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for the analysis of multimode dynamics of semiconductor ring laser are developed. The

diffusion coefficient is suggested as a crucial parameter to take into account. The di-

rectional switching dynamics and dependence on the operation parameters has been

studied. The lasing wavelength switching accompanied by directional flipping have also

been studied. In this framework, a prior selection of the lasing mode is seen as a key

factor for the numerical results.
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Chapter 1

Introduction

1.1 Historical Review

1.1.1 General Lasers

The original idea of lasers has to be traced back to Einstein’s emission theory, according

to which energy in the form of a photon can be absorbed or emitted through carrier tran-

sitions between different energy levels. A monochromatic light wave travelling through

the atoms with two energy levels with the difference equal to the energy of the photon

could induce the transition of atoms from a higher level to a lower energy level accom-

panied by emission of photons of exactly the same energy as the injected ones, assuming

that the atoms in the upper lever outnumber those in the lower level. This is illustrated

in Fig. 1.1.

Classified by the amplifying material, lasers could be classified into gas lasers, dye lasers,

solid state lasers and semiconductor lasers, etc[1, 2].

The first laser to work in continuous wave operation was the helium-neon gas laser

working at wavelengths corresponding to the infrared region[3]. The helium atoms are

excited by a DC or RF discharge and excited to a variety of higher levels. Those atoms

relaxed into one of the two metastable 21S0 and 23S1 energy levels with long decay

time. By collisions with neon atoms, energy transfer between helium and neon atoms

takes place. Part of the energy contributes to excitation of ground state neon atoms to

excited energy levels, another transfers to the form of kinetic energy. It is the relaxation

of the excited neon atom that provides lasing. Although first demonstrated in infrared

region, the He-Ne lasers could also emit red light. Actually, all of the noble gases have

1
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Figure 1.1: Stimulated emission in a two level atom. A photon with energy equal
to the energy difference induces a downward transition in energy and a new photon is

generated coherent to the injected one

been used as active media for gas lasers. Lasers made from normal molecular gases like

carbon dioxide have been demonstrated as well. However, unlike in the case of He-Ne

lasers where lasing occurs between electron transitions between excited energy levels,

CO2 lasers emit light when transitions between internal vibration modes occurs.

Although gas lasers have been demonstrated for a long time, they are still widely used

as light sources with high output power which are easy to construct and relatively inex-

pensive.

Solid state lasers, as the name suggests, are lasers using crystals as the amplifying

medium. Flashlamps are commonly placed inside the laser cavity and provide pump-

ing. Therefore this kind of laser is sometimes called the optically pumped laser. Ruby

lasers, as an example of solid state lasers, are the first functional lasers in the history

and widely studied after that[4]. As in gas lasers, ions are excited into the absorption

bands by the trigger of the flashlamp. They decay to a metastable upper energy level

and further relax to a lower energy level with photons emitted. For systems referred as

a four-level system, the ions at lower energy level finally drain to the ground level and

wait for another flash to excite. They are called four-level system as it is formed by

absorption bands, two metastable levels and the ground state. However, for the case of

ruby lasers, the lower energy level is the ground level. The name three-level system is

used to denote such lasers.
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Apart from ruby, rare earth ions in an oxide host has been widely used for the lasing

materials. Among them, YAG is one of the most popular. As excited by flashlamps,

solid state lasers usually work in pulsed operation. Output power is usually quite high

for such kinds of lasers. Even the ruby system could reach the level of gigawatts. Flash-

lamps are not the only pumps for such lasers, flashlamps being sometimes substituted

by laser diodes.

1.1.2 Semiconductor Lasers

The idea of semiconductor lasers goes back to the 1960s when Basov first published

the negative temperature theory, i.e. population inversion in a semiconductor and con-

sequent lasing by injecting carriers into a semiconductor PN junction[5]. Subsequent

researches were conducted and lasing of semiconductor PN junctions in lab conditions

have been reported by different groups [6, 7, 8, 9]. In so called homostructure junctions,

as the carrier emission occurs in a relatively broad area around the junction, a large

number of carriers is needed to reach lasing conditions. Therefore a very high current

density, which is in the range of 4× 104A/cm2 - 1× 105A/cm2 is needed. It is hard to

dissipate the heat efficiently by the limited techniques at that time. However, as the

threshold current density is highly temperature sensitive, lasing could start by injection

below the room temperature threshold by working in a low temperature environment.

Actually these lasers only worked below liquid Nitrogen temperature. Even in such con-

dition, only pulsed operation was demonstrated. This severely limited the application of

these lasers at that time. The band structure, refractive index and light intensity of PN

junction lasers as a function of lateral position is illustrated in Fig. 1.2(a). Low carrier

and photon densities are the main drawbacks of such lasers.

The improvement was made to lower the lasing threshold current density by introducing

the idea of the heterojunction which confines carriers in a small area to boost their local

densities and enhance the possibility of stimulated recombination.

The normal heterojunctions are made by placing a layer with p-type wide bandgap ma-

terial next to the p-side of a PN junction. The abrupt bandgap change works as an

energy barrier to prevent further carrier diffusion in one side of the PN junction, and

restricts the carriers inside it. Also, wide bandgap material has lower refractive index

which could confine optical field in the low bandgap side by total internal reflection. By

such effects, the room temperature threshold current density has been made as low as
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(b) Double heterostructure lasers.

Energy barrier is provided in the
two layers of the surface of the
sandwich structure to confine car-
riers in between. Refractive index
in the active layer is higher than
that in the outer layers to form
a waveguide structure to confine
photons.

Figure 1.2: Schematic diagram of band structure, refractive index and light intensity
along the lateral direction for (a)homostructure lasers and (b)double heterostructure

lasers.

2.3 × 102A/cm2, a value 3 magnitudes smaller than the homojunction semiconductor

lasers. With lower threshold, room temperature pulsed lasing has been demonstrated.

However, the current density is still high, excess heat is generated and room temperature

CW lasing is not possible in such lasers.

By a further sandwich, a PN junction forms an active layer between two layers with wide

band-gap material. Carrier and photon confinement are obtained within the middle layer

of the sandwich structure, as displayed in Fig/ 1.2(b). This gives the stimulated emission

a further efficiency boost. By doing this, the first room temperature CW semiconduc-

tor laser was experimentally demonstrated and the new era of optoelectronics started[10].
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Figure 1.3: Carrier confinement and its density of states with different dimensionali-
ties. The confinement of bulk, quantum well, quantum wire and quantum dot structure

are illustrated from top to bottom respectively[11]. c©2000 IEEE.

From 1970, semiconductor lasers experienced great progress, thanks to the new fabri-

cation technologies like Molecular Beam Epitaxy(MBE), Metalorganic Vapour Phase

Epitaxy(MOCVD), etc. Their possibility to precisely control the growth of the material

layers gave birth to so called bandgap engineering, by which artificial structures called

quantum-confined structures such as quantum well, quantum wire and quantum dot with

size confined below de Broglie wavelength in 1-D, 2-D and 3-D have been fabricated. In

such structures, the carriers are localized and consequently, the shape of the density of

states is modified.

The carrier confinement in k−space and the corresponding density of states is shown

in Fig. 1.3. From top to bottom, the situations of bulk, quantum well, quantum wire

and quantum dot have been illustrated respectively. It is seen that in a bulk semicon-

ductor there is no confinement while in a quantum well there is confinement in the kz

direction but carriers can make free movement in the kxky plane. Carriers in quantum

wires are confined in kx and kz direction but free on ky direction. Quantum dot carriers

are confined in all three directions and localised to discrete points in k−space. The

corresponding densities of states are discrete δ functions. Those lasers show superior

characters like low threshold current, temperature insensitivity, etc. The evolution of
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Figure 1.4: Evolution of the threshold current density of semiconductor lasers with
time. Each new structure roughly decreases the threshold current density one order of

magnitude[12]. c©2000 IEEE.

Figure 1.5: The schematic diagram of the first CW double heterostructure semicon-
ductor laser at room temperature as an example of edge-emitting lasers. Laser output

is in the heterojunction plane[12]. c©2000 IEEE.

the threshold current density of semiconductor lasers with time is shown in Fig. 1.4.

The introduction of double heterostructure lasers, quantum well lasers and quantum

dot lasers each lower the laser threshold respectively. The introduction of quantum dot

lasers is promising for mode locking operations due to the wide output spectrum by

inhomogeneous broadening[13]
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Figure 1.6: The schematic diagram of a VCSEL. Light output direction is perpendic-
ular to the substrate. DBRs are fabricated ion both sides of the active layer to increase

reflection[15]. c©2000 IEEE.

1.2 Edge-emitting Lasers and Surface-emitting Lasers

Semiconductor lasers were first proposed in in-line or edge-emitting cavity configura-

tion. In terms of semiconductor lasers, two facets perpendicular to the heterostructure

junction plane are cleaved to provide feedback as end mirrors in conventional lasers. As

mentioned before, both carriers and photons are confined in the heterostructure junction

plane. Photons are amplified by iterations of travelling between cleaved facets. Further

confinement has been made by various lateral patterns, such as ridge structure, etched

mesa buried heterostructure, impurity induced discorded buried heterostructure, etc[14].

A typical edge-emitting laser is illustrated in Fig. 1.5

The surface-emitting lasers, especially the Vertical-Cavity Surface-Emitting Lasers (VC-

SELs) have been intensively studied recently. As shown in Fig 1.6, the active layer is

sandwiched between two distributed Bragg reflectors (DBRs). A DBR is a reflector with

wavelength-dependent reflectivity. It is usually formed by varying effective index peri-

odically in the waveguide. The laser direction is perpendicular to the substrate, hence

it has the word vertical in its name. The light is not amplified much after each traverse

of the single active medium layer due to its small thickness. Therefore the DBRs have

to be carefully designed to be highly reflective to make sure most light is reflected back

at the mirror and travels as any circuits possible inside the cavity to obtain sufficient
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gain. Usually the reflectivity has to be at least as high as 99.9%.

VCSELs provide some unique advantages over edge-emitting lasers because of the cavity

configuration. For example, in situ monitoring during fabrication, far field profile with

Gaussian shape good for coupling to fibers and two-dimensional arrays, high frequency

insensitivity against temperature and low threshold current[15, 16]. The cavity length

is relatively short, thus it has a large free spectral range. Therefore good quality single

longitudinal mode operation is anticipated.

1.3 Semiconductor Ring Lasers

Semiconductor ring lasers (SRLs) have recently drawn great interest due to their unique

directional bistability properties: ideal ring lasers present perfect degeneracy between

waves travelling in clockwise (CW) and counter-clockwise (CCW) directions. A mi-

crograph of the ring laser is Fig. 1.7. A schematic diagram of the laser with similar

structure to Fig. 1.7 is displayed in Fig. 1.8. Strong gain competition between the

light in the two directions should therefore lead to bistable, unidirectional operation of

the device [17]. According to Hill et al. [18], fast switching time is possible. Such a

characteristic has potential applications in optical memory.

At the early stage, research on SRL was carried out on unidirectional operation by vari-

ous approaches to introducing anisotropy between two lasing directions, for example by

fabricating a crossover waveguide[21], optical diode, tapered waveguide[22] or by feed-

back from external cavities[23]. The applications of such lasers are taking advantage

of its unique property by which no cleaved facets are needed for optical feedback[24].

Desirable lasing properties like CW operation with the enhanced mode purity or higher

single beam power are achieved.

The report on observations of directional bistability in triangular semiconductor ring

lasers and large diameter semiconductor ring lasers[20, 25] opened new applications such

as optical memory [18] and optical switching[26, 27]. Unlike in the unidirectional lasers

mentioned before, of which the lasing direction is pre-determined by the asymmetry in

the cavity, the lasing direction for these devices is reproducible but unpredictable[25].
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Figure 1.7: SEM of a semiconductor ring laser. Three photon detectors are marked
as PD1, PD2 and PD3[19]. c©2003 IEEE.

Switching between the two directions could happen even after the laser has been sta-

bilised. Close to the lasing threshold these devices usually exhibit a regime of bidi-

rectional operation that arises from imperfections in the laser cavity due, e.g., to the

light-extraction sections. At higher currents, the bidirectional regime becomes unstable

and leads to bistable operation between unidirectional CW and CCW states. Often, the

bifurcation occurs through an intermediate regime called Alternate Oscillation (AO)

where the laser works bidirectionally but the power emitted in both directions oscillates

in antiphase at frequencies of the order of tens of MHz (Sorel et al. [28]).

A careful examination of the region above lasing threshold revealed that in the unidirec-

tional regime, as the bias current is further increased the dominant direction of emission

is observed to switch at almost regular current intervals (Sorel et al. [20]), the flips in

lasing direction being accompanied by abrupt increases in the emission wavelength which
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Figure 1.8: The schematic diagram of a semiconductor ring laser. Current is injected
into the ring cavity. OUT1 and OUT2 is used to detect the output. Reversed bias could
be applied there to extinguish the feedback from facets. Reprinted with permission

from[20]. Copyright 2002, American Institute of Physics.

correspond to several mode spacings of the SRL [29]. The points of flip are quite sensi-

tive to the device and the details of the working conditions, but for fixed parameters this

behaviour is robust and reproducible. Interestingly, the lasing direction remains stable

when the current is decreased, and although the wavelength blue-shifts in the process,

in this case the wavelength jumps correspond essentially to single mode spacings of the

SRL cavity. The backscattering from the coupler was thought to be the reason for bi-

direction operation and further study was carried out on this factor[19]. It was found

that the dissipative part of the backscattering favours the CW operation, and it is the

conservative part of the backscattering which drives the lasers to alternative oscillations.

Since the carrier lifetime is much longer than the photon lifetime, the fact that a cer-

tain amount of carrier density corresponds to two distinct lasing directions provides the

possibility of fast switching of the lasing direction without involving slow carrier density

fluctuation. This is promising for applications like optical memory[18] and all-optical

regeneration[27]. Switching triggered by optical pulses injected into the nonlasing di-

rections has been studied theoretically in [30, 31, 32]. Surprisingly, the lasing direction

could also be changed by optical injection co-propagating with the lasing mode[33, 34].

This is called backfire. Although believed not to boost the switching character, it has
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practical advantages in circuit integration as control of lasing direction could simply be

done by light injection into one end of the output waveguide.

Small cavity size has the advantage of fast switching time which is governed by photon

lifetime[35]. Small-sized SRLs with retro-reflector cavities which used parabolic mir-

rors are reported[35, 36, 37, 38]. The parabolic mirrors harness the problem of usual

high current leakage of closed loop bend waveguides along with strong mirror loss and

the technical difficulty to downscale them in the triangular and rectangular shaped SLRs.

The other branch of research of semiconductor ring lasers is the attempt to generate

short pulses with high repetition rate by mode locking them. Both active, passive and

hybrid mode locked SRLs are reported[39, 40, 41]. Counter propagating pulses collide

inside either gain modulator or saturable absorber as in the case of colliding pulse mode-

locking. High repetition frequency and almost transform limited pulses are reported.

Those promising behaviours are probably inherited from colliding pulse mode-locked

inline lasers as they have similar structure in terms of mode locking configuration[42].

One thing to be noted is that, although in the first demonstration, the semiconductor

ring lasers were fabricated in a circular cavity[43], different cavity geometries have been

utilised, such as racetrack [38, 44], square and triangular[22, 25, 45].

1.4 Review of Modelling Approaches

1.4.1 Maxwell-Bloch Equations

The theory of modelling lasers has been long established by Maxwell-Bloch equations,

for example in [46, 47, 48, 49]. In such a theoretical framework, the so-called semiclas-

sical approach has been taken, in which light is treated as a classical electromagnetic

wave and the lasing material is seen as a collection of individual particles subject to

quantum mechanical principles. The light travelling inside the cavity interacts with

the lasing medium which induces a macroscopic polarization made up from microscopic

dipole resonances. The polarization on the other hand behaves as a source of emission

after being stimulated by the laser field. The optical field reproduces itself after such

iteration. This is called the self-consistent approach[17, 46]. As the Maxwell equation is

used to express the field and the active material equations have a Bloch form (first used

for nuclear magnetization), this approach is called Maxwell-Bloch equations.
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This approach has been successfully applied to laser systems with various amplification

materials like gas lasers and solid-state lasers of which the active medium can be de-

scribed as an ensemble of atoms with two distinct energy levels, e.g. two level atoms.

Emission takes part at energy equal to the energy difference between those levels. In

this case, only population inversion between those two levels and atomic polarization is

relevant to the dynamics which could be described by Bloch equations. However, this is

not the case in semiconductor lasers as will be discussed in the following section. Carrier

transition happens between energy bands which are governed by Fermi distributions and

unique occupation of electronic states. This gives semiconductor lasers an asymmetri-

cal gain curve around the peak, while for gas and narrow bandwidth solid-state lasers

the gain curve is symmetrical. Also, a strong amplitude-phase coupling is presented in

semiconductor lasers[50]. To make such peculiarities fit into the framework of Maxwell-

Bloch equations, either second quantization[48] or using a susceptibility to represent the

dynamics of fast macroscopic polarization are required[29].

1.4.1.1 Time Domain Modelling

The Maxwell-Bloch equations as a set of partial differential equation with both time and

spatial dependence can be numerically solved by the Finite-Difference-Time-Domain(FDTD)

method. This is a quite straightforward approach. In laser device modelling, further

assumption have been made that the solution of the equations are waves travelling in

certain directions. This is called travelling-wave model. Both of them are sometimes

referred as time-domain model.

Examples of the time domain approach could be found in 2-level atoms[51], semicon-

ductor lasers[52, 53, 54, 55, 56, 57], Semiconductor amplifiers[58, 59] and mode-locking

semiconductor lasers[60, 61, 62]. Some of them have polarization equation adiabatically

eliminated and a more phenomenological gain term in the model, like [58, 59, 60, 61, 62].

Others have full Maxwell-Bloch equations like [52, 53, 54, 55, 56, 57].

1.4.1.2 Rate Equation Approach

Another approach called rate equation has been presented since the 1960s to provide

a simple way to model the lasing dynamics[63, 64]. The interaction between photons

and carriers via stimulated emission has been described by such an approach. Phase

dynamics are not considered in the early rate equation approaches.



Chapter 1. Introduction 13

The approach is generalized to the multimode case by taking into account gain saturation[63].

However on the argument that phase-sensitive interactions might be critical to dynamics

in certain cases[65], several attempts have been made to take this effect into account,

for example[66].

The lasing light in the cavity is defined as E(t, z) =
∑

k Ek(t)Uk(z) to separate the spa-

tial and temporal variables, where Ek and Uk are complex valued functions defined as

the kth mode amplitude and spatial profile. The idea is to decompose the total field into

a set of components which have the properties of self-reproducing after each round-trip.

They are called eigenmodes. Early works usually take Uk as a sin or cos function in the

Fabry-Perot lasers or complex exponential in the ring lasers[67]. The above approach

is based on the assumption of ideal closed cavity. In Fabry-Perot lasers that means

end mirrors or cleaved facets with 100% reflectivity while in the case of ring lasers, it

means no output coupler is incorporated in the cavity. In[68], wave equations can be

represented in matrix form. In such cases, the wave equations of the cavity fields are

Hermitian. It has real eigen values which corresponds to the lossless cavity. Further-

more, the eigenmodes are energy-orthogonal and form a complete set. Any form of field

travelling inside the cavity could be expanded on a combination of them.

However, in real life, all cavities are open due to the finite reflectivity at facets and cav-

ity configuration complexity is introduced by components like a coupler, which leaves

the above assumption untrue. In such cases, the operators corresponding to the wave

equations are not Hermitian any more. The eigenvalues are complex having both real

part corresponding to the phase shift and imaginary part corresponding to the gain/loss.

Furthermore, the eigenmodes are neither orthogonal nor guaranteed complete. However,

a biorthogonal relation of such eigenmodes is fulfilled. This can be seen as a generalised

orthogonal relation on to counterpropagating eigenmodes. Such biorthogonality is based

on the observation of more than one photon spontaneously emitted for each transverse

mode [69] and hence the transverse eigenmodes are not energy orthogonal and complete

due to the non-Hermitian nature of the system[70, 71]. The same analysis has been later

generalised and applied to the longitudinal modes in standing-wave lasers[72].

Based on the above discussion, a real eigenmode decomposition and instantaneous mode

calculation is needed for accurately modeling lasers with fast dynamics[73, 74] or com-

plex cavity construction[75]. In such approach, the travelling waves inside the cavity

and longitudinal eigenmode follows a Schrodinger equation[68]. A redefined inner prod-

uct has been used to separate the rate equations of each longitudinal mode from the
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travelling wave equation[73, 74]. A real mode with profile and frequency changing from

time to time has been identified and its dynamics have been studied.

The above approach, although providing a more accurate description of laser dynamics,

is computationally demanding. This contradicts the purpose of utilizing rate equations

which is easy and fast yet accurate. Therefore they have been only used to model DFB

lasers[73] in the limit of the single mode approximation and DBR lasers[74] with only

two modes taken into consideration.

To overcome this drawback and provide a computationally efficient multimode model,

an intermediate approach between calculating real instantaneous frequency and using

simple functions to represent eigenmode has been developed[67]. It is appealing to use in

the study of fast dynamics of mode-locked semiconductor lasers, where a large number

of equations are need for the broad spectrum width.

The rate equation approach could be reduced from the Maxwell-Bloch approach with

adiabatic elimination of the atomic polarization[65]. Therefore the rate equation ap-

proach is only applicable to dynamics slower than the polarization dephasing time, an

ultrafast dynamics cannot be reproduced in rate equations. Also, as mentioned above,

the spatial dependence is hidden in the rate equation approach. As spatial electron and

hole occupation variation might be nonneglegible in cases like mode-locking, the travel-

ling wave approach is thought to be more favourable in certain applications. However, by

representing the problem with less degrees of freedom, far less computational complexity

is needed than that for a time domain approach. In certain problems, this advantage is

obtained without obvious losing accuracy of the result. A comparison between results

from rate equation and time domain models on a mode locked semiconductor laser with

saturable absorber is seen in Fig. 1.9 and Fig. 1.10. From the figures, there is no big

discrepancy for the rate equation from the time-domain approach. However, as a sim-

plified version of time domain approach, its usage has to be strictly restrained to certain

problems and it should not be used without evaluating the error it might introduce into

the system.

1.4.2 Gain

In laser physics, gain as a measure of the amplifying of the light by laser medium is crit-

ical. Strictly speaking, a microscopic calculation has to be performed to get an accurate

description of gain [76]. However, such an approach needs extensive computation which
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Figure 1.9: Temporal pulse profile for a laser with single saturable absorber. Solid line
is for a rate equation approach while the dashed line is for time-domain simulation[67].

c©2003 IEEE.

Figure 1.10: Steady state spectrum profile for a laser with single saturable absorber.
Solid line is for a rate equation approach while the dashed line is for time-domain

simulation[67]. c©2003 IEEE.
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is not desirable for device modelling. For this reason, phenomenological gain is widely

used.

To fit in the early rate equation approach, linear gain independent of lasing frequency

has been used in the form g(N) = a(N −N0) where a is differential gain ∂g
∂N and N0 is

transparency electron density[14]. However, this approximation is only accurate within

a small range just above the lasing threshold. Gain starts to be nonlinear with carrier

density at high injection current. To obtain a closer agreement with experiments, further

corrections to the gain form have been made such as a power law gain dependence.

