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Abstract 

Mountain bike suspension systems have been designed to improve riding performance and comfort for the 

cyclist.  Additionally, a suspension system may reduce fatigue, energy expenditure, and enhance time trial 

performance.  It has also been proposed, however, that using a rear suspension system on a mountain 

bike may be detrimental to the cyclist, causing the cyclist’s energy to be dissipated via the rear suspension 

system.   

Prior to undertaking the current research, a survey into mountain bike suspension systems was conducted 

to establish rider preferences, as well as their perceptions of suspension systems and riding styles.  The 

resulting responses - that the majority of cross-country cyclists chose to ride a bike with front suspension 

only (a hardtail bike), despite the significant advantages that a fully suspended system has to offer – aided 

in the decision to address the unanswered questions that remain in this area of research.     

This thesis presents an investigation into mountain bike suspension systems and their effect on rider 

performance, quantifying the dynamic loads exerted on the bike frame and rider.  Both the psychological 

and physiological effects of using a rear suspension system on cross-country cycling are additional 

considerations of this study. 

An initial laboratory experiment was completed to investigate the effects of rear wheel dynamics on a rough 

track with a high impact frequency and the consequent impact this terrain has on rider performance, 

comparing a full suspension and hardtail bike.  Further testing was conducted on a rolling road rig, 

specifically designed for the purpose of the current research, which more closely represented the 

conditions encountered by a cyclist on a cross-country track.  Testing was conducted on the rolling road rig 

on both a flat road and rough track, examining the interaction forces between the bike and rider.  Greater 

resistance was experienced by cyclists when cycling on the rolling road rig compared to the roller rig which 

equated to the resistance encountered when cycling uphill or into a headwind.  The mechanical results 

from both rigs were compared to dynamic simulations as a means of validating and comparing the 

mechanical results. 

An additional series of tests was carried out on an indoor track which had a similar terrain to that of the 

rolling road rig.  This set of tests placed fewer restrictions on the cyclist as only physiological data was 

collected using unobtrusive portable measurement devices, and provided further results to illuminate 

correlations or discrepancies between the roller rig and rolling road rig experiments.   

The experimental rolling road rig results indicated that, when cycling on a smooth surface, the hardtail bike 

offered no significant physiological advantage to the cyclist; however, more power was required by the rider 

to pedal the fully suspended bike.  This was also advocated by the simulation results.  Conversely, it was 

highlighted that the fully suspended bike provided a significant advantage to the rider compared to the 

hardtail bike when cycling on extremely rough terrain on the roller rig.  This was the case across the 

simulation results, mechanical measurements, physiological measurements and psychological 

measurements.  Similarly, the indoor track tests indicated that cycling on a fully suspended bike provided 

significant advantages to a cyclist in terms of rider performance.  On the contrary, the experimental rolling 

road rig results on a rough surface demonstrated that no significant difference was apparent between 

cycling on either the hardtail or fully suspended bike. This result suggests that, when a rider encounters 

added resistance to cycling, as is the case when cycling uphill, there is less of an advantage for a fully 

suspended bike even on rough terrain.   
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ii. Nomenclature 

These symbols are used within the body of the text, figures and tables of this 

document: 

 

A.......................................................................................................................Area  

a...........................................................................................................Acceleration 

C.......................................................................................................Circumference 

Cd...............................................................................................Coefficient of drag 

d................................................................................................................Diameter 

E...................................................................................................................Energy 

Hz....................................................................................................................Hertz 

J.....................................................................................................................Joules 

kHz.............................................................................................................Kilohertz 

 k.......................................................................................................Kinetic Energy 

Ep..................................................................................................Potential Energy 

F......................................................................................................................Force  

f...............................................................................................................Frequency 

g....................................................................................................................Gravity 

I......................................................................................................................Inertia  

IC..................................................................................................Integrated Circuit 

M.....................................................................................................................Mass 

m……………………………………………………………………………………..Mean 

MHz.........................................................................................................Megahertz 

N………………………………………………………………………………….Newtons 

Ω.....................................................................................................................Ohms 

P.....................................................................................................................Power  

psi......................................................................................Pounds per square inch 

r......................................................................................................................radius  

t........................................................................................................................Time 

v...................................................................................................................Velocity 

V...................................................................................................................Voltage 
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x...................................................................................Denotes undefined variable  

W…………………………………………………………………………………….Watts 

w.....................................................................................................................Width 

ω.................................................................................................Rotational Velocity 
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iii. Abbreviations 

These symbols are used within the body of the text, figures and tables of this 

document: 

 

ADAMS………………………………………………Mechanical Simulation Software 

A to D Converter........................................................Analogue to digital Converter 

ANOVA………………………………………………………The Analysis Of Variance 

AUTOLEV……………………………………………………………..Online dynamics 

Avg..............................................................................................................Average 

CO2………………………………………………………………………Carbon dioxide 

CK…………………………………………………………………….…Creatine Kinase 

DADS...........................................................Dynamic Analysis and Design System 

DC.....................................................................................................Direct Current 

HR............................................................................................................Heart rate 

HT............................................................Mountain bike with front suspension only 

LT................................................................................................Lactate Threshold 

Lab View……………………………………………………...…Data recording display 

LifeMod…………………….…Plug in for ADAMS to represent a model of a human 

Max...........................................................................................................Maximum 

Min.............................................................................................................Minimum 

O2.....................................................................................…..Oxygen consumption 

p.................................................................(Probability) Statistical confidence level 

PCB........................................................................................Printed Circuit Board  

PTFE...................................................................................Polytetrafluoroethylene  

RPE.............................................................................Rating of perceived exertion 

s.................................................................................................Standard deviation 

SMD......................................................................................Surface Mount Device 

SRM………………………………………………...…… Schoberer Rad Messtechnik 

SU.....…............................................Mountain bike with front and rear suspension  

VCO2.........................................................….......Volume of carbon dioxide uptake 

VO2........................................................................….......Volume of oxygen uptake 
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VO2max...................................................…….....Volume of maximal oxygen uptake 
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iv. Terms Glossary 

 

Accelerometer 

An accelerometer is a device that measures proper acceleration, the acceleration 

experienced relative to freefall. 

Aerobic 

Having oxygen present, describes the metabolic process utilising oxygen. 

ADAMS 

A  Mechanical System Simulation Software. 

Anaerobic 

Inadequate oxygen present, describes the metabolic process that does not use 

oxygen. 

Bobbing 

Oscillation of the bike due to the suspension 

Brake jack   

The rear suspension of a bike extending and stiffening when the rear break is 

applied. 

Breath-by-breath 

The expression of a particular physiological   value averaged over on respiratory 

cycle. 

Bottom bracket 

The bottom bracket on a bicycle connects the crankset to the bicycle and allows 

the crankset to rotate freely. 

Chainstay 

This is the section of a bicycle frame which connects the bottom bracket with the 

rear wheel connection.   

Crank 

The crank is an arm attached at right angles to a rotating shaft. 
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Crankset 

This is the component of a bicycle drivetrain that converts the motion of the 

rider's legs into rotational motion used to drive the chain, which in turn drives the 

rear wheel. 

Frequency 

The amount of times an event occurs per second. 

Four-bar linkage  

Consists of four rigid bodies, attached by single joints or pivots to form a closed 

loop. 

Fully Suspended 

A bike with front and rear suspension. 

Hardtail 

A bike with front suspension only. 

Heart rate 

The rate at which the heart beats per minute 

Incremental exercise test 

An exercise test designed to provide a gradational work rate to the subject. 

Lactate 

The form in which lactic acid is measured. 

Lactate threshold 

The exercise VO2 above which lactic acid concentration increases the blood. 

LifeMOD 

Is a human simulation tool. 

Matlab 

(MATrix LABoratory) is a numerical computing environment programming 

language. 

Optical encoder  

Is a device that converts motion into a sequence of digital pulses. 

Pedal feedback 

This is when the distance between the axle and cranks increases as the 

suspension compresses. 
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Power 

The rate at which work is performed. 

Preload 

The amount a suspension system compresses from the weight of the rider alone. 

Ridged bike 

A bike with no suspension. 

Shock absorber  

A shock absorber is a mechanical device (one kind of dashpot) designed to 

smooth out or damp shock impulse, and dissipate kinetic energy. 

Servo-hydraulic testing actuators 

Are used in materials and component testing to reproduce precise, pre-

determined forces and travel.  

Single Swing Arm or Single pivot 

Is a rear suspension system that consists of a pivot near the bottom bracket and 

a single swingarm to the rear axle. 

Spring Preload 

The compression the spring of the suspension is under to compensate for a 

riders weight.  

Steady State 

A characteristic of a physiological system in which the functional demands are 

being met such that its output per unit of time become constant. 

Transducer 

A transducer is a device that converts one type of energy to another. 

VO2  

The amount of oxygen extracted from the inspired gas in a given time period. 

VO2max 

The maximum oxygen uptake that a subject can achieve. 

VO2peak 

The highest oxygen uptake achieved during exercise. 
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Work 

A physical quantification of the force operating on a mass that causes it to 

change its location. 
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1. Introduction 

 

The main research question is to establish the effect on rider performance when 

cycling a fully suspended mountain bike compared to a hardtail mountain bike.  

Nielens and Lejeune (2004) reviewed the most relevant studies conducted to 

measure the energy efficiency of rear suspensions and concluded that there is 

not enough evidence to make a decision about the use of hardtail or full 

suspension bikes: the type and degree of suspension and its effect on rider 

performance are topics of much debate yet (González et al., 2008).  This thesis 

will address this gap in research by investigating the effects that cycling on a full 

suspension and front suspension only mountain bike has on rider performance.  

Rig experiments; indoor track tests; dynamic simulations and the resulting 

analysis of physiological, psychological, and mechanical data, aided in meeting 

the objectives of the research.    

 

Mountain biking, or off-road cycling, was initially developed in the 1970s when 

heavyweight bikes were modified to freewheel down mountain tracks and enable 

riders to cope with bumpy terrain.  The first official mountain bike championships 

were held in 1990, and mountain biking became an Olympic sport in 1996 (Union 

Cycliste Internationale (UCI) Official Website, 2009).  Since its accreditation, 

mountain biking has developed into a popularly acclaimed sport.      

 

There are three types of mountain bike: a rigid frame mountain bike with no 

suspension; a hardtail mountain bike with front suspension only; and a fully 

suspended mountain bike which has both front and rear suspension.  The first 

mountain bikes were manufactured with a rigid frame and fork (rigid frame 

mountain bikes), and it was not until the early 1990s that the first mountain bikes 

with suspension forks were introduced.  This made cycling on rough terrain 

easier and less physically stressful.  Riding over rough terrain presents 

numerous problems for cyclists: the rougher the terrain, the more vibrations felt 

by a rider which consequently results in discomfort and an increase in physical 
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stress on muscles, thus cycling on rough terrain can impair a cyclist’s ability to 

perform.  Needle & Hull (1997) assert that vibrational discomfort associated with 

riding a bike over rough terrain has been known to contribute to rider fatigue and 

affect rider performance.  Levy & Smith (2005) suggest that a reduction of 

vibration in cycling has the potential for improved performance and comfort.   

 

Front suspension systems were incorporated into the design of mountain bikes to 

aid in absorbing bump impact energy, shielding both the frame and rider from 

jolts (Leventon, 1993).  In addition to absorbing bump impact, Olsen (1996) 

identifies basic goals that should be satisfied by a mountain bike suspension 

design: (i) to isolate the rider from the roughness of the road; (ii) to absorb 

energy and shock that comes from hitting large obstacles; (iii) to keep the wheels 

on the ground to provide useful functions such as driving, braking and steering; 

and (iv) to avoid adding undesirable characteristics to the bike.  Undesirable 

characteristics include chain-suspension pedalling interactions (Good & McPhee, 

1999) and the bobbing effect of the suspension, felt as the cyclist pedals.   

 

Front suspensions have become standard equipment on mountain bikes 

(Leventon, 1993) and are widely used in off-road bikes since they have no 

disadvantages except for a slight weight penalty in the fork (González et al., 

2008).  Conversely, rear suspension systems are not broadly accepted by off-

road cyclists (González et al., 2008).  In support of this view, the analysis of the 

questionnaire respondants (Chapter 3) found that the majority of cyclists chose to 

ride hardtail bikes over bikes fitted with a full suspension system: only 95 out of 

the 260 respondents rode a fully suspended mountain bike.  Reasons cited for 

this were that full suspension mountain bikes used up excess energy through 

effects such as bobbing, pedal feedback, and brake jack.   

 

The majority of front and rear suspension systems are comprised of an elastic 

(spring) and viscous (damper) component mounted in parallel between the wheel 

and frame of the bike, as illustrated in Figure 1-1.  The elastic component is 
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made of a steel spring which can be pre-constrained at different levels or an air 

chamber that can be pre-inflated at varied pressures according to the nature of 

the terrain and cyclist’s preference.  The viscous component generally comprises 

of a piston and cylinder chamber filled with oil - the oil travels through orifices 

made in the piston (Nielens & Lejeune, 2004).  Most front suspensions are 

comprised of telescopic forks with elastic and viscous components in each arm of 

the fork.  Rear suspension designs, however, are numerous.  The most 

frequently manufactured rear suspension designs are: single swing arm; four bar 

linkage; four bar horst link; virtual pivot point; unified rear triangle; and 

suspension seat posts.   

 

Figure 1-1: Components of a suspension system 

 

The hardtail mountain bike used for the experiments in the current study was 

fitted with a font suspension telescopic fork.  The fully suspended mountain bike 

comprised of a front telescopic fork suspension system, and a single swing arm 

rear suspension design; a mountain bike with this type of rear suspension design 

was chosen as it is one of the most widely used rear suspension systems.  This 

is supported by the findings from the cyclists’ questionnaire responses (Chapter 

3) which highlight that out of the 95 cyclists who rode fully suspended bikes, the 

majority (33 %) cycled on bikes comprising of a single swing arm rear 

suspension design.   The single swing arm suspension design consists of a pivot 
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near the bottom bracket and a single swing arm to the rear axle (Figure 1-2).  

The rear axle will always rotate in a part-circle around the pivot point.     

 

Figure 1-2: Most common bicycle suspension designs: (A) Hardtail bike with front 

suspension only: (B);  Ridged bike with no suspension (C) Single swing arm; (D) 

Unified rear triangle; (E) 4-bar linkage; (F) Suspension seat post; (G) Horst link; 

(H) Virtual pivot point. 

 

There have been many attempts to develop improved suspension systems with 

much attention being devoted by the off-road bike industry in developing designs 

that either minimise or eliminate the coupling between the pedalling actions of 

the rider and the motion of the suspension (bobbing effect) (Ishii et al., 2003).  

However, the benefits and drawbacks of a rear suspension mountain bike design 

are still subject to much debate.   
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The review of literature pertaining to the three types of mountain bike and their 

corresponding suspension systems (Chapter 2) and the analysis of cyclists’ 

questionnaire responses (Chapter 3) demonstrate that anomalies exist between 

experiments, time trails, race results and simulations.  The gaps in research 

aided in deciding which objectives the current research should explore.  As the 

research pertaining to mountain bike suspension systems and their effects on 

rider performance is limited (MacRae et al., 2000; Nielens & Lejeune, 2001; 

Seifert et al., 1997), the focal objective of the study is to investigate the effects of 

cycling on a hardtail and fully suspended bike on a smooth and rough surface to 

explore if either suspension system presents an advantage to the cyclist in terms 

of rider performance.  This was carried out by analysing the physiological, 

psychological and mechanical aspects of cycling on both the hardtail and fully 

suspended mountain bike.  Previous research (Berry et al., 1993 & 2000; Ishii et 

al., 2003; MacRae et al., 2000; Nielens & Lejeune, 2001; Seifert et al., 1997; 

Titlestad et al., 2006) investigated the effects of suspension systems on a rider’s 

physiology and psychology.  Similarly, tests have been undertaken which 

investigate mountain bike suspension systems and their mechanical design - 

Champoux et al., 2004; Karchin & Hull, 2002; Levy & Smith, 2005; Needle & Hull, 

1997.  However, no previous study (with the exception of Titlestad et al., 2006) 

has combined these two aspects.   

 

In order to investigate the effects that cycling on either a hardtail or fully 

suspended mountain bike has on rider performance, the energy efficiency of 

cyclists was studied.  Wang & Hull (1996) maintain that it seems reasonable that 

energy efficiency can be used as one measure of performance.  One method of 

recording energy efficiency is through measuring the rate of oxygen uptake 

during exercise (VO2).  VO2 is related linearly to power for able bodied subjects 

up to (and beyond) the lactate threshold; VO2max is defined as the VO2 at which 

performance of increasing levels of work rate exercise failed to increase VO2, 

despite an increase in work rate (Wasserman et al., 1994).  The VO2 response 
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during exercise can be divided into two parts: aerobic and anaerobic exercise.   

Aerobic simply means in the presence of oxygen (Powers & Howley, 1990).  The 

muscles use the oxygen to burn the fuel - adenosine triphosphate (ATP).  During 

exercise, when the required oxygen (O2) amount is not met, the subjects enter an 

anaerobic state - ‘without oxygen’.  This state is when the fuel is burned without 

oxygen; a by-product of which is an increase in expired CO2.  The subject is said 

to reach the lactate threshold at the transition between the aerobic and anaerobic 

phases; consequently, lactic acid is an end product of this anaerobic state, 

produced when there is inadequate oxygen supply to the muscles.  The lactic 

threshold can be identified by either blood sampling or from gas exchange data.  

When testing subjects, it is more beneficial to test in an aerobic state in order to 

control the VO2 to a level below the lactate threshold: sub-maximal testing.  For 

this reason sub-maximal testing, where subjects are in an aerobic state, was 

chosen for the tests undertaken in the current study.    

Additionally, subjects’ heart rates were recorded during testing as these results 

can be used to measure energy efficiency.  There is a linear relationship between 

heart rate and VO2, however heart rate is variable and can be easily affected by 

environmental conditions (body temperature, stress and anxiety).  Even with 

controlled environmental conditions and removal of stimulus, subjects can still 

become easily distracted.  In this respect, it was important to allow for these 

variations and to record other physiological and psychological measurements in 

addition to heart rate, in order to present further results from which to draw 

conclusions.   

 

Each subject’s psychological response for comfort rating and rating of perceived 

exertion (RPE) was also recorded during testing.  These responses were 

included in the research to investigate correlations between physiological 

elements and rider opinions and responses.   Literature pertaining to 

psychological testing, where subjects’ comfort rating levels are recorded, is 

limited (Seifert et al., 1997; Titlestad et al., 2006).  It was therefore decided that 

further testing in this area would be advantageous.     
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Literature concerned with physiological testing (Berry et al., 1993 & 2000; Ishii et 

al., 2003; MacRae et al., 2000; Nielens & Lejeune, 2001; Seifert et al., 1997; 

Titlestad et al., 2006) identified research which measured subjects’ heart rate; 

VO2; comfort rating; and RPE levels.  It was decided that by recording these 

measurements in the current research, comparisons and inconsistencies could 

be highlighted between the current and previous research which would aid in 

meeting the objectives of the study.  As all testing in the current research was to 

be sub-maximal, subjects’ blood lactate levels were not recorded, as they were in 

MacRae et al’s (2000) maximal testing study.    

 

Literature pertaining to mechanical testing (Champoux et al., 2004; Karchin & 

Hull, 2002; Levy & Smith, 2005; Needle & Hull, 1997) recorded the forces 

exerted on the front and rear axles, handlebars, saddle and pedals; acceleration 

of the front and rear axles and handlebars; displacement of the suspensions; and 

angle of the crank.  It was deemed that some of these measurements were 

relevant to the current study, yet additional mechanical measurements were 

required to fully investigate the differences between cycling on a hardtail and fully 

suspended bike, and the resulting effect this has on the cyclist.  The mechanical 

measurements recorded during the experiments of the current research 

comprised of: the forces exerted on the handlebars, saddle and crank; 

acceleration of the handlebars and saddle; velocity of the handlebars, saddle, 

crank and road surface; and displacement of the handlebars and saddle.   

 

The research study comprised of tests on a roller rig, rolling road rig, indoor track 

and dynamic simulations.  The initial roller rig was developed to investigate the 

effects of rear wheel dynamics on a rough track and the consequent effects on 

rider performance.  It was considered that although the obtained results from the 

roller rig were relevant, the rig itself was deemed too restrictive and did not 

present a close representation of true outdoor riding conditions.  With this in 

mind, the rolling road rig was designed to present a closer representation of true 



34 
 

outdoor riding conditions.   The rolling road rig was designed to investigate both 

front and rear wheel dynamics, and additional measurements (to those obtained 

during the roller rig experiments) were recorded which considered the interaction 

between the bike and rider.  Further experimentation was carried out on the 

indoor track in an attempt to further create a testing environment which closely 

matched that of riding outdoors.  Furthermore, the findings from the indoor track 

test provided additional results to highlight correlations or discrepancies between 

the roller rig and rolling road rig test results.  

 

Dynamic simulations were carried out to assist in meeting the objectives of the 

current research.  Simulations aided in the design of the rolling road rig, yet they 

were also used to compare the mechanical results from the rig tests to the 

simulation results.  Findings from the comparison of results could be used to 

establish if simulations are a valid means of measuring the mechanical difference 

between cycling on a fully suspended bike compared to a hardtail bike.    

The outline of the thesis is as follows:  Chapter 2 presents a review of the most 

relevant and valuable research carried out in relation to mountain bike 

suspension systems.  This is divided into three sections: suspension systems 

and their effects on a rider’s physiology and psychology; the mechanical testing 

of suspension systems; and the dynamic simulations of mountain bikes and their 

suspension systems.  These three aspects were also investigated in the current 

research.   

 

Chapter 3 analyses and discusses the cyclists’ responses to the questionnaire 

(Appendix A).  260 cyclists, ranging from amateur to professional level, were 

questioned on their preference of mountain bike suspension system and riding 

style.  The results from the questionnaire aided in identifying which area of study 

the current research would investigate.   

 

Chapters 4, 5 and 6 present the methodologies and findings obtained from the 

roller rig, rolling road rig and indoor track tests respectively.  Chapter 4 presents 
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details of the previously designed roller rig; the experiments undertaken on the 

rig; and the findings obtained from the tests.  The rolling road rig test objectives, 

rig design, experiment methodology and test results are outlined in Chapter 5, 

and similarly, the indoor track test design, methodology and test results are 

detailed in Chapter 6.    

 

Following on from this, Chapter 7 details the dynamic simulations carried out to 

compare the mechanical results obtained from the roller rig and rolling road rig to 

the simulation results.  The simulation methodology and results are both 

presented in this chapter. 

 

A discussion of the results obtained from the roller rig, rolling road rig, indoor 

track tests, and the simulations are presented in Chapter 8.  The results from the 

three experimental tests are compared to one another, and to previous literature, 

and similarities and disparities are identified.  Overall conclusions from all of the 

experimental tests and the simulations are brought together in Chapter 9, 

together with suggestions for future work.   
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2. Literature Review  

 

2.1. Introduction 

 

Mountain bike suspension systems are one of the most discussed subjects in off-

road cycling (Karchin & Hull, 2002; MacRae et al., 2000; Nielens & Lejeune, 

2001; Seifert et al., 1997).  However, despite significant advances in mountain 

bike suspension systems, little is known about the effects of these systems on 

rider performance (Holden et al., 1999; MacRae et al., 2000; Nielens & Lejeune, 

2001; Seifert et al., 1997).  Levy & Smith (2005) stipulate that the appropriate 

choice of rear suspension is often based on subjective statements, with few 

testing results available.  The aim of this literature review is to provide a synopsis 

of the most relevant and valuable research carried out in relation to mountain 

bike suspension systems and to provide directions for future research.  

Identifying unanswered questions in the literature aided in deciding which 

direction the current thesis should undertake.   

 

Researchers (Berry et al., 1993; Burke, 1996; De Lorenzo et al., 1994; Good & 

McPhee, 1999; Karchin & Hull, 2002; MacRae et al., 2000; Needle & Hull, 1997; 

Nielens & Lejeune, 2004; Olsen, 1996; Seifert et al., 1997) have published 

literature highlighting some of the benefits that rear suspension systems provide 

for a cyclist.  Nielens & Lejeune (2004) stipulate that rear suspension systems 

may significantly reduce physical stress; De Lorenzo et al. (1994) that 

suspensions isolate the cyclists from vibrations; Olsen (1996) and MacRae et al. 

(2000) that they improve comfort and bicycle handling and Needle & Hull (1997) 

that they improve braking, cornering, line holding and higher downhill speeds.  

 

Conversely, researchers (Burke, 1996; Ishii et al., 2003; Karchin & Hull, 2002; 

Kukoda, 1992; Olsen 1996; and Wang & Hull, 1997) have stated that there are 

some drawbacks to using a rear suspension system.  Kukoda (1992) believes 
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that the benefits provided by suspension systems have come at a cost: higher 

weight, increased frame flexibility and a bobbing of the suspension under 

pedalling loads.  This bobbing effect is thought to be disadvantageous as energy 

is lost in overcoming the dissipative forces in suspension systems, and also 

because the pedalling motion of the cyclists may be affected (Karchin & Hull, 

2002).  

 

For the purpose of this literature review the research is divided into three 

sections in order for topics to be identified and evaluated concisely.  These three 

sections are: literature relating to suspension systems and their effects on a 

rider’s physiology; literature surrounding the mechanical testing of suspension 

systems; and the dynamic simulations of mountain bikes and their suspension 

systems.   

  

2.2. Physiological Testing  

 

Physiological testing can be used to measure the energy expenditure of a rider 

which can be determined by heart rate, oxygen consumption (VO2), and in some 

cases by measuring blood lactate levels.  Such tests are carried out under two 

main conditions: in a laboratory setting using treadmills, ergometers or 

specifically designed rigs; and under field conditions including outside time trials, 

track tests and racing competitions.  

 

Physiological factors play a fundamental role in an off-road cyclist’s performance; 

an opinion held by Wang & Hull (1996) who proclaim that it seems reasonable 

that energy efficiency can be used as one measure of performance.  Ample 

research has been carried out in respect to the physiological factors involved in 

road cycling.  Despite this however, few studies have investigated these 

physiological aspects in relation to mountain biking and even fewer relating 

specifically to mountain bike suspension systems (Impellizzeri et al., 2002).  
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Demchak & Linderman (1999) and Seifert et al. (1997) agree, highlighting that 

the effects of suspension systems on rider performance have, to their knowledge, 

only received limited investigation.   

 

The most significant and influential literature available on suspension systems 

and their effects on a rider’s physiology was studied to establish correlations and 

contradictions.  The relevant literature falls into two distinct categories: tests that 

have been carried out in a controlled environment inside a laboratory (Berry et 

al., 1993; Berry et al., 2000; Ishii et al., 2003; MacRae et al., 2000; Nielens & 

Lejeune, 2001; Titlestad et al., 2006), and tests that have been carried out under 

field conditions (Ishii et al., 2003; MacRae et al., 2000; Seifert et al., 1997).  

 

Berry et al. (1993) were amongst the first researchers to consider investigating 

the physiological aspects involved in cycling mountain bikes with suspension 

systems.  The study was undertaken to determine if total rider energy 

expenditure would decrease depending on the type of suspension system used, 

and to investigate both rider-induced and terrain-induced energy losses.  Terrain-

induced energy losses are those that arise due to surface irregularities, while 

rider induced losses are those due to the energy dissipated in the suspension 

system as a result of the rider’s muscular action (Wang & Hull, 1996).  

 

Berry et al. (1993) initially attempted to carry out this research in an outdoor 

environment, however, due to encountering various problems including tearing of 

balloons for gas collection; and difficultly in having the subjects maintain the 

same speed over the same course when riding the suspended and non-

suspended bikes, it was decided to undertake the experiment in a laboratory 

controlled environment.  It can be argued that laboratory controlled research 

does reduce some of the variables involved in outdoor mountain biking as there 

are many (such as weather conditions, terrain, velocity) that affect mountain 

biking performance (Needle & Hull, 1997).   
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Berry et al’s (1993) study used a modified treadmill with a 1.5” bump in the form 

of a 2” x 4” board which was attached to the belt of the treadmill using duct tape.  

The treadmill ran at 2.9 m/s with a four percent grade.  One advantage to using a 

treadmill as a form of testing for mountain bikes is that cycling a bicycle on a 

treadmill with a constant velocity is dynamically equivalent to riding a bicycle on 

flat level ground at a constant speed (Kooijman & Schwab, 2009).  However, 

although this finding has been demonstrated for a treadmill simulating cycling on 

flat level ground, there is no evidence to suggest that this is true for cycling uphill 

on a treadmill simulating a smooth or bumpy track.     

 

The mountain bike used for testing in Berry et al’s (1993) study was a fully 

suspended off-road Proflex 862 (Ocean State International) with a single swing 

arm suspension design and urethane bumpers; the same bicycle was adapted 

and used for the non-suspended trials.  A factor involved in using only one type of 

suspension design for testing is that the results can only be established for this 

specific type of design.  Further studies (under the same set of test conditions) 

using different suspension designs, may have been beneficial and would have 

presented a broader range of results from which to compare and contrast.      

 

Additional issues and concerns which may emerge from using a treadmill as a 

means of testing in a laboratory environment include: dangers that can arise from 

cycling a bike on equipment that is not specifically designed for a mountain bike; 

the time it can take for a subject to become familiar riding under these test 

conditions; and the reality that cycling in this controlled environment may feel 

unnatural to the subject.  As Kooijman and Schwab (2009) maintain, a significant 

problem with cycling on a treadmill is the conflicting information which the rider 

receives.  Although the rider is cycling with respect to the moving belt, he 

remains stationary with respect to the surrounding world.  Berry et al. (1993) also 

highlighted that impending bumps on the treadmill may pose additional problems 

for subjects as they struggle to remain balanced on the mountain bike, and that 
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these bumps may move on impact with the wheel as they are only secured to the 

belt of the treadmill by duct tape.   

 

Berry et al’s (1993) methodology of study involved using six subjects: five males 

and one female.  All of the selected subjects were keen cyclists and most had 

ridden mountain bikes previously.  This could be deemed as a drawback as it 

suggests that some of the cyclists had not ridden a mountain bike previous to the 

study.  This factor could potentially affect the results as the riding style of a road 

cyclist differs from that of a mountain biker; thus possibly affecting the amount of 

energy expended.  Additionally, in light of this statement, it could be argued that 

some of the cyclists had never previously ridden on a bike with any form of 

suspension system; thus once again affecting riding style and possibly the 

energy expenditure of the subjects.   

 

Berry et al’s (1993) subjects visited the laboratory on three separate occasions, 

completing two 6 min trials in each visit.  On the initial visit, subjects cycled on 

both a fully suspended and rigid frame bike on a treadmill with no bumps; on the 

second visit subjects again cycled on both a fully suspended and rigid frame 

bike, but this time on a treadmill with one bump attached to it.  On the third and 

final visit, subjects cycled on a bike with rear suspension only and on a hardtail 

bike; again on a treadmill which had one bump attached to it.  The subjects 

however, were not tested riding on a hardtail bike or on a bike with rear 

suspension only, on the treadmill with no bumps.  Further testing investigating 

either one of these scenarios may have presented the researchers with a 

broader range of results for comparison.   

 

Three of the subjects performed these tests as outlined above in the order 

stipulated - the other three subjects performed the tests in reverse order.  It is 

highly likely that the reason for this was to prevent bias of one system over 

another.  Conversely, it could be argued that in order to further eliminate bias 

each subject should perform the test sequence in a different order.  Further 
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studies (Berry at al., 2000; Nielens & Lejeune, 2001) which have investigated 

energy expenditure in relation to mountain bike suspension systems support this 

view.  Berry at al’s (2000) study consisted of subjects carrying out tests in a 

randomised order and Nielens & Lejeune’s (2001) research comprised of six 

different possibilities for the order of their three tests: two subjects were randomly 

assigned to each one of the six possible orders so as to eliminate any possible 

order effect.   

 

Prior to testing, Berry et al. (1993) allowed the research subjects to practice on 

the treadmill until they became comfortable riding in the test environment; this 

usually involved between four and eight visits.  An issue which may have 

emerged from this is that, prior to testing, a subject could familiarise themselves 

on any of the three types of systems, thus possibly affecting the results by giving 

a bias of one or more systems over the other. 

 

Throughout each test the treadmill was run at 2.9 m/s; a speed significantly lower 

than those reached when riding in a competitive race.  The justification for this 

lower speed was that at higher speeds, most of the riders had difficulty in 

controlling the bike on the treadmill.  In order to compensate for the lower speeds 

involved in the testing, a four percent grade was added to the treadmill to 

increase the metabolic rate of the subject.  The decision to use a grade of only 

four percent was to ensure that a subject’s work level was sub-maximal; that is at 

a level below that to prevent lactate production.  In supporting this view McArdle 

et al. (2001) stipulate that, in order for…calculations (on energy expenditure) to 

be valid, it is important that subjects not have excessive amounts of lactate acid 

in their blood (i.e., anaerobiosis).  This causes an increase in carbon dioxide 

production, and thus prevents a correct evaluation of ‘fuel mix’.   

 

The physiological measurements recorded throughout Berry et al’s (1993) test 

were: heart rate; ratings of perceived exertion (RPE) - how hard a person feels 

they are exercising on a subjective scale from between 6 and 20 (McArdle et al., 
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2001); the respiratory exchange ratio - the ratio of carbon dioxide production to 

oxygen consumption (McArdle et al., 2001); and oxygen uptake (VO2).   The 

average respiratory exchange ratio and the average VO2 were used to estimate 

energy expenditure in kcal/min.    

 

Once all testing had been completed and all physiological measurements 

recorded and evaluated, Berry et al’s (1993) research found that there was no 

significant difference between riding uphill on a fully suspended mountain bike on 

a smooth treadmill, compared to a rigid frame mountain bike.  The 

measurements of VO2, heart rate, RPE and average respiratory exchange ratio 

showed no significant difference in results when comparing the two mountain 

bikes.  In support of these findings Berry et al. (1993) carried out a visual 

inspection of the mountain bike suspension systems during the tests and found 

that no significant oscillation was present due to pedalling.  This is an 

unexpected result as the questionnaire for this current study (Appendix A) found 

that seventy-six percent of mountain bikers felt that a fully suspended bike 

expended more of their energy when riding uphill.  One possible explanation for 

this is that although a visual inspection is a useful method of highlighting 

movement in the suspension systems, a more accurate method of recording 

these movements may provide additional data to support or disprove Berry et al’s 

(1993) findings.   

 

In contrast to Berry et al’s (1993) results, Wang & Hull (1996) found that the use 

of a rear suspension system results in 1.3% of the rider’s power being dissipated 

by the rear suspension system.  Wang & Hull’s (1996) dynamic model simulated 

a fully suspended mountain bike cycling up a smooth track with a six percent 

grade at a velocity of 6.5 m/s.  Although Berry et al’s (1993) and Wang & Hull’s 

(1996) experiments were carried out using different road grades, González et al.   

(2008) maintain that this should not affect the amount of power dissipated in the 

rear suspension; that is to say that power dissipation does not depend on road 

grade.   
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Another significant difference between Berry et al’s (1993) and Wang & Hull’s 

(1996) experiments, which may go some way to explaining the discrepancies in 

results, is the speed at which both the treadmill and simulation were run.  As 

Berry et al’s (1993) and Wang & Hull’s (1996) tests were operated at significantly 

different speeds; 2.9 m/s and 6.5 m/s respectively, this consequently resulted in a 

difference in crank torque between the two tests.  González et al. (2008) maintain 

that the crank torque generated by a cyclist heavily increases the power 

dissipated by the rear suspension system.  González et al’s (2008) statement 

presents one reason for the discrepancy between Berry et al’s (1993) and Wang 

& Hull’s (1996) results.  Another reason to account for the fact that Berry et al. 

(1993) found that no energy was dissipated at the rear suspension when cycling 

uphill on a smooth treadmill may be that the small measurement of 1.3 % of 

rider’s power dissipated by the rear suspension system found by Wang & Hull 

(1996), is less than the average measurement error expected when measuring 

oxygen consumption in an experimental test (Howley et al., 1995).       

 

Further results from Berry et al’s (1993) study found that the fully suspended 

mountain bike, compared to the rigid frame and hardtail mountain bike, can 

decrease a rider’s energy expenditure when cycling uphill on a rough track, thus 

improving rider performance.  The results illustrated that the VO2, RPE and 

average respiratory exchange ratio of a subject were lower when cycling on a 

fully suspended bike uphill on a rough track.  The results for heart rate under 

these same conditions however, contradict the other physiological results; a 

higher heart rate was recorded for subjects when cycling the fully suspended 

bike compared to cycling the bike with front suspension only.  Berry et al. (1993) 

gave an explanation for this anomaly, stating that in the study all the subjects 

expressed some degree of concern about riding the bike on the treadmill with the 

bump attached, and most remained apprehensive even after practice.  Lowered 

anxiety after successfully completing visit two might explain lessened heart rate 

in visit three.  This supports what was previously discussed in relation to this type 
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of experiment; that a subject may be apprehensive when cycling on the treadmill 

due to the unfamiliar riding conditions. 

 

Berry et al. (1993) also observed that, when cycling on a rigid frame bike uphill 

on a rough track, subjects would briefly rise 1 or 2 inches off the saddle prior to 

hitting the bump, thus allowing their legs to absorb the impact.  This was not the 

case for either the fully suspended, hardtail or rear suspension only mountain 

bikes.  For these types of mountain bikes, used in Berry et al’s (1993) tests, it is 

the suspension systems, and not the cyclists’ legs, which absorb the impact of 

the bumps; thus supporting the view that suspension systems decrease energy 

expenditure.  

 

Berry et al. (1993 & 2000) is the only researcher to have investigated the effects 

of cycling on a treadmill with bumps attached.  Titlestad et al’s (2006) study is 

perhaps the closest representation of Berry et al’s (1993) research as this study 

also compared cycling on a rough track under a controlled environment using a 

fully suspended bike, comparing it to a hardtail mountain bike.  Titlestad et al’s 

(2006) results concur with those found by Berry et al. (1993), Titlestad et al. 

(2006) also found that a fully suspended mountain bike, compared to a hardtail 

bike, can improve a rider’s performance whilst cycling on a rough track.  Olsen 

(1996) maintains that a suspended bike would improve rider performance 

because of the shock absorption properties which improve the tyre to ground 

contact time.  This statement supports the findings of Berry et al. (1993) and 

Titlestad et al. (2006).   

 

A further finding of Berry et al’s (1993) study showed that the use of a mountain 

bike with rear suspension only, when cycling uphill on a treadmill with bumps, 

gave similar results, in terms of energy expenditure, to that of riding a fully 

suspended bike.  This suggests that mountain bikes with a rear suspension 

system have an advantage, in terms of energy expenditure, over hardtail bikes 

when cycling uphill on a rough track; the VO2, heart rate and RPE measurements 
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all coincide with this finding.  It could be argued however, that this is not as 

significant a finding as the previous two discussed as all off-road mountain bikes 

now have front suspension and to encounter a bike with rear suspension only is 

rare.  Later studies in this field (MacRae et al., 2000; Ishii et al., 2003; Nielens & 

Lejeune, 2001; Seifert et al., 1997; Titlestad et al., 2006) have eliminated this 

issue by excluding the rear suspension only system from studies and have 

focussed solely on testing rigid frame, hardtail and fully suspended bikes.   

 

Berry et al. (2000) decided to develop their previous research (Berry et al., 1993) 

by studying the influence of velocity, grade and mass on mountain biking - again 

focussing on terrain and rider-induced energy expenditure.  One of the main 

differences between Berry et al’s (1993) and Berry et al’s (2000) study was that 

in the latter study only a fully suspended mountain bike was used during testing.  

Berry et al’s (1993) research demonstrated that the use of a well designed 

suspension system would decrease the energy cost during simulated off road 

cycling.  However, a potential problem with the use of suspension systems is the 

additional mass to the bike that they add; thus potentially increasing the force 

required to overcome the increased rolling resistance and the increased 

resistance due to gravity.  In light of this, Berry et al’s (2000) research focuses on 

the effect that the mass of a bike has on a rider’s energy expenditure in relation 

to differing velocities and road grades.  The subjects’ energy expenditure was 

measured by recording and analysing oxygen consumption; heart rate and RPE 

were also measured.   

 

For testing, Berry et al. (2000) used a fully suspended, Trek Y-22 with a single 

swing arm pivot suspension design consisting of a spring and oil damper.  The 

subjects used for this study consisted of eight males and one female, yet in 

contrast to Berry et al’s (1993) study, all of the subjects in Berry et al’s (2000) 

study were avid off-road cyclists.  This is beneficial to this form of testing as all 

subjects would be familiar with mountain bikes and the different techniques 

involved in mountain biking, thus helping to reduce any potential bias in results.    
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In contrast to Berry et al’s (1993) research, Berry et al’s (2000) study used a sub-

maximal test - that is when a subject’s performance is incrementally increased 

until fatigue.  The tests were conducted on a treadmill with one 44.5 cm by 3.8 

cm by 8.9 cm long wooden bump and, as in the previous study, were attached to 

the belt using duct tape.  This form of treadmill testing will once again however, 

present the same set of issues and concerns as discussed in relation to Berry et 

al’s (1993) study.  On the initial visit subjects were instructed to cycle at 3.1 m/s 

(7 mph) and at a grade of zero percent; the speed then increased incrementally 

by 1 mph each minute thereafter until the subjects reached a speed of 5.8 m/s 

(13 mph).  The grade was then increased by 1 % each minute thereafter until 

volitional fatigue was reached.    

 

On subsequent visits, subjects completed a maximum of nine experimental trials 

encompassing three bike masses (11.6 kg; 12.6 kg; 13.6 kg), three speeds (2.7 

m/s; 3.6 m/s; 4.5 m/s) and three grades (0 %; 2.5 %; 5 %).  These tests were 

carried out in a randomised order; an aspect of testing which differed from Berry 

et al’s (1993) study, where testing was carried out in only two orders.  Berry et al. 

(2000) opted for a randomised sequence of testing in their later study in order to 

reduce bias from their results.  Similar to Berry et al’s (1993) study, the subjects 

were asked to cycle on the treadmill until they felt comfortable riding under these 

conditions.  Again, this presents the same concerns as Berry et al’s (1993) 

previous study as some subjects may have had more time to familiarise 

themselves with this form of testing, thus generating possible bias in results.   

 

As expected, Berry et al’s (2000) results found that a subject’s energy 

expenditure, heart rate and RPE increased significantly with each increase in 

velocity and grade.  However, the most significant finding of the results was that 

on examining the effect of bike mass on energy expenditure, heart rate and RPE, 

no significant differences were found between the three different bike masses.  

This result is surprising as an increase in weight should present a rider with an 

increased disadvantage when riding uphill due to increased rolling resistance and 
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forces due to gravity.  In supporting this view, Howe (1995) states that the 

reduction in the mass of a bicycle should significantly improve uphill cycling 

performance.  One possible explanation for this unexpected finding of Berry at al. 

(2000) is that testing on a treadmill is unnatural and unfamiliar to the majority of 

subjects and may consequently affect results.  Another possible reason for this 

result, which Berry et al. (2000) stipulate, is that the expected difference between 

the different bike masses is smaller than the average measurement area 

expected when measuring oxygen consumption (Howley et al., 1995).  Berry at 

al. (2000) highlighted that the apparatus used for testing was not sensitive 

enough to measure the differences between bike masses; one solution would be 

to take additional measurements, such as the amount of power transmitted 

through the pedals and the time taken to complete a set distance, in order to 

establish if a difference between the bike masses can be found using these 

measurements.   

 

Similar to Berry et al. (1993 & 2000), Nielens & Lejeune (2001) also investigated 

rider-induced energy expenditure under laboratory controlled conditions.  One 

significant difference between the two studies however, was Nielens & Lejeune’s 

(2001) use of an electromagnetically braked cycle ergometer (Tacx®, model 

Cycleforce Excel) as a means of testing.  As bumps can not be attached to an 

ergometer, as they can on a treadmill, the terrain-induced energy expenditure for 

the subjects in Nielens & Lejeune’s (2001) study could not be ascertained.   

 

Nielens & Lejeune (2001) used only one mountain bike during testing: an FRM® 

Be Active fully suspended mountain bike with a four-bar linkage system.  Both 

the front and rear suspension systems had oil/air shock absorbers.  This study 

compared a fully suspended mountain bike to both a hardtail and rigid bike; the 

suspension system of the FRM® Be Active mountain bike was replaced with 

custom made rigid elements to create each type of suspension system.  By using 

only one model of bike this ensured that bike weight was not a factor taken into 



48 
 

account throughout testing and that only the difference between the types of 

suspension system were evaluated.  

 

The use of ergometers as a form of testing mountain bikes has both benefits and 

drawbacks.  In comparison to cycling on a treadmill, ergometers are a safer 

mode of testing as the bike is held rigid at the rear wheel hub ensuring that the 

bike remains stable.  The use of an ergometer ensures that a rider’s upper body 

movement is kept to a minimal and that the rider does not have to balance the 

bike; thus isolating the pedalling movement, ensuring that this is the only factor 

measured during testing.  Kooijman et al. (2009) observed that during normal 

cycling riders do not lean their upper body to balance the bike; this is done using 

steering control. Another distinct advantage to this mode of testing is that 

subjects may be familiar with ergometers as they are often used for training 

purposes, consequently, as was the case with Nielens & Lejeune’s (2001) 

subjects, no familiarisation of cycling on the ergometer was required prior to 

testing.   

 

Although treadmills have, as highlighted by Berry et al. (1993 & 2000), several 

drawbacks when used as a form of testing mountain bikes, in comparison to 

ergometers, they give a truer representation of the conditions encountered when 

riding on an outdoor trail.  Ricci & Leger (1983) support this view, stating that 

bicycle ergometer tests might not be specific enough to evaluate the ability of 

trained cyclists performing an endurance or aerobic task as they appear to 

achieve higher VO2 on the bicycle ergometer compared to the treadmill; the 

dynamics of which, as previously outlined by Kooijman & Schwab (2009), match 

that of riding outside on flat level ground.   

 

An additional drawback of using Nielens & Lejeune’s (2001) ergometer as a 

mode of testing mountain bikes is that as it does not allow the use of the front 

wheel during cycling, it does not give a true representation of mountain biking.  

Additionally, as no bumps or grade can be applied to the ergometer, only riding 
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on a smooth, flat road can be represented; this limits the results which can be 

obtained as no comparisons can be made to cycling uphill or cycling on a rough 

track.  A further aspect to consider is that the use of ergometers makes standing 

on the pedals whilst riding impossible; however, Nielens & Lejeune (2001) justify 

this, maintaining that during mountain biking, riders rarely stand on the pedals 

because of the loss of traction of the rear wheel in that position, thus giving a 

justification for the rider remaining in a seated position for the duration of the 

tests.  

 

Nielens & Lejeune’s (2001) study comprised of 12 competitive racers who were 

asked to undergo a maximal test of three 15 min exercise tests of increasing 

workloads; this workload increased in 3 min stages starting at fifty Watts and 

increasing by fifty Watt increments until a level of 250 W was reached (Nielens & 

Lejeune, 2001).  As with Berry et al’s (2000) study, the subjects were randomly 

assigned the order in which they rode the bikes, thus ensuring that any bias with 

results was eliminated.  During testing the subjects’ maximal oxygen uptake 

(VO2) and carbon dioxide production (VCO2) was measured and from both these 

measurements the respiratory gas exchange ratio (RER) was obtained.  The 

subjects’ heart rates were also recorded throughout the test.  In contrast to Berry 

et al’s (1993 & 2000) research, Nielens & Lejeune’s (2001) did not measure the 

subjects’ RPE; something which may have been valuable to the research as RPE 

results could be compared to the other obtained results.  McArdle et al. (2001) 

assert that RPE is an indication as to how hard a person feels they are 

exercising; this is important as it reveals rider opinion.   

 

The results of Nielens & Lejeune’s (2001) test concur with those found by Berry 

et al. (1993) and Wang and Hull (1996): All found that there was no significant 

difference between suspension systems in regards to the amount of VO2 and 

heart rate measured when cycling on a flat surface.  One noticeable difference to 

these latter tests however, was that Nielens & Lejeune’s (2001) study was a 

maximal test.  The power output from Berry et al’s (1993) test was approximately 



50 
 

100 W, whereas that of Nielens & Lejeune’s (2001) was increased incrementally 

until a power of 250 W was reached.  The reason given for having a limit of 250 

W was to ensure that VO2 uptake would reliably reflect the energy expended by 

the subject even in the last stage of the test, and also to minimise the effects of 

fatigue as each subject had to undergo three tests during the same session.  

Despite this justification, Nielens & Lejeune (2001) highlight that having a limit on 

the power output may present a limitation to the study as some riders may, in a 

real-life race situation, exceed a power of 250 W.   

 

Interestingly, despite Nielens & Lejeune’s (2001) decision to use a higher power 

output for their tests, both Berry et al’s (1993) and Nielens & Lejeune’s (2001)  

experiments obtained similar results; therefore, both results indicate that there is 

no difference between riding on a flat surface using either a fully suspended, a 

hardtail or a rigid frame mountain bike.  As discussed previously, this finding may 

have arisen as a result of the equipment used being unable to detect the small 

variation between results. In order to address this issue, the power the rider 

exerts on the pedals could additionally be measured and compared to the 

physiological findings; this may highlight slight differences between the three 

types of suspension systems which the measurements of VO2 uptake and heart 

rate were unable to detect.  In order to further support or disprove Nielens & 

Lejeune’s (2001) findings, it would be beneficial to record any movement that 

occurred in the suspension systems whilst the subjects were cycling.  This would 

highlight any bobbing motion that occurred and establish if any power was lost to 

via the suspension system.  Berry et al. (1993) observed suspension motion by 

visual inspection with the use of a video camera, capturing any possible 

movements at the rear suspension.  The use of a video camera presents 

limitations as small displacements in the rear suspension cannot be detected.  

One way of addressing this is through the use of accelerometers which 

accurately measure any slight movements at the point which they are placed on 

a bike.   
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Titlestad et al. (2006) carried out a similar study to Nielens & Lejeune (2001).  

The aim of Titlestad et al’s (2006) study was to compare the physiology and 

psychological responses of cyclists riding on a hardtail and fully suspended bike 

on level surfaces, with and without bumps.  Similar to Berry et al’s (1993 & 2000) 

and Nielens & Lejeune’s (2001) studies, Titlestad et al. (2006) carried out tests in 

a laboratory setting.  A laboratory-based test was chosen so that the actions of 

the rider (such as standing up out of the saddle) could be controlled, while the 

dynamics of the bicycle-suspension-rider system could be simulated as closely 

as possible and physiological, psychological and dynamic measurements could 

all be recorded.  As this research carried out tests on both a flat surface and on a 

surface with bumps on a specifically designed rig, both the terrain and rider 

induced losses were investigated.    

 

Titlestad et al. (2006) were the first researchers to adopt the use of a rig as a 

form of testing mountain bikes.  The test rig was designed to isolate the rear 

wheel dynamics of the mountain bike, thus no front wheel was incorporated into 

the design; instead front forks were held in position by a front bracket.  The rig 

was designed so that the rear wheel of the mountain bike would drive a heavy 

roller.  In order to recreate a rough riding surface two bumps, each 30 mm high 

and 70 mm long, were added to the roller.  During the flat surface tests a 

weighted friction belt was wrapped over the roller to provide an equivalent 

resistance to that of the bumps.  This roller was designed to match the inertia of 

a cyclist when riding outside; a design feature which ensures that the force 

required to decrease the bikes velocity is equivalent to that of riding outside.  

Fregly et al. (2000) highlight the importance of this maintaining that where crank 

kinematic variations are important, (as in the investigation of mountain bike 

suspension systems) inertial effects may influence test results.   

 

Titlestad et al. (2006) advocate the advantage of using such a rig over treadmill 

testing, stating that trials on a standard powered treadmill have limitations 

because the inertia effects are not accurately simulated and the rider must exert 
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considerable control simply to keep the bike on the treadmill.  This innovative 

approach to testing also has the added advantage of reducing the safety risks to 

subjects.  Cycling on a treadmill with a mountain bike can often be a stressful 

task and potential affect the physiological results (Titlestad et al., 2006).  

 

Two mountain bikes were used for the study: the fully suspended Marin Mount 

Vision with single-swing arm rear suspension design and oil damped coil spring 

rear and front suspension system; and the hardtail Marin Rocky Ridge mountain 

bike with the same front suspension as the Marin Mount Vision.  Using two 

different types of mountain bike presents the problem of weight being an 

additional factor that must be taken into account, however if what Berry et al. 

(2000) concluded is accurate - that weight does not affect energy expenditure - 

then this should not have affected Titlestad et al’s (2006) results.   

 

Similar to Berry et al’s (1993) study, Titlestad et al’s (2006) tests were also set at 

a sub-maximal level where the physiological variables could be shown to have 

stabilised.  The subjects were asked to cycle at a speed of between 10 km/h and 

15 km/h that could be maintained comfortably for ten minutes; this speed was 

maintained for all subsequent tests.  20 male participants undertook two different 

series of tests.  The first test series consisted of each of the 8 participants cycling 

on both the fully suspended and hardtail mountain bike on both the smooth 

surface and on the surface with bumps attached.  The second test series 

consisted of six subjects cycling on both the fully suspended and hardtail 

mountain bike, but only on the surface with bumps attached.  Additionally, in the 

second series of tests, six subjects were tested repeatedly on the same bike on 

the surface with bumps attached to discover if there was a familiarisation effect to 

riding on the rig.  As with Berry et al’s (2000) and Nielens & Lejeune’s (2001) 

studies, the subjects of Titlestad et al’s (2006) test were randomly assigned the 

order in which they rode the bikes in order to eliminate any bias in results.   

Each participant of the experiment undertook one familiarisation session prior to 

testing in order to become accustomed to cycling under the test conditions.  In 
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this respect, the use of a rig provides an advantage over the treadmill as a 

means of testing as fewer practice sessions are required prior to testing.   

 

As with Berry et al’s (1993) & (2000) and Nielens & Lejeune’s (2001) tests, all of 

the participants of Titlestad et al’s (2006) tests were to remain seated for the 

duration of the test.  This was to ensure that the rider’s movement was minimal 

and would not affect the test results.  Ryschon & Stray-Gundersen (1991) found, 

in their study on the effect of body position on the energy cost of cycling, that 

there is a notably higher oxygen uptake in standing compared to seated cycling, 

concluding that seated cycling is metabolically more efficient than standing 

cycling.   

 

The physiological and psychological factors measured in Titlestad et al’s (2006) 

test were VO2, heart rate, RPE and comfort rating of the rider.  This study has a 

distinct advantage over Berry et al’s (1993) & (2000) and Nielens & Lejeune’s 

(2001) studies in that the additional psychological measurement of rider comfort 

was assessed; this provides valuable information which can be compared and 

contrasted to the other results.    

