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Abstract

Impulsive solar electron beams have an attractive diagnostic potential for poorly un-

derstood particle acceleration processes in solar flares. Solar flare accelerated electron

beams propagating away from the Sun can interact with the turbulent interplanetary

media, producing Langmuir waves and type III radio emission. In this thesis, we simu-

late electron beam propagation from the Sun to the Earth in the weak turbulent regime

taking into account the self-consistent generation of Langmuir waves. We show that

an injected single power-law spectrum will be detected at 1 AU as a broken power-

law due to wave-particle interaction in the inhomogeneous plasma. We further extend

these results by investigating the Langmuir wave interaction with background electron

density fluctuations from low frequency MHD turbulence. We find a direct correlation

between the spectra of the double power-law below the break energy and the turbulent

intensity of the background plasma.

Solar flares are believed to accelerate both upward and downward propagating elec-

tron beams which can radiate emission at radio and X-ray wavelengths correspondingly.

The correlation between X-ray and radio emissions in a well observed solar flare allowed

us detailed study of the electron acceleration region properties. We used the Nançay

Radioheliograph, Phoenix-2 and RHESSI to infer the type III position, type III starting

frequency and spectral index of the HXR emission respectively. Using these datasets

and numerical simulations of the electron beam transport in the corona plasma, we

were able to infer not only the location (the height in the corona), but to estimate the

spatial length of the electron acceleration site.
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Preface

This thesis deals with the propagation of solar flare accelerated electron beams trav-

elling from the Sun to the Earth. Specifically we are simulating the wave-particle

interactions which occur between high energy (> 1 keV) electrons and Langmuir waves.

Chapter 1 reviews the necessary background material relevant to this thesis. The

basic understanding of a solar flare is introduced, with particular emphasis on energy

release and accelerated electrons. The chapter then describes the physics behind the

resonant interaction between electrons and Langmuir waves and the emission of radio

waves by the Langmuir waves. It then concludes with a summary of the different types

of observable radio bursts and their properties.

Chapter 2 starts by introducing the properties of observed in-situ electron beams

near the Earth. A description of the physical terms initially simulated is given to-

gether with the initial conditions for the electron beam, thermal Langmuir waves and

background electron density. Analysis of the resultant beam-plasma structure is given

followed by discussion of the electron beam fluence spectrum at the Earth

Chapter 3 introduces the topic of background electron density turbulence in the

solar wind. The numerical model from the previous chapter is improved to more

realistically simulate solar electron beams. The chapter then investigates how Langmuir

waves interact with background density fluctuations and discusses how this further

alters the fluence spectrum of the electron beam.

Chapter 4 diverts from the previous theoretical chapters by observationally analysing

a solar flare’s radio and HXR spectra. The theory of HXR spectra is briefly summarised

together with the reasons for simultaneous study of HXR and radio emission. The chap-



ter derives a relation between observed emission parameters and unknown acceleration

region properties. It then goes on to find the observed parameters from the flare’s

HXR and radio data and estimate the acceleration region height and size. Numeri-

cal simulations of electron beam transport are then employed to verify the estimated

acceleration region properties.

Chapter 5 concludes the thesis with discussion about how the electron beam simu-

lations can be related to observed type III properties. This final chapter also discusses

future work which will be carried out to further our understanding of solar electron

beam transport.
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Chapter 1

Introduction

The main aim of this thesis is to explore the transport of high energy (> 1 keV) solar

electron beams from the Sun to the Earth, accelerated during solar flares. Propaga-

tion of energetic electron beams is a non-trivial subject on account of wave-particle

interactions which occur with the background solar wind plasma inducing Langmuir

waves. This chapter initially reviews the common understanding of solar flare physics.

It then goes on to review the physics behind electron transport with emphasis on in-

duced Langmuir waves. The chapter concludes by describing the properties of radio

emission created through Langmuir waves undergoing wave-wave interactions.

1.1 Flare Overview

1.1.1 General solar flare description

Solar flares, magnetically driven explosions in the solar atmosphere, are a very impul-

sive phenomena. Solar flares are caused by the local coronal magnetic field becoming

unstable and changing from a high energy, stressed topology to a low energy, relaxed

topology. The difference in energy is released into the solar atmosphere which acceler-

ates the surrounding particles to very high velocities with respect to the quasi-thermal

level.

The origin of flares lies below the optically thick surface of the Sun. The turbulent
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convection zone below the photosphere creates complex plasma flows that develop con-

centrated regions of magnetic field. This magnetic field rises through the photosphere

and into the solar atmosphere via magnetic buoyancy. The magnetic field remains an-

chored in the dynamic photosphere/convection zone which adds shear and twist to the

field. The free magnetic energy1 increases, storing energy in magnetic form over peri-

ods of hours to weeks. Storing of energy cannot happen indefinitely and the plasma

reaches a critical point where an instability occurs, releasing some large fraction of

stored energy over a period of minutes to hours. This release of energy is known as a

solar flare.

Solar flare energy release is typically described in three phases; pre-flare, impulsive,

and decay. The majority of this energy is believed to be released in the impulsive

phase which can last for at most 103 s during which they eject a huge amount of energy

(between 1029 − 1033 ergs) into the solar atmosphere at heights around 109 − 1010 cm

from the photosphere2. The energy goes into both accelerating particles and waves in

the background coronal plasma. These waves and particles interact both with each

other and with the coronal and chromospheric ambient plasma, releasing photons from

radio waves through to gamma rays.

The most observed by-product of a solar flare are electron beams. Electron beams

travel both downwards into the dense chromospheric plasma and upwards into the

rarefied upper corona and inner heliosphere. They create emission at a variety of

different wavelengths that can be detected via spacecraft and ground based telescopes.

The two wavelengths of emission we are going to focus on in this thesis are radio waves

and to a lesser extent Hard X-rays (HXR).

Upward propagating electron beams can travel into the high corona and inner he-

liosphere to produce coherent radio bursts (Section 1.4). These radio bursts typically

start at a few hundred MHz and over time can drift down to a few tens of KHz (Dulk

1985). The decreasing frequency over time tracks the local plasma frequency where

1The difference in energy between the force free field and the potential field
2There is still quite a lot of uncertainty in the solar flare acceleration height. See Chapter 4 for a

further discussion.
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the electron beam is present.

HXRs are emitted from non-thermal electron beams accelerated in the corona

which travel downwards into the dense chromosphere (Section 4.1.1). HXR emis-

sion is released through electron-ion bremsstrahlung emission (Arnoldy et al. 1968,

see also review by Vilmer 1987). Most of their energy heats the chromospheric plasma

(McDonald et al. 1999) to millions of degrees which rises to the low corona due to the

pressure difference. Through collisional losses, this heated plasma radiates soft X-rays

(SXR) (Emslie 1989).

A pictorial representation of a flare emitting X-rays and radio waves is shown in

Figure 1.1. Believed to be accelerated by the same process, the generation of these

oppositely directed electron beams has been reported to be temporally correlated (e.g.

Arzner & Benz 2005, see also review by Pick & Vilmer 2008 and Chapter 4).

1.1.2 Solar flare energy

The loss of magnetic equilibrium starting the energy release in solar flares is usually

considered to be their cause. Gravitational, thermal and nuclear energy in such a

small rarefied area in the corona associated with solar flares is not enough to meet

the high energy requirement of 1032 ergs (e.g. Priest & Forbes 2002). There are two

magnetic field properties which have been previously related to solar flares, namely the

unsigned magnetic flux Φ of the active region at the photosphere and a measure of the

unsigned flux near strong-field polarity inversion lines (Welsch et al. 2009). This gives

the picture of both strong regions of oppositely signed magnetic flux converging due to

photospheric flows and flux emergence as drivers for the loss of magnetic equilibrium.

The exact generation mechanism is not part of the modelling undertaken in this thesis.

Magnetic Reconnection

The loss of magnetic equilibrium whereby the magnetic field relaxes to a lesser energy

state occurs through a process called magnetic reconnection. The topic of magnetic

reconnection is highly complex and not the focus of this work so just a brief outline is
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Figure 1.1: Diagram of a flare model envisioning magnetic reconnection and chromo-

spheric evaporation processes in the context of our electron density measurements.

The panel on the right illustrates a dynamic radio spectrum with radio bursts (see

Section 1.4) indicated in the frequency-time plane (Aschwanden & Benz 1997). DCIM

is decimetric radio emission and RS is reverse slope type III radio bursts.

given here. Interested parties are directed to reviews by Priest & Forbes (2000, 2002);

Aschwanden (2002).

One of the simplest3 reconnection models considered is steady 2D reconnection.

When oppositely directed magnetic fields converge towards each other a boundary

(diffusion) region is created. In this diffusion region the magnetic field can change

connectivity such that positive polarity is able to flow to a different negative polarity.

Magnetic field magnitude in the diffusion region tends to zero, increasing the plasma

β4 to values above unity. Plasma is then able to flow perpendicular to the magnetic

field. The magnetic pressure also increases, causing the field to relax outwards via

3Sadly reconnection in any form is far from simple.
4A ratio of the plasma pressure to the magnetic pressure
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Figure 1.2: Diagram of Sweet-Parker reconnection showing the inflow and outflow of the

bulk plasma (grey arrows) and the diffusion region (pink rectangle) (Zweibel & Yamada

2009)

the magnetic tension force. This relaxation process can ‘slingshot’ particles and is the

basic conversion mechanism of magnetic to kinetic energy. The Lorentz force creates

an electric field perpendicular to both the inflow and outflow of the bulk plasma,

accelerating particles. The induced current layer in the diffusion region forms a current

sheet.

One of the first models for 2D steady reconnection is the Sweet-Parker current sheet

flare model (Figure 1.2) proposed by Sweet (1958); Parker (1963). In this model the

diffusion region is much longer than it is wide. Unfortunately the energy conversion

is too slow to explain solar flares on account of plasma having to flow along this

narrow current sheet. An alternative model was introduced by Petschek (1964) which

proposed a much smaller diffusion region allowing energy conversion to happen on
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timescales < 103 s. After later numerical simulations by Biskamp (1986) a series of

more general 2D reconnection models were developed, namely the ‘almost-uniform’,

the ‘non-uniform’ and the ‘burst’ models (Priest & Forbes 2002).

Unsteady 2D reconnection models also exist where the reconnection becomes im-

pulsive. When current sheets form they are susceptible to resistive instabilities. A long

current sheet can become unstable to the tearing mode instability. The tearing mode

instability gives rise to magnetic islands. These are able to very efficiently accelerate

electrons (e.g. Kliem 1994; Drake et al. 2006) through a Fermi process where electrons

are reflected from the ends of the magnetic island, experiencing the same small electric

field many times.

If one goes from 2D to 3D then the geometry becomes even more complicated.

The lines separating oppositely directed magnetic fields become a 2D separatrix sur-

face. When two separatrix surfaces meet they create 1D separatrix lines which can

meet to form null points where the magnetic field is zero. 3D reconnection gives rise

to three different types of reconnection: ‘spine’, ‘fan’ and ‘separator’ reconnection

(Priest & Forbes 2000).

Particle Acceleration

To accelerate the observed electron beams in solar flares requires substantial particle

acceleration. There are three forms of particle acceleration considered for solar flares:

• DC electric field acceleration.

• Stochastic acceleration.

• Shock acceleration.

The requirements for any acceleration model is that it can explain the high energies (>

100 keV) that electrons are accelerated to, the number of electrons that are accelerated,

the power-law energy spectra of the electron beams observed and the fast timescales

of energetic electrons.
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DC acceleration can be classified into two regimes of sub and super Dreicer electric

fields. The Dreicer electric field is defined as

ED =
e ln Λ

λ2
D

(1.1)

where ln Λ is the Coulomb logarithm and λD is the Debye length (e.g. Holman 1985).

If the electric field is larger than ED a particle with thermal velocity vTe is able to be

freely accelerated out of the thermal distribution. Holman (1985) finds that sub-Dreicer

electric fields are able to explain HXR emitting electron beams given electric fields over

the scale of 10 Mm. Unfortunately to explain the number of HXR producing electrons

the electric current associated with the beam needs to be so large that its magnetic

field would exceed typical coronal values by a few orders of magnitude (Litvinenko

2003). Moreover, such a large current sheet would be susceptible to the tearing mode

instability and generate magnetic islands. Super-Dreicer electric fields have the ad-

vantage of explaining HXR emitting electron beams by acceleration over much shorter

distances. The acceleration times are a few milliseconds and could correspond to the

burstiness of HXR observations (see Litvinenko 2003, for a review).

Stochastic acceleration involves an AC electric field associated with waves to en-

ergise electrons. The basic theory of wave-particle interactions is covered in the next

section. Whistler waves are one candidate which could accelerate electrons to high

enough energies. Numerical simulations by Hamilton & Petrosian (1992) found that

fits to the HXR spectra are possible with loop lengths of 100 Mm and electrons are

able to be accelerated up to a few MeV. Another candidate is Langmuir waves. These

run into the problem of having waves at high enough phase velocities to explain the

acceleration of electrons up to energies of MeV (Melrose 1980b).

Shock acceleration is another way of generating high energy electrons. The under-

lying principle of shock acceleration is a Fermi process developed in 1949 by Fermi to

explain how magnetic clouds accelerate particles to cosmic ray energies. This considers

particles interacting with a magnetic mirror. If the particle has an opposite velocity to

the moving mirror, it gains energy and vice versa. Fermi then developed this theory

into two types of acceleration mechanism. The first (‘first order Fermi’) is via mag-
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netic mirrors moving closer together with particles gaining energy at every reflection.

The second (‘second order Fermi’) involves a stochastic motion of the magnetic mir-

rors where particles are statistically more likely to have energy gaining reflections than

energy losing ones. Shock acceleration in the corona from flares is most likely second

order Fermi due to the small observed timescales (Benz 2002). In this second order

Fermi process electrons are reflected through the shock front upstream and downstream

via resonant interaction of whistler waves. Particle energy varies stochastically in both

directions, however, they have a net gain in energy from their more frequent head on

encounters with the shock. Shock acceleration is a candidate for energizing particles

in solar flares if the required turbulent wave spectrum is present.

1.1.3 Interplanetary particles

When solar flares release energy, many particles are accelerated up to high speeds. It

is widely believed that non-relativistic electrons in the 10-100 keV are energetically the

dominant component of flare-accelerated particles (e.g. Ramaty et al. 1980). The mass

ratio mp/me = 1836 means that the lighter electrons are roughly 2000 times easier

to accelerate to high energies. These particles are sometimes able to escape the solar

atmosphere and propagate towards Earth along the magnetic field of the Parker spiral

(Figure 1.3).

Information on the spectra and ratio of energetic particles at the Earth can give

important clues for unravelling the properties of the acceleration mechanism and elec-

tromagnetic radiation (normally at radio wavelength) radiated by the particles during

transport. The energy spectra at 1 AU represents the combined effect of particle

acceleration, coronal transport, release into the inner heliosphere and interplanetary

propagation. It is a non-trivial task to find out which properties of the particle spectra

are transport related and which are properties of the acceleration region. Moreover,

acceleration is also possible in the collisionless inner heliosphere from complicated elec-

tromagnetic fields created via shocks, reconnection and wave modes.

The propagation of electron beams is an important topic to study. Electron beams
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Figure 1.3: Overview of Electron Transport (Reid & Kontar 2009).

are ubiquitous to all solar flares so in this context they can convey lots of insight into

what is happening in the solar atmosphere. Electron beams are also closely related to

Coronal Mass Ejections (CMEs), dense blobs of plasma which are forcefully ejected into

the heliosphere. CMEs are a huge problem for Earth satellites which have to shut down

while the storm of particles passes over the Earth. Whilst potentially conveying some

early warning of CMEs due to their much faster velocities, electron beams can also be

a problem for satellites themselves, causing damage to solar cells and interfering with

onboard electronics. Out of the solar context the further understanding of electron

beams is a much broader topic, spanning disciplines from lab plasmas to cosmology.
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1.1.4 Numerical plasma modelling

To model solar plasma, a variety of different approaches have been utilised depending

upon the scale of interest. This thesis will use the kinetic approach, however, other

numerical methods are also summarised.

The microscopic scale is modelled through discrete particle orbits in an electromag-

netic field known as the test particle approach. In this scenario, the particle trajectories

are calculated explicitly through the force equation

m
dv

dt
= q(E +

v

c
× B) (1.2)

where m, v, q is particle mass, velocity and charge respectively. E and B are the

surrounding electric and magnetic field experienced by the particle. The motion of

particles does not affect the surrounding electric and magnetic field so this approach

lacks self consistency. It is also numerically time consuming, since large numbers of

particles need to be modelled. The independent propagation of particles does lend

itself to parallel computation which can speed up the process.

The macroscopic scale is typically modelled as a fluid using the Magnetohydro-

dynamics (MHD) approach. In this scenario, the plasma is treated as a fluid with a

Maxwellian distribution where particles move along magnetic fields. This treatment

is justified assuming the collisional time is very small with respect to other impor-

tant processes. Electromagnetic fields are derived from Maxwell’s equations, which

describe a precise mathematical framework for evolving the system over time. There

are a variety of different types of MHD models ranging from the simple ‘Ideal MHD’

where resistivity ηr = 0 to ‘Hall MHD’ where ηr 6= 0 and the Hall current term is

considered. MHD is a powerful tool for analysing the collective dynamics of many

particles and the resultant electromagnetic fields. What it doesn’t capture are any

effects where the velocities of particle distributions are able to become non-Maxwellian

through wave-particle interactions or non-thermal particle beams.

The third, more complete mathematical description of plasma can be modelled

through the kinetic approach. The crux of this idea involves applying statistical me-

chanics to the plasma. In this approach each species of particle is modelled over time
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using a distribution function with dimensions in both position and velocity space. This

allows the interaction of a large ensemble of particles to be described without mod-

elling individual particle-particle interaction. The distribution function together with

the mean electromagnetic field can describe a self-consistent solution using the Vlasov

equation5

∂f

∂t
+ v

∂f

∂x
+

q

m
(E +

v

c
× B)

∂f

∂v
= 0 (1.3)

where f(v, x, t) is a particle distribution function with fields E and B being calculated

through Maxwell’s equations. The distribution function has the useful property that

n(x, t) =

∫

f(v, x, t)d3v N(t) =

∫

n(x, t)d3x (1.4)

where n(x, t), N(t) are the number density and total number of particles respectively.

Such properties are very useful becuase they allow some numerical checks to be per-

formed on simulations. Provided any terms which remove energy from the system

are ignored, the number of particles should be conserved. Moreover, if there is no

terms varying in positing, the number density is conserved. Numerical checks allow

the validity of simulations to be explored.

The power of the kinetic approach is being able to self-consistently deal with the

entire system whilst also modelling particle movement in phase space. The main draw-

back in the kinetic approach is the computational time it takes to model 7 dimensional

space (3 position, 3 velocity, 1 time). For a plasma, the kinetic approach breaks down

if there are not enough particles per cubic Debye length. Fortunately this is not a

problem for the solar corona. The kinetic approach is the basis of the computational

modelling of electrons described in the following chapters. Consideration of electron

motion in phase space is crucial to model wave-particle interactions described in the

next section. Moreover, Coulomb collisions are not the dominant process for electrons

in the inner heliosphere.

A significant proportion of this thesis involved the numerical modelling of electron

beams6. The core modelling of the electron beam dynamics was done in Fortran using

5Vlasov’s equation is a collisionless form of the Boltzmann equation
6see Chapters 2 and 3 for a discussion of the physics



1.2: Beam-plasma instability 12

a previously developed code (Kontar 2001c). Fortran was selected for its speed in

iterating through many computational timesteps. The initial code was substantially

altered through the course of the thesis to incorporate many new physical processes

and to model a variety of different initial electron beams. The output of the electron

beam evolution was saved at set time intervals for further analysis after the simulations

had completed.

IDL (Interactive Data Language) was used as the tool for analysing the data ob-

tained from the core Fortran code. The IDL language was selected because of its

frequent usage in solar physics observational data analysis and it boasts a comprehen-

sive library of routines known as SolarSoft. Data files were read into memory, however,

SolarSoft was barely used for the analysis, being more suited to instrument data. A

wide array of different programs were created to analyse the data, to gain a deeper

understanding of electron beam propagation, to output the many graphs presented in

this thesis and to check the consistency of the Fortran code for making sure it was

simulating the physical processes correctly.

1.2 Beam-plasma instability

The focus of this thesis is on outwardly propagating electron beams accelerated in

solar flares. Radio emission from these beams is known as type III radio bursts. In

the standard scenario, the non-linear interaction of beam-driven plasma waves leads

to the appearance of type III solar/interplanetary radio emission. The observations

of type III solar bursts and energetic particles (Lin et al. 1981; Ergun et al. 1998;

Gosling et al. 2003; Krucker et al. 2007) as well as theoretical (Zheleznyakov & Zaitsev

1970; Zaitsev et al. 1972; Mel’Nik 1995) and numerical investigations (Magelssen & Smith

1977; Grognard 1982; Kontar et al. 1998; Yoon et al. 2000; Kontar 2001d; Li et al.

2006a; Ledenev et al. 2004; Krasnoselskikh et al. 2007) provide strong support to the

standard type III model.

The rest of this introduction chapter will summarise the basic theory behind the

‘standard model’ for radio emission from high-energy electron beams and provide an
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overview of the observed radio emission properties. It also describes the basic physics

that was the starting point for the computational simulations in this thesis.

1.2.1 Wave-particle interactions

The idea of electron beams being responsible for type III radio emission was first

developed by Ginzburg & Zhelezniakov (1958). They attributed Langmuir waves7 to be

responsible for the generation of electromagnetic waves at the local plasma frequency.

These Langmuir waves are generated through the two stream instability (specifically

the more intuitively named bump-in-tail instability). The instability deals with two

streams of electrons travelling at different speeds. Specifically for this situation there

exists a background Maxwellian plasma with thermal velocity vTe (temperature Te)

and density ne. There also exists a high energy electron beam which is travelling at

velocities around 20vTe with density nb.

The instability is caused by faster electrons outpacing slower electrons. Given a

collisionless plasma, electrons are free to travel uninhibited (or adiabatically). From

an initial power-law distribution of non-thermal electrons the fastest electrons will

reach areas of space before the slower electrons. A positive slope in velocity space

is created which is unstable to the generation of Langmuir waves. If a high enough

density of non-thermal particles is present, a resonant wave-particle interaction will

occur inducing a high level of Langmuir waves in the background plasma.

To visualise this process we have created a one dimensional example of this unstable

distribution function (Figure 1.4). The initial distribution function is a combination

of a thermal Maxwellian distribution with vTe = 5.5 × 108 cm s−1 (Te = 1 MK) plus

a non-thermal power-law tail (electron beam) with density ratio nb/ne = 10−3 and

spectral index 7 in velocity space. The electron beam has a spatially exponential

7Irving Langmuir(1881 - 1957) undertook work on thermionic electrons in low pressure atmospheres

that led him to recognise the existence of plasmas, a name he coined, and oscillations of electron

density in plasmas, now called Langmuir waves. These waves are caused by a restoring force to

density perturbations that result from both changes in local electron density pressure and from local

electrical polarisation.
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Figure 1.4: The evolution of a thermal Maxwellian and non-thermal electron beam with

density ratio nb/ne = 10−3, vTe = 5.5 × 108 cm s−1 demonstrating the bump-in-tail

instability. The blue dashed line shows the distribution function at t = 0 s, x = 0 cm.

The green and red dashed lines show the electron distribution at later times t = 0.1 s,

t = 0.15 s respectively at x = 1.5 × 1010 cm. Note the development of the positive

gradient ∂f/∂v > 0 due to velocity dispersion.

distribution around x = 0 with characteristic size 109 cm. At later times the higher

velocity particles have outpaced the slower particles and arrived at x = 1.5 × 1010 cm

first. This creates a point in space where ∂f/∂v > 0 for the electron distribution

function f(v, x, t).

It is important to mention the exchange of energy between particles and waves is

due to Cerenkov radiation (Cerenkov 1934). Cerenkov radiation is typically known as

the emission of electromagnetic radiation when a charge passes through a medium with

velocity faster than the speed of light, v > c/ξ, where ξ is the refractive index of the
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medium (a review can be found in Jelley 1958). The process is similar to the bow waves

of a boat moving through water faster than the velocity of the surface waves. In an

unmagnetised plasma the refractive index is always less than one. An electron cannot

reach velocities faster than the speed of light and therefore electrons cannot induce

electromagnetic waves in this way. Langmuir waves are present in a plasma with phase

velocities slower than the speed of light and as such an electron can induce Langmuir

waves in a plasma through Cerenkov radiation. For electrons to induce Langmuir waves

the Cerenkov resonant condition ω = kv must be satisfied where ω, k are the Langmuir

wave angular frequency and wavenumber respectively.

