
 

Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Thomson, Katrina (2011) Investigating and detecting biomarkers for 
oxidative stress. PhD thesis. 
 
 
 
 
 
http://theses.gla.ac.uk/2408/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 



1 
 

  

Investigating and 
detecting biomarkers for 

oxidative stress 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PRESENTED BY KATRINA THOMSON B.Sc. (Hons), M.Res. 
TO THE UNIVERSITY OF GLASGOW FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 



2 
 

 
 
Acknowledgements 

If you want something bad enough, you will work for it. 

  

There are too many people to thank and I am not able to mention them all here, 

but you know who you are.  

 

Firstly I’d like to thank Dr Andy Pitt for his supervision, wisdom and never-ending 

patience and also for taking a chance and offering me a place at the doctoral 

training centre. Thanks to Professor Chick Wilson who always believed I could do 

a PhD and to Dr Corinne Spickett, who has always offered help and advice. 

Thank you to Dr Laetitia Mouls for helping me to start this project.  I have made 

many good friends here in the last four years; Heather Allingham, Kit-Yee Tan, 

Emma Carrick, Scott Heron, Anne-Marie Reid, Becky Warren, Chris Hinds and 

Michael Lang. You lot made the sometimes unbearable bearable.  I cannot forget 

the post-docs that pushed, teased, terrorised, mocked and tormented me either; 

Karl Burgess for his guidance and coffee and Richard Goodwin for his helpful but 

always blunt advice. 

 

I’d also like to thank my family and my Sensei Tony Leith. My father who is an 

academic inspiration to me, my mother who would never let me give up and who 

would always have a word of encouragement  for me when I needed it the most 

and to my twin sister Fiona, who always pushed me to do well by just being 

herself. I am also very appreciative of my Sensei Tony Leith who is the 

embodiment of go ju ittai. Thank you Tony for keeping me sane and teaching me 

mental and physical toughness to be the best I can be. I owe these people 

everything.  

 

Thank you to the friends who put up with me and the men who have loved me, 

what can I say guys? It’s been emotional and I am finally beginning to understand 

the meaning of True Strength. 

 

“arigato goza-imashita” - Thank you for teaching me. 

 



3 
 

 

Declaration 

I hereby declare that the thesis that follows is my own composition, that it is a 

record of the work done by myself, and that it has not been presented in any 

previous application for a higher degree. 

 

 

 

Katrina Thomson 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

 

Abstract 

It is widely reported that during periods of inflammation the heme enzyme, 

myeloperoxidase is generated by macrophages producing reactive oxidative 

species. Oxidative stress is the imbalance of these oxidative species which will 

lead to the post translational modification of proteins. Some biomarkers are 

proteins or post translational modifications that can be used to indicate disease 

and are becoming increasingly important particularly for the study of progressive 

diseases.   Analysis of biomarkers in bodily fluids will not only be faster and less 

invasive than a biopsy but will also diagnose disease at an earlier stage and allow 

disease treatment and progression to be monitored. Known biomarkers for the 

production of myeloperoxidase are chlorotyrosine and nitrotyrosine. Elevated 

levels of chlorotyrosine and nitrotyrosine are indicative of atherosclerosis. The 

early diagnosis of atherosclerosis is important as the onset of this disease can 

occur at a young age and be asymptomatic until later, more developed stages. 

 

Here I aim to develop sensitive methods of detection for these biomarkers in a 

hope that they can be used to classify disease. A Qtrap mass spectrometer is 

employed with precursor scan for the selective and sensitive detection of 

chlorotyrosine modifications in in vitro HOCl modified 9 protein mix samples. 

Compared to a conventional MSMS experiment the precursor scan detects more 

chlorotyrosine modifications suggesting it is a better method for the detection of 

post translational modifications. Additionally the precursor scan can be used 

when there is no prior knowledge of the modification sites.  

 

A multiple reaction monitoring method was developed from the MSMS analysis of 

in vitro chemical modification of human serum albumin and plasma samples. 

Observations from the MSMS analysis were employed to write the multiple 

reaction monitoring method to target for chloro- and nitrotyrosine modified 

peptides of the human serum albumin protein in plasma samples. Detection of 

these modified peptides was indicated by the common elution of three 

transitions specific to the peptides precursor mass. Where anomalous peaks of 

one transition were seen it was known that this was not the elution of the 

targeted peptide. The use of three transition masses instead of one reduces the 

generation of false positives. Where more than one peak for the common elution 



5 
 

time was seen for a targeted peptide in the chromatography gradient the 

retention times were used for identification. Peptides are separated by liquid 

chromatography prior to their analysis on the Qtrap by their hydrophobicity or 

their polarity. When a peptide becomes chloro- or nitrotyrosine modified the 

peptide becomes less polar and therefore is seen later in the gradient than in 

the unmodified state.  The observation of more than one peak where the three 

transitions are seen to be commonly eluted was caused by break-through of 

signal from poor selection of a m/z value in Q1. 

 The multiple reaction method developed from the analysis of in vitro 

chemically modified human serum albumin and plasma was then applied for the 

analysis of clinical samples in the hope that the chloro- and nitrotyrosine 

modified peptides targeted for in the samples could be used to classify disease. 

The clinical plasma samples were sourced from 12 healthy volunteers and 12 

diseased cardiovascular patients. The multiple reaction monitoring method 

indicated the modification of peptides and the presence of these modified 

peptides was confirmed using targeted MSMS. Classification of these samples was 

not successful and it was thought that a combination of biomarkers is required 

for the classification of disease. 
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Abbreviations 

Apo  Apolipoprotein 
AQUA  Absolute quantification 
CPS    Counts per second 
CVD   Cardiovascular disease 
CSF    Colony stimulating factor 
ClTyr   Chlorotyrosine 
CID   Collision induced dissociation 
CAD   Collision activated dissociation 
DTP    Direct tissue proteomics 
ER    Enhanced resolution 
EPI    Enhanced product ion 
ESI   Electrospray ionisation 
ETD    Electron transfer dissociation 
GPF    Gas phase fractionation 
HDL   High density lipoprotein 
HSA    Human serum albumin 
HRP   Horse radish peroxidase 
HPLC    High performance liquid chromatography 
IDL    Intermediate density lipoprotein 
IEM    Inborn error metabolite 
IEX   Ion exchange chromatography 
LC    Liquid chromatography 
LDL   Low density lipoprotein 
LIT   Linear ion trap 
LPL    Lipoprotein lipase 
MRM    Multiple reaction monitoring 
MOWSE  Molecular weight search 
 MS    Mass spectrometry 
MPO  Myeloperoxidase 
NiTyr  Nitrotyrosine 
Ox-LDL Oxidised low density lipoprotein 
ROS  Reactive oxygen species 
RCT   Reverse cholesterol transport  
SID   Surface induced ionisation 
SRM    Single reaction monitoring 
SMC   Smooth muscle cell 
SIN-1  3-morpholinosydnonimine 
TOF   Time of flight 
TIC  Total ion count 
TLC   Thin layer chromatography 
XIC               Extracted ion chromatogram 
VLDL  Very low density lipoprotein 
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1 Introduction  

The Human Genome Project was completed in 2001 [1]. It was predicted that this 

would lead to the development of many prognostic and diagnostic tests that 

would be specific to the human subject within the following 5-10 years [2]. 

However, this prediction has not been fulfilled because in some diseases, those 

resulting from oxidative stress in particular, there is no causal relationship found 

between genetic information and the sudden occurrence of acute disease. To 

overcome this problem the study of proteomics representing the link between 

genes, proteins and diseases was developed [3, 4].  Proteomics aims to look at the 

“Big Picture”, characterising the behaviour of systems rather that the behaviour 

of a single protein or component and can be used to investigate progressive 

disease states such as atherosclerosis. 

Here I discuss the need for the early diagnosis of diseases, focussing on 

cardiovascular disease and the techniques used to detect the proteins and post 

translational modifications related to disease. 

1.1 Atherosclerosis 

The main cause of death and disability in the Western world is the progressive 

development of  cardiovascular disease [5]. The onset of cardiovascular disease is 

gradual and the chances of suffering from it are increased by environmental 

factors such as smoking, obesity, lack of exercise and the regular consumption of 

fatty foods. Atherosclerosis is the thickening of the arterial wall due to the 

formation of a fibrous plaque [Figure 1]. The term “Atherosclerosis” comes from 

“Atheromatous” - referring to the soft, lipid-rich ‘gruel’ within a mature plaque 

and “Sclerosis” – referring to the collagen-rich hardness [6].  

The formation of the atherosclerotic plaque decreases the space in the arterial 

lumen causing an increase in blood pressure which can further lead to 

cardiovascular diseases (CVD) as a result including, coronary artery diseases and 

in more severe cases cause congestive heart failure and strokes [7, 8].  
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Figure 1: Atherosclerotic plaque formation. The left-hand side of the figure illustrates a 

healthy artery free from obstruction. The right-hand side of the figure illustrates the 

atherosclerotic plaque extending into the arterial lumen.  

1.1.1 The composition of the atherosclerotic plaque 

The core of atherosclerotic plaques is characterised principally by profuse lipid 

deposition and the disappearance of endothelial cells and fibrous tissue 

elements [9]. The composition of the atherosclerotic plaque was first 

investigated by carrying out studies on arteries from individuals that had 

suffered atherosclerosis at a very developed stage. Restrepo et al [10] found that 

the foci of cell necrosis in human aortic fatty streaks was associated with the 

development and initiation of fibrous plaque followed by Katz et al [11] who then 

later identified cholesterol crystals in a subset of human aortic lesions within 

these fatty streaks. Brooks et al [12]  later identified oxidised cholesterol and 

cholesterol ester derivatives using solvent extraction techniques to characterise 

the lipids. Ylaherttuala et al  [13] then went on to identify oxidised low density 

lipoproteins (LDL) within these lesions and myeloperoxidase (MPO), a haeme 

oxidative enzyme, was then found to be present in and around the core of the 

atherosclerotic plaque[14]. Structures resembling lipoprotein aggregates have 

been observed with the aid of an electron microscope within the arterial intima 
[15] and ApoB-100[16], has also been successfully isolated from lipid aggregates [17 

9;18].These observations were then linked when oxidised LDL (Ox-LDL) was found 

to promote aggregation of macrophages [19]. 
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1.1.2 The LDL particle  

The LDL particles are approximately spherical in shape with a diameter of about 

22 nm (Figure 2). The core of the LDL particle consists of a high proportion of 

cholestryl ester and the remainder of tri-glycerides. The LDL coat consists of 

phospholipids, free cholesterol and a large single protein, apolipoprotein B-100. 

The fatty acids in LDL phospholipids are the main fatty acids consumed in the 

diet, the most abundant being the polyunsaturated fatty acid, linoleate.  The 

LDL particle is adhesive in nature due to the high lipid content present and 

during extraction from plasma can denature due to slight changes in pH, 

oxidation or excessive agitation so therefore must be treated with care.  

 

 

Figure 2: Schematic diagram of an LDL particle (reproduced from [20]). “A” summarises the 

organization of the lipid. The surface phospholipids and triglyceride lipid core is shown as 

well as the amphipathic β-sheet-induced lipid core ridges and the boundary phospholipids β-

sheets. “B” summarises the organisation of ApoB-100 on the LDL surface. The coloured 

regions indicate where the ApoB-100 differs in structure. 

The protein moiety, ApoB-100 is 4,536 amino acids in length and circumnavigates 

the LDL particle. The apolipoprotein is hydrophobic in segments which “dive” in 

and out of the neutral lipid core of the particle. The apoB-100 protein is both 

hydrophilic and hydrophobic and classed as amphipathic. This means that apoB-

100 can not only interact with the lipids on the lipoprotein but will also interact 

with the surrounding aqueous environment [20].  Due to the amphipathic nature 

of the LDL particle, post translational modifications will be difficult to predict 

during disease states. The size of the protein will also mean that any post 

translational modifications present will be challenging to detect due to their low 

A B 



15 
 

abundance in comparison to the rest of the protein. These challenges will be 

dealt with during our study.  

The hydrophilic regions of the apoB-100 are the most likely portions of the 

protein to be modified during disease states as the side chains are exposed to 

the LDL’s surrounding environment. The apoB-100 acts as a ligand for the uptake 

of LDL by cells and as a mediator for binding. Yang et al [23] were able to map 

lipid-associating regions of apoB-100 using trypsin-treated intact LDL particles. 

The trypsin-releasable regions of the apoB-100 protein were determined and 

those that were not were assumed to be lipid associated (Figure 3) [21-23]. Any 

modification of the apoB-100 protein during our study will be performed on 

intact, native LDL particles to mimic post translational modification in vivo. 

 

Figure 3: Structure of ApolipoproteinB-100 in Low-density Lipoproteins (reproduced from 
[20]). Trypsin-releasable regions are on the outside of the particle and non-trypsin releasable 

regions on the inside. 

1.1.3 Initiation of atherosclerosis 

An initiating event for atherosclerosis is the transportation of circulating 

oxidised low-density lipoproteins (Ox-LDL) across the endothelial cell layer of 

the artery wall. Transportation of Ox-LDL is most likely where there is already 

damage to the endothelial layer caused by either Ox-LDL itself or physical or 

chemical forces or infection [7]. Extra-cellular Ox-LDL can damage endothelial 

cells and smooth muscle cells (SMCs) by inducing the expression of adhesion 

molecules and chemotactic factors. Chemotactic factors such as monocyte 

chemoattractant peptide 1 (MCP-1) and macrophage colony stimulating factor 

(CSF) will help lead to the formation of fatty streaks or fibrous plaque and 
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lesions in the artery. The oxidation of LDL causes aggregation which leads to 

foam cell formation by macrophage cells.  

Atherosclerosis is an inflammatory response of macrophages and lymphocytes in 

the blood to ‘invading’ pathogenic lipoproteins in the arterial wall [24]. Invading 

pathogens or molecules unknown to the body can be destroyed by phagocytosis. 

So although able to defend the body, macrophages are also one of the central 

mechanisms contributing to the development of atherosclerosis [25]. The 

formation of foam cells occurs by macrophage ingestion of LDL by endocytosis 

and the macrophage scavenger receptor CD36 is found to play an important role 

in lesion development and therefore the binding and uptake of the Ox-LDL [26].  

Podrez et al [26] demonstrated that changes in the LDL caused by oxidation such 

as phospholipid oxidation, increased overall electronegativity of the particle and 

the unfolding of the apolipoprotein for example, promotes CD36- dependent 

recognition. When present at only a few modifications per particle, this results 

in increased macrophage binding, uptake of Ox-LDL, metabolism, cholesterol 

accumulation and foam cell formation. The increased uptake is due to the LDL 

receptor no longer recognising the LDL particle (see also 1.2.1) 

The fatty streaks are in fact aggregated macrophages that have phagocytosed 

the Ox-LDL to become foam cells. The monocytes adhere to the activated 

endothelial cells before moving into the subendothelial space in response to the 

chemoattractant molecule, ‘monocyte chemoattractant peptide 1’ where they 

will proliferate in response to CSF (Figure 4).  

In the subendothelial space, the monocytes ingest the lipoproteins which causes 

them to differentiate into macrophages. The macrophages then generate the 

reactive oxygen species (ROS) that convert Ox-LDL into highly oxidised LDL. The 

highly oxidised LDL is also consumed by the macrophages, thus taking up 

cholesterol, continuing to increase the formation of foam cells. Yoshida et al [27] 

have demonstrated that as LDL becomes increasingly oxidised the lipoproteins 

electrophoretic mobility also increases. Oxidised LDL will therefore run further 

on an agarose gel than LDL that has not been oxidised and the degree of 

oxidation of the lipoproteins can be visualised this way [27;28].   

The foam cells combine with the leukocytes to become the fatty streak and the 

process continues. Proliferation of the smooth muscle cells coupled with the 
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continuous differentiation of monocytes to macrophages inside the 

subendothelial space will convert the fatty streaks to more advanced legions and 

finally a fibrous plaque that protrudes into the arterial lumen. A fibrous cap 

consisting of SMCs and macrophages can develop over the lesion which will 

surround a high lipid core. This fibrous cap can be vulnerable to rupturing and in 

extreme cardiovascular disease cases will result in the formation and release of 

thrombi into the bloodstream, which can lead to a blockage of a blood vessel 
[29]. Over time the atherosclerotic lesion can stabilise becoming tougher forming 

a cap consisting of connective tissue and a higher SMC content than a more 

vulnerable cap. The cap can be further strengthened and become even more 

resistant to rupturing by calcification [30-32].   

 

Figure 4: The development of atherosclerosis (adapted from [7]). The reactive oxygen species 

(ROS) that oxidise LDL are produced in endothelial cells, smooth muscle cells (SMCs) and 

macrophages in the subendothelial space.  The resulting build up of macrophage foam cells 

leads to fatty streaks that form a fibrous plaque which can calcify and lead to thrombus 

formation. 

1.1.3.1 The unfolding of the apolipoprotein B100  

The secondary sequence and conformation of the LDLs protein moiety, Apo 

B100, is influenced by lipid-protein interactions and dynamics so will be affected 

by the introduction or removal of lipids during the metabolism of the lipoprotein 

particle [33]. The oxidation of lipids on the LDL will alter the water-lipid interface 

leading to the destabilising of the Apo B100 protein causing it to unfold and 

denature. Ursini et al states the unfolding of the Apo B100 protein has been 

observed in in vivo oxidatively modified LDL particles and that atherosclerotic 
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progression is due to the effect of the protein unfolding. This initiating event 

leading to protein misfolding may differ from disease to disease but the general 

pattern where loss of protein stability is seen is during destabilisation when what 

is usually an α-helix misfolds, leading to a relative increase in β-sheet structure.   

1.1.4 Classification of lipoproteins  

Cholesterol and triglyceride are insoluble, essential lipids that are packaged into 

lipoproteins to allow circulation within human blood plasma from sites of 

absorption or synthesis to areas of use. Each lipoprotein consists of a non-polar, 

hydrophobic cholesterol ester and triglycerol core. The outer layer of the 

lipoproteins consists of free cholesterol, phospholipids and specific 

apolipoproteins. The outer layer is polar permitting transportation of the 

lipoproteins within the plasma. The surrounding apolipoproteins (apo) such as 

apoB, apoC and apoE, coat the lipoprotein and serve a number of different 

functions including lipid transport and lipoprotein particle recognition by 

enzymes allowing the removal of lipids from the particle [21]. Apo-CII, for 

example, activates the lipoprotein lipase (LPL) which removes triglyceride from 

chylomicrons and very-low density lipoproteins (VLDL). 

There are five different classes of lipoproteins which includes: high-density 

lipoproteins (HDL), chlyomicrons, very low-density (VLDL), intermediate-density 

lipoproteins (IDL) and low-density lipoproteins (LDL)  [34]. The source, 

composition and density of each class of lipoprotein is described in more detail 

(Table 1).  

Table 1: The source and composition of lipoproteins. 

 

The source, size, density, and composition of each lipoprotein [34]. 
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1.1.4.1  High-Density Lipoproteins (HDLs)  

HDLs are generated in the liver and small intestine [34, 35]. When first excreted 

from the liver into the plasma, the HDL particles are mainly protein with very 

little cholesterol. The enzyme, lecithin:cholesterol acyltransferase, promotes 

the HDL uptake of free cholesterol in the bloodstream by esterification. By 

esterifying the free cholesterol into cholesterol esters, the hydrophobicity of the 

lipoprotein core will increase, making the particle denser. HDL levels are known 

to be inversely proportional to the risk of cardiovascular disease [35;36] as the HDL 

particles return to the liver from where the excess cholesterol can be excreted 

from the body in bile. HDL therefore plays a cardioprotective role by removing 

excess cholesterol from the tissues. This transfer process of cholesterol from 

extrahepatic tissues to the liver is called reverse cholesterol transport [36].  

1.1.4.2  Chylomicrons  

Chlyomicorns are assembled and formed in the intestinal mucosa to immobilize 

dietary (exogenous) lipids. Chylomicrons are the largest class of lipoprotein and 

are assembled in order to transport dietary cholesterol and triacylglycerols to 

the rest of the body [37]. They leave the intestine via the lymphatic system and 

enter the bloodstream where apoC-II and apoE are acquired from HDL in the 

plasma. In the capillaries apoC-II activates lipoprotein lipase (LPL) which is 

found on the surface of endothelial cells. The LPL acts by removing the fatty 

acids from the triglycerols on the chylomicrons [38]. The free fatty acids are then 

absorbed by tissues and the triglycerol decomposites returned via the 

bloodstream to the liver and kidneys. During the fatty acid removal by the 

enzymatic action of LPL from the chylomicrons, a large proportion of 

phospholipid, apoA and apoC is relocated to the HDLs. Losing apoC-II prevents 

further degradation of the chylomicrons by lipoprotein lipase.  

1.1.4.3  Very low-density lipoproteins (VLDLs), intermediate-density 

lipoproteins (IDLs) and low-density lipoproteins (LDLs) 

Excess dietary fat and carbohydrate are converted to triacylglycerols in the 

liver. The triacylglycerols are packaged into very low-density lipoproteins 

(VLDLs) for distribution and delivery to various tissues for storage or use. The 

triglycerol portion of VLDLs is hydrolysed in the capillary by LPL to provide fatty 

acids for storage or use by muscle tissue. The apoCs that are also lost are 

transferred to the HDLs. The predominant remaining proteins are apoE and 
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apoB-100 and the remaining lipid portion is called VLDL remnants or 

intermediate-density lipoproteins (IDLs). The remnant VLDL is metabolised in the 

circulation to a smaller, denser, cholestryl ester-rich particle which is closer in 

density to LDLs.  The final processing stage of VLDL transformation to LDL 

involves another lipolytic enzyme, hepatic lipase. If the LDL is not oxidised, it 

will reside in the circulation for approximately 2-3days before being taken up 

into the liver or extrahepatic tissues [17]. 

Therefore, further loss of triacylglycerols converts the IDLs to Low Density-

Lipoproteins (LDL) (Figure 5). Low-density lipoproteins or LDL carry cholesterol 

in the human plasma. Large quantities of LDL-associated cholesterol in the 

bloodstream will lead to heart disease [5;17;21]. Studies have shown that there is a 

link between elevated levels of LDL in the bloodstream and the eventual 

progression of atherosclerosis. Young et al [39] hypothesised that the first stage of 

atherosclerosis is the oxidation of LDL within the arterial wall followed by the 

uptake of the oxidized LDL by macrophages that leads to the formation of foam 

cells in the early stages of the formation of arterial lesions [21;40]. 

 

Figure 5: An overview of lipoprotein pathways and fates (adapted from [41]). The above figure 

illustrates where and how chylomicrons, VLDL, LDL and HDL are generated and their fate in 

the system. Chlyomicrons are produced in the intestine before being hydrolysed in the 

capillaries. VLDL is also hydrolysed in capillaries and the remnants (IDL) are utilised for LDL 
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formation. HDL is shown to pick up free cholesterol in extrahepatic tissue before returning 

to the liver where cholesterol is metabolised and excreted from the body in bile. 

1.2 A defence against atherosclerosis 

The required cholesterol for  vital structural and metabolic roles in the cell is 

gained due to the domains called rafts and caveolae [42] distributed along the  

plasma membrane of cells. The caveolae along the plasma membrane are 

invaginations of the cell plasma membrane able to transport molecules, in this 

case cholesterol, by endocytosis into the cell [43]. Caveolae systems are sensitive 

to oxidised cholesterol and contain receptors that recognise and bind to HDL, 

LDL and oxidised lipoproteins. Caveolae contain various signalling molecules that 

depend on a maintained ‘normal’ cholesterol content in the body for activity. 

The natural internal defence mechanism against atherosclerosis leads to the 

excretion of excess cholesterol in the faeces when the cholesterol content is too 

high but if there is too much cholesterol in cells, particularly those in the 

arterial wall, the accumulation will initiate atherosclerotic cardiovascular 

disease. HDL will also act to remove excess cholesterol from foam cells, 

transporting a variety of lipids and lipophilic molecules between tissues and 

other lipoproteins. The transportation of cholesterol from peripheral tissues to 

the liver and then bile followed by excretion in the faeces, is called reverse 

cholesterol transport (RCT) [44].  

The feedback system, RCT pathway (Figure 6), opposes atherosclerosis by taking 

accumulated cholesterol from the vessel wall to the liver for excretion. 

Macrophages ingest cholesterol by endocytotic and phagocytotic means. These 

cholesterol-ingestion processes are not regulated by the feedback system so the 

macrophages must therefore store or secrete the engulfed cholesterol. ApoA-I is 

secreted from the liver and intestine and loaded with cholesterol and 

phospholipids by ATP-Binding Cassette Transporter A1 (ABCA1). Pre-β-HDL picks 

up cholesterol and phospholipids from ABCA1 in macrophages and peripheral 

cells and converts to HDL2. HDL2 can be further loaded with cholesterol by 

ABCAG1 and possibly scavenger receptor B1 (SR-B1), in macrophages. ABCG1 has 

recently been identified as a facilitator of cholesterol and phospholipid efflux 

from macrophages to HDL [45]. The cholesterol cargo is unloaded to SR-B1 in 

liver. Cholesterol can be secreted into bile either in the free form or after 
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conversion as bile salt. After transportation into the intestine, cholesterol and 

bile salt are reabsorbed or excreted in faeces. 

Phospholipids, and other metabolites as well as accumulated cholesterol in 

macrophages, are removed by the ATP-binding Cassette Transporter A1 (ABCA1), 

a cell membrane protein, to lipid-depleted HDL apolipoproteins. Liver ABCA1 

initiates HDL particle formation and macrophage ABCA1 protects the arteries 

from atherosclerosis. Esterified HDL is then delivered to the liver for excretion. 

High levels of HDL are therefore inversely proportional to the risk of 

cardiovascular disease [46]. Other mechanisms such as passive diffusion, SR-B1, 

caveolins and sterol 27-hydroxylase and the collection of apoA-I can also take 

part in this process. Additionally HDL phospholipids absorb cholesterol that has 

passively diffused from the plasma membrane into the aqueous phase facilitated 

by the interaction with the scavenger receptor B1 (SR-B1) [46-48].  

 

Figure 6: Liver SR-B1 drives reverse cholesterol transport in macrophages (adapted from 
[44]).  Illustration of the major pathways involved in Reverse Cholesterol Transport (RCT) from 

peripheral tissues and cholesterol ingested macrophages also referred to as foam cells.           

CH = Cholesterol, PL = Phospholipids BS = Bile Salt 
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1.2.1 Genetic disorders leading to high levels of LDL 

Atherosclerosis can be caused by not only environmental factors but also by 

underlying genetic defects which will lead to an increased cholesterol level 

regardless of cholesterol intake. The reverse cholesterol transport (RCT) 

pathway naturally protects against atherosclerosis but if there is a mutation in 

the ABCA1 genes the feedback pathway and cholesterol efflux will be hindered 

which, regardless of diet and life style factors, will lead to higher levels of 

cholesterol in the body thus increasing the risk of atherosclerosis. This genetic 

disorder may be treated by supplementing the HDL and/or the ApoA-I levels 

which will reverse atherosclerotic development  by the acceleration of RCT and 

cholesterol efflux [47]. Also, if the LDL receptor in cells is absent or damaged LDL 

cannot bind at a normal rate which leads to a build up or accumulation of LDL in 

the plasma. If the apoB-100 is defective with a substituted amino acid for 

example this may also hinder or prevent binding to the LDL receptor thus leading 

to the same accumulative build-up [47].   

1.3  Oxidative stress and the production of reactive species 

The presence of reactive species or oxidants in a biological system will produce 

oxidised macromolecules (e.g. Ox-LDL) if the reactive species are in sufficiently 

reactive, in sufficient quantity or concentration. The imbalance of oxidants in 

the body leading to oxidised macromolecules under these conditions is called 

“oxidative stress” and has been linked to the mechanism of atherosclerosis. 

These reactive species or oxidants are radicals which are atoms or molecules 

with at least one unpaired electron. They are highly reactive allowing protein 

side-chains, lipids and DNA to be easily modified without the aid or presence of 

catalytic enzymes [40]. Some small molecules that are radicals or are easily 

converted into radicals are shown in Table 2. In our bodies one of the most 

abundant radicals is oxygen and is not as reactive as would be expected due to 

the unpaired electrons being situated in different molecular orbitals and 

therefore possessing parallel spins. Enzymes, such as nicotinamide adenine 

dinucleotide (phosphate) (NADH/NAD(P)H) oxidases and xanthine oxidases (XO) 

are therefore required to convert the relatively stable O2 molecule into 

superoxide, O2-·, by univalent reduction. Superoxide, (O2-·), can also be formed 

non-enzymatically by reacting oxygen with redox active compound, 

semiubiquinone of the mitochondrial electron transport chain [49] (Figure 7). 
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Table 2: Reactive species and radicals [40]. 

 

Examples of reactive species categorised by their primary atom, oxygen or nitrogen. They 

are small molecules easily able to modify protein side chains without the aid of catalytic 

enzymes. 

 

Figure 7: The production of reactive species (adapted from [7]). Activated NAD(P)H oxidase, 

12/15-LO (Leukocyte-type 12/15-Lipoxygenase) and XO (Xanthine oxidase) generate 

superoxide. Nitric oxide synthases (NOS) switches from a coupled state to a non-coupled 

state to generate superoxide when BH4 (5,6,7,8-tetrahydrobiopterin) or L-arginine levels are 

low. Membrane-bound sub-units; Gp91, Nox1 and Nox4, cytosolic components; p22phox, 

p47phox, p67phox, and G-proteins Rac1 and Rac2 are the catalytic site of the NAD(P)H 

derived O2
•-. If the mitochondrial respiratory chain is dysfunctional SOD isoforms are 

produced which will dismutate superoxidase to hydrogen peroxidase. Myeloperoxidase will 

generate hypochlorous acid from hydrogen peroxide in the presence of chloride ions. 

Hydrogen peroxide reacts with various transition metals (mainly iron) to produce hydroxyl 

radicals. 
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Hydrogen peroxide (H2O2) can be produced from the superoxide anion by 

superoxide dismutases (SODs) such as manganese SOD and copper-zinc SOD. 

Hydrogen peroxide (H2O2) can go on to react with other radicals and transition 

metals such as Fe2+ to produce highly reactive hydroxyl radicals (OHֹ). This is 

called the Fenton reaction (Equation 1) [50]. 

Fe2+ + H2O2  Fe3+ + OH• + OH-  (1) The Fenton Reaction 

Fe3+ + O2
•-  Fe2+ + O2              (2) Regeneration of Fe2+ 

The superoxide anion reacts with the transition metal, Fe3+, producing molecular 

oxygen and regenerating Fe2+(Equation 2). The Fe2+ will then go on to produce 

the hydroxide anion and the hydroxyl radical from reaction with hydrogen 

peroxide. This regenerates Fe3+ which will then react again with any remaining 

superoxide, perpetuating the production of the hydroxyl radical. 

Stimulated monocytes and neutrophils will generate hypochlorite (HOCl), via the 

action of the enzyme, myeloperoxidase on hydrogen peroxide, H2O2, which is 

known to damage proteins by reacting with their sidechains. Myeloperoxidase, a 

heme protein secreted by phagocytes, and hydrogen peroxide are produced 

during inflammatory conditions, including atherosclerosis [51] (Figure 8). The MPO 

catalyses the reaction of the Cl- with hydrogen peroxide to generate HOCl. 

 

Figure 8: Hypochlorous acid is produced by the reaction of hydrogen peroxide with the 

chlorite anion. HOCl will then reduce the superoxide anion to molecular oxygen and the 

hydroxide radical. 

1.3.1  Hypochlorite-induced damage to proteins 

Hypochlorous acid (HOCl) is a potent bactericide known to defend against 

invading bacteria, pathogens and fungi in the body. HOCl and other oxidising 

intermediates generated by myeloperoxidase can react with a wide variety of 
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biological molecules and is known to cause tissue damage [52, 53]. When 

hypochlorite reacts with peptides and proteins the amino acid sidechains can 

become modified resulting in the formation of chlorotyrosine for example. This 

process can indicate the initiation atherosclerosis.  Treatment of proteins with 

HOCl is found to cause direct oxidative damage. When a protein becomes 

damaged in this way, it becomes vulnerable to degradation by proteolytic 

enzymes. In fibronectin, for example, exposure to HOCl alters the protein’s 

primary and tertiary structures which will then in turn render the protein more 

susceptible to elastase [54]. Certain amino acids are more susceptible to 

modification by HOCl than others. The ease of oxidation of the aromatic side 

chains, tyrosine and tryptophan, is due to the reactivity of the aromatic ring 

present. This means that tyrosine and tryptophan can undergo reactions 

resulting in ring oxidation and can therefore be employed as biomarkers for 

HOCl-damage. Studies carried out by Heinecke et al, confirm 3-chlorotyrosine is 

present in oxidised LDL on the arterial wall at atherosclerotic lesions [55]. The 

oxidation of tyrosine can lead to many end products that are specific for 

myeloperoxidase-catalysed reaction pathways, free radical pathways and 

reactive nitrogen species pathways [56] (Figure 9).  

 

Figure 9: The reaction of tyrosine [56]. Tyrosine is oxidised by myeloperoxidase in the 

presence of hydrogen peroxide and hypochlorous acid (HOCl) to form 3-chlorotyrosine. When 

tyrosine is oxidised by reactive nitrogen species, 3-nitrotyrosine is formed instead. When 

oxidised via a free radical pathway, a dimer of tyrosine, dityrosine is produced.  
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1.3.2 Myeloperoxidase-generated reactive nitrogen species  

As discussed, the expression of the myeloperoxidase enzyme during 

inflammatory conditions such as atherosclerosis, lung disease and sepsis for 

example, leads to the formation of chlorotyrosine (ClTyr) and nitrotyrosine 

(NiTyr). When these inflammatory diseases are treated the levels of ClTyr and 

NiTyr which were determined by isotope dilution LC-MS (discussed further in 

1.4.1), were seen to deplete [57]. Stable isotope dilution is performed by adding 

a known concentration of isotope to label the sample being studied and internal 

standards are used to quantify.  

Souza et al [58] employed stable isotope dilution LC-MS to study the levels of 

protein bound NiTyr in plasma proteins and in LDL found in atherosclerotic 

plaques. Using the technique Souza reported that approximately 1 to 10 tyrosine 

residues per 100,000 (10-100µmol NiTyr/mol tyrosine) were found nitrated in 

plasma proteins under inflammatory conditions like cardiovascular disease [59]. 

Although NiTyr was found to be protein-bound in the plasma proteins, up to 10 

times more NiTyr was detected in tissues. In the case of LDL it was found that 

9µmol NiTyr/mol tyrosine was found in healthy subjects but in LDL extracted 

from atherosclerotic plaques 840µmol NiTyr/mol tyrosine was found representing 

a 90-fold increase [60]. The problem with the stable isotope dilution method is 

that isotopes are very expensive to buy.  Unfortunately in the study Souza does 

not differentiate between the NiTyr in free LDL in the plasma of atherosclerotic 

patients and only investigates the NiTyr in LDL found in the lesions. 

It is known that the production of reactive nitrogen species is as important as a 

biomarker for oxidative stress along with chlorotyrosine. Nitrotyrosine has also 

been found to be enriched in atherosclerotic aorta. Podrez et al [61] reports that 

reactive nitrogen species are formed from the MPO-H2O2-NO2- pathway 

converting LDL into NO2-LDL that is then taken up and degraded by macrophages 

leading to deposition of cholesterol, foam cell formation and the beginnings of 

lesion development.  

1.3.3  Stable markers of oxidant damage to proteins 

Protein oxidation products are sensitive markers of oxidative damage and 

therefore the pattern of oxidation products can yield information as to the 

nature of the original oxidative insult to the protein [62]. The reaction of radicals 
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with proteins or peptides in the presence of O2 will give rise to an altered 

backbone and side chains. Studying the protein’s oxidised fragmented backbone 

from clinical samples has its limitations: problems arise during the investigation 

of the altered backbone due to the quantity and abundance of any other 

proteins and the activity of any proteases that are/may be present. Backbone 

fragmentation therefore is rarely used to quantify protein oxidation in complex 

systems and the study of oxidised peptides with altered side chains is 

investigated instead. 

Due to their chemical differences (e.g. electronegativity, conjugation etc.) 

aliphatic sidechains, those containing a hetero-atom (a non-carbon or non-

hydrogen atom on a cyclic ring) and aromatic sidechains react differently with 

reactive oxidative species (ROS) (Table 3). 

Most oxidative products of side chains that are aliphatic (glutamic acid, valine 

and leucine) or those containing a heteroatom (arginine, lysine and methionine) 

are shown to be unstable or generated enzymatically. Oxidation products of 

aliphatic sidechains can also be found naturally in the cell which makes it 

difficult to specifically determine if oxidative stress has occurred or not. The 

most stable and therefore the best oxidative biomarkers appear to be produced 

by the aromatic sidechains: tyrosine, phenalalanine, tryptophan, and histidine. 
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Table 3: Stable markers of oxidant damage to proteins [62]. 

 

The table displays the compounds found as oxidative-lesions on radical- and oxidant-

damaged proteins and their potential use as biomarkers for oxidative damage. The oxidative 

products, 3-chlorotyrosine (red boxed) and 3-nitrotyrosine (blue-boxed) are highlighted and 

discussed further in the thesis. 
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1.4 Detecting biomarkers for disease 

The development of atherosclerosis is difficult to track as there are no imaging 

techniques that are available to monitor the changes of inflammation in the 

arteries. An arterial biopsy is currently the best way to assess the disease but it 

is invasive and therefore not practical or efficient [63]. Current research is now 

trying to find ways where disease can not only be detected earlier and faster, 

but also in ways which are less invasive and more convenient for the patient.  

Bodily fluids are easier to obtain and assay when compared with invasive 

techniques which require tissue samples for biopsies. Blood can be easily 

withdrawn from subjects and is an obvious choice for biomarker discovery. 

Plasma is a frequently sampled proteome for medical diagnosis and contains 

other tissue proteomes from which disease may be suspected [64]. Enzyme assays 

can be exploited to assay plasma and the advantages are that the level of 

function rather than the amount of a molecule is measured. Plasma may 

represent the deepest portrayal of the human proteome as it circulates the 

entire body and will not only contain plasma proteins but also all cell proteins as 

leakage markers [65;66]. Enzyme assays of plasma will therefore give a full picture 

of the levels of disease within the body. The disadvantages of enzyme assays and 

other biochemical assays are that only a single protein activity can be assayed 

per experiment. Both proteomics and protein chemistry involve protein 

identification but proteomics takes multi-protein systems into consideration and 

looks at possible interactions within a larger network. 