 

The results of Titlestad et al’s (2006) study found that the amount of VO2 

measured was slightly lower for subjects cycling on the hardtail mountain bike 

compared to the fully suspended bike on the roller with no bumps; thus 

illustrating that this type of fully suspended bike expends more of a cyclist’s 

energy than this type of hardtail bike.  There was also a trend for the RPE and 

the heart rate of a rider to be higher, and the comfort rating to be lower, when 

riding on the fully suspended bike on the surface with no bumps.  These results 

conflict with the studies carried out by Berry et al. (1993) and Nielens & Lejeune 

(2001), whose results both showed that there was no significant difference 

between riding a fully suspended or a hardtail bike whilst cycling on a flat surface 

with no bumps.  A possible explanation for the differences in results could be a 

result of the type of rear suspension that was chosen for the studies.  Nielens & 
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Lejeune (2001) used a four-bar linkage rear suspension design for their study, 

whereas Titlestad et al. (2006) used a single swing arm rear suspension design.  

Despite this, Berry et al. (1993) also used a single swing arm rear suspension 

design and found similar results, in relation to the energy expended whilst cycling 

on a flat surface with no bumps, to those of Nielens & Lejeune (2001), thus 

suggesting that the type of rear suspension design used does not significantly 

influence results.   

 

Another possibility for the conflicting results of Titlestad et al. (2006) and those of 

Berry et al. (1993) and Nielens & Lejeune (2001) may be a direct result of the 

form of testing used.  The numerous drawbacks that have been highlighted and 

discussed previously regarding the use of treadmills and ergometers as a mode 

of testing mountain bikes may be one reason that Berry et al. (1993) and Nielens 

& Lejeune (2001) found no difference, in terms of energy expenditure, between 

cycling on the fully suspended mountain bike compared to the hardtail and rigid 

frame bike on a flat surface with no bumps.  As Titlestad et al’s (2006) rig was 

specifically designed for testing mountain bikes this could explain why 

differences between the suspension systems were recorded.   

 

Titlestad et al’s (2006) decision to use two different types of mountain bike 

presents a further possible reason for their finding that when cycling on a hardtail 

bike, compared to a fully suspended bike, a lower VO2 ratings were recorded.  

This result could relate to the issue of bike weight and its effect on rider 

performance.  The hardtail mountain bike used in Titlestad et al’s (2006) study 

was 2.2 kg lighter than the fully suspended mountain bike which may account for 

the difference in the amount of VO2 measured when cycling on the two different 

types of bike.  Kyle (1990) noted that during competitive road cycling the addition 

of as little as 1 kg to the mass of a bike on flat terrain could decrease bike speed 

due to an increase in rolling resistance.  Although Kyle (1990) found this for road 

cycling if the same is true for off-road cycling, in order to maintain the same 

speed that was required for Titlestad et al’s (2006) test, a subject would have to 
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use more energy whilst cycling on the fully suspended bike compared to the 

hardtail bike.  Conversely, Berry et al’s (2000) study found that weight had no 

effect on rider energy expenditure which would disprove the theory that Titlestad 

et al’s (2006) findings were influenced by bike mass. 

 

Through analysis of Titlestad et al’s (2006) results of the tests carried out on the 

surface with bumps, it was found that the measurements of VO2, heart rate and 

RPE for all subjects (with the exception of one value for RPE) riding the hardtail 

bike were higher than when riding the full suspension bike.  Comfort levels were 

recorded to be either the same on both bikes or better whilst cycling on the full 

suspension bike.  These results indicate that the fully suspended bike gives an 

advantage to a rider, when cycling on a bumpy track, as less energy is expended 

and comfort is rated higher.  Despite the fact that Berry et al. (1993) conducted 

tests on an uphill bumpy track, their findings, that a fully suspended bike can 

decrease energy expenditure over rough terrain, concur with those of Titlestad et 

al. (2006).    

 

Titlestad et al. (2006) recognised a limitation of their research, stipulating that the 

roller with bumps simulating a rough track was unrealistic as the bumps and their 

frequency were particularly high.  Such a track is unlikely to be encountered by a 

mountain biker as it is highly likely that such bumps would either be avoided or 

the rider would rise out of the saddle to alleviate their impact.   

 

Although Berry et al. (1993 & 2000), Nielens & Lejeune (2001) and Titlestad et al. 

(2006) found some significant results based on their indoor laboratory tests, 

further outdoor field testing would be beneficial to either validate or challenge 

findings.  One such researcher who adopted this form of field testing was Seifert 

et al. (1997), who were one of the first researchers to consider the effects of 

mountain bike suspension systems on energy expenditure in a field test 

environment.  Seifert et al. (1997) looked at both terrain and rider-induced energy 

losses, carrying out two tests on a flat looped course.  The course was built on a 
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hard, level ground on which forty-five bumps, of a height and width of 5 x 10 cm, 

were placed.  The test participants were instructed to cycle at velocity of 16.1 

km/h for a time period of 63 min for phases 1 and 2.  3 bikes were tested and 

compared during the study: a rigid frame and hardtail bike, both of unspecified 

make and model; and a Specialized Stumpjumper fully suspended bike.  Both the 

hardtail and fully suspended bike had an air/oil front suspension system. The rear 

suspension system comprised of a spring/oil suspension system with a four-bar 

linkage design.   

 

Their research was divided into three phases - the first of which was completed 

by twenty subjects who were randomly assigned to ride around the track on one 

of the three bike types.  In contrast to the previous studies of Berry et al. (1993 & 

2000), Nielens & Lejeune (2001) and Titlestad et al. (2006) - all of whom tested 

each subject on all of the different types of suspension systems to compare 

similarities and differences between them - Seifert et al’s (1997) first phase test 

allowed the subject to ride on only one of the three types of bike.  Although the 

subjects were matched by riding ability and body weight, due to the differing 

physiologies of each individual, a correlation between results would be difficult to 

establish.  The only measurement taken during phase one was the 24 h change 

in creatine kinase (CK), measured by assessing the muscular stress of each 

subject.  Intense or repeated muscular contractions have been shown to increase 

the amount of trauma/damage to the myofibrils thereby increasing CK release 

(Clarkson et al., 1985).  Obtaining additional physiological measurements would 

have been beneficial during Seifert et al’s (1997) tests as it would have allowed 

comparisons, with the results found from the change in CK, to be made.   

 

Only twelve of the twenty subjects who completed Seifert et al’s (1997) first 

phase test also completed the second phase test.  The cycling protocol for the 

second phase test exactly matched that of the first, except for one distinct 

difference; during the second phase test all subjects rode on all three of the 

different bikes.  During the second phase test, the physiological factors VO2 and 
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heart rate were measured in addition to the psychological factors of RPE and 

comfort rating.   

 

For the final phase of the study, seven riders completed three separate time trails 

for each of the suspension systems.  The protocol for this final set of tests 

differed from the first and second phase tests.  The final phase consisted of a 

climbing time trial (0.76 km); a descending time trial (0.76 km); and a cross 

country time trial (10.44 km).  The uphill and downhill time trials were performed 

on the same single track course which had a vertical rise of 61 m.  After a rest 

period of 45 min, the riders then completed four laps of the cross country time 

trial which consisted of a 2.61 km loop.   

 

The results for Seifert et al’s (1997) phase one test showed that the mean 

change in CK was statistically greater for the rigid frame bike and no statistical 

difference was observed between the full suspension and hardtail bike (Seifert et 

al., 1997).  As expected, these findings illustrate that greater muscle trauma, and 

consequently an increase in heart rate, results from cycling on a rigid frame bike, 

indicating that the full suspension and hardtail bike have a distinct advantage to a 

rider whilst cycling over rough terrain.   

 

The phase two test results are more comparable to those of Berry et al. (1993) 

and Titlestad et al. (2006) as similar physiological parameters were collected.  

Seifert et al’s (1997) measurements of heart rate for the phase two tests coincide 

with those from the first phase test: the riders’ heart rates were considerably 

higher when cycling the rigid frame bike compared to the fully suspended and 

hardtail bike.  There was however, no difference recorded between the heart 

rates for cyclists riding on the hardtail and fully suspended bike on rough terrain.   

 

To some degree, Seifert et al’s (1997) phase one and two results coincide with 

those found by Berry et al. (1993), who also found that mountain bikes with a 

suspension system have an advantage over rigid frame bikes when used on 
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bumpy terrain.  However, in contrast to Seifert et al’s (1997) results, Berry et al. 

(1993) and Titlestad et al. (2006) both established that there was a significant 

gain, in terms of energy expenditure, to a rider using a fully suspended bike over 

a hardtail bike.   

 

Unexpectedly, no statistical differences were observed in Seifert et al’s (1997) 

phase two test for measurements of VO2 between any of the three bike types.  

These results conflict with those of Berry et al. (1993) and Titlestad et al. (2006), 

whose results both found that the amount of VO2 measured was lower for 

subjects riding on the fully suspended bike compared to the other suspension 

types, when riding over rough terrain.  Berry et al. (1993) also found that a 

subject’s VO2 was lower when riding on a hardtail bike compared to a rigid frame 

bike.   

 

Similar to Seifert et al’s (1997) findings for VO2, the results for RPE showed that, 

although the fully suspended bike had a slightly lower RPE rating than the 

hardtail, no statistical difference was measured; the results for RPE for the rigid 

frame bike are however, significantly higher than both the other bike types.  

These RPE results also conflict with the findings of Berry et al. (1997) and 

Titlestad et al. (2006), who both found that RPE was significantly higher for a 

hardtail bike over a fully suspended bike.  Despite the fact that all three tests 

were carried out on a bumpy course, one possible explanation for the variation in 

Seifert et al’s (1997) results is that this experiment was conducted on an outdoor 

track.  Prins et al. (2007) support this theory, asserting that no significant 

relationship could be found between their experiment on outdoor performance 

with the laboratory tests.   

 

The final measurement taken during Seifert et al’s (1997) phase two test was the 

comfort level of each cyclist.  This comfort scale was identical to the one used by 

Titlestad et al. (2006) and similar results were obtained: the fully suspended bike 

was perceived to be the bike that offered the most comfort, followed by the 
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hardtail bike and finally the rigid frame bike - which cyclists perceived to be the 

least comfortable bike to ride.  These results are to be expected as suspension 

systems are designed to dissipate terrain induced energy and improve comfort 

for the rider (Olsen, 1996).     

 

The phase three results showed that no differences were observed for heart rate 

whether ascending, descending or riding on a cross-country course. Cyclists 

riding the hardtail bike completed the cross-country course in a faster time 

compared to those who rode the rigid frame or fully suspended bike, which may 

account for why many mountain bikers still use bikes with front suspension only.  

Nielens & Lejeune (2004) support this, maintaining that in cross-country racing, 

most competitors still ride front-suspended bikes claiming that rear suspensions 

generate too much energy loss on most racecourses.     

 

It could be maintained that Seifert et al’s (1997) study is the closest 

representation of true race conditions as testing was conducted on both a bumpy 

track and a cross-country course.  However, the results of the study differ 

significantly from the results obtained from the tests carried out by Berry et al. 

(1993) and Titlestad et al. (2006) - both of whom conducted tests on bumpy 

courses under laboratory conditions.  In order to investigate and evaluate any 

possible reasons for these differences in results, it is advantageous to investigate 

similar outdoor studies so that comparisons and contradictions can be made; 

MacRae et al. (2000) also conducted outdoor field tests, comparing results in 

order to establish if riding either a hardtail or fully suspended bike had an effect 

on the physiological responses of a cyclist.   

 

Initially, MacRae et al. (2000) carried out a laboratory test with six male, sub-elite 

mountain bikers with the aid of an ergometer.  This was simply to establish the 

peak anaerobic power and VO2 of each cyclist so that these could be compared 

to the experimental trial results.  The same six subjects then undertook outdoor 

tests cycling on both a hardtail and fully suspended bike.  The hardtail and fully 
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suspended bikes used in the tests were manufactured by Specialized with Rock 

Shox Indy front forks (models not stated).  The rear suspension system on the 

fully suspended mountain bike had a four-bar linkage system with a Rock Shox 

Deluxe rear-shock absorber.   

 

Similar to Titlestad et al. (2006), MacRae et al. (2000) did not study the effect of 

energy losses on cyclists riding on rigid frame bikes, specifying that the majority 

of mountain bikes produced at present are manufactured with a front suspension 

system.  This statement is even more apparent in the mountain biking industry 

today as all cross-country mountain bikes are equipped with a front suspension 

system; this would present as a valid reason for omitting tests using rigid frame 

bikes.   

 

MacRae et al. (2000) carried out two tests: the first phase test consisting of 

cycling uphill on a flat, 1.62 km, asphalt course (14.2 % grade) and the second 

consisting of cycling uphill on an off-road, 1.38 km long course (11.3 % grade).  

The subjects were instructed to cycle as fast as possible at an intensity similar to 

that encountered in typical race conditions.  All six cyclists rode on both the 

hardtail and fully suspended bike during each phase and in order to prevent any 

bias in results all cyclists completed the tests in a randomised order.     

 

Issues and concerns which arise from MacRae et al’s (2000) form of testing 

relate to when the experiments took place; track conditions; the speed 

maintained by cyclists; and riding style.  Phase two of the experiment was carried 

out exactly one week after phase one, during which time weather conditions 

could have affected the course and consequently the cyclists’ performance, thus 

making it increasingly more difficult to compare results.  Kooijman et al. (2009) 

highlight this in their literature, specifying that when riding a bike outside, the 

bicycle-rider system encounters numerous external disturbances such as wind 

and road unevenness.  This may account for researchers (Berry et al., 1993; 

Berry et al., 2000; Nielens & Lejeune, 2000; Titlestad et al., 2006) preferring to 
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test under laboratory conditions.  Exact conditions of testing are also difficult for 

each of MacRae et al’s (2000) subjects to recreate as some subjects will 

ultimately choose different routes on the courses than others.  Additionally, it 

would be difficult to ensure that cyclists maintain a constant speed on both the 

hardtail and fully suspended bike in order for comparisons to be made.  The 

riding style adopted by each cyclist also raises concerns as these may vary 

according to whether the cyclist stands or remains seated during the ascent; 

Harnish et al. (2007) maintain that seated cycling is more economical than 

standing when cycling uphill.   

 

During both phases of the experiment, MacRae et al. (2000) measured the VO2, 

heart rate and blood lactate of each subject on both the hardtail and fully 

suspended bikes.  Unlike the previous studies (Berry et al., 1993; Berry et al., 

2000; Nielens & Lejeune, 2000), MacRae et al. (2000) also measured the 

amount of power transmitted through the pedals, in addition to pedal cadence, 

with the aid of an SRM Training System (Schoberer Rad Messtechnik, Welldorf, 

Germany).  Although Titlestad et al. (2006) also measured pedal cadence and 

the power transmitted through the pedals, the device used for the measurements 

in Titlestad et al’s (2006) experiment was custom built for this specific purpose.       

 

The results obtained from MacRae et al’s (2000) tests on a flat, uphill course 

coincide with Berry et al’s (1993) and Seifert et al’s (1997) tests, also conducted 

on an uphill, flat course.  All three researchers found that no significant 

physiological difference was measured for cyclists whether riding on a hardtail or 

fully suspended bike when cycling uphill on a flat course.  These results are 

surprising due to the fact that, as aforementioned, researchers (Kukoda, 1992; 

Wang & Hull, 1994) have stated that a bobbing effect is apparent when riding a 

fully suspended bike uphill which may consequently contribute to a rider’s loss of 

energy.  Additionally, cyclists who completed the questionnaire (Appendix A) 

agree with this: seventy-six percent of respondents stated that they felt a bobbing 

effect when cycling uphill on a fully suspended bike.  A reason for the results 
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obtained by Berry et al. (1993), Seifert et al. (1997) and MacRae et al. (2000) 

cannot be attributed to the type of suspension system used as Berry et al. (1993) 

used a single-swing arm suspension design and both Seifert et al. (1997) and 

MacRae et al. (2000) used a suspension with a four-bar linkage design.  The test 

conditions however, could contribute to the fact that no physiological differences 

were measured by Berry et al. (1993); Seifert et al. (1997) and MacRae et al. 

(2000) for cyclists riding either the hardtail or fully suspended bike uphill on a flat 

course - as previously discussed, the use of a treadmill or an outdoor cycling 

track can raise concerns when used as a form of testing mountain bikes.   

 

MacRae et al’s (2000) results for riding uphill on an off-road course correspond 

with the results obtained by Seifert et al. (1997), who also found that there was 

no significant difference between riding a fully suspended or hardtail bike on a 

bumpy course.  However, both these findings differ from those obtained by Berry 

et al. (1993), who found that the cyclists’ measurements of heart rate, VO2 and 

RPE were lower whilst riding on the fully suspended bike, compared to the 

hardtail bike, on a bumpy track.  One explanation for these differences in results 

is that Seifert et al. (1997) and MacRae et al. (2000) do not state how rough their 

uphill tracks are.  This is an important factor to consider as the benefits of a fully 

suspended bike may not become apparent until a certain level of track roughness 

is reached.  Berry et al. (1993) may have found that the fully suspended bike 

presented a physiological advantage to a cyclist riding uphill on a rough track as 

the bumps encountered were frequent and of a significant height to highlight 

differences between the hardtail and fully suspended bike.   

 

MacRae et al’s (2000) results for pedal cadence and velocity also found that 

there was no difference between the fully suspended and hardtail bike when 

riding uphill on either of the two surfaces.  Conversely, the results obtained for 

power output conflict with the results obtained for the measurements of VO2, 

heart rate and blood lactate.  The power output results showed that a cyclist 

riding on a hardtail mountain bike used less power than on a fully suspended 
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mountain bike when cycling uphill on both the asphalt and on the off-road course.  

MacRae et al. (2000) give an explanation for this stating that, although a cyclist 

had to generate a higher power output to cycle uphill on a dual suspension bike, 

that power was likely conserved by the rear suspension spring and, during 

rebound of the spring after compression, contributed to the forward momentum of 

the bike.  This explanation is perhaps surprising as rear suspension systems are 

designed to absorb bump impact and not to propel a bike forward.  Olsen (1996) 

identifies that a suspension system should absorb energy and shock from riding 

over rough terrain.   

 

Similar to MacRae et al. (2000) and Seifert et al. (1997), Ishii et al. (2003) also 

carried out an outdoor trial test.  However, Ishii et al’s (2003) study extends the 

previous studies as laboratory tests on a treadmill were also completed and 

compared to the outdoor trail test.  Ishii et al. (2003) was the first researcher to 

publish data comparing and contrasting these two forms of testing in relation to 

mountain bike suspension systems.  This form of comparative testing is 

advantageous as it can highlight comparisons and differences through different 

forms of testing.   

 

Ishii et al’s (2003) laboratory test was carried out to establish if the energy losses 

due to the suspension system are rider induced.  Treadmill tests were 

undertaken by five, well trained cross-country cyclists who raced at an 

intermediate level.  The same fully suspended, single swing arm bike was used 

throughout all tests; a Y-33 Trek with a Strashock-Pro Stratos rear suspension 

system - which could be locked to replicate a hardtail mountain bike- and a 

Gravier-DH, SHOWA front suspension system.  Both suspension systems 

consisted of a swing arm design with an air spring and an oil damper.  By 

exchanging the front suspension system for a rigid fork and locking the rear 

suspension, the rigid frame bike was formed.  Ishii et al’s (2003) decision to use a 

rigid frame bike is perhaps surprising as previous researchers, namely McRae et 
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al. (2000), did not use a rigid frame bike during testing as few mountain bikes 

today are manufactured without some form of front suspension system.             

 

Each of the participants of the study cycled on all three of the different types of 

suspension systems in both a seated and standing position.  Participants were 

instructed to cycle on the treadmill with no grade for three minutes at a speed of 

250 m/min; all tests were carried out in a randomised order.  Interestingly, Ishii et 

al. (2003) is the only researcher in this field who instructed subjects to ride on 

each type of suspension system in both a seated and standing position.  This 

again contradicts the views of Nielens & Lejeune (2001), who stipulate that 

competitive cyclists do not stand when cycling, and who consequently chose not 

to include tests with subjects riding in the standing position in their studies.    

 

Ishii et al. (2003) measured each subject’s heart rate, VO2 and RPE and data 

was collected from the last 30 s of the test.  The results illustrated - coinciding 

with Berry et al. (1993); Nielens & Lejeune (2001); Titlestad et al. (2006) - that no 

significance difference was found between the three different types of suspension 

systems, whether cycling on the treadmill in either the seated or standing 

position.  These results disprove the theory that rear suspension systems use up 

a rider’s energy through rider-induced motion.  Subsequent findings of the 

treadmill tests showed a significantly higher set of results for cycling whilst 

standing compared to cycling when seated.  These results support Nielens & 

Lejeune’s (2001) statement that riders do not stand whilst cycling.     

 

For the second set of outdoor trial tests, Ishii et al. (2003) again used the same 

three types of suspension systems and make of bike as his initial set of tests.  As 

this outdoor course consisted of a rough riding surface, both terrain and rider 

induced energy losses were measured.  The rough course included both 

ascending and descending sections and cyclists were asked to complete it in as 

fast a time as possible; once again in a randomised order, riding on all three 
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types of suspension systems on the same day.  The drawbacks of this form of 

outdoor testing have been brought to light previously in this chapter.  

 

During the outdoor tests, Ishii et al. (2003) measured each cyclist’s heart rate, 

VO2, blood lactate and time taken to complete each of the tests.  One significant 

finding from the outdoor trial tests was that VO2 was significantly higher for 

subject riding on the fully suspended bike compared to the hardtail and rigid 

frame bikes.  These results conflict with those obtained by MacRae et al. (2000) 

and Seifert et al. (1997), both of whom found that there was no significant 

difference between the physiology of cyclists riding on either a hardtail or fully 

suspended system.  The results of the outdoor trial tests also highlighted that the 

changes of blood lactate concentration were significantly higher for the subject 

cycling on the hardtail mountain bike compared to the rigid and fully suspended 

mountain bike.  One possible explanation for the increased levels of blood lactate 

found when riding a hardtail bike is that the cyclists must work to support 

themselves using their arms and legs to absorb the bump impacts when riding 

over rough terrain (Burke, 1996).  Ishii et al. (2003) suggests that a lower blood 

lactate accumulation is a better condition for cross-country race events, even 

though the fully suspended mountain bike requires greater energy consumption 

than the hardtail bike.     

 

2.3. Mechanical Testing  

 

In contrast to physiological testing, mechanical testing relates specifically to 

mountain bikes and their design.  It involves measuring the structural loads and 

forces that act upon a bike, with an attempt to design bikes for optimal 

performance.  At several points on the bike, force input is received from external 

sources.  These points include: the front and rear axles, handlebar, saddle, front 

and rear brakes and pedals (Champoux et al., 2004).  Additionally, internal forces 

act upon a mountain bike; these include chain forces; crank torque; suspension 
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forces; inertial forces and forces acting on the frame. For the purpose of this 

current study, only literature relating to the forces acting on the bike due to 

suspension systems will be studied.  Literature on the mechanical testing of 

mountain bikes was found to be limited; and that specifically relating to 

suspension systems was even more so.   

 

An optimal suspension system should ultimately improve a cyclist’s performance, 

yet it is apparent that there are no set criteria on how to maximise the benefits of 

a suspension system for cyclists (Hrovat, 1988; Hrovat & Hubbard, 1981; 

Karnopp & Margolis, 1984; Karnopp & Trikha, 1960; Pennestri & Strozzieri, 1988; 

van Vliet & Sankar, 1983).  The mechanical literature reviewed in this research - 

Champoux et al., 2004; Karchin & Hull, 2002; Levy & Smith, 2005; Needle & Hull, 

1997 - as with the literature on physiology, used two forms of testing: laboratory 

and field trials.   

 

Needle & Hull (1997) carried out the mechanical testing of a mountain bike under 

laboratory conditions and, similarly to Berry et al. (1993 & 2000), used a treadmill 

as a form of testing.  The aim of the research was to design and construct a dual 

suspension mountain bike with the same geometry as a Specialized M2 frame, 

with adjustable suspension characteristics.  This enabled the optimal pivot point 

for this rear suspension design to be obtained in order to improve rider 

performance.  As Wang and Hull (1996) demonstrated; pivot point height of a 

single swing arm rear suspension system can affect rider efficiency.  Needle & 

Hull (1997) used a four-bar linkage design for testing, yet this is still considered a 

single swing arm design as the wheel is rigidly connected to the pivoting linkage 

(chainstay).   

 

Needle & Hull (1997) studied rider induced energy losses and the effect this has 

on the rear suspension system only.  Rigid links (instead of shock absorbers) 

were used in the front forks to isolate the effects of the rear suspension.  The 

pivot point was located from the bottom bracket to 22 cm above the bottom 
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bracket; the clamping mechanism used allowed the pivot point to be locked in 

0.42 cm increments.  Only one subject, who rode in a seated position on a 

smooth, inclined treadmill (six percent grade) at 23.3 km/h, was used for testing.  

Data was collected through the use of a linear motion potentiometer and a 

variable reluctance transducer and was analysed for an eight second period.  

This data consisted of magnitude and phase information collected from the 

crankset and the shock absorber; the amount of travel of the shock absorber; 

crank angle; and the shock displacement amplitudes.  The results concluded that 

the optimal pivot point height was 8.4 cm above the bottom bracket, this gave the 

minimum energy loss from the rear shock absorber (Needle & Hull, 1997).               

 

As discussed previously in the chapter, there are several issues and concerns 

which arise through using a treadmill specifically for the testing of mountain bikes 

and similarly, there are issues and concerns with the test procedure adopted.  As 

only one subject was used during testing, no comparisons could be made to 

other cyclists and their riding styles.  As riders are of different physical builds and 

adopt different riding styles, it is fair to stipulate that the optimal pivot point may 

differ for each one.  Needle & Hull’s (1997) decision to use only one subject for 

testing differs greatly from researchers carrying out physiology testing where 

more than one subject was tested for comparison of results (Berry et al., 1993; 

MacRae et al., 2000; Nielens & Lejeune, 2004; Seifert et al., 1997).   

 

Other aspects to consider in Needle & Hull’s (1997) study relate to the bike 

design and suspension system: the bike used for testing was constructed to 

replicate a Specialized M2 model, yet throughout the study no comparison was 

made to an actual Specialized M2 model.  Comparisons would have been 

beneficial to validate both the bike design, and the results obtained through 

testing.  Additionally, the dynamics of the bike were altered by removing the oil 

from the rear damper in order to lessen the damping effect and the front 

suspension system was locked out throughout the testing in order to isolate the 

rear suspension which, in turn, altered the mountain bike such that it did not truly 
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replicate the dynamics of an actual Specialized M2 model rode by cyclists.  

Consequently, the results obtained only refer to a bike with rear suspension and 

no comparisons were made to a bike with a full suspension system.  Berry et al. 

(1993) studied the effects of riding a mountain bike with rear suspension only, yet 

this study compared the results to those obtained from riding on a rigid frame, 

hardtail and fully suspended bike.  

 

A further aspect to consider when evaluating Needle & Hull’s (1997) findings is 

the result obtained for the optimal pivot point.  This was concluded to be 8.4 cm 

above the bottom bracket on the seat tube of the mountain bike, yet as stipulated 

by Wang & Hull (1997); it is likely that the true optimum pivot point location does 

not lie directly on the seat tube.  The form of testing undertaken by Needle & Hull 

(1997) is therefore limited in this respect, as an optimal pivot point cannot be 

obtained unless a different bike frame design is used. 

 

The time period where data was collected highlights an additional aspect of 

testing that could be revised in Needle & Hull’s (1997) study.  Data was collected 

for a short period of 8 s only and it would have been advantageous to the study 

to conduct testing for a longer time period in order to gain average values to 

compare and contrast.   

 

Karchin & Hull (2002), whose study is a variation of the research carried out by 

Needle & Hull (1997), additionally carried out mechanical testing.  As with Needle 

& Hull’s (1997) tests, controlled experiments were carried out under laboratory 

conditions with the use of a smooth treadmill (six percent grade), using the same 

bike designed and used by Needle & Hull (1997) in their experiment.  The only 

notable difference was that the front suspension system was replaced with a 

RockShox Judy SL design which could also be locked.  The aim of Karchin & 

Hull’s (2002) study was to test two hypothesis: the first that interaction between 

the front and rear suspensions does not affect the action of the rear suspension, 

and hence determination of the optimal pivot point height; and the second that 
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the optimal pivot point height is insensitive to pedalling mechanics in one posture 

(either standing or seated).    

 

In contrast to Needle & Hull’s (1997) research, Karchin & Hull (2002) used eleven 

experienced subjects during the experimentation.  Each subject carried out a 

total of seventy-two trials under four conditions, testing a total of eighteen pivot 

point heights from 5.04 to 12.18 cm above the bottom bracket.  These four 

conditions consisted of cycling in a seated position with a locked out front 

suspension system; cycling in seated position with an active front suspension; 

cycling whilst standing with a locked out front suspension system; and cycling 

whilst standing with an active front suspension.  Each subject cycled for a period 

of 30 s until a speed of 24.8 km/h was reached; this speed was maintained for a 

further 20 s and data collected for 14 s.  As was the case in Needle & Hull’s 

(1997) study, data was collected using several transducers, linear potentiometers 

and an optical encoder.   

 

The data was obtained by measuring the displacement of the front and rear 

suspension systems and the crank angle.  On analysis of the data, Karchin & 

Hull (2002) found that the power loss, through the displacement of the front and 

rear suspension systems, was significantly lower when cycling in a seated 

position.  Further results found that there was no interaction between the front 

and rear suspension systems and that the optimal pivot point height above the 

bottom bracket was 9.8 cm for a cyclist in a seated position.  This result is 

interesting as it differs from that obtained by Needle & Hull (1997), who found the 

optimal pivot point to be 8.4 cm above the bottom bracket.  It could be 

maintained that Karchin & Hull’s (2002) result holds more validity as eleven 

subjects were used for testing, enabling an average value to be calculated.  

 

Karchin & Hull’s (2002) final test result showed that the optimal pivot point for a 

cyclist in a standing position was lower than that of a cyclist in a seated position; 

a value of 5.9 cm was obtained as optimal pivot point height for a cyclist riding in 



70 
 

a standing position.  A possible reason for the different values obtained for 

optimal pivot point height between a seated or standing cyclist could be 

explained by the increase in crank torque when standing during cycling (Stone & 

Hull, 1993).  This could also be explained by the different inertia loads 

encountered by cyclists in either two of the riding scenarios.  As a significant 

difference was found between the optimal pivot point heights during cycling whilst 

either sitting or standing, a decision on which height would be most beneficial to 

a rider must be reached.  As Tinaka et al. (1996) maintain that the majority of 

uphill cycling is carried out by cyclists riding in a seated position (due to the 

energy expenditure of the cyclist being lower under this riding condition) it is 

logical that the optimal pivot point height for this position would be chosen for a 

rear suspension design.   

 

As Karchin & Hull’s (2002) study was a continuation of Needle & Hull’s (1997), 

the same issues and concerns remained apparent for the former experiment.  

Karchin & Hull (2002) did, however, address some of these issues and concerns 

in their research to provide more comparable data.  One significant difference 

was the decision to use eleven subjects for testing as opposed to Needle & Hull’s 

(1997) use of only one subject.  Additionally, Karchin & Hull’s (2002) tests were 

carried out for a slightly longer time period and data collected for 14 s.  Although 

this 6 s increase on Needle & Hull’s (1997) duration for data collection enabled 

more data to be compared, it could be argued that it would be advantageous to 

increase this further so as to establish if changes occur over a greater time scale.    

 

As with the studies relating to the physiology aspects of mountain biking, 

mechanical testing can also be undertaken outdoors under field conditions.  By 

comparing results between both laboratory and field tests, differences and 

similarities can be highlighted and discussed.  Levy & Smith (2005) are two such 

researchers who conducted their experiments in an outdoor environment.  The 

aim of their research was to describe the damping effectiveness patterns 

associated with various suspension forks over different surface conditions.  Five 
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different suspension system combinations were used during the experimentation 

and were compared to results obtained from a rigid frame bike.  Three different 

types of front suspension were tested: an air-oil, elastomer and a linkage design.  

Further testing was then carried out using an air-spring rear suspension system 

along with the air-oil and linkage front suspension system.  No indication was 

given as to why no further testing was carried out with the elastomer front 

suspension system and the air-spring rear suspension system.  The make and 

model of bike used during the testing also remained unspecified.     

 

As with Needle & Hull’s (1997) mechanical research, Levy & Smith (2005) opted 

to use only one subject for testing; an issue which, as aforementioned, may 

present areas of concern for the validity of results.  The test consisted of the 

subject riding under two outdoor conditions: one on coarse gravel and the other 

on hard-pack dirt.  Both courses were flat and had a ten centimetre bump placed 

at the end of the tracks. Testing involved cycling on each track at a speed of 6.5 

to 7 m/s and the sequence of the five suspension system combinations and one 

rigid frame test was randomised for each of the two surface conditions.  The 

subject was instructed to ride passively over the trail or gravel slightly elevated 

out of the saddle.  This instruction appears to be ambiguous as riding in a 

passive manner suggests cycling whilst in a seated position.  Consequently, as 

there would be no means by which to control the distance the rider stands from 

the saddle in each of the tests, this would present an uncontrollable variable in 

the experiment and thus results may be affected.   

 

Levy & Smith (2005) used accelerometers placed at the front wheel hub and the 

top of the head tube to measure the vibrations at the wheel and on the frame of 

the bike.  The results from the accelerometers found that the gravel track 

produced higher frequency accelerations than the dirt track.  This result is to be 

expected as a gravel track normally consists of a higher frequency of smaller 

bumps compared to a dirt track made up of bigger, smoother bumps.     
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Further results gained from the accelerometers demonstrated that the air/oil 

suspension system, both with and without the rear suspension, was more 

effective at reducing vibration than the other suspension designs.  However, as 

this study only investigate vibrations occurring at the front wheel and at the head 

tube, it is unknown which system is most effective for reducing vibration at the 

rear of the bike.  Further studies, which could be carried out by placing 

accelerometers at the rear hub and seat of the bike, would provide useful data to 

establish which system is most effective at reducing vibrations at the rear of the 

bike.   

 

Similar to Levy & Smith’s (2005) research, De Lorenzo & Hull (1999) also carried 

out mechanical research on mountain bikes using outdoor field trials as a mode 

of testing.  De Lorenzo & Hull’s (1999) methodology of study involved quantifying 

the terrain-induced loads acting on a bike caused by surface irregularities.  As 

the test trials were carried out with subjects maintaining a standing position with 

the crank arms of the bike in a horizontal position, rider-induced loads due to 

pedalling were not investigated in the study.  This is in contrast to other 

researchers in this field: Berry et al. (1993); Berry et al. (2000); Karchin & Hull 

(2002); Levy & Smith (2005); MacRae et al. (2000); Needle & Hull (1997); 

Nielens & Lejeune (2001); Seifert et al. (1997); Titlestad et al. (2006) - all of 

whom undertook tests where subjects were required to pedal.   

 

In contrast to Needle & Hull’s (1997) and Levy & Smith’s (2005) studies, De 

Lorenzo & Hull (1999) used more than one subject for experimentation.  Seven 

experienced cyclists were requested to undertake two trials on a rough, downhill 

track with an 8% slope at speeds of 22 km/h to 32 km/h: one on a fully 

suspended mountain bike and one on a hardtail mountain bike.  The bike used 

during the experimentation was a fully-suspended, FSR Specialized mountain 

bike with a four-bar linkage rear suspension design which could be locked to 

form a hardtail mountain bike.  Each of the 7 subjects were allowed one practice 

on the course prior to testing in order to familiarise themselves with the track.  
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Each subject was instructed to ride both mountain bikes in a randomised order, 

during which time mechanical measurements were taken.  These included the 

pedal force - measured using a dynamometric pedal; forces at the front and rear 

hub - measured using dynamometric hubs; brake forces - measured using strain 

gauges; bicycle speed - measured using transducers; rotation speed of the rear 

wheel - measured using an infrared emitter and detector; and handlebar forces.  

The total time for sampling for each rider was 60 s, which consisted of two thirty 

second trials (De Lorenzo & Hull, 1999).  This is a relatively short time scale in 

which to collect data, however it is a longer duration than that used by Needle & 

Hull (1997) and Karchin & Hull (2002), who collected data for 8 s and 14 s 

respectively.   

 

De Lorenzo & Hull’s (1999) decision to use more than one subject for testing was 

similar to Karchin & Hull’s (2002).  Karchin & Hull (2002) used eleven subjects for 

testing, thus allowing an average value for the optimal pivot point of a single 

swing arm rear suspension system to be obtained.  Karchin & Hull’s (2002) 

optimal pivot point value however, differed from that one obtained by Needle & 

Hull (1999) who undertook the same test as Karchin & Hull (2002) but used only 

one subject.  As previously discussed, it could be asserted that Karchin & Hull’s 

(2002) findings have greater validity as more subjects were used during testing.  

If this is the case, it could, therefore, also be concluded that De Lorenzo & Hull’s 

(1999) results will also hold more value as more than one subject was used and 

averages were recorded.   

 

In contrast to Needle & Hull (1997), Karchin & Hull (2002) and Levy & Smith 

(2005) - the former two having carried out cycling tests uphill and the latter 

having carried out tests on level ground - De Lorenzo & Hull (1999) investigated 

the effects of suspension systems whilst cycling downhill.  De Lorenzo & Hull 

(1999) are one of the only researchers to compare the mechanical effects of a 

fully suspended and hardtail mountain bike whilst riding downhill.  A possible 

reason for the limited number of studies that are carried out comparing these two 
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types of suspension system whilst cycling downhill is perhaps due to the fact that 

it is undisputed that cycling downhill on a fully suspended mountain bike, 

compared to a hardtail bike, provides more benefits to a rider.  This is highlighted 

by Nielens & Lejeune (2004) who state that the numerous advantages of a fully 

suspended bike (improved comfort, bike handling, improved cornering, braking 

capacity, bike control and traction) explain why all downhill mountain bike racers 

use front and rear suspension systems that allow much higher downhill speeds.  

If this is the case then it can be assumed that De Lorenzo & Hull (1999) will also 

find that the fully suspended bike is more effective when cycling downhill.  De 

Lorenzo & Hull’s (1999) study is however, still important in order to highlight the 

load differences between the two types of suspension system.   

 

The most significant results obtained from De Lorenzo & Hull’s (1999) study 

indicated that the use of the rear suspension led to significant reductions in the 

dynamic loading at the rear tyre.  This was also evident in other components of 

the bike where loads were measured; all of the loads in the horizontal plane for 

the fully suspended bike - with the exception of the front wheel load - showed a 

reduction in dynamic loading.  As previously discussed these results were 

expected - a point certified by De Lorenzo & Hull (1999) in their literature.   

Issues and concerns which arise from De Lorenzo & Hull’s (1999) test protocol 

include their decision to instruct subjects to coast downhill without the use of 

pedals.  This is an unrealistic representation of true race conditions as it would 

be uncommon for a cyclist to ride for the full duration of a downhill track without 

using pedals.  Adversely, conducting tests under these conditions allowed terrain-

induced loads to be investigated independent of the rider-induced loads which 

affect the dynamics of a suspension system.  Although the results from the tests 

were expected, the research is interesting as they are one of the only 

researchers to have studied the mechanical effects of terrain-induced loads only 

on a fully suspended and hardtail bike.   
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De Lorenzo & Hull’s (1999) methodology imposed yet another restriction on 

subjects - the cyclists were to remain in a standing position for the duration of the 

tests.  This does not truly represent race conditions as cyclists on a fully 

suspended bike may choose to remain seated for part of their descent.  In order 

to validate results and provide data from which to compare and contrast, De 

Lorenzo & Hull (1999) may have benefited from conducting further tests with 

subjects being allowed to either remain seated or to cycle whilst standing.  .   

 

2.4. Simulation Testing 

 

Wang & Hull (1994) state that the experimental approach (discussed in the 

physiological and mechanical sections of the literature review) is adequate if a 

suspension system design has already been developed and the amount of 

dissipated energy is to be established.  However, to establish the affect that 

adjusting parameters - such as the stiffness of the spring or moving the pivot 

point to a different location - has on bobbing, then the experimental approach 

becomes cumbersome as re-testing of subjects is required.  Additionally, when 

considering the experimental approach as a form of testing, a new bike may have 

to be built specifically for experimentation as was the case in Krachin & Hull’s 

(2002) and Needle & Hull’s (1997) studies.   

 

A method widely used to counteract the cumbersome affects of the experimental 

approach is to investigate suspension systems and their affect on rider 

performance through the use of computer simulated models.  These computer 

simulations are dynamic models of bikes and riders which are developed using 

dynamic simulation software - examples of this type of software are DADS, 

AUTOLEV, Matlab, ADAMS and LifeMOD.  Simulations can be beneficial for 

research on suspension systems as, unlike the experimental approach to testing, 

once a dynamic model of a bike and rider has been developed using the specific 

software, parameters can be adjusted promptly, and without difficulty, to conduct 
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different tests to compare suspension configurations.  González et al. (2008) 

support these benefits maintaining that through the development of a dynamic 

simulation model it becomes easier to recognise the forces interacting between 

the bike and rider on the various system parameters (bike geometry, suspension 

design, rider’s anthropometric data and terrain profile), all of which can be easily 

modified and the corresponding energy efficiency evaluated in a few seconds.  

Additionally, simulation models can aid in determining rider and terrain induced 

energy losses.  Although it is possible to determine rider induced energy losses 

experimentally, it is easier and less time consuming to determine such energy 

losses on the various system parameters through the use of dynamic computer 

simulations (Wang & Hull, 1996).   

 

The research pertaining to dynamic computer simulations included in this 

literature review falls into three categories: investigating the optimisation of 

suspension systems; investigating rider-induced energy losses; and investigating 

terrain-induced energy losses.  These three categories are often interrelated and 

it is not uncommon for researchers (Good & McPhee, 1999 & 2000 and Wang & 

Hull, 1994, 1996 & 1997) to initially develop a simulation model which 

investigates either the rider or terrain-induced energy losses and to then use the 

models to optimise frame or rear suspension design.  Studies relating to the 

development of simulation models (Bu et al., 2009; Wang & Hull, 1994 & 1996; 

Wilczynski & Hull, 1994) also incorporate mechanical testing.  Simulation and 

mechanical testing are combined for two distinct reasons: to establish input 

parameters for the computer model; and to validate results.  Fregly et al. (2000) 

advocate the benefit of this, stating that a dynamic model of a bike is desirable to 

assess how well various experimental situations mimic the dynamics of outdoor 

riding.   

 

Wilczynski & Hull (1994) are pioneers in the field of developing and optimising 

mountain bikes through the use of dynamic simulations.  They were the first 

researchers to use simulations to investigate mountain bike optimisation through 
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investigating the loads on a bike frame when cycling over rough terrain.  The 

fundamental aim of Wilczynski & Hull’s (1994) study was to develop a simulation 

model that would enable mountain bike designers to optimise frame designs.  A 

previous study by Wong & Hull (1983) also investigated surface-induced frame 

loads of a bike; however, the study investigated this in relation to on-road cycling 

only.   

 

Wilczynski & Hull’s (1994) study, in addition to developing a dynamic simulation 

model for testing, used mechanical testing to obtain results which were then 

compared and contrasted to those obtained from the simulations; a factor 

beneficial in validating results.  The mechanical tests involved measuring the 

horizontal and vertical loads at the rider’s contact points - the seat, handlebars 

and the pedals – through the use of strain gauges.  In order to emulate the 

simulation model 1 subject coasted over a short, 6.5 metre track with 6 square 

obstacles attached (3.8 cm side-length) at an initial velocity of approximately 3.5 

m/s on a hardtail mountain bike.  The subject was instructed to complete the trial 

in both a standing and seated position and for both trials the crank arms 

remained in a horizontal position.  This form of mechanical testing is similar to the 

tests carried out by Levy & Smith (2005), whose subjects were also instructed to 

coast over a track with a bump.  However, this protocol of allowing the subject to 

coast over the track presents the same issues and concerns as outlined in the 

discussion of Levy & Smith’s (2005) study.  As with Levy & Smith’s (2005) and De 

Lorenzo & Hull’s (1999) research, Wilczynski & Hull (1994) also used only 1 

subject for testing.  As previously discussed in relation to Krachin & Hull’s (2002) 

findings, results differ when more than one subject is used for testing.   

 

A matter that became apparent when studying Wilczynski & Hull’s (1994) 

mechanical test protocol was that few measurements were recorded (with the 

exception of the loads at the rider’s contact points).  It would perhaps have been 

beneficial to additionally measure the bike velocity, acceleration and 



78 
 

displacement in order to establish how the bike was affected by contact with the 

bumps and to compare these to the simulation results.   

 

Wilczynski & Hull’s (1994) dynamic simulation model was developed using 

Dynamic Analysis and Design Software (DADS) (CADSI Corp., Oakdale, IA) and 

was modelled on the hardtail mountain bike used for their mechanical testing.  

The input parameters for the model were either estimated or taken from previous 

studies (Chandler et al., 1979; Greene et al., 1979; Wong & Hull, 1981; Wong & 

Hull, 1983). The simulation model was created using two rigid bodies - the frame 

and front fork of which were connected through the use of a spring.  The wheels 

were modelled by two linear springs and the pedals were represented by a spring 

connected to the bottom bracket.  As Wilczynski & Hull (1994) were the first 

researchers to use simulation models as a mode of testing mountain bikes and 

their optimisation, it can be maintained that they laid the foundations for future 

simulation model development.  However, as is to be expected with the first 

model of its type, it became apparent where improvements could be made to 

ensure a more realistic model is created to represent truer riding conditions.  

Perhaps the two most apparent aspects relate to the decision to use springs to 

represent the wheels and pedals of the mountain bike.   The research may have 

benefited from using a simulation model which incorporated a more realistic tyre 

and pedal design to give a more accurate representation of an outdoor mountain 

bike.   

 

Wilczynski & Hull’s (1994) simulation experiment was carried out in two phases, 

both of which replicated the mechanical testing which was undertaken prior to the 

simulations.  Both simulation phases - as with the mechanical tests - were 

completed with the rider cycling in both a seated and standing position.  For the 

first phase simulation, the rider coasted over a smooth surface with no pedalling 

action, thus representing the approach period of the subject prior to hitting the 

bump as carried out in Wilczynski & Hull’s (1994) mechanical testing.  This initial 

first phase was used to adjust the simulation’s input parameters until the output 
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matched that of the mechanical testing.  The second phase of the simulation 

represented the period following the rider’s initial contact with the bump as 

carried out in the mechanical test.   

 

Although the simulation was designed to emulate the mechanical test, slight 

differences were observed: only 1 bump was used in the simulation, in contrast 

to the six obstacles that the subject encountered during the mechanical test.  The 

length of the track and the velocity of the cyclist are not stipulated for the 

simulation model, thus making any comparisons between the simulation and 

mechanical tests difficult as the parameters are not identical for both.   

 

Wilczynski & Hull’s (1994) simulation model, as with the mechanical tests, 

measured the horizontal and vertical loads on the mountain bike at the 

handlebars, pedals and saddle in both a standing and seated position. The initial 

results obtained from the simulation tests were significantly different from the 

experimental results.  However, once the input parameters were adjusted, 

simulated loads for the final parameter values were not significantly different from 

those measured experimentally (Wilczynski & Hull, 1994).  The results found that 

- similar to the static forces - the dynamic loads were greatest in the horizontal 

direction for the seated position.  The results also yielded that of the ten loads 

measured, only the horizontal handlebar force in the standing position and the 

vertical seat force in the seated position did not exceed the static load 

magnitude.  Wilczynski & Hull’s (1994) results indicate that a computer simulation 

can represent similar frame loads to that of an actual mountain bike, thus 

indicating that simulations can assist in optimising bike and suspension design.   

 

Developing an optimal suspension design can be challenging, as advocated by 

researchers in the field of mountain biking and suspension systems (Berry et al., 

1993; Burke, 1996; De Lorenzo et al., 1994; Good & McPhee,1999; Karchin & 

Hull, 2002; MacRae et al., 2000; Needle & Hull, 1997; Nielens & Lejeune, 2004; 

Olsen, 1996; Seifert et al., 1997).  However, as Wilczynski & Hull’s (1994) 
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research indicated, computer simulations can assist in optimising mountain bike 

design.  Wang & Hull (1994 & 1996) recognised this and carried out studies, 

using a dynamic simulation model, which investigated the effects of energy 

losses due to bobbing.  Mechanical testing was employed after the initial 

simulations as a means of validating results.  The simulation model used for 

Wang & Hull’s (1994 & 1996) experiment was created using Kane’s (1985) 

method of dynamic analysis using the computer programme AUTOLEV (OnLine 

Dynamics, 1990).  A two-dimensional model was created to emulate a dual 

suspension mountain bike with a single swing-arm rear suspension design.  This 

model allowed for five degrees of freedom and comprised of six rigid bodies.  

The tyres were represented by compression springs and both the front and rear 

suspensions were constructed using a spring and damper configuration.  The 

frame loads on the rider’s contact points used for the simulation were taken from 

previous literature (Stone, 1990) and the stiffness and damping characteristics of 

the suspension systems were established using a servo-hydraulic load frame.   

 

Wang & Hull’s (1994 & 1996) methodology involved simulating a seated rider 

pedalling up a smooth surface with a grade of six percent at a constant velocity 

of 6.2 m/s.  As this simulation involved cycling up a smooth surface, only the rider 

induced energy losses due to bobbing were considered.  As is the case for 

Wilczynski & Hull’s (1994 & 1996) simulation model, Wang & Hull’s (1994 & 

1996) model presents similar drawbacks as a means of testing: the decision to 

use springs to represent tyres does not create a true representation of tyre 

dynamics.  Similarly, as with Wilczynski & Hull’s (1994) simulation model, Wang 

& Hull (1994 & 1996) chose not to incorporate the crank and pedals into their 

simulation model, thus consequently altering the dynamic and inertia 

characteristics of true riding conditions.  In addition to these limitations of the 

study, the stability of the simulation presented a further area of concern.  If the 

simulations were allowed to continue for long periods of time then the tyres would 

leave the ground and the bicycle would eventually flip over backwards (Wang & 
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Hull, 1996).  This limitation highlights the unrealistic characteristics of simulating 

mountain bikes using dynamic computer models.    

 

In order to lend validity to the simulation results, Wang & Hull (1996) conducted 

mechanical experiments to verify their simulation model.  The displacements of 

the fork and rear suspension were measured and compared to the displacements 

predicted by the simulation model.  The protocol for the mechanical tests was 

taken from Stone (1990); this consisted of a subject riding a fully suspended 

mountain bike on an indoor treadmill with a six percent grade at 7.2 m/s.  This is 

a similar form of testing to Berry et al. (1993 & 2000), who also used treadmills 

as a mode of testing.  In this respect, similar concerns arise through using 

treadmills as a means of testing mountain bikes, as outlined in the physiological 

section of this literature review.   

 

During Wang & Hull’s (1994 & 1996) mechanical tests, the displacement of the 

front and rear suspension systems were measured using linear transducers 

attached to the suspension systems.  The crank angle data was also measured 

using an optical encoder, and all sets of results compared to the simulation 

model.  This is in contrast to Wilczynski & Hull (1994), whose approach involved 

measuring the loads at the contact points between the bike and rider.  The 

results of Wang & Hull’s (1994 & 1996) simulation and mechanical displacement 

analysis concur with Berry et al’s (1993) treadmill test results, which similarly 

demonstrated that no front fork compression is observed when cycling uphill on a 

smooth surface.  This result has therefore been proven using a mechanical test; 

a simulation (Wang & Hull, 1994 & 1996); and physiological tests (Berry et al., 

1993) - indicating that no energy is dissipated whilst cycling (remaining seated) 

uphill on a smooth surface on a bike with a front suspension system.  This 

finding, however, is true only of cyclists riding in a seated position.  Kyle’s (1990) 

calculations proved that for a cyclist climbing out of the saddle, the front 

suspension would consume 1% to 2% of the total energy whilst riding uphill on a 

smooth surface.  It is however important to highlight that most extended climbing 
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is done in the seated posture because of increased energy expenditure in the 

standing posture for equivalent average power output (Tanaka et al., 1996).  This 

may attribute to Berry et al’s (1993); MacRae et al’s (2000); and Wang & Hull’s 

(1994 & 1996) decision to conduct all tests with subjects riding in a seated 

position.   

 

A further result obtained from Wang & Hull’s (1994 & 1996) mechanical tests 

showed that the rear suspension had a mean displacement of 6.6 mm ± 2.7 mm.  

The simulation displacement results showed that the mean displacement of the 

rear suspension differed from those obtained during the mechanical tests by 0.7 

mm and that the amplitude differed by 0.3 mm.  Furthermore, the simulation 

displacement results for the rear suspension, in relation to the crank angle, are 

shown to occur twenty-nine degrees behind those of the mechanical test crank 

angle results.  Wang & Hull (1994 & 1996) suggest that the reason for these 

differences could be due to load data being taken from previous literature.  The 

data used for the simulation analysis was acquired from Stone (1990) whose 

subject’s biomechanics may have differed from the subject used for Wang & 

Hull’s (1994 & 1996) mechanical experiment, thus making the mechanical and 

simulation results difficult to compare.  In order to increase accuracy of results it 

may have been beneficial - as in Wilczynski & Hull’s (1994) study - to measure 

the interaction loads between the bike and the rider completing the mechanical 

tests to ensure that the subject was identical for both the simulation and 

mechanical tests.  

 

Wang & Hull (1994 & 1996) stipulate that no spring preload was used for the test 

analysis, presenting this as one possible reason for the large displacement 

results found from both the mechanical and simulation tests.  Spring preload is 

normally set to compensate for a rider’s static weight, thus the results presented 

are, in a sense, for a worst case scenario.  This theory was recognised and 

tested by doubling the stiffness of the spring in the rear suspension system which 

consequently decreased the mean displacement by fifty percent.  Although Wang 
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& Hull (1994) illustrated that the use of a stiffer spring can reduce displacement 

of the rear suspension system, this may also have the adverse effect of the 

suspension system being unable to react to small bumps.   

 

Wang & Hull’s (1994 & 1996) mechanical and simulation displacement results 

illustrated that on average, the rear suspension dissipated 6.9 W out of the 531 

W input by the rider (1.3 % of the total input power from the rider).  Although 1.3 

% may not appear to be a large amount, in competitive cycling being 1.3 % 

slower can be a significant disadvantage (Wang & Hull, 1994 & 1996).  This 

finding of Wang & Hull (1994 & 1996) differs from the physiological results found 

by Berry et al. (1993) and MacRae et al. (2000); both of whom carried out similar 

tests with the use of a treadmill.  Both Berry et al. (1993) and MacRae et al. 

(2000) found that there was no significant difference in a subject’s energy 

expenditure whilst cycling uphill on a smooth surface in the seated position on 

either a hardtail or fully suspended bike.  However, MacRae et al’s (2000) results 

relating to the mechanical aspects of testing, namely the power output of a cyclist 

measured through the pedals, concur with those found by Wang & Hull (1994 & 

1996).  MacRae et al. (2000) also found that a cyclist riding on a hardtail 

mountain bike used less power than on a fully suspended mountain bike when 

cycling uphill on a smooth surface.   

 

A possible reason for some of the discrepancies between the results of Berry et 

al. (1993), MacRae et al. (2000) and Wang & Hull (1994 & 1996) may relate to 

the type of rear suspension and the location of the pivot point used during each 

of the three experiments.  Wang & Hull (1994 & 1996) chose to use a single 

swing arm rear suspension design with the pivot point located 20 cm above the 

bottom bracket.  Berry et al. (1993) also used a single swing arm rear suspension 

design, but with the pivot point located 10 cm above the bottom bracket.  

