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Abstract

The research work included in this thesis concerns the study of wave propagation in elastic
materials which are stressed in their initial state. This research is based on the non-linear
theory of elasticity.

Using the theory of invariants, the general constitutive equation for an isotropic hyper-
elastic material in the presence of initial stress is derived. These invariants depend on the
finite deformation as well as the initial stress. In general, this derivation involves 10 invari-
ants for a compressible material and 9 for an incompressible material. Making use of these
invariants, the elasticity tensor is given in its most general form for both the deformed and
the undeformed (i.e., the initially stressed reference) configurations. The equations govern-
ing infinitesimal motions superimposed on a finite deformations are then used to study the
effects of initial stress and finite deformation on wave propagation. For each of the problems
carried out in this thesis, the results are specialized for a prototype strain energy function
which depends on the initial stress as well as the deformation. The basic theory in each of
the problems is formed for the material in the deformed configuration and is later specialized
for the undeformed reference configuration. Considering the special case when initial stress
is zero, the results are compared with those from the linear theory of elasticity.

The problem of homogeneous plane waves in an initially stressed incompressible half-
space is considered. The basic theory of the problem is later used to study the reflection of
plane waves from the boundary of such a half-space. The reflection coefficients of waves are
calculated and graphical representations are given to study the behaviour with reference to
the magnitude of initial stress and finite deformation.

The study of Rayleigh and Love waves follows thereafter and the basic theory already
developed in this thesis is used to study the effect of initial stress on the wave speed of these
surface waves. In both cases, the secular equation is analysed in deformed and undeformed
configurations and graphs are presented.

The problem of wave propagation in a residually stressed inhomogeneous thick-walled



i

incompressible tube which is axially stretched and inflated due to internal pressure, is con-
sidered. On the basis of known experimental behaviour, a simple expression for the residual
stress is chosen to calculate the internal pressure used to inflate the tube and the axial load
to stretch it. The effect of initial stress and stretch on pressure and axial load is studied
and graphs are presented. The general theory developed for the deformed configuration for
the special model is specialized to the reference configuration and the dispersion relation is

analysed numerically.
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Chapter 1

Introduction

Many materials can be internally stressed in their unloaded reference configuration. In
metals, for example, an initial stress is caused by thermal processing like welding and/or
mechanical processing like bending or forging of the metals parts. In geophysics, internal
stresses are imposed on a rock due to processes such as burial, heating, cooling, and past
tectonic events, etc., and these stresses remain locked inside the material after the rock is
freed of boundary loads. In soft biological tissues, processes of growth and development in
the tissue cause such stresses whereas in arteries, high blood pressure might leave the internal
walls of the arteries stressed even when the pressure recedes. In all such cases, the material
is therefore considered to be stressed in its initial state.

The term initial stress is used in its widest sense irrespective of the process that causes this
stress. In the case when there is an associated pre-strain from an unstressed configuration
due to an applied load, the term prestress replaces the term initial stress. However, in
the situations when an initial stress is present in the absence of applied loads (body forces
and surface tractions) it is called residual stress according to the definition of Hoger [16].
The presence of initial stresses in a material has a substantial effect on the material elastic
properties and wave propagation. For example, the presence of residual stresses in a metal
body can cause distortion or splitting of metal parts and also can result in premature fracture.
However, residual stresses can be beneficial in many cases. For example, the peak stress
present in the tissues in vivo is minimized by the residual stress present in the arterial walls.
The presence of residual stress in vessels and arteries had significant effect on response of
the tissue. For detailed discussion on this, we refer to [12, 21]. More recent work in this
regards has been carried out by Ogden and Singh [36] and Holzapfel and Ogden [22] and the

references therein.
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We follow the basic concepts on residual stress from the work by Hoger who studied in
detail the possibility of existence of residual stress in an elastic body with material symmetry
[16]. For further discussion on residual stress in various respects and the development of basic
constitutive equations for residually stressed materials, we refer to [17, 18, 19, 26, 27]. By
definition, residually stressed elastic bodies are in mechanical equilibrium in the absence
of surface traction and body forces. Due to the zero-traction condition, a residual stress
depends on the geometry of the material body [16]. Further, any non-zero residual stress field
is necessarily inhomogeneous and anisotropic [20, 16, 26]. This follows from the Signorini’s
mean stress theorem [14], so some of the body must be in compression and some in tension.
Since the material symmetry and elastic properties are dependent on the residual stress,
so the mechanical properties of such a material are expected to be inhomogeneous and
anisotropic.

In this thesis, we have studied the phenomenon of wave propagation in initially stressed
materials. For this, we refer to the most basic work done by Biot in [4, 5]. Biot explored
various cases of wave propagation in an initially stressed material and specialised the results
in a geophysical context. We also refer to the work of Tang in [48] and the references therein.
Tang [48] considered wave motion in an infinite and initially stressed material medium for
various special cases and compared with already found results. Man and Lu [28] followed the
work by Hoger and presented generalised results which relate to much earlier work of Biot.

The above mentioned phenomenon of waves in elastic materials, also referred to as acous-
toelasticity, has major application in the area of biomechanics that interfaces with acoustic
wave propagation and elastography in living soft biological tissues. The theoretical study
of acoustic waves in soft tissues can play a major role and provide some impetus for ul-
trasonic assessment and for non-invasive, non-destructive medical diagnostics. In regard to
acoustoelasticity, we present basic theoretical formulation which is generally applicable to
any hyperelastic material which is initially stressed. As a specialization to understand the
general results clearly, a prototype strain energy function is used which depends on the initial
stress and, in turn, the components of the elasticity tensor include the effects of initial stress.

Irrespective of the cause which develops the initial stress and whether or not it has a finite
deformation associated with it, it is interesting to note the effect of the initial stress on small
(static or time dependent) deformations. We refer to these as the incremental deformations
when these are linearized relative to the initially stressed undeformed reference state. If
there is some associated finite deformation then we refer to the theory as the theory of small

deformations superimposed on large deformations. We adopt this approach as it is more
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generalized and simple. In particular, we consider a general constitutive law for a finitely
deformed material which is initially stressed and then apply the increment. In this case,
the components of the elasticity tensor are functions of the residual stress as well as the
deformation and we make use of the most generalized form of the elasticity tensor. This
approach is different from that followed by Biot [4, 5, 48] who used a linearized theory by
taking first order terms in the stress and strain components and a very specialized assumed
form of the constitutive equation. Also, in contrast to our approach, Man and Lu [28] assume
the initial stress to be small so that the terms are linear in the initial stress and make use of
a different form of elasticity tensor in their calculations.

We consider the formulation of a problem in elasticity for an initially stressed hyperelastic
material. The basic concepts for this are collected in Chapter 2 of this thesis. We present the
governing equilibrium equations for finite elasticity together with the concept of the elasticity
tensor when it depends on the initial stress. Various useful identities of this elasticity tensor
are given which follow from [17]. As mentioned above, we use a linearized theory [17] for
constitutive equations and superimpose small deformations on the finite deformations to
obtain the incremental equations for an initially stressed deformed hyperelastic material,
which are being used throughout this thesis. Also, in every problem within this thesis, we
suppose that the response of the considered material relative to the undeformed configuration
would be isotropic in the absence of initial stress.

In Chapter 3, as a constitutive law, we consider a general strain energy function (defined
per unit reference volume) which depends on the combined invariants of the right Cauchy-
Green deformation tensor and the initial stress tensor. The expressions for these invariants
are motivated from [19]. In general, there are 10 independent invariants for a compress-
ible material which reduce to 9 for an incompressible material. The general expressions for
the Cauchy stress and nominal stress tensors are given both for compressible and incom-
pressible material in the deformed and undeformed initially stressed configurations. From
these expressions, we find that the expression for an initial stress has to follow a few restric-
tions, namely given by Egs. (3.10) and (3.13) for compressible and incompressible materials,
respectively.

We consider a general form of the elasticity tensor which depends on the initial stress ten-
sor (7) as well as the right Cauchy-Green deformation tensor (C). The detailed expressions
for this tensor in case of a compressible material and an incompressible material are given
which are further specialized for the undeformed initially stressed reference configuration.

In the absence of initial stress, these expressions reduce to the classical elasticity tensor for
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isotropic materials. For simplicity of calculations only, we consider the dependence of the
strain energy function on a limited set of invariants while ensuring that adequate effect of
initial stress is included.

The general form of the acoustic tensor [44] for an initially stressed material is given
both for the compressible and incompressible materials in the deformed and undeformed
configurations. Various forms of the initial stress are considered, for instance to observe
the dependence of the wave speed on the initial stress in the material. For a general initial
stress, we consider materials which follow a specific constitutive model. This simple pro-
totype model (Eq. (3.111)) is selected such that the restrictions on the initial stress are
followed and the effects of initial stress and deformation both are included properly. Also,
we consider that there is no stored elastic energy associated with a initially stressed mate-
rial. Therefore, we take the energy function to be zero in the initially stressed undeformed
reference configuration.

The ongoing theory in Chapter 3 then is applied to a problem of plane incremental mo-
tions in an initially-stressed incompressible homogeneous elastic half space. The general
formulation of the problem is presented first and then specialized using the same prototype
strain energy function. Homogeneous plane waves are considered and the analysis is carried
out for incompressible materials in both the deformed and the undeformed reference config-
uration. In addition to this, respective problems for wave reflection from the plane boundary
of an initially stressed half space are also considered and graphical results are included which
show the effect of initial stress on reflection. It is noted that the reflection coefficients in this
case behave in a similar fashion to those recorded by Ogden and Sotiropoulos [39], who anal-
ysed the effect of prestress on the propagation and reflection of plane waves in incompressible
elastic solids.

In Chapter 4, we consider two types of surface waves, namely Rayleigh and Love waves, in
an initially stressed homogenous incompressible material. A secular equation is found which
is analysed for the strain energy function mentioned before. The dependence of surface
wave speed on the initial stress and the strain is considered separately in both cases. It is
noted that the presence of a compressional stress results in an increase in the surface wave
speed whereas the wave speed decreases for tensile stress in the material. Tang [48] found
a matching behaviour of the wave speed for the case of an infinite initially stressed medium
under hydrostatic pressure.

In the last Chapter, i.e. Chapter 5, we consider the problem of wave propagation in a

residually stressed cylindrical tube with axial extension and radial inflation. We propose
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various forms of the inhomogeneous residual stress based on the experimental behaviour of
stresses present in arteries. The effect of residual stress on pressure used to inflate the tube is
considered. It is noted that pressure stability depends on the ratio (A, given by Eq. (5.6)) of
the inner wall thickness in the deformed and the undeformed configurations. Higher values
of the parameters related to the initial stress lead to a higher value of the lower limit of A,
and much increased values of pressure. Various graphs are presented to show this fact for
numerous choices of parameters and varying wall thicknesses. It is interesting to note that
for negative values of certain parameters, the pressure follows an upper and lower bound with
respect to the ratio A\,. The values obtained for the pressure are then used to calculate the
axial load and the effect of initial stress is observed. Various choices of the parameters and
wall thicknesses lead to a mixed behaviour of the axial load, which is recorded graphically.
The problem of wave propagation in an inflated and stretched residually stressed tube is
then considered. Equations governing this problem are given both in the deformed and the
undeformed configuration. It is found that the expressions for the deformed configuration
are extremely cumbersome. We intend to solve the more complicated problem elsewhere.
Due to time constraints, we solve a less complicated two-point boundary value problem in
the reference configuration where we suppose the material is undeformed and the stretches
are therefore equal to 1. We formulate a two-point boundary value problem in the reference
configuration and solve it using the built-in function ‘Bvep4c’ in MATLAB. The dispersion
relation for this problem is obtained numerically and various modes are plotted generally
and in particular the behaviour of first mode for various values of the parameters and wall
thicknesses. In each of the graphs, we plot the dispersion modes so as to observe the change
in the magnitude of the dimensionless wave speed in the presence of residual stress from the
state when no residual stress in present. The effect of residual stress is included in these
expressions through the respective parameters. It may be noted that higher and positive
values of these parameters result in a decrease of the wave speed due to the presence of
residual stress. Similarly, lower or negative values of parameters give higher wave speeds in

a residually stressed tube.



Chapter 2

Basics of the Theory of Finite

Deformations

A body B is a set whose elements can be put into one-to-one correspondence with points of
a region B in three-dimensional Euclidean space. The elements of B are called the material
points and B is called a configuration of B. Let B, be an arbitrarily chosen fixed reference
configuration of B. We assume that in this reference configuration the body is at rest and
no external forces are present. Let B; be the current configuration of B at time t. For the

basic material covered in this chapter, we generally refer to [14] and [31].

2.1 Analysis of Deformation in an Elastic Material

A deformation x from B, is a smooth one-to-one mapping that carries point X € B, into

the point x = x(X,¢) in B, , with components
zr; = xi(Xa,t), i,a=1{1,2,3}. (2.1)

Note that x = x;e; with respect to the basis {e;} and X = X,E, with respect to the basis
{E,}. We will use Greek and Roman letters throughout for indices associated with the
reference configuration and the deformed configuration, respectively.

The deformation gradient tensor is
F(X,t) = Gradx = Grad x(X, ), (2.2)

with components F,, = 0x;/0X,. Here Grad is the gradient operator in the reference
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configuration.

We adopt the usual convention that J = det F > 0, hence defining the notation J, which
is a local measure of change in the material volume and appears in the equation of mass
conservation p, = Jp, where p, and p are the mass densities of the material in the reference
and the deformed configurations, respectively.

For an isochoric (volume preserving) deformation,
J=detF =1. (2.3)

For an incompressible material all deformations are isochoric and Eq. (2.3) hence forms the
incompressibility constraint.

The polar decompositions of F are given by
F=RU = VR, (2.4)

where R is a proper orthogonal tensor, while U and V are positive definite, symmetric
tensors, called the right and the left stretch tensors, respectively.

The spectral forms of U and V are given as
3 3
U= Z Au? @u? V= Z Aiv @ v@, (2.5)
i=1 i=1

where \; > 0, i € {1,2,3}, are the eigenvalues called the principal stretches, and u® and v
are the eigenvectors of U and V, respectively. u” and v are called the Lagrangian and

Fulerian principal axes. Here, ® denotes the tensor product defined for any two vectors, say
a and b, by
(a®@b)v=(b-v)a, (2.6)

ie. a® b is a tensor that assigns to each vector v the vector (b-v)a. Also note that

J = det F can be expressed in terms of the principal stretches \; through
J=detU=detV = A \3\3. (2.7)
The vectors u® and v are connected through

v =Ru?, i={1,2,3}). (2.8)
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We define the right and left Cauchy-Green deformation tensors, C and B, respectively,
as

C=F'F=U? B=FF =V~ (2.9)

The tensors C and B play important roles in the formation of constitutive laws, in particular

through their principal invariants defined (for either C or B) as

L =tr(C), L= %[112 —tr(C?)], I3y =det(C). (2.10)

In terms of principal stretches, these are
L=XN+X+X, L=XMN\N+NA 4+, 3=\ (2.11)
Alternatively, the principal invariants of U can be used. Thus, we define

iy = te(U), iy — %[iﬁ Ctr(U2)],, s = det(U), (2.12)

or, equivalently, in terms of the stretches
il - )\1 -+ )\2 -+ )\3, ’ig - >\2>\3 + )\3)\1 + )\1)\2, ig = )\1)\2)\3. (213)

The connections between [; and ¢;,j = {1,2,3} follow from the above expressions and are

given by

Iy =i} — 20y, Iy =15 — 2iyis, I3 =13. (2.14)

2.2 Analysis of Motion in an Elastic Material

The velocity v and acceleration a of a material particle X are defined by

0 02
V=X;= Ex(X,t), a=v,=xyu= ﬁX(X’ t), (2.15)

respectively. Here ; in the subscript denotes the material time derivative.
It is sometimes useful to treat v as a function of x and ¢ and we then define the velocity
gradient tensor, denoted L, as

L = gradv, (2.16)
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with components (with respect to the basis {e;})

(%Z-
J axj ( )
Using the identity,
Gradv = (grad v)F, (2.18)
we can write, using Eq. (2.16),
Gradv = LF. (2.19)
Since v = x;, we also have
0
Gradx; = aGradx =F, (2.20)
Hence from Eq. (2.19) and (2.20), we have the important connection
F,=LF. (2.21)
Using the result for the derivative of the determinant of a tensor, i.e.
0 -1 -1
a(det F) = (detF)tr(F'F;) = Jtr (F'F4), (2.22)
together with Eq. (2.21), we have
0
a(det F) = Jtr(L), (2.23)
or,
Jy = Jtr(L) = Jdivv, (2.24)

where tr(L) = Ly = 0v;/0z; = divv. Here, div is the divergence operating in the current
configuration, i.e. with respect to x. Therefore, div v measures the rate at which the volume

changes during the motion. For an isochoric motion, J =1, J, = 0 and hence
divv =0, (2.25)

which is another linearized form of the incompressibility constraint.

Also, FF~! =1, and therefore

FYH,=-F'F,F'=-F'L (2.26)
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2.3 Analysis of Stress and Equilibrium Equations for

an Elastic Material

During a motion, mechanical interactions between parts of a body or between a body and
its environment are described by using the concept of force. In this regard, one of the most
important theorems is Cauchy’s Theorem, stated as:

Let (t,b) be a system of surface and body forces for a body during a motion. Then a
necessary and sufficient condition that the momentum balance laws be satisfied is that there

exists a spatial tensor field T, called the Cauchy stress, such that

e for each unit vector n,

t(n) = Tn; (2.27)

e T is symmetric;

e T satisfies the equation of motion

divT + pb = pv, (2.28)

where b represents the body force.

Let T = T(x,t) be the stress at a particular place and time. If
Tn=on, |n|=1, (2.29)

then o is a principal Cauchy stress and n is a principal direction, so that the principal
Cauchy stress and principal directions are eigenvalues and eigenvectors of T, respectively.
Also, note that the symmetry of T ensures that three principal directions exist which are
mutually perpendicular and the three corresponding principal stresses are real.

Consider an arbitrary oriented plane surface with positive unit normal n at x. Then
the surface force Tn can be decomposed into a sum of a normal force and a shearing force,
respectively given by

(n-Tn)n = (n®n)Tn, (2.30)
(I-n®n)Tn, (2.31)

and it follows that n is a principal direction if and only if the corresponding shear stress

vanishes. T is the identity tensor.
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A fluid at rest is incapable of exerting shearing forces. In this case, Tn is parallel to n

for each unit vector n, and every such vector is an eigenvector of T. We can write
Tn = —mn, (2.32)

T = —nl, (2.33)

where m > 0 is a scalar which represents the pressure of the fluid.

Two other important states of stress are:

e Pure tension (or compression) with tensile stress o in the direction e, where |e| = 1:

T=oc(e®e). (2.34)

e Simple shear with shear stress 7 relative to the direction pair (k, n):
T=7k®n+n®k), (2.35)

where k and n are orthogonal unit vectors

The Cauchy stress T measures the contact force per unit area in the deformed configura-
tion. In many problems, it is not convenient to work with T, since the deformed configuration
is not known in advance. For this reason we may define a stress tensor S which gives the
force measured per unit area in the reference configuration.

Through the Nanson’s formula, we know the elements of surface area are related by
nda = JF"TNdA, (2.36)

where (n,da) and (N, dA) are the unit normal and area elements in the deformed and the
reference configuration, respectively. We can write the traction t(n) on an area element da

in the deformed configuration as
tda = Tnda = JTF TNdA = STNdA, (2.37)
where the first Piola-Kirchhoff stress tensor ST is defined as

ST = JTF T (2.38)
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Therefore, the second order tensor field S, called the nominal stress tensor, is given by
S=JF'T. (2.39)
This is also referred to as the engineering stress. S satisfies the equation of motion
DivS + p,b = X a1 (2.40)

and the symmetry condition

FS = STF7, (2.41)

where Div is the divergence operator with respect to X. We shall be considering the case

without body forces which reduces Eq. (2.40) to the form

DivS = p.Xx 4- (2.42)
The equivalent form of Eq. (2.42) in the deformed configuration is

divT = pv,, (2.43)

Egs. (2.42) and (2.43) in component form are

85042'
X, = PrXi,tt (2-44)
and
oT;;
= puit, 2.45
8xj PUit ( )
respectively.

Using Eq. (2.39), we define the second Piola-Kirchhoff stress tensor, denoted S, as
S®@ =sF T =JF'TF 7. (2.46)

Note that this tensor is symmetric.

2.4 Constitutive Equations in Finite Elasticity

Generally, the equations governing the motion of a continuous body are given by



CHAPTER 2. BASICS OF THE THEORY OF FINITE DEFORMATIONS

e cquation of mass conservation

p+pdivv = 0; (2.47)

e equation of motion

divT + pb = pv; (2.48)
e equation of angular momentum balance
T =T, (2.49)

Given Eq. (2.49), Egs. (2.47) and (2.48) provide 4 equations for 10 scalar fields, i.e.
p, v (3 components), T (6 components). The above mentioned laws are insufficient
to fully characterise the behaviour of bodies because they do not distinguish between
different types of materials. Physical experience has shown that two bodies of the
same size and subject to the same motion will generally not have the same resulting
stress distribution. We therefore introduce constitutive equations which make up for

the missing equations and serve to distinguish different types of material behaviour.
The following are basic types of constitutive assumptions:

e Constraints on the possible deformations the body may undergo; e.g., rigid body mo-

tion, incompressibility or isochoric deformation, etc.,
e Assumptions on the form of the stress tensor; e.g., stress may be a pressure, etc...,
e constitutive equations relating the stress to the motion.

In classical mechanics, Hooke’s law is the basic constitutive law which gives a relation
between force and change in length without depending on the history of deformation or the
rate of deformation. We define an elastic material as one for which the stress T(x,t) at
x = x(X,t) depends only on the deformation gradient. Therefore, for such a material, the

elastic constitutive equation for the Cauchy stress is
T(x,t) = T(F(X, 1), X). (2.50)

Formally, an elastic body is a material body whose constitutive class is defined by a smooth
response function T : Lin* xB — Sym, where Lin™ is a set of all second order tensors F with

det F > 0 and Sym is the set of all symmetric second order tensors. It may be noted that T
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depends on X explicitly if the material is inhomogeneous. If the material is homogeneous T
depends on X only through F.

One of the main axioms of mechanics is the requirement that material response be in-
dependent of observer. In the case of an elastic body, a necessary and sufficient condition
that the response of the elastic material is independent of the observer is that the response

function T satisfies

QT (F)Q" = T(QF), (2.51)

for every F € Lin™ and Q € Orth™, where Orth™ is the set of all proper orthogonal tensors.
The explicit dependence on X has been suppressed here. Also, we assume henceforth that
the response is independent of the observer, so that Eq. (2.51) holds.

Alternative forms of constitutive equation (2.50) can be given using the deformation
tensors U and C. The equations may be referred to as reduced constitutive equations. The
response function T is completely determined by its restriction to PSym™, where PSym™ is
the set of all symmetric, positive definite tensors). Consider the right polar decomposition of
Fie. F = RU, where R € Orth" is the rotation tensor and U € PSym™, the right stretch

tensor corresponding to F. Eq. (2.51), with QT = R, gives

T(F) = RT(U)R7, (2.52)

for every F € Lin™.

Further there exist smooth response functions T‘, T, T from PSym* — Sym such that

T(F) = FT(U)FT, (2.53)
T(F) = RT(C)R?, (2.54)
T(F) = FT(C)F7, (2.55)

where C = U? = FTF is the Cauchy-Green deformation tensor.

A symmetry transformation at X is a tensor Q € Orth™ such that
T(F) = T(FQ), (2.56)

for every F € Lin*. This means that response of an elastic material is the same before
and after the rotation Q in the reference configuration. Let G be the set of all symmetry

transformations at X. Note that G is a sub-group of Orth™.
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It may be noted that the response functions T, T, T and T are invariant under G. For-

mally,

~

QT(F)Q" = T(QFQ"), (2.57)
QT(C)Q" = T(QCQ"), (2.58)

for every Q € G,F € Lin" and C € PSym™. The equations for T and T are written in the
same manner.
For an elastic body, the same kind of equations can be written for the nominal stress

tensor S as well. S is given by a constitutive equation of the form
S = S(F), (2.59)

with
S(F) = (det F)F~'T(F), (2.60)

assuming the dependence of S on X is understood. Choose Q € Orth™. Using Eq. (2.51),

it can be shown that the objectivity condition for S is
S(QF) = S(F)Q", (2.61)

for every F € Lin™ and Q € Orth™.

Using Eq. (2.56), the symmetry condition for S is
S(FQT) = QS(F). (2.62)

If Q € G, using Egs. (2.61) and (2.62), the material response function S satisfies the

invariance requirement under G as
S(QFQ") = QS(F)Q”, (2.63)

for each F € Lin™ and for all Q € G.

2.5 Initial Stress in a Material

It is generally assumed that the reference configuration B, is stress free. This is not the case

in many situations and there may be an initial stress present. This may, for example, be
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induced by some manufacturing process or, in the case of biological tissues, be generated by
the process of growth, remodelling or adaptation.

Here, the term initial stress is used in its widest sense irrespective of the process that
causes this stress. In the case when there is an associated pre-strain from an unstressed
configuration due to an applied load, the term prestress replaces the term initial stress.
However, in the situations when an initial stress is present in the absence of applied loads
(body forces and surface tractions) it is called residual stress according to the definition of
Hoger [16].

We suppose that the unloaded reference configuration B, is not stress free and 7 is the
Cauchy initial stress present in B,.. We may take B, to be the reference configuration with
F = 1. Since this is the reference configuration, there is no distinction between the Cauchy

initial stress in B, and the nominal initial stress S relative to B,. Formally, the stress
T =T(I,X) = S(I,X), (2.64)

is called the initial stress at X. Hence, 7 is the stress present in the body when no defor-
mation has occurred and there are no external forces acting on the body. Here T and S are
the smooth response functions given by Eqgs. (2.50) and (2.60), respectively. In the absence

of body forces, this initial stress must satisfy the equilibrium equation
divr = DivS™ =0, in B,. (2.65)

It may be noted that Div and div are the same in the reference configuration.

Using Eq. (2.64) in Eq. (2.57) at F =1, we have

QrQT =T, (2.66)

at a material point X, for every Q € G, i.e. the initial stress at a point commutes with
every element of the symmetry group at that point. In terms of nominal stress tensor, the
equivalent form of Eq. (2.66) is

Qs =sQ, (2.67)

for every member Q of the symmetry group G. Thus Eq. (2.67) imposes restrictions on the
form of S and equivalently of 7.

Residual stress (also denoted 7 in this thesis) is defined to be the stress present in a body
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in an unloaded reference configuration, i.e. when traction is everywhere zero on the boundary.
Thus, in the absence of body forces and surface traction equal to zero, the residual stress field
is in equilibrium. The residual stress possible in a particular body depends, due to boundary
conditions, on the shape and symmetry of the body. This fact has been studied in detail
in a paper by Hoger [16]. An important consequence of this feature is that it distinguishes
residual stress from conventional elastic properties and imposes the condition that a non-
zero residual stress be non-uniform [17]. Also, Coleman and Noll [7] have found the forms
for the residual stress fields for various specific symmetry groups.The constitutive equations
appropriate for the description of materials that behave elastically in deformations from
the residually stressed state have been derived under the assumption of small displacement

gradients in [29] and for the case of small strains with arbitrary rotations in [18].

2.6 Hyperelastic Materials

An elastic body is a hyperelastic or a Green elastic material if the nominal stress S(F, X) is

the derivative of a scalar function W (F, X) for fixed X, i.e.

oW (F, X)

S =S(F,X)=DW(F,X) = T

(2.68)

where D denotes the derivative with respect to F. The scalar function W : Lin™ x B — R
is called the strain-energy density function. W (F,X) represents the work done (per unit
volume at X) by the stress in deforming the material from B, to B; (i.e from I to F) and
is independent of the path taken in deformation space: see [32]. W (F,X) possesses the
property of being indifferent to observer transformations. For a hyperelastic material which
is isotropic relative to B,, it can be shown that W is an isotropic scalar function of V. This

means the following equation holds
w(QVQ") = W(V), (2.69)

for all orthogonal Q. This enables us to regard W as a function of the principal invari-
ants Iy, I5, I3 given by Eq. (2.10) or, equivalently, as a symmetric function of the principal
stretches Aq, Ao, A3.