Specific proteins or post translational modifications of proteins related to 

disease are known as biomarkers. The need for biomarker discovery is important 

for drug development and the early diagnosis of disease. Biomarkers are 

becoming more important particularly for the study of progressive diseases such 

as Alzheimer’s disease [67, 68], rheumatoid arthritis [69] and cardiovascular disease 

which are initially asymptomatic [70]. Biomarkers for disease are screened for by 

gauging deviations from normal states in the human body [71] allowing for the 

diagnosis of high-risk individuals early. Some disease processes can first occur in 

the proteins so they therefore show the most potential as “patient-tailored” 

drug targets [72]. 
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Frank et al [73] and Shishehbor [74] report how biomarkers can be employed to 

quantify and monitor the therapeutic effect of drugs. Tsimikas [75] discusses how 

the studies of oxidation-related molecules are not only helping define 

atherosclerotic mechanisms but can also be used to improve cardiovascular risk 

assessment  by measurement of the circulating levels of specific oxidant 

compounds. Oxidation is recognised to be involved in all stages of atherosclerosis 

from the initiation of fatty streaks in the arteries to the more advanced stage of 

the disease when the plaque ruptures. Myeloperoxidase (MPO) is an enzyme 

released by white blood cells during inflammation that will generate oxidants. 

Products of MPO include: hypochlorous acid, tyrosyl radical and nitrogen dioxide 

and are mediated through a reaction with hydrogen peroxide contributing to 

oxidative damage to host lipids and proteins leading to atherosclerosis. MPO 

levels and the enzyme’s oxidative products have been found to be elevated in 

association with coronary artery disease. Response to treatment with the drug, 

Atorvastatin which is prescribed to lower blood cholesterol [76;77], stabilizing the 

atherosclerotic plaque and preventing strokes, can be monitored by determining 

levels of oxidative products including those from MPO-mediated oxidation. The 

study [75] produced data that suggested statins reduce MPO expression and 

therefore damage by oxidation providing a method for the observation of the 

progression and treatment of atherosclerosis. 

The search for biomarkers however is challenging as the proteome is varied and 

complicated by the various extent and variety of post-translational modifications 

that can occur on an individual protein. The biomarkers indicative of disease 

found within these complex fluids are usually small in quantity and masked by 

more abundant proteins such as albumin in the case of human blood plasma, 

making their detection problematic [78]. Pre-fractionation techniques using IgY 

immunoaffinity spin columns have been used to deplete albumin from plasma 

but this technique proves problematic as the results are not reproducible [79]. 

Reproducible analytical methods for detecting and quantifying protein 

biomarkers in their modified and unmodified states are therefore required and 

examples of these are discussed (1.4.1 and 1.4.2).  
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1.4.1 Stable isotope dilution for the detection and quantification of proteins 
and or post translational modifications 

Stable isotope dilution LC-MS as briefly discussed in 1.3.2 can be used for the 

detection and quantification of proteins and post translational modifications. 

Quantification can be performed when the results are compared with internal 

standards. Shishehbor et al [74] detected and compared levels of NiTyr levels in 

atherosclerotic patients before and after statin therapy. The study was 

performed by adding synthetic 3-nitro-[13C6] tyrosine and [13C9
15N1]tyrosine to 

plasma protein both as an internal standard and to simultaneously monitor 

nitrotyrosine, tyrosine, and potential formation of nitrotyrosine during analysis. 

Patients with coronary artery disease plus peripheral arterial disease were 

shown to demonstrate an increase in the prevalence of atherosclerosis with 

increasing levels of nitrotyrosine.  

1.4.2 Western Blotting 

Western blotting (or immuno-blotting) was introduced by Towbin et al in 1979 
[80;81] and was developed as a sensitive visualisation assay for the detection of 

proteins by employing SDS-PAGE and the transfer of the separated proteins from 

a gel onto an unmodified nitro-cellulose sheet before being probed using 

antibodies. Western blotting for known biomarkers in a protein sample is an 

inexpensive conventional method for the detection of post translational 

modifications such as ClTyr and NiTyr. The technique relies on the specific 

binding interaction of a protein-antigen allowing the targeted protein of interest 

to be identified amidst a number of more abundant proteins in a complex 

sample. Qualitative and semi-quantitative data can be produced for the proteins 

detected. Target proteins in a complex sample can be detected using western 

blotting in a number of ways; two of which are discussed here.  

1.4.2.1 Indirect detection of a protein or posttranslational modification 

For detection using a primary and secondary antibody the first antibody or 

“probe” is used to initially identify or recognise the protein of interest. The 

second antibody is then used to detect and bind to the primary antibody. The 

secondary antibody to be used depends on either the animal species in which the 

primary antibody was raised (i.e. if the primary was raised is a mouse 

monoclonal the secondary must be anti-mouse or from a non-mouse host) or 

dependant on the tag of that anti body (e.g. biotin). Enzymes are commonly 
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conjugated to the secondary antibody, the most popular being horseradish 

peroxidase (HRP), to visualise the protein of interest. A chemiluminescent 

substrate is employed and the signal is detected by either x-ray film or digital 

imaging equipment. Using an indirect detection method for the targeting of a 

protein using a western blot has its advantages and disadvantages. For example, 

one secondary antibody can be used for the detection of a variety of primary 

antibodies and although there are additional steps involved lending to a longer 

protocol, the signal from the antibody-antigen interaction can be amplified by 

use of the second antibody. The amplification of the signal by the secondary 

antibody is an invaluable advantage of the technique especially for the detection 

of very low abundance proteins but use of the secondary antibody can lead to 

non-specific staining.  

Khan et al [82] compared the presence of NiTyr in the plasma of healthy non-

smoking volunteers and those suffering from the inflammatory disease, systemic 

sclerosis. During the study they were able to visualise and compare NiTyr levels 

in plasma from the patients and of the healthy subjects. They found that those 

suffering from systemic sclerosis possessed higher levels of NiTyr in plasma than 

present in the healthy controls.   

1.4.2.2 Direct detection of a protein or post translational modification 

Direct detection fluorescently tagged antibodies can be used for the 

identification and visualisation of post translational modifications in systems. 

Spickett et al [83] investigated cysteine oxidation by employing modification-

specific fluorescent chromophores to effectively target the modified cysteines. 

The technique can be utilised to compare two samples which are labelled with 

two different chromophores before being mixed and and run on the same gel. 

Running the two samples on the same gel removes the variation between gels 

and also allows both targeted modifications in each sample to be analysed and 

their abundance compared using differential colour scanning.  

Whichever method of the technique is applied, direct or indirect detection, the 

intensity of the signal will correlate with the abundance of the protein targeted. 

There are advantages and disadvantages to both techniques. Direct detection 

with fluorescent tagging is a quicker method requiring fewer steps as a primary 

antibody is not required. The equipment required for the detection of the 
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fluorophore-conjugated antibodies, however is more expensive and specialised 

as the fluorescent signal must be detected and documented and a light source is 

required for the excitation of the fluorophore. Although fluorophore detection is 

a more expensive technique, chemical waste is reduced in comparison to other 

western blot methods.  

Although very sensitive the biggest drawback of the western blot technique for 

the detection of proteins and post translational modifications is that there is no 

sequence information gained. The presence of the protein or modification can 

be confirmed but there is not “site-specific” information. When studying the 

proteome for biomarkers knowing which peptides from which protein that have 

been modified is important. If the targeted site of modification is known drug 

therapy can be monitored and new, more site-specific drugs can be developed.  

1.5 Mass spectrometry for the analysis of the proteome 

The Edman degradation technique has traditionally been employed to sequence 

peptides [84]. Sample quantities required for the technique is between 1-10pmol 
[85] and the automated process employs chemical reagents to remove one amino 

acid at a time from the terminus of an intact peptide. The amino acid derivative 

generated is then purified and identified by HPLC and the amino acid was then 

identified by the retention time in comparison to those of standard amino acids.  

The Edman technique can be problematic. Firstly, an amino acids retention time 

is altered by the presence of a post translational modification which can 

subsequently lead to the mis-identification of a peptide sequence and secondly 

the technique is also very time consuming. For the identification of a peptide 

using HPLC, cycle times are ~30min/amino acid meaning that sequencing a 

peptide containing 8 amino acids would take 4 hours. The Edman technique is 

therefore not suitable for biomarker discovery and the investigation of disease 

as the validation of post translational modifications are of extreme importance 
[86] and  due to the time constraints is not suitable for identifying proteins and 

peptides in very complex samples. 

In comparison to the Edman degradation technique, analysis by mass 

spectrometry is a high-sensitivity, high-throughput technique capable of 

acquiring both the molecular weight and sequence information of proteins and 
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peptides. Less sample is required in comparison to the Edman degradation 

technique and typical sample quantities required for analysis by mass 

spectrometry are from the low to mid femtomole level [87]. Information about 

the amino acid sequence for peptides can be found through the use of collision 

aided dissociation (CAD), otherwise known as collision induced dissociation (CID), 

by tandem mass spectrometers. As well as sequence information, the presence 

of post translational modifications can also be determined [88].Hybrid mass 

spectrometers (the quadrupole time-of-flight (QToF) and the quadrupole ion-

trap (Qtrap) for example) consist of more than one  mass/charge (m/z) 

separation device to allow for tandem mass spectrometry. Tandem mass 

spectrometry allows for MSMS to be performed which can involve multiple steps 

of selection by m/z with some form of fragmentation occurring in between 

stages.  Examples of the various modes of operation for a tandem mass 

spectrometer are the product ion scan and the precursor ion scan which are 

discussed further in 1.6.  

1.5.1 The quadrupole mass filter 

In a quadrupole mass spectrometer the quadrupole mass filter is used to 

separate molecules by their mass/charge (m/z) ratios. The quadrupole mass 

filter (Figure 10) consists of four parallel rods. The ions are separated based on 

the stability of their trajectories through the field which is determined by their 

mass-to-charge ratios (m/z).  The electric field is created by placing a dc 

voltage and an rf voltage on the four quadrupole rods. The adjacent rods have 

opposite polarities. Ions enter the mass analyzer and by increasing the 

magnitude of the dc and ac voltages stable trajectories are created for ions of 

increasing m/z. Mass resolution is dependent on the number of ac cycles and 

how long the ion spends in the field.  
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Figure 10: Quadrupole mass filter. The figure illustrates how ions from a source enter the 

quadrupole mass filter. An electric field is applied to the rods and the ions are separated 

based on the stability of their trajectories through the field which is determined by their m/z 

ratios. 

Mass filtering of ions can be seen as a separation process. If quadrupoles are 

coupled together this will create a powerful approach for the analysis of 

complex protein mixtures [88].  For triple quadrupole mass spectrometers a 

reaction region such as a collision cell is situated between two quadrupoles. In 

the collision cell gas pressure is raised to allow multiple low-energy collisions in 

a short time frame to fragment masses. The main benefit of a quadrupole 

collision cell is the ability to refocus the ions that become scattered by collision 

with the neutral gas. The m/z values of the dissociation or fragment products 

are then measured in the second mass analyzer, for example, the third 

quadrupole before being allowed through to the detector. Collision induced 

dissociation experiments allow the structure or sequence of peptides to be 

determined by fragmentation of the labile peptide bonds. CID primarily cleaves 

at the amide bonds generating sequence-specific fragmentation (further 

discussed in 1.6.4.4). 

1.5.2 The quadrupole ion trap 

Quadrupoles can be used to guide ions from a source to an analyser as an ion 

guide or as a collision cell when ions are deliberately injected into the 

quadrupole with sufficient energy leading to the collision with gas and ending in 

fragmentation. The ions from the source are focussed into the trap by a lens 

before the quadrupole is converted to an ion trap (known as a 2D trap) [89] by 

applying stopping potentials to the electrodes or electrostatic mirrors at both 
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the entrance and exit of the quadrupole (Figure 11). The four poles or 

electrodes of the linear ion trap stabilise the ions in 2D by dc and rf. The four 

poles (1, 2, 3 and 4 [Figure 12]) have opposing charges ([A]: poles 1 and 3 

possess a positive charge, poles 2 and 4 possess a negative charge) and when a 

positive ion is present it experiences repulsion from the positive electrodes ([B]: 

1 and 3) and attraction and therefore acceleration towards the negative 

electrode ([B]: either 2 or 4). The potentials on the electrodes switch before the 

positive ion can reach the negative electrodes ([C]) resulting in the trapping of 

the ion in a quadrupolar electric field.  

 

 

 

Figure 11: The quadrupole ion trap. The figure displays the ion trap. In trap mode ions are 

stored and selected due to the combined action of a static dc and a rf electric field. 

Confinement of the ions radially is achieved by the rf fields and axially by the stopping 

potentials (Figure 12). 
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Figure 12: Trapping the ions in a quadrupole. The polarity of the electrodes switch resulting 

in trapping an ion or ions in a quadrupolar electric field. 

In 1989 Wolfgang Paul invented the 3D quadrupole ion trap (Figure 13) which 

consisted of two hyperbolic electrodes and a ring electrode. This trap is filled 

with ions by means of a gate voltage which opens allowing ions to enter the trap 

and then closes when the trap is filled preventing over-filling and space charging 

effects which will cause disproportionate ion density. Ions are trapped between 

the electrodes by using rf and dc frequencies producing a 3D quadrupolar 

electric field. The rf and dc potentials alter to destabilise the ion motions 

resulting in the ejection of the ions through the exit endcap to the detector. 

Trapping is enhanced by a gas, often helium, to cool the ions helping to prevent 

their escape. Ions are ejected by application of an rf voltage to the ends of the 

trap [90]. 

 

Figure 13: The 3D ion trap invented by Wolfgang Paul consists of two hyperbolic electrodes 

and a ring electrode. The ions are trapped in a quadrupolar electric field. 
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1.5.3 The Qtrap 

The Qtrap (Applied Biosystems) used in this research thesis is a hybrid mass 

spectrometer and is a 2D ion trap instrument consisting of four quadrupoles (Q0, 

Q1, Q2 and Q3) where the second quadrupole (Q1) acts as a mass filter (1.5.1) 

and the fourth (Q3) will perform in quadrupole mode or trap mode. A collision 

cell, (Q2), is situated between the second and third quadrupoles (Figure 14).  

 

Figure 14: The triple quadrupole mass spectrometer. The above figure shows the schematic 

internal set up of the Qtrap. 

For a conventional MSMS experiment the peptides are in most cases separated of 

using reverse-phase liquid chromatography (LC) before entry into the mass 

spectrometer. The reverse-phase LC column is packed with an inert non-polar 

material typically carbon bonded silica and peptides are loaded onto the column 

to be eluted with respect to their polarity (the most polar first). The mobile 

phase which is typically a mixture of water or aqueous solvents and organic 

solvents washes the peptides from the column resulting in their separation. The 

length of time a peptide takes to elute off the column is called the retention 

time. The separated peptides are then are ionised before entry into Q1 where 

the precursor of interest is selected to be fragmented. The chosen ion or ions 

are then allowed to enter Q2 where they are fragmented by the collision gas. 

The Qtrap fragmented ions are then trapped cooled and scanned in Q3. Q0 is a 

potential ion trap that is used to increase the sensitivity of the technology, and 

for focussing the ion beam before the ions reach Q1. Q0 can also trap ions 

produced in the source while Q3 is scanning. 

1.6 The capabilities and modes of operation of the Qtrap 

The hybrid mass spectrometer, the Qtrap, can perform various modes of tandem 

mass spectrometry. The third quadrupole (Q3) can perform multiple stages of 

fragmentation [91] allowing for functions such as product ion (PI), neutral loss 

Ions from 
source 
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(NL) and precursor ion (PC) scanning while still retaining sensitivity due to the 

presence of the ion trap [92,93, 94 95] (Table 4). 

Table 4: Triple quadrupole ion trap MS modes of operation [94]. 

 

The above displays the various triple quadrupole mass spectrometer modes of operation and 

the abilities of Q1, q2 and Q3. When in resolving mode the quadrupole will only scan. 

1.6.1 Q3 quadrupole and trap mode (enhanced MS) 

For quadrupole scans, Q1 or Q3 are operated in the rf/dc mode (resonance 

frequency/direct current). In trap mode an rf potential is applied to the 

quadrupole. Ions are trapped in Q3 by the radial directed rf voltage and the dc 

axial operated aperture plates. In Q3 the trapped ions are cooled typically for 

10-30ms, and the fill times usually vary in the range of 1-500ms. Trapped ions 

are mass selectively ejected from the quadrupole trap by fringe fields caused by 

the lenses at either end. The Q3 can act as a quadrupole or trap and can switch 

between these modes in milliseconds.  

1.6.2 Enhanced Resolution (ER) mode  

When the linear ion trap (LIT) scan rate is slowed, resolution is increased but 

sensitivity decreases. The ER scan is usually performed after the enhanced MS 

mode and before the enhanced product ion scan.  

1.6.3 Enhanced Product Ion (EPI) mode   

The precursor ion is selected in Q1, collision-induced dissociation occurs in the 

collision cell (q2) and the fragmented ions are trapped in Q3 which is operating 

in the LIT mode where the quadrupole acts as a trap and ejects ions axially by 
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mass selection to the detector. In a quadrupole collision cell, ions will undergo 

many collisions and the resulting fragment ions are reactivated and fragmented 

further. Product ions are usually too cool to fragment further and so therefore 

require specific excitation which is completed in MS3 and MS4 experiments. Ion 

traps have low mass cut-offs when fragmentation is performed “in-trap” as it is 

difficult to excite the parent to be fragmented without exciting the trapped 

fragment ions [93]. When in the enhanced product ion mode, the precursor ion 

selected in Q1 is fragmented in the quadrupole collision cell q2 and the mass 

fragments are used to obtain a complete collision-induced dissociation (CID) 

spectrum down to m/z 50. 

1.6.4 The ionisation and fragmentation of peptides in a mass spectrometer 

To identify proteins in a sample or post translational modifications on a protein, 

the sample is usually enzymatically digested by a sequence-specific protease. 

The protease trypsin which cleaves at amino acids; arginine and lysine except 

after proline, is a popular choice. The reason for protein digestion and the 

analysis of peptides and not intact proteins is that proteins can be challenging; 

they can be insoluble and the use of detergents will interfere and affect MS due 

to their high ionisation efficiencies [96]. 

1.6.4.1 Electrospray Ionisation 

Protein digest samples are commonly separated on a chromatography column 

before being introduced into the mass spectrometer by electrospray ionisation 

(ESI) [97]. The development of ESI began in 1914 when Zeleny et al [98] reported 

that a liquid could be dispersed from the end of a capillary by applying a high 

electrical potential across its exit. Dole and Fenn [99-101] then went on to report 

that ESI could be used as an ionisation method for large biological molecules and 

polymers.  

Gaseous ionised molecules are produced from solution by the generation of a 

fine spray of droplets in the presence of a strong electric field (Figure 15). The 

droplets are driven by the electric field toward the mass spectrometer. The 

charge density increases towards the Rayleigh limit until the Coulomb repulsion 

becomes of the same order as the surface tension. The resulting instability or 

“coulomb explosion” disperses the droplet; generating charged smaller progeny 

droplets that also go onto evaporate and perpetuate the process. The process 
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continues until the resulting droplet becomes so small in size that the electric 

field, due to the surface charge density, is strong enough to desorb ions from the 

droplet (the charge from the droplets surface is removed onto the peptide or 

biomolecule). The charged peptides then go on into the mass spectrometer for 

analysis [97]. 

 

Figure 15: Electrospray ionisation into a mass spectrometer. The above figure illustrates the 

electrospray ionisation of biomolecules in a solution. 

1.6.4.2 The Rayleigh Limit – the stability of a charged droplet 

During electrospray ionisation, the charge density of a droplet arrives at a 

threshold where the repulsive electrostatic force equals or surpasses the 

cohesive force due to surface tension, the droplet will become unstable.  

Rayleigh [102] reported the earliest analysis on the stability of a charged droplet. 

His analysis showed that a macroscopic, incompressible droplet of an inviscid 

and perfectly conducting liquid, will become unstable when a critical value (or 

charge limit) is reached. The critical value is given by Equation 3 

Equation 3 qR = 8π√(ε0γα3) [102] 

Where ε0 is the variable permittivity constant, γ is the surface tension of the 

droplet and α is the droplet radius. At the critical value (i.e. q≥ qR) the 

disturbances due to the change in shape lead to the fission of the droplet. 

1.6.4.3 Nanoelectrospray Ionisation – comparison in droplet size 

The nanoelectrospray source (nanoES) is different from conventional 

electrospray sources [103]. It is miniaturised, runs at a lower flow rate and 
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generates smaller sized droplets. Juraschek et al [104] investigated the difference 

between electrospray ionisation and ionisation from a miniaturised nanoES 

source. Both the electrospray source and nanoES generate droplet sizes in the 

µm range for ion spray but the nanoES produces droplets thought to be one order 

of magnitude smaller. In the context of the “un-even fission” model (the 

Rayleigh critical charge limit), nanospray would enter one fission generation 

later due to the smaller size of the droplets. The smaller droplets would also 

mean that the initial charge density of the droplets is higher which results in 

earlier fissions without extensive evaporation leading to the increase in sample 

concentration. Another benefit that nanoES provides is the ability to run at very 

low flow rates (~200nL/min) therefore increasing sensitivity and limit of 

detection. Abian et al [105] investigated and compared flow rates and confirmed 

that lower flow rates (comparing 100µL/min and 0.5µL/min) increased the 

sensitivity (from 50fmol to 1.5fmol respectively).  

1.6.4.4 Collision induced dissociation (CID) 

The fragmentation of peptides by CID (or collisionally activated dissociation, 

CAD) in the collisional cell occurs by the peptide first becoming multiply charged 

by ionization. A proton will then migrate along the peptide backbone, pausing at 

the peptide bonds –NH-CO-. The charged peptide then collides with the gas in 

the collision cell and fragmentation occurs at the peptide bond due to the 

increased labiality by the presence of the extra proton (Figure 16). 

Multiple collisions of the peptide with the inert gas ions lead to the rapid 

vibrational re-distribution of the internal energy causing a “heating” of the 

precursor ions. When the internal fragmentation energy reaches a threshold, the 

weakest bonds are cleaved preferentially [106]. There is one bond fragmentation 

for every one of an approximate 500 precursors and an average of these 

fragmentations is the mass spectrum. Depending on which terminus (N or C) the 

protein fragments from determines if it will form part of the y or b-ion series 

(Figure 17). At low energy CID conditions b-ions, y-ions and neutral losses of 

water and ammonia dominate the mass spectrum. There are other methods of 

dissociation for example, photo dissociation and electron transfer dissociation 

(ETD). Gas phase CID dissociation is the most widely used method of dissociation 

in commercial tandem mass spectrometers [107]. 
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Figure 16: Collision induced fragmentation. The figure displays the migration of the proton 

down the peptide backbone. Fragmentation is then caused by collision with inert gas to 

produce two daughter ions. 

 

 

Figure 17: Various fragmentation patterns of a peptide. The above figure illustrates the 

fragmentation pattern of a-, x-, b-, y-, c- and z-ions. 

1.6.5 Alternative dissociation methods 

1.6.5.1 Electron transfer dissociation 

Electron transfer dissociation (ETD) provides an alternative fragmentation 

pattern. Fragmentation by ETD rather than CID can preserve more labile 

modifications such as phosphorylation, methylation and glycosylation.  

Sobott et al [106] demonstrated the preservation of the ubiquitination 

modification on proteins using ETD. The ubiquitination modification is unstable 

due to the iso peptide bond linkage between the C-terminal glycine and the N(ε) 

lysyl chain. The alternative fragmentation ETD method was found to allow for 

Parent ion Daughter ions 
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the detection of gly-gly-modified lysyl sidechains on DNA polymerase B1 that 

were not easily observed using CID.  

ETD fragments peptides using ion/ion chemistry [108;109]. ETD fragments peptides 

by transferring an electron from a radical anion to a protonated peptide, 

inducing fragmentation of the peptide backbone by causing cleavage of the Cα-N 

bond. This generates a series of c and z-ions instead of the b and y-ions observed 

after CID (see Figure 17). 

1.6.5.2 Photo dissociation 

Thompson et al [110] report fragmentation of peptides using a 157nm light 

excitation to induce backbone cleavage in singly protonated peptide ions. 

Peptides and or proteins are protonated by atmospheric ion sources. Photo 

dissociation with 157nm light will generate x-, v- and w-type fragments. The x-

ion corresponds to the cleavage of the backbone bond between the α-carbon and 

the carbonyl carbon with the charge remaining on the C-terminal fragment 

(Figure 17). The v-ions are high energy C-terminal fragments that have 

completely lost an adjacent amino acid side chain. Certain amino acids produce 

w-ions from partial, incomplete side-chain loss with the cleavage occurring 

between the β and γ carbon atoms. The w-ions are commonly observed at 

leucine (molecular weight = 131Da) residues rendering them distinguishable from 

isoleucine (molecular weight = 131Da) amino acids (Figure 18). 

 

Figure 18: The w-ions. Partial, incomplete side-chain loss cleaving between β the γ and 

carbons allow for the distinguishing between leucine and isoleucine. 

 Thompson et al demonstrated a number of peptides dissociated by photo 

dissociation illustrating that the spectrum is indeed dominated by x-, v- and w-

type fragments. Light is not affected by electric or magnetic fields so photo 
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fragmentation of singly and multiply protonated peptides and protein ions should 

be compatible with various mass analyzers. 

1.6.5.3 Surface induced dissociation (SID) 

Surface induced dissociation (SID) is used to activate ions stored in a quadrupole 

ion trap mass spectrometer. A short (<5µs), fast rising (<20ns rise time), high 

voltage (dc) current pulse is applied to the ends of the quadrupole ion trap. This 

is comparable to the CID method of fragmentation where an alternating (ac) 

current is used to excite and dissociate ions. The effect of the dc pulse causes 

the ions to become unstable in the radial direction and consequently collide with 

the ring electrode in the 3D Paul trap. During SID a significant amount of 

precursor ion translational energy is converted into internal energy causing 

fragmentation. This fragmentation is high energy and the resulting fragments are 

then scanned out of the ion trap using the conventional mass-selective instability 

scan mode [111;112]. The higher energy is explained by the effective mass of the 

surface compared to the effective mass of the CID gas. The high energy collisions 

associated with SID make it possible for very large molecules to be dissociated. 

SID also has the potential advantage of improved ion collection in comparison to 

CID where multiple collisions may cause scattering of the ion beam. The internal 

energy distributions show the SID method of fragmentation to be narrower than 

the sum of multiple collisions during CID. In conclusion, SID can dissociate 

precursors of higher m/z in comparison to CID but their product ion spectrums 

are similar in resolution. The mass spectrum for SID fragmentation is dominated 

by a-, b- and y-ions (see Figure 17) although there were a greater ratio of a- to 

b-ions and an enhancement in immonium ions in SID than the CID [113].  

1.7 Sensitive and selective triple quadrupole mass spectrometry 
methods for the discovery of post translational modifications 

Mass spectrometry has become the method of choice for the analysis of complex 

protein samples [114]. Compared to Time-of-flight (TOF) mass spectrometers, LITs 

are higher in sensitivity although lower in resolution meaning that co-eluting 

peptides with similar m/z ratio’s will frequently overlap preventing accurate 

mass analysis and charge state determination [115].  

The mass spectrum of an unknown protein digested with a specific enzyme will 

produce a specific series of specific peptides. This series of peptides is the 
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protein’s peptide-mass ‘fingerprint’. This information alone can be used to 

identify the protein in question. By obtaining these fingerprints by digestion and 

screening against a database of known proteins, post-translational modifications 

can be characterised [116].  

1.7.1 The precursor scan 

A sensitive and selective technique for the discovery and detection of 

modification sites in complex protein samples which has been used in many 

studies is the precursor scan[94;117-121]. The precursor scan (discussed in more 

detail in Chapter 2) can be performed on tandem mass spectrometers were the 

second analyzer is set or fixed to detect a reporter ion while the first mass 

analyzer scans through the mass range [122]. Only peptides or “precursors” that 

fragment to generate or give the reporter ion are registered in the final mass 

spectrum. This allows modified peptides to be identified when in very low 

abundance or in an excess of background ions. Precursor scanning has been a 

popular method to detect and identify post translational modifications for 

example the  phosphorylation modification sites in protein kinases [123].  

Phosphorylation is the addition of a phosphate (PO4) group onto a protein which 

can activate or deactivate enzymes leading to the initiation or prevention of 

diseases such as cancer and diabetes. Reversible phosphorylation is an important 

regulatory mechanism involving kinases (phosphorylation) and phosphatases 

(dephosphorylation) [124;125]. Williamson et al, applied a precursor scan for m/z -

79 (due to loss of PO3
-) in the negative ion mode, followed by an enhanced 

resolution and enhanced product ion scan in positive mode to effectively identify 

phosphorylation sites in low abundance (femtomole level) proteins. Another way 

of detecting the phosphorylation modification is to perform a precursor ion scan 

using the immonium ion of the phosphotyrosine, 216.043m/z, in positive ion 

mode. The benefits of using the 216.043m/z immonium ion as the “reporter” 

instead of the -79m/z PO3
- , is that the precursor ion scan can be performed in 

positive mode making the need for polarity switching or the changing of the pH 

of the spraying solvent redundant [122;126]. By applying the triple quadrupole 

precursor and neutral loss scan mode, free phosphopeptides were detected in 

biological fluids, serum, saliva and urine showing high sensitivity and selectivity 

even in low concentrations [127]. Cirulli et al, used the precursor -79m/z for the 

PO3
- [128-131], and the constant neutral loss scan was offset by the 49Da 
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corresponding to the loss of neutral phosphoric acid from doubly charged 

peptides.   

The precursor scan is a selective scan and can be used to detect post-

translational modifications where there is no previous knowledge of the 

modification sites.   

1.7.2 The neutral loss scan 

Post translational ion signatures (specific as an indicator of modification) are 

monitored during mass spectrometry and neutral loss has been used to detect 

phosphorylation events in proteins [132]. Protein phosphorylation modifications 

are detected by mass shifts in fragment ions. Neutral loss detection is the 

measured loss of a neutral species yielding a product with a lowered mass. For 

example a -98Da mass loss from a peptide is from the cleavage of the 

phosphoester bond and the loss of H3PO4.  

In tandem mass spectrometers for a neutral loss scan both the first and second 

mass analysers are set to scan simultaneously but with a mass offset [133]. In 

respect to the detection of phosphorylation the mass offset would be -98Da. The 

first mass analyser scans all masses and the second mass analyser scans but is 

offset by the mass loss commonly seen for the modification. In the neutral loss 

scan all precursors that undergo the loss of a specified common neutral mass are 

monitored. As with the precursor scan the neutral loss scan is a sensitive and 

selective method for the detection of post translational modifications, requiring 

no prior information, in a complex mixture [134].  

1.7.3 Multiple reaction monitoring 

The mass-spectrometry based methods, precursor scanning and neutral loss 

scanning are sensitive and selective methods used to detect post translational 

modifications but they do not take advantage of any prior knowledge known 

about the protein being studied. Prior knowledge may include the primary 

sequence of the protein and the potential modification sites. This information 

can be used and then applied for the detection of post translational 

modifications. The precursor ion and fragment m/z values resulting from CID can 

be predicted for a multiple reaction monitoring (MRM) experiment [135]. The MRM 

technique has been used to quantify and monitor the progression of drug therapy 
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[136] and disease [137-142] (further discussed in Chapter 3). I am interested in 

oxidative stress and there have been studies measuring the oxidative stress 

parameters in biological samples e.g. blood, serum and urine etc using MRM 

methods [138]. In a review Winnik et al [138] discusses the oxidative stress 

parameters isoprostanes, thiol markers, 8-OHdG (8-hydroxydeoxyguanosine) and 

the oxidation products of aromatic side chains.  Isoprostanes can be detected 

using a malondialdehyde-based thiobarbituric (TBARS) acid reacting substance 

for a quantitative, spectrophotometric assay. Morrow et al [143] has also 

employed a gas chromatography mass spectrometry method to quantify 

isoprostanes. Isoprostanes are used as a biomarker for oxidative stress as they 

are related to the peroxidation of lipids. The TBARS assay has been used before 

but, as discussed by Winnik, can lack specificity and lead to false positives. Thiol 

markers indicating the reduced and oxidized levels of antioxidant glutathione 

(GSH, a tripeptide consisting of the linking between the amine 

group of cysteine and the carboxyl group of the glutamate side chain) can be 

detected using LC-MSMS and SIM (selective ion monitoring). The 8-OHdG product 

is an oxidised product of the DNA nucleoside or base, guanine. Upon DNA repair 

this molecule will be excreted in the urine as a waste product. Detection of 8-

OHdG can be performed using LC-MSMS or antibody-based methods but can be 

problematic due to the oxidation of guanine during sample preparation. The 

presence of oxidized aromatic side chains (NiTyr and ClTyr for example) are 

usually detected by isotope dilution LC-MSMS.  

The MRM experiment (commonly referred to as a selective ion monitoring (SIM)) 

focuses the specific precursor ions and fragment ions that have been targeted 

for. Although the precursor and neutral loss scans are sensitive by taking full 

advantage of any biological knowledge surrounding the protein of interest even 

higher sensitivity can be achieved. This targeted approach is suited for the 

investigation and quantification of a specific protein or post translational 

modification in a complex sample.  

1.7.3.1 MIDAS (monitoring-initiated detection and sequence) software to 

design an MRM assay 

The MIDAS workflow designer software is used to automatically build an MRM 

assay. MIDAS can be used to detect and target for post translational 

modifications such as phosphorylation [144;145]. Mollah et al [146] applied the MIDAS 
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workflow to design a MRM assay to target and detect ubiquitination sites the 

substrate protein and receptor interacting protein. The information required for 

the MIDAS designer workflow is the sequence of the protein that is to be 

targeted, the enzyme employed and the variable post translational modification; 

in this case, ubiquitin. For each peptide generated by the in silico digestion an 

MRM transition is produced whereby both the precursor and fragment ion are to 

be monitored during the assay. The MIDAS program will typically produce two 

charge states for two fragment ions per peptide (precursor) for confirmation. 

Ions from the first quadrupole were accelerated into the collision cell were they 

undergo collision-activated dissociation (CAD) and the resultant fragments 

accelerated to the third quadrupole which is scanned for the selected, targeted 

fragment ions. A signal is detected when the selected precursor in the first 

quadrupole generates the targeted fragment ion in the third quadrupole. When 

an MRM has been detected the third quadrupole can switch to linear ion trap 

mode to obtain MSMS verification for the precursor-fragment ion pair.  

1.8  Search engines and databases to analyse mass spectrum 
data 

Mass spectrum data is produced during a proteomic study. These spectrum can 

be analysed manually or by using a search engine to match the spectra to 

sequence information contained in proteomic databases [147;148].  

Using MSMS data and database searching has become a valuable technology for 

rapidly analysing, detecting and identifying proteins and their post translational 

modifications. Protein databases (MSDB, NCBInr, Swissprot for example) are 

created by in-silico digestions of the proteins contained in them. Post 

translational modifications can be added to these databases by adding the 

complete set of in-silico modified fragments to each protein for each 

incorporated post translational modification. The search engine Mascot is 

probability based and is a commonly used tool to correlate tandem MS data 

(resulting peak list) with the peptides in a database. Identification of proteins 

using Mascot is based on the characteristic amino acid sequence of the peptides, 

although partial information of the amino acid sequence of a protein can still be 

used to search for and identify the protein [149].  
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A possible method of identification is to sequence the MSMS spectrum by de novo 

sequencing (predictions are made using only a computational model without 

comparison to existing data) to give a complete sequence of the peptide and the 

presence and location of any existing post translational modifications. The 

peptide sequence is then searched against a protein database to identify the 

protein. Another possible method of identification is to use software algorithms 

to directly match the MSMS data collected experimentally with theoretical MSMS 

data generated from a peptide in a protein database. Mascot uses a scoring 

algorithm to provide a probability-based model for peptide identification. Brent 

Weatherly et al [150] describes a proteomic study using LC MSMS and Mascot. 

Proteins are first extracted from biological material followed by an enzymatic 

digestion to produce peptides. The next stage is to separate the peptides by 

liquid chromatography before MSMS analysis. To correlate an MSMS spectrum to a 

peptide and therefore the protein it originated from the MSMS data is submitted 

to Mascot in the form of peak lists. The lists consist of centroided mass values 

and their intensity, the peaks detected and their retention time. Multiple 

spectra from one peptide can therefore be summed together and spectra from 

the chromatographic baseline can be discarded [151]. The peptide masses 

detected experimentally are first compared with the theoretical peptide masses 

generated from in silico enzymatic digestions of proteins in the database. 

Theoretical peptides with similar masses (a mass tolerance is set by the user) 

are fragmented in silico following specific cleavage rules and these theoretical 

fragment ion masses are compared with the fragment ion masses collected 

experimentally. Search engines match theoretical peptide sequences to 

experimental MSMS data but not every match is statistically significant. The 

protein score in the Peptide Summary is derived from the ion scores and reports 

protein hits in a logical order. Peptide matches are grouped to protein hits. Red 

and bold text is used to highlight the most logical assignments of peptides to 

proteins. When a peptide is reported in a bold text or typeface it means it is the 

first time this peptide has been matched to a query and when shown in red it 

means that that peptide is the top ranking peptide match. Peptides with protein 

hits reported in a bold, red typeface are therefore the statistically most likely 

assignments (reference www.matrixscience.com). 

To combat any confusion the search algorithms score each match indicating how 

close the relationship between the experimental and the theoretical MSMS 
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spectra are. The scoring algorithms are probability based reflecting the 

probability of a match being random. 

1.8.1 The MOWSE (molecular weight search) algorithm 

The Mascot probability model is based on the MOWSE (molecular weight search) 

algorithm. Pearson et al [152] reports that the performance of algorithms for the 

identification of proteins based on MS data should be judged on sensitivity i.e. 

the ability to make a correct identification using weak or noisy data and 

selectivity; the ability to calculate low-ranking scores for false, random 

matches. The MOWSE algorithm was generated from a composite protein 

sequence database comprising of calculated molecular weights of all peptide 

fragments derived from a specific enzyme or by reagent cleavage rules. Scoring 

algorithms were developed from the observed distribution of the frequency of 

peptides in the source database.  

Distribution is dependent on the protein’s size (number of amino acids in the 

primary sequence) smaller proteins generally yield fewer peptide fragments. 

Pappin et al [153] reported that for all proteins 30kDa and above, 1 in 8 or 13% of 

peptide fragments were required to be generated by MSMS before the protein 

could be identified. The experimentally derived peptide masses were screened 

against a peptide fragment database derived from approximately 50,000 

proteins. For proteins 40kDa and above fewer than 1 in 10 or 10% of peptide 

fragments were required for protein identification. 

Mascot reports an ion score for each peptide-match indicating the statistical 

significance of the MSMS assignment. Peptides and their ion score are grouped 

according to their protein of origin and the protein is then assigned a cumulative 

protein score (a total of all the peptides identified and their ion scores). 