Conversely, MacRae et al. (2000) used a four bar linkage rear suspension 

system during testing.  For a high pivot point design, the chain force causes the 

rear suspension to extend (Wang & Hull, 1994) - this may aid in explaining the 
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large displacement results found in Wang & Hull’s (1994) tests.  One possible 

means of validating these discrepancies found between the results would be to 

combine and compare the physiological results (as obtained in Berry et al’s 

(1993) and MacRae et al’s (2000) research) with both the mechanical results of 

displacement and power through the pedals (as obtained in Wang & Hull’s (1994) 

and MacRae et al’s (2000) studies).  This would also aid the development of a 

more realistic simulation model that could be validated from the mechanical 

results.   

 

Wang & Hull’s (1994 & 1996) research investigated rider induced energy losses, 

concluding that power was dissipated by the rear suspension while cycling uphill 

on a smooth surface.  As a result of their previous work, they deemed a study on 

how to minimise these energy losses as a natural progression to their previous 

studies, maintaining that it is desirable to optimise the bicycle design to minimise 

the rider induced energy losses.  Wang & Hull’s (1997) optimisation study sought 

to determine the relationship between the power dissipated through the rear 

suspension and pivot point location by systematically varying the location of the 

pivot point.  The model used for the study was the previously developed dynamic 

computer simulation model as used in Wang & Hull’s (1994 & 1996) earlier 

studies.  The model used during testing was a single swing arm rear suspension 

design, thus only two design parameters could be altered in order to investigate 

the optimisation of the rear suspension: pivot point location and the 

spring/damper parameter values.  As the results pertaining to altering the spring 

or damper would result in the conclusion that having no suspension or damping 

would minimise energy loss, it would be ineffective to investigate this as 

suspension is required on a mountain bike in order to minimise vibrations felt by 

the rider.  Samuelson et al. (1989) reported that cycling performance decreased 

under the influence of vibrations.  It is a view held by researchers (Levy & Smith, 

2005 and Seifert et al., 1997) that in order to counteract this vibration effect, a 

suspension system is required.  Seifert et al. (1997) maintain that suspension 

systems enhance absorption of shock and vibration, allowing the rider to 
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maintain a constant velocity.  Levy & Smith (2005) agree with this, stating that 

suspensions are effective at dampening vibrations at the bike frame.  In 

considering this, Wang & Hull’s (1997) research investigated the optimisation of 

the pivot point location.   

 

Wang & Hull’s (1997) methodology involved locating the optimal pivot point 

located on the seat tube by incrementally increasing the pivot point height by 0.5 

cm and measuring the displacement of the rear suspension system each time.  

The model used for the research was identical to that used in Wang & Hull’s 

(1994 & 1996) tests.  Subsequently, once the optimal pivot point on the seat tube 

had been established, the dependence of the optimal pivot point on pedalling 

mechanics; spring and damper parameter values; and the chain line (gear 

combination) were evaluated.  The optimal location due to pedalling mechanics 

was found using data from three other subjects (taken from Stone, 1990) which 

was inserted into the computer simulation.  Spring and damping parameters were 

varied both independently and simultaneously and the optimal pivot point was 

then determined.  The effect of the chain line on the optimal pivot point was 

determined by altering the chain line using four front chain ring sizes and 

ensuring that the gear ratio remained constant.   

 

The results of Wang & Hull’s (1997) study indicated that the optimal pivot point 

on the seat tube is 11 cm above the bottom bracket of the bike frame.  This 

optimal pivot point location is 9 cm lower than the pivot point location used in 

Wang & Hull’s (1994 &1996) previous studies.  By moving the pivot point from 

the initial 20 cm above the bottom bracket, as used in Wang & Hull’s (1994 & 

1996) tests, to the optimal location of 11 cm, the power losses were reduced by 

83 % from 6.9 W to 1.2 W.  This finding may explain the reason why less bobbing 

was experienced by the subject in Berry et al’s (1993) test compared to the 

subject in Wang & Hull’s (1994 & 1996) tests.  Berry et al. (1993) found that no 

significant oscillation due to pedalling was observed; the pivot location used for 
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this study was 10 cm above the bottom bracket - only 1 cm below that of the 

optimal location of 11 cm found by Wang & Hull (1997).   

 

Needle & Hull (1997) and Karchin & Hull (2002) carried out similar tests to Wang 

& Hull’s (1997) optimisation test - also conducting experiments to establish the 

optimal pivot point of a rear suspension system.  Needle & Hull’s (1997) results 

however, found the optimal pivot point to be 8.4 cm above the bottom bracket 

and Karchin & Hull (2002) found it to be 9.77 cm above the bottom bracket.  A 

possible reason for the differing optimal pivot point values obtained may be due 

to the different modes of testing that each research undertook: Needle & Hull 

(1997) and Karchin & Hull (2002) carried out mechanical tests and Wang & Hull 

(1997) used computer simulations.  

 

Once the optimal pivot point was found by Wang & Hull (1997), the effect of the 

subject’s pedalling mechanics on the eleven centimetre optimal pivot point was 

investigated.  Through testing four subjects it was found that the optimal pivot 

point varied for each rider by a value of up to 2 cm, suggesting that the optimal 

pivot point is dependent on the rider.  The decision to use four subjects to 

investigate this highlights the value of using more than one subject for testing in 

order to gain an average result.  Additionally, Wang & Hull (1997) found that the 

optimal pivot point location changed by a small amount of up to 1 cm when the 

stiffness of the spring was altered.  Altering the damping parameters however, 

did not have any effect on the optimal pivot point location.  Although the optimal 

pivot location is rider and spring rate dependent, these dependencies are weak.  

As a result, a bicycle suspension system optimised for a particular cyclist and 

spring rate will be nearly optimal for a wide variety of cyclists and spring rates 

(Wang & Hull, 1997).     

 

One parameter that does have a significant effect on the optimal pivot point 

location is the effect of the gear combination (chain line).  The optimal pivot point 

location depends upon the gear combination used and was shown by Wang & 
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Hull (1997) to range from 7 cm to 16 cm.  Thus, it is not possible to achieve 

optimal performance for all gear combinations using a single swing arm rear 

suspension design.  This may not be ideal as competitive cyclists often use a 

range of different gear combinations to optimise riding performance.  Good & 

McPhee’s (1999) research investigated these chain-suspension interactions, yet 

in contrast to Wang & Hull’s (1997) and Wilczynski & Hull’s (1994) simulation 

studies, Good & McPhee (1999) chose to create a simplified simulation model 

combining the rider, frame and crank into one single rigid body where the 

interaction loads between the bike and rider were not taken into account.  By 

including the body of the rider in the system model, the need to include rider-bike 

interface load is eliminated (González et al., 2008).  Good & McPhee’s (1999) 

research focused specifically on the chain-suspension pedalling interactions - 

Wang & Hull (1997) highlighted this as one of the undesirable characteristics of a 

rear suspension.  The chain-suspension pedalling interactions occur when the 

pedalling of the rider causes unwanted motion (compression or extension) of the 

rear suspension (Good & McPhee, 1999).   

 

Good & McPhee’s (1999) simulation used a four body dynamic model of a 

bicycle with a single swing arm rear suspension design.  The geometry and mass 

properties of the bike were the same as those used by Wang & Hull (1996).  No 

front suspension was included in the model as previous studies by Wang & Hull 

(1994 & 1996) demonstrated that no displacement occurred in the front 

suspension when cycling uphill on a smooth surface.  The four bodies of the 

simulation consisted of the front wheel; rear wheel; rear triangle; and a final body 

consisting of the main frame and the fork of the bike and rider.  The dynamics 

programme used for the simulations was developed by Good & McPhee (1999) 

and simulated a seated rider cycling up a smooth surface with a six degree grade 

at a velocity of 7.2 m/s.  The input data used to simulate the pedalling of the rider 

was modelled by a simple harmonic function taken from Wang & Hull (1996).  

Although Good and McPhee’s (1999) simulation study is an important 

contribution to the study of seated cyclists riding suspended bikes, it does not 
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consider the rider’s movement on the bike.  According to González et al. (2008), 

the motion of the rider’s body on a bike is one of the main causes of the bobbing 

effect experienced by riders.   

 

In order to increase validity, the results of Good & McPhee’s (1999) simulation 

study were compared to the simulation results from Wang & Hull’s (1996) 

dynamic model.  Both Good & McPhee’s (1999) and Wang & Hull’s (1996) 

displacement results for the rear suspension system were similar - only Good & 

McPhee’s (1999) model gave a displacement of 1 mm less than that of Wang & 

Hull’s (1996).  The similar displacement results indicate that the interaction loads 

between the bike and rider do not affect results as Good & McPhee (1999) did 

not take these into account during testing.  These interaction loads are 

considered highly rider dependent, complex and numerous, and have to be 

determined experimentally for each rider, terrain and grade scenario prior to 

running the simulation.  If Good & McPhee’s (1999) results are accurate and the 

interaction loads do not account for any differences in results, then excluding this 

cumbersome process from simulation testing can be justified.  Good & McPhee 

(1999) advocate this, stating that the use of a computer simulation can be used 

to investigate the effects of different bike designs on the response of the rider, 

without the expense of building and testing a prototype for each design.    

 

Good & McPhee’s (1999) simulation study is beneficial as it can (as with Wang & 

Hull’s (1997) study) be used as a design tool to optimise mountain bike design.  

Good & McPhee’s (2000) study used the previously designed simulation model 

to optimise the rear suspension design to minimise chain-suspension interactions 

felt by the rider.  In contrast to Needle & Hull (1997) and Wang & Hull (1997), 

whose tests attempted to minimise the energy lost through the spring-damper in 

the rear suspension system, Good & McPhee (2000) adopted a different 

approach by choosing to minimise the pitching motion of the rider and bike 

frame.  Good & McPhee (2000) stipulate that reducing the pitching motion 

consequently reduces the movement of the bike frame and rider.   
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Good & McPhee’s (2000) research used the same model as that of Good & 

McPhee’s (1999) previously designed simulation model.  The study sought to 

locate the optimal pivot point (that which gives the minimum pitching motion) of 

the simulation model through the use of a genetic algorithm.  The resulting 

optimal pivot point was found to be at a point located 11.6 cm above the bottom 

bracket and 2.7 cm behind the seat tube.  The findings for the optimal pivot point 

value coincide with the optimal pivot point value found by Wang & Hull (1997), 

who recorded a value of between 10.5 -12.5 cm above the bottom bracket.   

 

Wang & Hull (1994 & 1996) and Good & McPhee (1999) both used simulations to 

investigate the energy dissipated through a rear suspension design, 

subsequently using the models to investigate the optimisation of a single swing 

arm rear suspension design.  Similarly, González et al. (2008) investigated the 

effect of a rider’s body movement on energy dissipation in order to optimise the 

design of a rear suspension, yet a key difference was González et al’s (2008) 

decision to investigate this using a four-bar linkage rear suspension design.   

 

González et al. (2008) used Matlab computer software to develop a simulation 

model similar to that of Wang & Hull (1996) and Good & McPhee (1999); that of a 

seated rider cycling up a smooth surface with a six percent grade at a velocity of 

6.5 m/s.  However, in contrast to Good & McPhee’s (1999) model, González et al. 

(2008) produced a simulation model where the exact direction of the chain 

tension was evaluated during the simulation and where only the upper part of the 

body was fixed to the frame, thus allowing leg motion.  The decision to 

incorporate the cyclist’s legs and pedalling movement into the simulation model 

is a truer representation of riding conditions as this produces similar inertia 

effects to cycling outside.  Karchin & Hull (2002) support this view, stipulating that 

the inertial loading due to the pedalling action of the rider’s legs would cause 

suspension motion.    
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As a means of validating the model, González et al. (2008) initially ran the 

simulation, neglecting the effect of the rider’s body movement and measuring the 

rear suspension displacement as a function of the crank angle.  The obtained 

results were then compared to those of Wang & Hull (1996) and Good & McPhee 

(1999) and showed that, compared to the experimental results found by Wang & 

Hull (1996), a difference of only 1%  was recorded for González et al’s (2008) 

mean displacement results.  A difference of thirty-seven percent was however, 

recorded for the amplitude of the displacement between Wang & Hull’s (1996) 

experimental tests and González et al’s (2008) simulation test.  This difference of 

thirty-seven percent is significantly large, and surprising, as González et al’s 

(2008) model used the same input parameters as those from Wang & Hull’s 

(1996) and Good & McPhee’s (1999) simulations, whose results for displacement 

amplitude showed a difference of nine percent and ten percent respectively 

which was comparable to Wang & Hull’s (1996) experimental results.  A probable 

reason for the significant difference in displacement results compared to Wang & 

Hull (1996) and Good & McPhee (1999), may be due to González et al’s (2008) 

use of a four-bar linkage rear suspension design for testing rather than a single 

swing arm design.  Yet interestingly, González et al. (2008) highlight that the 

single swing arm rear suspension design has been superseded by modern 

designs such as the four-bar linkage and is one of the most used rear 

suspension designs in off-road cycling.   

 

González et al. (2008) ran the simulation with the cyclist’s legs in a fixed position 

and compared this to the simulation where the cyclist’s legs were in motion.   

The results showed that the mean displacement increased when the cyclist’s leg 

movements were incorporated into the simulation.  The amplitude of the 

displacement however, decreased, and consequently the power dissipated in the 

rear suspension was reduced.  The results from the study also found that the 

gradient of a slope does not affect energy use.  González et al. (2008) stipulate 

that this finding goes against common belief - a remark validated by Good & 

McPhee’s (1999) assertion that cycling uphill increases the effect of bobbing.   
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Furthermore, González et al’s (2008) study found that lower cadence and higher 

crank torque result in more power being dissipated through the rear suspension.  

Wang & Hull (1996) stipulate that the power loss due to bobbing is 1.3 % of the 

total rider input for a rear suspension system, indicating that a rider’s input power 

is directly proportional to the power dissipated by the rear suspension system.  In 

this respect, González et al’s (2008) finding, that higher crank torque results in 

higher power dissipation at the rear suspension, is unsurprising, as is the finding 

that lower cadence attributes to more power being dissipated through the rear 

suspension since a higher cadence results in a more even pedal stroke.   

González et al. (2008) used the simulation model to establish whether the 

moving legs of a rider, compared to a model where the rider is a rigid body, would 

impact on the results obtained for the amount of power dissipated in the rear 

suspension.  It was found that the inclusion of a rider’s body motion during 

testing had produced a twenty percent reduction in power.  This indicates that the 

inclusion of a rider’s body movement is an important aspect to consider when 

designing a mountain bike simulation.   

 

González et al. (2008) subsequently used the simulation model to optimise the 

rear suspension geometry.  The results showed that the power dissipation could 

be reduced from 8 W to 0.8 W through optimising the rear geometry of the four-

bar linkage rear suspension.  Wang & Hull’s (1997) optimisation test concluded 

that the rider induced power loss could be reduced to 1.2 W through use of the 

optimal pivot point.  This is 0.4 W higher than González et al’s (2008) result, 

which indicates that the four-bar linkage system, according to these tests results, 

has the capability to reduce the power dissipated in the rear suspension system 

to a greater degree than a single swing arm design.   

 

Similar to González et al’s (2008) research, Bu et al. (2009) also designed a 

simulation model to replicate a mountain bike with a four-bar linkage rear 

suspension design which was subsequently used to optimise the rear suspension 
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geometry.  The aim of Bu et al’s (2009) study was to reduce the vibration effects 

transmitted to the rider due to terrain irregularities.  This is a different approach to 

the one adopted by González et al. (2008); Good & McPhee (1999); Wang & Hull 

(1994 & 1996) and Wilczynski & Hull (1994), all of whom investigated the rider 

induced affects on the energy dissipated via the rear suspension system.   

 

Bu et al. (2009) created a dynamic model using ADAMS; a model similar to the 

previously designed simulation models of González et al. (2008); Good & 

McPhee (1999); Wang & Hull (1994 & 1996); and Wilczynski & Hull (1994).  The 

simulation bike was represented by a mechanical system of ten rigid bodies 

linked together with rotational and linear joints, springs and dampers.  One of the 

most significant differences between Bu et al’s (2009) study, and the previously 

designed simulations, was the decision to use a complex rider model for the 

simulation.  This was created using LifeMOD (a plug-in module to ADAMS) - a 

simulation model created to emulate human motion.  The rider was modelled on 

a twenty-six year old, 1.75 m tall male, weighing 65 kg.   

 

Bu et al. (2009) created a two-dimensional simulation model to cycle over of a 

sine-wave road surface with 25 mm amplitude and 500 mm wavelength.  The 

model was constrained in such a way that the tyres (created from a spring and 

damper configuration) were unable to leave the ground and only the front wheel 

was able to move in both the horizontal and vertical direction (the rear wheel was 

allowed only to move in the vertical direction).  The acceleration at the handlebar, 

saddle and rear axis was measured and the root-mean-square (RMS) 

accelerations calculated.   

 

As with Wang & Hull’s (1994 &1996) simulation, Bu et al’s (2009) dynamic 

simulation model was also validated through experimental tests.  One subject, 

whose weight and height were equivalent to the simulation cyclist, rode at a 

constant velocity on a concrete surface with the same sine-wave amplitude and 

wavelength as that of the simulation model.  Vibration measurements were 
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recorded using acceleration transducers mounted on the handlebars, saddle and 

the rear axis and the RMS accelerations were again calculated.  On comparing 

the simulation and experimental results it was found that the handlebar and rear 

axis RMS accelerations gave similar values for both the mechanical and 

simulation tests.  Conversely, there was a significant difference (57 %) in the 

values obtained for the saddle RMS acceleration during the simulation and 

experimental tests.  Bu et al. (2009) cite possible reasons for this difference in 

RMS acceleration values as being attributed to the simulation model being two-

dimensional; the tyres being constrained to the ground; tyre rebound not being 

included in the design; and the main frame of the mountain bike consisting of one 

rigid body.  All - with the exception of the model being two-dimensional - of Bu et 

al’s (2009) suggested reasons could be overcome through adapting and altering 

the simulation model.  An actual tyre model (not simply a spring/damper 

configuration) could be created, whose design would allow the tyres to leave the 

ground, and the main frame of the bike could be split into numerous bodies.  

These adaptations to the simulation design would present a truer representation 

of cycling conditions.  The initial reason cited by Bu et al. (2009) regarding the 

simulation model being represented in a two-dimensional form, is more difficult to 

alter.  Three-dimensional simulations are much more complex to simulate, 

attributed to the actuality that bikes are stabilised by a gyroscopic action and 

require constant rider input to maintain stability (Sharma et al., 2005).   

 

Bu et al. (2009) - as with González et al. (2008); Good & McPhee (2000) and 

Wang & Hull (1997) - used the created simulation model as a design optimisation 

tool.  The simulation was optimised for improved vibrational comfort through 

reducing the RMS accelerations at the pelvis and feet of the cyclist.  Bu et al. 

(2009) combined the RMS pelvis and feet accelerations and used a system of 

trial and error to reduce the overall RMS value (pelvis and feet values combined).  

The obtained RMS value was subsequently compared to the results of a second 

order (stepwise regression) mathematical model, with both sets of results 
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differing only by a small degree, thus verifying that the vibrational comfort and 

design variables is accurately described by the mathematical model.  
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3. Questionnaire  

 

3.1. Questionnaire Design  

 

The questionnaire used in the current study was designed to establish which type 

of bike cyclists chose to ride and how this in turn affects riding style.  

Furthermore, it was designed to gain an insight into rider opinions on the different 

types of suspension systems available.  Oppenheim (1992) defines some 

advantages of the questionnaire to include: low cost of data collection; low cost 

of processing; and ability to reach respondents who are widely dispersed.  

Consequently, a questionnaire was considered the best method of collecting data 

in the current study as respondents came from throughout the United Kingdom.   

 

The principles used in designing the current questionnaire were both quantitative 

and qualitative.  Quantitative designs can be either experimental or descriptive.  

Hopkins (2002) states that in a descriptive study, no attempt is made to change 

behaviour or conditions – things are measured as they are.  This is true of the 

current study as only the findings which are derived from the questionnaire will 

be reported on.  In light of this, it was decided that a descriptive study would be 

used for the initial part of the questionnaire as it would be the most appropriate 

method to obtain the relevant information.  However, it was decided that a 

qualitative approach would also be adopted for the more subjective information 

obtained from the open question on riding style.  As advocated by Munroe-

Chandler (2005) there can be tremendous value in combining qualitative and 

quantitative data gathering techniques (i.e., mixed methods). Such was the case 

in Gould et al’s (2002) study with Olympic athletes, which gained valuable 

information by combining focus groups, surveys and telephone interviews.     
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3.2. Sample 

 

The target population for the survey was both downhill and cross-country 

mountain bikers ranging from amateur level to the top competitors in the UCI 

World Championships.  More than one location was chosen in order to ensure a 

more representative sample.  Samples were chosen from mountain bikers at 

local amateur races in Scotland; professional racers at the 2005 World Cup 

Race; and from amateur and semi-professionals cyclists from various mountain 

biking clubs across the United Kingdom.    

 

The sample size was considered and three hundred mountain bikers were 

selected.  This sample size was chosen as it was felt that a larger sample size 

would be more representative of the population.  This is supported by 

Oppenheim (1992) who stipulates that small samples in quantitative research are 

unlikely to yield results of significance.   

 

3.3. Pilot testing the Questionnaire 

 

The importance of pilot testing the questionnaire cannot be underestimated 

(Oppenheim, 1992).  Henderson et al. (1987) explain that pilot testing involves an 

organised review of the content of the questionnaire to ensure that it includes 

everything it should and does not include any irrelevant information.  In view of 

this, the current questionnaire was piloted by ten amateur mountain bikers who 

would not be included in the sample.  The feedback and results were beneficial 

as it highlighted the strengths and weaknesses of the questionnaire.  All of the 

questions were interpreted by the respondents as intended.    

 

In the initial draft of the questionnaire, one question asked: Do you use front 

suspension? Yes/No.  All the piloting respondents answered yes to this question 

therefore, it was decided that the question should be altered to specify the exact 
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type of bike used: hardtail or fully suspended (question 7).  The exact type of 

suspension used by respondents was considered an important factor, therefore, 

an alternative question was included in the questionnaire: Question Nine: Which 

make of front suspension do you use?  In the unlikely result that a rider did not 

use a front suspension system, this question could be left blank.   

 

3.4. Data Analysis  

 

The collection of data is a crucial part of the research process and how that data 

is analysed is equally important.  The closed questions were factual and were 

number coded and analysed in the form of descriptive statistics.  The graphs 

were produced on Excel to provide visual evidence of the results.   

 

The open-ended questions were analysed using a qualitative approach which 

required a more lengthy process of analysis once all the data was collected.  All 

of the responses were analysed and colour-coding was used to identify prevalent 

themes which emerged from the data.  These main themes will be identified and 

discussed in the results and discussion section of the chapter.   

 

3.5. Response Rate  

 

The overall response rate for the questionnaire was high:  260 out of 300.  

Mountain bikers at local amateur racing events in Scotland accounted for the 

largest proportion of the questionnaires answered.  The overall response rate of 

86.7% was considered high enough to eliminate serious response bias.  The 

majority of respondents were cross-country cyclists, although some downhill 

cyclists did participate in the survey.  Out of the 183 respondents from race 

events, many expanded verbally on their answers, significantly helping to decide 

which direction the project should take.  
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3.6. Quantitative Results 

 

The quantitative results related to the closed questions will firstly be analysed 

and the themes from the qualitative results will subsequently be identified; both 

will then be discussed.   

 

A total of 260 respondents replied to the questionnaire out of a possible 300.  150 

questionnaires were distributed to both downhill and cross-country mountain 

bikers at local amateur and semi-professional races in Scotland: 141 were 

returned, giving a response rate of ninety-four percent.  Fifty questionnaires were 

distributed to professional racers at the 2005 World Cup Race: forty-two were 

returned, giving a response rate of eighty-four percent.  Finally, 100 

questionnaires were distributed to cyclists from amateur and semi-professional 

mountain biking clubs across the United Kingdom: seventy-seven were returned, 

giving a response rate of seventy-seven percent.   

 

Figure 3-1: Sex (Question 1)   Figure 3-2: Age (Question 2) 

 

The sample represented both male and female cyclists of a variety of ages. 

Males accounted for the majority of respondents with eighty-three percent (216) 

answering the questionnaire, compared to only seventeen percent (44) of 
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females (Figure 3-1).  Figure 3-2 illustrates that the majority of respondents - 

forty percent (104) - were aged between sixteen and twenty-five; thirty-seven 

percent (96) were aged between twenty-six and thirty; and twenty-three percent 

(60) were over thirty years old. 

 

Figure 3-3: How long have you been cycling? (Question 3) 

 

Question three was designed to ascertain the length of time the respondents 

have been cycling as highlighted by the graph in figure 3-3 the sample 

represented cyclists with a range of experience and length of time cycling, but 

was weighed toward the more experienced cyclist with thirty-six percent (94) of 

respondents having more than ten years cycling experience; thirty-four percent 

(89) five to ten years; twenty-seven percent (70) one to five years; and only three 

percent (7) with less than one year’s experience.   
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Figure 3-4: How often do you cycle per week? (Question 4) 

 

Question four was designed to establish how often the riders cycled per week: 

once or twice a week; three to five times; five to seven times; or more than seven 

times per week.  Figure 3-4 illustrates that five percent (13) of respondents cycle 

once or twice a week; thirty percent (77) cycle three to five times; forty-one 

percent (108) five to seven times; and twenty-four (62) cycle more than seven 

times per week.   

 

Figure 3-5: Do you take part in cycling races? (Question 5) 

 

As illustrated in Figure 3-5, it was found that the vast majority of respondents, 

eighty-three percent (215), took part in cycling races, with only seventeen 

percent (45) of respondents answering ‘no’ to this question.  
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Figure 3-6:  At which level do you race? (Question 6) 

 

The cyclists who answered ‘yes’ to question five raced at a range of levels: eight 

percent (21) were amateur cyclists; twenty-nine percent (75) recreational cyclists; 

thirty-nine percent (102) competitive cyclists; and twenty-four percent (62) 

professional cyclists (Figure 3-6).     

 

Figure 3-7:  Which type of bike do you ride? (Question 7) 

 

Question seven (Figure 3-7) asked respondents to choose which bike they rode: 

a hardtail or fully suspended mountain bike.  A rigid frame bike was not given as 

an option for this question as the pilot-testing of the questionnaire showed that no 

cyclists used this type of bike.  Respondents did have the option to leave this 

question unanswered if they did not use any form of suspension; this was, 

however, not the case as all respondents rode a bike with either front, or front 
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and rear suspension.  It was found that out of those asked the majority, sixty-

three percent (165), rode hardtail bikes, and only thirty-seven percent (95) rode 

fully suspended bikes.   

 

Figure 3-8: Which make of bike do you ride most often? (Question 8) 

     

Figure 3-8 displays the following findings: twenty percent (52) of respondents 

rode Specialized bikes; twenty-three percent (59) cycled on a Cannondale; three 

percent (6) rode on an Orange; two percent (5) indicated that they rode on a 

Santacruze; seventeen percent (44) rode Giant mountain bikes; fifteen percent 

(37) cycled on a Scott mountain bike; two percent (4) rode a Marin; three percent 

(8) on a Gary Fisher; two percent (5) cycled on a GT; six percent on a Trek (16); 

and eight percent (19) of respondents stipulated that they rode a different make 

of bike from the ones available to choose from.                                               
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Figure 3-9: Which make of front suspension you use? (Question 9) 

 

Figure 3-10: Which make of rear suspension do you use? (Question 10) 

 

Questions nine and ten sought to establish the model of front and rear 

suspension systems that the cyclists use.  When considering the front 

suspension, the majority of cyclists, forty-six percent (119), used a Rock Shocks 

front suspension system; nine percent (24) used a Fox front suspension system; 

seven percent (18) used a Marzocchi system; thirty-four percent (87) used a 

Manitou system; and five percent (12) used a different type of front suspension 

system.  The results obtained from question ten were lower as only ninety-five 

out of the 260 cyclists rode fully suspended bikes.  The majority, thirty-three 

percent (31), of those cyclists who rode fully suspended bikes used the Single 

Pivot rear suspension design; thirty-two percent (30) used a Four Bar Linkage 

design; sixteen percent (15) a Horst Link design; fourteen percent (13) an Active 
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Breaking Pivot; three percent (3) a Virtual Pivot Point rear suspension design; 

and the number of cyclists who rode a bike with an alternative type of rear 

suspension design made up three percent (3) of the total figure.                      

 

Figure 3-11: How much travel do you allow your front suspension? (Question 11) 

 

Figure 3-12: How much travel do you allow your rear suspension? (Question 12) 

 

All respondents answered question eleven relating to the amount of travel that 

the front suspension allows; the results of which are illustrated in Figure 3-11.  

Twenty-two percent (57) of respondents allow zero to three inches of travel on 

their front suspension; forty-seven percent (123) allow three to four inches; 

nineteen percent (48) four to five inches; and twelve percent (32) allow over five 

inches of travel on their front suspension.  As only ninety-five out of the 260 

respondents rode fully suspended bikes, this same number answered question 

twelve, as displayed in Figure 3-12.  The majority of the ninety-five respondents, 

fifty-eight percent (55), responded that they allow three to four inches of travel on 
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the rear suspension system; twenty-four percent (23) stipulated that they allow 

zero to three inches of travel; sixteen percent (15) of respondents allow four to 

five inches of travel; and only three percent (2) stated that they allow a rear 

suspension travel of over five inches.   

 

 

Figure 3-13: Which rear suspension system do you feel is most effective? 

(Question 13) 

 

The sample indicates - as shown in Figure 3-13 - that out of the 260 cyclists, 

forty-seven percent (122) believed that the Four Bar Linkage system was the 

most effective rear suspension system; twenty-five percent (66) stated that the 

Horst Link rear suspension system was the most effective; fourteen percent (37) 

felt that the Virtual Pivot Point rear suspension system was the most effective, 

eight percent (21) believed the Single Pivot system to be most efficient; and the 

Active Breaking Pivot system accounted for four percent (10) of the total number 

of respondents.  Only two percent (4) of respondents answered that a different 

type of rear suspension system was the most effective.     
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Figure 3-14: When riding a full suspension bike do you feel a bobbing effect 

when riding uphill? (Question 14) 

 

Question fourteen was designed to establish if cyclists felt a bobbing effect when 

riding uphill: only twenty-four percent (197) of respondents answered ‘no’ to this 

question, with the majority, seventy-six percent (63), stipulating that they did feel 

a bobbing effect when cycling uphill.     

 

Figure 3-15: When you are riding uphill do you prefer to stand and jam or stay 

seated and spin? (Question 15) 

 

Question fifteen sought to establish the cyclists’ riding style when cycling uphill. 

The findings from this question (Figure 3-15) highlight that the majority of 

respondents - eighty-four percent (218) - prefer to remain seated and spin the 
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crank when cycling uphill, while only sixteen percent (42) of respondents prefer 

to stand and use an uneven pedal stroke.  

 

Figure 3-16: Do you use a different technique when riding a full suspension bike 

compared to a hardtail bike? (Question 16) 

 

Figure 3-16 illustrates that the majority of cyclists - sixty-eight percent (178) - use 

a different technique when riding on a fully suspended bike compared to a 

hardtail bike, while thirty-two percent (82) of respondents indicated that they do 

not alter their riding technique when cycling on a fully suspended bike.     

 

3.7. Qualitative Results 

 

Question seventeen will be analysed in a qualitative way; the main responses 

which emerged from the analysis are outlined below.  Many of the respondents 

answered the two parts to question seventeen with similar responses, only using 

different phrases and terms.  Through the use of colour-coding analysis of the 

answers, the prevalent themes were established and are outlined.  When 

specifically referring to a fully suspended or hardtail bike, this is also indicated.   
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Question Seventeen (a) Please briefly describe your riding technique and body 

positioning whilst riding your bike uphill (i.e. do you remain seated; which way do 

you shift your weight etc).  Responses from cyclists were: 

 

Answers Specifically Relating to Full Suspension Bikes: 

• Minimise upper body movement      

• Try to keep a more even pedal stroke     

• Less shifting of weight       

• More traction with the ground  

 

Answers Specifically Relating to Hardtail Bikes:    

• Ride out of saddle         

• Use upper body to apply more force to the pedals   

• Shift body weight from side to side     

• Pedal as hard as you can without having to concentrate on an even pedal 

stroke  

• Pull up on handlebars using upper body  

 

Answers Relating to Both Full Suspension & Hardtail Bikes:  

• Stay seated rather than stand  

• Constant speed maintained  

• High cadence  

• Lean slightly forward on the bike towards the handlebars and start the 

climb in a low gear  

• Drive tyres into the ground  

• Accelerate on approach to the hill  

• Bend elbows  

• Spread weight over bike  

• Maintain traction at the rear wheel  

• Relax body  
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Question Seventeen (b) Please briefly describe your riding technique and body 

positioning whilst riding your bike downhill (i.e. do you remain seated; which way 

do you shift your weight etc.).  Responses from cyclists were: 

 
Answers Specifically Relating to Full Suspension Bikes: 

• More direct route over obstacles  

• Faster over rough terrain  

 

Answers Specifically Relating to Hardtail Bikes: 

• Allow body to absorb the bumps  

• Choose the path with fewer bumps  

 

Answers Relating to Both Full Suspension & Hardtail Bikes:  

• Pre-select correct gear  

• Look well ahead  

• Lower centre of gravity  

• Get off the saddle and move to the rear of the bike  

• Keep body loose 

• Weight fully centred on pedals  

• Keep pedals level  

• Always use rear break  

• Push handlebars away from body  

• Extend arms  
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3.8. Discussion  

 

The first two questions of the questionnaire sought to establish the demography 

of respondents, with the following questions three to six seeking to ascertain the 

cycling experience of those respondents.  Of those cyclists who responded to the 

questionnaire, eighty-three percent were male mountain bikers.  Similarly, 

Harmon (2006) distributed 882 questionnaires, which sought to discover the 

demography of the UK mountain bike community, and found that female 

participation amounted for only seven percent of respondents.  The majority of 

respondents of the current questionnaire were aged between sixteen and twenty-

five years old (40%); however, there was only a slight three percent difference 

between this age group and that of the twenty-six to thirty year old age group.  

The analysis of the questionnaire responses also found that thirty-six percent of 

the cyclists had more than ten years experience, yet once again the difference in 

numbers between those who had been cycling for between five and ten years 

was a marginal two percent.  These findings are all somewhat unsurprising as 

the majority of amateur and semi-professional mountain-biking athletes are 

young males in their twenties who have been involved in cycling from a young 

age and whose fitness levels are at their peak.   

 

The questionnaire findings support those of Impellizzeri et al. (2005) who 

undertook a study with fifteen male off-road cyclists with a mean age of 25.5 

years and found that their off-road cycling experience amounted to an average 

9.9 years.  Similarly, Harmon’s (2006) study of the demographic information of 

the UK mountain bike community, found that the mean age of participants in 

competitive mountain bike events was twenty-six years old.   

 

Forty-one percent of the mountain bikers who completed the questionnaire 

cycled between five and seven times per week, again a finding that is not wholly 

surprising as the majority (39%) of respondents were competitive cyclists who 

took part in cycling races.  Impellizzeri et al. (2002) maintain that off-road cyclists 
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usually compete at least once a week for nine months of the year.  In order to 

maintain the peak fitness levels needed for competitive races it would therefore 

be necessary for competitors to undertake regular training sessions.   

 

Sixty-three percent of respondents rode hardtail bikes, compared to only thirty-

seven percent of respondents who rode fully suspended bikes; a finding that 

supports Nielens & Lejeune’s (2004) statement that most cross-country racers 

still prefer to use hardtail bikes over fully suspended bikes.  The response to 

question seven is interesting as, although suspensions have been greatly 

improved to become lighter, more efficient, reliable and affordable for many riders 

(Nielens & Lejeune, 2001), many cyclists still prefer a hardtail design over that of 

a full suspension system.    

 

The model of bike which respondents highlighted as riding most often are bike 

types that are mass produced - namely Specialized, Cannondale, Giant and 

Scott.  Another factor to consider when evaluating the responses to question 

eight is that often professional cyclists, who in this case make up twenty-four 

percent of the total number of respondents, are sponsored by bike companies 

and are advised on which bike to ride.     

 

As front suspensions have become standard equipment on mountain bikes 

(Leventon, 1993) all respondents answered question nine; as expected, not one 

of the cyclists rode a rigid frame bike.  The Rock Shox and Manitou front 

suspension systems accounted for the highest number of responses, with forty-

six and thirty-four percent of respondents using these systems respectively.  This 

result is perhaps unsurprising when considered alongside Fordham et al’s (2004) 

study which proved that Rock Shox and Monitou supply seventy-four percent of 

all bike models with front suspension.   

 

As only ninety-five out of the 260 respondents rode a bike with a full suspension 

system, only this number of mountain bikers answered question ten.  The results 
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showed that the majority (32%) of respondents used a rear suspension system 

with a Four Bar Linkage Design, with a marginal difference of only 1% for the 

Single Pivot design.  This finding supports the view of Gonzalez et al. (2008) who 

stipulate that the Four Bar Linkage rear suspension system is one of the most 

widely used rear suspension designs in racing off-road bikes.   

 

The majority of respondents allow three to four inches travel on both their front 

and rear suspension systems: forty-seven percent of the 260 cyclists allow this 

amount for the front suspension, and fifty-eight of the ninety-five cyclists allow 

this amount for the rear suspension.  This finding coincides with results found in 

Lopes & McCormack’s (2005) research which illustrated that when cycling on a 

cross-country race, a travel of three to four inches should be allowed on the front 

suspension whether riding on a fully suspended or hardtail bike.  Respondents of 

the questionnaire who gave an answer of greater than five inches of travel were 

downhill mountain bikers.   

 

The Four Bar Linkage (47 %) and the Horst Link (25 %) are the two rear 

suspension system designs that are perceived by respondents to be the most 

effective type available.  This is an expected result as these systems are 

perceived to be more efficient than other types of rear suspension design.  

Gonzalez et al. (2008) expressed that the Single Pivot suspension design has 

been superseded by modern designs such as the Four Bar Linkage.  The Four 

Bar Linkage rear suspension design also accounts for one type of design used 

most often by the respondents; therefore it is logical that this is also the preferred 

choice of rear suspension design.   

 

When asked whether cyclists felt a ‘bobbing’ effect when cycling uphill on a full 

suspension bike (Question 14), seventy-six percent answered ‘yes’ compared to 

only twenty-four percent who responded that they did not experience any 

bobbing when cycling uphill.  This outcome was expected as fully suspended 

mountain bikes are not broadly accepted by off-road racers and it is thought that 
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they dissipate the cyclist’s energy through small oscillatory movements of the 

rear suspension, namely ‘bobbing’ (Gonzalez et al. (2008).  However, Nielens & 

Lejeune (2004) suggest that cyclists’ generated power that is dissipated by 

suspensions, ‘bobbing’, is minimal and probably negligible on most terrains.  

Those cyclists who responded that they felt no bobbing effect when cycling uphill 

on a fully suspended bike may have cycled on one of the rear suspension 

systems which are thought to lessen the ‘bobbing’ effect.   

 

Eighty-four percent of mountain bikers responded that, when cycling uphill, they 

preferred to remain seated and pedal at a constant rate; another expected result 

as Ryschon & Stray-Gundersen (1991) maintain that seated cycling is 

metabolically more efficient than standing cycling.  Nielens & Lejeune (2000) also 

support this, stating that riders rarely stand on their pedals because of the loss of 

traction of the rear wheel in that position.   

 

As the majority of respondents answered that they felt a ‘bobbing’ effect whilst 

cycling on a fully suspended bike, it is not surprising that sixty-eight percent 

maintain that they adopt a different riding style whilst cycling on a fully 

suspended bike.  Since it is believed that a fully suspended bike is able to travel 

a smoother path, as only the wheels follow the contours of the terrain, improving 

control and traction (Nielens & Lejeune, 2004), it would be reasonable to assume 

that a cyclist would adopt a differing riding style to benefit from these 

advantages.     

 

The qualitative results for the open-ended question (Question 17) gave 

respondents the freedom to convey, in their own words, their own riding 

technique whilst cycling uphill and downhill.  The responses obtained from 

cyclists using both fully suspended and hardtail bikes were primarily similar for 

cycling uphill, with only a small number of differences being identified between 

the two bike types.  One difference to emerge was that cyclists stipulated that 

they attempted to minimize upper body movements whilst cycling on a fully 



114 
 

suspended bike.  This is possibly in order to reduce any ‘bobbing’ effect which 

may occur as a result of the rear suspension system; an effect which is 

detrimental to a cyclist’s performance.  Needle & Hull (1997) maintain that rider 

induced losses are exhibited through a bobbing of the suspension.  Similarly, 

cyclists who rode fully suspended bikes responded that they shifted their weight 

less whilst riding uphill; again a factor which may help to reduce any ‘bobbing’ 

effect which may occur.   

 

Cyclists who rode on fully suspended bikes also stated that they adopted an 

even pedal stroke when cycling uphill.  A limited number of cyclists riding hardtail 

bikes also outlined this as a riding technique which they employed, however it 

was the vast majority of cyclists riding fully suspended bikes who gave this 

response.  Karchin & Hull (2002) give one possible explanation for this, stating 

that a variation in the crank torque causes an increase in the tension in the chain 

which creates a moment which extends the suspension.  An extension of the 

suspension can use up a small amount of the rider’s energy, thus giving one 

explanation as to why cyclists prefer to use an even pedal stroke whilst cycling 

uphill.  Those respondents who rode fully suspended bikes also specified that 

they maintain more traction with the ground when cycling uphill.  Ishii et al. 

(2003) supports these views, stipulating that a rear suspension system may 

assist in keeping the rear tyre in contact with the ground so that loss of velocity is 

minimised while pedalling over rough terrain.   

 

Differences in responses from cyclists riding uphill on hardtail bikes, compared to 

cycling uphill on fully suspended bikes, were that cyclists on hardtail bikes 

stipulated that they prefer to cycle out of the saddle.  Additionally, the cyclists on 

hardtail bikes stated that they use their upper body to apply more force to the 

pedals; a factor which results in a shift of body weight and more force being 

exerted on the pedal.  All of these factors coincide with cycling whilst in the 

standing position and are perhaps surprising responses as literature surrounding 

body positioning and mountain biking suggests that seated cycling is 
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metabolically more efficient than standing cycling (Ryschon & Stray-Gundersen, 

1991).  However, it is important to note that the majority of cyclists who gave 

these responses for uphill cycling on a hardtail mountain bike were amateur 

cyclists and few professional cyclists cycling on hardtail bikes gave these 

responses in regards to their riding techniques.   

 

The majority of responses relating to riding techniques adopted for uphill cycling 

on both fully suspended and hardtail bikes were similar.  The majority of 

respondents stipulated that they accelerated on the approach to a hill and started 

a climb in a low gear, before attempting to maintain a constant speed during the 

ascent.  Both cyclists on hardtail and fully suspended bikes also responded that 

they would lean forward slightly on the bike in order to spread their weight.  This 

is perhaps unsurprising as leaning forward allows more weight to be applied to 

the front wheel of the bike which in turn results in better traction.   

 

The qualitative results relating to riding downhill on both the hardtail and fully 

suspended bikes highlight many similarities in the riding styles adopted.  Only a 

few differences are outlined by respondents; the most notable from cyclists riding 

on a fully suspended bike downhill.  These cyclists maintained that they would 

choose a more direct route down the track and could maintain higher speeds 

over rough terrain.  Literature supports these responses: Anon (1992) stipulates 

that vibrational discomfort associated with riding a bike over rough terrain has 

been known to contribute to rider fatigue.  De Lorenzo and Hull (1999) highlight 

that riding bikes with suspensions isolate the cyclists from such vibrations.  

Nielens & Lejeune’s (2001) research coincides with this, asserting that fully-

suspended, compared to hardtail bikes, allow higher speeds in descents.   

 

Conversely, respondents cycling on hardtail bikes gave specific answers relating 

to their riding technique whilst cycling downhill.  Two distinct differences were that 

they chose to cycle on the route with least resistance and that they allowed their 

body, and not the suspension system, to absorb any bumps.  Coinciding with this 
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Needle & Hull (1997) maintain that the dissipative elements are the arms and 

legs of the rider as well as the shock absorbers.  It is perhaps surprising that only 

a small number of those cyclists riding downhill on fully suspended bikes 

responded that they would choose a path of least resistance.  It could be 

assumed that even whilst riding a fully suspended bike downhill that a path with 

fewer bumps would allow the cyclist to maintain a higher speed.         

 

In analysing responses from cyclists riding downhill on both the hardtail and fully 

suspended bikes, answers were found to be similar from both groups of cyclist: 

all cyclists responded that they lowered their centre of gravity and shifted their 

weight to the rear of the bike when cycling downhill.  Both groups of cyclists also 

cited that they keep their body loose and their weight fully centred on both pedals 

(keeping them level) whilst cycling downhill.  A reason for cyclists of both hardtail 

and fully suspended bikes adopting these riding techniques are that these styles 

allow the cyclist to be better balanced on the bike and allow the weight to be 

placed towards the rear of the bike, thus preventing the rider from falling over the 

handlebars.     
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4. Roller Rig  

 

4.1. Objectives 

 

A focal objective of the experimental tests on the roller rig was to investigate the 

effects on rider performance when cycling on a hardtail bike on a rough surface 

compared to a fully suspended bike on the same rough surface through 

measuring a subject’s physiological and psychological variables.  A number of 

subjects were tested under two cycling conditions - cycling on a fully suspended 

bike with bumps attached to the rig and cycling on a hardtail bike with bumps 

attached to the rig - and the results of the two bikes were compared to 

investigate which bike type was most beneficial to the rider.  The subjects’ VO2, 

heart rate, Rating of Perceived Exertion (RPE) and comfort rating were recorded 

to determine if a difference in a subject’s physiological and psychological 

variables could be identified between cycling on the fully suspended compared to 

the hardtail bike.  A further objective of the experimental tests on the roller rig 

was to investigate rider performance through determining the difference between 

the mechanical variables of the hardtail and fully suspended bike.  This was 

carried out through measuring the acceleration, velocity, displacement and force 

exerted at various points on the mountain bikes and the roller rig.        

 

The roller rig used for the experimental tests had been previously designed by 

Titlestad et al. (2006) so as to isolate the rear wheel impact of a mountain bike in 

order to investigate the effects of rear wheel suspension systems (refer to 

Titlestad et al. (2006) for a full detailed description of the initial roller rig design). 

The roller rig was then adapted for the purpose of the current research.  All of the 

tests were conducted in a controlled laboratory environment so that they could be 

repeated and accurately compared.    
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4.2. Experimental Tests  

 

In order to meet the objectives of the experimental roller rig tests, it was decided 

that the most appropriate form of experimentation would involve a series of three 

tests: a run down test; a familiarisation test; and a comparative test (all three test 

protocols were presented to the ethics committee of Glasgow University and 

permission was granted to carry all three out).  All three tests were sub-maximal 

in order to ensure that the subjects (prior to recording any variables) reached 

steady-state conditions.   

 

When conducting the run down test the subjects were asked to refrain from 

pedalling and to allow the bike to come to rest from a pre-determined velocity.  

The time it took for each bike (hardtail and fully suspended) to come to rest was 

recorded and indicated the decrease in velocity due to the impact with the 

bumps.  The run down test was then carried out on the roller with a smooth 

surface with a friction brake applied (the friction brake was used for the run down 

test only).  The results acquired from the run down test on the roller rig with 

bumps attached were then compared to the results of the run down test when 

cycling on a smooth roller with a friction brake applied.  This was to ascertain if 

equivalent run down times were reached for the four cycling conditions: cycling 

on a fully suspended bike with bumps attached to the rig; cycling on a fully 

suspended bike on a smooth surface; cycling on a hardtail bike with bumps 

attached to the rig; and cycling on a hardtail bike on a smooth surface.  

 

The second test protocol was developed for the roller rig to establish if there was 

a learning and familiarisation effect when riding on the rig in a laboratory 

environment.  If laboratory tests are repeated on several occasions, a subject’s 

physiological responses may be modified by three concurrent processes: 

learning, habituation and training.  Learning can lead to an increase in 

performance; it may be demonstrated as an improvement in efficiency due to the 

repetition of a task.  Habituation is a form of ‘negative conditioning’ which can 
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lead to decreased anxiety in the experimental situation.  Training leads to an 

increase in tolerance to exercise - independent of anxiety level.  Shepard (1969) 

indicates that subjects should be familiarised with the apparatus prior to any test 

in order to minimise these three effects.  Therefore, a test had to be conducted to 

establish if a familiarisation period should be incorporated into the test design.  

Additionally, it was important to establish if a learning or familiarisation effect 

occurred after subsequent tests under laboratory conditions.  For the 

familiarisation test, the same subject was asked to ride the same bike numerous 

times (either the hardtail or the fully suspended) under the same conditions on 

the roller rig with two bumps attached to ascertain if a learning effect could be 

observed.  The analysis of this familiarisation effect is measured by comparing 

the subject’s VO2, heart rate, RPE and comfort rating scales for each of the tests 

then performing statistical analysis on the results to establish if the subject 

improves over subsequent visits.   

 

The comparative test protocol was developed to compare the hardtail and fully 

suspended bike on the roller rig by exploring any correlations between the 

physiological, psychological and mechanical data (such as the power applied to 

the cranks in relation to a subject’s energy expenditure), and to determine which 

bike was most effective under a laboratory controlled environment on a rough 

surface.  The comparative tests were carried out only on the roller rig with bumps 

attached, and not on the roller rig with a smooth surface.  This was decided as 

previous tests on the smooth surface roller rig did not highlight any differences 

between the hardtail and fully suspended bikes (Titlestad et al., 2006).  Similar to 

the familiarisation test, the subjects’ VO2, heart rate, RPE and comfort rating 

were measured during the comparative tests, in addition to eight mechanical 

measurements: the acceleration at the front and rear of the bike; the velocity of 

the crank and roller; the force exerted on the pedals and the front bracket; and 

bump and pedal position.    
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4.3. Methodology 

 

4.3.1. Rig Design 

The roller rig was designed to reduce as many of the variables involved in cycling 

as possible in order to allow for a simplified analysis of how the suspension 

systems perform.  The roller rig holds the bicycle steady at the front axle while 

allowing the rear wheel to drive a heavy roller as illustrated in Figure 4-1.  It was 

decided that tests conducted with the front fork held rigid while the rear wheel 

was driven against a heavy roller would offer advantages of a better simulation of 

the rear wheel dynamics (Titlestad et al., 2006).     

 

 

Figure 4-1: Roller Rig 
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Figure 4-2: Roller Rig with bike 

 

The main components of the roller rig comprise of: the roller; the front axle 

support bracket; the framework of the rig and the standing platform, as illustrated 

in Figures 4-1 and 4-2.  In order to represent a rough outdoor trail, two wooden 

blocks were attached to the roller to replicate two bumps.  The height of each 

bump (70 mm by 30 mm with an equivalent linear spacing of 0.96 m) was 

intended to represent an extreme example of riding on a rough trail which would 

consequently highlight any differences between the two types of suspension 

systems (refer to Titlestad et al. (2006) for a full detailed description of the initial 

roller rig design).    

  

4.3.2. Bicycles 

As the current study was sponsored by John White Bikes, two bikes were 

received on loan for testing; both of which had a similar frame size and geometry.  

The main difference between the two bikes was the design of the main frame: the 

rear triangle of the fully suspended bike (Figure 4-3) had a different design to that 

of the hardtail bike (Figure 4-3) so as to accommodate the rear suspension 
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spring and damper unit.  The fully suspended bike consisted of a single-swing 

rear suspension design.   

Additionally, the fully suspended bike was five kilograms heavier than the hardtail 

bike due to the added support required for the rear suspension.  Both bikes were 

fitted with the same oil damped coil spring front shock absorbers (Manitou 

Magnum R), with pre-load set for an average rider with a weight of between sixty 

and seventy-five kilograms; this preload and damping remained constant 

throughout the tests.  The same rear wheel (Shimano XT hub, Mavric 222 rim 

and Marin Quake 7.1 XC tyre) and tyre pressure (50 psi) were used for all of the 

tests. 

 

4.3.3. Instrumentation and Mechanical Measurements  

A total of eight mechanical measurements were taken during the experimental 

tests: 

 

• Rotational velocity of the crank arms (measured using an optical sensor 

and disc)      

• Rotational velocity of the roller (measured using an optical sensor and 

disc)      

• Force exerted on the pedals (measured through strain gauges) 

• Force exerted on the front axle (measured through strain gauges) 

Figure 4-4: Marin Rocky 

Ridge (hardtail) 

Figure 4-3: Marin Mount 

Vision (fully suspended) 
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• Vertical acceleration at the rear of the bike (measured by an 

accelerometer placed under the saddle) 

• Vertical acceleration at the front of the bike (measured by an 

accelerometer placed above the handlebars)  

• Bump position (measured by using a position indicator switch) 

• Pedal position (measured by using a position indicator switch) 

 

To accurately measure the rotational velocity of the crank and the roller, two 58 

slot discs were designed to pass through optical sensors.  The new disks were 

laser cut from aluminium, thus giving a far more accurate measurement of the 

rotational velocity compared to the original plastic disks used by (Titlestad et al., 

2006) which gave inaccurate results.  The pulse frequency from the optical 

sensor was converted to a voltage with a frequency to voltage converter; the 

velocity was then calculated after the corresponding voltage had been 

established.   

 

The force exerted on the pedals and the front axle of the bike was measured 

through the use of strain gauges.  The gauges were arranged in a full 

Wheatstone bridge configuration to compensate for any change in temperature.  

They were then placed on cantilever beams on the crank arms and the front 

bracket of the bike which enabled the force exerted on the pedals and the front of 

the bike to be ascertained and compared.  The strain gauges were calibrated by 

applying an exact force to the pedals and the front bracket so a relationship 

between the force and the corresponding output voltage could be established.     

 

The vertical acceleration at the front and rear of the bikes was recorded using 

accelerometers placed under the saddle and above the handlebars; from this the 

velocity and displacement could also be determined.  The seat accelerometer 

was fitted to the seat post under the saddle of the bike using a bolt specifically 

designed for this purpose.  The handlebar accelerometer was mounted on the 

top of the steerer tube, also with a bolt specifically designed for this purpose.  
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Pedal position and bump indicator switches were also placed on the roller rig and 

crank so that the position of the pedal and bumps could be determined 

throughout testing.  These switches produced a small voltage when the switch 

passed the sensor.   

 

All of the measurements were recorded via a laptop using an analogue to digital 

converter and recorded using code written in Lab View.  A sampling frequency of 

100 HZ was chosen as this ensured that an accurate representation of the 

results could be produced.  The data was then analysed and converted using 

Matlab code.   

 

4.3.4. Physiological Measurements     

4.3.4.1. Heart Rate 

Heart rate displays a linear relationship between a subject’s workload and O2 

consumption (Astrand & Rodahl, 1986).  Each subject’s heart rate was recorded 

(using a polar heart rate monitor) every 45 s into each minute of every test.  The 

mean value of the last two recordings was taken as the representative value for 

each test.    