The meaning of the tensor 0W/OF is given by

_WEX)

DW(F, X)[A] F ,

(2.70)
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where the inner product on Lin is defined to be
A -B=tr(A"B), (2.71)

for any A, B € Lin. Lin is the set of all second order tensors.
Equation (2.68) gives the nominal stress in terms of the strain energy function W. Using

Eq. (2.39), the Cauchy stress T is therefore given by

oW
_ 71
T=J"F e (2.72)

In component form, the nominal and Cauchy stresses are

ow 1
Sai—ﬁa Ty =J ' F

oW
YOF,

(2.73)

Incorporating the incompressibility constraint, the counterparts of the above equations

are

oW ., oW
= OF., —p(F )on'> Tz’j = F,

S.; P
P OF ;4

where p is the Lagrange multiplier.

It is convenient to assume that I is measured from the reference configuration, so that

W(I) = 0. (2.75)

If the reference configuration is stress free then

oW
1) = 2.
() =0, (2.76)
for an unconstrained material, and
oW
S5 @ —pl=0 (2.77)

for an incompressible material. Here pg is the value of p when evaluated in the reference
configuration.
A detailed discussion on hyperelastic material with residual stress is carried out in Section

3.1.
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2.7 The Elasticity Tensor

The behaviour of the constitutive equation S = S(F,X) for an unconstrained hyperelastic

material is governed by the linear transformation A : Lin — Lin, defined by

_PW(F,X)

A(F, X)[A] = DS(F, X)[A] SE?

A, (2.78)

for each fixed material point X (see, for example, [31, §5.1]). Here, A is called the elasticity
tensor at the material point X and represents a (fourth-order) tensor of elastic moduli
associated with the conjugate pair (S,F). A detailed general discussion on elastic moduli
tensors can be found in [31, Chap. 6.

In component form
oPW

_. 2.
OFa0F5 (2.79)

Avigy =

It may be noted hat A is a fourth rank tensor and has 81 components but this number is
reduced to 45 independent components using the major symmetries. The major symmetry
of A is given by

Acisi = Agjai- (2.80)

In the reference configuration, i.e. when F = I, we write
C(X) = A(IX). (2.81)

From this point, A (or C) will be assumed to depend on X unless otherwise stated and the
expression of X in the argument will be suppressed.

The elasticity tensor C possesses the following useful properties:

1.
CW] = —7W, (2.82)

for every skew-symmetric W.

This can be proved by assuming Q = Q(t) in Eq. (2.61). Differentiating Eq. (2.61)
with respect to t, we get

DS(QF)[Q.F] = S(F)Q. (2.83)

The choice Q(t) = eW?!, for every skew-symmetric W, and evaluation of Eq. (2.83) at
t =0 gives

A A

DS(F)[WF] = —S(F)W. (2.84)
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Evaluation of Eq. (2.84) at F =T establishes Eq. (2.82).

Skw C[E| = %(TE — ET), (2.85)

for every symmetric E and Skw means the skew-symmetric part of C[E].

This property can be proved by using the symmetry of Cauchy stress. Differentiating
Eq. (2.60) with respect to ¢ and using Egs. (2.22) and (2.26), we get after some

simplification

~ A

DS(F)[AJF + S(F)A = (det F)tr (F_lA)T(F) + (det F)DT(F)[A], (2.86)
where A =F ;. For F =1, the above equation becomes

CI[A] = tr(A)T(I)+ DT(I)[A] — S(I)A
— tr(A)T 4+ DT(I)[A] — TA. (2.87)

Both 7 and DT(I)[A] are symmetric. So for symmetric A in the above equation, we

establish Eq. (2.85).

QCH]Q" = C[QHQ], (2.88)

for every H € Lin and Q € G . This, in other words, means that C fulfils the invariance

requirement under the symmetry group G for the material at X.

From Eq. (2.63), S satisfies the invariance requirement under the symmetry group G

and so does its derivative DS(F). This means

DS(QFQ")[QHQ'] = QDS(F)H|Q", (2.89)

for every H € Lin and Q € G. For the proof of invariance of the derivative, see [14].

Using the above property of the derivative, we can prove Eq. (2.88). Taking the left
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hand side of Eq. (2.88)

QCHIQ" = QDS(HHIQ"
= DS(QIQ")[QHQ']
— DS(I)[QHQ"]
= C[QHQ]. (2.90)

2.8 The Linearized Constitutive Equations for Materi-

als Under Residual Stress
The displacement of a material point is
u(X) =x(X) - X. (2.91)

The displacement gradient
H = Gradu, (2.92)

is related to the deformation gradient by
F=I+H. (2.93)

From the above equation, S(F) can be considered a function of H. We take the special case

of small displacements i.e. |H| << 1. Therefore, we can write

A

S = S(F) = S(I +H) = S(I) + DS(I)[H] + o[H], (2.94)

assuming the differentiability of S(F). Consider H = E + W, where E and W are the
symmetric and skew-symmetric parts of H, respectively. Using Eqs. (2.82) and (2.85) in Eq.

(2.94), we can write
1
S=7—-7TW + §(TE — E7) + L[E] + o[H], (2.95)
where L is the linear transformation from Sym to Sym defined by

L[E] = Symmetric{C[E]}. (2.96)
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We refer to L as the incremental elasticity tensor and it is the symmetric part of the elasticity
tensor C.

When the initial stress vanishes and o[H] is neglected, Eq. (2.95) reduces to the stress
strain law of classical linear elasticity. When the residual stress does not vanish, the stress
S is generally not symmetric. However, calculation of F'S using Egs. (2.93), (2.95), (2.96)
and symmetry of 7 yields

FS = STF” 4 o[H]. (2.97)

Hence, the balance of moments is automatically satisfied within the o[H| when the consti-
tutive equation (2.95) is used.

For Q € G, using Egs. (2.88) and (2.97) it can be deduced that

L[QEQ"] = QL[EQ", (2.98)

where E € Sym.

For the considered hyperelastic material, using the major symmetry of C, we have

E-C[E] = E . C[E], (2.99)
where E, E € Sym. Using Eq. (2.99) with

C[E] = %(TE _Er)+ L[E), (2.100)
and considering the symmetry of 7, we get

E.L[E|=E- L[E], (2.101)

i.e., L possesses the major symmetry.

2.9 Incremental Equations

Let x with x = x(X), be a known time-independent deformation. Let x', with x' = x' (X, t)
be a finite time-dependent deformation which is “close” to . The displacement, which can

be thought of as a perturbation of x, is written as

x=x—x=x(X,t)— x(X,t) = x(X), (2.102)
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and its gradient is

Gradx = Grad x — Gradx = F, (2.103)

which is exact since it is without any approximation.
Consider the linear approximation of the important stress tensor S. The incremental

stress tensor S for an unconstrained material, in its exact form, is

. oW oW
ey r_ = — n_
S=S-S IF (F") IF (F), (2.104)
which has the linear approximation
S = AF, (2.105)

where A is the elasticity tensor, the components of which are given by Eq. (2.79). Equation
(2.105) in its component form, is

Son' - AaiﬁjF’jﬁa (2106)

where Fjﬁ = & 5. In the case of an incompressible material, the counterpart of Eq. (2.106),
using Eq. (2.74), is
S=AF — pF ' + pF'FF ', (2.107)

coupled with the incompressibility constraint det F = 1 in its linearized incremental form,
given by
tr (FF~1) = 0. (2.108)

Here p is the linearized incremental form of p.
Following the equation of motion (2.40) for x’ and subtracting its counterpart equation

for x, we obtain

DivS + p.b = p,X s (2.109)

where b and x, defined earlier in Eq. (2.102), are the incremental forms of the body force
b and x, respectively. Equation (2.109) is exact but can be linearly approximated (to the
first order in F) using either Eq. (2.105) for an unconstrained material, or Eq. (2.107) along
with Eq. (2.108) for an incompressible material. In respect of Eq. (2.105), Eq. (2.109) has

the component form

0 ox; : .
v \Aaifi oy rbi = pr Xt 2.110
8XQ(A 5]8X6>+p pX,tt ( )
or, equivalently
%X, Ox; ;
@B AV Av aifja e T Prbi = prXiu- 2.111
‘A ﬁJaXaaXﬁ_'_A B3, 0X5+p PrXitt ( )
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Here
OAuipj Xk
B = Apigip Xk 2.112
Aalﬁj,a aXa Aa Bivk 8Xfy 8Xa ( )
where
PW
P S 2.113
A Bivk 8Fm8Fjﬁ8Fm ( )

If the deformation x is homogeneous, the expression in Eq. (2.112) vanishes as A is inde-
pendent of X and Eq. (2.111) reduces to

2.\ .

X; :
@i vbi = Pr Xt 2.114
A ﬁjﬁXaan_l—p PrXi,tt ( )

For an incompressible material, using Eq. (2.107) along with Eq. (2.108) in Eq. (2.109)
gives

Div (AF) — F7Gradp + FTF'FTCradp + p.b = PrX at- (2.115)
For a homogeneous deformation, Eq. (2.115), in its component form, reduces to

X, op - .
Aaiﬁjm - 8—:@ + prbi = pPr Xt (2.116)

Taking the increment of Eq. (2.41), we get
FS+ FS = STFT + STFT. (2.117)

In dealing with incremental deformations it is often convenient to choose the reference
configuration to coincide with the current configuration. In that case all the quantities are
updated accordingly and treated as functions of x instead of X. For this purpose, we define
the notations

u(x,t) = x(x '(x,t)), T=FF S,=J'FS, (2.118)
the latter being the push-forward of S motivated by the connection T = J~'FS.
Let Ajg be the updated form of \A. The updated elasticity tensor, in terms of \A, is

Avijir = I Fio Frg A (2.119)

For the derivation of this relation see [31]. The updated nominal stress for an unconstrained

material is given by

Sy = AgFy = AT, (2.120)
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where Fy = T" is the updated incremental form of the deformation gradient in the reference
configuration.

The updated counterparts of Eqs. (2.109) and (2.117) are
Div Sy + pb = pu, (2.121)

FoT + S, = S! + TF!, (2.122)

where p is the current density and T is the Cauchy stress.

Using Eq. (2.120), Eq. (2.122) can be further reduced to the form
I'T + AT = (AT + T, (2.123)
In the case of an incompressible material, the counterpart of Eq. (2.120) is
Sy = AT — pI + pr, (2.124)
along with the updated incompressibility condition, (following Eq. (2.108)),
tr(T) = divu = 0. (2.125)
In component form, Eqgs. (2.120) and (2.124) are
Sopi = Aopigjli.q: (2.126)

SO:ni = AopigjUj,g — POpi + PL'pi, (2.127)

respectively. Hence, replacing S, with either of the above expressions, the equation of motion
(2.121) can be linearized. In the above formulation, it is assumed that second and higher
order terms in x and its derivatives may be neglected. We have, therefore, derived the

linearized theory of incremental deformations superimposed on a finite deformation.



Chapter 3

Plane Waves in Initially-stressed

Materials

The effect of initial stress on the propagation of waves in elastic materials was initially studied
by Biot in [4, 5]. Here, we use the concept of the strain energy function to develop the basic
equations required to carry out the analysis of plane wave propagation when the materials
is initially stressed, irrespective of the cause that develops this initial stress. We study plane
wave propagation in both the cases of a homogeneous incompressible material in its deformed
as well as undeformed states. The effect of initial stress is included generally through the
invariants of the right Cauchy-Green deformation tensor. Later, the theory is applied to
the problem of reflection of a plane wave in an initially stressed incompressible material.
The effect of pre-stress on wave propagation was examined by Ogden and Sotiropoulos for
compressible materials [37] and for incompressible materials [39]. We also refer to the work

of Hussain and Ogden on reflection and transmission of plane waves [23, 24, 25].

3.1 Initial Stress in Hyperelastic Materials

We consider an initially stressed homogeneous hyperelastic material for which the strain
energy function W per unit reference volume depends on the deformation gradient F and
the initial stress 7. By objectivity we can regard W as a function of F through the right
Cauchy-Green deformation tensor given by Eq. (2.9);. Thus W = W(C, ).

When subjected to a rotation Q in the reference configuration, C and 7 change to QCQ”

and QTQ7, respectively. The strain energy is invariant under this change if it depends on

26
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the 10 invariants I, ..., [1g of the two tensors C and 7 defined by

1
L = tr(C), I,= 5[112 — tr(C2)], I3 =det(C), I =tr(r),

1
Iy = §[J§—tr(r2)], I = det(7), I = tr(CT),

Iy = tr(C*r), Iy=tr(C7?), I =tr(C*r?). (3.1)

These are the only independent principal invariants for the two tensors C and 7. Note, in
particular, that tr(CTC7) depends on Iy, I, ..., I1p. Similarly for tr(CTC?7), etc. Evalu-
ating the expressions in Egs. (3.1) for F = C = I, we get the invariants in the reference

configuration as

[1:[2:3, [3:]_, [4217218:t1'(T),

1
Is = 5[Lf —tr(7?)], Is=det(r), Iy=Io=1}—2I;. (3.2)

Using the expressions in Egs. (3.1) and considering the initial stress to be independent

of the deformation, the first derivatives of these invariants are given by

8[1 . 812 . a]3 _ -1

OF .. = 2F},, aTZa = 2(Csz'a - CowFiv)a ﬁ - 213(F )O“"

or, oL, 0l

8Ea B 0’ aFia B 07 8Ea B 07

ol ol

ol ol

S = 2 Fry g = 212 Fiy + 2Cass, Fs. (3.3)

Evaluating the above expressions in the reference configuration, we have the non-zero deriva-

tives as

o0l 0l 0l ol
aF;a 52067 aF;a 620(7 aEa 62@7 aEa TOCZ)
0l 0l o 0l 2
—dr, — 92 — 472, 4
OF, " aR, et gp, T (34)

Now consider that the strain energy function W is a function of I, Is, ..., [15. Then

10

ow oI,

r=1

where W, = 0W/0l,.
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By definition, the nominal stress tensor for an initially stressed (unconstrained) material

is given by

S = 2WF? 4 2Wo(LFT — FTB) + 2Ws F ! + 2WyrFT

+ 2Ws(TCFT 4 CTFT) + 2Wyr?FT 4 2Wo(7*CF” + CT2F7). (3.6)
For an incompressible material, I3 = 1 and Eq. (3.6) is replaced by

S = 2WFT 4+ 2Wy(I,FT — FTB) + 2W;tFT + 2Ws(7CF” 4 CTF7)

+ 2Wor?FT 4 2Wyo(T72CF! + CT2F7) — pF . (3.7)
The Cauchy stress tensor for an initially stressed (unconstrained) material is given by

JT =FS = 2W,B+2W,B* + 2W5 51 + 215 S + 2W(EB + BY)
+ 2W,EB7'S 4 2W,o(SB'EB + BEB'%), (3.8)

where 3 = FrFT and B* = ;B — B2. If the above expression is evaluated in the reference

configuration, we get the expression for 7 as
T = 2(W) + 2Wy + W) 4 2(Wy + 2We)T + 2(Wy + 2Wio) T2, (3.9)
which suggests to set
Wi+ 2Wo + W3 =0, 2(W;+42Ws) =1, Wy + 2Wy5 =0, (3.10)

in the reference configuration. Similarly, the Cauchy stress for an incompressible initially

stressed material is

T = 2W,B+2W,B* + 2W;X + 2W3(EB + BX) + 2, B 'S

+ 2W,0(SB'EB + BEB!S) — pl. (3.11)
In the reference configuration, Eq. (3.11) reduces to

T = (2W, + 4Wy — po)T + (2Wy + 4WR)T + (2Wy + 4W10) T2, (3.12)
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where pg is the value of p when evaluated in the reference configuration. This suggests that

in the reference configuration, we should set

QWL +4Wy —po =0, 2(W7 +2Ws) =1, Wy +2W;, = 0.

(3.13)

3.2 The Elasticity Tensor for an Initially Stressed Hy-

perelastic Material

Using Eqgs. (3.3), the non-zero second derivatives of the invariants are

0%
OFiaFjp
0%,
OFiaFjp
01
OFiaFjp
0*Iy
OFiaFjp

0%1,
OFia kg
0*1
OFiaFjp

2003045,

2110080 + 4Fo Fig — 2FigFjo — 2Cp0;5 — 200385,

0*I,

AL(F™)ai(F )55 — 2L(F ™oy (F ) g, OFFis
iad'y

= 27—aﬁ5ij7
QTagBij + 2(TC)aﬁ5ij + 2(07’),1552']' + 25a62ij + 2(TFT)ajEﬁ
2(7F") 5, Fja,

2(1%)ap0is;

2(72)(1532']' + 2(Tzc)a65ij + 2(C72)a55ij + 25@5(F72T)i]’

2(12F7) i Fip + 2(T2F7) 3, F.

In the reference configuration, the above expressions reduce to

0%
OFiaFjp
0%,
OFiaFjp
0% I
OFiaFjp
9%1,
OFiaFjp

9%,
26a (SZ", = S — 2504 52 451'046' - 26, 5'0”
BYij aFiaFjﬁ 30ij + JB BYj
0*I;

45042'5 '_2504'5 75 =2 « 5i'a

Bj 708 OFuFg Tap0ij

9%, 5

670p0ij + 2Tij00p + 2Taj0ip + 2760}, OFaF, 2(1%)apd4j,

6(7%)apdi + 2(7%)ij0as + 2(7%)ajdis + 2(7%) gi0ja

where ¥ = 7 = S in the reference configuration. From Eqgs. (2.79) and (3.5)

10

PW Z 0?1

10
g oI, oI,
A= OFOF W"aFaF + g;l W"Sa_F LT

(3.14)

(3.15)

(3.16)
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where W,., = 9*W/0I,.01,.

Also, using Eq. (2.119), the updated elasticity tensor in its component form is given by

0°1 S oI, oI,
AOpiQJ = J_l (Z WT’FPOCFQ _I— Z Wrstan . (317)
r,s=1

P OF,0F 4 P OF 4, OF;4

r=1

Taking N = 10 in Eq. (3.17), we then have for a compressible material

J AOpiqj

+ + + + + + + + + + + + o+ + + + + + o+ o+

2W1 B0 + 2Wo [l Byydis — BigBip + 2B,iBy; — 6ij(B?)pq — BpyBij)
QWi l3(205,0,4 — 0iq0jp) + 2WerE0q0i; + 2Wa[EpeBij + (3B)pg0i;
(BX),0ij + S Bpg + X0 Big + X4 Bjp] + 2Wo(22) 46
2W1o[(2%)pgBij + (3°B)pg0is + (BE?)0i5 + (32)i; Bpg + (£%),5Big
(3%)¢iBjp) + 4W11 By Bjg + 4Was By B + 4Ws3 156,05,

AWns[211 Bip Bjg — Bip(B?) jg — Bjg(B?)ip) + 4Wi3I3(Bipdq

Bjg0ip) + 4Wir (B Y, + BigXip) + 4Wis[ By (B + BX);,

(B + BX);,Bjy) + 4Wio[Bip(2?) 14 + Bjy(32))

AW 10)[Bip(E°B + BX?), + (£°B + BX?),,B;,]

AW I3[ 1 (Bipdjq + Bjgdip) — 0ip(B?) jq — (B?)ip0;4]

AW (B}, 54 + SipB;,) + 4Was[ B}, (EB + BX),,

(XB + BX),B;,] + 4Wa B, (£%) 4 + (52)iB;,]

AWaa0)[B;,(3°B + BX?);, + (5°B + BX?);, B}, |

AWsr 136,555, + AWss I3[0, (B + BX),, + (B + BX),,0,]
AWsoI3[055(2%) g + (2)ip0jq] + 4Ws10) 1[0, (E°B + BX?),

(2B + BX?),,0;,] + AW S, X5, + AW [, (2B + BX);,

(B + BX);p X ) + 4Wro 23y (32) 5 + (2%)5 5]

AWqa10)[Eip(Z°B + BE?), + (£°B + BX?),,%),]

4Wis(EB + BX),,(EB + BX), + 4Wi[(22);,(EB + BX),

(2B + BX);,) (X)) + 4Wsa0) [(EB + BX);,(2°B + BX?);,
(3°B + BX?);,(IB + BX);)] + 4Woo (32)ip(3?) 4

AWo10) [(2%)ip(E°B + BXE?) j, + (2°B + BX?);,(3%) 4]

AWaoya0) (2*B + BX?),,(2°B + BX?),,. (3.18)
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For simplicity of calculations only, we omit the dependence of W on I5, I, Iy and I, the
invariants which are nonlinear in 7. Therefore, Eqgs. (3.10); and (3.13)3 are automatically
satisfied. The specialized expressions of the Cauchy stress for unconstrained material in
this case follow from Eq. (3.8) and from Eq. (3.11) for an incompressible material. The
specialized initial Cauchy stress for an unconstrained material follows from Eq. (3.9) and
from Eq. (3.12) for an incompressible material.

Using Eq. (3.10) in Eq. (3.18), with Cp; as the components of the updated elasticity

tensor C, we have for an unconstrained material

Cpigi = Aopigj = 1(0ij0pg + 0ig0jp — Gipjq) + 20ip0jq + 04jTpg + 3(0ijTpqg

+ 5pq7—ij + 5iq7—jp + 5jpTiq) + Oé4((5iijq + (5qu¢;,,) + As5TipTjq, (319)
in the reference configuration. Here, we have defined

o] = 2(W1 -+ Wg), Qg = 2(W2 + Wg) + 4(W11 + 4W12 -+ 2W13 -+ 4W22 -+ 4W23 -+ W33),
as =2Ws, a4 = 4(W17 + 2Wis + 2War 4+ 4Wog + War + 2W38),
5 = 4(W77 + 4W78 + 4W88)a (320)

evaluated in the reference configuration. When 7 = 0, Eq. (3.19) gives
Cpigj = 1(0pg0ij + digbjp — dipdjq) + A2dipliq. (3.21)
In terms of invariants, the classical isotropic strain energy function is given by

(17 —2(I; + L) + 3] + é[11 - 3% (3.22)

W(]la]27l3) - )

~|=

where A and p are the Lamé moduli. Using Eq. (3.22) in Eq. (3.21), we get Agyiq; in its
classical form

Cpigi = N(épqéij + 52'!153'17) + Adip0jg, (3.23)

where we have used oy = p and ay — ay = A
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Using Eq. (3.19), we can write, for i # j # k # 1,

Ciii = a1+ g+ (1+4dag + 204) 73 + o575 (3.24)
Ciijj = —a1+ g+ au(mi +7j5) + a5, (3.25)
Cijij = o1+ (1+as)m; + asmjj + oz57'i2j, (3.26)
Cijji = o+ (T + 755) + 57, (3.27)
Ciij = Cijii = (203 + au)Tij + 57735, (3.28)
Ciiji = Cjui = (14 203 + au)Tij + o573y, (3.29)
Ciikj = Ciijk = AOjkii = Aijn’ = QuTjk + Q5T Tk, (3-30)
Cz'jki = Cz'jik = -AOikji = AOkiij = Q3Tjk + Q575 Tik, (3-31)
Cijk = Cjrir = (1 4+ a3)7yj + sTipTjk- (3.32)

For an incompressible material, the terms including the subscript ‘3’ in Eq. (3.18) are

omitted. We therefore have

AOpiqj

+

_|_

+ + + + + + o+ o+ o+ o+ + o+

2W1 Bpybij + 2Wa(Iy Byydij — BigBip + 2B,i By — 6j(B?),q — ByyBij)
QWX ,,0i + 2Ws(XpyBij + (B) g0 + (BX) g0 + Sij Bpg + Xpi Big
SiBjp) + AW By Bjg + AW B}, Bi, + 4W12(211 By, Bjy — Bip(B?) 4
B;y(B?)i) + 4Wi7(BipY, + BjgSip) + 4Wis(Biy,(EB + BX);,

(EB + BX);,Bjg) + 4Wig[Bip(32) 4 + Bjo(E?)i)

AW110)[Bip (5B + BX?), + (X°B 4 BX?),,B;] + 4War (B, 554
SipB,) + 4Was (B, (B + BX);,(XB + BX);, 3},

AWao[ By, (22) g + (22)ipB,] + 4Wao) [B, (2B + BX?)j,

(X*B + BX?);, Bl | + AWy, 5, + 4Wrs(5;,(EB + BX)),

(2B + BX);, %) + 4Wrg[25 (%) 4 + (7)1 5]

AW7310)[Zip(E?B + BX?), + (°B + BX?),,5;,]

4Wes(EB + BX), (B + BX),, + 4W[(£%),,(EB + BX),,

(B + BX),;,)(2%);4] + 4Ws00) [(EB + BX),;, (3B + BX?);,

(3B + BX?);, (3B + B);)] + 4Wo9(32)i, (3%) 4
AWo(10)[(22)ip(3°B + BX?) o (2°B + BX?);(3%) 4]

AW 10)(10)(E°B + BX?),,(2°B + BX?),,. (3.33)



CHAPTER 3. PLANE WAVES IN INITIALLY-STRESSED MATERIALS

We consider an incompressible material the elastic response of which is described by

a general strain energy function W (C, 7). Let this material be subject to a general pure

homogeneous pre-strain such that Ai, Ao, A3 are the principal stretches corresponding the

principal axes x1,zo and x3 respectively. Here, for simplicity of calculations only, we omit

the dependence of W on I5, I, Iy and I1y. Following from Eq. (3.33), various expressions for

elastic modulli in this case are given by, for i # j,

AOiiii

A(]iijj

AOijij

Aoijii

Aoiis

Aoiiij

Aoiik;

Aoijri

Aoirjk

o+ o+ o+ 0+ +

+

_|_

m+ 4+

_|_

QWIAZ 4 2Wo A2 (I} — A2) + 2WoXys + 12We A28y + AW A 4 AW M (1 — AF)?
SWigAi (I — A2) + 8W i AP 8y + 16WighiSy; + 8War A2 (1) — A2) %y
16Wag i (I} — A} Xy + AW X2 + 16WigA7E2 4+ 16Weg\f X7

i)

(3.34)
AWLXIN? + AW AINS + AW AP N (I — D) (11 — NY) + AW AP N3 (21 — A] — X2)
AW (A7 S0 + A2555) 4+ 8WisAT AT (B4 + S5 + AWor[AF (11 — X)) S5

NI = A2 S0 + 8WasAZX2[(I1 — AD)Sj; + (11 — A3) S + AW Sy

8Wrs(A7 + A3) i %5 + 16Wes AT AT, 5, (3.35)
2WAA] + 2Wa(IIA] = NIXT — N)) + 2W5 Sy + 2Ws(ASSy; + 2A78 + A7Sj;)

AW 3, + 16Wrs AT, 4 16Wes [ S7, (3.36)
—2Wo AP AT + 2Ws( A3 + APXj5) 4 AWer X2, 4+ 16Wrs A3
2\2y2

2[Wr + W5 (A2 + A7) + 2Wir A3 + 2Wis A2 (A] + A2) + 2War A2 (11 — A3) + 2WasAS
(I = X)(A] 4+ XISy + AWar + Wag(BA + A7) + 2WesAZ (A7 + A7)]855555,(3.38)
22WsA] 4 2Wir A7 4 2WisA7 (A7 + A2) + 2War A2 (1 — A7) + 2Was A7 (11 — A7)

(A2 + AD)]Ey; + 4[War + Was (302 + 22) + 2Wes A2 (A2 + A2)] S 2, (3.39)
Aviijie = Aojri = Aogii = Wiz Al + WisAZ(AF + XF) + War A7 (I = AY)

WasAZ (In = A7) (AT 4+ A0k + 4[War + Wag(2X7 + A7+ X9)

2Weg AP (A] + AP, (3.40)
Avijir = Aovirji = Aokiij = 2WsXISje + 4[Wer + Was(2X7 + A2 + A7)

Was(A? 4+ X)) (A + A0)]Si; ik (3.41)
Aojrir = 2[Wr + W (A + A3 + AD)|85; + 4[Wer + Was (A7 4+ X7 + 2)7)

For an incompressible material in the initially stressed reference configuration, Eq. (3.33)
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reduces to

Cpigj = 0pglij + Tpglij + a3(Tpg0ij + TijOpg + TpiOig + T4i0jp)

+  a5TipTiq + @6 (0ipTiq + 0jqTip), (3.43)

while the conditions in Eq. (3.13) hold. Here, we have defined

g = 4(W17 + 2Wig + 2Wor + 4W28), (344)

and oy, a3 and s are given by Eq. (3.20). The expression for Ag,;,; in the absence of initial

stress, for an incompressible material, follows from Eq. (3.43) as

Cpiqj = Oél(qu(sij. (345)

In the case of an incompressible material there is an element of non-uniqueness in the com-
ponents of C since they depend on the point at which the incompressibility condition is
applied during the differentiations. The counterpart of Eq. (3.23) in this case follows from
Eq. (3.45) and Eq. (3.22) and is given by

Ciijj = Cijij =oap = iF# 7 (3-46)

where p is the shear modulus in B,. The differences between the expressions in Eq. (3.46)

and any alternative expressions are absorbed by the incremental Lagrange multiplier p in

Eq. (2.127).
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From Eq. (3.43), we have, for i # j # k # 1,

Ciwo = a1+ (1+dag + 206) 7 + 575, (3.47)
Ciijj = Q6Tjj + Q5TiiTj, (3.48)
Cijij = o1+ (1+ as)mi + asmjj + a5, (3.49)
Cijji = o3(Tii + 755) + @577, (3.50)
Ciiij = Cijii = (20 + ) Tij + 57575, (3.51)
Ciiji = Cjui = (14 203+ ag)Tij + o573y, (3.52)
Ciikj = Ciijk = AOjkii = Aijn’ = Tk T Q5T Tjk, (3-53)
Cz'jki = Cz'jik = -AOikji = AOkiij = Q3Tjk + Q575 Tik, (3'54)
Citit = Cjrir = (1 + as)7ij + asTinTji- (3.55)

The above expressions also follow from Eqgs. (3.34)—(3.42) with \; = 1, i = {1,2,3} and

Yij = Tij, etc., in the reference configuration.