A gain nonlinearity is inherited in the rate equation model via the ’-’ sign in front of gain

terms. The interpretation is carrier depletion at higher photon density, and thus smaller

modal gain, is expected in semiconductor lasers. This nonlinearity is confirmed by a log-

arithmic gain relation with current for quantum wells[77]. However, [78, 79, 80] shows a

further nonlinear gain suppression that photon density dependence has to be added into

the model to accurately obtain agreement with experiments, especially to compare the

discrepancy with the experimentally observed relaxation oscillation frequency. This can

be done by a nonlinear saturation term ε in the modal gain expression as G = GL(1−εI)

where GL is the linear gain[81, 82]. Another approach is to write gain as G = GL

1+I/Is

where Is is called saturation energy[80, 83]. By doing this, the gain saturation of semi-

conductor lasers has the same form as that of a two-level one[17]. Different nonlinear

gain like G = Gl√
1+I/Is

has also been used by some author[84].

This nonlinear gain saturation is crucial in dynamics of semiconductor lasers as it affects

modulation response and modulation bandwidth[78, 80, 85]. Asymmetric gain curve has

also been shown to result[86, 87]. Carrier heating and spectral hole burning are seen

as mechanisms behind this nonlinearity and have been studied numerically[88]. Both

spectral-hole burning and carrier heating are fast intraband dynamics happening below

the picosecond time scale. The name spectral hole burning is used for the process that

a ’hole’ is burnt in the spectrum because of the local gain depletion and the intraband

carrier-carrier scattering mediation of it within finite time, while carrier heating denotes

the process of carrier distribution deviating from the quasi-Fermi one inside each energy

band and the relaxation by carrier-phonon scattering. These effects are usually studied

by a density matrix[85, 86, 88, 89]. Third order perturbative method has been used to

solve the density matrix equations. A priori assumption has to be made that the optical

field is small to make the above method justified.
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(a) Experimental versus theoretical re-

sult of gain spectrum. No many body
calculation was carried on. A dephasing
time is used here

(b) Experimental versus theoretical re-

sult of gain spectrum. A many body cal-
culation is done here

Figure 1.11: Comparison of the gain curve calculated with models with and without
many body effect with the experimental result. Reprinted with permission from [90].

Copyright 1997, American Institute of Physics.

On the other hand, microscopic theories which calculate the gain from the electronic

structure have been developed[91, 92, 93]. The optical field is quantized to model the

annihilation and creation of it, and consequently the carrier occupation change. This

approach uses a many body Hamiltonian which is consistent with summation of the

kinetic energies for single particles over all particles, stimulated emission and absorption,

and Coulomb interactions. The correction introduced by many body effects could be

seen in Fig. 1.11(a) and Fig. 1.11(b). Although a better fit to experiment can be

obtained, intensive numerical calculation is needed in this approach. This makes its

use difficult in device modelling and studying of laser dynamics. Works to simplify the

microscopic theory have been done by Balle[94, 95]. In this works, an analytical yet quite

accurate approximation including gain nonlinearity has been developed. Both spectral

hole burning and four wave mixing are taken into account.

1.4.3 Modelling the Semiconductor Ring Lasers

The rate equation form of two mode bi-directional model for semiconductor ring lasers

has been derived in [66]. The gain material is seen as an ensemble of two-level atoms

and the atomic polarizations are adiabatically eliminated. The fields and carrier density
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are expanded into Fourier series. By doing that, a system with four complex valued or-

dinary differential equations or seven real equations is obtained[65]. A similar study has

been conducted on Fabry-Perot configurations and an almost identical set of equations

except for a real carrier grating has been derived[65]. The backscattering is not consid-

ered in this work and the dynamics are attributed to the phase coupling via the carrier

grating although it is small. It has been shown that this phase effect can even trigger

the quasiperiodic and periodic two-mode solutions which fall out of the framework of

this two-mode bi-directional model.

The study shows that, apart from the uni-directional operation favoured by nonlinear

gain saturation[96], the system might work in steady-state bi-directional lasing opera-

tion because of the phase interaction between modes established via a carrier grating.

The influence of diffusion and linewidth enhancement factor on the carrier grating and

in turn the dynamics are studied in [97]. Furthermore, the behaviour of the relaxation

oscillation are influenced by carrier diffusion smoothing out of the spatial inhomogeneity

of the carrier density.

To model realistic semiconductor ring lasers, the output coupler has to be taken into

account to extract the light out from inside the ring cavity. The backscattering from

end mirrors in gas ring lasers has been studied in [98, 99]. An oscillatory instability

has been identified and explained as the interplay between the conservative part of the

backscattering and nonlinear gain saturation. In semiconductor ring lasers, backscat-

tering is usually added in the same way by introducing a phenomenological complex

backscattering constant[19, 28]. The value of the backscattering term and its real and

imaginary parts have been studied to identify the different lasing regimes, and bifurca-

tions between them. The origin of alternative oscillation is explained with such a model.

Although similar effects were found in He-Ne ring lasers[98] and dye ones[100], the ori-

gin is not exactly the same as in semiconductor ring lasers. In semiconductor lasers,

the cross-saturation c is stronger than the self-saturation s in semiconductor material.

Therefore the condition for the oscillation in He-Ne, which is c/s < 1, has to be relaxed.

As an application, the model has been extensively used to study the switching between

two bi-stable lasing directions in[30, 31, 32, 101, 102]. The optical injection used to

trigger the directional switching is seen as a fast injection locking, therefore the Lang-

Kobayashi model is used to model them[103]. In [30], the relaxation oscillation after the

trigger pulse has been studied while the injection locking property has been studied in

[102]. The switching time dependence on the trigger pulse energy and width have been
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studied in [32].

The model presented previously can be further simplified for the semiconductor lasers

and other class-B lasers which have a large ratio of photon lifetime to carrier lifetime and

consequently small carrier density at time scales longer than the relaxation oscillation

time[104]. The equations can be asymptotically reduced to two-dimensional model plus a

conservation law of total photon intensity on the slow time scale. By doing this, the slow

dynamics can be presented in a two-dimensional phase space. This model presented a

way to illustrate boundaries of operation regimes and bifurcations between them. It has

thus been used further on study of the directional bi-stabilities[33, 105, 106, 107, 108].

In order to analyse the wavelength jumps that occur, a multimode rate-equation ap-

proach has been used in Stamataki et al. [109] with the modal interaction terms being

determined from a χ3-description of the response of the active material based on [110]

followed the theory in[111, 112, 113]. The gain asymmetry due to spectral hole burning

and carrier density pulsation have not been included in the model. The four-wave mix-

ing effect is not included in this model as the authors believe the radius they used is too

small for this effect to happen.

However, the four-wave mixing term has been added into the model by carrier density

pulsation, carrier heating and spectral hole burning[114, 115, 116]. The neglected carrier

diffusion has been recovered in [116]. In [115], the experimental results were used to fit

the parameters like the strength of the nonlinear interactions.

More recently, a Travelling-Wave Model has been applied to study the directional prop-

erties of the emission of SRLs [29]. Numerical simulations of this model allowed to

successfully reproduce the observed phenomenology, and they indicate that the modu-

lation of the cavity losses imposed by the residual reflectivities in the light extraction

sections (output coupler and output waveguides), the thermal shift of the gain spectrum

and the spatial hole burning in the carrier density play a crucial role in the directionality

of the emission and its changes with operation current. The simulations also indicated

that parameters have to be finely tuned in order to reproduce the observations, but the

complexity of the model did not allow one to have a clear-cut picture of the underlying

dynamical mechanisms.
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1.5 Thesis Objective

In this thesis, multimode dynamics of semiconductor ring lasers, specifically the switch-

ing between different operations has been studied. Generally one finds wavelength

switching in the conventional in-line lasers, eg the lasing frequency shift with certain

operation parameter. With the unique symmetrical geometry, which provides the possi-

bility of bidirectional lasing, a ring laser offers the possibility of novel directional switch-

ing in addition to the conventional wavelength one[19]. This two fold switching makes

the ring lasers promising candidate for future optical networks while presents richer and

more complicated dynamics to study[20].

The problem of knowing the initial states and searching for the final states after a certain

process falls into the scope of the dynamical systems theory. When study dynamical

systems, identifying steady states and the possible trajectories among them in the phase

space are more relevant than the actual time traces of the transitions. Qualitative under-

standing of the system is always approached geometrically[117]. This philosophy serves

the study of switching dynamics well in the device modelling, as in such circumstances,

where the device finally settles down after tuning the control parameter given a initial

state is more significant in practical[105].

Generally, static analysis has to be done to one’s best effort to identify steady states and

their stabilities before numerically solving the dynamical systems. The numerical results

without knowing any steady states by simply running simulations might be misleading

as one might encounter hysteresis in case of bistable states and have unpredictable be-

haviours by numerical simulations.

As stated in previous section, travelling wave approach and rate equation model are

two main methods to study the transient of laser devices. Although the travelling wave

models is believed to introduce least simplifications and been widely used, rate equations

could offer a solution with less computation and good accuracy in certain circumstances.

The problem to be studied in this thesis, as the author believes, is especially appealing

to solve in multimode rate equations.

First of all, the unique geometry of the ring laser cavity, supplements the Maxwell-Bloch

equations, as light travelling inside it reproduces itself after one round trip which can

be modelled as a system of differential equations with a periodic boundary condition.

Without output coupler, the fields inside the ring are expected to be smooth everywhere.
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All these aspects make the usage of a spectral method, rate equations approach specifi-

cally in this thesis, appealing in this specific cavity configuration.

Comparing with popular numerical algorithms such as the Finite-Difference-Time-Domain

or Finite-Element-Method, the spectral method is a global method using high-order or-

thogonal basis elements for the whole domain while other methods chop the domain

into small subdomains and use piecewise functions within each of them. Given a regular

domain, as studied in this thesis, ring cavity with periodic boundary condition, the spec-

tral method offers high accuracy with minimum memory demands and possibly faster

calculation time.

The thesis is focused on single transverse/lateral mode lasing. By restricting the problem

in two-dimension, the field can be written into a series expansion with infinite terms.

E(t, z) =
N=∞
∑

N=0

fN (t)uN (z) (1.1)

In this, the spatial and time coordinates are treated spectrally. In the case of periodic

boundary condition, the base function uN (z) is chosen to be Fourier series under the

Galerkin method.

Although the time coordinate could be treated spectrally as well as the spatial coor-

dinate, the spectral method is only applied to the spatial dependence in this thesis as

marching forward in time is much cheaper than a full spectral approach. In this case, the

partial differential equations with respect to both time and space have been reduced to

a set of ordinary differential equations with respect to time. Each ordinary differential

equation corresponds to a distinct mode, in terms of spatial frequency, evolving with

time. Therefore this approach is a spatial frequency domain method in contrast to a

travelling wave one. After such a discretization, the ODEs could be solved for example

by Runge-Kutta method or any other stable method.

Secondly, truncation of the series in Eq (1.1) further decreases the demand of com-

putation. A pure mathematics transformation from spectral method to time domain

approach as in Eq (1.1) shows that the discretization of the coordinates leads to an

infinite series. This is inappropriate for numerical analysis, as the limited capacity of

computers, not only in terms of computation time, but also in the size of storage, re-

quires a method of truncation to make the computation in a manageable time while
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keeps the discretization error in charge. Only a limited number of modes have to be

selected. There are some physics considerations to make such truncation, as in the case

of lasers, the finite bandwidth of the gain curve of the lasing medium selects a limited

number of spectral components by providing the gain in excess of the loss for those

whose frequencies are within the gain bandwidth. Components falling far outside that

range die away after a few round-trips. However, the problem is not so simple. The

coherent nature of inter-mode interaction allows modes with negligible amplitudes to

influence lasing modes dramatically. Therefore, the way to identify modes which are to

be considered in the simulation becomes important, and a sensible selection rule should

be adapted.

Actually the truncation remains an open question after years of development of lasing

physics theories. Although models with limited number of modes genuinely exclude the

possibility of representing certain effects, for example gain cross saturation and four

wave mixing are not expected to be found in single mode modelling, a general believe

of using limited number of modes around the gain peak is widely adopted and correctly

represented the experiments in certain problems[118]. Discussions also held in [119, 120]

of using truncated rate equations to represent the full travelling wave approach when

the ratio of time constants in the system is negligibly small. In the following chapter,

a comparison between travelling wave and multimode model has been made and using

very small number of modes to model the lasing behaviours around the bifurcation point

at low pump current has been justified numerically.

The thesis is organised as following. In Chapter 1, the history of semiconductor ring

lasers has been briefly reviewed. Popular modelling approaches are compared. In this

thesis, a spectral method is used to discretize the Maxwell-Bloch equations. In Chapter

2, a multimode rate equation approach is derived. The multimode rate equations ap-

proach and the justification of the truncation to model the bifurcation has been made.

The directional switching has been studied in Chapter 3 with two modes involved. Then

in the Chapter 4, frequency switching is considered in addition to the directional once

and the asymmetrical dynamics with frequency red shift and blue shift have been tried

to explain.



Chapter 2

Fundamental Mathematical

Model

This section covers the detailed aspects of the modelling of a semiconductor ring lasers

from the light-material interaction and cavity configuration to the numerical method to

solve the equations of the system.

The derivation follows a semiclassical approach with field self-consistency[17]. In this

framework, the lasing material is seen as an ensemble of discrete particles which obeys

quantum mechanics for energy emission/absorption while the optical field is treated as

a classical continuous electromagnetic field. The restrictions imposed by the cavity ge-

ometry are discussed. The material response of both two level atoms and semiconductor

are discussed in this chapter. A phenomenological susceptibility to describe the interac-

tion between light and semiconductor is presented to assist the complicated numerical

calculation. Numerical implementations of time domain and rate equation models are

compared and the finally equations are presented in the form of frequency-time domain.

2.1 Light Field Consideration–Maxwell’s Equation

2.1.1 Maxwell’s Equations in Vacuum

The derivation starts from Maxwell’s equations of a field E travelling in a general cavity

regardless of its configuration. The plane wave approximation is used here. The laser

field is considered to be travelling only in the z direction. The transverse profile is de-

fined in the x − y plane. In this thesis, the laser is considered to work in the lowest

23
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transverse mode. Therefore the x and y dependence of the field are neglected from now

on.

The Maxwell’s equations is seen as

▽2 E − 1

c2
∂2E

∂t2
=

1

ε0c2
∂2P

∂t2
(2.1)

where c is the speed of light in vacuum and ε0 is the vacuum permittivity. P on the

right hand side of Eq(2.1) is the response of the medium to the electromagnetic field, eg

polarization. E and P depend on both time and position.

The polarization is macroscopic here which is defined as the summation of dipole mo-

ments in the medium. In vacuum, as there is no medium, no dipole moment is found,

therefore there is no macroscopic polarization so the right hand side of Eq(2.1) has to

be 0. The equation in this case becomes homogeneous and admits simple plane wave

solutions

E(z, t) = E0e
−i(ωt−kz) (2.2)

where wave number k and angular frequency ω meet the following requirement

k2 =
ω2

c2
(2.3)

and k has the meaning of spatial frequency. Eq(2.3) is called a dispersion relation. It is

two straight lines where the light frequency and wave vector has a constant ratio. The

reason for each ω corresponds to two ks with opposite signs lay in the fact that two

beams counterpropagating have the same dispersion relation. This is illustrated in Fig.

2.1

2.1.2 Maxwell’s Equations in Linear Material

When the cavity is filled with material, the right hand side of Eq (2.1) is not zero

any longer. Microscopic dipoles are induced and resonate with the optical field. This

oscillation of dipole moments in turn emits light. The polarization P is used to illustrated
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k

ω

Figure 2.1: Dispersion relation of the laser in the vacuum. Two straight lines with
same amplitude of gradient but opposite signs indicate that two waves travelling in

opposite directions are supported by the same dispersion relation.

the macroscopic effect of this dipole moment resonance. In general, the polarization is

not instantaneous with the field but a convolution of susceptibility χ and the field as

following[121]

P (t) = ε0

∫ ∞

0
χ(τ)E(t− τ)dτ. (2.4)

There is no spatial dependence in this equation. It is for the polarization at any arbi-

trary position inside the cavity. It is worth noting here that the polarization responds

to the field instantaneously only in the lossless medium. From Kramers-Kronig relation,

this kind of medium is dispersionless.

In the case of strong light intensity, polarization could show explicit nonlinear response

to the induction field. However, only the linear regime is considered in this section. Here

χ(t) is the susceptibility of the medium. The product in Eq (2.4) is integrated from 0,

coming from the implication of casualty that past events can not be influenced by future

ones.

Eq (2.4) is a convolution of susceptibility and field. Its Fourier transform gives the

response of the material following a chromatic optical field.

P (ω) = ε0χ(ω)E(ω). (2.5)

In general lasers, the polarization P could be broken into two parts

P = Pb + Pt (2.6)
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where Pb is the background polarization of the waveguide structure and Pt is the po-

larization related with the lasing transition. Generally speaking Pb is linear with the

respect of field and Pt is nonlinear in this term.

The corresponding susceptibility is written as a summation accordingly

χ = χb + χt. (2.7)

For the time being, the passive cavity is considered in which case no transition occurs

and thus Pt = 0. The Maxwell’s equation Eq (2.1) undergoes a two dimensional Fourier

transform with the respect of time and space reads,

k2E(k, ω) =
ω2

c2
[1 + χb(k, ω)]E(k, ω). (2.8)

The new dispersion relation is hence obtained

k2 =
ω2

c2
[1 + χb(k, ω)]. (2.9)

By performing a Taylor expansion around certain frequency Eq (2.9) is

k(ω) = k(ω0) + (ω − ω0)
dk

dω
+

1

2
(ω − ω0)

2 d
2k

dω2
. (2.10)

Group velocity is defined as the reciprocal of the first order coefficient in Eq (2.10)

vg = ( dkdω )
−1. This is the generalization of the definition of velocity to the so-called wave

packet or envelope of the amplitude. The coefficient of the second order term in the

above equation is called group velocity dispersion GVD = d2k
dω2 .

As group velocity is dispersive, the dispersion relations are no longer straight lines now.

As shown in Fig. 2.2 a divergence from the straight line occurs around a certain frequency

ωm which is the resonance frequency of the background material.

2.1.3 Maxwell’s Equations with nonlinear polarization

As illustrated in Chapter 1, the active layer of semiconductor lasers are usually sand-

wiched between waveguides. Therefore the total polarization is the summation of both
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Figure 2.2: Dispersion relation for the medium. Near its natural resonance, the curve
is not a straight line any longer. A divergence is seen around the material’s nature

resonance frequency.

waveguide polarization and polarization from lasing transitions in the active layer as in

Eq (2.6), and so does the susceptibility χ.

Usually, the lasing frequency is far from the resonance frequency of the background

waveguides. It is discussed in the next section that the susceptibility far away from the

peak is relatively flat. Therefore the frequency dependence of the background suscepti-

bility χb is neglected in the following discussion. A schematic diagram of the frequency

dependence of susceptibility in the limit of two level system is displayed later in Fig. 2.3.

In this case, a group velocity without frequency is obtained from Eq (2.9)

vg =
dω

dk
=

c√
1 + χb

(2.11)

and the full Maxwell equation with both linear and nonlinear polarization on the right

hand side of Eq (2.1) which carried out this postulation reads

▽2 E − 1

v2g

∂2E

∂t2
=

1

ǫ0c2
∂2Pt

∂t2
. (2.12)

Within the laser cavity, the waveguide and active medium provide the microscopic dipole

moments which buildup the macroscopic polarization. The optical field acts on the

dipole moments and pushes them following it by rapid altering their alignments con-

stantly. Each of such fast alternation can be seen as a form of an oscillation which on

the other hand emits an electromagnetic wave. As the microscopic dipoles are induced

by the same incoming wave, they tend to oscillate identically with each other. Therefore

the frequencies and phases of the waves radiated by each of them not only equal to each
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other but also are the same as that of the induction wave’s. In the other word, the total

optical wave will be reinforced.

2.1.4 Slowly Varying Envelope Approximation

As source with high purity, the laser is seen emitting a bunch of different frequencies

within a narrow spectral width. In the time domain, such waveform could be treated

as a fast carrier with slow modulation on it. The fast component could be cancelled in

the Eq (2.12) and only the slow part kept. This is called the slowly-varying envelope

approximation.

In such an approach, the slow and fast component are separated such that

E(z, t) = ET (z, t)e
−iωct + c.c (2.13)

where ωc is central frequency which is the fast carrier frequency. The nonlinear polar-

ization to follow the optical field has the same form

Pt(z, t) = PT (z, t)e
−iωct + c.c. (2.14)

Here ET and PT are slow in time but fast spatially. The usual ωc is about 10
15Hz; how-

ever, the spectral bandwidth is of the order of 1013Hz which is much smaller. Therefore

|∂ET

∂t
| ≪ ωc|ET | (2.15)

and hence

|∂
2ET

∂t2
| ≪ ω2

c |ET |. (2.16)

Also one has

|∂PT

∂t
| ≪ ωc|PT | (2.17)

|∂
2PT

∂t2
| ≪ ω2

c |PT |. (2.18)
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By substituting Eq (2.13) and Eq (2.14) into Eq (2.12)

▽2 ET +
1

v2g
(2iωc

∂ET

∂t
+ ω2

cET ) =
1

ǫc2
(−ω2

cPT ). (2.19)

The second derivatives on left hand side of Eq(2.19) and all the derivatives on right hand

side are neglected according to Eq (2.15)-(2.18). Now the field ET (z, t) and polarization

PT (z, t) can be written as the composition of two counter propagating waves

ET (z, t) = F (z, t)eikcz +B(z, t)e−ikcz (2.20)

PT (z, t) = PF (z, t)e
ikcz + PB(z, t)e

−ikcz. (2.21)

By substituting Eq(2.20) and Eq(2.21) into Eq(2.19),

[(

∂2F

∂z2
+ 2i

∂F

∂z
kc − k2cF

)

+
1

v2g

(

2iωc
∂F

∂t
+ ω2

cF

)]

eikcz

+

[(

∂2B

∂z2
− 2i

∂B

∂z
kc − k2cB

)

+
1

v2g

(

2iωc
∂B

∂t
+ ω2

cB

)]

e−ikcz

= − ω2
c

εc2

(

PF e
ikcz + PBe

−ikcz
)

. (2.22)

Eq (2.22) are multiplied by e−ikcz and averaged over a wavelength, one has

[(

∂2F

∂z2
+ 2i

∂F

∂z
kc − k2cF

)

+
1

v2g

(

2iωc
∂F

∂t
+ ω2

cF

)]

(2.23)

= − ω2
c

εc2
PF e

ikcz − 〈
[(

∂2B

∂z2
− 2i

∂B

∂z
kc − k2cB

)

+
1

v2g

(

2iωc
∂B

∂t
+ ω2

cB

)

+
ω2
c

εc2
PB

]

e−2ikcz〉

where expressions between 〈 and 〉 are spatially averaged in a couple of wavelengths as

in [56] and [122].

Multiply Eq (2.22) by eikcz, a similar equation reads
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[(

∂2F

∂z2
+ 2i

∂F

∂z
kc − k2cF

)

+
1

v2g

(

2iωc
∂F

∂t
+ ω2

cF

)]

(2.24)

= − ω2
c

εc2
PF e

ikcz − 〈
[(

∂2B

∂z2
− 2i

∂B

∂z
kc − k2cB

)

+
1

v2g

(

2iωc
∂B

∂t
+ ω2

cB

)

+
ω2
c

εc2
PB

]

e−2ikcz〉.