 

4.3.4.2. Oxygen Consumption (VO2)   

As each of the tests was sub-maximal, this ensured that ventilation increased 

linearly with oxygen consumption and CO2 production.  Ventilation averages 

between twenty to twenty-five litres of air for each litre of O2 consumed 

(Wasserman, 1994). This change in relationship is measurable by recording the 

volume of CO2 produced to O2 consumed.  This VCO2/VO2 ratio is known as the 

Respiratory Exchange Ratio for volumes exchanged between body and 

atmosphere.   
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Each subject’s VO2 was measured in the fifth, sixth, ninth and tenth minutes of 

each test.  In order to ensure that the tests were as repeatable as possible, the 

Douglas bag technique was used.  This involved collecting one-minute samples 

of air and analysing the collected air immediately after each test as shown in 

Figure 4-5.   

 

 

 

 

 

 

 

 

 

 

 

A mouthpiece and a nose clip were chosen over a facemask, as this would 

ensure all the air from the subject was collected.  The expired air was analysed 

using a Servomex 570A O2 analyser (Servomex, Crowborough, UK) and a PK 

Morgan TD 801A CO2 analyser (Morgan, Rainham, UK).  Both analysers were 

calibrated before testing with gases of known concentrations.  Gas volumes were 

measured using a Parkinson Cowan (Cranlea, Birmingham, UK) meter calibrated 

against a Tissot spirometer (Collins, Massachusetts, USA).   

 

4.3.5. Psychology Measurements     

4.3.5.1. Rating of Perceived Exertion (RPE) 

The Rating of Perceived Exertion scale (RPE) was first introduced in 1970 by 

Borg.  The scale, containing fifteen grades from six to twenty, allows a subject to 

rate the degree of their exertion during an activity (six is the easiest workload and 

twenty is the hardest workload).  Borg (1982) asserts that the values of the RPE 

Figure 4-5: Subject on Roller Rig 
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scale grow comparatively linearly with the workload, and that there is a 

correlation between RPE and heart rate.  RPE is now widely used in research 

and a number of factors are known to influence its use: cognition, motivation, 

emotion, learning, environmental and task variables on perceived exertion.    

 

For the purpose of the current tests, the RPE scale was displayed in front of the 

subject who was asked to point to the number that best described the current 

level of exertion.  The subject's RPE was recorded at the third, sixth and ninth 

minutes of each test. 

 

4.3.5.2. Comfort Rating 

Comfort was assessed using a scale outlined by Seifert et al. (1997).  The scale 

ranges from level one (very uncomfortable) to level five (very comfortable).  This 

comfort scale was also displayed on a board in front of the subject who was 

asked to point to the number that best described the current level of overall 

comfort.  As with the levels of RPE, the subject’s comfort level was recorded at 

the third, sixth and ninth minute of each test.   

 

4.4. Run Down Test 

 

4.4.1. Method 

Two cyclists (aged 21 and 22) - one weighing 64 kg and one weighing 72 kg - 

carried out the run down tests on both the fully suspended and hardtail bike on 

the rig with a smooth roller with a friction belt attached, and on the roller with 

bumps attached. The subjects were instructed to ride each bike on both the 

smooth surface and the surface with bumps attached at a velocity of 15 km/h.  

The subjects were then instructed to refrain from pedalling and to allow the bike 

to come to rest whilst holding the pedals stationary and remaining seated.  The 

decrease in the velocity of the roller was electronically recorded for each test 
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against the time it took for this decrease, as displayed in Figure 4-6.  The test 

was conducted to establish if the run down times for each bike on the roller rig 

with the friction belt attached are comparable to the rundown times for each bike 

on the roller rig with bumps attached.   

 

4.4.2. Run Down Test Results 

 

 

Figure 4-6: Run down test results 

 

Figure 4-6 illustrates that the run down times for both bikes on the roller rig with a 

smooth surface are similar to those obtained for the fully suspended bicycle on 

the rough surface.  This demonstrates that the resistance exerted by the friction 

belt is similar to that resistance encountered when on the fully suspended bike on 

the rough track.  The run down times for the hardtail bike are significantly shorter, 

indicating that when cycling on this bike the cyclist experiences more resistance 

than when on the fully suspended bike; this is true for travelling over the surface 

with bumps.  The gradient of the curves in Figure 4-6 is a measure of the 

deceleration of the bicycle during the run down test.  To obtain an estimate of the 

resistance force acting to slow the bicycle down, the deceleration is multiplied by 

the combined mass of the subject and the bicycle.  The resistance acting against 

the roller rig with bumps was calculated in this way and found to be 32 N and 46 

N for the fully suspended and hardtail bike respectively.  This results in a 44 % 
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greater resistance acting against the hardtail bike compared to the fully 

suspended bike - at a speed of 12 km/h this represents an additional 50 W of 

power required by the cyclist to maintain this constant speed. 

 

4.5. Familiarisation Test 

 

4.5.1. Method  

6 subjects - aged between 21 and 30 old and weighing between 64 kg and 80 kg 

- participated in this test to investigate the familiarisation effect of riding on the 

roller rig with bumps attached.  Each subject was tested on 3 separate occasions 

on the same bike (either the hardtail or fully suspended bike) with a minimum of 

two days between each test.  Three subjects were tested on the fully suspended 

bike, and three on the hardtail bike. Each subject attended the laboratory at the 

same time of day for each of the experiments and was instructed to refrain from 

eating three hours prior to conducting the tests.  Additionally, each subject was 

asked not to exercise on the day prior to the tests in order to ensure that their 

body was in the same physiological state for each test.   

 

In order to ensure that the results of the familiarisation tests were repeatable, the 

bike set-up for each individual was established at the first test and remained the 

same for each subsequent test.  The saddle height was set so that the cyclist's 

leg was straight when the pedal was at its lowest position; this height was 

recorded and used for the subject’s subsequent tests.  On the initial visit to the 

laboratory, each subject was instructed on the use of the measuring equipment 

and on the RPE and comfort scales.  The subject was then instructed to cycle at 

a speed of between 10 km/h and 15 km/h which could be maintained comfortably 

for ten minutes; this same speed was maintained for all subsequent tests.  To 

allow for the subjects’ different riding styles, each cyclist was permitted to ride in 
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the rear gear of their choice (the front gear was fixed due to the instrumentation 

placed on the crank) that was to be kept constant for each subsequent test.   

 

Each subject was instructed to remain seated on the bike at all times during 

testing to ensure that the body mass was primarily supported through the 

suspension system and not through the subject’s legs.  This instruction was given 

so as to ensure that the tests were repeatable and to eliminate any 

uncontrollable variables.  This also helped to minimise inertial effects associated 

with body movements which could affect the operation of the suspension 

systems.   

 

At the beginning and end of each test, load readings were taken for a ten second 

time period to allow for comparison with the load readings taken when the cyclist 

was in motion.  To achieve these, subjects were instructed to refrain from 

pedaling for the first and last 10 s of the test.  After the initial 10 s of the test, the 

subjects cycled until their chosen speed (of between 10 km/h and 15 km/h) was 

reached; this speed remained constant throughout the test.  A cyclometer placed 

on the handlebars of the bike allowed each subject to monitor their speed which 

was measured through the use of the optical sensor placed on the roller of the 

rig.  

 

Each subject’s heart rate was recorded every 45 s into each minute of each test 

by observing the heart rate monitor.  One-minute samples of expired air were 

collected during the fifth, sixth, ninth and tenth minutes of all tests in order to 

calculate the VO2.  The RPE and comfort scales were recorded at the third, sixth 

and ninth minute of each test.   

 

4.6. Familiarisation Test Results   
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As the familiarisation test was undertaken to ascertain if a familiarisation effect 

occurred after a subject undertook subsequent identical tests on the same bike, 

only the physiological and psychological results were required to determine this.  

In this respect, only those results deemed most relevant are displayed and 

discussed in this section: the full data set from the familiarisation test can be 

seen in Appendix B.  Table 4-1 displays the physiological and psychological 

results from the familiarisation tests to establish if the subjects improved their 

performance on any of the bikes on the roller rig after subsequent attempts.  For 

both the hardtail and fully suspended bike, the mean of the subjects’ VO2, heart 

rate, RPE and comfort ratings was recorded on each of the three visits.  The 

probability (p) values and standard deviation are also displayed in Table 4-1.  The 

probability statement used for the purpose of the experimental tests on the roller 

rig is p < 0.05 or p > 0.05; the purpose of this statistical test is to evaluate the null 

hypothesis at a specific level of probability (for example p < 0.05).  In other 

words, do the tests between the hardtail and fully suspended bike differ 

significantly (p <0.05) so that these differences would not be attributable to a 

chance occurrence more than five times in a 100 (Thomas & Nelson, 1996).  The 

two values for the hardtail and fully suspended bikes differ significantly if the p 

value is less than 0.05.  To calculate the p values obtained in the familiarisation 

test, a simple analysis of variance (ANOVA test) was carried out.  The type of test 

used for the current study was a repeated measures ANOVA; this involved the 

analysis of each subject’s VO2, heart rate, RPE and comfort rating scale on their 

successive visits to the laboratory to ascertain if a familiarisation effect occurred 

during subsequent visits.    

 

Thomas & Nelson (1996) state that the standard deviation recordings give an 

estimate of the variability, or spread, of the values of the group of subjects 

around the mean.  If the standard deviation is large, the mean may not be a good 

representation.  The equation used to calculate the standard deviation for the 

purpose of the current study is outlined in Equation 4-1, where X is the subject’s 
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VO2, heart rate, RPE or comfort rating measurement; M is the mean and n is the 

number of subjects.   

 

s = √ Σ ( X – M ) 2 / ( n – 1 )                    

Equation 4-1: Calculate Standard Deviation 

 

Table 4-1: Familiarisation Test Results 

    Mean, and standard deviation of recordings 

Measurement  Bike  P  Test Number 

   1 2 3 

VO2 (ml _ kg
-1

  _ min
-1

)     HT 0.88    32.9, s=5.0     32.7, s=4.7    32.1, s=5.5 

SU 0.92    20.6, s=3.1     20.3, s=4.2     20.7, s=4.0 

Heart rate (beats _ min
-1

)   HT 0.9    155.7, s=16.2     159.8, s=9.3     158.8, s=7.8 

SU 0.57    119.5, s=16.6       121.5, s=17.5    126.7, s=10.7 

RPE  HT 0.43    10.8, s=1.5     10.2, s=2.3     10.8, s=2.5 

SU 0.29    9.8, s=0.8     11, s=1.0     11.8, s=2.0 

Comfort  HT 0.21    2.6, s=1.4     2.9, s=1.5     2.4, s=1.3 

SU 0.22    3.8, s=0.8    3.4, s=0.8     3.1, s=0.2 

HT: Hardtail    

SU: Fully Suspended   

P: Probability   

s: standard deviation  

 

To summarise, the results in Table 4-1 show that no familiarisation effect occurs 

when a subject performs subsequent tests on the roller rig.  There is little 

difference between each of the mean values for all of the tests on the hardtail 

and on the fully suspended bike.  The largest values obtained between the 

means can be identified for the results relating to the subjects’ comfort ratings on 

the fully suspended bike between the first and third test: the first test has a mean 

value twenty-three percent greater than the third test.  However, as the p value is 

greater than 0.05 for this finding, this renders the result statistically insignificant.  

As there in no trend for improvement over time for these subjects for any of the 
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measurements taken, it can be concluded that no familiarisation effect occurs 

when cycling on the roller rig over subsequent visits to the laboratory.  

 

4.7. Comparative Test 

 

4.7.1. Method 

6 subjects, aged between 22 and 31 years old and weighing between 74 kg to 94 

kg, were used for the comparative test.  The objective of this test series was to 

investigate the effects on rider performance when cycling on a hardtail bike on a 

rough surface compared to a fully suspended bike on the same rough surface on 

the roller rig.  Each subject carried out two tests on the roller rig: one cycling on 

the fully suspended bike on the roller rig with bumps attached, and one cycling 

on the hardtail bike on the roller rig with bumps attached.  This resulted in a total 

of twelve sets of results for analysis.  The test protocol for the comparative test 

was identical to that of the familiarisation test.  Each subject attended the 

laboratory at the same time of day for each of the two tests and was asked to 

refrain from exercising on the day prior to the tests.  The subjects were instructed 

to cycle at a speed of between 10 km/h and 15 km/h which could be maintained 

comfortably for ten minutes.  Each cyclist was permitted to ride in the rear gear of 

their choice; and each subject was instructed to remain seated on the bike at all 

times during testing.  In order to eliminate any bias within the comparative tests, 

three subjects carried out the test firstly on the hardtail bike followed by the fully 

suspended bike.  Conversely, three subjects carried out the test firstly on the fully 

suspended bike, followed by the hardtail bike.   

 

Identical to the protocol undertaken for the familiarisation test, at the beginning 

and end of each of the comparative tests on the hardtail and fully suspended 

bikes, load readings were taken for a ten second time period to allow for 

comparison with the load readings taken when the cyclist was in motion.  Again, 

as was identical to the familiarisation test protocol, each subject’s heart rate was 



133 
 

recorded every 45 s into each minute of each test by observing the heart rate 

monitor.  One-minute samples of expired air were collected during the fifth, sixth, 

ninth and tenth minutes of all tests in order to calculate the VO2 and The RPE 

and comfort scales were recorded at the third, sixth and ninth minute of each of 

the comparative tests.   

 

In addition to the physiology and psychological measurements that were taken 

during the comparative tests, mechanical measurements were additionally taken 

for comparisons to be made between the hardtail and fully suspended bikes.  

The rotational velocity of the crank arms and roller; the force exerted on the 

pedals; the vertical acceleration at the rear and front of the bike; and bump and 

pedal position were all recorded during each of the tests.   

 

4.7.2. Measurement Stability  

In order to ascertain that each subject’s physiology had met steady state 

conditions - as anticipated during a sub- maximal test - a repeated measure 

analysis of variance test was performed on results.  The most appropriate 

statistical method for this approach is the repeated measures ANOVA test which 

analyses the same results on the same individuals on successive occasions such 

as a series of test trials (Thomas & Nelson, 1996).  The test was performed on 

the subjects’ VO2 and heart rate levels at the fifth, sixth, ninth and tenth minutes 

of testing, and on the RPE and comfort rating levels taken at the third, sixth, and 

tenth minutes of testing on both the hardtail and fully suspended bike.  The 

results of the ANOVA are displayed in Table 4-2. 
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Table 4-2: Analysis of stability of measurements during tests 

                

    Average across participants at: 

Measure  Bike     P  3 min  5 min  6 min  9 min  10 min 

VO2 (ml _ kg-1 _ min-1)  HT 0.91   32.3 32.6 32.1 32.1 

  SU 0.008   20.6 22.9 21.7 21.5 

Heart rate (beats _ min-1) HT 0.47   154.2 152.3 153.7 153.7 

  SU 0.045   120.3 119.5 121.8 119.8 

RPE  HT <0.001  11.3   12.1   12.6 

  SU <0.001 9.9   10.8   11.3 

Comfort  HT 0.001 2.6   2.3   1.9 

  SU 0.024 3.7   3.4   3.3 

     
 

The results of the ANOVA test indicate that there is no significant difference in the 

results recorded for VO2 and heart rate levels during the test on the hardtail bike, 

whereas on the fully suspended bike there is a significant difference for both 

physiological measurements.  This would indicate that steady state conditions 

were met for subjects cycling on the hardtail bike, and not the fully suspended 

bike.  However, as the effect size is small for the results of VO2 and heart rate on 

the fully suspended bike, this indicates that steady physiological state conditions 

have been met.  

 

Table 4-2 also shows that, as the test progresses, there is a consistent trend for 

the RPE values to increase as comfort levels decrease.  This is a result of the 

rider becoming slightly more uncomfortable as the test proceeds (in particular on 

the hardtail bike), and subjects feel that they are cycling harder, despite steady 

state conditions being met.  A single representative test value was required for 

comparisons and analysis of RPE and comfort rating levels, therefore the mean 

of the three readings (taken during the third, sixth and tenth minutes) was used 

for this purpose.   
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4.7.3. Comparative Test Physiological and Psychological Results    

Table 4-3 displays the difference between the means of the subjects’ VO2, heart 

rate, RPE and comfort ratings whilst cycling on the hardtail compared to the fully 

suspended, bike.  This was calculated by subtracting the mean values obtained 

from the subjects cycling on the fully suspended bike from the mean values 

obtained from subjects cycling on the hardtail bike.  The standard deviation and p 

values for these results are also highlighted in Table 4-3.  For the comparative 

tests, a null hypothesis two-tailed dependent t test was applied to calculate the 

probability (p) that the differences measured are purely the result of chance.  A 

dependent t test is a test of the significance of differences between means of two 

sets of values (for the hardtail and fully suspended bikes) that are related, such 

as when the subjects are measured on two occasions (Thomas & Nelson, 1996).  

The calculation used for the dependent t test is outlined in Formula 4-2, where D 

is the post-test minus the pretest for each subject and N is the number of paired 

observations.   

 

                    Σ D                    .                

   t = √ [N Σ D 2  - (ΣD) 2 ] / (N – 1)]                    

 

Equation 4-2: Dependant t-test calculation 

   

Low probabilities (p <.05) indicate that the measured effect in the sample (of six 

subjects) is evidence of a real significance in the results.  The size of the 

differences is indicated by effect size which is also displayed in Table 4-3.  

Thomas & Nelson (1996) stipulate that the effect size indicates the 

meaningfulness (the importance or practical significance of an effect or 

relationship) of the findings; it is the standardised value, recorded by calculating 

the difference between two means and dividing this by the standard deviation.  

An effect size of less than 0.2 is considered small; 0.5 is considered moderate; 

and 0.8 or greater is considered large - thus a greater effect size coincides with a 

more meaningful result.  
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Table 4-3: The difference between the means of the subjects’ VO2, heart rate, 

RPE and comfort rating obtained by comparing the hardtail and fully suspended 

bikes. 

 VO2 Heart Rate RPE Comfort 

 (ml/kg/min) (beats/min)   

Sample size 6 6 6 6 

Difference between the means 8.1 28.9 3.7 -1.8 

Standard deviation 4.8 13.8 1.8 0.7 

p-value 0.009 0.037 0.004 0.001 

Effect size 1.8 1.8 2.3 -2.2 

 

N.B.: All differences are obtained through subtracting (-) the means obtained from cycling on the 

fully suspended bike from the means obtained from cycling on the hardtail bike.   

 

Figures 4-7 to 4-10 are scatter plot graphs of the results obtained for each 

subject’s VO2, heart rate, RPE and comfort rating when cycling on the hardtail 

and fully suspended bikes.  The scatter plots illustrate an additional way in which 

the results from the physiology and psychological measurements can be 

displayed.  Each point on the scatter graph represents one subject: the value 

recorded for the hardtail bike is displayed on the vertical axis, and the value 

recorded for the fully suspended bike is displayed on the horizontal axis.   
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Through analysing the results displayed in Table 4-3 and Figures 4-7 to 4-10, 

differences between the hardtail and fully suspended bike (when cycling over a 

rough surface) are highlighted.  Table 4-3 presents the difference between the 

means of the subjects’ VO2, heart rate, RPE and comfort rating whilst cycling on 

the hardtail compared to the fully suspended bike.  All of the differences between 

the means for the physiological and psychological measurements are greater for 

the hardtail bike; thus indicating that (on average) all of the subjects experienced 

a higher VO2, heart rate, RPE and lower comfort level (8.1; 28.9; 3.7; -1.8 

10

20

30

40

10 20 30 40

V
O

2
H

a
rd

 T
a

il
 

(m
l/
k

g
/m

in
)

VO2 Full Suspension 
(ml/kg/min)

VO2

80

100

120

140

160

180

80 100 120 140 160 180

H
e
a
rt

 R
a
te

 
H

a
rd

 T
a
il
 (

b
p

m
)

Heart Rate Full Suspension 
(bpm)

Heart Rate

5

10

15

20

5 10 15 20

R
P

E
 H

a
rd

 T
a

il
 B

ik
e

RPE Full Suspension Bike

RPE

0

1

2

3

4

5

0 1 2 3 4 5

C
o

m
fo

rt
 R

a
ti

n
g

 
H

a
rd

 T
a

il
 B

ik
e

Comfort Rating
Full Suspension Bike

Comfort

Figure 4-7: VO2 Comparison Figure 4-8: Heart rate Comparison 

Figure 4-9: RPE Comparison Figure 4-10: Comfort Comparison 



138 
 

difference in the means respectively) whilst riding on the hardtail bike on the 

roller rig with bumps attached.  The lower comfort rating is represented through 

the negative value obtained through the difference in the means for the hardtail 

compared to the fully suspended bike, as (on average) all subjects were more 

comfortable on the fully suspended bike.  As the p values for each of the 

difference in means are less than 0.05, this indicates that these differences are 

significant findings.  The effect size of the difference in means, as illustrated in 

Table 4-3, varies from 1.8 to 2.3, supporting the claim that these results are 

meaningful.   

 

The scatter plot graphs (Figures 4-7 to 4-10) clearly display the results of the 

physiological and psychological measurements for each individual subject, and 

coincide with the results outlined in Table 4-3.  Each subject was found to have a 

lower heart rate, VO2, RPE, and gave a higher comfort rating level when cycling 

on the fully suspended bike compared to the hardtail bike.  The points above the 

equality line on the scatter plot graphs indicate the higher readings obtained for 

the hardtail bike (with the exception of the readings for comfort level which fall 

below the equality line as all subjects gave a lower comfort when cycling on the 

fully suspended bike).  No anomalies are highlighted in the scatter plot graphs.  

The results from Table 4-3 and Figures 4-7 to 4-10 indicate that the fully 

suspended bike uses less of the rider’s energy than the hardtail bike whilst 

cycling on rough terrain under these test conditions on the roller rig where only 

rear wheel impact is considered.  

 

4.7.4. Comparative Test Mechanical Results 

The mechanical results for the tests on the roller rig with bumps attached are all 

presented in tabulated form, and are displayed as an average of all of the six 

subject’s mean values.   Tables 4-4 and 4-5 present the findings relating to the 

power through, and force exerted on, the crank.  Both Tables 4-4 and 4-5 display 

the average maximum and minimum power and force values for all six subjects; 

the average mean for all six subjects; and the range between the average 
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maximum and minimum values for all six subjects.  The average maximum 

values were calculated through taking the first 300 readings from the maximum 

turning points of the graphs produced by the readings from the strain gauges.  

The average minimum values were calculated using the same technique, but by 

taking the first 300 readings from the minimum turning points of the graphs 

produced from the results obtained from the strain gauges.  The readings from 

only the maximum and minimum turning points of the graphs produced by the 

strain gauge readings were used so as to reduce any anomalies in the data - 

such as any irregular sharp rises and falls in the graphs.   

 

Additionally, Tables 4-4 and 4-5 display the differences between the average 

maximum, minimum, mean and range values for power and force exerted on the 

crank.  The power through the crank is calculated by multiplying the force exerted 

on the crank by the rotational velocity of the crank. The differences were 

obtained through subtracting the means obtained from cycling on the fully 

suspended bike from the means obtained from cycling on the hardtail bike.  

These differences have been calculated to compare the hardtail and fully 

suspended bikes.  The percentage ratings highlight the improvement obtained 

through the use of a rear suspension.  The standard deviation and p values are 

also given for each result as a means of comparing the findings.    
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Table 4-4: Power through Crank 

 

            Hardtail   Fully Suspended   

    Power (W)  Power (W) 

 

Min Power   7.925   7.545  

    s=1.488   s=1.092   

Max Power   224.619  214.676   

    s=15.931  s=16.46  

Mean Power   118.326   76.026    

    s=45.263  s=14.512  

Range between Max & Min  216.694  207.13 

    s=16.465  s=17.07  

 

Hardtail subtract (-) Fully Suspended 

Power (W) 

 

Difference between Min Power           0.38    4.79 %*  

      s=1.151 p=0.44    

Difference between Max Power            9.944    4.43 %*   

      s=8.947 p=0.049    

Difference between Mean Power           42.3        35.75 %*  

      s=44.053 p=0.07  

Difference in Range between Max & Min Power  9.564    4.41 %* 

      s=8.48 p=0.049 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean)   

 

The average results for the amount of power applied to the pedals by the 

subjects when riding on both bike types is illustrated in Table 4-4 through 

multiplying the force exerted on the pedals by the tangential pedal velocity.  The 

most notable difference between the subjects on both bikes is the higher average 

power required to cycle on the hardtail bike at the same constant speed 

compared to cycling on the fully suspended bike.  On average, a subject required 

35.75 % more power to cycle on the hardtail bike compared to the fully 
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suspended bike; however, as the standard deviation is large and the p value for 

this difference in average power between the two bikes is greater than 0.05, this 

renders this finding statistically meaningless.  A smaller variation in the results 

between the two bikes for the average maximum power required to remain at the 

constant chosen speed can be identified: a 4.43 % lower maximum power is 

required for a subject riding on a fully suspended bike compared to a hardtail 

bike.  In this instance, as the p value is smaller than 0.05, this result is 

statistically meaningful.  A similar result is obtained for the average minimum 

power required to remain cycling at a constant speed: 4.79 % less power is 

required for the fully suspended bike compared to the hardtail.  However, as the 

p value for this result is higher than 0.05, this finding is statistically insignificant.    

Table 4-5 displays the average maximum and minimum force exerted on the 

crank; the average mean force exerted on the crank; the range between the 

average minimum and maximum values; and the average velocity of the crank.  

Similarly, as with the average results obtained from the amount of power applied 

through the crank (Table 4-4), the differences of the averages for the force 

exerted on the pedals between the hardtail and fully suspended bike are also 

displayed in Table 4-5. 
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Table 4-5: Force exerted on crank 

 

    Hardtail   Fully Suspended   

    Force (N)  Force (N) 

 

Min Force   6.583   6.713  

    s=0.637   s=0.543   

Max Force   208.22     199.154   

    s=15.835  s=17.376  

Mean Force              110.809   68.007    

    s=30.336  s=13.4 

Range between Max & Min  201.637  192.44 

    s=16.15   s=17.72 

Average Velocity (m/s)  0.537   0.566 

    s=0.106   s=0.081      

 

Hardtail subtract (-) Fully Suspended 

Force (N) 

 

Difference between Min Force               -0.13    1.98 %*  

                  s = 0.319 p= 0.35    

Difference between Max Force                9.066    4.35 %*  

                 s= 9.305 p= 0.07    

Difference between Mean Force   42.803       38.36 %*  

                s=24.785 p=0.016  

Difference in Range between Max & Min           9.19        4.56 %*  

        s=9.302 p=0.065  

Difference between Average Velocity (m/s) -0.029                5.40 %*   

      s=0.138 p=0.617 

* : % Improvement by fitting suspension = 100*(average diff. / HT mean) 

 

Table 4-5 illustrates that the average mean force exerted on the crank is 38.36% 

less when cycling on the fully suspended bike compared to the hardtail bike.  As 

the p value for this result is lower than 0.05, this result is statistically meaningful.  

The average difference between the maximum force exerted on the crank 

produces a similar value to the difference in range between the maximum and 
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minimum force (4.35 % and 4.56 % respectively), with both percentage values 

indicating the increase in force that is exerted on the pedals whilst riding on the 

hardtail bike compared to the fully suspended bike.  These two results are, 

however, statistically insignificant as the p values for both are greater than 0.05.  

Similarly, the result pertaining to the difference in the average minimum force 

exerted on the crank is also statistically insignificant as the p value is 0.35.  The 

difference between the average velocity of the crank is 5.4 % lower when cycling 

on the fully suspended bike compared to the hardtail bike.  Although this is a 

relevant finding, the p value greater than 0.05 renders this result statistically 

insignificant.    

 

Figures 4-11 and 4-12 display the results for the amount of force exerted by one 

subject on both the hardtail (Figure 4-11) and fully suspended bike (Figure 4-12).  

The graphs also display the time and how much force is exerted when the pedals 

pass the pedal indicator, and when the rear wheel comes into contact with the 

bump.  An indicator bump switch was attached to only one of the bumps, as 

indicated in Figures 4-11 and 4-12.   
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The graphs illustrate that the least amount of force is exerted on the pedals 

immediately after contact with the bump.  Conversely, when actual contact with 

the bump occurs, the rider must apply the highest force to overcome the 

obstacle.  As can be observed from Figures 4-11, 4-12 and table 4-5, on average 

the rider exerts more force on the pedals of the hardtail bike compared to the 

fully suspended bike.  A possible reason for this is that the rear suspension 

absorbs some of the impact force resulting in less force being required to 

overcome the obstacle.  The graphs for both bikes are similarly shaped, although 

it is evident that a higher maximum and lower minimum turning point exist for the 

cyclist on the hardtail bike.  The maximum amount of force exerted on the pedals 

is 350 N and 200 N for cycling on the hardtail and fully suspended bikes 

respectively.  This finding demonstrates a significant difference between both 

bikes.  As aforementioned, less force is exerted on the pedals of the fully 

suspended bike, compared to the hardtail, when contact with the bump occurs.  

Additionally, Figure 4-12 highlights that a greater oscillation is apparent for the 

fully suspended bike following contact with the bump - this is a result of the rear 

suspension of the bike oscillating.  Another factor that determines the amount of 

force exerted on the crank is the position of the pedals - the maximum force 

exerted on the pedals occurs when they are in a horizontal position.  However, 

this is not made fully apparent from Figures 4-11 and 4-12 as the overriding 

factor which determines the amount of exerted force is the rough surface.  

 

Tables 4-6 to 4-11 display the results calculated from the findings recorded at 

both the front and rear accelerometers of the fully suspended and hardtail bikes.  

Similar to the results for the power through, and force exerted on, the crank 

(Tables 4-4 and 4-5), the average maximum and minimum acceleration, velocity 

and displacement of the handlebars and seat were calculated through taking the 

first 300 readings from the maximum and minimum turning points of the graphs 

produced by the accelerometer.  However, in contrast to the results relating to the 

pedals (Tables 4-4 and 4-5), the mean averages have not been included in the 

results displayed in Tables 4-6 to 4-11.  The mean averages would equate to 
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approximately zero for the velocity, acceleration and displacement of the seat 

and handlebars due to the positive and negative values that are obtained when 

calculating the results.  Consequently, the average root mean squared (RMS) 

value has been calculated to compensate for this.  As with the results displayed 

in Tables 4-4 and 4-5, the lower sections of Tables 4-6 to 4-11 compare the 

findings from the accelerometers on the fully suspended and hardtail bike.  

Tables 4-6 to 4-11 also outline the percentage differences between the results; 

the standard deviations; and p values from the results of the t-test.  

 

Table 4-6: Acceleration at the handlebars 

   

                       Hardtail   Fully Suspended    

    Acceleration (m/s^2) Acceleration (m/s^2) 

 

Min Acceleration  -1.129   -1.104   

    s=0.045   s=0.045   

Max Acceleration  1.29   1.261    

    s=0.075   s=0.096   

Range between Max & Min 2.41   2.365    

    s=0.109   s=0.134 

RMS    0.489   0.336 

    s=0.118   s=0.053  

  

Hardtail subtract (-) Fully Suspended 

     Acceleration (m/s^2) 

Difference between Min Acceleration          -0.025    2.21 %*  

      s=0.048 p=0.249    

Difference between Max Acceleration           0.029    2.21 %*  

      s=0.046 p=0.18    

Difference in Range between Max & Min           0.054         2.21 %*  

      s=0.093 p=0.209  

Difference between RMS            0.153    31.25 %* 

      s=0.094 p=0.019  

* : % Improvement by fitting suspension = 100*(average diff. / HT mean)  
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Table 4-6 displays the average readings obtained from the accelerometers 

placed at the handlebars of the hardtail and fully suspended bike.  The results 

outline that the average minimum acceleration of the handlebars of the hardtail 

bike is 2.21 % lower than that of the fully suspended bike, and that the maximum 

acceleration at the handlebars of the hardtail bike is 2.21 % higher than that of 

the fully suspended bike.  Consequently, the range between the average 

maximum and minimum values for the acceleration of the handlebars is 2.21 % 

higher for the hardtail bike compared to the fully suspended bike.  Despite these 

findings, the p values (all greater than 0.05) render these results insignificant.  In 

contrast, the result obtained for the average difference between the acceleration 

of the handlebars of both bikes is statistically significant: the acceleration of the 

handlebars is 31.25 % lower whilst cycling on the fully suspended bike compared 

to the hardtail bike.   

 

Figures 4-13 to 4-24 illustrate that both bikes move vertically in the positive and 

negative direction.  Consequently, the averages of the positive and negative 

values do not provide useful data from which to draw conclusions.  Subsequently, 

the root mean squared (RMS) is used to calculate the averages - making all of 

the values positive so an average may be obtained for the acceleration, velocity 

and displacement.   
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Figures 4-13 and 4-14 illustrate the acceleration of the handlebars of both the 

hardtail and fully suspended bikes.  The acceleration of the handlebars of the 

hardtail bike is greater than that of the fully suspended bike.  For both bikes, the 

greatest minimum turning point of the graphs (Figures 4-13 and 4-14) occurs 

immediately after the wheel contacts the bump; followed by the maximum 

acceleration after contact of the rear wheel with the ground.  There is however, a 

significant difference (p value < 0.05) between the results obtained for the 

average difference in RMS between the acceleration of the handlebars of both 

bikes: the acceleration of the handlebars is 31.25 % lower whilst cycling on the 

fully suspended bike compared to the hardtail bike (Table 4-6).  As the hardtail 

bike has no rear suspension to absorb bump impact, the rider’s weight is forced 

forward onto the front of the bike, thus attributing to the higher handlebar 

acceleration results obtained for the hardtail bike. 
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Table 4-7: Acceleration at the seat 

 

               Hardtail        Fully Suspended     

   Acceleration (m/s^2)     Acceleration (m/s^2) 

 

Min Acceleration  -3.164   -3.14  

    s=0.139   s=0.143   

Max Acceleration  5.686   5.61    

    s=0.216   s=0.282   

Range between Max & Min 8.85   8.752    

    s=0.35   s=0.143  

RMS    1.596   1.279 

    s=0.249   s=0.158 

 

Hardtail subtract (-) Fully Suspended 

Acceleration (m/s^2) 

 

Difference between Min Acceleration  -0.024                0.75 %*  

      s=0.035 p=0.15    

Difference between Max Acceleration  0.074    1.31 %*  

      s=0.118 p=0.179    

Difference in Range between Max & Min  0.098        1.11 %*  

      s=0.136 p=0.137  

Difference between RMS   0.317    19.89 %*  

      s=0.208 p=0.022  

* : % Improvement by fitting suspension = 100*(average diff. / HT mean) 

 

Table 4-7 displays the mean results found through measuring the acceleration at 

the seat of the fully suspended and hardtail bike during the experimentations.  

The average minimum acceleration of the seat of the hardtail bike is greater (by 

0.75 %) than that of the fully suspended bike.  Coinciding with this finding, the 

average maximum acceleration of the seat of the hardtail bike is also greater (by 

1.31 %) than that of the fully suspended bike.  However for both of these results, 

the p value is greater than 0.05, indicating that the results are statistically 

insignificant.  The difference in range between the maximum and minimum 
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acceleration of the hardtail and fully suspended bike indicate that the 

acceleration of the seat is 1.11 % greater whilst cycling on the hardtail bike 

compared to the fully suspended bike.  The p value for this result is, however, 

0.137; rendering this result statistically insignificant.  The difference between the 

RMS values has been calculated to represent the average mean seat 

acceleration for both the hardtail and fully suspended bike.  The findings from this 

indicate that the average mean acceleration of the seat of the hardtail bike is 

19.89 % greater than that of the fully suspended bike.  This result is rendered 

statistically significant as the p value is calculated to be less than 0.05.   

 

 

 

 

 

 

 

Figures 4-15 and 4-16 display the results obtained from the accelerometer 

placed under the seat of the hardtail and fully suspended bike of one subject 

during testing.  From the graphs it is apparent that, for both bikes, the 

acceleration of the saddle reaches a peak when the initial contact between the 

bump and rear wheel occurs.  This is then followed by the maximum acceleration 

in the negative direction occurring after the wheel leaves the bump.  Interestingly, 

the acceleration of the saddle of the fully suspended bike is lower, compared to 

the hardtail bike, when initial contact with the bump occurs. Following impact with 
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the bump, there is a significant peak in the acceleration of the saddle when the 

rear wheel of the hardtail bike impacts with the ground.  Although a similar peak 

can be observed when the fully suspended bike impacts with the ground, this is 

of a smaller magnitude than that measured for the hardtail bike.  Both bikes 

present a slight bobbing effect prior to landing after contact with the bump 

occurs, as illustrated in Figures 4-15 and 4-16.  However, this bobbing effect is 

more apparent after landing on the fully suspended bike compared to the hardtail 

bike.   

 

In comparing the acceleration of the front of each bike (handlebar acceleration; 

Table 4-6) to the acceleration of the rear of each bike (saddle acceleration; Table 

4-7), it was found that the acceleration at the front of the bike is far less than that 

of the rear.  The RMS value for the front acceleration of the hardtail bike is only 

30.64 % of that value recorded for the rear acceleration of the hardtail bike.  This 

is also true for the RMS value of the fully suspended bike which has a front 

acceleration of 26.27 % of the value recorded for the rear acceleration.  This is 

perhaps an expected result as the roller rig is held rigid at the front forks and only 

the rear wheel comes into contact with the bump. 

 

The average velocity readings obtained from the accelerometers placed at the 

handlebars of the hardtail and fully suspended bikes are displayed in Table 4-8.  

The results indicate that there is a 2.88 % difference between the average 

minimum velocities measured at the handlebars of both bikes (the handlebars of 

the hardtail bike move with a greater velocity in the negative direction).  The 

average maximum velocity measured at the handlebars is also greater (by 4.5 %) 

whilst cycling on the hardtail bike in comparison to the fully suspended bike.  

These results are, however, statistically insignificant as the p values for each are 

greater than 0.05.  Conversely, the results for the difference in average velocity of 

the handlebars of both bikes highlight a significant difference between the two 

bikes, which is also statistically meaningful as the p value falls below 0.05.  This 
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result shows that the handlebars of the hardtail bike have a 50.05 % higher 

velocity than the fully suspended bike.   

 

Table 4-8: Velocity at the handlebars 

 

                                          Hardtail                  Fully Suspended   

    Velocity (m/s)              Velocity (m/s) 

 

Min Velocity   -0.125   -0.121  

    s=0.006   s=0.097   

Max Velocity   0.146   0.139   

    s=0.009   s=0.007  

Range between Max & Min 0.271   0.261    

    s=0.013   s=0.014  

RMS    0.084   0.042 

    s=0.026   s=0.011 

 

Hardtail subtract (-) Fully Suspended 

Velocity (m/s) 

Difference between Min Velocity           -0.004    2.88 %*  

      s=0.007 p=0.229    

Difference between Max Velocity           0.007     4.50 %*   

      s=0.046 p=0.138    

Difference in Range between Max & Min           0.010       3.75 %*  

      s=0.016 p=0.168   

Difference in RMS             0.042    50.05 %* 

      s=0.023 p=0.014  

* : % Improvement by fitting suspension = 100*(average diff. / HT mean)  
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Figures 4-17 and 4-18 display the velocity of the handlebars of the fully 

suspended and hardtail mountain bikes on the roller rig for one subject only.  The 

maximum velocity occurs immediately when the bike impacts with the bump. 

Following this impact, both graphs indicate that the maximum negative velocity 

occurs directly after impact when the wheel comes into contact with the ground.  

Although the graphs are similar in shape, the results for the velocity of the 

handlebars of the hardtail bike are significantly higher than the fully suspended 

bike.   

 

Table 4-9 displays the average results obtained from the accelerometers used to 

measure the velocity of the seats of both the hardtail and fully suspended bike.  

The displayed results illustrate that the average minimum and maximum velocity 

of the seat is greater (by 3.01 % and 2.37 % respectively) for the hardtail bike 

compared to whilst cycling on the fully suspended bike.  Correspondingly, the 

difference in the range between these average maximum and minimum values 

for the velocity of the seat is 2.72 % greater for the hardtail bike compared to the 

fully suspended bike.  Yet, as the p values for the average difference in the 

minimum, maximum and range of these values of the seat velocity are all greater 
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than 0.05, these results are statistically insignificant.  Conversely, the difference 

between the average RMS values is statistically significant and illustrates that the 

average velocity of the seat on the fully suspended bike is 38.46 % less than that 

of the hardtail bike.  This highlights that the seat of the fully suspended bike 

moves at a slower velocity than that of the hardtail bike, resulting in an increase 

in comfort whilst cycling on the fully suspended bike over a bumpy surface.  This 

finding coincides with the results for the comfort scale ratings - all subjects rated 

the fully suspended bike as more comfortable than the hardtail bike when riding 

over rough terrain (Figure 4-10).    

 

Table 4-9: Velocity at the seat  

 

                Hardtail   Fully Suspended 

    Velocity (m/s)  Velocity (m/s)  

 

Min Velocity   -0.513   -0.497  

    s=0.025   s=0.03   

Max Velocity   0.424   0.414   

    s=0.014   s=0.017  

Range between Max & Min 0.937   0.911    

    s=0.038   s=0.047 

RMS    0.223   0.137 

    s=0.041   s=0.01 

   

                                  Hardtail subtract (-) Fully Suspended 

                                         Velocity (m/s) 

Difference between Min Velocity           -0.015    3.01 %*  

      s=0.028 p=0.22    

Difference between Max  Velocity           0.01    2.37 %*  

      s=0.014 p=0.133    

Difference in Range between Max & Min          0.026        2.72 %*  

      s=0.041 p=0.183  

Difference between RMS            0.0857    38.46 %* 

      s=0.04 p=0.01 

* : % Improvement by fitting suspension = 100*(average diff. / HT mean)  
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Table 4-9 of Chapter 4 illustrates that the hardtail bike has a 38.46 % higher RMS 

saddle velocity compared to the fully suspended bike; a significant finding due to 

the p value of less than 0.05.  The minimum vertical velocity of the seat is 3.01 % 

less for the hardtail bike, and the maximum vertical velocity is 2.37 % greater for 

the fully suspended bike.  The difference in range between the maximum and 

minimum values for saddle velocity is 2.72 % higher for the hardtail bike 

compared to the fully suspended bike.   Once again, these results highlight a 

significant advantage for the fully suspended bike over the hardtail bike for 

cycling on rough terrain.  

 

 

 

      

 

 

 

The velocity of the saddles of the fully suspended and hardtail mountain bikes on 

the roller rig (for one subject only) are illustrated in Figures 4-19 and 4-20.  

Similar to the results for the velocity of the handlebars, the maximum velocity of 

the saddle occurs on at contact with the bump.  The maximum negative velocity 

occurs directly after impact when the wheel once again comes into contact with 

the ground.  Figures 4-19 and 4-20 indicate that the velocity of both the seat and 

handlebars of the hardtail bike are higher in both the positive and negative 
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direction than the velocities obtained from the seat and handlebars of the fully 

suspended bike.  

 

Similar to the findings comparing the acceleration of the front of each bike to the 

acceleration of the rear of each bike, it was found that the velocity at the front of 

each bike (handlebar velocity; Table 4-8) is less than the velocity at the rear of 

each bike (saddle velocity; Table 4-9).  The RMS value for the velocity measured 

at the handlebars of the hardtail bike is only 37.67 % of the result measured for 

the velocity at the saddle of the hardtail bike.  This is also true for the RMS value 

for the fully suspended bike which has a handlebar velocity of 30.66 % of the 

value recorded for the saddle velocity.   
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Table 4-10: Displacement at the handlebars 

 

                 Hardtail   Fully Suspended   

    Distance (m)  Distance (m) 

 

Min Displacement  -0.004   -0.004  

    s=0.0002  s=0.0002   

Max Displacement  0.004   0.0036   

    s=0.0003  s=0.0002  

Range between Max & Min 0.008   0.007    

    s=0.0005  s=0.0004   

RMS    0.003   0.002 

    s=0.001   s=0.001 

 

Hardtail subtract (-) Fully Suspended 

Distance (m) 

Difference between Min Displacement          -0.0001    2.63 %*  

      s=0.00015 p=0.154   

Difference between Max Displacement           0.00017   4.55 %*  

      s=0.0002 p=0.115    

Difference in Range between Max & Min           0.00027     3.59 %*  

      s=0.0004 p=0.122  

Difference in RMS             0.0015     43.91 %*                                         

      s=0.001 p=0.015 

* : % Improvement by fitting suspension = 100*(average diff. / HT mean) 

 

Table 4-10 presents the average results for the displacement of the handlebars of 

both bikes measured by the accelerometers placed above the steerer tubes.  The 

values indicate the distance that the handlebars travel when the rear wheel 

impacts with the bump.  The results in Table 4-10 highlight that there is an 

average difference of 2.63 % between the minimum displacements of the 

handlebars on both bikes - with the handlebars of the hardtail bike producing a 

larger displacement in the negative direction than that of the fully suspended 

bike.  Similarly, the average maximum displacement of the handlebars is 4.55 % 

greater when cycling on the hardtail bike compared to the fully suspended bike.  
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The difference in the range between these maximum and minimum values is 

3.59 % greater for the hardtail bike, thus indicating that there is a larger 

displacement of the handlebars whilst cycling on the hardtail bike.  Despite these 

findings, these results remain statistically insignificant as each holds a p value of 

less than 0.05.  Conversely, the difference in the displacements of the handlebars 

of both bikes is statistically significant and a handlebar displacement 43.91 % 

larger for the hardtail bike compared to the fully suspended bike is recorded.  

This percentage equates to a handlebar displacement of the hardtail bike which 

is 1.5 mm greater than that of the fully suspended bike.   

 

 

 

 

 

 

 

Figures 4-21 and 4-22 illustrate the displacement of the handlebars of the 

hardtail and fully suspended bikes when contact with the bump occurs.  The 

maximum displacement occurs on contact with the bump, followed by the 

minimum displacement as the bike comes into contact with the ground once 

again.  From analysis of the graphs, it is apparent that the displacement results 

are greater for the hardtail bike than the fully suspended bike, indicating that 

more movement occurs at the front of the hardtail bike compared to the fully 

suspended bike.   
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Figure 4-21: Displacement at 

the handlebars for the hardtail 

bike on the roller rig on a 

rough surface. 

Figure 4-22: Displacement at 

the handlebars for the fully 

suspended bike on the roller 

rig on a rough surface. 
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The RMS value for handlebar displacement of both of the bikes was calculated to 

be 43.91 % greater for the hardtail bike compared to the fully suspended bike (a 

significant finding producing a p value of less than 0.05).  Only a slight difference 

is apparent between the minimum displacements of the two bikes: 0.1 mm, 

equating to an average minimum displacement of 2.63 % less for the hardtail 

bike compared to the fully suspended bike.  The average maximum displacement 

produces a slightly higher difference of 4.55 % greater maximum displacement 

for the hardtail bike (yet the difference is not statistically significant).  The range 

between the maximum and minimum values is 3.59 % higher for the fully 

suspended bike compared to the hardtail bike.   
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Table 4-11: Displacement at the seat  

 

   Hardtail   Fully Suspended     

   Displacement (m) Displacement (m) 

 

Min Displacement  -0.007   -0.007  

    s=0.0002  s=0.0003   

Max Displacement  0.011   0.01   

    s=0.0004  s=0.0005  

Range between Max & Min 0.017   0.017    

    s=0.0005  s=0.0007 

RMS    0.006   0.004 

    s=0.001   s=0 

 

Hardtail subtract (-) Fully Suspended 

Displacement (m) 

Difference between Min Displacement          -0.0001   1.75 %*  

      s=0.0001 p=0.1   

Difference between Max  Displacement           0.0004     3.72 %*  

      s=0.0006 p=0.158   

Difference between Max & Min Range           0.0005        2.97 %*  

      s=0.0007 p=0.143   

Difference between RMS            0.002    32.82 %* 

      s=0.002 p=0.034  

* : % Improvement by fitting suspension = 100*(average diff. / HT mean) 

 

The average results obtained through measuring the displacement of the seats of 

both the hardtail and fully suspended bikes are displayed in Table 4-11.  The 

results highlight that the average maximum displacement of the seat of the 

hardtail bike is 3.72 % higher than that of the fully suspended bike, and that the 

average minimum displacement of the seat of the hardtail bike is 1.75 % lower 

than that of the fully suspended bike.  However, these results are not statistically 

significant due to the high p values obtained for each.  Conversely, the result 

obtained for the difference in the RMS values representing the average seat 

displacements is (having produced a p value of less than 0.05) statistically 
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significantly.  This result indicates that there are real differences between the fully 

suspended and hardtail bike: the average seat displacement is 32.82 % greater 

whilst cycling on the hardtail bike compared to the fully suspended bike; this 

equates to a displacement of 2 mm higher than that of the fully suspended bike.   

 

 

 

 

 

 

 

Figures 4-23 and 4-24 present the results for the displacement of the seats of the 

hardtail and fully suspended bike for one subject only.  The maximum 

displacement occurs at the point of impact between the rear wheel and the 

bump.  The maximum displacement in the negative direction occurs after contact 

with the bump.  The graph for the fully suspended bike (Figure 4-24) results in a 

smoother displacement than that of the hardtail bike, highlighting that less 

oscillation occurs whilst cycling on the fully suspended bike.  These results 

concur with the lower comfort ratings given for subjects cycling on the fully 

suspended bike, compared to the hardtail bike, on the roller rig (Figure 4-10), 

thus indicating that the rear of the fully suspended bike moves to a lesser degree 

than the hardtail bike.   
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Figure 4-23: Displacement of 

the seat for the hardtail bike on 

the roller rig on a rough 

surface. 

Figure 4-24: Displacement of 

the seat for the fully 

suspended bike on the roller 

rig on a rough surface. 
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The maximum and minimum turning points for the seat displacement of both the 

hardtail and fully suspended bike are similar, with a range between the maximum 

and minimum turning points of 17.5 mm for the hardtail bike and 17 mm for the 

fully suspended bike (Table 4-11).  However, the average seat displacement, 

according to the RMS value for the hardtail bike is 6 mm compared to 4 mm for 

the fully suspended bike.  This equates to a 32.82 % difference between the 

saddle displacement of the hardtail and fully suspended bike; a significant finding 

as the p value is less than 0.05.  This finding correlates with the physiological 

and psychological results recorded during the experiments on the roller rig, in 

which higher levels of VO2 were recorded for subjects cycling on the hardtail bike 

and where all subjects rated the fully suspended bike as more comfortable than 

the hardtail bike 
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5. Rolling Road Rig 

 

5.1. Objectives  

 

The key objective of the rolling road rig experiments was to conduct controlled 

laboratory tests which further investigated the effects on rider performance when 

cycling on a hardtail bike compared to a fully suspended bike on a rough, and smooth, 

surface.  Previous research and experimentation in the current study highlighted 

contradictions in this area: the results from the cyclists’ questionnaires (Appendix A) 

highlighted that the majority of respondents (63 %) still chose to ride a hardtail bike 

rather than a fully suspended bike, and that seventy-six percent of respondents 

experienced a bobbing effect whilst cycling on a fully suspended bike.  Conversely, 

the results from the roller rig experimental tests illustrated that the fully suspended 

bike (compared to the hardtail bike) provided significant physiological and 

psychological advantages to the rider when cycling on a rough surface.   As the 

results from the questionnaires contradicted those from the roller rig experiments, it 

was decided that further research and experimentation should be undertaken in order 

to support, or indeed contradict, the previously conducted research and testing on the 

roller rig.   

 

A possible reason for the encountered discrepancies between the questionnaire and 

roller rig results may be attributed to the design of the initial roller rig.  Although the 

roller rig provided an adequate starting point for the current research as it succeeded 

in eliminating many of the variables involved in cycling, and gave repeatable results 

for determining the effects of rear wheel impact on the rear suspension system, it was 

essential to conduct the experiments on a rig which presented the cyclist with a closer 

representation of true riding conditions.  In this respect, a further objective of the 

rolling road rig experiments was to design and develop a rig which simulated outdoor 

riding conditions more closely than the previously used roller rig.       
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5.2. Design Considerations  

 

When considering the design of the rolling road rig and subsequent testing, it 

was important to explore those aspects of the roller rig which did not represent 

mountain bike riding conditions accurately so that alternative features could be 

implemented into the design of the new rolling road rig.  A contributing factor to 

the problems surrounding the design of the previously used roller rig was that no 

front wheel was incorporated into its design, and thus it did not represent a 

realistic model of a bike.  Under normal cycling conditions the rider would travel 

over any impending bumps with both the front and rear wheel; something which 

was not considered in the design of the roller rig.  Consequently, in order to 

understand the effect that cycling on rough terrain has on the dynamics of a 

suspension system, it is also vital to examine how the suspension reacts after the 

front wheel comes into contact with a bump.   

An additional aspect of the roller rig experiments to be considered was the size, 

shape and frequency of the bumps that the subjects encountered during testing.  

After completion of the tests on the roller rig, each subject was asked for their 

opinions and suggestions on how the rig could be improved to match cycling 

outside more closely: all subjects agreed that the height and shape of the bumps 

was too severe.  Additionally, the subjects concluded that if they were to 

encounter such bumps (whilst cycling off-road) of the magnitude used for the 

roller rig tests, they would attempt to cycle around them if possible.  Each subject 

also stipulated that - relative to a cross-country track - the bump frequency was 

exaggerated for the purpose of testing on the roller rig.  Yet another aspect 

relating to the tests on the previously used roller rig was the concern that the 

subjects could not see the impending bumps which were placed on the roller - in 

true riding conditions, a cyclist is able to view any impending bumps and attempt 

to avoid them if possible.   
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All of the concerns surrounding the design of the initial roller rig, and subsequent 

testing on it, were taken into consideration during the design of the rolling road 

rig.  It was imperative to design and develop a rig which would allow tests to be 

conducted that addressed the gaps in research - found through the analysis of 

the research in the literature review and findings of the questionnaire.  The initial 

stages of the design process of the rolling road rig identified these gaps in 

research and subsequently they were recorded in the form of a tree chart 

(Appendix D) which allowed the areas of development to be identified easily.   

After analysis of all previous research and test results: literature contained within the 

literature review; questionnaire results; and physiological, psychological and 

mechanical results from the roller rig experiments, it was concluded that the new rig 

should be designed to present as close a representation as possible to cycling on 

rough terrain under true outdoor riding conditions.  Further reflections also concluded 

that the new rig should include additional instrumentation (to that of the roller rig) so 

all possible mechanical, physiological and psychological aspects of riding on both the 

hardtail and fully suspended bikes could be analysed, and that the rig should allow for 

the testing of any bike and suspension system type to allow for the implementation of 

future work.  As a result of considering the previous research and testing relating to 

the current study, it was possible to determine a weighted objectives method to be 

used as a protocol for the design of the rolling road rig.  The weighted objectives 

method used for the rolling road rig is illustrated in Table 5-2.   

