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Abstract 

 
 Sporophytic self-incompatibility is a genetically controlled inbreeding 

prevention mechanism, which is prevalent in the Brassicaceae, and has been 

reported in a variety of high profile species. Despite the benefits of preventing 

self-fertilization in terms of maintaining genetic diversity, variation in the 

strength of self-incompatibility (SI) has also been well documented, as has a 

shift from SI to inbreeding at the species and population levels. An important 

underlying driving force behind a switch to inbreeding could be the reproductive 

assurance provided by not requiring an unrelated mating partner for sexual 

reproduction. This could be beneficial for a species undergoing rapid 

colonization, because only a single individual is required to begin a sexually 

reproducing colony after a long-distance dispersal event (Baker’s law), which is 

characteristic of the plight of many species after the last glacial maxima. The 

purpose of my thesis was to evaluate the effects of variation in mating system 

on post-glacial colonization, using two model species that show intraspecific 

variation in outcrossing rates.  The first, Arabidopsis lyrata, represents an 

excellent model system to assess post-glacial colonization history because it 

exhibits broad geographical and ecological ranges, and has a recently completed 

genome sequence. In North America, A. lyrata has further benefits as a model 

system, namely it exhibits variation in the strength of SI and shift to SC at the 

population level, which is not observed in Europe. The second species is Arabis 

alpina, which also appears to show population level variation in mating system 

strength in Europe based on variation in FIS. This has been putatively linked to 

colonization history after the last glacial maxima.  Unlike in A. lyrata however, 

its mating system has not been characterized. Mating system delimitation in A. 

alpina has the potential to aid the interpretation of patterns of ecological 

genetic diversity, which may in part be influenced by local or regional stochastic 

changes to mating system variation. 

 

 My first objective was to identify if A. alpina had a functioning SI system 

based on both self-fertilization experiments, and allozyme based outcrossing 

rate estimations. I found strong evidence to suggest the presence of a functional 

barrier preventing self-fertilization in A. alpina. I identified multiple putative 
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SRK alleles (the female determinant of self-incompatibility), suggesting that the 

same type of sporophytic system seen in other Brassicaceae species governs SI in 

this species. I also demonstrated linkage of SI phenotype to some SRK genotypes 

by diallel crosses, strengthening the case for a functional SI system in this 

species. Further to this I demonstrate variation in mating system strength 

between populations, and autonomous inbreeding was seen in a single 

population. I note that the potential changes in SI status coincide with areas 

suspected to differ in post-glacial history based on allozyme diversity reported in 

previous work.  

 

 While the number of populations sampled was insufficient to link mating 

system variation to colonization history in A. alpina, mating system variation has 

been more extensively characterized in North American A. lyrata, allowing more 

fine-scale resolution of population structure and post-glacial colonization 

history; an underlying objective of my thesis. I used three molecular marker 

systems (cpDNA, nuclear micro-satellites and allozymes) to assess these 

phylogeographic questions, and present evidence of three putative colonization 

routes for the Great Lakes region. These putative routes are congruent with 

those described in other species, particularly amphibians and reptiles. Further to 

this I considered the possible location of glacial refugia, and likelihood that 

plant taxa may have survived during Pleistocene glaciation in close proximity to 

the Laurentide Ice Sheet, particularly in Illinois, Indiana, Wisconsin and 

Minnesota, which may also be true for some animal taxa. I examined patterns of 

population structure, and scenarios that may have influenced this, and present 

support for the previously documented theory of multiple breakdowns in SI in 

this geographic region. 

 

 My final objective was to assess the suitability of the three marker 

systems for phylogeographic reconstruction in A. lyrata, by comparing and 

contrasting the patterns of population structure, and colonization history 

suggested by each system.  Levels of variation observed between the marker 

systems used varied, and I explored how these patterns complemented and 

contradicted each other. As expected, the nuclear micro-satellite loci represent 

the system with the greatest genetic diversity, but do not allow meaningful 

conclusions to be drawn regarding colonization history because of low levels of 
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shared variation between populations. Conversely, the allozyme loci presented 

much lower levels of genetic diversity, but support population structuring 

conclusions based on both cpDNA data and previous studies of A. lyrata and 

other taxa in this area. The cpDNA marker (trnF) represents a somewhat 

contentious system to use for phylogeography in A. lyrata, as it contains a 

tandem array of highly variable, but complexly evolving duplications 

(pseudogenes). I concluded that these structural changes could be 

phylogenetically informative when pseudogene evolutionary relationships can be 

resolved This was based on variation in patterns of diversity, and the subsequent 

population structure change that occurred when using different methods of 

assessing trnF variation. 
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1 General introduction 
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1.1 Mating system variation 

 Plant mating systems, while hugely diverse, can be separated into two 

principle categories: asexual reproduction, creating progeny that are genetically 

identical to the mother; and sexual reproduction, which occurs when male and 

female gametes fuse, creating progeny that are genetically distinct from the 

mother (with the exception of those produced by self-fertilization) (Maynard 

Smith 1978). In species with co-sexual flowers, containing both male 

reproductive structures (stamens, consisting of anther and filament) and female 

reproductive structures (pistils, consisting of stigma, style and ovary), 

reproductive efficiency is increased, but so too is the risk of self-fertilization 

and the associated detrimental consequence, inbreeding depression (Lande and 

Schemske 1985).To counteract this, many co-sexual species prevent self-

fertilization by being self-incompatible (SI). In homomorphic (multialleic) 

systems (Brewbaker 1957), SI is a genetically determined, pre-zygotic barrier, 

which recognizes self or self-related pollen and prevents fertilization, thus 

removing risk of inbreeding and maximizing the potential for outcrossing. 

Although the expression of SI takes a variety of forms, including variation in their 

time of action, floral polymorphism, gene of expression and the number of 

alleles involved (De Nettancourt 1977), and functional competence of SI varies 

between systems that employ different mechanisms (Lewis 1979), the evolution 

of SI is considered a significant factor in the success of early flowering plants 

(Whitehouse 1950).  Estimates suggest that around 50-60% of angiosperms have 

an SI system (Brewbaker 1959; Hiscock and Kües 1999), with SI considered an 

ancestral state in many lineages, rather than the result of multiple independent 

origins from self-compatible (SC) species within a lineage (Allen and Hiscock 

2008; Igic et al 2004; Takebayashi and Morrell 2001). 

