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ABSTRACT 
 

The flow around three-dimensional aircraft wings, including delta-wings is very 

complicated. Much experimental and numerical work has been performed to discover its 

complexity. To date, all numerical calculations on delta wings have been carried out for 

either fully laminar or fully turbulent boundary layers. The transition status of the 

boundary layer is considered unknown despite several efforts to identify transition from 

laminar to turbulent flow. One such study, called the International Vortex Flow 

Experiment – 2 (VFE-2), has been carried out by an international group and mainly 

focuses on the boundary layers on delta wings. The data from the VFE-2 experimentals 

potentially provide the location of transition on the upper and lower surfaces of the wing 

to guide associated numerical studies. The effects of Reynolds number, Mach number, 

angle of attack and the leading edge bluntness are also investigated.  

Almost all delta wing studies to date have involved tests on wings with sharp 

leading edges and these have led to the conclusion that the flows are relatively 

independent of Reynolds number. In fact, most real wings have finite leading edge radii. 

Hence, the flow separation is no longer fixed at the leading edge, thus making the flow 

dependent on Reynolds number. This particular aspect has been studied extensively by 

the VFE-2 team.  

As part of the VFE-2 project, Glasgow University constructed a delta wing with 

four different sets of leading edges.  Small-, medium- and large-radius edges and a pair of 

sharp leading edges were constructed in order to compare results from four delta wing 

configurations. In the current study experiments were carried out on these wings in the 

2.65 metre by 2.04 metre, closed circuit, Argyll Wind tunnel of Glasgow University. The 

models were mounted on a specially designed sting support structure that allowed them 

to be pitched around a constant centre of rotation throughout the experiments. Tests were 

conducted at speeds of 20.63 m/s and 41.23 m/s representing Reynolds numbers of 1 x 

106 & 2 x 106 respectively, based on the mean aerodynamic chords of the wings. The 

tests were conducted in three phases. In the first phase, steady and unsteady forces and 

moments on all wings were measured at an angle of attack that varied from α =100 to 250. 

The forces and moments were captured at two sampling rates; i.e., 100 Hz and 8000 Hz. 



 xxi

The second test series captured flow visualization data on the four wings. In these 

experiments, a mixture of Ondina oil and paraffin was combined with Dayglo powder 

and applied to the surfaces of the delta wings. The images of the flow topology on the 

wings were recorded. The final series of experiments involved Particle Image 

Velocimetry measurements. A stereo-PIV arrangement was applied in this experiment 

and two CCD-Cameras were positioned outside the test section for image capture.  

The current study has identified interesting features of the interrelationship 

between the conventional leading edge primary vortex and the occurrence and 

development of the inner vortex on the round-edged delta wings. The inner vortex was 

first identified and verified by the VFE-2 team. The effects of Reynolds number, angle of 

attack and leading-edge radii on both vortices are discussed in detail. The steady balance 

data have shown that the normal force coefficients are sensitive to leading edge bluntness 

at moderate angles of attack but are less so at high angles of attack. In relation to this, the 

flow visualization images have also shown that the primary vortex origin is located 

further aft on the wing at higher leading edge bluntness. This impacts on the strength of 

the inner vortex which remains a significant flow feature until the primary vortex 

approaches the apex. The lateral extent of the inner vortex is very dependent on the 

primary vortex at the leading edge; i.e. the weakening of the primary vortex has positive 

effects on the inner vortex. Particle Image Velocimetry shows that the increase in leading 

edge bluntness significantly decreases the swirl magnitude of the primary vortex.  

The results obtained from the current investigation provide considerable insight 

into the effects of Reynolds number, angle of attack and bluntness on the flow structures 

experienced by delta wings, with rounded leading edges. This work will, therefore, 

inform and guide future investigations of delta wing flows and has the potential to impact 

on future wing design.   
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NOMENCLATURE 

 
a,b,c,d Coefficient in first-blending function, φ 

CO2 Carbon Dioxide 

CA Axial Force 

CD Drag Force coefficient 

Cp Pressure coefficient 

cR Wing root chord 

CM Pitching Moment coefficient 

CN Normal Force coefficient 

d/b The ration of first-blending function coefficients 

fe Pitching frequency 

fn Natural frequency of the vibration of the structure 

F1 Primary Vortex 

Fy Force in y-direction 

Fz Force in z-direction 

K Reduced frequency 

L.E Leading Edge 

M Mach Number 

Mx Wing pitching moment 

NOx Nitrogen Oxide 

PSD Power Spectra Density 

rLE/cR Leading edge radius to wing chord ratio 

Rmac Reynolds number at mean aerodynamic chord 

RL Large-radius wing 

RM Medium-radius wing 

RS Small-radius wing 

S Sharp-edged wing 

S3 Primary attachment line 

S4 Secondary separation line 
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t/cR Wing thickness to wing chord ratio 

u Velocity component in x-direction 

v Velocity component in y-direction 

w Velocity component in z-direction 

x/cR Chordwise distance from the Apex 

y/cR Spanwise distance from the mid-wing 

x Coordinate set perpendicular with the y & z directions 

y Coordinate set perpendicular with the flow direction 

z Coordinate set parallel with the flow direction 

  

α Angle of Attack 

α1, α2 Angle between camera view and Calibration plate 

Λ Delta wing sweep angle 

ξ No dimensional distance parameter, (x – xo)/ x1 

φ First blending function 

x1 Endpoint longitudinal coordinate of blending function, φ 

x Distance from apex, positive downstream 

x0 Initial longitudinal coordinate of blending function, φ 

xle Longitudinal coordinate of the leading edge 

  

AVT Advanced Vehicle Technology 

CAWAPI Cranked Arrow Wing Aerodynamics Project International 

CFD Computational Fluid Dynamics 

DES Detached Eddy Simulation 

DNS Direct Numerical Simulation 

DLR Germany’s National Research Centre for Aeronautics & Space 

EADS European Aerospace and Defence System 

HSCT High Speed Commercial Transport 

KTH Swedish Royal Institute of Technology 

LDV Laser-Doppler Velocimetry 

LES Large Eddy Simulation 
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Chapter 1 

 

1.0  INTRODUCTION 

 
1.1 Why Delta Wings? 

 

In Aviation, the quest for ever faster speeds led to considerations of dart like 

wing planform shapes, broadly termed delta wings. The development of fighter 

aircraft in the 1940’s was driven by the need for faster supersonic interceptor aircraft.  

The Delta wing shape had the advantage that the wing’s leading edge remained 

behind the shock wave generated by the nose of the aircraft when flying at supersonic 

speed. A second advantage was that, as the angle of attack increased, leading edge 

vortices formed and these increased the lift of the aircraft and gave the delta wing a 

very high stall incidence. The concept of vortex lift exploitation has existed since the 

Second World War. The Concorde was conceived in 1950’s and completely relied on 

vortex lift. An estimation concept of this vortex lift over thin wings was presented by 

Polhamus in 1966, using leading edge suction analogy. Underneath the leading-edge 

vortex, a high speed region induces a significant surface suction that can result in 

additional vortex-induced lift near the leading edge (Buchholz, 2000). Therefore, the 

actual lift on a delta wing at high angles of attack is dominated by separated vortical 

structures rather than by attached flow over the convex upper surface of a 

conventional wing. The lift continues to increase with angle of attack until the leading 

edge vortex breaks down at an angle of attack much higher than that for conventional 

wings (Gad El Hak & Ho, 1985). This concept has been applied to many fighter 

aircraft from the First World War Era to date.  

Two English men, J.W Butler and E. Edwards were the first to patent a delta 

shaped wing with a fuselage in 1897. They proposed a delta wing configuration, 

fabricated from the wood, for their jet-like aircraft. The modern application of the 

delta wing, however, came from Alexander M. Lippisch who proposed a rocket 

fighter to operate in the supersonic region during the 1940s. Later he moved to the 
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United States and worked for the U.S Air Force on a similar project. The first flying 

aircraft with a delta wing was the Convair XF-92A. The aircraft was designed with an 

extremely large vertical tail in order to avoid the leading-edge vortices interfering 

with the function of the vertical tail. Unfortunately, this layout made the plane almost 

impossible to control. Another delta wing fighter aircraft was then introduced by 

Convair to improve the handling qualities. The YF-102 Delta Dagger was introduced 

in 1953 with a smaller horizontal tail. However, the aircraft produced an immense 

amount of wave-drag at sonic speed and that caused the aircraft to burn unacceptable 

large amounts of fuel to go faster. Re-development of the YF-102 was carried out 

after an accident involving the first prototype in October 1953. To overcome high 

drag loads at transonic speeds, Convair redesigned the fuselage and wing of YF-102 

by introducing the “area-rule”. This meant that the fuselage resembled a “coke 

bottle”. This enabled reductions in wave-drag. 

Other delta-winged aircraft were also developed in the UK, Russia and France 

during the “cold war”. The development of a delta-winged bomber aircraft began in 

the UK in 1947 with the Avro Vulcan project.  The aircraft was proposed for carrying 

nuclear weapons after the Second World War. The Vulcan was designed as a thick 

delta wing so as to benefit from sweepback angle effect at transonic speeds. The wing 

had to be thicker in the root area to accommodate 4 Rolls-Royce engines.  Thick wing 

meant that flow remained essentially attached at large incidences. It would appear that 

vortex lift was not truly exploited. This is borne out by L/D estimates available. Wind 

tunnel experiments carried out on a model of the Vulcan suggested that the wing was 

able to carry heavy loads at higher speeds and higher altitudes than conventional 

designs of that time. The Vulcan aircraft had a long career until being finally 

grounded in 1981 and replaced by the Panavia Tornado GR.1. The final service of the 

Avro Vulcan was during the 1982 conflict.  

The French also adopted the delta for their most successful aircraft, the 

Dassault Mirage III interceptor. The Mirage III was developed almost at the same 

time as the Vulcan and the YF-102. It also had a 600 swept delta wing to offset the 

transonic effect. Although it was the first aircraft that could fly at more than Mach 2, 

it suffered from one of the disadvantages of the delta wing in that it needed a longer 
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take off run and, high landing speed. It also experienced buffeting of the airframe 

caused by the separation of the boundary layer at low attitude.    

Around this time, Russia also introduced the TU-144 supersonic passenger jet 

and MIG-21 fighter aircraft.  The Tupelov-144 was grounded in 1978 when the 

aircraft was involved in a fatal accident. Many delta winged aircraft were produced in 

this era such as the A-4 Skyhawk, XB-70, Concorde, Space Shuttle, F-16, Chengdu J-

10, and Sukhoi Su 9/11 among others.  

The delta wings exhibit some disadvantages that may have caused them to fall 

out of favour in recent years. The main problems are associated with the flow 

separation at higher angles of attack.  The separated flow can cause the control 

surfaces fitted to the trailing edge to become less effective. Secondly, the wing 

produces tremendous induced drag at subsonic speeds (low L/D) compared to 

conventional tapered wings. This is due to the small wing span or low aspect ratio. 

The higher drag on the delta-shaped wing is actually induced by the separated flow in 

the leading edge area itself that is not present on high aspect ratio tapered-wings. 

These factors affect the aircraft’s handling quality. In addition, the aircraft also needs 

a longer runway for take-off and landing. As a result, delta wing aircraft are 

effectively limited to high speed and high altitude applications.  

Developments in computer flight control have given the delta wing shape new 

prominence. Delta wings are again a leading concept for fighter aircraft development. 

Several modern aircraft appearing in the late 1980s to 1990s have incorporated both 

delta wings and canards. Examples include the Eurofighter typhoon, JAS 39 Grippen, 

French Rafale, Russian Sukhoi-30 and the American research aircraft, F-16 XL. Delta 

wings also have the potential to be utilized for future transport aircraft. A new concept 

of a future high speed civil transport integrates the combination of the double delta 

wings attached to the fuselage of the aircraft, which is called High-Speed Civil 

transport. 

The goals of future aircraft design are to reduce fuel consumption, reduce 

Carbon Dioxide (CO2) by 50% and NOx by 80% (European Telfona Report in 2005). 

These challenges can be met by either improving the engine efficiency or by 

enhancing the aerodynamic properties of the aircraft. The aerodynamic performance 

can be enhanced in several ways and one of them is by increasing the laminar flow 
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region on the wing to reduce friction drag at supersonic speeds. Laminar flow needs 

less energy to move the aircraft through the smooth air without turbulence; thus 

reducing the fuel consumption.   Most efforts have been focused on encouraging 

laminar flow over the entire wing. One of these projects is called “F-16XL Supersonic 

Laminar Flow”. The F-16-XL is a stretched body version of a full scale conventional 

F-16 with a larger wing area added in a cranked-arrow shape (see Figure 1.1). 

Additionally, the sweep angle of the F-16-XL is increased to encourage vortical 

strength. Several passive and active basic techniques had been applied to the wing to 

achieve laminar flow conditions. By introducing Porous Titanium on one of the wings 

during a flight test, laminar flow could be achieved on about half of the entire wing at 

Mach 2.0.The main function of the Porous Titanium was to suck away the turbulent 

boundary layer that developed on the wing. More research is needed to improve and 

extend the laminar flow region to the entire wing (TF-12DFRC (2004)). 

 

                
                                                   a)                                                                   b) 

Figure 1.1: The wing planform of a) Conventional F-16 & b) F-16-XL 

 

1.2 The Role of the Delta Wing in the Development of Fighter Aircraft  

 

Over the past few decades, early researchers like Fink (1966), Peake & Tobac 

(1980), Sarpkaya (1971), Leibovich (1978), Pechkam (1958), Elle (1958), Lambourne 

and Bryer (1961) among others, conducted extensive studies of the flow structures 
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over delta wings. Their significant contributions to the understanding of delta wing 

flow physics provided the basis for current work, focusing on the effects of leading 

edge bluntness, angle of attack, Reynolds number and Mach number. Two research 

teams called CAWAPI and VFE-2 were established under the NATO-RTO-AVT-113 

in 2003 to investigate such effects on the vortical flow of delta wings.  The aims of 

these teams are to increase technology readiness for the development of new military 

aircraft and also for future transport aircraft (Lamar & Hummel, 2008). Both 

CAWAPI and VFE-2 are closely related although there are different requirements of 

each part; for example VFE-2 is focused on experiments and CFD validation. The 

general objectives of both facets are (Hummel, 2004); 

 

 F-16XL facet (Cranked Arrow Wing Aerodynamics Project International, 

CAWAPI) 

This group aims to perform numerical calculations for the complete F-

16-XL aircraft and compare the results with flight test data for various 

angles of attack and Mach number at full scale Reynolds Number.  

 

 VFE – 2 Facet (International Vortex Flow Experiment 2) 

This group performs wind tunnel experiments and numerical calculations 

on a 650 delta wing model in order to understand the vortical flow and 

uses the experimental results to validate the existing CFD codes.  

 

 

1.2.1 CAWAPI Facet 

 

Several studies have been carried out over the past two decades, both 

numerical and experimental into the nature of the vortical flow above the F-16-XL. 

Many of these have focussed on achieving laminar flow on its wings. This work has 

been further developed through the CAWAPI facet of NATO AVT-113.  It was aimed 

to perform numerical predictions of the complete F-16-XL fighter aircraft at full scale 

Reynolds number and compare these with flight test data for various angle of attack 
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and Mach numbers. Three wind tunnel models of this aircraft had already been tested 

by NASA simultaneously for comparison. Although the F-16-XL flight test 

programme was cancelled in 1994 due to funding limitations, the numerical analysis 

of this aircraft continued to provide useful data for the High Speed Commercial 

Transport (HSCT) project shown in figure 1.2 (Lamar & Obara, 2008). The HSCT 

project began in 1990 and was aimed at the design and development of technologies 

that could carry 300 passengers in a supersonic delta winged aircraft. Due to financial 

and environmental constraints, the HSCT project was abandoned but the CAWAPI 

project has continued to provide CFD data to aid understanding of flight and wind 

tunnel data.  

 
Figure 1.2: High-Speed Civil transport Concept (HSCT) 

 

1.2.2 VFE-2 Facet 

 

The primary objective of the VFE-2 project was to validate and understand the 

issues around the use of numerical schemes for the calculation of the vortical flow on 

slender delta wings by comparing the calculations with data from wind tunnel 

experiments. During the early 1980’s, Euler Methods had become the standard 

technique for the calculation of vortical flow, but they were not well suited to the 

calculation of the pressure distributions on slender delta wings as the secondary 

vortices could not be modelled. Further improvements were made in the 1990’s to 

numerical calculations by taking account of viscous effects through solution of the 
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RANS (Reynolds Averaged Navier-Stokes Methods) equations. This allowed the 

secondary vortices to be computed. More experimental data are now needed to 

explore the capabilities of Navier-Stokes calculations. The VFE-2 working group 

chose a geometry with different leading edge that had previously been tested in the 

NASA National Transonic Facility and NASA Low Turbulence Pressure Tunnels as 

the basis for further experiments and CFD validation. The installation of both 

identical geometry models in the NASA wind tunnels is shown in figure 1.3. 

 

       
                                            a)                                                                              b) 

Figure 1.3: The Installation of delta wing models in NASA; a) National Transonic Facility (NTF) & b) 

Low Turbulence Pressure Tunnel (LTPT) 

 

These two experiments were performed in the 1990’s as a part of NASA 

efforts to focus on the effects of leading edge bluntness on the vortical flow on delta 

wings (Luckring, 1996 & 2008). The results from these experiments such as the 

starting point of the separation, location of the primary vortex and vortex breakdown 

data were already available for comparisons. For  providing a more robust validation 

set for the Navier-Stokes calculations, four different flow regions were chosen for 

comparisons (Hummel, 2004) in the VFE-2 study; 

 

 1. Attached flow without vortex formation, 00 ≤ α ≤ 40 

 2. Separated vortical flow without vortex breakdown, 40 ≤ α ≤ 200 

 3. Separated vortical flow with vortex breakdown, 200 ≤ α ≤ 400 

 4. Separated dead-water flow, 400 ≤ α ≤ 900 
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In VFE-2, two versions of the NASA model (one with sharp and the other 

with rounded leading edges) were further tested with several new measurement 

techniques in order to provide a high quality data set for the CFD groups.  

Furthermore, duplicate models were fabricated based on the analytical geometry 

descriptions (Chu and Luckring, 1996) and these were tested at research institutions 

participating in the VFE-2 group. Table 1.1 shows the list of the models including 

their physical dimensions, owners and the wind tunnels used for the experiments. The 

third model is the Glasgow University model originally scheduled to be tested in the 

2.65 x 2.04 meter Argyll Wind tunnel at Reynolds numbers of 1 and 2 x 106.  
 

Model 
No. 

Span 
(m) 

 

Root 
Chord, 

(m) 

Tested at Model 
Owner 

Measurement 
Techniques 

Coordinator 

0 0.610 0.653 i) NASA – NTF NASA-NTF 
 

i) Static Pressure 
ii) Steady loads 

James 
Luckring 

1 0.457 0.490 i)NASA – LTPT 
ii) DLR-TWG 
 

NASA-LTPT 
 

i) Static Pressure 
ii) Steady loads 
iii) Pressure Sensitive 
Paint 
iv)PIV 

 
James 

Luckring & 
Robert 

Konrath 
2 0.933 0.980 i)Munich  

Technical 
University 
ii) DLR – KKK 

Munich 
Technical 
University 

i) Laser light sheet 
ii) Oil Flow 
Visualization 
iii) Surface Pressure 
Measurement 
iv) Hot Wire 
Anemometry 
v) Temperature 
sensitive Paint 
vi) Infra-red 
vii)PIV 

 
 
 

C. 
Breitsamter 

3 0.987 1.059 Glasgow 
University 

Glasgow 
University 

i) Steady/Unsteady 
loads 
ii) Flow Visualizations 
iii) PIV 

 
Frank N. 

Coton 

4 0.457 0.490 i) ONERA 
ii) TUBITAK-SAGE 

ONERA 
 

i) Pressure 
Measurement 
ii) PIV 
iii) Steady loads 

O. 
Rodriguez 

5 0.457 0.490 i) ONERA 
ii) TUBITAK-SAGE 

ONERA 1)Steady Loads 
2) Oil Flow Visualization 

Suleyman 
Kurun 

 
Table 1.1: Wind Tunnel models used in VFE-2 
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Chapter 2 
 

2.0  THE DELTA WING FLOW-FIELD 

 
2.1 Sharp Leading Edge Flow-Field 

 

 The flow on the sharp-edged delta wing (Hummel, 2004) at a certain speed 

and angle of attack can be described as a movement of a part of the flow from the 

lower to the upper surface into a spiral type of motion. Flow separation will take place 

at the leading edge near to the apex and primary vortices are formed over the upper 

surface. The primary vortices basically start as small shear layers at the leading edge 

and then wrap up in a spiral fashion (Gad-El-Hak and Blackwelder, 1985). The 

vortices thus originate from a series of smaller vortices shed from the leading edge of 

the wing. The shear layers rotate around to form a pair of larger vortices called 

primary vortices. The leading edge vortices grow in strength and size extending from 

the apex to the trailing edge as shown in figure 2.1. The structure of the primary 

vortex is complex and unsteady with turbulent activity taking place in the area 

between the separated shear layer and the delta wing leading edge (Honkan and 

Andreopoulus, 1997). Several early investigations were performed to visualize the 

three-dimensional flow topology above delta wings such as Nelson & Pelletier in 

2003. To date and surprisingly, the detail understanding has been impeded either by 

the limitations of computational methods, or the constraints of experiments.  Hardly, 

any theoretical models are capable of predicting these complicated flow-fields 

topology accurately. (Drikakis et al, 2003). 
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           Figure 2.1: Vortex formation over sharp-edged delta wing 

 

 The internal structure of the primary vortex itself can be divided into three 

regions as shown in figure 2.2 (Earnshaw, 1961). The three regions are; 1) the shear 

layer, 2) rotational core and 3) viscous sub-core.  The shear layer is generated by a 

sudden separation of the flow in the leading edge region; the separated shear layer 

subsequently rolls up to form the primary vortex. The diameter of the outer shear 

layer increases as the distance from the apex increases. The rotational core, covering 

about 30% of the local semi span diameter, is a region where the vortex sheet 

produces only a small variation in longitudinal velocity distribution.  Meanwhile the 

last region; the viscous sub-core, covering about 5% of the local semi span in 

diameter, is a region where longitudinal velocity is very high and can exceed more 

than three times the freestream value (Earnshaw, 1961). 

 

Secondary separation line 

Attached Flow 

Primary Vortex 
 
Primary attachment line 

Secondary vortex 
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Figure 2.2: Three regions within a leading edge vortex (Earnshaw, 1961) 

 

 The free shear layer will roll and make - contact with the wing surface and 

this situation creates an attachment line all the way from the apex to the trailing edge 

of the wing ( The lines are shown in figure 2.1). The location of the attachment line 

depends on the angle of attack. From the attachment area, the shear layer underneath 

the primary vortex is diverted towards the low pressure region in the leading edge 

area so establishing attached flow below the primary vortex on the wing. After 

passing the vortex core, the attached shear layer experiences a spanwise adverse 

pressure gradient that leads to flow separation before the shear layer reaches the 

leading edge. The adverse pressure then causes this separated flow to spin in the 

opposite sense of the primary vortex to form another vortex called the secondary 

vortex.  The general effect of this secondary vortex (Payne et al, 1987) is the 

displacement of the primary vortex upwards and inwards but the status of the 

boundary layer on the wing upper surface strongly influences the location of the 

secondary separation process. In the laminar case, the reduced ability of flow to 

sustain the adverse pressure gradient, causes the secondary separation process to 

occur earlier thus making the secondary vortex larger compared with the turbulent 

case. The shear layer stability of the primary vortex is discussed by Riley and Lawson 

(1998). They observed that, at low Reynolds number, the shear layer is smooth with 
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no sign of any instability. Unsteadiness in the shear layer is, however, observed as the 

Reynolds number is increased. 