3.3 The Effect of Initial Stress on the Propagation of
Homogenous Plane Waves in a Homogeneously De-
formed Infinite Medium

Consider an initially stressed medium with initial stress 7 whose elastic response is char-
acterised by the strain energy function W (C, 7). We consider incremental motions in an
infinite medium subject to homogeneous deformation and homogeneous initial stress. Using

Eq. (2.126) in Eq. (2.121), the equation of motion for a compressible material is given by
Aopigjjpg = PUitt; (3.56)

and from Eq. (2.124) in Eq. (2.121), the equation of motion for an incompressible material

is given by

Aopiqjljpg = Di = PUip, (3.57)
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along with the incompressibility condition (2.125), i.e.
Up.p = 0. (3.58)
Consider an incremental plane wave of the form
u=mf(n-x—ct), (3.59)

where m is a unit vector referred to as the polarization vector, ¢ is the wave speed and f is
a twice continuously differentiable function. For homogeneous plane waves the unit vector
n is real and defines the direction of propagation of the wave.

Using the incremental displacement given by Eq. (3.59) in Eq. (3.56), we have for a

compressible material
Q(n)m = pc’m, (3.60)

where Q(n) is the so-called acoustic tensor (see, for example, [34, 44]). It depends on n and

is defined in its component form as

Qij(n) = Aopiginpng- (3.61)

Eq. (3.60) is called the propagation equation. For a particular choice of n it determines
possible wave speeds and polarizations corresponding to plane waves propagating in that

direction. The wave speeds are determined by the characteristic equation
det[Q(n) — pc*I] = 0, (3.62)

where I is again the identity tensor in three dimensions.
For an incompressible material we also assume p = ¢g(n - x — ct), where g is another

function. Substitution of p in Eq. (3.56) leads to

AOpianpnqmij — g'ni = pmif (3.63)

together with
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which comes out as a result of the incompressibility condition. From Eqs. (3.63) and (3.64)

we obtain g' = Agpigjnyngmnif , which when substituted back in Eq. (3.63), yields
I-n®n)Q(n)m = pc*m, m-n=0. (3.65)

Since (I — n ® n)m = m, we can define a symmetric tensor Q(n) for an incompressible

material such that

Q(n)m = pc®m, m-n=0, (3.66)

where

Qn)=(I-n®n)Qn)(I -n®n), (3.67)

which is the projection of Q(n) onto the plane normal to n.

For a given direction of propagation n, Egs. (3.60) and (3.66) are the symmetric eigen-
value problems for determining the wave speeds and polarizations in compressible and in-
compressible materials, respectively. Since, Q(n) and Q(n) are symmetric tensors, there are
three (two) mutually orthogonal eigenvectors m for compressible (incompressible) materials
corresponding to the direction of propagation n. In the case of incompressible materials, m
and n are normal to each other.

The characteristic equation in the case of an incompressible material is given by
det[Q(n) — pc’I] = 0, (3.68)

where I =1 — n ® n, is the two dimensional identity tensor in the plane normal to n.
The strong ellipticity condition, for arbitrary choice of non-zero vectors m and n for
compressible materials and subject to the restriction (3.64) for an incompressible material,

is given by (see, for example, [34])
Qijmim; = Aopiginpngmim; > 0,  for all non-zero m, n. (3.69)
Taking the scalar product of Eq. (3.60) or the first equation in (3.66), we find

pc® = [Q(n)m] - m = Aopiqinpngmim;. (3.70)
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The above equation holds for both the compressible and incompressible materials. The
strong ellipticity condition (3.69) thus guarantees positive values for pc?. However, ¢ can be
either negative or positive.

Using Eq. (3.18) in Eq. (3.61), we get for a compressible material

Q(n) = [2(W, + Wyl,)B™ — 2W,B*™ 4 oW, 2™ 4 4Ws(SB) ™I — 2(W,B™
— WRX®)B 4+ 2Ws B + 2(Wsls + 2Wisl2)n @ n 4 2(Wy + 2Wiy + AWy, 1)
x Bn® Bn+ 2(Ws + 2W7)(Bn ® In + Xn ® Bn) + 415,B*n ® B'n
— 4W(Bn® B*n + B’n ® Bn) + 413(Wi3 + Wysl1)(Bn ® n 4+ n @ Bn)
AWs[Bn ® (¥B + BX)n + (XB + BY)n ® Bn] + 4W;o(Bn ® ¥°n
¥°n ® Bn) + 4W;(10)[Bn ® (¥°B + BX*)n + (£°B + BY?)n ® Bn]

4Wosl3(n ® B*n 4+ B*n ® n) + 4Wy(B'n ® ¥n + ¥n ® B™n) + 4Wy[B*n
(¥B +BX)n + (B + BX)n ® B*'n] 4+ 4Wyx(B*n ® ¥°n 4+ ¥’n ® B*n)
AWo10[B*n @ (°B + BE*)n + (£’B + BX?)n ® B*n]

AWsI3(n®@ ¥n+ ¥n®@n) +4Wssl3n ®@ (B 4+ BY)n + (¥B + BY)n ® n]
4WseI3(n ® ¥°n + X°n @ n) + 4Ws0)[3[n ® (£°B + BX?)n + (X°B
BX*)n @ n] + 4W7En @ In + 4Wy[En @ (B + BX)n

(¥B +BX)n® In| + 4W7(En @ ¥°n + ¥’n ® ¥n)

AWr10)[Zn @ (2B + BX?*)n + (£°B + BE*)n ® Zn] + 4Wss(EB + BX)n
(B +BX)n + 4Wg[E’n @ (B + BX)n + (B + BX)n ® X°n]
4Ws10)[(EB + BY)n ® (£°B + BX*)n + (¥°B + BY*)n ® (B + BX)n]

4W9922n ® 221(1 + 4Wg(10) [221(1 ® (EzB + BEz)n + (E2B + BE2>H & 2211]

+ 4+ + ® + + + + + + ©

4W0)10) (2B + BE*)n @ (£°B + BX?)n, (3.71)

where we have defined B® = n-Bn, ¥® =n-Xn, B*™ =n-B%n and (£B)™ = n-XBn.
For simplicity only, we ignore the dependence of W on Is, Is, Iy and I(10) in Eq. (3.71)

and therefore, for a compressible material in the reference configuration, we have

Q(n) = (al+(1+a3)7(n))1+a2n®n+a3‘r

+ (a3+a)(n@®nT+7Tn®n)+asTn @ TN, (3.72)

where o, ag, a3,y and as are given by Eq. (3.20).
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From Egs. (3.60) and (3.72), it follows, for arbitrary m and n,

o = [Q(m)m]-m
= o+ (14 as)™™ 4 ay(n-m)? + as(m - 7m)

+ 2(a3 +ay)(m-7Tn)(n-m) + as(m - 7n)?. (3.73)

Choose axes such that n = ey, and let ey, e3 be basis vectors in the plane normal to
n. Therefore, using Eq. (3.72) for an unconstrained material in the reference configuration,

Q(n) has components Q);;, {7, 5} € {1,2,3}, which are given by

Qu = oy + g + (1 + 4as + 2a4) 711 + 572,
Q12 = Q21 = (2a3 + )12 + 5T T12,

Q13 = Q31 = (203 + )13 + asTI1T13,

Qa2 = a1 + (1 + a3)T1y + asToy + as75,

(23 = Q32 = a3To3 + a5T127T13,

Qgg = -+ (1 + 043)7'11 -+ Qi3T33 + 0457'123. (374)

Using Eqgs. (3.62) and (3.74), the characteristic equation for compressible materials gives
a cubic equation in pc? from which actual values of pc? are found independently of m. The

cubic equation is given by

(p?)? = (Qu1 + Qa2 + Qs3) (p?)? — (QF, + Q3 + Q3
— QuQ22 — Q@33 — Q22Q33)(P02) - (2Q12Q13Q23
Q12Qs3 — Q13Q2 — Q33Q11 + Q11Q2Q33) =0, (3.75)

where Q;;,{i,7} € {1,2, 3}, are given by Eq. (3.74).
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The expression for Q for an incompressible material follows from Eq. (3.71) as

Qn) = [2(Wy + WoI)B™ — 2W,B*® 4 oW, 2™ 4 4Wy(SB) ™I — 2(W,B™

WS ™) B + 2W BWE 4 2(Wy + 2Wy, + 4W1,1,)IBn @ IBn + 2(Wy
2W17)(IBn ® I¥n + I¥n ® IBn) + 4Wy,IB*n ® IB*n — 4W;,(IBn ® IB*n
IB?n ® IBn) + 4W,[IBn ® I(EB + BX)n + I(XB + BX)n ® IBn]
4W19(Bn ® ¥*n + ¥°n ® Bn) + 4W;10)[Bn @ (X°B + B¥*)n

(£?B + BX%*)n ® Bn] + 4Wy;(IB*n ® I¥n + I¥n ® IB*n) + 4Was(IB™n
I(ZB +BX)n + I(¥B + BX)n ® IB*n) 4 4Wy(B*'n ® ¥?n + X’n @ B*n)
4Wso10)[B*n ® (2°B + BE?*)n + (£°B + BX*)n ® B*n| + 4WI1¥n ® I¥n
AW[IEn @ I(IB + BX)n + I(EB + BX) @ IXn] + 4Wr(EXn @ X’n

¥°n ® ¥n) + 4Wr10)[En @ (°B + BX?)n + (¥°B + BE*)n ® Xn]
AWI(IB + BE)n @ I(EB + BX)n + 4Wy[E’n ® (B + BX)n + (IB
BY)n ® ¥%n] + 4Ws10)[(EB + BE)n ® (£°B + BX?)n + (X°B + B¥*)n

(B + B)n] + 4WeE?n ® 520 + 4Wy(10)[E°n @ (£°B + BE?)n + (B

+ ® + + + + + ® + + + +

BY’n) © %%n] + 4W10)10)(E°B + BE*)n @ (°B + BE?)n, (3.76)

where we have defined B*™ =n-B?n,B =IBI and ¥ = IXI.
In the reference configuration, B*™ = B®™ =1, B*®™ = 2 and (XB)™ = 7™ Also, for
simplicity of calculations, we ignore the dependence of W on Is, Is, Iy and I;y. Therefore, for

an incompressible material in the reference configuration, we have

Q(n) = [og + (1 + a3)T™]T + a37 + asltn @ In, (3.77)

where aq, a3 and a5 are given by Eq. (3.20).
The counterpart of Eq. (3.73) for incompressible materials follows from Eqgs. (3.66) and

(3.77), for arbitrary choice of m and n, subject to m-n = 0, as

o = [Q(mjm]-m
= a;+ (1+a3)7™ + azm - 7m + as(m - 7n)?. (3.78)

For instance, if n = ey, for an incompressible material in the reference configuration, the
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components Q,;, {i,7} € {2,3} of Q(n) follow from Eq. (3.77) and are given by

_ , - ,
Qa2 = a1 + (1 + ag)Ti1 + gTog + 5Ty, Q23 = Q32 = Q3Tog + Q5T12T13,

Q33 = o1 + (1 + a3) 711 + (3733 + 5775, (3.79)

Therefore, for an incompressible material, the counterpart of Eq. (3.75) is
(pc?)? = (Qaz + Qa3)pc” + Q22Qa3 — Q§3 =0, (3.80)

where Q;;,{i,7} € {2,3}, are given by Eq. (3.79). The strong ellipticity condition in this

case gives

Q22 >0, QnQs— Qs >0, (3.81)

which ensure positive roots for Eq. (3.80). Also, it follows from the above conditions that

Q33 > 0.

3.3.1 Isotropy

When 7 vanishes, the material is isotropic and the expression for Q(n) follows from Eq.

(3.71) for a compressible material

Q(n) = [2(W) + Woly)B™ — 2W, B2 4 (W, 4 W5)B™WB + 2(Wsls + 2Was[2)n @ n
+ 2(W2 + 2W11 -+ 4W12]1)BI1 (059 Bn + 4[3(W13 + W23[1)<BI1 Xn+n Bn)
— 4W15(Bn ® B*n + B?n ® Bn) + 4W5,,B*n ® B*'n

— 4Wosls(n @ B’n + B’n®n). (3.82)

If we consider W to be independent of I, the terms involving the derivatives with respect

to I are omitted from Eq. (3.82) and it reduces to

Qn) = 2W,B™I+ (W, + W3)BWB + 2(Wsls + 2WasI2)n ® n

+ 4W1;Bn® Bn + 43W3(Bn ® n + n ® Bn). (3.83)

Equation (3.72) gives the expression for Q(n) in the undeformed configuration for a com-

pressible material when 7 # 0, whereas in Eq. (3.83) Q(n) is calculated when deformation
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has occurred in the absence of the initial stress but is associated with a pre-stress. On
comparison of Eq. (3.72) and Eq. (3.83), it is obvious that the roles of 7 and B have been
reversed.

Further, if we consider W to be dependent on Iy and I, Eq. (3.72) becomes

Q(n) = [og+ (1 +a3)7™ 4 307;7?WT 4 ayn @ n + asT + 7>
+ (a3+ )N @nT+Tn®n] + @™ ® Tn + agln ® nT?

+ Tn®n] + ag[rn @ nT? + 7°n ® 0| + 1p7°n ® Tn, (3.84)
where aq, o, a3, ay and as are given by Eq. (3.20) and

Qy = 2W10, g = 2(W10 + 2W19 + 4W1(10) + 4W29 + 8W2(10) + 2W39 + 4W3(10)),

Qg = 4(ng + 2Wg(10) + 4W(10)(10)), (385)

evaluated in the reference configuration. Also, we have defined 72 = n - 72n. Comparing
Eqgs. (3.82) and (3.84), we again find the roles of 7 and B reversed.
A similar kind of comparison can be done for incompressible materials. Therefore, con-

sidering Eq. (3.76) in the absence of 7, we have

Q(n) = [2(Wy + Waoly)B™ — 2W,B*™ 4 21,7 ™ L 4Wy(7B)™|I — 2W,B™B
+ 2(Wy + 2Wi; + 4W1,11)IBn @ IBn — 4W;,(IBn ® IB*n + IB’n ® IBn)
+ 4Wy»IB'n® IB*n. (3.86)

Omitting only the terms with second order derivatives with respect to I, Eq. (3.86) reduces

to

Q(n) = [2(W) + Wol)B™ — 2W, B> ™ 1 2, 7™ 1 4Wy(7B)™|T — 2W,B™B
+ 2(Ws+2W11)IBn ® IBn. (3.87)

Equation (3.87) gives the expression for Q(n) for an incompressible material in the deformed
configuration in the absence of initial stress. Comparison of Eq. (3.87) with Eq. (3.77) again

shows the reversed roles of 7 and B. Now, in the case of undeformed incompressible material,
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if we consider W to be dependent on Iy and Iy, we have from Eq. (3.76)

Q(n) = [og+(1+ Oég)T(n) + 3a77'2(“)]i + asT + asITn @ Irn + az72

+ ag[ltn @ I7%n + I7°n ® Itn] + aglt’n @ I77n, (3.88)

where oy, a3 and a5 are given by Eq. (3.20) and ay, ag and ag by Eq. (3.85). Here, we have
defined 72 = I7%I. On the comparison of Eqs. (3.86) and (3.88), we find that the roles of
7 and B are not exactly reversed. However, except for only a few terms, they occur quite

similarly.

3.3.2 Examples of Initial Stress

In this section we take two different forms of initial stress 7 to see the effect on the wave

speeds, both in the case of compressible and incompressible materials.

Case A: 7 = Tn ® n for Compressible Materials

In this case, for arbitrary m and n, we have from Eq. (3.73)
pc? = ay + (14 a3)7 + [ + 337 + 2047 + a57°](m - n)*. (3.89)
We have pc? > 0 for all possible values of m and n if and only if
ar+ (1+a3)7>0 and o +ag + (1 +4a3)7T + 2047 + asm® > 0. (3.90)
Choosing m = n = e; in Eq. (3.89), we have
p? = g+ g+ (14 4ag + 204)T + asT?, (3.91)
where 711 = 7. The strong ellipticity condition in this case gives

p = Qi1 = ar + ay + (1 + dag + 204)T + as7* > 0, (3.92)
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which ensures positive values of pc? in Eq. (3.75). The above inequality is quadratic in 7

and for inequality (3.92) to hold V7, we require

a1+ ag > 0, Oé5>0,

— 2Vas(0g 4 az) < 1+ 4ag + 20y < 2v/as(0q + ). (3.93)
If conditions (3.93) do not hold, we must have
either 7 > %(—B +VB2—4C) or 7 < %(—B —VB? - 40C), (3.94)
where we have defined
B = (144a3+2a) /a5, C=(a;+ ay)/as. (3.95)

It is obvious that for this particular case in a compressible material, wave speeds are depen-
dent on the form of the initial stress and particularly on the sign of 7 through (3.92).

If we choose m - n = 0 and n = e;, we have from Eq. (3.89)
pc* =ap + (1 + a3)T. (3.96)

As we will see in Case C below, this result is equivalent to taking 7 = 7n ® n in an
incompressible material for arbitrary m and n. For a positive pc?, we thus require from the

strong ellipticity condition

a3+ (14 ag)T > 0. (3.97)
Let (1 + ag) > 0, then inequality (3.97) holds, if

T>—o/(1+ ag). (3.98)
The wave speed thus depends on the form of initial stress.

Case B: ™n = 0 for Compressible Materials

In this case 7™ = 0. Thus, Eq. (3.73) gives

pc® = a;+as(n-m)?+az(m-Tm). (3.99)
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We have pc? > 0 for all possible values of m and n if
a;+az(m-7m) >0 and oy + s + az(m-7m) > 0. (3.100)
For m = n = e;, we have from Eq. (3.99)
pc® = ag + as. (3.101)

It may be noted that in this case, the wave speeds are independent of 7 and this has
a structure similar to the case of pure elasticity, i.e. in the absence of initial stress for

compressible materials. The strong ellipticity condition, in this case, gives
o > —ao. (3.102)
For m - n = 0, we have from Eq. (3.99) for arbitrary m and n
pc® = a; + az(m-7m). (3.103)
We have pc? > 0 in this case if
a; + az(m-7m) > 0. (3.104)

Case C: T = Tn ® n for Incompressible Materials

In this case, for arbitrary m and n subject to m - n = 0, we have from Eq. (3.78) for an

incompressible material
pc® = ap + (14 as)T. (3.105)
For a positive pc?, we thus require from the strong ellipticity condition
a3+ (14 ag)T > 0. (3.106)

Therefore, the wave speed in the case of an initially stressed incompressible material is

dependent on the form of the initial stress. In this case, 7 is subject to condition (3.97).
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Case D: Tn = 0 for Incompressible Materials

In this case, Eq. (3.78) gives

pc® = a; + azm - Tm. (3.107)
The strong ellipticity condition gives

a; +asm - (Tm) > 0, (3.108)

for arbitrary m. This is a case similar to taking 7n = 0 along with m - n = 0 in the
compressible materials as shown in Egs. (3.103) and (3.104).

If m = e,, we have
pc% = oy + agToo, (3.109)
and if m = eg, we have

pc% = oy + agTss. (3.110)

3.3.3 Specific Strain Energy Function W for an Initially Stressed

Incompressible Material

We consider an incompressible material whose elastic response is characterized by the strain

energy function W (C, 7) given by

W =

o=

(]1—3)+

N | =

(I — L.)* + %(17 — 1), (3.111)

where p and ji are material constants. The material constant g has the same dimension

as stress and ji has dimensions of stress™'.

The invariants I, I, and I; are given by Eq.
(3.1). This simple model is chosen to illustrate the combined effect of finite deformation and
initial stress. We can rewrite Eq. (3.111) in terms of the principal stretches A, A2, A3 and

the principal initial stresses 7, 7, 73 as

Wo= B eazeazog) 4 gw CD)m 4+ (2= D+ (A2 — D))

+ [N =D+ (A2 =17+ (A2 — 1)73]. (3.112)

N —ol
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For the incompressible material (3.111) in the deformed configuration, we have
1 ) ) 1 )
Wy = 5 Wy = —ply, W?ZM(I7—I4)+§> War = [, (3.113)
which in the reference configuration reduce to

1
Wi=5, Wi=-al, Wr=5 Wn=p (3.114)

VIS

All other W,., W, = 0. Using Eq. (3.113) in Eq. (3.76), we have

Q(n) = [uB™ + [2a(I; — I,) + 1]S™]T + 441%n © TEn, (3.115)

for an incompressible material in the deformed configuration. Also, using Eq. (3.114) in Eq.

(3.77) gives

Q(n) = (u+ ™I + 4alrn ® Irn. (3.116)

for an incompressible material in the reference configuration.
From Eq. (3.70), it follows for an incompressible material in the deformed configuration

that
pc® = uB™ + [20(I; — I,) + 1]® + 4i(m - £n)?, (3.117)
which in the reference configuration reduces to
pc? =+ 7™ 4 45(m - Tn)2. (3.118)

For the particular choice 7 = 7n ® n, we have ¥ = 7Fn ® Fn. Equation (3.117) for an

incompressible material in the deformed configuration thus reduces to
pc* = uB™ + 7[(2fi(I; — I,) + 1) + 4fir(m - Fn)?|(n - Fn)?. (3.119)
For arbitrary m and n, a real speed exists if

uB™ + 7[(2f(I; — I) + 1) + 4fir(m - Fn)?|(n - Fn)? > 0. (3.120)
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In the undeformed configuration, for an incompressible material, Eq. (3.119) reduces to
pc? =+, (3.121)

and a real wave speed is ensured if y+ 7 > 0.

If we choose, n = e;, m = e; or m = e3 and ¥n = 0, we find from Eq. (3.117)
pc? = nB™, (3.122)

in the deformed configuration. Similarly, in the reference configuration, when ™n = 0, we

find from Eq. (3.118)
pc® = pu. (3.123)

Using Eq. (3.115), various components of Q(n) can be calculated for the special model

given by Eq. (3.111). In the deformed configuration, these components are given by

Qs = uB™ + [20(17 — I,) + 1]S4; + 4a%2,, (3.124)
Q23 = Qsp = 4115313, (3.125)
Qss = uB™ + 20i(1; — L) + 1]S11 + 457, (3.126)

which, in the reference configuration, reduce to

Qa2 = pu+ 711 + AfiTh, (3.127)
Qa3 = Q32 = 4im1a73, (3.128)
Qss = pu+ 711 + 4fiTi, (3.129)

Using Eqs. (3.124)—(3.126) in the characteristic equation (3.80) gives

(pc?)? — [2uB™ + 2[2f1(I7 — L) + 10 + 47(55, + £35)](pc?)
+ Ap[ApShSY + [(uB™ + 20(1; — In) + 1]50)(5], + S33)]

+ [uB™ 4 [2a(I; — L) +1]E])? = 0. (3.130)

The actual values of pc?, independent of m can be calculated from Eq. (3.130) in the de-
formed configuration. For Eq. (3.130) to give pc* > 0, we require the strong ellipticity
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conditions (3.81) to hold when Qg2, Qa3, and Q33 are given by Eqs. (3.124)-(3.126). There-

fore, we have

QQQ >0 = ,UB(H) + [2ﬂ(]7 — I4) + 1]211 + 4[]2%2 > 0, (3131)
Q20Qss — Q3 = (uB™ + 2a(lr — L) + 1]51,)?

+  4a(pB™ 4 20(1; — L) + 1]20)[22, + ¥%] >0,  (3.132)

which together imply
Qss >0 = uB™ 4 [2a(I; — I,) + 1154 + 452, > 0. (3.133)
Similarly, using Egs. (3.127)—(3.129) in Eq. (3.80), we have for the reference configuration

(PC2)2 —2p+71)+ 4ﬂ(7'122 + 7'123)](PC2) + (p + 7')2 +4pf(p+7) (7'122 + 7'123) + 4ﬂ71227'123]
=0. (3.134)

For Eq. (3.134) to give pc? > 0, we require the strong ellipticity conditions (3.81) to hold
when Qgo, Q23, and Q33 are given by Egs. (3.127)-(3.129). Therefore, we have

QQQ >0 = pu+711+ 4,&7'122 > 0, (3135)
QoQs3 — Q33 = (pn+711)* +40a(p + 1) [ + 5], (3.136)

which together imply
Qa3 >0 = p+7+4ary. (3.137)

3.4 Plane Incremental Motions in an Initially Stressed

Incompressible Elastic Half Space

3.4.1 Basic Equations

We consider an initially stressed incompressible material whose elastic response is charac-
terised by the strain energy function W(C, 7). Let A, A2, A3 be the principal stretches
corresponding the principal axes x1,zy and 3 respectively. Let 7;;, (i = 1,2,3) denote the

normal initial stress components and 7;;,7 # j, (4,7 € {1,2,3}) denote the shear components
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of the initial stress. We assume 7;; = 0,7 # j. Using Eq. (3.11), the principal Cauchy

stresses are given by

Ty = —p+2X2W, + 2X2(1 — X)W, + 2500 W5 + 4250 Wy + 207280 117

+ 450 W, (3.138)

Considering W to be independent of I5, Iy and Iy, we can write the principal Cauchy stress

components as

T = —p + 203W) + 203 (A3 + A3)Wa + 2037 Wy + A1 W, (3.139)
Toy = —p + 2X2Wy + 2X2(A2 + A2) Wy + 22700 Wi + AN 70 W, (3.140)
Tsz = —p + 203W) + 205 (AF 4+ A3)Wa + 2\3733 Wy + AN3733Ws. (3.141)

Considering the relation

ow OW Ol
= —_— =1,2,3 3.142
a)\Z Z a[k a)\l7 {Z ) ) }7 ( )
k=1,2,7,8
it can be easily deduced that
Tiiztizkia—w—p, i={1,2,3}. (3.143)

O\

In this section we consider plane incremental motions in the (x,z5) plane with incre-

mental displacement u having components

Ul(l’l,l’g,t), Ug(flﬁl,xg,t), Uz = 0. (3144)

From Eq. (3.57), we have in this case

Aotiiiu 1 + 2A02111u1,12 + Ao2i2101,22 + Aorii2uz 11
+(Aor122 + Ao2112) U212 + Aogoo1U2,20 — D1 = pu, (3.145)
Aor112u1.11 + (Aorize + Ao2112)u1,12 + Ao2e211 22

+Ap1212u2. 11 + 2A01220U2,12 + A2220U2.92 — P2 = puUa, (3.146)
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and the incompressibility condition (3.58) reduces to
U1 + U9 = 0. (3147)

From Eq. (3.147) we deduce the existence of a scalar stream-like function ¢ (xy, x5, t) such

that

Uy = 'lz}72, U9 = _¢71' (3148)

We substitute Eq. (3.148) in Eqgs. (3.145) and (3.146). From the resulting expressions, p can
be eliminated by cross differentiation followed by subtraction. As a result of this, we obtain

an equation for v, namely

Bra111 + 2020 2112 + 2031 1222 + 2040 2111 + P51 2000 = p(Y 1100 + Y 2018) (3.149)

where

ﬁl = A012127 252 = AOllll - 2~’401122 - 2~’402112 + A022227
53 = A02111 - A022217 64 = A01222 - A011127 55 = A02121- (3150)

Let m = (my,my,0) and n = (ny,n9,0) be two unit vectors and let m; = ny and my =
—ny so that the incompressibility condition (3.64) is satisfied without loss of generality. The
strong ellipticity condition (3.69) in two dimensions, for this special case of an incompressible

material, is given by
6172,111 + 2647151572,2 + 26271%713 + 25372,171,; + 55711% > 0. (3151)

Without loss of generality, we can further assume n; = cosf and n, = sinf. Therefore,

inequality (3.151), after some calculations, gives
Bstt + 285t + 255t 4+ 264t + B1 > 0, (3.152)

where t = tan 6.
We consider the half-space o < 0 bounded by x5 = 0. The incremental traction per

unit area of the boundary is ST, where v is the unit outward normal to the boundary. The
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component form of STv in this case follows from Eq. (2.127) as
Sojivj = (Aogitk + POjkbi)uriv; — pvi. (3.153)

Since v = (0, 1,0) in this case, the only non-vanishing components of SOTI/ are 5021 and 5022.