 Two homomorphic SI systems are particularly well documented within the 

angiosperms: 1) A ‘gametophytic’ system (GSI), where pollen incompatibility 

type is dictated by the grain’s own haploid genotype (reviewed by Hiscock and 

McInnis 2004), with single incompatibility (S) locus systems known in a variety of 

families, including well characterized systems in the Solanaceae and Rosaceae 
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(reviewed by Weller et al 1995) and multiple loci (two or more) systems also 

occurring in several families, including grasses (Li et al 1994).  2) Single locus 

‘Sporophytic’ SI systems (SSI), where the pollens incompatibility type is 

determined by the diploid plant that produces it, have been well documented in 

the Brassicaceae and the Asteraceae (reviewed by Hiscock and McInnis 2004). 

1.2 The costs and benefits of SI 

 As SI is thought to evolve under conditions of extreme inbreeding 

depression, this will also result in an increased genetic load due to high 

heterozygosity (Charlesworth & Charlesworth, 1979a; Charlesworth et al 1990; 

Byers & Meagher, 1992; Charlesworth, 2006b). Thus, there is an expectation that 

SI loss will have detrimental fitness consequences, as a result of exposing 

deleterious mutations, which result from increased homozygosity and loss of 

genetic diversity resulting from inbreeding. Subsequently, inbreeding 

depression, as a mechanism of SI maintenance, has received much empirical and 

theoretical attention (Charlesworth & Charlesworth, 1979b; Lande & Schemske, 

1985; Charlesworth & Charlesworth, 1987; Barrett, 1988; Charlesworth & 

Charlesworth, 1990; Barrett & Charlesworth, 1991; Uyenoyama & Waller, 1991; 

Charlesworth et al 1992a; Husband & Schemske, 1996; Charlesworth & 

Charlesworth, 1999; Wang et al 1999; Carr & Dudash, 2003), including early work 

by Darwin (1876). 

 Species that maintain a strong SI system are likely to benefit from a 

sheltered genetic load; however, they may subsequently suffer from a reduction 

in compatible mating partners compared with selfing individuals, which benefit 

from reproductive assurance (Baker 1955; Darwin 1876). This will be particularly 

apparent in small populations, where the number of different compatible 

partners (with different mating specificities) will likely be low. Transitions from 

SI to self-compatibility (SC) is frequent at the species level, and is also well 

documented within species, at the population level (Weller & Sakai 1999). This 

suggests that there are likely costs associated with having an SI system, or 

benefits, in certain situations, to being SC. Once a population has undergone the 

shift to self-compatibility, re-establishing a functional SI system is potentially 

very difficult, thus shifts to SC are considered unidirectional (Igic et al 2006). 



  16 

The absence of an SI system however, is not always synonymous with complete 

selfing. Intermediate levels of self-fertilization can be maintained within species 

without functional SI systems (Lloyd 1979; reviewed in Goodwillie et al 2005), 

thus suggesting that a reversion to outcrossing could theoretically be achieved 

by other mechanisms (Nasrallah et al 2004). Despite some theory predicting that 

intermediate rates of outcrossing will be unstable (Lande & Schemske 1985), 

there is evidence to suggest that this may not always be true (reviewed in 

Goodwillie et al 2005). Intermediate rates of outcrossing (between complete 

outcrossing and complete inbreeding) may be facilitated by the trade-off 

between inbreeding, allowing reproductive assurance or increased colonization 

ability, and outcrossing, increasing offspring quality (Bateman 1955; Jarne & 

Charlesworth 1993; Charlesworth 2006b). 

 The consequences of inbreeding for a particular species, population or 

family, will be highly dependant on their own history of outcrossing. While 

theoretical models may predict that inbreeding depression will be exposed by 

selfing because of the increased effect of deleterious recessive mutations 

(Schemske & Lande, 1985), it should also theoretically reach a point where it is 

lower in selfing populations, than it is in outcrossing ones as a result of purging 

these deleterious recessives. However, the strength of this effect is 

multifaceted, and will depend on the population size and the developmental 

stage at which inbreeding depression acts, the magnitude and/ or duration of 

inbreeding, the genetic basis of inbreeding depression, the number of loci that 

contribute, the magnitude of effects of alleles at the contributing loci, and 

linkage to genes under viability selection (Charlesworth & Charlesworth, 1987; 

Barrett & Charlesworth, 1991; Charlesworth et al 1992; Husband & Schemske, 

1996). These factors could allow recessive mutations, that have only a mildly 

deleterious effect to avoid effective purging, thus maintaining substantial 

inbreeding depression even in populations that are highly inbred (Charlesworth 

et al 1990, 1991). 

 The impact of inbreeding may be further complicated by population 

subdivision and biogeographical history (Vekemans et al 1998; Schierup et al 

2000; Charlesworth, 2003), along with life history (Morgan, 2001) and local 

environmental effects (Hayes et al 2005). This may suggest that gene flow 

between populations, which differ in mating system, could affect the rate at 
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which purging occurs. This could be particularly important when considering 

conservation, as it is unclear whether purging of genetic load has the ability to 

diminish the detrimental effects presented by reduced heterozygosity, and over 

what time scales it might occur (Hedrick & Kalinowski, 2000; Glémin et al 2001; 

Keller & Waller, 2002). Theoretical studies suggest that plant populations that 

exhibit slight inbreeding and strong population structure will be the most likely 

to show purging (reviewed in Keller & Waller, 2002), although there is little 

empirical evidence to corroborate this. Populations that demonstrate local 

adaptation to inbreeding could suffer from outcrossing depression (Bailey & 

McCauley, 2006), where the original parental gene combinations are broken up 

by recombination after mating. This can result in some offspring being 

homozygous for one parent's genes at one locus and the other parent's genes at 

another locus. These genome rearrangements may disrupt epistatic interactions 

that confer fitness in specific environments (local adaptation), as well as gene 

interactions that are independent of the environment (intrinsic coadaptation) 

(Dobzhansky 1948; Templeton 1986). This has the potential to affect the balance 

between selfing and outcrossing, despite the potential for inbreeding 

depression. The majority of documented evidence for purging comes from 

comparison of selfed and outcross progeny from species that do not have a 

genetically controlled SI system in place (Byers & Waller 1999). This likely 

reflects the difficulties associated with forcing SI plants to self, although this 

can sometimes be overcome by pollination under increased levels of CO2 

(Llaurens et al 2009).  Since SI is considered ancestral in many plant lineages 

(Allen & Hiscock 2008; Igic et al 2004; Takebayashi & Morrell 2001), species with 

an SI system will, in general, have experienced a long period of outcrossing. 