 

2.2 Vortex Breakdown 

 

 As the angle of attack increases, so does the strength of the primary vortex, 

the axial velocity in the vortex core can exceed three times the freestream speed.  At a 

certain point aft from the apex, a sudden decrease in the strength of the local primary 

vortex core occurs. The flow then suddenly becomes stagnant and exhibits large-scale 

of unsteadiness as shown in figure 2.3 below (Payne et al, 1987). The figure also 

depicts the lost coherence of the primary vortex structure further aft of the wing. This 

phenomenon is called vortex breakdown. In addition to this, Hall (1972) describes 

vortex breakdown as the stagnation of the swirling flow that causes the flow to 

develop into a disorganized flow-field. The converged flow also transforms into a 

reversed and unstructured flow in the vortex core.  

 

 
 

Figure 2.3: Laser light sheet illumination of the cross flow and longitudinal axis of the leading edge 

above an 850 swept delta wing, α =400 (Payne, 1987) 

 

 The existence of vortex breakdown plays a role in limiting  aircraft 

performance at higher angles of attack due to the decrease in the axial velocity of the 

vortex core (May & Gutmark, 2005). Vortex breakdown has been the focus of much 

Unburst 
primary vortex 
 
Delta wing 

Disorganized vortex 
structure 
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research in the aerospace community as it significantly results in the loss of lift and 

substantial changes in pitching moment, thus affecting the aircraft stability 

characteristics.  The increase in turbulent intensity of the downstream flow also 

adversely affects the control surfaces such as the fin and rudder of fighter aircraft 

(Breitsamter, 2008) and (Payne et al, 1987). 

  Amongst the first to record the vortex breakdown phenomenon were 

Peckham and Atkinson (1957).  There were follow-up investigations on this work by 

investigators including Sarpkaya (1971), Leibovich (1978), Peckham (1958), Elle 

(1958), Hummel & Srinivasan (1967), Payne et al (1987) and Nelson & Visser 

(1990).  Among these, Payne et al (1987) showed the development of the breakdown 

process using smoke visualization on his 700 sweep delta wing at high angles of 

attack. The core region of the vortex expanded rapidly after the breakdown and the 

flow became highly disorganized.  This sudden expansion and unsteadiness of the 

vortex core was also shown by Wang and Zan (2005) in water tunnel experiments at 

low Reynolds numbers.  

 Research has also been performed to investigate the characteristics of the 

flow after vortex breakdown.  Sarpkaya (1971) defined vortex breakdown as an abrupt 

change in the structure of the vortex core, followed by a growing asymmetric flow (a 

flow in which the streamlines are not symmetric around the vortex axis). A different 

perspective on vortex breakdown is discussed by Leibovich (1978) and Garg & 

Leibovich (1979). They defined vortex breakdown as a disturbance that is 

characterized by the formation of an internal stagnation point on the vortex axis 

followed by a reversed flow. Nelson & Visser (1990) described the vortex breakdown 

as a drastic change in the flowfield arising from the sudden increase in the magnitude 

of the axial pressure gradient in the vortex core. Hall (1972) showed that the 

occurrence of the vortex breakdown depended on the magnitude of the swirling flow, 

the external pressure gradient and the degree of the divergence in the vortex core. The 

higher adverse pressure gradient and the degree of divergence caused the swirling 

flow of the vortex core to reduce so contributing to the stagnation of the core.  These 

observations are in good agreement with Elle (1960) who described the breakdown as 

a failure of the vorticity structure around the vortex core to retain its form.   
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 The breakdown process at high angle of attack, that begins from the wing 

trailing edge, was discussed by Greenwell & Wood (1992). They divided the 

separated flow over the delta wing into 4 regions; 1) unburst vortex or primary core, 

2) Flow Deceleration region, 3) Bubble formation and 4) Fully developed breakdown 

area. The formation and behavior of the primary core (region 1) has already been 

discussed above. Further aft of the apex (region 2), the flow decelerates under the 

influence of the adverse pressure gradient within the vortex core, this occurs in the 

second region, where the swirling magnitude of the primary vortex reduces. 

Nevertheless, the flowfield in this region retains the vortex shape but the swirling 

magnitude becomes less and less further aft. In region 3, a further reduction in the 

swirling magnitude is accompanied by the formation of a bubble like structure with 

some degree of reversed flow around the vortex core. In region 4, fully developed 

vortex breakdown with large scale turbulent is found and the flow becomes very 

unsteady and asymmetric.     

 A later experimental study using a seven-hole probe by Payne et al (1989) 

showed good agreement with Greenwell & Wood (1992). Again, vortex breakdown 

was found to move upstream towards the apex, as the angle of attack was increased. 

However, this upstream progression of the vortex breakdown slows down as the angle 

of attack reaches high values. This can be related to the influence of the pressure 

gradients along the vortex core. The pressure gradient near to the apex is close to zero 

at high incidence and so the vortices become stronger and more able to resist the 

forward movement of the breakdown process (Wentz & Kohlman, 1970).  

 

2.2.1 Types of Vortex Breakdown 

 

 According to Lambourne and Bryer (1961), there are two types of 

breakdown that generally occur on a delta wing; bubble and spiral types. The bubble 

breakdown is characterized by the appearance of a stagnation point on the vortex axis 

followed by an expansion of the vortex core by up to a factor of three as illustrated in 

figure 2.4 a) by Payne et al (1987) and Faler & Leibovich (1977). The associated 

recirculation zone can be nearly axisymmetric and will grow in size as shown. 



 

______________________________________________________________________________ 

Shabudin Bin Mat – The analysis of flow on round-edged Delta wings 

 

15 

Downstream of this bubble breakdown, the vortex is fully turbulent and spreads out 

rapidly with the distance.  

 The other type, the spiral breakdown, Payne et al (1987), is characterized by 

a rapid deceleration of the vortex core with the size of the core diameter growing 

before it breaks into large scale  turbulence as shown in figure 2.4 b).  The flow 

remains in a spiral mode and rotates in the same sense as the primary vortex but can 

transform into the bubble type of breakdown and move upstream to the wing apex as 

the angle of attack is increased.  
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a) 

 

 
                                                                                        b) 

Figure 2.4 a) Bubble breakdown, b) Spiral type of breakdown (Payne et al, 1987) 
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 The detail experimental investigation on the spiral-type breakdown (which is 

mostly occurred on the delta wing) is well documented by Lambourne & Bryer in 

1961. Their water tunnel experiment on the sharp-edged is shown in figure 2.5. They 

showed after the onset of the bursting, the flow transformed into a large spiral-type 

vortex structure. This process is followed by a decelerated vortex speed further aft of 

the wing.  
 

 

 
 

Figure 2.5: Details process of spiral-bursting at the speed 2 inch per second & α = 400 (Lambourne & 

Bryer, 1961) 

 

 Nevertheless, not many paper discussed the details of the spiral breakdown 

on the blunt leading edge except the work within the VFE-2 campaign. Numerical 

analysis performed by Fritz & Cummings in 2008 showed that the onset of the spiral 

breakdown occurs at about two third of the wing at the test condition as shown in 

figure 2.6.  
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Figure 2.6: Vortex Breakdown on VFE-2 configuration (0.4 Mach number, α = 180 & 6 x 106 Reynolds 

number) 

 

2.2.2 Factors Influencing the Vortex Breakdown 

 

 Several factors influence the position and the strength of the breakdown i.e. 

wing geometry, Reynolds number, speed and angle of attack. Peckham (1958), Elle 

(1958) and Hummel & Srinivasan (1967) showed the position of breakdown is mainly 

dependent on the angle of attack. At a low angle of attack, breakdown occurs at the 

trailing edge and moves forward toward the apex if the angle of attack is increased. 

The increase in the adverse pressure gradient within the vortex core as the angle of 

attack increases, contributes to this phenomenon. The second factor is the wing sweep 

angle. The detailed effects of the wing sweep angle have been discussed by Nelson & 

Pelletier (2003) and Kegelman & Roos (1989). They found that an increase in the 

wing sweep angle delays the vortex breakdown process. The ability of the stronger 

primary vortex at higher sweep angle to sustain the adverse pressure gradient 

contributes to this fact.   
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 Another factor influencing vortex breakdown is the leading edge profile. 

However, there have not been many studies published on this effect.  Kegelman & 

Roos (1989) showed from their experimental results on a 700 wing that the upstream 

progression of the vortex breakdown is delayed for rounded-edged wings compared to 

the sharp-edged case. In addition, O’Neil et al (1989) discussed the onset of the 

breakdown process is also been delayed by the blunt wings. They showed that the 

onset of the breakdown reached the wing trailing edge at higher angle of attack 

compared to the sharp wings. As will be shown later, these is also consistent with the 

flow visualization images obtained in this study that depicts the progress of the vortex 

breakdown being delayed by increasing the leading edge bluntness.  

Gursul (2004) addressed several other factors such as the geometry of the 

wing, support structure, model deformation, Reynolds number and blockage. Wentz 

& Kohlman in 1972 concluded that the vortex breakdown is not much affected by 

blockage. Recent experiments by Crichton et al (2005) and Thomson & Nelson (1992) 

proved otherwise. They concluded that the effect of blockage is important and should 

be taken into account.  In general, vortex breakdown is shifted upstream when 

blockage effects are increased. 

The effects of vortex breakdown on the steady force coefficients were 

observed by Hummel & Srinivasan (1967) and Spall (1996). They agreed that 

breakdown significantly affects the forces and pitching moment of the delta wing. The 

loss of lift, particularly, was attributed to the loss of coherent vortex structure and its 

effect on the vortex lift as described by Polhamus (1966).  

 

 

 

 

 

 

 

 

 

 



 

______________________________________________________________________________ 

Shabudin Bin Mat – The analysis of flow on round-edged Delta wings 

 

20 

2.2.3 Vortex Breakdown during Pitching Motion 

 

 The breakdown characteristics on a delta wing undergoing pitching motion 

has also been observed in experiments. Investigations into this was driven by 

observation that the breakdown process at higher angle of attack is temporarily 

delayed by pitching motion. A high performance aircraft can take advantage from 

these unsteady effects for a rapid maneuver at high angle of attack (Le May et al, 

1990).  During testing, the models are normally pitched at constant pitching rate or 

sinusoidally oscillated. The instantaneous position of breakdown during the 

experiments depends on the reduced pitch rate or reduced frequency, K = П.fe.cR / U∞; 

where fe is pitching frequency, cR is wing root chord and U∞ is free stream velocity.  

 The characteristics of the flow at a higher reduced frequency; where the 

model is rapidly oscillated show a rapid development of the instability structure of the 

primary vortex (Atta & Rockwell (1990), Sahin (2002), Le May et al (1990) and 

Cipolla & Rockwell, 1995).  In general, an increase in reduced frequency also delays 

the vortex breakdown process at medium angles of attack.  At low reduced frequency, 

the primary vortex slowly develops during the upstroke and there follows the 

breakdown process further aft on the wing during the downstroke. Nevertheless, the 

scope of this PhD study is limited to static experiment only. A rather completed test 

rig is required for the pitching motion experiments. The system as shown in figure 2.7 

(Le May et al, 1990) needs a motorize system to pitch the model at constant pitching 

rate.  
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Figure 2.7: Unsteady pitching mechanism (Le May et al, 1990) 

 

2.3 Laminar to Turbulent Flow-Field 

 

2.3.1 Impact of Boundary Layer on Vortex Structure 

 

The state of the boundary layer, either laminar or turbulent at separation and 

underneath the vortex system is another factor that influences the flowfield. Previous 

studies have shown that the state of the boundary layer at very low Reynolds number 

is laminar, and it is the laminar separation that leads to the development of the 

primary vortex (Hummel, 2004). As the Reynolds number increases, transition from 

laminar to turbulent flow is expected to occur at some position on the wing upper 

surface. As the Reynolds number further increases, the transition point moves closer 

to the wing apex. Even at a very high Reynolds number, however, laminar flow may 

still exist over part of the wing apex region.  

This aspect has presented problems for numerical studies, i.e. whether to 

perform calculations in fully turbulent or laminar flow.  The details of transition from 

laminar to turbulent on the delta wing surface are not very well understood yet, even 
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for the sharp-edged wing (Hummel, 2008a). The stronger magnitude of the primary 

vortex for the turbulent case compared with the laminar case is one of the indications 

that differentiates laminar / turbulent flows. Many attempts either by experiment or 

numerical analysis have been made, and more work is in progress, to determine the 

laminar/turbulent transition region. As recent as 2008, knowledge of laminar to 

turbulent transition remained poor; even with the advent of PSP pressure data 

(Hummel, 2008a & 2008b). The correct position of transition from experimental work 

must be replicated for the correct prediction of the vortices on the wing (Fritz, 2008). 

Fritz showed that the onset of the primary vortex, for the case of a round-edged wing, 

is slightly over predicted compared with experimental studies when using a fully 

turbulent assumption. Better results, compared with the experimental study, were 

obtained by fixing the transition line at 3% along the wing chord position. The 

principle differences between the laminar and turbulent separation region will be 

discussed in the next section.  

 

2.3.2 Laminar Flow 

 

At low speeds and small Reynolds number, a smooth laminar flow without 

turbulence is expected to occur over the upper surface of the wing.  In general, 

laminar flow conditions are hard to achieve and maintain when the speed increases. 

Several efforts have been made to achieve laminar flow to reduce the drag and 

consumption of aircraft fuel (European Telfona Report in 2005). Research aircraft 

appeared in the 1980’s to improve the understanding of laminar flow over delta type 

wings. One of those was the F-16-XL, that was specifically designed to obtain more 

laminar flow over the wing.  

As may be expected and more specific to delta wings, laminar flow can result 

in laminar separations above the wing. The characteristics of laminar separation have 

been examined in detail by Hummel (2004) using flow visualization. Hummel 

reported the existence of a “bigger” primary vortex located more inboard on his 

sharp-edged wing than would be expected in turbulent flow. Underneath this primary 

vortex, an adverse pressure gradient occurs between the primary attachment line 

towards the leading edge. A relatively large secondary vortex is formed due to the 
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early separation of the flow underneath the primary vortex due to this adverse 

pressure gradient. The flow underneath the secondary vortex experiences another 

adverse pressure gradient which leads to a tertiary flow separation (Hummel, 2004). 

In terms of the strength of the primary vortex in the subsonic region, the primary 

vortex resulting from laminar separation is weaker in intensity than in the turbulent 

case (Betyaev, 1994). 

To differentiate laminar and turbulent boundary layer above delta wing, Visbal 

& Gordnier (2003) has performed a numerical calculation at 2 different Reynolds 

numbers; 5 x 104 &1 x 105 (Figure 2.8). At low Reynolds number the flow is covered 

by a smooth laminar flow which extends from the apex to about half of wing. Rough 

turbulent boundary layer is shown further aft of the wing. By increasing the Reynolds 

number, turbulent boundary layer extends towards the apex.  

 

    
 

                                    a)  5 x 104 Reynolds number           b) 1 x 105 Reynolds number 
 

Figure 2.8:  Flow structure of laminar and turbulent boundary layer 
 

2.3.3 Turbulent Flow 

 

  As the speed and Reynolds number increases, turbulent flow initiates on the 

wing. A “rough” (as shown in figure 2.8) turbulent boundary layer exists when the 

flow becomes bubbly, irregular, highly mixed, unpredictable and there is increased 

cross flow compared to the laminar boundary layer case (TF-12DFRC, 2004). This is 

shown in figure 2.8 above. The turbulent boundary layer gives rise to turbulent 

separation and creates different characteristics in the flow topology. The primary 
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vortex is stronger in magnitude and located more outboard than in the laminar case. 

Underneath this vortex, the ability of the turbulent boundary layer to sustain the 

adverse pressure gradient leads to a delay in the secondary separation and so a smaller 

secondary vortex is developed for this condition (Hummel, 2004). In addition, the 

turbulent boundary layer case exhibits delayed breakdown compared with the laminar 

case. The turbulent flow also increases the viscous forces thus increasing the drag of 

the wing.  

 

2.4 Rounded Leading Edge Flow-Field 

 

2.4.1 Attached Flow Region 

 

The round-edged wing exhibits different flow physics compared with the 

sharp-edged wing especially in the region near the leading edge and the apex. The 

main difference is due to the attached or non-separated flow covering the wing apex 

region. The flow stays attached to the wing surface, starting from the apex to a certain 

chord-wise position which depends on Reynolds number, angle of attack, Mach 

number and the leading edge profile itself (Hummel, (2004 & 2007) and Luckring 

(1996, 2002 & 2004a)). Several experiments including surface pressure studies 

performed by NASA (Chu & Luckring, 1996) show this bluntness effect. From figure 

2.9 b), the attached flow region can be recognized by a high suction peak at the 

leading edge initiated from the apex to a certain chord-wise position on the wing. A 

vortex-like pressure peak is then noticed at about half of the wing root chord. For the 

sharp-edged case (figure 2.9 a), the vortex-like pressure is already observed close to 

the apex. From figure 2.9a, the vortex system is characterised by a suction peak in the 

vicinity of the leading edge, secondary vortex of the wing followed by a suction peak 

corresponding to the primary vortex further inboard.  
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                                           a)                                                                         b) 

Figure 2.9: Effect of Leading edge bluntness on the pressure distribution at Mach number = 0.4, 

 Rmac=6 x 106 and α = 130 (Chu & Luckring, 1996). 

 

Later experiment (Particle Image Velocimetry & Pressure Sensitive Paint) 

together with numerical work on similar wing configurations is shown in figure 2.10. 

Both results were well agreed with earlier pressure measurement studies; i.e., the 

primary vortex will only appear at certain chordwise position on the blunt leading 

edge wing (the onset of the primary vortex is shown in figure 2.10). The flow in the 

apex region is covered by attached non separated flow to certain chordwise position 

(also shown in figure 2.10).  
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Figure 2.10: Comparison of the experimental with the numerical solution above the VFE-2 

Configuration with medium radius for Mach number 0.4, Rmac = 3 x 106 and α = 130Hummel 2008b) 

 

Besides these studies, the occurrence of the attached flow region has also been 

established using several flow visualization studies in water or wind tunnels. These 

include water tunnel experiments performed at 7 x 103 Reynolds number by Miau et 

al (1995).  

The attached flow region exists even at transonic speed as reported by 

Narayan & Hartman (1998) and Chu & Lamar (1988). From figure 2.11, the attached 

flow region is associated with the Mach number. At higher Mach number, the leading 

edge separation can have cross flow shock beneath the primary vortex. This shock can 

become stronger enough to cause shock-induced separation with promoted upstream 

progression of the primary vortex, thus reducing the attached flow region.  
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Figure 2.11: Schematic flow patterns on the lee surface of wings with rounded leading edged at 

transonic speed (Narayan & Hatrman, 1988) 

 

2.4.2 Primary Vortex of the Round-Edged Wing 

 

Downstream of the attached flow region, primary flow separation takes place 

somewhere near the leading edge caused by the increase in adverse pressure gradient 

in the flow direction. For the round-edged wing, the primary separation line is no 

longer fixed to the leading edge but near to it (Hummel, 2004). The principal 

differences between the sharp and round-edged wing discussed above are summarized 

in figure 2.12 by Luckring (2004a). The chordwise extent of the primary vortex 

depends on angle of attack, Mach number, Reynolds number and the leading edge 

bluntness itself. The properties of the primary vortex also vary with these parameters. 
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Figure 2.12: Leading edge bluntness consequences for the primary vortex (Luckring, 2004a)  

 

The reason why leading edge separation is initiated at some position down the 

chord of the blunt leading edge delta wing at moderate angle of attack is now 

explored. Along the blunt leading edge, the leading-edge radius remains constant, 

whereas the local half span increases significantly further downstream. This means 

that the radius to local span ratio decreases i.e. the profile effectively becomes sharper 

and sharper towards the trailing edge. This causes the suction and corresponding 

adverse pressure gradient at the leading edge to increase further downstream and 

finally flow separation takes place in this region (Luckring & Hummel, (2008) and 

Konrath et al (2006)). 

Also, the delta wing leading edge upwash distribution increases from the apex to 

the trailing edge and thus the local angle of attack is higher near to the trailing edge 

compared with the apex region. The higher angle of attack in the trailing edge area 

due to its curvature compared with the apex area also increases the corresponding 
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adverse pressure gradient and promotes separation along the leading edge (Luckring, 

2008). Depending on the Reynolds numbers as reported by Furman & Breitsamter 

(2008) the flow near the trailing edge can be fully turbulent. In this case, the turbulent 

shear layers of the wing upper and lower surface then roll up along the leading edge 

(Furman & Breitsamster, 2008) to form a primary vortex in the same way as for the 

sharp-edged wing. The primary vortex then extends downstream with a stronger 

magnitude than in the laminar case (Pashilkar, 2001). 

At first glance, there are two obvious effects of bluntness observed from figure 

2.9. Firstly, the bluntness shifts the position of the primary vortex outboard towards 

the leading edge compared to the sharp case. Secondly, although not as obvious, the 

leading edge bluntness decreases the physical size of the primary vortex at constant 

angle of attack. This is very consistent with Rinoei (1996 a, b) discussion of the 

bluntness effect. PIV experiments performed by Rodriguez (2008) as shown in figure 

2.13 also agreed with this. The PIV results showed that the intensity of the primary 

vortex on the round-edged wing is weaker than on the sharp-edged wing. Lamar 

(1990) suggested that the establishment of the attached flow region at the rounded 

leading-edge as the main factor in delaying the onset and weakening the primary 

vortex.  

 

 

    
                          i) Sharp leading edge                                                     ii) Medium leading edge 
 
 

Figure 2.13: Comparison for the size of the primary vortex for the sharp and medium leading edge 

radius at α = 24.70, Rmac = 1 x 106, chordwise position = 0.5 and Mach number = 0.133 (Rodriguez, 

2008) 
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Underneath this primary vortex, a counter rotating secondary vortex is also 

developed, as it does for the sharp-edged wing (as shown in figure 2.1). This arises 

from separation induced by the adverse pressure gradient in the flow direction. 

However, it is not necessarily the case that both vortices will develop simultaneously. 

The secondary vortex can develop later and further aft of the onset of the primary 

vortex. Once again, the status of the boundary layer underneath the primary vortex 

can play a role in this (Rodriguez, 2008). The status of the boundary layer is also a 

factor influencing the primary separation process.  In general, the flow around the 

leading edge of the round-edged wing is governed by the parameters of Reynolds 

number and leading edge radius; moving downstream from the apex, several different 

flow phenomena may be observed at the same angle of attack (Hummel, 2004) 

 

i)  Laminar flow around the leading edge without flow separation 

ii) Laminar flow around the leading edge followed by the onset of laminar flow 

separation on the upper surface.  

iii) Laminar separation line on the upper surface moves towards the leading 

edge until laminar flow separations occurs at the leading edge.  

iv) Laminar flow separation ends at a certain point along the leading edge and is 

then replaced by laminar to turbulent transition if the Reynolds number is 

further increased. 
 

This situation is illustrated in figure 2.14 below. At relatively low Reynolds 

number, the boundary layer is dominated by a laminar flow while the turbulent is only 

existed in the tip of the trailing edge. The figure then shows an upstream progression 

of the turbulent boundary layer with the increase in Reynolds number.  
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Figure 2.14:  Boundary layer underneath the primary vortex (Hummel, 2004) 

 

Increasing Reynolds number moves the transition from laminar to turbulent flow 

upstream and the region of laminar primary separation is progressively reduced. 

Finally the laminar primary separation disappears and the whole leading edge is 

covered by turbulent separation. Since a turbulent boundary layer is better suited to 

withstand the adverse pressure gradient, the region of attached flow in the apex region 

is larger for the turbulent case at high Reynolds number compared to the laminar case 

at low Reynolds number (Bozhkov, 1996 and Hummel, 2004). 

 

2.4.3 The Effects of Bluntness on the Leading Edge Separation 

 

This section will examine the flow topology in the leading edge area in more 

detail. A closer examination of the leading edge area shows that the separation 

process occurs at a certain point downstream of the leading edge on the round-edged 

wing as opposed to “exactly” at the leading-edge for the sharp-edged wing (Luckring 

(2004a) and Narayan & Seshadri, 1997). At low to moderate incidence, the flow is 

mostly attached along the blunt-leading edge, but at higher incidences, the flow 

begins to separate along an appreciable part of the leading edge near to the wing tips. 

Fink (1966) also illustrates similar flow topologies, i.e. the flow separation on the 
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rounded edges occurred after a short run of attached flow in the leading edge area. 