These are given by

5021 = Apainurg + Ao2ia1tr 2 + (Ao2112 + p)ugs + Ao2122ts 2, (3.154)

5022 = Aonia2ur1 + Ao2e21ur 2 + Ag2oi2ta1 + (Aogaze + p)us s — p. (3.155)
Using Eq. (3.148) in Eqgs. (3.154) and (3.155), respectively, we get

5021 = — (05 — To)Y 11 + B3t 12 + G510 22, (3.156)
Sesz = —Apa2129 11 + (Aor122 — Ao2222 — P)1.12 + A1 22 — P. (3.157)

As a result of taking the derivative of Spy, in Eq. (3.157) with respect to ;, the term D1
appears which can be eliminated through Eq. (3.145). We therefore get

5022,1 = pYou — Baan1 — (202 4 Bs — Tho) 112 — 2030 122 — P51 220, (3.158)
Here we have used the connection
Aoijij — Aovijji = Tii +p, 1 # ], (3.159)

which follows from Egs. (3.36), (3.37), (3.138) and (3.143).
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Also, we have from Eq. (3.150)

By QWIAZ 4+ 2Wo (11 A2 — N2X2 — AD) 4+ 2Wr Xy + 2We( A2y, + 2028,

A1¥0y) + 4[Wap + 4AWirg A2 + 4Weg A1 X2, (3.160)

_|_

20, WL (A2 + \2) 4+ 2WL[N2(1; — \2) + N2(I; — A2) — 2020\

QWi (L1 + Bap) + 4WR[A2(3811 — Ban) + A3(3890 — B11)]

AW (AT = A9)2 + AW [ AT (1 — AD) — A3(1 — A3))°

8Wi A1 = AT) + A5(1r — A3) = ATAS (20 — AT — M)

16Wig[ATE11 + A0 — A3 (X1 + Ygo)]

8Wor (X101 — So2)[A2(1) — A2) — A2(I — A9)] + 16Wog[A1X 11 (I — AD)
A5D22 (I = A3) = AN (Dao(fr = AD) + Bu (L — A))

AWrr[(B11 — Ba2)? — 252] + 16Wig[(E11 — Ea)? — 20352

+ 4+ + + o+ + o+ o+

16Wes[(Z11 — Sa2)? — 2ATA3X T, (3.161)

B35 2[Wr + Ws(3A] — A3) + 2Wir (AT — A3) 4+ 2Wis (AT + A3) (AT — A3)

+ 2Wor A (1 = A7) = AS(11 — A9)] + 2Wias[AT (11 — AY)

— AL = AT+ A3)] 802 + 4 War (D11 — Bg9) + 4Wes[(3AT + A3) 21

— (3A3 + AD)Ban] + 2Wis[ATE11 — A3Bo] (AT + A3)| 2o, (3.162)
Ba = 2[Wr+Ws(BX3 = A]) + 2Wiz (A3 — AD) + 2Wis(A3 + A1) (A5 — AD)

+ 2War[AS(1 = A3) — AT (11— AD)] + 2Wa[A5 (11 — A3)

— AL = ADIOT + X3)] 802 + 4 War (Dag — Tu1) + 4Wes[(3XF + M) 22

— (BAT+ A3)Su] + 2Wes[A2X0e — ATE 1] (A + A3)|Z0e, (3.163)
Bs = 2WiA3 4 2Wo (L1 A3 — A3A3 — A3) + 2WrBgg + 2We (A2 gy + 22989

+ A3 0) + A[War + AW A3 4 4Wss A5 E3,. (3.164)

3.4.2 Analysis of Homogeneous Plane Waves in an Initially Stressed

Incompressible Half Space in the Deformed Configuration
We now apply the foregoing theory to study wave propagation in an initially stressed in-

compressible homogenous half space (x2 < 0) in the deformed configuration for the special

model given by Eq. (3.111). For this specific strain energy function, we have o = p, a3 =



CHAPTER 3. PLANE WAVES IN INITIALLY-STRESSED MATERIALS

0,5 = 41 and ag = 0. We therefore have from Eqs. (3.160)—(3.164)

Bio= pAT 4 2017 — In) + 1]31 + 453, (3.165)
20, = (A +A\3) + [20(Ir — 1y) + 1](S11 + Xao) + 4a[(X11 — B)® — 253,],  (3.166)
By = [20a(I7; — Iy) + 1]%12 + 47[(Z1 — S02) S, (3.167)
By = [20(I7 — 1)) + 1510 — 4f1[(Z11 — X22)B1a, (3.168)
Bs = pA;+ [20(I7 — Lu) + 1]89s + 4153, (3.169)

Noting that since X is symmetric, we can choose axes that correspond to the principal
axes of X, and therefore, Y15 = 0 and >;; and Yoy are the principal values. We therefore

have from Egs. (3.165—(3.169)

B = pAi+[2a(l; — L) + 1], (3.170)
28 = p(N2+X3) + [20(17 — Iy) + 1](D11 + Ba2) + 4(X11 — Xa2)?, (3.171)
By = 0, (3.172)
Ba = 0, (3.173)
Bs = pA3+[2a(l; — 1) + 1]Zg. (3.174)

We consider an isochoric (homogenous plane strain) deformation such that A3 = 1. Here,

we have the incompressibility condition (2.125) in the form
)\1)\2)\3 = 1, (3175)

and we define A\; = X and Ay = \71.
In this case, using Egs. (3.154) and (3.158), the non-zero traction components are given

by

S = —(Bs — To)th11 + Bst 2, (3.176)
Swan = pau — (202 + B5 — Tha)th 112 — G5t 220 (3.177)

The strong ellipticity condition (3.152) in this case, is given by

Bst* + 28,t% + B1 > 0. (3.178)
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For the above inequality to hold Vt, the necessary and sufficient conditions are

>0, B5>0, [2>—+/5i0s. (3.179)

Using Egs. (3.170)—(3.174), Eq. (3.149) reduces to

Bibain + 2820 2112 + 51 2000 = p( 1160 + V2082 (3.180)

The stress-free incremental boundary conditions on z5 = 0 follow from Egs. (3.176) and

(3.177) as

Yoo — Y11 =0, (3.181)
pYou — (202 + B5) 112 — Pst 222 = 0, (3.182)

respectively.
We now focus on plane waves in an initially stressed incompressible material in the

reference configuration. Let us assume 1 is of the form
Y = flk(nzy + nowy — )], (3.183)

where c is the wave speed, k is the wave number, t is time and f is a four times continuously
differentiable function. Since we have already set n; = cos and n, = sin #, substitution of

the above expression in Eq. (3.180) leads to

(81 + 5 — 2f32) cos™ 0 + 2(B2 — B5) cos® 0 + 35 = pc”. (3.184)

This determines the wave speed for any given direction of propagation in the (1, ) plane
and it is easily shown that pc®> > 0 follows from the strong ellipticity conditions (3.179).
Alternatively, Eq. (3.184) determines possible directions in which waves may propagate for
given wave speed, material properties and the principal initial stresses. In special cases, it
is possible for Eq. (3.184) to yield two pairs of distinct directions of propagation.

In the classical theory of incompressible isotropic elasticity we have 51 = Gy = (5 = pu,
where g is the shear modulus given by Eq. (3.46). When X vanishes, the material is isotropic
and Eq. (3.184) thus reduces to pc? = u independently of the direction of propagation. This

gives the speed of a classical shear wave.
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We now consider two cases corresponding to different values of 3, 3, and (5.

Case A: (1 + (35 = 2055

This includes the special case of #; = (5 = 5 = p when evaluated in the deformed con-
figuration which entails \; = Xy and ¥;; = Yg. This gives pc? = u independently of the
direction of propagation in the (x1,z5) plane. This also incorporates the classical theory
with A\ = Ay = 1 and the stress assumed to be zero.

With 51 4+ 05 = 20, Eq. (3.184) can be re-written as
pc® = 31 cos? 0 + B5sin® 6. (3.185)

For either Eq. (3.184) or Eq. (3.185) a shear wave can propagate along the principal axis
x1, with pc?> = 3; or along the principal axis x,, with pc? = 5.

If 51 # G5, Eq. (3.185) gives

2
o2 — B P 3.186
5= 5, (3.186)

For this to yield real values of cosf we must have
either 5 < pc® < 31, or B < pc < fs. (3.187)

We can re-write Eq. (3.186) in the alternative form

2
tan?g = 2° 6;. (3.188)
Bs — pc

For a given wave speed subject to conditions (3.187), Eq. (3.188) yields two (in general

distinct) directions, symmetric with respect to the axes.

Case B: (3 + (5 # 20,

For a given wave speed, the solutions of Eq. (3.184) may be written

Bs — B £ (83 — 5185 + pc*(B1 + B5 — 26)]2 |

Or+ 05 — 20, (3.189)

cos? f =
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Considering 0 < cos?§ < 1, for real solutions from Eq. (3.189), we must have either

BiBs — 33

_MFs T M 2 :
By + Bs — 255 < pc” < Min{fy, 35}, (3.190)

Br+ Bs — 206, >0,

or

B85 — s

+ 05 —20, <0, M , <pt< 2 2 3.191
B+ Bs — 206, ax{f, G5} < pc” < Bt = 2% ( )
Equal roots arise when
2 515 — /63 2 B1— s
2= T g LTS 3.192
S Bt s 28, B~ (3.192)
We may write the directions of propagation in the form
1
tan?f — pc® — [ £ (B3 — 0135 + pc®(Br + B5 — 2[5)]2 . (3.193)

Bs — pc?

Thus, for any given wave speed within the allowed range there are in general four possible
distinct directions in which a plane shear wave may propagate. In a special case, these
degenerate to two when conditions (3.192) hold.

For the special value pc? = 35, the wave propagates either along the xzy axis (as in case

A) or in the direction given by

2(f5 — 32)
B+ 5 — 20,

cos®f = (3.194)

in which case either 51 < 35 < [ or 1 > (5 > (3 must hold. Similarly, the special value
pc? = [3; means that the wave is either propagating along the x; direction or in the direction

given by

Bs — B
B+ Bs — 202

cos® 0 = (3.195)

which requires that either 3y < 6y < 35 or B2 > (3, > 5 hold.
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3.4.3 Wave Reflection from a Plane Boundary in the Deformed

Configuration

We consider a plane wave of the form given by Eq. (3.183) incident on the boundary z5 = 0
of the half space o < 0. The boundary zs = 0 is taken to be free of incremental traction
but subject to the normal initial stress in the x; direction. The incremental traction-free
boundary conditions on x5 = 0 are given by Egs. (3.181) and (3.182).

Let the direction of propagation of this wave be n = (ny,ns) = (cos,sin ) and c be its
speed. As a result of this incidence, depending on the material properties and the state of
deformation, one or two reflected waves and/or a surface wave are generated. We can write

the general solution for ¢ consisting of the incident and two reflected waves in the form
¢ = f[k(nlxl + NoZo — Ct)] + Rf[k:(nlxl — N9y — Ct)] -+ R/f[kl(nlll’l — n;l’g — Clt)], (3196)

where R and R are the reflection coefficients. Also, k' and ¢ are the wave number and
wave speed of the second reflected wave. The first reflected wave has the same speed as the
incident wave and is reflected at an angle 6 to the boundary, while the angle of reflection of
the second wave is 6. We choose n) = cos#',n, = sinf’. For the compatibility of the three

waves, they should have the same frequency. For this we must set

ke=Fkc. (3.197)
Using Eq. (3.196) in Egs. (3.181) and (3.182), we find kn; = k'n} and hence

cny=cnl, (3.198)
which is a statement of Snell’s law.

Case A: 31+ (5 = 20,

In this case, from Eqs. (3.170)—(3.174), we require ¥;; = Yoo = 0 which also implies that
T11 = Teo = 0 and hence the case refers to vanishing of the initial stress. The wave speed in

this case is given by

pc® = Bing + Bsnj. (3.199)
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Writing Eq. (3.199) for the second reflected wave, we have
12 12 12
pc =g + Psng . (3.200)

Using Eq. (3.198) to eliminate ¢ and ¢ between Eqs. (3.199) and (3.200), we have n/l2 =n?
for B 4+ B5 = 2(>. Thus, the two reflected waves coincide and and there is only one distinct
reflected wave. Thus, without the loss of generality, we take R = 0. This behaviour is the
same as is found for plane waves in homogeneous isotropic solid in the classical linearized
theory [2].

Using Egs. (3.196) and (3.199) in the boundary conditions given by Eqs. (3.181) and
(3.182) we have

(1+ R)[1 —2n3] =0, (3.201)
35(1 = R)nani = 0, (3.202)

respectively. Considering the possibility R # £1, Eqgs. (3.201) and (3.202) lead to
s 1 2

which are impossible to occur together. Therefore, R must take value either 1 or —1.

(i) R = 1. This case is possible only when a wave is incident at an angle of § = /4 which
results in a unique reflected wave at the same angle. The wave speed in this case is

given by

pc = (By + B5)/2. (3.204)

In this case, the non-zero displacement component on the boundary x, = 0 is

uy = —V/2k f[k(% —ct)], (3.205)

which means there is no displacement along the boundary in the x; direction. Since
B1 = s = pA? in this case, we recover the classical results for the speed of shear wave

in a deformed isotropic material i. e., pc?/u = A2

(ii) R = —1. In this case, we have either the normal incidence (ny = 0) or grazing incidence

(ny = 0). The grazing incidence in this case are not possible as for ny = 0, we have
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1 = 0. The normal incidence results in a wave travelling along the vertical x5 axis.

From Eq. (3.199) when n; = 0, we have pc®/u = 2.

Case B: 35 + 31 # 203,

In the case of an incident wave Eq. (3.183) can be rewritten as

(B1+ Bs — 2B2)nt + 2(By — B5)n? + B5 = pc?, (3.206)

and when there is a reflected wave, we also have

(B + 35 — Qﬂz)nf +2(0y — ﬁ5)n,12 + 05 = pcl2, (3.207)

together with the Snell’s law given by Eq. (3.198).
From Egs. (3.206) and (3.207), we find that either n,> = n? or

i, = Bs/(B1 + Bs — 26a), (3.208)

and, these two possibilities occur together when

ny = 0s/(61 + Bs — 202), (3.209)

which defines the transitional angle, say 6. Thus, when Eq. (3.196) is applicable, a given
incident wave generates two reflected waves in general. One of these waves is reflected at
the same angle as the incident wave and the angle of reflection of the second wave is given
by Eq. (3.208) with n; = cos§'.

For a given angle of incidence 6, 8 is calculated from Eq. (3.208), pc? from Eq. (3.206)
and pc’2 from Eq. (3.207). The reflection coefficients R and R’ are calculated using the
boundary conditions.

For a given 6, necessary and sufficient conditions for Eq. (3.208) to yield a real angle ¢’

are

P > 20, (3.210)
tan?f < (ﬁl/_@ﬂztanzé’c, (3.211)
5

where 0, is defined as the critical angle given by the right-hand identity in Eq. (3.211).
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Substitution of Eq. (3.196) in boundary conditions (3.181) and (3.182) after using the
propagation condition (3.206) and Eq. (3.208), we get after some calculations

Bs(1+ R+ R) = (Bi+ B — 26:)[(1+ Ryny nd + Rndny ]| = 0, (3.212)

265[(1 — R)nyng + R'niny] — (61 4 85 — 262)[(1 — R)nyny + Rnynylnyn, = 0. (3.213)

Explicit expressions for R and R’ are given by

_ (- 21, %20, — (1 — 2n2)20*n)

(1—2n)")2ndny + (1 — 2711)2”/1371,2’
r2
R 21— 2nd)(1 - 2m; n' nans . (3.215)
(1= 2ny")2ndn, + (1 — 2n3)2n) n)

(3.214)

From Eq. (3.215) it is obvious that R’ vanishes for n; = 0 which means the angle of
incidence 6 = m/2 (normal incidence).

. o . / . .
We now consider three non-trivial cases where R can possibly vanish.

(i) R =0,R # +1. In this case Eqs. (3.212) and (3.213) yield either n, = 0, i.e. grazing

incidence, which is not possible since then ) = 0, or

1 2 ,
2ol s 2 (3.216)

2 B+ Bs—20

For Eq. (3.216) to yield a real angle, inequality (3.210) along with the stability condi-
tions (3.179) must hold. The wave speed in this case is given by

pc® = Bz + Bs. (3.217)
(ii) R =0, R = 1. In this case, we have
5 1
ni=g. (3.218)

This means an incident wave at an angle § = /4 results in a unique wave reflected at

the same angle. The wave speed in this case is given by

pc = (By+ s + 2532) /4. (3.219)
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In this case, the non-zero displacement component on the boundary x, = 0 is

Uy = —\/2k f[k(% —et)], (3.220)

which means that there is no displacement along the boundary in the z; direction.
(iii) R =0, R = —1. In this case, we have

265 r2 1
n=—"="2"____  and n, =-. 3.221
LB+ B — 2B b2 ( )

For Eq. (3.221); to yield a real angle, inequalities (3.210) and (3.179) must hold. The

wave speed in this case is given by

pc? = Bs (B + Bs + 252)‘

3.222
b1+ Bs — 20, ( )
In this case, the non-zero displacement component on the boundary x, = 0 is
2/65 1 2/65
g = 2k(———— N2 fl(—— )2 — )], 3.223
' (/514-55—2/52) 4 (/514-55—2/52) 1 t)] ( )

which means that there is no displacement normal to the boundary in the x5 direction.

When Egs. (3.210) and (3.211) are not satisfied a pair of reflected waves is not possible
and an alternate expression for ¢ should be used. Therefore, in Eq. (3.196) we have n’l =1
and n, = —is where s > 0 so that the latter term in Eq. (3.196) decays as xy — oo. In this

case, Eqgs. (3.197) and (3.198) change such that
kny =k, cni=c, (3.224)

where ¢ now represents the speed of the surface wave whereas ¢ is the speed of the incident
wave and can be calculated using Eq. (3.206). The reflection coefficients in this case are

given by explicit expressions for R and R are given by

(1 + s*)*n3ny +is(1 — 2n?)?

(1+ 52)2ndny —is(1 — 2n2)?’

R - —2(1 + s*)(2n? — 1)nyny
(1+ s2)2n3ny —is(1 —2n2)?

R =

(3.225)

(3.226)

Using Eq. (3.180), we have the propagation conditions for the incident wave and the
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surface wave,

Bini + 2Bamins + Bsny = pc?, (3.227)

Bi + 26082 + Bsst = pc (1 — 82), (3.228)

respectively. Using Eq. (3.224), and Eq. (3.227) to eliminate pc/2 from Eq. (3.228) we have
the counterpart of Eq. (3.208)

Bss® = B5 — (B + Bs — 2B2)n3, (3.229)

where s > 0. The right hand side of Eq. (3.229) is always positive for if §; — 28, < 0. In
the case when [3; — 235 > 0, the angle of incidence should be such that

tan?0 > (B, — 232)/0s. (3.230)

It may be noted that in contrast to the upper bound (see [9]) or lower bound in certain
circumstances (see [38]) on the surface wave speed in case of pre-stressed incompressible
materials, there is not restriction observed here when the surface wave is generated by an
incident wave. Numerical results illustrating the behaviour of the incident and two reflected
waves or one reflected wave accompanied by a surface wave for angles of incidence greater

than the critical angle are presented in the following section for a special model.

3.4.4 Analysis of Wave Reflection for a Special Model in the De-

formed Configuration

We now apply the foregoing theory to the specific model given by Eq. (3.111) for an ini-
tially stressed homogeneous incompressible half space subject to homogeneous plane strain
deformation.

We consider the boundary zo, = 0 of the half space to be stress free. Therefore, Toy =
0 = Ygo. After a few calculations using the definitions of I, and I7; from Eq. (3.1), Egs.
(3.170)—(3.174) reduce to

B = (4 7)N + 20N\ — 1)7], (3.231)
20, = (p+ 1)+ pA 2+ 20N (3N — 1)1, (3.232)

Bs = pA% (3.233)
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The non-zero principal Cauchy stresses in this case are given by

Tn = [p+ 2617 — L) + 1]Zu]A\* = p, (3.234)

T22 = M)\_2 —p. (3235)
Therefore, the stress-free boundary conditions lead to
p =B = pA"2, (3.236)

which holds everywhere in 25 < 0 as the underlying state of the material is considered to be
uniform.

Recasting Egs. (3.231)—(3.233) in the dimensionless form, we have
B/ = Ne,  2Bo/pp = Ne+ N2+ 4Ab\T2, Bs/p= A2, (3.237)
where
bo=pjt, T=1u/p, €=2b(N\ —1)7F+F7+1. (3.238)
From the above expressions, we have

(Br+ B5 — 2B2) /1 = —4boX* 7>, (B — 2B) /= =A% — db X7, (3.239)
2(8y — Bs) /1t = N2 — A2 + 4y \* 72 (3.240)

We therefore have from Eqgs. (3.210) and (3.211)
—4bhy T\ > 1, (3.241)
and
sec? § < —4by72\° = sec? 0, (3.242)

Since 0 < sec? ), we require ji < 0 and hence by < 0.

Provided that Egs. (3.241) and (3.242) hold, we have from Eq. (3.208)

niny = 1/v/ Ay, (3.243)
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where we have defined

Ay = —4byT2)\°. (3.244)

From Egs. (3.306) and (3.307), we have

(A — 2sec?0)? cos? Osin§ — (sec?§ — 2)(A; — sec? §)'/?
(A; — 2sec? )2 cos? §sin 6 + (sec? § — 2)(A; — sec? §)1/2’
B - —2(sec?f — 2)(A; — 2sec? ) sin f

(A; — 2sec?0)? cos? O sin 6 + (sec? § — 2)(A; — sec? 0)1/2’

R= (3.245)

(3.246)

respectively. It might be noted that for angle of incidence equal to the critical angle then
6" = 0 and there is a grazing reflection.
From the above expressions, if sec?f > A, (i.e. angles of incidence greater than the

critical angle), we have

R (A — 2sec?0)? cos? Osin § — i(sec? § — 2)(sec? ) — A;)'/? (3.247)
N (A} — 2sec? )2 cos? 0sin 6 + i(sec2§ — 2)(sec2 ) — Ay)1/2’ :
20 _ 20 _ 2 .
R - 2(sec® 0 — 2)(2sec ) — Ap)sinf (3.248)

(A} — 2sec? )2 cos? 0sinf +i(sec2§ — 2)(sec2§ — Ay)1/2’

respectively. The above expressions also follow from Egs. (3.225) and (3.226), respectively.
The value of s? in this case follows from Eq. (3.229) and is given by

5% = cos® O(sec? O — Ay), (3.249)

which has positive right hand side if either A; <1 or if A; > 1 and sec?§ > A;.
We can rewrite Eq. (3.242) in the form

cos?0 > 1/A;. (3.250)

This means, for real ', the inequality (3.250) should hold. For the values of # out of this
range, a surface wave exists whose reflection coefficient is given by Eq. (3.248). Figure 3.1
refers to the values of § and A; where inequality (3.250) holds.

The strong ellipticity conditions (3.179) in this case gives the sufficient conditions as
A2 >0, 4bgT2N 4+ et + 26202+ 1 > 0, (3.251)

which further imply that e > 0 where € is given by Eq. (3.238). This holds V7 when
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Figure 3.1: Plots of the stability region (0, A1) (shaded area) for the reflected wave from inequality
(3.250). (a) Stability region for the reflected wave for smaller values of Ay, (b) Stability
region for the reflected wave for very high values of A;

8bg(A? — 1) > 1. For 8by(A\? — 1) < 1, we have

—14+/1—=8b(N\2—1) e V1 —8by(\2—1)

4bo (N2 — 1) 4bo (N2 — 1) (3:252)

Using Egs. (3.206) and (3.239) the dimensionless wave speed of the incident wave in this

case is given by
pc?/Bs = (—4bg A7) cos® O + (4bpA°7> + A'e — 1) cos® 0 + 1, (3.253)

as a function of 6.

Similarly, for the reflected wave, the speed in its dimensionless form is given by
e [ Bs = (—4bpA°72) " L[sec? 6 + (4boAS72 + Me — 1) sec? 0 — 40y \°7), (3.254)

as a function of #. Since, for a reflected wave to exist, #" in Eq. (3.254) must be real and
should fall in the range to satisfy the inequality (3.250). For the angles out of this range, ¢
is the speed of a surface wave which increases indefinitely (and its amplitude vanishes) as the
incident wave approaches normal incidence. The behaviours of pc?/3s (dashed graph) and
pc'2 /35 are shown in Fig. 3.2 for 0 < 6 < 6, where 6, = sec™*(1/A;). For angles of incidence
greater than the critical angle, ¢ represents the surface wave and is given by ¢ = ¢/n; where
¢ is the speed of the incident wave given by Eq. (3.253). The speed of surface wave for § > 0.

is given by

pcl2/ﬁ5 =sec?f + A\ — 1. (3.255)
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Figure 3.2: Plot of dimensionless wave speeds pc? /35 (dashed) and pc/2 /Bs for (a) bp = —0.2, A =
1.4,7 = 0.5, A; = 1.50591, (b) (a) bp = —0.2,\ = 1.4,7 = 1.2, A} = 8.67403. The

plots for pc/2 /B35 refer to the dimensionless speed of a surface wave when the inequality
(3.250) does not hold.

For the special value of pc® = 35, Eq. (3.253) gives
cos?0 =0, or cos®f = (4bg\°72 + N'e — 1) /4bg\°72, (3.256)

which means either the wave travels along the x5 axis or in the direction given by Eq.

(3.256),. For (3.256); to give real angles, either of the following two should hold
Me <1< 4bpA72 + Ne— 1, Me > 1> 472 + Ne — 1. (3.257)
For pc? = 31, Eq. (3.253) gives
cos?0 =1, or cos’f=(\e—1)/4b\7% (3.258)
where for real angles either of the following conditions should hold
4bpAO7% + Nle — 1 < Me <1, 4bpA7% + Xe — 1> Ne > 1. (3.259)

When 7 = 0 in Eq. (3.237), that is the case when the initial stress vanishes, the case is
equivalent to 3; + 5 = 202 (see Section 3.4.3: Case A) and there is only one reflected wave

at the same angle as the incident wave, with the dimensionless wave speed given by
pc? /s = (A* = 1) cos® 6 + 1. (3.260)

This result reduces to pc?/p = 1 when specialized for reference configuration (i.e., A = 1).
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This is the same as that for classical linear theory. The result (3.253) is also deducible from

Eq. (3.186) and from Eq. (3.187), either of the following two inequalities hold:
1< pc?/Bs <N, A < pc?/Bs < 1. (3.261)

From Eq. (3.244), we note that as A; — 0, the case corresponds to infinitesimally
small initial stress. In this case, Eq. (3.237) give the expressions independent of the initial
stress and the results are therefore comparable to the classical linearized theory for isotropic
materials in the deformed configuration. We refer to Fig. 3.3 which shows the behaviour of
|R'| and |R|(= 1) when the initial stress has infinitesimally small magnitude. We see that
|R'| is bounded and vanishes at various angles of incidence. It is important to note that in
the case of infinitely small values of A, the inequality (3.250) does not hold and the plot of
|R'| (for example, 3.3a) refers to a surface wave for all angles of incidence 6. The results are
plotted using Eqgs. (3.214) and (3.215). Similar behaviour is shown in the case of pre-stressed

materials in [39] for pure homogeneous strain and in [23] for simple shear.