The emission of Langmuir waves by particles transfers energy from the particles to

the waves. The growth rate of this process can be found from the quasilinear equations

introduced by Vedenov et al. (1962); Drummond & Pines (1962)

∂f

∂t
=

4π2e2

m2
e

∂

∂v

W

v

∂f

∂v
(1.5)

∂W

∂t
=

πωpe

ne

v2W
∂f

∂v
(1.6)

where W (v, t) is the spectral energy density of Langmuir waves and f(v, t) is the elec-

tron distribution function. For clarity is should be mentioned that v describes both

the kinetic velocity of electrons and the phase velocity of Langmuir waves. The quasi-

linear equations describe the evolution of waves and particles as they exchange energy

through wave-particle interactions. The quasilinear equations are a simplification from

the Vlasov equation which ignores all other electromagnetic processes present in the

plasma. Assumptions are also required that the Langmuir wave energy generated is not

larger than the thermal energy of background plasma and that no particles are confined.

Provided the perturbations created on a particle through wave-particle interactions are

small (for example much less than an electron gyroradius in a gyroperiod) the quasi-

linear equations are valid. The growth rate of waves from wave-particle interactions

is proportional (amongst other things) to ∂f/∂v (Figure 1.4). The dispersion relation

for Langmuir waves is

ω2(k) = ω2
pe + 3k2v2

Te/2. (1.7)



1.2: Beam-plasma instability 16

where ωpe is the local plasma frequency. Velocities considered for a non-thermal electron

beam are much higher than the background thermal velocity vTe. Using the resonance

condition, the angular frequency of Langmuir waves can be expressed as ω2 = ω2
pe(1 +

3v2
Te/2v

2). For the Langmuir waves in question v ≫ vTe giving the approximation

ω ≈ ωpe. The Cerenkov resonance condition can thus be written as ωpe = kv.

1.2.2 Quasilinear relaxation

Figure 1.4 can pictorially explain how a positive gradient in velocity space is formed

but it does not show the feedback on the electrons from inducing waves. The electrons

are decelerated as they transfer energy to the waves. Equation (1.5) describes this

feedback whereby electron diffuse down in velocity space where the diffusion coefficient

D = W/v.

Having a diffusion feedback on the particles causes them to spread in velocity

space, removing the positive gradient. The asymptotic solution forms a plateau in

velocity space such that ∂f/∂v = 0 (Vedenov & Ryutov 1972; Grognard 1985). The

characteristic time for quasilinear relaxation to occur can be defined as the quasilinear

time τql = ne/(πωpenb). An analytical solution is known (e.g. Kontar 2001d) given an

initially unstable, simple electron beam in velocity space described by

g0(v) = 2nbv/v0, v < v0 (1.8)

where v0 is the maximum velocity of the electron beam. A plateau forms in the

distribution function

f(v, t ≈ τql) =
nb

v0

(1.9)

where the Langmuir waves are described by

W (v, t ≈ τql) =
menbv

3

v0ωpe

∫ v

0

(

1 − v0

nb

g0(v)

)

dv. (1.10)

We used a numerical simulation, shown in Figure 1.5, to demonstrate the electron

distribution function and spectral energy density of Langmuir waves at three points

in time (numerical details given in Kontar 2001c). The initially unstable distribution
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Figure 1.5: The evolution of an unstable electron beam and the corresponding gener-

ation of Langmuir waves. f and W are the normalised electron distribution function

and wave spectral energy density respectively. The asymptotic solution is given by the

dashed lines.

function generates a plateau in velocity space, transferring its energy to the induced

Langmuir waves.

The unstable electron beam generated through propagation will behave in a similar

manner. Figure 1.6 shows the asymptotic behaviour of this process for a thermal

Maxwellian and non-thermal Gaussian ‘beam’ with density ratio nb/ne = 10−4, vTe =

5.5× 108 cm s−1. The bump will form a plateau in velocity space which will over time

extend all the way from the high energy electron beam to the low energy background

Maxwellian plasma. The spectral energy density is also shown and can be seen to exist

at larger values of kλD as the resonant electrons are decelerated to lower velocities. If
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Figure 1.6: The evolution of a thermal Maxwellian and non-thermal electron beam

with density ratio nb/ne = 10−4, vTe = 5.5 × 108 cm s−1. The bump in velocity space

caused by electron beam propagation diffuses out forming a plateau.

we consider η, the ratio of Langmuir wave energy density to the kinetic energy density

of the electron beam it takes the form

η ≈ Ew

0.5nbmeV 2
b

(1.11)

where Ew is the energy density of Langmuir waves. For the analytical solution we have

an asymptotic limit of η = 0.5.

Figure 1.6 shows what will happen as t → ∞ for a thermal Maxwellian and a non-

thermal bump at 20 v/vTe. It is not typical of what will happen to an electron beam

as it propagates through space with time. It is likely that the high energy part of the

electron beam will never relax enough to the state shown at t = 2.5 s because the

electrons are not remaining stationary in space. The lower energy electrons may relax

to the distribution function as they are closer in velocity space and as such require less
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time to relax completely. Moreover an inhomogeneous background plasma can either

encourage or hinder the electron beam relaxation (see Chapter 3 for more informaiton).

1.2.3 Sturrock’s dilemma

In the early 60s, a problem was pointed out (Sturrock 1964) with the two-stream

instability. The standard scenario models a beam of electrons at high energies and

a background Maxwellian plasma at thermal energies (Figure 1.6). Considering the

coronal and beam parameters ne = 108 cm−3, ωpe = 109 s−1, nb = 104 cm−3, vb =

1010 cm s−1, ∆vb = 109 cms−1, the quasilinear growth rate is of the order of 10−7 s.

This is much faster than the collisional time of around 10−2 s so collisional damping

of the Langmuir waves would be ineffectual at inhibiting the instability. Sturrock goes

on to estimate that without anything stopping the instability the beam would lose all

its energy to Langmuir waves in a few metres. This is a serious problem in the theory

as beams of electrons are observed to travel distances ≥ 1 AU.

The initial argument put forward by Sturrock was slightly reformulated by Melrose

(1980c) to be independent of the poorly known parameters of the accelerated electron

beam. Melrose considers η, the ratio of Langmuir wave energy density to the kinetic

energy density of the electron beam as defined above. If the asymptotic quasilinear

solution is approached the energy in the stream would decrease exponentially in time.

This would cause the beam to lose all of its energy in a very short space of time. To

avoid this outcome Melrose argues that η ≪ 0.5 resulting in the beam losing much less

energy to Langmuir waves.

The idea proposed by Sturrock to overcome this dilemma was to suppress the level of

Langmuir waves via non-linear mechanisms. Langmuir waves can scatter off ions which

builds up a secondary stream of Langmuir waves. Langmuir waves are removed from

resonance with the electron beam which eventually suppresses wave growth. Another

way that Langmuir waves can be removed from resonance with the electron beam is the

scattering of Langmuir waves off density inhomogeneities. This could achieve inhibition

of waves such that Ew ≪ 0.5nbmeV
2
b . Simulations taking into account the scattering



1.2: Beam-plasma instability 20

of Langmuir waves have been carried out in this thesis, however, they do not appear

to be the primary mechanism for overcoming Sturrock’s dilemma. Simulations which

deal with density fluctuations are explicitly covered in Chapter 3.

1.2.4 Beam-plasma interaction

Another idea which solves the Sturrock dilemma is the formation of a beam-plasma

structure where the electron beam and Langmuir waves exist in a state of quasi-

stability. That this could happen has been observed analytically by Zheleznyakov & Zaitsev

(1970) and further developed by Zaitsev et al. (1972) who also considered the relativis-

tic equations. The problem was initally worked on numerically by Takakura & Shibahashi

(1976); Magelssen & Smith (1977); Grognard (1985). The main idea of the beam-

plasma structure consists of electrons generating Langmuir waves at the front of the

beam through the usual instability ∂f/∂v > 0. The induced waves are then reabsorbed

in the back of the beam where ∂f/∂v < 0. Electrons are able to restore their energy

which had been transfered to the Langmuir waves. The electron beam is thus able to

retain its energy over the long distances > 1 AU.

Starting off with a stable electron beam where ∂f/∂v < 0 at all places in phase

space, the electron beam is allowed to propagate through space. The different velocities

of the electrons cause them to move at different speeds. Faster electrons outpace

slower electrons, Langmuir waves are induced at the front of the beam, and a plateau

is formed in velocity space much like that described above. What is important to

the theory is that the electrons are still at different energies which will cause faster

electrons to outpace the slower electrons again. This creates a beam-plasma structure

that travels at a constant velocity equal to the mean velocity of the electrons which

are taking part in this structure. The beam-plasma structure is able to travel through

a background plasma without any energy losses if you only consider spatial transport

and the quasilinear equations.
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Figure 1.7: A flow diagram indicating the stages in plasma emission in an updated

version on the original theory (Melrose 2009).

1.3 Wave-wave interactions

Electron beams propagating as a beam-plasma structure travel with a given distribu-

tion of Langmuir waves. Langmuir waves are susceptible to wave-wave processes which

can create different types of waves. The most observable waves which can be produced

are transverse electromagnetic waves. Radiation is emitted at either the local plasma

frequency (‘fundamental’) or at twice the local plasma frequency (‘harmonic’). An

overview of the dominant processes is shown in Figure 1.7. The amount of energy con-

verted to transverse waves is very small and as such the local distribution of Langmuir

waves can be considered to be unaffected by these processes. They are an important

diagnostic tool for the evolution of an electron beam.

The conversion of Langmuir waves into electromagnetic emission is important to

explain the coherent radio emission observed from the Sun. It is not, however, the

focus of this work. The main processes are presented here to give the reader a complete
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picture from electron beam to Langmuir wave to radio wave. A detailed description

of the processes can be found in Melrose (1980b,c, 1985) and Benz (2002). In the

description we are assuming weak turbulence, which is valid provided the level of

Langmuir waves is not too intense.

1.3.1 First harmonic emission

The two main processes to explain fundamental emission are:

• Scattering of Langmuir waves off thermal ions, denoted l → t.

• The coalescence and decay of Langmuir waves with ion sound waves, denoted

l + s → t, l → s + t.

The scattering of Langmuir waves off thermal ions is similar to Thomson scattering. It

is not a single electron which scatters the wave but the Debye shielding cloud of elec-

trons which accompanies an ion. With first harmonic emission, we observe transverse

wave frequencies that are at the local plasma frequency requiring ωt ≈ ωl. For a wave

scattering off a thermal ion with velocity vT i, the incident Langmuir wave and induced

transverse wave will have frequencies and wave vectors ωl, kl and ωt, kt related by

ωl − klvT i = ωt − ktvT i (1.12)

due to the conservation of momentum and energy. Given the small magnitude of

fundamental transverse wave vectors kt this leads to ∆ω ≈ klvT i ≈ ωpevT i/vb, where

vb is the inducing electron beam velocity and vT i/vb is typically around 10−3. The ion

velocity is considered unaltered as kbTi ≫ ~ωl.

In Thomson scattering, the rate at which the energy density Wt of transverse waves

is generated from the incident transverse waves W ′
t in a vacuum is dWt

dt
= σT necW

′
t

where σT = 8πr2
e/3 is the Thomson scattering cross section and re is the classical

electron radius. The only modification this requires for Langmuir waves (with energy

density W) in a plasma generating transverse waves is that the power radiated is

proportional to the refractive index ξ(ω) = (1 − ω2
pe/ω

2)0.5 and that the cross-section
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σi = σT /4 (see Melrose 1980b,c, for a complete description) giving

dWt

dt
= ξ(ω)σinecW. (1.13)

For reasonable coronal and inner heliosphere parameters this rate is very small with

Wt reaching only 10−10W over a distance of 107 cm.

It is possible to increase the rate via the process of induced scattering. The emitted

transverse waves can stimulate the ions which greatly amplifies the rate of scattering.

As the process is then proportional to both the Langmuir and transverse wave energy

density this can lead to exponential growth. Induced scattering becomes important

when the effective temperature of transverse waves Tt reaches a threshold brightness

temperature of Tivb/vT i. The threshold is roughly 108 K in the solar corona, well within

the observed brightness temperatures of coherent radio emission (see Section 1.4).

The second process to generate transverse waves involves the coalescence or decay

of Langmuir waves with ion sound waves. In this scenario the parametric conditions

are

ω1 + ω2 = ω3 (1.14)

k1 + k2 = k3. (1.15)

An important consequence of Equation (1.15) is that the ion sound wave will have a

wave vector ks≈ ±kl. This condition rules out MHD waves and non-thermal whistler

waves from the process of generating transverse waves from Langmuir waves as their

wave vector is not large enough to satisfy Equation (1.15). The coalescence of l+ s = t

describes local plasma turbulence greatly enhancing the scattering process of Langmuir

waves with ions. The rate of conversion is increased by a factor of Ts/Te where Ts is

the effective temperature of ion sound waves. For ion sound waves, Ts is much larger

than Te leading to a huge increase in transverse waves. Saturation of the process thus

becomes important, occurring when Tt = Tl. The process is much more efficient than

induced scattering of ions to explain radio emission with high brightness temperatures.

It runs into difficulties when plasma conditions lead to strong ion sound wave damping

around Te ≤ Ti. A typical observed ratio of Te/Ti = 2.8 in the solar wind at 1 AU
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(Lin et al. 1986) would permit this. Heating of the electrons during solar flares is a

possible example when emission via ion sound waves may be taking place in the corona.

1.3.2 Second harmonic emission

The production of second harmonic emission is better understood. From the paramet-

ric conditions (1.14), (1.15) the only process that can produce waves at 2ωpe is the

coalescence of two nearly oppositely directed Langmuir waves l + l′ = t. They are

required to be nearly in opposite directions to produce a transverse wave with small

k. Langmuir waves in the backward direction can be created by reflection off posi-

tive background electron density gradients. The analogy with Thomson scattering can

be continued to find the growth rate of transverse waves. The cross section for this

scattering σl = σT /5 and the rate is given by (Melrose 1985)

dWt

dt
=

6

5
σT neWξ(ω)c

Tl′

mec2
(1.16)

The rate is large enough to explain the observed spectra of second harmonic emission

from radio bursts. The saturation of this process occurs when the brightness temper-

ature of the transverse waves reaches

Tmax = 2
TlTl′

Tl + Tl′
(1.17)

where the 2 arises from the frequency 2ωpe. Langmuir waves travelling in the opposite

direction will have a smaller temperature producing saturation of this process at Tt =

2Tl′ . The observation of two bands of coherent radio emission with frequency ratio

nearly 1:2 confirms the general idea about second harmonic emission.

1.4 Solar radio bursts

1.4.1 Overview of radio bursts

The first and second harmonic emission induced by Langmuir waves which, in turn,

were induced by electron beams are observed both in-situ by spacecraft and remotely by
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Figure 1.8: Schematic dynamic spectrum of a solar radio outburst such as might be pro-

duced by a large flare. Outbursts often vary considerably from this ‘typical spectrum’

(Dulk 1985)

ground based observatories. Being at the local plasma frequency the electromagnetic

emission occurs at radio wavelengths ranging from GHz deep in the solar atmosphere

to kHz near the Earth. Due to the discrete or impulsive nature of electron beams, the

radio emission is referred to as bursts.

Radio bursts come in a variety of forms and are differentiated through how their fre-

quency changes in time, known as their frequency drift rate or drift frequency. Initially

three types of radio emission were classified as type I, II and III in order of ascending

drift frequency (Wild & McCready 1950). Later it became necessary to introduce two

more types IV and V. Each type has subtypes that further describe the array of com-

plex behaviour these radio bursts display. Figure 1.8 shows an overview of the many

different types of radio bursts which can occur in a large flare.

There are a number of different reviews (e.g. Dulk 1985; Bastian et al. 1998; Nindos et al.

2008) that cover radio bursts including their properties. For the analysis of electron

beams these properties are part of the key to understanding electron propagation dy-
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namics. As the generation of coherent radio bursts is a two-stage process it is very hard

to infer the properties of the initial electron beam from the radio emission. To gain

further understanding of coherent emission, computer simulations have been created

to replicate electron beam propagation (e.g. Grognard 1985; Kontar 2001a). The focus

of electron beam simulations has generally been to understand the behaviour of the

electron beam when it induces Langmuir waves and how both these interact with the

background plasma density.

Coherent radio emission is a powerful diagnostic tool for electron beam propagation.

As the electron beam propagates through the heliosphere, it encounters a changing

background electron density. With induced Langmuir waves being at the local plasma

frequency, the coherent emission effectively tracks the transport of the electron beam

across the heliosphere. By understanding how the properties of radio bursts are linked

to the Langmuir waves which induce them we can further diagnose how high energy

electron beams vary during their transport. Radio bursts are thus one of the best ways

we can infer properties of the electron beam near the Sun.

Radio spectrographs are used to image large bands of radio frequencies to illustrate

the spectral analysis of radio bursts. There are enough radio spectrographs to get a

complete picture of any individual burst from GHz to kHz if the burst extends that

far. Of note are the Phoenix-2 radiospectrometer (Messmer et al. 1999) in the range

0.1 to 4 GHz, the ARTEMIS radiospectrometer (Maroulis et al. 1993) in the range

90-30 MHz and the WAVES instrument (Bougeret et al. 1995) which can detect the

frequency range 14 MHz-20 kHz. The radio spectrographs create dynamic spectra,

similar to Figure 1.8 where the intensity of the radio source is given by the colour of

the contours, creating a three dimensional representation of intensity vs frequency vs

time.

Radioheliographs are used to generate a two-dimensional image of the radio burst at

discrete frequencies. Of these the Nançay Radioheliograph (NRH) (Kerdraon & Delouis

1997) is able to image within the range 432 - 164 MHz. Radioheliographs are partic-

ularly useful as they allow not only the position of the radio burst to be ascertained

but also their position with respect to other emission.
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Figure 1.9: A daily plot using the RAD1 instrument on the WAVES experiment on-

board the WIND spacecraft (from the WAVES website). A series of type III radio

bursts are shown from 1 MHz down to 20 kHz. Note the decreasing drift frequency of

the radio emission.

1.4.2 Type III emission

The most widely studied yet not completely understood radio bursts are type III radio

bursts. Electrons originating high in the solar atmosphere can propagate along the

interplanetary magnetic field lines of the Parker spiral towards the Earth. These elec-

trons, travelling at velocities around one third of the speed of light, become unstable

and create Langmuir waves. It is these Langmuir waves which are partially trans-

formed into radio emission at the plasma frequency fpe or its second harmonic 2fpe via

non-linear plasma processes (Melrose 1990). An example of a series of type III bursts

is given in Figure 1.9.
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Drift frequency

Type III bursts have a wide range of properties that distinguish them from other

radio bursts. The first property is their high drift rate df/dt. Type III bursts have

a rough frequency range from around 700 MHz to 20 KHz, representing propagation

from the low corona to the Earth, although they are known to propagate further into

the heliosphere. Type III bursts have been reported to drift at a rate of df/dt =

−0.01f 1.84 MHz s−1 derived from a least squares fit to reports by various authors in

the frequency range 550 MHz to 74 kHz (Alvarez & Haddock 1973). The drift rate can

be then used to deduce the exiter speed by assuming the electron density structure in

the corona/heliosphere. Alvarez & Haddock (1973) derived exciter speeds within the

range 0.2 c ≤ vb ≤ 0.8 c. Specifically in the corona, the drift rate has been found to

vary as df/dt = −0.2f (Melrose 1980c). For the electron beam the drift rate represents

the mean speed of the electron beam-plasma structure as it propagates from the Sun to

the Earth. As we shall see in Chapter 3 the energies of electrons participating in this

structure are radially dependent with the maximum energy decreasing over time. The

beam-plasma structure thus decelerates with distance from the Sun. Another factor

that determines the drift frequency is the radial decrease of plasma density from the

Sun to the Earth. The decrease can be approximated by two power-laws with a break

from high to low spectral index around 9 Rs. Both these conditions give rise to the

observed frequency drift rate and will be discussed in a later chapter.

Reverse drift type III

Type III bursts with a positive drift rate are observed in the low corona. These are

generally associated with downward propagating electron beams, often responsible for

HXR emission in the chromosphere (e.g. Aschwanden et al. 1995a). In a positive

density gradient a lower level of Langmuir waves are induced by an electron beam

(e.g. Kontar 2001b). Recent work has been done to simulate these electron beams

(Hannah et al. 2009) showing substantial Langmuir wave growth for the large beam

densities predicted from HXR observations.
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Source size

The size of Type III bursts increases with decreasing frequency. Measurements at

various frequencies for a variety of bursts give averages (half widths to 1/e brightness) of

5 arcmin at 169 MHz (Bougeret et al. 1970), 11 arcmin at 80 MHz, 20 arcmin at 43 MHz

(Dulk & Suzuki 1980), 5 degrees at 1 MHz, 50 degrees at 100 KHz (Steinberg et al.

1985) and 1 AU at 10 KHz (1 AU) (Lin et al. 1973). A comprehensive study of type

III radio source sizes is undertaken by Steinberg et al. (1985) who deduces an f−1

variation of source angular size with observing frequency. This is directly proportional

to the distance from the Sun implying expansion in a fixed cone of 80o with the apex

in the active region. They also extend the standard scattering model to deduce that

interplanetary density inhomogeneity roughly doubles the source size as observed at

1 AU. An electron beam would thus leave the corona and expand in a cone of angle

roughly 40o from the active region.

Frequency range

Many type III bursts do not make it out of the corona. These type III bursts usually

consist of a small group between 1 and 10 individual bursts. Their lack of propagation

could be due to a variety of different beam properties which control the generation of

Langmuir waves or it could be to do with the properties of the background coronal

plasma such as the magnetic field configuration confining the electron beam to the

corona. Some type III radio bursts do make it out into the heliosphere and are la-

belled interplanetary (IP) type III bursts. The point where corona ends and the inner

heliosphere starts is subjective. Bursts are commonly called IP if they are detected

by the WAVES experiment at around 10 MHz. IP bursts are generally a collection of

many small bursts observed in the high corona which merge into one observable burst

because the background density gradient decreases.
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Rise and decay of bursts

The rise and decay of type III radio emission in the interplanetary medium gener-

ally takes the form of a Gaussian total rise time te followed by a power-law e-folding

decay time td. The general trend in emission is a shorter rise time te < td. A statis-

tical study of rise and decay time between 2.8 MHz and 67 kHz was undertaken by

Evans et al. (1973). The study found with a least squares fit through the data the

relations te = 4.0 × 108f−1.08 and td = 2.0 × 108f−1.09 where t is in seconds and f is

in Hz. The power-law form of the decay time is currently unexplained as collisional

damping of Langmuir waves would lead to a much longer decay time. There must be

another process which accounts for either the spatial damping of Langmuir waves or

the suppression of Langmuir waves inducing electromagnetic emission.

Harmonic Structure

Both fundamental (F) and second harmonic (H) emission are exhibited in a significant

proportion of type III radio bursts. The H-F ratio, naively expected to be 2:1, actually

ranges from 1.6:1 to 2:1 with a mean near 1.8:1 (Wild et al. 1954a; Stewart 1974). To

explain this it has been suggested that F emission near the local plasma frequency is not

able to escape and be observed (e.g. Suzuki & Dulk 1985). At frequencies > 100 MHz

the H emission is usually detected whilst in the interplanetary medium between 1 and

100 MHz a significant portion of type III bursts are detected with harmonic structure

(both F and H emission) (e.g. Wild et al. 1954a; Stewart 1974; Dulk & Suzuki 1980;

Suzuki & Dulk 1985; Robinson & Cairns 1994, 1998). F emission is observed to be

more common and intense at larger distances from the Sun leading to the general

condition that H emission dominates close to the Sun while F emission dominates

further away (Robinson & Cairns 1994; Dulk et al. 1998). Generated distributions of

Langmuir waves via simulations can possibly shed some light on this.
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Brightness temperature

The brightness temperature of emission can be used to categorise emission as thermal,

incoherent or coherent with the latter having very high Tb. In brief the observed

brightness temperature is the temperature at which a thermal source would need to

be to produce the observed emission. The very high brightness temperatures observed

confirms that emission processes are coherent. For type III radio bursts Tb usually lies

within the range 108 and 1012 K although it can rise to 1016 K (Suzuki & Dulk 1985).

The trend for Tb is to increase with decreasing frequency up to around 1 MHz and

then either decreases or remains constant (Dulk et al. 1984). There is also a weak anti-

correlation between rise times and Tb. Fundamental type III emission is also thought to

produce higher Tb than harmonic emission (Dulk et al. 1984; Melrose 1989). It should

also be possible to estimate the maximum value of Tb from Tl, the temperature of the

inducing Langmuir waves (Melrose 1989) but to do so requires the k-space spectrum

of the Langmuir waves. Observational constraints of Tb can thus help in the diagnosis

of electron beam simulations.