Thus, the expected magnitude of inbreeding depression will be high, which 

means that some purging is probably necessary to facilitate a shift to inbreeding. 

 To fully understand the selective forces that govern mating system 

regulation, it is necessary to compare the genetic consequences of inbreeding in 

closely related species that are predicted to have shared the same SI system in 

the past. As selfing is theoretically expected to reduce effective population size 

and effective recombination rates (Ne), it is expected to result in reduced 

polymorphism, increased linkage disequilibrium (non-random association of 

alleles at two or more loci) and hitchhiking between linked genes (Charlesworth 
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& Wright, 2001; Wright et al 2002; Charlesworth, 2003; Glémin et al 2006). 

Increased isolation between selfing populations relative to outcrossers can result 

directly from lack of outcrossing or indirectly from accompanying changes, such 

as small flowers and low pollen output (Glémin et al 2006). The effects of 

isolation on population structure means that making general predictions about 

the relative species-wide diversity in inbreeders and outcrossers, is not possible, 

despite the reduced Ne caused by homozygosity. This is because high levels of 

diversity can be maintained between selfing populations (Charlesworth, 2003), 

which in turn means that selfing species may actually show higher levels of 

diversity than their outcrossing relatives in certain cases. 

1.3 SI in the Brassicaceae 

 In most genetically controlled SI systems, if proteins in the female tissues 

recognize surface proteins from the pollen grain as self, a signal is sent to block 

pollen tube growth. As the determination of self requires independent genes for 

the male and female components, it is essential that recognition specificity be 

maintained. If this lock-and-key mechanism is interrupted, it can result in SI 

break down. 

 In the SSI system present in the Brassicaceae, the genes that code for SI 

specificity in pollen (SCR; S-locus Cysteine Rich) and pistils (SRK; S-Related 

Kinase) are organized into self-recognition haplotypes, which effectively 

function as a single locus that can span over 100 kb (Suzuki et al 1999; Kusaba et 

al 2001; Shiba et al 2003). Low levels of recombination are essential in this 

region, in order to maintain the same specificity in both male and female 

components (Awadalla & Charlesworth, 1999). It is not known, however, how 

long this would be maintained for, if SI functioning were lost. 

 In individuals which are strongly SI, absence of recombination in the S-

gene region may lead to balancing selection (maintenance of two or more alleles 

in equilibrium at higher frequencies than can be explained by mutation, within a 

population) that extends to genes in close physical proximity to those directly 

under selection (Charlesworth, 2006a). This has been demonstrated by isolations 

of genes, in close proximity to the S-locus, which show trans-specific 
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polymorphisms (the occurrence of similar alleles in related species) 

(Charlesworth et al 2006) and high levels of linkage disequilibrium with genes 

flanking S-genes (Castric et al 2008; Hagenblad et al 2006; Ruggiero et al 2008).  

 In SSI systems, the haploid pollen grain carries a diploid number of SCR 

proteins on its surface, because diploid cells in the tapetum deposit them. 

Expression of SCR alleles from the sporophytic tissue is determined by 

dominance interactions (which can lead to one or both being expressed), as is 

the SRK presented to the pollen grain at the stigma surface  (reviewed in 

Charlesworth et al 2000; Hatakeyama et al 2001). Further to this, certain 

haplotypes can express different dominance in the pollen and stigma: for 

example, one haplotype maybe dominant in the stigma, and thus expressed, but 

co-dominant in the pollen and so both are expressed (Bateman 1955; Thompson 

& Taylor 1966). This can result in offspring production between individuals that 

share S-haplotypes, effectively increasing the level of inbreeding in populations 

that maintain a strong SI system. As SRK is expressed irrespective of dominance 

status, it is thought that dominance is under the control of SCR (Hatakeyama et 

al 2001; Kusaba et al 2002; Shiba et al 2002). 

 Recognition of ‘self’ activates an SRK-mediated signalling cascade in the 

pistil, that is part of a ubiquitination-degradation type of cell–cell recognition 

system (Chapman & Goring 2010). Control of this signal transduction pathway 

relies on a complex interplay between promoters and inhibitors (Cabrillac et al 

2001; Takayama & Isogai, 2003; Goring & Walker, 2004; Murase et al 2004; 

Chapman & Goring 2010) resulting in self-related pollen tube penetration being 

prevented. This pathway has many steps; a mutation or disruption at any of 

these steps could effectively cause loss of SI. With this in mind, an expectation 

for multiple independent SI losses, each comprising a different mechanism for 

loss could be justifiable. As at least some of the downstream components of the 

signalling pathway are located away from the S-locus, changes to SRK and SCR 

may not be seen for some time after the disruption to SI function. 
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1.4 Mechanisms of SI breakdown 

 Although it is clear that having a functioning SI system presents many 

benefits to a species, the most important of which is likely inbreeding avoidance 

(reviewed by Charlesworth 2003), loss of a functioning SI system is not 

uncommon at the species level, and has been documented in a wide range of 

angiosperm taxa (Weller and Sakai 1999). There have been a number of 

mechanisms proposed to account for this, particularly among members of the 

Brassicaceae, including the recently reported 213 base pair inversion of the SCR 

gene in Arabidopsis thaliana (Tsuchimatsu et al 2010).  This inversion is 

associated with a high proportion of European accessions of the SC and highly 

inbreeding species, and its derivative haplotypes are thought to be responsible 

for loss of SI (Tsuchimatsu et al 2010). Nasrallah et al (Nasrallah et al 2002) 

demonstrated that introduction of functional SCR and SRK allele copies from SI 

Arabidopsis lyrata into SC A. thaliana can partially restore SI function in some A. 

thaliana accessions. This suggests that fixation of a non-functioning allele may 

be responsible for the loss of SI in this species. Mechanisms not directly 

associated with the S-locus may also play a role in SI loss in certain species; 

however, Cabrillac et al (2001) demonstrated that a downstream component of 

the pollen rejection response (ARC1) in Brassica oleracea might be responsible 

for SI loss, suggesting that regulation of signal transduction may also be 

important for modifying the SI/SC response.  