These observations are also in good agreement with Peckham & Atkinson (1960). 

Peake & Tobak (1960) also discussed the flow separation on the round-edged 

wing in two dimensional terms. They described that at a certain angle of attack, the 

attached flow region extends from the lower surface of the wing to a certain point in 

the vicinity of the leading edge on the upper surface of the wing, shown as S1 in figure 

2.15. The flow starts to separate at this primary separation point that depends on the 

flow characteristics from the lower surface. This means that the status of the boundary 

layer on the lower surface of the wing, either laminar or turbulent, plays a role in 

determining the location of the primary separation line thus affecting the formation of 

the primary vortex on the upper surface of the wing. This is also reported by Hummel 

(2008b). The separated shear layer then rolls up into a conical primary vortex 

structure as it does for the sharp-edged wing (F1). Underneath this vortex attached 

flow is established with another attachment line formed near the wing centre line on 

the upper surface at point S4. The flow then re-separates at point S3 due to the adverse 

pressure gradient, forming a secondary vortex, as been discussed in the previous 

chapter. The shear layer zone between points S4 and S3 is associated with high 

turbulence levels (Honkan & Andreopoulus, 1997).   

                      
Figure 2.15: Primary vortex topology of the round-edged wing (Lang, 1998) 

 

In addition to the work of Peake and Tobak (1980), a closer examination by 

Renac (2005) and Jiang et al (2000) into the area in the vicinity of the leading edge 

showed that the primary separation line S1 of the boundary layer can actually cross 
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over the lower surface and is not a straight line along the leading edge of the wing. It 

is located close to the upper surface at the apex and extends towards the lower surface 

moving from the apex to the trailing edge. This was confirmed by Huang et al (2001) 

who described that the primary separation line is a complex curved line that runs 

along the leading edge from the apex to the wing tip. 

The complexity of these separation lines were also discussed within the VFE-2 

campaign as shown in figure 2.16 (Hummel, 2008b). The figure shows the separation 

line of the primary vortex runs along the leading edge from the onset of the primary 

vortex extends downstream to the trailing edge. Inboard, the separation and 

attachment lines of the inner vortex is shown generated further upstream than the 

primary vortex. Both lines are curved toward inboard downstream of the wing.  

 

 

 

 

 
 

Figure 2.16:  Attachment and separation lines on the round-edge delta wing (VFE-2 

configuration; Mach number = 0.4, Rmac = 3 x 106 & α = 13.30) 
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Oil flow visualization studies have normally been performed to obtain such 

topologies over the wing surface. Several researchers used this technique including 

Lang (1998) and Dieterle (1998) to recreate the surface flow pattern discussed earlier 

by Peake and Tobak (1980). The flow pattern is generated by viscous stresses acting 

on the oil surface. The location of attachment and separation lines detected using flow 

visualization, particularly the secondary separation line, can be used to infer the 

strength and location of the primary vortex on the wing as discussed previously by 

Lang (1998).  

 

2.4.4 Inner Vortex 

 

Hummel (2004) also addressed another interesting feature observed in figure 

2.4) on the medium-radius wing. At a moderate angle of attack, a weak suction peak 

is observed, located inboard of the primary vortex.  This occurs at about one-third of 

the wing chord from the apex. This phenomenon provided the focus for some of the 

initial investigations within the VFE-2 test programme. Numerical and experimental 

studies were carried out to identify and understand this flow structure. The first 

numerical results, produced by EADS (Munich) using the FLOWer code (Fritz, 2008) 

were available in 2005 (Hummel, 2006). Transition was fixed at 3 percent of the wing 

chord on the upper surface of the wing. At a moderate angle of attack, the FLOWer 

calculation shows two vortices spinning in the same sense downstream of the attached 

flow region. The first one is located close to the leading edge and is the primary 

vortex, and the other vortex, called the inner vortex, develops inboard of the primary 

vortex. It also appears earlier than the primary vortex at moderate angle of attack as a 

result of boundary layer separation near to the apex. The inner vortex extends 

downstream increasing in strength. At the same time, this numerical study also shows 

that the primary vortex also extends downstream and has a stronger magnitude than 

the inner vortex. The calculated pressure contours are shown in figure 2.17. This was 

the first time that the inner vortex had been identified in a numerical solution.  
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Figure 2.17: Calculated pressure contour on the 650 medium radius delta wing at Rmac = 3 x 106 and 

 α = 13.30 (Hummel, 2006) 

 

 

The first experimental results within the VFE-2 group were obtained using 

Pressure Sensitive Paint (PSP) (Konrath et al, 2006 and Klein et al, 2006) and Particle 

Image Velocimentry (PIV), (Konrath et al (2006b), Schröder et al (2006) and 

Kompenhans (2007)). A example of the PSP results is shown in figure 2.18 at an 

angle of attack of α = 10.10, Reynolds number of 2 x 106 and Mach number of 0.4. A 

low pressure region representing the footprint of the inner vortex is observed inboard 

of the primary vortex. It initiates somewhere around half of the wing root chord and 

extends downstream to the trailing edge area. In the leading edge region, the footprint 

of the primary vortex is obvious and starts at about half of the wing root chord. For 

this case both vortices are thought to start at approximately at the same chordwise 

position. 
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Figure 2.18: Pressure distribution on the medium radius wing at Rmac = 2 Million,  

α = 10.10 and Mach number = 0.4 (From Konrath, 2006a) 

 

The PIV (Konrath et al (2006b) and Schröder et al (2006)) results are in 

agreement with the numerical calculations discussed above; the inner vortex rotates in 

the same sense as the primary vortex located between the primary vortex and the wing 

centre line.  However, a detailed analysis of the PIV results at a given chordwise 

position may provide further insight into the nature of this inner structure (shown in 

figure 2.10). It actually extends downstream with increasing magnitude to a certain 

chord-wise position only; it then decays in strength as the primary vortex is formed. 

Both vortices extend downstream and remain apart and do not merge with each other. 

Both vortices are located close to each other during the initial stage of their 

development with the stronger primary vortex shifting the inner vortex inboard further 

downstream on the wing (Konrath et al, 2008a & 2008b). 

It has been postulated that the inner vortex flow is caused due to a boundary-

layer separation bubble. The concept of three dimensional bubble separations as 

discussed by Dēlery (1992) is strongly linked to the development of the inner vortex. 

The bubble separation is a type of three dimensional separated flow which originates 

from a saddle point in the attached flow region. The flow lifts off from the surface 

forming a flow separation and might roll up to form a spinning flow. As discussed by 

Inner vortex 
 
Primary vortex 



 

______________________________________________________________________________ 

Shabudin Bin Mat – The analysis of flow on round-edged Delta wings 

 

37 

Hummel in his report, the flow in the apex region is fully laminar at Reynolds number 

of 0.88 million that leads to a laminar separation at certain test conditions. The three 

dimensional laminar bubble separation can occur first on the wing surface in a region 

close to the apex, where the body is relatively thick compared with the trailing edge 

area. Simultaneously, the flow in this apex area is smeared towards the low pressure 

region of the leading edge. The flow then rolls-up to form the inner vortex (Hummel, 

(2008a) and Furman & Breitsamster (2008)). At the beginning of its development, the 

inner vortical structure appears as a flat vortex close to the wing surface and grows to 

form a round vortex as it moves further aft.  It then slightly lifts off from the wing 

surface at a certain chord position (Konrath et al, 2008b). Nevertheless, the strength 

of the inner vortex decays as the primary vortex develops from the leading edge 

separation. This is because the vorticity shed from the leading edge is fed into the 

primary vortex, reducing the feeding of the inner vortex. (Luckring & Hummel, 

2008).  
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2.5 The Effects of Angle of Attack, Reynolds Number, Mach Number on Round-

edged Delta Wing 

 

The flow physics of the round-edged wing depends on the angle of attack, 

Reynolds number, Mach number and the bluntness itself (Luckring (2002, 2004b), 

Engler (1991), Konrath (2006a)). These effects will be further discussed in the next 

section. The effect of bluntness was discussed in chapter 2.4.3.  

 

2.5.1 Variation of the Angle of Attack 

 

At a low angle of attack, the flow separates in a region close to the trailing 

edge, where the fraction of the leading edge radius over the wing span is small or the 

wing is getting sharper in the region. The separated shear flow then wraps up to form 

a primary vortex in the same way as reported by Gad-El-Hak & Ho (1985) for the 

sharp leading edge. As the angle of attack is increased, the origin of the primary 

vortex moves towards the apex of the wing (Narayan & Seshadri, 1997 and Luckring, 

2002 & 2004a). At the same time the inner vortex develops further upstream on an 

inboard section of the wing.  As the angle of attack is increased, the origin of the inner 

vortex structure will show an upstream movement. This upstream movement is caused 

by the increase in adverse pressure gradient in the flow direction (Luckring & 

Hummel, 2008). Nevertheless, there is also an adverse effect on the strength of this 

structure.  The strength of the primary vortex increases simultaneously with the angle 

of attack, whereas the inner vortex strength decays. The reason for this has been 

discussed in detail by Konrath et al (2006a, 2006b & 2008b) and Schröder et al 

(2006); once the primary vortex is developed in the leading edge area, the flow starts 

to feed the primary vortex and not the inner vortex anymore. As the angle of attack 

increases further, the magnitude of the primary vortex becomes much stronger 

compared with the inner vortex. 

The angle of attack also affects the position of laminar to turbulent transition 

flow on the wing although not many publications discuss this. Bozhkov (1975) 

performed a three dimensional smoke visualization on a round-edged delta wing. He 
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proposed, on the basis of his observations, that the onset of the turbulent boundary 

layer moves upstream with increasing angle of attack.   

 

2.5.2 Variation of Reynolds Number 

 

The primary separation of the sharp-edged wing is insensitive to the change in 

Reynolds number because this separation is fixed at the leading edge (Erickson, 

(1981) & Hummel, (2004)). For the round-edged wing, Reynolds number is an 

important factor influencing the flow topology at moderate angle of attack. As 

discussed by Peake and Tobak (1980), the primary separation occurs in the vicinity of 

the leading edge on the upper surface, thus Reynolds number strongly influences flow 

separation. The status of the boundary layer; either laminar, transitional or turbulent, 

is strongly associated with Reynolds number. The flow on the front part of the wing is 

usually laminar flow. Transition from a laminar to a turbulent boundary layer will 

take place at some location on the wing that again depends upon Reynolds Number 

and the angle of attack. As the Reynolds number increases, the transition point moves 

towards the apex and the extent of the laminar boundary layer diminishes (Hummel, 

2004).  

Not many papers discuss Reynolds number effects on the round-edged wing at 

Reynolds numbers less than 1 x 106. At higher Reynolds numbers, a turbulent 

boundary layer is expected at some point on the wing. Narayan & Seshadri (1987) 

suggested that attached flow exists over the leading edge with flow separation taking 

place afterwards at Reynolds numbers varying from 2.4 to 13 x 106. Leading edge 

separation occurs, however, near the wing tips since the induced angle of attack is 

highest at this position. This is associated with the downwash effect to increase the 

local angle of attack in the trailing edge region. In general, lowering the Reynolds 

number promotes flow separation at the leading edge and, therefore, the onset of the 

primary vortex.  At a higher angle of attack, the effect of Reynolds number appears 

not to be significant (Szodruch, 1978). 

More specific to the VFE-2 work, PSP results by Konrath in (2006a & 2008) 

and CFD calculation by Fritz (2008) showed that an increase in Reynolds number 

delays the onset of the primary vortex. This situation is shown in figure 2.19 below. A 
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few years earlier, Luckring (2004a) used the leading edge pressure coefficient to 

identify the passage of the onset of separation at different Reynolds numbers on his 

medium-radius delta wing. He also showed that the onset of the primary vortex is 

delayed as the Reynolds number is increased. The main reason for the delay is 

because the flow becomes progressively more turbulent as the Reynolds number 

increases. The turbulent boundary layer is able to sustain the adverse pressure 

gradient to a greater extent without separation compared with the laminar case 

(Hummel, 2004). The strength of the inner vortex is not much influenced by the 

Reynolds number, but the onset of the inner vortex may begin earlier at lower 

Reynolds numbers due to earlier separation.  

 
                               Rmac = 1x106          Rmac = 2x106             Rmac=3x106 
Figure 2.19:  Effect of increasing Reynolds number on surface pressure contour for case Mach 

number of 0.4, Rmac = 1, 2 & 3 Million and α = 130 

 

The Reynolds number also influences the secondary separation process 

underneath the primary vortex.  An increase in Reynolds number will shift the 

secondary separation line towards the leading edge with a corresponding increase in 

the strength of the primary vortex.  

 

 

2.5.3 Variation of Mach Number 

 

Mach number is another factor influencing the flow topology on the delta 

wing. At high Mach number, compressibility encourages leading edge separation and 

also enlarges the magnitude of the primary vortex (Luckring, 2008).  However, at 

Onset of the primary 
vortex 
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higher Mach numbers, shock waves appear on the delta wing (Erickson (1991) and 

Narayan & Seshedri (1997)) associated with usual abrupt changes in the flow 

characteristics.  

As the Mach number is increases to the fully compressible state, the flow 

closer to the delta wing surface underneath the primary vortex become completely 

supersonic and shock waves appear in the flow: their strength increasing with angle of 

attack.  Strong shock waves lie between the primary vortex and wing surface. At high 

Mach number, the location of the secondary vortex is insensitive to the Reynolds 

number (Erickson (1991) and Narayan & Seshadri (1997)).  Additionally, if the cross-

flow reaches supersonic speeds, the secondary separation is caused by a cross flow 

shock wave and not by the adverse pressure gradient anymore.  

Specific to the VFE-2 configurations, strong shock waves are note somewhere 

in front of the sting fairing and at the trailing edge, where the flow is decelerated from 

supersonic speed to a low speed (Konrath, 2006a, 2008b). The PSP and PIV results 

for the VFE-2 configurations show that the leading edge separation and the onset of 

the primary vortex are both promoted as the Mach number is increased. Flow fields at 

higher Mach number are generally much more complex with the occurrence of the 

shock waves; the principle vortex topology remains unchanged except the inner 

vortex disappears at higher Mach number (Hummel & Luckring, 2008). This is due to 

the stronger magnitude of the primary vortex at high Mach number that prevents the 

development of the inner separation.  

Compressibility affects the normal force coefficient of the delta wing. The 

normal force results from NASA-NTF and NASA-LTPT (Luckring, 2008) show that 

the normal force is slightly higher in the transonic case compared with subsonic flow. 

This is partly due to compressibility encouraging the leading edge separations. 

  

2.5.4 The Effect of Bluntness on Forces and Moments  

 

A limited number of force and moment measurements have been performed to 

differentiate the effects of bluntness on the delta wing.  A study by Kegelman & Roos 

(1989) showed that the lift coefficients are insensitive to the bluntness effect. This is 

in contrast with the wind tunnel experiments of Rinoie (1996a), Wang (2005), 
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Erickson & King (1992), Fletcher (1958) and Henderson (1976). They showed that, in 

general, the bluntness lowered the normal force coefficient at all angles of attack 

when compared with the sharp-edge wing case. The higher normal force on the sharp-

edged wing is mainly caused by the extent of the primary vortices over the wing as 

compared with the round-edged wing.  The attached flow region covering the front 

part of the round-edged wing also contributes to the reduction in the normal force 

value (Luckring & Hummel, 2008) as will be discussed later.  

Not many results have been published on the effects of bluntness on the 

tangential force and pitching moment coefficients. A sharp leading edge produces a 

higher drag component (Rinoei, 1996a) and (Wang, 2005). This behavior is, 

presumably associated with the physically larger vortex structure of the sharp leading 

edge. The round-edged wing also exhibits lower nose down pitching moment values 

than the sharp-edged wing (Rinoei, 1996a) and Erickson & King (1992).  

Wings with rounded leading edges also experience vortex breakdown further 

aft on the wing (delaying the vortex breakdown) at all angles of attack compared with 

sharp-edged wings (Kegelman and Roos, 1989 & O’Neil et al, 1989). In figure 2.20, 

O’Neil et al showed the vortex breakdown appeared in the trailing region at higher 

angle of attack for the blunt leading edge case compared to the other sharp wing 

configurations. They also discussed the bluntness of the leading edge delaying the 

upstream progression of the primary vortex towards the apex.  
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Figure 2.20: Effect of leading edge geometry on vortex breakdown (O’Neil et al, 
1989) 
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2.6 Numerical Studies 

 

This section will provide an overview of the results from numerical studies on 

delta wing flows. Very significant progress had been achieved in the development and 

application of numerical methods to simulate the complex flows on real aircraft over 

the past 30 years. There are several methods that can be used; (Gursul et al, 2005b) 

 

1) Euler simulations – This calculation relies on the primary separation line 

being fixed at a certain location. Euler simulations predict vortex breakdown 

and vortical flow interactions well but cannot simulate the secondary vortex 

because the viscous effects (Reynolds number) is not included.   For the sharp 

leading edge, this method of calculation is sufficient to predict the general 

features of the flow topology above the delta wing.  

 

2) Unsteady RANS – Reynolds Averaged Navier-Stokes methods have the 

advantage of including viscosity (Reynolds number).  Consequently, 

secondary vortex appears in the results and the flow topology of the sharp 

leading edge wing is reasonable. However, the methods struggle to fully 

capture the detail of the vortex formations on the round edged wing.  

 

3) Detached Eddy Simulation (DES) – DES overcomes some of the limitations 

of the URANS approach by introducing large scale turbulence in the vortex 

with Large Eddy Simulation (LES). However, DES approach still has 

difficulty computing correctly the vortex formations on the round edged wing 

and predicting the flow topology arising from boundary layer transition.  

 

4) Direct Numerical Simulation (DNS) – Direct Numerical Simulation can be 

used to predict the flow physics at low Reynolds number. It may be a useful 

tool to predict the flow topology when the flow is (essentially) fully laminar. 

A fully turbulent and complex geometry such as delta wings are probably the 

challenges for DNS. 
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A major difficulty faced by numerical viscous methods is that the accurate 

prediction of transition is very difficult. Accurate calculation of vortical flow above 

the delta wing depends mainly on the status of the boundary layer and the appearance 

of the secondary vortex significantly adds to the complexity of the numerical 

calculation (Drikakis, 2003). Visbal & Gordnier (2003) used the Euler simulation to 

calculate the vortex flow above a 750 swept sharp-edged delta wing at several 

different Reynolds numbers. At very low Reynolds number, smooth laminar flow 

initiated the primary vortex that extended from the apex to the trailing edge. As the 

Reynolds number was gradually increased, transition appeared in the trailing edge 

region and extended towards the apex as the Reynolds number was further increased.  

To differentiate the effect of laminar and turbulent flow, Agrawal (1992) 

applied the Navier-Stokes equations, calculating the vortex properties of the sharp-

edged delta wing using a fully laminar and fully turbulent assumption. He found 

several discrepancies between the two cases in terms of the vortex properties. For 

example, the laminar solution showed a much larger secondary vortex than the 

turbulent solution.  Moigne et al (2001) also noted a similar effect, comparing the 

laminar calculations with experiment. 

Within VFE-2, CFD simulations were performed at several research 

institutions across Europe and the United States on both the sharp and medium-edged 

wings. Table 2.1 shows the organizations, CFD codes and turbulence models used in 

the simulations. The vortex systems of the sharp and medium-edged wing were 

calculated in order to compare with the experimental work. Most of the work within 

VFE-2 was performed with fully turbulent RANS simulations.  
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Organization Grid Type Grid size Code Turbulence Models 

EADS Structured ~ 10 x 106 FLOWer Wilcox k-ω 

KTH Structured ~ 7 x 106 EDGE EARSM + Hellsten 

k-ω 

NLR Structured ~ 4 x 106 ENFLO TNT k-ω + Vorticity 

Correction 

TAI Structured ~ 2 x 106 TAI-xFlowg SA 

UG Structured ~ 7 x 106 PM3D TNT k-ω + Vorticity 

Correction 

DLR Unstructured ~ 16 x 106 Tau SA, Wilcox k-ω 

USAFA Unstructured ~ 26 x 106 Cobolts SA and SA-DES 

 
       Table 2.1: Organizations, codes and turbulence models used for CFD simulations 

 

Le Roy & Riou (2008) showed that their numerical calculation at moderate 

angle of attack and a Reynolds number of 2 x 106 differed from the experimental 

results of NASA (Chu & Luckring, 1996) at similar test conditions. This was typical 

of the entire VFE-2 activity that showed discrepancies between the numerical and 

experimental studies. The onset of the primary vortex from their calculation is slightly 

over predicted compared to the experimental works.  

For the medium-edged wing, Fritz & Cummings (2008) compared the 

numerical results with the Pressure Sensitive Paint (PSP) results from DLR (Konrath 

et al, (2006a)). The first point of comparison was the onset of the primary vortex in 

order to verify the correctness and accuracy of the CFD simulations. The results are 

depicted in figure 2.21. It highlights the extent of the challenge for CFD to calculate 

the flow above the round-edged delta wing.  The location of the primary vortex onset 

varies between solutions and most of them predicted onset further upstream compared 

with the experiments. Only the results calculated by Fritz (2008) appear to capture the 

onset of the primary vortex when compared with the PSP results. Another obvious 

feature from the comparison is that all the numerical studies predicted a very weak 

inner vortex compared with the experiments. Fritz & Cummings (2008) and Le Roy & 

Riou (2008) suggested that the very weak inner vortex in the CFD calculations is 
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caused by the primary vortex being estimated to originate further upstream when 

compared with the experiments. This delays the development of the inner vortex. It 

can be concluded from figure 2.21 that an accurate prediction of the inner vortex may 

depend strongly on an accurate calculation of the primary vortex. More work is still in 

progress to try to improve the fidelity of the CFD simulations.  

 
 

Figure 2.21: Surface Pressure maps and onset of leading edge separation at Mach number 0.40, α = 130 

& Reynolds number of 3 x 106. (Fritz & Cummings, 2008). 

 

 

Discrepancies in the numerical studies may also arise from the grid resolution 

and the quality of the turbulence model but the most important parameters is likely to 

be the location of transition on the round leading edge. Fritz (2008) and Fritz & 

Cummings (2008) mentioned that the results obtained from CFD can be under or over 

predicted depending on the location of transition and the actual Reynolds number on 

the wing. The importance of transition for the CFD simulations was again emphasized 

by Fritz in related work. Two different turbulent simulations were performed; the first 

without fixing the transition line and the second with the transition line fixed at 0.3% 
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of the wing-span from the leading edge. The results (Fritz, 2008) from the first 

simulation showed that increasing the Reynolds number moved the onset of the 

leading edge separation upstream.  The second experiment, however, showed that 

increasing the Reynolds number delayed the onset of the primary vortex. This 

illustrates that the results obtained are very sensitive to the transition location and the 

accuracy of the primary vortex is only achieved where transition is correctly captured.    

In contrast to the above, Crippa (2008) reports that his results at very high 

Reynolds number compare well to the experimental results of Chu & Luckring 

(1996). This may be because laminar flow is confined to a very small area close to the 

apex, with the rest of the wing being covered by turbulent flow. 

Despite the issues denoted, good information on the flow evolution has been 

obtained from the CFD simulations. Gurdamar et al (2008) conducted simulations on 

the VFE-2 configuration at various angles of attack, Mach numbers and Reynolds 

numbers. These showed the upstream movement of the leading edge separation and 

the strengthening of the primary vortices as the angle of attack was increased. They 

also showed that higher Mach number promotes leading edge separation. The general 

effects of leading edge bluntness on the flow topology above the round-edged wing 

were also well predicted by Gurdamar et al (2008).  

CFD can provide considerably more detail on the 3-dimensional flow topology 

on the round-edged wing than wind tunnel experiments. For example the streamline 

and pressure field information provided by the simulations of Cummings & Schutte 

(2008) and Schutte & Cummings (2008) as shown in figure 2.22 provides 

considerable insight into the bluntness effects on the delta wing. The example shown 

is at an angle of attack α = 13.3o, Mach number of 0.4 and Reynolds number of 3 x 

106. For this case the gross flow topology is similar to that identified in experiments.  

Initially, the flow at the apex is attached to the surface of the wing and is 

smeared into the leading edge suction area. The flow is then diverted towards the 

leading edge area and separates into a shear layer that rolls up into a swirling flow. 