 

5.3. Conceptual Design 

 

The conceptual design process for the rolling road rig is primarily concerned with the 

generation of solutions to satisfy the weighted objectives method (Table 5-2).  Various 

solutions were generated for the purpose of the current study to ensure that the most 

appropriate design was chosen for the rig.  The initial design methodology of the 

rolling road rig involved designing several concepts and reflecting upon their strengths 

and weaknesses until the most suitable design could be ascertained.  When 
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considering the conceptual designs, it was important to focus on a design which 

considered the objectives of the experimental rolling road rig tests.  In order to 

establish which design was the most effective for the needs of the current project, a 

morphological chart (Table 5-1) was used to ensure all elements of the design (as set 

out in the weighted objectives method) were covered.  A morphological chart aims to 

highlight all theoretically conceivable solutions to a problem: all parameters that may 

occur in the final rig design are identified and categorised.  For the purpose of the 

current study, the solutions were analysed and evaluated and design concepts were 

developed (all of the design concepts are illustrated in Appendix E).   
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Table 5-1: Morphological Chart 

 

Solutions 
 
Sub- 
functions 

1 2 3 4 5 6 

Track Wooden  
slats 

Rubber belt Metal slats Roller Rollers Hydraulic  
jack 

What the  
track runs  
on 

Rollers PTFE Other  
plastic  
surface 

Wood Metal Lubricated 
surface 

Frame  
design 

Adjustable 
height 

Adjustable  
width 

Non- 
adjustable 

Adjustable 
height and  
width 

  

Power  
source 

Human Motor Human and 
motor 

   

How bike is 
held 

Front wheel Rear wheel Frame Handlebars Seat Not held 

Bumps Wooden Rubber Hydraulic 
jack 

Metal None  

How bumps are 
attached 

Adhesive Bolts clips Welding   

How to  
prevent belt 
from  
slipping 

Metal chain Holes in  
rubber 

Roller  
friction 

Motor   

Bump  
shape 

Triangle Round Rounded  
edges 

Chamfered 
edges 

Square Rectangle 

Match  
inertial  
effects of  
riding  
outdoors 

Flywheel Weight of 
 track 

Motor Weight of 
 rollers 

  

Frame  
design 

Metal plate Wooden  
batons 

Metal Angle barMetal box 
sections 

Adjustable 
height 

 

How to stop rig 
moving  
during  
testing 

Frame  
weight 

Bolted to  
floor 

Bolted to  
wall 

Large feet   
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Table 5-2: Weighted Objectives Method 

 Concepts rated 1-5 ( 5 being the highest ) 

Criteria Concept 
A 

Concept 
B 

Concept 
C 

Concept 
D 

Concept 
E 

Concept 
F 

Concept 
G 

 
Safety 
 
See bumps coming 
 
Stable 
 
Can be used as fixed 
and free 
 
Irregular bumps 
 
Cyclist can use their 
own riding style 
 
Feels natural 
 
Riders movement 
can be examined 
 
Forces applied to the 
bikes can be studied 
easily 
 
Physiology of rider 
can be recorded 
 
Traction can be 
measured 
 
Bump frequency and 
height changing 
 
Suspension can be 
studied 
 
Overall time 
recorded 
 
Force applied to 
pedals recorded 
 
Bike movement can 
be analysed 
 
Speed can be 
measured accurately 
 
Cost 

 
4 
 
5 
 
4 
 
3 
 
 
3 
 
3 
 
 
3 
 
4 
 
 
4 
 
 
 
4 
 
 
3 
 
 
4 
 
 
3 
 
 
5 
 
 
5 
 
 
3 
 
 
5 
 
 
3 

 
4 
 
5 
 
3 
 
3 
 
 
3 
 
3 
 
 
3 
 
4 
 
 
4 
 
 
 
4 
 
 
3 
 
 
4 
 
 
3 
 
 
5 
 
 
5 
 
 
3 
 
 
5 
 
 
2 

 
5 
 
2 
 
4 
 
0 
 
 
0 
 
1 
 
 
2 
 
2 
 
 
5 
 
 
 
4 
 
 
3 
 
 
1 
 
 
3 
 
 
5 
 
 
5 
 
 
1 
 
 
5 
 
 
5 

 
4 
 
4 
 
3 
 
3 
 
 
3 
 
4 
 
 
3 
 
4 
 
 
4 
 
 
 
4 
 
 
3 
 
 
4 
 
 
3 
 
 
5 
 
 
5 
 
 
3 
 
 
5 
 
 
2 

 
3 
 
5 
 
3 
 
4 
 
 
3 
 
3 
 
 
4 
 
4 
 
 
4 
 
 
 
4 
 
 
3 
 
 
4 
 
 
3 
 
 
5 
 
 
5 
 
 
3 
 
 
5 
 
 
3 

 
2 
 
5 
 
2 
 
0 
 
 
3 
 
5 
 
 
4 
 
5 
 
 
3 
 
 
 
4 
 
 
2 
 
 
4 
 
 
3 
 
 
5 
 
 
5 
 
 
4 
 
 
5 
 
 
2 

 
3 
 
5 
 
4 
 
4 
 
 
3 
 
5 
 
 
4 
 
5 
 
 
3 
 
 
 
4 
 
 
2 
 
 
4 
 
 
3 
 
 
5 
 
 
5 
 
 
4 
 
 
5 
 
 
2 

Total 68 66 53 67 68 63 70 
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The weighted objectives method was used to establish which rig design would be 

most suitable by rating the designs against the most significant criteria for the rig.  The 

weighted objectives method for the rig (Table 5-2) indicated that concept G (Figure 5-

1) was the most appropriate concept to satisfy all of the criteria for the new rig.  This 

rig design solution (Figure 5-1) resulted in the formation of a multidimensional matrix 

(illustrated by the grey shaded boxes of the morphological chart in Table 5-1) which 

highlighted the most suitable design solutions for the rolling road rig.   

 

 

Figure 5-1: Concept G 

 

It was decided that concept G (Figure 5-1) would be the most effective test rig to 

develop, as it would provide a bridge between the initial roller rig and outdoor riding 

conditions.  The new rig design would run without a power supply and instead be 

driven using the rear wheel of the bike.  The rig design would allow for experiments 

using any bike type - allowing both the movement of the front and rear wheels and 

suspensions to be considered.  Additionally, the rig would allow for a more realistic 

representation of an outdoor track due to the wider spacing of any bumps attached to 

it, and would also allow the subjects to observe any approaching bumps before 

impact occurred with the wheels.  
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5.4. Rig Design Development  

 

Once the rig design had been determined (Figure 5-1), it was fundamental to the 

design process to improve and develop its design through the use of computer 

software packages; namely Solid Edge and DADS.  Various factors were 

considered during this process: safety; repeatability of experiments; ease of use 

for subjects without having to partake in any prior training on the rig; and the 

position of the bike on the rig (it was ascertained that the bike must be held in a 

vertical position to aid the subjects’ balance).  Previous tests (Berry et al., 1993; 

Berry et al., 2000; Ishii et al., 2003; Kooijman & Schwab, 2009; MacRae et al., 

2000) involved subjects cycling on a treadmill without apparatus to hold the bike 

steady - a design consideration deemed hazardous and less likely to produce 

repeatable experimental results.  A design feature such as this would also require 

periods of familiarisation training in order for subjects to conduct tests.  For the 

design of the rig in current study, it was therefore necessary to develop a rig 

which not only held the bike steady, but also allowed the bike to move vertically 

so a test on a rolling road could be carried out safely with repeatable results.  

After consideration, it was deemed that the most appropriate places to hold the 

bike steady were at the handlebars or the front wheel of the bike; however, it was 

essential to carry out further DADS simulations in order to determine if holding 

the rig in these positions would alter the dynamics of the bike. 

 

 

 

 

 

            
Figure 5-2: Simulation held at 

front wheel hub 

Figure 5-3: Simulation held at 

handlebars 
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The bike and rider models created to carry out these investigatory simulations 

were identical to those used for the dynamic simulation tests in Chapter 7 of the 

current research.  In order to represent the rolling road, a bump was placed 

under the bike’s wheels.  A total of three simulations were carried out and 

compared to find the optimal position in which to hold the bike steady.  Initially, 

the bike was allowed to travel over the bump - unsupported by the rig - as would 

be the case in an outdoor trail.  The bike was then restrained at the front wheel 

hub with the use of a translational/rotational joint - this fixed the front forks in the 

horizontal plane while still allowing the bike to travel vertically and rotate about a 

perpendicular axis.  The third simulation also restrained the bike, but this time at 

the handlebars - also with a translational/rotational joint.  The results from the 

simulated bike travelling over the bump, unsupported by the rig, were 

subsequently compared to the results from the simulations with the bikes 

restrained at either the handlebars or front wheel.   

 

Figure 5-4 illustrates one set of results from the dynamic simulations: the vertical 

motion of the front wheel for each of the three scenarios when travelling over a 

bump; similar results were also obtained for the motion of the rear wheel.   

 

 

Figure 5-4: Simulated front wheel ‘y position’ with a) no restraint; b) restraint at 

handlebars; and c) restraint at front hub.  
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Figure 5-4 demonstrates that the vertical motion of the front wheel is similar for 

both the simulated bike being held steady at the handlebars, and for the 

unrestrained bike.  This finding concludes that a bike held steady at the 

handlebars gives a closer representation of the dynamic properties of an 

unrestrained bike.  Consequently, it was decided that this design feature would 

remain for Concept G (Figure 5-1) as it was deemed that this was the closest 

representation of true outdoor riding conditions that could be achieved without 

using an unrestrained bike.   

 

Another consideration - to ensure that the rolling road rig design and experiments 

were as close a representation as possible to true outdoor riding conditions - was 

to make certain that cycling on the rig would closely match the inertia to riding a 

bike outdoors.  In order to enable this, a calculation - outlined in Appendix F - 

was used and resulted in the finding that the most appropriate solution was the 

inclusion of two steel discs with a width of 46 mm and a radius of 240 mm in the 

design of the rig.   

 

Figure 5-5 shows the development of Concept G with additional design 

considerations: the rolling road is produced from a six-metre long rubber 

conveyor belt passing over rollers at each end, ensuring that the rider can clearly 

see the track and any impending obstacles.  The handlebars are held using 

metal brackets, allowing for a vertical and rotational motion of the bike and 

ensuring that the rider is not required to balance the bike in a stationary position.  

Although the rolling road rig has been designed to represent as realistic a 

representation of cycling outdoors as possible - many of the variables involved in 

cycling outdoors have been reduced to ensure that the experiments on the rig 

are repeatable and controlled: the only variable taken into consideration is the 

type of suspension used for experimentation.    
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5.5. Rig Construction 

 

5.5.1. Rolling Road Belt and Running Surface 

Once the design of the rolling road rig had been established, its construction had to 

be considered.  Commonly, treadmill belts run on a lubricated steel surface; however, 

as the treadmill used for the purpose of the current study was self-driven, the friction 

between the rubber and steel would require more effort from the rider when carrying 

out testing.  Taking into account this high friction, a layer of PTFE was considered for 

the surface; however, the friction would still present a problem to the cyclist.  It was 

therefore decided that the most suitable option was to allow the wheels to run on a 

series of rollers.  A total of six rollers were used for the rig: three rollers placed under 

the front wheel, and three under the rear wheel.  Each roller was designed to be large 

enough for the bumps to travel around it, yet still provide enough friction to avoid the 

bike becoming unsteady when impact with the bumps occurred.  As this type of roller 

was not a standard component, it was necessary for it to be custom built.    

 

5.5.2. Bumps 

As it was decided that rollers were to be placed under the treadmill belt, it was 

imperative that any bumps which were to be attached to the belt would have to be 

designed to prevent any distortion of the track when the wheel impacted with them.  

Consequently, bumps with two sections - a base and rounded edge - were designed.  

The base of each bump consisted of a slat of wood (3 x 70 x 800 mm) which 

prevented the track from bending when impact occurred with the wheels of the bike.  

Attached to the top of the wooden slat was the rounded edge (30 x 30 x 800 mm).  In 

order to make each bump feel as realistic as possible when cycling over it, each 

rounded edge had a ten millimetre radius.  Two identical bumps were placed on the 

track 3 m apart.  To ensure that the bumps could travel around the end of the rollers 

with ease, they were attached to the belt of the treadmill by three bolts and 
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countersunk into the wood.  The decision to use bolts - in replace of adhesive - to 

attach the bumps meant that they could be easily removed between tests.   

 

5.5.3. Frame  

The frame of the rig comprised of several components which could be split into 

various sections for ease of transportation.  The steel frame of the rig was developed 

to ensure that no vibration would occur during testing (movement of the frame was a 

concern during the tests on the roller rig).  In order to counteract any stretching of the 

belt which would occur, tensioners were placed on either side of the frame and 

pushed against the external bearings to ensure the belt was maintained tight at all 

times.  Handlebar guides were designed and constructed to ensure that the 

handlebars could not reach the bottom of, or escape from, the bracket regardless of 

how vigorous the cyclist was cycling.  Inserts were designed to attach to the ends of 

both handlebars to ensure that they were wide enough to fit into the brackets.  The 

inserts were made from aluminium with PTFE bearings - this enabled the handlebars 

to move with little friction occurring between the rig and the bike.  Stabiliser ropes 

were additionally added to the brake stanchions of the rig frame to ensure that the 

bike remained centralised and stable throughout testing.   

Figure 5-5: Rolling Road Rig designed in CAD 
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The rolling road rig was designed and constructed to be self-powered by the 

subjects’ cycling motions.  The rig provides a suitable representation of a trail in 

terms of the inertial effects: the resistance represents a rider cycling into a head 

wind with the equivalent wind speed of 11.4 m/s, or riding up a 7.3 degree slope. 

The equations to illustrate this are shown in Appendix G.     

 

5.5.4. Bikes 

Unlike the tests undertaken on the roller rig, only one mountain bike was used for 

the purpose of testing on the rolling road rig: a fully suspended Marin Mount 

Vision bike (Figure 5-6).  This would allow for a more controlled, repeatable result 

as opposed to using two bikes, due to the reduction of the variables between the 

tests.  To emulate a hardtail bike during testing, a specially developed steel 

spacer was used to replace the rear suspension spring and damper.  This 

ensured that all aspects relative to the bikes were kept uniform throughout the 

tests.  

 

5.6. Mechanical Measurements 

 

One advantage of using a laboratory based test rig is that it can be fully instrumented. 

The instrumentation used for tests on the roller rig gave satisfactory results, yet as 

problems were encountered during testing, it was necessary for much of the 

electronic equipment to be redesigned for reliability and ease of use.  Furthermore, for 

Figure 5-6: Marin Mount 

Vision Mountain Bike 
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the purpose of testing on the rolling road rig, additional dynamic properties were to be 

investigated.   

 

A total of thirteen mechanical measurements were recorded from the instrumentation 

on the rolling road rig and bike: 

 

• Handlebar acceleration 

• Saddle acceleration 

• Vertical force exerted on saddle   

• Force exerted on pedals   

• Rotational velocity of the crank arms 

• Rotational velocity of the front roller 

• Rear bump position  

• Front bump position  

• Pedal position  

• Vertical force exerted on right handlebar 

• Vertical force exerted on left handlebar 

• Horizontal force exerted on right handlebar 

• Horizontal force exerted on left handlebar 
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The location from which these readings have been recorded on the rolling road rig 

and bike are illustrated in Figure 5-7.   

 

 

 

  

 

 

 

 

 

 

 

The force exerted on the pedals by the cyclist is measured through the use of 

strain gauges (placed on the crank arms of the bike) with a telemetry system 

designed specifically for the purpose of the current research.  The unit is 

powered through a DC power unit fed via two sprung bushes that run on slip 

rings mounted on the rear of the chain wheel, as illustrated in Figure 5-9.  This 

was deemed the most effective way to transmit the power through to the gauges 

of the crank.  The gauges are in the form of a Wheatstone bridge configuration 

and are mounted on the torque reaction arm (part of the crank assembly) as 

illustrated in Figure 5-8.   Signals are fed directly to an amplifier before reaching 

a voltage to frequency converter.  

  

Figure 5-7: Location of Mechanical Measurements 

Saddle 
Strain  

Handlebar 
Strain 

Crank Strain; Rotational 
Velocity; & Pedal Indicator 

Bump indicators 
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The output from the strain gauges is applied to a forty five millimetre long helical 

antenna which is attached to the outside of the pedal.  The receiver unit is 

entirely separate from the bike instrumentation and is powered from the mains.  

This is connected to both a frequency to voltage converter, and to the signal 

receiver. The output from the receiver unit is a copy of the amplified strain.  To 

enable the strain gauges to be calibrated, the rear wheel of the bike is clamped in 

a fixed position, thus ensuring that the crank arms are placed in a horizontal 

position.  Weights were then hung from the pedal to give the corresponding 

voltage from the strain gauge output.  Consequently, a linear relationship can be 

established for all loads exerted on the crank.  A more detailed description of the 

electronic equipment and the electronic schematics is illustrated in Appendix H. 

 

5.6.1. Handlebar force 

The vertical and horizontal force exerted on the handlebars will indicate how 

much force a rider exerts on the handlebars at various points during testing.  The 

most effective way to measure the vertical force is again through the use of strain 

gauges placed in a full Wheatstone bridge configuration positioned directly above 

and below each handlebar.  The horizontal force is also measured through the 

use of strain gauges placed in a full Wheatstone bridge configuration, but 

positioned at the front and rear of the handlebars.  All of the corresponding strain 

gauges are connected directly to a frequency to voltage converter, and to the 

Disc for 
optical speed 

sensor 

Slip rings 

for brushes 

Crank 

Torque Reaction Arm 

Strain Gauges 

Figure 5-8: Crank showing Strain Gauge   Figure 5-9: Crank showing Slip Rings 
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signal receiver.  The output of the strain gauges is a copy of the amplified strain.  

The strain gauges used to measure both the vertical and horizontal force exerted 

on the handlebars were calibrated through hanging a load from the handlebar 

and recording the corresponding strain gauge output.  These corresponding 

values were plotted on a graph and a linear relationship was established 

between the two values.   

 

5.6.2. Saddle Force 

The force exerted on the saddle is also measured through the use of strain 

gauges placed in a full Wheatstone bridge configuration placed on the stem of 

the seat tube - again connected to a voltage to frequency converter and 

connected to the signal receiver.  The output from the strain gauges is, once 

more, a copy of the amplified strain.  The strain gauges were calibrated using a 

load (weights) applied to the seat and the corresponding strain gauge output was 

plotted against this value.  This enabled a linear relationship to be established 

between the load and the strain gauge outputs. 

 

5.6.3. Handlebar and Saddle Acceleration  

In order to measure the handlebar and saddle acceleration, accelerometers were 

positioned above the handlebars and below the seat post; positions that were 

selected as they lie directly above the front and rear suspension system.  Once the 

acceleration has been recorded it is consequently possible to calculate the velocity 

and displacement of the bike at these points.    

 

5.6.4. Rotational Velocity of the Crank Arms and Front Roller 

The velocity the crank arms and front roller are recorded to indicate if a rider’s 

cadence alters as a result of cycling on a fully suspended compared to a hardtail bike.  

The rotational velocity of the crank arm is measured by means of an aluminium disk 

consisting of 52 slots which pass through an optical sensor to accurately measure the 



179 
 

velocity.  A second identical disk is placed on the outside of the front roller with a 

corresponding optical sensor to measure the velocity of the roller.   

 

5.6.5. Pedal, Front Bump and Rear Bump Position  

Light sensors display the position of the bumps on the roller relative to the other 

mechanical measurements.  The light sensors used to indicate the front and rear 

bump position at a given time are placed directly below the middle of the front and 

rear wheel.  A metallic strip placed directly below the bumps displays a signal as it 

passes the light sensor - enabling the position to be recorded.  In a similar way, a 

magnetic sensor is used to indicate pedal position - a magnetic switch produces a 

signal after each revolution of the crank.   

5.6.6. Data Output  

All of the readings obtained from the measurements were displayed on a laptop via an 

A to D converter.  A program was developed using Lab View to record the data and 

display the results as each test was run.  A sampling frequency of 100 Hz was used 

as this frequency ensured that precise measurements could be recorded.  Analysis of 

the results was compiled through the use of Matlab and Excel which were used to 

produce statistical information on all of the results obtained through testing.  

 

5.7. Physiological Measurements 

 

5.7.1. Heart Rate  

Heart rate is monitored and recorded (using a polar heart rate monitor - S710) every 

45 s into each minute of every test.  The mean value of the last two recordings was 

taken as the representative value for each test.  For full details of heart rate refer to 

section 4.3.4.1.   
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5.7.2. Oxygen Consumption (VO2)   

Similar to the subjects being tested on the roller rig, oxygen consumption is measured 

using the Douglas Bag technique, as illustrated in Figure 5-10.  Expired air samples 

are collected for four, sixty second intervals (third, fourth, tenth and eleventh minutes).  

The bag of expired air is analysed immediately after collection for O2 and CO2 by a 

Servomex 1440 analyser - the total air volume in the Douglas bag is measured using 

a Harvard dry gas meter. For full details of oxygen consumption refer to section 

4.3.4.2.   

 

 

5.8. Psychological Measurements 

 

5.8.1. Rating of Perceived Exertion (RPE) 

Each subject's RPE was recorded at the third, sixth and ninth minute of each 

test.  For full details of RPE refer to section 4.3.5.1.   

Figure 5-10: A subject with a mouth piece 

connected to a Douglas bag 
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5.8.2. Comfort Rating 

The comfort rating scale used for testing on the rolling road rig is identical to that used 

for testing on the roller rig (see section 4.3.5.2 for full details).  Each subject’s comfort 

level was recorded at the third, sixth and ninth minute of each test.   

 

5.9. Run Down Test 

 

5.9.1. Method 

Similar to the methodology of the roller rig experiments, a run down test was 

carried out on the rolling road rig to indicate the deceleration of the rolling road 

track.  The run down test was carried out on the hardtail bike on the smooth and 

rough rolling road, and on the fully suspended bike on both the smooth and 

rough rolling road.  The results from each run down test were compared to 

ascertain if equivalent run down times were reached for the four cycling 

conditions. 

 

One subject, aged twenty three and weighing seventy kilograms, carried out the 

run down tests on both the fully suspended and hardtail bike on the rolling road 

rig with the smooth and rough surface.  The subject was instructed to ride each 

bike on both the smooth surface and the surface with bumps attached at a 

velocity of 10 km/h.  The subject was then instructed to refrain from pedalling and 

to allow the bike to come to rest whilst holding the pedals stationary and 

remaining seated.  The decrease in the velocity of the rolling road was 

electronically recorded for each test against the time it took for this decrease, as 

displayed in Figures 5-11 and 5-12.  The run down test was conducted to 

establish if the run down times for each bike on both surface types of the rolling 

road rig are comparable to the rundown times for each bike on the smooth and 

rough surfaced roller rig. 
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5.9.2. Run Down Test Results 

Figures 5-11 and 5-12 illustrate the run down times obtained for the subject 

cycling on the hardtail and fully suspended bike on the smooth and rough 

surfaced rolling road rig respectively.  The graphs (Figures 5-11 and 5-12) have 

comparable gradients, representing the deceleration of both the hardtail and fully 

suspended bikes on each of the two cycling surfaces on the rolling road rig.  The 

gradients allow an estimate of the resistance force to be calculated.   

 

The resistance force of the fully suspended and hardtail bike on the rough 

surfaced was calculated (as in section 4.4.2.) to be 42.5 N and 41.8 N 

respectively, and 41 N for both bike types on the smooth surfaced rolling road rig.  

These results indicate that the force resistance of the hardtail bike is 1.6 % 

greater than the fully suspended bike on the rough surface.   

 

Figure 5-11: Run down test results for the hardtail bike 
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Figure 5-12: Run down results for the fully suspended bike 

 

5.10. Comparative Test 

 

5.10.1. Subjects  

The experimental protocol was reviewed and approved by the ethics committee at 

Glasgow University.  Each subject was informed of the purpose and risks of the study 

and completed a physical activity questionnaire and signed a consent form prior to 

undertaking any tests.  All subjects were advised that they could withdraw from testing 

at any time.  Eight male subjects (average age 26 ± 2.37 years with an average 

weight of 70.8 kg ± 10.2) were chosen to participate in the experiments: all were in 

good health at the time of testing and carried out at least two aerobic training sessions 

per week.  All had ridden mountain bikes previously - some at competition level.   

 

5.10.2. Method 

Each subject undertook a total of four tests: cycling on the fully suspended bike on the 

surface with no bumps; cycling on the hardtail bike on the surface with no bumps; 

cycling on the fully suspended bike on the surface with bumps; and cycling on the 

hardtail bike on the surface with bumps.  Each subject carried out the tests on two 
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separate days: two on one day, and two on another.  The order in which each subject 

was tested was randomised to prevent any bias.  In order to ensure that the tests 

were repeatable, each subject completed testing at the same time of day for each 

subsequent visit to the laboratory.  Subjects were instructed to refrain from exercise 

for at least twenty four hours prior to testing, and instructed not to eat for up to three 

hours prior to testing in order to reduce the chance of these factors affecting the 

results.  Each subject’s seat height was determined at the initial visit to the laboratory 

and was maintained for all subsequent trials - as was the rear gear of their choice.  

Tyre pressure was kept at 40 psi throughout all the tests.   

 

On each visit to the laboratory each subject completed a four-minute running warm up 

on a regular treadmill at 8 km/h.  Following this, a 6 min  familiarisation test was 

completed which accustomed the subject to the testing conditions - during this time 

the subject was asked to cycle at a speed of 8 km/h and to maintain this speed for the 

duration of the 12 min test.  As preliminary tests carried out on the roller rig 

highlighted that no familiarisation effect occurred after subsequent testing using a rig 

under laboratory conditions, a six min familiarisation period was deemed sufficient.  

The heart rate of the cyclists was monitored during the familiarisation test to ensure 

that each subject was cycling at a sub-maximal level. 

 

Following the completion of the warm-up and familiarisation tests, a subject was 

instructed to wait until their heart rate returned to an ‘at rest level’ before commencing 

the experiment.  Subjects were instructed to remain seated throughout the duration of 

the test and to maintain their speed at 8 km/h.  During the 10 s of the test, the subject 

was instructed to remain motionless so that zero readings from the mechanical 

instrumentation could be recorded.  After 12 mins the subject was instructed to 

decelerate until the bike came to rest and to remain motionless for a further 10 s 

whilst the zero readings were once again recorded.   
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5.11. Physiological and Psychological Results  

 

The physiological and psychological results for VO2, heart rate, RPE and comfort 

rating are presented in this chapter.  The analysis of the results sought to establish 

whether there was a statistically significant difference between the physiological and 

psychological results recorded for a subject whilst cycling on the hardtail bike 

compared to the fully suspended bike on the rolling road rig.   

 

5.11.1. Measurement Stability 

As with the test results obtained from the roller rig, it was also important to ascertain 

that each subject’s physiology had met steady state conditions during tests on the 

rolling road rig.  Table 5-3 displays the results of the statistical analysis (ANOVA tests) 

performed on the subjects’ physiological and psychological results to ascertain if they 

are statistically valid.   A detailed description of the repeated measures ANOVA test is 

outlined in section 4.7.1.2 of the current study.  Table 5-3 displays the results of the 

repeated measures analysis of variance, performed on the subjects’ measurements of 

VO2 and heart rate at the fifth, sixth, ninth and tenth minute of testing on both the 

hardtail and fully suspended bike, and the RPE and comfort level ratings at the third, 

sixth and tenth minute of testing - also on both the hardtail and fully suspended bike.  

The results determine the extent to which steady state conditions were achieved 

during each test.   

 

  



186 
 

Table 5-3: Analysis of stability of measurements during tests 

                

      Average across participants at:  

Measure  Bike     P  3 min  5 min  6 min  9 min  10 min 

VO2 (ml _ kg
-1

 _ min
-1

) HT  0.87   31.9 31.8 32.1 31.7 

  SU 0.46   31.7 31.8 32.5 31.7 

Heart rate (beats _ min
-1

)  HT <0.001   130 130.3 131.5 133.3 

  SU <0.001   128.9 131.3 132.8 132.8 

RPE  HT 0.008 10.9   11.3   11.8 

  SU 0.084 10   10.6   10.5 

Comfort  HT 0.044 3.1   2.9   2.8 

  SU 0.025 3.6   3.4   3.5 

  

Table 5-3 indicates that there is no significant difference for subjects’ VO2 

measurements whilst cycling on the hardtail and fully suspended bike, indicating that 

steady state conditions have been met.  Subjects’ measurements for heart rate -

recorded whilst cycling on the hardtail and fully suspended bike - show that a 

significant difference is apparent, indicating that steady state conditions have not 

been met.  However, as the effect size is small, this is representative of steady state 

conditions having been met.   

 

Table 5-3 also shows that the RPE ratings increase as the test progresses, as 

subjects feel that they are cycling harder.  Simultaneously, comfort ratings decrease; a 

result of the subject becoming slightly more uncomfortable as the test proceeds (in 

particular on the hardtail bike).  A single representative test value was required for 

comparisons and analysis of RPE and comfort rating levels, therefore the mean of the 

three readings (taken during the third, sixth and tenth minutes) was used for this 

purpose.   

 

5.11.2. Statistical Significance of Results 

Similar to the results obtained from the roller rig tests, a null hypothesis two-tailed 

dependent paired t-test was also applied to the results obtained from the rolling road 
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rig experiments in order to calculate the probability that any differences measured 

between the hardtail and fully suspended bikes are purely the result of chance.  The 

results of the null hypothesis two-tailed dependent paired t-test are displayed in Table 

5-4.  Low probabilities (p values less than 0.05) indicate that the measured effect in 

the sample (of eight subjects) is evidence of a real significance in results.  The effect 

size indicates the size of the differences (a detailed description of the dependent t 

test, probabilities, and effect size is outlined in section 4.7.3).   

 

Table 5-4: The difference between the means of the subjects’ VO2, heart rate, 

RPE and comfort rating (whilst cycling on the smooth surface and surface with 

bumps) obtained by comparing the hardtail and fully suspended bikes.   

 VO2 Heart rate RPE Comfort 

  (ml/kg/min) (beats/min)   

      

Test series 1 (bumps)     

Sample size 8 8 8 8 

Mean of differences 0.6 1 1.5 -0.8 

Standard deviation 1.25 2.52 1.8 2 

P-value 0.25 0.31 0.05 0.33 

Effect size 0.45 0.38 0.83 -0.37 

     

Test series 1 ( no bumps)     

Sample size 8 8 8 8 

Mean of differences -0.6 -1.4 0.5 -0.4 

Standard deviation 1.38 4.63 1.68 1.44 

P-value 0.26 0.43 0.47 0.44 

Effect size -0.48 -0.41 0.05 0.34 

N.B.: All differences are obtained through subtracting (-) the means obtained from cycling on the fully 

suspended bike from the means obtained from cycling on the hardtail bike.   

 

Table 5-4 displays the difference between the means of the subjects’ VO2, heart rate, 

RPE and comfort ratings for the hardtail and fully suspended bike on both the smooth 

surface and the surface with bumps for comparison.  The effect size between each 
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pair of means was calculated as were the p values.  As all of the calculated p values 

are greater than 0.05 (with the exception of the mean of the subjects’ RPE during the 

test on the surface with bumps which is equal to 0.05), this indicates that no statistical 

significant difference is found between riding a fully suspended bike and a hardtail 

bike on the rolling road rig on either surface type.   

 

When more than one variable is considered in the analysis of results, a dependent t-

test is no longer valid.  When two independent variables are to be investigated - in this 

case the type of suspension system and the road surface - a factorial ANOVA 

calculation must be used.  The p values calculated from the subjects’ VO2, heart rate, 

RPE and comfort ratings from this two-way factorial ANOVA calculation are displayed 

in Table 5-5.  The results show that there are no significant statistical differences 

between cycling on a bike with a hardtail or full suspension system as all p values are 

greater than 0.05.  Similarly, no statistically significant difference is apparent as a 

result of the interaction of the suspension system and the track surface, as the p 

values are all greater than 0.05.  Conversely, a significant difference is apparent 

between cycling on a smooth and rough surface for measurements of VO2, RPE and 

comfort rating, obtaining p values 0.018; 0.021; and 0.018 respectively.    

 

Table 5-5: p values from the ANOVA test considering the type of suspension and 

type of surface as variables. 

 p Values 

VO2 
Heart 
Rate RPE Comfort 

True variance due to the Suspension 
System (hardtail or fully suspended) 
 

0.987 0.956 0.096 0.195 

True variance due to the track 
surface (bumps or no bumps) 
 

0.018 0.367 0.021 0.018 

True variance due to the interaction 
of Suspension System and the track 
surface 

0.594 0.751 0.367 0.733 
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Table 5-6: Mean values for the subjects’ VO2, heart rate, RPE and comfort rating. 

Suspension  Variable Bumps  No Bumps 

       

Hardtail VO2 (ml/kg/min)  33.54 30.26 

bicycle Heart rate (beats/min)  133.53 129 

  RPE  12.29 10.38 

  Comfort  2.33 3.54 

       

Full VO2 (ml/kg/min)  32.98 30.86 

suspension Heart rate (beats/min)  132.56 130.38 

bicycle RPE  10.79 9.92 

  Comfort  3.08 3.96 

 

Table 5-6 indicates the mean values gained for both the fully suspended and 

hardtail system for all of the physiology and psychology results (of VO2, heart 

rate, RPE and comfort rating).  The physiology and psychology results from the 

series of tests for subjects cycling on the hardtail and fully suspended bikes on 

both surface types on the rolling road rig are plotted in Figures 5-13 to 5-16.  

Each point on the graph represents one participant; the values recorded on the 

vertical axis are for the hardtail bike, and those recorded on the horizontal axis 

are for the fully suspended bike.  The points above the equality line on the scatter 

graphs indicate the higher readings obtained for the hardtail bike.   
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Figure 5-13: Comparison of VO2 results 

for the hardtail and fully suspended bike 

on both surface types on the rolling 

road rig. 

Figure 5-14: Comparison of heart 

rate results for the hardtail and fully 

suspended bike on both surface 

types on the rolling road rig. 

Figure 5-15: Comparison of RPE 

results for the hardtail and fully 

suspended bike on both surface 

types on the rolling road rig. 

Figure 5-16: Comparison of 

comfort rating results for the 

hardtail and fully suspended 

bike on both surface types on 

the rolling road rig. 
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Figures 5-13 and 5-14 coincide with the findings displayed in Tables 5-3, 5-4, 5-5 and 

5-6: there is no significant statistical difference between cycling on a hardtail or fully 

suspended bike on a smooth surface or on a surface with bumps.  The points 

(representing the participants of the tests) show no clear bias to either suspension 

system for the measurements of VO2 and heart rate.  Conversely, Figure 5-15 

highlights that RPE is greater for subjects cycling on the hardtail bike, thus in this 

respect the fully suspended bike presents an advantage over the hardtail.  

Additionally, as highlighted in Figure 5-16, subjects rated cycling on the fully 

suspended bike as more comfortable than cycling on the hardtail bike.   

 

The physiology and psychology results from the roller rig tests and the rolling road rig 

tests are plotted in Figures 5-18 to 5-19 in order to highlight any similarities or 

differences between the results.   Each point represents one participant:  the values 

for the hardtail bike are recorded on the vertical axis, and the values for the full 

suspension bike are recorded on the horizontal axis.  Points above the equality line 

indicate the higher readings for the hardtail bike. 
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Figure 5-17: Comparison of VO2 

results for the hardtail and fully 

suspended bike for the rolling road rig 

compared to the roller rig. 

Figure 5-18: Comparison of heart 

rate results for the hardtail and fully 
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Figures 5-18 to 5-19 allow for a clear comparison of results between testing on the 

roller rig and rolling road rig.  The findings for VO2 and heart rate (Figures 5-18 and 5-

17) display a clear difference between the roller rig and the rolling road rig: the tests 

on the rolling road rig do not highlight any significant differences between the hardtail 

and fully suspended bike on either surface (bumps or no bumps), and the tests on the 

roller rig highlight that all subjects riding the hardtail bike (on the surface with bumps) 

recorded a higher VO2 and heart rate level.  The findings relating to RPE and comfort - 

Figures 5-20 and 5-19 respectively - highlight that the majority of all participants in 

both rig tests perceived their RPE to be higher, and their comfort rating lower, whilst 

cycling on the hardtail bike, thus signifying that the fully suspended bike presents an 

advantage to the rider in terms of RPE and comfort.   
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Figure 5-20: Comparison of comfort 

rating results for the hardtail and 

fully suspended bike for the rolling 

road rig compared to the roller rig. 

 

Figure 5-19: Comparison of RPE 

results for the hardtail and fully 

suspended bike for the rolling road 

rig compared to the roller rig. 



193 
 

5.12. Mechanical Results 

 

The mechanical results from the tests on the rolling road rig on both the smooth 

and rough surface are displayed in tabulated form (Tables 5-7 to 5-19).  The 

results display the average maximum and minimum values for all eight test 

subjects and were analysed using Matlab and Excel.  Similar to the mechanical 

results from the roller rig tests, only those mechanical results deemed most 

relevant from the rolling road rig tests are presented in this chapter for analysis – 

the full set of mechanical results can be viewed in Appendix C.   

 

As with the results obtained from the physiology and psychology tests, a null 

hypothesis two-tailed dependent paired t-test was also applied to the mechanical 

results from the rolling road rig tests to calculate the probability that the differences 

measured between the hardtail and full suspension bikes are purely the result of 

chance.  The standard deviation and p values obtained from this test are displayed in 

Tables 5-7 to 5-19.  The tables also depict the average minimum and maximum 

values for the eight subjects; the average mean for the subjects; and the average 

range between the minimum and maximum values.  The average maximum and 

minimum values are calculated by taking the average of the largest and smallest 

turning points of the graphs (produced by the mechanical instrumentation throughout 

the tests) respectively.  All values displayed are calculated for the tests conducted on 

the hardtail bike on both the smooth and rough surface, and for the tests carried out 

on the fully suspended bike on the smooth surface and on the surface with bumps.  

The results obtained from the two suspension systems are also compared and 

displayed in the Tables to indicate which bike gives the optimal performance on each 

surface.  This is achieved by subtracting the means obtained from cycling on the fully 

suspended bike from the means obtained from cycling on the hardtail bike.   

 

Table 5-7 displays the findings relating to the power applied to the crank by the rider 

for both the hardtail and fully suspended bikes; this is calculated by multiplying the 

crank force measurements, obtained from the strain gauges, with the rotational 
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velocity of the crank, measured via the optical sensor.  The only statistically significant 

finding (with a p value of less than 0.05) from Table 5-7 relates to the difference in 

mean power between the two bikes when cycling on the smooth surface: the finding 

shows that cycling on the hardtail bike provides a slight advantage to the rider when 

cycling on the rolling road rig with a smooth surface.  As all other results produced p 

values greater than 0.05, this renders these results statistically insignificant.   

       

Table 5-7:  Power through the Crank 

 

Track type:   Smooth     Bumps  

Suspension type:  Hardtail  Full Suspension         Hardtail            Full Suspension 

Power (W) 

 

Average minimum 47.2  50.2   39.3  40.3 

   s=10.32  s=9.06   s=6.89   s=7.51 

Average maximum 79  81.7   129  127.1 

   s=6.4  s=7.02   s=6.97  s=4.97 

Range max/min  31.8  31.5   89.7  86.8  

   s=6.69    s=6.87   s=7.07  s=7.99 

Mean power  68.1  70.5   68.7  68 

   s=5.76  s=5.56   s=6.66  s=7.67 

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  -3 (-6.4%)*   -1 (-2.5%)* 

    s=6.9    P=0.258   s=9.83 P=0.783  

Difference in avg Max   -2.7 (-3.4%)*   1.9 (1.5%)* 

    s=5.34 P=0.195    s=10.03 P=0.607 

Diff in range max/min  0.294 (0.9%)*    2.9 (3.24%)* 

    s=3.15 P=0.799    s=13.52 P=0.563 

Diff in mean power  -2.4 (-3.5%)*   0.7 (1%)* 

    s=2.61 P=0.035    s=11.07 P=0.869 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 
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Table 5-8: Velocity of Crank 

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension  Hardtail  Full Suspension 

Velocity (m/s) 

 

Average minimum 0.31  0.32   0.272  0.27 

   s=0.045  s=0.037   s=0.025  s=0.027 

Average maximum 0.357  0.36   0.55  0.547 

  s=0.018  s=0.017   s=0.01  s=0.011 

Add range  0.046  0.038   0.274  0.277 

   s=0.03  s=0.02   s=0.023  s=0.024 

Mean velocity  0.36  0.36   0.366  0.36   

   s=0.01  s=0.007   s=0.012  s=0.023 

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  -0.01 (-3.1%)*   0.002 (0.7%)* 

    s=0.044 P=0.553   s=0.04 P=0.89 

Difference in avg Max   -0.002 (-0.5%)*   -0.001 (-0.2%)* 

    s=0.024 P=0.839   s=0.011 P=0.76 

Difference in avg Range  0.008 (17.3%)*   -0.003 (-1.15%)* 

    s=0.02 P=0.376    s=0.035 P=0.808 

Diff in mean velocity  0.001 (0.3%)*    0.008 (2.2%)* 

    s=0.007 P=0.699   s=0.024 P=0.38 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 

 

The results for the velocity of the cranks of both the hardtail and fully suspended bikes 

are displayed in Table 5-8.  As the p values for all of the results are greater than 0.05, 

this signifies that none of the results are statistically significant.   

 

Table 5-9 displays the results for the average maximum and minimum force 

exerted on the crank; the range between these average values; the average 

velocity of the crank force; and the differences between these values for the 

hardtail and fully suspended bike on both surface types.  The findings illustrate 

that whilst cycling on the smooth surface, the hardtail bike presents a slight 
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advantage to the rider over the fully suspended bike: the average difference in 

minimum, maximum and mean force is 3.5 %, 2.9 % and 3.9 % less 

(respectively) when cycling on the hardtail bike, compared to the fully suspended 

bike, on the smooth surface.  These results have p values less than 0.05, and 

are consequently rendered statistically significant.   The results for the magnitude 

of force exerted on the crank for the tests on the surface with bumps do not 

follow the same trend; the hardtail bike produces a lower average mean and 

average minimum force. However, the results for the difference in the average 

maximum force and the difference in the average force range exerted on the 

crank (producing higher values for the hardtail bike of 4.1 %; 7.4 % respectively) 

suggest that there is no benefit to using either suspension system as all of the 

results are deemed statistically insignificant due to the high p values obtained 

from the results.  It would be expected that the average force would be less on 

the smooth surface compared to the rough road, however this is not the case in 

these results.   
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Table 5-9: Force exerted the Crank 

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension   Hardtail   Full Suspension 

Force (N) 

 

Average minimum 151.1  156.4   144.8  148.1 

   s=17.98  s=18.68   s=24.07  s=16.61 

Average maximum 221.5  228   236.2  232.1 

   s=13.04  s=15.79   s=13.33  s=8.03 

Total avg force Range 70.4  71.6   91.4  84 

   s=12.73  s=15.58   s=16.52  s=16.59 

Mean Force  188.4  195.7   187.6  189.5 

   s=13.41  s=14.75   s=17.89  s=13.37 

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  -5.3 (-3.5%)*   -3.3 (-2.3%)* 

    s=4.56 P=0.014    s=36.69 P=0.806 

Difference in avg Max   -6.5 (-2.9%)    4.1 (1.7%)* 

    s=6.25 P=0.022    s=19.62 P=0.577 

Diff in avg force range  -1.2 (-1.7%) *   7.4 (8%)* 

    s=4.78 P=0.491    s=26.23 P=0.453 

Diff in mean force  -7.3 (-3.9%)*   -1.9 (-1%)* 

    s=4.74 P=0.004    s=28.15 P=0.857  

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 
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The amount of force exerted on the pedals of the hardtail and fully suspended 

bike (on a smooth surface) by one subject is illustrated in Figures 5-21 and 5-22.  

The red line indicates the output from the pedal indicator which is placed at the 

base of the pedal stroke, as illustrated in Figure 5-23.  The maximum force is 

applied to the pedals at this pedal position.  Following this pedal position, the 

amount of force that is applied to the pedals is reduced until the pedals once 

again reach a horizontal position - where the rider exerts the minimum force. 

 

From the horizontal position the force is gradually increased until another 

maximum peak is reached when the opposite pedals again reach a vertical 

position.   Figures 5-21 and 5-22 demonstrate the variation in pedal stroke for the 

subject; a more even pedal stroke would consequently present less variation 

between the maximum and minimum force which could potentially reduce the  
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bobbing effect on a fully suspended bike.  The use of 

Shimano Pedalling Dynamics (SPD) pedals could aid 

in levelling the pedal stroke to some extent as the 

rider can pull up and push down on the pedal.  

However, these pedals were not used for the 

experiments on the rolling road rig as specialised 

footwear was required in order to attach the pedals; 

subsequently, subjects used toe grips for all 

experiments.    

 

Figures 5-24 and 5-25 illustrate the amount of force exerted on the pedals by one 

individual subject on the rolling road rig with a rough surface. 

 

 

       

 

 

 

 

From a comparison of Figures 5-24 and 5-25 it is evident that the amount of force 

exerted on the crank for the subject cycling on the fully suspended bike is less 

than when cycling on the hardtail bike.  For the subject to maintain a constant 

speed on the hardtail bike, the amount of force applied to the crank must be 

continually adjusted due to the effect of cycling over the bumps.  In contrast, the 

rear suspension of the fully suspended bike aids in absorbing some of the bump 
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impact so that the rider can maintain a more constant pedal stroke.  This finding 

may be a contributing factor to the subjects citing higher RPE ratings for cycling 

on the fully suspended bike compared to the hardtail bike on the rolling road rig 

with bumps.  In comparing these findings to those from the roller rig, it is 

apparent that a cyclist is able to maintain a smoother pedal stroke on the rolling 

road rig compared to the roller rig.  This is due to the smaller, more realistic 

bumps on the rolling road rig compared to those on the roller rig.  

 

Table 5-10: Vertical force exerted on the Saddle   

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension Hardtail  Full Suspension 

Force (N) 

 

Average minimum 237.6  169.4   -111.1  -3.5 

   s=115.61 s=104.1   s=78.91  s=111.78 

Average maximum 371.5  443.2   750  610.6 

   s=120.1  s=183.4   s=184.64 s=197.28 

Total avg force Range 133.8  273.8   861.4  614.1 

   s=49.11  s=120.7   s=178.77 s=203.57 

Mean Force  288.8  296.8   285.1  321.1 

   s=120.55 s=127.79  s=101.1  s=112.05 

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  68.2 (28.7%)*   -107.6 (-96.8%)* 

    s=49.63 P=0.006   s=112.6 P=0.031 

Difference in avg Max   -71.7 (-19.3%)*   139.7 (18.6%)* 

    s=73.48 P=0.028   s=311.96 P=0.246 

Diff in avg force range  -140 (-104.6%)*   247.2 (28.7%)* 

    s=98.28 P=0.005   s=104.9 P=0.001 

Diff in mean force  -8 (-2.8%)*   -36 (-12.6%)* 

    s=23.54 P=0.368   s=161.74 P=0.216 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 
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The results for the vertical force exerted on the saddle of both bikes on the 

smooth and bumpy surface of the rolling road rig are displayed in Table 5-10.  

The significant results from table 5-10 indicate that on the smooth surface, the 

minimum force exerted on the saddle is 28.7 % less for subjects cycling on the 

fully suspended bike.  Also the findings indicate that the maximum force exerted 

on the saddle is 19.3 % less for subjects cycling on the hardtail bike on the rolling 

road rig with the smooth surface.  Similarly, the force range exerted on the saddle 

is considerably less (by 130.1 %) whilst cycling on the hardtail bike on the 

smooth surface, thus suggesting that the hardtail bike presents an advantage to 

the cyclist whilst riding on the rolling road rig on the smooth surface.  For the 

results pertaining to the tests undertaken on the rolling road rig with bumps 

attached, the significant findings indicate that considerably less minimum force – 

128 N - is exerted on the saddle whilst cycling on the hardtail bike.  The findings 

from Table 5-10 also highlight that the force range exerted on the saddle is 33.6 

% less whilst cycling on the fully suspended bike on the bumpy surface.      

 

The average range in the amount of force exerted on the saddle highlights a 

considerable variation between the hardtail and fully suspended bike on the 

smooth surface (Table 5-10).  This could be a result of the bobbing effect 

experienced when pedalling.  
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Figures 5-26 and 5-27 illustrate how the rider’s weight shifts while pedalling.  The 

greatest amount of force exerted on the saddle coincides with the least amount 

of force exerted on the pedals.  This indicates that the maximum seat force 

occurs when the pedals are in a horizontal position.  Figure 5-26 illustrates that a 

greater amount of force is exerted on the saddle of the fully suspended bike 

compared to the hardtail bike on the smooth surface. 

 

The analysis of the results for the amount of force exerted on the saddle, from 

the experiments on the rough track of the rolling road rig, shows that the average 

minimum force exerted on the saddle of the fully suspended bike is 17.1 N, and 

the average minimum force is -111.1 N for the hardtail bike.  Although a negative 

force is not possible this indicates that when the rider leaves the seat after 

contact with a bump, the force causes the seat post to extend, thus resulting in a 

negative force.  From analysis of the results obtained for each individual subject 

for the experiments on the rolling road rig with bumps, it was found that six of the 

eight subjects applied a greater amount of force on the saddle of the hardtail bike 

compared to the fully suspended bike.  For the two remaining subjects, the 

opposite was true.  This finding highlights the difference in riding styles adopted 
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by cyclists - even in this small sample.  The range in average force exerted on 

the saddle also highlighted interesting results:  all subjects, with the exception of 

one, experienced a lower force range (approximately 40 % lower) when cycling 

on the fully suspended bike.  The subject, whose results did not follow this 

pattern, experienced a greater average force range on the fully suspended 

system (908.15 N) compared to the hardtail bike (658.55 N).  This subject was 

the heaviest cyclist to undertake testing, and through studying video footage, 

seemed to experience more bobbing than the other subjects, which once again 

highlights the difference in the riding styles between subjects.   

 

 

 

 

 

 

 

From analysis of Figures 5-28 and 5-29, which display the force exerted on the 

pedals and saddle of the fully suspended bike on the rough road, it is evident that 

the wheel impacting with the bumps results in the majority of the changes in the 

amount of force exerted on the saddle.  When the front wheel impacts with a 

bump (F bump) a number of small positive and negative vibrations occur as a 

result of the rear suspension moving slightly.  It is also evident that when the rear 

wheel impacts with a bump (R bump), the greatest amount of force is exerted on 
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the seat; a negative force occurs directly after this - a result of the seat post 

extending as the rider leaves the saddle.   
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The force exerted on the pedals and saddle of the hardtail bike on the rough 

surfaced rolling road rig is illustrated in Figures 5-30 and 5-31.  The graphs 

demonstrate that when the front wheel impacts with a bump, the cyclist raises 

slightly from the saddle before returning to the seated position.  When the rear 

wheel impacts with a bump, a large negative value of almost -250 N is displayed 

on the graph which represents the force exerted on the saddle as the cyclist 

leaves the seat.  Following this, the cyclist returns to the seated position before 

once again rising slightly from the saddle.  Figures 5-30 and 5-31 highlight that a 

greater amount of force is exerted on the saddle and pedals of the hardtail bike 

compared to the fully suspended bike.  This specifies the reason subjects 

experienced more discomfort when cycling on the hardtail bike compared to the 

fully suspended bike.   

 

Tables 5-11 and 5-12 display the findings for the vertical force applied to the left 

and right handlebars respectively; that is the amount of force the cyclists exerts 
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on the handlebars.  The three significant findings (with p values greater than 

0.05) relating to the left handlebar are concerned with the minimum vertical force; 

vertical force range; and mean vertical force applied to the left handlebar during 

tests on the rolling road rig with the smooth surface.  Table 5-11 indicates that a 

lower minimum vertical force is exerted on the left handlebar of the hardtail bike, 

compared to the fully suspended bike by 17.3 N, whilst cycling on the smooth 

surface.  Similarly, the range of vertical force applied to the left handlebar is 16.7 

% less for subjects cycling on the hardtail bike.  However, the results pertaining 

to the mean force highlight that twenty one percent less vertical force is exerted 

on the left handlebar whilst cycling on the fully suspended bike on the bumpy 

surface.            

 

Tables 5-11 to 5-14 show the results relating to the force exerted on the 

handlebars.  The recorded measurements were: the vertical force exerted on the 

right and left handlebar of both bikes; and the horizontal force exerted on the 

right and left handlebar of both bikes.  All subjects were instructed to keep their 

hands placed on the handlebars for the duration of the tests - with the exception 

of when indicating RPE and comfort scale ratings- where the grip was released 

for a short time period only.  

 

The amount of vertical force exerted on the handlebars was measured by strain 

gauges.  The significant results from the tests indicate that 50.7 % less minimum 

and 11.7 % less mean vertical force is exerted on the right handlebar of the fully 

suspended bike whilst undertaking tests on the rolling road rig with the smooth 

surface.  Conversely, 19.6 % less vertical force range is exerted on the right 

handlebar of the hardtail bike for tests conducted on the smooth surface.   
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Table 5-11: Vertical force exerted on left Handlebar 

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension  Hardtail  Full Suspension 

Force (N) 

 

Average minimum -2.9  -20.2   -103.6  -104.4 

   s=27.36  s=24.42   s=16.75  s=15.68 

Average maximum 110.6  112.4   171.4  174.6 

   s=25.48  s=29.78   s=33.92  s=38.55 

Total avg force Range 113.6  132.6   275  279 

   s=28.94  s=33.57   s=46.56  s=47.46 

Mean force  45  35.5   47.6  42.4 

   s=20.21  s=21.36   s=24.48  s=18.53 

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  17.3 (-558.5%)*   -1.8 (1.7%)* 

    s=8.96 P=0.001    s=15.4 P=0.877 

Difference in avg Max   -1.7 (-1.6%)*   -0.9 (-0.5%)* 

    s=15.87 P=0.767   s=44.04 P=0.956 

Diff in avg force range  -19 (-16.8%)*   0.9 (0.33%)* 

    s=21.64 P=0.042   s=44.06 P=0.955 

Diff in mean force  9.5 (21.0%)*   6.4 (13.4%)* 

    s=8.59 P=0.017    s=37.32 P=0.644 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 
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Table 5-12: Vertical force exerted on the right Handlebar 

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension  Hardtail  Full Suspension 

Force (N) 

 

Average minimum 30.8  15.2   -47.7  -48 

   s=16.5  s=21.64   s=19.63  s=13.73 

Average maximum 137  142.1   193.2  170.8 

   s=17.08  s=27.79   s=35.75  s=29.36 

Total avg force range 106.1  126.9   240.9  218.8 

   s=18.09  s=19.88   s=36.15  s=37.03 

Mean force  82.9  73.2   79.8  68.8 

   s=16.22  s=22.85   s=23.54  s=18.7 

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  15.6 (50.7%)*   0.3 (0.6%)* 

    s=13.83 P=0.015   s=27.65 P=0.976 

Difference in avg Max   -5.2 (-3.8%) *   22.4 (11.6%)* 

    s=13.43 P=0.314   s=46.1 P=0.211 

Diff in avg force range  -20.8 (-19.6%)*   22.1 (9.17%)* 

    s=12.39 P=0.002   s=49.09 P=0.244 

Diff in mean force  9.7 (11.7%)*   10.9 (13.7%)* 

    s=10.74 P=0.038   s=38.23P =0.445 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 

 

The results obtained for the amount of vertical force exerted on the left handlebar 

demonstrates that, on average, 9.5 N more force is exerted on the left handlebar 

of the hardtail bike compared to the fully suspended bike on the smooth track 

(Table 5-11).  The results obtained from each individual subject signified that a 

greater average force is exerted on the left handlebar of the hardtail bike, ranging 

from 0.66 N to 27.89 N.  