 Population-level variation in mating system is seen extensively throughout 

the Brassicaceae and has been reported in many genera, including Arabidopsis 

(Foxe et al 2010; Mable et al 2005a; Mable and Adam 2007), Brassica (Hinata et 

al 1995), Capsella (Paetsch et al 2006), Leavenwortia (Koelling et al) and 

Raphanus (Okamoto et al 2004).  Furthermore, quantitative variation in the 

strength of the SI response within a species, is also well documented, and may 

be an important transition to SC (Good-Avila and Stephenson 2002; Levin 1996; 

Nielsen et al 2003; Vogler and Stephenson 2001). This means that the SI response 

of a self-incompatible plant can be ‘leaky’ to such an extent that it exhibits 

partial self-compatibility (PSC). PSC has been attributed to a variety of causes 

including: low levels of S-allele products being expressed in flowers (Mena-Ali 

and Stephenson 2007), the action of modifiers able to influence the efficiency of 
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the SI reaction (Good-Avila and Stephenson 2002), or the presence of post-

pollination mechanisms leading to floral abscission and fruit abortion (Vallejo-

Marin and Uyenoyama 2004). PSC is typically associated with either the 

production of small fruits with few or small seeds (following natural or enforced 

self-pollination), or a weakening of the SI response, which corresponds with the 

flowers’ age (Liu et al 2007; Stephenson et al 2003; Vogler and Stephenson 

2001). 

 There is some evidence from populations experiencing multiple losses of 

SI in the genus Arabidopsis that supports the idea that PSC could be an 

evolutionary transition to an increased level of self-fertilization. In North 

American A. lyrata, variation in the strength of SI at both the individual and 

population levels is well documented (Mable et al 2005a), with a number of 

populations having shifted from predominantly outcrossing, to predominantly 

inbreeding (Foxe et al 2010; Mable and Adam 2007). Within populations, PSC 

individuals have been shown to exhibit similar levels of genetic variation to their 

SI neighbors (i.e. from the same population; Hoebe et al 2009). Within this 

species, it is possible that the loss of SI might have started with weakening of 

the incompatibility response in older flowers, a phenomenon known as pseudo-

self-compatibility or transient SI that is well documented in A. thaliana (Liu et al 

2007). This weakening may be selectively favored during post-glacial 

colonization (Mable et al 2005a). Further to this, evidence suggests multiple 

independent losses of the SI reaction and shift to inbreeding in Arabidopsis (Foxe 

et al 2010; Hoebe et al 2009; Nasrallah et al 2004; Shimizu et al 2004), and that 

the loss of variation at the S-locus may be gradual, as demonstrated in A. 

thaliana (Bechsgaard et al 2006). The low variability (in comparison to the 

genomic average) of S-locus pseudo-genes in A. thaliana may add support to this 

theory (Tang et al 2007) with a gradual erosion of polymorphism through genetic 

drift, and selection for inactivity the likely causes. Together, these independent 

evidence streams could tentatively suggest that natural selection, facilitated by 

reduced mate choice after a long distance dispersal event during colonization, 

may lead to the gradual fixation of multiple, independent mutations, which 

weaken or disable the SI system throughout the geographic range of a given 

species (Busch and Schoen 2008). 
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1.5 Glaciation and post-glacial colonization 

 Dispersal is a major process, which affects the ecology, genetics, and 

geographical distribution of species (Ridley 1930; Van der Pijl 1969; Jaquard et 

al 1984; Sauer 1988; Dingle 1996). In temperate regions, the dispersal ability of 

a species has directly influenced its response to glacial cycles. During the 

Pleistocene (2.4 x 106 yr –10 000 yr BP), at least six glacial advances (although it 

could be up to 20; Mann & Hamilton 1995) affected the physical and biological 

environments of the Northern Hemisphere (Cox and Moore 2000). In North 

America, the Wisconsin glaciation began 120 000 yr BP and ended approximately 

8000 yr BP (Davis 1983). At its maximum (22 000 – 18 000 yr BP), the Laurentide 

ice sheet extended as far south as 40° N in eastern North America, and covered 

much of Canada, southeastern Alsaska, and the northern United States (Mann & 

Hamilton 1995). During the glaciation, the ice sheets, the permafrost that 

surrounded the ice, lower global temperatures and reduced availability of water, 

meant that plant and animal species were displaced. Their habitats were 

restructured and the subsequent distribution of taxa was radically altered 

(Hewitt 1999; Brunsfeld et al 2001). As the Wisconsin ice sheet began to retreat, 

which led to a shift of climatic zones, approximately 18 000 yr BP, populations of 

plants and animals that had survived in non-glaciated refugia expanded their 

ranges (Whitlock 1992). The latitudinal and altitudinal range shifts associated 

with glacial cycles, likely involved considerable demographic changes and 

provided opportunity for adaptation to occur. Range shifts of this magnitude are 

postulated to have had both stochastic and selective effects on the genetic 

variation and architecture of species (Hewitt 2004). Populations and lineages 

will have gone extinct, bottlenecks and founder events will have caused the loss 

of alleles, and mutations will have spread by both selection and population 

expansion (Hewitt 1996, 2004). 