Polarization

If either x-mode or o-mode electromagnetic waves dominate, the observed radiation

is said to be polarized. The polarization of type III emission is weakly circularly

polarized with H emission having less polarization than F emission (e.g. McLean 1971;

Suzuki & Sheridan 1977; Dulk & Suzuki 1980; Suzuki & Dulk 1985). Dulk & Suzuki

(1980) made a thorough analysis of polarization characteristics of 997 bursts finding the

average polarisation of F-H pairs were 0.35 and 0.11 respectively while structureless

bursts had only a polarization of 0.06. The maximum F polarization was around

0.6. Most of the observed emission is in the o-mode creating the severe restriction

on the inducing Langmuir waves that their wave vector must be within 20o of the

magnetic field direction (Melrose et al. 1978). Emitted linearly polarized waves tend

to be obliterated over any finite band of frequencies by differential Faraday rotation of

the plane of polarization during passage through the heliosphere (e.g. Suzuki & Dulk
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1985).

Type IIIb bursts

The presence of fine structure in a type III dynamic spectra is classed under the enve-

lope of type IIIb burst. These bursts show a clumpy nature to their emission, usually

shown in the F emission. Fine structure in the H component in type IIIb bursts is

very rarely observed (Dulk & Suzuki 1980). Ellis & McCulloch (1967) and Ellis (1969)

used a particularly fast response radiospectrograph within the range 25-100 MHz which

found these bursts only below 60 MHz. de La Noe & Boischot (1972) found the type

IIIb bursts preceded type III bursts in 30 % of cases and was from the same spatial

location. The common belief (Smith & Riddle 1975; Melrose 1980c, 1983) is that den-

sity inhomogeneities in the background plasma which create a clumpy distribution of

Langmuir waves are the cause of this fine structure. If density inhomogeneity is re-

sponsible for type IIIb bursts, the turbulent intensity may be less close to the Sun at

frequencies > 60 MHz. The topic of density inhomogeneities and Langmuir waves are

dealt with in Chapter 3.

Inverted U and J bursts

The frequency drift rate of radio bursts has been observed to change sign during a

normal type III burst, taking the shape of an inverted U or J (Maxwell & Swarup

1958). These bursts are believed to be electron streams travelling along magnetic

fields confined to the corona. For the J bursts, the radio emission stops when the

electron beam reverses direction but with U bursts it continues to higher frequencies.

The rate of occurrence is very low and they generally occur in H emission within the

range 20-300 MHz, although F emission has been observed (e.g. Labrum & Stewart

1970; Aurass & Klein 1997, and references therein). Their polarization is usually below

10 %, agreeing with the properties of H emission. Similar to reverse drift bursts their

low occurrence could be to do with increased difficulties to generate Langmuir waves

in an increasing density gradient.
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1.4.3 Type V emission

Closely related to the type III burst are type V bursts classified due to their long

durations (minutes) and wide spectra (Wild et al. 1959). The type V emission appears

as a continuation of a type III burst in the dynamic spectra (Figure 1.10). Type V

bursts are important because their explanation has to be consistent with any model of

type III bursts. Type V bursts appear at low frequencies below 120 MHz and generally

have 1-3 minute durations (Dulk et al. 1980). The size of type V bursts increases

rapidly with decreasing frequency, with full width at 1/e brightness on average 105

arcmins2 at 80 MHz and 300 arcmins2 at 43 MHz (Robinson 1977) similar to type III

bursts (Dulk & Suzuki 1980). Type V bursts have also been observed to move relative

to the disk surface at speeds ≈ 2 Mm s−1 (Weiss & Stewart 1965). A similar problem

related to the decay of type V emission exists where the characteristic time of collisional

damping of Langmuir waves is much larger than the lifetime of type V emission.

Possibly the most defining observations of type V emission are in their polarization.

Their polarizations are low (usually < 0.07 %) which suggests H emission. However,

it is common to find their polarization opposite in the sense of the corresponding type

III (Dulk et al. 1980). Dulk et al. (1980) suggest the most likely reason for this change

is due to x-mode rather than o-mode emission. This could be caused by increased

isotropy in the Langmuir wave distribution as the condition for o-mode emission is

Langmuir waves within 20o of the magnetic field.

Another deviation of type V emission from their associated type III emission is the

occurrence of large position differences, sometimes up to 1 Rs (Weiss & Stewart 1965;

Robinson 1977). This is not always observed and the positions of the type III and V

can overlap or only be slightly displaced. Some explanations of this phenomenon are

low energy electrons travelling along different magnetic field lines or a variation of the

beaming of emission changes the position of the centroids (Dulk et al. 1980).
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Figure 1.10: An example of a type III/V emission obtained from the Green Bank Solar

Radio Burst Spectrometer (from the GBSRBS website). Note the extended duration

of the type V emission.

1.4.4 Type II emission

Type II emission, categorised for its slower drift frequency than type III, is associated

with the passage of a shock front through the corona (Wild et al. 1954b). This shock

front was later described as a collisionless MHD shock (Uchida 1960; Wild 1962). The

collisionless shock related to type II emission is believed to be driven by coronal mass

ejections (CMEs) (e.g. Gopalswamy et al. 2005; Liu et al. 2009; Gopalswamy et al.

2009). An example of a type II dynamic spectra can be seen in Figure 1.11. A

popular electron acceleration method responsible for type II emission is diffusive shock

acceleration (electrons receiving one energy gaining reflection) (e.g. Holman & Pesses
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Figure 1.11: An example of a type II and some type III bursts obtained using the

RAD2 instrument from the WAVES experiment on board the WIND spacecraft (from

the WAVES website). The type II burst (right) has a much slower drift rate and the

faint fundamental emission can also be observed.

1983). This process requires a seed population of high energy electrons whose origin is

not yet explained. Type II bursts are particularly useful as they provide early warning

of interplanetary shocks, which can cause electromagnetic disturbances at the Earth.

Observations of the type II frequency range and the associated CMEs can give

insight into requirements for type II generation. The typical type II frequency range is

from 150 MHz down to around 20 MHz although type II bursts can be observed with

higher starting frequencies and at lower frequencies down to the kHz range. This leads

to three different classes of type II event based on their wavelength extent (not their

frequency), denoted metric, decahectometric (DH) and kilometric. Kilometric emission

is always observed with an interplanetary shock (Cane et al. 1987) which is nearly

always associated with a CME (Sheeley et al. 1985). DH emission is generally observed

with an interplanetary shock (e.g. Gopalswamy et al. 2000), however not all metric

emission is associated with CME driven shocks (Sheeley et al. 1984). Sheeley et al.
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(1984) mentions the possibility of some metric type IIs being associated with blast

waves from flare activity. A statistical study by Gopalswamy et al. (2005) finds that

CME kinetic energy is closely tied to the probability of occurrence of type II bursts

in different frequency bands. Lower energy CMEs generally have type II emission

confined to the metric range or no type II emission at all. Higher energy CMEs are

more likely to produce DH or kilometric emission while the highest energy CMEs are

more likely to produce type II emission which spans the entire frequency range from

metric to kilometric (see also Gopalswamy et al. 2010). Whilst providing key prediction

information regarding the strength of interplanetary shocks, this observation indicates

the increase in energy required from the CME to drive lower frequency radio emission.

The requirement of increased kinetic energy could be related to the increased difficulty

from CME rarefication as it expands into the heliosphere. This result is complemented

by the increased source size of type II emission at lower frequencies (Nelson & Melrose

1985).

Type II emission is generally seen 5-20 mins after flare onset and can last from

between 2-15 mins. The drift frequency of type II emission is around 1 MHz s−1

and together with the normal coronal density maps gives velocities between 0.2-2 Mm

s−1. Type II emission has both a fundamental and a harmonic component although

sometimes the fundamental is not observed. The type II emission has some subclasses

corresponding to their dynamic spectra characteristics which include band splitting

(doubling of the bands), herringbone structure (rapidly drifting, short duration sub-

structure) and multiple lanes (believed to be caused by simultaneous shocks close by)

(Nelson & Melrose 1985). The fast drift rate in the herringbone structure points to a

source common to type III emission. This is further backed up by the high polarisation

rate (up to 70%) which is not normally observed in type II emission but is observed in

fundamental type III emission. It is also believed that the type III like (herringbone)

emission is closely associated with strong density inhomogeneity (e.g. Chernov et al.

2007).
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Figure 1.12: An example of a storm type I burst observed with the HiRAS Radio

Telescope in Japan (from the HiRAS website).

1.4.5 Type I emission

The burst with the smallest drift frequency, known as a type I burst, takes place in the

middle corona (McCready et al. 1947). It is a short, narrow band radio burst which

generally occurs in large groups known as type I storms that can last for many hours

(Figure 1.12). Type I bursts occur in the metric wavelength range between 30-400 MHz.

The production of type I emission is believed to be related to coalescence of Lang-

muir waves with ion sound waves (Melrose 1980a). Energetic electrons trapped inside

active region magnetic fields confined to the corona produce Langmuir waves through

the usual instability. These Langmuir waves then coalesce with ion sound waves, pos-

sibly produced through local plasma density turbulence. It is thus possible that the

bursty emission is a direct signature of the stochastic nature of either the electron accel-

eration (e.g. Bárta & Karlický 2001; Sundaram & Subramanian 2005) or the excitation
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of ion sound waves.

Type I emission has virtually no drift rate, lasting on average between 0.2 s at

400 MHz and 0.7 s at 100 MHz (Kai et al. 1985). If the drift rate is observable it

can be either positive or negative implying that both upward and downward travelling

electron beams are responsible. When type I emission is chained together as a storm,

it can have a drift rate > ±0.5 MHz s−1 which is smaller than type II drift rates.

Possibly the most distinctive property of type I emission is the near 100 % circular

polarisation associated with fundamental emission. Why harmonic emission is not

generally observed in type I bursts is as yet unknown but must be related to their

height and production mechanism.

1.4.6 Type IV emission

Type IV emission (Boischot 1957) is flare-associated by definition, with large spectral

width (long period) in the centimeter/decameter wavelength range. Type IV emission

can be generally split into two categories, moving type IV and stationary continuum.

The moving category (IVM) is believed to be caused by gyrosynchrotron emission

and as such is not the focus of this subsection. The stationary continuum type IV

(Figure 1.13) comes in two varieties, flare continuum (FC) and storm continuum (SC)

(Robinson 1985; Pick 1986). Type IV emission is believed to be caused by electrons

trapped in magnetic loops rather than propagating electron streams associated with

type III bursts.

FC emission starts in the impulsive phase of solar flares and can have a type III

burst as a precursor8. It closely resembles type V emission (e.g. Gopalswamy & Kundu

1987) but lasts much longer (10 mins to an hour) and has a strong correlation with

microwave emission, with the microwave emission sometimes being called the high

frequency part of FC emission. FC has low polarization indicative of second harmonic

emission. FC emission can also precede IVM or SC emission. The emission process

8There is contention in the literature regarding the name of this emission, being called sometimes

Part A, FCE, FCM, IVmF and other names (see Robinson 1985; Pick 1986, for a further discussion).
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Figure 1.13: An example of a type IV burst obtained using the RAD2 instrument from

the WAVES experiment on board the WIND spacecraft (from the WAVES website).

The type IV burst shows a lot of fine structure.

is believed to be magnetically trapped electrons, however, observed low polarization

points to either unfavourable conditions for ion sound waves to generate fundamental

emission or a very weak fundamental component that is not observed.

SC emission occurs at slightly higher frequencies than FC emission and can last

longer than FC emission (a few hours). It is associated (commonly near the start)

with type II emission and can be a precursor to type I emission. There is some de-

bate as to the name of this emission, with possible subclasses of this emission existing

as IVmB, FCII, DCIM (see Robinson 1985; Pick 1986; Gopalswamy & Kundu 1987;

Benz et al. 2006, for more info). The literature generally uses the term storm con-

tinuum when the emission lasts for many hours. All these emission types frequently

show fine structure (e.g. Aurass et al. 2003; Melnik et al. 2010) indicating the presence

of background plasma turbulence and/or MHD loop oscillations (Zlotnik et al. 2003).

This is strengthened by the association of type II bursts and its inducing MHD shock.

SC emission generally has a lower polarization than type I emission, with this quantity
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being the main difference between these two types.



Chapter 2

Interplanetary solar electron beams

2.1 Introduction

Solar flare accelerated interplanetary electron beams present an alternative to the

more traditional hard X-ray diagnostics of the poorly understood acceleration and

transport of solar energetic electrons. While hard X-ray observations provide insight

into energetic electrons in the lower dense solar atmosphere (e.g. Arnoldy et al. 1968;

Dennis & Schwartz 1989; Brown & Kontar 2005), impulsive solar electron events (e.g.

Lin 1985; Krucker et al. 2007) provide crucial information about escaping electrons

from the acceleration region. High energy solar electrons propagate outward through

the almost collisionless plasma of the solar corona and solar wind (Lin 1985). Even

with this collisionless regime the energetic electrons can interact with plasma via gen-

eration and absorption of electrostatic Langmuir waves. Propagation can no longer be

treated as ballistic and models must take non-linear effects into account.

In this chapter, we investigate electron propagation from the Sun to the Earth

taking into account the scattering of electrons by beam-driven Langmuir waves. We

show for the first time that the generation and absorption of Langmuir waves by an

electron beam in the non-uniform inner heliosphere leads to the appearance of a break

energy in the observed spectrum at the Earth and naturally explains the observed early

injection of low energy electrons.
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2.1.1 In-situ solar electron beam observations

Solar flares are extremely efficient at accelerating electrons to energies well above the

thermal, background level. Such electron beams can be observed subsequently either

by their emission at X-ray and radio wavelengths or escaping along interplanetary mag-

netic field lines via direct electron measurements near the Earth (see Benz 2008, for

a review). The first in-situ observations of energetic particles (van Allen & Krimigis

1965) opened up the non-electromagnetic window of flare accelerated particle observa-

tions. Since then solar energetic electron events have been found to be closely related

observationally (e.g. Ergun et al. 1998; Gosling et al. 2003; Krucker et al. 2007) and

theoretically to Type III solar radio bursts, having about a 90% association (Lin 1985;

Lin et al. 1986).

Electron beams travel through a background flux of non-relativistic electrons, known

as the solar wind. Background solar wind electrons are not in thermal equilibrium with

a Maxwellian distribution but exist in a quasi-thermal state with electrons extending to

much higher energies (Lin et al. 1972). Their velocity distribution function at all pitch

angles is usually modelled using two convecting bi-Maxwellians, the core and the halo,

shown in Figure 2.1. A skewed distribution also exists in the fast solar wind parallel to

the magnetic field direction. Known as the strahl, this high energy tail usually prop-

agates away from the Sun and has a narrow pitch angle distribution between 10-20o

wide. Observations of the background solar wind electrons have shown that a kappa

distribution can better model the solar wind (Maksimovic et al. 2005; Le Chat et al.

2010). The kappa distribution more accurately models the electron temperature whilst

having fewer free parameters than the sum of two Maxwellians.

Electron beams associated with solar flares are generally impulsive in their time

profile. Impulsive electron events often extend to 1 keV (Lin et al. 1996) with some

even extending down to the 0.1 to 1 keV energy range (Gosling et al. 2003). An

example of the time profile of an impulsive electron event can be seen in Figure 2.2

from 2 keV to 500 keV. This time profile shows the rapid onset and also near time-

of-flight velocity dispersion (e.g. Lin 1985; Krucker et al. 1999, 2007) typical of such
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Figure 2.1: Electron velocity distribution functions as energy spectra (top) and velocity

space contours (bottom) for fast (left), intermediate (middle) and slow (right) solar

wind. Isodensity contours are in steps by a factor of 10. Note the core-halo structure

and the strahl of suprathermal electrons in fast solar wind (from Marsch 2006, adapted

from Pilipp et al. (1987))

events. The electrons also have a beamed pitch-angle distribution at lower energies

< 18 keV (e.g. Lin 1990). From these three facts, it is often believed that such electrons

propagate scatter-free from the Sun to the Earth (e.g. Wang et al. 2006). The observed

correlation between the spectral indices of energetic electrons at the Sun from X-ray

data and the Earth from in-situ data (Lin 1985; Krucker et al. 2007) is often viewed

as an additional support for scatter-free transport.

Solar impulsive electron events detected in-situ generally display broken power-law

energy distributions with lower energies having harder spectra. Figure 2.2 shows an

example of this broken power-law distribution in energy space along with the time
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Figure 2.2: Example of a typical solar impulsive electron event observed from the keV

range up to 500 keV. Left: time profiles at different energies as indicated. The top

panel shows data from the electrostatic analyzer (EESA-H) and the bottom panel shows

data from the SST. Note the much higher sensitivity of SST. Right: derived electron

peak flux spectrum of the same event. EESA-H data are shown in grey (asterisk),

while the SST measurements are given in black (crosses). The thin curves below give

an estimate of the background emission. The red and blue curves are the power-law

fits to the data, with a pronounced break around 60 keV (Krucker et al. 2009)

profiles of the same event. Broken power-law distributions were first observed by

Wang et al. (1971). Their origin has remained ambiguous since then, being either a

signature of the acceleration mechanism or a transport effect. A recent statistical

survey was carried out by Krucker et al. (2009) on 62 impulsive events. They found
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the average break energy was ≈ 60 keV with averaged power-law indices below and

above the break of δlow = 1.9 ± 0.3 and δhigh = 3.6 ± 0.7 respectively. The power-law

indices have an average ratio δlow/δhigh of 0.54 with a standard deviation of 0.09. The

power-law indices also correlate with a coefficient of 0.74.

Observationally, in-situ spacecraft are able to detect these electron beams at times

related to observed type III emission from the Sun. Of these spacecraft, the WIND

spacecraft is equipped with a 3-D Plasma and Energetic Particles instrument (Lin et al.

1995) for detailed analysis of electron distribution functions. The STEREO spacecraft

are equipped with a Solar Electron Proton Telescope (SEPT) (Müller-Mellin et al.

2008) which is also able to detect electron energies between 20-400 keV. Previous

spacecraft able to detect high energy electrons include the ISEE project consisting of

three seperate spacecraft. Most noteable for high energy electron detection was the

ISEE-3 spacecraft which was the first spacecraft to be placed at the L1 Lagrangian

point. Electrons could be detected by a Berkeley built instrument (Anderson et al.

1978) sensitive to the range 2-1000 keV (see Lin 1985, for a review of energetic electron

results from ISEE-3).

2.1.2 Solar electron beam onset times

Although this broad picture is often supported by observations, the detailed picture

of electron transport and plasma radio emission is far from well-understood. This is

largely due to electron beam propagation and radio emission being essentially a non-

linear multi-scale problem, and is the subject of a large number of ongoing simulation

efforts (e.g. Takakura & Shibahashi 1976; Magelssen & Smith 1977; Grognard 1982;

Kontar 2001d; Li et al. 2006b). The type III radio emission can be used in conjunction

with electron beam measurements to analyse the travel time of the energetic electrons.

Studies have shown an energy dependent discrepancy where, despite the near time-

of-flight dispersion, lower energy electrons appear to arive sooner than expected and

higher energy electrons arrive later than expected (Lin et al. 1981; Krucker et al. 1999;

Maia et al. 2001; Wang et al. 2006).
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Figure 2.3: Comparison of the start times of inferred electron injections at different

energies (diamonds) and the release time of type III burst (dash line) at the Sun for the

three events. The electron delay (X-axis) is shown in min. For the 7 August 1999 event

(left), the inferred injection profiles are shown by triangles. The injection analysis was

not available at some channels due to a data gap or poor statistics (Wang et al. 2006).

Solar impulsive electron events can span a broad range of energies, from a few keV

to hundreds of keV (Lin et al. 1996). Since the low energy electrons of a few keV

should lose their energy collisionally in the low corona, these electrons are believed to

be accelerated high in the corona (Lin et al. 1996). Recent time-of-injection analysis

(Wang et al. 2006) assuming scatter free propagation of solar energetic electrons sug-

gests the existence of two electron populations, one low energy beam injected before

the start of the type III burst and one high energy beam injected after the type III

burst. This conclusion is evident from the different arrival times of electrons at the

Earth, observed in Figure 2.3.

One difficulty in assessing the electron onset times arises from the background
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electron flux which can add a large observational uncertainty. The background electron

intensity fluctuates in time and shows non-dispersive variation on different timescales

(Kahler & Ragot 2006). It is thus very hard to make an accurate estimate of the

mean background electron flux, which is required when considering electron beam

onset times.

Another difficulty for electron onset times is the assumption that the path length

remains fixed from the Sun to 1 AU. The path length is calculated assuming particles

travelling along magnetic field lines described through the Parker spiral model. This

gives lengths of around 1.2 AU (e.g. Ho et al. 2003; Wang et al. 2006). Constant path

length assumes there is no significant pitch angle or any disturbances in the solar wind.

The presence of EIT waves has been detected at similar times to some electron beams

that were detected with a late onset time (Lin 2000). It is possible that such waves

change the magnetic configuration of the inner heliosphere to something more com-

plicated than the typical Parker spiral model, causing longer travel time for energetic

electrons.

One further assumption is that particles do not change their dynamics while travel-

ling from the Sun to 1 AU. If particles are accelerated or decelerated during transport

their velocity will not be constant. Particles which arrive with a different velocity

than they started with are not suitable candidates when using the simple formula

t0 = tA − L/v where t0 is the injection time, tA is the arrival time and L is the path

length. Impulsive solar electrons are well correlated with type III radio bursts. If the

electron beams are responsible for this radio emission, they are also inducing Langmuir

waves. The induction of Langmuir waves converts electron beam kinetic energy density

into wave energy density. The electrons thus do not travel with a constant velocity. To

explore how this affects the travel time, the simulation of an electron beam from the

Sun to the Earth has to be considered with the inclusion of energy transfer processes.
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2.2 Electron propagation model

2.2.1 Electron beam dynamics

The transport of energetic electrons in the heliospheric plasma is governed by a va-

riety of different processes (see Melrose 1990, for a review). To model high energy

electron beams associated with type III emission we also have to take into account

induced Langmuir waves from the bump-in-tail instability. In this work we consider

solar energetic electrons propagating along magnetic field lines in the inner heliosphere

and assume their transport can be described one-dimensionally ignoring electromag-

netic effects (Takakura 1982). Under this assumption, the evolution of the electron

distribution function f(v, x, t) [electrons cm−4 s] and the spectral energy density of

electron Langmuir waves W (v, x, t) [ergs cm−2] can be described self-consistently by

the following kinetic equations (e.g. Kontar 2001a)
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∂t
+ v
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∂x
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4π2e2
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e

∂
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W (v, x, t) plays the similar role for Langmuir waves as the electron distribution function

does for particles. The dispersion relation of Langmuir waves is ω2
L(k) = ω2

pe+3v2
Tek

2/2,

so the group velocity of Langmuir waves is ∂ωL/∂k = frac32v2
Te/v in Equation (2.2)

where vTe =
√

kBTe/2me.

The first terms on the right hand sides of Equations (2.1,2.2) describe the resonant

interaction, ωpe = kv of electrons and Langmuir waves, first derived by Drummond & Pines

(1962); Vedenov et al. (1962). The Langmuir wave growth rate is given by

γ(v, x) =
πωpe

ne

v2∂f

∂v
. (2.3)

By itself, this growth rate gives the instability criteria of ∂f/∂v > 0.

Landau damping

To take into account the background Maxwellian plasma we have the term −γLW or

the Landau damping term. This describes the resonant interaction of electrons and
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Langmuir waves from the background plasma. Due to the negative velocity gradient in

the tail of the Maxwellian distribution, this resonant interaction causes the background

plasma to absorb Langmuir waves. More formally, assuming a Maxwellian plasma

described by

f(v) =
ne√
2πvTe

exp

(

− v2

2v2
Te

)

(2.4)

the growth rate of Langmuir waves and hence the Landau damping is given by

− γL =
πωpe

ne

v2 ∂
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= −
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2
ωpe
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2v2
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)

(2.5)

where v denotes the Langmuir wave phase velocity. The strong Landau damping near

vTe means the background Maxwellian plasma reduces the level of Langmuir waves

to zero1. This allows us to set a lower limit, vmin > vTe on the velocities modelled

and only consider the background Maxwellian plasma through Landau damping and

collisions.

Collisional damping

The collisional damping rate of Langmuir waves represents the loss of energy associated

with the forced oscillation of electrons which experience a Coulomb collision. This can

be explicitly written (e.g. Melrose 1980b) as

γc =
1

3

(

2

π

)0.5
4πnee

4

m2
ev

3
Te

π√
3
G(Teω). (2.6)

The last term G(Te, ω) is the Gaunt factor2 where Te is the background electron tem-

perature. Assuming that ω ≪ Te/~ (the energy of a Langmuir wave is substantially

less that the kinetic energy of a thermal particle) and ω ≤ ωpe we can approximate

π√
3
G(Te, ω) as the Coulomb logarithm ln Λ. Explicitly we use the approximation of

1Strictly speaking the level of waves will not reduce to zero but will reduce to the thermal level.