By using ωc = kcvg, neglecting the second order spatial derivative of F and B, and

realising that spatial average over a couple of wavelengths gives 0, Eq (2.23) and Eq

(2.24) reads

∂F

∂z
+

1

vg

∂F

∂t
=

iωc

2ηgcǫ0
PF (2.25)

−∂B

∂z
+

1

vg

∂B

∂t
=

iωc

2ηgcǫ0
PB. (2.26)

2.2 Active Medium Consideration–Two Level System

The reduced Maxwell equations Eq (2.25) and (2.26) provide a general description of the

interaction between light and matter. The left hand sides of those equations indicate

waves advect along the cavity considering both time and space. In the semiclassical ap-

proach, dipole moments vibrate following the induction field and emit electromagnetic

waves in the form of light. The induced emission has to be coherent to the inducing wave.

Those two equations are universal to all kinds of lasers with different active material.

The difference is represented from the form of polarization on the right hand sides of

them.

A two-level system, as implied by its name, is a system with only two energy levels,

corresponding to two distinct eigen states. The system stays in either of them with

certain possibility. This could be perturbed by introducing a varying potential into the

system, such as an electromagnetic wave. After the injection of light, the system starts

to oscillate between the two eigen states and absorbs/emits energy accordingly.

This is not only the simplest laser model but is always representation of some laser in

the reality. For simple two-level homogeneous broadening lasers, such a model is enough
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to model the device. Even in the more complicated lasers, this approach is still a build-

ing block in the whole picture. For example in semiconductor lasers, a popular way for

modelling is to treat the active medium as a summation of a large number of two-level

atoms with certain distributions with respect to the transition energy and interaction

between each other.

2.2.1 Density Matrix

The pure-case density matrix is introduced to modelling of light interaction with a bunch

of identical two-level atoms[17, 123]. Here a and b are used to indicate the upper and

lower energy levels | a〉 and | b〉. ρaa and ρbb are probabilities of an atom sitting on

high/low energy state. ρab is the complex dipole moment, which by summation over

all the electrons gives the macroscopic polarization P . The density matrix is written as

ρ =

(

ρaa ρab

ρab ρbb

)

. The Hamiltonian is written as H = H0 + V . Here H0 is for eigen-

states and does not contain time explicitly. It is the time-dependent potential V that

causes transitions between upper and lower states. H0 is a diagonal matrix while only

off-diagonal elements of V are non-zero.

The off-diagonal elements of V read

Vab = −erabE = −µabE (2.27)

µab = erab is the electric-dipole matrix element.

rab = 〈a | r | b〉 = rba (2.28)

so µab = µba and Vab = Vba.

The dynamics of the density matrix follows the Schrödinger equation

ρ̇ =
i

~
[ρ,H] . (2.29)

Therefore a breakdown of the Eq (2.29) gives three equations governing the response

of two-level system to induction electromagnetic waves corresponding to each matrix
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component[17]

dρaa
dt

= − i

~
[Vabρba − c.c] (2.30)

dρbb
dt

=
i

~
[Vabρba − c.c] (2.31)

dρab
dt

= −iωAρab +
i

~
Vab(ρaa − ρbb) (2.32)

where ωA is the angular frequency corresponding to the atomic transition.

As it is always desirable to measure macroscopic quantities rather than probabilities,

the above equations Eq (2.30)-Eq (2.31) are converted to equations for corresponding

macroscopic quantities, which are population inversion and polarization.

D =
N(ρaa − ρbb)

V
(2.33)

and

P =
Nµ(ρab + ρba)

2V
. (2.34)

The P in Eq (2.34) is fast but it is the slow-varying amplitude which is more relevant.

Therefore, the slow envelope PT from Eq (2.21) is used to measure the polarization

PT =
Nµρab
2V

eiωct. (2.35)

Eq(2.30), (2.31) and (2.32) can be transferred into equations with those two quantities

by substituting Eq (2.33) and Eq (2.35) into them. To be more physical, the incoherent

decay has to be taken into account. They are added phenomenologically as in following

dD

dt
= −D −D0

T1
+

2i

~
E(P ∗

T e
iωct − PT e

−iωct) (2.36)

dPT e
−iωct

dt
= −(iωA +

1

T2
)PT e

−iωct − iµ2

~
ED. (2.37)
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T1 and T2 are time constant for decay of population inversion and atomic polarization

respectively. The corresponding decay rates γ‖ and γ⊥, which are inversion of T1 and T2,

are sometimes used. D0 is the population inversion at steady state. A careful look at

Eq (2.36)and (2.37) shows the right hand sides of both of them contain product which

could generate both slow components and fast components rotate as fast as 2ωc. Those

fast terms will become small comparing with the slow once after integration, as they will

have large denominators. Under the so called rotating-wave approximation[17], those

fast terms are neglected. It is called the rotating-wave approximation as only terms

corresponding to the atomic and field waves rotating together are kept under this ap-

proximation.

The final equations read

dD

dt
= −γ‖(D −D0) +

2i

~
(ETP

∗
T − c.c) (2.38)

dPT

dt
= −(iωAC + γ⊥)PT − iµ2

~
ETD (2.39)

where ωAC = ωA − ωc is the detuning of the carrier from atomic transition frequency.

They form the basic equations of two-level atoms supplied by field equations Eq (2.25)

and Eq (2.26)

2.2.2 Susceptibility

As an application of the two level system modelling, the susceptibility of the medium can

be obtained from the steady state of Eq (2.38) and Eq (2.39). By setting the derivatives

equal to 0, the polarization is

PT = − µ2ETD0

(ω2
AC + γ2⊥)~

(ωAC + iγ⊥) (2.40)

Therefore, from Eq (2.5), the susceptibility as a function of detuning reads

χ(ωAC) = − µ2ETD0

(ω2
AC + γ2⊥)~

(ωAC + iγ⊥) (2.41)
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Figure 2.3: Diagram of real and imaginary part of susceptibility of the two level
system. χ′ and χ′′ are real and imaginary part respectively.

The Fig. 2.3 shows the diagram of the real and imaginary part of the susceptibility

dependence on detuning. χ′ and χ′′ are real and imaginary part of the susceptibility χ.

The curve is normalised for the purpose of illustration. Two properties applicable to all

two-level lasers are shown in this figure. Firstly, the real part has a Lorentzian shape

and decays faster than the imaginary part at large detuning. Secondly, the refractive

index is zero at gain peak.

As mentioned in the previous chapter, the two-level system is used to model homoge-

neous broadening ring lasers under unidirectional single-mode plane waves which is the

conceptually simplest laser. Reference could be found in [124]

2.3 Cavity Design Consideration–Boundary Conditions

The mathematics behind the physics of the laser dynamics is actually a boundary con-

dition problem of partial differential equations. Generic equations for field and active

medium with their interaction regardless of the actual cavity design are obtained in

previous sections in Eq (2.25), (2.26), (2.38) and (2.39). Boundary conditions have to

be supplied to make this problem solvable in terms of specific solutions.

The schematic diagram of a practical ring laser configuration is shown in Fig (2.4). The

light inside the ring cavity is extricated by the evanescent coupler. Optical injection

and feedback from the end of the output waveguide can be sent into the cavity by the
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Figure 2.4: Schematic diagram of ring laser structure with evanescent coupler. A
certain portion of light transfers between coupler and the inside of the ring cavity[29].

c©2009 IEEE

coupler as well. To model such a device in the travelling wave approach, four sets of

boundary conditions have to be provided at both ends of the coupler and facets of the

output waveguide[29].

In this thesis where the system is decomposed based on the spatial modes, the boundary

condition imposes the restriction that modes have to be periodic. That is to say, any

two modes corresponding to the distance of a cavity length has to be the same. This

leads to a series of equally spaced wave number ks.

Three circumstances are studied in this thesis, which are closed ring, ring with an output

coupler and ring with coupler and mirrors on both sides of the output waveguide. In the

closed ring case, the cavity is symmetric without any spatial discontinuity introduced

by losses. This is the ideal case to apply the Fourier expansion on the system. No

additional measures have to be taken. In the case of ring with output coupler, a local

loss variation has been introduced. In the modal domain loss is therefore modelled as

being distributed evenly for each mode. In the final circumstances where reflectivities

from the mirrors on both sides of the output waveguide are considered, a linear mode

coupling term has been added to each of the rate equation. By the phase matching

condition, only counterpropagating modes with the same frequency are coupled by this

effect.
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Figure 2.5: Schematic diagram of transitions in semiconductor. Interband transition
from conduction band to valence band with photon emission is marked as 1. Intraband

transition inside the conduction band by collisions is marked as 2.

2.4 Susceptibility–Semiconductor Material

In semiconductors, large numbers of carriers are confined in bands of energy. The upper

and lower bands are called the conduction band and the valence band respectively. The

energy between the extrema of those two bands is called the energy gap, or band gap.

Carriers are not supposed to exist in the energy gap. At room temperature, electrons

at the top of the valence band are excited into the conduction band, leaving empty sites

which are called holes. The conduction electrons could fall into holes and emit energy

as photons. As the transition involves carriers in two different bands, this is called an

interband transition. A schematic diagram of transitions in a semiconductor is displayed

in Fig. 2.5. An interband transition is marked as 1 in this figure.

One natural way to model semiconductor lasers is to see each electron-hole pair a two-

level subsystem and the whole semiconductor as a reservoir of such subsystems. However,

such approach leads to unrealistically large numbers of equations as the carrier density

is as high as the order of 1012m−2[76]. Also, electrons and holes are created and annihi-

lated during the lasing process, thus a second quantization is required and the number
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of two-level subsystems is not constant[125].

The electrons in the conduction band and holes in the valence band reach thermal

equilibrium in a Fermi-Dirac distribution in time longer than 1ns. However, the elec-

trons in the conduction band and holes in the valence band reach their own so called

quasi-equilibrium in time scales shorter than 1ps by carrier-carrier scattering (eg 50fs

for example[126]). This is called intraband relaxation because collisions occur within

each band. Intraband transition is illustrated at transition 2 in Fig. 2.5. As intra-

band relaxations have shorter decay times, when considering dynamics not shorter than

1ps, one may think the conduction band and valence band always stay in their quasi-

equilibrium[125]. As mentioned in the last chapter, the dynamics could be hidden behind

a phenomenological susceptibility χ which describes polarization as the response of op-

tical field.

The analytical susceptibility from [95] has been used in this thesis. The frequency and

carrier dependence along with the spectral hole burning have been taken into account

by it, as it is based on the adiabatical elimination and the characteristic intraband re-

laxation time is around 0.1ps. Using such susceptibility on the dynamics slower than

the picosecond timescale is justified.

To make the argument clear, the susceptibility from [95] is copied here

χ(t) =

[

Λ(t) + 1

2Λ(t)
f(t) +

Λ(t)− 1

2Λ(t)
f∗(t)

]

(2.42)

where

Λ(t) =

√

1 + ε |E(t)|2 (2.43)

is the saturation, E(t) is the optical field, and f(t) is the susceptibility without spectral

hole burning given by

f(t) =
mµ2

πW~2

{

−2ln

[

1− D

u+ iΛ(t)

]

+ ln[1− b

u+ iΛ(t)
]

}

(2.44)

The meanings of parameters in Eq (2.44) are the same as in [95] and [94] where m is

the reduced mass of the electron-hole pair, D is normalized carrier density D = N
Nt

, b
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Figure 2.6: Comparison of gain curves calculated with and without the spectral hole
burning correction. The solid curves are gain without spectral hole burning while the
dashed curves are calculated with spectral hole burning. The two sets of curves are

calculated with different amount of carriers[95].

is a measure of the transition energy where b = ~k2m
2mγ . u is a measure of the difference

between the photon energy and the renormalized bandgap energy u = ω−Et/~
γ . However,

it is worth noting that f is dependent on carrier density as it is a function of the scaled

carrier density D. Therefore χ(t) is dependent on carrier density as well. Also, wave

mixing is represented in Λ(t) as shown in Eq (2.43). The Fourier transform of χ(t) will

be a carrier density and frequency dependent susceptibility χ(ω,N).

The gain suppression from this susceptibility is shown in Fig. 2.6. A slight gain decrease

can be seen from the curve. Higher gain values are shown with large amount of carriers

injected.

The dephasing time in semiconductor are usually less than 0.1ps while the carrier decay

time is about 1ns. This leads to a polarization decay rate γ⊥ three orders of magnitude

larger than the carrier decay rate γ‖. It is therefore usually regard the polarization

dynamics happen instantly and safe to use the susceptibility instead of the rate equation

for polarization when study the dynamics slower than picosecond. This leaves the Bloch

part of the Maxwell-Bloch equations only carrier density equation. As for the carrier

density, the equation should look the same except for a diffusion term which does not

appear in two level systems.

γ−1
‖

dN

dt
= J −N +D

∂2

∂z2
N +

1

~
(iP ∗

TET + c.c.). (2.45)
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2.5 Numerical Aspects–Discretization

The system is modelled by a set of differential equations according to the above sec-

tions. Differential equations, by their continuous nature, can not be processed directly

by computer to simulate infinite small time and space interval, one needs infinite large

storage[127]. Therefore certain numerical implementations to discretize the problem

for numerical solutions are invented, eg finite difference, Monte Carlo method, spectral

method etc[128]. In the field of laser physics, finite difference and spectral methods are

two most usual ways to tackle the differential equations.

One dimensional finite difference approach, referred as to the travelling wave method,

time domain approach, is widely used in modelling laser dynamics as generally speak-

ing, only dynamics along the lasing axis is important and needs to be studied carefully.

The basic idea is that, after discretizing time and space, one could obtain the values

of each point by initial conditions. The value of each point is updated by advance in time.

Time and spatial coordinates can be discretized as follows

tn = t0 + n∆t (2.46)

zj = z0 + j∆z (2.47)

where tn is the time after n time steps, zj is the jth spatial coordinate j. ∆t is the time

step and ∆z is the grid sized.

Then the continuous unknowns, say field E(z, t) for example, can be sampled at discrete

points both in time and space to represent the original function. This is written as

E(zj , tn), and then further simplified by En
j . In the simplest case, the time and spatial

derivatives of E(zj , tn) are written as

∂En
j

∂t
=

En+1
j − En

j

∆t
(2.48)

∂En
j

∂z
=

En
j+1 − En

j

∆z
. (2.49)
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However, such discretization scheme can only be seen for the sake of demonstration as

it is numerically unstable[128].

Time domain model is a genuinely good approach in the sense that it solves the dis-

cretized equations directly without any simplifications made by analysis. However, the

trade-off is obvious. The numerical stability requires a finely meshed set of points to

be used to represent the original equations which is storage demanding. Bad numerical

schemes always lead the dispersion relation of the discrete sets to diverge from the one

for the original equations. To compute such a large amount of equations is time consum-

ing although in most cases the equations are sparse. For partial differential equations,

by introducing one more dimension in the solution space, the computation time required

increases in a polynomial order.

On the contrary, the spectral approach could be partially applied to the spatial coor-

dinate and decompose the problem into a set of ordinary differential equations with

respect to time. Under periodic boundary conditions, as in the case of ring lasers, the

spatial method tends to be faster than time domain models.

Runge-Kutta method is used to solve the ODEs from spectral decomposition. To solve

the following equation

dy

dt
= f(t, y) (2.50)

by a fourth-order Runge-Kutta method, the following formula is adapted to get the

solution at n+th step from the nth result[128]

k1 = hf(tn, yn) (2.51)

k2 = hf(tn +
h

2
, yn +

k1
2
) (2.52)

k1 = hf(tn +
h

2
, yn +

k2
2
) (2.53)

k1 = hf(tn + h, yn + k3) (2.54)

yn+1 = yn +
k1
6

+
k2
3

+
k3
3

+
k4
6

(2.55)

where k1, k2, k3, k4 are intermediate coefficients and h is the time step.



Chapter 2. Fundamental Mathematical Model 41

2.6 Truncation on The Mode Number

As mentioned in the previous chapter, a multimode modelling rate equation with lim-

ited number of modes is less computationally intensive. For specific problems it is a

favourable approach, for instance the example above. However it might not work for

all the times. The error introduced by truncation is one of the major drawbacks. It is

therefore most important to clearly define the specification of the problem on which the

multimode modelling could be applied with the best accuracy beforehand. And strictly

restrictions on its usage to such problems has to be applied. By doing these, one can

safely claim that, for those certain problems, multimode modelling gives results in mod-

erate accurate and high efficiency far superior than the time domain approaches.

In fact, rate equations have been used to study bistabilities for long times[129]. As

argued by Lugiato et al [118], the multimode approach is good in the case of a very

limited number of modes lasing simultaneously. For example, the chaotic behaviour in

the unstable regime has been studied by considering only one mode in the model. The

paper also argued that a severe truncation of the mode number should work in most of

the cases with mode spacing sufficiently larger than the gain bandwidth.

In this section, the author would like to demonstrate the justification of the rate equa-

tions at moderate pump current with a small number of modes when studying the

switching dynamics, and show its superior efficiency which makes it more favourable

than the travelling wave approach.

To illustrate this point, bifurcation of two-level uni-directional ring lasers is studied by

both of the two approaches in this section. The effect of the truncation on the rate

equation model has been studied by varying the number of modes involved in the cal-

culation. The results have been compared with those obtained from the travelling wave

model.

To begin with, Perez-Serrano et al ’s model[130] has been taken as the travelling wave

model used in this section. The model is written here for the sake of convenience
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± ∂F±
∂z

+
∂F±
∂t

= P± − αF± (2.56)

1

γ

∂P±
∂t

= −(1 + iδ̃)P± + g(D0F± +D±2F∓) +
√

βD0ξ±(x, t) (2.57)

1

ε

∂D0

∂t
= J −D0 +△∂2D0

∂x2
− (F+P

∗
+ + F−P

∗
− + c.c.) (2.58)

1

η

∂D±2

∂t
= −D±2 −

ε

η
(F±P

∗
∓ + F ∗

∓P±). (2.59)

It is a travelling wave one made for the bi-directional ring lasers. The F± and P± are

slowly varying envelopes of the forward and backward moving waves and correspond-

ing polarizations. D0 and D±2 are quasi-stationary population inversion and the one

induced by copropagating waves. α is the internal losses. δ̃ and △ are detuning and

diffusion coefficient respectively. ε and η are dimensionless parameters denoting the

lifetimes of D0 and D±2. γ corresponds to the gain bandwidth.

As only unidirectional lasing is studied in this section, the Eq (2.56) - Eq (2.59) could

be reduced accordingly. As no standing wave pattern would be generated by counter-

propagating interference, no D±2 exist in the uni-directional lasing. Assuming the lasing

is forward, the full set of equations for a bi-directional ring laser, as Eq (2.56) - Eq (2.59)

is reduced to a uni-directional one

∂F+

∂z
+

∂F+

∂t
= P+ − αF+ (2.60)

1

γ

∂P+

∂t
= −(1 + iδ̃)P+ + gD0F+ +

√

βD0ξ+(x, t) (2.61)

1

ε

∂D0

∂t
= J −D0 +△∂2D0

∂x2
− (F+P

∗
+ + c.c.). (2.62)

This is the travelling wave approach which will be used in the later analysis. The

boundary condition reads

F+(0) = TF+(1) (2.63)

where T is the transmission from the ring to the coupler. A rate equation approach is

derived form this point.
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Although varying slowly, the field F+ might consist of spectral components in case of

multimode lasing. So do the polarizations P+ and the population inversions D0. To

make this point, the fields and polarizations are written as

F+ =

N
2
∑

n=−N
2

Fne
−iωnt+iqnx (2.64)

P+ =

N
2
∑

n=−N
2

Pne
−iωnt+iqnx. (2.65)

The ”0” mode is selected to be the closest one to the gain peak. The population inversion

D0 could correspondingly be written as

D0 = d0 + (
N
∑

n=1

dne
−iωnt+iqnx + c.c.). (2.66)

By substituting Eq (2.64) - Eq(2.66) into Eq (2.60) - Eq (2.62), and grouping up terms

with the same spatial frequency, one has the final form of modified rate equations as

Ḟn = Pn − αFn + i(ωn − qn)Fn (2.67)

Ṗn = Pn[iωn − γ(1 + iδ̇)] + γg(d0Fn +

N
2
+n
∑

m=1

domFn−m +

N
2
−n
∑

m=1

d∗omFn+m) (2.68)

ḋo = ε[J − d0 −
N
2
∑

n=−N
2

(FnP
∗
n + c.c.)] (2.69)

˙don = don[iωn − (1 + q2n△)ǫ]− ε

N
2
−n
∑

m=−N
2

(Fn+mP ∗
m + F ∗

mPn+m). (2.70)

To compare the above two approaches, simulations based on the travelling wave one of

Eq(2.60) - Eq(2.62) have been conducted at first as this is made with less assumptions

and is believed more rigorous. Rate equations approach Eq(2.67) - Eq(2.70) with trun-

cation on mode number is done later in comparison with the travelling wave one.

The Fig 2.7 displays the bifurcation of light-current diagram to show the different steady

states and the transitions among them. As in this section, only unidirectional operation
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is considered, transmission and reflectivity from the output coupler are set to T = 1 and

r = 0 respectively. The detuning δ is 0, gain g = 2, internal loss α = 1.58, spontaneous

emission β = 0. two dimensionless parameters ε and η are 0.1 and 10 respectively. γ is

selected to be 10 to represent a moderate gain bandwidth.

To get the bifurcation diagrams, the laser is set for each current for 2000 round-trip

times then perturbed by a small current increase or decrease depending on which ramp

one is drawing, followed by a Gaussian random noise for 40 round-trip times. Fig 2.7(a)

illustrates the operations transition with increasing the current. A laser starts to work

on single mode operation from the threshold till J = 17.6. Typical CW transient and

the corresponding clean single mode spectrum as in Fig 2.8(a) are seen in this region. At

pump current J = 17.6, multimode character starts to emerge by the Risken-Nummandal

instability as the broader-than-mode-spacing gain curve allows multimodes to oscillate

simultaneously [131]. Fig 2.8(b) displays the time trace and the optical spectrum at

J = 20 which is the current just above the bifurcation point. Five modes lasing simul-

taneously are seen from the spectrum in the lower panel of Fig 2.8(b). In upper panel of

Fig 2.8(b), oscillations at round-trip time are revealed. With increasing the pump, more

modes start to emerge in the power spectra and sharp mode-locked pulses are generated.

This trend is clearly illustrated in the Fig 2.8(c) and Fig 2.8(d) at pump current J = 50

and 75 respectively. More than 20 modes are involved in those operations. The higher

the pump current, the more modes emit simultaneously with significant power and the

sharper the pulses in the time domain.

At even higher pump current, the nonlinearity induced by the strong output intensity

starts to take effect, hence a new frequency doubling regime appears from J = 85.4.

The amplitude of the oscillation is squeezed and two oscillations are observed within

one round trip time as shown in the upper panel in Fig 2.8(e). In the spectrum shown

in the lower panel of Fig 2.8(e), one finds odd numbered modes carry negligible power

comparing with the even numbered ones. Sidebands at ±2, ±4 modes, etc along with

the central mode dominate the bandwidth. This corresponds to the period of oscillation

being half of the round trip time as mode spacing follows the equation ∆ω = 2π
T where

T is the time a pulse makes a round trip around the cavity. In this case when two

oscillations occur in one period, the T could effectively be seen as half of its original

value, which leaves the mode frequency spacing double.