  

 Somewhat paradoxically, post-glacial seed and pollen dispersal in plants is 

lower than would be predicted based on carbon-dated pollen density in sediment 

samples around eastern North America, and so appears not to explain the rapid 

northern movement that has clearly occurred in many species (Clark et al 1998). 
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One pertinent example of this was demonstrated by Cain et al (1998), which 

involved modelling the migration of the ant-dispersed species, Canadian wild 

ginger (Asarum canadense). They concluded that long-distance seed dispersal 

was necessary to explain the present-day distribution of this species in eastern 

North America, although the mechanism for this was unknown. Similarly, analysis 

of preserved pollen samples suggests that several Acer spp. (particularly A. 

saccharum) migrated nearly 2000 km in approximately 10 000 yr, which 

necessitates a migration rate of 200 m/yr (Davis 1983). Additional modelling 

studies have also indicated that modes of colonization, and in particular, rare 

long-distance dispersal events, have influenced the genetic diversity of species 

in glaciated regions (Ibrahim et al 1995). Long-distance dispersal has been 

demonstrated to be associated with reduced genetic diversity, and has been 

documented in the glaciated ranges of several European and North American 

species (Hewitt 1996; Soltis et al 1997; Bernatchez & Wilson 1998; Schmitt et al 

2002; Michaux et al 2003), although in the majority of reported cases, the 

mechanisms of long-distance dispersal are not known. This reduction in genetic 

diversity has been attributed to founding effects where a reduced number of 

migrants are the first to arrive and then rapidly recolonize a large unoccupied 

area (Hewitt 2000). In many terrestrial species, regions colonized in the 

postglacial period have been shown to have lower genetic diversity, consistent 

with this model (Hewitt 1996, 2000).  Such leading-edge colonization has 

consequences that also affect more southerly populations, by restricting 

population expansion once the niche space has been filled (Hewitt 1993); the 

greater number and smaller range of southern genomes support this (Hewitt 

2004). 

 

 Fossil records show that not all temperate species followed this type of 

rapid expansion.  Certain species will have been more dependent on certain 

environmental conditions or the requirement of facilitation by other species 

(plant-animal mutualism), which has been well documented in insects (Beattie 

and Culver 1979; Hanzawa et al 1988; Kjellsson 1985; Manzaneda and Rey 2009), 

birds (Horvitz and Lecorff 1993; McCay et al 2009; Mosandl and Kleinert 1998) 

and mammals (Matias et al 2010; Willson 1993).  Some will have been more 

affected than others by various barriers, habitat distributions and prior 
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colonizers (Hewitt 2000). This type of slower expansions is likely to have 

involved much shorter dispersal distances, and subsequently larger effective 

population sizes (Hewitt 2000, 2004). This would theoretically have allowed 

greater retention of genetic diversity (Hewitt 1996). These two extreme modes 

of colonization, defined as Pioneer and Phalanx, respectively (Nichols & Hewitt 

1994), when combined with different habitat distributions and climatic 

oscillations can produce a variety of geographical genetic structures (Hewitt 

2004; Soltis et al 2006). 

 

 Despite populations that have undergone post-glacial rapid expansion 

characteristically having reduced levels of genetic variation when compared with 

southerly conspecific populations residing in non-glaciated areas (Sage & Wolff 

1986; Hayes & Harrison 1992; Meriläet al 1997; Soltis et al 1997), levels of 

genetic variation may be confounded by admixture among populations expanding 

from multiple refugia (Conroy and Cook 2000; Soltis et al 1997). In North 

America these multiple refugia are likely to have been south of the ice sheets 

(Soltis et al 1997) or from refugia further north along the Pacific Coast (Heaton 

et al 1996) or from Beringia (MacDonald & Cook 1996). 

 

 Although the phylogeography of North America has been studied for 

several animal species (Placyk et al 2007), the effects of paleoclimatic change 

on the distribution of plant communities are not as well understood. It is clear 

that populations moving from non glaciated refugia to postglacial landscapes 

following the retreat of the ice would have been smaller than the original source 

populations (Placyk et al 2007). This could create a bottleneck effect, resulting 

in depletion of genetic diversity, thus increasing the influence of genetic drift 

(Keller and Taylor 2008; Nei et al 1975). In plants with a genetically controlled 

self-incompatibility system, this could lead to a reduction in numbers of S-alleles 

present and fewer compatible mating partners in recently founded populations 

(Vekemans et al 1998). Mate choice could be further limited by low plant 

densities, which attract fewer insect pollinators (Levin and Kerster 1969). In 

these situations it is predicted that self-fertilisation will present a reproductive 
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advantage (Baker 1967), which may outweigh the potentially negative effects of 

inbreeding (Baker 1955; Pannell and Barrett 1998), especially during periods of 

rapid postglacial expansion (Baker 1966; Busch and Schoen 2008; Pannell and 

Barrett 1998), even for species operating a strong SI system. 

1.6 Marker system choice for phylogeographic studies 

 Ever since the coining of the term “phylogeography” by Avise (1986) to 

refer to the relationship between mitochondrial DNA (mtDNA) phylogeny and the 

geographic distribution of animal species, marker system choice has been a 

pivotal factor in the patterns elucidated. While the rate of mtDNA evolution is 

seemingly well suited to phylogeographic studies in animals and as such requires 

relatively few loci (reviewed by Avise et al 2000), the rate of chloroplast DNA 

(cpDNA) evolution in plants is much more conservative, which can lead to 

difficulties in delimiting evolutionary processes and patterns of colonization 

(Shaw et al 2005). While there are numerous studies to suggest that cpDNA 

variation is structured in some angiosperm species (see reviews by Soltis et al 

1992, 1997), some studies appear to have problems with lack of variation at the 

population level, and thus they suggest that either a larger number of loci are 

used, or more recently the use of multiple markers systems (reviewed by Soltis 

et al 2006). This problem is emphasized by recent work on DNA barcoding, which 

has focused on cytochrome oxidase 1 in animal taxa, but is not appropriate for 

use in plant taxa due to its much slower rate of evolution (Kress et al 2005). 