The thermal level is spontaneously generated from electron-electron Coulomb collisions. This will be

modelled later.
2A quantum mechanical correction factor applied to the semi-classical Kramers formula for photon

absorption
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ln Λ = 29.7 − 0.5 ln(ne) which has a rough value of 20 in the corona and 26 at the

Earth. The first set of constants 1
3

(

2
π

)0.5
4 has an approximate value of 1. We can then

express the collisional damping term as

γc ≈
πnee

4

m2
ev

3
Te

ln Λ. (2.7)

The dependency of the collisional damping on density makes it only important in the

dense atmosphere of the low solar corona. It is thus necessary for the initial propagation

and instability of the electron beam which starts deep within the corona. The collisional

damping changes the instability criteria of the electron beam such that ∂f/∂v > γc.

Background density gradient

The effect of the background electron number density gradient on Langmuir waves is

governed by the last term on the left hand side of Equation 2.2. This can be expressed

in velocity space through the resonant condition ωpe = kv giving

− ∂ωpe

∂x

∂W

∂k
=

∂ωpe

∂x

v2

ωpe

∂W

∂v
=

v2

L

∂W

∂v
. (2.8)

Similar to Kontar (2001a) we define the characteristic scale of plasma inhomogeneity,

L = ωpe(∂ωpe/∂x)−1 = 2ne(∂ne/∂x)−1. This value has to be larger than the wavelength

of any Langmuir waves considered to remain within the Westzel-Kramers-Brillouin

(WKB) approximation of geometrical optics. The term represents the changing re-

fractive index of the background plasma. Langmuir waves shift in k-space (or phase

velocity space) with a direction depending upon the sign of the density gradient. We

consider a simplistic model of the inner heliosphere plasma that has only a decreasing

density gradient3. This results in Langmuir waves shifting to lower phase velocities

(higher values of k).

To show the effect of Langmuir waves shifting in velocity space due to density

gradients a simplified version of Equations (2.1,2.2) was used which remained static

in position space. The only terms used were the quasilinear terms and the velocity

3A more realistic model will be used in Chapter 3.
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dispersion term giving the simplified equations.
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An unstable (df/dv > 0) initial electron beam distribution function was used to simu-

late wave growth as follows

f(v, t = 0) =
2nbv

v2
0

, v ≤ v0 (2.11)

with the maximum beam velocity v0 = 1010 cm s−1 and beam density nb = 100 cm−3.

The scale of plasma inhomogeneity L = −1.29×1010 cm, similar to coronal conditions.

The resultant simulation was compared with the analytical form of the distribution

function calculated from (Kontar 2001b). This can be seen in Figure 2.4. The plateau

in the distribution function is formed early on, converging close to the analytical solu-

tion at time t = 0.1 s ≫ τql where τql is the quasilinear interaction time. Comparing

the simulation curves with the analytical curves, we can see they are in good agree-

ment. The drift of Langmuir waves to smaller phase velocities due to the plasma

inhomogeneity is clear.

2.2.2 Background plasma parameters

The background plasma is modelled using a heliospheric density model that originated

from Parker (1958) and was modified by (Mann et al. 1999). The density is calculated

by numerically integrating the equations for a stationary spherical symmetric solution

for solar wind.

r2n(r)v(r) = C = const (2.12)
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)

+ 4
rc

r
− 3 (2.13)

where vc ≡ v(rc) = (kBTe/µ̃mp)
1/2, rc = GMs/2v

2
c , Te is the electron temperature, Ms

is the mass of the Sun. The constant appearing above is fixed by satellite measurements

near the Earth’s orbit (at r = 1 AU, ne = 6.59 cm−3) and equates to 6.3 × 1034 s−1
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Figure 2.4: Converging solution of equation (2.11) to a stationary state with velocity

dispersion. The numerical solution was obtained at four time moments, 0 s, 0.2 s, 0.5 s

and 2 s. v0 = 1010 cm s−1, nb = 100 cm−3, L = −1.29 × 1010 cm. Dashed curves

correspond to the simplified analytical solution

(Mann et al. 1999). The model is static in time because the characteristic electron

beam velocities are much larger than solar wind speeds. The temperature was kept

constant at Te = 106 K, giving a thermal velocity of vTe = 5.5× 108 cm s−1. It should

be noted that the constant temperature allowed for the approximation to the Coulomb

logarithm. A more accurate definition taking into account a changing temperature is

ln Λ = λDkBTe/e
2 where λD = vTe/ωpe is the plasma Debye length. However, this

is not required. Landau damping affecting the beam is heavily dependent upon the
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Figure 2.5: The Parker density model using the constant defined in Mann et al. (1999).

The photosphere of the Sun corresponds to 1 Rs. The path length of an electron beam

to the Earth corresponds to 263 Rs which is 1.2 AU.

temperature of the background plasma. By keeping temperature at a constant 1 MK

we slightly overestimate the wave damping at low phase velocities. This is offset by the

assumption that the background is a Maxwellian. In reality the background plasma is

closer to a kappa distribution which would increase the thermal velocity and as such

increase the level of Landau damping.

The initial spectral energy density of the Langmuir waves is assumed to be approx-

imately at the thermal level (e.g. Kontar & Pécseli 2002) decribed by

W (v, x, t = 0) ≈ kBTe/(2π
2λ2

D) (2.14)

where Te is the background plasma temperature, kB is Boltzmann constant and λD is

the electron Debye length.
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2.2.3 Initial electron beam distribution

The initial electron distribution function models the energetic electron beam acceler-

ated in the solar corona. It is assumed to be a power-law in velocity (or energy) space.

The power-law distribution assumption comes from both the derived electron spectrum

associated with HXR inducing electron beams and in-situ observations of the peak flux

and fluence spectra of electron beams at the Earth. It has a Gaussian profile in position

space with a finite spatial size d at initial time t = 0 described by

f(v, x, t = 0) = go(v) exp

(

−x2

d2

)

(2.15)

where

g0(v) = nb
(α − 1)

vmin

(vmin

v

)α

, α > 1 (2.16)

is the initial electron distribution function normalized to nb, the beam electron number

density. vmin is the low velocity cutoff, and α is the spectral index of the initial electron

beam. The injected electron flux density differential in energy F0(E, x, t) [electrons

cm−2 eV−1 s−1] is also a power law F0(E) ∼ Eδ, where δ = α/2. The initial spatial size

of the electron cloud was taken as d = 5×109 cm, so the injection time of 5×109 cm s−1

electrons is one second, which is a typical duration of type III bursts near the starting

frequencies (Dulk 1985). The size of the electron cloud is larger than what would be

expected in a solar flare. However, it effectively simulates a time injection. The actual

height of the electrons from the solar surface is not important here, just the density

profile. As such, the large initial size does not significantly affect the results. A more

realistic size is simulated in Chapter 3 and the effect of the initial size is analysed in

Chapter 4.

The low velocity cutoff was taken equal to approximately twice the thermal electron

velocity vmin = 1.2×109 cm s−1. The initial beam density nb was varied between 10−3 <

nb < 1 cm−3. These densities are lower than those observationally predicted but were

required for realistic simulation computational times. The initial beam spectral index

δ = α/2. was varied from 2.5 → 4.5 where 3.5 is the approximate mean observational

value (Krucker et al. 2009).
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2.2.4 Numerical methods and code verification

The system of kinetic equations (2.1, 2.2) have been solved using explicit finite differ-

ence methods as described in Kontar (2001c). To solve the differential terms in velocity

space for Equations (2.1) and (2.2) a first order upwind scheme was used. The upwind

scheme is described by

f(v, t + ∆t) = a∆t
(f(v + ∆v), t) − f(v, t))

∆v
, a < 0 (2.17)

f(v, t + ∆t) = a∆t
(f(v), t) − f(v − ∆v, t))

∆v
, a > 0 (2.18)

A first order upwind scheme is fast to compute but suffers from numerical diffusion.

The large computational demand of the code required a fast scheme. Moreover, the

numerical diffusion from the upwind scheme is much smaller than the diffusion which

occurs from the quasilinear terms and the background density gradient term.

The numerical diffusion from the first order upwind scheme was not adequate for

computing the differential term in position space. A more accurate scheme was re-

quired. Similar to Kontar (2001c) the van Leer monotonic transport finite difference

method (van Leer 1974, 1977a,b) was used to model the spatial propagation of the

electrons and Langmuir waves. Such a scheme substantially reduces the numerical dif-

fusion on the distribution function which would otherwise cause an artificially reduced

magnitude at distances far from the Sun.

It is always important to confirm numerical code will output a correct answer

given an appropriate input. All the different terms in Equations (2.1) and (2.2) were

individually tested for correctness. This was achieved by inputting a function which had

a analytical solution. The output from the code was then overplotted on the analytical

solution to confirm the code was working properly. To test the quasilinear terms the

input described by 1.8 was used with analytical solutions (1.9) and (1.10). Figure

1.5 shows how both the electron distribution function and Langmuir wave spectral

energy density tend towards the analytical solution. For the term which considered

the changing refractive index Equation 2.11 was used as an input where the analytical

solutions are described in Kontar (2001b). Figure 2.4 shows how the analytical solution
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is reached at times greater than the characteristic quasilinear time τql. The propagation

of the electron distribution function and the Langmuir wave energy density was checked

using a Gaussian input described by Equation 2.15 with analytical solution f(v, x, t) =

g0(v)exp(−(x − vt)2/d2) at time t > t0.

Fortran code was used to simulate the electron beam and Langmuir wave evolution

in time. All other computation (including the analytical verification of the code) was

done using IDL. The Fortran code outputted relevant values to large data files which

were then read in by IDL routines. All the graphs produced were created using IDL

which required writing a suite of programs that could deal with manipulating the data

into workable arrays and defining new parameters like the fluence of the electron beam.

IDL was also used in the analysis of the results which involved computing artificial

backgrounds, fitting power-laws to the data, making movies to observe the behaviour

of key variables with time and checking for the conservation of key variables like the

number of particles and the energy of both electrons and Langmuir waves.

To preserve the information about the initial Gaussian distribution the discretisa-

tion in position space ∆x had to be smaller than the characteristic size of the Gaussian

d. The initial size of ∆x was thus of the order of 108 cm. The distance required for

the electron beam to reach the Earth was 1.2 AU which is 2 × 1013 cm. If the spacing

is constant, the simulations will take ∼ 105 grid spaces to cover 1.2 AU, becoming

computationally intractable.

To solve this issue ∆x was allowed to vary with distance. The varying ∆x uses

the discretisation of velocity space as a bound on the maximum analytical information

required. The finite size of each velocity step causes a spread in the characteristic size

of the electron distribution function of approximate size:

f(v, x, t = 0)d ≈ f(v, x, t)(d + t∆v) (2.19)

for initial beam size d, velocity step size ∆v and travel time t. As ∆x is bound by d

and we lose information about d over time, we can increase ∆x further away from the

Sun. The travel time t in Equation 2.19 is calculated using the time required for the

maximum velocity of the electron beam vmax to travel distance ∆x. We can find out
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how much the discrete nature of velocity will have impacted d after n mesh points by

calculating dn with the recurrence relation

dn = dn−1 + ∆v
∆xn−1

vmax

(2.20)

and hence

∆xn = 0.2dn (2.21)

where d0 is the initial characteristic size of the electron beam and ∆x0 is 0.2d0. This

increasing size of ∆x allows for a smaller number of points to cover the desired dis-

tance of 1.2 AU whilst keeping ∆x small enough that any loss of information from

the increasing step size is smaller than the information loss caused by discretisation in

velocity space.

2.3 Propagation of electrons from the Sun

2.3.1 Initial wave growth

The initial power-law injection of the impulsive electron beam in the solar corona

is stable to Langmuir wave growth at t = 0 at all points in space (∂f/∂v < 0).

The propagation of electrons with a spectrum of velocities causes faster particles to

race ahead of the slower electrons creating the instability ∂f/∂v > 0. As mentioned

previously, the inclusion of the energy losses which Langmuir waves undergo due to

Coulomb collisions changes this instability criteria to ∂f/∂v > γc. The collisional

damping term is proportional to the background electron density so it is strong in the

corona and weak near the Earth. Figure 2.6 shows how the collisional time, 1/γc ≈
4 × 107/ne (at Te = 106 K), compares to the quasilinear time, 1/γ(v, x) ≈ ne/(ωpenb),

for the highest and lowest beam densities used in the simulations. The collisional time

increases as the electrons propagate out into the heliosphere such that at x > 1 Rs

the quasilinear growth becomes the dominant process. We thus don’t expect any

Langmuir waves in the corona for the initial beam densities used. Type III emission
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Figure 2.6: The quasilinear and collisional damping relaxation times in the corona.

Two different beams with densities 1 (green) and 10−3 cm−3 (red) are shown. The

collisional damping time is independent of initial beam density.

in the corona dictates that we should observe Langmuir wave growth. Initial beam

densities to achieve this must therefore be higher than 102 cm−3.

The collisional damping of waves is not the only term that discourages Langmuir

wave growth in the corona. The growth factor of Langmuir waves γ(v, x) ∼ 1/
√

ne.

As background electron density decreases with distance from the Sun the further the

beam travels, the easier it will become to generate waves. Moreover, an electron beam

has an initial instability distance it has to propagate before ∂f/∂v grows enough to

induce Langmuir waves. Starting with an initial spatial Gaussian distribution with

characteristic size d = 5×109 cm means electrons are spread over a wide distance. The

larger the initial spread in space of an electron distribution, the longer it will take the
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fast electrons to outpace the slower ones. Beam instability distance will be covered in

more detail in Chapter 4.

Another variable affecting γ(v, x) is the velocity of electrons. The growth rate,

γ(v, x) ∼ v2 meaning higher velocity electrons find it easier to resonantly generate

waves. However, the beam starts as a power-law in velocity space such that g0(v) ∼ v−α

where α ≥ 5. The flux of electrons and hence the magnitude of ∂f/∂v decreases with

velocity. As α > 2, γ(v, x) actually decreases with velocity. We thus expect Langmuir

waves to be resonantly generated by electrons with smaller velocities first4. The higher

velocity electrons will generate Langmuir waves closer to the Earth as ne decreases.

The lower the magnitude of α, the larger the ratio of high:low energy electrons, and the

closer to the Sun we can expect high velocity (20 v/vTe) electrons to induce Langmuir

waves.

2.3.2 Beam-plasma structure

Using our model, the further electrons propagate from the Sun to the Earth the more

Langmuir waves they induce. Figure 2.7 demonstrates the transport of an electron

beam at three different times for a beam with nb = 0.1, α = 7. Figure 2.7 and

subsequent figures in this chapter are taken from (Kontar & Reid 2009). After 15 s

the beam was not able to induce any Langmuir waves. After 150 s there is a low level

of Langmuir waves but only up to 10 v/vTe. After 1500 s some electrons have reached

the Earth, the level of waves is very high, and waves have been induced at much higher

phase velocities.

A beam-plasma structure is also demonstrated in Figure 2.7. The electrons and

Langmuir waves exist in the same areas of phase space. The group velocity of Langmuir

waves vg ≪ v so the wave energy is unable to travel at the same speed as the electrons.

As mentioned in Section 1.2.4, electrons at the front of the beam induce Langmuir

waves via ∂f/∂v > 0 while electrons at the back of the beam absorb Langmuir waves

via ∂f/∂v < 0. This solution to Sturrock’s dilemma allows the electron beam to travel

4Waves are not generated at velocities close to vTe, due to Landau damping.
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Figure 2.7: Colour coded contour plot at three separate times of the electron beam flux

(top) and the spectral energy density (bottom). nb = 0.1, α = 7. Distance, velocity

and spectral energy density are normalised by one solar radii, the thermal velocity and

the thermal level of waves respectively. The beam becomes more unstable over time

inducing more intense Langmuir waves at higher phase velocities.
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from the Sun to distances of 1 AU and beyond.

Electrons diffusing in velocity space can be seen in Figure 2.7. Electrons with

velocities that are able to induce a high level of Langmuir waves have a noticeably

wider distribution in velocity space. This is especially visible at t = 150 s where the

electrons have a thin distribution above 10 v/vTe and a much wider distribution below.

Generation of Langmuir waves plateaus the distribution such that ∂f/∂v → 0.

To examine the electron diffusion requires a one dimensional cut of the simulations

in velocity space (Figure 2.8). The high energies > 30 keV do not have enough a large

enough flux of electrons to induce waves and as such still have a thin distribution in

velocity space. At energies < 30 keV a large magnitude of Langmuir waves is induced

and the electron distribution takes the form of a broad plateau. It is important to

emphasize the maximum energy of electrons able to induce Langmuir waves changes

during propagation.

The background electron density gradient affects a distribution of Langmuir waves

as demonstrated in Figure 2.4. A beam-plasma structure travelling from the Sun to

the Earth is affected slightly differently than Figure 2.4 because it does not remain in

any one spatial point but propagates through the density inhomogeneity. Moreover,

the instability of the electron distribution function occurs over a narrower range of

velocities. The shifting of Langmuir waves can be seen in the velocity slice of Figure

2.8. The Langmuir wave energy density is spread over a much wider range of phase

velocities. Spreading is especially evident for the Langmuir waves induced by lower

energy electrons.

2.4 Electron energetics at the Earth

2.4.1 Fluence spectra at 1AU

Traditionally in-situ measurements of energetic electrons (e.g. Lin et al. 1995) provide

the flux density differential in energy F (E, x, t) = f(v, x, t)/me [electrons cm−2 s−1

keV−1] and the fluences (flux integrated over the duration of an event) [electrons cm−2
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Figure 2.8: 1D velocity slice of electron beam flux and spectral energy density at 108 Rs

from the initial electron beam location. nb = 0.1, α = 7. The electron flux (top) shows

the diffusion of electrons in velocity space as waves are induced. ∂f/∂v → 0 tending

the distribtion towards a plateau. Different curves are plotted at different times with

the higher energy particles (red) at the earliest times.

keV−1]. The injected electron fluence in our model
∫ ∞
−∞ f(v, x, t)/vdx can be calculated

from equations (2.15, 2.16) and is presented in Figure 2.9. The corresponding energy
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spectral index of the injected electron fluence at the Sun is δ = (α+1)/2. The resulting

spectrum of solar energetic particles at the Earth is also presented in Figure 2.9. The

spectrum of energetic particles above a break energy (roughly 35 keV in Figure 2.9)

is identical to the spectrum of injected electrons so we can deduce these particles

have propagated scatter-free (at least in our model). The particles below the break

energy do not propagate freely but generate electron Langmuir waves which flatten the

spectrum of energetic particles. The beam generated Langmuir waves drift in velocity-

space toward lower phase velocities due to the solar wind density gradient (Kontar

2001d). This drift, caused by the decreasing ambient plasma gradient, takes waves out

of resonance with the particles that generated them and so reduces the wave energy at

a given point in phase space. Particles arriving later to this point in phase space are

unable to restore the injected spectrum because they cannot absorb the same amount

of energy previously lost to the waves. Waves not re-absorbed by the electron beam

are inevitably removed from the system through Landau damping, being absorbed by

the background solar wind. It is this energy loss of the electron beam which is the

direct cause of the fluence broken power-law spectra observed near the Earth.

2.4.2 Break energies and spectral indices

Although the spectrum below the break is not exactly a power-law it resembles one

closely. To compare the results with observations we fitted our simulated spectra with

simple power-law fits (example shown in Figure 2.9). The spectral index below the

break energy (δlow) is always smaller than the spectral index above the break energy

(δhigh) and correlates (Figure 2.10) with δhigh in a remarkably similar manner to that

observed by Krucker et al. (2009). The range of δlow, however, appears in a rather

narrow range between 2 and 2.5 for a wide range of injected spectral indices between

3 and 5 (Figure 2.10). The actual value of δlow is also dependent on the background

plasma density and will be different should the heliospheric density model change.

The break energy ranges for all simulations are between 4 keV and 80 keV (Figure

2.11), with the exact break energy being heavily dependent on the initial spectral index
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Figure 2.9: The spectrum (fluence [electrons cm−2 eV−1] ) of simulated solar flare

energetic electrons at the Earth. The blue (red) line shows the power law fit to the

spectrum below (above) the break energy. The green dashed line shows the initially

injected fluence. The spectral index of injected electrons is 4. The spectral index below

the break is 2.35

of the beam, δhigh, and the initial density of the beam. The density of beams influences

the break energy, with higher density beams having higher break energies. Indeed, the

larger the number of injected electrons, the faster the generation of Langmuir waves

proceeds and hence the stronger the interaction between electrons and Langmuir waves.

This also explains the dependence of break energy to the injected spectral index, with

lower spectral indices having a larger population of higher energy electrons and hence

having higher break energies. There is a positive correlation between the fluence at

the break energy and the break energy itself (Figure 2.12) with higher break energies

corresponding to lower fluence magnitudes.
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Figure 2.10: Spectral index below the break energy δlow versus spectral index above

the break energy.

2.4.3 Electron time-of-flight and apparent injection time

Particles arriving at the Earth (1.2 AU) show near time-of-flight dispersion (Figure

2.13), often observed by satellites in impulsive solar electron events (see Section 2.1.2).

In our simulations only electrons above the break energy propagate freely and arrive

on time whilst electrons below the break energy demonstrate early onset, i.e. seem as

if they were injected earlier. Electrons below the break energy are losing and gaining

energy during their transport via waves and hence do not propagate freely. Their time

of arrival is also heavily dependent on the background plasma flux magnitude, with

higher magnitudes obscuring the low flux of some high energy electrons which have

relaxed to lower energies. The sawtooth structure appearing in low energy channels of

Figure 2.13 is an unfortunate artefact of finite binning in the velocity space.

If we assume that the electrons arrive scatter-free, i.e. without any interaction with
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Figure 2.11: Spectral index above the break energy δhigh plotted against the energy at

which the spectral break occurs. A variety of initial beam densities were used in the

range 0.001 cm−3 ≤ nb ≤ 1 cm−3.

plasma, one can produce the apparent injection profile at the Sun, as Krucker et al.

(1999); Wang et al. (2006) did for observations. These apparent injection profiles with

simulated background added are presented in Figure 2.14. If the electrons propagate

scatter-free they would require 10 − 20 minutes earlier onset (tinj) of low (3-12 keV)

energy electron injection and a delayed maximum of the injection. As evident from

the Figure (2.14), the onset of electron injection is also background dependent - the

higher/lower background level would lead to later/earlier injection times for low energy

electrons. An identical simulation was run with an electron beam not interacting with

the background plasma and the results can be seen in Figure 2.14. There is clear agree-

ment for injection times at high energies but this agreement deteriorates as the energy

gets lower. This early injection time is a direct result of low-energy electron driven

turbulence, which affects the propagation of electrons substantially. The low energy
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Figure 2.12: Fluence at the break energy versus break energy.

electrons can be observed not only via injection at the Sun but due to the in-flight

deceleration of faster particles. The relaxation of the electron distribution function

towards a flatter shape in velocity space ∂f(v, x, t)/∂v ∼ 0 means at a specific spa-

tial location, some electrons have energies too low to have arrived by free propagation

alone. Therefore, we believe that the similar injection profile obtained (Wang et al.

2006) should be interpreted as the direct evidence of electron plasma wave scattering

in the heliosphere and not the indication of a separate acceleration mechanism.

2.5 Discussion and Conclusions

The generation and re-absorption of electron Langmuir waves by an electron beam in

non-uniform plasma plays an important role in the electron transport and should be

taken into account when in-situ electron measurements are analysed. The simulations

presented here successfully reproduced the spectral and temporal characteristics of



2.5: Discussion and Conclusions 68

0 20 40 60 80 100 120
Time [mins]

10-5

10-4

10-3

10-2

10-1

E
le

c
tr

o
n

 F
lu

x
 [

c
m

2
 s

 e
V

]-1

2.8keV

4.2keV

6.1keV

8.9keV

13.0keV

18.9keV

26.3keV

40.2keV

66.3keV

96.5keV

Figure 2.13: Simulated electron flux density time profiles of energetic electrons for

wind/3DP energies. Electron flux density [electrons cm−2 s−1 eV−1] as a function of

time at 1.2 AU for 11 energy channels. The time t = 0 corresponds to the injection

time at the Sun.

observed solar energetic electron events. The scattering of solar energetic particles by

beam-driven electrostatic Langmuir waves leads to the appearance of a broken power-

law in energy spectrum, and the apparent early injection of low energy electrons in the

few keV range at the Sun.

These low energy electrons are originally injected with higher energies but have lost

some energy to Langmuir waves in the background plasma and are therefore detected

earlier than their energy at the spacecraft suggests. The apparent early start of low

energy electron injection appears due to propagation effects and does not support the

suggestion of a secondary beam postulated by Wang et al. (2006). The onsets of low

energy electron data can be explained by propagation effects only.