This roll up process results in the formation of the inner vortex. This contrasts with 

the observations of Delery (1992). He described the inboard separation as a “bubble 

separation” that initiated at a saddle point in the flow. While a bubble separation may 

occur, the formation of the inner vortex may not depend on this.  
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In the leading edge region, figure 2.22, separation occurs and rolls up to form 

a primary vortex downstream from the onset of the inner vortex. On inboard sections 

of the wing, the inner structure extends downstream and reaches a maximum size and 

strength at a point near to the onset of the primary vortex. CFD studies also show the 

strength of the inner vortex then decays, as the primary vortex grows in strength and 

size. The reason for the decay in the inner vortex strength as the primary vortex 

develops is discussed by Cumming & Schutte (2008). They agree with the 

observations of Furman & Breitsamter (2008) as discussed earlier in section 2.4.4. 

During the initial development of the inner vortex, the leading edge separation from 

the lower surface feeds and promotes the inner vortex up to a certain distance from 

the apex. After the primary vortex is fully formed, the separating flow no longer feeds 

the inner vortex, but rather begins to feed the outer vortex thus reducing the strength 

of the inner vortex.  

The results obtained from the numerical analysis of the VFE-2 campaign 

reveal a distinct contribution of CFD to well predict the vortical flow above round-

edged delta wings.   

 

 
 

Figure 2.22: Streamlines and pressure distribution calculated using the TAU DLR code at Mach 

number 0.40, α = 13.30 & Reynolds number of 3 x 106  (Schutte & Ludeke, 2008) 
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Three-dimensional flows over the round-edged wing at high speed are 

complicated by the occurrence of shock waves and the associated sudden decrease in 

the speed on the wing (Chakrabatty et al, 1998). Within the VFE-2 programme, 

Crippa (2008) calculated that the shock wave occurred at the end of the sting fairing. 

The complexity of the flow-field with the shock wave is discussed by Schiavetta et al 

(2008) and Fritz & Cummings (2008). The shock wave will interact with the primary 

vortex and then significantly affect/promote the vortex breakdown as shown in figure 

2.23. Schiavetta also reported that there were two other regions for shocks; 1) the area 

in the middle between the wing centre line and the leading edge and 2) near to the 

trailing edge (Schiavetta et al (2008)). These shock wave locations may vary with 

angle of attack. The main area of the shock-waves on the VFE-2 configurations is 

shown in figure 2.23. 

 
 

Figure 2.23: Location of shock wave above delta wing at Mach number = 0.85, 

Rmac = 6 x 106 & α = 230 (Fritz & Cummings, 2008). 
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2.7 Unresolved Issues and the Current Study Programme 

 

 Comprehensive experiments and numerical data have previously been published 

for sharp-edged delta wings. Nevertheless, relatively few experimental or simulation 

databases are available for round-edged wings outside of the VFE-2 studies. 

Comprehensive and state of the art results for the round-edged wing (medium case) 

are available in the VFE-2 virtual library.  The difficulties in obtaining the location of 

transition, the occurrence of the inner vortex and the effect of bluntness on the 

magnitude of the primary vortex are the issues that this team has identified, as being 

key to improved understanding of the flow evolution on round-edged delta wings. The 

researchers conclude that further studies are needed to address these issues. There are 

few unresolved issues either by experiments or simulation method particularly on the 

blunt leading edge wings; 

 

1) Further experiments to measure the status of the boundary layer for the 

VFE-2 configuration with sharp and medium rounded edges. As a starting 

point, investigations of the boundary-layer state should be performed at an 

angle of attack α =180, where the vortex is fully developed for the sharp-edged 

wing and where the primary vortex for the medium-edged wing is expected to 

reach the apex. At this angle of attack, the fact that the flow is expected to be 

fully separated without breakdown on both wings could simplify the analysis. 

In addition, a case where the flow is partly separated and partly attached at 

about α = 130 should also be studied.  PIV will be carried out at Argyll wind 

tunnel and a detail outlook of the laminar/turbulent status should be 

determined particularly in the region close to the apex. PIV data in the region 

close to the apex is not widely available.   

 

2) Leading edge separation on the medium-radius wing is known to initiate at 

the trailing edge where the thickness ratio of leading edge radius to local half 

span reduces (Luckring & Hummel, 2008).  Despite several experiments 

dedicated to the development of the primary vortex at low angle of attack, 

there is still a lack of clarity on its development in the leading edge area. The 
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detail of the interaction between the leading edge separation and the roll-up 

process of the inner separation also needs to be clarified and should be further 

investigated using PIV at low angles of attack and with different bluntness 

profiles.  A better overview of the bluntness effect on the development of the 

primary vortex can be obtained by comparing the results at different leading 

edge radius.  Regardless of leading-edge radius, the increase in relative 

sharpness of the wing cross-section as trailing edge is approached should 

mean that the roll-up process should start there. The leading-edge radius will, 

however, inevitably influence the phasing of this.  

 

3) Luckring (2008) has compiled CFD and experimental results to characterise 

the inner vortex; the inner vortex is initiated by a concentration of vorticity 

around the leading edge near to the apex of the wing. This concentrated 

vorticity then grows to form the inner vortex. PIV experiments should be used 

to investigate this interesting feature during the initial development of the 

inboard separation.   

 

4) The effect of Mach number within the subsonic region also needs further 

investigation. Even within the subsonic region, the experimental results 

reported by Furman & Breitsamter (2008) showed that the inner vortical 

structure totally disappeared at an angle of attack, α = 180, Reynolds number 

of 2 x 106 and Mach number 0.37. As will be shown later, the flow 

visualization studies performed at lower Mach number (0.12) in the current 

study concluded that the footprint of the inner structure still exists at this angle 

of attack and can extend up to α = 230. The differences between the two 

experiments at this stage are thought to be caused by compressibility effects 

rather than Reynolds number. An increase in Mach number at constant 

Reynolds number increases the compressibility effect and so increases the 

swirling magnitude of the primary vortex. A stronger primary vortex in the 

leading edge area for the Furman & Breitsamter (2008) case is thought to 

prevent the development of the inner structure. The effect of Reynolds number 

may not be significant, since, as will be shown in the current study, the inner 
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vortical structure appears at 1 x 106 Reynolds number as well as at a higher 

Reynolds number of 4.5 x 106 (Cummings & Schutte, 2008).  

 

 As mentioned previously, four sets of leading edges, representing sharp, small, 

medium and large-edged wings have been manufactured for the current study.  

Although VFE-2 focused on the medium and sharp-edged wings, further insight into 

the bluntness effect should be gained by considering leading edges with different 

radii. The current study will provide that insight.   
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Chapter 3 

 

3.0  EXPERIMENTAL SET UP & WIND TUNNEL TESTING 

 
3.1 Project Overview 

 

The model and the test rig were originally constructed to be part of the Vortex 

Flow Experiment (VFE-2) campaign. The design was based on the original NASA 

geometry tested in the NASA-NTF and NASA-LTPT wind tunnels. The geometry of 

the original NASA model is shown in figure 3.1 and the analytical description of it is 

shown in appendix A. The model has three main sections; the first is the main flat-

plate delta wing without leading or trailing edge. The second part is the leading-edge 

assembly. There are four sets of leading edges i.e.; sharp, small, medium and large 

that  correspond to ratios of the leading edge radii to the mean aerodynamic chord of 

0, 0.05, 0.15 and 0.3 respectively. The final part is the sharp trailing edge portion. For 

the VFE-2 work, 2 wing models were tested; i.e. the sharp and the medium edged 

configurations. The small and large-edged wings were subsequently tested to provide 

better insight into the effects of bluntness.   

   
Figure 3.1: The geometry of original NASA (Chu & Luckring, 1996) delta wing showing the 

interchangeable leading edges 

 

 

 

Trailing Edge 
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3.2 Glasgow University Model Descriptions 

 

The model constructed for this study replicates the exact NASA (Chu & 

Luckring, 1996) leading and trailing edge profiles. The model was to be tested in the 

Glasgow University Argyll low speed wind tunnel. The specifications of the Glasgow 

University Argyll Wind Tunnel is shown in table 3.1. 

 

Maximum Speed 76 m/s 

 

Test Section 2.65 x 2.04 meter 

 

Moving Ground 3.75 x 1.9 meter 

 

Moving Ground Speed 60 m/s 

 

Mechanical Balance 6-component 

 

 
                                    Table 3.1: Argyll Wind Tunnel Specifications  

 

The root chord of the model was chosen as 1.059 metres so that the highest 

Reynolds number of 2 x 106 could be achieved at a speed of 41.23 m/s based on the 

mean aerodynamic chord of 0.70585 metres.  The new model had a maximum span of 

0.987 metres, a wing area of 0.5223 m2 and a wing aspect ratio of 0.953 making it the 

physically largest model in the VFE-2 project. The thickness of the basic flat plate 

was 36 mm. All four sets of leading edges were manufactured at the same time. A 

trailing edge was also machined following Chu & Luckring’s (1996) analytical 

function. All the delta wing components were machined from aluminum giving a total 

model weight of 39.5 kg.  
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3.3 Conceptual Design of the Sting 

 

The sting structure was designed to replicate the original Chu & Luckring 

(1996) test rig. The original wing model was positioned in a straight line with the 

centre of rotation and connected to short sting that was offset by 100.  The short sting 

was then connected to another sting section also angled at 100 in the opposite sense to 

this line called the stub sting.  The stub sting was then connected to a circular 

automated arc sector that provided angle of attack changes from negative to positive 

pitch. The movement of the circular arc was powered by an electrical motor allowing 

the angle of attack to be controlled automatically. The short and stub sting were 

covered by an analytically defined fairing according to the functions presented earlier 

in this chapter. The model angle of attack range that could be achieved using this sting 

configuration in the Argyll wind tunnel was not sufficient due to the physical 

constraints of the wind tunnel. The angles of the sting section were, therefore, 

adjusted to address this issue.  

Based on this general configuration, the conceptual design of the Glasgow 

University sting support structure is sketched in figure 3.2. The key parameters during 

the initial design stage were; 1) to minimise the interference from the support 

structure, the support structure should be positioned at least at two root chord lengths 

behind the wing trailing edge. 2) the height of the Argyll wind tunnel is 2.04m., 3) the 

model should be able to be pitched up to at least 250 4), the model chord length itself 

was 1.059 metres and the model weight was 39.5 kg.  
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Figure 3.2: Conceptual design of the Glasgow University test rig 

 

The wing/sting assembly consists of 3 main sub components; i.e. the wing, 

short sting and stub sting. The short sting, closest to the wing, is set at angle of 150 to 

the straight line between the center of rotation and the mounting point on the support 

section. The short sting is then connected to the stub sting that is offset from the 

straight line between the mounting point and the centre of rotation by 150. The short 

and stub sting angle were adjusted to 150 respectively compared to 100 for both stings 

of the Chu & Luckring (1996) test rig to achieve the desired angle of attack range.  To 

create the interface between the stub-sting and the main support structure, 2 rollers 

were attached to the stub sting as sketched in figure 3.2. These two rollers were 

connected to each other by a very strong gas spring arrangement. The main function 

of these 2 rollers was to ensure the stub component would glide up and down along 

the 2.65 meter radius. Factory track and cam rollers were used as a back and front 

rollers respectively and this arrangement is shown in figure 3.3. It should be noted 

that, unlike the set-up of Chu and Luckring, the radius section used in the current tests 
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did not move. There was insufficient clearance above and below the wind tunnel for 

this to occur. This necessitated the sting moving around the radius.  

 

 
 

Figure 3.3: The arrangement of the rollers 

 

In the initial design, the two rollers engaged with the front and back of the 

radius support. The front section had a radius of 2.65 metres and the -aft section had a 

radius of 3.1 metres (also shown in figure 3.3). These two sections created parallel 

radii originating from the centre of rotation. The angle of attack was determined by 

moving the stub-sting component around the radius about a constant centre of rotation 

at the model. 

Both sections were bolted to the radius support structure. The support structure 

located all the way from the roof to the floor of the wind tunnel. Initially, two C-

shaped steel structures were proposed as the main support structure. They were to be 

mounted parallel to each other in the middle of the wind tunnel as shown in figure 3.4.  

An H-shaped beam structure was proposed for the stub sting. The H-shaped 

beam was chosen because of its strength in both; lateral and vertical directions. The 

front cam roller of diameter 98 mm and back track roller of diameter 96 mm were 

placed within a cut-out in the H-shaped stub-sting as shown in figure 3.4. Both rollers 

were attached to each other by a gas spring arrangement. To firmly locate the sting in 

a specific position, the H-shaped stub-sting was to be bolted through to the radius 
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Back 
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support structure as a locking mechanism during the experiment.  To reduce the 

overall weight of the sting structure, two rectangular holes were to be cut out of the 

H-shaped stub sting as shown in figure 3.4.  

 

             
 

Figure 3.4: The attachment of stub-sting to the section 

 

An H-beam structure was also proposed for the short sting. This structure 

would be connected to the stub sting through a fabricated connector. This 

arrangement is shown in figure 3.5. The connector would be fabricated from steel in 

the Argyll wind tunnel workshop.  

                  
 

Figure 3.5:  Proposed design structure 
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 A 6-component AMTI MC-3 series transducer was chosen to measure the 

forces and moments of the model. This 6 axis transducer would be placed at the end 

of the short sting 857 mm from the apex of the wing or 81% of the wing root chord, as 

shown in figure 3.6.  The transducer is a cube of dimensions 76  x 76  x 76 mm with 

four threaded ¼-20 inserts on the top and bottom surface.  Its top surface would have 

been bolted through to the delta wing whilst the bottom surface would be attached to 

the short sting. The model pitching moment would be resolved at the two-thirds chord 

location from the wing apex for consistency with Chu & Luckring (1996). Thus, the 

moment arm between the transducer reference point and the resolved point is 15.1 cm.  

 

      
 

Figure 3.6: Proposed location of the AMTI-MC-3 

 

 Finally, the wing and short sting interfaces would be attached to the short sting 

as shown in figure 3.7. These two components would be machined from the wood into 

two sections; lower and upper surface.  
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Figure 3.7: The attachment of the short sting and wing interface curvature to the short sting 

 

This preliminary design threw up some issues that required further consideration 

 

 The sting would deflect downwards because of the weight of the model 

and the sting itself. The required angle of attack, locking mechanism 

and centre of rotation may be adversely affected by this deflection. A 

stiffer structure was needed to overcome this problem.  

 

 The second issue was the limited ability of the MC-3 transducer to 

measure the pitching moment at higher angles of attack and speed; thus 

several choices of higher capacity transducers were considered.  

 

 The shape of the connector between the sting sections was 

complicated. This would complicate the machining process, thus a 

simpler connector design was required necessary to overcome this 

problem. 

 

 The quality of the C-shaped steel for the main support structure 

obtained from the supplier was not good. 
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3.4 Final Design 

 

Several modifications on the design were introduced to address these issues;  

  

 Another structure, called the roller housing, was introduced to the 

design to improve the beam deflection problem and increase the 

effectiveness of the locking mechanism. The roller housing was set at 

an angle of zero degrees with respect to the centre of rotation and the 

wind flow direction. The roller housing would attach to the stub sting 

that would be set at an angle of 17 degrees. The stub sting would join 

the short sting that would be set an angle of 15 degrees in relation to a 

straight line between the centre of rotation and the mounting point on 

the support structure. The model angle of attack could be set by 

moving the roller housing around the support section. The centre of 

rotation would remain constant at half of the wing root chord as 

proposed earlier. 

 

 The C-shaped support structure was replaced by a solid box section 

fabricated and assembled from four pieces of aluminium.  

 

 The MC-3 transducer was replaced by a heavier capacity load cell to 

measure the pitching moment at higher angles of attack and speeds. 
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3.4.1 Final Design Detail Descriptions 

 

The final design of the sting structure is shown in figure 3.8. The detailed 

descriptions of each component will be presented in this section.  

 

 
Figure 3.8: Final design of Glasgow University test rig 

 

The model and sting were supported by a strong 15 x 23 cm. solid box section 

extending all the way from the roof to the floor of the test section as depicted in figure 

3.9. Its sides were alluminium plate of length 2040 mm, width 230 mm and thickness 

20 mm. These two pieces were positioned streamwise in the test section. Extra 2 

pieces of alluminium of height 2040 mm, width 150 mm. and thickness 20 mm were 

joined to the front and rear faces of the structure to form a solid box. The front and 

back curved sections of the support were bolted to this box structure.  
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Figure 3.9: Glasgow University’s main support structure 

 

Figure 3.10 shows the way of interfacing the roller housing with the main 

support structure. Two factory cam rollers were embedded in the roller housing 

creating an interface between the sting structure and the sections. Both rollers were 

then attached to each other by strong gas springs of diameter 10 mm. The rollers were 

intended to glide up and down along the 2.65 meter radius allowing the angle of 

attack to be varied from 00 to 250. A slit of 10 mm was also machined in the middle 

part of the roller housing and corresponding 10 mm slits were machined in the box 

section. A locking mechanism between the sting and the support structure could be 

engaged by bolting through these slits. 
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Figure 3.10:  Detail arrangement between the rollers, roller housing and support structure 

 

The end corner of the roller housing was welded to a piece of connector 

fabricated from steel of thickness 12 mm. It was decided to replace the original H-

shaped stub sting with a rectangular box section in order to reduce the beam 

deflection at the rotation point.  The stub sting was welded to the steel plate 

connector. The stub sting was then connected to the 15 degrees short sting, which was 

the closest component to the model.  Two rectangular pieces of metal were used to 

connect these two stings.  In order to simplify the rest of the design from the short 

sting to the model, a cylindrical alluminium tube of radius 42.3 mm and the length 0.7 

m. was used as the short sting. 

The MC-3 load cell was replaced by a heavier capacity transducer provided by 

the AMTI Corporation; the MC-5-1250-6. The factory modified transducer had two 

advantages compared with the previous load cell. This transducer had a higher 

moment capability and it was therefore more suitable for the experiments at higher 

speed and angle of attack. Secondly, it is a cylindrical type load cell with 8 mm. 

threaded holes on the flat top and bottom surfaces of the load cell. This allowed the 

bottom surface of the load cell to be bolted directly to the cylindrical short sting and 

the top surface to be bolted to the wing model. A three-dimensional image of the final 

Front 
Roller 

Back 
Roller 

Roller 
Housing 



 

______________________________________________________________________________ 

Shabudin Bin Mat – The analysis of flow on round-edged Delta wings 

 

66 

test rig is presented in figure 3.11. The transducer (magenta in color) is placed 

between the short sting and the model. In order to avoid engagement between the load 

cell and the wing interface fairing, the transducer was located parallel to the wing 

trailing edge. This meant that the moment arm between the balance reference point 

and the force and moment reference point on the wing was 37 cm.  

All the components were machined in the Argyll Wind tunnel workshop and 

the final assembly is shown in figure 3.12. The test rig and the model profile replicate 

exactly the original Chu & Luckring (1996) geometry from the wing apex to the short 

sting ends.  Nevertheless, several minor changes were made downstream of this in 

order to simplify the design and manufacturing process. One of them was that a 

cylinder of diameter 20 cm was used for the stub sting shape. The original NASA 

sting was curved but no description was provided for this complicated profile in the 

NASA (Chu & Luckring, 1996) report.  Secondly, the Glasgow University test rig 

was designed so that the offset angle of the short and stub stings were 150 and 170 

compared to 100 for both stings in the NASA configuration. This modification was 

made to achieve the desired angle of attack range in the Argyll wind tunnel.  

 

             
 

Figure 3.11: 3-D view of the test rig assembly 
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3.5 Problems During Wind Tunnel Set-Up 

 

Some mechanical problems occurred when the components were assembled in 

the wind tunnel test section. The main problem identified was that the locking 

mechanism between the roller housing and the main support structure was inadequate 

to support the weight of the model and the sting components.  The gas spring that was 

proposed during the design stage was also inadequate to fully engage with the rollers. 

These two weaknesses caused the sting to slide down without following the curve as 

expected. Several minor modifications to strengthen the locking mechanism were 

implemented. Two pieces of steel plate with slits in the middle of them were welded 

on the top and bottom of the roller housing. With this modification, 4 extra bolts used 

to engage the roller housing to the support structure. Additionally, a stronger 20 mm. 

diameter tension spring replaced the original 10mm gas spring.  

Another problem found during this stage was the difficulty in maintaining a 

constant centre of rotation of the sting structure. Two strong winches solved this 

problem; one winch was attached to the short sting and the other to the stub sting. 

These two winches were hung from an additional structure located above the roof of 

the wind tunnel. These winches assisted the rollers to slide up and down on the radius 

section as the model was manually pitched at the centre of rotation. Both winches 

were then removed after the roller housing was firmly attached to the support 

structure.  

 

3.6 Glasgow University Sting Support Structure 

 

The final assembly of the test rig in the Argyll Wind Tunnel of Glasgow 

University is shown in figure 3.12. The fairings for the short sting and wing interface 

were manufactured in carbon fibre. These two fairings were then placed on the wing 

and short sting as shown in the figure 3.12. During the initial experiments, the model 

exhibited vibration, particularly at higher angles of attack and speeds. In order to 

resolve this, lateral and vertical bracing wires were attached to the sting providing 

additional stiffness. These can also be observed in figure 3.12. 
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Figure 3.12: Glasgow University’s delta wing model in the Argyll wind tunnel at high angle of attack.  

 

A problem that arose during the initial experiments was measuring the correct 

angle of attack during the tests. It was observed that the wing incidences were slightly 

higher than expected especially at a higher angle of attack and higher speed due to the 

wind loading. The lateral and vertical bracing wires were used to minutely adjust the 

planned wing angle of attack before the experiments but the deformation of the rig 

under load changes this angle. In order to monitor the correct angle of attack during 

the experiments, a Digital inclinometer with 0.0050 accuracy was placed on the wing 

(shown in figure 3.13) under the wing interface fairing.  

Another problem that arose during the initial experiments was that the normal 

force results were lower than expected. The difference was caused by engagement 

between the transducer and one of the fairings. A minor modification to the short 

sting and wing interface fairings had to be made to ensure that no transmission of load 

occurred through the fairings. 
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Figure 3.13: Balance and inclinometer attachment to the delta wing.  
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3.7 Wind Tunnel Testing Techniques 

 
3.7.1 Introduction 

 

There are several experimental techniques that can be used for experimental 

research in delta wing aerodynamics (Gursul et al, 2005b). These include the 

following:  

 

a. Force balances that provide time-averaged integral quantities but are not 

naturally useful for understanding detail flow physics. 

b. Steady and unsteady pressure measurements including pressure-sensitive paint 

that provide wing surface measurements but do not provide information on 

off-surface flow and the nature of the vortices. 

c. Surface flow visualization, for example, oil flow visualization that gives an 

indication of surface flow streamlines but does not provide information on off-

surface flow.  

d. Off-surface flow visualization (smoke or dye) that provides useful information 

on shear layer structures and vortex breakdown location but this technique 

does not provide information on the vortex properties. 

e. Multi-hole velocity-probe technique that measures three components of mean 

velocity.  

f. Hot wire anemometry that provides unsteady velocity components.  

g. The non-intrusive methods of LDV and PIV that provide information on off-

surface flow and the nature of the vortices respectively.  

 

Methods a, c and g are used in the present study. In addition, unsteady balance 

data were recorded.   
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3.8 Wind Tunnel Testing at Glasgow University 

 
The experiments in this project were carried out in the 2.65 metre by 2.04 

metre closed circuit Argyll Wind Tunnel, with maximum speed of 76 m/s.  Tests were 

conducted at speeds of 20.63 m/s and 41.23 m/s corresponding to Reynolds numbers 

of 1 x 106 and 2 x 106 based on mean aerodynamic chord respectively. The 

experiments were conducted in three phases. In the first phase, forces and moments 

were measured.  This was followed by oil flow visualization studies. The final 

experiments were conducted using Particle Image Velocimetry.  

 

3.8.1 Steady and Unsteady Balance Measurements 

 

The first experiments were the steady and unsteady load cell measurements.  