IR IR
3.0¢ 120
250 1.0
2.0p 0.8+
15¢ 0.6
101 0.4}
0.5+ 0.21
: : : : : =L g : : : : : = g
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0

(a) (b)

Figure 3.3: |R'| for (a) 7 = 1075, X\ = 2,bp = —1, A; = 2.56 x 1078 and |R|(= 1) for (b) 7 =
1075, A =2,bpg=—1, (b) 7 =105\ = 3,by = —4, A = 1.1664 x 1076, (Plotted as a
function of the angle of incidence  and 0 < 0 < )

It is obvious that for A; — oo (very large magnitude of initial stress), | R'| tends to vanish
and becomes more confined in the band along the normal angle of incidence (see Fig. 3.4d),
where as |R| — 1 (see Fig. 3.5d). For intermediate values of A;, we refer to Figs. 3.4 (for
|R'|) and 3.5 (for |R|). It may be observed that since the stretches and initial stress occur in
a product, a variation in any of the two leads to similar values of A;. Also, the plots in Fig.
3.4 refer to the amplitude of a surface wave for the range of values of # where the inequality
(3.250) does not hold. For instance, in Fig. 3.4a where A; = 2.391, the inequality (3.250)
does not hold for the range 0.867532 < 6 < 2.27406 and hence in this range the plot refers
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to a surface wave.
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Figure 3.4: |R'| for A = 0.9,by = —0.5 and (a) 7 = 1.5, 4; = 2.391, (b) 7 = 5, A; = 26.5721, (c)
7 =15A; = 106.288, (d) 7 = 50, A; = 1.01364 x 10'4, Plotted as a function of the
angle of incidence # and 0 < 6 < 7. The plots refer to the amplitude of a surface wave
when the inequality (3.250) does not hold. For example, the plot refer to the amplitude
of a surface wave for 0.867532 < 6 < 2.27406 in (a) and for 1.37557 < 6§ < 1.76603 in

(b).
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Figure 3.5: |R| for A = 1.2,bg = —1 and (a) 7 = 0.5, 4; = 2.98598 (b) 7 = 0.8, A = 7.64412, (c)
7 =4,A; = 191.103, (d) 7 = 103, A; = 1.19439 x 107, Plotted as a function of the
angle of incidence 6 and 0 < 0 < )

Another aspect is the symmetry of the amplitudes in Figs. 3.4 and 3.5 about the angle

of incidence for all values of stretch. This aspect is also observed in [39] where the authors
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discuss a special class of materials with pre-stress and it is found that increasing or decreas-
ing magnitude of the pre-stress (initial stress in our case) doesn’t hinder the symmetrical
behaviour. This is in contrast to the results for simple shear in [23] where the symmetrical
behaviour is lost with the increase in stretch.

The plots in Fig. 3.6 and 3.7 show the real and imaginary plots for R" and R respectively.
These plots use varying values of \ for fixed by and 7 and the respective values of A; are
stated. The plots for Real(R/) show a sharp rise for a particular intermediate range of values
of A; (see Fig. 3.6¢) and the amplitude drops as the values of \ increase (or in other words
for very large values of A;). The changing range of the vertical axis may be noted in Figs.
3.4 and 3.6. This is a behaviour expected from Eq. (3.246) as A; — oo. Figure 3.7 shows
the symmetrical and bounded behaviour of R and it is worth noting that for even very small
increase in the values of A, the imaginary part of the amplitude vanishes and the real part
is such that |R| < 1. This is obvious from Eq. (3.245) when A; — oo.

In reference to the discussion carried out in Section 3.4.3 for vanishing of R', we note
from Figs. 3.3a, 3.4 and 3.6 that R’ vanishes as 6§ approaches 7/2. Also, from Eqs. (3.218)
and (3.219), we expect R to vanish at either or both # = 7/4 and

cos’ =2/ A, = 2cos? 0. (3.262)

This fact is recoverable from Eq. (3.246) and is obvious in the above mentioned figures.
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Figure 3.6: Real(R') (left column) and Imaginary(R') for 7 = 0.3,by = —2 and (a), (b) A =

1.2, Ay = 2.1499, (c), (d) A = 2, A1 = 46.08, (e), (f) A = 2.4, A; = 137.594, (g), (h)
A = 3.35, A1 = 1017.66, plotted as a function of the angle of incidence § and 0 < 6 < .
The plots refer to the reflection coefficient of a surface wave when the inequality (3.250)
does not hold. The changing vertical scale may be noted.



CHAPTER 3. PLANE WAVES IN INITIALLY-STRESSED MATERIALS

RealR)

1.0+

0.5-

-1.0

RealR)
1.0+

0.5+

J

-1.0L

RealR)
1.0+

0.5

.
0.5

-0.5}

—-1.0L

.
0.5

.
1.0

-0.5+

-1.0+

ImaginaryR)
0.2

-0.2

-0.6

-0.8+

-1.0+

ImaginaryR)
0.2

0.1F

.
0.5
-0.1F
-0.2F
-0.3F

-0.4F

-0.5C

ImaginaryR)

0.5

ImaginaryR)
0.02-

1.0

2.0 25 3.0

‘
0.5
6 -0.02-

—-0.041

—-0.061

I
1.0

(h)

I I I
2.0 25 3.0

Figure 3.7: Real(R) (left column) and Imaginary(R) for 7 = 0.3,bp = —2 and (a), (b) A = 1.2, 4; =
2.1499, (c), (d) A = 1.5, A; = 8.20125, (e), (f) A = 1.8, A; = 24.4888, (g), (h) A\ =
2.2, A; = 81.6335, plotted as a function of the angle of incidence # and 0 < 0 < .
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3.4.5 Analysis of Homogeneous Plane Waves in an Initially Stressed

Incompressible Half Space in the Reference Configuration

For an initially stressed incompressible material in the reference configuration, Eqs. (3.160)—

(3.164) reduce to

B = o4 1+ as(Ti + T2) + asTh, (3.263)
20y = 201+ 711+ Tog + 2a3(T11 + To2) + as[(T11 — Ta2)” — 270,)], (3.264)
Bs = T2+ asTia(Ti1 — Ta2), (3.265)
By = Tz — asTia(Ti1 — Ta2), (3.266)
Bs = a1+ T+ as(Ti1 + Ta2) + 0575, (3.267)

Considering the specific model given by Eq. (3.111) in the reference configuration, the
counterparts of Egs. (3.165)—(3.169) are

Bi = p+ i+ 4, (3.268)
28, = 2u+ T+ Tog +4R[(T1 — To2)? — 275, (3.269)
Bs = Ap[(Ti1 — To2) 712, (3.270)
By = —4j[(mi1 — Te2)T12, (3.271)
Bs = p+Toy + ATy (3.272)

Considering 75 = 0, we have from the above equations for an incompressible material in

the reference configuration

fr = a=pu+T1y, (3.273)
262 = 25 = 2,u + T11 + T22 + 4ﬂ(711 - 7'22)2, (3274)
Bs = 7v=p+ 0. (3.275)

Using the strong ellipticity condition (3.152) for this special case, we have

428t + a > 0. (3.276)
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For inequality (3.276) to hold generally, the necessary and sufficient conditions are simply

a>0, >0, [>—ya. (3.277)

The above conditions thus ensure positive real values for pc? through the strong ellipticity
condition and Eq. (3.70).
For the special model given by Eq. (3.111), when Ty = 0 on x5 = 0, we find

Po =", (3.278)

which holds everywhere as the underlying state of the material is considered to be uniform.
From Eq. (3.13);, we also have py = p and from Eq. (3.169), 199 = 0, for consistency.
Using Egs. (3.273)—(3.275), Eq. (3.149) reduces to

a) 1111 + 268¢ 2112 + Y 2022 = p(V 116 + Y 20ut)- (3.279)

The stress-free boundary conditions on o = 0 in this case follow from Egs. (3.176) and

(3.177)

Yoo =t = 0, (3.280)

Phow — (28 + V)12 — VP22 = 0. (3.281)

We now focus on plane waves in an initially stressed incompressible material in the
reference configuration. Let us assume 9 is of the form (3.175) which, when substituted in

Eq. (3.279) leads to the propagation condition

(47 —28)cos* 0 +2(8 — ) cos> 0 + v = pc*. (3.282)

This determines the wave speed for any given direction of propagation in the (z1,x9) plane
and it is easily shown that pc* > 0 follows from the strong ellipticity conditions (3.277).
Alternatively, Eq. (3.282) determines possible directions in which waves may propagate for
given wave speed, material properties and the principal initial stresses. In special cases, it
is possible for Eq. (3.282) to yield two pairs of distinct directions of propagation. It may be
noted that Eq. (3.282) shows that a shear wave, polarized in the (z1, z5) plane, can propagate
in any direction in the same plane provided the strong ellipticity conditions (3.277) hold.
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In the classical theory of incompressible isotropic elasticity we have a = 3 = v = pu,
where g is the shear modulus given by Eq. (3.46). Eq. (3.282) thus reduces to pc®> = pu
independently of the direction of propagation. This gives the speed of a classical shear wave.

We now consider two cases corresponding to different values of o, 3 and ~.

Case A: a+~v =20

This includes the special case of @« = = v = p when evaluated in the undeformed con-
figuration. This gives pc? = a independently of the direction of propagation in the (xy,z5)
plane. This incorporates the classical theory with initial stress assumed to be zero in the
undeformed configuration. Also, from Egs. (3.273)—(3.275), for this special case, we require
T11 = To2 = 0 since we have already assumed 755 = 0.

With o + v = 20, Eq. (3.282) can be re-written as
2 _ 2 .9
pct = acos” 6 + ysin” 6. (3.283)

For either Eq. (3.282) or Eq. (3.283) a shear wave can propagate along the principal axis
x1, with pc® = a or along the principal axis x5, with pc? = 7.

If o # v, Eq. (3.283) gives

v = pc?

cos® ) = . (3.284)
v -«
For this to yield real values of cosf we must have
either v <pc? <a, or a<p <7, (3.285)
We can re-write Eq. (3.284) in the alternative form
2 pct —a
tan® 0 = 5 (3.286)
v = pe

For a given wave speed subject to conditions (3.285), Eq. (3.286) yields two (in general

distinct) directions, symmetric with respect to the axes.
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Case B: v+ a # 20

For a given wave speed, the solutions of Eq. (3.282) may be written

7—6i[52—a7+p02(0é+7—25)]%_

2
0 = 3.287
o8 a+vy—206 ( )
Considering 0 < cos?§ < 1, for real solutions from Eq. (3.287), we must have either
a+v—26>0, =B < pc® < Min{a, v}, (3.288)
a+v—28 " -
or
+4—28<0, Max{a,y}<pe< oy —p° (3.289)
Q@ — ax{q o< — .
v , D B 7
Equal roots arise when
s ay =/ 5 a—p
= = —".8#H. 3.290
pe a+vy—20 o8 a4y —208 ( )
We may write the directions of propagation in the form
2 _34(82 — 2 _9 1
tan2g = 25 B£1F" —ay+pcilaty—26) . (3.291)

v — pc?

Thus, for any given wave speed within the allowed range there are in general four possible
distinct directions in which a plane shear wave may propagate. In a special case, these
degenerate to two when conditions (3.290) hold.
For the special value pc? = v, the wave propagates either along the zy axis (as in case
A) or in the direction given by
2(y = B)

2
=1 2 3.202
cos a+y—283 (3:292)

in which case either o < v < 3 or a > v > 3 must hold. Similarly, the special value pc? = a
means that the wave is either propagating along the x; direction or in the direction given
by

e’

2
cos’ ) = ———
a+vy—206

(3.293)

which requires either 3 < o <y or > a > v hold.
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3.4.6 Wave Reflection from a Plane Boundary in the Reference

Configuration

We consider a plane wave of the form given by Eq. (3.183) incident on the boundary z5 = 0
in the half space x5 < 0 in the reference configuration. The boundary x, = 0 is taken to be
free of incremental traction but subject to the normal initial stresses 71, Too.

For the special model given by Eq. (3.111), pg is given by Eq. (3.278), 19 = 0 and
the stress-free incremental boundary conditions in this case are given by Egs. (3.280) and
(3.281).

Let the direction of propagation of this wave be n = (ny,ny) = (cos6,sin ) and c be its
speed. As a result of this incidence, depending on the material properties and the state of
deformation, one or two reflected waves and/or a surface wave are generated. We can write

the general solution for v consisting of the incident and two reflected waves in the form

v o= flk(nizy + nexy — ct)] + Rf[k(niz1 — noxe — ct)]

/ i

+ R flk (njxy — nyxy — c't)], (3.294)

where R and R are the reflection coefficients. Also, k" and ¢ are the wave number and
wave speed of the second reflected wave. The first reflected wave has the same speed as the
incident wave and is reflected at an angle 6 to the boundary, while the angle of reflection
of the second wave is #'. We choose n; = cos@ ,n, = sinf’. For the compatibility of three

waves, they should have the same frequency. For this we must set

ke=Fkc. (3.295)
Using Eq. (3.294) in Egs. (3.280) and (3.281), we find kn; = k'n} and hence

¢ny = cny. (3.296)

which is a statement of Snell’s law.

We now consider separately the cases in which v+ o = 28 and v + a # 20.

Case A: v+ a =20

In this case, from Eqs. (3.273)—(3.275), we require 711 = To2 = 0. This special case therefore

corresponds to vanishing of the initial stress just as in classical mechanics. Also, it follows
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that a =+ = (3 in this case. We therefore have
pc? = a. (3.297)

This shows that for the initially stressed materials following v + o = 20 in the reference
configuration, a single wave travels independently of the direction of propagation with a

fixed speed « or 7.

Case B: v+ a # 20

We are now considering the case of two reflected SV waves. In the case of an incident wave

Eq. (3.282) can be rewritten as
(47 =280t +2(8 — y)ni + 7 = pc?, (3.298)
and when there is a reflected wave, we also have
14 ’2 12
(a+vy=28)n +2(B—7)ny +v=pc, (3.299)

together with the Snell’s law given by Eq. (3.296).
From Eqs. (3.298) and (3.299), we find that either n)” = n? or

9 12

ning =7/(a+v—2P), (3.300)

and, these two possibilities occur in the case when

ny =v/(a+vy—20), (3.301)

which defines the transitional angle, say, 6. Thus, when Eq. (3.294) is applicable, a given
incident wave generates two reflected waves in general. One of these waves is reflected at
the same angle as the incident wave and the angle of reflection of the second wave is given
by Eq. (3.300).

For a given angle of incidence 6, §' is calculated from Eq. (3.300), pc? from Eq. (3.298)
and ,oc/2 from Eq. (3.299). The reflection coefficients R and R’ are calculated using the
boundary conditions.

For a given 6, necessary and sufficient conditions for Eq. (3.300) to yield a real angle 6’
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are

a > 20, (3.302)
a—20
Y

tan’f < = tan’0,, (3.303)

where 0. is defined as the critical angle given by the right-hand identity in Eq. (3.303).
Substitution of Eq. (3.294) in boundary conditions (3.280) and (3.281) after using the

propagation condition (3.298) and Eq. (3.300), we get after some calculations

Y1+ R+ R) = (a+v—208)[(1+ R)n, n2+ Rnn)’] = 0, (3.304)

29[(1 — R)n\ng 4+ R'nyng) — (o + v — 28)[(1 — R)nyng + Rnynylnin, = 0. (3.305)

Explicit expressions for R and R’ are given by

’r2 13
R (1 —2n;")*n3ny — (1 — 2n3)2n, "ny 5306
- ’ 2 2.3 2\2 13 1) ( . )

B —2(1—2n3)(1 — 2n/12)n’12n1n2
(1 —2n,)2n3n, + (1 — 2n2)20,°n),

(3.307)

It is obvious from the above expressions that R vanishes for the normal incidence.

. o . / . .
We now consider three non-trivial cases where R can possibly vanish.

(i) R =0,R # +1. In this case, Eqs. (3.304) and (3.305), yield either ny = 0, i.e. grazing

incidence, which is not possible since then 1) = 0, or

1 2 y
n? 7 ?

oo 2 3.308
2 a+y—23 " (3.308)

For Eq. (3.308) to yield a real angle, inequality (3.302) must hold along with Eq.
(3.277). The wave speed in this case is given by

pct =B +17. (3.309)
(ii) R =0,R = 1. In this case, we have

= (3.310)

N
N | —
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The wave speed in this case is given by
pc® = (a+v+283)/4. (3.311)

In this case, the non-zero displacement component on the boundary x, = 0 is

=0, us= —ﬁkf[k(% —et)], (3.312)

which means there is no displacement along the boundary in the z; direction.

(iii) R =0, R = —1. In this case, we have
- —T— and )= (3.313)

For Eq. (3.313); to yield a real angle, inequality (3.302) must hold along with Eq.
(3.277). The wave speed in this case is given by

s Ya+v+28)
e T (3.314)

In this case, the non-zero displacement component on the boundary x, = 0 is

0 = 2k ) b () o — )] (3.315)

which means that there is no displacement normal to the boundary in the x5 direction.

3.4.7 Analysis of Wave Reflection for A Special Model in the Ref-

erence Configuration

For the specific model given by Eq. (3.111), for an initially stressed incompressible material

in the reference configuration, we have
Oé:M+T11, 2522/1—'—7'114—4,&7'121, Y= W. (3316)

The case when o+ v = 23 refers to the case when the initial stress vanishes. The results are
therefore equivalent to those for an isotropic linear elastic materials in the classical theory.
For details, see the discussion in Section 3.4.6: Case A.

For the material model given by Eq. (3.111), a + v # 20 and the general results in
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Section 3.4.6: Case B, should apply. For this, we define the dimensionless quantity
Ay = (a+v—28)/8 = —4byT°. (3.317)

Since v > 0 due to strong ellipticity, and a > 2 from Eq. (3.300), we must have i < 0.
Also we have from Eqs. (3.302) and (3.303) for real angles

Ay <1, (3.318)
and
0 <sec?f < Ay =sec?d.. (3.319)
The above inequality may be written as
cos?0 > 1/A,, (3.320)

which gives the range of values for the angle of incidence 6 for which a reflected wave exists.
For 0 < A, < 1, the inequality (3.320) does not hold and hence for these values of A, the
second reflected wave is replaced by a surface wave. For the plot of inequality (3.320), we
refer to Fig. 3.1 with A; replaced by A,.

The strong ellipticity conditions (3.179), in this case gives the sufficient conditions as
F+1>0, 4byP+74+2F+1)2+2>0. (3.321)

Using Egs. (3.206) and (3.239) the dimensionless wave speed of the incident wave in this

case is given by
pc? [y = (—4by7?) cos® O + (4bo7* + 7) cos? 0 + 1, (3.322)

as a function of 6.

Similarly, for the reflected wave, the speed in its dimensionless form is given by
ey = (—4by72) " Vsect O + (4by72 + 7) sec? 6 — dby72], (3.323)

as a function of #. Since, for a reflected wave to exist, 6 in Eq. (3.323) must be real and
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should fall in the range to satisfy the inequality (3.250). For the angles out of this range, ¢
is the speed of a surface wave which increases indefinitely (and its amplitude vanishes) as the
incident wave approaches normal incidence. The behaviours of pc?/vy (dashed graph) and
pc'2 /7 are shown in Fig. 3.8 for 0 < 6 < 6. where . = sec_l(\/Afg). For angles of incidence
greater than the critical angle, ¢ represents the surface wave and is given by ¢ = ¢/n; where
¢ is the speed of the incident wave given by Eq. (3.253). The speed of surface wave for § > 0.

is given by

ey = sec? 0. (3.324)

Dimensionless Wave Spe Dimensionless Wave Spe
3.0¢ 4
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Figure 3.8: Plot of dimensionless wave speeds pc?/vy (dashed) and pcl2/’y for (a) by = —0.2,7 =
0.5, A2 =2, (b) (a) bg = —0.2,7 = 2, Ay = 32.

We hence observe that the stability of waves in the reference configuration in this case
depends on the magnitude of initial stress when b, is fixed. Figures 3.9 and 3.10 are coun-
terpart plots (for A = 1) of Figs. 3.4 and 3.5. Replacing A; by A,, the expressions for R and
R’ follow from Eqgs. (3.245) for a second reflected wave and from Eqs. (3.247) for a surface
wave, respectively. A comparison shows that in the absence of stretches, R allows a large
value of 7 until it vanishes. The behaviour is similar for intermediate values of A, that is
we see a sharp increase in the magnitude of R’ for particular choices of 7 for fixed by. The
behaviour in the absence of stretches for very small and very large values is illustrated in
Figs. 3.9(a, b) and 3.9(g, h) for R, respectively and in Figs. 3.10(a, b) and 3.10(g, h) for R,
respectively. The real and imaginary parts of R and R are shown in Figs. 3.11 and 3.12. In
these figures, the symmetry of the curves about the angle of incidence is obvious. In the case
of each plot for R', only those values of @ refer to a reflected wave for which the inequality
(3.320) holds. For instance, in Fig. 3.9a, since the value of A, = 2, which means a reflected

wave does not exists for the range /4 < 6 < 3w /4 (or equivalently 0.7853 < 6 < 2.3561)
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and rather a surface wave exists.
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Figure 3.9: |R'| for b = —2 and (a) 7 = 0.5, 43 = 2, (b) 7 = 1,4y = 8, (¢) 7 = 3, Ay = 72, (d)
7 =250, Ay = 5 x 10°, Plotted as a function of the angle of incidence  and 0 < 0 < .
The plots refer to the amplitude of a surface wave when the inequality (3.320) does
not hold. For example, a surface wave exists for 0.7853 < # < 2.3561 in (a) and for
1.20943 < 6 < 1.93216 in (b).
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Figure 3.10: |R| for by = —2 and (a) 7 = 0.5,4y =2, (b) 7 = 1,45 =8, (c) 7 = 3, Ay = 73, (d)
7 = 250, Ay = 5x 10°, Plotted as a function of the angle of incidence # and 0 < 4 < 7
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Figure 3.11: Real(R') (left column) and Imaginary(R’) for by = —2 and (a), (b) 7 = 0.00001, Ay =
8 x 10710, (c), (d) 7 =2, Ay = 32, (e), (f) 7 = 5, Ay = 200, (g), (h) 7 = 10, Ay = 800,
plotted as a function of the angle of incidence 6§ and 0 < 6 < w. The plots refer to
the reflection coefficient of a surface wave when the inequality (3.320) does not hold.
The changing vertical scale may be noted.
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Figure 3.12: Real(R) (left column) and Imaginary(R) for by = —2 and (a), (b) 7 = 0.00001, Ay =
8x 10719 (c), (d) 7 =2, A3 = 32, (e), (f) T =5, A3 = 200, (g), (h) A = 10, A5 = 800,
plotted as a function of the angle of incidence 6 and 0 < 0 < 7.



Chapter 4

Surface Waves in Initially-stressed

Materials

In this chapter, we apply the theory of the superposition of infinitesimal deformations on
finite deformations in a initially-stressed incompressible hyperelastic material to the study of
the propagation of surface waves in a half-space which is subjected to a pure homogeneous
deformation. The influence of initial stress on elastic waves was first studied by Biot [5].
Further work on the propagation of surface waves in a compressible and an incompressible
elastic body which is not stress-free in its undisturbed state was carried out by Hayes and
Rivlin [15]. Flavin [11] studied surface waves for Mooney-Rivlin and neo-Hookean materials.
In [49, 50, 51], Willson investigated the properties of surface wave propagation for a variety of
isotropic materials for different states of pre-stress and pre-strain. In [9], Dowaikh and Ogden
analyzed in detail the propagation of infinitesimal Rayleigh surface waves along a principal
direction in a pre-stressed incompressible elastic half-space whereas Dowaikh [8] carried out
a similar analysis for Love waves. The effect of pre-stress on the speed of Love waves in
an incompressible material subject to a high two-dimensional initial stress was studied by

Ohnabe and Nowinski [40] and numerical results were presented for a neo-Hookean material.

4.1 Rayleigh Surface Waves in an Initially-stressed In-
compressible Half-space

The possibility of a wave travelling along the free surface of an elastic half-space such that
the disturbance is largely confined to the neighbourhood of the boundary was considered by

Rayleigh [42]. The displacement of surface waves or Rayleigh waves decays exponentially

88
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with increasing distance from the boundary.

In this section, we consider the propagation of Rayleigh surface waves in an initially-
stressed incompressible half-space subject to general pure homogeneous pre-strain. Ex-
pressed in terms of Cartesian coordinates (xi,zy,x3), we suppose that the deformed half-
space occupies the region x5 < 0 and we consider waves propagating along the x; axis. For
simplicity, we also take the x; axis to correspond to a principal axis of the underlying defor-
mation. We assume that the incremental (or infinitesimal) displacement associated with the
wave has no component normal to the (x1, x9) plane and that the x; and xs components are
independent of x3. As a result, the basic equations derived in the Section 3.4.1 apply. We

suppose a surface wave of the form
1 = Aexplskxy — ik(z — ct)], (4.1)

where c is the speed of propagation of the wave and k is the wave number and A is a constant.
We require s to have positive real part so that the wave decays as ro — —o0.

Using Eq. (4.1) in Eq. (3.149), we get

Bss* — 2iB35% — (28, — pc?)s® + 2iBys + (81 — pc?) = 0. (4.2)

For the particular strain-energy function given by Eq. (3.111) and choosing 5 = 0,
B, ..., 05 are given by Eqs. (3.170)—(3.174). Therefore, in this case, Eq. (4.2) yields the

following quadratic for s%:

Bss* — (282 — pc?)s® + (B — pc?) = 0. (4.3)

If we assume that the boundary is traction free in the underlying configuration, then a5, 799
and Ty, vanish identically. In this case, (1,20, and 5 are given by Egs. (3.231)—(3.233).
Also assuming the incremental traction to be zero on the boundary xzo = 0, the incremental
boundary conditions are given by Eqgs. (3.181) and (3.182). The two-dimensional strong
ellipticity conditions in this case are given by Eq. (3.179).

Let s? and s2 be the roots of Eq. (4.3). Then

s+ 3= (20, — pc®) /B, sts3 = (61— pc?)/Bs. (4.4)

For decaying solutions for v, we require s; and sy to have positive real part or, exceptionally,
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if real, then at most one of s; and s, may vanish. In either case, we require s3s3 > 0. Since
Bs > 0 by the strong ellipticity condition, we deduce from Eq. (4.4) that the wave speed lies
within the bounds

0 < pc® < 6. (4.5)

If ¢, denotes the speed of a plane (shear) wave propagating in the z;-direction with dis-
placement in the zo-direction in an unbounded body subject to the same homogeneous pure

strain, then

58 - ﬁl/:u> (46)

where we have introduced the notation & = pc?/p. This corresponds to the upper limit in
Eq. (4.5).
Taking s; and s, to denote the solutions of Eq. (4.3) with positive real part, the solution

for 1 may be written in the form
Y = (Ae®h2 4 Bes2k*2) explik(ct — x1)], (4.7)

where A and B are constants. Substituting Eq. (4.7) into the boundary conditions (3.181)
and (3.182) yields

(sT+ DA+ (s2+1)B = 0, (4.8)

(285 4 B5 — pc — Bss2)s1A + (282 + B — pc® — Bs53)soB = 0. (4.9)

For a nontrivial solution of the system of Eqgs. (4.8) and (4.9) for A and B, the determi-

nant of the coefficients must vanish. Therefore,

14 s? 1+ s2
det ! > | =o, (4.10)
(1+52)s; (1+s%)sy

where we have made use of Eq. (4.4);. We therefore have
(Sl — 82)[8182(8% + Sg + 5189 + 2) — 1] =0. (411)

It may be noted that vanishing of the factor (s; — s9) in Eq. (4.11) yields a solution from
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Eq. (4.7) which is recoverable from the second factor in Eq. (4.11) for s; = s5. Therefore,
after some calculations and noting that s;s, must be positive, removal of the factor (s; — s5)

from Eq. (4.11) leads to

=

B5(B1 — pc®) + (282 + 205 — pc?)[B5(B1 — pc?)]2 = f5. (4.12)

Equation (4.12) is the secular equation which determines the speed ¢ of propagation of surface
(Rayleigh) waves of the type considered.
The square root term in Eq. (4.12) can be removed by squaring after rearrangement to

yield the cubic

(pc?)? = p(pc®)? + qlpc®) —r =0, (4.13)
where
p = 40+ 365+ B, (4.14)
q = (262+265)° + 251202 + 205) + 263 — 26155, (4.15)
ro= [(BiBs)E (282 + 285) + B2 — i 3s)
X [(Bus5)% (282 + 205) — B2 + B35/ Bs. (4.16)

Equation (4.13) gives solutions of pc? but the squaring process may introduce solutions of
Eq. (4.13) which are not solutions of Eq. (4.12). For example, when ¢ = 0, r = 0 and either
of the factors in Eq. (4.16) may vanish, but only the second of these, given by

r' = (8185)2 (282 + 205) — B2 + 1 Bs, (4.17)
corresponds to a solution of Eq. (4.12). To prevent this problem, we introduce the notation
n=[(B1 — pc?)/Bs]? (4.18)

so that

pc? = B — Bsn®. (4.19)
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In view of Eq. (4.5), we must have

0<n< (51/55)%- (4.20)

4.2 Analysis of the Secular Equation

4.2.1 Analysis of the Secular Equation in the Deformed Configu-

ration

In terms of 7, Eq. (4.12) reduces to a simple cubic equation

1’ +0° + (202 + 265 — Bi)n/fs — 1 =0. (4.21)

A secular equation similar to Eq. (4.21) was obtained as a special case for a general strain-
energy function by Dowaikh and Ogden [9] for an incompressible isotropic solid.