 Other marker systems have also been extensively used for 

phylogeographic studies, including allozymes and micro-satellites; however 

these systems are not without their drawbacks. Allozymes for example, tend to 

show limited variability (Biasiolo 1992; Soltis et al 1992), there are problems 

with scoring procedures (Murphy 1993) and in some cases, loci have been shown 

to be under selection (Hale and Singh 1991; Krafsur 2002). Conversely, micro-

satellites have a very high rate of mutation that can suggest large amounts of 

population subdivision, but have been shown to demonstrate homoplasy 

(Anmarkrud et al 2008; Curtu et al 2004; Garza and Freimer 1996; van Oppen et 

al 2000). 
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 As marker system choice is fundamental for an accurate understanding of 

the evolutionary processes that have shaped the distribution of a chosen species, 

it stands to reason that certain criteria are met by a potential marker. For 

example, mtDNA has been promoted as good marker choice for animal species 

due to its lack of recombination, putative neutrality and small effective 

population size (reviewed by Hickerson et al 2010), however as it is maternally 

inherited, it only provided a picture of maternal ancestory (Hurst and Jiggins 

2005).  Choosing the correct marker or combination of marker systems may not 

only increase power to resolve phylogeographic questions, but also allow one to 

be more confident about predictions if multiple systems offer the same 

explanation. 

1.7 Study species 

1.7.1 Arabidopsis lyrata 

 Arabidopsis lyrata L. is a close relative of the model organism A. thaliana, 

from which it is estimated to have diverged, approximately five million years 

ago (Koch et al 2001; Koch et al 2000). Al-Shehbaz and O’kane (2002) suggested 

that within the species delimitation, there are three subspecies: A. lyrata ssp. 

lyrata, A. lyrata ssp. petraea and A. lyrata ssp. kamchatica. Although they also 

noted that distinguishing each putative species by morphological characters 

alone could prove difficult, especially in regions where their distributions 

overlap.  More recent taxonomic classifications view A. lyrata as a “species 

complex” (Schmickl et al 2010), comprising four species (A. petraea, A. 

kamchatica, A. arenicola, and A. lyrata), and a number of putative subspecies. 

Globally, the A. lyrata complex has a circumpolar, arctic-alpine distribution, but 

adaptation to various ecological conditions is seen at the species, subspecies and 

population levels (Schmickl et al 2010). In general, members of the A. lyrata 

species complex are perennial diploid outcrossers (2n = 2x = 16; Koch et al 

1999), but some tetraploid cytotypes have also been reported (Mable et al 2004; 

Riihimaki and Savolainen 2004; Shimizu-Inatsugi et al 2009). 

 In North America, A. lyrata (or A. lyrata ssp. lyrata, depending on the 

classification system subscribed to) has a highly disjunct distribution (Leinonen 
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et al 2009), representative of its early successional life history strategy (Spence 

1959). It favours exposed alvar (limestone pavements), and sand dune habitats 

(Mable et al 2003) as opposed to the colder, more alpine climates it inhabits in 

Europe (Spence 1959). It is distributed in Canada (throughout Ontario and west 

into British Columbia) and throughout eastern and central United States (Al-

Shehbaz & O’kane 2002). When directly compared to European populations, A. 

lyrata in North America shows reduced genetic variation, detected by 

chloroplast DNA and nuclear ribosomal sequences (Balañá-Alcaide et al 2006; 

Clauss and Mitchell-Olds 2006; Ross-Ibarra et al 2008; Schmickl et al 2008). 

 The A. lyrata complex has been shown to be a suitable study system for 

the analysis of character traits such as flowering time (Riihimaki et al 2005; 

Riihimaki and Savolainen 2004) and pathogen defence (Clauss et al 2006), but 

one of the main focuses of research on North American A. lyrata (relative to 

both A. thaliana and European A. lyrata) is the molecular mechanisms 

controlling variation in strength of self-incompatibility (Charlesworth et al 2006; 

Charlesworth et al 2003; Foxe et al 2010; Hagenblad et al 2006; Hoebe et al 

2009; Mable and Adam 2007; Mable et al 2005b; Mable et al 2003; Schierup et al 

2006; Schierup et al 2001). Generally considered an obligate outcrosser due to 

its sporophytic SI system, populations of North America A. lyrata have been 

extensively demonstrated as exhibiting mating system variation, with highly 

outcrossing, highly inbreeding and mixed mating systems recorded (Mable & 

Adam 2007; Mable et al 2005; Hoebe et al 2009). This mating system variation is 

likely the result of the SI system becoming defective in certain populations, and 

this has been postulated to be linked to post-glacial expansion (Mable et al 

2005). This makes North American A. lyrata an excellent model system to test 

hypotheses concerning the evolution and consequences of mixed mating systems.  

 Whole genome sequencing of A. lyrata has been recently completed, and 

the data are already available (The A. lyrata genome sequence assembly v1.0, 

http://genome.jgi-psf.org/Araly1/Araly1.info.html). This therefore enables 

direct comparisons with the A. thaliana genome, and further increases the use 

of A. lyrata as a model system. 
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1.7.2 Arabis alpina 

 Arabis alpina L. is a distant relative of the model plants Arabidopsis 

thaliana, A. lyrata, and Capsella bursa-pastoris (Beilstein et al 2006), and is 

being developed as a system to study the ecological genetics of alpine 

environments (Poncet et al 2010; Wang et al 2009). It is a perennial herb with an 

ecological preference for cool disturbed habitats, reproducing either sexually or 

asexually via stoloniferous growth (Hegi 1986). Globally, it has true artic-alpine 

distribution (Jalas & Suominen 1994) covering all European mountain systems, 

the Canary Islands, North Africa, the high mountains of East Africa (Tanzania, 

Uganda and Kenya) and Ethiopia, the Arabian Peninsula and mountain ranges of 

Central Asia in Iran and Iraq. Additionally, it is found in the northern amphi-

Atlantic area including northeastern North America, Greenland, Iceland, 

Svalbard and northwestern Europe (Jalas and Suominen 1994). In Europe, it is 

distributed in the arctic areas of Iceland and Scandinavia, and alpine regions of 

the Pyrenees, Alps, Apennines, Balkan, Carpathian and Tatras mountain systems 

(Jalas & Suominen 1994). It prefers moist habitats, which are characterized by 

areas of open gravel and rocks, and is often found in glacier foreland, typically 

growing at 500–2000 m altitude (Hegi 1986). 