These were for all wings; i.e. sharp, small, medium and large-radius wings.  Prior to 

the experiments, the force and moment channels were calibrated with precision 

weights for their steady characteristics. The calibrations were carried out with three 

precision weights of 19.62 N, 88.96 N and 222.41 N at each calibration point. During 

the calibration, these precision weights were placed at three different locations 

upstream of the MC-5; 20 cm, 50 cm and 70 cm from the balance reference point.  

For accurate placing of the precision weights, a steel rod of diameter 20 mm was 

attached in front of the transducer allowing the weights to be mounted. Calibration 

was performed at sting angles of 00 and 15.50. The process included the negative and 

positive directions at these locations upstream of the MC-5 transducer.  The raw data 

obtained from this calibration process were then reduced accounting for balance 

cross-talk effects. The loads obtained from the balance measurements were then 

compared with the actual weights applied.  The calibration procedure resulted in 

errors of less than 2% for the forces and moments. 
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Figure 3.14: Bare test experiments 

 

The balance was also used to examine the unsteady characteristics of the 

model support structure.  There were two stages in doing this, firstly the model was 

tapped with a mallet with the wind off and the forces and moments were recorded. 

The data were then analysed to obtain the natural frequency of vibration of the 

structure.  This process was followed by placing a sharp cone in front of the load cell, 

as shown in Figure 3.14 to prevent any vortex development. Tests were then 

performed at two speeds, namely 20.63 m/s and 41.23 m/s, and at angles α = 13.30, α 

= 18.50 and α = 230 to measure the unsteady loads in the absence of the wing. The 

results of these experiments are discussed in section 4.8.2 & 4.8.3. 

After calibration and these initial tests, force and moments were captured at 

each angle of attack at two sampling frequencies of 100 and 8000 Hz. Each test was 

repeated five times to determine the repeatability. The results showed an excellent 

repeatability of forces and moments particularly the forces in the y-direction and 

moments in the x-direction that corresponded to the model normal force and pitching 

moment. The results of these tests are discussed in Chapter 4. The maximum capacity 

of the load cell in the z-direction (5560 N) was very large.  This axis provided the 

model axial force but, as a result of the high range, resolution of this force was not 

good.  

 Load Cell 
 
 
Cone 
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 The raw data obtained from each channel was processed using the MC-5 

crosstalk matrix. The details of the MC-5 crosstalk matrix are shown in Appendix B 

and its full range of forces and moments capabilities are shown in table 3.2.  

 

Force and Moment 
Channels 

Maximum Capacity 

Fx ±2780 N 
 

Fy ± 2780 N 
 

Fz ± 5560 N 
 

Mx ± 203 N.m 
 

My ± 203 N.m 
 

Mz ± 140 N.m 
 

 

   
Table 3.2: MC-5 Full Range Capabilities 

 

The reduced forces and moments from the crosstalk matrix were calculated 

using a Matlab programme and these are presented in Chapter 4. The analyses of load 

spectra were also performed using Matlab and the results are also discussed in 

Chapter 4.  

 

3.8.2 Flow Visualization 

 

The second series of experiments were the oil flow visualization studies. 

These were also carried out for all wings between α = 100 to α = 270 angle of attack at 

both Reynolds numbers of 1 x 106 and 2 x 106.  In this experiment, a mixture of 

Ondina oil thinned with paraffin was mixed with Dayglo powder before its 

application to the surface of the wing, as shown in Figure 3.15. During the 

experiments, extra care had to be taken so that the thickness of the mixture applied to 
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the wing surface would not affect the actual flow topology, as advised by Squire 

(1970).  

 

 
              

Figure 3.15: The application of mixture onto the delta wing 

 

During the experiment, an ultra-violet light was placed on the roof of the wind 

tunnel to illuminate the mixture. The images were recorded using a very high 

definition 3008 x 2000 pixel Nikon D70 digital camera located outside of the wind 

tunnel on an adjustable tripod on the roof of the wind tunnel in a sequence from the 

initial to the stabilized oil flow pattern on the wing. Results from these experiments 

are discussed in Chapter 5. 

 

3.8.3 Particle Image Velocimetry 

 

3.8.3.1 Introduction 

 

The final experiments were carried out using Particle Image Velocimetry. The 

basic system components for Particle Image Velocimetry are shown in Figure 3.16. 

Particle Image Velocimetry requires flow seeding, a double-pulsed laser, light sheet 

optics, a CCD Camera, a timing unit and its software. The main function of each of 

these is as follows (www.piv.de);  



 

______________________________________________________________________________ 

Shabudin Bin Mat – The analysis of flow on round-edged Delta wings 

 

75 

a. Seeding – to seed the flow with particles or bubbles. 

b. Double-Pulsed Laser – uses two laser pulses to illuminate the particles twice 

with a very short time interval between the pulses.  

c. Light Sheet Optics – to form the laser light into a thin plane across or along 

the flow.  

d. CCD Camera – to record the two flow images exposed by the laser pulses. 

e. Timing Unit – highly accurate electronics to control the laser and camera. 

f. Software – to capture, analyze and display the results. 

 

 
 

Figure 3.16: Basic system components for Particle Image Velocimetry (Figure taken from www.piv.de)  
 
 

3.8.3.2 Particle Image Velocimetry at Glasgow University 
 

 
The arrangement of the stereo Particle Image Velocimetry system in the 

Argyll wind tunnel is shown in Figure 3.17. The images of the particles were recorded 

by two 11 Megapixel LaVision cameras with a pair of 300mm focal-length Nikon 

lenses.  Both cameras were mounted on three-dimensional adjustable tripods located 

outside the test section on the starboard side of the wing model. To obtain good 

precision of the velocity components, the viewing angles of both cameras should be 

positioned at ± 450. However, due to the limited size of the tunnel window and 
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required angle of attack, Camera 1 was set at a higher angle compared to Camera 2. 

This was accounted for during the calibration process.  

 
 

 

 
 

Figure 3.17: Stereoscopic PIV arrangement in the Argyll low speed tunnel showing Camera 

positions during the experiments  

 

 

3.8.3.3 Laser Beam and Laser Beam Deflections 

 

The system used to illuminate the droplets in the Argyll tunnel was an Nd: 

YAG Pulse laser of 250 mJ per pulse. It was located under the floor of the wind 

tunnel. A beam guide arm fitted with light sheet optics was used to deliver the laser 

light sheet into the required area, as shown in figure 3.18.  
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           Figure 3.18: Adjustable laser arm and light sheet optics 

 

There were two limitations during the PIV set-up stage; the size of the 

calibration plate which was only 50 cm by 50 cm and the length of the pulsed laser 

sheet that was about 50 cm at the wing surface. This was considerably smaller than 

the span of the wing towards the trailing edge. Thus, it was decided to observe and 

analyze the vortex system on the starboard side of the wing only. The calibration plate 

was then placed perpendicular to the wing axis on the starboard side of the model. 

During the calibration, the light sheet was aligned parallel to the calibration plate, as 

shown in Figure 3.19, (the model shown in the figure is the large-radius wing). This 

was necessary to keep the light sheet perpendicular to the wing axis. Any 

misalignment between the laser sheet and the calibration plate was manually corrected 

by adjusting the light sheet optics. Since a very thin laser sheet on the wing surface 

was necessary for good flow images, a piece of reflector paper was utilized to 

determine the position and sharpness of the sheet.  
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Figure 3.19: Laser sheet adjustments 

 
 
3.8.3.4 Calibration Process 
 
 
 

The most important stage in the stereo Particle Image Velocimetry study was 

the camera calibration after the laser light was set at a specific position. The 

calibration process was based on the position and size of the calibration plate. The 

maximum flow view that could be obtained from these experiments was 50 cm by 50 

cm. The calibration plate contained dots spaced at 5 mm along both vertical and 

horizontal directions. Both cameras were adjusted to obtain full view of the 

calibration plate. This is shown in figure 3.20. The camera calibration then helped to 

determine the corrected camera image that arose from the distortion due to the camera 

position and camera lenses. As mentioned above, during the calibration of the stereo 

PIV cameras, care had to be been taken to avoid any misalignment between the 

positions of calibration plate and the laser sheet.  
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Figure 3.20: Calibration work on Glasgow University Delta Wing 
 

The complexity of applying stereo PIV experiments to the delta wing model in 

the wind tunnel is illustrated in Figures 3.21 and 3.22. The first problem was that the 

viewing angle of both cameras was not exactly +450 with respect to the calibration 

plate. This was due to the location of the wing in the tunnel and the size of the tunnel 

window.  This caused the viewing angle on the calibration plate of Camera 1 (α1) to 

be much higher than that of Camera 2 (α2), as shown in Figure 3.21. Secondly, in 

order to get a better image at positive angle of attack, Camera 1 had to be positioned 

at a location slightly higher than Camera 2, as shown in Figure 3.22. 
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Figure 3.21: Plan view of CCD-Camera calibration 
 

 
 

To minimise adverse effects of the glaring, the locations of both cameras had 

to be manually adjusted and re-adjusted to maximise view of the calibration plate on 

the LaVison software. The individual lenses were also manually adjusted to get a 

better view of calibration plate in the software. This calibration process had to be 

repeated for every change of the angle of attack and measurement plane.  
 

 
Figure 3.22: Side-view of CCD-Camera calibration 
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After positioning of the cameras and adjustment of the lenses had been done, 

the next stage was to obtain three selected dots on the calibration plate to mark as a 

mapping function of the measurement planes. These three points would become the 

origin of the calibration on each plane. For instance, the origin of the mapping 

function for the large-radius wing at α = 150 and the  measurement plane at x/cr = 0.5 

was located 36 mm above the wing centre line and 142.5 mm from the leading edge. 

The mapping function and the cross correlation was calculated from this origin.  

The sequence of the dots selected for the mapping function for each camera is 

shown in Figure 3.23. The images of these three dots on the calibration plate were 

then recorded by both cameras. 

The coefficient of the mapping function was then calculated by the LaVision 

software. This mapping function was used to evaluate the relation between the 

coordinates of the point in the calibration plate with the physical space of the 

measurement plane. The calibration plate was removed after the mapping function 

had been obtained. 

 
 

 
Figure 3.23: Marking function on the calibration plate 

 

First Point 

 Third Point 
 

Second Point 
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A source of light was placed in front of the calibration plate during the 

calibration process, as shown in Figure 3.24. This was to ensure that the calibration 

plate was well illuminated during the marking process.   

 

 
 

Figure 3.24:  Light source during the calibration process 

 

3.8.3.5 Flow Seeding  

  

The final stage before starting the experiments was to ensure a uniform flow 

seeding in the test section. In this experiment, droplets were produced by a Piv Part 40 

Aerosol smoke generator.  The seeding material during the experiments was Ondina 

oil. The generator was placed behind the main support structure of the test rig 

throughout the experiments. It would be able to produce droplets of diameter around 2 

µmm. This smoke generator could be switched on and off manually to control the 

amount of droplets in the test section, thus homogeneity of particle concentration in 

the test section could be controlled.  
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3.8.3.6 The Timing and Generation of Trigger Signals 

 

The time separations between both laser pulses to illuminate the particles were 

20 µsecond and 8 µsecond for experiments at Reynolds number of 1 x 106 and 2 x 106 

respectively. The selection of this time separation was based on the light sheet 

thickness and wind tunnel speed.  

 

3.8.3.7 PIV Measurements at University of Glasgow 
 
 

After the calibration process was completed, the calibration plate was removed 

and the experiments at Reynolds number Rmac of 1 x 106 and 2 x 106 were performed.  

The test cases for the PIV measurements at Glasgow University are shown in table 3.3 

and the PIV results are discussed in Chapter 5.  

 

Leading Edge Large- and medium-edged wings 

Speed 20.63 m/s and 41.23 m/s 

Reynolds Number (Mean 
Aerodynamic chord) 1 x 106 and 2 x 106 

Angle of Attack 100, 130, 150and 180 ( Large-Edged) 
130, 180 and 230 ( Medium-Edged) 

Cross plane location x / cR = 0.3, 0.5 and 0.75 

Field of view 50 mm x 50 mm 
 

 
Table 3.3: Test cases for PIV measurements in the University of Glasgow Argyll Wind Tunnel 

 
 
 
3.8.3.8 Limitations of PIV Experiments 
 

Several problems were faced which limited the effectiveness of the PIV 

experiments in this study. These included the following;  
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1) As mentioned earlier, Camera 2 was set at an extreme position because of 

the physical constraint of the wind tunnel structure and the location of the 

wing in the test section. Thus, sharp focus from Camera 2 in the plane of 

view could not be achieved successfully.  

 

2) During the experiments, the shadow and glare effects from the wing 

surface could not be masked off successfully. 

 
 

3) Due to these limitations, the PIV experiments were only performed at a 

Reynolds number of 1 x 106 and 2 x 106  on the large radius wing at x / cr 

= 0.5. 
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Chapter 4 

 

4.0 RESULTS – STEADY / UNSTEADY BALANCE 

MEASUREMENTS 
 

4.1 PART 1: STEADY BALANCE MEASUREMENTS 

 

4.1.1 Introduction to Balance Measurements 

 

 This chapter presents steady balance measurements for the round-edged delta 

wing. The force and moments from the AMTI-MC5 transducer were resolved about 

the two thirds of chord location in a manner consistent with the original Chu & 

Luckring (1996) measurements. The experiments were performed at 1 x 106 and 2 x 

106 Reynolds number. In this thesis, normal force (CN), axial force (CA) and model 

pitching moment (Cm) are measured as the forces and moment in Fy, Fz and Mx 

respectively. This notation is shown in figure 4.1. In this chapter, results will be 

presented that differentiate the effects of bluntness, angle of attack and Reynolds 

number.  

 

   
 
 

Figure 4.1: Force notation used in this experiment (Fy measuring the Normal force (CN), Fz measuring 

the axial force (CA) and Mx measuring the model pitching moment (CM) 

 

Delta wing 
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MC-5 
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Fz 
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 4.1.2 Balance Sensitivity and Cross-Talk 

 

The raw data obtained from the experiments were reduced using a factory 

specified balance crosstalk matrix. The calculations were performed in MATLAB and 

the details of the force and moment sensitivities are attached in Appendix B.  

The balance system used in the current work was chosen on the basis of a 

series of constraints that included the anticipated forces and moments on the model, 

the physical geometry of the sting and balance mounting location and the cost of the 

balance system relative to the available resources for the project. As a result, it was 

not possible to procure a balance system that provided high sensitivity on all axes and, 

as discussed in Chapter 3, a conscious decision was taken to focus on getting fidelity 

in the normal force and pitching moment. The balance used in this study had a very 

large range in the Fz (axial) direction resulting in poor resolution of the loads on this 

axis. The effect of this constraint is explored in the current chapter by comparison 

with data from other research projects in which the same wing planform has been 

tested.  

 

4.1.3 Repeatability Test 

 

During the experiments, every data point was recorded five times. Figure 4.2 

shows the repeatability that was achieved, for example, in the normal force coefficient 

at Reynolds numbers of 1 x 106 and 2 x 106. The case shown is for the large rounded-

edged wing.  
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Figure 4.2: Repeatability of the normal force coefficients for the sharp-edged wing at Reynolds 

numbers of 1 x 106 and 2 x 106.  
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4.2 The Effects of Bluntness and Angle of Attack on the Steady Forces  

 

4.2.1 The Effect at Reynolds Number of 1 x 106 

 

The measured normal and axial force coefficients at one million Reynolds 

number are presented in Figure 4.3 for the four wing configurations. The normal force 

coefficients measured for the sharp, small and medium-radius wings are quite similar. 

The reason for this can be related to early separation of the primary vortex in all of 

these cases. The dominance of the primary vortex over the entire wing is a major 

contributor to this similarity. The large-radius wing generally produces less normal 

and axial force than the other three wings. 
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Figure 4.3. Comparison of a) normal and b) axial force coefficients for the four wings at Rmac = 1 x 106.  

 

 To access the effect of the poor resolution on the Fz axis, the axial and drag 

force coefficients (CA & Cd) obtained from Glasgow University is compared with 

measurements from ONERA (Rodriguez, 2008) and Tubitak-Sage (Kurun, 2008). 

Figure 4.4 shows a direct comparison of the axial force coefficients measured in the 

present study with those of Tubitak-Sage. Figure 4.5 and 4.6 show the effect the 

measured axial force has on the resolved drag coefficient for the sharp and medium 

radius wings at a Reynolds number of 1 x 106. As discussed in Chapter 3, the range of 

the load cell in the axial force (z-channel) direction was very large (5560 N); thus, the 

resolution of this force was not good. The comparison in Figure 4.4 is poor suggesting 

that the measured axial forces are indeed unreliable. The higher Cd for the Glasgow 

University case, in Figures 4.5 & 4.6, compared to ONERA and Tubitak-Sage 

demonstrates the magnitude of the error this creates in the resolved drag coefficient. It 

should be noted here that, as will be shown later in this Chapter, the normal force 

coefficients measured at Glasgow compared well with the Tubitak-Sage data and so 

are not a contributory factor to the error in Cd.  
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Figure 4.4: The comparison of axial force (CA) from Glasgow University and Tubitak-Sage  

(Reynolds Number of 1 x 106) 
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Figure 4.5: The comparison of drag force coefficient of Glasgow, Tubitak-Sage and ONERA Wind 

Tunnels at the Reynolds number of 1 x 106. 
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Figure 4.6: The comparison of Cd vs CL2 of Glasgow, Tubitak-Sage and ONERA Wind 

Tunnels (Reynolds number of 1 x 106) 
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These comparisons illustrate that the axial force measurements made in the 

current study are unreliable. For this reason, these measurements will only be referred 

to very briefly in the remainder of the thesis. While it has been established that the 

magnitude of the axial forces are in error, it is not clear whether there is any value in 

the relative differences in axial force between the different planforms. For this reason, 

a discussion of these relative differences is retained in the following section but 

should be treated with caution.  
 

4.2.2 The Effect at Reynolds Number of 2 x 106 

 

The normal and axial force coefficients measured for the four wing 

configurations at a Reynolds number of 2x106 are presented in Figure 4.7. The figure 

shows there are obvious differences between the data sets for the four leading edge 

geometries at a constant Reynolds number. The normal and axial forces are generally 

higher for the sharp leading edge configuration compared to those from the rounded-

edged wings.  Both forces tend to decrease slightly in magnitude as the radius of the 

leading edge is increased although the change in normal force from the sharp to the 

small and medium-radius wings is marginal. The results in Figure 4.7 a) can be 

related to flow behavior identified in the flow visualization studies as discussed in 

chapter 5.   

At moderate angle of attack, it can be observed that the normal force acting on 

the wing decreases as the leading edge radius is increased (consistent with Kurun, 

2008 and Gursul et al, 2005a).  This decrease in normal force is consistent with a 

decrease in the strength of the primary vortices acting on the wing as discussed in 

relation to the flow visualization results in chapter 5. The primary vortex is weakened 

with the increase in leading edge bluntness because the primary separation is delayed 

following a short run of attached flow in the leading edge region (Peake & Tobak, 

1980). The weakening of the primary vortex as the leading edge bluntness increases 

allows the inner flow structure to develop and increase in size and strength.  This, 

however, does not fully offset the loss in normal force due to the weakened primary 

vortices.  At an angle of attack somewhere near 200, the sharp, small and medium-

radius wings develop similar normal forces. The flow visualization results indicate 
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that, at these angles, the flows on the upper surface of these wings are dominated by 

the primary vortices. This is consistent with Hummel (2004) who reported the 

primary vortex reaches the apex of the wing at α = 180 on the medium-radius VFE-2 

configuration. Under these conditions, the smaller/weaker inner vortex is only likely 

to occur on the medium radius wing but is so weak that it has little influence on the 

normal force.    

In the case of the large-radius wing, the normal force only approaches those of 

the other three wings at approximately 230.  At this angle, the origin of the primary 

vortex system reaches the apex of the wings with flow separation occurring along the 

leading edge and the flow pattern resembles those of the other three wings.  It could 

be expected, under these conditions, that the magnitude of the primary vortices will be 

similar for all four wings and the effect of leading edge bluntness will be diminished 

at this Reynolds number.  

From figure 4.7 b), the behavior of the axial force coefficients at moderate 

angles of attack shows similar general behavior to the normal force, i.e. the axial force 

increases with leading-edge sharpness. It is interesting to note that the axial force 

associated with the large-radius wing increases substantially when the flow topology 

on that wing becomes dominated by the primary vortices at high angles of attack.  
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Figure 4.7: Comparison of; a) normal and b) axial force coefficients for the four wings  

at Rmac = 2 x 106.  
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4.3 The Effect of Attached Flow on the Normal Force 

 

Figure 4.3 a) and 4.7 a) also shows the effect of the attached flow region, 

particularly at low angle of attack, on the normal force coefficients. The effect is 

distinct at 2 x 106 Reynolds number where the apex of the wing is covered by an 

attached flow region as suggested in the previous chapter. Comparing the results for 

the small and large-radius wings, the normal force of the large-radius wing is lower. 

The larger portion of attached flow in the apex region, in effect, reduces the normal 

force. At 1 x 106 Reynolds number, the normal force coefficients are similar in all 

cases. This is very consistent with the flow images presented in the previous chapter 

which show smaller variations in the flow topology with changes in the leading-edge 

radius. 
 

4.4 The Effects of Bluntness and Angle of Attack on the Pitching Moment 
 

Figure 4.8 depicts the pitching moment coefficients measured about the two 

thirds of root chord location at Reynolds numbers of 1x 106 and 2x106.  The results at 

a Reynolds number of 1 x 106 show that the sharp-edged wing exhibits higher nose 

down pitching moment values than both the large and medium-radius wings. The 

results for the small-radius wing, at this Reynolds number, are very similar to the 

sharp-edged wing.  It is likely that this general behavior is linked to the greater 

strength of the primary vortices on the sharper-edged wings although the detail is 

likely to be complex and will include the effect of the inner vortex structures.   
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a) Pitching moment coefficients at Rmac = 1 x 106 

 

Similar general trends can be observed at a Reynolds number of 2 x 106 except 

that the nose-down pitching moments for the small-radius wing are higher than those 

of the sharp-edged wing.  The stronger pitching moment for the small-radius wing 

may be linked with the test set-up during the experiments. It is possible that there was 

load transmission between the wing, the fairings and the balance, thus effecting the 

measurement of the pitching moment for this case. Even though the results for the 

small radius wing may be compromised by the test set-up, it does appear that its 

pitching moment would be close to the sharp-edged wing. The general reduction in 

nose down pitching moment with increasing leading-edge radius may be related to the 

attached flow in the apex region and the delayed formation of the tip vortices. Any 

suction near the apex would reduce the nose-down moment as would weaker primary 

vortices on the wing surface.  
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b) Pitching moment coefficients at Rmac = 2 x 106 

Figure 4.8: Comparison of pitching moment coefficients for the four wings at a) at Remac = 1 x 106 & b) 

at Rmac = 2 x 106.  

 

4.5 The Effects of Reynolds Number on the Steady Normal Force 

 

Figure 4.9 presents the normal force coefficients (CN), for all of the wings at 

Reynolds numbers of 1 x 106, 2 x 106 and 6 x 106 (taken from Chu & Luckring, 

1996).  It should be noted here that the wind tunnel data from both the current tests 

and the Chu & Luckring (1996) tests are uncorrected. The figure shows the normal 

force coefficients do not change with Reynolds number for the sharp wing. 

Nevertheless there are significant changes in normal force coefficients for all the 

rounded-edged wings particularly at low to moderate angles of attack up to 150.  In all 

rounded-edged cases, higher normal force coefficients are recorded at a Reynolds 

number of 1 x 106. This effect is particularly distinct on the medium and large-radius 

wings. The influence of the bluntness and Reynolds number on the leading edge 

separation is the main contributor to these differences.  