We can re-write Eq. (4.21) in the form
fo)=n"+n"+dn—1=0, (4.22)

where d = (23 + 205 — 1)/ Bs.
From Eq. (4.22), it may be noted that f(0) < 0 for any value of d. To ensure that at

least one real root corresponding to a nonzero wave speed exists in the interval (4.20), we

require f(5;/ 65)% > 0, which after some rearrangement yields

Bs[B1 — Bs + (ﬂ1/55)%(252 +205)] > 0. (4.23)

In the undeformed configuration, 85 = p and p > 0, and we therefore require from continuity

G5 >0, (4.24)
By — Bs + (51/55)2 (285 + 205) > 0. (4.25)

We see that the condition (4.24) entails the strong ellipticity condition (3.179),. Moreover,

we have

2+ 2(0155)% — [26 + 205 + (Bs/50)E (By — )] = (Bu/B)3 (B — B2)2 20,  (4.26)
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and it follows that (4.26) entails (3.179)s.

It is easy to see that any possible turning points of f(n) should occur at n = (=1 +
V1—=3d)/3. If d = 1/3, the two points coincide. If d > 1/3, there are no real turning
points, which means f(n) is a monotonically non-decreasing function. For 0 < d < 1/3,
the maximum and minimum both occur in n < 0. For d = 0, the minimum value of f(7)
occurs at 77 = 0 and the maximum occurs in 7 < 0. For d < 0, the minimum value of f(n)
occurs in 7 > 0; however, the maximum remains in 7 < 0. In all these cases, there exists
a unique positive solution for n which satisfies Eq. (4.22). Since the maximum occurs in
n < 0, the maximum value of f(n) may be positive or negative. Therefore, the two solutions
other than the real positive solution can be both negative or complex conjugates, depending
on the value of d. It is therefore ensured that a unique surface wave exists when the surface

xo = 0 is free of traction. The exact solutions, say 11, 12,73, of Eq. (4.22) are given by

1 21/3(3d — 1)
" 3 3(25+ 9d + 3v3v23 1 184 — & + 4dP)1/3
2 23 + 18d — d? + 4d3)'/?
N (25 +9d + 3v/3v/23 + 18d — d2 + 4d3) | (1.27)
3 x 21/3
B _1+ (1+iv3)(3d — 1)
" 3 3% 22/3(25+ 9d + 3v3v23 + 18d — & 1 AdP) /3
(1 —1iv/3)(25 4 9d + 3v/3v/23 + 18d — d2 + 4d3)'/3
- : (4.28)
6 x 21/3
B _1+ (1 —iv/3)(3d — 1)
s 3 3% 223(25+ 9d + 3v3v23 + 18d — & 1 413
1 +iv/3)(25 + 9d + 3v/3v/23 + 18d — d? + 4d3)'/3

6 x 21/3

Here, n, gives the positive real solution and 7y and n3 are the complex conjugate solutions
or the negative real solutions of Eq. (4.22), depending on the value of d.

For an initially-stressed incompressible half-space in its deformed configuration subject
to a homogeneous deformation, let A1, Ay, A3 be the principal stretches corresponding to the
principal axes x1,zo and x3 respectively. In particular, if the underlying deformation of the
half-space corresponds to plane strain then A3 = 1 and we write A\; = X and Ay = A7, We
assume 715 = 0 and 77 and 79y are the principal initial stresses.

For the special model given by Eq. (3.111) and assuming 799 = 0, we can re-write the

values of (31,205 and (5 from Eq. (3.237) as

B/ = Ne, 2Bo/pp = Ne+ N2+ 4bM\ T2, Bs/p= A2, (4.30)
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where
bo=pji, T=1n/p, €=2b(N\ -1 +F7+1. (4.31)
Also, d in Eq. (4.22) is given by
d =3+ 4by7*\°, (4.32)
In this case, through Eq. (4.20), Eq. (4.32) is subject to
0<n<Ne (4.33)
For a real upper bound of 1, we must have
€ =200\ = 1)+ 7+1>0, (4.34)

which holds V7 when 8by(A* — 1) > 1. For 8by(\?> — 1) < 1 (Eq. (3.252) re-written), we have

—1+4+/1—=8b(N2 1) - —1—+/1—=8b(A\2—1)
Abo(\2 — 1) ’ Aby(\2 — 1) '

(4.35)

It may be noted that inequality (4.34) entails the strong ellipticity condition (3.179);.

In terms of 1, we can re-write Eq. (4.19) as
€=M\ — N2, (4.36)

where we have defined & = pc?/u. The underlying deformation is stable for AMe > n?.

The relation of plane shear wave speed with the initial stress is given by
£ = Ne. (4.37)

Using the solution from Eq. (4.27) in Eq. (4.36), Fig. 4.1 shows the behaviour of ¢ with
respect to A for various choices of by and 7. The dashed graph here represents the shear
wave velocity for zero, a positive and a negative value of the initial stress. From Fig. 4.1,
when the initial stress vanishes in Eq. (4.36) (represented by the graph labelled as ‘a’ ), the
surface wave speed £ approaches the plane shear wave & with increasing stretch. From Fig.

4.1, we can see that under the effect of the compressional initial stress the surface wave speed
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decreases, whereas for tensile initial stress, it increases with increasing stretch and also, it is
obvious that a similar behaviour is observed for the shear wave velocity in a initially- stressed

material. Also, when £ =0 or n = +/31/0s, from Eq. (4.36), the value of X is

A= n/e (4.38)

This value of A\ gives the point of instability for particular choice of 7.

25-
(A)
2.0F
1.50
1.00
0.5[
,;-_—!ﬁ'
0.0 0.2
25-
- ®
20[
1.50
1.0-
0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Figure 4.1: ¢ (Vertical axis) with respect to A. (A) For by = —1, £ (continuous graph) from Eq.
(4.36), 7 = (a) 0, (b) —1, (c) 1, & (dashed graph) from Eq. (4.37) for 7 = (d) 0, (e)
-0.7, (f) 0.7, (B) For by = 1, £ (continuous graph) from Eq. (4.36), 7 = (a) 0, (b) —1,
(c) 1, &5 (dashed graph) from Eq. (4.37) for 7 = (d) 0, (e) —0.7, (f) 0.7

For the particular strain-energy function under consideration, the above inequalities
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a bo =60 (b) bo =20 (C) bo =12
| e (Lf
bg =1 (e) bg =0.2 (f) bg = —-0.7

40 401 40

20+ 20+

—40|-

() bo = -3 60

(h) bo = —10 (i) bo = —
Figure 4.2: Plot of 7 (Vertical axis) with respect to A from the inequality (4.40). The shaded
graph is the stability region for different values of b

(4.24) and (4.26) reduce to

pA"2 > 0, (4.39)
Ne — A2 4+ A2e2 [ A2 (e 4+ 4bpA?72) 4+ 3A7%] > 0. (4.40)

The inequalities (4.39) and (4.40) along with € > 0 imply that the (two-dimensional) strong
ellipticity condition holds. The stability regions for different values of by are shown in Fig.

4.2 following the inequality (4.40).
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Using Eq. (4.13), we can rewrite the secular equation in its non-dimensionalized form

9(6) =& —pi& + @€ —r =0, (4.41)

and from Eqs. (4.14)—(4.16), we have p, ¢ and r in the non-dimensionalized form

pL=p/p = 3\ +5X2 4+ 8by A7, (4.42)
Q= q/p? = [Ne+3NT2+4bAT)? 4+ 20%e[N\%e + 3N + 4bp A7

+ 207 = 2¢, (4.43)
ri=r/pd = Ne[AN%e+ 3NTE 4 Abp A2 — A2 (AT — N2 (4.44)

The behaviour of ¢ as a function of 7, from Eq. (4.41), is illustrated in Fig. 4.3 for different
choices of A\ and by. Figure 4.3 shows that for various choices of A\ and by, the squaring
process may introduce solutions of Eq. (4.41) which are not solutions of Eq. (4.22). For
example, the arrows in Figs. 4.3a and 4.3b refer to the extra values of 7 for which & = 0.

The dashed graph represents the second factor in Eq. (4.17) which in this case is given by
ri(7) = eNe + 372 + 4b AT = A+ e (4.45)

Also, it is obvious from Fig. 4.3 that the solutions are unaltered for by > 0 and the solid

graph ‘b” and dashed graphs ‘¢’ coincide.
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c (Dashed Grapt

Figure 4.3: (a) 7} (vertical) with respect to 7 (horizontal) from Eq. (4.45), (b) & (vertical) with
respect to 7 (horizontal) from Eq. (4.36), (c¢) Dashed Graph: & (vertical) with respect
to 7 (horizontal) from Eq. (4.41), for various choices of A and by, (A) A = 1.7,by = —2,
(B) A= 0.7,bp = —2, (C) A = 1.3,by = 1.2, (D) A = 0.7,bp = 1.5. For by > 0 in (C)
and (D), the solid graph ‘b’ and dashed graph ‘c’ coincide.
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4.2.2 Analysis of the Secular Equation in the Reference Configu-

ration

In the undeformed but initially-stressed reference configuration we have F =T or \; = A\ =
1. We assume 75 = 0 and 717 and 79 are the principal initial stresses. For the special model
given by Eq. (3.111), the values of (1,20, and 5 are given by Eqgs. (3.273)—(3.275). If we
further assume 15, = 0, d in Eq. (4.22) is given by

d =3+ 4by7>. (4.46)
In this case, through Eq. (4.20), Eq. (4.22) is subject to
0<n<VI+T (4.47)
For a real upper bound of 1, we must have
T>-1 (4.48)

This entails the strong ellipticity condition (3.277); when evaluated in the reference config-
uration.
In the classical limit when the initial stress vanishes, i.e. when 7 =0, Eq. (4.22) reduces

to
7’ +n*+3n—1=0, (4.49)
subject to
0<n<lL. (4.50)

The real root of Eq. (4.49) lies at n =~ 0.2956, which by Eq. (4.19) leads to the approximate
value of 0.9162 for pc?/u. This agrees with the classical case of Rayleigh surface wave in
incompressible isotropic materials (see, e.g., [10]).

For the considered special model, we must have from inequalities (4.24) and (4.26)

> 0, 4.51
M

74+ (L4+7)2(4 4 7 + 4by7%) > 0. (4.52)
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The inequalities (4.51) and (4.52) along with 7 > —1 imply that the (two dimensional) strong
ellipticity condition holds. Figure 4.4 shows the stability region (bg, 7).

5

Figure 4.4: Plot of 7 (vertical axis) with respect to by (horizontal axis) from Eq. (4.52). The
shaded part shows the stability region for (bg, 7)

Specialising the discussion in Section 4.2.1 for A = 1, for the special material under
consideration, a unique real positive root, 7y(7), for the secular equation (4.22) exists. The

wave speed in this case relates to the initial stress through

E=pc/p=7+(1—n), (4.53)

where for positive real values of &, we require 7 > —(1 —n2). It is therefore ensured that a
unique surface wave exists when the surface x5 = 0 is free of traction. The exact expression
for this solution is obtained by using the appropriate value of d, given by Eq. (4.46), in Eq.

(4.27). The normalized plane shear wave speed &, in this case is given by
=T+ 1. (4.54)

For Eqgs. (4.53) and (4.54), we refer to Fig. 4.5. The point of instability i.e., when & = 0, is

given by
F=n—1, (4.55)

whereas for shear wave & the corresponding value is 7 = —1. From Fig. 4.5, we observe
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that for positive values of by, & behaves almost in the same manner as &. However, in the
case when by < 0, the behaviour is similar for some values of 7. Further, unlike the almost
linear behaviour of £ for by > 0, the plot is non-linear and shows the two solutions where the

wave speed vanishes.

Figure 4.5: (A) for by = —1: (a) Dashed Graph: & (vertical) from Eq. (4.54) with respect to 7,
(b) Continuous Graph: & (vertical) with respect to 7 (horizontal) from Eq. (4.53), (B)
for by = 5: (a) Dashed Graph: & (vertical) from Eq. (4.54) with respect to 7, (b)
Continuous Graph: & (vertical) with respect to 7 (horizontal) from Eq. (4.53)

For the same special model given by Eq. (3.111), using Eqs. (4.13)-(4.16), we can rewrite

the secular equation in its non-dimensionalised form as

9(&) = & — paf® + @€ — 12 = 0, (4.56)
where
p2=p/p = 8byT> + 37 +8, (4.57)
@ =q/p? = [4boT? + 7+ 4 +2(7 + 1) 47> + 7 4 4] — 27, (4.58)
ro =1/ = (F+1)[4by7? + 7 +4]* — 72 (4.59)

The solutions of Eqs. (4.22) and (4.56) are such that £ =1+ 7 — n2. In the instance when

the initial stress vanishes, i.e. 7 =0, Eq. (4.56) takes the form

€ — 8624+ 24¢ — 16 = 0, (4.60)

and has the unique solution occurring at £, = 0.9126 mentioned above.
The behaviour of £ as a function of 7 from Eq. (4.56) is illustrated in Fig. 4.6 for various

values of by. From Fig. 4.6b, we can see various values of 7 which give £ = 0. However, some
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solutions of Eq. (4.56) do not satisfy Eq. (4.22) as a result of the squaring process carried
out to obtain Eq. (4.56). The arrows show the extra solutions in Fig. 4.6b for by = —3.
Also, from Eq. (4.17), in this case, we have

ro(7) = €[4 + € + 4by7?] — 1, (4.61)

where € = 1 4+ 7 in the reference configuration.

(A)

-1
\ -2L ¢ (Dashed Grapt 2r
3t Ao s T TTes e

Figure 4.6: (a) 7} (vertical) with respect to 7 (horizontal) from Eq. (4.61), (b) & (vertical) with
respect to 7 (horizontal) from Eq. (4.56), (c¢) Dashed Graph: & (vertical) with respect
to 7 (horizontal) from Eq. (4.53), for (A) by = —3, (B) by = 10. For by > 0 in (B), the
solid graph ‘b’ and dashed graph ‘c’ coincide.

4.3 Love Waves

It was first shown by Love, (see, for example, [2]) that surface SH waves are possible if the
half-space is covered by a layer of a different material. He suspected that such waves were
a consequence of formation of layers in the earth, and that SH waves were trapped in a
superficial layer and propagated by multiple reflections within the layer.

In this section, we consider two different initially-stressed materials for the layer and the
half-space. The half-space is defined by x5 < 0 and the layer, of thickness h, has boundaries
9 = 0 and x9 = h. Let B denote the deformed half-space in the region xy < 0 and
B* the deformed layer (see Fig. 4.7). The deformation in both the half-space and layer
is homogeneous plane strain with principal axes aligned with the co-ordinate axes. The
quantities in the layer are specified by a superscript ‘*’. Let the principal stretches of the
deformations in the half-space and layer be denoted Ai, A2, A3 and Aj, A3, \j, respectively.
The initial stress tensors are denoted 7 and 7* in the half-space and the layer, respectively.

The normal and shear initial stress components in the half-space (layer) are 7;; and 7;(7};
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and 775) for 4,7 € {1,2,3} and i # j, respectively. We assume 7;; = 0 = 775,1 # j.

14 R
; 5!

Figure 4.7: A initially-stressed deformed layer (B) of thickness h over a initially-stressed deformed
half space (B*).

Let the material response of B be specified by the strain-energy function per unit volume,

W (N, 7i:), and that of B* by W*(Af, 7). Following Eqs. (3.138)—(3.143), the principal

Cauchy stresses t;, t7 are given by
ow™

where p and p* denoted the Lagrange multipliers associated with the incompressibility con-

straints given by
AMAAs =1, ATAIA; =1, (4.63)

in the half-space and the layer respectively.
The plane strain deformation allows us to choose A3 = 1 in the half-space and A\; =1 in

the layer. From Eq. (4.63), we therefore have
A=A, A=A"1 and A=), A=(0D)7 (4.64)

in the half-space and the layer, respectively.
The equations of incremental motions for zo < 0 and 0 < x5 < h are, respectively, given

by

Aopiqjljpq = Di = PUiu, (4.65)

AbpiqiWipg — P = P Ui g, (4.66)
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where Agpiq; are the elastic moduli given by Eq. (3.33) with ¥;; = 0 = ¥j; for i # j and
i,7 € {1,2,3} which follows from the assumption that the shear components of the initial
stress vanish for the considered homogenous strain. u; are the components of the incremental
displacement and p, the corresponding increment in p and p (p*) is the density of the material
in the half-space (layer). Similarly, for the other material in 0 < x5 < h.

We now consider a plane harmonic SH wave, propagating along the x; principal direction
with displacement in the x3 direction. The incremental displacements u and u* are such

that u = (0,0, u3) and u* = (0,0, uj;). We suppose a wave of the form

uz = Aexp[skxs| explik(zy — ct)], (4.67)

uy = [Aj cos s"kxg + Ay sin s" ko] explik(zy — ct)], (4.68)

where k = w/c is the wave number, w is the angular frequency, ¢ is the wave speed and s and
s* are to be determined by substitution of u3 and u in the appropriate equations of motion.

From Eqs. (4.65) and (4.66), we get p; = po =p’ = p, =0 for i = 1,2, and for i = 3

A01313U3,11+A02323U3,22 =  PU3st, (4-69)

* * * * *
Abia1aUz 11 + Apagasiszz = pruz . (4.70)

On substitution of Eq. (4.67) in Eq. (4.69), we get

2
§2 = Aopiz13 — pc

4.71
Ao2s23 (4.71)
Similarly, for the layer, Eqs. (4.68) and (4.70) lead to
§*2 — pc? —* -’481313‘ (4.72)
Ab2323
Following the notation defined by [8], we can write
pc?j = Aoijij, P*CZ‘Q = Agijz‘ja (4.73)

where ¢;; is speed of a plane shear body wave propagating in the x; direction with displace-

ment in the z; direction. Therefore, from Eqs. (4.71) and (4.72), we obtain

2 2 2 *2
Cia — C cT—cC
82 13 8*2 13 (474)

= R )
Ca3 Co3
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It follows from Eq. (2.127) that the incremental nominal stress tensor has components

in the half-space and the layer

S()pi = Aopigjtjg — DOpi + DUp, (4.75)

Sopi = Abpiqjtig — D Opi + P U 4, (4.76)

respectively.
The boundary conditions for the considered problem are given by the vanishing of the
shear stress at the free surface 9 = h and continuity of the shear stress and the displacement

at the interface o = 0. Namely,

Sz =0 on Ty = h, (4.77)
Uz = u;, S023 = 3823, on X9 = 0. (478)

Using Eq. (4.76) in Eq. (4.77), we get
Aqsin s*kh — Ag cos s"kh = 0, (4.79)

and from Eqs. (4.67), (4.68), (4.75) and (4.76) in Eq. (4.78), we have
A=A, spcsyA=s*pcyAs. (4.80)

We require s > 0 for the wave to decay in the half-space as x5 — —oo and therefore,

from Eq. (4.73), we have
<l (4.81)

However, s** may either be positive or negative. If s*2 > 0 then Eqs. (4.79) and (4.80) yield

the secular equation in the form

2
tans"kh = spczzz’ (4.82)
S*P*Ca3

subject to

i< <l (4.83)
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On the other hand if s*> < 0 then Eq. (4.82) is replaced by

2
tanh |s*|kh = %, (4.84)
|s*|p*c33
subject to
¢ < min{ci;, i3} (4.85)

Using Eq. (4.74) in Eq. (4.82), we get

pny | LBy peseiny/1— /s (4.86)
RBIB T presel /A — 1

* %2 * %2 * k2

subject to Eq. (4.83). If we take pci; = pciy = pck = p and p*chz = p*ciz = p*c? = p*, the

tan(

above equation reduces to the classical form given by [2]. Here ¢y and ¢ are the classical
transverse wave velocities in the half-space and the layer, respectively.

Similarly, Eq. (4.84) in its explicit form is given by

tanh(kh 1 _*202/51% _ Peascizy 1 —c2/cty ’ (4.87)
/€5 T prescisy/1— e
subject to Eq. (4.85).

By using the relation w = ck, Eq. (4.86) (or Eq. (4.87)) may be expressed in terms of
frequency and wave number. It is thus obvious that Love waves are dispersive. That is, for
various successive values of k, the roots of Eq. (4.86) (or Eq. (4.87)) will result in ¢ = ¢(k)
or in w = w(k). The tangent function gives multiple branches and therefore suggests that
multiple roots will exist for a given value of k. Thus, the dispersion curve and frequency

spectrum should have multiple branches, corresponding to various modes of propagation. It
l—cz/ci‘g

*2 [ x2
c35/ciy

may be noted that ¢ — c¢y3, as kh — nm, where n is any natural number. This
means as the wavelength decreases, the wave corresponds to a plane shear wave propagating
in the half-space. Also, ¢ — ¢} as kh — o0, i.e. as the wavelength becomes large compared

to the thickness of the layer the Love wave takes on the speed of the upper medium.
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4.3.1 Analysis of the Dispersion Relation in the Deformed Con-

figuration

Following the special model given by Eq. (3.111), we can write for the half-space in the

deformed configuration
2 N2 \2[9- ()2
pci; = pA; + A [20(A; — D) + 17, (4.88)

which reduces to the classical expression pc?/u = A? in the absence of initial stress i.e., when
7:i = 0. Here, ¢4 is the shear wave speed in the deformed configuration. Similarly, for the

layer, we have
* %2 k%2 *2 ey =% [\ *2 * *
P Cyi =H A N2 (N = 1)1 4 1T (4.89)

Since we are considering the displacement in the x3 direction, we have j = 3. For ¢ = 1, 2,

the above expressions in Eqs. (4.88) and (4.89) can be re-written as

2 * %2
Phs _ep2, 258 _ ey, (4.90)
I I
where
6 =2b(N — DT+ 7+ 1, € =205\ - D72+ 7 + 1, (4.91)
and
— Tii — % 7_7;; — * * — %
T=—, T, =—0, bo=pj, by=pp" (4.92)
1t 1t

We therefore have from Eqs. (4.86), (4.88), (4.89) and (4.90)
pIE — A je2de [ eAf—§
tan|kh = U , 4.93
e T o e ae )

* ) %2
€17

p,,u/

subject to

< E< e (4.94)
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where we have introduced the notations p’ = p*/p, u' = u/p* and & = pc?/p. Also,

e =200\ =D+ 7+ 1, =200\ = 1D)(F)2+ 7+ 1, (4.95)

€2 =2bo(\s— )T + T+ 1, e =20\ —1)(%)+7 + 1. (4.96)

Since we have assumed 79 = 0 = 7, it implies that e, = 1 = €. Equation (4.93)

PIE — A s A2 e —¢
tan[khy | FEE L] = 22 [ LTS 4.97
anl Ag? | "N\ e —en (497)

subject to the inequality (4.94). Figure 4.8 shows the lowest modes for £ with respect to kh

becomes

in Eq. (4.97) in the classical limit (7; = 0 and all stretches equal to unity) subject to (4.94).

See, for example, [2]. For various other choices of parameters, see Figs. 4.9-4.11.

121
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Figure 4.8: Plot of ¢ for the lowest modes of Love waves from Eq. (4.97) for the classical limit
M=X=XN =X =0b=0=1and 7, =0=7 (a) p = 0.9018,1" = 14 (b)
o =09131, 4 = 1.8

From Figs. 4.9-4.11, it is obvious that wave speed increases in the presence of tensile
initial stress (73 > 0) with increasing kh or equivalently decreasing wavelength. Whereas for

compressional initial stress (13 < 0), the wave speed decreases.
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¢

6

Figure 4.9: Plot of ¢ for first three modes of Love waves from Eq. (4.97) for A\ = 1.5, X2 =
1/1.5,Xf = X5 =by=b =1,p/ = 1.5,/ = 1.6. For al, a2, a3 (representing first three
modes, respectively), 71 = 0.5 = 7{. For bl, b2, b3, 71 = —0.5 = 7. For cl, ¢2, ¢3,
71 = 0 = 77 (continuous graphs)

\\\\\\\\\\\\\\\\\\\\\\Skh

Figure 4.10: Plot of ¢ for first three modes of Love waves from Eq. (4.97) for \j =1 = A\, A\] =
1.2,X51/1.2,by = by = 1,p/ = 2,4/ = 3. For al, a2, a3 (representing first three
modes, respectively), 71 = 0.5 = 7. For bl, b2, b3, 7, = —0.5 = 7. For cl, c2, ¢3,
71=0= ﬁk
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R T R

Figure 4.11: Plot of £ for the lowest mode of Love waves from Eq. (4.97) for Ay = 1.5, Ay =
1/1.5,07 = 1.2,05 = 1/1.2,bg = b = 1,p/ = 2,1/ = 3 and (a) 7, = 0 = 7/, (b)
T1=—05=7()n1=05=7,(d)7n=-17 =07 (¢ 7 =0.7,7 =—-0.7

If the initial stress vanishes, i.e. 7, =0 and \y = Ay = A3 =1 and \] =\ = \j =1, Eq.
(4.93) reduces to

tan(khy/p/ /'€ — 1) — u'% =0, (4.98)

which is the well-known dispersion relation for Love waves in the linear theory. See, for
example, [2].

Similarly, Eq. (4.87) gives

$\F2 oy A 22 —

tanh[kh % - ,U/ Ei i * 612 : /g/ ? (499)
€75 A5 || AT — p'i'E
subject to
. 2 AT
¢ < min{e ], s (4.100)
Since Ty = 0 = 73, we have from Eq. (4.99)

N2 o Ao N2 —&
tanh[khy | ~—"2] = /=y o, 4.101
| Ay? | Ao\ AP = '€ (4.10)

subject to the inequality (4.100). Figures 4.12-4.13 show plot of £ with respect to kh for Eq.
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(4.101) for various choices of pre-strain and initial stress subject to (4.100).

\\\\\\\\\\\\\\\\\\\\\\\\\\kh

0.1 0.2 0.3 0.4 0.5 0.6

Figure 4.12: Plot of £ with respect to kh from Eq. (4.101) for A\; = 1.5, A2 = 1/1.5,A] = 1.2)\5 =
1/1.2,bp = b5 = 1,p) = 2,0/ =3 and (a) 71 = 0 =7/, (b) 71 = =05 = 7/, (¢)
71 =0.5 =77, (d) 7 = 1,7 =0.7, (e) 71 = 0.7, 77 =-0.7

1.4+

‘\\\\\\kh

4 5

Figure 4.13: Plot of ¢ with respect to kh from Eq. (4.101) for Ay = 1/2, 0 = 2, A = X5 = p/ =
W =1,byp=-050b5=25and (a) 7, =0=7], (b) 71 =—-03=7f, (c) 71 =0.5 =7,
d)n=1=7,(e) 1 =177 =27
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4.3.2 Analysis of the Dispersion Relation in the Reference Con-

figuration

For an initially- stressed reference or undeformed configuration, we have Ay = Ay = A3 = 1.

As a result, Eq. (4.97) becomes

€1 —¢&
tan|kh/p''é — € — 4.102
| g P (1102
subject to
€1
T <& < €. (4.103)

Similarly, Eq. (4.101) gives
tanh[khy/ef — /€] = 4y *617;'6'& (4.104)
G —PH

*

£ < min{e, %}. (4.105)

subject to

Figures 4.14-4.15 refer to Eqgs. (4.102)—(4.105) for various choices of parameters whereas
the stretches are all fixed as unity. Figure 4.14 shows that for positive values of 71, the wave
speed increases for small kh (or large wavelength) whereas for negative values of 7, the wave
speed decreases for small kh. A similar behaviour is shown in Fig. 4.15 for the negative and

positive values of 7.
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&

2.0+

Figure 4.14: Plot of £ with respect to kh from Eq. (4.102) for \j = Ao = A\] = A5 = by = b =
Lp =2y =3and (a) 4 =0=77, (b) 7 = -05=7, (¢) 7 =05 =77, (d)
71 =—-02,7 =07, (e) 71 =0.7, 7 = —0.7
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I . . . . I \\ . kh

1.0 1.5

Figure 4.15: Plot of ¢ with respect to kh from Eq. (4.104) for Ay = Ay = A\] = X5 = by = 2,05 =
5,0/ =02,/ =03and (a) 7 =0=7, (b) 71 = —-05=7], (¢) . = 0.7, 7 = —0.7,
(d) 71 =-02,7 =07, (e) 1 = 16,7 = 1.7



Chapter 5

Waves in a Residually-stressed Elastic

Tube

5.1 Axial Extension and Radial Inflation of a Residu-

ally Stressed Thick-Walled Tube

We consider a thick-walled circular cylindrical tube which has a reference geometry defined

by
A<R<B, 0<O©<2r, 0<Z<IL, (5.1)

where A and B are the internal and external radii, respectively, and L is the length in the
reference configuration. R, ©, Z are cylindrical polar coordinates associated with basis vec-
tors {Eg, Eg, Ez}. The deformed geometry is given in terms of cylindrical polar coordinates

1,0, z, with basis vectors {e,, ep, e, }, such that
a<r<b 0<60<2m, 0<z<l, (5.2)

where a and b are the internal and external radii, respectively, and [ is the length in the
deformed configuration. The tube is deformed so that the circular cylindrical shape is main-
tained. See Fig. 5.1. Under the assumption that the material is incompressible, the defor-

mation is described by

rP=ad+ )\ (R*-A%), 0=0, z=)\.7, (5.3)

114
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where )\, is the uniform axial stretch.