 

 Throughout the range of A. alpina the landscape has been affected by 

Pleistocene glacial cycles (Hewitt, 2004). For other alpine species, this has 

resulted in populations having a high degree of genetic structuring (Comes and 

Kadereit 2003; Schonswetter and Tribsch 2005; Zhang et al 2004), which has 

been extensively tested in A. alpina (Ansell et al 2008; Assefa et al 2007; Ehrich 

et al 2007; Koch et al 2006). In Europe in particular, these studies suggest that 

the Tatras and Apennine mountain populations most likely represent Pleistocene 

(c. last 2.5Mya) glacial refugia, and thus make an important contribution to the 

post-glacial recolonisation of the Alps (Ehrich et al, 2007; Ansell et al, 2008). 

The origins of A. alpina have been well characterized, with evidence (based on 

synonymous mutation rates of the trnL-F cpDNA region and the ITS of nuclear 

encoded ribosomal DNA) suggesting that it originated in Asia Minor less than 2 

million years ago (Koch et al 2006). Furthermore, it has been suggested that this 

exodus from Asia occurred along three distinct routes. The first is thought to 

have proceeded via migration from the Arabian Peninsula to the East African 
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high mountains. The second group is suggested to have given rise to all European 

and northern populations, as well as acting as a further source for the northwest 

African populations. The final group, which is still principally restricted to Asia, 

is thought to have migrated independently southward, where it made secondary 

contact with the East African lineage in Ethiopia, which resulted in the high 

genetic diversity in this area (Koch et al 2006). 

 

 Generally considered an obligate outbreeder, a regional analysis of A. alpina 

populations from the Italian peninsula, considered to be one of the three 

principle glacial refugia in Europe (Hewitt 2000, 2004), and nearby Maritime Alps 

using allozymes revealed substantial local variation in within-population 

inbreeding (FIS) (Ansell et al, 2008). Populations from the Apuani portion of the 

Apennines range were close to Hardy-Weinberg equilibrium (HWE) (FIS = 0.076, 

95% CI 0.014-0.131), whereas those from the narrow Maritime Alps range showed 

a large distortion from HWE (FIS = 0.553, 95% CI 0.457-0.620), suggesting the 

possibility of mating system variation among European populations, which has 

been tentatively linked to post-glacial expansion (Ansell et al 2008). Local 

deviations in HWE may alternatively be consistent with local differences in 

extent of glacial survival and bi-parental inbreeding on post-glacial population 

recovery.  

 A. alpina has the potential to be a useful model system for studying the 

ecological genetics of alpine adaptation, based on its extensive arctic-alpine 

latitudinal and altitudinal range, leaf shape and flowering time variation (Wang 

et al 2009, Poncet et al 2010). Along with its soon to be completed genome 

sequence (Coupland and Weigel, unpublished), further understanding of its 

mating system, however, is critical in the context of interpreting patterns of 

ecological genetic diversity, which may in part be influenced by local or regional 

stochastic changes to mating system variation.  

 

1.8 Aims of the thesis 

The overall aim of my thesis is to investigate the consequences of a shift in 

mating system (from self-incompatible to self-compatible) on the 
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phylogeography of cruciferous plants, namely Arabidopsis lyrata and Arabis 

alpina. There are three principal objectives for my thesis: 

1. To establish whether A. alpina has a functioning self-incompatibility 

system or the remnants of one, and whether this follows the same mechanisms 

reported in other Brassica species. 

2. To assess patterns of post-glacial expansion in relation to mating system 

shifts in North American populations of A. lyrata, based on cpDNA. 

3. To compare the use different marker systems for phylogeographic study, 

and understand how these systems can influence the interpretation of putative 

colonization history. 

1.9 Chapter objectives 

To determine whether variation in FIS values in European A. alpina were the 

result of a functioning self-incompatibility system, or remnants of one, it was 

necessary to perform greenhouse self-pollinations in the hope of detecting a 

barrier against ‘selfing’, which was carried out in several French and Italian 

populations. Further to this, I determined outcrossing rates, based on progeny 

arrays with allozyme markers, to established whether these populations were 

effectively outcrossing or inbreeding in the field. I supplemented these data, 

with amplification of known SRK alleles (the female determinant of self-

incompatibility in the Brassicaceae), and a diallel cross, which effectively linked 

selfing phenotype to putative SRK genotypes. The results of this work are 

presented in chapter 2. 

 

  In chapter 3 I address the use of the trnL-F chloroplast marker, 

which has been extensively utilized for phylogeography since its development in 

the early 1990’s, for phylogeographic analysis of A. lyrata in the Great Lakes 

region of eastern North America. Further to this, I question the use of the 

pseudogene repeat sequences contained within intronic regions of said marker, 

and make inferences as to their suitability for phylogeographic studies, both in 
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populations from the genetically depauperate eastern North America, and the 

more genetically diverse European populations, where its use has been 

criticised.  

 

  As marker systems and their suitability are a key objective in my thesis, I 

compare and contrast the use of micro-satellite loci and allozyme loci for 

phylogeographic studies in chapter 4, again using eastern North American 

populations of A. lyrata as a study system. Also in this chapter, I look at the 

wider implications of mating system variation within these populations, and if 

this has played a role in the post-glacial colonization history of the species in 

this geographic region. The Chloroplast DNA marker from chapter 3 is also used 

to compare the patterns of population structuring elucidated by the micro-

satellite and allozyme systems.  

 

 Finally, in chapter 5, I discuss the broader applications and benefits of 

using multiple marker systems in tandem for phylogeography, and highlight the 

broader implications of my work. 
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2  Sporophytic self-incompatibility genes and 

mating system variation in Arabis alpina 
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2.1 Abstract 

Sporophytic self-incompatibility prevents inbreeding in many members of the 

Brassicaceae, and has been well documented in a variety of high profile species. 