Generally a protein will be reported if one peptide from that protein is matched 

at or above the threshold ion score. If a number of proteins are assigned present 

in a sample Mascot will report them ranked in order of their protein scores. 

1.8.1.1 Peptide identification from a database 

To identify peptides from a protein database MOWSE does not just count the 

number of matching peptides but empirically determines factors to assign a 

statistical weight for each peptide match. The matrix of weighting factors is 
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calculated during the database build stage. A frequency factor matrix, F, is 

created in which each row represents an interval of 100Da in peptide mass and 

each column an interval of 10Da in intact protein match. The appropriate matrix 

elements are incremented to accumulate statistics on the size distribution of 

peptide masses as a function of protein mass as each sequence entry is 

processed. After searching experimental mass values against a database the ion 

score for each entry is calculated according to the Equation 4; 

Equation 4 Score = 50,000/(Mprot x ∏nmi,j) [65;153] 

The score is normalised for 50kDa where Mprot is the mass of the intact protein, n 

is the number of matched peptides and mi,j is the matrix elements.  

1.8.1.2 Significance level of a peptide match 

The significance level is the commonly accepted threshold that an event is 

significant if it would be expected to occur at random with a frequency of less 

than 5% (for example, scores greater than 67 are significant (p<0.05)). 

Significance is a function of data quality so if a peptide is a significant match it 

may not always be the best match.  

1.9 Conclusions 

There is a need for biomarkers to diagnose and determine the progression of 

disease. This is especially important for the development of atherosclerosis 

where the early stages of the disease are asymptomatic. Tandem mass 

spectrometers have been continually used for the high throughput identification 

of post translational modifications and therefore could be useful for detecting 

and identifying biomarkers. 

1.10  Aims 

Hybrid mass spectrometry instruments are optimal for the high-throughput 

analysis of protein samples. In my study to identify and detect cardiovascular 

biomarkers I have chosen to use the triple quadrupole linear ion trap mass 

spectrometer, the Qtrap 2000 (Applied Biosystems, Warrington, UK). The triple 

quadrupole linear ion trap is superior for biomarker analysis due to its sensitivity 

and selectivity owing to its ability to perform precursor scans and targeted MRM 

scans. I hypothesise that it is possible to classify diseased samples from those 
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from healthy individuals by the presence of oxidatively modified peptides. I will 

focus on the post translational modifications chloro- and nitrotyrosine as these 

are specific and stable biomarkers for cardiovascular disease as previously 

discussed.  

• My primary aim is to successfully modify purified proteins and native LDL 

in vitro and detect ClTyr and NiTyr modifications in these samples. 

• Analysis of in vitro modified purified proteins and LDL will be performed 

on a high-throughput hybrid MS. 

• Modes of operation used and compared will be a conventional MSMS 

experiment, precursor ion scans and multiple reaction monitoring 

experiments. 

• Sensitive methods for the detection of NiTyr and ClTyr biomarkers for 

cardiovascular disease will be developed by the analysis of the modified 

purified proteins before being applied to clinical samples. 

• Mascot will be employed to search the mass spectrometry data produced 

to assign and verify protein and post translational modifications. As 

discussed in the Introduction there is sometimes a need for manual 

confirmation of these results so a targeted MSMS experiment will also be 

performed. 
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2 Chapter – Precursor scanning for the sensitive 
and selective detection of chlorotyrosine 
modified peptides in a 9-protein mix 

2.1 The chlorotyrosine modification 

In response to inflammation, stimulated neutrophils release the heme enzyme 

myeloperoxidase (MPO) [154] which is the only human enzyme known to generate 

hypochlorous acid, HOCl [155]. Hypochlorous acid (HOCl) is a highly reactive 

species and will oxidise many biological targets including proteins and lipids [156]. 

Examples of biological chlorination reactions within the body are the reaction 

with amine groups giving chloramines [156;157], the reaction with tyrosyl residues 

giving chlorotyrosine products [156;158] and the reaction with unsaturated lipids 

and cholesterol to give chlorohydrins [159].  

Levels of 3-chlorotyrosine have been found to be elevated in human 

atherosclerotic tissue obtained during surgery and in LDL isolated from vascular 

lesions [155]. An increased level of LDL is thought to be a major risk factor in the 

development of atherosclerosis and evidence suggests that LDL must be oxidised 

to trigger these pathological events which leads to the development of the 

disease. Myeloperoxidase (MPO) employs hydrogen peroxidase (H2O2) generated 

by activated microbial oxidants which triggers the modification of LDL by 

oxidation. Most oxidation products generated by HOCl are non-specific or 

unstable but the post translational ClTyr is not (as discussed in 1.3.3)  [14;56;160]. 

When tyrosine reacts with a HO• radical DOPA (dihydroxyphenylalanine) is 

produced but is susceptible to further oxidations. DOPA is a reducing agent, 

becoming further oxidised itself and is also naturally occurring and therefore not 

a stable or specific biomarker. The formation of N-Formylkynurenine by 

oxidation of a tryptophan side chain is stable but also not specific as this product 

can be generated enzymatically and not specifically by MPO. The generation of 

methionine sulfoxide by oxidative damage to the methioinine side chain by a HO• 

can be enzymatically reduced and the products levels therefore may be mis-

leading.  
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As discussed (in 1.3.3) there are many substrates or sites for oxidation; we focus 

mainly on chlorotyrosine as it is a stable and specific biomarker. ClTyr is not 

naturally occurring, acid stable, not susceptible to further oxidation and is 

specific to the activity of MPO so is the favoured biomarker to indicate for 

oxidative stress [62].  

The following equation (equation 5) explains the generation of HOCl by the 

catalysis of MPO;  

Equation 5. Cl- + H2O2 + H+  HOCl + H2O 

Here I aim to design a precursor scan mass spectrometry method for the 

detection of ClTyr modification in a model sample (9 protein mix – see 2.4). 

2.2  The Qtrap and the various scanning techniques and their 
uses 

The Qtrap™ (Applied Biosystems, Warrington, UK) combines the capabilities of a 

triple quadrupole mass spectrometer and ion trap technology on a single 

platform. Triple quadrupole instruments are referred to as “tandem-in-space” 

devices allowing for each stage of an MSMS experiment to be performed at a 

spatially distinct location in the instrument [119]. Triple quadrupoles have two 

selective MSMS scans; the precursor ion scan and the constant neutral loss scan 

(that are ideal for the detection and identification of analytes in complex 

samples). Triple quadrupole instruments are capable of performing scans where 

both Q1 and Q3 can be simultaneously scanned in unison or fixed to scan for a 

specific mass which is unique to this design of instrument (Figure 19). Although 

this means that the duty cycles are low the scans are extremely selective 

therefore increasing resolution making the triple quadrupole ideal for the 

analysis of posttranslational modifications of proteins [161].  

Product ion scanning is used with a purpose to collect a fragment ion spectrum 

for the identification of the amino acid sequence of specific peptides. The first 

analyzer (MS1) is set to select one precursor ion at a time. The chosen precursor 

is fragmented by CID (collision induced dissociation) in the collision cell and the 

resulting fragments are analyzed by the second analyzer (MS2). In this scan the 
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MS2, or Q3 (quadrupole 3) is in quadrupole mode. This process is repeated for 

different precursors.  

The precursor scan has been used as a sensitive and selective technique to 

identify and detect many posttranslational modifications in different 

studies[94;117-120;162;163] and is performed by setting or fixing the second mass 

analyzer (MS2) to scan for a specific mass (Q3 in trap mode) to transmit only one 

specific fragment ion to the detector. The first mass analyzer (MS1) scans to 

detect all precursor ions that generate the set m/z of the fragment which MS2 is 

fixed for (MS2 or Q3 switches to quadrupole mode). This method is usually used 

to detect for a known functional group or modification on an amino acid. Neutral 

loss scanning is where both analyzers (MS1 and MS2) scan in a synchronized 

manner so that the mass difference passing through MS1 and MS2 remains 

constant. In this scan both MS1 and MS2 (Q1 and Q3 are in quadrupole mode. The 

mass difference between ions corresponds to a neutral fragment that is lost from 

the peptide in the collisions cell (by CID). 

 

Figure 19: Various types of tandem MS experiments [161]. The figure illustrates various mass 

spectrometry experiments. “A” is product ion scanning, “B” is precursor ion scanning and 

“C” is the neutral loss scanning experiments.  

2.2.1 Conventional ion-traps and the QTrap 

The conventional ion-trap mass spectrometers perform MSMS experiments in a 

“tandem-in-time” fashion rather than a “tandem-in-space” manner meaning that 

once the ions are introduced into the ion trap the numerous steps of ion 

manipulation are performed in the same volume but at different times [119]. This 
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“tandem-in-time” is advantageous as a complete mass spectrum can be 

collected during each pulse of ions introduced into the ion trap. However, 

although the “tandem-in-time” conventional ion-traps lead to faster duty cycles 

and increased scanning sensitivity in relation to triple quadrupoles and the 

“tandem-in-space” method, very selective precursor ion scans and constant 

neutral loss scans are not possible [164].     

2.3 Aims 

Here I use the Qtrap 2000 (Applied Biosystems, Warrington, UK) precursor scan 

to detect chlorotyrosine modifications in varying concentrations of HOCl 

modified 9-protein mixes as a model sample.  

2.4 Materials and Methods  

2.4.1.1 The 9 Protein Mix (9PM)  

The 9 protein mix was modified using varying concentrations of HOCl (from 

Sigma Aldrich) in Tris Buffer (pH7, 50mM concentration) at 37°C for 4hours. The 

modified 9 protein mix was then dried down using the centrifugal evaporator 

(eppendorf concentrator 5301) before being trypsin digested. 

To generate the 9 protein mix, 10mg/ml solutions were made up of each of the 

proteins (from Sigma Aldrich) in eppendorf tubes, then aliquots of each were 

added in the following volumes to a fresh 1.5ml Eppendorf: 

 

1. BSA (300µl) 

2. Cytochrome C (50.5µl) 

3. Carbonic Anhydrase (125µl) 

4. Alpha Casein (106µl) 

5. Alpha Lactalbumin (70µl) 

6. Myoglobin (73µl) 

7. Ovalbumin (184.5µl) 

8. Beta Lactoglobulin (85.5µl) 

9. Lysozyme (70µl) 

 

The above gives a total concentration of 41pmoles/µl for each protein. The total 

protein concentration is 10mg/ml. 
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Samples 

 

2.4.1.2 Trypsin Digestion 

• Tris Buffer 50mM pH 8.4 - The tris buffer is at pH 8.4 as this is the optimum pH 

for trypsin activity. A tris buffer soloution was made by using deionised water 

and tris base. The pH was varied using 10M HCl or 10M NaOH. 

• 6M Urea - 2g of Urea in 1.25ml Tris Buffer and 3.75ml water. Urea will 

denature and unfold the protein for digestion. 

• 184mM Iodoacetamide (alkylating agent) - 34mg Iodoacetamide in 250µl Tris 

and 750µl water. The alkylating agent will alkylate the –SH groups in the 

cysteine amino acid side chains. 

• 194mM Dithiothreitol (DTT) (reducing agent) - 30mg DTT in 250µl Tris and 

750µl water. The reducing agent will reduce any disulfide bonds that have 

formed or are present between cysteine residues in the protein.  

• Trypsin solution 0.2µg/µl - 100ul of 25mM ammonium bicarbonate solution is 

added to 20µg of porcine trypsin. 

100ul 6M Urea and 5µl DTT are added to the dry 9 protein mix in the eppendorf 

tube. The protein is resuspended by vortexing and incubated at room 

temperature for one hour. 20µl iodoacetamide is added and vortexed. The 

solution is incubated at room temperature for an hour. 20µl DTT is added to 

react with any unreacted iodoacetamide and to prevent further alkylation of 

nucleophilic residues such as lysine. The solution is mixed by vortex and left at 

room temperature. 775µl water is finally added to the protein solution to reduce 

the urea concentration from 6M to 0.6M where trypsin activity is not inhibited. 
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An aliquot of 184µl of this solution is taken and 3ul (0.6µg) trypsin solution is 

added. The final digestion solution was mixed and left at 37C overnight.  

2.4.1.3 Chromatography method 

Buffer A (loading buffer) – 2% acetonitrile, 0.1% trifluoroacetic acid 

Buffer B – 80% acetonitrile, 0.5% formic acid 

Buffer C – 2% acetonitrile, 0.5% formic acid 

10µl of 9 protein mix sample (2µg protein) was made up to 20µl with loading 

buffer and injected into the LC (Ultimate 3000, Dionex). The flow rate of the 

loading pump was 20µl/min. The micro-pump flow rate was 300nl/min. The 

chromatography gradient used was from 5% buffer B at 0-5minutes rising to 50% 

buffer B at 40minutes to 90% buffer B at 41minutes to 51minutes followed by a 

decrease in buffer B to 5% between 52 and 70minutes. The mass spectrometry 

instrument collects data between 5 and 70minutes during the chromatography 

gradient. Peptides were separated on a C18 (150mm in length, 75µm I.D) column 

from Alltech Associates.    

 

2.4.1.4 Mass spectrometry analysis 

The mass spectrometry experiments were run to collect data for 65minutes. 

The conventional MSMS Experiment – All mass spectrometry experiments were 

performed in positive ion mode. The enhanced MS collected between a mass 

range of 400 and 1500amu, the step size was 0.06amu and the scan rate was 

1000amu/s. The enhanced resolution scan followed before the information 
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dependant acquisition experiment where 1 to 2 of the most intense precursors 

with charge states from 2+ to 4+ were chosen to be fragmented for ions greater 

than 400m/z and less than 1500m/z. The collisional energy was rolling and 

former target ions were excluded for 300seconds after two occurrences. Two 

enhanced product ion scans followed. Q1 is set to low resolution to increase 

sensitivity, the step size was 0.12amu and the scan rate was 4000amu/s scanning 

between 50 and 1500amu. 

The Precursor Scan Experiment - The precursor scan mass spectrometry 

experiment was performed by setting the following parameters. All mass 

spectrometry experiments were performed in positive ion mode.  

The precursor scan scanned between a mass range of 400 to 1000amu for 

precursors of 170m/z. The total scan time was 5seconds, the step size 1amu and 

the scan rate 1000amu/s. The collisional energy used was 80eV with the 

resolution of Q1 and Q3 set to low. The information-dependant acquisition 

method is set to choose the top most intense precursor exceeding a threshold of 

200cps. The dynamic exclusion parameter was turned on to always exclude 

former target ions. In the enhanced product ion scan the mass range scanned 

was between 50 and 1500amu, step size was 0.12amu, the scan rate 4000amu/s, 

the resolution in Q1 set to low and the collisional energy employed was 45eV.  

2.4.1.5 Data analysis by Mascot 1.4 version 1.6b9 

The MSMS ion searches carried out on the data collected by the mass 

spectrometer in this study were set to the following parameters; the enzyme 

was “trypsin”, the fixed modifications were “carbamidomethyl (C), the variable 

modifications were chlorotyrosine (ClTyr (Y)) and oxidation (M) and the mass 

values were monoisotopic. The peptide mass tolerance was ±2Da, the fragment 

mass tolerance was ±1Da and the maximum missed cleavages were set to 1.  The 

sequence database searched against was SwissProt (release 56.6). 

The Mascot Search Options - The default precursor charge states are to be 1+ to 

4+ and ions with a 5+ charge or higher were to be discarded. The MSMS averaging 

of IDA dependents were set; the precursor mass tolerance for grouping was 0.2, 

maximum cycles between groups were 10 and the minimum number of cycles 

between groups was 1. For MSMS filtering, spectra were rejected if less than 10 
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peaks or a precursor was below 50 or above 10,000. The MSMS data centroid and 

threshold parameter was set to centroid all data and to remove peaks with less 

than 0% of the highest peaks. 

2.5 Results and Discussion – The Precursor Scan 

The 3, 15 and 30mM HOCl modified, trypsin digested, 9 protein mix samples 

were analyzed by the precursor scan (see 2.4 Mass Spectrometry Analysis in 

Materials and Methods) on the Qtrap 2000 (Applied Biosystems, Warrington, UK) 

then searched with Mascot, a MS data searching algorithm, version 1.6b9. 

2.5.1 Assignment of the ClTyr modification by Mascot and manual 
validation 

The precursor scan method was used to analyse the 3, 15 and 30mM HOCl 

modified 9 protein mix samples and the number of chlorotyrosine (ClTyr) 

modifications detected were then assigned by Mascot and compared (Figure 20). 

The precursor scan analysis led to Mascot identifying 3ClTyr modifications in the 

3mM HOCl 9 protein mix sample, and 7ClTyr modifications in the 15mM and 

30mM HOCl modified 9 protein mix samples. Mascot identifies modifications 

statistically and the ClTyr modification of the peptides identified were then 

manually validated. To be a true positive the peptide had a good statistical 

score (above the significance threshold set by Mascot) and has a good y-ion 

series (Figure 21). The statistical score for the LGEYGFQNALIVR + ClTyr peptide 

(shown boxed in Figure 20 and Figure 21) is 87 and the significance threshold was 

calculated to be 48. The ion-match table (Figure 22) displays 11 of the 12 

possible y-ions. The ClTyr modified LGEYGFQNALIVR peptide identified by Mascot 

was manually confirmed as a true positive as the y-ion series has been detected 

and these can be seen in the mass spectrometry data collected by the Qtrap 

using the EPI experiment in the method. 
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Figure 20: Precursor scan analysis of the 3mM, 15mM and 30mM HOCl modified 9 protein mix 

samples. The above figure displays and compares the protein modifications assigned by 

Mascot for the 3mM, 15mM and 30mM 9 protein mix samples. The 3mM HOCl modified 9 

protein mix sample is assigned 3ClTyr modifications, the 15mM HOCl modified 9 protein mix 

sample is assigned 7ClTyr modifications and the 30mM HOCl is also assigned 7ClTyr 

modifications. 

 

Figure 21: Mascot search results from the analysis of the 30mM HOCl modified 9 protein mix 

sample. The above figure displays the Mascot search results for the analysis of the 30mM 

HOCl modified 9 protein mix sample. The LGEYGFQNALIVR peptide is assigned a ClTyr 

modification. The statistical score is 87. 
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Figure 22: Ion-match table and mass spectrum for the LGEYGFQNALIVR + ClTyr peptide 

detected in the 30mM HOCl modified 9 protein mix sample. The above figure illustrates the 

mass spectrum data collected for the LGEYGFQNALIVR + ClTyr peptide detected in the 30mM 

HOCl modified 9 protein mix sample by the precursor scan. The ion-match table displays that 

an almost complete y-ion series has been detected and assigned by Mascot. The y-ions have 

been labelled and highlighted in yellow is the ClTyr modified ion-fragment. 

2.5.2 Reviewing the sensitivity of the precursor scan for the detection of 
chlorotyrosine in the HOCl modified 9 protein mix 

Not all potential tyrosine sites in each of the 9 proteins in the mix were seen to 

be modified so it is possible that there were perhaps more ClTyr modifications 

present in the HOCl modified samples that had not been detected. The number 

of tyrosine residues that had been found to be ClTyr modified (in a 3mM HOCl 

modified 9PM sample) were compared with the number of tyrosines available in 

each protein (Table5). 
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Table 5: Number of tyrosines in protein compared with the number of tyrosines found to be 

ClTyr modified by Qtrap.  

 

From left to right the first column displays the protein in the 9 protein mix sample, the 

second column displays the number of tyrosines present in the protein and the third column 

displays the number of ClTyr modifications detected.  

When analysed with the precursor scan method on the Qtrap the 15mM HOCl 

modified 9 protein mix sample was identified by Mascot to have 7ClTyr 

modifications present compared to the 3mM HOCl modified 9 protein mix sample 

which was identified as having 3ClTyr modifications present. The ClTyr modified 

peptides were manually validated as before (see 2.5.1). The 30mM HOCl 

modified sample however did not yield any more ClTyr modifications than the 

15mM HOCl modified sample. It was expected that a 9 protein mix sample 

modified with 30mM HOCl when analysed by the precursor scan would lead to a 

greater number of ClTyr-modified peptides being detected than a 9 protein mix 

sample modified at 15mM HOCl. ClTyr modified peptides in the protein mix 

detected at a lower HOCl concentration would also be expected to be detected 

in a sample modified at a higher HOCl concentration. At a higher HOCl 

concentration this unexpected result may be caused by the aggregation of the 

proteins which would lead to poor sampling.  

Winter et al, demonstrated that at low molar ratios (10-fold molar excess) HOCl 

can cause oxidative protein unfolding or the aggregation of proteins in vitro [165]. 

HOCl is a well known effective antimicrobial produced by mammalian host 

defences to kill invading microorganisms. From the study it is now suggested 

that the anti-microbial effects of household bleach (HOCl is the active 

ingredient) could be largely based on HOCl’s ability to cause aggregation of 
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essential bacterial proteins.  At the high HOCl concentrations used in this study 

it is possible that the protein can precipitate out of solution. There was no 

pellet or an increase in the cloudiness of the sample in the eppendorf tube after 

modification or prior to loading onto the mass spectrometer that was visible to 

the eye which would suggest no aggregation.   

2.5.3 Investigating the potential ClTyr modifications in a 15mM HOCl and 
60mM HOCl modified 9 protein mix samples 

The precursor scan is selective but not very sensitive due to its long scan time (5 

secs). To increase the sensitivity and detection of all potential ClTyr 

modifications of the peptides in the 9 protein mix samples, we performed the 

precursor scan alone. The precursor scan will only select the ions that give the 

170m/z fragment-ion which is the potential chlorotyrosine immonium ion. The 

tryptic digests of a 15mM and 60mM HOCl modified protein mix were separated 

on the LC before being analyzed on the QTrap. The Total Ion Counts (TICs) for 

each sample were compared (Figure 23). The 15mM HOCl modified sample has a 

greater intensity, 4.4 x 104cps, than the 60mM HOCl sample, 1.0 x 104cps. The 

TIC traces suggest that there are potentially more ClTyr modifications in the 

lower HOCl concentration modified sample than in the higher, 60mM HOCl 

modified sample. There appears to be more peaks in the 15mM HOCl modified 

sample than the number of ClTyr modifications identified. In the protein 

summary there are many peptides that are identified as being ClTyr modified 

but Mascot does not assign these to a protein hit so are likely false positives. 

 

Figure 23: Investigating and comparing the potential abundance of chlorotyrosine in 15mM 

and 60mM HOCl modified 9 protein mix samples. The figure illustrates the over-laid TIC’s 

(total ion chromatograph’s) of the potential ClTyr modified peptides in a 15mM (red trace) 

and 60mM (blue) HOCl modified 9 protein samples after analysis by the precursor scan only.  
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2.5.4 Investigating modifications by HOCl in a 9 protein mix at higher HOCl 
concentrations 

Another possibility for the observed “decrease” in 170m/z precursors at higher 

[HOCl] is the formation of di-chlorotyrosine (di-ClTyr). When the HOCl 

concentration is increased to a critical level, the formation of di-chlorotyrosine 

(Figure 24) begins to increase. Chapmen et al [166] reported that at low HOCl 

concentrations (50nmol per milligram of protein), ClTyr levels ranged from 1 per 

835 tyrosines and di-ClTyr levels ranged from 1 per 12,000 tyrosines. At this 

HOCl concentration ClTyr is formed at an order of magnitude greater in 

comparison to di-ClTyr. At higher HOCl concentrations (200nmol per milligram of 

protein) ClTyr and di-ClTyr formation was increased by 3- and 10-fold 

respectively. Di-chlorotyrosine requires a larger HOCl concentration to form as 

the addition of a secondary chlorine atom onto tyrosine’s aromatic ring is less 

favourable than the addition of the first chlorine to form mono-chlorotyrosine. 

This could be the reasoning behind a 60mMHOCl sample apparently showing less 

chlorotyrosine modification than a 15mMHOCl sample.  

 

Figure 24: The di-chlorotyrosine immonium ion. The above figure displays the di-

chlorotyrosine immonium ion (205m/z). The chlorine atom is shown at positions 3 and 5 of 

the tyrosine ring. 

2.5.4.1  The formation of mono- and di-chlorinated tyrosines in HOCl 

modified proteins 

Drabik et al [167] discovered how the molar ratio between the number of exposed 

tyrosine residues in proteins and the OCl- ion in a system affected the 

predominant chloro-derivative product. They studied the chlorination of the N-

acetyl-L-tyrosine (N-acTyr) residue at positions 3 and 5 in reactions with NaOCl. 

The N-acTyr, with the alpha amine residue blocked by acetylation, mimicked the 

reactivity of exposed tyrosyl residues in polypeptides or proteins. The reaction 

of HOCl/OCl- with N-acTyr was dependant on the reactant concentration ratio 

employed. When the reactant ratio, OCl-/N-acTyr, was 1:4 the predominant 
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reaction product was 3-chlorotyrosine. When the reactant molar ratio was 1:1.1 

protein to HOCl, both 3-chlorotyrosine and 3,5-dichlorotyrosine was produced. 

They also found that the pH affected the yield of tyrosine chlorination between 

N-acTyr and OCl- where at pH5.5 it was 100% and 91% at pH4.5 and 66% at pH3.  

The 15mM HOCl and 60mM HOCl modified 9 protein mix samples were also 

analysed using a precursor scan alone to select only for precursor masses which 

give the 205m/z fragment-ion, the potential di-ClTyr immonium ion. It is not 

likely due to favourability that there are a greater number of di-ClTyr 

modifications than ClTyr modifications in higher HOCl modified 9 protein mix 

samples (Figure 25). The intensity of the 15mM HOCl modified sample with the 

precursor scan is <4800cps and the intensity of the 60mM HOCl modified sample 

with the precursor scan is <2800cps. The maximum intensity of both HOCl 

modified samples is seen at 60minutes into the chromatography gradient. 

The TIC for the potential precursors possessing the di-ClTyr 205m/z immonium 

ion is low in intensity (<4800cps for the 15mM HOCl modified and <2800cps for 

the 60mM HOCl modified 9 protein mix sample) compared to the TIC for the 

potential precursors possessing the ClTyr 170m/z immonium ion (<4.4 x 104cps 

for the 15mM HOCl modified and <1.0 x 104cps for the 60mM HOCl modified 9 

protein mix sample). It is likely that any di-ClTyr modifications that are present 

in the HOCl modified 9 protein mix samples are very low in abundance in 

comparison to ClTyr modifications. From these 170m/z and 205m/z precursor 

scan experiments detecting for potential ClTyr and di-ClTyr modifications it can 

be assumed that when the HOCl concentration reaches a certain level 

aggregation of the protein, (although not visible to the eye), occurs. The 

aggregation of protein and not the formation of di-chlorotyrosine may explain 

the reasoning between the same number of ClTyr modification seen in a 15mM 

HOCl and a 30mM HOCl modified 9 protein mix sample [165] (see 2.5.2).  
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Figure 25: The 205m/z precursor scan for the detection of di-chlorotyrosine in a 15mM and 

60mM HOCl modified 9 protein mix sample. The above displays the over-laid TIC (total ion 

chromatograph) for the analysis of the 15mM (red trace) and 60mM (blue trace) HOCl 

modified 9 protein mix samples by the precursor scan only. The precursor scan selects for 

the masses that gives the 205m/z fragment ion which could potentially posses the di-

chlorotyrosine modification.  

2.5.5 Optimising the precursor scan for the detection of chlorotyrosine in 
complex samples 

As discussed in 2.5.2 there are many tyrosines in the proteins present in the 9 

protein mix that are potential sites of ClTyr modification. These tyrosines may 

be modified but are not being detected by the precursor experiment (2.4.1.4). 

Hence we attempt to improve and optimise the parameters for the precursor 

scan mass spectrometry method for the sensitive and selective detection of 

chlorotyrosine modification in a 9 protein mix.  

The problems arising with the LC-MSMS method is the low sequence coverage of 

less abundant proteins and the poor reproducibility of peptide ion selection 

between replicates. This can be caused by under sampling, a wide concentration 

dynamic range of the proteins in the mixture and the wide range of electrospray 

ionization efficiency of the peptides [168]. One technique used to solve the 

problems that are caused by under sampling is dynamic exclusion and the second 

is gas phase fractionation (GPF).  Garza et al used the Finnigan LCQ  [thermo scientific 

P105 Product Support Bulletin] (a quadrupole iontrap) to solve under sampling by 

employing the dynamic exclusion technique.  Dynamic exclusion allows the 

acquisition of MSMS spectra from lower intensity ion species whereas in more 

complex mixtures different peptides can be eluted close together or overlap and 

not be seen causing them to be excluded for MSMS in favour of more intense, 

abundant precursors. When using the dynamic exclusion, masses that have been 



71 
 

previously analyzed will be put on a temporary exclusion list after MSn data has 

been acquired. This then allows the instrument to collect MSn data on less 

intense, less abundant peaks which may have otherwise gone undetected and 

unanalysed.  After a fixed time the excluded ion will be removed from the list so 

that precursors isobaric to the first intense peak which were analysed can be 

studied.  

2.5.6 Improving sensitivity - dynamic exclusion 

In the trypsin digested HOCl modified 9 protein mix sample it is possible that 

precursors of the 170m/z chlorotyrosine immonium ion are being neglected.  

The initial precursor scan mass spectrometry method was performed with 

dynamic exclusion. Dynamic exclusion can either temporarily or permanently 

enter a mass onto an exclusion list after its MSMS spectrum has been acquired. 

The experiment was first performed with the dynamic exclusion turned “on” in 

order to prevent the repetitive collection of data on abundant or very intense 

precursors giving the 170m/z ClTyr immonium ion. This exclusion of previously 

seen precursor masses meant that many more low abundant, less intense, 

precursors may be fragmented by MSMS. However, it is possible that there are 

some precursors in the sample that are isobaric to each other that are ClTyr 

modified and will fragment to give the 170m/z ClTyr immonium ion. By setting 

the dynamic exclusion from “always exclude former target ions” to “exclude 

former target ions for 60seconds only” more data will be collected. The two 

precursor scan mass spectrometry methods where dynamic exclusion is turned 

“on” always and “on” for 60seconds were used to analyse and detect for the 

ClTyr modification in the 3mM HOCl sample. The ClTyr modifications identified 

by Mascot from the analysis of the same sample were compared (Table 6). 

Setting the dynamic exclusion time to “exclude former target ions for 

60seconds” from “always excluding former target ions” led to the detection of a 

greater number of ClTyr modifications in a 3mM HOCl modified 9 protein mix 

sample from 2ClTyr to 6ClTyr modifications detected and assigned by Mascot. In 

simpler samples it is likely the dynamic exclusion parameter would not affect 

the number of modifications detected as the possibility of there being precursors 

isobaric to each other is less likely. 
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Table 6: Comparison of the analysis of a 3mM HOCl modified 9 protein mix sample by the 

precursor scan with dynamic exclusion turned “off” and “on”.  

 

The table displays the comparison of the analysis of a 3mM HOCl modified 9 protein mix 

sample by the precursor scan when dynamic exclusion is turned “on”. When the dynamic 

exclusion is set to exclude former target ions for 60seconds more ClTyr modifications (6ClTyr 

compared to 2ClTyr) are seen in the sample. 

2.5.7 Improving sensitivity – the gas phase fractionation experiment 

We have attempted to employ a gas phase fractionation (GPF) method to 

combat under sampling and poor sequence coverage within a protein mixture. It 

is in fact thought possible that a proteome may be characterized effectively 

using a well developed GPF method by an LC-MSMS without previous protein or 

peptide fractionation[169].  Protein fractionation can increase sequence coverage 

by making the complex mixture of peptides or proteins less complex by 

separation. Fractions of the mixture are achieved by separating out proteins by 

their solubility or isoelectric point. Protein mixtures of great complexity can be 

first separated out by SDS (sodium dodecyl sulphate) gels, according to their size 

and charge. Individual protein spots can then be enzymatically digested and then 

analyzed by MSMS. The steps required in the protocol lead to protein 

fractionation being very time consuming.  Gas phase fractionation therefore 

represents a significant saving in both cost and time over 2-DE approaches [170].  

The precursor scan mass spectrometry method for the detection of ClTyr in a 

HOCl modified 9 protein mix is a selective but not a very sensitive scan. The 

mass range is wide; between 400 and 1000amu and this takes a long time 

(5seconds) to scan. The large mass range and long scan time means that when 

one mass is being scanned for precursors of 170m/z there are others at different 

masses that are being missed leading to poor sampling.  
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The dwell time is the time spent at each mass collecting data in the mass range 

and can affect the sensitivity of the precursor scan. Increasing the scan time will 

lead to an increase in the signal to noise ratio however a longer dwell time will 

decrease the number of scans possible. A small step size will improve resolution 

if dwell time is kept constant and data will be collected for longer again 

affecting the signal to noise. The scan speed is directly proportional to the dwell 

time and the mass range scanned but inversely proportional to the step size. 

The dwell time can be calculated from the scan time and scan mass range; 

Dwell Time = Scan time/Scan mass range 

= 5seconds/600 (from 400 to 1000amu) 

= 8.3milliseconds 

Decreasing the scan range will increase than dwell time (if the total scan time 

remains the same) meaning that more time is spent at each data point collecting 

more data and therefore increasing sensitivity. 

Dwell time = 5seconds/200 (from 400 to 600amu) 

= 25milliseconds 

Instead of a wide mass range between 400 and 1000amu being scanned the 

method was re-written to scan three smaller mass ranges; 400_600amu, 

600_800amu and 800_1000amu. Although more sensitive the gas phase 

fractionation experiment consumes more sample and is more time consuming as 

the sample must be injected three times to be analysed at each different mass 

range.  

The precursor scan was compared with the GPF experiment by analysis of a 3mM 

HOCl modified 9 protein mix sample. A 3mM HOCl modified sample is used 

instead of the 15mM HOCl modified 9 protein mix sample as fewer ClTyr 

modifications were identified in the initial precursor scan experiment (Table 7). 

The GPF precursor experiment was found to detect more ClTyr modifications 

(4ClTyr modifications) in comparison to the precursor scan method (scanning 
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from 400_100amu detected 1ClTyr modification) alone. It is noted that the 

majority of ClTyr modifications were detected within the 400_600amu mass 

range. 

Table 7: A comparison between the precursor scan method and GPF experiment for the 

analysis of a 3mM HOCl modified 9 protein mix sample.  

 

The table displays the comparison of the precursor scan and the GPF experiment when both 

are used to analyse a 3mM HOCl modified 9 protein mix sample. The (left column) precursor 

scan detected and assigned only 1ClTyr modification whereas in the (right column) GPF 

experiment 4ClTyr modifications are detected and identified by Mascot. 

2.5.8  Optimising the Gas Phase Fractionation Experiment 

Gas phase fractionation is usually performed by scanning narrow m/z ranges 

(~100m/z) instead of wider ranges [171]. For example, Yi et al approached 

complete peroxisome characterization by GPF methods, by first scanning a single 

broad m/z range from 400-1800 followed by three narrower m/z ranges; 400-

800, 800-1200 and 1200-1800 followed by scanning sixteen even narrower m/z 

ranges; 400-510, 490-610, 590-710…1690-1800. More of the proteins in the 

complex mixture were observed when more scans of narrower m/z ranges were 

scanned in comparison to fewer scans with a wider m/z range.  Although this 

method was successful and more of the proteome was seen, Yi concluded that 

ions will be more abundant at some m/z ranges than others and these ranges 

require deeper “mining” or interrogation than others. 

Scherl et al [169] demonstrated how optimal mass ranges for GPF could be chosen 

and calculated based on genomic complexity and experimental data on various 

organism’s genomes. Calculations to find the most efficient and optimum m/z 

ranges were executed by performing an in silico digest of the proteins in these 
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complex mixture and ion density mapping. Ion density mapping or imaging is the 

presentation of the intensities of mass-to-charge values in a 2-dimensional 

space. According to both calculations Scherl determined that the m/z range for 

the most efficient GPF coverage was that the lower m/z range needed to be 

very narrow and increase as the m/z values increased.   

Scherl’s GPF experiment was performed again first by scanning one long m/z 

range; 400-2000, two narrower scans with the lower m/z range being narrower 

than the second; 400-695 and 685-2000 followed by four, six and eight different 

scan ranges again with the lower m/z ranges being narrower than the larger m/z 

ranges; 400-458, 453-521, 516-596, 591-690, 685-810, 805-968, 963-1243 and 

1238-2000. Scherl states in the results and discussion that even though the width 

of the GPF ranges were based solely on the precursor ion density these might be 

biased as this was set without taking into account the MS instrument’s sensitivity 

over the entire mass range. The ion density is evidently higher between the m/z 

range 400-600amu but this may have been possible as the instrument used, the 

LTQ-Orbitrap, is tuned for highest sensitivity at these values. Even though a 

greater number of the proteins or components in a complex sample can be 

detected using the GPF technique the major drawback is sample consumption 

due to the repetition of injections into the mass spectrometer. 

2.5.8.1  Comparison of sample analysis with conventional MSMS, the 

precursor scan method and two differing mass ranges for the GPF 

Experiment 

The mass ranges chosen for a GPF experiment (2) were, 400_510amu, 

490_610amu, 590_710amu, 690_810amu, 790_910amu, 890_1010amu and 

990_1110amu. The mass ranges are narrower and overlap by 20amu in order not 

to “miss” any precursors which may be borderline and missed when the broader 

mass ranges; 400_600amu, 600_800amu and 800_1000amu were scanned for GPF 

(1).  

To test the precursor scan and these new scan ranges a 15mM HOCl modified 9 

protein mix sample was analysed with a conventional MSMS method, the 

precursor scan method scanning between 400_1000amu, the GPF experiment (1) 

scanning 200amu ranges and the GPF experiment (2) scanning 100amu ranges 

with a 20amu overlap (Figure 26). The conventional MSMS and precursor scan 
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method (400_1000amu) both detected and identified 3ClTyr modifications. The 

GPF experiment scanning 200amu mass ranges detected and identified 2ClTyr 

modifications and the GPF experiment scanning 100amu mass ranges with a 

20amu overlap detected and identified 7ClTyr modifications.  

There are ClTyr modified peptides identified in some of the mass spectrometry 

experiments but not identified in others during the analysis of the 15mM HOCl 

modified 9 protein mix sample. For example, the LGEYGFQNALIVR + ClTyr 

peptide from bovine serum albumin is seen in the conventional MSMS 

experiment, in the mass range 600-800amu in GPF(1) and in the mass range 

590_710amu in GPF(2) but not in the precursor scan experiment scanning 

between 400_1000amu. This is unexpected; if a peptide is seen in the 

conventional MSMS experiment it should be seen in the precursor scan 

(400_1000amu) and GPF experiments (1) and (2) as the experiments become 

more sensitive. It is possible that by repeating the experiment there would be a 

better correlation or list of ClTyr modified peptides identified by each MS 

method. 