The particle detectors in space normally measure electron flux density differential
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Figure 2.14: The apparent injection profile of electrons at the Sun assuming free stream-

ing of all electrons. The true injection profile is overplotted with a dashed line.

in solid angle, while in our simulations we deal with one-dimensional distributions.

To compare our simulated data with observations, one needs either to compute the

reduced electron flux density integrated over the solid angle of the arriving electrons or

assume the pitch-angle distribution in our simulations. For example, the 3-D Plasma

and Energetic Particle (3DP) instrument on WIND (Lin et al. 1995) provides angular

resolution of 22.5◦ and if solar energetic particles have an angular spread of 22.5◦, the

actual data from WIND needs to be multiplied by ∼ π(22.5/2)2 = 0.11.

The characteristic time of beam-plasma interaction via electron Langmuir waves is

inversely proportional to the density of the energetic electrons. If the beam is dilute,

electrons do not generate plasma turbulence and the spectrum of such electrons could

be free from propagation effects. Such events are likely to be seen only at low energies.

If the beam is dense enough to excite Langmuir waves, the initially injected power-

law spectrum will be detected as a broken power-law. The break energy is dependent
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on a number of parameters: spectral index of injected solar electrons, the density of

the energetic electrons, and the heliospheric density model. Therefore, the correlation

between break energy and fluence at the break energy should be made with care.

In addition, the heliospheric plasma has density perturbations on various scales that

can affect the propagation of electrons (Melrose 1990; Kontar 2001c; Li et al. 2006b)

and lead to a spiky structure of the Langmuir waves, often observed in the interplane-

tary space (Lin 1985). Therefore, additional simulations and in-situ measurements are

needed to understand this complex non-linear system.

Another important process which should be included in the numerical simulations

is radial expansion of magnetic field. Electrons guided by the magnetic field will

diverge as the field radially diverges. Such behaviour will radially reduce the density

of the electron beam. Modelling such a process will allow initial beam densities much

higher than considered in this chapter. Higher beam densities should then correspond

to Langmuir wave growth in the corona in line with expected results from type III

observations. Moreover, the radial behaviour of the electron beam with respect to

Langmuir wave growth will change.



Chapter 3

Electron beam and density

turbulence

3.1 Motivation

In this chapter, we investigate the effects of background plasma density fluctuations on

the generation and absorption of Langmuir waves from an energetic solar electron beam

travelling from the Sun to the Earth. We demonstrate the dependence of Langmuir

waves on the level of density fluctuations. We find high levels of density fluctuations

damp Langmuir waves too much to be in accordance with detected type III radio

emission. We also show how the level of density fluctuations has a direct effect on the

spectral characteristics of the electron beam near the Earth.

3.1.1 Density turbulence in the inner heliosphere

The plasma of the solar corona and the solar wind is a non-uniform turbulent medium

with density perturbations at various length scales. The structure of the solar wind

density fluctuations has been analysed using scintillations of small-size radio sources

(e.g. Hollweg 1970; Young 1971). Interplanetary scintillation is the temporal change of

far away radio sources caused by density turbulence in the solar wind at spatial scales

greater than 10-100 km (Coles & Harmon 1989; Manoharan et al. 1994). Scintillation
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uses the intensity deviation δI(t) of the instantaneous intensity I(t) of the signal with

the mean intensity 〈I〉 such that δI(t) = I(t)−〈I〉. The statistical fluctuations of δI(t)

are used to probe the speed and density fluctuations of the solar wind integrated along

the line of sight (e.g. Manoharan 2010). The turbulence spectrum can be obtained

by taking the fourier transform of these fluctuations while the integral of this fourier

transform is the r.m.s. intensity variations.

Interplanetary scintillation is used to probe density turbulence between the Sun and

the Earth. At distances greater than 20 Rs the power density spectrum (turbulence

spectrum) of the solar wind takes the form of a power-law with average spectral index

near to the 5/3 Kolmogorov power spectrum. At distances less than 20 Rs the spectrum

flattens to a spectral index nearer 1 (Woo & Armstrong 1979). This has been confirmed

by other measurements (e.g. Coles & Harmon 1989; Coles et al. 1991; Manoharan 1993,

2010) which also found the power-law varied with the scale of the density turbulence.

At very low frequencies < 10−2 Hz the power-law has a Kolmogorov 5/3 profile. High

frequencies > 1 Hz show the dissipative scale or inner scale (Coles 1978) where the

spectrum steepens as the turbulence dissipates. In between these frequencies, the

spectrum experiences a flattening. Frequency f is related to the size or wavelength

λ of density inhomogeneities via the solar wind speed vsw through vsw = fλ. The

frequencies arise because the inhomogeneous solar wind is blowing through the line of

sight at speed vsw. The solar wind speed varies from around 400 km s−1 in the slow

solar wind to 700 km s−1 in the fast solar wind.

Scintillation techniques have also been used between the International Sun-Earth

Explorer (ISEE) spacecraft ISEE2 and ISEE3 (Celnikier et al. 1987) to gain insight

into the power spectrum of the solar wind at 1 AU. An example of one of the periods

analysed can be seen in Figure 3.1. The Kolmogorov 5/3 power spectrum was found

above 10−1 Hz, however, the spectral flattening was found below 10−1 Hz, in line with

previous observations (Woo & Armstrong 1979)

In-situ measurements have been used to determine the density spectrum near the

Earth and between 0.3 and 1 AU with Helios (Marsch & Tu 1990). The spectral slope

at frequencies below 10−3 Hz were found to have a tendency to get smaller the closer
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Figure 3.1: Log (spectral density) as a function of log (frequency) calculated using

the maximum entropy technique; neighbouring frequencies have been averaged in such

a way as to obtain a uniform distribution in log (frequency). The continuous line

represents a least squares fit to the data assuming two power-laws, the higher frequency

law being modified to take account of the line of sight averaging effect. (Celnikier et al.

1987).

the spacecraft got to the Sun in the fast solar wind. These results were further extended

by Woo et al. (1995) using Ulysses remote sensing radio measurements for distances

< 40 Rs which predicted the decrease in r.m.s. deviation of the density turbulence

in the fast solar wind at wavenumber k = 1.4 × 106 km−1. The results for the slow

solar wind density turbulence (Marsch & Tu 1990; Woo et al. 1995) showed a constant
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Figure 3.2: Fractional density fluctuations δne/ne for spatial wavenumber k = 1.4 ×
106 km−1. Solid and hollow circles are Ulysses ranging measurements; solid and hollow

triangles are Helios in-situ plasma measurements (Marsch & Tu 1990). Solid points

are for fast wind and hollow points for slow wind. Dashed curve for the fast wind (far

from the neutral line) is a quadratic fit to the data, while the dashed curve for the slow

wind (near the neutral line) represents a constant (Woo et al. 1995).

level around 10 % which was also found in the later study from Spangler (2002). The

results from Woo et al. (1995) are shown in Figure 3.2, giving an idea of how turbulent

intensity can vary between the Sun and the Earth.

3.1.2 Density inhomogeneity and Langmuir waves

In-situ observations of Langmuir waves associated with type III radio bursts were

first taken by Gurnett & Anderson (1976, 1977) using the Helios spacecraft at around
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Figure 3.3: An expanded plot of the electric field in the 31 kHz channel with time

resolution of 0.5 s near the maximum Langmuir wave intensity of an energetic elec-

tron beam observation. Note the extremely impulsive nature of the Langmuir waves.

(Lin et al. 1981).

0.5 AU. They found that distribution of Langmuir waves is very clumpy in space.

Observations at 1 AU came later using the ISEE-3 spacecraft (Lin et al. 1981). Figure

3.3 shows an example of Langmuir wave variation at 1 AU, revealing their rapidly

changing time structure. The structure of the Langmuir waves suggests that it takes

typically 1 s for a clump to pass the spacecraft implying 300-500 km scales for a solar

wind speed of 300-500 km s−1. There have been more recent observations of clumpy

Langmuir waves that show similar properties (e.g. Kellogg et al. 2009).

To create this clumpy spectrum of Langmuir waves, there has to exist some pro-

cess that damps the induction of Langmuir waves from an unstable electron beam.
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It has been recognized (Ryutov 1969; Karpman & Istomin 1974) that beam-driven

Langmuir waves can be effectively altered by even weak background density gradients.

Density fluctuations are believed to suppress Langmuir wave growth (Smith & Sime

1979; Muschietti et al. 1985) and the popular belief is that they are responsible for

the clumpy Langmuir wave distribution observed in-situ near the Earth. Therefore the

effect of density fluctuations on beam-driven Langmuir waves responsible for type III

radio bursts has been considered both numerically and analytically (e.g. Melrose et al.

1986; Robinson et al. 1992; Kontar 2001b).

The fluctuations, whilst changing the distribution of Langmuir waves significantly,

have a rather weak modulating effect on the instantaneous distribution of electrons

(Kontar 2001b). In the previous chapter, we have shown (Kontar & Reid 2009) that the

electron beam-plasma interaction via Langmuir waves in the non-uniform solar corona

leads to the appearance of a break energy in the observed spectrum at the Earth and

can explain the observed apparent early injection of low-energy electrons. However, the

net effect of density fluctuations in the solar wind on the electron spectrum detected

near 1 AU has not been addressed before.

3.2 Electron Beam Transport Model

This chapter again focusses on the role of electron beam-driven electrostatic turbulence

in the propagation and spectral evolution of energetic particles. The equations for

evolving the electron beam through the inner heliosphere are similar to Equations (3.1,

3.2) but with more physical processes considered. The solar magnetic field expanding

into the heliosphere quickly decreases with distance and provides adiabatic focussing

for energetic electrons that ensures one dimensional (along expanding magnetic field

lines) electron transport. This expansion of the magnetic field is simulated here with

the distance of propagation now being described by r and not x. Thus the evolution of

the electron distribution function f(v, r, t) (the number density of energetic electrons

is nb =
∫

fdv electrons cm−3) and the spectral energy density of electron Langmuir

waves W (v, r, t) (the energy density of Langmuir waves is
∫

Wdk ergs cm−3) in the
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radially expanding magnetic field of the heliosphere can be described using the following

equations of weak turbulence theory.
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(r + r0)2
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Following Zheleznyakov & Zaitsev (1970); Takakura & Shibahashi (1976) we include

collisional losses both for electrons and Langmuir waves. Similar to Equation (2.2)

the collisional damping rate of Langmuir waves is described through γc (Section 2.2.1).

The last term of Equation (3.1) accounts for electron collisional Coulomb losses in fully

ionized hydrogen plasma (e.g. Emslie 1978). The electron Coulomb collisional term is

proportional to background electron density ne hence it will mainly affect the beam

in the corona. Due to the Coulomb collisional v−3 dependence, the highest energy

electrons > 50 keV will be minimally damped. Correspondingly, the lower energy

electrons near the thermal velocity vTe will experience a large damping rate before

they leave the corona. The magnitude of the damping will depend upon the initial

starting height of the electron beam.

The last term in Equation (3.2) is the spontaneous wave generation, which is sim-

ilar to Zheleznyakov & Zaitsev (1970); Takakura & Shibahashi (1976); Hannah et al.

(2009) but different from the terms used in Li et al. (2006b). The energy required for

the spontaneous induction of Langmuir waves comes from the electron Coulomb colli-

sional loss. The spontaneous generation of Langmuir waves is proportional to f(v, r, t)

and not to W (v, r, t) so it will not grow larger when waves are induced through the

bump-in-tail instability. It will be highest in the corona when the flux of electrons is

the largest, more so where electrons have the lowest energies. We note that for large

velocities (v & vTe

√
2 ln Λ) the energy loss of an electron to spontaneously generate

Langmuir waves adopted by Li et al. (2006b) is greater than the electron collisional

Coulomb losses in fully ionized hydrogen plasma (last term of Equation 3.1).
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The second term on the left hand side of Equation (3.1) models magnetic field

expansion from the solar corona into interplanetary space. This expansion in the

corona is modelled through an expanding cone which has a radius d at the acceleration

region and starts at length r0 from the acceleration region. The ‘origin’ of the field cone

r0 = 3 × 109 cm is chosen to have a cone expansion of 33.6o. Such an expansion of an

electron beam in the inner heliosphere is similar to observed values (Krucker et al. 2007)

and similar to predicted type III source sizes (Steinberg et al. 1985). The heliospheric

expansion conserves the total number of electrons such that for scatter-free propagation,
∫

(r + r0)
2n(r)dr = const.

3.2.1 Electron beam initial conditions

The electron distribution function is modelled using an instantaneous electron injection

which is Gaussian in space with a characteristic size d. This electron distribution has

a power-law spectrum in velocity, and hence in energy, as often observed in solar flares

(e.g. Brown & Kontar 2005). f(v, r, t = 0) takes the form

f(v, r, t = 0) =
nb(α − 1)

vmin

(vmin

v

)α

exp

(

−r2

d2

)

. (3.3)

The electron beam is normalised to the electron number density nb. α represents

the velocity spectral index where the spectral index in energy space δ = α/2. vmin

represents the minimum velocity used for the electron beam.

The initial location of an electron beam (r = 0 in the above equations) for the

subsequent simulations is taken at a background plasma frequency of 500 MHz which

corresponds to the height of 3 × 109 cm−3 above the photosphere. This is often inter-

preted as the typical frequency/location for an electron beam acceleration site in the

corona (Aschwanden et al. 1995a). The beam size was taken to be d = 109 cm.

The spectral index δ was set to 3.5, corresponding to typical spectral indices above

the break energy of in-situ measured electron beams at the Earth (Krucker et al. 2009).

Electron thermal velocity was taken to be vTe = 5.5 × 108 cm s−1, which corresponds

to Maxwellian plasma with a temperature of 1 MK. The beam velocities will range

between 3.6 vTe ≈ 2 × 109 cm s−1 and 2 × 1010 cm s−1. Above the maximum velocity
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relativistic effects become important. Langmuir waves created near thermal velocity

are absorbed by the background Maxwellian through Landau damping so 3.6vTe is an

acceptable lower limit.

The initial electron beam density is taken to be 1.1×105 cm−3 which, together with

δ = 3.5, gives the total number of electrons above 50 keV of 1.2(
√

πd)3 ≈ 7×1027. This

is a relatively small event in relation to observed number of electrons above 50 keV

(Krucker et al. 2007). The instantaneous injection of the electron beam restricts the

total injected electrons to small event sizes to keep the flux of electrons around 100 keV

near the Earth in line with typical values observed at 1 AU (Krucker et al. 2007, 2009).

If we consider similar number densities at the peak of a temporal Gaussian injection of

order 103 s, the total number of electrons rises to 1031, in agreement with observations

(Krucker et al. 2007).

Both the height and size of the electron beam are substantially smaller than previ-

ously simulated in Chapter 2. By modelling the radial expansion of the electron beam

in the heliosphere the electron beam decreases its density as it propagates out through

the heliosphere. The more realistic model allows for the high densities in the corona

whilst giving realistic flux values near the Earth. Larger initial densities become nu-

merically possible to simulate in a tractable amount of time. The size of the electron

beam is thus able to be smaller whilst simulating more total electrons. A reduced

initial electron beam size allows the beam to be injected into the corona at a lower

height. The beam is now able to fit inside the corona and have densities which are

comparable to real impulsive electron beams.

3.2.2 Background plasma parameters

The initial spectral energy density of the Langmuir waves is assumed to be at the

thermal level

W (v, r, t = 0) =
kBTe

4π2

ωpe(r)
2

v2
log

(

v

vTe

)

(3.4)

where Te is the background plasma temperature, kB is Boltzmann constant and vTe

is the background electron thermal velocity. The thermal level is formed by setting
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dW/dt = 0 for a Maxwellian distribution of electrons with temperature Te and ignoring

electron collisions in Equation (3.2). The major difference in this initial condition for

the Langmuir waves over Section 2.2.2 is the dependence upon the phase velocity of

waves. The magnitude of the thermal spectral energy density decreases as v increases

for the velocity range we simulate. Lower thermal Langmuir wave magnitudes at higher

velocities reduces the wave growth rate and the electron beam will have to travel slightly

further before inducing a large magnitude of Langmuir waves.

The initial1 background heliospheric plasma is modelled as a continuously decreas-

ing background electron density. This is the same model in chapter 2, described through

Equations (2.12, 2.13) and shown in Figure 2.5.

3.2.3 Numerical methods and code verification

The collisional term added in Equation (3.1) varies the distribution function in velocity

space. It was thus solved using the upwind finite difference scheme mentioned in section

2.2.4. The first order collisional term was also checked against an analytical solution

to see if an arbitrary distribution function would relax to a Maxwellian distribution.

It conformed as well as a first order term would allow. It should be noted that the

second order collisional term was not required because the background Maxwellian

distribution was not modelled directly and vmin ≥ 2vTe.

The radial expansion of the magnetic field was able to be checked through the

conservation of the number of particles (section 1.1.4). By removing all terms which

caused a reduction in particle energy, the radial expansion could be checked against

the analytical solution to see if particle number was conserved.

The number of particles which were considered in Chapter 2 was too low to be

realistic of a type III producing electron beam. Such low numbers were required for

numerical stability to provide computationally tractable code. The key term which

is responsible for the numerical stability criteria in Equations (3.1) and (3.2) is the

second order differential in Equation (3.1). The main variable (given adequate spatial,

1It will be perturbed later
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temporal and velocity resolution) which constrains the time step required for numerical

stability is the maximum magnitude of the Langmuir wave spectral energy density. A

large number of particles induces a large magnitude of waves causing the simulation to

be require more computational time.

The inclusion of a collisional term and a radial expansion term reduced the prob-

lem of generating a large magnitude of Langmuir waves by decreasing the number of

particles in the system. Unfortunately this was not enough and computational time for

realistic beam densities of around 104 cm−3 to reach the Earth was > 1 month. Further

steps had to be taken to reduce this computational time to a reasonable magnitude.

A variable time step was introduced which monitors the maximum spectral energy

density of Langmuir waves Wmax(t) in the simulation. A temporal constant tnum was

initially calculated that is proportional to the quasilinear time at t = 0, r = 0 and

the square of the velocity separation ∆v2. After every time step, ∆t was calculated as

∆t = tnum/(16πWmax(t)). The value of 16 ensured the time step was sufficiently below

the value at which the simulations could become unstable.

The Fortran code was parallelised using MPI routines. To parallelise the code the

spatial dimension of nx points was split into np blocks where np was the number of

processors being used. Each block consisted of 3+nx/np mesh points. Every processor

was then able to computationally find the new values of f and W at t+∆t for its block

of points in parallel. After each timestep each processor would share information with

the neighbouring processors about the first and last two rows of its block. This was

required as for mesh point n the Van Leer finite difference method required knowledge

of points n+1, n, n-1 and n-2. The parallelism allowed for a substantial computational

speed up when used on the 16 core machines available.

The Fortran code implementing each term in Equations (3.1) and (3.2) were opti-

mised to run faster. This involved calculating constants at the start of the program

and saving them in memory rather than calculating them every timestep. Moreover,

the command ‘FORALL’ was used when possible instead of ‘DO’ loops for its reduced

runtime.

Whilst the quasilinear time and the maximum magnitude of the Langmuir wave



3.3: Electron transport and density gradients 82

spectral energy density caused the timestep to be decreased, it did not have to be

small for every term in Equations (3.1) and (3.2). Two separate timesteps were imple-

mented, the quasilinear and the constant timestep. The quasilinear timestep was used

to calculate the quasilinear term. The constant timestep (set at 2 × 10−3 s was then

used to calculate all the other terms. Splitting the code this way not only allowed each

timestep to be computed faster but meant the parallel computation between processors

did not occur every quasilinear timestep when this timestep was very low (10−7 s at

times). At initial points when the background electron density was high, the collisional

damping of waves and spontaneous generation of waves had to be computed with a

slightly lower timestep for stability.

All these new computational techniques allowed the code to finish in a timescale of

the order of days when previously it would have taken weeks or months. Such methods

allowed the exploration of electron beam and background electron density parameter

space in a computationally tractable amount of time.

Further IDL routines had to be created for the analysis of the new data. Programs

were written to compute the energy density of Langmuir waves and visualise it in an

intuitive way. Additional programs were required to analytically test the new terms

added in the chapter. Moreover, the density fluctuations used in this chapter were

tested in IDL to make sure they created the correct power density spectrum in Fourier

space.

3.3 Electron transport and density gradients

3.3.1 New transport model

As in Chapter 2 the initial electron distribution injected into the simulation is stable at

t = 0 but once the electrons are allowed to propagate through space, the distribution

quickly becomes unstable (∂f/∂v > 0) to Langmuir wave generation. As the growth

rate of Langmuir waves is velocity dependent, the initial electron power-law distribution

causes quasilinear relaxation to be important up to a certain velocity or corresponding
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break energy. Above this energy electrons are too dilute to generate any Langmuir

waves and travel scatter free (Section 2.4). Below this energy Langmuir waves are

generated, relaxing the distribution function to a plateau in velocity space (∂f/∂v ≈ 0)

as energy from the electrons is transferred to the generated Langmuir waves. Such

behaviour was seen in Section 2.4 near the Earth and observed in the resultant fluence

spectrum.

The instability forms a beam-plasma structure (Mel’Nik 1995; Kontar et al. 1998),

between the electron beam and the corresponding induced Langmuir waves seen in Fig-

ure 3.4. Figure 3.4 and subsequent figures in this chapter are taken from (Reid & Kontar

2010). High beam densities of 104 cm−3 now cause electrons to generate Langmuir

waves in the corona. This increased initial beam density2 relative to previous simula-

tions increases the maximum velocity in the corona making wave-particle interactions

important. In contrast to Figure 2.7 Langmuir waves are generated up to 25v/vTe or

50 keV within the first 25 seconds. The corresponding broadening of the electron flux

as electrons lose energy to Langmuir waves and diffuse down in velocity space can also

be seen.

Another major difference between Figure 3.4 and previous simulations is the radial

decrease in the maximum energy that undergoes significant wave-particle interactions.

Radial expansion of the magnetic field, simulated through the second term in Equation

(3.1), reduces the electron beam density during propagation from the Sun to the Earth.

The Langmuir wave growth rate γ(v, x) = πωpe

ne
v2W ∂f

∂v
decreases faster from a smaller

beam density than it increases from the radial decrease of background density ne. The

maximum velocity of electrons that induces Langmuir waves through the bump-in-tail

instability decreases as the beam propagates towards the Earth. Consequently, the

reduction in fluence around the break energy observed near the Earth occurs near the

Sun. This result is in line with previous observations (e.g. Lin et al. 1981) near the

Earth where Langmuir waves are detected with the onset of . 10 keV electrons.

The low level of wave energy density . 102 W/WTh above 25 v/vTe is caused

2We shall see in Chapter 4 that reducing either the characteristic size of the electron beam or the

electron beam spectral index greatly adds to this effect
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Figure 3.4: Colour coded plot of the electron flux [cm2 eV s]−1 and spectral energy

density (normalised by thermal level W (v, r, t = 0)) of Langmuir waves for two mo-

ments in time. Distance and velocity are normalised by solar radii and thermal velocity

respectively. The background plasma density is unperturbed.
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by spontaneous generation from high energy electrons and not by the bump-in-tail

instability. As such, no diffusion of electrons in velocity space can be observed.

3.3.2 Sinusoidal background density fluctuations

Initially we considered a simplified model for the background electron density. The

real inner heliosphere electron density is more complex, with fluctuations present at

scales smaller than 1 AU. To explore density fluctuations, a simple perturbation of the

background plasma is added to the previous heliospheric density model in the form of

a sinusoid. The new background density

ne(r) = ne0(r)[1 + Υ sin(2πr/λ)] (3.5)

where Υ and λ are the amplitude and wavelength of the perturbation respectively and

ne0 is the original unperturbed density. The initial value of the amplitude Υ is taken

as 10−2 while the wavelength λ is taken as 1010 cm. These values create a perturbation

which is within reasonable solar wind parameters (Celnikier et al. 1983).

Distributions close to the Sun

Close to the Sun the initial unperturbed radial decrease of background electron density

plays the dominant role in density change. The small-scale fluctuations (from the

sinusoid) are thus unable to generate any positive density gradients. The drift of

waves in velocity space is always to lower phase velocities, as can be observed at the

earlier time interval t = 25 s (Figure 3.5). The density fluctuations cause an increase or

decrease in this drift of Langmuir waves to lower phase velocities. As the growth rate of

Langmuir waves depends linearly upon the magnitude of Langmuir waves at any point

in phase space, if the plasma inhomogeneity is too large then Langmuir wave production

is suppressed (in line with Smith & Sime 1979; Muschietti et al. 1985; Kontar 2001b;

Ledenev et al. 2004; Li et al. 2006b).