For the sharp case, the normal force coefficients do not change because the 

primary vortex  is formed at the leading edge and extends to the apex at all Reynolds 

numbers. The normal force is higher at 1 million Reynolds number (low angle of 
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attack) on the round-edged wings because the primary vortex at this Reynolds number 

exhibits similarities with that of the sharp-edged wing. The primary vortex has its 

origin at the leading edge and extends almost to the apex as discussed in the flow 

visualization chapter. At higher Reynolds number, the establishment of the attached 

flow region near to the apex lowers the normal force as observed by Luckring and 

hummel [final VFE-2 report, 2008] 

The results also illustrate why the boundary-layer condition is important on 

round-edged wings. At lower Reynolds numbers and angle of attack, the laminar flow 

at the leading edge initiates early separation. At higher Reynolds numbers, the ability 

of the turbulent flow to sustain the adverse pressure gradient delays the leading-edge 

separation. At higher angle of attack, the normal force coefficients are quite similar at 

all Reynolds numbers. This is because flow separation is initiated very close to the 

leading edge in all cases in the very strong adverse pressure gradient.  
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c) Medium-radius wing 
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d) Large-radius wing 

 

Figure 4.9: Comparison of normal force coefficients at three Reynolds numbers, Rmac = 1 x 106, Rmac = 

2 x 106 & Rmac = 6 x 106 for; a) the sharp, b) the small, c) the medium and d) the large-radius wing. 

 

4.6 The Effects of Angle of Attack and Reynolds Number on the Wing Pitching 

Moment 
 

Figure 4.10 shows the pitching moment coefficients at 1, 2 and 6 million 

Reynolds number for all cases of the wing. The results at 6 million Reynolds number 

are taken from Chu & Luckring (1996). There are significant changes in pitching 

moment coefficients with Reynolds number. Increasing the Reynolds number 

significantly decreases the nose down pitching moment in all cases. The differences 

will be linked with the physical size of the primary vortices and the location of the 

aerodynamic centre of the wing at these Reynolds numbers.  The results at 6 million 

Reynolds number of Chu & Luckring were also performed in the transonic regime, 

0.4 Mach number, while the current experiments at Glasgow were conducted in the 

subsonic regime. This may also be a factor but there is not enough evidence at this 

stage to provide a definitive explanation.   
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c) Medium-radius wing 
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d) large-radius wing 

Figure 4.10: Comparison of pitching moment coefficient at three Reynolds numbers, Rmac = 1 x 106, 

Rmac = 2 x 106 & Rmac = 6 x 106 for; a) the sharp-edged, b) the small, c) the medium and d) the large-

radius wing. 
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 The pitching moment coefficients obtained from this experiment were 

compared with the work of ONERA (Rodriguez, 2008) and Tubitak-Sage (Kurun, 

2008). This is done in figure 4.11 for the Reynolds number of 1x106case. The pitching 

moment results show generally good agreement with ONERA and Tubitak-Sage up to 

around α = 200. At higher angle of attack, the blockage in the Glasgow University 

wind tunnel is very high and this may have contributed to the differences in the 

measurements.  
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Figure 4.11: The comparison of wing pitching moment coefficients from Glasgow University, ONERA 

& TUBITAK-SAGE Wind Tunnels at 1 x 106 Reynolds Number 

 

 The normal force coefficients from the sharp and medium radius wings are 

also compared with the results of Tubitak-Sage in figure 4.12. This Figure shows a 

very good agreement between the two data sets considering the data are not corrected 

for tunnel blockage.  
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Normal force ( CN) on the sharp-edge wing
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a) Sharp-edged wing 

Normal force (CN) on the medium-radius wing
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b) Medium-radius wing 

Figure 4.12:  The comparison of normal force coefficients obtained from Glasgow University and 

TUBITAK-SAGE wind tunnel for the sharp and medium radius wing at 1 x 106 Reynolds number 
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4.7 PART 11: UNSTEADY BALANCE MEASUREMENTS 

 
4.7.1  Unsteady Forces and Moments 

 

This chapter discusses the unsteady balance measurements made on the delta 

wing. The effects of Reynolds number, angle of attack and leading-edged bluntness 

on the load spectra are discussed below.  

 

4.7.2  Bare Test Experiments 
 

The results of the bare experiments discussed in Chapter 3 are shown in Figure 

4.13. At a speed of 41.23 m/s (Rmac = 2 x 106) and a short sting angle of 23o, no major 

resonance peak on the data spectrum was observed. Nevertheless, there appears a 

relatively weak peak at about 63 Hz from the figure. The peak is postulated to be 

induced by a vortex which develops around the cone at high angle of attack. The bare 

experiment was carried out by performing several series of experiments without the 

model (shown in figure 3.14 of chapter 3) in situ to isolate the vibrational 

characteristics of the isolated support.  
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Figure 4.13: Data spectra of normal force of the bare experiments at a speed of 41.23 m/s, 
Rmac = 2 x 106 & α = 230. 

 
4.7.3 Identification of the Natural frequency of Structural Vibration  
  

A sample load spectrum plot calculated for the sharp-edged wing, at α = 180 

and Rmac = 2 x 106 is presented in Figure 4.14. The figure shows two dominant 

frequency peaks. A dominant spike at a lower frequency of ~ 6 Hz was obtained in 

every power spectrum.   
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Figure 4.14: Data spectra of normalized normal force for the sharp-edged wing, at α =180 & Rmac = 2 x 
106 

 

In order to verify the source of this low frequency, the model was tapped with 

a mallet with the wind off and the forces and moments were then recorded.  The 

calculated data spectrum of the normal force for this case is shown in Figure 4.15. 

This produced a single frequency peak representing the natural frequency of the 

vibration of the structure, fn at about 6 Hz. Similar practice by Tsang et al (2008) also 

produced a single frequency peak at the natural frequency of vibration of the structure 

for their aerofoil experiments.  

The second large spike at about ~ 65 Hz, in Figure 4.14, was most probably 

linked to the flow characteristics on the wing.  From the literature review of Hummel 

& Luckring (2008) the flow on the sharp-edged wing at α = 180 is dominated by the 

primary vortex extending from the apex to trailing edge. Thus, the spike is strongly 

suspected to have been induced by the primary vortex. This hypothesis is in 

agreement with Mabey (1992) and Baban et al (1989). They suggested that the spike 

in the data spectra was indeed due to the separated flow or the vortex system. In 
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addition, Mabey (1992) also discussed that tunnel resonances would not influence the 

data spectra.  
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Figure 4.15: Data spectra of the vibration, at α =13.30 

 
 
4.8 The Effects of Leading-Edge Radius on Unsteady Normal Force 
 

The data spectra, at a Reynolds number of 2 x 106, for all wings are presented 

in Figures 4.16, 4.17, 4.18 & 4.19 at α = 13.30, 180 and 230 respectively.  

 

4.8.1 The Effects of Leading-Edge Radius at α = 13.30 

 

In Figure 4.16 i), the dominant frequency of the primary vortex is clearly 

visible for the sharp-edged wing.  Comparing this with the other plots in the same 

figure, the magnitude of dominant peak associated with the primary vortex is higher 

for the sharp-edged wing than for the other wings. The reason for this is associated 

with the dominance of the strong primary vortex on the sharp-edged wing. The result 

is also consistent with Gursul & Xie (1999) who showed the magnitude of the spectral 
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peak depends on the strength of the vortex system, i.e. stronger primary vortex 

induces a higher peak magnitude. For the other wings, the magnitude of the primary 

vortex peak is reduced. This is consistent with a slightly weaker primary vortex with 

the increase in leading edge radius. 

For the medium-radius wing (figure 4.16 iii)) another significant peak appears 

at about 45 Hz which may be associated with the inner vortex. On this wing, this 

secondary peak is weaker than that of the primary vortex, which is consistent with the 

earlier hypothesis that the inner vortex is weaker than the primary vortex on this 

configuration.  

On the large-radius wing (figure 4.16 iv)), the inner vortex peak increases to 

become equivalent to the primary vortex peak. The result suggests the inner vortex 

has a similar magnitude to the primary vortex at this angle of attack. This is consistent 

with the hypothesis discussed in the steady balance measurement section.   
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                                                                                      ii) Small-radius 
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                              iii) Medium-radius 
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                                   iv) Large-radius 
 

                 Figure 4.16: The effects of leading-edge radius on normal force spectra, at α = 13.30 and 
 Rmac= 2 x 106  
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4.8.2 The Effects of Leading-Edge Radius at α = 180 
 
 

Figure 4.17 shows the effects of leading-edge radius on the data spectra at a 

Reynolds number of 2 x 106 as the angle of attack is increased to α =180. The figure 

shows a dominant peak from the primary vortex for the sharp, small and medium-

edged wings. The results in general show that the magnitude of the peak of dominant 

frequency of the primary vortex decreases with increasing leading edge radius. This is 

consistent with the weakening of the primary vortex as the leading edge radius is 

increased.   

There was no evidence of the peak associated with the inner vortex for the 

small and medium-radius wings at this angle of attack. This suggests that the inner 

vortex identified in the flow visualization studies on the small and medium-radius 

wings is very weak at higher angles of attack (α =180). The results are consistent with 

those of Luckring & Hummel (2008) which suggested that the flow on the medium-

radius wing was fully dominated by the primary vortex; i.e. the origin of the primary 

vortex had already moved close to the apex of the wing at α = 180 so diminishing the 

inner vortex.  

Nevertheless, the frequency of the inner vortex was still induced on the large-

radius wing but was weaker than in the α = 130 case.   
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                                  iii) Medium-radius 
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                             iv) Large-radius 

 
                    Figure 4.17: The effects of leading-edge radius on normal force spectra, at α = 180 and 

Rmac= 2 x 106 
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4.8.3 The Effects of Leading-Edge Radius at α = 230 

 

The characteristics of the unsteady data at the higher angle of attack of α = 230 

for the sharp, small and medium-radius wings are shown in Figure 4.18. The data for 

the sharp-edged, small-radius and medium-radius wings are quite similar.  The first 

obvious feature in the data spectra is that the dominant frequency is now surrounded 

by several other smaller peaks and a general increase in unsteady activities. This 

behaviour can be linked to the loss of coherence of the primary vortex due to the 

breakdown in the trailing edge region. When this happens, the flow in the trailing 

edge regions becomes dominated by large scale turbulence in the post-breakdown 

breakdown region. The data are in good agreement with Luckring & Hummel (2008) 

who found that the VFE-2 delta wing experienced breakdown of the primary vortex at 

α = 230. 

Secondly, the data indicated a reduction in the magnitude of the peaks 

associated with the primary vortex for these three wings. The relative magnitudes of 

the peaks were much lower compared to those at α = 180. This can be attributed to the 

reduced dominance of the coherent primary vortex as vortex breakdown traverses 

over the wing.  
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iii) Medium-radius 
 

Figure 4.18: Data spectra of the sharp, small and medium-edged wings at Rmac = 2 x 106 and α = 230 
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The above trends were not observed on the large-radius wing, as shown in 

Figure 4.19. The results for this wing showed two dominant frequencies still existed 

at α = 230.  Presumably the flow was still dominated by a double vortex system. The 

spectral peak of the primary vortex at this angle of attack was higher compared to 

those from the sharp, small and medium-radius wings. This result is most likely due to 

vortex breakdown not being as significant for this test condition. This supports the 

hypothesis discussed in the flow visualization chapter that the increase in the leading-

edged radius delays the breakdown of the primary vortex. These finding are in good 

agreement with Kegelman and Roos (1989) who experimentally showed that vortex 

breakdown was delayed by increasing the leading-edge bluntness. For this wing, 

vortex breakdown was expected to occur in the trailing-edge area at angles greater 

than α = 230.  
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   iv) Large-edged 

 
Figure 4.19: Data spectra of the large-edged wing at Rmac = 2 x 106 and α = 230 

 

 



 

______________________________________________________________________________ 

Shabudin Bin Mat – The analysis of flow on round-edged Delta wings 

 

119

4.9 The effects of the angle of attack on the unsteady normal force 
 

4.9.1  Sharp-edged wing 
 

Figures 4.20 and 4.21 show the way in which angle of attack affects the data 

spectra for the sharp and blunt leading edge wings respectively. For the sharp-edged 

wing, the result shows the spectral peak of the primary vortex is increased with an 

increase in the angle of attack from α =130 to α =180. The higher peak is caused by the 

stronger primary vortex at the higher angle of attack. These results are consistent with 

Baban et al (1989), Mabey (1992) and Gursul & Xie (1999) i.e., stronger vortex or 

separated flow will induce a higher peak in the spectrum.    
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                                                                          i) Sharp-edged, at α = 130 
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        ii) Sharp-edged, at α = 180 
 

Figure 4.20: The effect of angle of attack on the data spectra for the sharp-edged wing at Rmac = 2 x 106   
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4.9.2  Blunt leading edge 
 

The data spectra of the rounded-edged wing, in this case the medium-radius 

wing, show an excellent agreement with the hypothesis discussed in the flow 

visualization chapter. At an angle of attack of α = 130, the shape of the spectrum 

confirms that the primary vortex is stronger than the inner vortex. An increase in the 

angle of attack to α = 180 diminishes the inner vortex, while the primary vortex 

increases in strength.  
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i) Medium-radius wing, at α = 130 
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i) Medium-radius wing, at α = 180 

 
Figure 4.21: The effect of angle of attack on the data spectra for the medium-radius wing at Rmac = 2 x 

106  
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Chapter 5 
 

5.0 RESULTS – FLOW VISUALIZATION TECHNIQUES 
 

5.1 PART I: OIL FLOW VISUALIZATION STUDIES 

 

            This chapter will discuss the effects of bluntness, angle of attack and Reynolds 

number on the flow topology on delta wings as determined from oil flow experiments.  
  

5.1.1 Sharp Leading Edge Flow Topology 

 

Figure 5.1 highlights some the common features of an established oil flow 

topology on the sharp-edged wing. This is a useful point of reference for the 

following discussion in this chapter. On the sharp-edged wing the primary separation 

is fixed at the leading edge starting in the vicinity of the apex. This separation then 

rolls-up to form a primary vortex system whose separation and attachment lines are 

visible on the wing surface. Attached non-separated flow is also observed near the 

wing centre line extending from the apex to the wing sting interface.  
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Primary vortex 

 
 

Figure 5.1:  Flow topology of the sharp-edged delta wing (α =13.30) 

 

 

5.1.2 Rounded Leading Edge 

 

Figure 5.2 presents the flow topology of a generic round-edged wing. The 

apex region is covered by fully attached flow up to a certain chordwise distance. The 

primary vortex then develops further aft of the apex and is accompanied by a 

secondary system evidenced by clear separation and attachment lines. Inboard on the 

wing, another flow structure representing the footprint of the inner vortex as discussed 

by Hummel (2006) and Fritz (2008), is observed.  The separation and attachment lines 

of the inner vortex are shown in the figure. The effect of bluntness, Reynolds number 

and angle of attack will be discussed in the next sub-section based on interpretation of 

the oil flow topologies in the same manner as figures 5.1 and 5.2.  
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Primary vortex                                                                                         Inner vortex 
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Figure 5.2: Flow topology of the round-edged delta wing (α = 13.30) 
 

5.2 - Leading Edge Bluntness Effect 
 

Figure 5.3 shows the flow visualization results obtained at a Reynolds number 

of 1 million for the four different leading edges; sharp, small-radius, medium-radius 

and large-radius at an angle of attack of 13.3o. In all cases, the footprint of a vortical 

structure can be observed near the leading edge.  The secondary separation line also 

clearly delineates the location of the primary and secondary vortex.  In all cases, the 

vortex system appears to originate in the vicinity of the apex of the wing and persists 

to the trailing edge. The leading edge bluntness does not obviously affect the primary 

vortex at this low Reynolds number.  In fact, a closer examination reveals that this is 

only true for the sharp-edged wing and the wing with the small-radius leading edge. 

The dark line emanating from the apex of the medium-radius wing, normally 

associated with the core location of the primary vortex, exhibits a distinct bend at 

about 20-30% of root chord.   Ahead of this location, the flow in the vicinity of the 
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leading edge is aligned with the mean flow direction whereas, aft of this location, the 

flow exhibits the classical orientation of vortical cross-flow.  This is even more 

evident on the large-radius wing where the oil in the apex region appears to be almost 

wholly aligned with the mean flow direction.  

There is also some evidence of an additional structure as reported by Hummel 

(2006), inboard of the primary vortex on all of the round-edged wings that becomes 

more distinct as the leading edge radius increases.  This structure is not apparent on 

the sharp-edged wing. It also appears that increasing the leading edge bluntness 

moves the starting point of this inner vortex further downstream. On the small-radius 

wing, the inner vortex is initiated closer to the apex of the wing compared with the 

medium-radius or large-radius wings.  In fact, the spanwise location and extent of the 

inner vortex are also significantly influenced by the leading-edge bluntness.  

Increasing bluntness moves the vortex separation line outboard and enlarges the 

physical size of the structure. 

  In the images below, the inner vortex is generally contained very close to the 

center of the wing when compared with inner vortex position on the large-radius 

wing. PIV measurements by Furman & Breitsamster (2008) on the medium radius 

suggested that the inner vortex disappears at this low Reynolds number. The 

proximity of the origin of the primary vortex to the apex at this low Reynolds number 

was thought to prevent the development of the inner vortex according to Furman & 

Breitsamter (2008). The results from the current study suggest otherwise. This will be 

discussed further in section 5.4.3. 
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                                                   S)                                                                  RS)       

 

                 
                                                   RM)                                                            RL)  

Figure 5.3: Comparison of oil flow topology for the Sharp edged, Small (RS), Medium (RM) and Large 

(RL) Radius wings at Rmac = 1 x 106.& α = 13.30 

 

Several important changes were observed as the Reynolds number was 

increased to 2x106. Figure 5.4 illustrates the comparison at this Reynolds number at 

the same angle of attack as before for the four sets of leading edges. The first obvious 

feature is that the primary vortex structures on the medium-radius and large-radius 

wings clearly no longer begin at the apex as they do for the sharp leading edge and 

small-radius wing.  For the medium-radius wing, the primary vortex appears to have 

its origin at about 30% of the root chord down the trailing edge.  For the large-radius 

wing, the bluntness causes the origin of the primary vortex to move rearwards to 

about 45% of the wing root chord.   In both cases, upstream of this, there appears to 
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be attached flow in the streamwise direction in the vicinity of the leading edge 

followed by a separation front.  As at the lower Reynolds number, another feature 

visible on all the round-edged wings is the footprint of the inboard structure.  Again, 

the increase in the bluntness shifts the separation line of this vortex outboard, so 

enlarging the size of structure.  It is likely that the strength of the primary vortex is 

related to this behavior. For the sharp-edged wing, the primary vortex is continually 

fed from the apex and the inner vortex is prevented from developing.   

As the bluntness increases, the primary separation on the rounded edges is not 

fixed to the leading edge as it is on the sharp-edged wing.  Rather, the primary 

separation occurs close to the leading edge after a short run of attached flow in the 

vicinity of the leading edge (Peake and Tobak, 1980). This both delays the formation 

of the primary vortex and reduces its strength.  Thus, on the small-radius wing, the 

primary vortex is weaker than on the sharp-edged wing and limited circulation is fed 

into the inner vortex that forms close to the center-line of the wing.  With increasing 

bluntness, separation is delayed further, particularly in the apex region, and the 

formation of both the inner and primary vortices is delayed.  As the apex of the 

primary vortex moves downstream, more circulation is fed into the inner structure that 

grows in size relative to the other vortex structures on the wing.   This suggests that 

the relative strength of this vortex also increases as the radius of the leading edge 

increases.  This is consistent with what appears to be outboard movement of both the 

primary and secondary vortex structures as the leading-edge radius of the wing 

increases.  Particle Image Velocimetry (PIV) results in section 5.7 will support these 

hypotheses.  
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                                                   S)                                                              RS)                                        

  
                                                       RM)                                                         RL)  

Figure 5.4: Comparison of oil flow topology for the; a) Sharp-edged (S), Small (RS), Medium (RM) & 

Large (RL) radius wings at Rmac = 2 x 106.& α = 13.30 

 

 The effects of leading edge bluntness at higher angle of attack (α =230 & Rmac 

= 2 x 106) are presented in figure 5.5. The results show similar behaviour of the 

primary vortex for all cases.  The primary vortex appears to extend from the apex to 

the trailing edge on the sharp, small and medium-radius wings and so it seems that the 

effects of leading edge bluntness are reduced with an increase of angle of attack. 

Nevertheless, attached flow may still exist near the apex on the large-radius wing for 

this test condition. In addition, a small inner vortical structure may exist on all of the 

blunt wings at this angle of attack. This is in agreement with Konrath et al, (2008) 

who reported a weak inner vortex still appeared at higher angles of attack for the 

higher Reynolds number case. This is possibly due to a very small amount of attached 
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flow at the apex and a smaller primary vortex compared to lower Reynolds numbers. 

In this case, there is also evidence of vortex breakdown near the trailing edge.  
 

    
                                                   S)                                                              RS)                                        

    
                                                       RM)                                                         RL)  

Figure 5.5: Comparison of oil flow topology for the; a) Sharp-edged (S), Small (RS), Medium (RM) & 

Large (RL) radius wings at Rmac = 2 x 106& α = 230 

 

5.3 Reynolds Number Effects 

 

Reynolds number effects on the flow characteristics can be illustrated by 

comparing the flow visualization images at a Reynolds number of 1x106 with the 

corresponding images at 2x106. This is done in Figures 5.6, 5.7, 5.8 and 5.9 for each 

of the wing configurations. The effect of Reynolds number on the sharp-edged wing 

(α = 100) is presented in Figure 5.6. On this wing, the Reynolds number appears to 
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influence the properties of the primary vortex rather than its onset. At equal to 2 

million Reynolds number, the secondary separation line is located more outboard 

compared to the 1 million Reynolds number case.  This is probably by the turbulent 

boundary layer under the vortex at higher Reynolds number being able to sustain the 

adverse pressure gradient longer as it travels towards the leading edge. Delayed 

separation inhibits the development of the secondary vortex, so reducing its size.   

 

      
                        a)                                                                               b)    

Figure 5.6: Comparison of oil flow patterns for the sharp-edged configuration at a) Rmac = 1x106 and 

 b) Rmac = 2x106 & α = 100 

 

 Figure 5.7 shows an example of Reynolds number effects on the small-radius 

wing. The flow characteristics in the leading edge region exhibit similar flow 

topology to that presented for the sharp-edged wing in figure 5.6 except that the onset 

of the primary vortex at 2 million Reynolds number occurs slightly further aft.  There 

is clear evidence of the inner separation in the middle part of the wing for both 

Reynolds number cases. It develops close to the apex region and has a larger lateral 

extent at the higher Reynolds number. 
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                           a)                                                                                b)      

Figure 5.7: Comparison of oil flow patterns for the small-radius configuration at a) Rmac = 1x106 and  

b) Rmac = 2x106& α = 120 

 

Figure 5.8 compares the surface oil flow visualizations at Reynolds numbers 

of 1x106 and 2x106 for the medium-radius wing (α =13.30). The figure shows a 

significant Reynolds number effect compared to previous cases.  One of the most 

obvious features of this figure is the apparent origin of the vortex system in the two 

cases.   At Rmac=2x106 the vortex system appears to originate at approximately 30% 

of the root chord down the leading edge.  Ahead of this, there appears to be no 

evidence of a vortical structure.  In contrast, at Rmac=1x106, at first glance there 

appears to be continuity of the primary vortical structure almost to the apex of the 

wing. As discussed previously, closer examination of the dark region inboard of the 

secondary separation line shows that it has a distinct bend at about 20-30% of the root 

chord. The secondary separation line itself becomes indistinct at this point.   It is 

likely that this location is, in fact, the origin of the primary vortex on the wing.  

Upstream of this, laminar separation is initiated near the leading edge but the shear 

layer does not roll up into a vortical structure.  Instead, the shear layer may undergo 

transition and reattaches close to the leading edge, leaving the footprint of a laminar 

separation bubble. This phenomenon appears to occur on the two larger-radius wings 

at 1 million Reynolds number.  Examination of the inboard portions of the wing 

shows that the inner vortical structure is initiated slightly closer to the apex and has a 
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vortex 



 

______________________________________________________________________________ 

Shabudin Bin Mat – The analysis of flow on round-edged Delta wings 

 

131

greater spanwise extent at the higher Reynolds number (shown in figure 5.8). 

Consequently there is a slight outboard movement of the other vortices on the wing as 

the Reynolds number increases.   
 

