig. 5.14 and Fig. 5.15 corresponding to the hypothesis H22U in Scenario 2.
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Appendix L

Schematics of the GEO600

photodetector

Fig. L.1 shows the schematic corresponding to the original design of the photode-

tector. It presents two main outputs for the measurement of DC and RF voltages:

a high inductive impedance filters out the signal at the modulation frequency for

the DC line and a high capacitive impedance filters out low frequencies for the RF

line. The signals need to be amplified so that they can be measured clearly for the

amount of light projected onto the photodetector at the dark fringe, which is very

small. The RF line presents a resonant circuit to amplify the voltage response

of the photocurrent at the modulation frequency. At the same time it combines

a notch filter at twice the modulation frequency, which is aimed to filter out the

second harmonic of the modulation frequency. Fig. L.2 our simplified version.

L.1 Calculation of the inductance value for the

RF resonant line within the GEO style PD

version

In the following, we present the reduced circuitry of the RF line used to calculate

the value of the fixed value inductor to so that the resonance frequency approxi-

mates the modulation frequency. Equivalent impedances are inferred operational
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L.1 Calculation of the inductance value for the RF resonant line
within the GEO style PD version

Figure L.1: Schematics corresponding to the original GEO600 photodetector.
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L.1 Calculation of the inductance value for the RF resonant line
within the GEO style PD version

Figure L.2: Schematics corresponding to the modified version of the original photodiode
of the GEO600 detector.
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L.1 Calculation of the inductance value for the RF resonant line
within the GEO style PD version

amplifiers, which ideally don’t consume any current through their inverting/non-

inverting pins, omitted.

At high frequencies (∼10 MHz) the input impedance of the RF part of the

circuit can be simplified to Fig. L.3.
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Figure L.3: Up: Equivalent reduced schematic of RF line to calculate the value of the
inductor to get resonance at the modulation frequency. Down: Equivalent impedance
calculation for different inductance values. The maximum impedance of Zmax = 255 Ω
for the inductance value L = 1.35 µH at the modulation frequency of fmod = 14.57
MHz was inferred.
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