To compare the background plasma inhomogeneity with the level of Langmuir waves
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Figure 3.5: Colour coded plot of the electron flux [cm2 eV s]−1 and spectral energy

density (normalised by thermal level W (v, r, t = 0)) of Langmuir waves for two mo-

ments in time. Distance and velocity are normalised by solar radii and thermal velocity

respectively. The background plasma density has been perturbed with a sine wave.
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in any spatial location we consider the magnitude of wave energy density, found by

Ew(r, t) =

∫ ∞

0

Wdk = ωpe

∫ vmax

vmin

W (v, r, t)

v2
dv. (3.6)

The Langmuir wave energy density, Ew(r, t), close to the Sun at time t = 25 s is

displayed in Figure 3.6 with the corresponding scale of the background plasma inho-

mogeneity. The unperturbed case has been over plotted for comparison. Lines have

been drawn to indicate the 1010 cm wavelength of sinusoid perturbation to the back-

ground plasma. Periodic oscillation of the background plasma is evident together with

the corresponding periodic nature of the Langmuir wave energy density. The magni-

tude of Ew(r, t) in the unperturbed case is generally larger than the perturbed case,

showing clearly the reduction in wave growth when the background plasma is signifi-

cantly perturbed. As we get further away from the Sun (5 Rs compared with 2 Rs) the

initial unperturbed radial drop of density plays a less dominant role allowing small-

scale fluctuations to become more important, seen in |L|−1. With this increased role,

the small-scale fluctuations increase the suppression of induced Langmuir wave energy

density with respect to the unperturbed case.

Despite fluctuations suppressing Langmuir waves, the perturbed case displays Lang-

muir wave energy density greater than the unperturbed case at peaks in its oscillation.

The bump-in-tail instability that induces Langmuir waves does not fully relax to ther-

mal velocities in areas of space where Langmuir wave production is suppressed. Another

striking feature of Figure 3.6 is the double peak and trough behaviour of Ew(r, t) within

one wavelength of background plasma fluctuation.

The distribution of Ew(r, t) in space is substantially different at the latter time of

t = 100 s, shown in Figure 3.6. There is a larger discrepancy in magnitude between

the unperturbed and perturbed case. Moreover, the second peak of Ew(r, t) within one

wavelength clearly seen at t = 25 s is suppressed at the later time of t = 100 s. The one

remaining pronounced peak does not stay co-spatial with the small-scale fluctuation

wavelength but shifts backwards with respect to increasing distance from the Sun for

this single point in time. Density fluctuations at distances ≈ 7Rs become influential

enough over the radial density decrease to generate some positive background density
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Figure 3.6: The Langmuir wave energy density Ew(r) at two different times for back-

ground plasma which is unperturbed (purple), perturbed by a sine wave described by

Equation 3.5 (red) and perturbed without implementing group velocity (green). The

corresponding magnitude of plasma inhomogeneity |L|−1 for unperturbed (black) and

perturbed (blue) is plotted for comparison. The light blue diamonds are where the

plasma inhomogeneity is positive in magnitude.
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gradients. A positive gradient causes Langmuir waves to move to higher phase velocities

and causes the streaking seen at t = 100 s in Figure 3.5. Despite the Langmuir wave

distribution being substantially different, the electron flux remains almost unchanged,

agreeing with the numerical results from Kontar (2001b).

The role of Langmuir wave group velocity

The group velocity of Langmuir waves vg ≈ 3v2
Te/v lies in the range 4 × 107 ≤ vg ≤

4 × 108 cm s−1 which is small in magnitude compared to characteristic electron beam

velocities. At t = 25 s (Figure 3.6) the removal of the group velocity term has minimal

effect. Waves are moved in space by a small distance dependent upon the magnitude

of the group velocity. The slower energetic electrons produce waves with higher group

velocity and hence the wave energy density is displaced further.

At the later time of t = 100 s, Ew(r, t) is substantially different when the group

velocity term is not present, as seen in Figure 3.6. There is a clear double peak and

trough behaviour within one background density fluctuation wavelength. Without any

group velocity, waves are unable to travel from points in space where the background

density structure favours wave growth to points where wave growth is suppressed. The

simulation with no group velocity also has a higher magnitude of wave energy density

at its peaks than both the other simulations.

The group velocity of Langmuir waves, despite being small, acts to move wave

energy from points in space where Langmuir waves are strongly induced to points in

space where they are suppressed. This has a spatial smoothing effect on the induced

Langmuir wave energy density.

Amplitude of fluctuations

The amplitude Υ of the density fluctuations directly varies the background electron

plasma density. The magnitude of this factor near the Earth can be found from

observational results. It has been measured using the International Sun-Earth Ex-

plorer (ISEE) (Harvey et al. 1978) propagation experiment with scintillation techniques
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(Celnikier et al. 1983) that the background electron plasma density near the Earth

varies by about 10%. This would give the amplitude of Υ ≤ 0.1. Therefore we consider

Υ in the range 10−3 ≤ Υ ≤ 10−1. The wavelength of the perturbation remains at

λ = 1010 cm.

As Υ increases in magnitude, the oscillation in wave energy density increases. Simi-

larly as Υ decreases in magnitude, the oscillations in wave energy density decrease such

that as Υ → 0 the wave energy density tends to the state where no perturbations are

present in the background electron plasma density. This can be seen in Figure 3.7 in

the plasma inhomogeneity, |L|−1. As Υ decreases to 10−3, the plasma inhomogeneity

does not vary as much and L remains negative for all r.

The variation of Υ in Figure 3.7 shows how the magnitude of the plasma inhomo-

geneity affects wave generation. If the fluctuations are too large, Langmuir waves drift

in phase velocity too fast from the beam and are unable to build up. This suppression

can clearly be seen when Υ = 10−1. Most spatial areas have large values of |L|−1

and corresponding low values of wave energy density. Conversely, when Υ = 10−3,

the small-scale fluctuations are small and wave energy density is able to build up to

high magnitudes. This suppression agrees with previous theoretical (Melrose 1982;

Melrose et al. 1986) and numerical work on Langmuir wave generation in non-uniform

plasma (Kontar 2001b).

Wavelength of perturbations

The wavelength of density fluctuations λ has a strong effect on the local scale of plasma

inhomogeneity, L, through dne/dr having one term inversely proportional to λ. Density

fluctuations have been measured at a variety of different length scales from 1012 cm

down to 106 cm (Neugebauer et al. 1978; Celnikier et al. 1987; Kellogg et al. 2009).

We have varied λ in the range 109 cm ≤ λ ≤ 1011 cm which is close to the range of

fluctuations presented by Celnikier et al. (1987). The amplitude was set to Υ = 10−2,

similar to the previous section for comparison reasons.

As λ increases in magnitude, the oscillation in density inhomogeneity decreases such
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that as λ → ∞, the wave energy density tends to the state where no perturbations are

present in the background electron plasma density. This can be seen from Figure 3.8 in

the case where λ = 1011 cm and the density inhomogeneity is very smooth. Conversely,

as λ decreases, the magnitude of L−1 increases while the sign of L−1 fluctuates rapidly.

We can see from Figure 3.8 that when λ is large, the induced Langmuir wave

energy density resembles the unperturbed case. When λ is small, the large magnitude

of L−1 causes waves to shift in velocity space faster. At any spatial point waves are

present with a far greater range of phase velocities, however, their magnitude is much

decreased. This means there exists a decreased level of Langmuir waves at points in

phase space where the electron beam is present. The growth factor of Langmuir waves,

responsible in the kinetic equations for converting electron beam energy to Langmuir

wave energy, is proportional to the level of Langmuir waves. The decreased level of

Langmuir waves in areas of phase space where the electron beam is present causes less

energy to be transferred from electron beam to Langmuir wave and is the reason for

the smaller wave energy density observed in Figure 3.8 when λ = 109 cm.

3.3.3 Power-law background density fluctuations

The power spectrum of density fluctuations observed in the solar wind density follows a

simple, Kolmogorov type power law near the Earth with spectral index near to 5/3. A

similar spectrum index of perturbations has been observed both with scintillation tech-

niques (Celnikier et al. 1983, 1987) and with in-situ measurements (Neugebauer et al.

1978; Kellogg & Horbury 2005). The spectrum has been observed to steepen at small

wavenumbers around 108 cm. To model small-scale density fluctuations many pertur-

bations of the background plasma are introduced, so the density is

ne(r) = ne0(r)

[

1 + C
N

∑

n=1

λβ/2
n sin(2πr/λn + φn)

]

(3.7)

for N perturbations where ne0(r) is the original unperturbed density. λn are the wave-

lengths of density perturbations with φn as their random phase. C is a constant which
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Figure 3.7: Wave energy density of Langmuir waves for Υ = 10−1 (green), 10−2 (red),

10−3 (blue). λ = 1010 cm. The background plasma inhomogeneity L(r) for each

simulation in the appropriate colour is shown in lower panels.

normalises the density fluctuations given by

C =

√

2〈∆ne(r)2〉
〈ne(r)〉2

∑N
n=1 λβ

n

(3.8)

where 〈ne(r)〉 is the mean density. The root mean squared deviation of the density,
√

〈∆ne(r)2〉, from observational values near the Earth was taken to be 0.4 cm−3 or
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Figure 3.8: Wave energy density for λ = 1011 cm(green), 1010 cm(red), 109 cm(blue).

Υ = 10−2. The background plasma inhomogeneity L(r) for each simulation in the

appropriate colour is shown in lower panels.

10% of the mean density. The quantity
√

〈∆ne(r)2〉
〈ne(r)〉2 , the fractional density fluctuations,

is a measure of the turbulent intensity of the background plasma. From Equation 3.8

this quantity is radially independent, giving a constant turbulent intensity from the
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Sun to the Earth. We can then model the radial variation of turbulent intensity with
√

〈∆ne(r)2〉
〈ne(r)〉2

=

(

ne0(1AU)

ne0(r)

)ψ
√

〈∆ne(r1AU)2〉
〈ne(r1AU)〉2 (3.9)

where ψ ≥ 0 determines the degree at which the density fluctuations become less dom-

inant from the Sun to the Earth (larger values of ψ correspond to turbulent intensity

near the Sun). ψ = 0 corresponding to no radial variation. We do not consider ψ ≤ 0

which corresponds to density fluctuations decreasing in intensity from the Sun to the

Earth. For simplicity, we will reference the fractional density fluctuations as ∆ne/ne.

We considered the range of λ to be 107 cm ≤ λ ≤ 1010 cm which is within the inertial

range of solar wind turbulence. Larger values of λ have a minor effect and the am-

plitude of waves shorter than λ ≈ 107 cm is small. The random phases 0 ≤ φ < 2π

ensure the amplitudes of density fluctuations have a Gaussian distribution.

A constant level of ∆ne/ne throughout the inner heliosphere is found by setting ψ =

0. We set ∆ne/ne = 10% which is within the observed range of values near the Earth

(Celnikier et al. 1987). Figure 3.9 shows the density inhomogeneity and corresponding

Langmuir wave energy density close to the Sun. The high level of inhomogeneity

caused by the small-scale fluctuations greatly suppresses Langmuir wave spatial build-

up compared to the unperturbed case. Suppression of Langmuir waves for ∆ne/ne =

10% close to the Sun can prevent the high level of Langmuir waves required for type

III solar radio emission. Such suppression is inconsistent with observations as type III

emission is observed at frequencies > 100 MHz.

To vary the level of fluctuations from the Sun to the Earth, we set ψ > 0. Figure

3.9 shows the density inhomogeneity and corresponding Langmuir wave energy density

close to the Sun with ∆ne/ne = 10% at 1 AU and ψ = 0.5. Comparing the Langmuir

wave energy density with the earlier simulations which assumed constant ∆ne/ne, we

can see a much larger magnitude of Langmuir wave energy density being induced from

the electron beam. The reduced contribution from the small-scale fluctuations allows

build up of Langmuir wave energy density. This high level of wave energy density is

required to see the recorded brightness temperatures associated with type III radio

emission. Moreover, the spatial spread of Langmuir waves is much less sporadic than
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the produced level of wave energy density in the simulation with high level of fluctua-

tions. The electron beam and Langmuir wave distribution can be seen in Figure 3.10.

Langmuir waves are no longer perturbed in a periodic fashion but are pseudo-random

in space. The pseudo-random nature of the spikes in Langmuir wave energy density

leads to similar clumpy behaviour of Langmuir waves observed in-situ by spacecrafts

(e.g. Gurnett & Anderson 1976).

3.4 Electron spectra near the Earth

The previous chapter (see also Kontar & Reid 2009) has shown the generation and

absorption of Langmuir waves coupled with the effect of the background plasma inho-

mogeneity can change the electron beam energy distribution. A broken power-law in

fluence spectrum can be formed from an initially single power-law distribution. The

break at which the two power-laws connect is at the maximum velocity that electrons

are able to induce significant levels of Langmuir waves above the thermal level via the

bump-in-tail instability. The spectrum below the break is flattened during transport

because the electron beam is unable to re-absorb all the energy transferred to Langmuir

waves due to background plasma density gradients.

Introducing small-scale density fluctuations into the background plasma changes its

properties and should consequently change the spectrum of the electron distribution

function. Whilst changes in the electron spectrum are not visible on short scales (a few

relaxation times), the fluence spectrum at the Earth shows a noticeable dependence

upon the level of fluctuations introduced into the simulation. Figure 3.11 shows the

fluence spectrum of the electron beam at the Earth for five different amplitudes of

fluctuation within the range 10−3 ≤ Υ ≤ 10−1. As shown earlier, the small-scale

density fluctuations suppress the generation of Langmuir waves. This decreases the

amount of energy transferred through resonant interaction from the electron beam to

the Langmuir waves. With less total energy, a smaller amount of energy in Langmuir

wave form can drift to higher or lower phase velocities and not be re-absorbed by

the electron beam. The amount of deceleration the electron beam can undergo due to
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Figure 3.9: The Langmuir wave energy and corresponding plasma inhomogeneity when

density fluctuations have a power law spectra in frequency space and ∆ne/ne = 10%

at the Earth Top: The fluctuations are constant from the Sun to the Earth (ψ = 0).

Bottom: The fluctuations increase from the Sun to the Earth (ψ = 0.5). Both graphs

are over plotted with the unperturbed case (green). The plasma inhomogeneity is

plotted for unperturbed case (black) and perturbed case (blue) with light blue diamonds

for positive values.
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Figure 3.10: Colour coded plot of the electron flux [cm2 eV s]−1 and spectral energy

density (normalised by thermal level W (v, r, t = 0)) of Langmuir waves. Distance and

velocity are normalised by solar radii and thermal velocity respectively. The small-

scale fluctuations have a power law spectra in frequency space where the fluctuations

increase from the Sun to the Earth with ψ = 0.5.

Langmuir waves drifting is decreased, causing a reduction in the flattening of the fluence

electron spectrum. This means when Υ is larger, the fluence spectrum below the break

energy has a higher spectral index (Figure 3.12). Similar behaviour is demonstrated by

the fluence spectrum of the electron beam at the Earth for four different wavelengths

of small-scale fluctuations within the range 108 cm ≤ λ ≤ 1011 cm, shown in Figure

3.11. The same lack of wave generation for small λ reduces the deceleration the electron

beam undergoes and hence reduces the flattening of the fluence spectrum (Figure 3.12).

The recent survey of in-situ measured impulsive solar energetic electron events

(Krucker et al. 2009) suggests the break energies generally appear in the deca-keV

range. Results from the numerical simulations in Chapter 2 are in line with this

result. The improved numerical model presented in this chapter also displayed results
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Figure 3.11: Fluence of the electron distribution function near the Earth. Top Left:

Five simulations with Υ = 10−1 (black), 10−1.5 (purple), 10−2 (blue), 10−2.5 (green),

and 10−3 (red). λ = 1010 cm. Top Right: Five simulations with λ = 108 cm (black),

109 cm (purple), 1010 cm (blue), 1011 cm (green) and unperturbed (red). Υ = 10−2.

Bottom Left: Four simulations for multi-scale fluctuations with ∆ne/ne of 10 % (black),

1 % (blue), 0.1 % (green) and 0.01 % (red) of the mean background density. Bottom

Right: Four simulations for multi-scale fluctuations which decrease in power close to

the Sun for ψ of 0 (black), 0.3 (blue), 0.5 (green), 0.8 (red).

consistent with the Krucker et al. (2009) observation. Moreover, the break energy

seems to be insensitive to the level of density fluctuations in the background plasma.

Despite the change in spectrum near the Earth, the electron distribution function

does not share the same sensitivity to the structure of the background electron density

as the Langmuir waves (See Figures 3.4 and 3.5). The simulation with perturbed

plasma does however show small changes, most noticeably in the tail of the electron
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distribution. A positive spatial gradient in background plasma causes Langmuir waves

to drift to higher phase velocities. Drifting of waves in velocity space allows their

energy to be re-absorbed by lower energy electrons at the tail of the beam such that

electrons are accelerated to higher energies. It is the opposite effect of the negative

density gradient taking Langmuir wave energy away from electrons and forming a

broken power-law near the Earth. This acceleration of electrons causes the noticeable

bump around 10 − 20 keV in Figure 3.11, seen for simulations with higher spectral

indices below the break energy. The bump becomes more prominent for small λ, high

Υ or more generally when the background density fluctuations are more effective at

moving wave energy to higher phase velocities.

Extending the density fluctuations to multi-wavelength model, a Kolmogorov type

power-law is assumed where (∆ne/ne)
2 ∼ λ5/3 with ∆ne/ne remaining radially con-

stant (ψ = 0). Figure 3.11 shows the fluence spectrum at the Earth for four different

turbulent intensities 0.01% ≤ ∆ne/ne ≤ 10%. The larger ∆ne/ne is, the higher the

spectral index below the break energy of the fluence spectra (Figure 3.12). The sig-

nature bump can be seen in the spectra around 10 − 20 keV, again caused by the

acceleration of electrons at the back of the beam due to Langmuir waves drifting to

higher phase velocities.

The electron beam fluence spectra for density fluctuations ∆ne/ne changing with

distance (reaching 10% at 1 AU) are displayed in Figure 3.11 for four different values of

ψ within the range 0 ≤ ψ ≤ 0.8. The decreased presence of fluctuations near the Sun

(ψ > 0) increases the amount of induced Langmuir waves which decreases the spectral

index below the break energy, shown in Figure 3.12. For all simulated values of ψ > 0

no bump in the fluence spectra is present. A reduced level of fluctuations near the Sun

decreases positive density gradients which subsequently decreases the acceleration of

electrons from re-absorption of Langmuir waves. A smoother increase in spectral index

below the break energy for increasing ψ can thus be seen in Figure 3.12
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Figure 3.12: The spectral index of a power law fit between 4 and 40 keV for the fluence

spectra of electrons near the Earth. Top Left: Spectral index versus the amplitude of

density fluctuation. Top Right: Spectral index versus the wavelengths of density fluc-

tuation. Bottom Left: Spectral index versus multi-scale level of fluctuations. Bottom

Right: Spectral index versus ψ, the radial degree at which density fluctuations become

less dominant.



3.5: Discussion and Conclusions 101

3.5 Discussion and Conclusions

The simulations show that fine structure in the background solar wind electron density

causes the generation of Langmuir waves from a non-thermal electron beam to be sup-

pressed, with larger amplitudes and smaller length scales of density fluctuations having

the largest effect. Increased suppression for larger amplitudes is similarly observed for

higher levels of turbulence (∆ne/ne) with Kolmogorov type density fluctuations.

For high levels of turbulence near the Sun, ∆ne/ne = 10%, wave production by

the electron beam becomes no longer sufficient for the generation of type III radio

bursts. It is possible to induce more Langmuir waves by increasing the density of the

electron beam. This solution requires at least two orders of magnitude more electrons

than previously simulated, causing the beam to have around 1% of the density of

the background plasma. Such high density electron beams become problematic when

considering simultaneous HXR bursts assuming the upward electron beam has only

0.2% of the downward electron beam density, found above 50 keV in Krucker et al.

(2007).

Increasing the level of Langmuir waves near the Sun without increasing beam den-

sity, the amplitude of density fluctuations can be reduced. We implemented a radial

dependence with closer distances to the Sun having a decreased turbulent intensity.

This is seen in observational scintillation techniques (Woo et al. 1995; Woo 1996) and

Helios data (Marsch & Tu 1990) in the fast solar wind. The observed values for ∆ne/ne

are as low as 0.3% at distances < 0.1 AU (Woo et al. 1995). A much higher magnitude

of Langmuir wave energy density was achieved close to the Sun with smaller levels of

fluctuations. Type III emission in the low corona thus requires low turbulence intensity

or beam densities much higher than observational evidence predicts.

To estimate how density fluctuations might radially evolve, we varied the initial

conditions of the simulations. We used a variety of different initial electron beam spec-

tral indices (δ in Equation 3.3) and different radial dependence of density fluctuations

(ψ in Equation 3.9). Using the resulting fluence spectra near the Earth for each simula-

tion, we compared the spectral indices above and below the break energy (Figure 3.13).
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The spectral index becomes smaller below the break energy for larger values of ψ. We

have also overplotted the correlation of spectral indices above and below the break

energy of peak flux measurements taken from a statistical survey (Krucker et al. 2009)

of impulsive electron events detected by the three-dimensional Plasma and Energetic

Particles experiment on the WIND spacecraft (Lin et al. 1995). A level of fluctuations

with ψ around 0.25 would give a similar correlation to the observational line. We note,

however, that the observational line presented from Krucker et al. (2009) fitted a large

scatter of data points. The ratio of low:high spectral index for all simulated results

presented in figure 3.13 lies between 0.42 and 0.58, which is within the narrow range

presented in Krucker et al. (2009).

A variety of simulation variables can affect the energy of the spectral break at

the Earth: the model of radial background density decrease, the density fluctuations,

the initial spectral index of the beam, the number density of injected electrons, the

spatial distribution of injected electrons, the temporal nature of the injection, and the

initial coronal background density where the electrons are injected. The spectral index

below the break energy of the resultant double power-law in fluence spectra near the

Earth is increased when density fluctuations have a larger effect on the level of induced

Langmuir waves. It is important to note, however, the spectra below the break energy

is only approximately a power-law. The presence of density fluctuations causes fine

structure to be present. A bump around 10-20 keV was found, caused by acceleration

of electrons at the back of the beam through absorbed Langmuir waves. The onset of

this bump appears to be close to the Sun where Langmuir wave energy density is high.

The magnitude of this bump is reflected in the size of the spectral index error bars in

Figure 3.13 with a larger bump corresponding to a larger error. With the prospect of

Solar Orbiter and Solar Probe Plus, it will be very attractive to extend these studies

further to understand the spectral evolution of the electron beam between the Sun and

the Earth.
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Figure 3.13: Comparison between the high and low spectral index of fluence spectra

of electrons near the Earth. The dashed purple line is the best fit to the observational

data of peak flux spectral indices (Krucker et al. 2009).



Chapter 4

Electron acceleration region

diagnostics

4.1 Introduction

Accelerated electron beams are believed to be responsible for both hard X-ray (HXR)

and coherent radio emission during solar flares. Despite this wealth of electromagnetic

beam emission from accelerated electrons propagating in plasma, the location of the

electron acceleration site and its spatial characteristics are poorly known.

This chapter shows how simultaneous radio and X-ray observations can be used to

diagnose not only the location but the size of the acceleration region. It provides the

first observational estimate of both the location and size of the acceleration region.

Numerical simulations are used with these inputs to help validate the results and

explore unknown electron beam parameters.

4.1.1 HXR emission

The ‘standard model’ in solar flares of HXR emission involves electron beams travelling

downwards from the corona to the chromosphere with small pitch angles directed by the

magnetic field. These electron beams emit HXR at two footpoints in the chromosphere

near the photospheric footpoints of the flare magnetic topology (Figure 4.1). The
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Figure 4.1: RHESSI X-ray images of the January 6, 2004 limb event. The contours show

HXR emission integrated for the impulsive phase of the flare (06:22:20-06:23:00 UT)

from the footpoints in 30-35 keV (solid blue line) and 80-120 keV (dot-dashed green

lines). The background image shows subsequent softer thermal emission (06:24:00-

06:24:40UT) in 10-18 keV.

electron beam loses most of its energy through heating the surrounding chromospheric

plasma to tens of MK. The hot plasma generates a pressure gradient which forces the
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heated plasma up into the corona where it fills the coronal part of the flare loops. The

plasma then cools, emitting at soft X-ray (SXR) and EUV wavelengths. An interesting

feature of the SXR emission in the majority of flares is that it can be approximated as

the integral of the HXR flux over time, known as the Neupert effect (Neupert 1968).