                    
                                                  a)                                                                         b) 

Figure 5.8: Comparison of oil flow patterns for the medium-radius configuration at a) Rmac = 1x106 and 

b) Rmac = 2x106& α = 13.30 

 

Figure 5.9 shows surface oil flow visualizations at Reynolds numbers of 1x106 

and 2x106 for the large-radius wing (α =100). The flow pattern at 1x106 exhibits some 

similarities with the corresponding image for the medium-radius wing in Figure 5.8.   

The main difference is in the chordwise phasing of the flow. In this case, the primary 

vortex appears to be initiated further downstream at about 50% of the root chord 

position. A primary vortex is not obvious in the characteristics of the flow pattern at 

2x106. An attached flow region aligned with the mean flow exists in the vicinity of the 

leading edge extending from the apex almost to the trailing edge.  This region appears 

to be truncated by a separation front that becomes increasingly close to the leading 

edge on aft portions of the wing.  The orientation of the oil flow towards the leading 

edge inboard of this separation front suggests that a weak, but not insignificant, 

vortical structure may be formed as a result of the flow separation. This appears to 

originate somewhere between 40 and 50% of the wing chord.  
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In fact, a closer examination of the leading edge area near to the trailing edge 

may suggest that a very weak primary vortex has developed at the higher Reynolds 

number.  The primary vortex is generated in this region because the fraction of wing 

radius over the wing span is very small and so the leading edge is getting relatively 

sharper in this region. Secondly, the curvature of the trailing edge increases the local 

angle of attack in the region to promote the primary separation. There is a possibility 

that the inner separation rolls-up into a vortical structure at its interface with the 

primary vortex. This remains to be established beyond doubt.  

 

                                       
                                   a)                                                                   b)   

Figure 5.9: Comparison of oil flow patterns for the large-radius configuration at a) Rmac = 1x106 and  
b) Rmac = 2x106 &  α = 100 

 

 

 

 

 

5.4 Effects of Angle of Attack  

This section will discuss the effect of angle of attack on the delta wing flow 

topologies at the Reynolds numbers of 1 and 2 million.  

 

5.4.1 The Effects of Angle of Attack at a Reynolds Number of 1 x 106 

 

 Figure 5.10 presents the flow images for the sharp-edged wing at a Reynolds 

number of 1 million. On this wing, the primary vortex appears to originate near the 

wing apex and persist to the trailing edge at all angles of attack shown. At around α = 

200, the secondary separation line of the primary vortex is smeared outboard towards 
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the leading edge. This could be related to transition from laminar to turbulent flow 

occuring in this area. The images also show the point of transition moving further 

upstream with increasing angle of attack.  

Starting from α = 18.50, the occurrence of vortex breakdown over the wing is 

observed in the figure. Vortex breakdown can be recognized by a rupture of the 

primary and secondary vortex separation lines. At this lower Reynolds number, vortex 

breakdown appears to occur at slightly lower angles of attack on all of the wings 

compared the higher Reynolds number case. Further Reynolds number effects on 

vortex breakdown will be discussed in section 5.5.2 

 

     

                          α = 130                                            α = 150                                             α =170 

     

                        α = 18.50                                            α = 200                                           α = 230 

Figure 5.10: Flow topology images for the sharp-edged configuration at Rmac = 1x106 and angle of 

attack,  α  = 13.30, 150, 170, 18.50, 200 & 230 
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Figure 5.11 refers to flow images on the small-radius delta wing at a Reynolds 

number of 1 x 106. At α = 6o, the flow in the leading edge region is fully attached 

extending from the apex to the trailing edge. There is clear evidence of the flow on 

inboard sections of the wing near the apex smearing outwards without developing any 

significant vortical structure. There is also evidence here of localized flow separation. 

The image may suggest that the inboard separated shear layer will not roll-up into a 

spinning vortex without the primary vortex generated in the leading edge region. This 

will be discussed further in section 5.4.3. The primary vortex is observed to appear at 

α = 80 originating at about 10% of chord from the apex. There is clear evidence of a 

weak inboard vortical structure developing in the middle part of the wing. The images 

also show the rapid progression of the primary vortex towards the apex of the wing as 

the angle of attack increases. The primary vortex reaches the wing apex at an α =100. 

After this angle, the flow in the leading edge region exhibits quite similar behavior to 

the sharp leading edged wing. Also, as the primary vortex becomes stronger at higher 

angle of attack its compresses the inner vortex towards the wing centre line.   
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                             α = 60                                           α = 80                                           α =100 

      

                             α = 120                                          α = 160                                      α =2 00 

Figure 5.11. Flow topology images for the small-radius configuration at Rmac = 1x106 and angle of 

attack, α =60, 80, 100, 120, 160 & 200 
 

Figure 5.12 presents the effect of angle of attack on the medium-edged wing at 

a Reynolds number of 1 million. The flow topologies on this wing exhibit similarity 

with the small-radius wing flow characteristics except the bluntness effects and vortex 

breakdown appear at relatively higher angles of attack compared with the small-radius 

wing discussed earlier.  Again on this wing, the inner vortex is compressed to the 

wing centre line as the angle of attack is increased. This is associated with stronger 

primary vortex at high angle of attack. Note that some of the images presented in this 

figure were taken during the early stages of the research project before the wind 

tunnel had been painted black; this is why the off-body sections of these photographs 

are not black.  
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                          α  = 13.30                                          α = 170                                          α =18.50 

 

        

                         α = 200                                             α  = 230                                           α =250 

Figure 5.12: Flow topology images for the medium-radius configuration at Rmac = 1x106 and angle of 

attack, α =13.30, 170, 18.50, 200, 230, 250 
 

 Figure 5.13 presents the angle of attack effects for the large-radius wing at the 

same Reynolds number. The effect of angle of attack appears to be more significant 

on this wing compared with the previous wings. At  α = 10o, the primary vortex 

originates at about 40% of the wing root chord. The figure shows a slow upstream 

progression of the primary vortex origin towards the apex when the angle of attack 

increases. At α = 13.30, the flow in the leading edge region near to the apex is aligned 

with mean flow direction which indicates that the primary vortex has not developed in 

this region. The images also depict the progression of an inboard vortical structure 

with the angle of attack. The upstream movement of the primary vortex again 

compresses the inner vortex towards the wing centre line. The figure also shows that 

the inner separation on this wing has a greater spanwise extent compared to the small 
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and medium-radius wings. This is caused by the weakening of the primary vortex as 

the leading edge bluntness is increased. This issue will be discussed in chapter 6 

(Conclusions and Recommendations).  

 

       

                               α = 100                                      α = 13.30                                       α = 150 

      

                               α = 170                                        α =  200                                      α = 230 

Figure 5.13:  Flow topology images for the large-radius configuration at Rmac = 1x106 and angle of 

attack, 

α = 100, 13.30, 150, 170,200& 230 

 

5.4.2 The Effects of Angle of Attack at a Reynolds Number of 2 x 106 

 

Sample flow images recorded on the sharp-edged wing at a Reynolds number 

of 2 million are presented in Figure 5.14 for α varying from 130 to 230. At all the 

angles of attack shown, the sharp-edged wing exhibits a flow pattern consistent with 

the formation of a large coherent primary vortex that extends from the apex towards 

the trailing edge.  The lateral extent of this vortex increases with angle of attack in 

line with its increased strength and the secondary vortex behaves similarly.  
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                     α =130                              α =150                                    α =170 

     
                   α  =18.50                                 α =200                                      α =230                                                                                     

Figure 5.14:  Flow topology images for the sharp-edged configuration at Rmac = 2x106 and angle of 

attack, α = 13.30, 150, 170, 18.50,  200 & 230 

 

At similar angles of attack to the cases presented above, the small-radius wing 

exhibits very similar flow behavior to the sharp-edged wing.  This is not, however, the 

case at lower angles of attack where the effect of leading edge rounding becomes 

more significant.  Figure 5.15 presents the flow topology on the small-radius wing at 

α = 60,80, 100, 120, 160 and 200 and at a Reynolds number of 2 x 106.   At the lowest 

angle, α = 60, attached flow appears to exist from the apex to the trailing edge of the 

wing.   In fact, there is a small region of separation close to the apex of the wing that 

does not develop into anything of significance.  The primary vortex only appears at α 

= 80 and is accompanied by, what appears to be, a relatively weak and large inboard 

vortical structure that has its origins in the previously identified separation region at 

the apex of the wing.  When the angle of attack is increased further to 100, there is a 

significant change in the flow topology on the wing.  The origin of the primary vortex 



 

______________________________________________________________________________ 

Shabudin Bin Mat – The analysis of flow on round-edged Delta wings 

 

139

moves almost to the apex of the wing and the inboard structure becomes confined to a 

region close to the centerline of the wing.   

The simultaneous appearance of the primary vortex and the inner vortex at α = 

80 would be consistent with the earlier proposition that the separated flow only rolls-

up to generate a spinning vortex inboard on the wing once it interfaces with the 

primary vortex. This is not the explanation from Hummel & Luckring (2008). They 

suggested that the inner vortex develops from a three dimensional laminar bubble type 

separation upstream on the wing. At higher angles of attack, the flow in the leading 

edge region behaves similarly to the behavior observed on the sharp leading edged 

wing.  
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                       α = 60                                                 α = 80                                            α =100 

                   
                      α =120                                                α =160                                           α = 200 

 

Figure 5.15: Flow topology images for the small-radius configuration at Rmac = 2x106 and angle of 

attack, α = 60, 80 100, 120, 160 & 200 

 

Figure 5.16 illustrates the variation in the flow pattern on the medium-radius 

wing as the angle of attack increases from 13.30 to 250. The figure shows the 

progressive movement of the origin of the primary vortex from about 30% of the root 

chord location towards the wing apex as the angle of attack is increased. The inboard 

vortical structure is distinct and extensive at low and moderate angles of attack but 

appears considerably weakened and spatially constrained at the highest angle of 

attack.  This is witnessed by a clear inboard shifting of the separation line of the inner 

vortex with increasing angle of attack.  The reason for this can be related to the 

strengthening of the leading edge vortex as the incidence increases.  This result, 

although exhibiting the same general trend, differs slightly from that of Furman and 

Breitsamter (2008) of T.U. Munich. They reported that the inner vortex disappeared at 

The origin of the primary vortex 
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α = 180 at the same Reynolds number (Their PIV result is shown in figure 5.17 where 

the inner vortex is not observed inboard of the wing). The current experiments were at 

Mach number of 0.12 compared with 0.37 for the Munich tests. It is possible that the 

Mach number difference or tunnel interference could account for this anomaly.   

Regardless of this, by α = 250, there is still a tangible sign of the weak inner vortex. 

The forward progression of the vortex breakdown can be identified on the images 

starting at α = 200.   

 

     
                         α =13.30                                          α = 170                                        α = 18.50 

     
                         α =200                                                α =230                                           α = 250 

Figure 5.16:  Flow topology images of the medium-radius configuration at Rmac = 2x106 and angle of 

attack, α =  13.30,  170,  18.50, 200, 230 & 250  
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Figure 5.17: Mean flow distribution at Rmac= 2 x 106, α = 180 & Mach number of 0.37 for the medium-

radius wing (Furman & Breitsamter, 2008) 

 

Figure 5.18 presents examples of the oil flow structures visualized on the 

large-radius wing as the angle of attack increases. At the lower α = 100, as discussed 

previously, only the inner vortex is obvious.   By α = 13o, a primary vortex structure 

has clearly formed on the wing, originating at around 40% of the root chord, with the 

inner structure apparently originating just ahead of this. At the highest α shown in the 

figure the primary vortex structure appears to originate in the region of the apex and 

extend to the trailing edge.  Similar to the case of the medium-radius wing, there is 

little evidence of the inner structure in this image.  

The figure also illustrates rather well, the dependence of the inner vortex on 

the angle of attack. From the figure, the onset of the inner vortex moves upstream 

when the angle of attack increases. It has its origin towards the rear of the wing at α 

=100 and this moves to about 10 % of chord from the apex at α = 150. The lateral 

extent of the inner vortex is reduced with the upstream progression of the primary 

vortex. In fact, at moderate α, the upstream progression of the primary vortex 

compresses the inner vortical structure to the wing centre line.  
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                         α  =100                                                   α = 13.30                                            α =150 

      
                         α =170                                               α = 200                                              α = 230 

Figure 5.18: Flow topology images for the large-radius configuration at Rmac = 2x106 and angle of 

attack =  100, 13.30 150, 170, 200 and 230.  

 

5.4.3 Development of the Inner Vortex 

 

 The detailed development of the inner vortex is examined in figure 5.19 by 

comparing the images at low angle of attack from the small-radius wing at α = 6o and 

8o with an image of the large-radius wing at α = 10o (Rmac = 2 x 106).  On the small-

radius wing at α = 6o, the flow on inboard sections of the wing near to the apex tends 

to smear towards the suction region of the leading edge. At this angle of attack, this 

smearing process does not develop into any significant flow characteristics. As the 

angle of attack increases to α = 8o, the image suggests that this flow will roll-up to 

form a vortical spinning structure interfacing with the primary vortex that is generated  

in the leading edge area.  

This effect is more obvious on the large-radius leading edge wing at α = 10o. 

On this wing the primary vortex is just beginning to form in the leading edge area 
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near the trailing edge area. A weak inner vortex is simultaneously developing inboard 

of this structure. This may suggest that the inner vortex can only exist on the wing 

when a primary vortex is present.  

 

    
                           α = 6o                                                                  α =  8o   

a) Small-radius wing, at α = 6o & 8o and Reynolds number of 2 x 106.  

 

   
 

b) Large-radius wing, α =100& Reynolds number of 2 x 106  

Figure 5.19: Detailed development of Inner Vortex 
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5.4.4 Laminar to Turbulent Flow Transition 

 

 The status of the boundary layer can be deduced from the oil flow 

visualization images in some cases. Figure 5.20 presents images from all wings at a 

low angle of attack and Reynolds number (α = 13.30 & Rmac = 1 million). The 

secondary separation line of the primary vortex is straight and extends from the onset 

of the primary vortex to the trailing edge. This suggests that the boundary layer at this 

test condition is fully laminar on the entire wing. This is consistent with oil flow 

studies of Hummel (2004) at a Reynolds number of 0.88 million on the sharp-edged 

VFE-1 wing. 

For the medium and large-radius wing, the oil flow structure upstream of the 

primary onset is aligned with the main flow direction that indicates the flow is 

attached to the wing surface in the region. Laminar separation then develops further 

downstream of this attached flow. This flow may re-attach to the surface upstream of 

the primary onset.  
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                             S                                      RS                                    RM                                      RL 

 

Figure 5.20: Oil flow patterns for all wings at Rmac = 1 x 106 & α =13.30 

 

Transition from laminar to turbulent flow is expected to occur in the wing 

boundary layer at high α. Figure 5.21 shows the secondary separation line for the 

sharp-edged and large-radius wing for Rmac = 1x 106 & α =230. This line is straight up 

to a certain point noted in the figure. After this point, the secondary separation line is 

diverted outboard which indicates that transition from laminar to turbulent flow may 

has occured. This outboard movement occurs because the turbulent boundary layer is 

more able to resist the adverse pressure gradient and delaying the secondary 

separation process. The images also show that leading edge bluntness delays the 

transition process slightly.  
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                                                             S                                           RL 

Figure 5.21: Oil flow patterns of the sharp and large-radius wings at 1 x 106, α = 230 

 

Several significant changes are observed as the Reynolds number increases to 

2 x 106, figure 5.22. The secondary separation line is located further outboard 

compared with the previous case along the leading edge. This indicates that the flow 

is mostly turbulent from the apex to the trailing edge. In addition, the secondary 

separation lines for the sharp and small radius wings are curved away from the 

leading edge downstream of the middle part of the wing.  The secondary vortex 

formation in these cases is the likely cause for this behaviour. The secondary vortex is 

stronger and, hence, larger on the sharper edged wings and its growth is responsible 

for the inward displacement of the secondary separation line. 
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                     S                                    RS                         RM                              RL                                                               

 

Figure 5.22:  Oil flow patterns of all wings at Rmac = 2 x 106, α=130 

 

5.5 Vortex Breakdown 

 

At higher angles of attack, vortex breakdown should be expected to reach the 

trailing edge region. From the flow images, vortex breakdown can be recognized by 

strong smearing in the area between the primary and secondary vortices. This is 

caused by a weaker primary vortex in the region. The starting point of the vortex 

breakdown is shown in figure 5.23, 5.24 & 5.25.  

 

5.5.1 The Effects of Bluntness on Vortex Breakdown 
 

 Figure 5.23 presents the effect of leading edge bluntness on breakdown 

properties for all wings at α = 230 and Reynolds number of 2 x 106. The flow 

topologies show the breakdown process is delayed as the leading edge bluntness is 

increased. These results show an excellent agreement with experimental results of 

Hummel (2008b), Renac (2005) and Kegelman & Roos (1989).  All revealed that 

increases in leading edge profile radius significantly delayed the vortex breakdown. 

Renac (2005) suggested that the shear layers on the rounded leading edges are 

relatively smooth compared with a sharp one, thus, reducing the instability of the 
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shear layer. Besides, the flow having a short run of attached flow in the leading edge 

region and slow separation also reduce the instability of the shear layer. A more stable 

shear layer is strongly suspected to delay the vortex breakdown for the blunt wing. 

For the sharp case, a rough and unstable shear layer, generated by a sudden separation 

in the leading edge region, increases the instability of the shear layer. The instability 

promotes a sudden decrease in the speed of the outer shear layer. The axial flow in the 

core is then decreased and this promotes a spiral type of breakdown.  Within the VFE-

2 project, Hummel (2008) also reported the spiral type of breakdown occurring on the 

wing at such angle of attack of α = 230. 

 

 

 

      
                      S                                    RS                                  RM                                       RL 

Figure 5.23: Location of vortex breakdown on various leading edges at the Reynolds number of 2 x 

106& α=230. 

                                            

5.5.2 The Effects of Reynolds Number on Vortex Breakdown 
 

 Figure 5.24 and 5.25 show the Reynolds number effects on the onset of the 

vortex breakdown for the sharp-edged and the large radius wing. Both figures show 

the increase in Reynolds number from 1 to 2 x 106 delaying slightly the onset of 

vortex breakdown. The results obtained can be related to Szodruch (1978). He 

Vortex breakdown starting point 
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described that the pressure level underneath the primary vortex decreases with 

increasing Reynolds number. Consequently, the flowfield underneath the primary 

vortex becomes stronger and more turbulent. The higher ability of turbulent flow to 

endure the adverse pressure gradient, slightly delays the vortex breakdown process in 

the higher Reynolds number case. These results are consistent with Hummel (2004). 

He revealed that the flow at Reynolds number 1 x 106 was mainly laminar but it was 

mostly turbulent at 2 x 106. This is also consistent with Renac (2005). He mentioned 

that the vortex breakdown position is only independent of the Reynolds number for 

high values of Reynolds number; i.e. where the flow is fully turbulent at the Reynolds 

number of higher than 2 x 106. Thus at higher Reynolds numbers, the onset of vortex 

breakdown will not be much influenced by the Reynolds number.  
   

          
                                                a) Rmac = 1 x 106                             b) Rmac = 2 x 106 

Figure 5.24: The effect of Reynolds number on the position of vortex breakdown on the sharp-edged 

wing 
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                                                a) Rmac = 1 x 106                             b) Rmac = 2 x 106 

Figure 5.25: The effect of Reynolds number on the position of vortex breakdown on the sharp-edged 

and large radius wing 

 

5.6 Comparison of Flow Visualization with Other VFE-2 Activity 
 
 The comparison of flow visualization studies were also made with the work of 

Furman & Breisamter (2008) of Munich Technical University. The results show an 

excellent agreement with the hypothesis made earlier; 

 

i. In all cases as shown in figure 5.26 and 5.27, the vortex breakdown is 

observed at higher angle of attack. (α = 230 for both figures) 

ii. On the medium-radius wing, the onset of the primary vortex is been 

delayed further chordwise position (as shown at angle of attack of α = 

130)  

iii. The lateral extent of the inner vortex is also decreased with the 

increase in the angle of attack.  
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                                          α =130                                                                      α = 230 
     i) Reynolds number of 1 x 106 

 

   
 
                                              α =130                                                             α = 230 

              ii) Reynolds number of 2 x 106 
 
 

Figure 5.26: Surface oil flow visualization on the Sharp leading edge at the Reynolds number of 1 and 

2 x 106 at Munich Technical University (Furman & Breitsamter, 2008) 
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                                             α =130                                                               α = 230 

 

       i) Reynolds number of 1 x 106 
 

   
 
 

                                             α =130                              α = 230 

 
ii) Reynolds number of 2 x 106 

 

Figure 5.27: Surface oil flow visualization on the Medium leading edge at the Reynolds number of 1 

and 2 x 106 at Munich Technical University (Furman & Breitsamter, 2008) 
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5.7 PART II: PARTICLE IMAGE VELOCIMETRY 
 
 
5.7.1 Introduction 
 
 

This chapter discusses the Particle Image Velocimetry results obtained from 

the large-radius wing at Reynolds numbers of 1 x 106 and 2 x 106 and taken at x/cr = 

0.5.  The coordinate system used for the data analysis is shown in Figure 5.28. The 

origin of the coordinate system was at half of the wing thickness above the leading 

edge. The (x, y) plane was set coincident with the laser sheet, while the z-direction 

was set parallel with the flow direction.  

 
 

Figure 5.28:  Coordinate system used to interpret PIV results 
 
 

As discussed in chapter 3, there were significant constraints in the PIV tests. 

As a result, the time averaged velocity and vorticity distributions obtained from the 

experiments contained several artifacts. Low resolution of camera 2 due to its extreme 

position during the experiment was the main factor that contributed to the artifacts. 

The shadow and glare effects from the wing surface and other unwanted illuminations 

could only be partially masked off.  
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5.7.2  PIV Results at a Reynolds Number of 1 x 106 

 
The time averaged velocity distribution from x = - 40 mm to 100 mm, that 

focuses on the leading-edge area, at 1 x 106 Reynolds number is shown in Figure 5.29. 

The primary vortex is well developed and centered at a height of about 40 mm above 

the wing surface and 48 mm inboard of the leading edge. The figure also shows the 

path of the flow from the lower to the upper surface of the wing at position x less than 

-20 mm. Nevertheless, the velocity region between y less than 0 mm and x more than 

-20 mm should be ignored because it was developed from the model surface.   

Also in this figure, since the stereoscopic cameras were set to look on the x-y 

plane, the output background velocity is the velocity in the z-direction (w-component) 

or the velocity of the flow parallel to the wind tunnel.  

 

 
 

Figure 5.29:  Velocity field in the leading-edged area of the large-radius wing, at x/cr = 0.5, Reynolds 

number of 1 x 106 and α = 150. 
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The vorticity distribution for the same measurement region is shown in Figure 

5.30.  Note that the positive vorticity along the line around y = 0 should be ignored as 

it is caused by reflection from the model surface in the recorded images. Negative 

vorticity appears in the primary vortex region, and the high negative vorticity 

coincides with the region of the vortex centre.  

 

 
 
 

Figure 5.30:  Vorticity in the leading edge area of the large-radius wing, at x/cr = 0.5, Reynolds number 
of 1 x 106 & α = 150. 

 
 
 

Figure 5.31 shows the time averaged velocity taken from x = 40 mm to 240 

mm at a Reynolds number of 1 x 106. In this figure, two vortices can be identified 

with a very weak inner vortex located well inboard and rotating in the same direction 

as the primary vortex. This inner vortex is centered about 200 mm from the leading 

edge. The result is in contrast to the experiments performed by Furman & 

Breitsamster (2008) as part of the VFE-2 programme. In that case, the inner vortex 

did not develop on either the sharp or medium-edged wing at this Reynolds number.  
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The reason for this is discussed in section 5.8. Note that the results presented in this 

figure in the region x = 80 mm to 105 mm were contaminated by shadowing, this was 

unavoidable due to restricted optical access to the test section. The figure also shows 

that the averaged vector velocity of the primary vortex extends to about x = 80 mm. 

Inboard on the wing, the figure shows that the diameter of the inner vortex extends 

from about x = 190 to 200 mm and that it has a height of about 25 mm.  