Further increasing pump current, more complicated dynamics could be found as in Fig

2.8(f). Not only more than one oscillations is seen in one round trip time, the envelope
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(a) Bifurcation diagram for a current increasing ramp
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(b) Bifurcation diagram for a current decreasing ramp

Figure 2.7: Bifurcation diagrams of ring laser with current up sweeping and down
sweeping respectively made by travelling wave approach as in Eq (2.60)-Eq (2.62).
Parameters are listed as following: δ = 0, g = 2, T = 1, r = 0, ε = 0.1, η = 10,

α = 1.58, β = 0, N = 100
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(a) J = 15
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(b) J = 20
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(c) J = 50
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(d) J = 75
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(e) J = 90
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(f) J=125

Figure 2.8: Transients and spectra of ring laser working on J = 15, J = 20, J = 50,
J = 75, J = 90 and J = 125 respectively during a pump current upward sweeping.

Other parameters are the same as those in Fig 2.7
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(a) J = 75
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(b) J = 50

Figure 2.9: Transient and spectra of ring laser working on J = 75 and 50 with a
downward sweeping pump. Other parameters are the same as those in Fig 2.7

of the oscillations are modulated as well. However, this pump is too high above the

threshold and the situation might not be seen in the real world.

The down sweeping of the current leads to a bifurcation curve shown in Fig 2.7(b). It

looks quite similar to the upward sweeping one except for the region between J = 41.2

and J = 85.4. Starting from a pump as high as J = 150 and decreasing it gradually,

the laser shows chaotic oscillations as in Fig 2.8(f) at the beginning, then goes back to

the frequency doubling regime as the current enters the region between J = 85.4 and

J = 102.6. By further decreasing the current below 85.4, the two current-light diagrams

start to diverge. Instead of suddenly jumping into the mode-locking regime as following

the up sweeping diagram reversely, it keeps working on the frequency doubling opera-

tion, for instance as in Fig 2.9(a). Fewer modes are seen than in its counterpart on the

up sweeping route. To have two oscillations within one round-trip, the spacing between

modes is double the original value.

The frequency doubling regime ends at downward sweeping the current to J = 63.8

and is followed by single mode operations as seen in Fig 2.9(b). In the corresponding

pump region but upwards route, the laser output shows oscillations as in the Fig 2.8(c).

However, by keeping decreasing current below J = 41.2, the two bifurcation curves con-

verges. The dynamics follow the oscillation, and the monomode route which bifurcates

at J = 17.6.
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To show the influence of the truncation on the bifurcation diagrams, multimode rate

equations with different number of modes are used to perform the bifurcation analy-

sis. The bifurcation curve plotted by performing rate equations model with 3 modes, 7

modes and 15 modes are plotted in Fig 2.10.

All three diagrams show similarity at low pump current. In all theses three diagrams,

the bifurcations start from single mode operation, bifurcate at current J = 17.6 to a

multimode oscillation via Risken-Nummandal instability. However, at higher pump,

discrepancies emerge. The result of the 3 modes rate equations starts to diverge from

that of the travelling wave at as the system just steps into the multimode oscillation

regime. Further bifurcations and branches are seen at higher current following. No sec-

ond multimode operation region is observed even at very high pump in this case. The

downward route follows from single mode lasing at high current, complicated dynamics

at moderate current, followed by oscillations, and then single mode lasing at low current

respectively.

One could easily notice the existence of inner structure as more branches in the multi-

mode regime in the bifurcation diagram plotted from the rate equations with 3 modes,

as in Fig 2.10(a). Time traces observed at J = 27, J = 35 and J = 45 are plotted in Fig

2.12(a) - Fig 2.12(c) to investigate this branching effect. Small secondary oscillations

between the main ones are seen due to the lacking of necessary modes to make the dy-

namics express itself in the model. There are even modulations on top of the oscillations

when J = 45 in Fig 2.12(c).

The spectra shown in the down panels of Fig 2.12(a) - Fig 2.12(c) helps to explain the

necessary of more modes in the model for the right dynamics to be shown. As seen in

lower panel in Fig 2.12(c), all the three modes emit simultaneously. Unlike spectra in

other cases, the modes here smear out strongly. As in the current situation where only 3

modes are taken into account to express strong pulsations which involves a large number

of modes, the energy instead of going to high frequency modes will be folded onto the

lower ones.

The above discussion shows the adequacy to model usual oscillation by 3 modes. When

pump is high and the system enters into the mode locking regime, 3 modes is not good

enough as in Fig 2.8(c) and Fig 2.8(d), more than 10 modes are involved in the dynamics.

Therefore the bifurcation diagram starts to be messy as pump starts to exceeds J = 40.
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Figure 2.10: Bifurcation diagram plotted with rate equations model with (a) 3 modes,
(b) 7 modes and (c) 15 modes. The upper panels show the bifurcation diagrams drawn
by increasing the pump which the lower ones show those made by down sweeping pump

injection. Parameters used here are the same as those in Fig 2.7
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Figure 2.11: Transient and spectrum of ring laser working on J = 90 following the
upward sweeping route made from rate equations with 7 modes. Other parameters are

the same as those in Fig 2.7(a) and 2.7(b)

The lacking of frequency doubling regime is definitely due to the limited number of

modes as well. As mode spacing doubles in the frequency doubling operation, to have

minimum oscillations with 3 modes, a 5 modes rate equations has to be used as 2 mode

slots need to be reserved for the nonlasing ”±1” modes.

In the 7 modes case, the second monomode region has been recovered although the

bifurcation points do not match what one observed from the travelling wave model.

Frequency doubling at J = 64.4 by a Hopf bifurcation follows the monomode operation

is recovered. Fig 2.11 show the time trace and spectrum at J = 90 following the up-

ward sweeping route which is within the frequency doubling region. As shown in Fig

2.8(e), only ”0” and ”±2” modes lase, no odd numbered modes are seen in the spectrum.

With 15 modes, the bifurcation curves in Fig 2.10(c) have almost the same profile as

the one made from the travelling wave model. Secondary pulses still exist as one sees

bifurcation at lower branch of the first multimode region. However they are not signifi-

cant and expected to disappear completely with further increasing the number of modes.

From the above results, more modes are needed to represent the dynamics at high pump.

From Fig 2.10(a) to Fig 2.10(c) it is seen that increasing number of modes into the rate

equations smoothes out the high current behaviour and makes the bifurcation diagram

closer to that made from the travelling wave approach. Even with 15 modes, the two
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Figure 2.12: Transients and spectra at different pump injection plotted with rate
equation with 3 modes. (a) J = 27, (b) J = 35 and (c) J = 45. Parameters used here

are the same as those in Fig 2.7



Chapter 2. Fundamental Mathematical Model 52

approaches fit quite well to each other. As 100 spatial points are used when making

the bifurcation curves from the travelling wave model, the rate equations with 15 modes

show superior efficiency and relative good match.

Having said that, the minimum number of modes needed in the modelling varies from

operations to operations. To have a reasonably clear idea of the bifurcations in a large

range of pump, the author believes 5 modes would be the answer. 3 modes is sensible

for a Hopf bifurcation as it is the minimum number one needs to recover the oscillatory

operation. However, it is not enough for the frequency doubling operations. 5 modes

is the minimum in this case and most common instabilities in mode-locking/multimode

lasers.

However different shapes the bifurcation diagrams look like at higher pump end, the

lower pump part of the curves always look the same, with the Hopf bifurcation point at

the same pump level at J = 17.6. A comparison of the bifurcation diagrams made by

travelling wave and rate equations with 3, 7 and 15 modes at low pump lever is shown in

Fig 2.13. Upward sweeping and downward sweeping diagrams overlap at these currents.

It could be seen from the figure that, with more modes the rate equation approach

fits better to the travelling wave model. However, even with 3 modes, the behaviours

around the bifurcation point at low current by both approaches are reasonably close.

This effectively supports the idea of using rate equations approach with very limited

number of modes to study the bifurcations of the system.

2.7 The Final Multimode Model

In this section, the discussions in previous sections of this chapter which focus on sepa-

rate aspects of the modelling are summarised. The final generalized multimode model

is presented.

It is based on the consideration that the standing wave pattern due to the unique

geometry of ring lasers induces spatially inhomogeneous gain saturation, and hence in-

homogeneous refractive index, which behaves like a Bragg grating. A wave is scattered

back by the grating and contributes to the waves travelling in the opposite direction.

Also, as in FP lasers, beating between co-propagating modes occurs. For the general

laser parameters, the length scale of the spatial grating is on the order of the lasing

wavelength, eg. about 1µm, which could be washed out in several picoseconds, while
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Figure 2.13: Comparison of travelling wave result with rate equations ones with 3
modes, 7 modes and 15 modes. The parameter used are the same as those in Fig 2.7

the beating is on the order of the cavity length and is washed out on a nanosecond

time scale. Therefore, the first effect is always neglected by the general modelling ap-

proach as stated above, and averaged photon densities and carrier density rate equations

are used[30]. However, in that paper slowly-varying amplitude is used to describe the

optical fields in both directions, and mode beating was hidden. Thus, it is our goal to

put counter-propagating effects and multimodes together and present a complete model.

Here the forward and backward wave F and B are decomposed as

F =
M
∑

p=−M

Fp(t)e
ip∆kz−ip∆ωt (2.71)

B =
M
∑

p=−M

Bp(t)e
−ip∆kz−ip∆ωt. (2.72)

The carrier density as provided previously is

γ−1
‖

dN

dt
= J −N +D

∂2

∂z2
N +

1

~ωc
(iP ∗

TET + c.c). (2.73)

By writing PT as the convolution of susceptibility and field, Eq (2.73) is written as follows
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γ−1
‖

dN

dt
= J −N +D

∂2

∂z2
N +

1

~ωc
[i

M
∑

p=−M

M
∑

q=−M

(Epχ
∗
qE

∗
q + χ̃∗∆NEpE

∗
q + c.c)] (2.74)

= J −N +D
∂2

∂t2
N +

1

~ωc
{i

M
∑

p=−M

Epχ
∗
pE

∗
p + i

2M
∑

T=1

M
∑

p=T−M

(Ep−Tχ
∗
pE

∗
p + Epχ

∗
p−TE

∗
p−T )

+iχ̃∗∆N [
M
∑

p=−M

EpE
∗
p +

2M
∑

T=1

M
∑

p=T−M

(Ep−TE
∗
p + EpE

∗
p−T )] + c.c}

here χ̃ = ∂χ
∂N , χp = χ(ωp.N0), ∆N = N −N0 is the carrier density variation around its

steady state. New frequency and spatial components in the dynamics by the product of

PT and ET are generated.

By separating terms with different spatial periods and using forward and backward fields

from Eq (2.20) , Eq (2.75) is written as

γ−1
‖

dN

dt
= J −N +D

∂2

∂z2
N +

2Im(χ̃)∆N

~ωc

M
∑

p=−M

(FpF
∗
p +BpB

∗
p)

+
2

~ωc

M
∑

p=−M

Im(χp)(FpF
∗
p +BpB

∗
p) (2.75)

+
1

~ωc
{i

2M
∑

T=1

M
∑

p=T−M

[Bp−TB
∗
pχ

∗
p −B∗

pBp−Tχp−T + FpF
∗
p−Tχ

∗
p−T − F ∗

p−TFpχp]

+i
2M
∑

T=1

M
∑

p=−M

(FpB
∗
pχ

∗
p −B∗

pFpχp + Fp−TB
∗
pχ

∗
p −B∗

p−TFpχp

+FpB
∗
p−Tχ

∗
p−T − Fp−TB

∗
pχp−T )e

2ikcz + iχ̃∆N
2M
∑

T=1

M
∑

p=T−M

[FpF
∗
p−T +Bp−TB

∗
p

+(FpB
∗
p + Fp−TB

∗
p + FpB

∗
p−T )e

2ikcz] + c.c}.

Terms with new frequencies and wave vectors are generated but still fall into the slow and

fast category. Therefore the carrier density is written as the summation of carrier grating

terms with long spatial period components Nn,m
0 and short spatial period components

Nn,m
2 as
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N = N0,0
0 +

∑

m

∑

n

{Nn,m
0 ei(m∆kz−n∆ωt) +Nn,m

2 ei[(2kc+m∆k)z−n∆ωt] + c.c} (2.76)

where m and n are indices of wavevectors and frequencies respectively. As new compo-

nents are being generated by the production in Eq (2.73), both m and n are summed

from −∞ to ∞. However, m and n have to be restricted in a region in real life due

to limited capacity of computers. A prior selection is always done before the calculation.

The next step is to substitute Eq (2.76) into Eq (2.73) and separate terms with different

wave vectors and frequencies.

The averaged carrier density is

1

γ‖

dN0,0
0

dt
= J −N0,0

0 +
2

~ωc
Im(χp)

M
∑

p=−M

(FpF
∗
p +BpB

∗
p)

+
1

~ωc
[iχ̃∗

M
∑

T=1

M
∑

p=T−M

(FpF
∗
p−TN

∗T,T
0 +Bp−TB

∗
pN

∗T,−T
0 + FpB

∗
pN

∗2p,0
2

+Fp−TB
∗
PN

∗2p−T,−T
2 + FpB

∗
p−TN

∗2p−T,T
2 ) + c.c]. (2.77)

The slow grating terms are

1

γ‖

dNn,m
0

dt
= i

n∆ω

γ‖
Nn,m

0 −Nn,m
0 −Dm2∆k2Nn,m

0

+
2

~ωc
Im(χ)Nn,m

0

M
∑

p=−M

(FpF
∗
p +BpB

∗
p) (2.78)

+
1

~ωc
[iχ̃∗

M
∑

T=1

M
∑

p=T−M

(FpF
∗
p−TN

m−T,n−T
0 + FpF

∗
p−TN

∗T−m,T−n
0

+Bp−TB
∗
pN

m−T,−n−T
0 +Bp−TB

∗
pN

∗T−m,−T
0 + FpB

∗
pN

∗2p−m,−n
2

+Fp−TB
∗
PN

∗2p−T−m,−n−T
2 + FpB

∗
p−TN

∗2p−T−m,T−n
2 ) + c.c].

The carrier densities corresponding to the fast grating terms are
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1

γ‖

dNn,m
2

dt
= i

n∆ω

γ‖
Nn,m

2 −Nn,m
2 −D(2kc +m∆k)2Nn,m

2

+
2

~ωc
Im (χ)Nn,m

2

M
∑

p=−M

(FpF
∗
p +BpB

∗
p) (2.79)

+
1

~ωc
[iχ̃∗

M
∑

T=1

M
∑

p=T−M

(FpF
∗
p−TN

m−T,n−T
0 + FpF

∗
p−TN

∗T−m,T−n
0

+Bp−TB
∗
pN

m−T,−n−T
0 +Bp−TB

∗
pN

∗T−m,−T
0 + FpB

∗
pN

∗2p−m,−n
2

+Fp−TB
∗
PN

∗2p−T−m,−n−T
2 + FpB

∗
p−TN

∗2p−T−m,T−n
2 ) + c.c].

Eq (2.76) is now substituted into the field equations, so that

∂Fp

∂t
= i(ωp − vg∆kp)Fp +

iωc

2η2g
χ(ωp, N0)Fp (2.80)

+
iωc

2η2g

M
∑

q=−M

χ̃[Np−q,p−q
0 Fq +N∗q−p,q−p

0 Fq +Np−q,p+q
2 Bq]

∂Bp

∂t
= i(ωp − vg∆kp)Bp +

iωc

2η2g
χ(ωp, N0)Bp (2.81)

+
iωc

2η2g

M
∑

q=−M

χ̃[Np−q,q−p
0 Bq +N∗q−p,p−q

0 Bq +N∗q−p,p+q
2 Fq]

As ωc

c = kc, the terms in the first parentheses of Eq (2.81) and Eq (2.82) will be 0. the

final equation for fields are seen

∂Fp

∂t
=

iωc

2η2g
χ(ωp, N0)Fp +

iωc

2η2g

M
∑

q=−M

χ̃[Np−q,p−q
0 Fq +N∗q−p,q−p

0 Fq +Np−q,p+q
2 Bq] (2.82)

∂Bp

∂t
=

iωc

2η2g
χ(ωp, N0)Bp+

iωc

2η2g

M
∑

q=−M

χ̃[Np−q,q−p
0 Bq+N∗q−p,p−q

0 Bq+N∗q−p,p+q
2 Fq]. (2.83)

The above approach generates a large number of carrier fluctuation terms. Each mode

index m corresponds to more than one n and vice versa. An approach to restrict the
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number of m and n is applied in the following. Only components generated by ETE
∗
T

are kept, therefore the equation for carrier density reads

γ−1
‖

dN

dt
= J −N +D

∂2

∂z2
N +

2Im(χ̃)∆N

~ωc

M
∑

p=−M

(FpF
∗
p +BpB

∗
p)

+
2Im(χ̃)∆N

~ωc
{
2M
∑

T=1

M
∑

p=T−M

[F ∗
p−TFpe

i(T∆kz−T∆ωt) +Bp−TB
∗
pe

i(T∆kz+T∆ωt)]

+
M
∑

p=−M

[FpB
∗
pe

2ip∆kz +
2M
∑

T=1

M
∑

p=T−M

Fp−TB
∗
pe

i(2p−T )∆kz+iT∆ωt

+B∗
p−TFpe

i(2p−T )∆kz−T∆ωt]ei2kcz + c.c}+ 1

~ωc
{i

M
∑

p=−M

(FpF
∗
p +BpB

∗
p)χ

∗
p

+i
2M
∑

T=1

M
∑

p=T−M

[(Bp−TB
∗
pχ

∗
p −B∗

pBp−Tχp−T )e
iT∆kz+iT∆ωt (2.84)

+(FpF
∗
p−Tχ

∗
p−T − F ∗

p−TFpχp)e
iT∆kz−iT∆ωt] + i

M
∑

p=−M

(FpB
∗
pχ

∗
p −B∗

pFpχp)e
i2p∆kz

+i
2M
∑

T=1

M
∑

p=T−M

[Fp−TB
∗
p(χ

∗
p − χp−T )e

i(2p−T )∆kz+iT∆ωt

+FpB
∗
p−T (χ

∗
p−T − χp)e

i(2p−T )∆k−iT∆ωt]e2ikcz + c.c}.

The terms in Eq (2.85) could be grouped up into slow and fast variations. Subsequently

the carrier density is written as the following correspondingly.

N = N0 + {
2M
∑

l=1

(N l,−l
1 eil∆kz−il∆ωt +N l,l

1 eil∆kz+il∆ωt) + [

M
∑

l=−M

N2l,0
2 e2il∆kz (2.85)

+
2M
∑

m=1

M
∑

l=m−M

N2l−m,−m
2 ei(2l−m)∆kz−im∆ωt +N2l−m,m

2 ei(2l−m)∆k+im∆ωt]ei2kcz + c.c}

By substituting Eq (2.86) into Eq (2.85), one has the rate equations of the components

with different frequencies in Eq (2.86)

The spatially averaged carrier density could be solved from the following equations
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1

γ‖

dN0

dt
= J −N0 +

2

~ωc

M
∑

p=−M

Im(χp)(FpF
∗
p +BpB

∗
p)

+
2

~ωc
Im(χ̃)[

2M
∑

T=1

M
∑

p=T−M

(Fp−TF
∗
pN

T,−T
1 +B∗

p−TBpN
T,T
1 ) (2.86)

+
M
∑

p=−M

F ∗
pBpN

2p,0
2 +

2M
∑

T=1

M
∑

p=T−M

(F ∗
p−TBpN

2p−T,T
2 +Bp−TF

∗
pN

2p−T,−T
2 ) + c.c].

The rate equations of the ”slow” carrier densities are

1

γ‖

dN l,−l
1

dt
= −N l,−l

1 −Dl2∆k2N l,−l
1 +

i

~ωc

M
∑

p=l−M

(FpF
∗
p−lχ

∗
p−l − F ∗

p−lFpχp) (2.87)

+
2

~ωc
Im(χ̃)[N l,−l

1

M
∑

p=−M

(FpF
∗
p +BpB

∗
p) +

l−1
∑

T=1

M
∑

p=T−M

F ∗
p−TFpN

l−T,−(l−T )
1

+
2M
∑

T=l+1

M
∑

p=T−M

F ∗
p−TFpN

∗(T−l),−(T−l)
1 +

2M−l
∑

T=1

M
∑

p=T−M

Fp−TF
∗
pN

T+l,−(T+l)
1

+
M
∑

p=l−M

FpB
∗
pN

∗2p−l,l
2 +

M−l
∑

p=−M

F ∗
pBpN

2p+l,−l
2 +

M
∑

p=l−M

N2p,0
2 F ∗

p−lBp

+
M−l
∑

p=−M

N∗2p,0
2 Fp+lB

∗
p

+
2M−l
∑

T=1

M
∑

p=T−M+l

Fp−TB
∗
pN

∗2p−T−l,T+l
2 +

l−1
∑

T=1

M
∑

p=T−M

B∗
p−TFpN

∗2p−T−l.l−T
2

+
2M
∑

T=l+1

M
∑

p=T−M

B∗
p−TFpN

∗2p−l−T,−(T−l)
2 +

2M
∑

T=1+l

M
∑

p=T−M

F ∗
p−TBpN

2p−T+l,T−l
2

+

l−1
∑

T=1

M+T−l
∑

p=T−M

F ∗
p−TBpN

2p+l−T,−(l−T )
2 +

2M−l
∑

T=1

M−l
∑

p=T−M

Bp−TF
∗
pN

2p+l−T,−(T+l)
2 ]

and

1

γ‖

N l,l
1

dt
= −N l,l

1 −Dl2∆k2N l,l
1 +

i

~ωc

M
∑

p=l−M

(B∗
pBp−lχ

∗
p −Bp−lB

∗
pχp−l) (2.88)

+
2

~ωc
Im(χ̃)[N l,l

1

M
∑

p=−M

(FpF
∗
p +BpB

∗
p) +

l−1
∑

T=1

M
∑

p=T−M

Bp−TB
∗
pN

l−T,l−T
1
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+
2M
∑

T=l+1

M
∑

p=T−M

Bp−TB
∗
pN

∗T−l,T−l
1 +

2M−l
∑

T=1

M
∑

p=T−M

B∗
p−TBpN

l+T,l+T
1 )]

+
M
∑

p=l−M

FpB
∗
pN

∗2p−l.−l
2 +

M−l
∑

p=−M

F ∗
pBpN

2p+l.l
2

+
M
∑

p=l−M

N2p,0
2 Bp−lF

∗
p +

M−l
∑

p=−M

N∗2p,0
2 FpB

∗
p+l

+
2M
∑

T=1+l

M
∑

p=T−M

Fp−TB
∗
pN

∗2p−l−T,T−l
2 +

l−1
∑

T=1

M
∑

p=T−M

Fp−TB
∗
pN

∗2p−T−l,−(l−T )
2

+
2M−l
∑

T=1

M
∑

p=T−M+l

B∗
p−TFpN

∗2p−T−l,−(T+l)
2 +

2M−l
∑

T=1

M−l
∑

p=T−M

F ∗
p−TBpN

2p−T+l,T+l
2

+
l−1
∑

T=1

M+T−l
∑

p=T−M

Bp−TF
∗
pN

2p−T+l,l−T
2 +

2M
∑

T=1+l

M
∑

p=T−M

Bp−TF
∗
pN

2p−T+l,−(T−l)
2 ].