Arabis alpina is currently being developed as a model system for studying the 

ecological genetics of alpine environments, and is the focus of numerous studies 

on population structure and phylogeography. However, the genetics of self-

incompatibility in this species has yet to be described. Here I present strong 

evidence that patterns of incompatibility in this species are consistent with the 

action of a single-locus sporophytic self-incompatibility system. I demonstrate 

functional avoidance of inbreeding in three European populations of A. alpina 

based on both self-fertilisation experiments and allozyme-based outcrossing rate 

estimates, and also describe the presence of fifteen putative S-like alleles, 

which show high sequence identity to known SRK alleles (the female 

determinant of self-incompatibility) in Brassica and Arabidopsis, which 

demonstrate high levels of synonymous and nonsynonymous variation.  I also 

identify orthologs of two other members of the S-receptor kinase gene family, 

Aly8 (ARK3) and Aly9 (AtS1). Further to this, I demonstrate co-segregation 

between putative S-alleles and compatibility phenotypes using a full-sibling cross 

design. 
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2.2 Introduction 

The promotion and maintenance of outbreeding in the Brassicaceae can be 

attributed to a genetically controlled self-incompatibility system (SI) (Bateman 

1951). The SI system is controlled by a single Mendelian locus (the S-locus), 

which is comprised of a number of tightly linked genes, coding for pollen-pistil 

recognition, which function as a single locus. Allelic variation at this locus 

provides distinct mating specificity. Recognition of shared alleles at the S-locus 

will result in rejection of ‘self’ pollen by the stigma, preventing individuals that 

share S-alleles from producing seeds (Bateman 1955). Incompatibility reactions 

therefore promote both the avoidance of inbreeding, and the maintenance of 

intra-population genetic variability (Charlesworth and Charlesworth 1987).  

 The sporophytic SI system within the Brassicaceae relies on multiple 

tightly linked genes that effectively function as a single locus, which encode 

specific proteins involved in recognition and rejection of ‘self’ pollen (Kusaba et 

al 2001; Shiba et al 2003; Suzuki et al 1999). These genes are highly polymorphic 

(Awadalla and Charlesworth 1999; Nishio and Kusaba 2000; Sims 1993), due to 

negative frequency-dependent selection, whereby rare alleles have a 

reproductive advantage in the population, which promotes the maintenance of 

extensive nucleotide and allelic diversity at the S-locus (Schierup et al 1998; 

Takahata 1990; Vekemans and Slatkin 1994).  The system is also subject to 

complex dominance interactions among alleles (Hatakeyama et al 1998; 

Ockendon 1975; Prigoda et al 2005; Stevens and Kay 1989; Thompson and Taylor 

1966), which affects both the male (pollen) and female (pistil) components, 

(Shiba 2002; Thompson and Taylor 1966; Visser et al 1982).  

 Two highly polymorphic genes are involved in the SI recognition reaction 

in Brassica: SCR (S-locus cysteine rich), also known as SP11 (Takayama et al 
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2000), is the male determinant of the SI response (Schopfer et al 1999); and SRK 

(S-locus receptor kinase), a plasma-membrane protein localised in the stigma, is 

the female determinant in the SI response. The current model of SI response 

suggests that SCR interacts with the extra-cellular domain of the SRK protein to 

form a complex which initiates a signalling cascade, inhibiting ‘self’ pollen tube 

growth (reviewed by Chapman and Goring 2010). 

 The S “superfamily” of genes is composed of members that share 

sequence similarity to genes derived from the S-locus (which includes SRK and 

SCR). In crucifers, several S family members have been delimited and these 

include the S locus-related genes (SLR1) (Lalonde et al 1989; Trick and Flavell 

1989) identified originally in Brassica oleracea, with orthologs in Arabidopsis 

thaliana (AtS1) and A. lyrata (Aly9) (Charlesworth et al 2003b; Dwyer et al 1994; 

Schierup et al 2001), and the Arabidopsis Receptor Kinase gene (ARK3) (Dwyer et 

al 1994; Tobias et al 1992), identified as Aly8 in A. lyrata (Charlesworth et al 

2003b). Although more S family members have been characterised in Brassica, 

Arabidopsis thaliana and A. lyrata (Luu et al 2001), the majority appear not to 

be linked to the S-locus (Kai et al 2001). It has been demonstrated that Aly8 is 

linked to the S-locus (Kusaba et al 2001), whereas Aly9 is not (Charlesworth et al 

2003). Both, however, have been implicated in the SI reaction.  

 

2.2.1 Breakdown of self-incompatibility (SI) 

Despite the clear benefits of inbreeding avoidance (reviewed by Charlesworth 

2003), the loss of a functioning SI system is not uncommon at the species level in 

a wide range of angiosperms (Weller and Sakai 1999). A variety of mechanisms 

have been proposed to account for the loss of SI among members of the 

Brassicaceae, including the recently reported 213 base pair inversion of the SCR 
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gene, which is associated with a high proportion of European accessions of the 

self-compatible (SC) species Arabidopsis thaliana and its derivative haplotypes 

are thought to be responsible for loss of SI (Tsuchimatsu et al 2010). Nasrallah et 

al (2002) demonstrated that introduction of functional SCR and SRK allele copies 

from A. lyrata into SC A. thaliana can partially restore SI function in some A. 

thaliana accessions. This suggests that fixation of a non-functioning allele may 

be responsible for the loss of SI in this species. However, Cabrillac et al (2001) 

demonstrated that a downstream component of the rejection response (ARC1) in 

Brassica oleracea might be responsible for SI loss, suggesting that regulation of 

signal transduction may also be important for modifying the SI/SC response.  

 Range expansion has been postulated to favour species (or populations) 

capable of self-fertilisation (Baker 1967). Glaciations have had a large impact on 

population structure, especially in Europe, where climate warming after the last 

ice-age (c.18, 000 years bp) has brought about recent rapid range expansion in 

many species (Hewitt 2004). Bottleneck effects in small founding populations 

can cause depletion of genetic diversity and increase the influence of genetic 

drift (Keller and Taylor 2008; Nei et al 1975). In plants with a genetically 

controlled self-incompatibility system, this could lead to a reduction in numbers 

of S-alleles present and fewer compatible mating partners in recently founded 

populations (Vekemans et al 1998). Mate choice could be further limited by low 

plant densities, which attract fewer insect pollinators (Levin and Kerster 1969). 

In these situations it is predicted that self-fertilisation will present a 

reproductive advantage (Baker 1967), which may outweigh the potentially 

negative effects of inbreeding (Baker 1955; Pannell and Barrett 1998), especially 

during periods of rapid postglacial expansion (Baker 1966; Busch and Schoen 

2008; Pannell and Barrett 1998), even for species operating a strong SI system. 

 Population-level variation in mating system is seen extensively throughout 
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