 

 
 

Figure 5.31: Velocity field inboard on the wing for the large-radius wing, at x/cr = 0.5, Reynolds 
number of 1 x 106 & α = 150. 

 
 The results obtained are well consistent with the experiments performed in 

DLR (Konrath et al, 2008) on the medium radius wing. As shown in figure 5.32, they 

also showed that the primary vortex developed in the leading edge region while the 

inner vortex is well generated inboard of the wing.  
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Figure 5.32: Time average velocity at x/cr = 0.8, medium leading radius, Mach number = 0.4, Rmac = 3 

x 106 & α = 13.30 of DLR experiment (Konrath et al, 2006) 

 
 
 
5.7.3 PIV Results at a Reynolds Number of 2 x 106 

 

The time averaged velocity distribution at a Reynolds number of 2 x 106, in 

the leading-edged region of x = -40 mm to 100 mm, is shown in Figure 5.33. In this 

case, the primary vortex has developed at a height of about 60 mm from the wing 

surface and is centered at about 40 mm from the leading edge.  
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Figure 5.33:  Velocity field in the leading-edged region of the large-radius wing, at x/cr = 0.5, Reynolds 
number of 2 x 106 &α = 150. 

 
 
 

The vorticity distribution on the same plane is shown in Figure 5.34. In this 

case, the results again show negative vorticity within the primary vortex coinciding 

with regions of low velocity magnitude in the vortex centre. As before, the positive 

vorticity in the proximity of the model surface should be ignored.  In comparison to 

the lower Reynolds number, the vorticity in figure 5.30 shows that the size of the 

primary vortex is slightly smaller in this case.   
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Figure 5.34:  Vorticity in the leading-edged area of the large-radius wing at x/cr = 0.5, Reynolds 
number of 2 x 106& α = 150. 

 
 

Figure 5.35 shows the time averaged velocity distribution from x = 40 to 240 

mm at a Reynolds number of 2 x 106.  For this test condition, both vortices are again 

observed but the size of the inner vortex is larger in comparison to the previous case. 

The reason for this is discussed in section 5.8. 
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Figure 5.35:  Velocity field inboard on the wing for the large-radius wing, at x/cr = 0.5, Reynolds 
number of 2 x 106 & α = 150. 

 
 

The vorticity distribution for the same case is shown in Figure 5.36. The figure 

shows that the flow is dominated by the primary vortex until about x = 65 mm inboard 

of the leading edge. Another significant region of negative vorticity is centered about 

160 mm from the leading edge. At this test condition, the vorticity plot shows the 

inner vortex is slightly smaller in size than the primary vortex. The vorticity also 

shows that the inner vortex is weaker in magnitude than the primary vortex. In section 

5.4.2, the flow visualization also indicated an inner vortex existed but was weakening 

at α = 150.  The large area of positive vorticity at around x = 65 to x = 100 mm 

appears to be a secondary off-surface structure associated with the interaction of the 

two co-rotation vortices.  
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Figure 5.36:  Vorticity inboard on the wing for the large-radius wing, at x/cr = 0.5, Reynolds number of 

2 x 106 & α = 150. 
 
 
 
5.8 Conclusions from Particle Image Velocimetry Study 

 
Even though the experiments carried out produce results with several artifacts 

caused by light shadow and camera imperfection, the results are consistent with 

observations made in earlier sections, specifically;  

 

a. At low Reynolds number (Rmac = 1 x 106), a very weak inboard vortical 

structure is present on the large-radius wing at α = 150. This vortex is 

located about 200 mm from the leading edge at x/cr = 0.5. This is, 

however, in contrast with experiments conducted at a similar Reynolds 

number by Furman & Breitsamster (2008) on the medium-radius wing 

where no inner vortex was observed.  This would suggest that the 

bluntness of the leading edge is a significant factor. A very weak inner 

vortex develops on the large-radius wing because the primary vortex is 

weakened as the leading edge radius is increased. The detailed 
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development of this inner vortex is shown in figure 5.37. The transport of 

the vorticity inboard of the wing starts near to the apex. The vorticity from 

this region extends downstream and smears towards the low pressure 

region of the leading edge. This vorticity then interfaces with the primary 

vortex that has already developed in the leading edge region.  The flow 

inboard of the primary vortex rolls-up to form the inner vortex in this case. 

This result is consistent with the flow visualization images which show the 

inner vortex develops at a Reynolds number of 1 x 106 as discussed earlier 

in section 5.4.3. 

 

 
 

Figure 5.37: The transport of the vorticity inboard of the delta wing 

 

b. At Rmac = 1 x 106, the time-averaged velocity field in the leading-edge area  

(Figure 5.29) indicates that the centre of the primary vortex is located 

about 48 mm inboard of the leading edge. At a Reynolds number of 2 x 

106, however, (Figure 5.33) the vortex centre is shifted outboard about 40 

mm from the leading edge. The reason for this difference may be 
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associated with the boundary layer state. As discussed in the flow 

visualization chapter, the flow at a Reynolds number of 1 x 106 was mostly 

laminar while the flow at a Reynolds number of 2 x 106 was suspected to 

be turbulent shifting the primary vortex in an outboard direction. This is 

also in excellent agreement with the observations of Hummel (2004). 

Nevertheless the correct prediction of the transition status above the wing 

is not fully resolved and it has become a difficult aspect for numerical 

analysis particularly at low Reynolds number. 

 

c. The vorticity field in Figure 5.30 shows a relatively larger primary vortex 

at the lower Reynolds number compared with the higher Reynolds number 

case in Figure 5.34. The reasons for this could also be related to the 

laminar and turbulent characteristics of the flow. The results are again 

consistent with those of Hummel (2004). He indicated that by increasing 

the Reynolds number, the turbulent intensity of the flow would increase 

correspondingly.  The greater ability of the turbulent boundary-layer to 

endure the adverse pressure gradient at higher Reynolds number is 

strongly suspected to delay the growth of the primary vortex at the higher 

Reynolds number. This result is again consistent with the flow 

visualization studies.  

 

d. By comparing Figures 5.31 and 5.35, the time averaged velocity 

distribution shows that the size of the inner vortex increases as the 

Reynolds number increases. Although the measurements at 1 x 106 

Reynolds number are compromised by the test set-up, it does appear that 

the strength of the inner vortex may also increase as the Reynolds number 

increases. This will be linked to the boundary layer state which, as 

discussed above, reduces the size of the primary vortex in the higher 

Reynolds number case. This, as is borne out by the flow visualization 

images in figures 5.13 and 5.18 for the 150 case, creates room for the inner 

to expand. Again from figures 5.13 and 5.18 the origin of the primary 
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vortex is further downstream in the higher Reynolds number case 

suggesting that higher levels of vorticity may be fed into the inner vortex.  

 

e. The time averaged velocity field also shows that the centre of the inner 

vortex is shifted outboard as the Reynolds number is increased from 1x 106 

to 2 x 106. It was located at about x = 200 mm from the leading edge at 1 x 

106 Reynolds number and at about x = 160 mm from the leading edge at 2 

x 106 Reynolds number case. This is linked to the reduction in size of the 

primary vortex at the higher Reynolds numbers as discussed above.   

 

f. The vorticity and average velocity show that the primary vortex of the 

large-radius wing develops as an oval-shaped structure compared to the 

more circular vortex on the medium-radius (Konrath, 2006a & 2008b) and 

sharp-edged wings (Furman & Breitsamter, 2008). The leading edge 

profile will be a significant factor here with the delay in leading edge 

separation influencing the shear layer trajectory and the subsequent roll up 

process. The separation inboard of the leading edge will have a shallower 

trajectory consistent with more oval shape of the primary vortex. More 

comparison with Numerical analysis on the large radius wing is required in 

the future to verify this.  

 

g. The results obtained from the large-radius wing at a Reynolds number of 2 

x 106 case also show that the maximum speed of the shear layer was 66 

m/s at the freestream speed of 41.23 m/s. Thus the vortex core velocity is 

about 1.57 that of the freestream speed.  On the medium-radius wing, the 

vortex core velocity is about 1.90 times the freestream speed (the 

experiment was performed by Konrath (2006b) as a part of VFE-2 

activities at similar Reynolds number, Mach number = 0.4, α = 13.30). For 

the large-radius wing, the delay of separation compared with the medium-

radius case has initiated a smooth separation; thus weakening the primary 

vortex. This supports the hypothesis discussed in Chapter 4 and flow 
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visualization studies that the increase in leading edge bluntness decreases 

the strength of the primary vortex. 
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Chapter 6 

 

6.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

The flow around a delta wing is extremely complicated and exhibits some 

flow features that are not fully understood. This thesis has presented experimental 

work performed at Glasgow University as part of the International Vortex Flow 

Experiment -2 (VFE-2) campaign that aimed to further investigate the three-

dimensional flow around delta wings. Results are presented from four measurement 

techniques; i.e. flow visualization, steady balance, unsteady balance and Particle 

Image Velocimetry (PIV) measurements on a delta wing model with various degrees 

of leading-edge roundness (bluntness). A number of interesting features in the data 

have been highlighted particularly with respect to the effects of bluntness, Reynolds 

number and angle of attack on the conventional primary vortex. The occurrence and 

evolution of a relatively recently newly found phenomenon, the inner vortex, on the 

blunt-radius configurations have also been discussed in detail. It has been shown that 

the inner vortex is stronger and spatially more extensive for wings with higher leading 

edge roundness at moderate angles of attack. The current study has provided new 

insight on the effects of bluntness on the flow topology of delta wings. 

 

6.1 Conclusions 

 

1. In this study, four delta wings configurations which could be 

differentiated by their leading edge profiles; sharp-edged, small-, 

medium- and large-radius were tested. Within the VFE-2 group, only 

two wings were tested; the sharp-edged and medium-radius wings. On 

the radiused leading edge profiles, two vortices were found, 

representing the conventional primary vortex in the leading edge area 

and an inner vortex further inboard on the wing. The results presented 

show that as the leading edge radius increases the magnitude of the 
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primary vortex decreases but the magnitude of the inner vortex 

increases.  

 

2. The precise nature and location of transition from laminar to turbulent 

flow on a wing is complex to resolve accurately. Several experimental 

techniques were performed within the VFE-2 campaign such as 

pressure-sensitive paint, infrared thermography; flow visualization, 

PIV, temperature sensitive paint, steady and unsteady load 

measurements but even this extensive database did not provide 

adequate information on the location of transition. This information is 

essential if numerical studies, especially at low Reynolds number, are 

to be properly validated. Once again, in this study, information on 

transition was somewhat qualitative although flow visualization results 

from the current study at Reynolds number 1 x 106 suggested that 

transition appeared under the primary vortex in the middle part of the 

wing.  It then progressively extended towards the apex with increasing 

angle of attack.  

 

3. The results presented here show that the formation of conventional 

leading edge primary vortex is very much dependent on the leading 

edge bluntness, Reynolds number and angle of attack. An increase in 

leading edge bluntness and Reynolds number can delay the formation 

of the primary vortex towards the aft portions of the wing. 

Nevertheless, increasing the angle of attack prompts an upstream 

movement of the origin of the primary vortex. The results obtained 

from the PIV experiment in the current study also show that an 

increase in leading-edge bluntness significantly decreases the swirl 

magnitude of the primary vortex.  

 

4. This thesis has discussed in detail the development of an inner vortex. 

The inner vortex was first identified by Fritz in 2005. Initially, the 

inner vortex was thought to have developed on the front part of the 
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wing resulting from a three-dimensional separation bubble transition 

mechanism. Results from the current study suggest that roll-up of the 

inner vortex does not depend on a separation bubble being formed but 

rather arises from the complex interaction between separating flow in 

the apex region and the already forming primary vortex.   

 

5. The normal force was found to be sensitive to leading edge radius but 

this sensitivity was not consistent across the angle of attack range. At 

low angle of attack an increase in leading edge radius would decrease 

the normal force coefficient significantly. This could be associated 

with the decrease in magnitude of the primary vortex. The analysis of 

the data spectra was also consistent with this finding. Nevertheless, at 

higher angles of attack, the normal forces on each of the wings were 

similar to each other that strongly suggested that the magnitude of the 

primary vortex was similar for all cases; i.e. the effect of bluntness was 

diminished at higher angle of attack. The axial forces measured in this 

study were found to in error. This issue has been discussed in chapter 

4.   

 

6. The effects of Reynolds number and leading edge bluntness on the 

attached flow region were discussed in this study. The flow 

visualization images showed that the attached flow region enlarged 

with increases in Reynolds number and leading edge bluntness. The 

results of the steady balance tests showed that this and the associated 

effect on the primary vortex had reduced the normal force coefficient 

significantly at higher Reynolds numbers. Transition appears to be a 

significant factor that influences the extent of the attached flow. At 

higher Reynolds number, the ability of the turbulent flow to endure the 

adverse pressure gradient enlarges the attached flow region in the apex 

area.  
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7. The results from the flow visualization studies on the large-radius wing 

at an angle of attack 100 strongly suggest that the primary vortex 

develops earlier than the inner vortex. For this case a concentration of 

vorticity in the leading edge area had rolled-up to form a weak primary 

vortex near the trailing edge. It is suggested that the vorticity inboard 

on the wing had then rolled-up as it interfaced with this primary vortex 

already existing at in the leading edge. Further examination of this 

phenomenon will be required to fully confirm this hypothesis.  

 

8. Within the VFE-2 activities, PIV data were only available on the 

sharp- and medium-radius wings. Most of the data were concentrated 

in the middle part of the wing. The data in the apex and trailing edge 

region were not available due to the physical constraints of each 

tunnel. This study provided a further insight into the effect of leading 

edge bluntness by providing PIV data for the large radius wing. These 

data at Reynolds number of 1 x 106 showed that the inner vortex was 

established on the wing despite not being present at a similar Reynolds 

number on the medium-radius wing (Furman & Breitsamter, 2008). 

The stronger primary vortex on the medium-radius wing appears to 

have prevented the development of the inner vortex on the wing 

 

6.2 Recommendations for Future Work 
 

1. As stated in Section 6.1, the distribution of laminar and turbulent flow 

in the boundary layer of a delta wing is difficult to resolve 

experimentally and to predict computationally even for sharp-edged 

wing.  Several efforts were made during the VFE-2 activities to obtain 

more insight into this although insufficient detail was generally 

obtained. Flow visualization studies from the current study have shown 

that the secondary separation line was smeared outboard towards the 

leading edge in the middle part of the wing at high angle of attack and 
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low Reynolds number. This could be related to transition in this area at 

a Reynolds number of 1 x 106. Nevertheless, further measurements are 

required to verify the boundary layer status. It is suggested that work 

should focus on the sharp-edged wing and the medium-radius wing at 

an angle of attack of 180, where the primary vortex is well developed 

over the entire wing for both configurations. Additional tests on the 

large-radius wing at the lower angle of attack of 130, where the flow is 

partly attached and partly separated, should also be carried out. A 

detailed study of the location of the transition fronts in these cases 

would provide extremely valuable information for validation of CFD 

methods in the future.   

 

2.  For the delta wing used in the VFE-2 studies, the trailing edge is 

consistently sharp from the wing tip to the wing centre line. The details 

of the flow in this region could not be captured using PIV due to the 

physical constraints on camera positioning in each tunnel that took part 

in VFE-2. As suggested by Breitsamter (2008), the flow in the tip 

region near the trailing edge is likely in most cases to be fully turbulent 

and the separation of the turbulent boundary layer here initiates the 

primary separation. In addition the work in this thesis suggests that the 

inner vortex only rolls-up as a coherent structure due to interaction 

between the vorticity inboard on the wing and the primary vortex 

generated earlier in the tip region. The primary vortex develops in the 

trailing edge area due to the curvature of the trailing edge itself that 

results in the local angle of attack in the trailing edge being higher than 

the model angle of attack. It would be extremely valuable if the detail 

of the interaction between the primary and inner vortex, at its 

formation, could be captured via PIV and validated by numerical 

modelling. Thus, PIV data during the development of the primary 

vortex in the leading edge area is required in the future.  
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3.  The formation of the inner vortex is dependent on the Reynolds 

number, Mach number and leading edge radius.  The experiments by 

Furman & Breitsamster (2008) on the medium-radius wing showed 

that the inner vortex did not form at a Reynolds number of 1x 106, but 

it developed at the slightly higher Reynolds numbers of 2 x 106 to 4 x 

106 (Konrath, 2006b & 2008a). At low Reynolds number, the 

extension of the primary vortex up to the apex region, due to early 

laminar separation, appears to have prevented the development of the 

inner vortex. At high Mach number, the development of the inner 

vortex was also prevented by a stronger primary vortex. Nevertheless, 

the current experiment carried out on the large radius wing at Reynolds 

number of 1 x 106 showed that the inner vortex did form for this test 

condition, with the bluntness of the leading edge being the primary 

factor that contributed to this. Further experiments are still, however, 

required to investigate the influence of Reynolds number and bluntness 

on the nature of the inner vortex. Smoke flow visualization may be a 

suitable method to investigate this nature. The experiments could be 

performed at various Reynolds numbers, say, from 0.7 x 106 to 1.5 x 

106 with the smoke being injected from the wing surface near the 

primary attachment line of the inner vortex.   

 

4.  The effects of Reynolds number, angle of attack and the bluntness on 

a delta wing undergoing pitching motion should be studied. To date, 

very little information is available on the flow behaviour during 

pitching motion on a round-edged delta wing.  It is known that 

pitching motion can have a significant effect on the primary vortex 

structure of a sharp-edged delta wing and that it influences the 

progression of vortex breakdown. The flow on the round-edged wings 

is significantly more complex and the extent to which this complex 

flow will be altered by pitching motion is almost completely unknown. 

Experiments to measure the strength and locations of the vortex 

structures during pitching motion would be extremely valuable as 
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would understanding the effects of reduced frequency.  Results from 

these types of study would have particular significance to manoeuvring 

aircraft.  Pitching motion experiment on the blunt leading edge wing is 

required to verify this in the future.  

 

5.  Steady balance data at a Reynolds number of 2 x 106 showed the 

normal forces were similar for all wings at about α = 230. The results 

suggest that at higher angles of attack, the flow is dominated by the 

primary vortex on all of the wings. The magnitude of the primary 

vortex is thought to be identical for all wings and the onset of the 

primary vortex is located in close proximity to the apex, thus 

eliminating the effect of leading-edge radius. Unfortunately, there is no 

PIV data at high angles of attack available, even from the VFE-2 work, 

for confirmation of this. This is again due to the physical constraints of 

the wind tunnels used. Further PIV with surface flow visualization and 

force correlations at high angles of attack, on all of the wings, would 

be required to verify this.  

 

6. The effects of leading edge bluntness on the vortex breakdown process 

needs further investigations. Even though the current study shows 

consistency with previous work on the delay of vortex breakdown, a 

detailed non-intrusive study in the region of breakdown was not 

possible here or in the other VFE-2 activities. Unsteady force data on 

the large radius wing suggested that, at α =230, vortex breakdown did 

not occur or was less extensive on the wing. Vortex breakdown was 

expected to occur on this wing at higher angles of attack, thus further 

experiments are required to verify this.   

 

7. The current study has shown that the large-radius wing produced an 

oval shaped primary vortex, in contrast to the rather circular shape of 

the primary vortex for the medium-radius wing (Konrath, 2006b & 

2008a). Again, the bluntness is likely to be the main factor that 



 

______________________________________________________________________________ 

Shabudin Bin Mat – The analysis of flow on round-edged Delta wings 

 

174

contributed to this. PIV results from the current study suggested that 

the increase in leading edge radius had decreased the magnitude of 

primary vortex significantly. It was postulated, on the basis of the 

force data, that the strength (and possible the shape) of the primary 

vortex on the large radius wing would tend to that on the sharp-edged 

wing at higher angle of attack. A detailed experiment and numerical 

studies of the effects of angle of attack on the primary vortex of the 

large-radius could provide verification of this. 
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APPENDIX A – WING AND STING PROFILES 

 

 

A1 Delta Wing and Near-Field Sting Profiles 

 

The delta wing leading edges, trailing edge and near-field sting profiles were 

defined by the general equations provided by Chu & Luckring (1996). These general 

equations; φ(ξ),  were used to define the leading edge semi-thickness, the flat plate 

semi-thickness, the trailing edge closure semi-thickness and the transverse radius of 

the sting fairing. The availability of these equations made it relatively easy to replicate 

the NASA model. The equations are; 

  

 φ(ξ) = ± x1(a√ξ  +  bξ  +  cξ2  +  d ξ3), for  0≤ ξ ≤1    --------------  (1) 

 ψ (ξ)= ± x1[l / x1 + m(ξ-1)+ nx1/ 2 (ξ-1)2], for  1 ≤  ξ -------------   (2) 

 

 

A2 Leading Edge 

 

The leading edge region is defined as extending from the leading edge itself to 

15% of span inboard, where the profile blends smoothly into the flat plate region.  

The longitudinal coordinates of the leading edge contour are shown in figure A.1  
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Figure A.1: Delta wing semi thickness functions [Chu & Luckring, 1996] 

 

All four sets of leading edge profiles can be normalized using the φ (ξ) 

equation and the normalized coefficients (a, b, c and d) for the different sets of 

leading edges are given in table A.1 below. The plot of the four leading edge profiles 

is shown in figure A.2. 

 

r/c, percent a b c d 

0 0 3d -b 0.113338668 

0.05 0.066666667 0.215016000 -0.256682667 0.0883386669 

0.15 0.11547005384 0.1235096497 -0.195678433 0.070037397 

0.30 0.1632993161 0.0338297828 -0.135891855 0.0521014233 

 
Table A.1: Leading-edge coefficients for equation (1) 
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Figure A.2: A contour of leading edge profiles for all wings (Not to scale) [Chu & Luckring, 1996] 

 

 

The sharp leading edge and the inner flat portion are shown in figure A.3 a) & 

b) respectively. All the leading edges were machined with an extra slit on the bottom 

surface. Several holes were drilled on the slit as shown in figure A.3 a). The leading 

edges were then bolted through to the inner flat portion forming a complete delta wing 

model as shown in figure A.3 c).  
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         a) Leading edge                                                              b) Inner flat portion 
   
 

     
 

c)  Leading edge attached to the flat portion 

Figure A.3: Arrangement of leading edges and flat portion of the delta wing 

 

A3 Trailing-Edge Closure Region 

 

The trailing edge portion is designed to produce a sharp edge at the trailing 

edge termination point. The trailing edge curvature starts at 90% of the wing root 

chord where it blends smoothly into the flat plate region. The trailing-edge 

coefficients for equation (1) are tabulated in table A.2. 

 

 

Leading 
Edge 

 
Drilled-

hole 
 

 
Inner 
flat 

portion 
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r/c, percent a b c d 

0 0 3d -b 0.170008000 

 
Table A.2: Trailing-edge Coefficients for equation (1) 

 

A4 Sting Fairing and Fore-Sting 

 

The sting fairing or wing interface is designed to start at 61.05% of the root 

chord from the apex. The curvature of the sting fairing extends to 97.97 % of the root 

chord from the apex where it joins the short sting, or fore sting, further aft. The radius 

to chord ratio used to define the curvature is 0.2791026 and the coefficients for the 

first-blending function equation are tabulated in table A.3. 

 

r/c, percent a b c d 

0.2791026 0.100402348 0.332798228 -0.39554969 0.136033329 

 
Table A.3: Sting fairing Coefficient for equation (1) 

 

The sting fairing is then connected to the short-sting that extends 175.8% of 

the root chord downstream. The short sting (figure A.4) can be divided into four 

regions as shown in the figure and as defined in table A.4. Beyond region 4, the 

NASA sting profile was rather complicated and an analytic function for this was not 

provided in the report of Chu & Luckring (1996). 
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Region Taper, deg x/cR φ 

1 00 From 0.9797 0.06412 

  To 1.175 0.06412 

2 Radius From 1.175 0.06412 

  To 1.253 0.06564 

3 2.250 From 1.253 0.06564 

  To 1.684 0.08258 

4 00 From 1.684 0.08258 

  To 1.758 0.08258 
 

Table A.4: Short-sting transverse radius 

 
 

Figure A.4: Delta wing model short-sting detail [Chu & Luckring, 1996] 
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APPENDIX B 

 