The carrier density corresponding to the fast spatial grating are solved by the following

3 equations

1

γ‖

N2l,0
2

dt
= −N2l,0

2 − 4Dk2cN
2l,0
2 +

2

~ωc
Im(χl)FlB

∗
l +

2

~ωc
Im(χ̃)[n2l,0

g

M
∑

p=−M

(FpF
∗
p +BpB

∗
p)

+
M−l
∑

T=1

M
∑

p=T−M

Fp−TF
∗
pN

2l+T,−T
2 +

M+l
∑

T=1

M
∑

P=T−M

BP−TB
∗
PN

2l−T,−T
2 (2.89)

+

M+l
∑

T=1

M
∑

p=T−M

F ∗
p−TFpN

2l−T,T
2 +

M−l
∑

T=1

M
∑

p=T−M

B∗
p−TBpN

2l+T,T
2

+
l+M
∑

T=1

NT,−T
2 Fl−TB

∗
l +

M−l
∑

T=1

FlB
∗
l+TN

∗T,T
2 +

M−l
∑

T=1

B∗
l Fl+TN

∗T,−T
1 +

M+l
∑

T=1

B∗
l−TFlN

T,T
1 ]

1

γ‖

N2l−m,−m
2

dt
= −N2l−m,−m

2 −D[(2l −m)∆k + 2kc]
2N2l−m,+m

2 +
i

~ωc
FlB

∗
l−m(χ∗

l−m − χl)

+
2

~ωc
Im(χ){

M
∑

p=T−M

[
l+M
∑

T=m+1

F ∗
p−TFpN

2l−m−T,T−m
2 +

M+m−l
∑

T=1+m

B∗
p−TBpN

2l−m+T,T−m
2

+
m−1
∑

T=1

F ∗
p−TFpN

2l−T−m,−(m−T )
2 +

l+M−m
∑

T=1

Bp−TB
∗
pN

2l−T−m,−(T+m)
2

+
M−l
∑

T=1

Fp−TF
∗
pN

T+2l−m,−(T+m)
2 +

m−1
∑

T=1

B∗
p−TBpN

2l−m+T,−(m−T )
2 ] (2.90)
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+
M−l
∑

T=1

N∗m+T,m+T
1 FlB

∗
l+T +

l−m+M
∑

T=1

N
T+m,−(T+m)
1 Fl−m−TB

∗
l−m

+
l+M
∑

T=1+m

NT−m,T−m
1 B∗

l−TFl +
m−1
∑

T=1

N
m−T,−(m−T )
1 B∗

l−mFl−m+T

+
m−1
∑

T=1

N∗m−T,m−T
1 B∗

l−TFl +
M+m−l
∑

T=1

N
∗T−m,−(T−m)
1 B∗

l−mFl−m+T

+
M
∑

p=m−M

F ∗
p−mFpN

2(l−m),0
2 +

M
∑

p=m−M

B∗
p−mBpN

2l,0
2

+Nm,−m
1 Fl−mB∗

l−m +N∗m,m
1 FlB

∗
l }

1

γ‖

N2l−m,m
2

dt
= −N2l−m,m

2 −D[(2l −m)∆k + 2kc]
2N2l−m,+m

2 +
i

~ωc
Fl−mB∗

l (χ
∗
l − χl−m)

+
2

~ωc
Im(χ){

M
∑

p=T−M

[
l+M−m
∑

T=1

F ∗
p−TFpN

2l−m−T,m+T
2 +

m−1
∑

T=1

Bp−TB
∗
pN

2l−T−m,m−T
2

+
m−1
∑

T=1

Fp−TF
∗
pN

2l−m+T,m−T
2

M−l
∑

T=1

B∗
p−TBpN

2l+T−m,m+T
2 (2.91)

+
l+M
∑

T=1+m

Bp−TB
∗
pN

2l−m−T,−(T−m)
2 +

M+m−l
∑

T=1+m

Fp−TF
∗
pN

2l−m+T,−(T−m)
2 ]

+
m−1
∑

T=1

Nm−T,m−T
1 Fl−mB∗

l−m+T +
l+M
∑

T=1+m

N
T−m,−(T−m)
1 Fl−TB

∗
l

+
M+m−l
∑

T=1+m

N∗T−m,T−m
1 Fl−mB∗

l−m+T +
m−1
∑

T=1

N
∗(m−T ),−(m−T )
1 Fl−TB

∗
l

+
l−m+M
∑

T=1

NT+m,T+m
1 B∗

l−m−TFl−m +
M−l
∑

T=1

n
∗T+m,−(T+m)
1 B∗

l Fl+T

+
M
∑

p=m−M

Fp−mF ∗
pN

2l,0
2 +

M
∑

p=m−M

Bp−mB∗
pN

2(l−m),0
2

+FlB
∗
l N

∗m,−m
1 +Nm,m

1 Fl−mB∗
l−m}.

The set of equations listed here are the general rate equations with arbitrary number

of modes. In general, up to two components of carrier density are kept. One for the

averaged term, the other generated by either counter propagating fields or by beating

from copropagating modes[66, 67]. However, in this model here, more components of
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carrier density could be saved at one’s disposal for certain problems. This is the key to

model both directional switching and wavelength switching at the same time in Chapter

4.

2.8 Summary

In this chapter, the general modelling consideration has been reviewed and its applica-

tion to the semiconductor ring lasers has been discussed. The discussion covers aspects

including optical field propagation, semiconductor material and its response to the elec-

tric magnetic field, peculiarity of the cavity configuration of ring lasers and numerical

implementation. A set of ordinary differential equations each corresponds to either an

optical mode or a component of carrier density following a certain component after mix-

ing has been derived for a generalised ring laser model which is the basis for the following

two chapters. A prior selection of optical component and carrier density has significant

effect on the modelling. Different selections will be discussed in the follow chapters.



Chapter 3

Two Mode Study

The simplest case of ring lasers with one mode in each direction is studied in this Chap-

ter. Wave travelling in clockwise direction and counter-clockwise direction interacts both

linearly and non-linearly. The cavity construction provides linear backscattering in such

way that the output coupler and the facet from output waveguide reflect clockwise wave

into counter-clockwise direction and contributes to the counter-clockwise one, and vice

versa[98]. Nonlinear interaction is provided by the gain medium itself, like for instance

gain competition and four-wave mixing[99]. Standing wave pattern in photon density

could be generated by interference of counter propagating waves, which burns holes on

carrier density at its maximum position: this effect is called spatial hole burning[66].

This carrier density variation, in turn, behaves like a Bragg grating and scatters light in

one direction back into the other. This is considered in this chapter.

One property that distinguishes semiconductor lasers from solid-state ones is the strong

carrier diffusion which could wash out that carrier grating mentioned above. This might

cause instability of lasing operation[132] and is somehow believed to be one crucial con-

trol parameter and is studied theoretically in[97]. On the other hand, Etrich[66] argued

that this is an effect small enough to be neglected as the washout time is far quicker

than carrier decay rate. However, this effect is kept in this chapter as it is found later

that the lasing operation is influenced by its presence.

In this chapter, the general multimode model presented in the previous chapter is sim-

plified to fit the single mode framework at first. Different operating regimes have been

identified and bifurcation analysis are performed. At the end of this chapter, directional

switching by optical injection is studied as an application of this model.

62
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3.1 Simplified Model

In the single mode framework, there is only one frequency component in each lasing

direction. Therefore the total field is reduced to the summation of F and B, which

denotes to slow components of clockwise and counter-clockwise wave, respectively.

E = Fe−i(ωct−kcz) +B−i(ωct+kcz) + c.c. (3.1)

The carrier density correspondingly is

N = N0 +N2e
2ikcz +N∗

2 e
−2ikcz. (3.2)

N0 is the DC component of carrier density. As in single mode approach, there is no

beating between co-propagating wave components, hence Nm,n
0 = 0 and Nm,n

2 = 0 in

Eq(3.2). However, counter-propagating waves do contribute to the carrier density fluc-

tuation with spatial periodicity as long as half of their wavelength λ
2 , N2 as a result is

kept in above equation.

The reduced field equation for F and B is obtained from Eq(2.82) and Eq(2.83) as

∂F

∂t
=

iωc

2η2g
{χ(0, N0)F +

∂χ

∂N
N2B} (3.3)

∂B

∂t
=

iωc

2η2g
{χ(0, N0)B +

∂χ

∂N
N∗

2F}. (3.4)

There are two kinds of backscatterings in the system. One is coherent backscattering

which was introduced by coupling between the coupler and the ring cavity, and the

reflection from the facets. The other one is incoherent backscattering from impurity

distributed in the cavity. The effect of the latter one is cancelled macroscopically. The

first one can not be neglected, however is not considered for the time being. The solo

influence from the active medium on the dynamics is studied at first.

The corresponding carrier densities equations read
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γ−1
‖

dN0

dt
=

J

γ‖ed
−N0−

ε0
~ωc

[iχ(0, N0)+c.c](FF ∗+BB∗)− ε0
~ωc

(i
∂χ

∂N
|ωc,N0

+c.c)(N2F
∗B+N∗

2FB∗)

(3.5)

γ−1
‖

dN2

dt
= −N2−4k2cDN2−

ε0
~ωc

[i
∂χ

∂N
|ωc,N0

+c.c]N2(FF ∗+BB∗)− ε0
~ωc

[iχ(0, N0) + c.c]FB∗.

(3.6)

The susceptibility is written as summation of real and imaginary part

χ = χ′ + iχ′′ (3.7)

where the real part corresponds to change of refractive index while the imaginary part

corresponds to gain/loss. They are related by Kramers-Kronig relation as mentioned

beforehand[1, 121].

On the other hand, susceptibility is usually written as square of refractive index[2]

χ = n2 − 1. (3.8)

Therefore one has a variation of the susceptibility measured from transparency

∆χ = 2n(∆n′ +∆n′′) (3.9)

the carrier density is measured with the respect to transparency, ∆N = N −Ntr where

Ntr is carrier density at transparency.

It has been pointed out that, above threshold, the peak of the gain spectrum varies

almost linearly with the injected carrier density[133]. And so does the refractive in-

dex. A phenomenological linewidth enhancement factor α is used to present this linear

relation[134]

α =
dχ′′

dN
dχ′

dN

(3.10)
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as substitutes Eq(3.9) into Eq(3.10)

α =
dn′′

dN
dn′

dN

=
∆n′′

∆n′ (3.11)

χ = ∆χ = ∆χ+ i∆χ. (3.12)

It has to be noted that, the definition of α, specifically the sign of it, is related with

whether eiωt or e−iωt is used to represent the phasors of the field. This thesis is based

on the latter. In this notation,

∆n′′ = −G∆N

k
(3.13)

∆n′ = −αG∆N

l
. (3.14)

This comes from the requirement of a positive α. As the numerator in Eq (3.11) above
dn′

dN is found to be negative in [135] and α is positive at semiconductor lasing wavelength

[134], the ∆n′′

∆N has to be negative. G is measured in L2 and the dimension of N is

correspondingly L−3. The susceptibility is also measured from transparency.

By putting all terms in and phenomenologically adding internal losses and confinement

factor Γ, one obtains

∂F

∂t
=

vgΓG

2η2g
(1− iα)(∆NF +N2B)− F

τp
(3.15)

∂B

∂t
=

vgΓG

2η2g
(1− iα)(∆NB +N∗

2F )− B

τp
(3.16)

γ−1
‖

dN0

dt
=

J

γ‖ew
−N0 −

2ε0vgΓG∆N

~ω2
c

(FF ∗ +BB∗)

−2ε0vgΓG

~ω2
c

(N2F
∗B +N∗

2FB∗) (3.17)

γ−1
‖

dN2

dt
= −N2 − 4γ−1

‖ k2cDN2 −
2ε0vgΓG

~ω2
c

N2(FF ∗ +BB∗)

−2ε0vgΓG∆N

~ω2
c

FB∗. (3.18)
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A proper normalization is sought in the following way to make the above four equations

dimensionless

F,B = εff, b (3.19)

∆N0 = εnn (3.20)

N2 = εnn2 (3.21)

t = εtτ (3.22)

the normalization factors are

ǫt = τp (3.23)

γ = γ‖τp (3.24)

ǫf =

√

~ω2
c

2ε0vgΓGγ‖τp
(3.25)

ǫn =
J

γ‖ew
(3.26)

A =
vgΓGτpεn

2n2
g

(3.27)

d = 4γ−1
‖ k2cD. (3.28)

(3.29)

Therefore the equations become

df

dτ
= A (nf + n2b) (1− iα)− f (3.30)

db

dτ
= A (nb+ n∗

2f) (1− iα)− b (3.31)

dn

dτ
= γ − γn (1 + ff∗ + bb∗)− γ (n2f

∗b+ n∗
2fb

∗) (3.32)

dn2

dτ
= −γn2 (1 + d+ ff∗ + bb∗)− γnfb∗. (3.33)

These equations are almost the same as those of[97] where a linear gain. The satura-

tion is implicitly included in the interplay between of carrier density and fields [136].

Another popular approach in which gain saturation is explicitly introduced by self- and

cross-saturation coefficients to boost the saturation and make the model more accuracy
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is taken elsewhere, for example in [19, 106, 107]. However, in such way, the steady

state and linear stability analysis is no more solvable analytically, therefore they are not

discussed in this chapter. Gain competition and backscattering are separated in these

approaches while in this chapter, both of them are provided by nonlinear backscattering

from carrier grating.

Three sets of steady state solutions corresponding to different operation regimes could

be identified analytically as followings:

1. Trivial solution, eg under lasing threshold. No output in both directions. The injec-

tion current is under threshold. A remark should be made here that, this trivial solution

is possible even above threshold, although unstable.

f = 0 (3.34)

b = 0 (3.35)

n = 1 (3.36)

n2 = 0. (3.37)

2. Unidirectional operation. Lasing output in either directions.

f =
√
A− 1e−iατ (3.38)

b = 0 (3.39)

n =
1

A
(3.40)

n2 = 0 (3.41)

or
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f = 0 (3.42)

b =
√
A− 1e−iατ (3.43)

n =
1

A
(3.44)

n2 = 0. (3.45)

3. Bi-directional regime. Lasing in both directions simultaneously. The intensity of

counter-propagating waves fluctuates along the cavity therefore the carrier density is

not constant but varies along the cavity

f = b 6= 0 (3.46)

n 6= 0 (3.47)

n2 6= 0. (3.48)
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3.2 Below Lasing Threshold

A linear stability analysis is taken in this section to study the lasing condition properties.

Small linear perturbations are added onto steady states found in previous section

f = δf (3.49)

b = δb (3.50)

n = 1 + δn (3.51)

n2 = δg. (3.52)

Where δf , δb, δn and δg are small perturbations. By substituting those solutions back

into Eq (3.30)-(3.33), one gets

˙δf = (A− 1− iα) δf (3.53)

δ̇b = (A− 1− iα) δb (3.54)

˙δn = −γδn (3.55)

δ̇g = −γδg (1 + d) . (3.56)

The eigenvalues of the above system can be calculated separately as none of those equa-

tions are coupled. As Eq (3.53) and (3.54) are identical and in a very simple from, it

is straightforward to see the eigenvalues are complex conjugate λ1 = λ2 = A − 1 − iα,

λ3 = λ4 = A− 1 + iα. Eq(3.55) has eigenvalue λ5 = −γ.

By expressing δg in Eq (3.56) as a phasor, one has eigenvalues λ6 = −γ(1 − iα) and

λ7 = 0. The latter one indicates the existence of arbitrary phase of the carrier grating.

The real parts of those eigenvalues keep negative as long as A < 1. In the other words,

the system stays stable as A is smaller than 1. Any small perturbation applied on the

system decays monotonically or with oscillation, depends on whether the λs are complex

or not. Therefore A = 1 is the first threshold. The laser evolves to some other state with

oscillation as long as A exceed this threshold, as the first four eigenvalues have positive

real parts and nonzero imaginary parts.
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3.3 Uni-directional Operation and Relaxation Oscillations

As there is no anisotropy between laser directions in the cavity studied in this thesis so

far, unidirectional operations in both the two opposite directions are degenerate. There-

fore, in this section, forward lasing operation is studied. The result could be applied to

the backward lasing operation.

Linear stability analysis is used again. The solutions with linear perturbation are listed

as following

f =
√
A− 1e−ατ + δf (3.57)

b = δb (3.58)

n =
1

A
+ δn (3.59)

n2 = δg. (3.60)

By substituting them into Eq (3.30)-(3.33) and rearranging the order of the equations

˙δf = A
√
A− 1 (1− iα) δn (3.61)

˙δn = − γ

A

√
A− 1 (δf + δf∗)− γAδn (3.62)

δ̇b = A
√
A− 1 (1− iα) δg∗ (3.63)

δ̇g = − γ

A

√
A− 1δb∗ − γδg (d+A) . (3.64)

As δf , δb and δg are actually complex quantities, the rate equations of their complex

conjugates are supplied to make the system complete. The Jacobian reads

(

R 0

0 S

)

(3.65)

where

R =









0 0 A
√
A− 1(1− iα)

0 0 A
√
A− 1(1 + iα)

−γ
√
A−1
A −γ

√
A−1
A −γA









(3.66)

and
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S =















0 0 0 A
√
A− 1(1− iα)

0 0 A
√
A− 1(1 + iα) 0

0 −γ
√
A−1
A −γ(A+ d) 0

−γ
√
A−1
A 0 0 −γ(A+ d)















. (3.67)

The matrix could be decomposed in a 3× 3 matrix and a 4× 4 matrix, in another word,

the 7th ordered characteristic polynomial is composed of a cubic polynomial and a 4th

order one. The smaller matrix corresponds the dynamics of lasing mode f and carrier

density n. It has the same form as that of equations governing the stability of a single

mode FP laser[66]. On the other hand, the larger matrix determines the stability of

nonlasing mode b and carrier grating g.

The characteristic polynomial of the matrix composed of f , f∗ and n reads

P3(λ) = [λ2 + γAλ+ 2γ(A− 1)]λ (3.68)

whose solutions are

λ1 = 0 (3.69)

and

λ2,3 = −γA±
√

γ2A2 − 8(A− 1)γ

2
. (3.70)

The solution λ1 indicates an arbitrary phase. In the case of A > 1, or above threshold,

the solutions λ2,3 are either negative real quantities or complex quantities with negative

real parts. In this case, the subsystem of f and n, eg the lasing mode, is always stable.

It is called an attractor as trajectories around it will be asymptotically attracted inside it.

Any perturbation applied on the steady state lasing mode will decay exponentially with

rotation at the relaxation oscillation frequency. The damping rate is a combination of

time constants corresponding to real part of λ2 and λ3. In the case that λ2 and λ3 are

complex values, the perturbation will be damped out in oscillatory way with frequency

determined by imaginary part of λ2 and λ3.

A typical decay of perturbation by relaxation oscillation is shown in Fig. 3.1. The

projection of the attractor on the intensity carrier density plane is a node as Fig. 3.2.

The projection of the solution is asymptotically ringing towards the node.
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Figure 3.1: Transient of relaxation oscillation at A = 1.5Ath, γ = 0.002 α = 3,
d = 120
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Figure 3.2: Phase-space projection of relaxation oscillation at Fig 3.1

The characteristic polynomial of the subsystem of b, b∗, g and g∗, for the nonlasing

mode, reads

P4(λ) = {λ[γ(d+A) + λ] + γ(A− 1)}2 + α2γ2(A− 1)2. (3.71)

The corresponding eigenvalues fulfil the requirement P4(λ) = 0 which gives us

λ2 + γ (d+A)λ+ γ (A− 1) (1± iα) = 0. (3.72)
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Therefore the solution will be

λ1,3 = −γ(d+A)±
√

γ2(d+A)2 − 4γ(A− 1)(1 + iα)

2
(3.73)

λ2,4 = λ∗
1,3. (3.74)

These can be expressed as

λ1,3 = −γ(d+A)

2
[1±

√

1− 4(A− 1)(1 + iα)

γ(d+A)2
]. (3.75)

The second term in the square root is small, therefore as
√
1− x = 1− x+O(x2),

λ1,3 = −γ(d+A)

2
[1± (1− 4(A− 1)(1 + iα)

γ(d+A)2
)]. (3.76)

By further simplification, one has

λ1 = −γ (d+A)

[

1− 2 (A− 1) (1 + iα)

γ (d+A)2

]

(3.77)

λ3 = −2 (A− 1) (1 + iα)

(d+A)
(3.78)

when A is just about threshold, eg A − 1 is slight above 0, it is easy to see Eq (3.78)

with a negative real part. Eq (3.77) could be proven to be negative as well. Therefore

this operation is stable just above threshold.

When A is sufficiently large, the eigenvalues are

λ1 = λ∗
3 = −2− 2iα (3.79)

λ2 = λ∗
4 = −γd− γA+ 2 + 2iα. (3.80)

It is quite straightforward to see that all λs have negative real parts. Therefore at high

current injection operation, the nonlasing mode is stable. In the wide range between

just above lasing threshold and very high current, the real part of λ2 and λ4 could either



Chapter 3. Two Mode Study 74

be constantly negative or switch between positive and negative a couple of times.

The former case is trivial in that lasing state keeps stable all the time with varying

current injection. It is interesting to study the second case, where the operation change

via Hopf bifurcation, eg real part of eigenvalues switch from negative to positive or

vice versa with smoothly tuning of A, could happen. To spot boundaries of operations,

one assumes the eigenvalue is purely imaginary λ = iy, y is real, and substitutes this

condition into Eq (3.71). The real and imaginary parts are separated

y2 = γ (A− 1) (3.81)

(d+A)y = ± (A− 1)α. (3.82)

An equation is obtained by solving above equations

(A− 1)2 + (A− 1)

(

2d+ 2− α2

γ

)

+ (d+ 1)2 = 0. (3.83)

The solution

A− 1 =

α2

γ − 2 (d+ 1)±
√

α4

γ2 − 4(d+1)α2

γ

2
(3.84)

for above equation to have real solutions, the difference inside the square root should

be always positive. This gives the boundary for the possibility for a uni-directional

operation to be stable, which is

d <
α2

4γ
− 1. (3.85)

It is proven that Eq (3.84) always has two positive solutions. They correspond the two

Hopf bifurcations for the stable and unstable unidirectional operation switch.

Eq (3.84) is plotted in Fig 3.3 to show boundary of steady uni-directional operation

regime in A− d space. α is set to be 3 which is typical value from semiconductor quan-

tum well lasers. γ is 0.15 here.
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Figure 3.3: Region of stable uni-directional operation γ = 0.15 α = 3. The uni-
directional operation is always stable at large diffusion. For small diffusion, the uni-
directional is only stable at small and large current but unstable in between. Regions
marked 1 and 2 are for unstable and stable uni-directional operations respectively.

As Fig. 3.3 shows, the unidirectional operation is always stable when diffusion d is larger

than a threshold. However, for d below that value, unidirectional operation is still stable

at low and high inject, but unstable in between.
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3.4 CW Bidirectional Operation

The laser could also work in a CW-bidirectional operation in which light is travelling in

both directions inside the cavity. The total intensity has a standing wave pattern which

therefore induces a Bragg grating in the carrier density. In this case, optical fields in

both directions and the carrier grating term all have nonzero solution at steady state.

The solutions in the following form are sought

f = f0e
−i(ωf τ+φf ) (3.86)

b = b0e
−i(ωbτ+φb) (3.87)

n2 = n20e
−i(ωn2τ+φng). (3.88)

By substituting Eq(3.86),(3.87) and (3.88) into Eq(3.30)-(3.33), one has

ḟ0 = An0f0 +An20b0 (cos∆φ− αsin∆φ)− f0 (3.89)

ḃ0 = An0b0 +An20f0 (cos∆φ+ αsin∆φ)− b0 (3.90)

ṅ0 = −γ − γn0

(

1 + f2
0 + b20

)

− 2γn20f0b0cos∆φ (3.91)

˙ng0 = −γn20

(

1 + d+ f2
0 + b20

)

− γn0f0b0cos∆φ (3.92)

∆̇φ = φ̇n2 + φ̇b − φ̇f

= γ
n0

n20
f0b0sin∆φ−A

n20

b0
f0 (sin∆φ− αcos∆φ)

−A
n20

f0
b0 (sin∆φ+ αcos∆φ) . (3.93)

It can be seen that only the phase combination ∆φ = φn2 + φb − φf plays a role in

determining the static bi-directional operation, instead of individual phases. Its exact

value could be solved from Eq (3.89) and Eq (3.90).