The GPF experiment (2) when scanning the mass range between 400_510amu 

detected a 2+ ion with a 507.0m/z and identified it as the ClTyr modified 

DGPLTGTYR peptide matched to the carbonic anhydrase protein in the 9 protein 

mix. Mascot identified the peptide as not being statistically significant as it had 

an ion score of 28 which was below the statistically significant threshold which 

was calculated to be 48. The DGPLTGTYR + ClTyr peptide is the second top 

peptide match identified to possibly be the 507.0m/z ion. The top peptide mass 

possibly identified as the 507.0m/z ion has a score of 29.4 and is not matched to 

a protein hit (Figure 27). The DGPLTGTYR + ClTyr peptide’s presence in the 

sample was confirmed manually by its mass spectrum.  The mass spectrum data 

collected for the 507.0m/z ion showed that some of the DGPLTGTYR + ClTyr 

peptides y-ions had been observed (Figure 28). The DGPLTGTYR + ClTyr peptide 

is not seen in the mass spectrum EPI scan but it is possible that it exists because 

the peptide is a precursor of the 170m/z ion fragment. 
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Figure 26: Analysis of a 15mM HOCl modified 9 protein mix sample with the precursor scan 

method and the GPF Experiment. The above displays the conventional MSMS, precursor scan 

method (400_1000amu), GPF experiment (200amu mass ranges) and the GPF experiment 

(100amu mass ranges with a 20amu overlap) for the analysis of a 15mM HOCl modified 9 

protein mix. The ClTyr modified peptide is statistically insignificant and is displayed in bold 

black text.  
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Figure 27: The DGPLTGTYR + ClTyr peptide detected in the 15mM HOCl modified 9 protein 

mix sample – Mascot identified insignificant hit – Manual Validation. The above figure displays 

the probability based Mowse score requirements. Any ions that fall into the green shaded 

area of the bar chart (an ion score under 48) are not seen to be statistically significant. The 

DGPLTGTYR + ClTyr peptide match is assigned to the Carbonic Anhydrase protein hit and is 

reported in bold black text.  

 

Figure 28: The Mass Spectrum for the manually confirmed DGPLTGTYR + ClTyr peptide. The 

Mass Spectrum data for the 507.0m/z ion displays detection of the DGPLTGTYR + ClTyr 

peptides y-ion series. The ClTyr modification is not seen but the precursor scan peptide will 

produce the 170m/z ion which is potentially the ClTyr immonium ion. 
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The table displaying the comparison between analysis by conventional MSMS, the 

precursor scan (400_1000amu) and GPF experiments (1 and 2) (Figure 26) found 

that when narrower ranges are scanned (100amu mass ranges with a 20amu 

overlap) more ClTyr modified peptides are identified. Although the consumption 

of the sample is increased, scanning narrower and overlapping mass ranges is a 

more sensitive method for the detection of modifications. The conventional 

MSMS and precursor scan scanning between 400_1000amu detected and 

identified the same number of ClTyr modifications. This is unexpected as the 

precursor scan is a more sensitive and selective method compared to the 

conventional MSMS method of analysis. The conventional MSMS and precursor 

scan scanning between 400_1000amu detected and identified one more ClTyr 

modification that the GPF experiment (1) scanning 200amu mass ranges. The 

different mass spectrometry analysis methods were run consecutively so it is 

unlikely that machine sensitivity has been altered. The GPF experiment (1) 

should detect and assign a greater number of ClTyr modifications and its success 

has been observed previously (see 2.5.7).  

2.6 Discussion - the advantages and disadvantages of the 
precursor scan method and GPF method 

The precursor scan method and the gas phase fractionation experiments were 

employed and optimised here to detect ClTyr modifications in HOCl modified 9 

protein mix samples. Both methods for the detection of post translational 

modifications have been shown here and discussed in the reference to 

sensitively and selectively detect modifications of proteins in complex samples.  

The GPF experiment (2.5.7) is more sensitive than the precursor scan alone 

scanning a broad mass range but involves multiple injections leading to higher 

sample consumption which may not always be possible if the sample to be 

analysed is precious and not easily available. Here as discussed in this chapter 

the GPF experiment should solve the problems with under sampling but for 

completeness the experiment comparing the different methods for the detection 

of ClTyr modifications in a HOCl modified 9 protein mix should be repeated and 

tested again with varying concentration of HOCl modifications. 

Multiple reaction monitoring is another example of a sensitive method for the 

detection of low abundance modifications in a complex sample (to be discussed 
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in more detail in Chapter 3). Peptides at low-signal-to-noise can be detected and 

analysed by CID (collision induced dissociation) by multiple reaction monitoring 

(MRM), such methods are not practical for global analysis. For MRM prior 

knowledge must be known about the sample to target low abundance ions and 

their m/z values. Unlike the MRM method the precursor scan and GPF 

experiment do not require any prior knowledge of the sample before analysis.   
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3 Chapter – Detecting nitrotyrosine and 
chlorotyrosine modifications in human serum 
albumin and plasma using targeted multiple 
reaction monitoring  

Human serum albumin (HSA) is the most abundant protein found in plasma with a 

concentration of 5g/100ml in a typical blood sample [172].  The blood plasma 

proteome is highly complex as it contains not only plasma proteins but also 

tissue proteomes as sub sets; circulating the whole body. The plasma will 

contain “tissue leakage products” or proteins that have been released into the 

plasma as a result of cell death or damage, some of which are important 

biomarkers for disease[66]. 

3.1 Sensitive techniques for the validation and verification of 
biomarkers 

In order to search for candidate biomarkers for disease treatment in the plasma 

proteome one of the biggest problems that must be overcome is the extreme 

complexity and dynamic range of the plasma proteins [173]. In plasma there are 

many proteins in varying abundances. High abundance proteins will often mask 

equally important but lower abundance proteins in the sample. To reduce 

complexity the plasma proteins can be sub-divided into many simpler fractions 

allowing for hundreds and in many cases thousands of proteins to be 

characterised but this requires a large number of analyses by complex 

instruments. Plasma proteins can be fractionated by chromatography and 

electrophoresis methods [174-176]. Pieper et al [175] fractionated plasma first by 

immunoaffinity chromatography to remove the most abundant proteins followed 

by sequential anion-exchange chromatography and size-exclusion 

chromatography before displaying the proteins separated out on 2D 

electrophoresis gels. Fractionation allowed 3,700 distinct proteins to be 

visualised on a 2D gel (many were post translational modification variants of the 

plasma proteins) and mass spectrometry enabled 325 distinct proteins to be 

identified. Aside from the cost implications, labour and the time taken these 

methods for the fractionation of plasma proteins will also introduce variability 
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into the results. This is not useful for clinical samples which require fast 

diagnosis and confirmation of disease specific biomarkers. Scores of samples 

must be analysed before statistical criteria are satisfied for the diagnostic 

specificity and sensitivity of disease treatment. The complexity of the plasma as 

well as the overlap of proteins in each plasma fraction limits biomarker 

discovery and therefore creates the necessity for more specific and precise 

assays. Proteins or potential biomarkers that are specific to a plasma fraction 

due to their molecular weight or electorphoretic mobility will make their 

extraction more complex and less reproducible. The accumulation of plasma 

fractions on the other hand, will over complicate assaying and the problems with 

abundance will occur. 

Anderson et al [173] reports that the process for developing new diagnostic’s (Dx) 

for the development of new drugs for the treatment of a disease is a three 

staged process (Figure 29). The first stage will identify statistically valid 

biomarker candidates by some features, such as their sequence or post-

translational modifications and the second stage will attempt to identify these 

potential candidates in larger sample sets taking into account bio-variability, 

and specificity in relation to target diseases and their statistical contribution in 

the context of various biomarker panels. Anderson states that the biomarker 

panel will consist of five different proteins as larger panels become progressively 

less economical and more difficult to work with. The third stage of the Dx 

pipeline is the commercial implementation and clinical test stage of the process 

relying on the results in the second stage which were evaluated in relation to 

secondary factors including disease prevalence, availability of treatments, cost 

reimbursement policies and their compatibility with present clinical laboratory 

instruments. The pipeline for developing new diagnostics (Dx) is well funded in 

the first and final, third stage but in many cases the secondary stage for 

validation of these biomarkers is not [173]. Rifai et al [141] also calls for better 

biomarkers for the improvement of diagnosis and molecular guided therapy for 

the monitoring of disease and has recognised that for novel biomarker 

candidates antibodies required for their validation by western blotting will not 

be yet available. 
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Figure 29: Schematic diagram for a 3-stage diagnostic pipeline exploiting different 

technologies in each stage and connected by molecular identifications [173]. The above figure 

displays the schematic diagram for a 3-stage diagnostic platform exploiting different 

technologies in each stage and connected by molecular identifications. (SELDI = Surface-

enhanced Laser Desorption Ionisation) 

3.1.1 Multiple reaction monitoring (MRM) for validation of biomarkers  

An alternative method for the validation of potential bio-markers by western 

blotting is multiple reaction monitoring (MRM) or selected reaction monitoring 

(SRM). MRM detection using a triple quadrupole mass spectrometer is a sensitive 

method of detection better throughput than the discovery methods outlined in 

the above Figure 29. For an MRM program to be written there must first be prior 

knowledge about the potential biomarker; its primary sequence, charge state 

and how it fragments, as both the first and second quadrupoles in the 

instrument are fixed to scan for a targeted precursor ion and fragment ion mass. 

With MRMs a substantial number of candidates (up to 300 transitions in the case 

of the Applied Biosystems, Qtrap 3200 [177]) can be simultaneously targeted and 

measured in the statistically relevant number of patient samples for verification. 

The MRM mass spectrometry technique is focused and targets a precursor and 

then specifically targets its fragment ion.  The first (Q1) and last (Q3) mass 

analysers of a triple quadrupole mass spectrometer are employed as mass filters 

therefore isolating a targeted peptide ion and its corresponding fragment ion. 

The signal of the fragment ion detected in Q3 is then monitored over a 

chromatographic elution period (Figure 30). The Q1 and Q3 masses targeted for 

are known as the MRM transitions and by using two mass-filtering stages during 
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the experiment this allows this mass spectrometry technique to be not only 

highly selective but with the combination of a high duty cycle results in a 

quantitative technique with unmatched sensitivity and specificity [178]. 

 

Figure 30: MRM transitions in the triple quadrupole mass spectrometer. The parent ion or 

precursor mass is detected in Q1 and fragmented in the collision cell (Q2). Fragments of the 

precursor mass are detected in Q3 and the specific fragment targeted for is allowed through 

to the detector  

3.1.1.1 MRMs for the detection of and quantification of oxidative biomarkers 

In this study I will focus on potential biomarkers for atherosclerosis. The 

oxidation of protein side chains is often a sign of stress or inflammation within 

the body. Methionine is susceptible to oxidation[179] to its sulfoxide form and is 

of particular interest as it has been observed on a wide variety of proteins during 

periods of oxidative stress in the body. The oxidation of methionine is known to 

undergo a conformational change eliminating or reducing biological activity and 

causing protein aggregation and encourages proteolysis. In his study Houde et al 
[179], moniters and quantifies the methionine oxidation to the sulfoxide form. 

Extracted ion chromatograms (XICs) were used to quantify the methionine 

oxidation in a sample. Software added and summed together the peptides of 

interest and their total peak areas were calculated. The equation below 

(Equation 6) was used to calculate the relative percentage modification. 

Equation 6 

Relative percent oxidation =  ΣAreas of Met-ox peptide ions            x 100 

(ΣAreas of Met-ox peptide ions) + (ΣAreas of Met-non-ox peptide ions)   
 

The laboratory which carried out the quantification of the methionine oxidation 

traditionally used single ion monitoring (SIM). They suggest that the improved 
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selectivity of the quantification of methionine oxidation, MRM (plural of SIM) is 

applied. 

3.2 Materials and Methods 

3.2.1 Chlorination of HSA and plasma 

Purified HSA (from Sigma Aldrich) was modified in eppendorf tubes at varying 

concentrations of HOCl (from Sigma Aldrich) as shown in Table 8 , in tris buffer 

(C4H11NO3, pH7, 50mM concentration) at 37°C for 4hours. The modified protein 

was then dried down using a centrifugal evaporator (eppendorf concentrator 

5301) before being trypsin digested. 

HSA stock solution = 2mg/ml in tris buffer (pH7, 50mM). 

The 1.5ML-1 HOCl stock solution was diluted in tris buffer (pH7, 50mM) to give 

HOCl solutions; 150mML, 15mML and 1.5mML. 

Samples 

Each protein sample for analysis consisted of 10µl (20µg) of the HSA stock 

solution and HOCl concentrations were adjusted by dilution of the HOCl solution 

with Tris buffer (Table 8). 

Table 8: The HSA samples were oxidized at varying concentrations of HOCl 

 

From left to right; the first column is the HOCl concentration of which the HSA was modified. 

The second column is how much protein was modified and the third column is the HOCl 

added to the sample. The fourth column is how much tris buffer was added to the eppendorf 

to adjust the HOCl concentration. 
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Plasma was taken from a plasma pool of healthy volunteers (by Dr Corinne 

Spickett and the Oxidative Stress group from Strathclyde University) and a 

Bradford assay was performed to determine the plasma protein concentrations.  

The plasma protein concentration was found to be approximately 58mg/ml. A 

50µl aliquot (~3mg protein) of the plasma was taken and diluted in an eppendorf 

tube by 1:20 in 50mM Tris pH7 buffer. The end concentration of the plasma was 

~3µg/µl with a 15µl (~44µg protein) aliquot of the diluted plasma to be modified 

with varying concentrations of HOCl as reported in Table 9, in tris buffer (pH7, 

50mM concentration) at 37°C for 4hours. The modified protein was then dried 

down using the centrifugal evaporator (eppendorf concentrator 5301) before 

being trypsin digested. 

 It is to be noted that only approximately 50-75% of blood proteins is albumin so 

the final concentration of albumin in the plasma will be 22-38.8µg/µl. 

Samples 

Table 9: The Plasma samples were oxidized at varying concentrations of HOCl 

 

From left to right; the first column is the HOCl concentration of which the plasma was 

modified. The second column is how much protein was modified and the third column is the 

HOCl added to the sample. The fourth column is how much tris buffer was added to the 

eppendorf to adjust the HOCl concentration. 

3.2.2 Nitration of HSA and plasma 

Purified human serum albumin (from Sigma Aldrich) was modified in eppendorf 

tubes using varying concentrations of SIN-1 (3-morpholinosydnonimine from 

Sigma Aldrich) as shown in Table 10: The HSA samples were oxidised at varying 

concentrations of SIN-1, in tris buffer (pH7, 50mM concentration) at 37°C for 
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4hours. The modified protein was then dried down using a centrifugal evaporator 

(eppendorf concentrator 5301) before being trypsin digested. 

Samples 

Table 10: The HSA samples were oxidised at varying concentrations of SIN-1 

 

From left to right; the first column is the SIN-1 concentration of which the HSA was 

modified. The second column is how much protein was modified and the third column is the 

SIN-1 added to the sample. The fourth column is how much tris buffer was added to the 

eppendorf to adjust the SIN-1 concentration. 

Plasma was taken from a plasma pool as before (3.2.1) and modified in vitro 

with different concentrations of SIN-1 (3-morpholinosydnonimine from Sigma 

Aldrich) in tris buffer, pH7 50mM (as shown in Table 11). The SIN-1 modified 

protein was then dried down using the centrifugal evaporator (eppendorf 

concentrator 5301) before being trypsin digested like before with the HOCl 

modified plasma samples. 

 Table 11: The plasma samples were oxidized at varying concentrations of SIN-1 

 

From left to right; the first column is the SIN-1 concentration of which the plasma was 

modified. The second column is how much protein was modified and the third column is the 

SIN-1 added to the sample. The fourth column is how much tris buffer was added to the 

eppendorf to adjust the SIN-1 concentration. 
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3.2.3 Enzymatic Digestion 

Trypsin Digestion 

The dried down protein samples were trypsin digested as the 9 protein mix (see 

2.4.1.2) 

Glu-C (Staphylococcus aureus Protease V8) Digestion 

• Tris Buffer 50mM pH 8.4 - 0.6g Tris base was dissolved in 100ml water and the 

pH was adjusted using 10M HCl to pH 8.4 

• 6M Urea - 2g of Urea in 1.25ml Tris Buffer and 3.75ml water.  

• 184mM Iodoacetamide (alkylating agent) - 34mg Iodoacetamide in 250µl Tris 

and 750µl water.  

• 194mM Dithiothreitol (DTT) (reducing agent) - 30mg DTT in 250µl Tris buffer 

and 750µl water.  

• Glu-C solution 0.2µg/ul - 100ul of 25mM Ammonium Bicarbonate solution is 

added to 20µg Glu-C. 

100µl 6M Urea and 5µl DTT were added to the dry protein sample in the 

eppendorf tube. The protein was resuspended by vortexing and incubated at 

room temperature for one hour. 20µl iodoacetamide was added and vortexed. 

The solution was again incubated at room temperature for an hour. 20µl DTT 

was added to react with any unreacted iodoacetamide and to prevent further 

alkylation of nucleophilic residues such as lysine. The solution was mixed by 

vortex and left at room temperature. 775µl water is finally added to the protein 

solution to reduce the urea concentration from 6M to 0.6M. An aliquot of 184µl 

of this solution was taken and 3µl (0.6µg) Glu-C solution is added. The final 

digestion solution was mixed and left at 37°C overnight. 

3.2.4 MIDAS workflow designer 

To automatically write a multiple reaction monitoring method the MIDAS 

workflow designer was used. The protein sequence for human serum albumin 

was obtained from UniProtKB/Swissprot (P02768) and pasted into the workflow 
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designer. The user specified enzyme was trypsin and the number of missed-

cleaves was set to 1. Fixed modifications were carbamidomethylation and the 

variable modifications were chloro (Y) and oxidation (M). The charge states were 

set 2 to 3.   

3.3 Results and Discussion – detecting chlorotyrosine in HSA 

The HOCl modified human serum albumin samples were analysed by 

conventional MSMS (2.4.1.4) on the Qtrap 2000 (Applied Biosystems, Warrington, 

UK) after being separated by liquid chromatography (2.4.1.3). The mass 

spectrometry data was searched with Mascot (2.4.1.5). Mascot reported the top 

protein hit to be human serum albumin and the HSA peptides that were 

identified as ClTyr modified in a 30mM HOCl modified HSA sample are listed; 

Identified ClTyr Modifications  

RHPDYSVVLLLR + ChloroTyr (Y)  

DVFLGMFLYEYAR + ChloroTyr (Y); Oxidation (M)  

RHPYFYAPELLFFAK + ChloroTyr (Y)  

ALVLIAFAQYLQQCPFEDHVK + ChloroTyr (Y)  

The ALVLIAFAQYLQQCPFEDHVK + ChloroTyr (Y) peptide has a low ion score of 22 

which is below the significance threshold calculated to be 48. This peptide has 

not been identified as ClTyr modified in any of the other HOCl modified HSA 

samples (15mM, 3mM HOCl modified). The identification of this peptide in this 

sample is not a Mascot-assigned statistically confident hit and it is unlikely to 

possess a reduced cysteine residue in the presence of 30mM HOCl. In the ion-

match table Mascot has identified very few y-ions for this peptide, (y7, y5 and 

y4), (Figure 31) and when the mass spectrum for the ALVLIAFAQYLQQCPFEDHVK 

+ ChloroTyr (Y) peptide is manually verified (Figure 32) the y-ions (y4 and y5) 

which are identified are present only in the noise. This suggests that the 

ALVLIAFAQYLQQCPFEDHVK + ChloroTyr (Y) peptide in the 30mM HOCl modified 

HSA sample is not a true positive. 
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Figure 31: ALVLIAFAQYLQQCPFEDHVK + ChloroTyr (Y) ion-match table. The 

ALVLIAFAQYLQQCPFEDHVK + ChloroTyr (Y) peptide’s ion-match table shows that only a few 

y-ions, y7, y5 and y4, have been detected. The ion’s score is 22 which is low for a peptide of 

this size (especially when the significance threshold is 48) combined with a poor y-ion series. 

There is not much confidence that this is a true identification of a ClTyr modified peptide in 

this 30mM HOCl sample. 

 

Figure 32: Mass Spectrum for the ALVLIAFAQYLQQCPFEDHVK + ChloroTyr (Y) peptide in the 

30mM HOCl modified Human Serum Albumin sample. The above figure displays the Mass 

Spectrum of the ALVLIAFAQYLQQCPFEDHVK + ChloroTyr (Y) peptide in the 30mM HOCl 

modified HSA sample.  
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3.3.1 Orthogonal digestion for the detection of ClTyr modified peptides in 
HSA 

To detect any more possible modification sites of chlorotyrosine an orthogonal 

or “parallel” digest was performed using trypsin and Glu-C. Where trypsin will 

cleave at lysine (K) and arginine (R) sites, Glu-C will cleave at glutamic (E) and 

aspartic Acid (D). The specificity of where Glu-C cleaves is dependent on the 

buffer and pH used as well as the structure around the potential cleavage site. 

In an ammonium acetate (pH 4.0) buffer or ammonium bicarbonate (pH 7.8) 

buffer the enzyme will preferentially cleave at the glutamic acid. In phosphate 

buffer (pH 7.8) Glu-C will cleave at either site although no cleavage at all will 

occur if a proline residue is on the carboxyl side. The protease is active in the 

pH range pH 3.5-9.5.  

An orthogonal digest will give two different sets of peptide fragments that can 

be searched and will allow more of the protein’s sequence to be seen. If more of 

the HSA protein can be seen, more chlorotyrosine modification sites should also 

be detected (Figure 33). When the Glu-C enzyme was employed a new ClTyr 

modified peptide was identified (highlighted in purple in the bottom right-hand 

panel). The ClTyr modification seen in the Glu-C digest for the peptide 

TYVPKEFNAE was confirmed by conventional MSMS analysis on the Qtrap and 

Mascot was used to search the MS data generated (Figure 34). A Mascot search of 

the MS data identified the majority of y-ions and b-ions for the TYVPKEFNAE 

peptide and these were confirmed by the peptide’s mass spectrum. 
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Figure 33: Chlorotyrosine modifications detected in HSA. The above figure illustrates and 

lists on the left-hand side which trypsin and Glu-C digested peptides could be potentially 

ClTyr modified (peptides with cysteine and methionine modifications have not been shown 

here for simplicity). Those identified in a 30mM HOCl modified sample by MSMS analysis and 

Mascot are highlighted in the right-hand side of the figure. The right-hand side of the figure 

displays the primary sequence and the peptides identified to be ClTyr modified are again 

highlighted. The ClTyr modified peptide from the digestion of the protein using Glu-C is high-

lighted in purple.   
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Figure 34: ClTyr modification seen in Glu-C digest. The above figure displays the ion match 

table and mass spectrum for the ClTyr modified peptide detected from the 30mM HOCl 

modified HSA, Glu-C digested sample. Mascot identified a number of the y and b-ion 

fragment ions in the peptide. The ion-match table is shown and the mass spectrum has been 

labelled with the assigned ions. 

3.4 Development of an MRM method to target ClTyr modifications 
in the HSA protein 

The MRM (multiple reaction monitoring) method was developed by using the 

mass spectrum data generated by the analysis of the various HOCl modified HSA 

samples. The most commonly identified ClTyr modified peptide observed in the 

HOCl modified HSA samples was the RHPDYSVVLLLR + ClTyr peptide. The 

transitions used in the MRM method for this peptide were chosen depending on 

the observations in the mass spectrometry analysis rather than those calculated 

as these will be optimum for the Qtrap instrument. The collisional energy for the 

fragmentation of the precursor mass was observed in the mass spectrum data to 

be 27eV and the most intense and frequent fragment masses observed 
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(Q3=514.37, 401.28 and 613.44 m/z) were used for the MRM method (Table 12). 

Three Q3 masses were used in the MRM method as a greater number will lead to 

lots of information being collected for one individual peptide potentially missing 

information on others. If less than three Q3 masses are used to identify a 

peptide this potentially raises the number of false positives possible. 

Table 12: Transitions for the modified and unmodified RHPDYSVVLLLR peptide.   

 

The Q1 masses and Q3 masses for the MRM method were chosen for their frequency and 

their intensity in the mass spectrometry data. The collisional energy (CE) value was taken 

from the optimal energy calculated by the mass spectrometer to fragment the peptide. 

3.4.1 MRM analysis of a 30mM HOCl HSA sample targeting the unmodified 
and ClTyr modified RHPDYSVVLLLR peptide 

The analysis of a 30mM HOCl HSA sample analysed by the MRM method indicated 

the detection of both the ClTyr modified and unmodified RHPDYSVVLLLR peptide 

(Figure 35). The unmodified peptide is seen strongly (<3.2x104cps) at 37 minutes 

and the ClTyr modified peptide is seen most strongly (<4x103cps) at 40 minutes. 

The retention time for the ClTyr modified peptide is later than that for the 

unmodified peptide. The peptides from the sample were separated by reverse-

phase liquid chromatography meaning that more polar peptides will be eluted 

first and less polar peptides eluted later. The chlorine atom on the tyrosine will 

lead to the peptide becoming less polar meaning it will be eluted later in the 

chromatography gradient because of the stronger interaction with the stationary 

phase of the reverse-phase chromatography column. 
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Figure 35: MRM for the ClTyr modified and unmodified RHPDYSVVLLLR peptide. The figure 

displays the signal from the ClTyr modified and the unmodified RHPDYSVVLLLR peptide from 

the analysis of the 30mM HOCl modified HSA sample using the MRM method. The arrows are 

used to label which peak is the unmodified and ClTyr modified peptide. 

3.4.1.1 Determining the percentage modification of the RHPDYSVVLLLR 

peptide in a 30mM HOCl HSA sample 

In this study height or intensity is used to calculate the percentage modification 

of the peptide rather than the area under the peak due to software limitations. 

This is a reasonable comparison to calculate percentage modification if the 

peaks to be compared are similar in shape. In a 30mM HOCl sample the 

percentage modification of the RHPDYSVVLLLR peptide was calculated by the 

Equation 7;  

Equation 7 
Relative percent oxidation =              Intensity of ClTyr peptide          x 100 

              Intensity of ClTyr peptide + Intensity of unmodified peptide   
 

The intensities of the 501.00m/z (modified)/613.4 and 490.03m/z 

(unmodified)/613.4 transition signals were compared (Figure 36). The relative 

percentage modification of the RHPDYSVVLLLR peptide in a 30mM HOCl HSA 

sample was calculated using the intensities of the signal and under the 
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assumption that the ionisation energies of the ClTyr modified and unmodified 

peptide states are similar. Under these assumptions we have calculated that the 

peptides relative percentage modification in a 30mM HOCl modified sample is 

approximately 9.1% with the remaining HOCl likely to have reacted with other 

amino acid side chains. 

 

Figure 36: Percentage modification in a 30mM HOCl Modified HSA sample. The calculation of 

relative percentage modification of the RHPDYSVVLLLR peptide in a 30mM HOCl modified 

HSA sample is displayed above. Signal intensity from the modified peptide, 3000cps (top 

panel) and the unmodified peptide, 3.0x104cps (bottom panel) are used for the calculation.  

3.4.2 MRM detection of ClTyr modified peptides in HOCl modified HSA 
samples 

The presence of the ClTyr modified and unmodified RHPDYSVVLLLR peptide in a 

30mM HOCl HSA sample was indicated using an MRM method. A second MRM 

program to include the other ClTyr modified peptides observed in the 

conventional MSMS analysis of the HOCl modified HSA samples was written using 

these observations (Table 13). The CE value for each transition was chosen using 

the values from the mass spectrometry data collected during MSMS analysis. The 

Q3 values were also chosen depending on the most frequently seen and intense 

fragment ions observed previously during conventional MSMS analysis. 

To test the sensitivity of the MRM program a lower concentration of HOCl 

modified HSA (3mM) was analysed instead of the previous 30mM HOCl modified 

HSA sample (Figure 37). Three MRM transitions for one peptide are used to avoid 
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false positives. For a true positive and identification of a modified or unmodified 

peptide in the sample, all three transitions should be eluted at a common point 

in the chromatography gradient. In Figure 37 elution of single transitions have 

been labelled in smaller, orange font. The peaks labelled with arrows are the 

peaks where all three Q3 transitions for the targeted are commonly eluted. The 

MRM program identifies a peak with two transitions for the RHPDYSVVLLLR + 

ClTyr peptide (seen at 32 minutes during the chromatography gradient) but this 

is not an identification of this modified peptide in the unmodified HSA sample as 

all three transitions for the peptide are not seen. What is believed to be the true 

RHPDYSVVLLLR + ClTyr modified peptide (ringed in red) is observed to be eluted 

at 40 minutes during the chromatography gradient. All three transitions for the 

modified peptide (Q1=501.0/Q3=514.4, 401.3 and 613.3) are all seen to have a 

common retention time. As a control for the MRM acquisition method is was also 

used to analyse an unmodified HSA sample targeting for the modified peptides as 

well as the unmodified peptides (Figure 38). 

Table 13: MRM acquisition method for the identification of ClTyr in HOCl modified HSA. 

 

The above table is the program written for the identification of more ClTyr modified 

peptides observed during conventional MSMS analysis of the HOCl modified HSA samples. 

From left to right the first column is the peptide to be identified, the second column is the 

Q1 or precursor mass of that peptide, the third column is the fragment masses or Q3 values 

used to identify the peptide, the fourth column is the dwell time and the third column is the 

collisional energy used for fragmentation. 
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Figure 37: 3mM HOCl modified HSA– MRM. The figure illustrates that the MRM program has 

identified the targeted peptides in a 3mM HOCl modified sample. The peak signals labelled in 

red are those where all three Q3 transitions are seen to be commonly eluted. Those that are 

in the smaller font in orange are peaks where only the signal from a single transition is seen. 

 

Figure 38: Unmodified HSA– MRM. An analysis of an unmodified HSA sample using the same 

MRM program targeting for unmodified and ClTyr modified peptides. The peptide ringed in 

the red is the unmodified RHPYFYAPELLFFAK peptide.  
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The degree of modification for each peptide is not known when using this MRM 

program as the DVFLGMFLYEYAR + Oxidation(M) peptide has been counted as 

unmodified because it does not contain a ClTyr modification. The oxidation of 

the methionine residue is not specific to disease and can happen either during 

sample preparation or be influenced by the increasing HOCl concentration of the 

sample. The MRM method was re-written to include and target for the 

unmodified DVFLGMFLYEYAR peptide in the HSA samples. 

3.4.2.1 Optimising the ClTyr MRM acquisition method to target all possible 

modification states for each peptide 

The MRM method was re-written to include the three different DVFLGMFLYEYAR 

peptide modification states. The MRM will now include the DVFLGMFLYEYAR 

peptide without any modification, the peptide with the Oxidation(M) 

modification  and the peptide with the Oxidation(M) and ClTyr modification 

(Table 14). There are some other possible modified peptide states for the 

targeted peptides such as DVFLGMFLYEYAR + diTyr, DVFLGMFLYEYAR + 2ClTyr 

and DVFLGMFLYEYAR + 2ClTyr; Ox(M). These oxidation states however were 

never observed during the conventional MSMS analysis of the various HOCl 

modified HSA samples so they are not included in the MRM method.  
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Table 14: The optimised MRM acquisition method. 

 

From left to right the first column is the peptide targeted for the second column is the Q1 

mass, the third column is their Q3 transitions and the fourth column is the dwell time. The 

fifth column is the CE values which were written and chosen from MSMS data collected as 

before. The Q3 masses are common to both the modified and unmodified states of a peptide 

The newly optimised MRM method was used to analyse additional HOCl modified 

HSA samples. As a control an unmodified HSA sample was analysed first (Figure 

39).  All three transitions for each unmodified peptide targeted by the MRM 

method were identified with common elution times. The unmodified sample is 

seen to have both the unmodified DVFLGMFLYEYAR peptide and the 

DVFLGMFLYEYAR + Ox(M) modified peptide.  

The RHPDYSVVLLLR peptide is the strongest, most intense seen peptide 

(<1.35x104cps), eluting at 39 minutes, RHPYFYAPELLFFAK is observed at 54 

minutes with an intensity of <600,000cps and DVFLGMFLYEYAR is seen at 58 

minutes with an intensity of 50,000cps. The DVFLGMFLYEYAR + Ox(M) modified 

peptide is seen at 56 minutes and is the lowest intensity at approximately 
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<250cps. There is a single transition (Q1=501.0/Q3=514.5) from the 

RHPDYSVVLLLR + ClTyr modified peptide which is observed again at 32 minutes 

(ringed in orange) during the chromatography gradient. This is a false positive; 

there is only one transition for the RHPDYSVVLLLR + ClTyr peptide with no others 

confirming its presence in the unmodified sample. Directly below the peak for 

the unmodified RHPDYSVVLLLR peptide (boxed in red) a peak for all three Q3 

transitions for the modified RHPDYSVVLLLR + ClTyr peptide. Elution of this ClTyr 

modified peptide is unlikely here with respect to elution time for the modified 

peak. Due to changes in polarity it is unlikely that both the modified and 

unmodified peptide shall be eluted at the same time. The signals for all three Q3 

transitions are seen here so it is likely that this is not the ClTyr modified but in 

fact breakthrough of signal from the unmodified peptide (for a clearer view of 

the breakthrough signal see Figure 41). Breakthrough is caused from another 

signal due to poor selection in Q1. To identify which peak of the three commonly 

eluted transitions is the elution of the peptide targeted for the retention time of 

that peak must also be considered.   

 

Figure 39: Unmodified HSA – control – ClTyr MRM method. Illustrates the MRM method has 

detected the targeted peptides 

In the 10mM HOCl modified HSA sample analysed with the optimised MRM 

acquisition method to include all modification states of each peptide the 
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RHPDYSVVLLLR + ClTyr peptide is identified, with all three transitions observed 

to elute at the same time in the chromatography gradient (Figure 40). The 

RHPDYSVVLLLR peptide is again seen to be the strongest peak (2.4x104cps) 

eluted at 28 minutes. The ClTyr modified state of this peptide, RHPDYSVVLLLR + 

ClTyr, is seen at 32 minutes with an intensity of 200,000cps. The elution time of 

the RHPDYSVVLLLR + ClTyr is later as to be expected with respect to the 

unmodified state. The unmodified RHPYFYAPELLFFAK peptide has been detected 

at 44 minutes with an intensity of 400cps the ClTyr modified state of this 

peptide may be present but it may be in too low abundance to be seen. In the 

10mM HOCl HSA sample there appears to be no DVFLGMFLYEYAR peptide in its 

unmodified state nor in its Oxidation(M) only state and it is possible that the 

peptides are present but in low abundance below the limit of detection. This 

peptide seems to only exist in the Ox(M); ClTyr and Ox(M); 2ClTyr states.  

 

Figure 40: 10mM HOCl Modified HSA – Optimised MRM. The MRM experiment shows that there 

has been ClTyr modification in the 10mM HOCl HSA sample.  

The XICs (Extracted Ion Chromatographs) from the TIC (Total Ion 

Chromatograph) can be separated out so that low abundance peaks can be 

analysed and the three transitions for a peptide can be compared when its XICs 

are isolated and Gaussian smoothed (Figure 41) . The peaks were smoothed using 

a Gaussian filter width (percent of minimal distance between points) = 300 and 
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the limit of the Gaussian filter (number of minimal distance between points) = 

50.  

The unmodified RHPDYSVVLLLR peptide (Q1=490.0) is seen to elute at 28 

minutes (Figure 41).The transitions for the unmodified peptide (Q1=490.0) are in 

blue and for the ClTyr modified peptide the transitions are in red (Q1=501.0). 

The top, middle and bottom panel show the comparison between the modified 

and unmodified peptide by their common Q3 masses (Q3=514.4, 401.3 and 613.4 

respectively). In the top panel is the peak ringed in purple which is the false 

positive peak for the single transition (Q1=501.0/Q3=514.4) for the ClTyr 

modified peptide. All three transitions of the modified peptide have a peak 

(ringed in green) eluting at the same time as the unmodified peptide (Q1=490.0, 

blue). This is where breakthrough of the signal (as previously discussed) can be 

clearly seen. 

 

Figure 41: 10mM HOCl HSA Modified sample – RHPDYSVVLLLR – modified versus unmodified 

peptide. The XIC’s for the unmodified (blue) and modified peptide (red) are compared. The 

first peak in the ClTyr modified 501.0/514.4 transition (circled in purple) is not common to 

the other two transitions (Q3=401.3 and 613.4) and is a false positive. The second peak for 

the ClTyr modified peptide (circled in green) under the larger, more intense transition peak 
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for the unmodified peptide (blue) is common in all three transitions. This is caused by signal 

breakthrough from the unmodified peptide. The third peak of the modified RHPDYSVVLLLR + 

ClTyr peptide is the most likely to be the true elution time as it is after the unmodified 

peptide (Q1=490.0, blue) which is to be expected.  

3.4.3 The investigation of the RHPYFYAPELLFFAK peptide - determination 
of ClTyr Modification 

The RHPYFYAPELLFFAK peptide does not appear to be ClTyr modified in this 

10mM HOCl HSA sample (Figure 40). To determine the presence or absence of 

the peptide’s chlorotyrosine modification the XICs (extracted ion 

chromatograph) were generated and the common transitions (Q3=964.5, 867.5 

and 625.3) for the unmodified (Q1=582.0) and the ClTyr modified peptide 

(Q1=593.0) over-laid (Figure 42).The top panel in this figure displays an overlay 

of the three transitions of the RHPYFYAPELLFFAK peptide (Q1=582.0). The three 

transitions for the unmodified peptide (582.0/964.5, 582.0/867.5 and 

582.0/625.3) have a common elution at 44 minutes therefore identifying the 

unmodified peptide in the 10mM HOCl modified HSA sample.  The bottom panel 

displays an overlay of the three transitions of the ClTyr modified 

RHPYFYAPELLFFAK peptide (593.0/964.5, 593.0/867.5 and 593.0/625.3). The 

three transitions for the ClTyr modified peptide are not observed at a common 

retention time leading to the conclusion that there is no RHPYFYAPELLFFAK + 

ClTyr modified peptide in this 10mM HOCl modified sample. 

 

Figure 42: 10mM HOCl modified HSA sample – RHPYFYAPELLFFAK – comparison of the 

modified and unmodified peptide 
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In the 0.25mM HOCl modified HSA sample the RHPYFYAPELLFFAK peptide is 

observed (Figure 43). The modified RHPYFYAPELLFFAK + ClTyr peptide 

(Q1=593.0) however is seen to be eluted at the same time as the unmodified 

peptide (55 minutes) in very low abundance with a signal of 45cps in comparison 

with the unmodified peptides signal intensity of 1,300cps. Elution of the 

“unmodified peptide” at the same time as the modified peptide is unlikely due 

to the change in the peptide’s polarity. This is another example of the 

breakthrough of signal from the unmodified peptide. The modified 

RHPYFYAPELLFFAK + ClTyr peptide in the 0.25mm HOCl modified HSA sample is 

therefore unlikely to be present. 