 

Furthermore, the subjects’ individual results for the force exerted on the left 

handlebar indicate that, although the majority of subjects experienced a 
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significantly higher average force range whilst cycling on the fully suspended bike 

on the smooth surface, two of the subjects experienced a higher force range 

whilst cycling on the fully suspended system; one by a difference of 20.78 N, and 

the other by a difference of 0.58 N.  Interestingly, the same two subjects were 

also recorded as exerting less force on the saddle than the other subjects.   

 

In comparing the results for the amount of force exerted on the right handlebar of 

the bikes to the amount of force exerted on the left handlebar of the bikes on the 

smooth surface, it was found that the amount of force exerted on the right 

handlebars of both bikes was an average 30 N greater than the force exerted on 

the left handlebars of both bikes.  An explanation for this could be that the 

subjects are all right-handed, or that the design of the rig encourages a subject to 

lean to one side more than the other.  On average, the amount of force exerted 

on the right handlebar of the hardtail bike is 9.7 N greater than that amount 

exerted on the right handlebar of the fully suspended bike whilst cycling on the 

smooth surface.  Similarly, on average, the amount of force exerted on the left 

handlebar of the hardtail bike is 9.5 N greater than that amount exerted on the 

left handlebar of the fully suspended bike whilst cycling on the smooth surface.  
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Figures 5-32 to 5-33 display the force exerted on the left and right handlebars of 

the hardtail and fully suspended bike.  The figures illustrate that the force exerted 

on the handlebars is directly proportional to the force applied to the pedals.  This 

is similar to the results obtained for the amount of force exerted on the saddle of 

the bikes which is also directly proportional to the force exerted on the crank.  As 

more force is applied to the pedals, the amount of force exerted on the 

handlebars is reduced; the reverse of this is also true.  Figures 5-32 to 5-33 

indicate that the subject leans from side to side when pedalling - illustrated by the 

maximum and minimum turning points of the graphs which occur at different time 

intervals.   
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Figures 5-36 to 5-37 display the results for the amount of vertical force exerted 

on the left and right handlebars of the hardtail bike on the rough surface.  They 

demonstrate that the maximum and minimum turning points displayed in the 

graphs are a result of the front wheel impacting with the bump; an expected 

result as the handlebars are positioned at the front of the bike.  The minimum 

turning point results in a negative force for both the fully suspended and hardtail 
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Figure 5-38: Vertical force on 

the left handlebar for the 

hardtail bike on the rolling road 

rig on a rough surface. 

Figure 5-39: Vertical force on 

the right handlebar for the 

hardtail bike on the rolling road 

rig on a rough surface. 
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bike as the handlebars are lifted slightly when leaving the crest of the bump.  On 

average, the amount of force exerted on the right handlebar is greater than the 

amount of force exerted on the left handlebar of the hardtail bike, due to the 

subject being right handed.  The amount of force exerted on the handlebars of 

the hardtail bike is much less when the rear wheel impacts with the bump.   
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Figure 5-40: Vertical force on 

the left handlebar for the fully 

suspended bike on the rolling 

road rig on a rough surface. 
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Figures 5-40 to 5-43 display the results for the amount of vertical force exerted 

on the left and right handlebars of the fully suspended bike on the rough surface.   

The graphs show that the rear suspension absorbs some of the impact of the 

bump; this is particularly evident for the right handlebar.   

 

The horizontal force exerted on the left handlebar of the hardtail and fully 

suspended bike on the rolling road rig on the smooth surface and the surface 

with bumps is presented in Table 5-13.  The significant findings indicate that for 

tests on the smooth surface, 8.7 % less maximum horizontal force is exerted on 

the left handlebar of the hardtail bike in comparison to the fully suspended bike.  

The results for the mean horizontal force exerted on the left handlebar also 

indicates that less horizontal force (35.7 %) is applied to the left handlebar whilst 

cycling on the hardtail bike.  However, the results pertaining to the tests on the 

surface with bumps highlight that the fully suspended bike presents an 

advantage to the rider in terms of the minimum, maximum, and mean range of 

horizontal force that is exerted on the left handlebar.  15.2 %; 18 %; and 16.82 % 

less horizontal force is exerted on the left handlebar of the fully suspended bike 

for these results respectively.      
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the left handlebar for the fully 

suspended bike on the rolling 

road rig on a rough surface. 
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Table 5-13: Horizontal force exerted on the left Handlebar 

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension          Hardtail  Full Suspension 

Force (N) 

 

Average minimum -192.6  -179.5   -720  -610.7 

   s=91.06  s=90.26   s=20.63  s=78.22 

Average maximum 406.9  442.3   1034.6  848.9 

   s=68.14  s=75.7   s=56.65  s=22.76 

Total avg force range 599.6  621.9   1754.7  1459.6 

   s=71.08  s=108.11  s=56.58  s=67.77 

Mean force  90.9  123.3   100.4  127 

   s=73.97  s=70.6   s=53.96  s=35.11 

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  -13.1 (6.8%)*    -109.3 (15.2%)* 

    s=19.94 P=0.106   s=68.87 P=0.003 

Difference in avg Max   -35.4 (-8.7%)*   185.8 (18%)* 

    s=37.79 P=0.033   s=59.7 P=0.000 

Diff in avg force range  -22.3 (-3.7%)*   295.1 (16.82%)* 

    s=50.02 P=0.25    s=84.28 P=0.000 

Diff in mean force  -32.4 (-35.7%)*   -26.6 (-26.6%)* 

    s=13.68 P=0.000   s=70.84 P=0.032 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 

 

Table 5-14 displays the results relating to the horizontal force exerted on the right 

handlebar of both the hardtail and fully suspended bikes on the rolling road rig on 

the smooth and bumpy surface.  The significant findings from the experiments on 

the smooth surface relate to the maximum and range of horizontal force: 8.8 % 

less maximum force and 15.9 % less mean force is exerted on the right 

handlebar of the hardtail bike compared to the fully suspended bike.  Conversely, 

the experiments undertaken on the rolling road rig with bumps attached illustrate 

that the fully suspended bike provides an advantage to subjects.  18.7 % less 
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minimum horizontal force, 19.7 % less maximum horizontal force and 19.34 % 

less range of horizontal force is recorded for the right handlebar of the fully 

suspended bike on the rough surface.         

 

Table 5-14: Horizontal force exerted on the right Handlebar 

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension  Hardtail  Full Suspension 

Force (N) 

 

Average minimum -128.5  -120.5   -580.3  -471.6 

   s=37.75  s=46.97   s=26.11  s=35.46 

Average maximum 384.2  418.2   954.6  766.4 

   s=44.51  s=69.05   s=58.96  s=19.43 

Total avg force Range 512.7  538.7   1534.9  1238 

   s=59.32  s=90.37   s=67.15  s=35.42 

Mean force  129.3  149.9   144.5  151.3 

   s=25.2  s=24.15   s=23.21  s=22.63 

 

Hardtail subtract (-) Full Sus 

Difference in avg Min  -8 (6.2%)*    -108.7 (18.7%)* 

    s=22.92 P=0.355   s=11.22 P=0.000 

Difference in avg Max   -33.9 (-8.8%)*   188.2 (19.7%)* 

    s=33.37 P=0.024   s=59.43 P=0.000 

Diff in avg force range  -25.9 (-5.1%)*   296.9 (19.34%)* 

    s=47.97 P=0.170   s=81.26 P=0.000 

Diff in mean force  -20.6 (-15.9%)*   -6.8 (-4.7%)* 

    s=10.47 P=0.000   s=32.37 P=0.57 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 

 

Further analysis of the individual subjects’ results obtained for the amount of 

horizontal force exerted on the left handlebars of both bikes on a smooth surface 

indicate that the average range of horizontal force was found to be greater when 

cycling on the hardtail bike for two of the subjects, and greater when cycling on 

the fully suspended bike for the other eight subjects.  The amount of horizontal 
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force exerted on the right handlebar was measured to be, on average, 30 N 

greater than the amount of horizontal force exerted on the left handlebar for both 

bikes; a result of all subjects being right handed.   

 

The results obtained from the amount of horizontal force applied to the right 

handlebar of the hardtail and fully suspended bike follow a similar pattern to 

those obtained from measuring the amount of force applied to the left handlebar 

of both of the bikes.  For subjects undertaking testing on the rolling road rig with 

a smooth surface, the significant results illustrate that less maximum and 

average horizontal force is exerted on the right handlebar of the hardtail bike 

compared to the fully suspended bike.  This is similar to the results relating to the 

force exerted on the left handlebar of the bikes: for these results only the 

maximum and average force measurements were statistically significant.  

Although a large difference is apparent between the mean horizontal force value 

obtained from the right handlebar of the hardtail, and right handlebar of the fully 

suspended bike whilst cycling on the smooth road, the difference is more evident 

in the results obtained from the horizontal force exerted on the left handlebar.  
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hardtail bike on the rolling road 

rig on a smooth surface. 

Figure 5-45: Horizontal force 

on the both handlebars for the 

fully suspended bike on the 

rolling road rig on a smooth 

surface. 

Time (s) Time (s) 



216 
 

 
Figures 5-44 and 5-45 display 

graphs which illustrate that the 

maximum horizontal force exerted 

on the handlebars of both bikes 

results predominantly from the 

force exerted on the pedals by the 

cyclist.  The maximum amount of  

force exerted on the handlebars 

occurs when the pedals are 

between the horizontal and vertical  

position (0° to -90°), and the 

minimum amount of force exerted 

on the handlebars occurs when the 

pedals are between - 270° and 0°.   

These pedal positions are illustrated in figure 5-46.  Figure 5-46 highlights the 

crank positions where the majority of the forward momentum is produced.   
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Figures 5-47 and 5-48 illustrate graphs displaying the amount of horizontal force 

exerted on both the right and left handlebars of the fully suspended bike whilst 

cycling on the rolling road rig with a rough surface.  The amount of force exerted 

on the right and left handlebars of the fully suspended bike is similar: the most 

prominent negative values occur when the wheel impacts with a bump and 

creates a bending force between the handlebars and the frame of the rig.   

 

 

 

 

 

 

 

Figures 5-49 and 5-50 display graphs illustrating the amount of horizontal force 

exerted on both the right and left handlebar of the hardtail bike whilst cycling on 

the rough road.  From analysis of Figures 5-47 to 5-50, it is evident that the 

horizontal force which is exerted on the handlebars of both bikes is a direct result 

of bump impact.  In comparison to Figures 5-47 and 5-48, Figures 5-49 and 5-50 

highlight that the hardtail bike exerts a greater amount of horizontal force on the 

handlebars following contact of the front and rear wheel with the bump.  This is 

particularly evident when the rear wheel of the hardtail bike hits the bump. 

 

The findings relating to the handlebar and saddle accelerations; the handlebar 

and saddle velocities; and the handlebar and saddle displacements of the 
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hardtail and fully suspended bikes on the rolling road rig on both the smooth 

surface and surface with bumps are displayed in Tables 5-15 to 5-19.  In replace 

of the average mean values (which would equate to approximately zero for the 

velocity, acceleration and displacement of the seat and handlebars due to the 

positive and negative values that are obtained when calculating the results), the 

average root mean squared (RMS) value is given in each table to provide a 

representation of the average acceleration, velocity and displacement.   As with 

the results displayed in Tables 5-7 to 5-14, the lower sections of the results 

displayed in Tables 5-15 to 5-19 compare the findings from the fully suspended 

and hardtail bikes on both surface types.   
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Table 5-15: Handlebar Acceleration 

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension         Hardtail            Full Suspension 

Handlebar Acceleration (m/s^2) 

 

Average minimum -0.7  -0.5   -4.0  -2.1 

   s=0.05  s=0.08   s=0.49   s=0.21 

Average maximum 0.6  0.5   2.5  1.8 

   s=0.05  s=0.08   s=0.17  s=0.11 

Total avg range  1.3  0.9   6.5  3.9 

   s=0.11  s=0.15   s=0.36  s=0.3 

RMS   0.2587  0.1594   0.6375  0.4089 

   s=0.01  s=0.02   s=0.03  s=0.02   

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  -0.2 (31.5%)*   -1.9  (48%)* 

    s=0.07 P=0.000    s=0.58 P=0.000 

Difference in avg Max   0.2 (29.6%)*   0.7 (27.9%)* 

    s=0.06 P=0.000    s=0.18 P=0.000 

Diff in total avg range  0.4 (30.5%)*   2.6 (40.18%)* 

    s=0.13 P=0.000    s=0.39 P=0.000 

Difference in RMS  0.0993 (38.4%) *   0.2286 (35.9%)* 

    s=0.021 P=0.046   s=0.035 P=0.042 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 

 

Table 5-15 displays the results obtained from the accelerometer placed at the 

handlebars of the hardtail and full suspension system.  The results obtained from the 

tests on the rolling road rig on the smooth surface indicate that there is 31.5 %; 29.6 

%; 30.5 %; and 38.4 % less minimum, maximum, range, and RMS acceleration of the 

handlebars respectively, for subjects cycling on the fully suspended bike compared to 

the hardtail bike.  The findings obtained from the tests on the rolling road rig with 

bumps attached display a similar trend: 48 % less minimum handlebar acceleration; 

27.9 % less maximum handlebar acceleration; 40.18 % less range; and a 35.9 % 

lower RMS value for handlebar acceleration occurs whilst cycling on the fully 
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suspended bike.  As all the results pertaining to the handlebar accelerations of both 

the hardtail and fully suspended bikes have p values of less than 0.05, these results 

are rendered significant. 

 

Figures 5-51 and 5-52 show that less acceleration occurs at the handlebars of 

the fully suspended bike, compared to the hardtail bike, whilst cycling on a 

smooth road.  This is an unexpected result: as there are no bumps on the 

smooth surface, it is hypothesised that both bikes would obtain a similar value for 

the acceleration at the handlebars, as a result of both bikes possessing front 

suspension.  Indeed, if a greater acceleration was to occur at the handlebars of 

either of the two bikes, it would be justifiable to presume that it be the handlebars 

of the fully suspended bike - due to the bobbing effect occurring at the rear 

suspension.  In supporting this hypothesis, higher VO2 and heart rate levels were 

recorded for subjects cycling on the fully suspended bike on the smooth surface.  

Although these results were not statistically significant, they would nevertheless 

suggest that the fully suspended bike would also record a greater acceleration at 

the handlebars compared to the hardtail bike.   
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The results for the acceleration of the handlebars of both bikes on the surface 

with bumps demonstrate similar results to the tests conducted on the smooth 

surface rolling road rig.  All of the results are statistically significant and indicate 

that less acceleration occurs at the handlebars of the fully suspended bike 

compared to the hardtail bike whilst cycling on the surface with bumps.  The eight 

individual results pertaining to handlebar acceleration present similar results to 

those obtained from cycling on the smooth surface, indicating that more 

acceleration occurs at the handlebars of the hardtail bike compared to the fully 

suspended bike whilst cycling on a surface with bumps.  

 

 

 

 

 

 

 

Figures 5-53 and 5-54 show that less acceleration occurs at the handlebars of 

the fully suspended bike, compared to the hardtail bike, whilst cycling on a rough 

road.  The graphs illustrate that the maximum and minimum acceleration values 

are significantly lower for the fully suspended system.  This signifies that less 

vibration is felt by the rider whilst cycling on the fully suspended bike; a result of 

the damper in the rear suspension reducing the amount of vibrations felt as the 

bike impacts with the bump.  This finding corresponds with the results obtained 

from the roller rig which also found that the acceleration of the handlebars of the 

fully suspended bike was lower than that of the hardtail bike (Table 4-9; Chapter 
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4).  As the hardtail bike has no rear suspension system to absorb bump impact, 

the rider’s weight is forced forward towards the front of the bike, thus accounting 

for the higher handlebar acceleration results obtained for the hardtail bike.  

When considering the results pertaining to the acceleration of the saddle of the 

hardtail and fully suspended bikes on the smooth and rough surface, the only 

significant results relate to the RMS values for saddle acceleration on both the smooth 

and rough track.  Both sets of results for cycling on the smooth and rough surface 

demonstrate that greater acceleration occurs at the seat of the hardtail bike compared 

to the fully suspended bike.  All of the eight subjects obtained a greater RMS seat 

acceleration value whilst cycling on the hardtail bike compared to the fully suspended 

bike on the smooth track.  The average range of seat acceleration for each subject 

illustrated that four subjects experienced a lower range whilst cycling on the fully 

suspended bike; and four subjects experienced a lower range whilst cycling on the 

hardtail bike on the smooth track.   

 

The results obtained from the accelerometers placed under the saddle of the hardtail 

and full suspension system (Table 5-16) all - with the exception of the difference in 

RMS values - produce p values greater than 0.05, thus rendering these results 

statistically insignificant.  The statistically significant RMS values indicate that the 

average mean acceleration of the saddle of the hardtail bike is a 38.3 % and 35.9 % 

greater (on the smooth and bumpy surface respectively) than that of the fully 

suspended bike.   
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Table 5-16: Saddle Acceleration 

 

Track type:   Smooth     Bumps  

Suspension:  Hardtail  Full Suspension        Hardtail           Full Suspension 

Seat Acceleration (m/s^2) 

 

Average minimum -1.3  -1.3   -6.9  -6.7 

   s=0.1  s=0.09   s=0.22   s=0.2 

Average maximum 1.4  1.3   10.3  10.1 

   s=0.09  s=0.15   s=1.19  s=1.62 

Total avg Range 2.7  2.6   17.3  17.2 

   s=0.17  s=0.24   s=1.25  s=1.35 

RMS   0.8768  0.5408   2.17282 1.3931  

   s=0.211  s=0.131   s=0.25  s=0.21  

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  -0.01 (0.5%)*    -0.3 (3.7%)* 

    s=0.14 P=0.893    s=0.41 P=0.117 

Difference in avg Max   0.1 (5%)*    0.2 (2.1%)* 

    s=0.2 P=0.374    s=2.12 P=0.784 

Diff in total avg Range  0.1 (2.8%)*    2.2 (12.77%)* 

    s=0.33 P=0.536   s=5.48 P=0.293 

Difference in RMS  0.336 (38.3%) *   0.7797 (35.9%)* 

    s=0.018 P=0.046   s=0.23  P=0.042 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 

 

Figures 5-55 and 5-56 are graphs illustrating the acceleration of the seats of both 

the hardtail and fully suspended bike whilst cycling on the smooth road of the 

rolling road rig.  It is evident from Figures 5-55 and 5-56 that the seat of the fully 

suspended bike accelerates less than the seat of the hardtail bike whilst cycling 

on the smooth road.  This finding correlates with the results obtained for the 

acceleration at the handlebars, and is again a somewhat surprising result: the 

simulation analysis suggest that a bobbing motion occurs when cycling on the 

fully suspended bike on a smooth surface, which would in turn suggests that the 
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seat of the fully suspended bike would accelerate more than that of the hardtail 

bike. 

 

 

 

 

 

 

 

The results obtained from measuring the saddle acceleration of both the hardtail 

and fully suspended bike on the rough surface of the rolling road rig (Table 5-16) 

illustrate that greater acceleration occurs at the seat of the hardtail bike 

compared to the fully suspended bike.  Analysis of the individual subjects’ saddle 

acceleration results indicate that every subject obtained a higher RMS value 

when cycling on the hardtail bike on the rolling road rig.  Two subjects obtained a 

higher average seat acceleration range on the fully suspended bike, and six 

subjects obtained a higher range on the hardtail bike.  This again highlights the 

different techniques used by riders even amongst this small group of individuals.  

The RMS results for saddle acceleration on the rough track of the roller rig agree 

with those obtained from the rolling road rig with a rough surface: both rigs 

indicate that a greater acceleration occurs at the seat of the hardtail bike 

compared to the fully suspended bike.  This is attributed to the omission of a rear 

suspension on the hardtail bike which results in greater vibrations being felt 

whilst cycling over the bumps and consequently, a greater acceleration of the 

saddle.   
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Figures 5-57 and 5-58 are graphs illustrating the acceleration of the seats of both 

the hardtail and fully suspended bikes whilst cycling on the road with bumps. 

From examining the graphs it is apparent that the seat of the fully suspended 

bike accelerates less than the seat of the hardtail bike whilst cycling on the road 

with bumps.   

 

Through integrating the acceleration results obtained from the accelerometers 

placed under the saddle and on the handlebars of the bike, the resulting saddle 

and handlebar velocities were calculated: the results of which are displayed in 

Table 5-18 and 5-17.  Table 5-17 displays the results of the handlebar velocities, 

calculated through integrating the accelerations recorded for the handlebars.  

The significant results indicate that the minimum handlebar velocity is 24.2 % 

lower; the maximum handlebar velocity is 23.7 % lower; and the range in 

handlebar velocity is 23.9 % lower when cycling on the fully suspended bike on 

the smooth surface compared to the hardtail bike on the smooth surface.  The 

significant results obtained for the handlebar velocities for the tests on the 

surface with bumps attached show that a lower maximum handlebar velocity (by 
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43.6 %) and a lower range in handlebar velocity (by 32.2 %) is recorded for 

cyclists riding on the fully suspended bike.       

 

Table 5-17: Handlebar Velocity 

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension  Hardtail  Full Suspension 

Handlebar Velocity (m/s) 

 

Average minimum -0.1225  -0.0929   -0.2780  -0.259 

   s=0.0272 s=0.0252  s=0.0144 s=0.0108 

Average maximum 0.1230  0.0939   0.6562  0.37 

   s=0.0258 s=0.0231  s=0.0438 s=0.0220 

Total avg range  0.2455  0.186817  0.927  0.62898 

   s=0.05297 s=0.0482  s=05686 s=0.02798 

RMS   0.05  0.0381   0.126586 0.1082 

   s=0.018  s=0.0117  s=0.0104 s=0.052 

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  -0.0296 (24.16%)*   -0.0118 (4.4%)* 

    s=0.0203 P=0.005   s=0.023 P=0.197 

Difference in avg Max   0.0291 (23.66%)*   0.2862 (43.62%)* 

    s=0.0189 P=0.003   s=0.038 P=0.000 

Diff in total avg Range  0.0587 (23.9%)*   0.298 (32.15%)* 

    s=0.0153  P=0.004   s=0.051 P=0.000 

Difference in RMS  0.0142 (28.4%) *   0.32 (14.5%)* 

    s=0.0173 P=0.053   s=0.0238 P=0.065 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean)   

 

Figures 5-59 and 5-60 illustrate one subject’s handlebar velocity for the hardtail 

and fully suspended bike whilst cycling on the smooth road on the rolling road rig.  

The graphs show that the velocity of the handlebars does not follow the same 

pattern as the rider’s pedalling motion and that less velocity occurs at the 

handlebars of the fully suspended bike compared to the hardtail on a smooth 
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road.  This again indicates that no bobbing effect occurs at the front of the bike 

due to the rider’s pedalling motion.  

 

 
 

 

 

 

 

The results obtained from recording the velocity at the handlebars of both bikes 

whilst cycling on the rough road (Table 5-17), all indicate that the velocity of the 

handlebars of the fully suspended bike is less than that of the hardtail bike.  

However, only the results pertaining to the difference in average maximum 

handlebar velocity and the difference in total average range are statistically 

significant, suggesting that these results do not highlight as significant a 

difference as those relating to the acceleration of the handlebars.  This is also 

true for the results relating to handlebar velocity obtained from the experiments 

on the roller rig: the results for the average handlebar velocity indicate a 

significant difference between both bikes when cycling on rough terrain on the 

roller rig (Table 4-10; Chapter 4).  However, this is the only statistically significant 

result pertaining to handlebar velocity on the roller rig, which suggests that it 

does not highlight as significant a difference as other results obtained on the 

roller rig.  
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Figures 5-61 and 5-62 are graphs displaying the velocity of the handlebars for 

one subject cycling on the hardtail and fully suspended bike on the rough road.   

The graphs illustrate that more vibrations are felt by the rider when cycling on the 

hardtail bike due to the greater velocity of the handlebars experienced when 

cycling on this bike type.  Figures 5-61 and 5-62 also illustrate that, for both 

bikes, the maximum and minimum velocity values occur immediately after the 

rear wheel impacts with the bump.  Figure 5-62 clearly illustrates the way in 

which the rear suspension causes the front of the bike to oscillate following 

contact between the rear wheel and bump.  Consequently, although the velocity 

of the handlebars is lower whilst cycling on the fully suspended bike when the 

rear wheel impacts with the bump, it takes considerably longer for the fully 

suspended bike - compared to the hardtail bike - to stabilise following this impact.   

 

The significant results (with p values of less than 0.05) pertaining to the saddle 

velocities indicate that a 27.8 % lower minimum velocity; 26.6 % lower maximum 

velocity; and 27.1 % lower range in velocity occurs whilst cycling on the fully 

suspended bike on the smooth surface, compared to the hardtail bike on the 

same smooth surface.  Similarly, the statistically significant results highlight that 

for the tests on the surface with bumps, the velocity of the saddle of the fully 
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suspended bike is forty four percent (maximum velocity) and 32.3 % (range in 

velocity) lower than whilst cycling on the hardtail bike.      

 

Table 5-18: Saddle Velocity 

 

Track type:   Smooth     Bumps  

Suspension:  Hardtail  Full Suspension        Hardtail           Full Suspension 

Saddle Velocity (m/s) 

 

Average minimum -0.4177  -0.3014   -0.9398  -0.8963 

   s=0.0893 s=0.0800  s=0.05    s=0.0371 

Average maximum 0.4147  0.3055   2.2333  1.2508 

   s=0.0901 s=0.0762  s=0.1471 s=0.0779 

Total avg range  0.8325  0.6069   3.1731  2.1471 

   s=0.1792 s=0.155   s=0.193  s=0.0932 

RMS   0.17  0.1301   0.43224 0.369523 

   s=0.062  s=0.04   s=0.036  s=0.0546 

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  -0.1163 (27.84%)*   -0.0434 (4.6%) * 

    s=0.0695 P=0.002   s=0.0788 P=0.016 

Difference in avg Max   0.1092 (26.63%)*   0.9826 (44%)* 

    s=0.0506 P=0.0001   s=0.1257 P=0.000 

Diff in total avg range  0.2255 (27.08%)*   1.026 (32.33%)* 

    s=0.009  P=0.001   s=0.321   P=0.000 

Difference in RMS  0.0486 (28.6%) *   0.0627 (14.5%)* 

    s=0.0591 P=0.053   s=0.0813 P=0.065 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean)   

 

Figures 5-63 and 5-64 present the velocity of the seat of the hardtail and fully 

suspended bikes when cycling on the smooth road.  The shape of both graphs is 

similar to those graphs displaying the velocity of the handlebars (Figures 5-59 

and 5-60).  However, the velocity of the saddle is three times the magnitude of 

the handlebar velocity for both the hardtail and fully suspended bike.  
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The results pertaining to the velocity of the saddle of the hardtail and fully 

suspended bike when cycling on the surface with bumps on the rolling road rig 

(Table 5-1) highlight that the fully suspended bike presents an advantage to the 

rider over the hardtail bike.  This finding agrees with the results relating to saddle 

velocity on the roller rig, which also highlights a significant advantage for cyclists 

on the fully suspended bike, compared the hardtail bike when cycling on rough 

terrain (Table 4-7; Chapter 4).   
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Figure 5-65: Seat velocity of 

the hardtail bike on the rolling 

road rig on a rough surface. 

Figure 5-66: Seat velocity of the 

fully suspended bike on the rolling 

road rig on a rough surface. 
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Figures 5-65 and 5-66 show the velocity of the seat of the hardtail and fully 

suspended bikes when cycling on the surface with bumps on the rolling road rig.  The 

point at which the velocity of the saddle is at its lowest is similar for both bikes: when 

the rear and front wheel impact with the bump.  Further analysis demonstrates that 

the seat of the hardtail bike has a greater velocity than the fully suspended bike.  

Following impact with the bump, a bobbing effect occurs whilst cycling on the fully 

suspended bike, yet the vibrations felt on the fully suspended bike are less than those 

felt when cycling on the hardtail bike due to the rear suspension reducing the smaller 

oscillations that are apparent when cycling on the hardtail system.   

 

The results for the displacement of the handlebars and saddle are displayed in Tables 

5-19 and 5-20 respectively: these were calculated through integrating the velocity 

results.  The results concerning the handlebar displacements were found to be 

statistically insignificant: all p values for the minimum, maximum and displacement 

range were recorded as greater than 0.05 for both the hardtail and fully suspended 

bikes on the smooth surface and on the surface with bumps.    
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Table 5-19: Handlebar Displacement 

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension  Hardtail  Full Suspension 

Handlebar Displacement (m) 

 

Minimum Disp  -0.0051  -0.0045   -0.0175  -0.0145 

   s=0.0021 s=0.0015  s=0.013  s=0.0017 

Maximum Disp  0.0051  0.0044   0.0127  0.0142 

   s=0.0019 s=0.0016  s=0.0008 s=0.0016 

Total avg range  0.0102  0.0089   0.0302  0.0286 

   s=0.004  s=0.0031  s=0.002  s=0.0032 

RMS   0.0023  0.0021   0.0055  0.00698 

   s=0.0012 s=0.001   s=0.0005 s=0.02  

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  -0.0006 (10.8%)*   -0.003 (17.14%)*  

    s=0.002 P=0.473   s=0.0025 P=0.98 

Difference in avg Max   0.0007 (12.7%)*   -0.0012 (11.9%)* 

    s=0.002 P=0.401   s=0.0019 P=0.061 

Difference in avg Range  0.0013 (11.7%)*   0.0016 (5.2%)* 

    s=0.061 P=0.432   s=0.2997 P=0.346 

Difference in RMS  0.0002 (8.7%)*    -0.0015 (27.3%)* 

    s=0.0013 P=0.648   s=0.0022 P=0.01  

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 

 

Figures 5-67 and 5-68 illustrate the handlebar displacement of the hardtail and 

fully suspended bikes when cycling on the smooth surface.  From comparing the 

graphs it is evident that the displacement of the handlebars of the hardtail bike is 

greater than that of the fully suspended bike whilst cycling on the smooth road.  

In turn, this would indicate that the front suspension of the hardtail bike is utilised 

more than the front suspension of the fully suspended bike, despite the fact that 

suspension is not required when cycling on a smooth road.   
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Figures 5-69 and 5-70 display the results for the handlebar displacement of the 

hardtail and fully suspended bikes when cycling on the rough surface of the 

rolling road rig.   The graphs indicate that the displacement of the handlebars of 

the fully suspended bike is greater, compared to the hardtail bike, when the rear 
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Figure 5-69: Handlebar 

displacement of the hardtail 

bike on the rolling road rig on a 

rough surface. 

Figure 5-70: Handlebar 

displacement of the fully 

suspended bike on the rolling 

road rig on a rough surface. 
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wheel impacts with the bump.  This is a result of the rear suspension causing the 

front of the bike to oscillate considerably prior to contact with the bump.  

Conversely, when the front wheel comes into contact with the bump, the 

displacement of the handlebars of the hardtail bike is greater than the fully 

suspended bike.  From observing the graphs it can be noted that the rate at 

which the maximum handlebar displacement is achieved is also noticeably 

different for both bikes.  The maximum handlebar displacement of the hardtail 

bike occurs immediately after the wheels impact with the bump, whereas the 

maximum handlebar displacement of the fully suspended bike occurs after the 

rear wheel impacts with the bump.  A bobbing effect is also particularly noticeable 

after the rear wheel of the fully suspended bike impacts with the bump (Figure 5-

70); the handlebars oscillate until impact with the next bump occurs.   

 

The results relating to the displacement of the saddle (Table 5-20) present only 

one statistically significant result: 15 % less saddle displacement occurs whilst 

cycling on the fully suspended bike, compared to the hardtail bike, on the surface 

with bumps.  All other findings concerning the displacement of the saddle 

produced results with p values of greater than 0.05, and thus these results were 

statistically insignificant.   
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Table 5-20: Saddle Displacement 

 

Track type:   Smooth     Bumps  

Suspension:   Hardtail  Full Suspension  Hardtail  Full Suspension 

Saddle Displacement (m) 

 

Average minimum -0.0177  -0.0167   -0.056  -0.0483 

   s=0.0075 s=0.0053  s=0.0044 s=0.0054 

Average maximum 0.0162  0.0154   0.0399  0.0433 

   s=0.0063 s=0.0052  s=0.0025 s=0.0095 

Total avg range  0.0339  0.0321   0.0959  0.0915 

   s=0.0138 s=0.0105  s=0.0069 s=0.0121 

RMS   0.0079  0.0076   0.018875 0.0238 

  s=0.04  s=0.035   s=0.0017 s=0.0062 

 

Hardtail subtract (-) Full Suspension 

Difference in avg Min  -0.0011 (6%)*    -0.0084 (15%)* 

    s=0.0075 P=0.698   s=0.0083 P=0.024 

Difference in avg Max   0.0008 (4.9%)*    -0.0033 (8.27%)* 

    s=0.0072 P=0.765   s=0.0095 P=0.353 

Difference in avg Range  0.0019 (5.5%)*    -0.0051 (5.2%)* 

    s=0.06 P=0.729    s=0.257 P=0.369 

Difference in RMS  0.0008 (10.1%) *   0.005 (26.5%)* 

    s=0.0046 P=0.648   s=0.0074 P=0.099 

* : % Improvement by fitting suspension = 100* (average diff. / HT mean) 

 

Figures 5-71 and 5-72 display the results for saddle displacement of both the 

fully suspended and hardtail bike on the smooth surfaced rolling road rig.  The 

graphs highlight that there is less displacement of the saddle of the fully 

suspended bike when travelling at the constant velocity of 8 km/h on the rolling 

road rig.  This result disproves the theory that a bobbing effect exists when 

cycling on a flat surface on a fully suspended bike. 
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The average results obtained for saddle displacement whilst cycling on the rough 

road of the rolling road rig demonstrate that the average maximum, range and 

RMS seat displacement values are greater for the fully suspended bike 

compared to the hardtail bike (Table 5-20).  Figures 5-73 and 5-74 demonstrate 

the results for one subject’s saddle displacement on the hardtail and fully 

suspended bikes when cycling on the rough surface.  The graphs show that the 

displacement of the saddle is greater whilst cycling on the fully suspended bike 

compared to the hardtail bike; these results concur with the average results 

(Table 5-20; Chapter 5).  Figure 5-74 also demonstrates that a significant 

bobbing effect occurs on the fully suspended bike prior to impact with the bump.  

These results conflict with the results for saddle displacement recorded on the 

roller rig on a rough surface (Table 4-8; Chapter 4).  The results obtained from 

the roller rig indicate that the saddle of the fully suspended bike moves to a 

lesser degree than that of the hardtail bike.  A reason for the discrepancy in rig 

results may be attributed to the magnitude and frequency of the bumps used 

during the experimentations: the spacing of the bumps is greater on the rolling 

road rig; therefore the fully suspended bike can oscillate to a greater degree on 

this rig than on the roller rig.       
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Figure 5-71:  Seat 

displacement of the hardtail 

bike on the rolling road rig on a 

smooth surface.  

Figure 5-72: Seat 
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6. Indoor Track 

 

6.1. Objectives    

The main objective of the indoor track tests was to conduct controlled 

experiments to validate the results obtained from the roller rig and rolling road rig 

laboratory tests and to provide further evidence from which to draw conclusions.  

The results of the roller rig tests indicated that a reduction in a subject’s heart 

rate and oxygen consumption is achieved when cycling on a fully suspended bike 

on a rough surface.  Conversely, the rolling road rig experiments highlighted no 

significant differences between riding a fully suspended and hardtail bike (on 

either the rough or smooth surface) for any of the physiological measurements.  

Both sets of laboratory tests on the roller rig and rolling road rig produced 

relevant findings to the current study, yet (as discussed in Chapter 2) laboratory 

tests often present limitations to testing.  With this mind, the key rationale was to 

develop a new form of testing.  It was decided that outdoor testing would present 

a vast number of variables which would affect the repeatability of tests.  

Therefore, it was hypothesised that an indoor track test would present less 

restrictions than a laboratory rig, yet still allow for repeatable tests with a reduced 

number of variables.   

 

A further objective was to design the indoor track to be as comparative as 

possible with the previously designed rigs.  As the rolling road rig was deemed to 

be more representative of outdoor cross-country cycling, the indoor track was 

designed so as to present as close a direct comparison as possible to this rig.   

 

6.2. Track Design   

 

The purpose of designing the indoor track and subsequent set of experiments 

was to simulate a rough track equivalent to that used for the rolling road rig tests.  
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As with the design of the rolling road rig, a morphological chart (Table 6-1) was 

generated to aid in the development of conceptual designs (Appendix I).  The 

weighted objectives method (Table 6-2) was then applied to determine the most 

suitable design for the indoor track.  The weighted objectives method for the rig 

indicated that Concept A (Figure 6-1) was the most appropriate concept to satisfy 

all of the criteria for the indoor track.   

 

Table 6-1: Morphological Chart    

 

  Solutions 
 
Sub- 
functions 

1 2 3 4 5 6 

Bump Wooden 
slats 

Rubber Metal None   

Track  
surface Wooden Concrete Dirt Chipboard Metal Carpet 

Track  
fastening Staples Screwed Bolted Adhesive Click fit  

Corners 
Banked Flat     

Number of 
bumps Every 3 m Varied Every 1 m None   

How 
bumps are 
attached 

Adhesive Bolts clips Welding   

Bump  
shape Triangle Round 

Rounded 
edges 

Chamfered 
edges 

Square Rectangle 

Track  
Gradient 

Flat 
Uphill and 
downhill 
section 

2 Uphill 
and 

downhill 
sections 

   

Track  
design Circular Oval Straight Varied   

Ensure  
Constant 
Speed of  
bike 

Monitor 
speed 

Bleep test Timed laps 
Subject 
Monitors 

speed 
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Table 6-2: Weighted Objectives Method 

 

 Concepts rated 1-5 ( 5 being the highest ) 

Criteria Concept 
A 

Concept 
B 

Concept 
C 

Concept 
D 

Concept 
E 

 
Safety 
 
Repeatable 
 
Able to maintain 
constant speed 
 
Ease of production 
 
Irregular bumps 
 
Feels natural 
 
Riders movement 
can be examined 
 
Forces applied to the 
bikes can be studied 
easily 
 
Physiology of rider 
can be recorded 
 
Bump frequency and 
height changing 
 
Movement of 
suspension can be 
studied 
 
Cost 

 
4 
 
5 
 
4 
 
 
4 
 
2 
 
4 
 
4 
 
 
1 
 
 
 
5 
 
 
3 
 
 
3 
 
 
 
4 

 
2 
 
3 
 
3 
 
 
3 
 
2 
 
3 
 
4 
 
 
1 
 
 
 
4 
 
 
4 
 
 
4 
 
 
 
3 

 
4 
 
4 
 
3 
 
 
3 
 
2 
 
2 
 
4 
 
 
1 
 
 
 
4 
 
 
3 
 
 
3 
 
 
 
3 

 
5 
 
3 
 
3 
 
 
5 
 
3 
 
2 
 
4 
 
 
1 
 
 
 
4 
 
 
3 
 
 
3 
 
 
 
5 

 
1 
 
3 
 
2 
 
 
2 
 
3 
 
2 
 
2 
 
 
1 
 
 
 
3 
 
 
5 
 
 
4 
 
 
 
2 

Total 43 36 33 36 30 
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Figure 6-1: Concept A 

 

The bumps placed on the indoor track were designed to emulate the identical 

shape, magnitude and frequency as those on the rolling road rig.  Due to safety 

concerns it was decided that no bumps were to be placed on the corners of the 

track as it was felt that these may cause subjects to lose balance when cycling.  

As the tests on the indoor track were to be sub-maximal, banked corners (as 

usually appear in a velodrome design) were omitted from this track design.  The 

indoor track was assembled in an equine centre as this provided adequate space 

from an indoor track which would be sheltered from the elements.  As the 

subjects would be unable to cycle directly on the equine centre surface due to its 

softness a track was developed for the bikes to run on.  The track was created 

from textured hardboard which was durable; provided traction between the tyre 

and the track; and ensured repeatable results for comparison. 

 

6.2.1. Track Construction 

Each double layer of hardboard used for the construction of the track was 2.44 m 

in length; 1.22 m wide; and 3 mm thick.  The track comprised of two straight 

sections, each 10.5 m long with an 18 m radius bend at each end.  6 bumps in 

total were placed along the track: 3 bumps - each 3 m apart - on each of the two 

straight sections.  3 m spacing’s were used as this was equivalent to the spacing 

Bumps 

Bumps 



242 
 

used for the bumps on the rolling road rig.  The indoor track with bumps and 

equipment is illustrated in Figure 6-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Equipment     

 

To pose fewer restrictions on the rider it was proposed that for the purpose of the 

experiments on the indoor track that no mechanical equipment would be 

attached to the bike as it was felt that the added equipment would impede the 

subjects’ performance.  The only apparatus attached to the bike was a 

downloadable cyclometer which allowed the speed of each subject to be 

recorded.  This was a vital piece of electronic equipment as it verified that each 

subject cycled at a constant speed throughout testing.   Although the subjects 

were able to view the cyclometer on the bikes, there had to be a means of 

ensuring that the subjects maintained this speed on both bikes to ensure that the 

tests were repeatable and comparable.  For this reason a bleep test was 

developed in which subjects were instructed to pass certain markers (cones) on 

Video Camera 

CD Player 

Bleep markers 

Track 

Bumps 

Figure 6-2: Indoor Track 
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the track at the same time as a bleep was heard.  The bleeps were transmitted 

via a CD recording placed in the centre of the equine centre.   The single other 

piece of electrical equipment used for the tests was a high-speed digital video 

camera which was used to observe the subjects’ movement over the bumps and 

which allowed any differences between the two bikes to be detected visually.   

 

6.3.1. Physiological Measurements 

As it was still imperative to assess each rider’s physiological measurements, a 

portable, downloadable VO2 and heart rate monitor was used for this purpose.  

Heart rate was recorded through the use of a Polar heart rate system.  The 

transmitter belt of the apparatus was placed around the subject’s chest and data 

was recorded using a Polar S710 watch receiver.  The subject wore this 

throughout testing and the results were available to download at the end of each 

test.   

 

To evaluate each subject’s VO2, a portable Breath by Breath monitor was 

strapped to the subject’s chest; this cardiopulmonary exercise system was used 

to monitor the physiological responses of the subject.  The system directly 

measures O2 and CO2 concentrations of the inspired/expired air through a 

facemask covering both the mouth and nose.  The mask has a volume 

transducer (turbine with 2 % accuracy) fitted with gas sample lines.  The gas 

analysers have an accuracy of 0.1 % and a response time of 100 ms.  The 

system used for gas monitoring is via a MetaMax 3B Breath by Breath Gas 

Analyser (Cortex Biophysik GmbH, Germany). 

 

6.3.2. Psychological Measurements 

Rating of perceived exertion (RPE) was monitored at intervals using a standard 

Borg scale which gives an indication as to how hard a person feels they are 

exercising.  As with the tests carried out on the roller rig and the rolling road rig, 

comfort rating was measured using a scale rated from one (very uncomfortable) 
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to five (very comfortable) as described by Seifert et al. (1997).  As the subjects 

were prevented from talking during the tests, as a result of wearing the 

facemask, the RPE and comfort rating numbers were held up one at a time and 

the subject was instructed to nod when the appropriate number was reached.  A 

full explanation of RPE and comfort scale can be found in section 4.3.5 of the 

current research.  

 

6.4. Test Protocol 

 

6.4.1. Test Subjects  

The experimental protocol was reviewed and approved by the ethics committee 

at Glasgow University.  Each subject was informed of the purpose and risks of 

the study and signed a physical activity questionnaire and consent form.  Ten 

subjects, with an average age of twenty-three and an average weight  

of 71 kg, took part in the study; all were in good health at the time of testing and 

carried out at least two aerobic training sessions per week.  Ten subjects were 

chosen over the eight previously used in the rolling road rig tests so as to 

increase the sample size and number of results for analysis.     

 

6.4.2. Bikes 

Similar to the tests on the rolling road rig, only one bike was used for testing on 

the indoor track: a Marin Mount Vision.  Once again, the hardtail bike was 

created by replacing the rear suspension spring and damper with a specifically 

designed steel spacer.  This ensured that all aspects relative to the bikes were 

kept uniform throughout the tests.   

 

6.4.3. Method 

Tyre pressure was kept at 40 psi throughout all of the tests. The subject was 

asked to cycle passively over the bumps and to remain seated at all times so as 
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to minimise variation in riding styles.  All of the subjects were instructed to use 

the same gear throughout the test and were instructed not to use the brakes at 

any point.  Subjects were instructed to cycle at a constant speed of 10.5 km/hr; 

this speed was chosen to ensure sub-maximal conditions were met for each of 

the tests in order to allow for comparisons to be made between the roller rig and 

rolling road rig test results.   

 

Each subject visited the track on one occasion and carried out a total of four 

tests: a familiarisation test on the hardtail bike; a familiarisation test on the fully 

suspended bike; an indoor track test on the hardtail bike; and an indoor track test 

on the fully suspended bike.   All subjects were asked to refrain from exercising 

twenty-four hours prior to testing and were instructed not to eat three hours prior 

to testing.  Each rider performed a six-minute familiarisation phase using both the 

fully suspended and the hardtail bike; this ensured that the subjects were 

comfortable with the apparatus and surroundings.  The order of testing was such: 

five subjects undertook their initial test on the fully suspended bike followed by 

the hardtail, and five carried out their initial test on the hardtail bike followed by 

the fully suspended.  As all of the subjects were competent cyclists, each met the 

bleeps on each section of track by the third minute of the familiarisation test.  

 

Following the familiarisation test, and after the subject’s heart rate had returned 

to its ‘at rest’ rate, each subject was instructed to cycle at a constant speed of 

10.5 km/h for twelve minutes.  This was the same time period for the tests 

undertaken on the roller rig and rolling road rig experiments so as to allow for 

comparison between the physiological results from all three test series.   

 

The measurements for heart rate and VO2 were taken from the second to the 

eleventh minute of testing and averaged over that period, and the subjects’ RPE 

and comfort scales were recorded in the fourth, sixth and ninth minute of each 

test.  
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6.5. Physiological and Psychological Results  

 

As the tests on the indoor track presented fewer constraints to the subjects in 

comparison to the tests undertaken on the roller rig and the rolling road rig, it was 

hypothesised that the obtained results would present a closer representation to 

what would be experienced on an outdoor cross-country track.  The statistical 

analysis of the results is based on the average of the ten subjects’ physiological 

and psychological results.    

 

6.5.1. Indoor Track Test Results 

Figures 6-3 to 6-6 are scatter plot graphs which illustrate the subjects’ average 

physiological and psychological results for heart rate, VO2, RPE and comfort 

rating on both the fully suspended and hardtail mountain bikes whilst cycling on 

the indoor track.  The full data set for each individual subject during the indoor 

track tests is given in Appendix B.  Each point on the graph represents one 

participant: the values recorded on the vertical axis are for the hardtail bike, and 

those recorded on the horizontal axis are for the fully suspended bike.  The 

points above the equality line on the scatter graphs indicate the higher readings 

obtained for the hardtail bike.   
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Figures 6-3 to 6-6 clearly display each subject’s physiological and psychological 

results and each display a similar pattern.  Nine out of the ten subjects were 

found to have lower measurements of VO2 whilst cycling on the fully suspended 

bike compared to the hardtail bike; a lower VO2 was recorded for only one 

subject whilst cycling on the hardtail bike (Figure 6-3).  The results for heart rate 

(Figure 6-4) highlight that each subject’s heart rate was found to be lower whilst 
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cycling on the fully suspended bike on the indoor track compared to the hardtail 

bike.  Similarly, lower recordings of RPE were found for all subjects cycling on the 

fully suspended bike compared to the hardtail bike (Figure 6-6).  Figure 6-5 

illustrates that for the results pertaining to comfort rating, all subjects gave a 

higher comfort rating level whilst cycling on the fully suspended bike compared to 

the hardtail bike.  These higher comfort ratings indicate that the fully suspended 

bike presents an advantage to the rider, in terms of comfort.  Similarly, the 

findings for VO2, heart rate and RPE indicate that, for the tests on the indoor 

track, the fully suspended bike uses less of the rider’s energy compared to the 

hardtail bike, and thus this suspension system presents an advantage to the rider 

over the hardtail bike.  Table 6-3 and 6-4 also illustrate the average values 

obtained for each subject.  

 

Table 6-3: The mean values obtained for the subjects’ VO2, heart rate, RPE and 

comfort rating for the hardtail system on the indoor track tests.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Track test Hardtail 

Subject VO2 
(ml/kg/min) 

Heart Rate 
(beats/min) 

Exertion Comfort 

1 21.89 106.4 7.7 3.3 

2 17.87 127.2 12.0 3.0 

3 20.17 105.1 8.0 4.0 

4 17.64 109.3 8.0 3.7 

5 20.58 105.3 8.7 3.0 

6 24.69 108.4 8.0 3.3 

7 15.70 94.1 7.0 3.3 

8 22.76 104.6 9.7 2.7 

9 17.65 102.7 8.3 3.7 

10 14.56 104.2 8.0 2.3 

Mean 19.4 106.7 8.5 3.2 

SD 3.215443 8.299404 1.3984118 0.4981447 
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Table 6-4 :The mean values obtained for the subjects’ VO2, heart rate, RPE and 

comfort rating for the full suspension system on the indoor track tests.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.6. Statistical Analysis of Results 

 

Similar to the tests conducted on the roller road rig and the rolling road rig, the 

null hypothesis two-tailed dependent t-test was applied to the results obtained 

from the indoor track tests to calculate the probability that the differences 

measured between the hardtail and fully suspended systems are purely the result 

of chance.  Low probabilities (p < 0.05) indicate that the measured effect in the 

sample (ten subjects) is evidence of a real effect in the population.  A full 

explanation of the null hypotheses two tailed dependent t-test can be found in 

section 4.7.3 of the current project.      

 

  

Track test Full Suspension 

Subject VO2 
(ml/kg/min) 

Heart Rate 
(beats/min) 

Exertion Comfort 

1 19.517 102.1 7.0 5.0 

2 17.07 121.3 8.3 4.0 

3 19.96 103.1 6.3 5.0 

4 16.23 96.9 7.0 5.0 

5 18.93 100.3 7.7 4.0 

6 22.45 107.7 7.0 4.3 

7 13.06 93.9 6.0 4.0 

8 22.63 96.9 8.3 4.0 

9 16.24 102.6 7.3 4.7 

10 15.6 103.9 8.0 3.0 

Mean 18.2 102.9 7.3 4.3 

SD 3.0771847 7.6239462 0.7927137 0.6373169 
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Table 6-5: The difference between the means of the subjects’ VO2, heart rate, 

RPE and comfort rating obtained by comparing the hardtail and fully suspended 

bikes on the indoor track tests.   

 

Indoor Track Test  VO2 Heart rate RPE Comfort 

  (ml /kg/min) (beats/min)   

Sample size  10 10 10 10 

Mean of differences  1.2 3.9 1.2 -1.1 

Standard deviation  1.16 4.04 0.96 0.31 

P-value  0.01 0.015 0.0027 0.0002 

Effect size  0.4 0.5 1.1 -1.9 

N.B.: All differences are obtained through subtracting (-) the means obtained from cycling on the 

fully suspended bike from the means obtained from cycling on the hardtail bike.   

 

Table 6-5 displays the differences between the means of the subjects’ VO2, heart 

rate, RPE and comfort rating whilst cycling on the fully suspended compared to 

the hardtail bike during the indoor track tests.  All of the differences between the 

means for the physiological and psychological measurements are greater for the 

hardtail bike, indicating that all of the subjects experienced a higher VO2, with the 

exception of one subject who had a slightly lower VO2 by only 0.1 ml /kg/min, all 

of the subjects experienced a lower heart rate, RPE and higher level of comfort 

(6.1 %, 3.6% 14.14 %, and 33 % difference between the means respectively) 

whilst cycling on the fully suspended system on the indoor track.  The lower 

comfort rating is represented through the negative value obtained through the 

difference in the means for the hardtail compared to the fully suspended bike, as 

all subjects indicated that they felt more comfortable whilst cycling on the fully 

suspended bike.   As the p values for each of the difference in means are less 

than 0.05, this indicates that these differences are significant findings.  The effect 

size of the difference in means, as illustrated in Table 6-5, varies from -1.9 to 1.1; 

supporting the claim that these results are meaningful.  Similar to the data 

displayed in the scatter plot graphs (Figures 6-3 to 6-6), the findings from Table 
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6-5 indicate that the fully suspended bike, in comparison to the hardtail bike, 

presents an advantage to the subject when cycling on the indoor track.   
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7. Dynamic Simulation 

 

7.1. Introduction 

 

Previous researchers (Gonzalez et al., 2008; Good & McPhee, 1999; Wang & 

Hull, 1996) have developed dynamic simulation models to establish rider induced 

energy losses due to suspension systems, and consequently utilised these initial 

models to optimise the rear suspension geometry of a mountain bike in an 

attempt to reduce the amount of energy dissipated via the rear suspension.  

Other researchers (Bu et al., 2009; Wilczynski & Hull, 1994) have also developed 

simulation models to investigate energy losses due to suspension systems, yet 

these studies investigated the energy lost as a result of terrain-induced loads.  

Each of the studies investigating rider induced and terrain induced energy losses, 

and how these in turn affect the suspension system, were researched and 

analysed and consequently assisted in determining which line of investigating 

this current study should take.  With this in mind, the main objectives of this 

dynamic simulation study were to develop simulations which could be used to 

quantify both the rider and terrain induced energy losses due to the suspension 

system.   

 

The simulations were created to validate the experimental results and to 

establish if a simulation tool could be used to estimate the dynamic loads when 

using different suspension systems.  The simulations were produced to emulate 

both the experimental roller rig and the rolling road rig tests in order to establish if 

any differences between the fully suspended and hardtail mountain bike were 

apparent.  The simulations replicated all of the test scenarios for the roller rig: a 

seated cyclist travelling on a hardtail mountain bike on a smooth surface; a 

seated cyclist on a fully suspended mountain bike on a smooth surface; a seated 

cyclist travelling on a hardtail mountain bike on a surface with one bump and a 

seated cyclist on a fully suspended mountain bike on a surface with one bump.  
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Additionally, each of these four riding scenarios were simulated for the rolling 

road rig tests; thus a total of eight simulations were undertaken.  In addition to 

using the simulations as a means of comparing the hardtail and fully suspended 

mountain bikes, the simulations were also used as a means of validating the 

experimental results of the roller rig and the rolling road rig tests.   