The symmetrical solution with identical amplitude for waves travelling in both direc-

tions, i.e. f0 = b0, is sought in this section. By substituting this condition into Eq (3.89)

and (3.90), it requires that sin∆φ = 0. Hence cos∆φ could be either −1 or 1.

If cos∆φ = 1, e.g. ∆φ = 0, Eq(3.89)-(3.91) becomes
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A(n00 + n20) = 0 (3.94)

n00(1 + f2
0 ) + 2n20f

2
0 = 1 (3.95)

n20(1 + d+ 2f2
0 ) + n00f

2
0 = 0. (3.96)

This set of equation is unphysical as every single term in the left hand side of Eq(3.96)

is positive. Therefore ∆φ = 0 is excluded as a solution. This is interpreted as follows:

∆φ = 0 corresponds to the situation where the carrier grating and the standing wave

formed by counter-propagating mode are in-phase. In other words, the standing wave

has its peak at the point of maximum carrier density. This can not last long as the

carriers and photons recombining at those peaks are stronger than those at the nulls.

Therefore the carriers are depleted and carrier density maximum moves π
2 away.

If cos∆φ = −1, i.e ∆φ = π. Eq (3.89)-(3.93) become

A(n00 − n20) = 0 (3.97)

n00(1 + f2
0 )− 2n20f

2
0 = 1 (3.98)

n20(1 + d+ 2f2
0 )− n00f

2
0 = 0. (3.99)

Let I = f2
0 = b20 be the steady state intensity; from the three equations Eq (3.97) - Eq

(3.99);

2I2 + (4 + 2d−A)I + (1 + d)(1−A) = 0. (3.100)

The solution for I is

I =
A− 2d− 4±

√
A2 + 4d2 + 4Ad+ 8d+ 8

4
. (3.101)

The ”−” solution is discarded as current above threshold gives negative intensity. There-

fore the steady state solution reads
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Figure 3.4: Region of stable bi-directional operation γ = 0.15 α = 3. Regions marked
1,2,3 are for unstable, stable and unstable bi-directional operations respectively.

f2
0 = b20 =

A− 2d− 4 +
√
A2 + 4d2 + 4Ad+ 8d+ 8

4
(3.102)

n00 =
A+ 2d+ 4−

√
A2 + 4d2 + 4Ad+ 8d+ 8

2A
(3.103)

n20 =
A+ 2d+ 2−

√
A2 + 4d2 + 4Ad+ 8d+ 8

2A
. (3.104)

The stability of bi-directional operation is studied by a linear stability analysis as in

previous sections. However it is impossible to do this analytically as trigonometric func-

tions occur in Eq (3.89)-(3.93). Therefore, instead of analytically writing the Jacobian

matrix of the above system and solving characteristic polynomials as in previous sec-

tions, numerical solutions are pursued.

Let

x = (f, b, n0, n2,∆φ) (3.105)

being a 5 dimensional vector. The equations Eq (3.89) - Eq (3.93) are expressed as

following

dx

dτ
= M(x) (3.106)



Chapter 3. Two Mode Study 79

where M(x) corresponds to coefficients of Eq(3.89)-(3.93). Let x = x0 + δx where x0 is

bi-directional steady state solutions satisfying to Eq(3.95)-(3.96) and δx is a perturbation

on x0. Therefore

dδx

dτ
= J(M)δx (3.107)

where J(M) is the Jacobian of matrix M .

J(M)ij =
M(x0i + δxi)−M(x0i)

dxj
. (3.108)

This way, elements of Jacobian J(M) are calculated along with the consequent eigen-

values.

The stable bi-directional operation is shown in Fig. (3.4). As in the uni-directional

case, stable bi-directional lasing only happens below a certain diffusion threshold. At

low diffusion coefficient, four Hopf bifurcations occur with increasing drive current.
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Figure 3.5: Bifurcation diagram with increasing current γ = 0.15 α = 3, d = 0.
The laser works from bi-directional oscillation to uni-directional CW operation via bi-

directional CW operation by increasing current.

3.5 Transition Between Different Regimes of Operation

The previous sections discussed the condition for each state to be stable. By varying

different control parameters, e.g. diffusion coefficient and injection current, the system

might switch between different operations. Since there is no linear backscattering in

this model, carrier grating exists as sole source for coupling between counterpropagating

modes. Strong carrier diffusion literately washes out this coupling and makes the two

lasing modes independent. In this case, only one of the two couterpropagating modes

has sufficient gain to lase. As Fig. 3.3 shows, for a certain current A, the laser only

works in unidirectional regime as d becomes large. On the other end, small d indicates

persistent carrier grating by inefficient diffusion and thus strong coupling between coun-

terpropagating modes. As shown in Fig. 3.4, laser always works on the bi-direction

operation, either CW or oscillates as discussed later.

The analyses provided in previous sections are instructive. However, supplementary

information is needed to characterize device behaviours. By comparing Fig. 3.3 and

Fig. 3.4, overlap areas of stable bi-directional and uni-directional operation are found.

This indicates the existence of bistable states and possible hysteresis behaviours with

control parameters.

This could be shown from bifurcation analysis in which different operation regimes are

recorded by starting a laser from a steady state and slowly tuning a control parameter.

The tuning is assumed adiabatic so that the laser is assumed to be in equilibrium during

the whole process apart from an abrupt hopping between the different operation regimes.
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Figure 3.6: Bifurcation diagram with decreasing current γ = 0.15 α = 3, d = 0.
The laser works from uni-directional CW operation to bi-directional oscillation via bi-

directional CW operation by decreasing current.

Numerically, this is implemented by integrating the rate equations in a very long time

interval and then slightly changing the control parameter and giving the steady solution

a small random perturbation.

Fig. 3.5 and Fig. 3.6 show for d = 0 a bifurcation diagram with carrier injection

increased and decreased respectively. Both figure shows bi-directional oscillation, bi-

directional CW and uni-directional lasing. Differences on values between different oper-

ations are shown. This corresponds to the overlap of stable regimes as mentioned before.

For small d, one gets the same bifurcation diagrams.

At small d and A, both uni- and bi- directional operation are unstable. It is interesting

to address the operation of this area. By running simulations in this area, it is shown

that a bi-directional oscillatory regime is found as in Fig. 3.7. The phase portrait Fig.

3.8 shows periodicity. However, at certain parameters, chaotic time traces are observed.

As γ is reduced to 0.002, a chaotic regime is seen from Fig. 3.9.

3.6 Directional Switching

Studies on directional switching by a single mode rate equation model have been con-

ducted by several groups recently[30, 32, 101]. The switching between two stable lasing
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Figure 3.7: Transient at A = 1.3 γ = 0.15 α = 3, d = 0
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Figure 3.8: Phase portrait at γ = 0.15 α = 3, d = 0

directions has been studied and its time constant has been characterised[30, 32]. To the

best knowledge of the author, all of them neglected the effect of the carrier grating by

assuming it washed out by strong diffusion in a very short time scale. In this section, a

model with carrier density and diffusion is presented to study directional switching as

an extension of the previous section.

To model real devices, a couple of amendments are applied to the model presented in the

previous section. As mentioned in the previous section, the output coupling introduces

backscattering between two counter-propagating modes. Therefore a complex term ρ is
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Figure 3.9: Transient at A = 1.3 γ = 0.002 α = 3, d = 0

added into the original rate equations as in[98]. This qualitatively changes the bifurca-

tion diagrams of Fig. 3.3 and Fig. 3.4 and introduces a new operation regime where

bidirectional oscillation in modal power is observed, eg alternate oscillation [28, 98]. The

conservative part ρc, eg. the imaginary part of ρ, and dissipative part ρd, eg. the real

part of ρ, governs the bifurcation diagram in such way [19, 28], that ρc favours alternate

oscillations while ρd favours CW operation. The values of ρc and ρd used in this chapter

are listed later

The equations for N and N2 are kept the same as in the previous section. The injection is

coherently added into the field equation of f [137]. As symmetry exists between forward

and backward propagating waves, it is assumed that the laser starts in forward lasing

operation and a trigger pulse is injected into the backward direction.The pulse shape

is not critical to the system response according to [32]. In this section, the injection is

taken as a Gaussian pulse envelope.

Before discussing the results, the values to be used are listed here. As picosecond

switching time is relevant, a small cavity size is used, say of radius 50µm, and the pho-

ton lifetime is 1ps. The carrier decay rate γ‖ is 1ns−1, the differential gain G is 2−19m2,

and the thickness of quantum well w is set to 10nm. The confinement factor Γ is 0.2.

α is 3. Normal diffusion coefficient is D = 13.8cm2s−1 which corresponds to d = 60

after normalisation. As the study here is focused on switching between uni-directional

bistable states, a reasonably large diffusion will be adopted to make sure there is no bi-

directional oscillatory operation just above threshold; d = 120 is used in this calculation
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here.

The injection term is added to the right hand side of Eq (3.15) as [103, 137]

∂F

∂t
=

vgGΓ

2n2
g

(1− iα)(∆NF +N2B)− F

τp
+

1

Ttrig

√

Etrig√
2πσεAvg

e−
t2

4σ2 + ρB (3.109)

where Etrig is the energy of the Gaussian shaped trigger pulse with FWHM 2
√
2ln2σ.

Ttrig is the coupling coefficient. A is the cross-section area of the active medium. After

normalized by

ftrig =
1

εf

√

Etrig√
2πσεAvg

(3.110)

τtrig =
Ttrig

τp
(3.111)

σtrig =
σ

τp
(3.112)

ρ′ = ρτp (3.113)

the forward field equation reads

∂f

∂τ
= A(nf + n2b)(1− iα)− f +

1

τtrig
ftrige

− τ2

σ2
trig + ρ′b. (3.114)

The time trace of a typical switching dynamics is shown in Fig. 3.10. The laser is

working on a steady state at 1.5Ath, where Ath is threshold current. A Gaussian pulse

with 10 ps FWHM is injected into the nonlasing direction at t = 0. The switching is

characterized by slow decay superimposed with a fast oscillation.

There are some arguments on the way to define switching time as during directional

switching, the nonlasing mode experiences strong spikes right after the trigger pulse was

injected and then; slowly settling down. Each of those dynamics has different time con-

stants, sometime even with different orders of magnitude. The ring lasers discussed here

are mainly for photonic networks or storage where fast switching dynamics is favourable.

After the power of the nonlasing mode exceeds that of the lasing mode, switching is ac-

complished. Therefore the switching time is defined as the time between the nonlasing
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Figure 3.10: A typical time trace of switching dynamics. A Gaussian pulse is injected
onto the nonlasing direction at t = 0. A = 1.1, γ = 0.001, α = 3, d = 120. The dashed
line and the solid line are intensities of light in the lasing and nonlasing direction before

the trigger pulse comes in respectively.

mode’s rise in power from 10% of steady state lasing power to 90% of it.

First the switching time’s dependence on the injection current is studied. The trigger

pulse is fixed to constant energy equal to 0.4% of energy stored inside cavity at A =

1.5Ath. The trigger pulsewidth is 10ps. Switching time increases almost linearly with

current injection as shown in Fig. 3.11. This is explained as the uni-directional operation

is more stable at higher injection current, or in another word, in a deeper potential well.

To move it from one potential well to another takes longer time.

The trigger pulse plays an important role in the dynamics as a driving force for switching

to take place. Therefore it is worth studying the switching dynamics as a function of

various pulse parameters.

As shown in Fig. 3.12, the switching time decreases with higher trigger pulse energy

or shorter pulsewidth for the trigger pulses with the same energy. This is understood

as both shorter pulsewidth or higher pulse energy provides more power to trigger the

switching, therefore the switching takes place in shorter time.

Even with the same amount of energy, the way energy is distributed inside the pulse

profile is not trivial for the switching dynamics. As a consequence, the response of a
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Figure 3.11: Switching time dependence on injection current. γ = 0.001, α = 3,
d = 120, injection pulse at 10 ps FWHM, τtrig = 25, Einj = 0.4%.
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Figure 3.12: Switching time dependence on trigger pulse energy. γ = 0.001 α = 3,
d = 120, A = 1.5.
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Figure 3.13: Switching time dependence on trigger pulse width γ = 0.15 α = 3, d = 0,
Einj = 0.2%.
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Figure 3.14: Transient with longer injection pulse γ = 0.001 α = 3, d = 120, Einj =
0.2%.

ring laser to Gaussian pulses with the same amount of energy but different pulsewidth

has been studied as follows.

As shown in Fig. 3.13, the switching time increases with the pulsewidth of the trigger

exponentially. With short trigger pulses, the injection power is strong enough to boost

the first spike of nonlasing mode to 90% of steady state power as in Fig. 3.10. However,

with longer trigger pulses, the energy is distributed within a longer time slot, therefore

the injected power is not strong enough to bring the first spike above 90%, as in Fig.

3.14. The switching is finished in more than one relaxation oscillation period. For longer
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trigger pulse, the nonlasing mode might wait for the 3rd or even the 4th spike to reach

the 90% threshold. Therefore discontinuities are seen in Fig. 3.13.

3.7 Conclusion

The bi-directional single mode ring laser model has been presented in this chapter. The

stability of the unidirectional and bidirectional CW operation has been studied and

their boundaries are identified in term of carrier diffusion and current injection. The

significance of the carrier diffusion on the dynamics are studied in this chapter. This

results fit previous publications well [66, 132]. Lasing directional switching has also been

studied in this chapter. Although the diffusion was widely neglected, it is included here.

Directional switching and time dependence on parameters, especially those of optical

injected Gaussian pulses have been studied.



Chapter 4

Four Mode Study

Two mode rate equation model as the one presented in the previous chapter has been

widely used in identifying operation regimes[105, 106] and studying directional switch-

ing [30, 101]. However, issues such as wavelength switching are out of the scope of such

model as only one frequency component is not enough to model the wavelength change.

Recently, wavelength change accompanying directional switching is observed in [20]. To

successfully model this phenomenon, more than one mode in each direction has to be

considered in the model.

As an extension of the model in the previous chapter, a model with two modes in each

direction is presented in this chapter. Both wavelength and directional switching are

addressed. The multimode nature in each direction of this model provides the possibility

to explain the experiment results.

4.1 Mathematical Formulation

The derivation starts from the carrier density and field part of the Maxwell-Bloch equa-

tion for the two level model. The polarization will be supplemented later.

In the RWA approximation, with detuning δ = (ωA − ωC) /γ⊥ and diffusion coefficient

D = D̃/γ||, one has

89
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∂tE± ± υg∂zE± = P± − κE± (4.1)

γ−1
|| ∂tN0 = J −N0 −D

∂2

∂z2
N0 − γ−1

||
(

P+E
∗
+ + E+P

∗
+ + P−E

∗
− + E−P

∗
−
)

(4.2)

γ−1
|| ∂tN2 = −

(

1 + 4Dk20
)

N2 + 4ik0D∂zN2 −D
∂2

∂z2
N2

−γ−1
||
(

P+E
∗
− + E+P

∗
−
)

(4.3)

where γ|| is the carrier decay rate and κ is the cavity loss. N0 is the slow carrier den-

sity component in terms of spatial frequency. N2 is the carrier density component with

spatial period as short as 2k.

In this chapter, two adjacent modes are considered in each direction. Therefore the field

and corresponding polarisation can be written

E± = E
(1)
± + E

(2)
± e±i∆kz−i∆ωt (4.4)

P± = P
(1)
± + P

(2)
± e±i∆kz−i∆ωt (4.5)

where ∆k = ∆ω/υg. Both ∆k and ∆ω are small as compared to k0, ωC and they define

the mode spacing.

4.1.1 Decomposition of Carrier Density

Although the carrier density is written as components with long and short spatial peri-

odicity N0 and N2 respectively, each of them could be further decomposed to the slower

terms in both space and time. Inserting Eq (4.4) and (4.5) in the carrier equations Eq

(4.2) and (4.3), one finds that the interaction between the field and the medium gives

rise to new sources that form dynamic gratings, and the carriers have to be expressed

as

N0 = N +
(

N+e
i∆kz+i∆ωt + c.c.

)

+
(

N−e
i∆kz−i∆ωt + c.c.

)

(4.6)

N2 = G1 +G+e
i∆kz+i∆ωt +G−e

+i∆kz−i∆ωt +G2e
2i∆kz. (4.7)

Substituting Eq (4.6) and (4.7) into Eq (4.2) and (4.3), the equations for all the com-

ponents in Eq (4.4) and (4.5) are as the following
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γ−1
|| ∂tN = J −N − γ−1

||
∑

±,j

(

P
(j)
± E

(j)∗
± + c.c.

)

(4.8)

γ−1
|| ∂tN+ + i

∆ω

γ||
N+ = −

[

1 +D (∆k)2
]

N+ − γ−1
||

(

P
(2)∗
− E

(1)
− + E

(2)∗
− P

(1)
−
)

(4.9)

γ−1
|| ∂tN− − i

∆ω

γ||
N− = −

[

1 +D (∆k)2
]

N− − γ−1
||

(

P
(1)∗
+ E

(2)
+ + E

(1)∗
+ P

(2)
+

)

(4.10)

γ−1
|| ∂tG1 = −

(

1 + 4Dk20
)

G1 − γ−1
||

(

P
(1)∗
− E

(1)
+ + E

(1)∗
− P

(1)
+

)

(4.11)

γ−1
|| ∂tG+ + i

∆ω

γ||
G+ = −

[

1 +D (2k0 +∆k)2
]

G+

−γ−1
||

(

P
(2)∗
− E

(1)
+ + E

(2)∗
− P

(1)
+

)

(4.12)

γ−1
|| ∂tG− − i

∆ω

γ||
G− = −

[

1 +D (2k0 +∆k)2
]

G−

−γ−1
||

(

P
(1)∗
− E

(2)
+ + E

(1)∗
− P

(2)
+

)

(4.13)

γ−1
|| ∂tG2 = −

[

1 +D (2k0 + 2∆k)2
]

G2

−γ−1
||

(

P
(2)∗
− E

(2)
+ + E

(2)∗
− P

(2)
+

)

. (4.14)

To make the equation looks clean and tidy, forward and backward waves are named in

different symbols to emphasize.

E
(j)
+ = F(j) (4.15)

E
(j)
− = B(j). (4.16)

By rearranging the above equations and moving all terms except derivatives to the right

hand sides, the new set of equations is obtained
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γ−1
|| ∂tN = J −N − γ−1

||
∑

±,j

(

P
(j)
± E

(j)∗
± + c.c.

)

(4.17)

γ−1
|| ∂tN+ = −

[

1 +D (∆k)2 + i
∆ω

γ||

]

N+ − γ−1
||

(

P
(2)∗
− B1 +B∗

2P
(1)
−
)

(4.18)

γ−1
|| ∂tN− = −

[

1 +D (∆k)2 − i
∆ω

γ||

]

N− − γ−1
||

(

P
(1)∗
+ F2 + F ∗

1P
(2)
+

)

(4.19)

γ−1
|| ∂tG1 = −

(

1 + 4Dk20
)

G1 − γ−1
||

(

P
(1)∗
− F1 +B∗

1P
(1)
+

)

(4.20)

γ−1
|| ∂tG+ = −

[

1 +D (2k0 +∆k)2 + i
∆ω

γ||

]

G+ − γ−1
||

(

P
(2)∗
− F1 +B∗

2P
(1)
+

)

(4.21)

γ−1
|| ∂tG− = −

[

1 +D (2k0 +∆k)2 − i
∆ω

γ||

]

G− − γ−1
||

(

P
(1)∗
− F2 +B∗

1P
(2)
+

)

(4.22)

γ−1
|| ∂tG2 = −

[

1 +D (2k0 + 2∆k)2
]

G2 − γ−1
||

(

P
(2)∗
− F2 +B∗

2P
(2)
+

)

(4.23)

while the field equations are just that trivial

∂tFj = P
(j)
+ − κFj (4.24)

∂tBj = P
(j)
− − κBj (4.25)

4.1.2 Polarization

The polarization is written here as suggested in Chapter 2

P± = χ̃E± + ´̃χN±2E∓ (4.26)

where

χE± = χ̃(ω0 + i∂t, N0)E± (4.27)

χ́E± = ´̃χE± =
∂χ

∂N
(ω0 + i∂t, N0)E± (4.28)

χ̃ and ´̃χ here stand for the operator of gain and the modification of gain by grating

terms. They act on the fields E± but not carrier densities N±2. χ and χ̇ are the corre-

sponding values.
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As with Balle’s definitions in [95] and [94] with interchanging the meaning of real and

imaginary part of the susceptibility here

P = E(
Λ + 1

2Λ
χ− Λ− 1

2Λ
χ∗) + χ́∆NE. (4.29)

It has to be noted that, a factor of i differs between the susceptibility used here and

that in [94, 95]. In this chapter, real and imaginary parts of susceptibility are defined

corresponds to gain and refractive index while the definition is the opposite way round

in the references cited. The same is applied to the definition of polarization.

By adding and subtraction χ to the above equation

P = χE + (χ+ χ∗)
1− Λ

2Λ
E + χ́∆NE. (4.30)

Here Λ =
√

1 + εs0|E|2. εs0 is a small number representing the gain compression due to

spectral hole burning. Its dominant effect is an almost frequency independent reduction

of the gain[29, 95]. The terms on the right hand side of Eq (4.30) corresponding to

linear gain, nonlinear gain and coupling of forward and backward modes respectively.

By Taylor expansion of the nonlinear gain term of the above equation to its first order,

P = χE − 1

4
εs0(χ+ χ∗)|E|2E + χ́∆NE. (4.31)

Nonlinear susceptibility is a third-order effect which corresponds to nonlinear gain sat-

uration, from its negative sign. It is defined by

χNL = −1

4
εs0(χ+ χ∗)|E|2 = −1

2
εs0ℜ(χ) |E|2 . (4.32)

The third order property is confirmed in this equation (i.e. polarization is cubic in E).