 

Figure 43: A 0.25mM HOCl modified HSA sample - RHPYFYAPELLFFAK - comparison of the 

modified and unmodified peptide. This figure displays the three transitions (Q3=964.5, 867.5 

and 625.3) over-laid for the unmodified (Q1=582.0, top panel) RHPYFYAPELLFFAK peptide 

eluted at 55minutes and the ClTyr modified RHPYFYAPELLFFAK peptide (Q1=593.0, bottom 

panel) eluted at 55minutes in the 0.25mM HOCl modified HSA sample. Both the modified and 

unmodified states of the peptide are unlikely to be eluted at the same time. This is another 

example of signal breakthrough from the unmodified peptide.  
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3.4.4 The investigation of the DVFLGMFLYEYAR peptide’s modification 
states in various HOCl in vitro modified HSA samples  

The XIC’s for the DVFLGMFLYEYAR peptide and its modified states are generated 

and compared and the most abundant modified state of the peptide in the 10mM 

HOCl modified HSA sample is identified (Figure 44). Panel A displays the three 

transitions (Q3=175.1, 362.2 and 475.3) over-laid for the unmodified 

DVFLGMFLYEYAR peptide (Q1=813.45). There is no common elution time for the 

three transitions so it is likely that this peptide either does not exist in the 

unmodified form in a 10mM HOCl HSA sample or is in such low abundance that it 

is below the limit of detection. Panel B displays the three transitions (Q3=175.1, 

362.2 and 475.3) over-laid for the Oxidation(M) modified peptide (Q1=821.0, 

panel B). There is a common elution time at 44 minutes and it is common to all 

three transitions indicating that the DVFLGMFLYEYAR + Ox(M) peptide is present 

in the 10mM HOCl HSA sample. Panel C displays the three transitions (Q3=175.1, 

362.2 and 475.3) over-laid for the Oxidation(M) and ClTyr modified peptide 

(Q1=837.75, panel C). The three transitions are commonly eluted for the Ox(M) + 

ClTyr modified peptide and are seen at 46 minutes also indicating the presence 

of the  Ox(M);ClTyr modified state of the peptide in the 10mM HOCl sample. 

Panel D displays the three transitions (Q3=175.1, 362.2 and 475.3) over-laid for 

the Oxidation(M) and 2ClTyr (Q1=855.0, panel D) modified state of the peptide. 

Although low in intensity (150cps) and therefore abundance the common elution 

times for the Ox(M);2ClTyr modified state is seen at 47 minutes indicating the 

modified state of this peptide is present in the 10mM HOCl sample. 
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Figure 44: 10mM HOCl Modified HSA sample – DVFLGMFLYEYAR – comparison of the modified 

and unmodified peptide. 

There does not seem to be any of the unmodified DVFLGMFLYEYAR peptide 

(Q1=813.0) in the 10mM HOCl modified HSA sample meaning that the peptide at 

this concentration is in one modified state or another. The elution times for the 

DVFLGMFLYEYAR + Ox(M) (Q1=821.0), DVFLGMFLYEYAR + Ox(M);ClTyr  

(Q1=837.75) and DVFLGMFLYEYAR + Ox(M);2ClTyr (Q1=855.0) modified peptides 

are to be expected. The oxidation of the DVFLGMFLYEYAR peptide will make the 

peptide more polar so the signal of the Ox(M) (Q1=821.0) modified peptide will 

be earlier than the unmodified peptide (not observed) if it were detected and 

indeed the Ox(M);ClTyr and Ox(M);2ClTyr modified peptides. The chlorination of 

the first and second tyrosine residues will make the DVFLGMFLYEYAR peptide 

less polar leading to the modified peptides Ox(M);ClTyr (Q1=837.75) and 

Ox(M);2ClTyr (Q1=855.0) having later retention times respectively.  
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To investigate which modified state is the most predominant in the 10mM HOCl 

modified HSA sample the common transition (Q3=175.1, 362.2 and 475.3) from 

each modified state of the DVFLGMFLYEYAR peptide were compared (Figure 45). 

The three transitions (Q3=475.3 – top panel, 362.2 – middle panel and 175.1 – 

bottom panel) of each modified state; unmodified (Q1=813.45, blue), Ox(M) 

modified (Q1=821.0, red), Ox(M);ClTyr modified (Q1=837.75, pink) and 

Ox(M);2ClTyr modified (Q1=855.0, green) of the DVFLGMFLYEYAR peptide.  

In all three panels the most intense signal is from the Ox(M);ClTyr (Q1=837.75) 

modified state. In the 10mM HOCl HSA modified sample the DVFLGMFLYEYAR 

peptide is most abundant in the Ox(M);ClTyr modified state. From this 

observation it can be assumed that the peptide will be modified at certain side 

chains which are more susceptible to oxidation than others.  

 

Figure 45: 10mM HOCl modified HSA sample – DVFLGMFLYEYAR – comparison of the modified 

states peptide. By comparing the three MRM transitions (Q3=175.1, 362.2 and 475.3) of each 

modified state we can clearly see that in the 10mM HOCl modified HSA sample the 

Oxidation(M); ClTyr (Q1=837.75) modified state is the most predominant.  
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3.5 The application of the ClTyr MRM acquisition method for the 
analysis of plasma 

The MRM method has detected and identified the targeted chlorotyrosine 

modifications on a purified HSA protein modified by HOCl in vitro. The method 

was first optimised on purified HSA so that it could then be employed for the 

detection of ClTyr modifications in a real life biological sample. Albumin is the 

most abundant protein in plasma (50-75%) so a method developed to target for 

ClTyr modifications on purified HSA can be successfully applied to target ClTyr 

modifications on albumin in plasma. Plasma from a plasma pool of healthy 

volunteers was modified in vitro using the same protocol as the purified HSA 

(see 3.2.1) and was analysed by the ClTyr MRM method. An unmodified plasma 

sample was analysed using the ClTyr MRM method as a control (Figure 46). The 

false positive peak from the (501.0/514.4m/z) transition for the 

RHPDYSVVLLLR.L + ClTyr modified peptide is observed in the unmodified plasma 

sample (as seen before in the unmodified HSA sample) eluting at 30 minutes. 

The unmodified RHPDYSVVLLLR peptide (Q1=490.0) is seen at 36 minutes, the 

unmodified RHPYFYAPELLFFAK peptide (Q1=582.0) at 54 minutes, the 

unmodified DVFLGMFLYEYAR peptide (Q1=813.45) at 59 minutes and the 

DVFLGMFLYEYAR + Ox(M) modified peptide (Q1=821.0) at 56 minutes. The 

DVFLGMFLYEYAR + Ox(M) peptide can become methionine oxidised non 

specifically during sample preparation or biologically in the volunteer or patient 

and is eluted before the unmodified DVFLGMFLYEYAR peptide as expected due to 

the change in the peptide’s polarity after modification. 

The ClTyr MRM method was then employed to detect the targeted ClTyr 

modifications in the 10mM HOCl modified plasma sample (Figure 47).  The 

RHPDYSVVLLLR unmodified peptide (Q1=490.0) was seen at 31 minutes with its 

ClTyr modified state RHPDYSVVLLLR + ClTyr (Q1=501.0) at 34 minutes. The 

unmodified RHPYFYAPELLFFAK peptide (Q1=582.0) was seen at 44 minutes but 

its ClTyr modified state was not initially obvious and it was possible that it was 

present at low intensity. The modified DVFLGMFLYEYAR + Ox(M);ClTyr peptide 

(Q1=837.75) was seen at 47 minutes and its methionine oxidation only state, 

DVFLGMFLYEYAR + Ox(M) (Q1=821.0) was seen as expected before in the 

gradient at 46 minutes. The modified DVFLGMFLYEYAR + Ox(M);2ClTyr state 

(Q1=855.0) was eluted last as expected at 49 minutes. 
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Figure 46: Unmodified plasma sample – control – ClTyr MRM. The unmodified peptides 

targeted by the MRM are identified in the unmodified plasma sample. 

 

Figure 47: 10mM HOCl modified plasma – ClTyr MRM. The figure illustrates that the MRM 

method has detected the targeted unmodified peptides and ClTyr modified peptides in the 

10mM HOCl modified plasma sample.   
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3.5.1 Comparing the XICs of the unmodified and ClTyr modified 
RHPYFYAPELLFFAK peptide in the 10mM HOCl plasma sample 

The RHPYFYAPELLFFAK + ClTyr modified peptide may be in low abundance in the 

10mM HOCl modified plasma sample. To assess for the peptide the individual 

XICs of the three transitions for the peptide were isolated. 

The XICs for the transitions of the RHPYFYAPELLFFAK + ClTyr modified peptide 

were Gaussian smoothed for comparison and to look at in more detail (Figure 

48). The top panel shows the unmodified RHPYFYAPELLFFAK peptide (Q1=582.0) 

is in low abundance but present as all three transitions have a common elution 

time. The ClTyr modified RHPYFYAPELLFFAK + ClTyr peptide (Q1=593.0) is in low 

abundance with a signal intensity of <80cps in comparison with the unmodified 

peptide (intensity <347cps). There is a common elution time for all three 

transitions for the ClTyr modified peptide (41 minutes) indicating the modified 

peptides probable presence in the sample but the signal is low so it is not easily 

observed in the TIC (Figure 47). Before a conclusion can be made about the 

presence of a peptide in a sample when analysed by an MRM method for lower, 

less abundant peptides it is necessary to extract individual XIC’s for analysis. 

 

Figure 48: 10mM HOCl HSA Modified sample – RHPYFYAPELLFFAK – comparison of the 

modified and unmodified peptide. The figure illustrates the over-laying of the three 

transitions (Q3=964.5, 867.5 and 625.3) for the unmodified RHPYFYAPELLFFAK peptide 

(Q1=582.0 – top panel) and the modified RHPYFYAPELLFFAK + ClTyr peptide (Q1=593.0 – 

bottom panel). 
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3.5.2 The relative percentage modification in the 10mM HOCl modified 
plasma sample for the RHPDYSVVLLLR peptide 

The relative percentage oxidation was calculated for the RHPDYSVVLLLR peptide 

in the 10mM HOCl modified plasma sample. Relative percentage modification 

was found by comparing the Gaussian smoothed XICs of the unmodified 

RHPDYSVVLLLR and modified RHPDYSVVLLLR +ClTyr peptide (Figure 49). This 

assumes that the ionisation energies for the modified and unmodified peptide 

are equal. Equation 7 (as first described in 3.4.1.1) was used to calculate 

approximate relative percentage modification. 

Equation 7 
Relative percent oxidation =              Intensity of ClTyr peptide          x 100 

              Intensity of ClTyr peptide + Intensity of unmodified peptide   
 

The three transitions for the RHPDYSVVLLLR unmodified peptide (Q1=490.0) and 

the ClTyr modified peptide (Q1=501.0) were compared. For the transitions; Q3 = 

514.4, 401.3 and 613.4 the relative percentage oxidation were approximately 

12.4%, 16.5% and 12.4% respectively. The average approximate relative 

percentage oxidation for this peptide in a10mM HOCl modified plasma sample 

was 13.77%.  

 

Figure 49: 10mM HOCl HSA Modified sample – RHPDYSVVLLLR – modified versus unmodified 

peptide. The above figure illustrates the comparison of the three common transitions 

(Q3=514.4 – top panel, 401.3 – middle panel and 613.4 – bottom panel) for the unmodified 
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RHPDYSVVLLLR peptide (Q1=490.0, blue) and the modified RHPDYSVVLLLR + ClTyr peptide 

(Q1=501.0, red). As seen previously in HOCl modified HSA samples the false positive peak 

(circled in purple) is seen in the modified RHPDYSVVLLLR + ClTyr peptide (501.0/514.4, red – 

top panel). Circled in green is breakthrough from the signal from the unmodified peptide. 

The unmodified and ClTyr modified DVFLGMFLYEYAR peptide is detected in the 

10mM HOCl modified plasma sample (Figure 50). Panel A indicates that the 

unmodified DVFLGMFLYEYAR peptide (Q1=813.45) exists in very low abundance 

(<30cps) in the 10mM HOCl plasma sample. Panel B displays the DVFLGMFLYEYAR 

+ Ox(M) modified peptide (Q1=821.0) state seen at 45 minutes. Panel C displays 

the DVFLGMFLYEYAR + Ox(M);ClTyr (Q1=837.75) peptide. The three transitions 

have a common elution time seen at 47 minutes in the chromatography gradient. 

Panel D shows the transitions of the DVFLGMFLYEYAR + Ox(M);2ClTyr (Q1=855.0) 

peptide eluting at a common time at 49mintutes into the chromatography 

gradient.  

 

Figure 50: 10mM HOCl Modified plasma sample – DVFLGMFLYEYAR – comparison of the 

modified states. The figure illustrates the over-laid three transitions (Q3=175.1, 362.2 and 

475.3) for each modified state of the DVFLGMFLYEYAR peptide in the 10mM HOCl modified 

plasma sample.  
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From the XICs we can calculate an approximation of the relative percentage 

oxidation of the DVFLGMFLYEYAR peptide in a 10mM HOCl modified plasma 

sample using the previous equation used (3.4.1.1 and 3.5.2). The calculation was 

performed using the values of the most intense (Q3=475.3 - red) transition in 

each modified state (unmodified=30cps, Ox(M)=80cps, Ox(M);ClTyr=572cps and 

Ox(M);2ClTyr=390cps). 

Relative percentage oxidation = [(80 + 572 + 390) / (30 + 80 + 572 + 390)] x100 

= 97.22% (approximate) 

The relative percentage oxidation for the DVFLGMFLYEYAR peptide was found to 

be 97.22%. This appears high in comparison to the RHPDYSVVLLLR peptide 

(13.8%) in a 10mM HOCl modified plasma sample. This may be because there are 

a greater number of residues susceptible to oxidation on the DVFLGMFLYEYAR 

peptide than the RHPDYSVVLLLR peptide. The DVFLGMFLYEYAR peptide has a 

greater number of potential oxidation sites possessing the methionine residue, 

which is susceptible to oxidation and two tyrosines both susceptible to 

chlorination.  

3.5.3 The relative percentage modification in the 0.25mM HOCl modified 
plasma sample for the RHPDYSVVLLLR  

In a 0.25mM HOCl in vitro modified plasma sample the Oxidation(M) modified 

DVFLGMFLYEYAR peptide and the unmodified DVFLGMFLYEYAR peptide are the 

most predominant peptides (Figure 51). In panel A the unmodified 

DVFLGMFLYEYAR peptide (Q1=813.45) has a common elution time seen at about 

47 minutes in the chromatography gradient. In panel B the three transitions for 

the DVFLGMFLYEYAR + Ox(M) peptide (Q1=821.0) also have a common elution 

time seen at 46 minutes. This will be the most abundant modified state of the 

DVFLGMFLYEYAR +Ox(M) peptide in the 0.25mM HOCl plasma sample as the 

signal intensity for this modification is ≤1.4x104cps in comparison to the signal 

for the unmodified peptide (panel A) which is ≤100cps. In panel C for the 

DVFLGMFLYEYAR + Ox(M);ClTyr peptide (Q1=837.75) the three transitions 

commonly elute at 46 minutes. Due to the unexpected retention time this is 

possibly a false positive and breakthrough signal from the Ox(M) modified 

peptide. In panel D for the DVFLGMFLYEYAR + Ox(M);2ClTyr peptide (Q1=855.0) 
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there is no common elution time for all the transitions indicating that this 

modified state of the DVFLGMFLYEYAR + Ox(M);2ClTyr peptide does not exist in 

the 0.25mM HOCl plasma sample or is in abundance below the limit of detection. 

The unmodified and Oxidation(M) states of the DVFLGMFLYEYAR peptide 

therefore appear the most predominant. 

 

Figure 51: A 0.25mM HOCl Modified plasma sample – DVFLGMFLYEYAR – comparison of the 

modified states. The figure illustrates the DVFLGMFLYEYAR peptide’s modified states with 

their three common transitions (Q3=175.1, 362.2 and 475.3) over-laid. 

The approximate relative percentage oxidation of this peptide was calculated as 

before (3.4.1.1 and 3.5.2) using the most intense Q3 transition (Q3=475.3 - red) 

in each modified state. The intensities for each modified state of the peptide 

were 189cps, 1.4x104cps and 300cps for the unmodified state, Ox(M) modified 

state and the Ox(M);ClTyr modified state respectively. 

Relative percentage oxidation = [(1.4x104 + 300) / (189 + 1.4x104 + 300)] x100 

= 98.7% (approximately). 
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The percentage modification for the DVFLGMFLYEYAR peptide is similar in the 

0.25mM and 10mM HOCl modified plasma samples (approximately 98.7% and 

97.2% respectively). In the 0.25mM HOCl modified plasma samples the 

DVFLGMFLYEYAR peptide is predominantly methionine oxidized (in the Ox(M) 

state). In the higher 10mM HOCl modified plasma sample the peptide is 

predominantly in the Ox(M);ClTyr and Ox(M);2ClTyr modified states. Although 

relative percentage oxidation of the peptide is close in the 0.25mM and 10mM 

HOCl modified plasma samples at the higher HOCl concentration the peptide is 

in higher-level modified states.  

3.5.4 Conclusion of the development of the ClTyr MRM acquisition method 

The ClTyr MRM has been able to identify the targeted ClTyr modified peptides in 

both the model purified protein HSA and in a biological sample, plasma. We have 

demonstrated by the ClTyr MRM analysis of various concentrations of HOCl in 

vitro modified plasma samples the degree of oxidation in individual peptides. 

The ClTyr modification as discussed could be an important biomarker for 

inflammatory diseases. The ClTyr MRM for the albumin may therefore be of use 

for the diagnosis of oxidative stress and its diseases in clinical plasma samples.  

3.6 Nitration of HSA 

Myeloperoxidase (MPO) is both present and active in inflammatory conditions 

and will lead to the formation of nitrotyrosine and chlorotyrosine. These 

molecules have been found to be elevated in atherosclerosis [57]. It is likely that 

a combination of biomarkers is required for the diagnosis of disease and if an 

MRM acquisition method can be written for ClTyr modifications in human serum 

albumin one for NiTyr should also be possible.  

The compound, 3-morpholinosydnonimine (SIN-1) (Figure 52) is unstable and will 

release nitric oxide (•NO) and superoxide (O2
•−) to form peroxynitrite (-ONOO) 

which will then decompose to modify tyrosine side chains. To mimic the 

formation of nitrotyrosine, SIN-1 is commonly used to modify proteins in vitro  
[180-184]. 
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Figure 52: The above is the structure for SIN-1. It is an unstable compound and will release 

nitric oxide (•NO) and superoxide (O2
•−) to form peroxynitrite (-OONO) leading to the 

formation of nitrotyrosine. 

3.6.1 Results and Discussion – Detecting Nitrotyrosine in HSA 

The various concentrations of the SIN-1 modified HSA samples were trypsin 

digested and analysed by separation of the peptides on the LC then detected by 

MSMS on the Analyst Biosystems QTrap 2000. 

The SIN-1 modified human serum albumin samples were analyzed by 

conventional MSMS (2.4.1.4) on the Qtrap 2000 (Applied Biosystems, Warrington, 

UK) after being separated by liquid chromatography (2.4.1.3). The mass 

spectrometry data was searched with Mascot (2.4.1.5). Mascot reported the top 

protein hit to be human serum albumin and the HSA peptides that were 

identified as Nitrotyrosine (NiTyr) modified in the various SIN-1 modified HSA 

samples were; 

YLYEIAR + NitroTyr (Y) 

RHPDYSVVLLLR + NitroTyr (Y) 

DVFLGMFLYEYAR + NitroTyr (Y); Oxidation (M) 

RHPYFYAPELLFFAK + NitroTyr (Y) 

The NiTyr modified peptides assigned by Mascot were then cross-referenced with 

their mass spectrometry data and the Mascot ion-match table. For a true match 

a good coverage of the y-ion series for a peptide should be identified and the y-

ions should be identifiable in the signal. For an example of a NiTyr modified 

peptides with good confidence see the MSMS analysis of the YLYEIAR + NiTyr and 
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its ion-match table (Figure 53). In the ion-match table we can clearly see the 

full y-ion series has been identified from the mass spectrum data. The mass 

spectrum for the YLYEIAR + NiTyr modified peptide is labelled to show which y 

and b-ions have been identified. Those present in the ion-match table that are 

not labelled in the spectrum are of low intensity and can be seen when zoomed 

in. The peptides ion-score was 86 which is above the significance threshold 

calculated to be 48. 

Observations from the mass spectrometry data collected during the conventional 

MSMS analysis of the various concentrations of SIN-1 modified HSA samples were 

used to write a MRM method. The MRM method was to be applied to detect 

targeted NiTyr modifications in the model purified protein, HSA, and a real 

biological sample, SIN-1 modified plasma (Table 15). The Q3 masses of the 

targeted peptides for the NiTyr MRM acquisition method were chosen due to 

their intensity and frequency seen in the MSMS analysis. 

 

Figure 53: MSMS analysis of the YLYEIAR NiTyr modified peptide – Mass Spectrum and 

MASCOT ion-match table.  
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Table 15: MRM acquisition method for NiTyr modifications in HSA and plasma. 

 

The NiTyr MRM acquisition method was written from the MSMS observations from MSMS 

analysis of HSA samples modified in vitro with varying concentrations of [SIN-1]. From left to 

right the first column is the peptide targeted for, the second column is the precursor mass 

and the third column is the Q3 m/z which were chosen due to their intensity and their 

frequency seen in the MSMS spectra. The fourth column is the collisional energy used. 
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3.6.2 The analysis of an unmodified HSA sample in comparison to a 2.5mM 
SIN-1 in vitro modified HSA and plasma sample by the NiTyr MRM 
acquisition method 

To test the NiTyr MRM program a control unmodified HSA sample was analysed 

previous to the SIN-1 modified samples to ensure no cross-contamination (Figure 

54). In the unmodified HSA sample we do not see the DVFLGMFLYEYAR + Ox(M) 

peptide when analysed with the NiTyr MRM program. The DVFLGMFLYEYAR + 

Oxidation(M) is seen in the 2.5mM SIN-1 modified sample (Figure 55) but not the 

unmodified sample (Figure 54). Although not detected by the MRM program, it is 

unlikely that there is no oxidation of the methionine present in this peptide in 

the unmodified sample as methionine oxidation is a process which happens 

naturally in the air and cannot be prevented or controlled. 

The analysis of 2.5mM SIN-1 modified HSA and plasma samples by the NiTyr MRM, 

detected the targeted NiTyr modified peptides (Figure 55). The top panel in the 

figure is the TIC (total ion chromatography) of the 2.5mM SIN-1 modified HSA 

sample. The unmodified TYETTLEK peptide (Q1=492.7) is seen at 10 minutes, the 

unmodified YLYEIAR peptide (Q1=464.2) is seen at 20 minutes and its NiTyr 

modified state is seen at 23 minutes. The unmodified RHPYFYAPELLFFAK peptide 

(Q1=634.0) is seen at 33 minutes and the DVFLGMFLYEYAR + Ox(M) is seen at 41 

minutes and the DVFLGMFLYEYAR + Ox(M);NiTyr is seen at 46 minutes in the 

2.5mM SIN-1 HSA sample. The bottom panel in the figure displays the TIC of the 

SIN-1 modified plasma sample and the targeted peptides are again detected.  

 

Figure 54: Unmodified HSA. The above figure shows that the NiTyr MRM for the detection of 

NiTyr modification in HSA has detected the targeted unmodified peptides.  
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Figure 55: 2.5mM SIN-1 modified HSA and Plasma – NiTyr MRM. The above figure illustrates 

that the NiTyr MRM has detected the targeted NiTyr modifications in both the SIN-1 modified 

purified HSA protein and the real life biological sample plasma. 

3.6.3 Optimising the NiTyr MRM method by increasing the scan time 

To optimise the NiTyr MRM acquisition method and to ensure all peptides which 

are present in the sample are being detected the methods sensitivity was 

increased by increasing the dwell time from 20ms to 60ms. The total scan time 

for the method was therefore increased from 0.4sec to 1.952sec. Increasing the 

scan time means that more time will be spent “looking” for the chosen masses in 

Q1. Increasing the sensitivity of the method will decrease the resolution of the 

acquisition method which can lead to problems with quantification.  

To test the new optimised NiTyr MRM method an unmodified HSA sample was 

analysed (Figure 56). Two false positive peaks for two NiTyr modified peptides 

were detected in the unmodified HSA sample. The single transitions for the 

modified RHPYFYAPELLFFAK + NiTyr (Q1=648.6/Q3=136.3) peptide was seen at 

32 minutes and a single transition for the RHPDYSVVLLLR +NiTyr (Q1=505.1/ 

Q3=401.2) peptide was seen at 37 minutes during the chromatography gradient. 

For a targeted peptide to be identified all three transitions must be seen 

commonly eluted so these signals are likely false positives caused by 

breakthrough from another signal. The false positive single transition for the 

RHPYFYAPELLFFAK + NiTyr peptide (Q1=648.6) is also seen before the 
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unmodified state (Q1=634.0 seen at 45 minutes). When a peptide’s tyrosine 

becomes nitrated the peptide becomes less polar and therefore has a longer 

retention time. 

The newly optimised NiTyr MRM method was then used to analyse a 1mM SIN-1 

modified plasma sample (Figure 57). The NiTyr MRM acquisition method detected 

all the targeted peptides in the 1mM SIN-1 modified plasma sample. What is 

interesting in the repetitive targeted MRM analysis of both the SIN-1 modified 

HSA and the SIN-1 modified plasma sample is that the YLYEIAR + NiTyr peptide’s 

transitions form a split peak whereas all other transitions from the targeted 

peptides form a single peak. 

 

Figure 56: New optimised NiTyr MRM method – Test - Unmodified HSA sample. The figure 

illustrates that the newly optimised NiTyr MRM method has now detected all the targeted 

unmodified peptides.  
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Figure 57: Newly optimised NiTyr MRM Method – 1mM SIN-1 modified plasma. The figure 

illustrates the analysis of a 1mM SIN-1 modified biological sample, plasma, with the optimised 

NiTyr MRM method. The newly optimised MRM method has detected the targeted unmodified 

and NiTyr modified peptides in the SIN-1 modified plasma sample. 

3.6.4 Searching for the YLY2EIAR + NiTyr modified peptide by MSMS and 
the omission of the dynamic exclusion parameter  

The “split-peak” elution of the Y1LYEIAR + NiTyr modified peptide could mean 

that there are two close possible elution times of the modified peptide in 

comparison to the unmodified state whose transitions form a single peak 

meaning one single elution time (Figure 58). The split-peak appears not to be an 

artefact as all three transitions for the modified YLYEIAR + NiTyr peptide 

(Q1=487.0, Q3=651.3, 359.2 and 246.2) have a common elution time and all form 

the same split-peak pattern and the “split-peak” anomaly of the YLYEIAR + NiTyr 

peptide was seen in various SIN-1 modified HSA and SIN-1 modified plasma 

samples. 
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Figure 58: The YLYEIAR unmodified peptide compared with YLYEIAR + NiTyr peptide. The 

above figure illustrates the “split-peak” anomaly in a purified protein HSA sample.  

When the MSMS data of these SIN-1 modified HSA and plasma samples is 

searched with Mascot the NiTyr modification is assigned to Y1 in the peptide 

Y1LY2EIAR + NiTyr. The MSMS spectra and ion-match table confirms the 

modification on the Y1 tyrosine in the peptide. When the SIN-1 modified samples 

were analysed with a conventional MSMS acquisition method the dynamic 

exclusion parameter was turned on to always exclude former target ions 

(2.4.1.4). When a mass is detected it will then be added to an exclusion list and 

no more data will be collected on this mass to ensure that other masses in the 

sample are seen and data is not collected repeatedly on the same mass. The 

YLY2EIAR + NiTyr (Y) and the Y1LYEIAR + NiTyr (Y) peptides will have the same 

masses.  It is therefore possible that the modified YLY2EIAR + NiTyr (Y) peptide is 

present but the second peak is then ignored or rejected for MSMS analysis by the 

dynamic exclusion parameter in the information dependant acquisition 

experiment in the MSMS method. The MSMS acquisition method with the dynamic 

exclusion turned ‘on’ was compared with the MSMS acquisition method with the 

dynamic exclusion turned ‘off’ (Table 16). The table displays the Mascot 

identifications of the NiTyr modified peptides detected in a 2.5mM SIN-1 

modified protein sample when the dynamic exclusion parameter in the MSMS 
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acquisition method is turned off. The YLY2EIAR + NiTyr peptide is not observed 

only the Y1LYEIAR + NiTyr peptide is. 

Table 16: MSMS analysis of 2.5mM SIN-1 modified HSA and plasma with dynamic exclusion 

turned off 

 

The above displays from left to right in the first column the 2.5mM SIN-1 modified sample 

which was analysed (either HSA or plasma) and the second and third columns display the 

NiTyr modifications identified by Mascot with the dynamic exclusion turned “on” and “off”. 

The Y1LYEIAR + NiTyr peptide is seen when the dynamic exclusion is ‘on’ and 

‘off’ in the MSMS acquisition method but the modified YLY2EIAR + NiTyr, peptide 

is not. In reference to Bergt et al [185], the modification patterns are consistent. 

The Y1 tyrosine is close to the lysine (K) residue making it more susceptible to 

nitration as the lysine directs the modification of tyrosine. The lysine is the 

initial site of attack by oxidation forming, in this case, nitroamine making the 

product Y1LYEIAR + NiTyr and not YLY2EIAR + NiTyr. The YLY2EIAR + NiTyr 

modified peptide is less favourable so its formation is unlikely or will occur at 

low abundance and in this case is below the limit of detection.  

3.6.4.1 An MRM targeted analysis for the Y1LY2EIAR + 2NiTyr peptide   

To target for the di-nitro modified peptide, Y1LY2EIAR + 2NiTyr, an MRM method 

looking specifically for this double modified peptide was written from MSMS data 

observations (Table 17). The Y1LY2EIAR + 2NiTyr peptide was observed only once 

in the MSMS data after the conventional MSMS analysis of a 10mM SIN-1 modified 

HSA sample. The Q3 masses were chosen due to their intensity and frequency 

seen in the MSMS data. The di-NiTyr peptide, YLYEIAR + 2NiTyr (Q1=510.0, 

Q3=696.3, 488.3 and 359.2), has a 2NiTyr-confirmatory Q3 mass, 696.3m/z, and 

is its y5-ion. The y5-ion is also targeted for in the detection for the mono-NiTyr 

peptide and its mass is Q3=651.3. 
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Table 17: MRM for Y1LY2EIAR + 2NiTyr peptide 

 

The above displays from left to right the peptide targeted for, in the second column is the 

Q1 mass, the third column is the Q3 masses observed from MSMS data and the fourth column 

displays which transitions were used in the acquisition method. 

The MRM method was applied to analyse a 1mM SIN-1 modified HSA sample 

(Figure 59).The unmodified YLYEIAR peptide was seen at 25 minutes and the 

Y1LYEIAR + NiTyr peptide at 28 minutes. The Y1LY2EIAR + 2NiTyr peptide is not 

detected in the 1mM SIN-1 modified HSA sample. The MRM method of detection 

is sensitive so it is likely the peptide has not been significantly di-nitrotyrosine 

modified when exposed to a 1mM SIN-1 concentration. Ringed in purple are 

single signal transitions for the unmodified YLYEIAR peptide and the modified 

Y1LYEIAR + NiTyr peptide. The Y1LYEIAR + NiTyr peptide is in very low abundance 

so the Y1LY2EIAR + 2NiTyr peptide is unlikely to be formed or at abundance 

where it can be detected. 
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Figure 59: Di-nitrotyrosine MRM of 1mM SIN-1 modified HSA sample. The figure displays the 

analysis of a 1mM SIN-1 modified HSA sample with the “Di-nitrotyrosine MRM”. 

3.7 Optimisation of the NiTyr MRM method to target all possible 
modified states of the peptides 

Using the improved NiTyr MRM a new MRM was written to include all possible 

oxidation states (Table18). The newly optimised NiTyr MRM method although 

more sensitive does not take into account possible oxidised states that have not 

been seen by MSMS analysis in previous MSMS analysis of the SIN-1 modified HSA 

or plasma samples. The DVFLGMFLYEYAR + 2NiTyr peptide (Q1 = 858.45) is 

unlikely to form, as was discussed previously, methionine is the initial target for 

tyrosine modification. The DVFLGMFLYEYAR + Ox(M);2NiTyr peptide (Q1 = 

866.45) is possible but a high SIN-1 concentration would be required and it is 

likely that the protein would aggregate at those required concentrations before 

the methionine plus both tyrosines of this peptide were modified.   

The optimised NiTyr MRM program with all possible oxidation states was used to 

analyse the unmodified HSA and plasma samples as a control (Figure 60). 

Modified peptides RHPDYSVVLLLR + Nityr (Q1=505.11, seen at 42 minutes in the 

unmodified HSA sample and 41 minutes in the plasma sample) are seen but the 

intensity of the transitions of these modifications is low. Zero modification of 

each peptide cannot be guaranteed as the sources of the plasma and purified 

HSA are variable due to the number of “healthy” individuals. 
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Table 18: Optimised NiTyr MRM method with all possible oxidation states 

 

The table displaying the acquisition method from left to right in the first column shows the 

peptide targeted for, the second column is the Q1 mass, the third column is the Q3 masses 

used to identify the peptide and the fourth column is the collision energy used. 
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Figure 60: Unmodified HSA and plasma – Optimised NiTyr MRM method – Control. The figure 

illustrates the analysis of an unmodified HSA (top panel) and an unmodified plasma (bottom 

panel) sample with the optimised NiTyr MRM acquisition method. 

In a 10mM SIN-1 modified plasma sample, for example, all targeted peptides 

were identified by the MRM method apart from the unmodified DVFLGMFLYEYAR 

peptide (Figure 61). The DVFLGMFLYEYAR + Ox(M) peptide’s modified state is 

observed at 41 minutes and the Ox(M),NiTyr modified state is observed at 45 

minutes. When modified at a 10mM SIN-1 concentration it is unlikely that there 

is significant unmodified DVFLGMFLYEYAR peptide present in the sample. The 

NiTyr MRM has effectively detected the NiTyr peptides. By comparing individual 

XICs from each modification state for a peptide the relative abundance of each 

modification can be compared. 
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Figure 61: 10mM SIN-1 plasma sample analysed by the optimised NiTyr MRM acquisition 

method. The above figure illustrates the detection of the peptide and their modified states 

in a 10mM SIN-1 modified plasma sample using the Optimised NiTyr MRM method.  

The NiTyr MRM acquisition method does not search for the DVFLGMFLYEYAR + 

Ox(M); 2NiTyr or DVFLGMFLYEYAR + 2NiTyr oxidation states because there has 

been no MSMS data collected on these modifications so these transitions have 

never been seen. The Ox(M); 2NiTyr modification state would indicate a very 

oxidized peptide but when modified at high SIN-1 concentrations the purified 

protein, HSA and the real life biological sample, plasma may aggregate. The 

2NiTyr modification state of the DVFLGMFLYEYAR peptide is unlikely as, with 

reference to the Bergt [185] and Zhang[185;186], the methionine residue on the 

peptide is the primary target for nitration. It is logical to say that the first stage 

of modification in the DVFLGMFLYEYAR peptide is the oxidation of the 

methionine followed by the nitration of a tyrosine residue and finally when the 

peptide is exposed to high concentrations of oxidant (>10mM SIN-1 modified 

samples) the nitration of both tyrosines. 

3.7.1 The extraction of XIC’s to investigate the most abundant modified 
state of targeted peptides 

The XIC’s for the unmodified YLYEIAR peptide and its NiTyr and 2NiTYr modified 

states were compared to investigate which state was most abundant in the 



132 
 

10mM SIN-1 modified plasma sample  (Figure 62). In the figure the top panel 

displays the unmodified peptides (Q1=464.19, blue), NiTyr modified (Q1=486.01, 

red) and the 2Nityr modified (Q1=510.0, pink) y5-ion Q3 masses. The unmodified 

state appears more abundant with a signal intensity of 400cps in comparison 

with the NiTyr modified and di-NiTyr modified peptides 200 and 100cps 

respectively. The middle panel shows the comparison between the peptides 

modified states by comparing the common Q3=488.3 mass. The peak ringed in 

green from the 2NiTyr peptide is a false positive peak as this peak is from a 

single transition uncommon to the other Q3 masses for this peptide and is likely 

to be a signal from breakthrough. In this comparison of the transitions the NiTyr 

modified state appears more abundant. The 2NiTyr modification is in low 

abundance and was not detected by the conventional MSMS analysis of the 10mM 

SIN-1 modified sample only by the MRM method. 

 

Figure 62: YLYEIAR modification in the 10mM SIN-1 plasma sample. The above figure 

illustrates the comparison of the YLYEIAR peptides common transitions (apart from the di-

nitro tyrosine peptide’s y5-ion, Q3=696.3 – top panel) for the three modified states. 
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3.8 The comparison of the automated generation of an MRM 
acquisition method to the manual generation by MSMS 
observations 

The Analyst software includes the MIDAS program (1.7.3.1, 3.2.4) (Figure 63) 

which is an in silico digest and is performed with the user-specified protease, 

automatically generating and calculating theoretical MRM precursor masses; 

their transitions and optimal collisional energy. Only one transition per Q1 mass 

or peptide is chosen and an acquisition method is automatically written. The 

peptides searched for are then confirmed by their mass (Q1) and fragment (Q3).  

It seems inefficient to write our own MRM program when MIDAS can calculate the 

acquisition method for us. One of the benefits with writing our own MRM method 

is that we choose three transitions whereas MIDAS only chooses one. One 

transition for a peptide mass should be adequate but we have found with 

previous MRM analysis on the SIN-1 and HOCl modified HSA and plasma samples 

that, especially when a transition is in low abundance, it is helpful to have two 

other confirmatory transitions. Identification of breakthrough signal is also 

possible when there is more than one confirmatory transition for a targeted 

peptide. It is possible that there will be one isobaric transition in a sample 

especially in complex samples but for there to be three isobaric and transitions 

is fairly unlikely. Using only one transition for peptides will increase the chance 

of false positives in the resulting data. To compare the MIDAS calculated 

transitions and the transitions written from our MSMS data analysis a MIDAS 

program was written for the NiTyr modifications in HSA (Table 19). Displayed are 

the differences between the NiTyr MRM written from MSMS observations and the 

NiTyr MRM written by MIDAS. The MIDAS transitions that were different to the 

ones we chose from MSMS observation are circled in red. Most of the transitions 

for the peptides calculated by MIDAS are the same as those chosen by the MSMS 

observations. Where a mass is within the appropriate mass ranges 

(400_1500amu), the MIDAS program will search for both the (2+) and (3+) 

charges for a peptide. 
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Figure 63: The MIDAS Workflow.  