  

A range of dynamic computer simulation models can be used to conceptualise 

mountain bikes and their suspension systems, with researchers opting to use 

different simulation programs in their studies: AUTOLEV (Wang and Hull, 1996); 

ADAMS (Bu et al., 2009); Matlab (Gonzalez et al., 2008); and DADS (Wilczynski 

and Hull, 1994).  For the purpose of the current study, a dynamic model was 

developed with the aid of the Dynamic Analysis and Design Software (DADS) 

(CADSI Corp., Oakdale, IA) package - the package deemed most appropriate as 

it incorporates many features specifically designed to model vehicles.  DADS is a 

mechanical computer aided engineering software package that enables the 

simulation and analysis of complex mechanisms and mechanical systems. This 

software package has the ability to perform static, kinematic and dynamic 

analysis to create two and three-dimensional models.  Furthermore, DADS 

allows the user to model real-world behaviour; the equations of motion are 

automatically generated and the resultant differential-algebraic equations are 

then solved.  Results can be interpreted through the use of plots, graphs, tables 

and animation. 
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7.2. Method 

 

7.2.1. Model  

7.2.1.1. Rider Model 

The literature review provided valuable information on how the current rider 

simulation model should be developed as it highlighted strengths, as well as any 

weaknesses, of the previously designed simulation models.  In this respect, it 

was a useful tool in determining and developing an optimal model for the current 

study.  Through researching and analysing previous dynamic simulation studies, 

it became apparent that the loads measured from laboratory experiments (used 

to represent the rider) were not required.  A simulated rider placed on the 

mountain bike gives similar dynamic properties to that of riding outside, thus the 

need for specifying a number of rider-bike interface loads from laboratory tests 

are eliminated (Good & McPhee, 1999).  Previous researchers (Wang & Hull, 

1997; Wilczynski & Hull, 1994) recorded rider loads on the frame of the bike for 

each riding scenario - a cumbersome form of model development, which 

provides little benefit to the researcher.  With this in mind, for the purpose of the 

current study, a rider was placed on the mountain bike and simulated using 

parameters obtained from previous literature (Wilczynski & Hull, 1994), as shown 

in Table 7-1.   
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Table 7-1: Model parameters derived from the literature 

 

Element Model Parameter Value 
 

Source 

Torso Mass 
Moment of Inertia 
Length  
Position of Mass Centre 

37.98 kg 
1.827 kg/m2 

0.51 m 
0.31 m 

Chandler et al. (1979) 
Chandler et al. (1979) 
Wilczyinski & Hull (1994) 
Chandler et al. (1979) 

Upper arm Mass 
Moment of Inertia 
Length  
Position of Mass Centre 

1.84 kg 
0.013 kg/m2 
0.32 m 
0.14 m 

Chandler et al. (1979) 
Chandler et al. (1979) 
Wilczyinski & Hull (1994) 
Chandler et al. (1979) 

Forearm Mass 
Moment of Inertia 
Length  
Position of Mass Centre 

1.49 kg 
0.0063 
kg/m2 
0.32 m 
0.16 m 

Chandler et al. (1979) 
Chandler et al. (1979) 
Wilczyinski & Hull (1994) 
Chandler et al. (1979) 

Thigh Mass 
Moment of Inertia 
Length  
Position of Mass Centre 

6.52 kg 
0.116 kg/m2 
0.42 m 
0.25 m 

Chandler et al. (1979) 
Chandler et al. (1979) 
Wilczyinski & Hull (1994) 
Chandler et al. (1979) 

Lower leg Mass 
Moment of Inertia 
Length  
Position of Mass Centre 

3.52  kg 
0.039 kg/m2 
0.47 m 
0.19 m 

Chandler et al. (1979) 
Chandler et al. (1979) 
Wilczyinski & Hull (1994) 
Chandler et al. (1979) 

Front Fork Mass 
Moment of Inertia 
Length  
Position of Mass Centre 

5.05  kg 
0.488 kg/m2 
0.45 m 
0.27 m 

Wilczyinski & Hull (1994) 
Wilczyinski & Hull (1994) 
Wilczyinski & Hull (1994) 
Wilczyinski & Hull (1994) 

Arm Stiffness 
Damping 

14400 N/m 
202 Ns/m 

Wong M & Hull M L (1981) 
Wong M & Hull M L (1981) 

Tyre  Stiffness 90000 N/m Wilczyinski & Hull (1994) 
Front 
Suspension 

Stiffness 
Damping 

73600 N/m 
975 Ns/m 

Wong M & Hull M L (1983) 
Wong M & Hull M L (1983) 

Rear 
Suspension 

Stiffness 
Damping 

73900 N/m 
7776 Ns/m 

Good & McPhee (1999) 
Good & McPhee (1999) 

 

The rider model consisted of eight ridged bodies: the torso and head; the upper 

arm; the forearm; the right thigh; the left thigh; the lower right leg; lower left leg 

and hip.  The details of each body part: its mass; length; the moment of inertia 

and the position of the mass centre, were all derived from the previous literature 

(Chandler et al., 1979; Good & McPhee, 1999; Wilczynski & Hull, 1994; Wong M & 

Hull M L, 1983): Table 7-1 highlights these details.   
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In order to emulate a seated rider (as all subjects participating in the roller rig and 

the rolling road rig experimental tests rode in this position) the base of the torso 

was connected to the seat; the forearm was connected to the handlebars and the 

lower legs to the pedals. Unlike previous simulation models, which did not 

consider the motion of the rider’s body (Good & McPhee, 1999; Gonzalez et al., 

2008; Wang & Hull, 1996; Bu et al., 2009), the current simulation model 

introduced improvements, which allowed the movement of the rider to be 

considered.  Both legs were integrated into the simulation design and were 

connected using revolute joints to allow for the pedalling action; this emulated the 

rider’s cycling movement in order to give similar dynamic and inertial properties 

to the experimental results. 

 

7.2.1.2. Bike Model  

Both the simulated hardtail and fully suspended mountain bikes were modelled 

from the mountain bikes used in the roller rig and the rolling road rig experimental 

tests.  The fully suspended bike was modelled on the Marin Mount Vision, and 

the hardtail mountain bike on the Marin Rocky Ridge.  The hardtail bike and the 

fully suspended bike are illustrated in figure 4-3 and 4-4. 

 

The mountain bike specifications were received from Marin and incorporated into 

the bike models’ design, thus determining the specific length; moment of inertia 

and position of the mass centre for both the hardtail and fully suspended bikes. 

The simulated hardtail bike was designed as a model consisting of five bodies: 

the rig; the simulated rider; the rear wheel; the frame and the front fork.  The front 

fork consisted of a linear steel coil spring in parallel with a viscous damper, which 

connected to the main frame via a telescopic bracket.  Both the damping and 

spring stiffness values were obtained from previous research (Good & McPhee, 

1999; Wong & Hull, 1983), which used a similar front suspension configuration.  

 

Similar to the simulated hardtail mountain bike, the fully suspended bike was also 

designed as a five-body model.  This model had the same front section of the 
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frame as the hardtail bike; however, it also incorporated a rear suspension 

system, which was modelled on a single swing arm suspension design consisting 

of a linear steel coil spring in parallel with a fixed orifice damper.   

 

The wheels of the bike model were connected to both the front and rear hubs of 

the simulated hardtail and fully suspended bikes using rotational joints.  The tyres 

were developed using a complex tyre model incorporated in the DADS simulation 

package; the properties of which were taken from a previous study (Wilczynski & 

Hull, 1994). The form of tyre simulation used in this study differs from that of 

previous studies (Bu et al., 2009; Gonzalez et al., 2008; Good & McPhee, 1999; 

Wang & Hull, 1996).  In these previous studies springs were used to represent 

the tyres.  The use of springs presents a disadvantage to the simulation model as 

they do not present an adequate representation of a tyre’s dynamic properties.   

 

In order to ensure that the simulated bikes were as true a representation of a 

mountain bike as possible, several design parameters were established for the 

models.  The bike models were developed so that the bikes were able to deviate 

from the road surface so as to give a truer representation of cycling conditions.  

This simulation model is unlike Bu et al’s (2009) model where the simulated bikes 

were constrained to follow the road surface, thus presenting an unrealistic 

representation of cycling scenarios.  Additionally, in order to ensure that a truer 

representation of cycling conditions was presented in the simulations, a belt drive 

was developed through the use of the DADS package to represent the chain of 

the bike, connecting the crank to the rear wheel cog.  The driving force of the 

simulation was attached to this crank, giving the bike a forward momentum to 

equal that of the experimental tests. The same driver was developed for both the 

hardtail and fully suspended bike models, which consisted of a varying torque 

and giving both simulated bikes an average velocity of fifteen km/h.  The decision 

to use a varying torque for the simulation came as a result of analysing the 

previous simulation studies of Bu et al., 2009; Gonzalez et al., 2008; Good & 

McPhee, 1999; Wang & Hull, 1996 and Wilczynski & Hull, 1994 - all of whom 
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used a varying crank torque in order to represent the true uneven pedalling 

action of a cyclist.   

 

7.3. The Simulations 

 

As aforementioned, 4 tests were carried out on both the roller rig and the rolling 

road rig: a seated cyclist travelling on a hardtail mountain bike on a smooth 

surface; a seated cyclist on a fully suspended mountain bike on a smooth 

surface; a seated cyclist travelling on a hardtail mountain bike on a surface with 

one bump and a seated cyclist on a fully suspended mountain bike on a surface 

with one bump. All of the bike simulations were run for a total period of 6 s; a 

sufficient amount of time to establish how the suspension reacts when travelling 

over each surface type.  The simulation results were then compared to establish 

which mountain bike type - the hardtail or fully suspended - was most effective on 

the smooth surface and on the surface with the bump, and to what degree it was 

most effective.  

  

The effects of wind and aerodynamic drag were not considered in the 

simulations.  These were excluded from the simulations so as to match the 

experimental roller rig and rolling road rig test environments.  Both experimental 

rig tests were conducted indoors and the bikes held stationary, thus deeming the 

effect of wind and aerodynamic drag negligible (only a small amount of 

aerodynamic drag was found at the spokes of the wheels).    

 

7.3.1. Roller Rig Simulation Model 

The dynamic simulation of the roller rig emulated the experimental roller rig test; 

the model of which is illustrated in Figure 7-1.  Similar to the roller rig 

experimental tests, both the hardtail and fully suspended simulated bikes were 

tested on both the smooth surface and on the surface with a bump and the 

results for each bike were compared. 
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Figure 7-1: Dynamic simulation model of the roller rig and rider 

 

In order to simulate the roller rig effectively, the bike model (as previously 

outlined in section 7.2.1.2) was adapted; no front wheel was incorporated into the 

model and the front axle was attached to the rig using a rotational joint.  A 

simulated road running under the rear wheel represented the roller of the 

experimental tests.   

 

The most significant results of the roller rig simulations were derived from the 

vertical and horizontal measurements of displacement, and the velocity and 

acceleration of both the rider and the front and rear accelerometers.  In addition 

to these, significant results were also obtained from the measurements of 

displacement, velocity and force of the front and rear suspension. 

  

7.3.2. Rolling Road Rig Simulation Model 

The dynamic simulation of the rolling road rig emulated the experimental rolling 

road rig test; the model of which is illustrated in Figure 7-2.   
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Figure 7-2: Dynamic simulation model of the rolling road rig and rider 

 

As with the roller rig simulations, both the hardtail and fully suspended simulated 

bikes were tested on the simulated rolling road rig on both the smooth surface 

and on the surface with a bump, and the results for each bike compared.  For this 

simulation, as was the case for the experimental rolling road rig test, the front 

wheel was incorporated into the bike design.  For the rolling road rig simulation 

model, the hardtail bike was emulated by locking the rear suspension of the fully 

suspended bike, thus creating a rigid rear frame (in the experimental tests the 

rear suspension unit was replaced with a steel bar to create a hardtail bike).   

 

Similar to the rolling road rig experimental tests, the simulated bike was attached 

to the rolling road rig at the handlebars with a rotational/translational joint.  This 

allowed the handlebars to move freely in the vertical direction and rotate about its 

axis, thus giving a closer representation of truer cycling conditions.  The 

simulated rolling road passed under both bike wheels at the same velocity as the 

roller rig experimental tests: fifteen km/h, thus allowing the results of the roller rig 

and the rolling road rig simulations to be compared.    

 

As with the roller rig simulations, the most significant results of the rolling road rig 

simulations were derived from the vertical and horizontal measurements of 

displacement, and the velocity and acceleration of both the rider and the front 

and rear accelerometers.  Significant results from the rolling road rig simulations 
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were also obtained from the measurements of displacement, velocity and force of 

the front and rear suspension. 

 

7.4. Simulation Results    

 

In order to highlight comparisons and differences between the fully suspended 

and the hardtail bike on both the smooth surface and the surface with a bump, 

the results obtained from the roller rig and the rolling road rig simulations are 

displayed in graphical form.  The graphs illustrate the velocity, displacement and 

acceleration of the bikes at specific points specified on the frame and the rider, 

as well as the force and displacement of the front and rear suspension systems.   

 

The bike simulations were run for a total period of 6 s, however, only the data 

retrieved from the relevant time period are displayed in the graphs.  Figure 7-3 is 

used to illustrate why this decision was made.  Figure 7-3 illustrates the vertical 

displacement at the front of the bike above the handlebars, the same location 

selected for the accelerometer in the experimental test so a comparison can be 

made.  

 

Figure 7-3: The vertical displacement at the front of the bike comparing the fully 

suspended and the hardtail bike on a rough surface on the roller rig.  
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As illustrated in Figure 7-3 the y axis represents the position at the handlebars, a 

negative displacement of both bikes is evident between 0 s to 0.25 s. This is due 

to the compression of the spring in the suspension and the tyres when the 

simulated rider’s weight is exerted on the bike.  The main reason for this 

occurring is due to the suspension having no pre-load, thus the suspension 

system needs to stabilise prior to useful data being recorded.  This initial 

displacement is true for both bike types on both the smooth surface and on the 

surface with a bump but does not represent true riding conditions.  In normal 

riding conditions a mountain bike suspension system is pre-loaded so as to take 

a rider’s weight into account.  For this reason the data obtained from zero to 0.25 

s of the simulations is not included in the graphs.   

 

While cycling on a smooth surface at a constant speed - 15 km/h for both the 

roller rig and the rolling road rig simulations - the movement and forces exerted 

on the bike and rider are repeated, therefore only a section of the time period is 

required to obtain results from the hardtail and fully suspended bike on a smooth 

surface; in this instance the data between the third and fourth second was 

chosen for analysis.  When considering both bike types on a rough surface, it 

was found that the bikes came into contact with the bump between 4 s and 5.5 s 

after the beginning of the simulation.  Any measurements resulting from contact 

with the bump would therefore occur during this time; hence the decision to 

include only this time period in the graphs with the cyclist riding on a surface with 

a bump.   
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7.4.1. Roller Rig Simulations on the Smooth Surface 

Figure 7-4 illustrates the vertical displacements at the front accelerometer 

(placed on top of the steerer tube) of both the fully suspended and the hardtail 

bike on the roller rig with a smooth surface.  A secondary axis has been provided 

for the hardtail bike to enable both data sets to be represented on one graph.  As 

is shown in 7-4, the initial position of the handlebars differs for both bikes: 898.71 

mm for the fully suspended bike and 902.31 mm for the hardtail.  A reason for the 

disparity in results for the average displacement is due to the compression of the 

rear suspension of the fully suspended bike due to the rider’s weight, thus 

resulting in a lower average displacement for the fully suspended bike.   

 

Figure 7-4 also illustrates that the fully suspended bike oscillates slightly (0.095 

mm between the maximum and minimum turning points of the graph) at the front 

of the bike.  Although this is a small measurement it is, however, a relevant 

finding as it demonstrates that a bobbing effect occurs when cycling on the fully 

suspended bike.  Figure 7-4 clearly shows that no oscillation of the hardtail bike 

occurs, thus indicating that when considering the vertical displacement at the 

0.9

0.901

0.902

0.903

0.904

0.905

0.89855

0.8986

0.89865

0.8987

0.89875

0.8988

3 3.5 4

H
T

 D
is

ta
n

c
e
 (

m
)

S
U

S
 D

is
ta

n
c
e
 (

m
)

Time (s)

SUS

HT

Figure 7-4: The vertical displacement at the front of the bike 

comparing the fully suspended and the hardtail bike on a 

smooth surface on the roller rig.  
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front of a bike cycling on the roller rig over a smooth surface, that a hardtail bike 

presents an advantage to the rider over a fully suspended bike.   

 

Figure 7-5 illustrates the vertical displacements at the rear accelerometer (placed 

under the saddle of the bike) of both the fully suspended and the hardtail bike on 

the roller rig on the smooth surface. 

Similar to the results obtained from the front of the bike, the graph illustrates that 

a slight oscillation occurs at the rear of the fully suspended bike.  Although this is 

only a small oscillation (0.7 mm between the maximum and minimum turning 

points of the graph), it is substantially greater than the displacement found at the 

front of the fully suspended bike.  This is unsurprising as the majority of the 

rider’s weight is situated at the rear of the bike.  Again, as with the data obtained 

from the front accelerometer, no bobbing effect occurs at the rear accelerometer 

on the hardtail bike.  This indicates that, when considering the vertical 

displacement at the rear of a bike cycling on the roller rig over a smooth surface, 

a hardtail bike presents an advantage to the rider over a fully suspended bike.   
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Figure 7-5: The vertical displacement at the rear of the bike 

comparing the fully suspended and the hardtail bike on a 

smooth surface on the roller rig.  
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Another important aspect in the analysis of the simulation tests is the vertical 

displacement of the rider’s body whilst cycling on the roller rig on the smooth 

surface.  Figure 7-6 represents the vertical movement of the rider’s torso due to 

the movement of the bike, and illustrates that the distance between the maximum 

and minimum turning points for the rider’s displacement on the fully suspended 

bike on a smooth surface is 0.52 mm.  Conversely, the results for the rider’s 

displacement on the hardtail bike remain constant: there is no movement of the 

rider.       

 

This concurs with the experimental test results for the vertical displacement of 

the rider on the roller rig, where the subjects all experienced a bobbing motion.  

This also concurs with the majority (76 %) of questionnaire respondents who 

confirmed that they experienced a bobbing effect when cycling on a fully 

suspended bike (Appendix A).  It is also important to consider that this bobbing 

effect would be amplified when travelling uphill or while standing (as is the case 

for real life riding conditions) due to a more exaggerated uneven pedalling 

motion.     
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Figure 7-6: The vertical displacement of the simulated rider’s 

torso position comparing the fully suspended and the hardtail 

bike on a smooth surface on the roller rig.  
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In order to establish if a rider’s displacement is a direct result of the suspension 

system, the displacement and force of both the front and rear suspension 

systems must be analysed.  

Figure 7-7 illustrates the displacement of the front suspension of both the hardtail 

and fully suspended bike on the roller rig on the smooth surface.  It demonstrates 

that the displacement of the hardtail bike is a constant value, and does not 

fluctuate due to the pedalling motion of the simulated cyclist.  However, the 

displacement of the front suspension of the fully suspended bike produces a 

value of 0.22 mm between the maximum and minimum turning points.  This 

highlights that the movement at the front of the fully suspended bike is due to the 

movement occurring at the rear suspension.  Therefore, it is apparent that 

incorporating a rear suspension in the bike design promotes movement in the 

front suspension when under these specific test conditions.   

 

Yet, as the displacement results for the front and rear accelerometers, and front 

suspension for the fully suspended bike are so slight, an extremely accurate form 

of measurement would be required to measure these in experimental tests.  

Berry et al. (1993) used visual inspection to observe displacement in the 
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Figure 7-7: The displacement of the front suspension 

comparing the fully suspended and the hardtail bike on a 

smooth surface on the roller rig. 
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suspension systems, yet the human eye would not notice the slight oscillations 

that are found through running the simulations.   

 

Figure 7-8 represents the resultant force transmitted by the front suspension from 

wheel to frame of both the hardtail and fully suspended bike, and follows a similar 

pattern to the previously discussed graphs: a constant value is obtained for the 

force at the front suspension of the hardtail bike, and the force at the front of the 

fully suspended bike oscillates slightly.  The average force measured for the fully 

suspended bike is 0.565 N less than that of the hardtail bike.  The force exerted 

between the maximum and minimum turning points for the fully suspended bike 

is 0.013 N; this is in contrast to the hardtail bike, which shows no variation in 

force.  This indicates that a rear suspension system causes the force applied to 

the front suspension to fluctuate, which in turn would expend a small amount of a 

rider’s energy.  However, as the amount of force measured at the front 

suspension of the fully suspended bike is negligible, the rear suspension system 

must be analysed to establish its effect on the rider.   

 

In order to identify if, and to what extent, the displacement of the fully suspended 

bike occurs from the movement of the rear suspension, the compression and 
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Figure7-8: The resultant force transmitted by the front 

suspension system comparing the fully suspended and the 

hardtail bike on a smooth surface on the roller rig.  
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extension of the rear suspension (Figure 7-9) and the resultant force exerted on 

the spring (Figure 7-10) was analysed.   

 

Figure 7-9 indicates that the displacement of the rear suspension produces a 

value of 0.31 mm between the maximum and minimum turning points.  This 

highlights why the displacement is greater at the rear suspension of a fully 

suspended bike compared to the front suspension, as can be noticed when both 

of the bikes are compared in Figures 4-3 and 4-4.   

 

Figure 7-10 illustrates the resultant force transmitted by the rear suspension from 

wheel to frame of a fully suspended bike travelling on the roller rig with a smooth 

surface between the 3 s and 4 s time period.  The average compression force of 

the rear suspension is -1115 N; substantially greater than the force exerted on 

the front suspension of the hardtail and fully suspended bike.  This is due to the 

weight of the rider compressing the spring representing a greater force than that 

at the front of the bike.  The force measured at the rear suspension of the fully 

suspended bike between the maximum and minimum turning points is 52 N.   
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Figure 7-9: The displacement of the 
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Figure 7-11 illustrates the resultant power transmitted by the rear suspension 

system of the fully suspended bike travelling on the roller rig with a smooth 

surface between the 3 s and 4 s time period.  This indicates the level of energy 

absorbed by, and lost through, the rear suspension system.  This is a significant 

finding as it demonstrates that - compared to the hardtail bike - additional energy 

is required to cycle the fully suspended bike on a flat surface on the roller rig 

simulation.     

 

7.4.2. Roller Rig Simulations on the Surface with a Bump 

The simulations with the hardtail and fully suspended bike were also run on the 

roller rig on a surface with a bump attached.  As discussed previously, only the 

time period with the relevant data is displayed on the graphs.  The time period 

displayed is over a 1.5 s period between 4 s and 5.5 s; this allows for the time 

period prior to the rear wheel coming into contact with the bump and allows 

sufficient time for analysis after the initial contact with the bump.  
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Figure 7-12 displays the vertical displacement at the front accelerometer of the 

hardtail and fully suspended bike on the roller rig on the surface with a bump.  

Similar to the results obtained from the vertical displacement at the front 

accelerometer on the smooth surface, the fully suspended bike again displays a 

lower average height of the front accelerometer on a surface with a bump, 

compared to the hardtail bike.  Again this is due to the compression of the rear 

suspension of the fully suspended bike due to the rider’s weight, thus resulting in 

a lower displacement at the front accelerometer for the fully suspended bike.   

 

Both the front accelerometer of the hardtail and fully suspended bike rises by a 

similar amount when the rear wheel comes into contact with the bump.  Both 

front accelerometers rise by 3.3 mm.  However, when the fully suspended bike 

lands after contact with the bump, the height at the rear of the bike dips slightly 

by 0.6 mm before rising by 1 mm, and finally settling to the same height as that 

prior to hitting the bump.  A key reason for this slight dip is a result of the 

movement in the rear suspension system this movement is studied in detail in 

Figure 7-14. 
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Figure 7-12: The vertical displacement at 

the front of the bike comparing the fully 

suspended and the hardtail bike on a 

rough surface on the roller rig. 

Figure 7-13: The vertical velocity at the 

front of the bike comparing the fully 

suspended and the hardtail bike on a 

smooth surface on the roller rig.  
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Figure 7-13 displays the vertical velocity at the front accelerometer of the hardtail 

and the fully suspended bike on the surface with a bump.  As illustrated by the 

graph, there is a sharp rise and fall in the velocity at the front of the hardtail bike 

when the rear wheel impacts with the bump. The vertical velocity at the front 

accelerometer between the maximum and minimum turning points for the hardtail 

bike is 0.128 m/s, and 0.074 m/s for the fully suspended bike.  As the fully 

suspended bike allows for a more gradual increase in velocity due to the rear 

suspension absorbing the impact of the bump, this in turn increases the comfort 

of the rider.  These results concur with the views of the subjects of the 

experimental roller rig tests, who asserted that the fully suspended bike was 

more comfortable than the hardtail bike (Chapter 4).     

 

Figure 7-14 illustrates the vertical motion of the rear accelerometer on the 

hardtail and fully suspended bike as the wheel impacts with the bump.   

 

Figure 7-15 displays a similar pattern to that of Figure 7-13: the fully suspended 

bike displays a lower average height at the rear accelerometer on a surface with 
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Figure 7-14: The vertical displacement 

at the rear of the bike comparing the 

fully suspended and the hardtail bike on 

a rough surface on the roller rig 

Figure 7-15: The vertical velocity at the 

rear of the bike comparing the fully 

suspended and the hardtail bike on a 

rough surface on the roller rig 
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a bump compared to the hardtail bike, and both the rear accelerometer of the 

hardtail and fully suspended bike rises when the rear wheel comes into contact 

with the bump.  However, in this instance there is a slight difference in the 

displacements of the bikes upon impact with the bump: the displacement of the 

hardtail bike is 28 mm and the fully suspended bike has a displacement of 24.5 

mm.  Similar to the results relating to the vertical displacement at the front 

accelerometer, the rear accelerometer of the fully suspended bike also dips 

slightly after contact with the bump due to the compression of the rear 

suspension spring.  However, the oscillation of the rear accelerometer is only 

very slight at 0.005 µm, and has only one peak before levelling as a result of the 

damping of the rear suspension.  This indicates that there is only a slight bobbing 

effect after contact with the bump, yet as with the previous graphs for the roller 

rig on the smooth road there is still a constant, slight bobbing effect which cannot 

be distinguished at this scale. 

 

Figure 7-15 highlights the vertical velocity at the rear accelerometer of the 

hardtail and the fully suspended bike on the roller rig on the surface with a bump.  

As with the results obtained from the vertical velocity at the front accelerometer 

of the hardtail bike, there is again a sharp rise and fall for the hardtail bike when 

the rear wheel impacts with the bump.  However, a significant difference between 

the vertical velocities of the rear accelerometers for the hardtail and fully 

suspended bikes can, this time, be identified.  The vertical velocity at the rear 

accelerometer is 1.1 m/s between the maximum and minimum turning points for 

the hardtail bike, and 0.545 m/s for the fully suspended bike.  As the fully 

suspended bike has a lower velocity at the rear accelerometer than the hardtail 

bike, this lessens the impact of the bump felt by the rider and increases rider 

comfort.   
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Figures 7-16 and 7-17 illustrate the vertical displacement and velocity of the 

rider’s body on both the hardtail and fully suspended bike.  Interestingly, Figure 

7-16 indicates that on the hardtail bike, compared to the fully suspended bike, the 

rider’s torso oscillates to a greater extent after contact with the bump.  This may 

be a result of the increased movement of the rider’s torso on the hardtail bike 

after the initial impact with the bump occurs, and consequent impact with the 

ground following the bump (Figure 7-16).  Figure 7-16 also shows that after 

initially coming into contact with the bump, the rider on the hardtail bike has a 

displacement of 23 mm, and 19 mm on the fully suspended bike.  The fully 

suspended bike allows less movement of the rider when riding over rough terrain, 

thus increasing rider comfort as the bumps are absorbed by the rear suspension.    

 

Figure 7-17 indicates that the rider moves less when riding on a fully suspended 

bike (compared to a hardtail bike) when impacting the bump, followed by the 

ground.  The change in velocity of the rider’s movement on the hardtail bike is 

0.862 m/s between the maximum and minimum turning points, and 0.49 m/s on 
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Figure 7-16: The vertical displacement of 

the simulated rider’s torso comparing the 

fully suspended and the hardtail bike on a 

rough surface on the roller rig. 

Figure 7-17: The vertical velocity of the 

simulated rider’s torso comparing the 

fully suspended and the hardtail bike on 

a rough surface on the roller rig.  
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the fully suspended bike.  Similarly, as with the results for the velocity at the front 

and rear accelerometers, the velocity of the rider’s movement is lower when 

riding on a fully suspended bike, compared to a hardtail bike, on a surface with a 

bump.  This finding highlights that riding over rough terrain on a fully suspended 

bike increases comfort as less movement of the rider occurs during cycling.    

Figures 7-18 and 7-19 illustrate the displacement and force at the front 

suspension of the hardtail and fully suspended bike respectively.  Both graphs 

show a fluctuation of the displacement and force at the front suspension of the 

hardtail bike after contact with the bump.  Figure 7-18 displays that the maximum 

displacement of the front suspension of the hardtail bike is 0.137 mm; this is in 

contrast to the fully suspended bike, which has a slight displacement of only 

0.007 mm.  The lower displacement value for the fully suspended bike highlights 

that less bobbing occurs on the fully suspended compared to the hardtail bike 

when cycling over rough terrain.     
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Figure 7-18: The displacement of the front 

suspension system comparing the fully 

suspended and the hardtail bike on a 

rough surface on the roller rig. 

Figure 7-19: The resultant force transmitted 

by the front suspension system comparing 

the fully suspended and the hardtail bike on 

a rough surface on the roller rig. 
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Figure 7-19 illustrates the force exerted on the front suspension system of the 

hardtail and fully suspended bike on a surface with a bump.  These values are 

9.2 N and 0.7 N between the maximum and minimum turning points for the 

hardtail and fully suspended bike respectively.  A smaller amount of force acting 

on the front suspension of a fully suspended bike uses less of the rider’s energy 

than the front suspension of a hardtail bike, thus suggesting that the front 

suspension of a fully suspended bike is more efficient for the cyclist when riding 

over rough terrain.   

Figures 7-20 and 7-21 display the displacement and force exerted on the rear 

suspension during contact of the rear wheel with the bump.  During the initial 

contact with the bump, the spring in the rear suspension compresses by 6 mm.  

The spring then extends by 14 mm and recovers after the rear tyre comes into 

contact with the ground (Figure 7-20).     

 

Figure 7-21 shows that the force exerted on the spring in the rear suspension is 

significantly greater than that exerted on the front suspension.  For the rear 
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Figure 7-20: The displacement of the 

rear suspension system of the fully 

suspended bike on a rough surface on 

the roller rig. 

Figure 7-21: The resultant force 

transmitted by the rear suspension 

system of the fully suspended bike on a 

rough surface on the roller rig. 
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suspension the force exerted is 3100 N between the minimum and maximum 

turning points.   

 

Figure 7-22 illustrates the power exerted on the spring of the rear suspension 

system.  The graph indicates that some of the rider’s energy will be expended by 

the rear suspension when cycling over the surface with a bump.     

 

7.4.3. Rolling Road Rig Simulations on the Smooth Surface 

Figure 7-23 illustrates the vertical displacement at the front accelerometer of both 

the hardtail and fully suspended bike on a smooth surface, with both bikes 

presenting a similar pattern for displacement.  A main distinction between the 

data sets is that a slightly higher displacement is observed at the front 

accelerometer of the fully suspended bike (0.144 mm between the minimum and 

maximum turning points), compared to the hardtail bike (0.136 mm between the 

minimum and maximum turning points).   
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Although the fully suspended bike has a greater overall displacement, it does 

present a smoother pattern of results, indicating that the rear suspension                                               

reduces some of the oscillation at the front of the bike.  This suggests that on the 

simulated smooth rolling road rig, the fully suspended bike reduces the effect of 

bobbing.  Figure 7-23 also highlights the disparity between the dynamics of the 

roller rig and the rolling road rig.  The simulated roller rig with the smooth surface 

did not reveal any fluctuations for the hardtail bike at the front accelerometer 

(Figure 7-4).  In contrast, the smooth rolling road rig identifies an oscillation at the 

front accelerometer for the hardtail bike (Figure 7-23) indicating that a bobbing 

effect does occur whilst cycling on a hardtail bike on a smooth surface.  This 

finding demonstrates that in a real life situation there is a movement for the front 

suspension of a hardtail bike (unlike the identical simulation on the roller rig) as 

the dynamics of the rolling road rig present a closer representation of true riding 

conditions, as the front wheel is incorporated into the simulation design, and the 

front axle is not fixed to the rig.  

 

Figure 7-25 shows the vertical displacement at the rear accelerometer of the 

hardtail and fully suspended bike on the smooth surface.  As with the identical 
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Figure 7-23: The vertical displacement at the 

front of the bike comparing the fully 

suspended and the hardtail bike on a smooth 

surface on the rolling road rig. 
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simulation on the smooth surfaced roller rig (Figure 7-5), the vertical 

displacement at the rear accelerometer for the hardtail bike on the smooth 

surface illustrates that no bobbing occurs.   

 

In contrast to this, the fully suspended bike displays a displacement at the rear 

accelerometer of 0.76 mm between the maximum and minimum turning points 

(Figure 7-24).  This is 0.06 mm greater than the displacement measured at the 

rear accelerometer on the smooth surfaced roller rig (Figure 7-5), and although it 

highlights that bobbing occurs at the rear of the fully suspended bike, it also 

signifies that with the incorporation of a front wheel, different results are obtained 

for the rolling road and roller rig simulations, despite having identical parameters.   
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Figure 7-24: The vertical displacement at the 

rear of the bike comparing the fully suspended 

and the hardtail bike on a smooth surface on 

the rolling road rig. 
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Figure 7-25 illustrates how riding on the hardtail and fully suspended bike effects 

the vertical displacement of the rider’s body.  As a slight displacement occurs at 

the front accelerometer of the hardtail bike on the smooth surfaced rolling road 

rig, it is unsurprising that there is also a slight vertical displacement of the rider’s 

body on the hardtail bike (0.07 mm between the maximum and minimum turning 

points).  This finding differs from the simulation on the roller rig: the vertical 

displacement of the rider’s body on the hardtail bike cycling on the smooth 

surfaced roller rig remained constant, suggesting that no bobbing occurred.  The 

only differences between the simulations are that on the rolling road rig, the bike 

is attached to the rig by the handlebars and a front wheel is incorporated into the 

design of the bike.  As the rolling road rig design is a closer representation of true 

riding conditions, the findings from the results of the displacement of the rider’s 

body on the rolling road rig can be said to be more representative of true riding 

conditions.      
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Figure 7-25: The vertical displacement of the 

simulated rider’s torso, comparing the fully 

suspended and the hardtail bike on a smooth 

surface on the rolling road rig. 
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Figure 7-25 also highlights that a larger displacement of the rider’s torso was 

found whilst riding on the fully suspended bike, compared to the hardtail, on the 

smooth surface.  This is once again an expected result due to the larger 

displacement found at the rear accelerometer of the fully suspended bike, and 

correlates with the finding for the displacement of the rider’s body on the smooth 

surfaced roller rig simulation.  However, the displacement between the maximum 

and minimum turning points is 0.62 mm for the fully suspended bike on the rolling 

road rig.  This indicates that, on the smooth surfaced rolling road rig, less 

bobbing occurs than on the roller rig with the smooth surface under identical 

simulation conditions.    

Figures 7-26 and 7-27 represent the displacement and force at the front 

suspension of both the hardtail and fully suspended bike on the smooth surfaced 

rolling road rig.  The displacement patterns of the front suspension on the fully 

suspended and hardtail bike have virtually identical curves.  The displacement of 

the front suspension on the fully suspended bike between the maximum and 

minimum turning points is 0.13 mm, and 0.135 mm between the maximum and 
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Figure 7-26: The displacement of the 

front suspension system comparing the 

fully suspended and the hardtail bike 

on a smooth surface on the rolling road 

rig. 

Figure 7-27: The resultant force 

transmitted by the front suspension 

system comparing the fully 

suspended and the hardtail bike on a 

smooth surface on the rolling road rig. 
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minimum turning points for the hardtail bike.  These values are higher than those 

obtained from the simulations relating to the displacement of the front suspension 

undertaken on the roller rig.     

 

However, the hardtail bike produces a higher average displacement than the fully 

suspended bike (Figure 7-26).  This is a direct result of the spring in the front 

suspension of the hardtail bike compressing slightly more than that of the fully 

suspended bike throughout the simulation.  This is due to the rear suspension of 

the fully suspended bike absorbing some of the force exerted by the rider’s 

weight.  For the hardtail bike, the front suspension must absorb all of the force 

exerted by the rider’s weight, resulting in an increased compression of the spring.  

Figure 7-27 shows this force exerted by the front suspension of the hardtail and 

fully suspended bike: 9.9 N between the maximum and minimum turning points 

for the fully suspended bike, and 11.5 N between the maximum and minimum 

turning points for the hardtail bike.  As less force is absorbed by the front 

suspension of the fully suspended bike, less of the rider’s energy is utilised on 

this bike type on the smooth surfaced rolling road rig simulation.  Figure 7-27 

illustrates that a negative force is displayed for the amount of force exerted on 

the front suspension of both bike types, which is to be expected as a spring 

compresses, and as is the case for the spring in the front suspension of the 

hardtail and fully suspended bikes.  In comparison, the results for the force 

exerted by the front suspension of the hardtail and fully suspended bike on the 

roller rig with the smooth surface present positive force values (Figure 7-8), 

indicating an extension of the spring which is an unrealistic representation of true 

riding conditions.  This is also true of the results pertaining to the displacement of 

the front suspension of the hardtail and fully suspended bike on the roller rig with 

the smooth surface (Figure 7-7); these also indicate positive displacement values 

which are unrealistic of true riding conditions.    
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Figures 7-28 and 7-29 illustrate the displacement of, and the amount of force 

exerted on, the rear suspension of the fully suspended bike.  The graphs show a 

displacement and force between the maximum and minimum turning points of 

0.355 mm and 44 N respectively.  
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Figure 7-28: The displacement of the 

rear suspension system of the fully 

suspended bike on a smooth surface 

on the rolling road rig. 
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Figure 7-30: The resultant power 
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Figure 7-30 displays similar results to the simulations relating to the amount of 

power dissipated by the rear suspension on the smooth surfaced roller rig (Figure 

7-11).  The primary difference between the simulation results obtained from the 

roller rig and rolling road rig - both with a smooth surface - relates to the 

additional power dissipated by the rear suspension whilst cycling on the rolling 

road rig.  One explanation for this may be due to the inclusion of the front wheel 

of the rolling road rig simulation design.   

 

7.4.4. Rolling Road Rig Simulations on the Surface with a Bump 

The simulations with the hardtail and fully suspended bike were also run on the 

rolling road rig on a surface with a bump attached.  As previously discussed, a 

time period must be selected to display all of the relevant data: in this instance 

the 1.5 s period between 3.5 s and 5 s when the front and rear wheel come into 

contact with the bump.   

 

Figure 7-31 demonstrates the vertical displacement at the front accelerometer 

(placed above the steerer tube) of the hardtail and fully suspended bike on the 

rolling road rig with a bump attached.  Both the hardtail and fully suspended 
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Figure 7-31: The vertical displacement at 

the front of the bike comparing the fully 

suspended and the hardtail bike on a 

rough surface on the rolling road rig. 

Figure 7-32: The vertical velocity at the 

front of the bike comparing the fully 

suspended and the hardtail bike on a 

rough surface on the rolling road rig. 
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system display a similar displacement, although the front accelerometer of the 

hardtail bike is 0.3 mm higher than on the fully suspended bike.  These results 

differ from those obtained from the vertical displacement at the front 

accelerometer of the hardtail and fully suspended bike on the roller rig with a 

bump attached (Figure 7-12).  Figure 7-12 shows no oscillation of the front 

accelerometer for the hardtail bike, and only a slight dip after impact with the 

bump for the fully suspended bike.  In contrast, Figure 7-31 shows that, when the 

front wheel is incorporated into the design of the bike (as is the case for true 

riding conditions), there is an oscillation of the front accelerometers for both bikes 

after the initial impact with the bump.          

   

As the displacement values for the front accelerometers of the hardtail and fully 

suspended bike on the rolling road rig with the bump are similar, the velocity at 

the front accelerometers must be considered to identify any further differences 

between the two types of bike.  Figure 7-32 highlights the vertical velocity at the 

front accelerometer of the hardtail and fully suspended bike on the rolling road rig 

on the surface with a bump, and demonstrates that the hardtail bike has a slightly 

higher velocity when impact with the bump occurs; this is apparent when both the 

front and rear wheel come into contact with the bump.  The velocity of the 

hardtail bike has a difference of 0.046 m/s (between the minimum and maximum 

turning points) which is greater than that of the fully suspended bike when initial 

contact with the front wheel occurs.  When contact with the rear wheel occurs, 

the velocity of the hardtail bike is 0.09 m/s (between the minimum and maximum 

turning points) greater than that of the fully suspended bike.  The lower velocity 

of the front accelerometer of the fully suspended bike indicates that the 

movements of the bike at the front accelerometer will be less severe, thus 

improving comfort for the rider.   

 

In comparison to the simulation relating to the vertical velocity at the front 

accelerometer of the hardtail and fully suspended bike on the roller rig with a 

bump (Figure 7-13), the simulation displayed in Figure 7-32 illustrates that more 
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oscillation occurs on the rolling road rig (compared to the roller rig) after the initial 

impact with the bump for both the hardtail and fully suspended bike.  This 

increased oscillation is a result of the design of the rolling road rig, which not only 

incorporates a front tyre in order to provide a spring-damping effect, but where 

the front axle is not held rigid, as it is in the roller rig design.          

Figures 7-33 and 7-34 display the results for the vertical displacement and 

velocity at the rear accelerometer on the hardtail and fully suspended bike on the 

rolling road rig with a bump.  In contrast to the vertical displacement at the front 

accelerometer of the hardtail and fully suspended bikes (Figure 7-31) -where the 

impact of the rear wheel with the bump was slight for both bike types - the impact 

for both wheels is more prominent at the rear accelerometer for both the hardtail 

and fully suspended bike (Figure 7-33).  When the front wheel initially contacts 

the bump, the rear accelerometer of the hardtail bike rises by 7.4 mm, and the 

rear accelerometer of the fully suspended bike by 7.05 mm.  This emphasises 

that the contact of the front wheel still has a significant effect on the rear 

dynamics of a hardtail and fully suspended bike.   
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Figure 7-34: The vertical velocity at the 

rear of the bike comparing the fully 

suspended and the hardtail bike on a 

rough surface on the rolling road rig. 

Figure 7-33: The vertical displacement at 

the rear of the bike comparing the fully 

suspended and the hardtail bike on a 

rough surface on the rolling road rig. 
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When the rear wheel of both the hardtail and fully suspended bike comes into 

contact with the bump at 4.4 s (Figure 7-33), the displacement of the rear 

accelerometer of both types of bike increases by a considerable degree 

compared to when the front wheel initially hits the bump.  The rear accelerometer 

of the hardtail bike rises by 24.3 mm and by 24.2 mm on the fully suspended 

bike.  However, the fully suspended bike does cause the rear of the bike to dip 

slightly after hitting the bump as it absorbs the impact with the ground.  The 

displacement results for the fully suspended bike are similar to those obtained at 

the rear accelerometer of the fully suspended bike on the roller rig with a bump 

(Figure 7-14).  Figure 7-14 highlights that the rear accelerometer of the fully 

suspended bike rises by 24.5 mm, although the displacement of the rear 

accelerometer of the hardtail bike is shown to be 28 mm - slightly higher than the 

other results.         

   

Figure 7-33 illustrates the vertical velocity at the rear suspension of the hardtail 

and fully suspended bike on the rolling road rig with a bump.  The velocity of the 

rear accelerometer of the hardtail bike rises and falls sharply with a velocity 

between the maximum and minimum turning points of 1.162 m/s.  In contrast to 

this, the fully suspended bike has a velocity of 0.705 m/s between the maximum 

and minimum turning points.  The velocity of the hardtail bike is slightly higher, 

when the front wheel impacts the bump (0.28 m/s), than that of the fully 

suspended bike when its front wheel impacts the bump (0.258 m/s).  The lower 

velocity of the fully suspended bike lessens the impact of the bump felt by the 

rider and increases the comfort of the cyclist.  The results from Figure 7-33 are 

similar to those found in Figure 7-15 on the roller rig with a bump.        
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The vertical displacement and velocity of the rider’s body on the hardtail and fully 

suspended bike on the rolling road rig on the surface with a bump are displayed 

in Figures 7-35 and 7-36.  The graph for the vertical displacement of the rider’s 

body shows a similar pattern for both bikes (Figure 7-35); the displacement of the 

rider’s body on the hardtail bike; between the maximum and minimum turning 

points, is 28.4 mm, and 25.5 mm on the fully suspended bike.  These 

displacement values are less than those obtained for the vertical displacement of 

the rider’s body on the hardtail and fully suspended bikes on the roller rig with a 

bump (Figure 7-16).      

 

As Figure 7-35 displays a similar pattern for both bikes, the velocity of the rider’s 

body must be analysed in order to highlight any differences between the hardtail 

and fully suspended bike.  The velocity of the rider’s body is similar when the 

front wheel of both bikes comes into contact with the bump; however, there is a 

noticeable difference between both suspension systems when the rear wheel 

comes into contact with the bump, thus highlighting the differences between both 

1.16

1.17

1.18

1.19

1.2

1.21

3.5 4 4.5 5

D
is

ta
n

c
e
 (

m
)

Time (s)

SUS

HT

-0.5

-0.3

-0.1

0.1

0.3

0.5

3.5 4 4.5 5

V
e
lo

c
it

y
 (

m
/s

)

Time (s)

SUS

HT

Figure 7-36: The vertical velocity of the 

simulated rider, comparing the fully 

suspended and the hardtail bike on a 

rough surface on the rolling road rig. 

Figure 7-35: The vertical displacement 

of the simulated rider, comparing the 

fully suspended and the hardtail bike on 

a rough surface on the rolling road rig. 
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bikes (Figure 7-36).  A sharp rise and fall is shown for the hardtail bike when the 

rear wheel impacts the bump; the velocity of the rider’s body reaches 0.45 m/s in 

this instance.  The rider’s body has a maximum velocity of 0.24 m/s on the fully 

suspended bike when the rear wheel impacts the bump.  The curve for this result 

is smoother, indicating that the rider’s movement is less sudden, and hence more 

comfort is experienced whilst cycling on the fully suspended bike.  The values 

obtained from the vertical velocity of the rider’s body on the hardtail and fully 

suspended bike on the rolling road rig with a bump (Figure 7-36) are less than 

those obtained for the vertical velocity of the rider’s body on the hardtail and fully 

suspended bike on the roller rig with a bump (Figure 7-17).  This is to be 

expected as the results for the vertical displacement and velocity at the rear 

accelerometer of the hardtail and fully suspended bike on the rolling road rig with 

a bump (Figures 7-33 & 7-34) are also lower than the results for the vertical 

displacement and velocity at the rear accelerometer of the hardtail and fully 

suspended bike on the roller rig with a bump (Figures 7-14 & 7-15).  If the rear 

accelerometer has a lower displacement; consequently, the displacement, of the 

rider’s body will also be lower.       

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

3E-17

0.002

3.5 4 4.5 5

D
is

ta
n

c
e
 (

m
)

Time (s)

SUS

HT

-1000

-750

-500

-250

0

250

3.5 4 4.5 5

F
o

rc
e
 (

N
)

Time (s)

SUS

HT

Figure 7-37: The displacement of the 

front suspension system comparing the 

fully suspended and the hardtail bike on 

a rough surface on the rolling road rig. 
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 Figures 7-37 and 7-38 show the displacement and force at the front suspension 

of the hardtail and fully suspended bike on the rolling road rig with a bump.  The 

graphs illustrate that there is little difference between the front suspensions of 

both bikes, which is to be expected as the front dynamics of the hardtail and fully 

suspended bike should be similar.  The displacement of the front suspension of 

the hardtail bike is 11.4 mm between the minimum and maximum turning points, 

and 12 mm between the minimum and maximum turning points of the fully 

suspended bike (Figure 7-37).  The force at the front suspension of the hardtail 

and fully suspended bike is 875 N and 900 N between the minimum and 

maximum turning points respectively (Figure 7-38).  One notable difference 

between the hardtail and fully suspended bike is that the front suspension of the 

hardtail bike (compared to the fully suspended bike) oscillates slightly more after 

the rear wheel hits the bump at 4.4 s.  A reason for this slightly higher oscillation 

is that the fully suspended bike can absorb the impact of the bump at the rear 

wheel more effectively than the hardtail bike due to inclusion of the rear 

suspension in the bike’s design.   

   

The displacement and force at the front suspension of the hardtail bike on the 

roller rig with a bump, differs significantly from the displacement and force at the 

front suspension of the fully suspended bike on the same roller rig with a bump 

(Figures 7-18 & 7-19).  This highlights that the results for these simulations differ 

as a result of the roller rig design (no front wheel being incorporated), and not 

due to the suspension design as Figures 7-18 and 7-19 indicate.   
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The displacement and force exerted on the spring of the rear suspension system 

are illustrated in Figures 7-39 and 7-40 respectively.   

Notably, there is minimal movement and force within the spring of the rear 

suspension when the front wheel impacts the bump at 3.71 s: the displacement is 

0.5 mm and the force 60 N.  In contrast, when the rear wheel hits the bump there 

is considerable movement and force exerted on the spring.  Initially when contact 

occurs, the spring compresses by 4.6 mm; extends by 11.4 mm when the wheel 

returns to the ground and finally returns to the initial preloaded length.  The force 

exerted on the spring of the rear suspension is 3020 N between the minimum 

and maximum turning points.  An important finding derives from the results of the 

displacement of the rear suspension (Figure 7-39): the small displacement value 

of 0.5 mm (occurring when the front wheel hits the bump), is much less than the 

displacement recorded for the rear accelerometer (Figure 7-33), which is 7.05 

mm when the front wheel of the bike hits the bump.  This indicates that the 

movement of the rear accelerometer does not occur as a result of the front 

suspension.     
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Figure 7-41 illustrates the resultant power dissipated through the rear suspension 

of the fully suspended bike on the rough surfaced rolling road rig.  The graph 

highlights that much of the initial bump impact is absorbed by the spring in the 

rear suspension system.   
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8.  Discussion  

 

The current research was undertaken to establish if cycling on either a fully 

suspended bike (rear and front suspension) or a hardtail bike (front suspension 

only) presents an advantage to the rider in terms of performance.  This was 

investigated through recording and analysing subjects’ energy efficiency, RPE 

and comfort ratings, and by considering simulations and mechanical 

measurements taken from the bikes.   A Matrix is illustrated in Figure 8-1 to 

indicate which suspension system is most effective under the different testing 

conditions.   
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Figure 8-1: Matrix 

Key:  +  Benefit                –  Detrimental                       0   No Difference. 

 
 

As indicated by the Matrix (Figure 8-1), the fully suspended bike performs more 

effectively than the fully suspended bike on a rough surface.  However, on a 



293 
 

smooth surface - as indicated by the simulation results - there is a slight 

advantage when cycling on the hardtail bike, although this is not reflected in the 

laboratory tests.  This may be the reason that González et al. (2008) assert that 

rear suspension systems are not broadly accepted by cross-country cyclists; a 

somewhat surprising statement given the numerous researchers who advocate 

the benefits of rear suspension systems (Berry et al., 1993; Burke, 1996; De 

Lorenzo et al., 1994; Good & McPhee, 1999; Karchin & Hull, 2002; MacRae et 

al., 2000; Needle & Hull, 1997; Nielens & Lejeune, 2004; Olsen, 1996; Seifert et 

al., 1997).  However, research has also been published which details some of the 

drawbacks that a rear suspension system can produce (Burke, 1996; Ishii et al., 

2003; Karchin & Hull, 2002; Kukoda, 1992; Olsen 1996; and Wang & Hull, 1997).  

Previous researchers adopted numerous forms of testing; all of which were to 

ascertain if the reason for the disparity in results between the researchers in this 

field was due to the form of testing that was implemented.  The current research 

aims to establish a form of testing that would present a good comparison 

between both the fully suspended and hardtail bike.   

 

The review of the literature pertaining to mountain bike suspension systems; the 

analysis of responses from the cyclists’ questionnaires; the comparison of the 

results obtained from the experiments on the roller rig, rolling road rig, and indoor 

track; and the dynamic simulations, all assisted in providing a comprehensive 

investigation into the ways in which a front and rear suspension system will effect 

a cross-country cyclist.  This discussion will seek to draw conclusions and identify 

areas for future work as presented in Chapter Nine.   

 

The experiments on the roller rig were conducted to obtain an understanding of 

the effect that suspension systems have on comfort and exertion when cycling on 

an exaggerated rough surface.  The roller rig provides advantages over other 

forms of laboratory testing (testing on ergometers, treadmills, time trials) 

undertaken by previous researchers (Berry et al., 1993; Berry et al., 2001; Ishii et 

al., 2003; Nielens & Lejeune, 2001).  Similarly, the roller rig presents some 
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advantages over outdoor field testing (Holden et al., 2000; Ishii et al., 2003; 

Seifert et al., 1997).  The roller rig was specifically designed to reduce as many of 

the variables involved in cycling as possible; to provide controlled, repeatable 

experiments; and to isolate the rear wheel impact and the effect this has on the 

rear suspension system (the only variable between the experiments on the roller 

rig).  The technique of isolating the bump impact of the rear wheel provides a 

simplistic analysis of the rear wheel dynamics of a mountain bike, allowing 

comparisons to be made between the hardtail and fully suspended bike.  One of 

the main benefits of conducting experiments on the roller rig is that the only 

aspect of cycling that the subject has to maintain is a constant speed.  All other 

variables which are typically present in mountain biking: balance on the bike; 

route selection; and whether or not a rider stands to absorb bump impact, are 

removed as the subject was instructed to ride passively and remain seated 

throughout the test. 

 

Two bikes were used for the initial experiments on the roller rig: a hardtail and 

fully suspended bike.  Although similar frame types were selected, the rear 

triangle of the fully suspended bike provided a heavier overall weight than that of 

the hardtail bike, which in turn presented an initial advantage to the hardtail bike 

over the fully suspended.  Howe (1995) maintains that the reduction in the mass 

of a bicycle should significantly improve cycling performance.  Conversely, Berry 

et al. (2000) proclaim that weight is not an important factor in the cyclists’ energy 

expenditure when riding a bike.   

 

The initial test on the roller rig was a run down test, during which the velocity of 

each bike (hardtail and fully suspended) was recorded to establish the time it 

would take for each bike to come to rest from a pre-determined velocity.  The run 

down times were recorded for the two bikes, as illustrated in Figure 4-6, Chapter 

Four.  Figure 4-6 highlights that 44 % more resistance acts against the hardtail 

bike than the fully suspended bike.   At a speed of 12 km/h, this equates to an 

additional energy requirement of 50 W required for the cyclist on the hardtail bike 
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to remain at the same constant speed as an equivalent cyclist on the fully 

suspended bike.  This was perhaps an expected finding as the roller rig 

represents an extremely rough riding surface.  The design of a rear suspension 

system allows for absorption of the impact of bumps, thus allowing the fully 

suspended bike to move efficiently over the rough riding surface.  The impact of 

the rear wheel of the hardtail bike over the bumps results in a vertical 

displacement, which in turn slows the bike down.  It is therefore hypothesised 

that for the cyclist on the hardtail bike to remain at the same constant speed, a 

greater torque would be required through the pedals which would subsequently 

require more energy from the cyclist.  To examine these theories it was proposed 

that two tests should be conducted on the roller rig: a familiarisation test to 

establish if a subject improved after subsequent experiments (to eliminate bias in 

results), and a comparative test to establish if there are any differences between 

cycling on the hardtail bike compared to the fully suspended bike on the roller rig 

with the rough surface.   

 

Six subjects carried out the familiarisation test to ensure that the participants did 

not improve after each test, thus ensuring that the results would remain 

unaffected.  The tests were carried out at a sub-maximal level to ensure the rider 

reached a steady physiological state so as the physiological data remained valid.  