Here the nonlinear gain saturation χNL is studied. The nonlinear polarization is written

as

PNL = χNLE = PNL
+ eikz + PNL

− e−ikz. (4.33)

By substituting Eq (4.32) into Eq (4.33) and using
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E = Feikz +B−ikz (4.34)

the ” + ” and ”−” nonlinear polarization components are

PNL
+ = −1

2
ℜ(χ)εs(|F |2 + 2|B|2)E+ (4.35)

PNL
− = −1

2
ℜ(χ)εs(|B|2 + 2|F |2)E−. (4.36)

The effect of self saturation is always a half of that of cross saturation. In the study here,

there are two modes in each direction. By further taking this point and substituting Eq

(4.4) and Eq (4.5) into the above equations, one has

PNL
1,+ = −1

2
εsℜ (χ1)

(

|F1|2 + 2 |B1|2 + 2 |F2|2 + 2 |B2|2
)

F1 = χNL
1,+F1 (4.37)

PNL
1,− = −1

2
εsℜ (χ1)

(

|B1|2 + 2 |F1|2 + 2 |F2|2 + 2 |B2|2
)

B1 = χNL
1,−B1 (4.38)

PNL
2,+ = −1

2
εsℜ (χ2)

(

|F2|2 + 2 |F1|2 + 2 |B1|2 + 2 |B2|2
)

F2 = χNL
2,+F2 (4.39)

PNL
2,− = −1

2
εsℜ (χ2)

(

|B2|2 + 2 |F1|2 + 2 |F2|2 + 2 |B2|2
)

B2 = χNL
2,−B2. (4.40)

Therefore the polarization can be written as the medium reaction to the optical field,

both linearly and nonlinearly, plus the contribution from the carrier grating as follows

P
(1)
+ =

[

χ1 (N) + χNL
1,+

]

F1 + χ́1

(

G1B1 +N∗
−F2 +G+B2

)

(4.41)

P
(1)
− =

[

χ1 (N) + χNL
1,−
]

B1 + χ́1

(

G∗
1F1 +N+B2 +G∗

−F2

)

(4.42)

P
(2)
+ =

[

χ2 (N) + χNL
2,+

]

F2 + χ́2 (G2B2 +N−F1 +G−B1) (4.43)

P
(2)
− =

[

χ2 (N) + χNL
2,−
]

B2 + χ́2

(

G∗
2F2 +N∗

+B1 +G∗
+F1

)

. (4.44)

4.1.3 Scaling of the Equations

Before further analysis, the magnitudes of different quantities have to be studied. The

following order estimates of the carrier and the photon lifetime are made
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κ ∼ 1011s−1 (4.45)

γ|| ∼ 109s−1 (4.46)

D̃ ∼ 10−3ms−1 (4.47)

An effective index of 3 and a device of diameter 333µm that operates at λ = 1.55µm are

assumed. The optical cavity length is therefore 1mm. Thus

υg = 108ms−1 (4.48)

k0 ∼ 5× 106m−1 (4.49)

ω0 ∼ 5× 1014s−1 (4.50)

∆k ∼ 6.28× 103m−1 (4.51)

∆ω ∼ 6.28× 1011s−1. (4.52)

All of the above values are typical for semiconductor ring lasers. Furthermore, the time

constants in the rate equation of the components of carrier densities Eq (4.17)-(4.18)

are

4
D̃

γ||
k20 ∼ 1011/109 ∼ 100 (4.53)

D̃

γ||
(∆k)2 ∼ 4× 104/109 ∼ 4× 10−5 (4.54)

D̃

γ||
k0∆k ∼ π × 10−2 (4.55)

∆ω

γ||
∼ 6.28× 102. (4.56)

Since D̃(∆k)2/γ|| ≪ ∆ω/γ|| this term should be safely disregarded at some point.

For the later analysis, a time scale order is defined as the ratio of the two time scales by

T =
κ

γ||

∼ 102 (4.57)
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and a smallness parameter

ε = T−1

∼ 10−2 (4.58)

The magnitudes of time constants in Eq (4.53)-(4.56) are

4Dk20 = dT
∆ω

γ||
= µT

d ∼ O (1)

µ ∼ O (1)

D̃

γ||
k0∆k ∼ ε

D̃

γ||
(∆k)2 ∼ ε2.

As the gratings are small, the corresponding terms are scaled as

N± = εn±

G± = εg±

G1,2 = εg1,2.

As a consequence, the polarisation is expressed as

P
(1,2)
± =

[

χ1,2 (N) + χNL
1,2

]

(F,B)1,2 +O (ε) . (4.59)

The Eq (4.18) of the grating term with short spatial periodicity n+ up to first order is

εγ−1
|| ∂tn+ = − (ε+ iµ)n+ − γ−1

||

(

P
(2)∗
− B1 +B∗

2P
(1)
−
)

. (4.60)



Chapter 4. Four Mode Study 97

Upon identification of the leading order terms it is found that

n+ = − 1

iµ
γ−1
|| [χ∗

2 (N)B∗
2B1 + χ1 (N)B∗

2B1] +O (ε) . (4.61)

Then noticing that the gain difference is small and that the gratings are already evaluated

at first order, one can safely neglect the gain curvature in the grating expression and get

n+ ∼ − 2

iµ
γ−1
|| (B1B

∗
2)ℜ (χ) . (4.62)

Using the same procedure for all the other gratings components in Eq (4.19)-(4.23), one

has

n+ = − 2

iµ
γ−1
|| (B1B

∗
2)ℜ (χ) (4.63)

n− =
2

iµ
γ−1
|| (F ∗

1F2)ℜ (χ) (4.64)

g+ = − 2

d+ iµ
γ−1
|| (B∗

2F1)ℜ (χ) (4.65)

g− = − 2

d− iµ
γ−1
|| (B∗

1F2)ℜ (χ) (4.66)

g1 = −2

d
γ−1
|| (B∗

1F1)ℜ (χ) (4.67)

g2 = −2

d
γ−1
|| (B∗

2F2)ℜ (χ) . (4.68)

The equation for the population inversion benefits only slightly from such simplification.

The leading order in ε gives

γ−1
|| ∂tN = J −N − γ−1

||
∑

±,j

[

χj (N)
∣

∣

∣E
(j)
±

∣

∣

∣

2
+ χ∗

j (N)
∣

∣

∣E
(j)
±

∣

∣

∣

2
]

(4.69)

∼ J −N − γ−1
||
∑

±,j

(

2ℜ [χj (N))
∣

∣

∣
E

(j)
±

∣

∣

∣

2
]

(4.70)

∼ J −N − 2γ−1
|| ℜ (χ (N))

(

|F1|2 + |B1|2 + |F2|2 + |B2|2
)

. (4.71)

By substituting Eq (4.63)-(4.68) into Eq (4.41)-(4.44), and then the field equations, the

final form of the model reads
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∂tF1 =
[

χ1 (N) + χNL
1,+ − κ1

]

F1

+2εγ−1
|| χ́1 (N)ℜ (χ)

(

−1

d
|B1|2 +

i

µ
|F2|2 −

1

d+ iµ
|B2|2

)

F1 (4.72)

∂tB1 =
[

χ1 (N) + χNL
1,− − κ1

]

B1

+2εγ−1
|| χ́1 (N)ℜ (χ)

(

−1

d
|F1|2 +

i

µ
|B2|2 −

1

d+ iµ
|F2|2

)

B1 (4.73)

∂tF2 =
[

χ2 (N) + χNL
2,+ − κ2

]

F2

+2εγ−1
|| χ́2 (N)ℜ (χ)

(

−1

d
|B2|2 −

i

µ
|F1|2 −

1

d− iµ
|B1|2

)

F2 (4.74)

∂tB2 =
[

χ2 (N) + χNL
2,−κ2

]

B2

+2εγ−1
|| χ́2 (N)ℜ (χ)

(

−1

d
|F2|2 −

i

µ
|B1|2 −

1

d− iµ
|F1|2

)

B2 (4.75)

γ−1
|| ∂tN = J −N − 2γ−1

|| ℜ (χ (N))
(

|F1|2 + |B1|2 + |F2|2 + |B2|2
)

. (4.76)

Although the gain is asymmetric around its peak, within a small detuning, it is approx-

imately parabolic in shape, which can be modelled by a Taylor expansion around its

peak frequency to the second order,

χ1 = χ (N) +
∆ω

2

∂χ

∂ω
+

(

∆ω

2

)2 ∂2χ

∂2ω

χ2 = χ (N)− ∆ω

2

∂χ

∂ω
+

(

∆ω

2

)2 ∂2χ

∂2ω
,

where

χ1,2(N) = χ0 (1− iα)N (4.77)

and the carrier and frequency dependence of ∂χ
∂ω ,

∂2χ
∂ω2 and χ́1,2 are neglected such that

χ́1,2 ∼ χ́

= χ0 (1− iα) .

Substituting them into Eq (4.72)-(4.76) and scaling with
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Enew =

√

χ0

γ||
Eold

one has

∂tF1 = (1− iα)χ0N

(

1− 2ε

d
|B1|2 + 2i

ε

µ
|F2|2 − 2ε

d− iµ

d2 + µ2
|B2|2

)

F1

−
[

χ0ε(s|F1|2 + c|B1|2 + c|F2|2 + c|B2|2)N + (κ− δκ)
]

F1 (4.78)

∂tB1 = (1− iα)χ0N

(

1− 2
ε

d
|F1|2 + 2i

ε

µ
|B2|2 − 2ε

d− iµ

d2 + µ2
|F2|2

)

B1

−
[

χ0ε(s|B1|2 + c|F1|2 + c|F2|2 + c|B2|2)N + (κ− δκ)
]

B1 (4.79)

∂tF2 = (1− iα)χ0N

(

1− 2
ε

d
|B2|2 − 2i

ε

µ
|F1|2 − 2ε

d+ iµ

d2 + µ2
|B1|2

)

F2

−
[

χ0ε(s|F2|2 + c|B1|2 + c|F1|2 + c|B2|2)N + (κ+ δκ)
]

F2 (4.80)

∂tB2 = (1− iα)χ0N

(

1− 2
ε

d
|F2|2 − 2i

ε

µ
|B1|2 − 2ε

d+ iµ

d2 + µ2
|F1|2

)

B2

−
[

χ0ε(s|B2|2 + c|F1|2 + c|B1|2 + c|F2|2)N + (κ+ δκ)
]

B2 (4.81)

γ−1
|| ∂tN = J −N − 2N

(

|F1|2 + |B1|2 + |F2|2 + |B2|2
)

(4.82)

where s =
s0γ||
χ0

is self-saturation. c = 2s is the cross-saturation coefficient. An interplay

between the shift of gain spectrum and losses happens when operation current is changed.

κ = (κ2 + κ1)/2, δκ = (κ2 − κ1)/2 are the mean and difference of losses due to that

effect. The linear coupling from the coupler reflections is neglected for the purpose of

study the solo effect of gain material on the dynamics. In this case there is a nice phase

invariance and it is desirable to write equations only for the intensities. Notice however

that bidirectional solutions are either totally lost or in the best case very unlikely. Since

the unidirectional regime is relevant here, this should not be a problem. Reducing the

problem to the dynamics of the intensities only, one has
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∂tI
+
1 = 2

[

χ0N

(

1− 2
ε

d
I−1 + 2ε

α

µ
I+2 − 2ε

d− αµ

d2 + µ2
I−2

)

− (κ− δκ)

]

I+1

−2εχ0N
[

sI+1 + c
(

I−1 + I+2 + I−2
)]

I+1 (4.83)

∂tI
−
1 = 2

[

χ0N

(

1− 2
ε

d
I+1 + 2ε

α

µ
I−2 − 2ε

d− αµ

d2 + µ2
I+2

)

− (κ− δκ)

]

I−1

−2εχ0N
[

sI−1 + c
(

I+1 + I+2 + I−2
)]

I−1 (4.84)

∂tI
+
2 = 2

[

χ0N

(

1− 2
ε

d
I−2 − 2ε

α

µ
I+1 − 2ε

d+ αµ

d2 + µ2
I−1

)

− (κ+ δκ)

]

I+2

−2εχ0N
[

sI+2 + c
(

I+1 + I−1 + I−2
)]

I+2 (4.85)

∂tI
−
2 = 2

[

χ0N

(

1− 2
ε

d
I+2 − 2ε

α

µ
I−1 − 2ε

d+ αµ

d2 + µ2
I+1

)

− (κ+ δκ)

]

I−2

−2εχ0N
[

sI−2 + c
(

I+1 + I−1 + I+2
)]

I−2 (4.86)

γ−1
|| ∂tN = J −N − 2N

(

I+1 + I−1 + I+2 + I−2
)

. (4.87)

It can be written in a compact way

∂tI
±
j = 2

[

χ0N

(

1− 2
ε

d
I∓j − (−1)j 2ε

α

µ
I±3−j − 2ε

d+ (−1)j αµ

d2 + µ2
I∓3−j

)

− (κ∓ δκ)

]

I±j

−2χ0ε{sI±j + c(I∓j + I±3−j + I∓3−j)}I±j (4.88)

γ−1
|| ∂tN = J −N − 2N

(

I+1 + I−1 + I+2 + I−2
)

. (4.89)

4.1.4 The Final Form of the Equations

In the case that χ0 = κ, which only amounts to redefining the transparency current, one

gets

∂σI
+
1 = 2{N

[

1− 2εsI+1 − 2ε

(

1

d
+ c

)

I−1 − 2ε

(

c− α

µ

)

I+2 − 2ε

(

c+
d− αµ

d2 + µ2

)

I−2

]

−
(

1− ε
δ

2

)

}I+1 (4.90)

∂σI
−
1 = 2{N

[

1− 2εsI−1 − 2ε

(

1

d
+ c

)

I+1 − 2ε

(

c− α

µ

)

I−2 − 2ε

(

c+
d− αµ

d2 + µ2

)

I+2

]

−
(

1− ε
δ

2

)

}I−1 (4.91)

∂σI
+
2 = 2{N

[

1− 2εsI+2 − 2ε

(

1

d
+ c

)

I−2 − 2ε

(

c+
α

µ

)

I+1 − 2ε

(

c+
d+ αµ

d2 + µ2

)

I−1

]
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−
(

1 + ε
δ

2

)

}I+2 (4.92)

∂σI
−
2 = 2{N

[

1− 2εsI−2 − 2ε

(

1

d
+ c

)

I+2 − 2ε

(

c+
α

µ

)

I−1 − 2ε

(

c+
d+ αµ

d2 + µ2

)

I+1

]

−
(

1 + ε
δ

2

)

}I−2 (4.93)

1

ε
∂σN = J −N − 2N

(

I+1 + I−1 + I+2 + I−2
)

. (4.94)

The equation is normalised with the following definition

δ =
2δκ

εκ
(4.95)

and scaled in time with respect to the photon lifetime σ = κt.

Removing a factor of 2 by the scaling Inew = 2Iold to make the equations look tidy

∂σI
+
1 = 2{N

[

1− εsI+1 − ε

(

1

d
+ c

)

I−1 − ε

(

2s− α

µ

)

I+2 − ε

(

c+
d− αµ

d2 + µ2

)

I−2

]

−
(

1− ε
δ

2

)

}I+1

∂σI
−
1 = 2{N

[

1− εsI−1 − ε

(

1

d
+ c

)

I+1 − ε

(

2s− α

µ

)

I−2 − ε

(

c+
d− αµ

d2 + µ2

)

I+2

]

−
(

1− ε
δ

2

)

}I−1

∂σI
+
2 = 2{N

[

1− εsI+2 − ε

(

1

d
+ c

)

I−2 − ε

(

2s+
α

µ

)

I+1 − ε

(

c+
d+ αµ

d2 + µ2

)

I−1

]

−
(

1 + ε
δ

2

)

}I+2

∂σI
−
2 = 2{N

[

1− εsI−2 − ε

(

1

d
+ c

)

I+2 − ε

(

2s+
α

µ

)

I−1 − ε

(

c+
d+ αµ

d2 + µ2

)

I+1

]

−
(

1 + ε
δ

2

)

}I−2
1

ε
∂σN = J −N

(

1 + I+1 + I−1 + I+2 + I−2
)

.

This is the final form of the equations. In the following sections when analysis is per-

formed on them, the sign of µ is fixed to be negative, which means that modes 2 are reds

and 1 are blue. If δ is positive then 1 are stable and blue. Decreasing δ from positive to

negative means that instability occurs from blue to red that is from 1 to 2.
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4.2 Result and Discussion

4.2.1 Motion on the slow manifold

From this point only the slow time intermodal dynamics is considered. During the modal

dynamics the carriers are always around the steady state which is in this case N = 1. A

singular perturbation with the same smallness parameter is used, a perturbation of the

carriers, scale parameters and go to the carrier time scale γ||,

ε =
1

T
(4.96)

N = 1 + εn (4.97)

P = J − 1 (4.98)

δκ

κ
= εδ (4.99)

τ = γ||t (4.100)

and one has

∂τI
±
j = 2

1

ε
[εn− (1 + εn)

(

2
ε

d
I∓j + (−1)j 2ε

α

µ
I±3−j + 2ε

d+ (−1)j αµ

d2 + µ2
I∓3−j

)

−ε
δ

2
]I±j (4.101)

ε∂τn = P − εn− 2 (1 + εn)
(

I+1 + I−1 + I+2 + I−2
)

(4.102)

which gives, after simplification where only terms at O (ε) are retained in the field

equation and use of the scaling I±j → I±j /2,

1

2
∂τI

+
1 = [n− sI+1 − (c+

1

d
)I−1 − (c− α

µ
)I+2 − (c− d− αµ

d2 + µ2
)I−2 +

δ

2
]I+1 (4.103)

1

2
∂τI

−
1 = [n− sI−1 − (c+

1

d
)I+1 − (c− α

µ
)I−2 − (c− d− αµ

d2 + µ2
)I+2 +

δ

2
]I−1 (4.104)

1

2
∂τI

+
2 = [n− sI+2 − (c+

1

d
)I−2 − (c+

α

µ
)I+1 − (c+

d+ αµ

d2 + µ2
)I−1 − δ

2
]I+2 (4.105)

1

2
∂τI

−
2 = [n− sI−2 − (c+

1

d
)I+2 − (c+

α

µ
)I−1 − (c+

d+ αµ

d2 + µ2
)I+1 − δ

2
]I−2 (4.106)

ε∂τn = P − εn− (1 + εn)
(

I+1 + I−1 + I+2 + I−2
)

. (4.107)
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A singular perturbation is used here to simplify the above equations. This is done by

noticing the smallness parameter ε in front of the left hand side of Eq (4.107). When

ε = 0, the set of equations is singular with dramatic behaviour change from the original

one as Eq (4.107) is no more a differential equation but an algebraical one, hence the

system losses one degree of freedom. This could always be thought as simplifications

arise by considering the motion on the slow manifold where the total intensity is almost

a constant. In this scenario, relaxation oscillations are lost as they have a fast time

scale. A degree of freedom is lost as the leading order in ε is singular. If one defines the

incoherent total intensity as

S = I+1 + I−1 + I+2 + I−2 (4.108)

O(1) terms in the carrier equation give

0 = P − S (4.109)

A very important result comes from this equation, which is that steady state single mode

operation always has amplitude equal to P . It will be used in the following analysis.

The equation for total intensity S is obtained by summing Eq (4.103)-(4.106) together

1

2
Ṡ = nS − sS2 − (c+

2

d
)(I+1 I−1 + I+2 I−2 )− c(I+1 I+2 + I−1 I−2 )

−(c+
2d

d2 + µ2
)(I+1 I−2 + I−1 I+2 ) +

δ

2
(I+1 + I−1 − I−2 − I+2 ). (4.110)

Since the conservation law Ṡ = 0, the expression of n is

n = sP +
2(s+ 1

d)

P
(I+1 I−1 + I+2 I−2 ) +

2s

P
(I+1 I+2 + I−1 I−2 ) +

2(s+ d
d2+µ2 )

P
(I+1 I−2 + I−1 I+2 )

+
δ

2P
(I+2 + I−2 − I+1 − I−1 ). (4.111)

The stability of single mode operation is first studied in this section. As shown in

Eq(4.109), the intensity of any mode of this operation is P as long as current is kept at

the same level.
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4.2.2 Linear Stability Analysis

The purpose of the model presented in this chapter is to explain the asymmetrical be-

haviour of laser wavelength switching accompanied by directional reversal. Although the

experimental result is observed under continuous increasing or decreasing bias current[20],

the gain spectrum shift due to Joule heating is seen as the driving force behind, and

hence the origin of the asymmetrical dynamic behaviours.

As shown in Eq (4.103)-(4.107), inside the square brackets, intensities I+1 I−1 I+2 I−2 are

multiplied by combinations of self-saturation, cross-saturation, diffusion and α in differ-

ent order. Therefore, for each mode in the dynamics, contributions from other modes

are not identical. This is seen as the source of asymmetrical dynamics observed during

wavelenght switching.

Linear stability analysis is applied to the system. The idea is to assume that the laser

starts on a certain frequency and to check the stability of the other frequency compo-

nents, both forward and backward, on a continuous sweeping of δ, which simulates the

gain curve thermal drift. At a certain point where wavelength shift occurs, the new

lasing direction will be decided by the eigenvalues of the linearised perturbed system.

First, assume that the laser works on F1 mode and its transition to mode 2 is studied.

In this case, mode 1 experiences lower loss than mode 2 at the beginning, A downwards

sweeping of δ is performed to model the lasing wavelength red shift. During the transi-

tion, the loss of mode 1 increases while that of mode 2 decrease. At a certain δ, both

modes experience the same amount of loss. Then the loss of mode 1 exceeds that of

mode 2.

The small perturbations made on F2 and B2 are δF2 and δB2. By substituting I+1 = P

and Eq (4.111) into Eq (4.105) and (4.106), one has

(

˙δI+2
˙δI−2

)

= 2

(

−Ps− δ
2 − P α

µ 0

0 −Ps− δ
2 − P d+αµ

d2+µ2

)(

δI+2

δI−2

)

. (4.112)

As the matrix in Eq (4.112) is diagonal, the eigenvalues, which denoted as λ1 and λ2,

are just the diagonal elements
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λ1 = −Ps− δ

2
− P

α

µ
(4.113)

λ2 = −Ps− δ

2
− P

d+ αµ

d2 + µ2
. (4.114)

As solution of diagonal matrix, the eigenvectors corresponding to λ1 and λ2 are v1 =

(

1

0

)

and v2 =

(

0

1

)

respectively. They correspond to single mode lasing in the F2-direction

and B2 direction respectively in a Cartesian system based on F2 and B2, as displayed

in Fig. 4.2.

In the case here, P is fixed at 1 by assuming the laser works at a moderate value above

lasing threshold. Therefore the real parts of the eigenvalues are

λ1 = −s− δ

2
− α

µ
(4.115)

λ2 = −s− δ

2
− d+ αµ

d2 + µ2
. (4.116)

The eigenvalues as functions of δ are shown in the Fig 4.1 for typical operation parame-

ters. The parameters used here are µ = 1, α = 2, d = 1, s = 1. λ1 and λ2 are plotted in

black and red curves respectively. To make stable single mode lasing in the F1 direction,

δ has to be on the positive end of the diagram, where both λ1 and λ2 are negative. With

decreasing δ, which simulates the red shift of the gain peak, λ1 and λ2 starts to approach

0. λ1 reaches 0 at first at δ = 1 and then is positive while λ2 is still negative. Therefore,

F1 is not stable any more from that point after perturbation. The system evolves to

the direction of the eigenvector corresponding to λ1, eg v1, which is the F2 direction,

exponentially at the rate corresponding to λ1. No B2 mode lasing as any perturbation

will be damped out because of the negative eigenvalue corresponding to it. Moving δ

downwards will make the real part of λ2 become 0 and positive consequently at δ = −1.

However, this is irrelevant since λ1 is already positive and the system has evolved to

another state whose dynamics is not governed by the above matrix and eigenvalues in

Fig. 4.1.

It could be seen that the equations for the case of B1 to mode 2 switching can be ob-

tained by exchanging δF2 and δB2 in Eq (4.112). Therefore the analysis of this scenario
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Figure 4.1: Real parts of eigenvalues at µ = −1 α = 2, d = 1, P = 1, s = 1. λ1 to λ4

are drawn in black, red, green and blue respectively. Bifurcation points are δ = 1 and
δ = 2.5 for gain curve red shift and blue shift respectively.

B2

F2

v1

v2

Figure 4.2: Schematic diagram of eigenvectors v1 and v2 in the scenario without
backscattering

is the same as the one considered above. Thus the details will be neglected here.