Table 19: NiTyr MRM written from MSMS observations versus NiTyr MRM written by MIDAS 

 

The table compares the MRM acquisition method written from MSMS observations and that 

written automatically by MIDAS. The Q3 transitions used (ringed in red) are those which 

differ from the ones used in the acquisition method written from MSMS observations.  
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3.8.1.1 The analysis of an unmodified HSA sample by the MIDAS MRM program 

and the NiTyr MRM program written from MSMS observations  

To compare the MIDAS MRM program and the NiTyr MRM program written from 

MSMS observation an unmodified HSA sample was analysed. The MIDAS MRM 

acquisition method detected a number of “NiTyr modified” peptides in the 

unmodified HSA sample (Figure 64). The MIDAS program displaying a lot of false 

positives in the unmodified sample is therefore not as reliable as the MRM 

acquisition method generated from MSMS observations. The false positives are 

also hard to identify. In the MIDAS program only one transition from each mass is 

chosen so there are no affirmation transitions to verify the existence of the 

nitrotyrosine modifications in the unmodified sample. Instead of secondary or 

tertiary transitions to confirm or deny the existence of NiTyr modified peptides 

in the unmodified human serum albumin sample we can use the theoretical 

retention times for a NiTyr modified and unmodified peptide. The nitration of a 

tyrosine will decrease the polarity of a peptide therefore making the peptide 

more hydrophobic meaning a greater retention time and later elution time of 

the NiTyr modified peptide than the unmodified peptide.  The MIDAS program 

analysis places the YLYEIAR + NiTyr peptide directly underneath the unmodified 

YLYEIAR peptide suggesting a common retention time. Due to the change in the 

peptide’s polarity when it becomes modified we know this is not true and must 

be a false positive. The MIDAS program also includes the RHPYFYAPELLFFAK + 

NiTyr (2+) and (3+) modified peptide charge states. If both NiTyr modified 

peptide charge states are truly present in the unmodified HSA sample they are 

expected to be eluted at the same time as each other and be eluted after the 

unmodified RHPYFYAPELLFFAK peptide. 
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Figure 64: Unmodified HSA with MIDAS and NiTyr MRMs written from MSMS analysis. The 

above figure compares the analysis of an unmodified human serum albumin sample by the 

MIDAS MRM method and by the NiTyr MRM written from MSMS observations. 

For a fair comparison both the automated MIDAS acquisition program and the 

manually generated NiTyr acquisition methods were used to analyse and detect 

NiTyr modifications in a 1mM SIN-1 HSA sample (Figure 65).  

The MIDAS analysis of the sample (bottom panel) indicates that the YLYEIAR 

unmodified peptide (Q1=464.2) and the YLYEIAR + NiTyr (Q1=486.7) modified 

peptide being eluted at the same time (17 minutes). It is a likely false positive 

as the NiTyr modified peptide is expected to be seen after the unmodified 

peptide due to the changes in the peptides polarity when it becomes modified. 

This peak at 17 minutes is more likely to be the unmodified peptide as the 

YLYEIAR + NiTyr modified peptide is also seen at 22 minutes and this is 

concurrent with the retention time expected. The MIDAS program also detects 

the di-nitro tyrosine YLYEIAR + 2NiTyr peptide (Q1=509.2) whereas the MRM 

written from MSMS observations (top panel) does not. It is hard to have full 
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confidence in the detection of the di-nitrotyrosine peptide even though it is seen 

at the expected time (29 minutes after the unmodified – 17 minutes - and the 

NiTyr modified YLYEIAR peptide – 22 minutes) because the SIN-1 concentration is 

low. The RHPDYSVVLLLR (2+) peptide (Q1=734.4, 28 minutes, MIDAS analysis 

bottom panel) is very low in intensity in comparison with the same peptide 

RHPDYSVVLLLR (3+) peptide (Q1= 490.1, 30 minutes, MRM MSMS observations top 

panel). As the 3+ peptide was chosen due to its observation in the MSMS for the 

MRM method this charge state must be the most abundant charge. The 

RHPYFYAPELLFFAK peptide is seen in both the MIDAS analysis and the MRM 

written from MSMS observations (Q1=633.7, 38 minutes, MIDAS bottom panel) 

and (Q1=633.7, 40 minutes, MRM MSMS observations top panel) leading to the 

conclusion that the MIDAS generated Q3=964.5 is just as efficient as those 

chosen from MSMS observation Q3=738.5, 554.3 and 294.5.  

 

Figure 65: 1mM SIN-1 modified HSA sample analysed with MIDAS MRM and NiTyr MRM 

Acquisition method written from MSMS observations. The above figure displays the analysis 

of a 1mM SIN-1 modified HSA sample by the NiTyr MRM written from MSMS observations (top 

panel) and the MIDAS MRM acquisition method (bottom panel). 
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The problem with only one transition is that we cannot have full confidence in 

the presence of the peptide as there are no confirmation transitions. 

Identification of a peptide using only one transition becomes ambiguous.  

The MIDAS acquisition method has its limitations. However, Unwin et al [144] 

reports that the value in MIDAS lies in the sensitivity and selectivity afforded by 

the MRM. The instrument allows only targeted, chosen precursor ions into the 

collision cell and the secondary confirmatory fragment ions monitored to the 

detector. This means that the background level becomes extremely low 

therefore enhancing signal to noise ratio. 

The conclusion of the comparison between the Analyst software program, MIDAS, 

and writing MRM acquisition methods from MSMS observation in this study is that 

writing MRM programs manually is optimal to obtain the best transitions and 

prevent false positives.  

3.9 Discussion  

The peptides identified as NiTyr modified were the same ones that were ClTyr 

modified.  One potential explanation is that this is due to the folding of the HSA 

globular structure and that these tyrosines may be more exposed at the 

protein’s surface and therefore more susceptible to oxidation. The 

crystallographic structure of the HSA shows that some of the tyrosines found to 

be NiTyr or ClTyr modified are in fact found to be buried or folded inside the 

protein’s structure. Surface exposure of the tyrosine is therefore not important 

in relation to which tyrosine is ClTyr or NiTyr is modified as the NO2 and Cl are 

relatively small in size.   

3.9.1 The presence of lysine leading to specific oxidative products 

Bergt et al [185] demonstrated that lysine residues will direct the chlorination of 

tyrosines. To investigate and explore the chlorination mechanism of tyrosine 

synthetic peptides they exposed to HOCl. The synthetic peptides sequences 

constituted the amino acids; YKXXY, YXXKY and YXXXY, where X represents an 

unreactive amino acid. Analysis of the modified synthetic peptides by MS/ MS 

confirmed that the chlorination of tyrosines in peptides that contained lysine 

were regioselective and occurred in high yield when the peptide encompassed 

KXXY or YXXK sequences. NMR (nuclear magnetic resonance) was employed with 
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MS to show that the nitrogen on the lysines side chain was initially chlorinated 

implying that chloroamine formation is the initial step before tyrosine 

chlorination.  In comparison, synthetic peptides without a lysine (K), with the 

general sequence; YXXXY, were not found to modify regiospecifically. The YXXXY 

synthetic peptides were found to form equal amounts of 3-chlorotyrosine and 

3,5-dichlorotyrosine (ClYXXXY, Cl2YXXXY, YXXXYCl and YXXYCl2 ) but they were 

unable to modify both of the tyrosines in the one peptide (ClYXXXYCl). The 

tyrosine residue identified to be commonly NiTyr or ClTyr modified in the HSA 

protein are likely to be close in space to lysine residues in the secondary 

structure or close in space to residues in the tertiary structure.  

3.9.2 The effect of methionine and the modification of a tyrosine residue 

How the proximity of a methionine residue affects a neighbouring tyrosine’s 

potential to be NiTyr modified was investigated by Zhang et al[186]. Previously, 

they reported how the tyrosylcysteine (YC- another sulphur containing residue) 

type peptides inhibited nitration or oxidation of a tyrosyl in comparison to free 

tyrosine alone[187]. Their most recent research, however, was focused on 

investigating the effects of a methionine residue on tyrosine nitration and 

oxidation when induced by myeloperoxidase (MPO, a heme enzyme), hydrogen 

peroxidase, nitrogen dioxide, peroxynitrite (ONOO-) and bicarbonate in model 

peptides. The nitration and oxidation products of these model peptides were 

analysed by HPLC with UV/Vis and fluorescence detection and mass 

spectrometry. The radical intermediates were detected by electron 

paramagnetic resonance (EPR)-spin-trapping. Spin-trapping is an assay for the 

detection and identification of free radicals. The analytical technique involves 

the formation of a spin adduct, a nitroxide-based persistent radical, that can be 

detected by EPR. The spin-adduct will then give a characteristic electron 

paramagnetic resonance spectrum depending on which radical is trapped. The 

enhancement of the nitration of the tyrosine radical in the close proximity of 

methionine is explained by a possible intramolecular electron transfer between 

the methionine sulphide cation radical and the tyrosine residue. The primary 

attack of the oxidising radical is the methionine but the end resulting product is 

the nitrated tyrosine residue indicating a fast intramolecular electron transfer 

from the tyrosine residue to the one-electron oxidised methionine moiety. 

During analysis of the SIN-1 modified HSA samples I noted that the most 

frequently observed peptide identified to be NiTyr modified was the 
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DVFLGMFLYEYAR + NiTyr peptide. The DVFLGMFLY1EY2AR + NiTyr modified 

peptide posseses a methionine residue and the most susceptible tyrosine to 

become modified in this peptide is Y1 due to its close proximity to methionine. 

3.10  Conclusion 

I have been able to develop and optimize MRM acquisition methods from the 

observations of MSMS data to target and detect ClTyr and NiTyr in HOCl and SIN-

1 modified purified protein, HSA, and in a real life biological sample, plasma.  

Through the development and testing of these MRM methods NiTyr and ClTyr 

modifications have been detected and the oxidation process of the residues in a 

peptide have been greater understood. The next stage of work would be to apply 

these MRM acquisition methods to clinical samples. This work was performed and 

discussed in more detail in Chapter 4.   
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4 Chapter - The application of MRM (Multiple 
Reaction Monitoring) methods for the detection 
of nitrotyrosine and chlorotyrosine in clinical 
samples. 

Mass spectrometry has been applied to screen, validate and quantify disease and 

monitor drug therapy in patients [76;188;189]. The use of mass spectrometry 

techniques has revolutionised and advanced the detection of disease classes 

such as the fatty acid oxidation defects [190]. A triple quadrupole is capable of 

performing the different scan functions (precursor ion scan, neutral loss scan, 

product ion scan) while maintaining high enough scan speeds for analysis.As 

discussed in sections 2.2 and 3.1.1 data can be acquired in two ways the first 

being class specific analysis for example neutral loss off-set mass scanning for 

acidic and neutral amino acids and precursor ion scanning for known m/z’s 
[130;161;191-195]. The second method for the acquisition of data can be by targeted 

compound analysis either by Selected Ion Monitoring (SIM) or Multiple Reaction 

Monitoring (MRM) where certain transitions of the precursor m/z and product ion 

m/z are monitored. Throughout the literature it has been found that the use of 

MRMs provides a more sensitive technique when targeting for low abundance 

proteins in biological samples [120;136;139;161;178;196-198]. 

4.1.1 MRM methods used to classify disease in biological samples 

Using MRMs is an effective way to classify disease and detect differences 

between diseased and healthy biological samples. An example of this technique 

is its use to study metabolites. There is a requirement for rapid and 

comprehensive screening methods for the detection of abnormal metabolites in 

urine for the diagnosis of many inborn errors of metabolism (IEM)[198]. MRMs have 

been used to assay post translational modifications as well as inborn errors of 

metabolism and the quantitative assay of drug metabolism [136;199]. Analysis of 

the urine was performed by direct injection into the tandem mass spectrometer 

with an MRM method for 32 targeted metabolites.  This procedure was faster and 

less laborious than the previous conventional methods for testing for inborn 

errors of metabolism (IEM) by amino acid or organic acid profiling with similar 

diagnostic sensitivity. The conventional methods are by chromatographic 
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separation to first generate the metabolite profiles. Amino acid profiling can be 

generated by ion-exchange chromatography (IEX), thin-layer chromatography 

(TLC), paper electrophoresis and gas-phase chromatography. Organic acid 

testing is normally performed by HPLC (high performance liquid 

chromatography) and GC-MS (gas-phase mass spectrometry). These original tried 

and tested methods although successful have limited throughput. Using the MRM 

method increases throughput and reduces the time taken for the metabolic 

profiling. 

Yang et al, also uses MRM for the discovery of novel biomarkers that are 

essential in a clinical setting to enable early disease diagnosis [200]. Using tandem 

based MSMS based protein profiling an MRM technique was developed by 

generating a library of 9,677 peptides representing approximately 1,572 proteins 

from human breast cancer cells. The library provides information about each 

cancer-related protein’s peptides including their charge state, molecular weight, 

retention time etc, allowing for an informative MRM based biomarker screening 

study. Preliminary experiments demonstrated that putative biomarkers for 

human breast cancer that were not detected by traditional data dependant MS 

acquisition methods can be reliably identified using an MRM technique created 

by the information in the library. The MRM targeted methods meant there was 

no need for the fractionation of cell-lysis samples leading to faster, more 

reliable analysis with greater throughput. 

Due to the high throughput and lower labour requirements, MRM techniques have 

also been used for the study of normal and atherosclerotic diseased arteries. 

Bagnato et al [201] reports the detection and quantification of  SDF1-α (stromal 

cell-derived factor 1α) and growth factors in atherosclerotic coronary arteries 

using direct tissue proteomics (DTP) and MRMs coupled to AQUA (absolute 

quantification).  SDF-1α is a chemokine and its interaction with CXCR4 (a CXC 

chemokine receptor) has been implicated in various inflammatory conditions 
[202]. The SDF-1α/CXCR4 interaction regulates multiple cell signal pathways, cell 

migration, proliferation (important in stages of atherosclerosis), cell survival and 

angiogenesis (the growth of new blood vessels from pre-existing vessels) [203]. 

Chemokines are produced from multiple vascular cells and atherosclerotic 

vessels prone to developing thrombi. The SDF-1α protein is highly expressed in 

smooth muscle cells, endothelial cells and, macrophages in human 
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atherosclerotic plaques but not in normal vessels [204]. The DTP method can be 

used to target paraformaldehyde-fixed, paraffin embedded and frozen coronary 

arteries. SDF-1α and growth factors in the atherosclerotic artery were detected 

and quantified using the AQUA method. AQUA is absolute quantification using a 

selected suitable tryptic peptide as a unique identifier for the protein of interest 

and the addition of the synthetic heavy isotope-labelled counterpart as the 

internal standard for quantification by mass spectrometry. Using MRM coupled to 

AQUA, Bagnato et al, found they could detect and quantify SDF-1α in the 

atherosclerotic vessel wall although the SDF-1α protein was undetectable when 

using the less sensitive DTP technique. This study suggests that using MRM 

coupled to AQUA is a better method for the detection and quantification of low 

abundance proteins in histological tissue. 

4.1.2 Using MRMs to detect targeted NiTyr and ClTyr modified peptides in 
clinical samples 

The MRM methods from Chapter 3 were used to detect nitrotyrosine and 

chlorotyrosine modifications in purified HSA and plasma samples that had been 

chemically modified by SIN-1 or HOCl. Our goal here is to apply the MRM 

methods to detect chlorotyrosine and nitrotyrosine modification in clinical 

samples. The clinical samples were provided by Dr Christian Delles from the 

British Heart Foundation Glasgow Cardiovascular Research centre. The 

individuals from who these samples were obtained from were made aware of the 

circumstances in which they would be used and had given their consent. The use 

of these samples in this research project had been ethically approved. The 

clinical samples consisted of 24 plasma samples taken from 12 healthy 

volunteers and 12 patientst. The patients and volunteers were all male. The 

diseased samples were from patients who all were currently suffering from 

severe coronary artery disease and placed on the list for major surgery by the 

cardiothoracic surgeon. The diseased samples had previously been classified 

from the healthy by Delles et al by the increased presence of malondialdehyde. 

All samples had been stored at -80°C for two years. The Cl and NO2 groups are 

covalently bound to the tyrosine so are stable post translational modifications. 

Due to storage time there may be degradation of the proteins in the plasma 

samples but any chloro- or nitrotyrosine modifications of the albumin protein 

caused by oxidative stress will still be present and able to be detected. 
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In order for a fair and unbiased comparison of the clinical samples to be 

achieved it was decided that the analysis should be performed “blinded”. To 

carry out the analysis blinded this means that it is unknown which plasma sample 

is from a diseased patient and which is from a healthy volunteer. Only after 

analysis and when a conclusion is drawn about which samples are from healthy 

volunteers and which are from diseased patients will the samples be un-blinded 

and a comparison made between our diagnosis and the source of the plasma 

sample. 

4.2 Aims 

In this chapter I aim to analyse blinded clinical samples using the MRM methods 

previously developed in Chapter 3 in the hope that I am able to classify healthy 

and diseased samples by the chloro and nitrotyrosine modifications present. 

4.3 Materials and Methods 

I had previously carried out a Bradford assay on raw plasma (see 3.2) and due to 

the small volume of clinical samples available it was decided to assume protein 

concentration was similar for the clinical samples to avoid sample loss. The 

clinical samples were 100µl aliquots and the protein concentration was assumed 

to be approximately 60mg/ml. A 50µl aliquot (approximately 30mg protein) of 

the plasma was taken and diluted by 1:20 in 50mM Tris pH7 buffer. The end 

concentration of the plasma was then approximated to be 3µg/µl with 10µl 

(~30µg protein) to be trypsin digested as before (2.4.1.2) and analysed on the 

Qtrap 2000 (Applied Biosystems, Warrington, UK) by MSMS and the MRM method. 

4.3.1 Mass Spectrometry Methods 

4.3.1.1 Conventional MSMS 

As described in 2.4.1.4 

4.3.1.2 Targeted MSMS  

The targeted MSMS was set to fragment the precursor m/z only. The enhanced 

product ion experiment scanned between 50 and 1500amu in positive ion mode. 

The step size was 0.06amu and the scan rate 1000amu/s. The resolution of Q1 

was set to unit and the total scan time including pauses was 5.4 seconds. The 

collisional energy employed was 30eV and the ion spray voltage was 2500V. 
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4.3.1.3 The ClTyr and NiTyr MRM method 

The MRM acquisition method below (Table 20) is a union of the NiTyr and ClTyr 

MRM methods used in Chapter 3 that were written from the MSMS observations 

from chemically modified HSA and plasma samples. Out of the four targeted 

peptides to be detected for chloro- or nitrotyrosine modification, three had 

been seen to be modified by either the Cl or NO2 group. The YLYEIAR peptide 

however has only been seen to be nitrotyrosine modified and not chlorotyrosine 

modified.   

Table 20: The MRM acquisition method for the diagnosis of clinical samples. 

 

From left to right he above displays the targeted peptides in the first column, their parent 

masses (Q1) in the second column and fragment ions (Q3) that are searched for using the 

MRM method. The MRM method was written from MSMS observations from the analysis of 

chemically modified HSA and plasma samples. 

4.4 Results and Discussion  

4.4.1 MSMS Analysis of the 24 Clinical Samples 

Each clinical sample (10µl, ~3µg total protein) was analysed by conventional 

MSMS on the Qtrap 2000 (Applied Biosystems, Warrington, UK) and the data 

searched with Mascot, a MS data searching algorithm, version 1.6b9 (2.4.1.5). 

The mass spectrometry data collected from the MSMS analysis of all 24 clinical 

samples did not identify any peptide where a nitro- or chlorotyrosine 

modification was assigned to any of the identified peptides when searched using 

Mascot (Figure 66) (further discussed in 4.6). 
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Figure 66: An example of Mascot Results for the MSMS analysis of the Clinical Samples - 

Protein Hits and Matched Queries for Clinical Sample 13. The above figure displays the 

Mascot protein hits and queries assigned from searching the data collected from the MSMS 

analysis on Clinical Sample 13. There are no NiTyr or ClTyr modifications assigned. The 

peptides boxed in purple are the unmodified peptides targeted for in the MRM acquisition 

method. 

4.4.2 Random analysis of the 24 Clinical Samples by the MRM Method  

Previously an MRM acquisition method was used to detect nitro- and 

chlorotyrosine modifications of targeted peptides in chemically modified HSA 

and plasma samples (see Chapter 3). The MRM method was applied to all 24 

clinical samples with the aim of classifying which of the 12 samples were from 

healthy volunteers and of which remaining 12 was from diseased patients. 

Samples; 1, 3, 5, 7, and 9 were chosen randomly for initial analysis.  

4.4.2.1  Comparison of the signal intensity for the modified YLYEIAR + NiTyr 

peptide  

The targeted nitro- and chlorotyrosine modified and unmodified peptides were 

identified in the clinical samples. Nitro- and chlorotyrosine modifications were 

found to be more abundant in some samples than in other samples (4.4.2.4 

Figure 67). The peaks ringed in purple are where the NiTyr modified peptide is 

eluted. For an identification of the NiTyr modified peptide three transitions 

must be eluted at the common time in the chromatography gradient. The 

common elution time (approximately 37 minutes) for the modified YLYEIAR + 
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NiTyr peptide is seen in samples 1, 5, 7 and 9. The intensity of signal for the 

NiTyr modified peptide in these samples is low ranging from >40cps to >100cps. 

The false positive peaks are where there is only one transition observed and they 

are present in all samples analysed here. In sample 3 there is no common elution 

time for the three transitions so the peptide in sample 3 is not expected to be 

NiTyr modified. 

From Figure 67 we can assume at this point in the analysis of the clinical 

samples that although low in intensity the modified YLYEIAR + NiTyr peptide is 

present in samples 1, 5, 7 and 9. The modified YLYEIAR + NiTyr peptide is not 

present in sample 3 which would indicate that sample 3 is in fact one of the 12 

healthy samples and that samples 1, 5, 7 and 9 are from diseased patients.  

4.4.2.2  Comparison of the signal intensity for the modified 

RHPYFYAPELLFFAK + ClTyr peptide  

The MRM method also targets other possible modified peptides and these were 

also compared between the samples (4.4.2.4 Figure 68). The peak ringed in 

purple is where the ClTyr modified peptide is eluted (approximately 40 

minutes). The modified RHPYFYAPELLFFAK + ClTyr peptide is seen in sample 3 

only although the signal is low in intensity at >53cps. In samples 1, 5, 7 and 9 

there are no common elution times for the three transitions so the peptide in 

these samples is not significantly ClTyr modified. The previous comparison of the 

modified YLYEIAR + NiTyr peptide (4.4.2.4 Figure 68) between these samples all 

but sample 3 was indicated to have this modified peptide present. This 

inconsistency suggests that to classify disease there is a need for more than one 

biomarker and or a threshold intensity for a signal. 

4.4.2.3 Comparison of the signal intensity for the modified RHPDYSVVLLLR + 

NiTyr peptide  

In samples 1, 3, 5, 7 and 9 the modified YLYEIAR + NiTyr peptide was not present 

in sample 3 but present in samples 1, 5, 7 and 9. The modified 

RHPYFYAPELLFFAK + ClTyr peptide, however, was only identified to be present 

in sample 3. A comparison was made between samples for the presence of the 

modified RHPDYSVVLLLR + NiTyr peptide (4.4.2.4 Figure 69). The peaks ringed in 

purple are where the NiTyr modified peptide is eluted (approximately at 30 

minutes). The modified RHPDYSVVLLLR + NiTyr peptide is seen in all samples 1, 
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3, 5, 7 and 9 although the signal is low in intensity ranging from >30cps - 

>150cps. The modified RHPDYSVVLLLR + NiTyr peptide was seen in all samples 1, 

3, 5, 7 and 9 at approximately 30 minutes into the gradient and the signal 

intensity varied from >30cps to >150cps in sample to sample. Because there is 

modification of some peptides but not of all peptides targeted in some samples 

it may be signal intensity as well as a combination of more than one biomarker 

which is more important when classifying if a sample is from a diseased source 

or not. 

4.4.2.4  Figures from the MRM analysis of samples 1, 3, 5, 7 and 9 

 

Figure 67: Comparison of the modified YLYEIAR + NiTyr peptide in samples 1, 3, 5, 7, and 9. 

The above figure displays the over-laid Q3=651.3, 488.3 and 359.2m/z traces for the 

modified YLYEIAR + NiTyr peptide (Q1=486.01m/z) for the clinical samples 1, 3, 5, 7, and 9.   
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Figure 68: Relative comparison of the modified RHPYFYAPELLFFAK + ClTyr peptide samples 

1, 3, 5, 7, and 9. The above figure displays the over-laid Q3=964.5, 867.5 and 625.3m/z 

traces for the modified RHPYFYAPELLFFAK + ClTyr peptide (Q1=645.6m/z) for clinical 

samples 1, 3, 5, 7, and 9. Ringed in purple is the identified modified peptide. 

 

Figure 69: Relative comparison of the modified RHPDYSVVLLLR + NiTyr peptide in samples 1, 

3, 5, 7, and 9. The above figure displays the over-laid Q3=613.4, 514.4, 401.3m/z traces for 

the modified RHPDYSVVLLLR + NiTyr peptide (Q1=505.1m/z) for clinical samples 1, 3, 5, 7, 

and 9. Ringed in purple is the identified modified peptide. 
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4.4.3 Confirmation of the modified peptides detected 

Before criteria could be defined to classify healthy samples from diseased, all 24 

clinical samples were analysed using the MRM method. Modification of the 

YLYEIAR + NiTyr and the RHPDYSVVLLLR + NiTyr peptide was seen in a number of 

samples (see 4.5) but when the clinical samples were randomly analysed these 

modifications were first seen in sample 11. Here we use sample 11 as an 

example and target these modified peptides by MSMS to confirm the assumed 

peptide is what we have targeted for. The MRM method indicated the presence 

of the modified YLYEIAR + NiTyr and the RHPDYSVVLLLR + NiTyr peptide in 

sample 11 (Figure 70). 

 

Figure 70: The detection of the modified and unmodified target peptides in clinical sample 

11. The figure displays the XIC (extracted ion chromatograph) of the peptides targeted by 

the MRM. The YLYEIAR unmodified peptide is seen at 28 minutes, the modified YLYEIAR + 

NiTyr peptide is seen at 35 minutes, the unmodified RHPDYSVVLLLR peptide is seen at 33 

minutes, the modified RHPDYSVVLLLR + NiTyr peptide is seen 34 minutes, the unmodified 

RHPYFYAPELLFFAK peptide is seen at 40 minutes and the unmodified DVFLGMFLYEYAR 

peptide is seen at 45 minutes into the chromatography gradient. 
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4.4.3.1  Relative Quantitation of Modification of the YLYEIAR peptide 

The MRM has detected the targeted peptides and indicates modification in 

sample 11. Although the nitrotyrosine modified peptides are seen in sample 11 

the chlorotyrosine modified peptides were not (Figure 71). The unmodified 

peptide (red) is seen to be eluted at 28 minutes and the NiTyr modified peptide 

(blue) is seen to be eluted at 37 minutes into the chromatography gradient. 

Underneath the peak for the unmodified peptide (red) there is a trace from the 

NiTyr Modified peptide (blue) ringed in orange. It is impossible for the 

unmodified and modified peptide to be eluted at the same time due to the 

peptide’s changes in polarity. An explanation for the modified peptide being 

observed at the same time as the unmodified peptide could be caused by 

breakthrough (as previously discussed). The Q1 resolution in the MRM method is 

set to low. The emergence of the modified peptide could be caused by poor 

selection in Q1. The relative percentage modification of the YLYEIAR peptide in 

Sample 11 was calculated using the transitions intensities and not area under the 

peak and the equation 7 (3.4.1.1). The calculated approximate percentage 

modification is calculated under the assumption that the modified and 

unmodified states of the peptide have similar ionisation energies. 

Q3 = 651.3 [2000/ (2000 + 7608)] x 100 = 20.8% 

Q3 = 488.3 [900/ (900 + 2331)] x 100 = 27.8% 

Q3 = 359.2 [500/ (500 + 2000)] x 100 = 20.0% 

Average relative percentage modification for clinical sample 11 = 22.8%  

To confirm that the MRM method has successfully detected the YLYEIAR peptide 

and that it is indeed NiTyr modified and not a false positive a targeted MSMS 

experiment was performed. 
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Figure 71: Comparison of the unmodified YLYEIAR peptide and the YLYEIAR + NiTyr peptide 

in sample 11. The figure displays the three Q3 masses (651.3 – top panel, 488.3 – middle 

panel and 359.2 – bottom panel) for the NiTyr modified (Q1=486.01, blue) and unmodified 

YLYEIAR (Q1=464.19 - red) peptide. Ringed in orange is breakthrough signal from the 

unmodified peptide.  

4.4.3.2 A targeted MSMS experiment  

The modified YLYEIAR + NiTyr peptide was also detected in sample 24. To 

determine and confirm the presence of the detection of the modified YLYEIAR + 

NiTyr peptide in clinical sample 24 a targeted MSMS experiment (4.3.1) was 

performed where MSMS is carried out on a specific precursor mass only 

(496m/z). The resulting MSMS data was then searched using Mascot and the 

resulting ion score for the YLYEIAR + NiTyr peptide was 34. The targeted MSMS 

experiment on sample 24 was run concurrent to the MRM analysis of the sample 

then the MSMS data was searched with Mascot. If the targeted MSMS experiment 

confirms the presence of the modified YLYEIAR + NiTyr peptide in Sample 24 it 

also strongly suggests that the MRM acquisition method has successfully targeted 
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the modified peptide when it is detected by the MRM method in a sample (Figure 

72). The figure displays the total ion chromatograph (TIC) in the top panel and 

the region where the modified YLYEIAR + NiTyr peptide is known to be eluted 

from (between 36-37 minutes) is highlighted. The middle panel is the enhanced 

product ion (EPI) scan for the Q1=486.0 precursor between 36 and 37 minutes 

into the chromatography gradient and the ion-match table from Mascot. The y-

ions not labelled in the EPI scan but reported in the ion-match table are present 

but in low intensity so are difficult to see in the mass spectrometry data. The 

bottom panel is the MRM of the YLYEIAR + NiTyr with the three transitions 

(Q3=488.3, 651.3 and 359.2) that are targeted in the MRM method overlaid. 

There is a common peak where all three transitions or Q3 masses are eluted 

(ringed in red) seen between 36 and 37 minutes. There is a false positive 

observed at 27 minutes ringed in orange that is breakthrough from the 

unmodified peptide. 

The mass spectrometry data suggests that the modified YLYEIAR + NiTyr peptide 

is present. The Q3 masses targeted in the MRM Acquisition method are commonly 

seen at the expected elution times (between 36 and 37 minutes) and a Mascot 

search of the MSMS data is performed for confidence in confirmation. 
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Figure 72: Confirmatory targeted MSMS on YLYEIAR + NiTyr (Q1= 486.01) peptide.  

4.4.3.3 Detection of the modified RHPDYSVVLLLR + NiTyr peptide in clinical 

sample 11 

The second NiTyr modified peptide, RHPDYSVVLLLR + NiTyr, whose signal was 

seen strongly in sample 11 was also confirmed by a targeted MSMS experiment.  

The presence of the RHPDYSVVLLLR + NiTyr modified peptide was indicated by 

the MRM acquisition method analysis of clinical sample 11 (Figure 73). The 

unmodified RHPDYSVVLLLR peptide (top panel) is seen at 34minutes into the 

chromatography gradient with an intensity of <2908cps.The middle panel shows 

the common elution of transitions Q3=613.4 and 514.4 with an intensity of 

>200cps but not the third confirmatory transition, Q3=401.3. The retention time 

(31 minutes) for these two transitions is also observed too early in the 

chromatography gradient with respect to the unmodified peptide which also 
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suggests that the RHPDYSVVLLLR + ClTyr modified peptide is not seen in the 

sample. When the peptide becomes modified by ClTyr or NiTyr the peptide 

becomes less polar and the retention time of the modified peptide is therefore 

later than the unmodified state due to the peptide’s change in polarity. The 

bottom panel displays the modified RHPDYSVVLLLR + NiTyr peptide seen at 

36minutes with an intensity of >400cps. The modified RHPDYSVVLLLR + NiTyr 

peptide’s Q3 masses have a clear, common elution time and are eluted at an 

expected time with respect to the unmodified peptide.  

 

Figure 73: The detection of the RHPDYSVVLLLR + NiTyr modified peptide in clinical sample 

11. The figure displays the unmodified RHPDYSVVLLLR peptide (top panel) seen at 34minutes 

into the chromatography gradient with an intensity of <2908cps. The ClTyr modified peptide 

is not idenitified but breakthorough signal is observed at 31minutes (middle panel). It is not 

a true identification of the ClTyr modified peptide when expected retention time is 

considered with respect to the unmodified peptide. The NiTyr modified peptide is identified 

at 36minutes (<400cps) into the chromatography gradient with all three transitions seen 

clearly. 
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4.4.3.4  Relative quantitation of modification of the RHPDYSVVLLLR peptide 

in clinical sample 11 

The modified RHPDYSVVLLLR + NiTyr peptide is in high enough abundance 

(>400cps) to calculate the relative percentage modification (Figure 74). The 

modified RHPDYSVVLLLR + ClTyr peptide is however not seen to be present in 

sample 11. The relative percentage modification of the RHPDYSVVLLLR peptide 

in Sample 11 was calculated using the transitions intensities and not area under 

the peak and the equation 7 (3.4.1.1). The calculated percentage modification is 

approximate and calculated under the assumption that the modified and 

unmodified states of the peptide have equal ionisation energies. 

Q3 = 613.4 [300/ (300 + 2500)] x 100 = 10.7% 

Q3 = 514.4 [300/ (300 + 2908)] x 100 = 9.3% 

Q3 = 401.3 [500/ (500 + 2000)] x 100 = 20.0% 

Average relative percentage modification for clinical sample 11 = 13.3%  

 

Figure 74: The comparison of the unmodified and modified RHPDYSVVLLLR + NiTyr peptide 

in clinical sample 11.The figure displays the three common Q3 transitions (Q3=613.4 – top 

panel, 514.4 – middle panel and 401.3 – bottom panel) of the unmodified RHPDYSVVLLLR 

(Q1=490.06, red) and modified RHPDYSVVLLLR + NiTyr peptide (Q1=505.1, blue).  
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4.4.3.5  A targeted MSMS experiment  

To confirm the presence of the modified RHPDYSVVLLLR + NiTyr peptide in the 

clinical sample 11 and the reliability of the MRM methods ability to successfully 

detect the NiTyr modified peptide in samples a targeted MSMS experiment was 

performed (Figure 75). The MSMS was targeted to fragment a specific chosen 

precursor (Q1=505.1) only across the chromatography gradient and the resulting 

MSMS data was searched using Mascot. Mascot identified the RHPDYSVVLLLR + 

NiTyr peptide with an ion score of 22. The targeted MSMS experiment was run 

concurrently with the analysis of sample 11 with the MRM method. The total ion 

chromatogram (TIC) is displayed in the top panel and where the RHPDYSVVLLLR 

+ NiTyr peptide is known to be eluted is highlighted. The middle panel is the EPI 

and the Mascot ion match table. The three transitions (Q3= 613.4, 514.4 and 

401.3) for the NiTyr modified peptide are commonly eluted (ringed in red) and 

observed after 35 minutes into the chromatography gradient. There is 

breakthrough from the unmodified peak seen at 27 minutes (ringed in orange).   

Figure 75: Confirmed targeted MSMS of the RHPDYSVVLLLR + NiTyr, (Q1=505.1) peptide in 

clinical sample 11. 

 
The three transitions (Q3= 613.4, 514.4 and 401.3) for the NiTyr modified peptide are 

commonly eluted (ringed in red) and observed after 35minutes into the chromatography 
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gradient (bottom panel). There is breakthrough from the unmodified peak seen at 27 

minutes (ringed in orange). The highlighted window in the top panel is where the targeted 

peptide has been seen to be eluted and the EPI from this area searched (middle panel). The 

middle panel also displays the ion-match table from the peptide. 

4.5 Summary and comparison of the clinical samples 1- 24 

All 24 clinical samples were analysed by MSMS and by the MRM method before 

being compared (Table 21).  

The most common and most intensely seen targeted modified peptide that was 

detected by the MRM acquisition method was the YLYEIAR + NiTyr peptide. The 

samples were therefore considered to be from a diseased patient if the following 

criteria were true; 

Criteria to be met before a sample can be considered diseased 

• The YLYEIAR peptide is nitrotyrosine modified and the signal is seen to be 

above 100cps in intensity. 

• If the YLYEIAR peptide is not nitrotyrosine modified or is but the signal is 

seen to be below 100cps in intensity there must be at least one or more 

other ClTyr/NiTyr modified peptides detected. 

• The modified peptide either ClTyr or NiTyr must be eluted and seen in the 

chromatography gradient after the unmodified peptide 

Following the above criteria in the Table 21 if the samples were classified 

healthy they were coloured yellow. If classified by our criteria to be diseased 

were coloured in blue. MRM signals from a modified peptide with an intensity 

below 100cps were coloured orange and those above 100cps were coloured in 

green. Unmodified peptides detected were left white and where no MRM signal 

for the peptide targeted for was observed a “X” was used.  

The data collected from the study of the clinical samples is incomplete (all 

unmodified peptides targeted for should always be detected regardless if sample 

is diseased or healthy) and the data is fragmented. From the data summarised in 

Table 22 we see that there are samples; 3, 7 and 9 where the modified peptide 
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is identified from the MRM analysis but the unmodified peptide is not. From 

previous discussion it is suggested that the ClTyr and NiTyr post translational 

modifications resulting from oxidative stress are in low abundance. It then seems 

unreasonable for the modification to be seen but not the unmodified 

counterpart. What is also unexpected is that for all 24 samples not all the 

unmodified peptides targeted for by the MRM method are observed. Due to the 

abundance of albumin in the plasma all unmodified peptides targeted for should 

be identified. This leads us to the conclusion that there may have been a 

problem with sampling during the analysis. There was only one analysis carried 

out for each clinical sample and more technical replicates are required to know 

the variables from the analysis of each sample. If more technical replicates are 

performed we can then decide what is statistically significant and determine the 

reproducibility of this analysis by comparing XIC’s.
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Table 21: Summary and comparison of clinical samples. 