Figure 5.1: The residually-stressed circular cylindrical tube in (a) reference configuration and (b)
deformed configuration when subject to axial load and internal pressure P.

Let eq, e5, e3 denote the unit basis vectors corresponding to the coordinates 0, z, r respec-
tively. Let Ay, A2, A3 denote the corresponding principal stretches. Then, from the incom-

pressibility condition (3.175) together with Eq. (5.3), we have

M=—==X\ d=X\, A=AT"ATY (5.4)

r
R
where we have introduced the azimuthal stretch A\ which is a function of r (or R) from Eq.
(5.3).

It follows from Egs. (5.3) and (5.4) that

R? B?

>‘2>\z 1= ﬁ()‘z)\z - 1) = E(AgAz - 1)7 (55)
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where the definitions
Ao =a/A, N =10/B, (5.6)
have been introduced. It follows from the above expressions for fixed A, that
Ao = A >Ny, (5.7)

holds during inflation of the tube. The equality holds if and only if A = A2 for A <R<B
and the deformation corresponds to simple tension.

Assuming that the residual stress is diagonal with respect to the cylindrical polar axes,
let 71,79, 73 denote the principal residual Cauchy stresses. Then, from Eq. (3.1), we can

write the invariants I, I, ..., I in terms of A\, \,, 7y, 7o, 73 as follows

L= NHXHA22 L=+ 0202 =1,
[4 = T1+T2+T3, ]5:7'17'2—|—7'17'3+7'2T3, ]6:7—17—27—37
I = Nn+MNn+ A7\, L= M7+ An + A,

Iy = N2+ N2+ A2, Lo = M2+ A0 T (5.8)

The principal Cauchy stress components are given by Eq. (3.138). Considering W to
be independent of I, I, Iy and Iyo, the principal Cauchy stress components are given by
(3.139). Considering 7;; = 0,7 # j, Eq. (3.143) holds.

We make use of Eq. (5.8) and recast the strain energy function W as a function of A\; = A

and Ay = A\, and 71, o, 73 and define
W()‘v >\Z7 T1, T2, 7-3) - W()\u )‘27 )‘_1)\;17 T1, T2, T3)7 (59>

which is generally not symmetric in A, \,. Using Eqgs. (3.143), we obtain the stress differences

oW oW
o ty —t3 = \,——. (5.10)

ty —t3 = A
1— 13 N
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In its expanded form Eq. (5.10) is

oW

Aor =t —ts = 207 = AT W4 2NN = AWy + 2077 (Wr + 2X%WW5)
= 2 TAAPm (W 20, (511)

Azg—z[: =ty —t3 = 2A2 = AW 4 2(A2N2 — AT Wy + 220 (W + 202 W)
— 2N 2 (Wy 20 IAST). (512

For our specific problem, we assume 7, = 0. In the unloaded configuration the residual

stresses must satisfy

d’Tg 1 .
ﬁ+§(7—3_7—1> —0, (513>

and this is coupled with the boundary conditions
73=0 on R=A and R=D0. (5.14)

If there are no body forces in the deformed configuration, the equilibrium equation gives

dtg 1
Z(ta — 1) = 1
dr —r (fs =) =0, (5.15)

along with the boundary conditions

—P on r=a
ty = (5.16)
0 on 7r=0b,

where P is the internal pressure used to inflate the tube.

By making use of Egs. (5.3), (5.4) and (5.5) we obtain (after some rearrangement)

d\
e YO b ey | 1

and it is convenient to use the above expression to change the independent variable r to .

Then, integrating Eq. (5.15) with application of the boundary conditions Eq. (5.16) we get

bXOW Ao O
P —/a ;ﬁd’f’ = /)\b ()\ )\z — ].) Wd)\’ (518)

where the variable of integration has been changed from r to A by using Eq. (5.17).
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In view of (5.5) we regard P as a function of A\, and \,. Differentiating Eq. (5.18) with

respect to A\,, we get

ey CLOW (AL A) 1AW (AN
AN, — 1) RV et v s e (5.19)

Using Eq. (5.10) in Eq. (5.15) and integrating, we get

"\ O Aa i
a) = [ Sgrer= [0t T o2

where, as before, we have made use of Eq. (5.17) to transform the variable of integration
from r to A. The above expression will give the radial Cauchy stress component once a
specific strain energy function is used.

Integration of Eq. (5.13) gives

Rr3(R) = /AR 71 (R)dR. (5.21)

Due to the boundary conditions (5.14), we must have

/ ¥ (R)AR =0, (5.22)

This means, in particular, that 7 (R) must be positive for some R and negative for other R.
We cannot have 7 (R) = 0 since this will render 73(R) = 0.

In [33] and [32], the author considered the consequences of using the assumption of
uniform circumferential stress. As a result, it has been found the radial residual stress 73
is very small and negative except at the boundaries (where its value is zero due to Eq.
(5.14)), whereas the circumferential stress 77 is compressive at the inner boundary (R = A)
and tensile at the outer boundary (R = B). A similar discussion can be found in [6],
[47] and [41]. However, Ogden and Schulze-Bauer [35] consider uniform circumferential
strain distribution in addition to uniform circumferential stress which gives opposite signs of
the residual radial and residual circumferential stresses compared to those in [32] and [33].
Further, for a particular choice of the circumferential growth stretch ratio, the behaviours of
the residual stresses found in [32] and [33] match those presented in [43], i.e. when growth
is considered in addition to the uniform circumferential stress. More recently, Guillou and
Ogden [13] have considered growth which results in the development of residual stresses and

they obtained very similar results to those in [33] for a different strain energy function.
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In view of the above cited papers, we expect a particular behaviour of residual circum-
ferential stress inside a thick-walled tube. For simplicity, we choose 71 (R) to be linear in R

and given by
71(R) = c1(R— A) — (B — A), (5.23)
where ¢; and ¢y are constants. Since B > A, it is obvious that

T(A) = —c(B—A)<0 if ¢ >0,

Tl(B) = (Cl — CQ)(B — A) >0 if c1 > co > 0. (524)

This is in accordance with the typical behaviour of the residual circumferential stress which
is negative on the inner boundary and positive on the outer boundary. Using Eq. (5.22), we

have

/B TldR = (Cl — 202)(3 — A)2 = 0. (525)

Hence, ¢; = 2¢5. Integrating Eq. (5.21), we have
Rr3 = c3(R— A)(R — B). (5.26)

It is obvious that the above expression vanishes for R = A and R = B.

We can re-write Eqns. (5.23) and (5.26) as

n = &ARR/A—1- B/A), (5.27)
7 = eA(l— A/R)(R/A— BJA). (5.28)

Figure 5.2 shows the variation of these stresses, in non-dimensionalized form, for fixed tube
thickness. These are very similar to the graphs obtained in ([33], [32], [47], [41], [43], [13]).
Based on the expected behaviour of the circumferential residual stress, 71, we can assume

various other forms which may not be linearly dependent on R. For instance,
71 = c1cos((B — R)/A) 4+ cacos((R— A)/A), (5.29)

and similar calculations as for Eqns. (5.24) and (5.25) give ¢; = —cg and ¢; > 0. Further
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Figure 5.2: Plot of the principal residual stresses based on Eqgs. (5.27) and (5.28) for B/A = 1.2

calculations lead to

71 = ci(cos((B — R)/A) —cos((R—A)/A), (5.30)
Ty — %(sin((B — A)/A —sin((R — A)/A) —sin((B — R)/A)). (5.31)

Figure 5.3 shows the plot of the non-dimensional residual stresses for the above choice of 7

and T3.
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Figure 5.3: Plot of the principal residual stresses based on Eqs. (5.30) and (5.31) for B/A = 1.2
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Similarly, consider the choice
T = Cl(R—A)2 —CQ(R—B)Z, (532)
which, after similar calculations, gives ¢; = ¢o and ¢; > 0. Further calculations lead to

m(R) = cA*((R/JA—-1)*—(R/A— B/A)?), (5.33)
(R) = cA*[(R/A—1)> —(R/A— B/A?+ (1 - B/A)*)]/R. (5.34)

Figure 5.4 shows the plot of the residual stresses for the above choice of 7 and 73.
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Figure 5.4: Plot of the principal residual stresses based on Eqgs. (5.33) and (5.34) for B/A = 1.2

5.2 Internal Pressure in a Residually-stressed Thick-

walled Tube

Using Eqs. (3.111) and (5.4), we can write

W= %w FAZ A2 3) gW — D+ (A= D+ (A - Dnf?
1
+ 5[(}\2 o 1)7_1 4 ()\2 - 1)7_2 4 ()\—2)\;2 o 1)7_3]. (535)
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From Eq. (5.35), we have

oW

Yon T PO = AT 4 20N = M)+ (ATPATT = N + AN - )iy

= ADZOE= Dmr — (I AP N - A, (5.36)
Azg—z = P2 = AT 20208 - 1) = AT = 7 X0 - D
= AT = D+ (AT = X)) 4 An = ATA (5.37)

which, in the reference configuration, reduce to

oW oW
)\W =T1 — T3, )\Za—)\z = T9 — T3. (538)

Also, from Eq. (3.112), we have

ow
)\3 N )\ (,U + ’7'3) + Q/L)\3’7'3[()\ — 1)’7‘1 + ()\ — 1)7’2 + ()\ - 1)7’3] (539)
3

which, in the reference configuration, reduces to

ow
= [+ Ta. A4
OXs g (5.40)

Using Eq. (5.5) in Eqs. (5.27) and (5.28), we can write the dimensionless form of 7, and

T3 in terms of A\, A, \,, as

) [ex, —1 B
T1o= by(2 Mh 1 1- Z)’ (5.41)

| AN, -1 B
T3 = 1- z a’z - — 5.42
7—3 b2( \/)\2)\2_1)\/(>\2)\2_1 A)? ( )

a

where we have introduced the dimensionless quantity

by = 2 A/ p. (5.43)

Although, A appears in the expressions above but the residual stress doesn’t explicitly de-
pend on the stretches and the A here serves as the dummy variable only for the purpose of

integration.
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It follows from Eq. (5.19)

apr* A
T = gl AT 2 (N - (L - B/AY +by(1 - B/A)

— (T=X"N2) =20 (\) — 1)(BJA—1)? — by(B/A - 1)]. (5.44)

Here, we have introduced the notation
by = boby = fics A%/ u?, (5.45)

where by is given by Eq. (4.31) and by by Eq. (5.43).

Figure 5.5 shows the variation of % with respect to A\,. From Egs. (5.5) and (5.18), in
the absence of residual stress, the pressure vanishes at A\, = A> 2 as is shown in Fig. 5.6 and
the pressure tends to remain constant as the value of )\, increases. This behaviour is similar
for materials following neo-Hookean or Mooney-Rivlin models. This trend is illustrated in
plots (a) and (b) in Fig. 5.5. The same figure shows plots (c¢) and (d) for the derivative of
pressure in the presence of residual stress. In the presence of residual stress, the respective
value of A\, where the pressure vanishes (for fixed axial stretch) is shifted depending on
the values of b; and by and the thickness of the wall B/A. Also, the pressure is expected to
increase or decrease depending on the values of respective parameters and this fact is obvious
in the figures to follow.

Using Egs. (5.35) in (5.18), we have the non-dimensionalized pressure

Ao ) A3)-2 X A2 — 1)
Prep/y = [ AT o[ AN T ey
/h Ab a1 T 0[/& N, —1

Aa y—3\—2 Aa Y =3\ —2/)—2 -2 _ 1
+ / AN A )\%1%30[)\— / ATATATA )fgdA]
A A

TN 1 b N 1
Aa A R Aa >\—3)\Z—2 .

where by is given by Eq. (4.31). The behaviour of pressure from Eq. (5.46) in the absence of
residual stress is shown in Fig. 5.6 whereas graphs in the presence of the residual stress and
for various choices of \,, B/A,b; and by are shown in Figs. 5.7-5.9. We observe from these
figures that for by, by both positive, the pressure increases whereas for by, by both negative,
the pressure decreases with increasing \,. For fixed wall thickness and axial stretch, Fig.
5.9 shows the increasing or decreasing trend for various combinations of b; and by which

characterise the presence of residual stress.
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Figure 5.5: Plot of %% with respect to \q, (a) by =0 =09, A\, =1.3=B/A, (b) by =0=10b9, \, =
1.3, B/A=15, (c) by =8,by = 1,\, = 1.3 = B/A, (d) by = 8,by = L\, = 1.3, B/A =
1.5
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Figure 5.6: Plot of dimensionless pressure P* with respect to A, in the absence of residual
stress and for varying wall thickness B/A, (A, = 1.3).
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Figure 5.7: Plot of dimensionless pressure P* with respect to A\, for varying wall thickness
B/A, bl =2= b2 and )\z =1.3.
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Figure 5.8: Plot of dimensionless pressure P* with respect to A, for varying wall thickness
B/A, bl =-2= bg and )\z = 2.
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Figure 5.9: Plot of dimensionless pressure P* with respect to A, for B/A = 1.2, A, = 1.2 and
(a) bl =0= bg, (b) bl = 02, b2 = 03, (C) bl = 07, b2 = 03, (d) bl = 05, bg = 05,
(e) bl = 0.5,62 = —0.5, (f) bl = 2,62 = 05, (g) bl = 0.5,62 = 2.

5.3 Axial Load on a Residually-stressed Thick-walled
Tube

In order to hold the axial stretch A\, fixed an axial load N must be applied to the ends of
the tube. This is given by

b
N = 27T/ tordr. (5.47)
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Using Egs. (5.7) and (5.10)—(5.17), we have

)\a,
N/mA? = (A2), — 1)/ (N2, —1)72(2), oW Aa—W)Ad)\ + PX2. (5.48)
N O\, O\
Using Egs. (5.36) and (5.37) in Eq. (5.48), we have
/ 2X2N — A3 — AT 2 —A2\?) ,
N/A = (N, —1
/ e )[/Ab (A, — 1)2 /A = m g
SATINZ(A? - 1) )\3()\2 - 1 37+ ATIN27
= 1 T3d\ + T3 0\
1—2n)z BT I ) / 1oz W
+ PM, (5.49)
where A" = 1A% The behaviour of axial load with respect to A, for various choices of

parameters and wall-thicknesses is shown in Fig. 5.10. In the absence of residual stress, the
load tends to be constant for increasing A, which is similar to the behaviour of neo-Hookean
materials and Mooney-Rivlin materials. For a fixed wall-thickness, Fig. 5.11 shows the effect
of residual stress on the axial load and it is observed that with increasing \,, the axial load
either increases or decreases depending on the parameters that characterise the magnitude

of residual stress.
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™

150

100

0.5

Figure 5.10: Plot of the non-dimensional axial load N/A" with respect to A, for A, = 1.2 and (a)
B/A = 1.2,[)1 =0= b2, (b) B/A = 1.5,[)1 =0= bg, (C) B/A = 2,b1 =0= bg,
(d) BJA = 1.2,b; = —0.5,by = 0.8, (¢) B/A = 1.4,b; = —0.5,by = 0.8, (f) B/A =
1.5,b1 = —0.8,by = 1.5, (g) B/A=2,b; = 0.3,by = 0.8



CHAPTER 5. WAVES IN A RESIDUALLY-STRESSED ELASTIC TUBE 127

0.3

0.2

I T S S S S B SR R P
0 2 4 6 8 10

Figure 5.11: Plot of the non-dimensional axial load N/A" with respect to A, for B/A = 1.2, \, =
1.2 and (a) bl = 0.2,52 = 0.8, (b) bl = 0.8, b2 = —0.2, (C) bl =0= bg, (d) bl =
—0.2,by = 0.8

5.4 Analysis of Infinitesimal Wave Propagation in a
Residually Stressed Thick-Walled Tube: Axisym-
metric Case

We now consider the problem of propagation of an infinitesimal wave in a residually stressed
thick-walled cylindrical tube subject to a finite axial extension and radial inflation. For this
special case we choose e; = ey, es = e,,e3 = e, to represent the basis vectors. Also, the
azimuthal, axial and radial residual stress components are denoted as 7y, 7o, 73, respectively.

Considering small time-dependent deformations imposed on a finite deformation, i.e. for

small H, we have from Eq. (2.93)
F~H~T. (5.50)

In the absence of body forces and for small H, the incremental updated form of equilib-

rium equation (2.121) is
divS, = div[Ag(H) — pI + pH] = pu, (5.51)
and in component form

SOji,j + Sojiek . ej'Jf -+ Sokjei . eij = PUjtt, 1= 1, 2, 3, (552)
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with summation over indices j and k from 1 to 3, where the subscript j (= 1,2, 3) following
a comma represents the derivatives (0/rof,0/0z,0/0r). The only non-zero components of

€; - €5 are
€1 -€31 = 1/7", €3-€11 = —1/7’ (553)
If u = vey + we, + ue,, we have

(u+vg)/T v, v,
[H] = [gradu] = wy/T w, w, |, (5.54)

(ug —v)/r u, u,

where the square brackets indicate the matrix of components of the enclosed quantity and
the subscripts (r, 0, z) denote the standard partial derivatives.

For the axisymmetric case, Eq. (5.54) becomes

u/r 0 0
H= 0 w, w, |. (5.55)
0 u, u,

Here, the subscripts show the derivative with respect to the respective coordinate.

In this case, the incompressibility condition, H,, = 0, gives

u/r+w, +u, =0, (5.56)

which can be rewritten as

(ru), + (rw). = 0. (5.57)

From Eq. (5.57), we deduce the existence of a potential function ¢ = ¢(r, z) such that

ru= ¢, = (ru), = ¢r,, TW=—0, = (TW), = —Op,. (5.58)
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From Eq. (5.52), we have for i = 2 and i = 3 respectively

. 1. .

Soja,j + ;5032 = pu, (5.59)
. 1. 1. .

Sojg,j + ;5033 - ;5011 = pu. (560)

In the expanded form, Eqgs. (5.59) and (5.60) give

e+ pwy = ApsazoWer + Ag2azow., + (7 A£)3232 + Aosas2)w, /7
+  (Ao22ss + Aos2s) Uz + (7’«42)3223 + Apszos + Ao1122 + rp')u /1, (5.61)
Dr + puy = (7“-42)1133 — Aoiinn)u/r* + (7’«4;)3333 + Aossss + 0" )ur /17 + Aosszstr

+  Apogastiz. + (7 AE)2233 + Anazzs — Aori22)w: /1 + (Ag2ass + Aosaos)wr-,  (5.62)

respectively. The primes ‘’ 7 in the superscript denote the derivative with respect to ‘r’.

Taking r-derivative of Eq. (5.61), z-derivative of Eq. (5.62) and subtracting, we get

4 3 ! 2 2 " !
T Aogggzwrw _I_ T (2T.A03232 ‘I’ A03232)wr7~ _I_ T (7’ A03232 _I_ TA03232 - Aogzgz)wr
3 ' ' 4
+ 17 (rAggase — T Apgass — Ao22ss + Aori22)Wa. + 17 (Aogaza — Aosass — Aozs)Wrss

4 4 3 ’ '
— 1 Ag3a3zzs + 17 (Ao22ss + Aosazs — Aossss) U + 70 (T Agaass + 27 Aggaes + Aosazs

! 2 2 " ! ! 2 1
+ Aonizz — rAgszzz — Aosssz) Uz + 77 (1" Agzans + 7 Agsans + 7 Agrize 7P

—  Aopsazs — Aoria2 — 7’/%1133 + A01111)Uz = ,07’4(wrtt - uztt)- (5-63)
From Eq. (5.58), we have
1 1
U = _¢Za w = __¢Ta (564)
T r
which, in turn, gives

1 1 1 1
U, = _¢zz> Uzzz = _¢zzzza Ury = __2¢zz + _¢rzza
T T T T

2 2 1
rrz — —a@Pzz T 5 Przz —Qrrzz, 5.65
“ 7’3¢ r2¢ * r¢ ( )
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and

1 1 1
Wz, = __¢rzza Wzzr = _2¢7’zz _¢rrzza
T T
1 1 2 2 1
Wy = 5 Pr = _¢rr7 Wyyr = __3¢7" + _2¢7"r - _(brrru
T T T T T
6 6 3 1
Wrpr = ﬁqsr - ﬁasrr + ﬁgbrw’ - ;gbrrrr- (566)

Using the above expressions in Eq. (5.63), we get

Aozaz2 (1 Srrrr) + 2[r Aggass — Aos2s2] (12 dper) + [1* Agsasy — 37 Agsass + 3Aos2s2] (12
[r® Agsass — 37 Agsase + 3Aos232) (10, ) + [Agaaze + Avssss — 2402233 — 2A03223] (7 Brrz2)
Ao2323(r* §z222) + [1 Agaans + 7 Agasss — 2 Ansass — 27 Aggass — Avzazs — Aossss

2 Agpa33 + 2 A03203) (r°py22) — [7“2-'4/0/3223 +rip" + 7“-'42)1122 + TAE)3333 - 7“-'42)1133

T Agsans — T Agaass + 2402233 — 2A01122 — Aozazs + Aori11] (r2¢.z)

PT?) [TPsztt + TOrrtt — Gracl- (5.67)

Consider a solution for ¢ of the form

d(r, 2) = F(r)e®==b, (5.68)

where k is the wave number and w is the frequency. Using Eq. (5.68) in Eq. (5.67), after

some rearrangement, we get

nr

Agsazom F" 4+ 2[r Ayagsy — Aoz P F 4 [12 Agagsy — 37 Agsoss + 3Aos232
| — [r? Agsgsy — 3rAgsasy + 3Aosase + pw’r’IrF + k*r®[(2Aozass + 2A0sa2s
—Ag222 — Aosazs)r* F T+ (27"“42)2233 + 27"“42)3223 - TAE]2222 - TAE)3333 — 2A02233
—2A03223 + Ao2222 + Aozszz)r F "+ (T2A83223 +7°p + TAE)1122 + 7“-'42)3333 - TAE)1133

~1 Agzans — T Agaass + 2A02233 — 2A01122 — Agzszs + Ao — pw’r?) F]

‘|—]€47’4A02323F =0. (569)
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Let

Y1 = -A03232a T2 = 2-’402233 + 2~’403223 - A02222 - A03333a
V3= A032237 V4 = A01122 + A03333 - A01133 + A03223 - A022337

V5 = 2~’402233 - 2~/401122 - A03333 + A011117 Y6 = A02323- (570)

Therefore, Eq. (5.69) becomes

m 1

nrtF 4 2[7‘71 — yl]r?’Fm + [7"271/ — 37"7; + 37 + pwzrz]TQF

/

_[7’271' — 37“7; + 37 + pwzrz]rFl + k2r2[72r2F" + (7’7; — yo)rF

2. 1

+(r¥yy + 12" 4+ g+ s — pw*r?)Fl 4 ki F = 0. (5.71)

The values of p’ and p” can be calculated using Eqgs. (3.143) for i = 3 and (5.15). We get

d, oW, XoW

p(r) = 5()\38—)\3) T N (5.72)
, 2 oW, 1 .d oW _d oW 1 oW

Consider the boundary conditions of pressure loading, which, with respect to the reference

configuration, may be written
SN = —-PF "N, (5.74)

where P is the pressure on the boundary per unit area of the deformed configuration. On

taking the increment of Eq. (5.74) and updating to the deformed configuration we obtain
Sin = PH"n — Pn. (5.75)

Considering an infinite cylinder, we apply the specialisation of Eq. (5.75) on the cylindrical
boundaries where we assume the outer boundary (i.e. r = b) free of incremental traction
and the inner boundary (i.e. 7 = a) subject to pressure P. Taking P =0 in Eq. (5.75) we
then have, for i = 2, 3,

) PH;;, on r=a
Sozi = (5.76)
0 on r=nb.
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For the considered axisymmetric case, the boundary conditions (5.76) along with Eq.

(5.56), we get

(-A03333 — Ap2oss + )\Saw/a)\i’))ur + (-A01133 - A02233)U/7“ —p=0 onr=a,b, (5-77)

w,+u, =0 onr=ab  (578)
After a few algebraic manipulations and using Eqs. (3.34)—(3.42) and (5.68), the above
expressions yield

’

A03232T3FW + [TAE)3232 - A03232]T2F" — [TAE)3232 - .A03232 — pr2w2]rF
—Tsz[(A03333 + Apooza — 2A02033 — Aoszs + >\38W/8)\3]7“F/
—(rAgsaes + Aotize + Aosszs — Aoriss — Aozess + 10’ + A0W/0As)F] = 0, (5.79)

and
r2F" —rF 4+ 2k F =0, (5.80)

respectively. Here, we have also made use of Eqgs. (3.143) and (5.16).

5.4.1 Analysis of Wave Propagation for a Specific Model

We now apply the foregoing theory to a material following the special model given by Eq.
(3.111). In the deformed configuration, using Eq. (5.3), the principal residual stresses from
Egs. (5.27) and (5.28) are given by

F=n/u = b2V 1T+ NA2(P2 — 1) — 1 — /1 + X\ A2(b2/a2 — 1)), (5.81)
Ty=m3/p = bo(1—1/3/1+AN2(72 - 1))
X (VIF AN = 1) — /14 A28 — 1), (5.82)

where we have introduced the dimensionless quantities
F=r/a, b=Db/a. (5.83)

and by = oA/, already defined in Eq. (5.43).
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We therefore have Eq. (5.71) in its specialized form

1111 1

AP E" 4 2[4, — AP F 4[24, — 374, + 351 + 02 PR F

!

—[P*3) = 309, + 3% + OPRE R E 4 (7 — Ao)PF

+(P2(p" [ ) + 7y + A5 — 0¥ F) + K196 F = 0,
where

w= (p/:u>aw7 ]% = ka7 ;YZ(??,) = f}/l(lf‘)/,uv (NS {17 2747 576}7

in the deformed configuration. We can re-write Eq. (5.84) as

LdE s LdPF d*F

X dF .
A N N2
fa(F)7 o + f3(r)r prs + fo(r)r7 I

AF:

— fi(P)7

where

f1(F) =4, fa(7) = 2(7%; — %),
FolP) = P24 — 3741 + 331 + 022 + k2%,
Fu(F) = 734 = 879, + 331 + 0% — R23(75) - 42),

F7) = B¥2(2 (0" 1) + 79, + 35 — 0% + B256),

133

(5.84)

(5.85)

(5.86)

(5.87)

where, for the special model under consideration, using Eqs. (3.47)-(3.55) with 7;; = 0,4 # 7,

we have from Eq. (5.70)

’yl(’f’) = )\_2)\;2[1 + 723 + 2()0(]7 — [4)7A'3/,u],
Yo (7 —(L 4+ 7)AZ = (1 + 73)A 2N 2 = 2bo[(Ir — L) (N27e + A 2N 2%3)

2
(V)
—~
=3
N—
I

+ 227 — A2 2R3)Y,

0,

o
w
—~
>
S—
I

(5.88)

(5.89)
(5.90)

Ya(F) = (L4 F)AT2ATZ 4 200\ 2N 2 R[(I7 — L)/ pn — 2027 — 2027 + 202\ 23]

4o N N2 7y 7y,

_|_

(5.91)

s (7) (14 7)AF = (14 F)AN2A2 + 200 (A271 — AN 2A28)[(I7 — L)/ + 2077

202Ny — ANIT),

+

V6(F) = A4 20(Iy — L)X/ + Aim,

(5.92)
(5.93)
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where by = jip, already defined in Eq. (4.31). Also, in this case
(Ir = L)/p = (N = D71 + (A2 = Do + (A2A2 = 1), (5.94)

which vanishes in the reference configuration.