The solar flare HXR spectrum I(ǫ) generally takes the form of a thermal distri-

bution I(ǫ) ∼ exp(−ǫ/kBTe) at photon energies ǫ . 20 keV where Te is the electron

temperature with typical values around 2 MK. At larger photon energies ǫ & 20keV

the HXR spectrum takes the form of a power-law I(ǫ) ∼ ǫ−γ where γ is the spec-

tral index of the power-law. These two distributions are categorised as the ’thermal’

and ’non-thermal’ component of HXR emission. An example of a flare induced HXR

spectrum is given in Figure 4.2. The spectral index of the non-thermal component of

the emission varies in time during a flare. It usually starts off large (soft), around 6

or 7, indicating a small ratio of high:low energy photons. As the impulsive phase of

the flare progresses the spectral index gets smaller (harder), around 2-4, indicating an

increase in the ratio of high:low energy photons. The onset of a harder spectrum is

correlated with an increase in overall photon intensity. A softening of the spectrum

occurs in the later part of the HXR burst coupled with a decrease in overall photon

intensity. This trend is called soft-hard-soft (SHS) and is the generally observed HXR

spectral trend in flares (e.g. Parks & Winckler 1969; Benz 1977; Fletcher & Hudson

2002; Grigis & Benz 2008). Possible reasons for the observed SHS spectra of HXR

emission could be trapping of electrons in the acceleration region or a time variation

in the efficiency of electron acceleration.

The non-thermal component of HXR emission is believed to be emitted by an elec-

tron beam streaming down from a coronal acceleration site. It is possible with certain

assumptions to ascertain information regarding the electron beam from the HXR emis-

sion. Specifically using the thick target approximation (Brown 1971) it is possible to

approximate, amongst other parameters, the spectral index of the inducing electron

beam. The thick target approximation assumes an electron beam that is ’thermal-

ized’ as it streams into a high density plasma with HXR emission being produced via

non-thermal bremsstrahlung (breaking radiation) emission. In a solar flare the primary
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Figure 4.2: Example of a flare induced HXR spectrum. A non-thermal component

(solid line) and two thermal components (dotted and dash-dotted) are shown. Boxed

symbols show the many different free parameters which have to be chosen when

forward-fitting the data (Battaglia et al. 2005)

source of HXRs are electrons undergoing free-free bremsstrahlung emission by collisions

with particles. A detailed mathematical description of thick-target bremsstrahlung

emission is beyond the scope of this thesis. Interested readers are directed towards
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Tandberg-Hanssen & Emslie (1988) for a complete description. The key property of

the collisions is that the electrons are deflected and hence emit photons with equal or

less kinetic energy than their initial energy. For a given injected electron beam flux

spectrum F (E0) the thick target approximation requires a mean (or target averaged)

electron distribution F̄ (E) which reflects the alteration of the injected distribution due

to electron energy losses. For a given mean electron flux spectrum F̄ (E) , the observed

HXR spectrum is given in the relation (e.g. Kontar et al. 2004).

I(ǫ) =
1

4πR2
n̄eV

∫ ∞

ǫ

F̄ (E)Q(ǫ, E)dE, (4.1)

where R is the distance from the source to the observer, n̄e is the mean density of

the target, V is the emitting volume, and Q(ǫ, E) is the bremsstrahlung cross-section.

Under the thick target approximation, the electron beam flux loses its energy only

through Coulomb collisions. The collisional loss of electrons in a plasma is preferential

for low energy electrons (see 3.2 for a description), changing the spectral index of

F̄ (E). The spectrum of photons, γ, thus becomes harder than the injected spectrum

of electrons, δ, by the simple relation γ = δ − 1. It is interesting to note the thin

target approximation (Brown 1971) uses an opposite assumption that electron beam

spectrum is not changed as the beam streams through a plasma. The resulting HXR

spectrum in a thin target is γ = δ + 1. An E−2 dependence of the Coulomb collisional

cross-section causes a spectrum of photons two powers harder in a thick target over a

thin target.

The detection of HXR spectra like Figure 4.2 shows an approximate power-law be-

haviour of HXRs above 20 keV. Similar to the power-law of interplanetary electrons at

Earth shown in Chapter 3, power-law behaviour of the non-thermal component is an ap-

proximation. The usual method for finding electron beam spectra is known as forward

fitting (Holman et al. 2003), where a power-law is approximated via a least squares fit

to the HXR spectrum. The deduced spectral index given to the non-thermal distribu-

tion depends upon the other parameters required for forward fitting the HXR spectrum

(most being listed in Figure 4.2) and they all affect . To avoid such ambiguities, ad-

vanced inversion techniques can be employed which infer the effective mean electron
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source spectrum directly from the HXR spectra (Piana et al. 2003; Kontar et al. 2004;

Brown et al. 2006). Inversion techniques are model independent and involve inverting

Equation 4.1 to find F̄ (E). Unfortunately inversion is particularly challenging as the

noise present in even the most accurate photon spectra can become hugely amplified

when trying to extract the electron flux spectrum. Regularization methods which ap-

ply physical constraints to the electron spectra (e.g. Craig & Brown 1986) can be used

to avoid noise amplification and obtain a good estimate for F̄ (E). Such techniques can

lead to finding electron beam spectral indices which vary in both time and energy (e.g.

Kontar & MacKinnon 2005).

4.1.2 HXR-Radio observations

Accelerated electron beams are believed to be responsible for both HXR and coherent

radio emission during solar flares. Upward travelling electron beams propagate through

the coronal plasma and sometimes escape into interplanetary space. Emission from such

beams is often observed as coronal and interplanetary type III radio bursts. Electron

beams travelling downwards with small pitch angles enter the dense plasma of the

chromosphere and are generally seen through bremsstrahlung emission in HXR. Before

entering the chromosphere, downward propagating electron beams may also produce

reverse type III bursts. Despite this wealth of electromagnetic beam emission from

accelerated electrons propagating in plasma, the location of the electron acceleration

site and its spatial characteristics are poorly known.

Indirect evidence of electron acceleration sites first came from broad band radio

spectral observations of pairs of type III and reverse type III bursts (e.g. Aschwanden et al.

1995a; Aschwanden & Benz 1997). The starting frequencies of these burst pairs are

found between 220−910 MHz, implying a range of electron densities in the acceleration

region between 6×108−1010 cm−3 for fundamental emission or 1.5×108−3×109 cm−3

for harmonic emission. These densities are lower than ones observed in bright soft X-

ray loops (2× 1010 − 2× 1011 cm−3) suggesting that the acceleration region lies above

the soft X-ray loops, being located for example in a cusp reconnection site. HXR ob-
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servations have also been independently used to provide insight into typical electron

acceleration region heights above the photosphere. Through electron time-of-flight

analysis using HXR emission in the range 20-200 keV (Aschwanden et al. 1998), height

estimates have been found in the range 20-50 Mm. The spatial size of the acceleration

region still remains largely unknown.

The simultaneous observation of HXR and metric/decimetric radio emission is

commonplace during flares and the relationship between type III bursts and hard

X-ray emissions has been studied for many years (see for example Pick & Vilmer

2008, for a review). The first studies performed by Kane (1972) found a good sim-

ilarity between HXR and type III radio emission, suggesting the two emissions are

produced by electrons originating from a common acceleration site. Many subse-

quent studies have specifically dealt with the association of coherent type III radio

emission and HXR bursts, both statistically (e.g. Kane 1972, 1981; Hamilton et al.

1990; Aschwanden et al. 1995a; Arzner & Benz 2005) and for individual events (e.g.

Kane et al. 1982; Benz et al. 1983; Dennis et al. 1984; Raoult et al. 1985; Aschwanden et al.

1995b; Raulin et al. 2000; Vilmer et al. 2002). A more recent statistical study of 201

flares above GOES class C5 (Benz et al. 2005) reports an 83% association rate with

coherent radio emission, within the range between 4 GHz and 100 MHz. These results

suggest that practically all flares with HXR GOES class > C5 1 are associated with

some form of coherent radio emission.

An in depth statistical study was carried out between radio type III bursts and

HXRs by (Kane 1981). The study reported that the X-ray/type III correlation in-

creases systematically with the intensity of HXR and radio emission, the peak spectral

hardness of HXR emission and the type III burst starting frequency. Hamilton et al.

(1990) similarly reported the systematic increase of HXR/type III correlation with in-

creasing emission intensity and to a lesser extent with spectral index of HXR emission.

Hamilton et al. (1990) also reported a statistical correlation between the peak HXR

and type III intensities. To produce a harder (smaller spectral index) HXR photon

1A flare categorisation model which classes flares based upon their peak SXR flux
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spectrum requires a harder electron beam spectrum. A hard electron beam spectrum

is an attractive attribute for type III producing electron beams as it makes it easier

and faster for the bump-in-tail instability to occur. Faster instability onset ties in very

well with the HXR/type III correlation increasing for bursts with a higher starting

frequency.

A temporal correlation between HXR and radio pulses has been found statistically

(Aschwanden et al. 1995a) where the average time delay between the HXR pulse and

radio pulse starting frequency was ≤ 0.1 s. Temporal correlations have also been

found in many individual event studies. Of these studies the results by Dennis et al.

(1984) find a temporal correlation with a similar magnitude to the statistical study

by Aschwanden et al. (1995a). This, together with previous correlations, suggests a

common acceleration region with HXR producing electron beams having either slightly

less distance to travel or slightly more energetic electrons responsible for the emission.

The simultaneous analysis of HXR and type III radio bursts is thus an attractive

diagnostic of flare associated electron acceleration.

A few previous studies have attempted to infer properties (both height and size)

of the common electron acceleration region from simultaneous HXR and radio obser-

vations. Kane et al. (1982) used an inferred spectral index from HXR emission to

estimate the minimum distance required for the type III producing electron beam to

become unstable. With an assumed electron acceleration height of 20 Mm, an altitude

of 100 Mm was deduced for the starting frequency, in good agreement with the spec-

tral observations. Unfortunately the type III frequencies in this analysis were too high

with respect to the Nançay radioheliograph frequencies for radio imaging at this time

so it was not possible to confirm the starting height of the radio emission. Benz et al.

(1983) also considered the minimum distance required for a type III producing electron

beam to become unstable. By modelling both the HXR and radio producing electron

beam as a Maxwellian they found a weak correlation between the type III starting

frequency and the electron temperature derived from HXR observations above 26 keV.

However, in the event considered a change in electron temperature cannot fully account

for the initial change in type III starting frequency. The authors thus conclude that a
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movement of the acceleration site occurred for this event.

In another study Aschwanden et al. (1995a) uses the assumption of a common ac-

celeration region producing upward and downward electron beams to estimate acceler-

ation times and infer acceleration region sizes. No frequency gap was observed between

type III and reverse type III emission so their starting frequency separation distance

was constrained by the detector resolution. Using an assumed density model, this dis-

tance was found to be < 2 Mm. The instability distance for the electron beam was

then equated to twice this resolution. By using a similar analysis of Kane et al. (1982)

with observed HXR spectral index, acceleration times are found with ∆t < 0.3− 3 ms.

The size of the acceleration region is then inferred at 0.7 Mm. This constraint of accel-

eration site size and times is heavily dependent upon the assumption of bidirectional

electron beams starting with a separation unresolved by the detector and thus should

be treated with care.

Electron beams escaping into the inner heliosphere can also be detected in-situ

near 1 AU and their numbers have been correlated to the number of HXR producing

electrons (Krucker et al. 2007). A correlation is found between the spectral indices of

both electron populations as well as between the numbers of HXR producing electrons

and escaping electrons for prompt electron events. This again suggests that the X-

ray producing electrons and the electrons moving upward in the corona originate from

a common acceleration site. Furthermore, it is found that the number of escaping

electrons is on average only 0.2% of the HXR-producing electrons above 50 keV.

4.2 Starting frequency of type III bursts

The aim of the following theory is to relate known observational variables from flares to

unknown flare parameters. Specifically we will relate the starting frequency of type III

bursts and the spectral index of the inducing electron beam to the height and size of a

flare acceleration region. Initially let us consider the propagation of a flare accelerated
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electron cloud with starting size d located at r = 0

f(v, r, t = 0) = g0(v)exp(−|r|/d) (4.2)

where g0(v) is the initial electron velocity distribution. Langmuir waves will be gener-

ated when their growth rate is larger than the collisional absorption by the background

Maxwellian plasma

γ(v, r) =
πωpe

ne

v2∂f

∂v
> γc, γc =

πe4ne

m2
ev

3
Te

ln Λ (4.3)

where ln Λ is the Coulomb logarithm, taken near 20 for the parameters in the corona.

ωpe, ne and vTe are the background plasma frequency, density and thermal velocity

respectively.

The initial velocity distribution of solar flare accelerated particles is normally a

power-law g0(v) ∼ v−α. This distribution at t = 0 is stable and will not lead to

generation of Langmuir waves. At later times t > 0 the propagation of particles leads

to the formation of a positive slope in velocity space (∂f/∂v > 0). The distribution

function changes in time due to the propagation (in the case of no energy losses)

f(v, r, t) = g0(v)exp(−|r − vt|/d) (4.4)

and the growth rate for Langmuir waves becomes

γ(v, r) =
πωpe

ne

v2f(v, r, t)

(

t

d
− α

v

)

. (4.5)

We can observe large Langmuir wave growth remotely via observations of type III radio

emission. Langmuir wave growth should occur at the distance ∆r = htypeIII −hacc from

the original location where htypeIII is a height corresponding to the starting frequency

of type III bursts and hacc is the acceleration region height. The distance ∆r can be

found by equating the growth rate for Langmuir waves given in Equation (4.5) with γc

giving

∆r = d

(

α +
γcne

πωpe

(vg0(v))−1

)

. (4.6)

The quantity vg0(v) ≈ nb where nb is the inducing electron beam density. By assuming

a coronal background electron density of 109 cm−3, a coronal electron temperature of
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2 MK and a beam density of 104 cm−3 the second term γcne/πωpenb is around 10−3.

Thus the relation between the acceleration site properties and starting frequency is

determined mostly by the spectral slope, giving the simple relation

htypeIII = dα + hacc (4.7)

The unknown parameters hacc and d can be found from the known parameters α and

htypeIII . A key advantage of this relation lies with its lack of dependence on the poorly

known electron beam number density necessary to produce type III emission. The

method is similar to what was discussed in Kane et al. (1982). The key difference is

that we consider an instantaneous injection at t = 0 with a spatially broad distribution

function while Kane et al. (1982) considers a temporal injection from a point source.

4.3 Observations and data analysis

4.3.1 Observation instruments

The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) (Lin et al. 2002) is

designed to investigate energy release from accelerated particles in solar flares. It

was the first spacecraft with high-resolution HXR imaging spectroscopy at a spatial

resolution ≈ 2.3 arcsec and a full-Sun field of view. It boasts a spectral resolution

≈ 1 − 10 keV FWHM over the energy range from 3 keV to 17 MeV. RHESSI was

launched in February 2002 into a nearly circular 600 km altitude orbit around the Earth.

The RHESSI spacecraft is used in this chapter to observe HXR emission emitted in the

chromosphere from downward propagating electron beams. By assuming a common

acceleration site for upward and downward electron beams, the HXR emission observed

by RHESSI can serve to provide the spectral index for the above relation (Equation

4.7). RHESSI can also provide spatial information regarding the HXR emission.

The broadband radio spectrometer Phoenix-2 (Messmer et al. 1999) is designed

to register the flare emission of the full Sun. Phoenix-2 is a redesign of the original

Phoenix radio spectrometer (Benz et al. 1991), based at Bleien, Switzerland. The new
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design has complete autonomous operation, a larger frequency range and more accurate

results. In the frequency range of operation, 0.1 to 4.0 GHz, both modes of circular

polarization are recorded continuously. The free choice of the number, bandwidth and

frequency of the observed channels makes Phoenix-2 very flexible for both broadband

surveys as well as specific studies at high temporal or spectral resolution. For observing

the radio emission in the corona, the spectral information in this chapter was obtained

by using Phoenix-2 data within the frequency range 160 - 700 MHz. This provides

information regarding the starting frequency of the type III radio emission.

The Nançay Radioheliograph (NRH) (Kerdraon & Delouis 1997) was designed for

fast imaging of solar radio emission. Observing frequencies may be chosen in the limits

150 - 450 MHz with simultaneous observations of up to 10 frequencies. The speed allows

a maximum number of 200 images per second. The NRHs most recent design provides

high time resolution 2D images of the solar corona using a digital correlator (Stokes I

and V, 576 channels). The spatial information for type III radio emission is found by

using the NRH in the frequency range of 164 - 432 MHz. The spatial radio information

observed by the NRH allows one to be certain that the observed strong radio flux is

emitted from the same location in the solar atmosphere to the HXR emission.

4.3.2 Event selection

We aimed our study at cases observed simultaneously with the NRH, Phoenix-2 and

RHESSI. We started our selection from a list of events presented in previous obser-

vational analysis between coherent radio and HXR emissions (Arzner & Benz 2005;

Grigis & Benz 2004; Benz et al. 2005). Of the 58 events considered, 10 were found to

have coherent radio emission in the frequencies covered by the NRH observations. We

selected one event which had a simple spatial configuration at all NRH radio wave-

lengths, clearly defined starting frequencies and a strong HXR flux. This event was

chosen as an illustration of the method.



4.3: Observations and data analysis 116

4.3.3 Observations in HXR and radio

The spatial overview of the April 15th flare is presented in Figure 4.3 using RHESSI,

NRH and SOHO/EIT. The X-ray source was imaged using RHESSI in the energy range

between 15 and 30 keV. The higher energies had too few photons to make a reasonable

image above the background noise. The radio source was imaged using the NRH in

frequency bands from 164 to 432 MHz and the size increases with decreasing frequency.

This can provide an estimate regarding the radial magnetic field expansion locally in

the corona. However, the decrease of spatial resolution with decreasing frequency

using the NRH has to be considered. This decrease behaves as D/λ where D is the

maximum antenna spatial separation and λ is the wavelength of the radio emission. The

SOHO/EIT 195 image displays information about the overlying plasma configuration,

conferring insight into the magnetic field structure where the flare originates. The

temporal evolution of the flare is presented in Figure 4.4, using Phoenix-2, NRH and

RHESSI data.

The spectral index of the X-ray emission, γ, was obtained using RHESSI spectral

analysis of the photon flux I(ǫ) ∼ ǫ−γ. The photon spectral index γ was estimated

using a power-law fit every 2 seconds (half-rotation of the spacecraft). The one sigma

error associated with the power-law fit was used as the spectral index error estimates.

The starting frequency of the type III radio emission was determined from the

Phoenix-2 data. We used Phoenix-2 data with a 1 sec temporal resolution. The mean

value of the radio flux on the quiet 3 minute interval 08:56 UT to 08:59 UT was used

to quantify the background level for each frequency channel. A threshold of twice this

background level was then used at every moment in time to determine the starting

frequency of the radio emission. We then averaged the starting frequency over the 2

second RHESSI interval. The mean width of the radio channels between 100 and 700

MHz was 9.2 MHz so we took 10 MHz as the one sigma error on the starting frequency.

The combined determination of starting frequencies and spectral indices was done

on two time periods between 08:51:20 → 08:51:36 UT and 08:52:38 → 08:53:00 UT.

Both periods have a HXR non-thermal spectral index below 7.5 at all points in time.
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Figure 4.3: The morphology of the April 15, 2002 solar flare. Background is SOHO/EIT

195 image. The small red contour lines at the base of the plasma loops on the left

correspond to HXR photons imaged by RHESSI in the 15-30 keV range. The large

contours on the right hand side correspond to NRH radio images at frequencies 432 MHz

(blue), 327 MHz (orange), 236 MHz (pink), 164 MHz (yellow).
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Figure 4.4: Time evolution of the radio and HXR fluxes for the April 15, 2002 solar

flare between 08:51 and 08:54 UT. The top panel is the Phoenix-2 radiospectrometer

data on a log scale between the frequencies 160 and 700 MHz. The middle panel is

the Nançay radioheliograph flux time profiles observed at 5 discrete frequencies from

164 to 432 MHz. The bottom panel are the RHESSI HXR counts/second at the three

energy ranges 6-12, 12-25 and 25-50 keV.
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Moreover, throughout both periods there is significant radio emission above the thresh-

old frequency.

The temporal evolution of γ and the type III starting frequency is overplotted on

the Phoenix-2 data in Figure 4.5 for the time periods defined above. The photon

spectral index displays an anti-correlation with the type III starting frequency. A

clearer visualisation of this anti-correlation can be seen when both observables are

plotted against each other (Figure 4.6). They have a Pearson correlation coefficient

of -0.65 due to the starting frequency decreasing as the spectral index increases. This

correlation suggests that the two variables are related by a linear fit.

4.3.4 Electron acceleration region parameters

To infer the characteristics of the coronal acceleration region from Equation (4.7) we

must use some assumptions to obtain htypeIII and α from the type III starting fre-

quency and γ. To relate the starting height of the type III emission htypeIII to the

starting frequency we have used the exponential density model derived in Paesold et al.

(2001) which assumes second harmonic emission for a reference height of around 1.5 Rs

for 160 MHz emission. To obtain the electron beam spectral index in velocity space

from the photon spectral index in energy space, the thick target model (Brown 1971;

Brown et al. 2006) was assumed. The electron beam spectral index α can then be cal-

culated from the photon spectral index γ through the simple relationship α = 2(γ +1).

The effect of photosphere albedo is ignored as the flare is located close to the limb

(Kontar & Jeffrey 2010).

A positive correlation between the electron beam velocity spectral index and the

starting height is observed with a Pearson correlation coefficient of 0.62 (Figure 4.7).

To investigate the correlation and obtain estimates of the acceleration region properties

a linear fit was applied to the data. The routine mpfitexy (Markwardt 2009) was used to

obtain a fit to the data including observational error (Figure 4.7). Using Equation (4.7)

the linear fit infers the acceleration region height and size values of hacc = 52± 21 Mm

and d = 10.5 ± 1.6 Mm respectively. The larger percentage error of the height in
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Figure 4.5: HXR spectral index and frequency spectra of the type III burst for two

different time periods in the April 15, 2002 event. The starting frequencies are plotted

as red stars connected by dashed lines. The HXR spectral indices are plotted as 2

second green bars with error bars in the middle of their integration time.
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Figure 4.6: Scatter plot of the HXR photon spectral index vs. the starting frequencies

of the type III burst. The one sigma observational errors on both spectral index and

starting frequency are shown.

relation to the size can be observed in the extremes of the fit shown in Figure 4.7. If

this linear relationship is statistically significant the slope has to be greater than zero.

We can test the null hypothesis that the slope is zero using the Students t-statistic

(e.g. Press et al. 1992). A t-score of 6.56 is found with 19 degrees of freedom. Using

a confidence level of 0.01 we can comfortably reject the null hypothesis and say the

linear relation is statistically significant.

The radio threshold frequency used to constrain the starting frequencies had a

minor effect on the results if changed within reasonable parameters. Different lev-

els (1.5− 2.5× background level) changed the acceleration region properties by around

5−10 %. Higher threshold frequencies caused higher hacc and lower d with the converse

being true. Threshold frequencies < 1.5 or > 2.5× background level caused unrealis-
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Figure 4.7: Scatter plot of electron beam spectral index in velocity space, α, calculated

from the HXR photon spectral index vs. the distance above the photosphere associated

with the starting frequencies of the type III burst. The one sigma observational errors

on both spectral index and height are shown. The green dashed line is a linear fit to

the data including observational error with the green dotted lines showing the extremes

of the fit.

tic acceleration region parameters as starting frequencies were either not detected or

were detected at high frequencies not corresponding to the visually observed type III

emission.

4.4 Beam-plasma numerical simulations

To explore the predictions for acceleration height and size we use numerical simulations

of electron beams and induced Langmuir waves in the solar corona. The simulations

allow us to validate the observational deductions given the known initial conditions.

Moreover, it allows us to explore some of the unknown parameters such as beam density



4.4: Beam-plasma numerical simulations 123

and the level of Langmuir waves required for radio emission.

4.4.1 Electron beam dynamics

The evolution of accelerated electrons can be considered self-consistently using weak

turbulence theory where we have also taken into account binary collisions of energetic

electrons with the surrounding plasma. The approach is the same as Chapter 3 ex-

plained in Section 3.2 where we consider the time evolution of an electron distribution

function f(v, r, t) and the induced Langmuir wave spectral energy density W (v, r, t).

For chapter self-consistency, the equations modelling the one-dimensional propagation

of the electron beam are
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The background plasma is assumed to be a Maxwellian distribution with thermal ve-

locity vTe, density ne and plasma frequency ωpe. For a complete description of all the

terms in Equations (4.8), (4.9) refer to Section 3.2. The initial spatial distribution of

the particles is different from Chapter 3, taking the form of a tent distribution rather

than a Gaussian distribution

f(v, r, t = 0) = g0(v)exp

(−|r|
d

)

, g0(v) =
nb(α − 1)

vmin

(vmin

v

)α

(4.10)

with acceleration region size d, electron beam density nb and spectral index α. The

thermal spectral energy density of Langmuir waves is described by

WTh(v, r, t = 0) =
kBTe

4π2

ωpe(r)
2

v2
log

(

v

vTe

)

. (4.11)

This is the expression for the thermal level of a Maxwellian plasma when collisions are

weak.
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4.4.2 Observational constraints

The values derived from the observations in the previous section constrain some of the

key input parameters for the simulations. The starting height, hacc = 52 Mm which

corresponds to a background density of ne = 3×109 cm−3 using the exponential density

model given in Paesold et al. (2001). This gives a plasma frequency of 500 MHz relating

to second harmonic emission of 1000 MHz. The characteristic beam size d = 10.5 Mm.