 

The above table displays the time the peptide is seen to be eluted and the intensity (cps) of which the signal is seen. The white box with the “x” denotes that 

the Ni/ClTyr modified targeted peptide was definitely not seen. The dark orange box denotes that the Ni/Tyr modified targeted peptide was seen but in low 

abundance (<100cps). The green box denotes that either the Ni- or ClTyr modified targeted peptide was definitely seen (>100cps) 
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 The clinical samples classified by our criteria said to be from diseased patients 

are 3, 4, 7, 8, 11, 18, 22 and 24 and the clinical samples said to be from healthy 

volunteers are 1, 2, 5, 6, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21 and 23. We already 

know from these results that we cannot be correct as from the 24 samples 

analysed we know 12 are from healthy and 12 were from diseased sources.  

As discussed before, the analysis of the 24 samples was performed blinded to 

avoid any bias in the comparison of the samples. The MRM acquisition methods 

were developed on plasma and a model protein, HSA. Building criterium for the 

classification of healthy and diseased samples was developed by first identifying 

which human serum albumin peptides were seen to be modified in vitro by HOCl 

and SIN-1. It is hypothesised that sites of modification identified from chemical 

modification in vitro should also be seen in vivo as the modification was 

performed on native protein meaning the same sites of modification will be 

susceptible. 

4.5.1 The clinical samples “un-blinded”  

After analysis of the 24 clinical samples Christian Delles, who provided the 

samples, informed us which of the samples were from healthy volunteers and 

which of those were from diseased patients. The known diseased and healthy 

samples were compared with our classifications (Table 22). 

The un-blinding of the samples showed that out of the 24 clinical samples only 

13 were classified correctly by our criteria. This result is close to random 

suggesting that the MRM method and our set criteria cannot be used as a way to 

classify healthy from diseased samples. It is possible that to classify for disease a 

more complex approach should be taken. The most intense peptides seen to be 

modified may be very susceptible to modification and these modified peptides 

will be observed regardless if a sample is from a healthy or diseased source. The 

modified peptides specific to disease could be low level and below our limit of 

detection so were therefore not detected and identified in our MSMS 

observations from which the MRM acquisition methods were written.  
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Table 22: Clinical Samples un-blinded. 

 

The table (from left to right) illustrates the source from which the clinical sample is from; 

HEA=healthy volunteer or CAB=coronary artery diseased patient, the Clinical Sample Number 

(1-24), the results from the MRM results (either H=healthy or D=diseased) and the results 

from the “un-blinding” of the clinical samples (wrong = no match and right=match). 

To improve the results samples which did not show all four unmodified targeted 

peptides were discarded (Table 23). This improved the classification by our 

criteria (from 41.46% success to 55.5%) slightly but still not enough to be 

statistically viable as a method for classification of diseased and healthy 

samples. It is possible that to classify diseased samples (from patients that have 

suffered/suffer symptoms of atherosclerosis i.e. strokes, heart attacks, high 
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blood pressure etc) from healthy samples that more than one and indeed a 

combination of certain biomarkers are required. The MRM method was written 

from MSMS observations from the conventional analysis of in vitro chemically 

modified purified HSA samples. There may be other lower abundance NiTyr and 

ClTyr modifications that were not identified by the initial conventional MSMS 

analysis and were therefore not targeted for in the MRM method for disease 

classification.  It is possible that these potential biomarkers that were not 

observed could then be used alone or as a combination for the classification of 

disease. 
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Table 23: Discarding of samples where all unmodified peptides targeted for were not detected. 

 

The above displays the table of clinical samples from which all unmodified peptides targeted for were identified. On the left displays which of the clinical 

samples were classified correctly. 
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4.6  Comparison of conventional MSMS with the MRM  

Analysis of the clinical samples by conventional MSMS did not result in any chloro 

or nitrotyrosine modifications being detected and assigned using the search 

engine Mascot. The conventional MSMS method of analysis is a less sensitive 

method of the detection of low abundance proteins or post translational 

modifications of proteins in comparison with the MRM technique (Figure 76). The 

top scan in the figure, the product ion scan, also known as conventional MSMS 

works by MS1 also known as Q1 being fixed to fragment the top most intense 

precursor to be fragmented by CID. The MS2 also known as Q3 then scans these 

fragments out to be detected by the detector. The multiple ion monitoring 

method is shown below the product ion scan and analyses by fixing both the MS1 

and MS2. The technique is carried out by the instrument cycling through a series 

of transitions (specific precursor-fragment pairs) and records the signal as a 

function of time. Because both the MS1 and MS2 are fixed to target specific 

masses the MRM method is more selective and sensitive for the detection of low 

abundant proteins or modification of proteins in complex samples. 

 

Figure 76: Conventional MSMS versus MRMs [161]. The figure illustrates Product Ion scanning 

and Multiple Ion Monitoring in the triple quadrupole.  

The conventional MSMS performed on peptides in a sample will fragment the 

chosen precursor for analysis [161]. Usually this is the most intense precursor 

leading to the most abundant and intense precursors being analysed first which 

means the less abundant and less intense masses will be “masked” or missed. 

The MRM method fixes both quadrupole 1 and quadrupole 3 to target set 

precursor-fragment pairs allowing low abundant peptides to be detected. The 

reason for the conventional MSMS not detecting any chloro- or nitrotyrosine 

modifications in the clinical samples is because they are in low abundance. The 

MRM method is therefore more suited to the detection of low abundant 

modifications in complex samples. 
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4.7 Oxidative modification seen in healthy samples  

As discussed before in the introduction, most individuals when they have 

reached a certain age will suffer from a thickening of the arterial wall and from 

a level of oxidative stress. Although we know the sources of the clinical samples; 

all male patients and for the controls all male healthy volunteers, there are 

many possible explanations for ClTyr and NiTyr modifications. If any of the 

individuals were smokers this would be an explanation of modification as it has 

been reported that the nitrogen oxides and/or their reaction products in the gas 

phase will convert tyrosine to nitrated and oxidised products[205]. The healthy 

volunteers may have also just recently been involved in physically strenuous 

activity. Increased aerobic metabolism during exercise is a potential source of 

oxidative stress, creating an imbalance between the oxidant and anti-oxidant 

levels [206]. In muscle the mitochondria are a potential source of reactive 

intermediates producing superoxide (O2
•-), hydrogen peroxide (H2O2), the 

hydroxyl radical (HO•) and nitric oxide (NO•) under aerobic activities. The 

benefits of regular exercise is well documented and although there is initial 

oxidative damage the individual will adapt to reduce overall oxidative stress by 

an upregulation of anti-oxidant enzymes and a reduced basal level of oxidants.  

The MRM acquisition method although successfully detecting and indicating the 

targeted NiTyr and ClTyr modified peptides in some of the clinical samples do 

not correlate well with patients suffering from the symptoms of cardiovascular 

disease.   

4.7.1 The initial development of atherosclerosis by the heme enzyme, 
myeloperoxidase (MPO) 

The fatty streak is an inflammatory lesion consisting of monocyte derived 

macrophages and T-lymphocytes. The development of atherosclerosis begins 

with the oxidative damage initiated by the inflammatory cells on the arterial 

wall. The inflammatory cells such as monocytes, macrophages and neutrophils 

release oxidising enzymes such as the heme enzyme, myeloperoxidase (MPO). 

The myeloperoxidase enzyme catalyses the oxidation and modification of 

proteins and free 3-ClTyr and NiTyr have been seen elevated in the blood of 

atherosclerotic patients. The presence of 3-ClTyr and NiTyr in a system serve as 

specific markers for oxidative damage by MPO-activity. It is not atherosclerosis 

that triggers myocardial infarction but the precipitation by the rupture of 
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atherosclerotic plaque [207]. The oxidants (Reactive Oxygen Species [ROS] and 

Reactive Nitrogen Species [RNS]) play an important role in plaque rupture. 

Regions of the ruptured plaque were investigated by Hazell et al [208] using a 

specific anti body to detect for hypochlorous acid-modified proteins which would 

indicate an increase in damage to proteins by oxidative stress in these ruptured 

plaque areas. 

4.7.2 Development of atherosclerotic lesions  

It has been found that the initiation of atherosclerosis can start early in 

individuals. Almost every N. American child over 3years in age possesses a 

degree of fatty streaks [209]. The fatty streak is harmless but appears to be the 

initial atherosclerotic lesion. The research showed that juvenile fatty streaks 

vary characteristically at certain anatomical sites but can go on to be converted 

into a fibrous plaque and undergo changes directly causing arterial occlusion in 

the later stages in life when the disease becomes more progressive. There have 

been studies showing that 1 in 6 American teenagers already suffered from the 

pathological, thickening in the coronary arteries [210].In a study of 262 male and 

females with an average age of 33.4±13.2 years, 51.9% of the individual studied 

were found to possess atherosclerotic lesions. Out of that group, 17% were under 

20years of age and 85% were over 50years in age. Although the younger members 

of the study were prevalent to possessiong atherosclerotic lesions it was only 

after the age of 40year that the individual began to suffer from the symptoms of 

atherosclerosis such as hypertension, angina (when the plaque narrows and then 

blocks the arteries), shortness of breath and arrhythmias (irregular heart beat). 

Another study demonstrating that atherosclerosis begins early in life is the 

investigation of the results following the autopsy of soldiers killed in the Korean 

and Vietnam wars. It was indicated that they too had suffered from 

atherosclerosis [211] although the individuals had not suffered from any 

atherosclerotic-complications that may have become more evident later in life. 

The Pathological Determinants of Atherosclerosis in Youth (PDAY) have also 

investigated young individuals (age range between 15-34years) that had passed 

away by causes unrelated to atherosclerosis (suicide, accidents or homicide for 

example) and found extensive lesions and not just fatty streaks in the aorta and 

right coronary artery in some individuals[212]. 
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The increased concentration of cholesterol and changes in its physical state 

accompanied with morphological progression of atherosclerotic lesions was 

evidence that atherosclerosis is a seamless process beginning in childhood or 

adolescence and culminating in rupture of a plaque, thrombosis and ischaemic 

necrosis of a target organ in adulthood [213]. It is important to monitor the 

development and progression of atherosclerosis as in the case of coronary 

arterial thromboses, it is reported, the underlying lesion does not produce 

critical arterial narrowing until weeks or months before myocardial infarction 
[214].    

4.7.3 Challenges when choosing targeted modified peptides specific to 
disease 

Choosing modified peptides to be targeted by the MRM method to diagnose 

cardiovascular disease is challenging. There can be many possible modifications 

for one peptide. The modified NiTyr peptide, Y1LY2EIAR can have either the 

modified Y1 or Y2 or both as discussed in 3.6.4. For the Y1LY2EIAR peptide the 

MRM only detected Y1 to be nitrotyrosine modified. When the MRM method was 

used to detect NiTyr modifications in chemically modified Human Serum Albumin 

and plasma samples by SIN-1 both the NiTyr and di-NiTyr (Y1LYEIAR + NiTyr and 

Y1LY2EIAR + 2NiTyr) modified peptides were detected. The Y1LYEIAR + ClTyr and 

Y1LY2EIAR + 2ClTyr modified peptides were not targeted for as they were not 

seen in the MSMS analysis of the HOCl chemically modified HSA and plasma 

samples.  

The MRM acquisition method detected the targeted RHPDYSVVLLLR peptide, 

both NiTyr modified and ClTyr modified, in both samples that were initially 

classified as “diseased” and “healthy” by our criteria.  

The DVFLGMFLY1EY2AR targeted peptide is even more problematic to analyse 

accurately due to the number of modification sites present. As discussed in 3.9.2 

both Y modification sites are unlikely to both be modified and the peptide was 

always observed with the methioinine residue oxidized first as the methionine 

site is the initial site of oxidation. The di-chloro and di-nitrotyrosine 

modifications were not detected in clinical samples. The DVFLGMFLYEYAR + 

Ox(M) modification is not useful in the diagnosis or identification of diseased 

samples from healthy samples as the oxidation of methionine is non specific to 
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disease and can be caused by exposure to the air.  There are two tyrosine sites 

for modification so possible modified peptides that were not targeted for are the 

methionine oxidation, NiTyr(Y1) + ClTyr(Y2) modified state DVFLGMFLYNiEYClAR + 

Ox(M);NiTyr;ClTyr and the methionine oxidation, ClTyr(Y1) + NiTyr(Y2) modified 

state DVFLGMFLYClEYNiAR + Ox(M);ClTyr;NiTyr . If these modified states of the 

peptide are present this would mean that the peptide is highly modified and is 

maybe unlikely considering the di-nitrotyrosine modified peptide, Y1LY2EIAR + 

2NiTyr, was not identified. 

The RHPYFYAPELLFFAK peptide was seen to be modified in clinical samples 3 and 

8, both NiTyr and ClTyr modified states were seen and in sample 11 the peptide 

was only seen to be NiTyr modified. Again there is a possibility of more than the 

NiTyr(Y2) and ClTyr(Y2) modification states of  the RHPY1FY2APELLFFAK peptide 

being present. The Y2 tyrosine is always seen to be modified first and even 

though it is not close to a methionine or lysine residue in the primary sequence 

it may be in close proximity in space by the secondary or tertiary sequence due 

to the folding of the albumin protein. In strongly oxidised conditions the 

RHPY1FY2APELLFFAK + NiTyr(Y1);ClTyr(Y2) and RHPY1FY2APELLFFAK + 

ClTyr(Y1);NiTyr(Y2) peptide may be present. Again this is unlikely as the 

Y1LY2EIAR + 2NiTyr targeted peptide was not detected. 

In the clinical samples the YNiLY2EIAR + NiTyr peptide is seen but the YNiLYNiEIAR 

+ 2NiTyr is not. The Y2 residue or the second tyrosine may be modified by a 

chlorine atom and not NO2, giving the YNiLYClEIAR + NiTyr(Y1);ClTyr(Y2). This 

may be possible the YClLYNiEIAR + ClTyr(Y1);NiTyr(Y2) but not very probable 

under the oxidation conditions. These “hetero-modified peptides” were not 

targeted by the MRM acquisition method as MSMS data was collected from the 

analysis of individually SIN-1 or HOCl modified purified HSA and plasma so were 

obviously never seen.  

4.8 Conclusion and further work  

The MRM acquisition method developed from the SIN-1 and HOCl chemically 

modified purified HSA and plasma samples successfully detected nitrotyrosine 

and chlorotyrosine modified peptides in clinical samples. Although the MRM 

method was successful in detecting the modified peptides these peptides and 

our criteria were unable to differentiate between healthy and diseased samples 
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and therefore failed as a diagnosis tool correctly identifying only 13 out of a 

total of 24 clinical samples. As discussed; from the fragmented nature of the 

data collected from the analysis, there may have been a problem in sampling 

during analysis. There needs to be more technical replicates of the analysis of 

the clinical samples. 

4.8.1 False Positives 

The transitions for the MRM acquisition method were chosen from observations 

made from the MSMS analysis of chemically modified purified human serum 

albumin and plasma samples. The Q3 masses for the MRM transitions were 

chosen due to their intensity and frequency seen in the MSMS analysis. To 

improve the MRM acquisition method the Q3 masses could also be chosen 

depending on the number or intensity of anomalous peaks they show in the 

chromatography run. The anomalous peaks in the XIC traces are not difficult to 

identify and are easily recognised by a single transition peaking in respect to the 

other two Q3 transitions. False positives caused by breakthrough can be 

confusing. Breakthrough is caused from another signal due to poor selection in 

Q1 and all the transitions are seen to peak at the same time. To identify which 

peak of the three commonly eluted transitions is the elution of the peptide 

targeted for the retention time when it is eluted can be used. The ClTyr/NiTyr 

modified peptides are seen later and the oxidation of a methionine in a peptide 

will be seen sooner in the chromatography gradient with respect to the 

unmodified peptide due to changes in polarity.  

4.8.2 Improving the MRM method to detect disease specific Ni- and ClTyr 
modifications  

Although elevated levels of ClTyr and NiTyr have been found in the plasma of 

diseased patients it is clear that the initial stages of atherosclerosis and 

therefore oxidative stress occur at a very young age. At a young age although 

suffering or possessing atherosclerotic lesions the individual is asymptomatic 

until the later stages in life. Modification of proteins by oxidative stress will 

therefore also occur at an early age as the fatty streak begins to develop. 

4.8.2.1 Patient Heterogenity  

In this study patient heterogeneity is not taken into account and it is assumed 

that the individuals taking part in this study are homogeneous. There will be 
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differences between patients or between the “healthy” volunteers caused by the 

individual’s genetics, their behavioural profile that is their disease management 

skills which will be influenced by their habits; diet, smoking, exercise levels (as 

discussed by Kaplan et al [215]). These variables may effect factors such as the 

antioxidant levels in the individual and therefore the results of the the study. 
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5 Chapter – Investigating the post-translational 
modification of the low density lipoprotein (LDL) 
protein moiety, apolipoprotein B-100 (Apo B100), 
caused by oxidative stress 

The major target for oxidation is thought to be the intimal low-density 

lipoproteins. The “oxidation theory” for atherosclerosis implies that the lipid 

and/or protein oxidation products are responsible for the formation and 

development of lesions [216]. The study of LDL and its relevance to 

atherosclerosis has found that patients suffering from the disease posses 

elevated levels of LDL in the body and ox-LDL (LDL modified by oxidative stress) 

have also been found in atherosclerotic lesions [13;39;217;218].The formation of 

lesions or the fatty streak on the arterial wall is formed by a series of events. 

The intimal accumulation of plasma lipoproteins and the increased expression of 

adhesion molecules on the endothelium at inflamed sites on the vessel wall lead 

to the margination of monocytes and their migration across the endothelium 

where they accumulate large intracellular deposits of lipoprotein derived 

cholesterol ergo producing the atherosclerotic lesion. As well as being the major 

target for oxidation, increased levels of LDL in the body is a known risk factor 

for atherosclerosis as the majority of the intracellular lipids accumulating in the 

macrophages beneath the endothelium is thought to be derived from LDL [219]. 

The formation or development of these lipid-laden macrophages or “foam cells” 

that form the fatty streak or early lesion is an early event in atherosclerosis. 

Normally the LDL-receptor pathway controls the cellular uptake of LDL particles 

in a controlled manner that does not allow macrophages to form foam cells (see 

1.1.1). However when the LDL becomes modified to Ox-LDL this creates high-

uptake forms of LDL leading to the high unspecific uptake of LDL into the 

endothelium leading to foam cell formation and the development of the fatty 

streak. Due to atherosclerosis occurring in individuals at an early age the 

modification of the circulating LDL particle may be another viable way to 

diagnose cardiovascular disease in patients. 

The heme enzyme, myeloperoxidase (MPO), is expressed during inflammation 

and has been shown to play a role in the development and progression of 
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atherosclerosis. The enzyme forms the reactive species, HOCl and NO2 which 

leads to the formation of chlorotyrosine and nitrotyrosine which are clinically 

significant and serve as markers for MPO activity [57]. The direct treatment of 

proteins with HOCl and NO2 has already been reported to cause oxidative 

damage related to disease and levels of nitrotyrosine and chlorotyrosine have 

also both been detected in the fatty streak of atherosclerotic lesions in the 

arteries[155;160;160;7].  

5.1 Aims 

In this chapter we aim to chemically oxidise native LDL by HOCl and SIN-1 and 

detect the oxidised modifications in the protein moiety, Apolipoprotien B100 

using sensitive mass spectrometry techniques; the precursor scan and by MRM 

methods.  

5.2  Materials and Methods 

5.2.1 Preparation of LDL from Plasma 

15ml plasma samples from a plasma pool were supplied by Corinne M. Spickett 

(Institute of Pharmacy and Biomedical sciences, University of Strathclyde, 

Glasgow).  The plasma had been stored at -80°C for approximately 2years. To 

prepare the LDL the plasma was thawed in a water bath at 37°C before the 

plasma density was adjusted to 1.24g/ml by the addition of 0.3816g of KBr 

(potassium bromide) per ml of plasma by stirring thawed plasma in ice. The 

stirring of the plasma and KBr was gentle to avoid denaturing. An EDTA 

(ethylenediaminetetraacetic acid, 1g EDTA/L, d=1.0g/ml, pH 7.4) solution is de-

oxygenated in its bottle by bubbling oxygen-free nitrogen through it for a 

minimum period of 15 minutes. A long luer fitting needle with a blunt end was 

used to place 3.6ml of deoxygenated EDTA solution into a 5.1ml quick seal 

disposable plastic centrifuge tube. The density-adjusted plasma is then under-

laid beneath the EDTA until the liquid comes to just below the bottom of the 

thin neck of the centrifuge tube. The tubes are balanced and if required were 

adjusted with small amounts of EDTA solution. The quick-seal centrifuge tubes 

were then sealed with a heat sealer before being placed in a Beckman VTi 90 

rotor. The centrifuging of the samples was carried out at 60,000 rpm for 2 hours 

at 10°C in a Beckman XL-90 ultra centrifuge with acceleration and deceleration 

set to 9. After centrifugation the tubes containing the plasma were removed 
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using tweezers and handled carefully as not to disturb the lipoprotein bands. 

The LDL band is visualised as a darker band in the tube when viewed against a 

white background. To remove the LDL a small needle was inserted into the top 

of the tube by the neck and a second sterile guage needle (21G x 1½", 0.8mm x 

40mm, BD Microlance™ 3) attached to a 5ml syringe was inserted just below the 

LDL band (about two-thirds of the way down the tube) and the needle was swept 

back and forth whilst sucking up the LDL. The vial where the LDL was to be 

collected was prepared by flushing through with nitrogen gas. The LDL was 

stored at 4°C in the dark for up to two weeks. To avoid denaturing of the LDL 

de-salting was usually performed on the same day. 

5.2.1.1 Desalting of the LDL 

Desalting of the LDL preparation was performed by gel filtration to remove any 

traces of KBr and EDTA.  

1ml of the LDL solution was removed from the vial using a sterile needle and a 

1ml syringe and placed on the top of an Econopac column 10 DG column (Bio-

Rad, Hemel Hempstead, Hertfordshire, UK) which had previously been 

equilibrated with 20ml of Tris 50mM, pH7 buffer. When the LDL solution had 

entered the column 2ml of tris buffer (pH7, 50mM) was added and allowed to 

elute. A further 1ml of tris buffer was added to the column and the eluent of the 

column (containing the LDL) was collected in an eppendorf tube for assaying. 

5.2.2 Assay of Cholesterol 

After desalting the LDL the cholesterol concentration was determined by the 

CHOL-PAD method using the cholesterol kit supplied by Boehringer-Mannheim 

(Mannheim, Germany). A factor of 3.16 was used to convert mg cholesterol/ml 

into mg LDL total mass/ml. The below was performed in duplicate; 

10µl of LDL was mixed with 1ml CHOL-PAD reagent 

 10µl of the tris buffer was mixed with 1ml CHOL-PAD reagent as a blank 

The above was allowed to react with the CHOL-PAD reagent for 10minutes 

before the absorbance of the LDL samples at 500nm against the blanks was read 

using a spectrophotometer. The LDL concentration was calculated as follows; 
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Total Cholesterol concentration in mg/dL = Average Abs500 x 575  

Divide by 100 to obtain cholesterol in mg/ml 

Multiply by 3.16 gives the LDL concentration in mg/ml 

A Bradford assay, kit supplied by Bio-rad, was also used to assay the protein 

concentration of the LDL sample. The Bio-rad protein assay is a dye-binding 

assay with a differential colour change depending on the protein concentration 

of a solution. The dye primarily binds to basic and aromatic acid residues. This 

protein assay will only give an approximation of Apo B-100 content, as the 

sample will not be a pure LDL sample and will contain contaminates from plasma 

like albumin. 

Typical results were 5.56mg/ml cholesterol and 0.28mg/ml protein in the LDL 

solution. 

5.2.3 Chemical in vitro modification of the LDL 

The native LDL was chemically modified using varying concentrations of SIN-1 

and HOCl. The samples with their oxidant are incubated at 37°C for 4hours. 

The following Table 24 is an example of the chemical modification of the LDL by 

HOCl. 

Table 24: LDL is modified with varying HOCl concentrations 

 

From left to right; the first column is the HOCl concentration of which the LDL was modified. 

The second column is how much protein was modified and the third column is the HOCl 

added to the sample. The fourth column is how much tris buffer was added to the eppendorf 

to adjust the HOCl concentration. 



178 

 “Simple Protein”, Lysozyme, was modified by varying concentrations of HOCl as 

a control Table 25. 

Lysozyme stock solution in Tris 50mM pH7 buffer = 1mg/ml  

Table 25: Lysozyme is modified by varying concentrations of HOCl as a control 

 

From left to right; the first column is the HOCl concentration of which the LDL was modified. 

The second column is how much protein was modified and the third column is the HOCl 

added to the sample. The fourth column is how much tris buffer was added to the eppendorf 

to adjust the HOCl concentration. 

The HOCl modified samples were then delipidated to prevent the blocking of the 

C18 column during chromatography then trypsin digested. 

5.2.4 Trichloroacetic Acid (TCA) Delipidation 

The HOCl modified protein samples were dried down using a centrifugal 

evaporator (eppendorf concentrator 5301) before being TCA delipidated and 

trypsin digested. Samples were then made up to 60µl with dH2O before the 

addition of 9.3µl SDS 7.5% and 0.7µl DTT 1M to give 1% SDS and 10mM DTT.  

Samples were heated in a block at 95°C for 5minutes followed by the addition of 

8µl 0.5M iodoacetamide, 50mM ammonium bicarbonate before shaking in the 

dark for 30minutes at room temperature. The TCA delipidation step was then as 

follows; 52 µl 50% TCA was added to give 20% TCA and the protein was allowed 

to precipitate on ice for a minimum of 15minutes. The sample to be delipidated 

was then spun down for 10minutes at 13K rpm and the supernatant was carefully 

removed. A second wash with 150µl 10% TCA followed, and the sample spun 

down as before and the supernatant removed. The protein pellet was washed 

three times with 250µl dH2O, spun down and the supernatant removed. The 

protein pellet underwent trypsin digestion overnight as before described in 

2.4.1.2. 
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5.2.5 Mass Spectrometry methods 

As described in section 2.4.1.4 

5.2.5.1 Mascot parameters 

The LDL and lysozyme samples separated on the LC (2.4.1.3) before being 

analysed by the conventional MSMS method on the Qtrap 2000 (Applied 

Biosystems, Warrington, UK). The MSMS data generated was then searched with 

Mascot, version 1.6b9. The Mascot parameters when searching the data were as 

follows; the enzyme was “Trypsin”, the fixed modifications were 

“Carbamidomethyl (C), the variable modifications were Chlorotyrosine (ClTyr 

(Y)) and Oxidation (M) and the mass values were monoisotopic. The peptide mass 

tolerance was ±2Da, the fragment mass tolerance was ±1Da and the maximum 

missed cleavages were set to 1. 

5.2.6 Detecting ClTyr by Western Blotting 

Running Gel 

(5X) Protein Loading Buffer  

• Glycerol – 1.6ml • 10% SDS – 1.6ml • 1M Tris pH 6.8 – 0.5ml • dH2O – 3.9ml • β-

Mercaptoethanol – 0.4ml • Bromophenol Blue (BPB) – pinch 

HiMark™ Pre-stained High Molecular Weight Protein Standard from Invitrogen 

NuPage - 9 protein bands range 30 – 460kDa 

Tris-acetate Running Buffer 20X from Invitrogen NuPage - Diluted to 1X = 50ml in 

1L 

Samples ran in 3-8% Tris acetate gel from Invitrogen NuPage; V = 150V, mA = 50A       

t = 1hr 

Semi-dry Blotting 

Transfer Buffer – 1L – 3.02g Tris Base (from Sigma Aldrich), 14.4g glycine (from 

Sigma Aldrich), 200mL methanol and 800mL dH2O. 
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The gel was removed from the cassette and left immersed in transfer buffer to 

equilibrate the gel and prevent shrinkage for 15mins. Before blotting, the PDVF 

membrane was prepared by wetting with methanol for 15s followed by 2mins in 

water and a further 15mins in the transfer buffer. The filter paper was soaked in 

transfer buffer and cut to the same size as the gel to prevent uneven transfer.  

Probing for Cl-Tyr 

The membrane was rewetted with methanol and a solution of dried milk powder  

5% in 5ml 1xPBS (phosphate buffered saline) used to block was poured onto the 

membrane and shaken for an hour to prevent unspecific binding. 2x5min washes 

with PBS-T (1xPBS with 0.05%Tween) follows. The membrane was then incubated 

in 5ml with the ClTyr antibody (from Sigma Aldrich) at a 1:500 ratio in 1xPBS-T 

5% dried milk solution and then agitated for an hour. 6x5min washes with PBS-T 

(1xPBS with 0.05%Tween) follows. The membrane was then incubated in 5ml 

with the secondary antibody, HRP(horse radish peroxidase) rabbit at a 1:500 

ratio in 1xPBS-T 5%dried milk and agitated for an hour. 

Enhanced Chemiluminescence – kit from Thermo Scientific 

Two solutions were used; Luminol Enhance solution and Peroxide solution. 

Equal volumes of each were mixed in a universal tube. The membrane was 

placed in the resulting mixture for 1min. The membrane was then removed and 

wrapped in clingfim ready for immediate exposure using the X-omat to develop 

the film.  

5.3 Results and Discussion 

Native LDL was extracted from a plasma pool and was modified with varying 

concentrations of HOCl. As a control a simpler protein model, lysozyme was 

modified in parallel to test the HOCl modification protocol.  

5.3.1 Analysis of HOCl modified LDL and lysozyme samples 

The native LDL and the simpler protein model, lysozyme, were modified using 

varying concentrations of HOCl. Both the 15mM HOCl modified LDL and lysozyme 

samples were analysed by conventional MSMS (see 2.4.1.4) on the Qtrap 2000 

(Applied Biosystems, Warrington, UK) and the MSMS data was searched with 
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Mascot. The MSMS analysis of the 15mM HOCl modified LDL sample detected and 

identified to be the Apo B-100 protein as the top protein hit (Figure 77) with a 

score of 2202 (the significance threshold was set for 48) and sequence coverage 

of 24%.There were Apo B-100 peptides identified as methionine oxidised (Ox (M)) 

modification but no ClTyr modifications identified.  

 

Figure 77: A sample of Mascot search results for 15mM HOCl modified LDL. The above figure 

displays the first 20 peptides from the Mascot search on the analysis of the 15mM HOCl 

modified LDL sample by the Qtrap. There were many more peptide hits assigned but there 

are too many to be shown here.  

The identification of Apo B100 as the top protein hit suggests that the LDL 

extraction protocol and the delipidation were successful.  It is possible any ClTyr 

modifications on the Apo B-100 protein are in very low abundance and therefore 

were not detected by the conventional MSMS experiment. 

5.3.1.1 Verification of the HOCl modification protocol 

The detection and assignment of Apo B100 as a top protein hit verifies the LDL 

extraction and delipidation protocol. To verify the modification protocol, 

lysozyme, a simpler, smaller protein model was modified using the same method 

and analysed on the Qtrap and the mass spectrum data searched with Mascot as 

before. In the lysozyme sample ClTyr modifications were identified by Mascot.  

The NTDGSTYDYCILQIDSR + ClTyr peptide is an example of one of the peptides 

found to be ClTyr modified with an ion score of 82. The mass spectrum of the 

example ClTyr modified peptide identified displayed a near complete y-ion 
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series and the ClTyr fragment could be observed (Figure 78). The assignment and 

detection of ClTyr modifications in the 15mM HOCl modified lysozyme sample 

verifies the HOCl modification protocol. Lysozyme is a smaller (16kDa), simpler 

protein and has been found to be modified so in theory the Apo B-100 protein 

too should be ClTyr modified but in low abundance below the limit of detection. 

 

Figure 78: Mass spectrum of the NTDGSTYDYCILQIDSR + ClTyr peptide. The above figure 

displays the mass spectrum data for the example NTDGSTYDYCILQIDSR + ClTyr peptide 

detected in the 15mM HOCl modified lysozyme sample. A near complete y-ion series can be 

observed and the ClTyr fragment (y9) can be identified. 

5.3.2 Detecting ClTyr in LDL 

The LDL is a spherical particle consisting mainly of cholestryl ester with a small 

amount of tri-glycerides. The LDL coat consists of phospholipids, free cholesterol 

and a large single protein, Apolipoprotein B-100 which “dips” in and out of lipid 

core [20]. The Apo B100 protein will then not only be able to interact with the 

lipids on the lipoprotein particle but also with the surrounding environment. In 

this experiment we modify the native LDL with the HOCl rather than delipidated 
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or digested LDL as this is “truer” to life. It may be possible that the lipids on the 

LDL particle may be being oxidised rather than the Apo B-100 protein. 

Spickett et al reviews the reactions of lipids (unsaturated fatty acids and 

cholesterol) with either HOCl or HOCl generated by the MPO-hydrogen peroxide-

chloride system [220]. In lipids, the major site of attack by HOCl is at the double 

bonds which are present in the unsaturated fatty acids and cholesterol which in 

turn leads to the formation of chlorohydrins and peroxidation.  HOCl or HOCl 

generated by the MPO/H2O2/Cl– system can initiate lipid peroxidation both in 

lipoproteins and liposomes. It has also been found that HOCl-induced lipid 

peroxidation is pH dependant. An increase in pH values leads to an increase in 

lipid peroxidation products [221].  

The effect of HOCl on the LDL particle has been modelled by Malle et al [222] 

under the assumption that all sites of the LDL particle are equally accessible to 

modification.  The absolute second order rate constants for the reaction of HOCl 

with the LDL components (substrate; amino acid residues, back bone amide etc.) 

were calculated. From this kinetic data the order of reactivity is seen to be 

modulated by the relative concentrations of each component present in the LDL. 

The rate constants were used to computer model the reaction between the LDL 

particle and HOCl to predict the extent of the reaction and the effects on the 

protein components versus the lipid double bonds versus the antioxidants 

(primarily the more abundant, fat-soluble, tocopherols) (Table 26). With a 

HOCl:LDL molar ratio below 50:1 the HOCl is predicated to be consumed 

exclusively by the protein. Above the 50:1 molar ratio it is predicated that the 

lipid and antioxidants are incorporated into the consumption of the HOCl 

although consumption of the HOCl is still predominantly by the protein. Reaction 

with antioxidants present in LDL (primarily tocopherols, as these species are 

much more abundant than other components) is predicted to be a minor 

reaction at all HOCl ratios. 
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Table 26: Computer-modelled predicted sites of HOCl activity on LDL [222]. 

 

The above displays the HOCl:LDL molar ratio and what substrate; protein, lipid and 

antioxidant, the HOCl is most predominantly consumed by.  

Malle modelled the oxidations of the side-chains on the protein. Modelling the 

oxidation of protein is sometimes challenging due to the complex nature of the 

process. Methionine when reacted with HOCl in vivo can reversibly form 

sulfoxides or irreversibly form sulfones making oxidation difficult to measure. 

HOCl reactions with histidine and lysine will give unstable chloramines (RNCl) 

and di-chloroamines (RNCl2 species) when in excess of HOCl. These species 

retain the oxidising equivalent of HOCl and can transfer Cl to other substrates 

regenerating the parent side-chain thus appearing unchanged and unaffected by 

oxidation.  The effect of HOCl oxidation on tryptophan will form kynurenine and 

N-formylkynurenine via inter- and intramolecular, radical-mediated reactions 

and chlorotyrosine will be formed by either direct HOCl reaction or indirect HOCl 

reaction with chloramines. The side-chains; alanine, valine, leucine, isoleucine, 

proline and phenylalanine were found to be poorly reactive with HOCl.  

This suggests that there should be ClTyr modifications on the Apo B100 protein 

on our in vitro HOCl modified LDL but due to their very low abundance detection 

is challenging. Modification of the lipids on the particle should not greatly affect 

the efficiency of Apo B100 protein modification by the HOCl reagent. 
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5.3.2.1 Detecting the ClTyr modification by Western Blotting 

We visualised the Apo B100 protein in the unmodified LDL sample and LDL 

samples modified with varying HOCl concentrations by silver staining. 

The protein in the LDL samples was separated on a gel by their size. To confirm 

the presence of the Apo B100 protein in the LDL samples a western blot was 

performed probing specifically for the Apo B100 protein (Figure 79).The 

molecular weight for the Apo B100 protein is 516kDa and the Apo B100 is 

observed at lower molecular weights indicated by the protein ladder suggesting 

degradation of the sample.  

In other studies the atherosclerotic arterial intima and fatty streak have 

previously been probed with a western blot using the HOP-1 antibody for the 

detection of proteins oxidised by HOCl [155;208;217;223]. The antibody is highly 

specific for HOCl-modified proteins and does not cross-react with native proteins 

or those modified by other methods. Professor Ernst Malle (Karl-Franzens 

University, Graz, Austria) developed the HOP-1 by raising a mouse monoclonal 

antibody against HOCl-modified low-density lipoprotein (LDL). We attempted 

western blotting of the LDL chemically modified in vitro by HOCl using an anti-

ClTyr antibody from Sigma. However this antibody was proved to bind non-

specifically to the Apo B100 protein (Figure 80). Binding of the ClTyr antibody 

appeared to be to albumin as this protein is visualized approximately where 

albumin is expected (~67kDa) with respect to the protein ladder. 
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Figure 79: Silver stain and western blot of unmodified and HOCl modified LDL separated on a 

reducing SDS PAGE. The left hand side of the figure displays the silver stain of the LDL 

samples and the right hand side of the figure displays the western blot probing for the Apo 

B100 protein. Unmodified and various HOCl modified LDL samples were visualised in a gel 

separated by size. To confirm the Apo B100 protein in the LDL samples the protein was 

probed with an Apo B100 antibody. 

 

Figure 80: Western blot of unmodified LDL and 0.1mM, 1mM and 10mM HOCl modified LDL 

when probed for ClTyr. From left to right in the first column is the protein ladder. The 

second lane is the unmodified LDL. Where the Apo B-100 appeared in the gel is ringed in 

yellow. The third column is the 1mM HOCl modified LDL sample, the fourth the 0.1mM HOCl 

modified LDL sample and the fifth lane the 10mM HOCl modified LDL sample. The ClTyr 

antibody was found to bind non-specifically. Binding could possibly be to albumin (ringed in 

red) as the protein appears at the correct molecular weight.   
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5.3.3 An alternative oxidisation product - Hydroxytryptophan 

No ClTyr modifications were detected when searching the mass spectrometry 

data collected from the conventional MSMS analysis of the 15mM HOCl modified 

LDL sample by Mascot. It was hypothesised that although ClTyr modifications 

may be present but in very low abundance and are therefore not detected 

perhaps there are other oxidative modifications that can be detected. 

Aromatic side chains (tyrosine, tryptophan, phenyalanine and histidine) are the 

major targets of free radical reaction [224, 225]. Aromatic rings are more 

susceptible to modification due to the high electron-density of the ring. 