The boundary conditions (5.79) and (5.80), at # = 1 and # = b, give

PF" + [Fayy — )PP F" — [Fay, — i — O*2)RF
— K232 + AsOW/ON(P)FF — (3 + #(0 /1) + AsOW/OAs (7)) F] = 0, (5.95)

and

PE - fF + PP F =0, (5.96)
where

AsOW/OAs(7) = A72N;2, (5.97)

since 73 vanishes at the boundaries. Both Egs. (5.95) and (5.96) hold at # = 1 and 7 = b.
The solution of Eq. (5.86) can be obtained numerically only due to its complexity. We

introduce the following notation

’ 1 1

F(r) = 2(F), F(F)=2), F(7)=z(), F(7)=2u), (5.98)

which, from Eq. (5.86) gives

A (7). dm() o dm(P)
g~ =g =l =g =),
da0) _ Topor iy - Berny ey 1 sy - Lia), (5.00)
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along with the four boundary conditions

A1 (Dza(1) + [ (1) = A (1)]z(1) = (1) = &%z (1) = F[(32(1)

FATEAT?)22(1) — (a(1) + (0 /) + A7) (1)] = 0, (5.100)
23(1) — 20(1) + k%21(1) = 0, (5.101)
31(0)6*24(b) + 03, () — 41(b)]23(b) — [by,(b) — &7]z5(b) — B*K*[(3a(b)

+FATA)b2(0) — (3a(D) + D' /1) + AN )2 (D)) = 0, (5.102)
225 (b) — bzo(b) + 0*k22, (D) = 0. (5.103)

5.4.2 Special Case: Boundary Value Problem for an Infinite Thick-
Walled Cylindrical Tube in the Reference Configuration

Using the expressions from Eqs. (5.88)-(5.93) in the equation of motion (5.71) and the
boundary conditions (5.79), we get the required equations to be solved in the deformed
configuration for the materials specified by the special model (3.111). For simplicity of
calculations, we assume 7, = 0 and solve the system in the reference configuration as a
special case. In the reference configuration, the stretches are assumed as unity and their

derivative with respect to r vanish. We therefore have from Eqgs. (5.88)—(5.93)

=147 AJo=—2—73 —4by7;
3 =0, Aa=1+ 73— 4bo73(71 — 73),

Vs =71 — T3+ 4bo (77 — 73),  Ae =1, (5.104)
where the principal residual stresses in the non-dimensionalized form are

# = b(2R/A—1— B/A), (5.105)
73 = by(1—A/R)(R/A— B/A). (5.106)

Also, in the reference configuration, using Eq. (5.73), the expression for pjj(R) reduces to

/ 7'3 . l @ _ d7A'3 1 _

which is evaluated using Eqs. (5.41) and (5.42) and we find that pf{j = 0 for this special case.
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For the purpose of non-dimensionalization, we introduce the notations

R=RJ/A, [=BJ/A, k=FkA,
& =/(p/w)Aw, Fi(R) =7 (R)/u, i€{1,2,4,5,6} (5.108)

Using above along with Eqs. (5.71) and (5.104)-(5.107), the specialized equation of motion

in the reference configuration is given by

oA dVF L L dBBF L . L dPF . . W dF s
R)R*— + f3(R)R*— + fo(RR*— — fi(R)R— + f(R)F =0, 5.109
fa(R) T f3(R) I fo(R) 15 fi(R) a5 f(R) ( )
where
f(R) =%, f3(R) = 2(R4; — %),

f2(R) = R*4 — 3RA; + 3% + &*R? + K R*4,,
fi(R) = R*3, — 3RY, + 3% + &*R* — K2R* (R, — ),
f(R) = B2R*(Ri, + 45 — 0*R* + k*R*36), (5.110)

and for the special model under consideration, we have from Eqs. (5.104)

A(R) = 1+40by(1—1/R)(R—-p), (5.111)
49(R) = —2—by(1 —1/R)(R— ) — 4by[(1 — 1/R)(R — j3)]?, (5.112)
W(R) = 14+b(1—1/R)(R—B)—4b(1—1/RY(R-B)(ER—-7F),  (5.113)
45(R) = (R—B/R)[by+4b1(3R—3 =20+ (/R)], 4(R) =1, (5.114)
and the respective derivatives

$(R) = bo(1—B/R?), (5.115)
41(R) = 2b,3/R?, (5.116)
52(R) = —(1—B/R%)[bs+8bi(1—1/R)(R - B)], (5.117)

94(R) = bo(1 = B/R?) —ab[(1 = B/R*)(R - B/R)
+ (1= 1/R)(R - 3)(1+ B/R?), (5.118)

in the reference configuration.
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The value of p,/u is given by

po/i =" — (fL —%3)/R, (5.119)

which vanishes in this special case. Also, the radial stress 73 vanishes at the bound-
ary. Therefore, the boundary conditions from Egs. (5.79) and (5.80), appropriately non-

dimensionalized, respectively specialise to
RF" + (RY, = 1)R?F" — (RY, =1 — &*R? + 3k*R))RF + 2k*R*F = 0,  (5.120)
R*F" —RF + R**F = 0, (5.121)

both of which hold at R = 1, 3.
We seek a numerical solution of the ODE (5.109) and the problem may be converted into
a system of first order linear ODEs. Let

which, from Eq. (5.120) gives

dR dR C{R A

d ~ A ~

lf‘ = f3 Ly — ER_zyg + éR_syz - LR_4?J17 (5.123)
dR f4 Ja Ja Ja

along with the four boundary conditions (5.120) and (5.121) on R = 1 and R = [ are given
by

(1) + (31(1) = Dys(1) + (1 +@° = 3k%)y2(1) + 2ky1 (1) = 0, (5.124)
ys(l) —y2(1) + By (1) = 0, (5.125)
ya(B) + (B31(8) — 1)B%ys(B) + (1 + &*B% — 3k6%) Bya(B) + 2k %1 (8) = 0, (5.126)
ys(B) — Bu2(B) + Bk (B) = 0. (5.127)

The numerical solutions of this boundary value problem are presented in Section 5.4.4.
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5.4.3 Isotropy

In the case when the residual stress vanishes, the material is isotropic. We therefore reduce
the above boundary value problem to the classical case in linear elasticity and solve it
analytically. For this special case, by = 0 = by. Dropping the notation defined in Eq.
(5.108), we have v, = 1,75 = =2,y = 1,76 = 1,75 = 0 = 7, = 7| = 7, = 7. The equation

of motion (5.109) therefore becomes

1

RF" —2R*F" + (34 w?R? — 2k*R)R*F" — (3+ w?R? — 2k*R*)RF’

+ E*R*w? - k*)F =0, (5.128)

with boundary conditions from Eqs. (5.124)—(5.127)

F' - F' + (14w =3k F +2k’F =0, onR=1, (5.129)
BF" — B2F + (1426 = 3K26%)BF +2k*B*F =0, on R=p3, (5.130)
F'—F +kF=0, onR=1, (5.131)
BF" —BF + ?k*F =0, on R=0. (5.132)

Factoring the differential operator in Eq. (5.128), we can write
LMI[F(R)] =0, (5.133)

where
L—4(d—2+ii—k2) M—d—Q—ii—k?Jr 2 (5.134)
~"Y4r2 T R4R » T iR R4R “ ’
The solution of Eq. (5.133) is given by
F(R) = C,RI;(kR)+ CoRK,(kR)

+ C3RJ(Vw? — k2R) + C4RY; (Vw? — k2R), (5.135)

where C4,Cs, C3,Cy are constants yet to be determined using the boundary conditions
(5.129)—(5.130). Also, J; and Y are the Bessel functions of first and the second kind of
order one whereas the functions /; and K are the modified Bessel functions of the first and

the second kind of order one, respectively. A detailed discussion on the behaviour of these
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functions and their derivatives is given in [1].
Using Eq. (5.135) in (5.129)—(5.132), we get four algebraic equations in four unknowns
C1,Cs, Cy and Cy. For a non-trivial solution the determinant of the matrix of coefficient, say

A must vanish. Therefore, the dispersion relation relating & and w, in this case is given by
det A = 0. (5.136)

Here, we do not give the expression for det A due its complexity. For a fixed 3, we use
a simple code in MAPLE to find the exact expression for det A and solving Eq. (5.136).
Further the use of command ‘implicitplot’ gives the required curves for dispersion relation.
The continuous graphs in Fig. 5.12 represent the dispersion relation for an isotropic material

in linear elasticity.

5.4.4 Numerical Results

Unlike an initial value problem (IVP), a boundary value problem (BVP) may not have a
solution at all, or may have a unique solution, or may have more than one solution. Because
there might be more than one solution, BVP solvers require an initial guess for the solution
of interest. Often there are parameters that need to be determined such that the BVP has
a non-trivial solution. Associated with the solution, there might be one set of parameters, a
finite number of possible sets, or an infinite number of possible sets.

For the purpose of solving Eq. (5.123) numerically with the boundary conditions (5.124)—
(5.127), we have used a built-in MATLAB function ‘Bvp4c’. A detailed discussion on the
structure of this function can be found in [45]. This built-in function uses the system of
first order ordinary differential equations and an initial guess for the solution as well as for
the unknown parameters. For fixed k, (3, by and b, the solver gives a solution and hence
obtains a dispersion relation between the dimensionless wave number k and the dimensionless
frequency @ (or equivalently, the dimensionless phase speed ¢ = @/ l%) and the related solution
to the problem.

The special case when b; = 0 = by refers to vanishing of the residual stress. For this special
case, dispersion curves are shown in Fig. 5.12 which exactly match the results obtained
analytically in Section 5.4.3. These results are also similar to those obtained for the case of
axially symmetric waves in a hollow elastic rod in [30] for a complete range of wall thicknesses
and frequencies. In [30], the theory was developed using expansions of the displacements in

a series of orthogonal polynomials in the radial coordinate, retaining only the earliest terms.
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To offset the error due to omission of terms various adjustment factors were introduced for
the frequency spectrum to match the exact theory.

In a recent paper by Akbarov and Guz [3], the authors present results for an initially
stressed and pre-stretched compound cylinder and specialized results are given for a hollow
cylinder both in the presence and absence of initial stretch. The dispersion curves presented
in Fig. 5.13 are quite similar to those presented in [3] for various thicknesses in the absence of
initial stress. The same paper presents the plots of dispersion curves when the initial stress
and pre-stretch are both included. Since we assume the pre-stretch as unity, our graphs show
modes without any further branches in contrast to the results presented in [3]. Apart from
this, the graphs are similar in their first few modes.

The effect of residual stress on different modes is presented in Figs. 5.14 —5.16. In the
absence of residual stress, the strain energy function reduces to the neo-Hookean case. The
dispersion curves for the first modes in this case are plotted in Fig. 5.13 and it is worth
noting that with increasing wall thickness, the speed is the same for very small dimensionless
wave number. This plots in Fig. 5.14 show a shift from this behaviour and with increasing
wall thickness, the first modes have different phase speeds from small k. From Fig. 5.15,
the dispersion curves for the first modes for fixed wall thickness and varying parameters are
shown. The graph labelled as ‘a’ is the behaviour in the case of neo-Hookean type material.
We observe that as positive values of b; and b, increase, the phase speed decreases from that
in neo-Hookean type materials. For decreasing values (see the negative values of by or by for
plots (d) and (e)) of the parameters, the phase speed increases. Figure 5.16 shows the first
four modes for the case when the residual stress is present (continuous plots) and when the

residual stress vanishes (dashed plots).
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Figure 5.12: Comparison of the dispersion curves of the first three modes for the linear elasticity
case (continuous curve) from Eq. (5.136) and the numerical results from Eq. (5.123)—
(5.127) in the absence of residual stress, by = 0 = by, f = ﬁ = 2.5. (a) w with respect
k, (b) ¢ with respect to k
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Figure 5.13: The dispersion curves of the first mode from Egs. (5. 5.
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Figure 5.14: The dispersion curve for the first mode from Eqgs. (5.123)-(5.127) for by = 7,by = 2
and (a) = 1.5, (b) =2, (c) B =2.5.
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Figure 5.15: The dispersion curves of the first mode from Eqs. (5.123)—(5.127) for 3 = 2.5 and

(a) by =

0= bg, (b) bl = 4,[)2 = 1, (C) bl = 7,b2 = 2, (d) bl = —4,[)2 = 1, (e)

by = —5,by = —1.
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Figure 5.16: First four modes from Egs. (5.123)—(5.127) for § = 2.5, Continuous graph for b; =

2,by = 1,

dashed graph for by = 0 = bs.



Chapter 6

Conclusion and Future Work

6.1 Conclusions

The existence of initial /residual stress in materials has proven to be an interesting field of
research and relatively less work has been done in this area. The work done by Biot [4, 5] in
1939 gave a foundation for this research. However, more substantial and recent development
is due to Hoger [16, 17, 18, 19, 26, 27, 20] and Man and Lu [28]. We consider various
problems to study the effect of initial/residual stress in elastic materials and develop the
basic formulation by using the theory of infinitesimal deformations superimposed on finite
deformations. The problems discussed include the plane wave reflection from the boundary of
an initially-stressed half-space, the analysis of propagation of a surface wave in an initially-
stressed hyperelastic material and wave propagation in an inflated and axially stretched
elastic tube.

Chapter 2 gives the very basic concepts that are used in this thesis.

Using the general form of elasticity tensor in Chapter 3, we have developed the basic
constitutive equations for a hyperelastic material. The theory for the propagation of small
amplitude plane waves is developed and is then implemented to study the reflection of plane
homogeneous waves from the traction free boundary of an initially-stressed incompressible
half-space. It is found that a unique reflected wave exists for some angles of incidence
explicitly mentioned in section 3.4.3. An additional reflected wave exists if the angle of
incidence is either greater or less than a critical value. The amplitude of this wave vanishes
however for some angles of incidence for a special class of materials. The reflection coefficients
of the waves are calculated and it is found that these depend on the state of deformation

and the magnitude of the initial stress. We carry out some specialized results for a special
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constitutive model which reduces the neo-Hookean case when the initial stress vanishes. For
infinitesimally small initial stress, the behaviour of the reflection coefficients (see Fig. 3.6
for |R'| and |R|(= 1)) is similar to that in the case of linear compressible theory. These
results are also comparable to the results for neo-Hookean type materials in [39] for pure
homogeneous strain in the absence of a pre-stress and to those in [23] for simple shear (for a
special class of materials) in the absence of pre-stress. The presence of initial stress affects
the wave speed and it is found that the wave speed for the first reflected wave decreases and
that of the second wave increases infinitely (while its amplitude vanishes) with the increase
in the magnitude of initial stress or for larger values of stretch and as the angle of incidence
approaches normal. A similar behaviour of wave speed was found in [39] for the Varga strain
energy function.

For materials when initial stress (7) does not vanish and stretches (\) are not unity, there
is a reflected wave for every angle of incidence. Though, the amplitude of this reflected may
vanish at various angles of incidence depending on the choice of 7 and A. It is obvious that
for very high values of 7 or A, there is only one reflected wave whose amplitude approaches
unity as the angle of incidence approaches normal.

In Chapter 3, the research is concerned with the behaviour of surface waves in an initially-
stressed incompressible material. We use the work of Dowaikh and Ogden [9] for Rayleigh
waves and that of Dowaikh [8] for Love wave.

In the case of Rayleigh waves, the secular equation is analysed and it is found that within
the region of stability of (A, 7) where 7 is the dimensionless initial stress, a unique surface
wave exists in a specific interval dependent upon the initial stress and deformation within
the stability region. Here, the strong ellipticity condition provides the region of stability.
The general theory developed here is then applied to the special prototype model to study
the effect of initial stress and deformation on the Rayleigh surface waves. The cubic secular
equation in its dimensionless form is solved exactly and the solution is a function of initial
stress and deformation. This secular equation reduces to its counterpart in the linear theory
when initial stress vanishes. The solution from the secular equation is then used to calculate
the dimensionless speed £ of the Rayleigh surface wave for various choices of the initial stress
which is plotted with respect to A\. The dimensionless speed for a plane shear wave & is
also calculated in the presence of the initial stress. As a special case, it is inferred that for
zero initial stress the dimensionless Rayleigh wave speed approaches the shear wave speed
for increasing A which is a result from the classical linear theory. The graphs show the plots

in reference to the plots when residual stress vanishes. It is found that for positive values
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of initial stress, ¢ decreases with increasing stretch and vice versa for negative values of the
initial stress. It is also found that for a particular choice of 7 and other constants, the wave
speed vanishes at a specific value or values of A. The secular equation is also analysed in
a more convenient form after a squaring process. However, this process introduces several
solutions of the modified equation which are not the solutions of the original secular equation.
This is illustrated graphically at the end of the problem. Also, a similar discussion is extended
for the undeformed reference configuration and graphs are presented to study the effect initial
stress on Rayleigh surface waves for A = 1.

In the later part of Chapter 3, the discussion on Love waves in an initially-stressed layer
of thickness h bounded below by an initially stressed infinite half-space is carried out. The
theory developed generally is then applied to the special model and the dispersion relation
is dependent on 7, A and the dimensionless wave number kh. It is shown through various
plots that for increasing kh (or decreasing wave length) the speed of Love waves decreases
(from that in the absence of initial stress) when the initial stress is compressional and vice
versa for tensile initial stress.

The initial stress is the so-called residual stress when the boundary of the material is
traction free. This traction-free boundary requires the material to be necessarily inhomoge-
neous for the residual stress to exist. In Chapter 4, the effect of a non-homogeneous initial
stress i.e., the residual stress (also represented by 7) on small amplitude waves is observed in
axisymmetric case of a thick-walled incompressible elastic cylinder. A simple expression of
residual stress depending on the radius of the cylinder is chosen on the basis of experimental
behaviour of such kind of stress in arteries and vessels. The pressure and axial load are cal-
culated and the results are plotted and compared to those when the material is not residually
stressed. It is found that the presence of residual stress does effect the pressure and the axial
load. A sharp increase is observed for various choices of the respective parameters charac-
terising the magnitude of residual stress. It is also observed that, for a fixed wall thickness,
in contrast to the neo-Hookean materials (or Mooney-Rivlin type materials), the pressure
either increases or decreases and may vanish at more that one values of the stretch ratio
Ao = a/A where ‘a’ (‘A’) is the radius in the deformed (undeformed reference) configuration.
A similar behaviour is observed for axial load which is illustrated in the graphs.

In the later part of Chapter 4, the analysis of small amplitude wave propagation is car-
ried out in a residually stressed thick-walled incompressible elastic cylinder. The generalized
equations for the axisymmetric case in the deformed configuration are presented and the

problem is later specialized for the simple prototype model which depends on both the
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residual stress and the finite deformation. The more general problem in the deformed config-
uration is then specialized to the reference configuration by considering the stretches equal
to unity. To avoid complexity, the problem is solved numerically to study the dispersion
relation. The dispersion curves for the case of zero residual stress are obtained as reference
in each graph. On comparison, it is found that the presence of residual stress either increases
or decreases the phase speed depending on the parameters related to the magnitude of the
residual stress. It is worth noting that for higher positive values of the parameters, the phase
speed drops from the reference speed in a non-residually stressed material. For lower or neg-
ative values of these parameters, an increase in the phase speed is observed. The results are
also compared to the case discussed in [3] and [30]. In the latter paper, similar results are
obtained for pre-stressed materials using a different theory. The results also match those

presented in the latter paper for the hollow cylinder when the pre-stretch is unity.

6.2 Future Work

A straightforward extension of this research is to carry out respective problems with com-
pressibility included. Further, the case of reflection of homogeneous plane waves can be
extended to transmission through an interface where the half-spaces can be initially stressed
and the material may be compressible or incompressible. Also, the effect of viscoelasticity
may be included in the problems where possible.

The problem related to the thick walled cylinder in this thesis is solved for material in the
reference configuration only. The general problem is much more complicated. However, it is
possible to solve it numerically when an efficient code is used in any mathematical software.
In respect of this, the case of wave propagation in a cylinder with thin-walled tube or the

case of solid cylinder can also be considered.



References

[1] J. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions. Num-
ber 55 in App. Math. Series. 1968.

2] J. D. Achenbach. Wave Propagation in FElastic Solids, volume 22. North-Holland,
Amsterdam, 1973.

[3] S. D. Akbarov and A. N. Guz. Axisymmetric longitudinal wave propagation in pre-
stressed compund circular cylinders. Int. J. Eng. Sc., 42:769-791, 2004.

[4] M. A. Biot. Non-linear theoery of elasticity and the linearized case for a body under
initial stress. Philosophical Magazine, XXVII1:468-489, 1939.

[5] M. A. Biot. The influence of initial stress on elastic waves. Journal of Applied Physics,
11(8):522-530, 1940.

[6] C.J. Chuong and Y. C. Fung. On residual stress in arteries. Journal of Biomechanical

Engineering, 108:189-192, 1986.

[7] B. D. Coleman and W. Noll. Material symmetry and thermostatic inequalities in finite
elastic deformations. Archive of Rational Mechanics and Analysis, 15:87-111, 1964.

[8] M. A. Dowaikh. On sh waves in pre-stressed layered half-space for an incompressible

elastic material. Mechanics Research Communications, 26:665-672, 1999.

9] M. A. Dowaikh and R. W. Ogden. On surface waves and deformations in a pre-stressed
incompressible elastic solid. Journal of Applied Mathematics, 44:261-284, 1990.

[10] W. M. Ewing, W. S. Jardetzky, and F. Press. Elastic Waves in Layered Media. McGraw
Hill, New York, 1957.

[11] J. N. Flavin. Surface waves in a pre-stressed mooney material. Quarterly Journal of

Mechanics and Applied Methematics, 16:441-449, 1963.

148



REFERENCES 149

[12]

[13]

[19]

[20]

21

22]

23]

Y. C. Fung. What are the residual stresses doing in our blood vessels?  Annals of

Biomedical Engineering, 19:237-249, 1991.

A. Guillou and R. W. Ogden. Mechanics of Biological Tissue, chapter Growth in Soft
Biological Tissue and Residual Stress Development, pages 47-62. Springer, Berlin Hei-
delberg, 2006.

M. E. Gurtin. An Introduction to Continuum Mechanics, volume 158 of Mathematics

in Science and Engineering. Academic Press, INC., London, 1981.

M. A. Hayes and R. S. Rivlin. Surface waves in deformed elastic materials. Archive of

Rational Mechanics and Analysis, 8:358-380, 1961.

A. Hoger. On the residual stress possible in an elastic body with material symmetry.

Archive of Rational Mechanics and Analysis, 88:271-290, 1985.

A. Hoger. On the determination of residual stress in an elastic body. Journal of Elas-

ticity, 16:303-324, 1986.

A. Hoger. Residual stress in an elastic body: A theory for small strains and arbitrary

rotations. Journal of Elasticity, 31:1-24, 1993.

A. Hoger. The constitutive equation for finite deformations of a transversely isotropic

hyper- elastic material with residual stress. Journal of Elasticity, 33:107-118, 1993.

A. Hoger. The elasticity tensor of a residually stressed material. Journal of Elasticity,

31:219-237, 1991.

G. A. Holzapfel, T. C. Gasser, and R. W. Ogden. A new constitutive framework for ar-
terial wall mechanics and a comparative study of material models. Journal of Elasticity,

61:1-48, 2000.

G.A. Holzapfel and R.W. Ogden. Modelling the layer-specific 3d residual stresses in
arteries, with an application to the human aorta. Journal of the Royal Society Interface,

7:7187-799, 7787 — 799, 2010.

W. Hussain and R. W. Ogden. On the reflection of plane waves at the boundary of an

elastic half-sapce subject to simple shear. International Journal of Engineering Sciences,

37:1549-1576, 1999.



REFERENCES 150

[24]

[25]

[29]

[30]

[31]

32]

33]

[34]

W. Hussain and R. W. Ogden. Reflection and transmission of plane waves at a shear-

twin interface. International Journal of Engineering Sciences, 38:1789-1810, 2000.

W. Hussain and R. W. Ogden. The effect of pre-strain on the reflection and transmission

of plane waves at an elastic interface. International Journal of Engineering Sciences,

39:929-950, 2001.

B. E. Johnson and A. Hoger. The dependence of the elasticity tensor on residual stress.

Journal of Elasticity, 33:145-165, 1993.

B. E. Johnson and A. Hoger. The use of strain energy function to quantify the effect
of residual stress on mechanical behavior. Mathematics and Mechanics of Solids, 4:

447-470, 1998.

C-S Man and W. Y. Lu. Towards an acoustoelastic thoery of measurement of residual

stress. Journal of Flasticity, 17:159-182, 1987.

R. S. Marlow. On the stress in an internally constrained elastic material. Journal of

FElasticity, 27:97-131, 1992.

H. D. McNiven, A. H. Shah, and J. L. Sackman. Axially symmeteric waves in hollow,
elastic rods: Part 1. Journal of Acoustical Society of America, 40(4):784-792, October
1966.

R. W. Ogden. Non-Linear Elastic Deformations. Dover Publications Inc., 1997.

R. W. Ogden. Nonlinear elasticity with application to material modelling. Lecture Notes
6, Centre of Excellence for Advanced Materials and Structures, Institute of Fundamental

Technological Research, Polish Academy of Sciences, Warsaw, 2003.

R. W. Ogden. Nonlinear elasticity, anisotropy, material stability and residual stress in
soft tissues. In Biomechanics of Soft Tissues in Cardiovascular Systems, CISM Courses
and Lectures No. 441, pages 55-108. Wien: Springer-Verlag., International Centre for
Mechanical Sciences, 2003.

R. W. Ogden. Incremental statics and dynamics of pre-stressed elastic materials. In
M. Destrade and G. Saccomandi, editors, Waves in Nonlinear Pre-stressed Materials,

volume 495 of CISM Courses and Lectures, pages 1-26. 2007.



REFERENCES 151

[35]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

R. W. Ogden and C. A. J. Schulze-Bauer. Phenomenological and structural aspects of
the mechanical response of arteries. Mechanics in Biology, AMD-Vol 242 /BED-Vol 46:
125-140, 2000.

R. W. Ogden and B. Singh. Propagation of waves in an incompressible transversely
propagation of waves in an incompressible transversely isotropic elastic solid with initial

stress. Journal of Mechanica of Materials and Structures, page To appear, 2010.

R. W. Ogden and D. A. Sotiropoulos. Reflection of plane waves from the boundary of a
pre-stressed compressible half-space. IMA Journal of Applied Mathematics, 59:95-121,
1998.

R. W. Ogden and D. A. Sotiropoulos. On interfacial waves in pre-stressed layered
incompressible elastic solids. Proceedings of Royal Soceity, 450:319-341, 1995.

R. W. Ogden and D. A. Sotiropoulos. The effect of pre-stress on the propagation and re-
flection of plane waves in incompressible elastic solids. Jounral of Applied Mathematics,

59:95-121, 1997.

H. Ohnabe and J. L. Nowinski. The propagation of love waves in an elastic isotropic
incompressible medium subject to a high two-dimensional stress. Acta Mechanica, 33:

253-264, 1979.

A. Rachev and K. Hayashi. Theoratical study of the effects of vascular smooth muscle
contraction and strain and stress distribution in arteries. Annals of Biomedical Engi-

neering, 27:459-468, 1999.

Lord Rayleigh. On waves propagated along the plane surface of an elastic solid. Pro-

ceedings of London Mathematical Soceity, 17:4-11, 1885.

E. Rodriguez, A. Hoger, and A. D. McCulloch. Stress-dependent finite growth in soft
elastic tissues. Journal of Biomechanics, 27:455—-467, 1994.

N. H. Scott and M. Hayes. A note on wave propagation in internally constrained

hyperelastic materials. Wave Motion, 7:601-605, 1985.

L. F. Shampine, 1. Gladwell, and S. Thompson. Solving ODFEs with MATLAB. Cam-
bridge University Press, UK, 2003.



REFERENCES 152

[46] M. Shams, M. Destrade, and R. W. Ogden. Initial stresses in elastic solids: Constituive

laws and acoustoelasticity. Wave Motion, September 2010. (submitted for acceptance).

[47] K. Takamizawa and K. Hayashi. Strain energy density function and uniform starin

hypothesis for arterial mechanics. Journal of Biomechanics, 20:7-17, 1987.

[48] S. Tang. Wave propagation in initially-stressed elastic solids. Acta Mechanica, 61:
92-106, 1967.

[49] A. J. Willson. Surface and plate waves in biaxially stressed elastic media. Pure and

Applied Geophysics, 102:182-192, 1973.

[50] A. J. Willson. Surface waves in uniaxially-stressed mooney material. Pure and Applied

Geophysics, 112:352-364, 1974a.

[51] A.J. Willson. The anomalous surface waves in uniaxially-stressed elastic material. Pure

and Applied Geophysics, 112:665-674, 1974b.