The HXR spectral index γ is found from the RHESSI observations (Figure 4.7) which

allows us to constrain the electron velocity spectral index as 6 ≤ α ≤ 16.

The NRH images of the type III radio emission allow us to observe how the radio

source increases with decreasing frequency. Such an observation can provide informa-

tion regarding the magnetic field expansion. The size of the radio emission at 237 MHz

is approximately twice the size of the radio emission at 432 MHz taken at 30% of

emission level. This was measured around the two peak times of emission at 08:51:21

UT and 08:52:42 UT. However, the wavelength λ is approximately twice as large at

237 MHz compared to 432 MHz and so the angular resolution of the NRH is increased

by two. Moreover, scattering by density inhomogeneities will increases the apparent

size of the coronal radio source more at higher wavelengths (Bastian 1994). We thus

in the present case cannot observationally resolve any significant radial expansion of

the magnetic field. Such a scenario is equivalent to type III producing electron beams

propagating along thin coronal structures as observed in Trottet et al. (e.g. 1982);

Pick et al. (e.g. 2009), or having very small radial expansion of the magnetic field in

the low corona. The expansion is much smaller than what would be expected for the

inner heliosphere, where the magnetic field expands as a cone with an angle around

40o (e.g. Steinberg et al. 1985).

The density of electron beams responsible for type III emission is believed to be

small with Krucker et al. (2007) finding them 0.2% of the density of the downward

propagating electron beams responsible for HXR emission above 50 keV. With an

initial background density of 3× 109 cm−3 providing the upper limit to the downward

propagating electron beam, the upward propagating electron beam was injected with
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a density of nb = 104 cm−3 above 11 keV. However, observations show time dependent

intensities of HXR photons which is related to the density of the inducing beam. Such

results could indicate the potential need to consider a changing beam density. We

note that Equation (4.7) is independent of the density of the electron beam. The

starting frequencies found from the upwardly propagating electron beam should thus

be insensitive to rather large changes in beam density.

4.4.3 Numerical results

A high level of Langmuir waves is required to induce type III emission. We can estimate

the starting height, htypeIII , from the simulations through the ratio of Langmuir wave

spectral energy density to its initial thermal level W (v, r, t)/WTh(v, r, t = 0) or W/WTh.

The first point in phase space when W/WTh exceeds a certain level can give us insight

into how electron beams with different spectral indices become unstable.

The numerical results are presented in Figure 4.8 for a variety of different W/WTh

levels. By assuming Langmuir waves produce radio emission when they reach a certain

level of W/WTh, we can treat the curves in Figure 4.8 in a similar manner to the

observational results. By applying a linear fit to each curve, we can obtain an estimate

of the initial simulated acceleration region height and size using Equation (4.7). As

we know the actual initial simulated values for hacc and d, these estimates allow us to

check how accurate the method is for obtaining good estimates. Such a fit also provides

a numerical check for the simplified analytical relation Equation (4.7) represents. We

find the closest fit to the simulated hacc and d comes from the line where W/WTh = 105

giving hacc = 43.5 ± 5 Mm and d = 12.4 ± 0.6 Mm. These variables are within 20%

and 15% of the original numerical values respectively.

The results in Figure 4.8 show a small variation between the heights corresponding

to 103 < W/WTh < 106. Provided there are enough electrons to generate sufficient

Langmuir waves for radio emission, a change in the beam density has minimal effect

on the starting height htypeIII . Increasing or decreasing the beam density by one order

of magnitude changed the inducing height of W/WTh = 105 by at most 14 % when
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Figure 4.8: Heights corresponding to high levels of Langmuir waves from an unstable

beam with density 104 cm−3. Symbols and colours correspond to different levels of

Langmuir wave growth. Low levels (10 W/WTh) correspond to spontaneous emission

of waves. High levels correspond to beam-plasma instability.

α = 6 with a mean over all spectral indices of 3 %. Changing the beam density will

only vary the level of Langmuir waves which are produced upon the electron beam

becoming unstable. This result confirms the density independence of Equation (4.7)

where instability of the electron beam is mainly dependent upon the spectral index

and size of the electron cloud.

The ratio W (v, r, t)/WTh(v, r, t = 0) also provides information regarding the Lang-

muir wave phase velocities and onset times when the waves exceeds certain thresholds.

As electrons resonantly interact with Langmuir waves, the phase velocity of the Lang-

muir waves conveys information regarding velocities of the inducing electrons. The

phase velocities corresponding to the points in Figure 4.8 get smaller as the electron
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spectral index increases (softer spectrum). An example of the velocity variation is pre-

sented in Figure 4.9 for the level W/WTh = 105. Similarly the time required for the

beam to induce Langmuir waves at a certain level increases for larger spectral index

(Figure 4.9). Beams with larger spectral indices (with the same beam density) have

less high energy electrons. We thus expect Langmuir wave emission to be induced by

lower energy electrons which take longer to become unstable.

We can explore how the inclusion of an expanding magnetic field would change the

simulation results. By ignoring the increase in radio source size at lower frequencies

from NRH resolution and scattering we can assume the doubling of size between 432

and 237 MHz is because of a radially expanding magnetic field. Using the assumed

density model the magnetic field would then expand as a cone with an angle of θ = 6o.

By then assuming an acceleration site size which is as wide as it is long, we can constrain

r0 in Equation 4.8 to be 30 Mm below the solar surface. Running the simulations and

using the same method described above gives estimations of hacc and d which are 12%

and 40% of their original values. The expanding magnetic field causes the electron

beam to induce a high level of Langmuir waves further away from the acceleration site.

The frequencies corresponding to these heights do not agree as well with the observed

starting frequencies of the type III bursts.

The results in Figure 4.8 show a small variation between heights corresponding to

103 < W/WTh < 106. Changing the beam density will only vary the level of Langmuir

waves produced upon the electron beam becoming unstable. Provided there are enough

electrons to generate sufficient Langmuir waves for radio emission, a change in the

beam density has minimal effect on the starting height htypeIII . The level of Langmuir

waves induced for different beam densities is shown in Figure 4.10. Changing the

beam density by one order of magnitude changes the instability height of the electron

beam minimally. The heights corresponding to W/WTh = 104 change by at most

12 % when α = 6 with a mean over all spectral indices of 4 %. This result confirms

the density independence of Equation (4.7) where instability of the electron beam is

mainly dependent upon the spectral index and size of the electron cloud. It should be

emphasized that a certain number density of electrons is required to obtain arbitrarily
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Figure 4.9: Top: electron velocity spectral index plotted against the first phase velocity

at which Langmuir waves exceed the threshold W/WTh = 105. Bottom: electron

velocity spectral index plotted against the onset time required for the electron beam

to induce Langmuir waves exceeding the threshold W/WTh = 105.

large amplitudes of Langmuir waves. Simulations with nb = 103 cm−3 were unable to

produce Langmuir wave levels of 106 W/WTh. It is only the distance before the electron
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beam becomes unstable to Langmuir wave growth that is mostly unaffected by beam

density.

4.5 Discussion and conclusions

We used simultaneous observations of radio and hard X-ray emission during a solar

flare to gain insight about the acceleration region of energetic electrons. With a simple

model we have shown through an analytical relation how the starting height of type

III emission and the spectral index of the electron beam can be related to the height

and vertical extent of an acceleration region. By combining HXR spectral information

with the starting frequencies of the type III bursts, we have derived for our event

an estimate on the acceleration site height and size of hacc = 52 ± 21 Mm and d =

10.5± 1.6 Mm respectively. We have also used self-consistent numerical simulations of

an electron beam which can induce Langmuir waves in a background coronal plasma.

The simulations checked our predicted acceleration region values and allowed us to

explore unknown parameters of the electron beam and Langmuir wave distributions.

The value found for hacc agrees with values in the range 20 - 50 Mm, deduced from

electron time-of-flight analysis for HXR emission (Aschwanden 2002). This scenario

indicates an acceleration region in the corona well above where SXR are imaged. The

error on hacc is quite large but within the 95 % range of 2-sigma the acceleration region

remains within the corona. The value found for d is roughly an order of magnitude

higher than previously found before in Aschwanden et al. (1995a). Assuming the re-

lation in Equation (4.7) the acceleration size in Aschwanden et al. (1995a) would not

be able to produce significantly varying starting frequency of type III emission given a

static acceleration site. Such a small acceleration site predicted by Aschwanden et al.

(1995a) may be relevant for type III radio bursts when very little or no evolution of

the starting frequency can be observed.

Using the estimates for hacc and d we ran self-consistent numerical simulations of

an electron beam able to resonantly induce Langmuir waves in the background coronal

plasma. We analysed the distance required for a large magnitude of Langmuir waves
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Figure 4.10: Heights corresponding to high levels of Langmuir waves from an unstable

beam starting at a minimum altitude of 0.075 Rs with density 103 cm−3 (top) and

105 cm−3 (bottom). The heights of Langmuir wave growth are very similar.
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to be induced through beam instability for a variety of initial beam spectral indices.

A linear fit to the initial beam spectral index and the height associated with large

Langmuir wave production gave a good estimation of the initial acceleration region

height (within 20%) and the initial acceleration region size (within 15%) . The result

fits with the analytical predictions from Equation (4.7) and hence the relation is a

powerful diagnostic tool for flare acceleration site properties. In line with the analytical

equation the electron beam instability criteria was significantly dependent upon α and

d and almost independent on the beam density, which was confirmed by numerical

simulations. The simulations also gave an estimate of W/WTh ≥ 105 as the magnitude

of Langmuir waves required to produce coherent radio emission. The discrepancies

found in the acceleration region properties are due to additional terms present in the

numerical simulations which were not present for the simple analytical expression.

It is also possible to explore how a different assumed initial electron beam distri-

bution in space will affect our results. Initially in Equation 4.2 we assumed a tent

distribution for the electrons in space. We now consider an initial electron beam dis-

tribution which is Gaussian distributed in space such that

f(v, r, t = 0) = g0(v)exp(−r2/d2). (4.12)

The instability criteria for this distribution was already discussed in Mel’Nik & Kontar

(1999) and, assuming small collisional damping, gives the relation

htypeIII = 2d
√

α + hacc. (4.13)

The dependence of htypeIII on the square root of the spectral index originates from

the r2 in the exponential for the electron distribution function. Unfortunately the

observational errors on electron beam spectral index were too large to discriminate

between the two models (Eq (4.2) and Eq (4.12)). Even without observational error

estimates such a fit to the data gives hacc = 33 ± 51 Mm and d = 22 ± 7 Mm which

is not defined. More detailed observations are thus needed to discriminate between

different initial electron distributions in space.

Another assumption we considered was a static acceleration site during the entire

event. Kane & Raoult (1981) considered a moving acceleration site which decreased
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in altitude to explain why a type III burst’s starting frequency increased with time.

Assuming the magnetic nature of reconnection, any source movement would typically

be at the Alfven velocity. At heights around 100 Mm, this is typically around 1 Mm

s−1 (Arregui et al. 2007). The Alfven velocity is too slow to account for the varying

starting frequencies of the type III emission observed in the April 15th flare considered.

Moreover, the acceleration region would have to move upwards and downwards to

account for the evolution of the starting frequencies. Our results do not rule out

the acceleration region moving in altitude but this will probably not be the dominant

process for determining dynamic type III starting frequencies on a time scale of seconds.

Flares associated with the same active region responsible for the 08:51 UT flare

on the April 15th 2002 have been analysed previously. Sui & Holman (2003) found

a coronal HXR source above the loop-top HXR source during another flare around

23:00 UT on the same day. The high coronal HXR source was initially detected at

an altitude of 25 Mm and moved with a speed of 0.3 Mm s−1 up to an altitude of 40

Mm as the HXR flux increases. Moreover, the higher energy photons (16-20 keV) are

detected at lower altitudes than the low energy photons (6-8 keV). This is indicative

of an electron beam streaming down from a high acceleration region with high energy

electrons having a larger stopping distance than low energy electrons. Such a scenario

fits with the derived high acceleration region hacc ≈ 50 Mm we found in this study. A

similar result was found for other high coronal sources (Liu et al. 2008, 2009) where

high energy photons are imaged at lower altitudes than lower energy photons.

In conclusion, we stress that simultaneous HXR and radio observations are a tool

to estimate the otherwise unmeasurable sizes of the acceleration site. The results

from our first trial of the relation given by Equation 4.7 suggest that this size can be

≈ 10 Mm located at height ≈ 50 Mm, occupying a substantial fraction of the corona.

The size is larger than the HXR sources which are typically observed with RHESSI and

in the range between a few Mm up to a few tens of Mm (Emslie et al. 2003). Future

studies should have a higher flux of HXR to better constrain the deduced electron

beam spectral index.



Chapter 5

Conclusions and future work

The motivation for this thesis was to understand better the transport of energetic

keV electrons as they propagate from the Sun to the Earth. In Chapter 2 we inves-

tigated the approximate broken power-law fluence spectra of electron beams at the

Earth. Chapter 3 saw our model being improved to simulate realistic beam densities

by taking into account electron-electron Coulomb collisions and the radial expansion of

the inner heliosphere magnetic field. Chapter 3 also took background electron density

fluctuations into account and analysed their effect on the resultant spectral indices of

electron beam broken power-law fluence spectra at the Earth. Chapter 4 investigated

the initial instability of solar electron beams. Using a combination of observational

data and numerical simulations, Chapter 4 predicted both acceleration region heights

and sizes. Whilst all chapters provided necessary conclusions and future considera-

tions this chapter will provide some further insight into related type III radio emission

properties and other possible future work.

5.1 Type III frequency drift rate

Numerical simulations of electron beams propagating from the Sun to the Earth pro-

vide sample distributions of the Langmuir wave energy density. As Langmuir waves

are required to generate the coherent type III radio waves, we can use the Langmuir
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wave distribution as a proxy value for the type III temporal evolution. Such an ap-

proximation provides some insight into type III frequency drift rate.

The spatial position of the maximum Langmuir wave energy density at every point

in time can be used as an initial estimation of the frequency drift rate. To illustrate this

we can use the data from the simulation in Section 3.3 with an unperturbed background

electron density gradient. Figure 5.1 includes the background plasma frequency where

the maximum Langmuir wave energy density was found at every point in time. A

power-law fit to the green curve in Figure 5.1 is also displayed for frequency f in MHz

vs time t in seconds, giving the relation f = 230t−1.09. Evolution of the maximum

in Langmuir wave energy density resembles a power-law very closely as the errors are

very small. Extending the comparison to distance vs time we find a power-law fit to

the data giving x = 43t0.96 where x is in Mm and t is in seconds. Assuming a constant

speed as x is nearly proportional to t, we get a velocity of 43 Mm s−1 which is very

close to the minimum velocity in the simulations. Such a result can be explained by

considering Equation 3.6 for the wave energy density. We observe that waves with low

phase velocities have the highest energy. This, coupled with the increased number of

electrons at low velocities leads to the majority of the energy contributing to Langmuir

wave energy density coming from low phase velocity Langmuir waves. Such Langmuir

waves are not the most efficient at producing second harmonic radio emission (see

Section 1.3). Moreover, the peak of Langmuir wave energy density may not necessarily

translate to the peak in radio wave intensity.

An alternative approximation of the drift rate of type III radio bursts is the initial

onset of a high level of Langmuir wave energy density above the thermal level. Such

an approximation is similar to the observational method for estimating type III drift

frequency used by Alvarez & Haddock (1973) (referenced now as AH73). Figure 5.1

displays the observational result from AH73 who used the initial onset time of type III

radio emission at specific frequencies (Section 1.4.2). The observational result gives the

frequency vs time relation of f = 240t−1.19. We can again use the data from Section

3.3 and the result from Chapter 4 regarding an expected threshold of 105 W/WTh for

type III emission onset. Figure 5.1 includes the background plasma frequency in MHz
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Figure 5.1: Background plasma frequency vs time of the maximum Langmuir wave

energy density Ew(r, t)/Ew(r, t = 0) (green) and the onset of 105 Ew(r, t)/Ew(r, t − 0)

(blue). Power-law fit to the data are also shown in purple and black respectively. The

red dashed line is the frequency vs onset time observational fit from Alvarez & Haddock

(1973) between 550 MHz and 74 KHz. The banding at early times on the blue curve

is an artefact of low temporal resolution.

where Langmuir wave energy density initially reaches this threshold at every point in

time. A power-law fit has also been displayed giving the relation f = 129t−1.1 over the

frequencies 89 MHz to 25 kHz. The simulation time of 80 minutes led to data only being

written every 5 simulated seconds. A consequence of saving data every 5 seconds is the

discrete nature of the blue curve in Figure 5.1 at early times. The observational result

from AH73 very closely resembles the power-law fit to the simulated data. We note

the simulation curve does not resemble a straight line in log space and thus probably

does not correspond to a constant velocity. One sigma errors of the power-law fit on

the simulation data are actually lower than the errors on the data presented by AH73

and significantly lower than the errors on the other data which AH73 extrapolate their
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fit to.

It is apparent that estimating the drift frequency of type III radio bursts as a power-

law is an approximation of a more complex, frequency dependent relation. Moreover,

Melrose (1980c) reports a different power-law relation in the corona to the one from

AH73. From the insight obtained in Chapter 3 regarding beam evolution, the result

is not surprising. Electron kinetic energies contributing to the beam-plasma structure

(BPS) responsible for type III emission vary throughout Sun-Earth propagation. The

maximum electron energy is high (around 50 keV) in the corona and much lower

(around 5 keV) at the Earth. We thus expect a reduction in the velocity which the BPS

travels through the heliosphere. Figure 5.1 displays such properties with the maximum

velocity of the BPS being reached after 1 minute and then decreasing during the rest

of its travel to velocities near the minimum simulated.

5.2 Electron distribution function

A new NASA spacecraft, Solar Probe Plus (SPP) is planned for launch around 2016.

Its mission will be to fly close to the Sun (roughly 9 Rs) and take in-situ measurements

of the inner heliosphere. An ESA spacecraft Solar Orbiter (SO) is also planned for

launch at similar dates and will fly to around 0.2 AU while taking similar in-situ

particle observations. Measurements like these have already been taken by the Helios

spacecrafts but SPP and SO will be going much closer to the Sun and have state-of-the-

art particle detection instruments. For this reason the prediction of how electron beams

evolve in the inner heliosphere is particularly topical. These probes will collect crucial

in-situ data to test our theory and understanding of electron transport mechanisms in

several year’s time.

The next evolution of this work will be to predict the spectral and energetic evo-

lution of an electron beam-plasma structure as it leaves the Sun and travels towards

Earth. For the beam-plasma structure to more closely resemble real solar electron
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beams, the injection will have a temporal component of the form

f(v, x, t) = go(v) exp

(−x2

d2

)

1

2
√

π(τ1 + τ2)
exp

(−(t − t0)
2

τ 2

)

(5.1)

where τ = τ1 in the rise time t < t0 and τ = τ2 in the decay time t ≥ t0. τ1 and τ2

represent the rise and decay characteristic times with τ1 < τ2. Observational values for

τ1 and τ2 can be obtained from HXR measurements of solar flares to give an accurate

representation of electron beam release from the corona.

A consequence of an electron beam generating a break in the electron spectra during

transport is the reduction in beam energy. Energy is transferred to Langmuir waves

during transport. While the electrons are able to re-absorb some of this energy, part

of the energy is lost to the background plasma through Landau damping (see Section

2.4). Another goal of this work will be to find how the energy in both the beam-plasma

structure and the lost energy through Landau damping are a function of distance and

time. The predicted bulk of the energy loss will be close to the Sun as this is the

location where an electron beam generates the highest intensity of Langmuir waves.

The evolution of the spectral break is also interesting as the break is not simply

formed instantly when the beam leaves the solar corona. Instead the electron beam

forms a plateau in velocity space during intense production of Langmuir waves. This

plateau dissipates with distance as the high energy electrons become too rarefied to

continue wave-particle interactions. Moreover, the inner heliosphere turbulence re-

stricts the growth of Langmuir waves and alters how the spectral of the electron beam

evolves with distance (Reid & Kontar 2010).

5.3 Type III rise and decay rates

It was reported in section 1.4.2 that observationally type III emission takes the form

of a Gaussian total rise time te followed by a power-law e-folding decay time td. We

find numerically the energy density of Langmuir waves displays a Gaussian total rise

time but does not display a power-law decay time. Moreover, we find numerically

that Langmuir wave energy density decays rather abruptly compared to the onset
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time in contradiction to observations. Such a contradiction could be linked to the

lack of a temporal injection of electrons. The abrupt decrease of Langmuir waves

energy density at any point in space is directly related to the electron beam moving

away and re-absorbing Langmuir wave energy. Extending the electron beam in space

through a prolonged temporal injection would spread the Langmuir wave energy density

in time. Some Langmuir waves are unable to be re-absorbed by the electron beam

when background electron density turbulence is considered. They do not, however,

correspond to a large magnitude of Langmuir wave energy density. Further study is

required to see if such Langmuir waves could be responsible for the decay time of type

III emission.

5.4 Radio X-ray further study

The work done in Chapter 3 was successful in determining a reasonable estimate for

not only the acceleration region height but also its characteristic size. Unfortunately

the errors on the HXR data available were large, leading to substantial errors on the

results. In spite of this, the results seemed to correspond with the data when the

observational errors were not taken into account.

I propose to take this aspect forward in the near future and create a new study

on a variety of different solar flare events where the HXR and the radio emission is

correlated in time. Such events will hopefully have more intense HXR emission and also

be extended temporally. Better observation data obtained from such flares should not

only provide better estimates but will provide more than one observational prediction

of flare acceleration region properties.

It should also be possible to verify these new results by using numerical simulations.

The results of such simulations will also help us to understand better the initial electron

beam dynamics in the corona. Depending on the quality of the observational results,

it may also be prudent to extend the numerical simulations to take into account an

entire event. Modelling such an event would require either a series of discrete bursts

with different spectral indices or a time injected electron beam with an initial spectral
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index that evolves in time.

Another candidate for considering the starting frequency of radio bursts are type

III-L bursts (Cane et al. 2002; MacDowall et al. 2009). Such radio bursts happen late

in comparison to HXR emission. They also have the property of starting at lower

frequencies, around 1 MHz. Their starting frequency could be related to either the

temporal, spatial or energetics of the electron beam acceleration or it could be a prop-

erty of the high coronal plasma.

5.5 Type III frequency ranges

As reviewed in Chapter 1, type III bursts can extend to the kHz frequencies, becoming

interplanetary (IP) bursts. The properties of such bursts provide further insight into

inducing electron beams that are able to support Langmuir wave growth at distances

of 1 AU or greater. This avenue of research can be generalised to find the stopping fre-

quency of type III radio bursts. The stopping frequency not only determines why bursts

become interplanetary but also determines at what distance in the inner heliosphere

radio emission will cease.

Properties of the background electron density and the electron beam can be respon-

sible for the observed stopping frequency of type III radio bursts. A lack of electron

beam density will stop the production of Langmuir waves. From Chapter 3 the coronal

and inner heliospheric magnetic field expansion properties contribute to the rarefica-

tion of the electron beam during transport. Accelerated electron beams without enough

initial density may be able to briefly generate Langmuir waves in the corona but stop

when the electron beam expands in space. Another candidate contributing to stopping

frequency is the local background electron plasma turbulence. It has been observed

(e.g. Buttighoffer et al. 1995) that electrons can stream into the heliosphere via chan-

nels in the solar wind which have low levels of background turbulence. Such low levels

would provide favourable conditions for Langmuir waves to be induced at distances

≥ 1 AU and hence produce IP bursts. As shown in Chapter 4 the spectral index of

the electron beam has a huge influence on the starting frequency of radio bursts. The
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spectral index will also contribute to the stopping frequency as it determines the spec-

tral distribution of electrons. Not enough electrons at velocities ≥ 2 vTe will cause a

lack of Langmuir waves through Landau damping from the background plasma.

5.6 Closing statement

In summary, the work described in this thesis illustrates that modelling the transport

of electrons from the Sun to the Earth and beyond is a complex problem involving non-

linear, interacting electromagnetic systems. Through the use of simulations, a better

understanding of some aspects of the generation and transport has been obtained. The

wide variety of phenomena exhibited by solar radio bursts and observed electron fluence

measurements show that the complexity of the electron beam transport has not yet

been fully modelled.
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