Hydroxytryptophan is an example of a tryptophan oxidation products, first 

reported by Previero in 1967 [226-228]. Initially the tryptophan oxidation products 

were detected using characteristic electronic absorbance spectra. The first 

complete MS characterization of a protein from bovine lens, α-crystallin, found 

oxidized Trp residues as a result of exposition to the oxidative Fenton  insult 

which has been described (in 1.3). The occurrence of hydroxytryptophan, N-

formylkynurenine, kynurenine, and 3OH-kynurenine in reaction products was 

ascertained by direct ESI measurements [229].  

More recently however, oxidised tryptophan residues were reported to be 

present in cardiac mitrochondrial proteins when analysed by ESI-MSMS [230]. This 

led to the conclusion that the Trp modifications could occur in vivo as a result of 

these proteins being subjected to a source of reactive oxygen species and indeed 

a result of oxidative stress.   

The mass spectrometry data for the MSMS analysis of the 15mM HOCl modified 

LDL and lysozyme samples was searched again by Mascot as before (see 5.3.1) 

but the variable modifications now included hydroxytryptophan (HOTrp (W)). 

This modification has been identified as a potential marker for protein oxidation 
[231]. In the 15mM HOCl modified lysozyme sample the HOTrp modified 

CKGTDVQAWIR peptide was identified (Figure 81). From MSMS analysis it is 

unclear of the position of the HO-group on the tryptophan aromatic ring. 
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Figure 81: An example of a HOTrp modification detected in the 15mM HOCl Lysozyme 

sample. The above figure displays the HOTrp modification on the CKGTDVQAWIR peptide in a 

15mM HOCl Lysozyme sample. The y-ions are labelled in the mass spectrum.  

Hydroxytryptophan was detected in the 15mM HOCl lysozyme sample but no 

HOTrp modifications were identified in the 15mM HOCl modified LDL sample. 

Kapiotis et al reports that in the presence of free tryptophan, LDL is protected 

from atherogenic modification by HOCl [232] as the free tryptophan is thought to 

quench the attack on the LDL particle becoming modified itself as it is 

susceptible to free radical reactions and prone to modification by HOCl.  

5.3.4 Using the precursor scan for the detection of ClTyr modifications on 
the apo B-100 protein  

The precursor scan for the detection of ClTyr modifications in a complex 9 

protein mix sample was employed in Chapter 2. The same precursor scan was 

applied to the 15mM HOCl modified LDL sample. After analysis by the precursor 

scan the mass spectrometry data collected was searched using Mascot (as 

discussed in 5.2) but there were no ClTyr modifications identified (Figure 82). 

The analysis of the 15mM HOCl modified LDL sample was performed twice but 

there were no ClTyr modifications assigned and the peptides detected in each 

analysis were different. These hits are all precursors of 170m/z although they 

are not ClTyr modified peptides and false positives. The first and second analysis 

of the 15mM HOCl modified LDL sample reported the Apo B100 protein as the top 
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protein hit. The first analysis reported the Apo B100 to have a score of 114 and 

the significance threshold was 48. The sequence coverage reported for the Apo 

B100 protein in the first analysis was 1%. The second analysis of the 15mM HOCl 

LDL sample reported Apo B100 as the top protein hit with a score of 239 with 1% 

of the protein’s sequence coverage being identified.  Analysis of the 15mM HOCl 

modified LDL sample reported a good statistical score (above the significance 

threshold of 48) for the Apo B100 protein in the first and second analysis. Only a 

small percentage of the protein was identified by analysis (1% in the first 

analysis and 5% in the second analysis) so we are missing a lot of information. 

Loss of information may be due to the complexity of the sample; even though 

Apo B-100 is a single protein it is very large and when trypsin digested will 

generate many peptides for analysis. 

 

Figure 82: The Mascot search results for the analysis of the 15mM HOCl LDL sample by the 

precursor scan. The above figure displays the Mascot search results for the analysis of the 

15mM HOCl LDL sample.  

5.3.5 Further work to investigate ClTyr modifications on the Apo B100 
protein 

Unfortunately our methods were not able to detect ClTyr on the Apo B100 

protein. Further work should include the development of the analysis of the 

HOCl modified LDL samples by the precursor scan. The gas phase fractionation 

(GPF) technique should be applied to combat under sampling and sample 

variance which is a common problem in complex samples. This will target 



190 

smaller mass ranges (200amu with 20amu overlap) leading to data being 

collected for longer therefore increasing the sensitivity of the technique [162] 

(see also 2.5.8).    

The precursor scan is a sensitive method for the detection of modifications in a 

sample where no prior information is known about the site of modification (see 

Chapter 2). An MRM method can be used to “mine” complex samples but we 

must first know about the modified peptides that are to be targeted before an 

acquisition program can be written to identify them.    

5.4 The detection of specific nitration sites on the Apo B100 
protein  

The focus of the study is to identify modifications that are specific to 

atherosclerosis and develop techniques that may eventually be applied for the 

high throughput, early diagnosis of the disease. Both chloro and nitrotyrosine 

modifications can be caused by oxidative stress in atherosclerosis and ClTyr have 

been investigated previously in a model 9 protein mix sample, purified human 

serum albumin, plasma samples and clinical samples (see chapters 3, and 4).  

Hamilton et al [233], studied the nitrotyrosine modification sites of the Apo B100 

protein after in vitro and in vivo modification. It has been widely discussed that 

oxidative modifications of LDL are required for the particle to possess 

inflammatory properties inherent to the initiation and progression of 

atherosclerosis [234-236]. This concept is strengthened by the observed elevated 

levels of post-translational modifications of the Apo B100 protein in 

atherosclerotic lesions [60]. The oxidised modified LDL particle consists of 

peroxidised lipids and the unfolded Apo B100 protein moiety. Hamilton’s study 

was focused to establish specific modification sites on the Apo B100 protein and 

to observe the conformational changes using LCMSMS (ThermoFinnigan LCQ Deca 

XP Plus ion trap) and circular dichroism (CD) respectively. 

Hamilton modified the LDL in vitro after isolation of LDL from human plasma 

using 3-morpholino sydnonimine (SIN-1). Protein oxidation was determined in in 

vivo sub-fractions of LDL and in the in vitro SIN-1 chemically modified LDL by 

performing a western blot. The specific sites of nitration were verified by liquid 

chromatography tandem mass spectrometry. The peptides resulting from the 
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trypsin digested LDL- (modified LDL) and nLDL (native LDL) were separated using 

reverse phase chromatography and analysis was obtained by the ion trap mass 

spectrometer. Mass spectra data was acquired between 400-2000m/z using a Top 

Five method where the five most intense ions for the full scan were subjected to 

collision induced dissociation (CID). Peptide identification was achieved using 

Mascot version 1.9 and the spectra was searched against the NCBI database. 

Quantification of nitrated peptides was carried out by analysis of peak area 

nitration to peak area unmodified plus total peak area modified peptides (NO2-

peptide/(NO2-peptide + unmodified peptide). To confirm those peptides assigned 

to be NO2 modified by Mascot they were analysed against their y-ion and b-ions 

to ensure that the peptides were present and not false positives. The change in 

the protein’s conformational structure caused by oxidative modification was a 

decrease in the α-helical structure and an increase in β-structure components. 

The results of Hamilton’s study found that after separating native in vivo LDL 

(nLDL) and LDL- from total LDL (tLDL) using anion exchange chromatography, 

nitrotyrosine was only detected in the LDL- fraction but not in the nLDL or tLDL 

fractions when LDL nitration was assayed for by immunoreactivity to a 

nitrotyrosine antibody. LCMSMS analysis revealed specific modifications in the 

Apo B100 moiety (Table 27). Previously we have discussed chloro or nitrotyrosine 

modifications that have been identified by Mascot and then manually verifying 

the presence of the modified peptide by matching the mass spectrum against its 

y-ion series (see chapters 3, and 4).  Hamilton also identified the ions in the 

mass spectrum generated by the analysis of the NiTyr modified peptides and 

matched the y-and b-ion series to it. The fully annotated mass spectrum for the 

modified peptides were available in the supplementary data (Figure 83). Ringed 

in red is the NiTyr fragment and boxed in blue is the NiTyr modification site. The 

mass spectrum and matched y and b-ions verify the NiTyr modified peptide and 

site in the apo B100 protein. Like Hamilton we have also manually confirmed our 

modifications in previous chapters to ensure true positives and avoid false 

positives. 
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Table 27: Specific oxidative sites identified in LDL [65]. 

 

The above table displays the specific sites of oxidative modification identified in the apo 

B100 protein moiety after the analysis of the in vivo LDL fraction by LCMSMS. Sites where 

the nitrotyrosine modification is identified are boxed in red. The peptide boxed in blue has 

the mass spectrum displayed in the following Figure 83. 

 

Figure 83: The fully annotated LSLESLTSYNiFSIESSTK nitrotyrosine modified peptide [65 – 

supplementary data]. The above figure displays an example of a fully annotated mass spectrum of 

one of the modified peptides identified on the apo B100 protein. The above mass spectrum 

concerns the LSLESLTSYNiFSIESSTK + NiTyr modified peptide.  
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5.4.1 Detecting nitrotyrosine modifications on the Apo B100 protein 

Previously we have not been found to have detected ClTyr modifications of the 

Apo B100 protein by the precursor scan (see 5.3.4 ). The precursor scan has been 

found to be a sensitive and selective method for detecting modifications when 

there is no prior knowledge of the modifications [94;117-120;162;163]. We, however, 

were still unable to determine ClTyr sites on the Apo B100 protein although 

modification was indicated in a chemically modified 9 protein mix sample when 

the precursor scan was applied (Chapter 2). 

We had prior knowledge about the modification sites when we analysed the 

clinical samples from the diseased and healthy volunteers in chapter 4 and were 

then able to write an MRM method to target for these. With Hamilton’s work [233] 

we now have knowledge of the m/z’s of which peptides in the apo B100 protein 

are nitrotyrosine modified and the fragmentation pattern (Q3 values) generated 

allowing for an MRM method to be written .  

5.4.1.1 NiTyr Modified peptides detected in in vivo and in vitro LDL samples 

What was interesting with Hamilton’s findings were the differences between the 

NiTyr sites detected when in vivo modified LDL was analysed and when in vitro 

LDL was analysed by the ion trap. Along with other modifications (NO2-Trp, HO-

Trp and SO3-Cys) detected on the Apo B100 protein, eight peptides were found 

to be NiTyr modified in the in vivo samples. In the in vitro samples there were 7 

peptides found to be NiTyr modified. The NiTyr modified peptides in the in vitro 

and in vivo LDL samples differed apart from two; IEGNLIFDPNNYNiLPK and 

MYNiQMDIQQELQR. The native LDL particle was modified in vitro meaning that 

the same sites available for modification are the same as for those when 

modifed in vivo. The peptides identified to be NiTyr modified in the in vivo and 

in vitro samples therefore should be identical. 

5.5  An MRM acquisition method  

From the data provided from Hamilton’s study [233] an MRM program was written 

to analyse our LDL that had been chemically modified by SIN-1. The most intense 

y-ions and b-ions seen in the mass spectra of each nitrotyrosine modified 

peptide in the spectra were used as the transitions. Precursor ions that were 

above 1500m/z or below 400m/z were omitted. On the Qtrap 2000 data is 

usually collected between 400 and 1500m/z as sensitivity decreases above 
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1500m/z and below 400m/z is usually singly charged ions unable to fragment or 

background noise. Fragments from the unmodified peptides that had been seen 

frequently in the MSMS analysis of the LDL samples on the Qtrap were used. 

Optimisation of the method was carried out by running the MRM method with a 

collisional energy of 25eV then 40eV as there were peptides that fragmented 

better when a collisional energy of 25eV was employed and others that required 

a higher collisional energy of 40eV to fragment (Table 28). The MRM acquisition 

method written from Hamilton’s findings and mass spectrometry data was 

optimised and confirmatory fragments were chosen dependant on what had been 

seen in previous analysis of the LDL samples on our Qtrap 2000.  

Table 28: MRM acquisition method for the detection of the nitrotyrosine modification on the 

Apo B100 protein. 

 

The above displays (from left to right) the targeted peptide, the modification state targeted 

for, the confirmatory fragment masses, the optimal collisional energy used and if this 

peptide was seen in Hamilton’s study from the analysis of LDL in vitro or in vivo samples. 

The fragment ions highlighted in yellow are confirmatory peptides.  

5.5.1 Analysing SIN-1 modified LDL by the MRM acquisition method  

The LDL samples were analysed in parallel using the MRM acquisition method and 

conventional MSMS. No NiTyr modifications should be seen in an unmodified LDL 

sample so the unmodified LDL was analysed using the MRM method as a control 
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or test for the MRM program. It is unlikely that any NiTyr modified peptides will 

be detected but they are still targeted for. The only unmodified peptides that 

were not seen (no common elution time for the three transitions) are boxed in 

the Table 29. These unmodified peptides were also not identified and observed 

in the conventional MSMS analysis of the LDL samples. There was confidence that 

the unmodified peptides targeted for and detected by the MRM acquisition 

method identified as there was a common elution time for the three transitions 

(Figure 84). The unmodified peptide is seen to be eluted at 42 minutes into the 

chromatography gradient with an intensity of <600cps. The peak ringed in blue 

at approximately 60 minutes is a false positive peak as only one transition out of 

the three is observed. The NiTyr modified state of the LSLESLTSYFSIESSTK 

peptide (969.5m/z) has not been identified in the unmodified control sample. 

There is no common elution time seen for all three transitions and the intensity 

of the signal is low, <18cps. No NiTyr modified states of the peptides targeted 

for were detected in the unmodified LDL sample.  

Table 29: Unmodified peptides that were not detected using the MRM acquisition method 

during the analysis of the control unmodified LDL sample. 

 

The table displays the peptides (boxed in purple) not identified in the unmodified control 

LDL sample.  
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Figure 84: The detection of the targeted LSLESLTSYFSIESSTK peptide in the unmodified 

control LDL sample. The above figure displays an example of one of the unmodified peptides 

that are targeted for and seen in the MRM acquisition method when the unmodified control 

LDL sample was analysed. The top panel displays the XIC’s for the unmodified peptide state 

(947.0 m/z) and the bottom panel displays the XIC’s for the NiTyr modified state (969.5m/z) 

of the peptide. The unmodified LSLESLTSYFSIESSTK peptide was not seen in the conventional 

MSMS analysis of the control LDL sample.  

5.5.1.1 Detection of a targeted NiTyr modified peptide in a 1mM SIN-1 

modified LDL sample 

 LDL samples that had been chemically modified in vitro with varying SIN-1 

concentrations were analysed using the MRM acquisition method for the 

detection of NiTyr modifications on the Apo B100 protein and by conventional 

MSMS. The unmodified EVYGFNPEGK peptide that was not detected in the 

unmodified LDL sample was observed in LDL samples modified with 1mM, 2.5mM 

and 10mM SIN-1. The peptide’s NiTyr modified counter-part was also identified 

in these SIN-1 modified LDL samples (for example see Figure 85 and Figure 86). 

In the 10mM and 1mM SIN-1 modified LDL sample the unmodified peptide (top 

panel in both figures) is seen at 18 minutes into the chromatography gradient 

with an intensity of <845cps (10mM SIN-1 modified sample) and <5344cps (1mM 

SIN-1 modified sample). The peak seen at 44 minutes in both the 1mM and10mM 
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modified SIN-1 sample is an anomalous peak where only one transition is seen at 

this point. The bottom panel in both figures displays the elution of the NiTyr 

modified peptide at 23 minutes into the chromatography gradient with an 

intensity of <497cps (10mM SIN-1 modified sample) and <180cps (1mM SIN-1 

modified sample). The transitions common to both the unmodified and modified 

peptide; Q3=430.2, 204.1 and 748.3, are all seen to be eluted at a common 

retention time. There is increased confidence that the NiTyr modified peptide is 

identified in these samples as the elution time is to be expected with respect to 

the unmodified peptide. The addition of the NO2 on the tyrosine will make the 

peptide less polar leading to the peptide appearing later in the chromatography 

gradient. Elution of peptides on the C18 column is in order of polarity or 

hydrophobicity with the more polar or less hydrophobic peptides being eluted 

first.  

 

Figure 85: The EVYGFNPEGK + NiTyr modified peptide in a 10mM SIN-1 Modified LDL sample. 

The above figure displays the detection of the EVYGFNPEGK + NiTyr modified (bottom panel) 

and the unmodified (top panel) peptide.  
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Figure 86: The EVYGFNPEGK + NiTyr peptide detected in a 1mM SIN-1 modified LDL sample. 

The above figure displays the EVYGFNPEGK + NiTyr peptide (bottom panel) detected in a 

1mM SIN-1 modified LDL sample.  

The results from the 1mM and 10mM modified LDL sample are only shown for 

example. The relative percentage modification for the peptide in the 1mM SIN-1 

modified and 10mM SIN-1 modified LDL sample is calculated using intensities, 

assuming the ionisation efficiency of both the unmodified and modified peptide 

is equal using the equation 7 (3.4.1.1);  

1mM SIN-1 Modified LDL Sample 

(180/180 + 5344) x 100 = 3.25% (approximate percentage modification) 

10mM SIN-1 Modified LDL sample 

(497/497 + 845) x 100 = 37.03% (approximate percentage modification) 

Assuming the ionisation energies are equal for the EVYGFNPEGK unmodified and 

NiTyr modified state, the relative percentage modification of this peptide is 

3.25% in a 1mM SIN-1 modified LDL sample and 37.03% in a 10mM SIN-1 modified 

LDL sample. It should be noted that the EVYGFNPEGK peptide in its modified and 

unmodified state is seen more intensely in the 1mM SIN-1 modified sample 

(unmodified peptide intensity <5344cps) than in the 10mM SIN-1 modified sample 
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(unmodified peptide intensity <845cps). The higher concentration of SIN-1 may 

cause aggregation of the protein, decreasing the efficiency of the trypsin 

digestion and therefore affect the loading of the sample for analysis.  

5.5.1.2 The detection of other NiTyr modified peptides in SIN-1 modified LDL 

samples  

The MYQMDIQQELQR peptide in comparison with other peptides targeted for in 

the MRM acquisition method is more difficult to analyse (Figure 87). A number of 

common elution times for the Q3 masses common to each modified state were 

seen in the analysis of the 1mM, 2.5mM and 10mM SIN-1 modified LDL samples. 

Oxidation of the methionine should increase the polarity of the peptide and it 

should therefore be seen sooner in the chromatography gradient with respect to 

the unmodified state. Nitration of the tyrosine should decrease the polarity of 

the peptide and it should then be seen later with respect to the unmodified 

peptide. The criteria for an assumed identification of an unmodified or modified 

peptide in a sample are the common elution of the three transitions with an 

elution time appropriate to the modification. If there is more than one common 

elution time to identify which peak is the targeted peptide we have to consider 

when it is expected to be seen based on its polarity.  

In Figure 87 Panel A is the unmodified MYQMDIQQELQR peptide and there is a 

common elution time for the Q3=673.3, 416.2 and 175.1 masses. The first 

elution that could be the peptide is seen at 20minutes into the chromatography 

gradient with an intensity <500cps. The second possible elution of the 

unmodified peptide is seen at 30 minutes with an intensity of <1000cps. Panel B 

displays the Ox(M) modified state of the peptide with three possible elution 

times. The first is at 20 minutes with an intensity of <256cps, the second at 21.5 

minutes with an intensity of <200cps and the third is seen at 25 minutes with an 

intensity of <200cps. Panel C displays the “Ox(M) modification state of the 

peptide. Unlike the other modification states there is only one elution time seen 

at 19 minutes with an intensity of <3599cps. Panel D displays the Ox(M);NiTyr 

modification state of the peptide. There are three possible elution times for this 

peptide. The first is seen at 20minutes with intensity <200cps, the second is seen 

at 47 minutes with an intensity of <300cps and the third is seen at 52 minutes 

with intensity <400cps. Panel D shows the 2Ox(M); Nityr modification state. 

There is a peak at 31 minutes with intensity >132cps. This is a false positive as 
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there is only one transition observed at this point. The 2Ox(M);NiTyr 

modification state is a very modified state and is unlikely to be seen when the 

LDL is modified by a 1mM SIN-1 concentration. There is a possible common 

elution of the three transitions for this modification state at 20 minutes, 

intensity <40cps. It is difficult to identify if this is a possible elution because of 

the low intensity. 

 

Figure 87: The MYQMDIQQELQR peptide’s modified states in a 1mM SIN-1 modified LDL 

sample. The figure displays the ambiguous elution times for the different modified states of 

the MYQMDIQQELQR peptide.  

A possible explanation for the appearance of more than one elution time 

common to all three transitions being present for one modified state is break 

thorough. The resolution in Q1 is set to “low” for the MRM method and the Q3 

masses are common to all modification states so selection at Q1 is not optimal.  

For the MYQMDIQQELQR peptide and its modified states, blue and green arrows 

have been used to illustrate the “same” peak observed in different modification 

states (Figure 88). The Peak “1” denoted by the green arrow is seen in the 

unmodified peptide state (Panel A) and the 2Ox(M) + NiTyr state (Panel E, 

intensity <132cps). The 2Ox(M) + NiTyr state is a highly oxidised state so is 
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unlikely to be present at this intensity in a 1mM SIN-1 modified sample. It is 

likely that the peak labelled as “7” in the figure (panel E) is the breakthrough of 

signal caused by poor selection in Q1 from the peak labelled “1”. Peak “1” is 

therefore more likely to be the elution of the unmodified peptide.  

Panel B displays three peaks. Peak “2” (seen at 26 minutes) is likely to be the 

Ox(M) modified state of the peptide as with respect to peak “1” (the unmodified 

peptide seen at 30 minutes) the elution time of this peptide in the 

chromatography gradient at a time expected. 

The peak denoted by the blue arrows is observed in the unmodified (Panel A), 

Ox(M) (Panel B), 2Ox(M) (Panel C), Ox(M) + NiTyr (Panel D) and is suggested in 

low intensity (>40cps) in the 2Ox(M) + NiTyr (Panel E) peptide states. This peak 

is observed most strongly in the 2Ox(M) (with intensity >3599cps) and is the only 

elution peak common to all three transitions seen for this modified state. It is 

therefore likely that the peak labelled “4” is the elution of the 2Ox(M) modified 

peptide.  

In Panel B, the Ox(M) modified state, peak “3” is seen (with intensity >200cps) 

and is suggested in low intensity (>30cps) in the 2Ox(M) + NiTyr modified state 

(peak “8”, panel E). The elution time of peak “3” and “8” (approximately 23 

minutes) satisfies the 2Ox(M) + NiTyr modified state with respect to the 2Ox(M) 

modified state (seen to be eluted at 20 minutes- peak “4”) and the Ox(M) 

modified state (peak “1”, seen to be eluted at approximately 26 minutes into 

the chromatography gradient. As discussed previously the oxidation of the 

methionine will increase the polarity of the peptide leading to an earlier elution 

time and the addition of a NO2 group onto the tyrosine will lead to a decrease in 

polarity and therefore a longer retention time. Peak “3” is therefore likely to be 

break through from the 2Ox(M) + NiTyr modified peptide which is likely to be 

peak “8”.  

There is some uncertainty with peak “5” and “6” observed in Panel D (elution 

time approximately 47 minutes and 57 minutes respectively). Peak “5” has two 

clear transitions Q3=416.2 and 175.1 present and peak “6” shows the elution of 

all three transitions states. Both or either may be a breakthrough signal from 

another targeted peptide or one may be the Ox(M);NiTyr modification state of 

this peptide.  
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Figure 88: An explanation for the common elution of the three transitions for one modified 

peptide state. Peak 1 is likely to be the unmodified peptide, peak 2 is likely to be the Ox(M) 

modified peptide, peak 4 is likely to be the 2Ox(M) modified peptide and peak 8 is likely to 

be the 2Ox(M) + NiTyr peptide. Peaks 3 and 7 are likely to be breakthrough signal. Peaks 5 

and 6 may both be breakthrough signal from another peptide (not shown in the figure) or 

may be the Ox(M);NiTyr modified state. 

To confirm and identify the expected retention time for the unmodified and 

modified peptide states of the MYQMDIQQELQR peptide a targeted MSMS 

experiment should be performed (see 4.4.3.2 and 4.4.3.5). 

5.5.1.3 Another example of “break-through” in the detection of NiTyr 

modifications in the LDL samples - The ALYWVNGQVPDGVSK peptide 

The MRM method for the detection of NiTyr modifications on the Apo B100 

protein required more analysis than what was needed in the previous MRM 

experiments (Chapter 3) due to the amount of breakthrough signal observed. 

The ALYWVNGQVPDGVSK peptide was seen to the NiTyr modified in the 10mM 

SIN-1 modified LDL sample but not in the 1mM or 2.5mM SIN-1 modified LDL 

samples (Figure 89). The unmodified peptide is seen as a split-peak beginning to 
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be eluted at 27 minutes during the chromatography gradient with an intensity 

<5996cps. The “split-peak” is unlikely to be due to poor chromatography of the 

peptide as the split-peak nature is observed in both the modified and unmodified 

peptide states and other peptides targeted for by the MRM do not display a 

“split”. The peaks suggests the identification of the presence of the unmodified 

and modified peptide in the 10mM SIN-1 modified LDL sample as all three 

common transitions; 602.3, 390.2 and 348.2 are eluted at the same time. The 

bottom panel displaying the NiTyr modified peptide displays two peaks, one seen 

at 27 minutes into the chromatography gradient with an intensity of <110cps and 

one at 32 minutes with an intensity of <177cps (ringed in green). The peak seen 

at 27 minutes is also observed in the 1mM and 2.5mM SIN-1 modified LDL 

samples but the one seen at 32 minutes (ringed in green) is not. The peak seen 

at 27 minutes is likely to be breakthrough signal from the unmodified peptide as 

it is observed at the same time as the unmodified peptide is seen to elute. The 

peak ringed in green is therefore likely to be the NiTyr modified peptide. The 

three Q3 masses for the NiTyr modified state of this peptide (Q3=602.3, 390.2 

and 393.2) are all eluted at the same time and is observed at the expected time 

in the gradient. The Q3=393.2 is the b3-ion for the NiTyr modified peptide. The 

b3-ion is targeted for in the unmodified peptide (Q3 = 348.2) but the 393.2 mass 

is a confirmatory NiTyr fragment (highlighted in blue). 

 

Figure 89: The above figure displays the XIC’s for the unmodified ALYWVNGQVPDGVSK 

peptide (top panel – 817.4m/z) and the NiTyr modified state (bottom panel – 840.0m/z).  
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5.5.2 Critical evaluation of the MRM acquisition method  

Likely break-through caused by poor selection in Q1 was a bigger problem in the 

MRM acquisition method for the detection of NiTyr modification on the Apo B100 

protein than in the detection of ClTyr and NiTyr modifications on the albumin 

protein in plasma (see Chapters 3 and 4). False positive peaks of one transition is 

not as initially confusing as more than one peak displaying the common elution 

of the all three Q3 masses being observed for one modified state of a peptide 

(see 5.5.1.2). The problem of break-through did not arise in the analysis of the 

clinical plasma samples perhaps due to the abundance of albumin in plasma (50-

75% of proteins) and the complexity and size of the Apo B100 protein. Break 

through may have become more apparent during the analysis of LDL as although 

extracted from plasma the amphipathic nature of the Apo B100 protein means 

that it is complex in comparison to lysozyme, purified proteins and abundant 

albumin in the plasma samples.  

The MRM acquisition method written for the detection of ClTyr and NiTyr 

modifications on albumin was written using MSMS observations seen during 

conventional MSMS analysis on the Qtrap 2000. The MRM acquisition method 

written for the detection of NiTyr modifications on the Apo B100 protein was 

written from the mass spectrometry data collected on an ion-trap 

(ThermoFinnigan LCQ Deca XP Plus ion trap) to be used to write a program for a 

triple-quadrupole mass spectrometer (Qtrap 2000, Applied Biosystems, 

Warrington, UK).  

In Hamilton’s study there were a number of NiTyr modification sites detected in 

in vivo samples and a number of NiTyr modification sites detected in in vitro 

SIN-1 modified samples (see 5.4.1.1). In our analysis we indicated the detection 

of NiTyr modification sites only reported in in vivo samples in Hamilton’s study 

in our in vitro samples modified with varying concentrations of SIN-1. Perhaps 

there are even more NiTyr sites in vitro and in vivo and these were not 

identified by Hamilton as he applied a “Top Five” method of analysis. The Top 

Five method analyses the precursor masses in order of their abundance, the 

most intensely seen first. Less abundant, low intensity masses will then be 

missed or masked by the more abundant masses. It is possible that Hamilton 

missed the lower abundant modified peptides and that the NiTyr modifications 

found in in vivo samples are also found in in vitro modified LDL samples and vice 
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versa.  Due to the conformation of the Apo B100’s protein some tyrosines will be 

more susceptible to modification than others depending on neighbouring amino 

acids both sequentially in the secondary structure and those spatially in the 

tertiary structure. It would therefore be expected for there to be a higher 

abundance of some modified peptides than others in a sample.  

5.6  Conclusion and Further work on the Detection of NiTyr 
modifications on the Apo B100 protein 

The MRM method identified and suggested NiTyr modification on the Apo B100 

protein. The modifications detected by the MRM method were not detected by 

conventional MSMS or by the precursor scan.  

Further work on the MRM method should include a targeted MSMS to confirm the 

presence of the NiTyr modified peptides in the SIN-1 modified LDL samples. 

From the targeted analysis we would be able to confirm if detection of the NiTyr 

modified peptide had been successful and note where in the chromatography the 

targeted peptide was observed. The MRM method for targeting modified NiTyr 

Apo B-100 peptides should also be applied to the clinical samples (analysed in 

section 4.4.1) to see if there is a correlation between those NiTyr modifications 

targeted in diseased and healthy samples. 
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6 General Discussion 

The main aim of this research was to develop techniques for the detection and 

identification of nitro- and chlorotyrosine modifications in protein samples. 

Nitro- and chlorotyrosine are known markers for inflammatory disease 
[50;54;166;167;207;237] and elevated levels of these oxidative markers have been found 

in the blood of atherosclerotic patients [57;238]. It is important for the mass 

spectrometry techniques to be sensitive as post translational modifications are 

low in abundance. Ideally these methods developed for the detection of post 

translational modifications may be applied to clinical samples to classify 

cardiovascular disease. 

6.1 A summary of the findings from this study 

A precursor scan may be used as a sensitive and selective method in comparison 

to a conventional MSMS experiment alone for the detection of chlorotyrosine 

modifications when there is no prior knowledge of the modification sites. In 

chapter 2 the precursor scan was employed to detect ClTyr modifications in 9 

protein mix samples. The gas phase fractionation experiment (scanning smaller 

mass ranges) was then used and although sample consumption was increased this 

method was found to detect more ClTyr modifications in a HOCl modified 9 

protein mix sample than the precursor alone (scanning a larger mass range). The 

precursor scan is ideal when there is no prior knowledge of a sample and 

chlorotyrosine modified peptides were identified here in a 9 protein mix model. 

A multiple reaction monitoring (MRM) method is a sensitive and selective method 

for targeting nitro- and chlorotyrosine modifications in proteins. The MRM 

method requires prior knowledge about the modification site and was used to 

identify modified peptides in human serum albumin and plasma samples in 

chapter 3. An MRM method was developed to target nitro- and chlorotyrosine 

modifications in chemically in vitro modified human serum albumin and plasma 

samples. 

The MRM method developed can be employed to indicate the presence of nitro- 

and chlorotyrosine modifications in clinical samples as seen in chapter 4. The 

targeted modified peptides were detected but unfortunately these modified 



207 

peptides alone could not be used to classify diseased from healthy patients and 

volunteers.  

The MRM mass spectrometry technique was also be employed to detect 

nitrotyrosine modification of the LDL’s protein moiety, Apo B100, in in vitro SIN-

1 modified LDL samples in chapter 5.  

When discussing the methods developed and used in this study of post 

translational modifications it is important to be aware of their limitations as well 

their benefits. 

6.2 The limitations and advantages  

6.2.1 The precursor scan 

In chapter 2 the precursor scan was used to increase identification of ClTyr 

modifications in in vitro HOCl modified 9 protein mix samples with respect to a 

conventional MSMS analysis. I found that the precursor scan detected and 

identified more ClTyr modifications than the MSMS method. More technical 

replicates of this experiment are required as there was variation between which 

modifications were identified by each method. This was also the case when the 

gas phase fractionation (GPF) experiment was employed. The GPF experiment 

was found to detect more ClTyr modifications when narrower mass ranges were 

scanned using 200amu ranges (400_600, 600_800 and 800_1000amu) in 

comparison to 600amu ranges (400_1000amu). Even narrower mass scans 

(100amu ranges) with a 20amu overlap (400_510, 490_610, 690_710amu…) were 

then investigated with the GPF experiment and by sacrificing more sample 

detected a greater number of ClTyr modifications. The variation observed was 

that some modified peptides were seen in a less sensitive scan (between the 

400_600amu range) but not in more sensitive scans (between the 400_510 and 

490_610amu ranges). The experiment needs further repetition to collate a list of 

the modified peptides seen by each scan. 

6.2.2 The MRM method – developing and applying a targeted approach for 
the classification of disease in clinical samples 

The MRM method in chapter 4 was written from using observations from the 

conventional MSMS method of the analysis of in vitro modified SIN-1 and HOCl 

modified human serum albumin and plasma from chapter 3. The three peptides 
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seen to be ClTyr modified were also seen to be NiTyr modified with the 

exception of one peptide (YLYEIAR + NiTyr). This was explained by the 

susceptibility of a tyrosine residue to modification with respect to the 

neighbouring side chains. Three transitions were employed for the identification 

of a peptide. To calculate the relative percentage modification the unmodified 

peptide was also targeted for identification. Using three transitions decreased 

the number of false positives.  

MIDAS will write an MRM method automatically by performing an in-silico digest 

with the user-specified protease, generating and calculating theoretical MRM 

precursor masses; their transitions and optimal collisional energy. I found that as 

MIDAS only chose one transition for each peptide, analysis by an MRM method 

written by MIDAS and not MSMS observations produced a lot of false positives.  

From the analysis of the in vitro modified protein sample anomalous peaking of 

transitions was sometimes observed but this was not mistaken to be the targeted 

peptide as not all three transitions were seen to be eluted at the same time. It 

may be likely, especially in a complex sample that a precursor (Q1) and 

fragment (Q3) may be isobaric to the targeted peptide. It is less likely that there 

will be a precursor with three fragments (Q3) isobaric to the targeted peptide. 

False positives were seen in the form of “break-through”. In an MRM experiment 

there was sometimes some confusion as to which peak with the commonly eluted 

three transitions was the targeted peptide. It is impossible for a peptide with a 

certain polarity to be eluted at two different times during the chromatography 

gradient. The retention time is therefore important in the identification of the 

targeted peptides in the MRM method. When a peptide becomes NiTyr or ClTyr 

modified the peptide will become less polar meaning the retention time is later. 

If a peptide becomes methionine oxidised the polarity is increased and the 

peptide will be eluted earlier with respect to the unmodified peptide. When a 

peptide is methionine oxidised and a tyrosine is modified by a Cl- or NO2 group 

the polarity and therefore elution time of the peptide will remain relatively 

similar with respect to the unmodified peptide. Break-through is caused by poor 

selectivity in the first quadrupole (Q1). Q1 selects the precursor mass to be 

fragmented but the resolution is set to low. The three (Q3) transition masses are 

where possible common to all modified states of the peptide. If in Q1 two 
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precursors close in mass are selected the signal from another modified state will 

be “break-through” and be observed. 

The MRM method successfully detected modification in the clinical samples 

which was confirmed by a targeted MSMS experiment and the data collected was 

searched by Mascot. We failed to classify the diseased from healthy clinical 

samples. This does not mean that our modified peptides cannot be used to 

classify disease but it does mean that they are not enough to classify disease. 

The MRM method employed only targeted for four peptides and their modified 

states. These peptides and the modified states were based on the MSMS analysis 

of the SIN-1 and HOCl modified samples. More important or at least NiTyr and/or 

ClTyr modified peptides key to the classification of disease may have been in 

very low abundance therefore not observed during MSMS analysis. The detection 

of modification in healthy samples can be explained by the variation of causes of 

NiTyr and ClTyr. These modified tyrosines are caused by oxidative stress in a 

response to inflammation. The healthy volunteers may have been smokers or had 

just taken part in physical activity [205;206]. In order to combat this the sample 

population could be increased to allow for healthy samples to be modified by 

these environmental factors.  

It is known from other studies (discussed in 4.7) that the onset of atherosclerosis 

can happen at a very early age and the individual is asymptomatic for years 

before developing symptoms at a later stage in life [209-213]. In order to overcome 

the problem of modified peptides unspecific to disease more modified peptides 

or indeed a combination of modified peptides may be required to identify 

diseased samples. It may be possible that employing modified Apo B-100 

peptides would be more successful for the diagnosis of diseased samples (as 

discussed in chapter 5) as increased levels of LDL are related to the development 

of atherosclerosis.            

6.2.3 The MRM method and precursor scan – NiTyr detection in the Apo 
B100 protein 

The LDL was modified in vitro with HOCl in parallel with a simpler protein, 

lysozyme. The precursor scan identified and suggested ClTyr modification in the 

lysozyme protein. The precursor scan however, failed to detect any ClTyr 

modified peptides in the LDL protein moiety Apo B100. Even though the 
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precursor scan is a sensitive and selective mass spectrometry method the ClTyr 

modifications are extremely low in abundance and were not detected during 

analysis. The Qtrap 4000 is more sensitive for precursor ion scanning and 

multiple reaction monitoring in comparison to the Qtrap 2000 used throughout 

this study due to the bigger trapping abilities and faster scan times[239]. Perhaps 

if this analysis was performed on the Qtrap 4000 instead of the Qtrap 2000, 

ClTyr modifications would have been identified. 

The MRM method for the detection of NiTyr in Apo B-100 was written from the 

observations made from the work carried out by Hamilton et al [233]. Hamilton 

performed the study of in vivo and in vitro modified LDL samples on the LCMSMS 

(ThermoFinnigan LCQ Deca XP Plus ion trap). The Q3 fragments were chosen 

depending on their intensity seen in the mass spectrum.  The MRM method 

written was able to identify NiTyr modifications on the Apo B100 protein in LDL 

samples. Some targeted MSMS was required to confirm the identification of the 

post translational modifications and there were a lot of incidences of break-

through signal and anomalous peaks seen in the MRM analysis of the LDL 

samples. The MRM method was performed on the Qtrap but the MSMS 

observations used were taken from the LCQ which is a different machine. If the 

MRM method had been written from MSMS observations on the Qtrap the MRM 

method may have been more optimal. 

In conclusion to this general discussion I have detected post translational 

modifications by a precursor scan and by MRM methods in purified proteins and 

biological and clinical samples. Precursor scans are useful when there is no prior 

sample knowledge but MRM is more selective when targeting known peptides as 

both Q1 and Q3 are fixed. 
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