Similarly, to study the directionality of the emission during wavelength switching from

mode 2 to mode 1, it is assumed that the laser starts from F2 and the relative stability

of F1 or B1 after mode jump is studied. The matrix reads

(

˙δI+1
˙δI−1

)

= 2

(

−Ps+ δ
2 + P α

µ 0

0 −Ps+ δ
2 − P d−αµ

d2+µ2

)(

δI+1

δI−1

)

. (4.117)

The real parts of eigenvalues are
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λ3 = −Ps+
δ

2
+ P

α

µ
(4.118)

λ4 = −Ps+
δ

2
− P

d− αµ

d2 + µ2
, (4.119)

and at P = 1 as in previous the analysis

λ3 = −s+
δ

2
+

α

µ
(4.120)

λ4 = −s+
δ

2
− d− αµ

d2 + µ2
. (4.121)

Similarly, the eigenvectors corresponding to λ3 and λ4 are v3 =

(

1

0

)

and v4 =

(

0

1

)

respectively. They correspond to F1 and B1 respectively.

The λ3 and λ4 as a function of δ are plotted as green and blue curves in Fig. 4.1. λ4

reaches positive earlier than λ3 when δ is increased from negative value. This corre-

sponds to a F2 to B1 hop.

To summarize, the model predicts blue shift in the lasing direction while the direc-

tions remain stable during red shift. This is exactly opposite to the experimental

observation[20]. Therefore a modification of the current model is needed to resolve

this contradiction. Before further analysis, a more careful look at the Equations of λs

Eq (4.115)(4.116)(4.120)(4.121) is conducted to gain better understanding of the model.

First, as stated above, the first one between λ1 and λ2 that changes its sign from

negative to positive during the downwards sweeping of δ determines whether or not a

red shift of lasing wavelength is accompanied by directional switching. By looking at Eq

(4.115)(4.116), it is found that λ1 and λ2 are degenerate at d = 0. In this case, no efficient

dissipation of the carrier grating is provided. After bifurcation, a persistent standing

wave pattern on carrier density is formed and bi-directional operation is obtained. Thus

transition from a single mode unidirectional operation to a bi-directional operation is

possible by varying δ when there is no carrier diffusion. The same happens for a gain

blue shift.
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When diffusion is not negligible, it can be worked out from Eq (4.115) and (4.116) that

λ1 is always larger than λ2 for reasonable lasing parameters, therefore λ1 always reaches

positive first, hence F1 to F2 switching. A schematic diagram of relative stabilities of

the phase space is drawn in Fig 4.3. Solid lines and dotted lines are stable and unstable

states respectively. Both F1 to F2 and F1 to B2 transitions are possible with downward

sweeping δ. However, as the route of former one comes early than the latter, one always

expects a F1 to F2 transition.

The same approach is applied to the mode 2 to mode 1 switching where it can be proven

that λ4 is always larger than λ3 from Eq (4.120) and (4.121). It is always a directional

flip accompanied by wavelength switching. Therefore, it is always true from this model

that the gain curve blue shift is accompanied by directional switching while no such

switching occurs for gain spectrum red shift which is exactly opposite to the experiment

results. This contradiction is handled in the next section.

The effect of the the linewidth enhancement factor α, which contributes the asymmetry

to the gain profile by moving the lasing mode to the blue side, is now discussed here.

When α = 0, the laser is not a semiconductor one any longer and the gain spectrum is

symmetrical, more appropriate to solid state lasers and gas lasers, rather than quantum

well semiconductor lasers. This symmetry has an important implementation. The λ1

is still relevant to red shift while, unlike the case when α 6= 0, λ3 starts to be relevant

to blue shift, thus no directional flip accompanies wavelength shift whether it is a red

one or a blue one. λ1 and λ3 dependence on δ is displayed in Fig 4.4. The value of δ

for λ1 and λ3 equal to 0 is symmetrical with respect to the origin. Therefore, there is

no difference between the blue shift and the red shift in terms of dynamics as both are

without reversal and happen at δ = 0.

The existence of saturation in the system brings bistable states. In Fig 4.5, F1 is stable

for δ < 1 while F2 is stable for δ > −1. In the region in between where −1 < δ < 1, both

F1 and F2 could be stable. The lasing direction is determined by the laser’s previous

state. In other words, a hysteresis exists in this region. A schematic diagram is seen in

Fig 4.3 to illustrate this situation.

By letting s = 0, both dominant eigenvalues λ1 and λ3 change sign at δ = 0. No bistable

states and consequence hysteresis occur in this scenario. Wavelength hopping happens



Chapter 4. Four Mode Study 109

B2

F1

F2

δ

Figure 4.3: Schematic diagram of the stabilities of F1 B1 and F2 single mode lasing
states. Solid lines and dotted lines illustrate stable and unstable states respectively
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Figure 4.4: Typical eigenvalues dependence on δ in the case without α and s. µ = −1,
d = 1, P = 1. Black and green correspond to λ1 and λ3 respectively. The bifurcation

of upwards and downward sweeping occurs at the same point δ = 0

as long as a nonlasing mode starts to have larger gain than the lasing one does.

The above can be proved by a bifurcation curve produced by numerically solving Eq

(4.103)-(4.107)

Fig 4.6 and 4.7 show the bifurcation of a lasing mode with respect to gain curve shift

δ. Fig 4.6 is for δ sweeping from positive to negative while Fig 4.7 is for the opposite

sweeping. The Eq (4.103)-(4.107) are numerically solved for steady state values at a

certain δ. Then for a new δ which is a little smaller (larger) than the previous one, the

steady state solutions with a small random perturbation is fed to the equations as initial
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Figure 4.5: Typical eigenvalues dependence on δ in the case without α but with s.
µ = −1, d = 1, P = 1, s = 1. Black and green correspond to λ1 and λ3 respectively.
The bifurcation of upwards and downward sweeping occurs symmetrically with the

respect of the origin.
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Figure 4.6: Bifurcation curve by sweeping δ downwards. µ = −1, α = 2, d = 1,
P = 1, s = 1. Bifurcation happens at δ = 0.9. F1 to F2 switching is obtained.

conditions. The new steady state is obtained and used as the initial condition for the

next iteration. Both the bifurcation point and the switching scenario correspond to the

result obtained from the linear stability analysis, eg the switching is exactly opposite to

the experimental results. Therefore a further amendment is made.



Chapter 4. Four Mode Study 111

2.3 2.4 2.5 2.6 2.7
δ

0

0.5

1

In
te

ns
ity

 (
A

.U
.)

F1
B1
F2
B2

Figure 4.7: Bifurcation curve by sweeping δ upwards. µ = −1, α = 2, d = 1, P = 1,
s = 1. Bifurcation happens at δ = 2.53. F2 to B1 switching is obtained.

4.3 Effect of Backscattering

Neglecting the backscattering from the output coupler and the facets of the output

waveguide might be misleading, as such an approach in the previous section produces

results opposite to those observed in experiments. By adding backscattering terms, the

matrix is qualitatively changed from diagonal to nondiagonal. In this section, such a

modification is made in an attempt to reproduce results which fit experiments. To what

extent the modified model works in the experiment is also studied

As a coherent effect, backscattering can not be added easily to rate equations of intensi-

ties used in the previous section. Therefore equations Eq (4.78)-(4.82) with normaliza-

tion as performed in the previous section are used as a starting point
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∂tF1 = (1− iα)

{

N

[

1− ε
1

d
|B1|2 + ε

i

µ
|F2|2 − ε

(

d− iµ

d2 + µ2

)

|B2|2
]

−
(

1− ε
δ

2

)}

F1

+ερF e
iθ1B1 −Nεs(|F1|2 + 2|B1|2 + 2|F2|2 + 2|B2|2)F1 +Rsp (4.122)

∂tB1 = (1− iα)

{

N

[

1− ε
1

d
|F1|2 + ε

i

µ
|B2|2 − ε

d− iµ

d2 + µ2
|F2|2

]

−
(

1− ε
δ

2

)}

B1

+ερBe
iθ1F1 −Nεs(|B1|2 + 2|F1|2 + 2|F2|2 + 2|B2|2)B1 +Rsp (4.123)

∂tF2 = (1− iα)

{

N

[

1− ε
1

d
|B2|2 − ε

i

µ
|F1|2 − ε

d+ iµ

d2 + µ2
|B1|2

]

−
(

1 + ε
δ

2

)}

F2

+ερF e
iθ2B2 −Nεs(|F2|2 + 2|F1|2 + 2|B1|2 + 2|B2|2)F2 +Rsp (4.124)

∂tB2 = (1− iα)

{

N

[

1− ε
1

d
|F2|2 − εi

1

µ
|B1|2 − ε

d+ iµ

d2 + µ2
|F1|2

]

−
(

1 + ε
δ

2

)}

B2

ερBe
iθ2F2 −Nεs(|B2|2 + 2|F1|2 + 2|B1|2 + 2|F2|2)B2 +Rsp (4.125)

1

ε
∂tN = J −N −N

(

|F1|2 + |B1|2 + |F2|2 + |B2|2
)

. (4.126)

The reflection coefficient and phase shift are denoted by ρ and θ in the above equations.

Rsp is a Gaussian profiled noise to represent spontaneous emission. Its usage is discussed

later.

4.3.1 Linear Stability Analysis

As in the previous study when backscattering is not considered, the linear stability

analysis is performed at the beginning. The steady state solutions of carrier density and

photon density of the model without backscattering are used as it is believed that their

introduction influences coherent effects more seriously than particle densities.

First, the possibility of directional switching when the gain curve thermally drifts to red

is studied. It is assumed that the laser starts on the F1 mode. The steady state solution

is

|F10|2 =
2J − 2 + εδ

2 + 2εsJ + εδ
(4.127)

N0 =
2 + 2εsJ − εδ

2 + 2εs
. (4.128)

Let P0 = J − 1; the linear perturbations δF2 and δB2 applied to F2 and B2 obey
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Figure 4.8: Real part of eigenvalues λ with gain red curve shift δ at µ = −1, α = 2,
d = 0.3, J = 6, s = 1, θ2 = 1.4, ρF = 4, ρB = 4. Black and red curves are λ1 and λ2

respectively. The switching occurs at δ = 4.25

(

˙δF2

˙δB2

)

=

(

L11 L12

L21 L22

)(

δF2

δB2

)

(4.129)

where elements of the transformation matrix are

L11 = (1− iα)N0

(

1− ε
i

µ
P0

)

− (1 + ε
δ

2
)− εcN0P0 (4.130)

L12 = ερF e
θ2 (4.131)

L21 = ερBe
θ1 (4.132)

L22 = (1− iα)N0

(

1− ε
1

d− iµ
P0

)

− (1 + ε
δ

2
)− εcN0P0. (4.133)

The eigenvalues’ dependence on δ during a gain curve red shift is plotted in Fig. 4.8.

λ1 and λ2 are plotted in black and red respectively. As λ2 reaches positive before λ1

does at δ = 4.25 on the way of decreasing δ, the onset of the lasing mode switching

follows the direction of the corresponding eigenvector v2 with the rate of λ2. Unlike the

eigenvectors of the matrix without backscattering, the eigenvectors here point to neither

pure F2 nor B2 direction but to a combination of the both. Therefore it is the relation

between the F2 and the B2 components of v2 that determines the direction of lasing

after a lasing mode red shift. A schematic diagram is drawn to show this situation in

Fig. 4.9. The dotted line is exactly at 45o from B2 and F2 axis. Drawing eigenvectors

from the origin, those eigenvectors below the dotted line have a larger B2 component,

therefore a tendency to the B2 direction, while those above the dotted line have an F2
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Figure 4.9: Schematic diagram of the direction of eigenvectors v1 and v2 in the case
with backscattering. Both v1 and v2 are not pointing to pure F2 or B2 direction but

with an angle

tendency.

The task now is to find if the eigenvector v2 sits above the dotted line or fall below it.

Both ρF and ρB are set to have the same value ρ. The study shows that the relative

of values of B2 and F2 components are functions of ρ and θ. To make sure that the

switching has a tendency of F1 to B2, proper parameters have to be selected carefully.

In Fig.4.10 the direction of the eigenvector v2 as a function of θ2 with a period of 2π is

plotted at the bifurcation point δ = 4.3. The ratio of the 2 directional components B2

F2

is smaller than 1 for most of the θ2. This means v2 is prone to F2 direction at most of

the time. However it is the small region of 0.97 < θ2 < 1.6 that gives a desirable result,

e.g. a more B2 oriented eigenvector in this case.

The corresponding B2

F2
dependence on the reflection from the coupler ρ at δ = 4.3

is plotted in Fig. 4.11. ρ2 has to be larger than 3 to achieve red shift with right

directionality selection.

The case of directional switching during a gain curve blue shift is studied in the same

way. It is assumed that the laser starts from F2. The steady state solution used are
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Figure 4.10: The direction of v2 measured by the ratio of its 2 components B2

F2

dependence on δ. µ = −1, α = 2, d = 0.3, s = 1, J = 6, ρ = 4, δ = 4.3
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Figure 4.11: The dependence of B2

F2

on ρ. µ = −1, α = 2, d = 0.3, s = 1, J = 6,
θ2 = 1.4, δ = 4.3

|F20|2 =
2J − 2− εδ

2− 2εδ + 2εsJ
(4.134)

N0 =
2 + εδ + 2εsJ

2 + 2εs
. (4.135)

The similar linear perturbation on the system follows

(

˙δF1

˙δB1

)

=

(

L11 L12

L21 L22

)(

δF1

δB1

)

(4.136)

where the elements of the transformation matrix are
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Figure 4.12: Real part of eigenvalues λ with gain curve blue shift δ at µ = −1 α = 2,
d = 0.3, J = 6, s = 1, θ1 = −1, ρ = 4. Switching occurs at δ = 12.8. Black and red

curve are λ3 and λ4 respectively
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Figure 4.13: The direction of v2 measured by the ratio of its 2 components B1

F1

dependence on δ. µ = −1, α = 2, d = 0.3, s = 1, J = 6, ρ = 4, δ = 12.8

L11 = (1− iα)N0

(

1 + ε
i

µ
P0

)

−
(

1− ε
δ

2

)

− εcN0P0 (4.137)

L12 = ερF e
θ1 (4.138)

L21 = ερBe
θ1 (4.139)

L22 = (1− iα)N0

(

1− ε
1

d− iµ
P0

)

− (1− ε
δ

2
)− εcN0P0. (4.140)

The figure of the real parts of the eigenvalues λ3 and λ4 versus on δ is shown in Fig.

4.12. λ3 and λ4 are drawn in black and red curves respectively. From this figure, lasing

mode switching at δ = 12.8 follows the direction of v4. Fig. 4.13 and 4.14 are B1

F1
of v4 as



Chapter 4. Four Mode Study 117

1 2 3 4 5
Ρ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B1
��������
F1

Figure 4.14: The dependence of B1

F1

on ρ. µ = −1, α = 2, d = 0.3, s = 1, J = 6,
θ1 = −1, δ = 12.8

a function of θ1 and ρ1. They may be used to optimise the parameters used in the model.

It is desirable to have v1 and v2 (v3 and v4) to have large a split to distinguish them

when the onset of lasing mode switching is triggered by gain curve shift. Values to

optimize and make desirable switching are obtained from Fig. 4.10, 4.11, 4.13 and 4.14.

The selected values are listed here: θ1 = −1, θ2 = 1.4, ρ = 4.

4.3.2 Numerical Bifurcation Study

To supplement the linear stability analysis, numerical bifurcation with δ is studied. The

method used here is the same as the one used in the previous section. Up and down

sweeping of δ, which corresponds to gain spectrum blue shift and red shift respectively,

are plotted in Fig. 4.15 and 4.16.

The above figures show that the bifurcation point predicted by linear stability analysis

matches that measured from Fig. 4.8 and 4.12. However, although both of the methods

obtain identical directionality of the lasing after gain curve blue shift, the expected di-

rectional reverse accompanied by gain curve red shift for certain parameters suggested

from linear stability analysis is not guaranteed here. Repeated numerical downward

sweeping of δ reveals that the red shift could end up at either direction with a certain

probability.
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Figure 4.15: Bifurcation curve with sweeping of δ downwards. µ = −1, α = 2,
d = 0.3, P = 5, s = 1, θ1 = −1, θ2 = 1.4, ρ = 4. Bifurcation occurs at δ = 4.249, F1 to

B2 switching is obtained

The four-mode dynamics at a bifurcation point calculated by two separate downwards

numerical sweepings of δ are plotted in Fig. 4.17 and 4.18. The bifurcation occurs at

δ = 4.24. Both F2 and B2 modes have their power increase, while F1 decays with time.

From the time trace, at the offset of the mode switching, B2 always has a power supe-

rior to F2 before a couple of oscillations and power transfer between them. The ratio

of intensity of those two modes, B2

F2
is around 1.6, which is the same as that calculated

from linear stability analysis, at the beginning of the dynamics and persists for a long

time. This is the indication that the dynamics follows the route predicted by linear sta-

bility analysis at the onset. However, a complex dynamics involving all the four modes

happens in the middle of the switching process. It is explained in such way that the

process is so sensitive to noise that dynamics could take either F2 or B2 as exit although

the initial states are identical.

The effect of the noise on the exit which the system selected is studied in the following.

Gaussian noise functions with 0 mean and various variances are used and the the number

of times the system reaches F2 or B2 is recorded for each variance. As with the small

variance, the noise is most likely to stay within a small region around the mean value.

The effect of such Gaussian noise with small variance is almost along the direction of

trajectory. On the contrary, the noise with large variance perturbs the system on its

trajectory’s transverse direction which is more likely to push the dynamics from one at-

tractor to another attractor given that there are two attractors sitting next to each other.



Chapter 4. Four Mode Study 119

12.1 12.2 12.3 12.4 12.5
δ

0

1

2

3

4

5

In
te

ns
ity

 (
A

.U
.)

F1
B1
F2
B2

Figure 4.16: Bifurcation curve with sweeping of δ upwards. µ = −1, α = 2, d = 0.3,
P = 5, s = 1, θ1 = −1, θ2 = 1.4, ρ = 4. Bifurcation occurs at δ = 12.3, F2 to F1

switching is obtained
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Figure 4.17: Undesirable mode dynamics of gain curve red shift at δ = 4.249. µ = −1,
α = 2, d = 0.3, J = 6, s = 1, ρ = 4, θ1 = −1, θ2 = 1.4.
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Figure 4.18: Desirable mode dynamics of gain curve red shift at δ = 4.249. µ = −1,
α = 2, d = 0.3, J = 6, s = 1, ρ = 4, θ1 = −1, θ2 = 1.4.

A statistical approach is taken to study the effect of the noise. The δ sweeping is taken

for 4000 times with different variance of the noise. The possibility of the system reaching

B2 after wavelength switching is recorded in Fig. 4.19. The system is likely to reach F2

when noise with small variance is applied, while B2 is more probable with noise of large

variance. This is to say, the system is more likely to have F1 to F2 switching naturally

which is not observed experimentally. However, with the aid of the noise, the gain red

shift goes to the ’right’ direction. It is also needed to note that, the large variance

strongly moves the bifurcation point of δ.

4.4 Conclusion

In conclusion, the directional switching of the lasing during a mode jump in frequency

is studied in this chapter. The combination of the gain curve drift due to ohmic heat-

ing and backscattering from the output waveguide are seen as the mechanism. The

backscattering is seen as the vital part to the ’right’ switching behaviour from the linear

stability analysis. However, a complex dynamics exists between the onset of switching

and its final state, which makes the lasing direction non-deterministic from the model,

although the onset of switching points to a right direction. A comparison with the model

presented in [29] sees some possible improvement of the model. This is discussed in the

next Chapter.
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Figure 4.19: The possibility of good switching as a function of the variance of the
Gaussian noise during gain curve red shift. µ = −1, α = 2, d = 0.3, J = 6, s = 1,

ρ = 4, θ1 = −1, θ2 = 1.4.



Chapter 5

Conclusions and Discussions

5.1 Conclusions

In this thesis, a numerical method based on spectral decomposition solving partial dif-

ferential equations applied to the Maxwell-Bloch equations has been proposed to study

the dynamics of the semiconductor ring lasers. Contribution to the dynamics from the

nonlinear polarization for each individual mode has been identified by phase matching.

A set of coupled rate equations has been developed. Lasers with a priori number of

modes have been studied. Also, the diffusion coefficient is proved to be significant to

the dynamics and taken into account.

To summarize, the main advantages of the spectral method developed in the thesis are

listed here

1. The method suits problems with regular cavity geometry, for example ring lasers

by providing a fast convergence.

2. Modes are expressed explicitly. Linear stability analysis is applied on selected

modes to study their relative stability.

3. The model is numerically efficient as the spectral method is only applied to the

spatial coordinate. Solutions have been solved by marching along the time which

is numerically cheaper compared with a full spectral decomposition on both space

and time.

4. A good form of susceptibility from Balle [95] could be used instead of calculating

the polarizations microscopically. Spectral hole burning is taken into account

without complex calculation.

122
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5. Dynamics faster than picosecond scale are hidden in the susceptibility.

6. The numerical algorithm is relatively easy to implement to the programme code.

The general multimode rate equation model used in this thesis has been presented in

Chapter 2. A comparison between travelling wave model and multimode rate equation

model on two level uni-directional ring laser is performed. According to that, although

the number of modes needed in the model varies with the dynamics to be expressed, and

moderate number of modes has to be included to recover the strong pulsation operations

obtained from the travelling wave model, rate equations with very limited number of

modes are good to study the bifurcations at low pump injection.

In Chapter 3, the method is applied to the bi-directional single mode semiconductor

lasers. Diffusion as an important parameter has been considered in this chapter. Its

influence on the different operating regimes is analysed by linear stability analysis. The

boundaries of different regimes have been identified. This result fits those achieved by

other studies[66, 97]. The phase sensitive interaction via the included carrier grating be-

tween conterpropagating lasing modes and optically triggered directional switching have

been studied as well. The switching time dependence on lasing parameters is studied,

for which the result has been compared with [32]. A good agreement has been shown

although in [32] explicit nonlinear gain saturation has been used in the approach and a

carrier grating is not included

In Chapter 4, the bi-directional multi-mode semiconductor lasers with two modes in each

lasing direction have been used to study the wavelength switching accompanying direc-

tional switching. Comparing with the model in Chapter 3, the approach in this chapter

corresponds to an increase of the degrees of freedom by two. The asymmetry introduced

by the backscattering from the output coupler is the key to different dynamic behaviour

and consequences from gain curve red shift and blue shift. This has been confirmed by

steady state analysis.

5.2 Future Works

The rate equation approach for the lasing mode bifurcation with gain curvature shift

which has been observed experimentally has been justified analytically. However, the

direction after bifurcation from numerical calculation shows a dependence on the direc-

tion of the perturbation exerted on the trajectory. A discrepancy of the travelling wave
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approach in [29] and the rate equations is observed as the bifurcation from the numerical

result of the travelling wave approach always goes to the good direction which fits the

experiments well.

A comparison between the travelling wave approach and the rate equation has been

conducted and one main differences between those two approach is found. The rate

equation approach adopted in this thesis is under the assumption of a perfect cavity

without geometrical symmetry broken induced by energy exchange from the coupler.

This is to say, the spatial profile dose not change all the way along the cavity. However,

in the case of travelling wave modelling, the amplitude of the light is dependent on the

position. As it gets amplified when travelling within the active medium and attenuated

in the coupler. Therefore one possible future work could be to recover the spatial profile

missing in the rate equations. Travelling wave approach could be used to serve such

purpose. Attempts to deal with the spatial profile has also been reported[67].

From the last chapter, complicated dynamics are indicated close to the bifurcation point.

Attractors close to each other might exist as noise could trigger switching from the same

starting points and end up at different operations. A travelling wave model also shows

that the transition of switching involves 6 modes in the intermediate dynamics[29]. It

is worthwhile to have a comprehensive investigation in the bifurcation point and the

structure around it.
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