The subjects’ VO2, heart rate, RPE and comfort rating levels were recorded 

during testing to ascertain if any improvements in performance could be identified 

after subsequent visits to the laboratory.  The test demonstrated that there was 

no significant improvement for any subject after subsequent tests on the rig as no 

significant changes in VO2, heart rate, RPE or comfort rating levels were 

identified.  Therefore, the results of a single test with each subject on each bike 

can be deemed to be representative for a given condition.   

 

Following the familiarisation test, the comparative test was developed to assess 

the differences between riding the hardtail compared to the fully suspended bike 

on the rough riding surface of the roller rig.  Prior to identifying any differences 
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between cycling on either of the bikes, it was important to establish if the 

subjects’ physiologies had stabilised so that subsequent results would provide an 

accurate representation of the effort provided by each rider on both of the bikes.  

The results displayed in Table 4-2, Chapter Four indicate that each subject’s VO2 

and heart rate remain fairly constant from the fifth to the tenth minutes of the test.  

This confirms that the VO2 and heart rate had stabilised and can therefore be 

deemed as being representative of energy efficiency.  The RPE and comfort 

readings show that there is a consistent trend for the subjects to become 

increasingly conscious of their exertion and discomfort as the test progresses, 

despite the VO2 and heart rate levels remaining constant.     

 

Figures 4-7 to 4-10 of Chapter Four display the results obtained for each 

subject’s VO2, heart rate, RPE and comfort rating when cycling on the hardtail 

and fully suspended bikes.  The results indicate that each subject recorded 

higher values for VO2 by 8.1 ml/kg/min, heart rate by 28.9 beats/min and RPE by 

3.7; and lower results for comfort rating by 1.8 on the hardtail bike compared to 

the fully suspended bike.  These results highlight that the fully suspended bike 

presents an advantage over the hardtail bike in terms of rider performance on the 

roller rig with a rough surface.     

 

The results of the statistical analysis of the findings for the differences between 

cycling on the hardtail compared to the fully suspended bike on the roller rig are 

illustrated in Table 4-3, Chapter Four.  The p values for these results are all below 

0.05, indicating that there are real significant differences between the two bikes.  

The results signify that more effort is required to remain at the same constant 

speed on the hardtail bike compared to the fully suspended bike; this is 

highlighted by the recorded VO2 and heart rate values.  The average level of VO2 

is 8.1 ml⋅kg-1
⋅min-1 higher for subjects cycling on the hardtail bike.  Similarly, the 

average heart rate is higher - by an average 28.9 beats/min - for subjects cycling 

on the hardtail bike compared to the fully suspended bike.   
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These results coincide with the findings of Berry et al. (1993) who found that 

whilst cycling on a bumpy track under laboratory conditions, a rear suspension 

system could reduce the physiological cost to a rider.  This was concluded 

despite Berry et al. (1993) recording a lower VO2 for subjects cycling on a fully 

suspended bike compared to a hardtail bike, and recording higher heart rate 

levels for subjects cycling on either the hardtail or fully suspended bikes.  The 

higher heart rate levels obtained for cyclists on both bikes may be due to the 

testing conditions.  Subjects were tested on a treadmill - an unfamiliar and 

potentially risk posing mode of testing.  It is conceivable that the high heart rates 

were recorded as a result of anxiety and apprehension over this form of testing.  

VO2 levels however, would remain unaffected.       

 

The RPE results from the comparative test also support the findings for VO2 and 

heart rate: all of the subjects perceived that they used less effort when cycling on 

the fully suspended bike compared to the hardtail bike.  The average RPE ratings 

were 3.7 higher for subjects cycling on the fully suspended bike compared to the 

hardtail bike.  Correspondingly, comfort rating was perceived to be greater for 

subjects undertaking tests on the fully suspended bike: all subjects cited average 

comfort ratings of between 2 and 4.5.  The higher comfort ratings cited by the 

subjects cycling on the fully suspended bike may also result in a decrease in 

rider fatigue as less strain is applied to the muscles due to a reduction in 

vibration felt whilst cycling.  Needle & Hull (1997) assert that vibrational 

discomfort associated with riding a bike over rough terrain has been known to 

contribute to rider fatigue and affect rider performance.  The physiological and 

psychological findings of the comparative tests on the roller rig all indicate that on 

a rough track the fully suspended bike gives a significant advantage to the rider 

over the hardtail bike.   

 

The findings from the roller rig experiments concur with Titlestad et al. (2001) and 

Berry et al. (1993) who also found that cycling on a fully suspended bike, 

compared to a hardtail bike, on a rough track, presented an advantage to the 
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rider.  This finding, however, contradicts those found through MacRae et al’s 

(2000) and Seifert et al’s (1997) studies.  Both researchers found no significant 

difference between cycling on a fully suspended or hardtail bike on a bumpy 

course.  This disparity between results may be attributed to the form of testing 

adopted by each researcher; the type of rear suspension used for testing; or the 

roughness of the terrain on which testing occurs: all of which may determine the 

outcome of the results.  Different forms of testing presents both advantages and 

disadvantages to subjects, as highlighted by Berry et al’s (1993) use of a 

treadmill as a means of testing mountain bikes and their suspension systems.  

Furthermore, the type of rear suspension used can affect results.  It is felt that the 

single swing arm rear suspension design is less efficient than others such as the 

four-bar linkage design (González et al., 2008).  In this respect, experiments 

involving a mountain bike with a four bar linkage, or alternative type of rear 

suspension design, may offer an advantage to the subject.  The roughness of the 

testing track should also be taken into consideration; an extremely rough track 

may influence results as a fully suspended bike is designed to better cope with 

bumpy terrain than a hardtail bike.   

 

Mechanical measurements were also recorded during each test on the roller rig.  

The analysis of the measurements demonstrated the effect that cycling on the 

rough terrain had on the acceleration, velocity and displacement at the front and 

rear of the bike.  Additionally, the force exerted on the pedals by the rider was 

recorded and was used to establish the amount of power required for each rider 

to maintain cycling at a constant speed.  The results gained from the mechanical 

measurements were compared against the physiological and physiological data 

to establish if any correlations occurred.  A total of eight mechanical 

measurements were recorded in total; the mean results are represented in 

tabulated form in Chapter Four and each individual subject’s results are 

displayed in Appendix C.   
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The aspects of the mechanical measurements that are most comparable to the 

physiological results are those relating to the amount of force and power exerted 

through the pedals of the mountain bikes.  The results for the amount of force 

and power that a subject transmits through the crank can be compared against 

the subject’s VO2 level to ascertain if these factors are proportional to one 

another.  MacRae et al. (2000) measured the power output from an SRM training 

device and found that a cyclist riding on a hardtail mountain bike used less power 

than on a fully suspended mountain bike when cycling uphill on both a smooth 

and rough course.  MacRae et al’s (2000) mechanical and physiology results 

conflict with one another which may indicate that physiological data alone is not 

sufficient to establish which suspension system is the most efficient.   

 

The average mean force exerted on the crank was found to be 38.36% less 

when cycling on the fully suspended bike compared to the hardtail bike when 

cycling on the roller rig.  The amount of power exerted through the pedals 

demonstrates similar results to that of the amount of force exerted on the pedals 

- an expected finding as the amount of power is calculated through multiplying 

force by velocity.  The average power required to cycle at a constant speed is 

35.75 % greater for the hardtail bike compared to the fully suspended bike.  

Similar to the force results, there is only a slight difference between the maximum 

and minimum values for the amount of power exerted on the pedals: the 

maximum and minimum amount of power required to cycle at a constant speed is 

4.43 % and 4.79 % greater for the hardtail bike respectively.  This gives a 

difference in the overall range in power between both bikes as 4.41 % more 

power being required for the hardtail bike.  From the results obtained from the 

amount of power exerted through the crank (Table 4-4), it is apparent that a 

greater variation in power is required by the cyclist to maintain a constant speed 

on a hardtail when travelling on the rough surface of the roller rig.  This finding 

correlates with the results obtained from the physiological data which also 

indicates that the rider uses more energy when riding on the hardtail bike 

compared to the fully suspended bike.  This is primarily due to the fact that the 
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fully suspended bike absorbs more of the bump impact due to the inclusion of a 

rear suspension in the bike design.  This may only be true for this rough surface 

however, and may be less apparent as the bumps become smaller and less 

frequent. 

 

The most precise measure of the bikes’ movements throughout the tests was 

through the use of accelerometers placed on the steerer tube and below the 

saddle of the bikes.  The results from the accelerometers indicate the 

acceleration at the front and rear of the bike from which the velocity and 

displacement of the bikes at these points could be calculated. 

 

Through analysing the results obtained from the accelerometer placed under the 

saddle of the bikes (Table 4-6; Chapter 4), it was found that the saddle of the 

hardtail bike accelerates 19.89 % more than that of the fully suspended bike . 

The average minimum value for the acceleration of the saddle is 0.75 % lower for 

the hardtail bike and the average maximum value is 1.31 % higher for the hardtail 

bike.  The difference in the total range is overall 1.11 % greater for the hardtail 

bike.  Consequently, this shows that the hardtail bike has a higher vertical saddle 

acceleration than the fully suspended bike.  This corresponds with the 

physiological results (fully suspended bike presents an advantage to rider) and 

explains why all riders felt that the hardtail bike was more uncomfortable.   This 

also gives an indication as to where some of the rider’s energy is expended: via 

the vertical motion of the bike as it cycles over the bumps.   

 

The results obtained during the experimental approach can be compared to the 

results obtained for the dynamic simulation investigating handlebar and saddle 

displacement (Figures 7-12 and 7-13; Chapter 7).  Figure 7-12 displays the 

equivalent results for the dynamic simulation test for displacement of the 

handlebars on the roller rig surface with bumps.  The dynamic simulation for 

handlebar displacement shows that the maximum displacement on the roller rig 

illustrates a similar displacement to the experimental results on the roller rig 
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which present a displacement of 3.3 mm.  The dynamic simulation investigated 

the seat displacement of both a hardtail and fully suspended bike on the roller rig 

a surface with bumps.  The dynamic simulation results indicate that the hardtail 

bike rises by 28 mm and the fully suspended bike by 24.5 mm when impact 

occurs with the bump.   

 

Conversely, the results for the maximum displacement obtained during the 

experiments on the roller rig (Table 4-8; Chapter 4) highlight that the saddle 

displacement is 10.6 mm for the fully suspended bike and 11 mm for the hardtail 

bike.  This demonstrates that, in reality, the tyre absorbs more of the bump 

impact than is demonstrated in the dynamic simulation.  Despite using an 

advanced dynamic simulation programme, it is difficult to simulate the exact 

properties of a complex mountain bike tyre which explains the discrepancies in 

simulation results compared to the practical experiments.  Similarly, the simulated 

model indicates only a small dip after contact with the bump, when in reality there 

is a significant displacement in the negative direction of 7 mm prior to contact 

with the bump.  

 

The findings stated in Chapter 4 highlight that for the experiments on the roller rig 

under constrained sub-maximal conditions on a severely bumpy track, the full 

suspension mountain bike provides distinct advantages to the rider over the 

hardtail bike.   This is true for VO2 (8.1 ml/kg/min higher for the hardtail bike); 

heart rate (28.9 beats/min higher for the hardtail bike); RPE (3.7 higher for the 

hardtail bike); comfort rating (1.8 less comfortable for the hardtail bike); power 

through the crank (35.75% higher on the hardtail bike); seat acceleration 

(19.89% higher for the hardtail bike) and handlebar acceleration (31.25% higher 

for the hardtail bike).   From these results, there is a strong expectation that on a 

track with frequent, large bumps, the fully suspended bike would provide an 

advantage to the rider in terms of speed.  The primary difficulty that exists with 

this form of laboratory rig testing is however, that the terrains of actual cross-
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country racetracks differ considerably from the large high frequency of bumps 

used for the roller rig experiment.   

 

In contrast to the results for the roller rig, time trials conducted by Seifert et al. 

(1997) and MacRae et al. (2000) highlighted no difference between riding a fully 

suspended bike compared to a hardtail bike.  An additional consideration when 

analysing the results is that the majority of cross-country cyclists still choose to 

ride a hardtail mountain bike, compared to a fully suspended mountain bike.  The 

cyclists’ responses to the questionnaire (Appendix A) support this claim: only 

thirty-seven percent of respondents ride a fully suspended mountain bike 

(Chapter 3).  This evidence indicates that the roller rig test alone is not sufficient 

enough to draw a conclusion as to which suspension system offers an advantage 

to the cyclist in terms of rider performance. 

 

Consequently, tests were undertaken on the rolling road rig in order to further 

investigate the effect that suspension systems have on rider performance.  

Although the results obtained through experimentation on the roller rig provided 

evidence to suggest that a fully suspended bike with a single swing arm rear 

suspension design presented advantages to the rider over a hardtail bike when 

cycling on a terrain with large, frequent bumps, the roller rig investigated only 

rear wheel impact.  The rolling road rig however, was developed to present a 

more realistic representation of riding on a cross-country track by incorporating a 

front wheel into its design while still providing repeatable results under laboratory 

conditions.  The rolling road rig was developed to accurately simulate the inertial 

effects of cycling on a road: the track of the rolling road was powered by the rider 

and the bumps could impact both the front and rear wheel of the bike.   

 

The subjects undertaking testing on the roller rig stated that they experienced 

extreme discomfort when cycling on the hardtail bike over the rough track.  On a 

cross-country course if a cyclist was presented with a bump of the magnitude 

that was represented on the roller rig, they would attempt to avoid it or rise from 
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the saddle in order to absorb some of the impact with their legs.  This was an 

element which was taken into consideration when designing the rolling road rig.  

Nielens & Lejeune (2001) stipulate that during mountain biking, riders rarely 

stand on the pedals because of the loss of traction of the rear wheel in that 

position.  Many researchers have proved that seated cycling is more economical 

than standing when cycling uphill (Harnish et al., 2006; Ishii, 2002; Karchin & 

Hull, 2002; Stone & Hull, 1993; Tinaka et al., 1996; Ryschon & Stray-Gundersen, 

1990).  For this reason the rolling road rig was designed to run in a seated 

position, therefore a realistic bump size and frequency had to be selected which 

subjects would cycle over in a seated position. 

 

For the purpose of testing on the roller rig, a hardtail and fully suspended bike 

were used for comparison.  Although the bikes were similar in design, the weight 

and frame geometry differed, a factor which may have influenced results.  For 

this reason a fully suspended bike was used for the purpose of testing on the 

rolling road rig from which a hardtail bike could be represented through disabling 

the rear spring and damper.  In view of the new design considerations it was 

anticipated that the rolling road rig would obtain a more realistic set of results 

from which to identify any differences between using a fully suspended and 

hardtail bike.   

 

The results obtained from the tests undertaken on the rolling road rig 

demonstrate that VO2 and heart rate remained comparatively constant over the 

12 minute test period, as illustrated in Table 5-3; Chapter 5.  This indicates that 

subjects had reached a steady physiological state - therefore the results are a 

valid representation of the subjects’ work rate.  Each subject found - as was also 

the case for the roller rig - that cycling on the rolling road rig became slightly less 

comfortable as the test continued.  The subjects’ RPE ratings also became 

increasingly higher as the test progressed, however these ratings were not as 

high for the tests on the rolling road rig compared to the roller rig.  The roller rig 

demonstrated a greater difference (compared to the rolling road rig) between 
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riding a fully suspended bike compared to a hardtail bike in all physiological, 

psychological and mechanical measurements.  

 

In comparing the results obtained for cycling on the hardtail bike on the roller rig 

to those for cycling on the hardtail bike on the rolling road rig, both on a rough 

surface, only a small difference between results was found.  This was highlighted 

by the subjects’ VO2 levels which indicated that a subject cycling on a hardtail 

bike on the roller rig had, on average, a seven percent lower VO2 level than when 

cycling on the hardtail bike on the rolling road rig.  The results obtained for 

subjects cycling on the fully suspended bike on the rough surface signified that 

subjects had, on average, a thirty percent lower VO2 level whilst cycling on the 

fully suspended bike on the roller rig compared to cycling on the fully suspended 

bike on the rolling road rig with a rough surface.   

 

The results recorded for subjects’ heart rates whilst cycling on the roller rig and 

rolling road rig, both on the rough surface, were as follows: on average, a nine 

percent lower heart rate was recorded for subjects cycling on the hardtail bike on 

the rolling road rig, compared to subjects cycling on the hardtail bike on the roller 

rig.  Conversely, the results recorded for subjects’ heart rates whilst cycling on 

the fully suspended bike on the rough surface indicated that on average, a 

subject’s heart rate was eleven percent higher whilst cycling on the rolling road 

rig compared to the roller rig.   

 

These findings, with the exception of the lower average heart rate recorded for 

cycling on the rolling road rig (compared to the roller rig) on the hardtail bike, 

indicate that subjects cycling on the rolling road rig use more energy than when 

cycling on the roller rig.  This is an expected outcome as added friction is 

apparent when cycling on the rolling road rig due to the friction of the belt which 

acts as a resistive force to the cyclist.  The anomaly result obtained for the higher 

average heart rate recorded for cycling on the roller rig compared to the rolling 

road rig on the hardtail bike may be attributed to the anxiety felt by the subjects 
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due to the unrealistic testing conditions of the roller rig, and not due to an 

increase in work load as the result would signify.    

 

In comparing the psychological results obtained for subjects cycling on the roller 

rig to those obtained for subjects cycling on the rolling road rig (both on a rough 

surface), it was found that, on average, subjects’ RPE ratings were 4 % lower 

whilst cycling on the fully suspended bike on the roller rig compared to cycling on 

the fully suspended bike on the rolling road rig.  The RPE results for cycling on 

the hardtail bike indicate that for a subject cycling on the rolling road rig, an 

average 15 % lower RPE rate was recorded compared to on the roller rig.  This 

indicates that the subjects felt that they were exerting less energy whilst cycling 

on the hardtail bike on the rolling road rig with bumps.  This correlates with the 

results for the heart rate levels of subjects cycling on the hardtail bike: on 

average lower heart rates were recorded for subjects cycling on the hardtail bike 

on the rolling road rig compared to subjects cycling on the hardtail bike on the 

roller rig.  However, the results for VO2 levels do not follow this trend: subjects 

cycling on the hardtail bike on the rolling road rig were found to have, on 

average, higher VO2 levels compared to subjects cycling on the hardtail bike on 

the roller rig.   

 

The reason for the high RPE levels cited by subjects cycling on the hardtail bike 

on the roller rig may be due to discomfort rather than an actual increase in 

workload; a hypothesis supported by the comfort scale ratings.   The comfort 

scale ratings indicate that, on average, subjects cycling on the hardtail bike on 

the roller rig felt 45 % less comfortable than when cycling on the hardtail bike on 

the rolling road rig.  This may be a result of the larger bumps that subjects 

experienced when cycling on the roller rig.  Interestingly, the comfort rating 

results for subjects cycling on the fully suspended bike highlight that subjects felt 

twelve percent more comfortable when cycling on the roller rig compared to the 

rolling road rig; a somewhat surprising result.  A possible reason for this outcome 

may be that subjects compared the comfort of the fully suspended bike on the 
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roller rig to the comfort of the hardtail bike on the roller rig, and as the bumps 

were larger (resulting in more discomfort) on the roller rig, the rear suspension 

would feel more comfortable in comparison on this rig.   

 

The physiology and psychology results from the rolling road rig experiments on a 

smooth surface highlight that no significant difference is apparent between 

cycling on the hardtail and fully suspended bikes.  Significant differences 

highlighted were: VO2 (0.6 ml/kg/min higher for the fully suspended bike); heart 

rate (1.4 beats/min higher for the fully suspended bike); RPE (0.5 higher for the 

fully suspended bike) and comfort rating (0.4 less comfortable for the fully 

suspended bike). The only results that demonstrate a statistically significant 

difference for the subjects’ physiology and psychology between the two bikes is 

for RPE on a rough track which is recorded to be 1.5 higher for the fully 

suspended bike.  All other results pertaining to the physiology and psychology of 

the subjects cycling on a rough track demonstrate that there are no statistically 

significant differences between the bikes: VO2 (0.6 ml/kg/min higher for the 

hardtail bike); heart rate (1 beat/min higher for the hardtail bike) and comfort 

rating (0.8 less comfortable for the hardtail bike).   

 

This is perhaps surprising as a large difference between the two bikes is 

apparent when analysing the results of the roller rig experiments.  This may be 

due to a number of factors: the rolling road rig more closely represents true 

outdoor cycling conditions; the front wheel of the bike is incorporated into the 

rolling road rig design; and fewer and less severe bumps are used for the rolling 

road rig tests to represent a cross-country track.   

 

One possible reason for the VO2 and heart rate results obtained from the 

experiments on the rolling road rig not highlighting any significant differences 

between the fully suspended and hardtail bike may be due to the physiology 

measurements not being accurate enough to demonstrate the differences 

between cycling on each bike.  Howley et al. (1995) state that the small 
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difference between riding these two (full and hardtail) suspension systems is less 

than the average measurement error expected when measuring oxygen 

consumption in an experimental test.    

 

The physiology results obtained from the experiments on the rolling road rig 

indicate that there is not a significant advantage to using a fully suspended bike 

over a hardtail bike on a terrain with this bump magnitude and frequency 

combined with the added resistance of the track.  These results correspond with 

the results obtained from MacRae et al’s (2000) and Seifert et al’s (1997) 

research, both of whom also found that there was no significant difference 

between riding a fully suspended or hardtail bike on a bumpy course.  The 

roughness of the track may have been a contributing factor as to why no 

significant difference is observed between both bikes for the current study and for 

MacRae et al’s (2000) and Seifert et al’s (1997) studies.  Neither MacRae et al. 

(2000) nor Seifert et al. (1997) state how rough their test tracks are, however, 

bumps of a larger magnitude may have highlighted a difference between the two 

bikes as is the case in the roller rig experiment.  Another factor which may have 

influenced the physiology results of the rolling road rig is that the friction from the 

belt acts as a resistive force to the rider.  This resistive force is calculated to be 

the equivalent of cycling up a 7.3 degree slope, or into a head wind of 11.4 m/s.  

This allows the experiments on the rolling road rig to be directly comparable to 

those conducted by MacRae et al. (2000) whose experiments involved cyclists 

riding uphill on a rough terrain.   

 

The experiments on the rolling road rig also showed that no significant difference 

was found between cycling on the fully suspended bike or the hardtail bike on a 

smooth road.  This finding agrees with the results from research carried out by 

Berry et al. (1993); Ishii et al. (2002); MacRae et al. (2000); Nielens & Lejeune’s 

(2001); Seifert et al. (1997); Titlestad et al. (2006); and Wang and Hull (1996); all 

of whom also found that there was no significant difference between suspension 

systems in regards to the amount of VO2 and heart rate measured when cycling 
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on a flat surface.  Similar to the experiments conducted on the rough surface, a 

possible reason as to why no difference is apparent between both bikes when 

cycling on the smooth surface is that the added friction of the belt provides a 

resistance to the cyclist which is equivalent to cycling uphill.  Therefore, once 

again, the most suitable comparison can be made between the current results 

and those obtained from MacRae et al’s (2000) study.  

 

The difference recorded for VO2 levels for cycling on the rolling road rig with a 

smooth surface was found to be 2 % less for the hardtail bike compared to the 

fully suspended bike; this result however, was not statistically significant.  A 

similar result was obtained for heart rate: subjects cycling on the hardtail bike 

had, on average, a 1 % lower heart rate compared to when cycling on the fully 

suspended bike on the smooth surfaced rolling road rig.  However, this result was 

also found to be statistically insignificant.   

 

The psychology results obtained from cycling on the rolling road rig with a 

smooth surface differ from the physiology results: a 4 % lower RPE value was 

recorded for subjects cycling on the fully suspended bike compared to the 

hardtail bike.  Subjects also rated the fully suspended bike to be twelve percent 

more comfortable to ride on the smooth surface, in comparison to the hardtail 

bike.  However, both RPE and comfort rating results were deemed statistically 

insignificant.  As the physiology and psychology results highlighted no significant 

difference between the hardtail and fully suspended bike on the rolling road rig, 

an analysis of the mechanical results was undertaken to investigate if the 

mechanical measurements highlighted any differences between the two bikes.   

 

The mechanical measurements were recorded during the experiments on the 

rolling road rig, and subsequently compared to the physiological and 

psychological data.  Chapter Five displays the results of the mechanical data 

obtained from the rolling road rig experiments in tabulated form (raw data can be 

viewed in Appendix B).  The force the rider exerts on the crank demonstrates the 
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power, and energy required by each suspension system to remain at a constant 

velocity; this can be directly compared to the subjects’ VO2 and heart rate levels.  

The average force exerted on the pedals of the hardtail bike is 3.9 % less than 

that exerted on the pedals of the fully suspended bike on a smooth road - a 

statistically significant result.  Similarly, both the average maximum and minimum 

force exerted on the crank of the hardtail bike is lower, by 2.9 % and 3.5 % 

respectively, compared to that exerted on the crank of the fully suspended bike; 

two results which are statistically significant.  These findings (Table 5-9) 

demonstrate that, on average, additional force is required by the rider on the fully 

suspended system to maintain the bike at a constant speed on a flat road.   

 

In comparison, the experiments on the rolling road rig with a rough surface show 

that the force exerted on the crank of the fully suspended bike is less than that 

amount exerted on the crank of the hardtail bike.  However, this result is not 

statistically significant.  In comparison, the results for the amount of force exerted 

on the crank for the experiments on the roller rig with a rough surface indicate 

that the average force required for the hardtail bike is on average, 38.36 % 

greater than that required for  the fully suspended bike (Table 4-5; Chapter 4),  

this result is statistically significant.  A possible reason for this could be that the 

bumps on the roller rig are more severe than those on the rolling road, and thus 

highlight a greater difference between the bikes.   

 

The amount of power applied to the crank was calculated through multiplying the 

crank torque by the rotational velocity.  On the smooth track of the rolling road rig, 

the hardtail system indicated a 3.5 % lower mean power than the fully suspended 

bike; a result deemed statistically significant due to the low p value.  This 

highlights that the hardtail bike offers an improvement, in terms of the amount of 

power required to remain at a constant speed, on a smooth road compared to the 

fully suspended bike.  On the contrary, it was the fully suspended bike which 

indicated a 0.7 % lower mean power than the hardtail bike- this time on the rough 

track.  This result however, is not statistically significant.  Comparable results 
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obtained from the amount of power exerted through the crank on the roller rig 

(Table 4-4; Chapter 4) illustrate that more power is required to cycle on the 

hardtail bike compared to the fully suspended bike when travelling on the rough 

surface.   

 

The results obtained for the amount of power applied to, and the force exerted on 

the crank provide valuable data verifying that a subject uses less force, and in 

turn power, when cycling on the hardtail bike compared to the fully suspended 

bike on a smooth surface.  This finding highlights the benefits of measuring the 

amount of power and force exerted by the subjects on the pedals of the bikes as 

it is a more accurate means of distinguishing the differences between cycling on 

the two bikes.  This difference could not be ascertained through studying the 

subjects’ physiology and psychology alone.   

 

Additional points of interaction between the bike and rider studied in detail in the 

rolling road rig experiments, in addition to the pedals, are the saddle and 

handlebars.  The average range in the amount of force exerted on the saddle 

highlights a considerable variation between the hardtail and fully suspended bike 

on the smooth surface (Table 5-10; Chapter 5).  Despite the finding that no 

statistical difference is apparent between the two bikes for the amount of average 

force exerted on the saddle whilst cycling on the smooth surface, a significant 

difference is highlighted between the maximum and minimum amount of force 

exerted on the seat of the bikes, thus indicating that the variation in force is far 

greater on the fully suspended bike when cycling on the smooth surface on the 

rolling road rig.  This could be a result of the bobbing effect experienced when 

pedalling.  A lower minimum force is measured (Table 5-10; Chapter 5) whilst 

cycling on the hardtail bike on the rolling road rig with bumps attached.  The force 

range exerted on the saddle was also found to be 33.6 % less whilst cycling on 

the fully suspended bike on the bumpy surface.      
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The results pertaining to the vertical and horizontal force exerted on the 

handlebars of the hardtail and fully suspended bike whilst cycling on the rolling 

road rig were also analysed.  The recorded measurements were: the vertical 

force exerted on the right and left handlebar of both bikes; and the horizontal 

force exerted on the right and left handlebar of both bikes.  All subjects were 

instructed to keep their hands placed on the handlebars for the duration of the 

tests - with the exception of when indicating RPE and comfort scale ratings- 

where the grip was released for a short time period only.  

 

The results highlight that, although a greater average vertical force is exerted on 

the handlebars of the hardtail bike, the amount of force exerted on the 

handlebars of the fully suspended bike fluctuates more due to the rear 

suspension, thus indicating that a bobbing effect may be apparent when cycling 

on the hardtail bike.    

 

The results obtained from the measurement of the amount of vertical force 

exerted on the handlebars of the hardtail, compared to the fully suspended bike 

whilst cycling on the rough track, produced no statistically significant results.  As 

these results are statistically insignificant this indicates that there is little 

difference between the hardtail and fully suspended bike when considering the 

amount of vertical force exerted on the handlebars whilst cycling on the rough 

track.  This is due to both bikes having a front suspension system, therefore it is 

expected that the same amount of force is exerted on the handlebars for both 

bikes.   

 

The horizontal force exerted on the handlebars represents the force exerted 

between the frame of the rolling road rig and the bike.  The results obtained for 

the amount of horizontal force exerted on the handlebars of the hardtail and fully 

suspended bike are displayed in Table 5-13 and 5-24; Chapter 5.  The results 

highlight that the average horizontal force exerted on the handlebars is greater 

for the fully suspended bike compared to the hardtail bike for cycling on a smooth 
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surface.  In contrast the results obtained for the amount of horizontal force 

exerted on the handlebars of the hardtail and fully suspended bike on the rough 

surface indicates that there is no significant difference between the bikes. The 

results do indicate that a greater range is apparent on the hardtail bike, indicating 

that that the fully suspended bike provides an advantage to the rider over the 

hardtail bike.  

 

Accelerometers were used during experimentation on the rolling road rig to 

ascertain the movement of the hardtail and fully suspended bikes and to 

establish how this in turn affects rider performance.  The results obtained from 

measuring the acceleration of the handlebars are illustrated in Table 5-15; 

Chapter 5.  The RMS value is given to provide a representation of the average 

acceleration.  All of the results pertaining to the acceleration of the handlebars 

when cycling on the smooth road of the rolling road rig are statistically significant 

and indicate that less acceleration occurs at the handlebars of the fully 

suspended bike, compared to the hardtail bike.  Analysis of individual’s results 

show that all subjects obtained similar handlebar acceleration values to the 

averages that are displayed in Table 5-15; Chapter 5.    

 

From obtaining the values for saddle and handlebar acceleration, the velocity of 

the handlebars and saddle of the hardtail and fully suspended bike could be 

ascertained.  The results obtained from calculating the velocity at the handlebars 

of both bikes whilst cycling on the smooth road (Table 5-18) all suggest that less 

velocity occurs at the handlebars of the fully suspended bike compared to the 

hardtail bike.  However, the RMS result relating to the difference in average 

handlebar velocities of both bikes when cycling on the smooth road - suggesting 

that the fully suspended bike presents an advantage to the rider - is statistically 

insignificant.  This highlights a difference between the results recorded for 

handlebar velocity and the results recorded for handlebar acceleration: the 

results relating to handlebar acceleration were all statistically insignificant, with 
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the exception of the results for RMS, which highlight a significant difference 

between the two suspension systems.   

 

The comparable dynamic simulation results (Figure 7-29; Chapter 7) indicate that 

the fully suspended bike has a similar handlebar velocity to the hardtail bike. 

Once again, the reason that the dynamic simulation results do not highlight a 

significant difference between the bikes is that the dynamic model is not complex 

enough to detect slight differences.   

 

The results relating to the velocity of the saddle of the hardtail and fully 

suspended bikes (Table 5-18) show similar results to those obtained from 

measuring the velocity at the handlebars of both bikes.  The results obtained 

from calculating the velocity of the saddle of both the hardtail and fully 

suspended bike when cycling on the smooth road on the rolling road rig show 

that the seat of the hardtail bike has a greater velocity than that of the fully 

suspended bike. 

 

In comparing these results to those obtained from the dynamic simulation of the 

rolling road rig, it is evident that the results for saddle velocity are significantly higher 

for the experimental results on the rolling road rig.  The results for saddle velocity 

obtained during the dynamic simulation (Figure 7-31; Chapter 7) also highlight that the 

hardtail bike exerts a higher velocity compared to the fully suspended bike, yet the 

velocity values are lower during the simulation.    

 

The saddle and handlebar displacements are calculated from the results 

obtained from the accelerometers placed at the front and rear of the bikes.  

Through analysis of the handlebar displacement results for cycling on the smooth 

road (Table 5-20), it is apparent that these results do not highlight a significant a 

difference between the hardtail and fully suspended bikes as the results for the 

acceleration and velocity of the handlebars.  The results indicate that less 
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displacement occurs at the handlebars of the fully suspended bike compared to 

the hardtail bike - although these findings are all statistically insignificant.   

 

The findings illustrated in Figures 5-67 and 5-68 can be compared to those 

obtained from the dynamic computer simulation.  Figure 7-21 (Chapter 7) 

displays the vertical displacement at the front accelerometer of both the hardtail 

and fully suspended bike whilst cycling on the rolling road rig with a smooth 

surface.  The results indicate that the fully suspended bike presents a higher 

displacement at the handlebars than the hardtail bike; the opposite is true for the 

experimental results on the rolling road rig.  Additionally, the results for the 

displacement of the handlebars during the experiments on the rolling road rig are 

considerably higher than the results obtained through simulating the same 

experiment.  This is perhaps surprising as the results for the displacement of the 

handlebars obtained from the experiments on the roller rig were found to be 

similar to the handlebar displacement results obtained through the simulation of 

the same experiment.  One reason for the discrepancy between the experimental 

rolling road rig and simulation results may be that the simulated model has a 

smaller variation in power exerted through the crank, which in turn may present 

less bobbing (and less displacement of the handlebars) on a smooth surface 

compared to the experiments.  Another possible reason is that the complex tyre 

model used in the DADS simulation differs from the tyres of the bike used for the 

experiments on the rolling road rig.  Yet another factor which may present a 

discrepancy between the results is that the simulation model is two-dimensional 

and does not consider the lateral movement of the cyclist - a consideration which 

may significantly affect the handlebar displacement results.  Yet another reason 

for the differing results may be attributed to the added resistance present during 

the experimental rolling road rig tests. 

 

In contrast to the results obtained from the displacement of the handlebars whilst 

cycling on the smooth road, the results for the displacement of the handlebars 

whilst cycling on the rough road highlight that the average displacement is 
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greater for subjects cycling on the fully suspended bike.  When comparing the 

results for the handlebar displacement obtained through the experiments on the 

rolling road rig on the rough surface (Table 5-20; Chapter 5) to those obtained 

from the dynamic simulation tests (Figure 7-28; Chapter 7), it was found that the 

simulation tests produced greater displacement values than the experiments.  

The average maximum displacement of the handlebars of both the hardtail and 

fully suspended bikes for the simulation tests was 32 mm, compared to the 

handlebar displacement results during the experiments which were recorded to 

be 30 mm and 28.7 mm for the hardtail and fully suspended bike respectively.  

Once again a possible reason for this is that the tyre of the bike used during the 

experiments absorbs more of the impact when the tyre hits the bump compared 

to the simulation tyre model.   

 

The results obtained for saddle displacement accurately highlight the effect of 

bobbing when cycling.  The results for cycling on the rolling road rig on the 

smooth road indicate that less displacement of the saddle occurs when cycling 

on the fully suspended bike compared to the hardtail bike (Table 5-19; Chapter 

5).  Although the results are all statistically insignificant, suggesting that the 

results for velocity and acceleration are a more valid means of highlighting 

differences between the two bikes, the results are still meaningful to the 

discussion.   

 

These results can again be compared to the dynamic simulation of the rolling 

road rig: the dynamic simulation results display a saddle displacement of 0.76 

mm for the fully suspended bike and indicate that no displacement of the saddle 

occurs on the hardtail bike (Figure 7-22; Chapter 7).  The dynamic simulation 

results for saddle displacement contradict those found during the experiments on 

the rolling road rig.  This suggests that there is more rider movement than that 

which is simulated in the dynamic computer model, suggesting that the rider and 

tyre model of the dynamic simulation may not be complex enough to accurately 

simulate a rider on the rolling road rig. 
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The experimental results for saddle displacement obtained from the rolling road 

rig on the rough track conflict with those obtained from the dynamic simulation 

(Figure 7-30; Chapter 7).  The dynamic simulation results indicate that the 

hardtail bike has a greater maximum saddle displacement (24.3 mm) compared 

to the fully suspended bike (24.2 mm).  Conversely, the results for the rolling road 

rig on the rough surface indicate that the fully suspended bike has a greater 

maximum saddle displacement (43.3 mm) compared to the hardtail bike (39.9 

mm).  In contrast to these two sets of results, the roller rig produced maximum 

saddle displacements of 11 mm and 10 mm for the hardtail and fully suspended 

bike respectively.  It is not a surprising result that the displacement values are 

considerably lower for subjects on the roller rig as the bikes were attached to the 

rig.  The roller rig’s movement is restricted as there is no front wheel incorporated 

into the design and the front axle is fixed to the roller rig, thus less displacement 

of the saddle can occur.   

 

The subjects’ physiology and psychology results obtained from the rolling road rig 

experiments (Chapter 5) highlight that, on both the rough and smooth track, only 

small differences are found between the bikes compared to the results obtained 

from the experiments conducted on the roller rig.  A statistically significant 

difference was found between both bikes for results pertaining to RPE recorded 

while cycling on a rough track - this was measured to be 1.5 higher for the fully 

suspended bike.  All additional physiology and psychology results obtained from 

cyclists on both the smooth and rough track were statistically insignificant.   

 

The mechanical results highlight statistically significant differences between the 

bikes on the rolling road with the smooth surface: pedal power (3.5 % more 

power is required on the fully suspended bike); vertical force exerted on the 

handlebar (21 % and 11.7 higher vertical force for the hardtail bike on the left and 

right handlebar respectively); horizontal force exerted on the handlebar (35.7 % 

and 15.9 % higher horizontal force for the fully suspended bike on the left and 
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right handlebar respectively); handlebar acceleration (38.4 % higher for the 

hardtail bike); and seat acceleration (38.3 % higher for the hardtail bike).  These 

results signify that the rear suspension affects the forces acting on the bike when 

cycling on a smooth surface.  The most significant result indicates that less 

power is required to cycle the hardtail bike compared to the fully suspended bike.  

This result is not shown when comparing the physiological results; however, this 

could explain the higher rating for RPE when cycling on the fully suspended bike.  

 

Similar to the results obtained from testing on the rolling road rig with a smooth 

surface, the physiology and psychology results obtained from subjects cycling on 

the rough surface (Chapter 5) indicate that there is no significant difference 

between the hardtail and fully suspended bike.  Conversely, the mechanical 

results obtained through experimentation on the rolling road with the rough 

surface highlight significant differences between the two bikes: horizontal force 

exerted on the handlebar (26.6 % and 6.8 % higher horizontal force for the fully 

suspended bike on the left and right handlebar respectively); handlebar 

acceleration (35.9 % higher for the hardtail bike); seat acceleration (35.9 % 

higher for the hardtail bike).  Although only four of the mechanical results are 

statistically significant, the results indicate that the fully suspended bike offers an 

advantage to the rider as there is a substantially lower acceleration recorded at 

the front and rear of the bike.  

 

The results pertaining to the sub-maximal indoor track test were conclusive: all 

physiological and psychological measurements highlight that the fully suspended 

bike presents an advantage to the rider, in terms of rider performance, compared 

to the hardtail bike.  This is supported by the statistical analysis of the results 

(Table 4-3; Chapter 4) which highlights that all results yielded a p value of less 

than 0.05, thus rendering all of the results statistically significant.  . The 

differences that were recorded are: VO2 (1.2 ml/kg/min higher for the hardtail 

bike); heart rate (3.9 beats/min higher for the hardtail bike); RPE (1.2 higher for 

the hardtail bike) and comfort rating (1.1 less comfortable for the hardtail bike). 
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The results for heart rate (Figure 4-8; Chapter 4) and RPE (Figure 4-9; Chapter 

4) were lower for all ten subjects cycling on the fully suspended bike, compared 

to the hardtail bike.  All ten subjects participating in the indoor track tests also 

gave higher (5 being the most comfortable) comfort ratings (Figure 4-10; Chapter 

4) when cycling on the fully suspended bike, indicating that the subjects 

perceived this bike to be more comfortable than hardtail bike.   

 

Interestingly, nine out of the ten subjects recorded a lower VO2 level (Figure 4-7; 

Chapter 4) when cycling on the fully suspended bike compared to the hardtail 

bike.  A possible reason for one subject obtaining a higher VO2 level on the fully 

suspended bike than the other results is that the subject who recorded this result 

experienced considerably more bobbing than the other subjects. This may have 

been a result of the subject’s weight:  the suspension was configured for a rider 

weighing 70 kg - the subject weighed 85 kg, a factor which may have promoted a 

bobbing effect.  Yet another possible reason for the result anomaly could be 

attributed to the riding style of the individual subject. 

 

As the experiments on the indoor track measured only the subjects’ VO2, heart 

rate, RPE and comfort ratings, only these results could be compared to those 

obtained from the roller rig and rolling road rig.  The results obtained from the 

indoor track tests all concur with those obtained from the experiments on the 

roller rig, where each subject recorded a lower VO2, heart rate, RPE, and higher 

comfort rating whilst cycling on the fully suspended bike compared to the hardtail 

bike.  This is an unsurprising result as both experiments were conducted on a flat 

surface with bumps with cyclists cycling at approximately the same constant 

speed (10.5 km/h for the track test and between 10 km/h and 15 km/h for the 

roller rig respectively).  Despite the two differing forms of experimentation, both 

the experiments on the roller rig and indoor track indicate that the fully 

suspended bike presents an advantage to the cyclist over the hardtail bike when 

cycling on a rough surface.  This suggests that there is a real significant 

difference between cycling on these two bikes.     
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The experiments on the roller rig however, highlight a greater difference between 

cycling on the hardtail compared to the fully suspended bike than the results from 

the track test.  This greater difference is due to the greater frequency and 

magnitude of the bumps used for the tests on the roller rig.  The bumps used for 

the roller rig experiments measured 7 cm by 3 cm and the bump was a 

rectangular block, compared to the bumps of dimension 3 cm by 3 cm with 

rounded edges used for the indoor track tests.  One bump was placed on the 

roller rig every metre in comparison to the one bump which was placed on the 

indoor track every 3 m.  This greater frequency and magnitude of the bumps on 

the roller rig results in the bikes on this rig being subjected to greater vibrations, 

which in turn highlights greater differences between the two bikes.   

     

In contrast to the results obtained from the roller rig experiments, those obtained 

from the rolling road rig experiments on the rough surface do not concur with the 

results from the indoor track tests.  The results for VO2, heart rate, RPE and 

comfort rating for subjects on the rolling road rig on the bumpy track (Table 5-4; 

Chapter 5) do also indicate that, on average, the fully suspended bike presents 

an advantage to the rider compared to the hardtail bike.  However, these 

physiology and psychology results obtained from the rolling road rig are all 

statistically insignificant.  The reason for the discrepancy between the results 

obtained from the rolling road rig experiments and the indoor track tests is that an 

additional force acts against the cyclist on the rolling road rig due to the friction of 

the belt; a reason for this may be due to the effort required to overcome the 

effects of friction dominates the results meaning that the difference between the 

bikes is insignificant in comparison.  As the indoor track test has no resistance, 

the results therefore conflict with those obtained from the rolling road rig.   

 

Another explanation for the difference in the results could be that the added 

resistance equates to the resistance by gravity when cycling uphill.  MacRae et 

al. (2001) conducted experiments on a rough track with subjects cycling uphill 
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and found that riding uphill on a bumpy surface highlights no difference between 

the hardtail and fully suspended bike as the added resistance whilst cycling uphill 

affects the function of the suspension. This may also account for the reason why 

MacRae et al’s (2001) research results and the results of the indoor track test 

produced contrasting findings despite both experiments being conducted in field 

test environments.  

 

Similarly, the results from the indoor track test conflict (with the exception of all of 

the results for comfort rating being higher for cycling on the fully suspended bike) 

with those obtained from Seifert et al’s (1997) field test.  Similar to Seifert et al. 

(1997), MacRae et al. (2001) also found that no significant difference is evident 

between the hardtail and the fully suspended bike for measurements of heart 

rate, VO2, and RPE.  A possible reason for the discrepancy between these 

results and the indoor track test results is that the type of rear suspension system 

used for testing may not have been as effective as the suspension system used 

for the indoor track test.  Another possible reason relates to the speed and 

duration of the experiments: Seifert et al’s (1997) subjects were instructed to 

cycle at a speed of 16.1 km/h over a period of 63 min, compared to the 12 mi at a 

speed of 10.5 km/h for subjects conducting the indoor track tests.  A possible 

explanation for the variation in results may be attributed to the fact that a higher 

speed may cause the cyclist’s energy to be dissipated through the rear 

suspension due to a bobbing effect.    

 

Ishii et al. (2002) also conducted field tests on a rough surface to ascertain the 

benefits of cycling on a bike with a rear suspension.  The single measurement 

taken during the study which is comparable to those taken during the indoor track 

tests is that of VO2.  In contrast to the results obtained during the indoor track 

tests, Ishii et al. (2002) found that subjects cycling on the fully suspended bike 

recorded higher levels of VO2 compared to those cycling on the hardtail bike.  A 

possible reason for this is that Ishii et al’s (2002) experiment (as with MacRae et 

al., 2000) was conducted with subjects cycling at a higher speed (cycling as fast 



321 
 

as possible) and the course consisted of both ascending and descending 

sections.      
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9. Conclusion and Future Work 

9.1. Physiological and Psychological Effects  

The physiological and psychological results from the sub-maximal experiments 

on both the roller rig and the indoor track both show that at a constant speed, 

when cycling over frequent, regular bumps, the fully suspended bike presents a 

significant advantage over the hardtail bike in terms of VO2, heart rate, RPE and 

comfort rating.  These findings indicate that a fully suspended bike improves rider 

performance on rough tracks through reducing the amount of energy expended 

by the cyclist.   

 

The physiology and psychological results obtained from the sub-maximal tests on 

the rolling road rig with bumps, and no bumps, both highlight that when cycling at 

a constant speed, no significant difference is apparent between the hardtail and 

fully suspended bike in terms of energy efficiency - measured in terms of a 

subject’s VO2, heart rate, RPE and comfort rating levels.  The findings from the 

rolling road rig indicate that neither the hardtail nor the fully suspended bike 

improves rider performance on a rough or smooth track.      

 

9.2. Mechanical Effects  

 

9.2.1. Experimental Results  

The mechanical results from the roller rig sub-maximal experiments show that 

whilst cycling at a constant speed over frequent, regular bumps, the fully 

suspended bike presents a significant advantage to the rider in comparison to the 

hardtail bike.  The results pertaining to the power through the crank; force 

exerted on the crank; saddle and handlebar acceleration; saddle and handlebar 

velocity; and saddle and handlebar displacement are significantly lower for the 

fully suspended bike compared to the hardtail bike.  This finding indicates that 
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the fully suspended bike presents the rider with an advantage over the hardtail 

bike when cycling over a rough surface.     

 

The mechanical results obtained from the tests conducted on the rolling road rig 

with bumps attached show that when cycling at constant speed over frequent, 

regular bumps, no significant difference is found between cycling on the hardtail 

or the fully suspended bike.  The results relating to the power through the crank; 

velocity and force of the crank; force exerted on the handlebars and saddle; 

saddle and handlebar velocity; and saddle and handlebar displacement, all 

illustrate that no significant difference is evident when cycling on either the 

hardtail or fully suspended bike.  During the rolling road rig tests with bumps, a 

slight advantage was observed for the hardtail bike in terms of the amount of 

horizontal force exerted on the handlebars of the bikes; however, this difference 

is slight.  A slight advantage was also recorded for the fully suspended bike for 

results pertaining to handlebar and saddle acceleration, but once again, the 

difference recorded for these acceleration measurements were small.  The 

mechanical findings obtained from the tests on the rolling road rig with bumps 

indicate that no difference is noticeable between the hardtail and fully suspended 

bike when cycling on a rough track with bumps of this magnitude and frequency.   

 

The mechanical results calculated from the experiments on the rolling road rig 

with no bumps are varied.  The results indicate that whilst cycling at a constant 

speed on a flat surface no difference is apparent between the hardtail and fully 

suspended bike for results pertaining to the crank, handlebar and saddle velocity; 

force exerted on the saddle; and handlebar and saddle displacement.  During the 

experiments on the rolling road rig with no bumps there was a slight advantage 

for the fully suspended bike in regards to the amount of vertical force applied to 

the handlebars, and for saddle and handlebar acceleration.  For the same 

experiment, there was a slight advantage for the hardtail bike in terms of the 

amount of force exerted on the crank; the amount of horizontal force exerted on 

the handlebars; and the power through the crank.   
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9.2.2. Simulation Results 

The dynamic simulation of the roller rig produced similar results to the 

experimental roller rig results, indicating that, in this instance, a dynamic 

computer simulation aids in the understanding of test results.  The results 

obtained from the dynamic simulation of the roller rig on a smooth surface 

indicate that at a constant speed, the hardtail bike provides a slight advantage 

over the fully suspended bike in terms of rider performance.  The results show 

that there is no displacement of the handlebars, saddle, rider or front suspension, 

and no variation in the amount of force transmitted by the front suspension whilst 

cycling on the hardtail bike on the roller rig with a smooth surface.  In 

comparison, a slight displacement is recorded at the handlebars, saddle, front 

suspension and rider, in addition to a slight variation in the amount of force 

transmitted by the front suspension, when cycling on the fully suspended bike.  

These findings indicate that the hardtail bike improves rider performance on a flat 

surface in comparison to the fully suspended bike.  

 

The results from the dynamic simulation model of the roller rig with bumps 

indicate that whilst cycling at a constant speed, the fully suspended bike provides 

an advantage to the rider over the hardtail bike.  Despite the handlebar 

displacement being similar for both bikes, the saddle, front suspension and rider 

displacement; handlebar, saddle, and rider velocity; and the amount of force 

transmitted through the front suspension, are all lower for the fully suspended 

bike in comparison to the hardtail bike.  These findings indicate that a fully 

suspended bike can improve rider performance on rough tracks. 

 

The dynamic simulation of the rolling road rig produced varied results from those 

obtained during the rolling road rig experimental results.  The results from the 

dynamic simulation of the rolling road rig with no bumps show that at a constant 

speed, the hardtail bike provides a slight advantage over the fully suspended 

bike.  The hardtail offers an advantage evidenced by lower handlebar, saddle and 

rider displacement values.  The displacement of, and the force transmitted 



325 
 

through, the front suspension is lower for the fully suspended bike; this is 

however, only slightly lower than that of the hardtail bike.  These results indicate 

that a hardtail bike has an advantage over a fully suspended bike during the 

simulation of the rolling road rig with a smooth surface.   

 

Conversely, the results from the simulation of the rolling road rig with bumps 

indicate that, at a constant speed, the fully suspended bike offers a significant 

advantage over the hardtail bike.  The findings for the displacement of, and the 

resultant force transmitted through, the front suspension, are lower for the 

hardtail bike.  However, the results pertaining to handlebar, saddle and rider 

displacement; and rider, saddle and handlebar velocity, are all lower for the fully 

suspended bike, indicating that this bike type, compared to the hardtail bike, 

provides an advantage to the rider on a rough track.    

 

9.3. Correlation of Results  

 

9.3.1. Physiology and Psychology Results 

The physiology and psychology results obtained from the experiments on the 

roller rig and the indoor track correlate well, with both sets of results producing 

lower VO2, heart rate, RPE and higher comfort ratings levels for subjects cycling 

on the fully suspended bike on rough terrain.  On the contrary, the physiology 

and psychology results obtained from the experiments on the rolling road rig 

indicate that there is no significant difference between the hardtail and fully 

suspended bike for VO2, heart rate, RPE and comfort rating, despite subjects 

experiencing the same frequency and magnitude of bumps as those encountered 

on the straight sections of the track test.  This indicates that when there is greater 

resistance (equivalent to that of riding uphill), as experienced by cyclists on the 

rolling road rig due to the added friction caused by the belt of the rig, a fully 

suspended bike does not present any significant advantage to the rider - as it 

does when cycling on the indoor track.   
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9.3.2. Mechanical and Simulation Results 

The mechanical results obtained from the roller rig correlate with those obtained 

during the simulation of the roller rig with bumps.   All of the experimental and 

simulation results obtained from the measurements recorded at the crank, 

saddle, handlebars, front suspension and rider, are significantly lower for the fully 

suspended bike.     

 

There is, however, a lack of correlation between the experimental mechanical 

results and the simulation results obtained from the smooth surfaced rolling road 

rig.  The handlebar displacement is greater for the fully suspended bike during 

the dynamic simulation tests, yet this displacement is only slightly greater than 

that recorded on the hardtail bike.  The experimental mechanical results show 

that there is no significant difference between the bikes in terms of handlebar 

displacement.  The results for saddle displacement obtained during the dynamic 

simulation highlight that there is a displacement of the saddle of the fully 

suspended bike, with no displacement occurring at the saddle of the hardtail 

bike.  Conversely, the rolling road rig experimental results show that there is a 

similar saddle displacement for both the hardtail and fully suspended bike.   

 

There is also a lack of correlation between the results obtained from the 

experiments on the rolling road rig with bumps and the results from the 

simulation of the rolling road rig with bumps.  The simulation results pertaining to 

handlebar displacement signify that the fully suspended bike has a lower 

displacement, but once again, this difference is only slight.  The experimental 

results indicate that the handlebar displacement is greater for the fully suspended 

bike.  The results for saddle displacement show a greater displacement for the 

hardtail bike during the dynamic simulation, whilst no difference is apparent 

between the two bikes when considering the displacement of the saddle during 

the experimental results.  Once more, the discrepancies between the 

experimental and simulation results may be attributed to the added resistance 

experienced by subjects conducting tests on the rolling road rig.  This added 
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resistance equates to the resistance of cycling uphill; the dynamic simulations, 

however, simulate a cyclist on the rolling road rig with bumps on a flat surface 

only, thus attributing to the conflicting results.  The conflicting results are due to 

the added resistance being the overriding factor over the effect of cycling over 

bumps, therefore the differences between the two bikes is less defined.  This 

highlights that cycling on a fully suspended bike provides an advantage to a 

cyclist on rough ground as demonstrated from the results of the roller rig and 

indoor track.  Whereas no significant difference was found between the bikes 

when there is an added resistance as was the case on the rolling road rig.   

 

9.3.3. Physiology, Psychology and Mechanical Results 

The differences measured between the fully suspended and hardtail bike for the 

physiology and psychology results of VO2, heart rate, RPE and comfort rating 

obtained during the experiments on the roller rig correlate well with the 

mechanical results of power through, and force exerted on, the crank; and saddle 

and handlebar acceleration, velocity and displacement.  The physiology and 

psychology results show that subjects exert less energy whilst cycling on the fully 

suspended bike, thus improving rider performance.  Correspondingly, less power 

is required by the subject to cycle at a constant speed, and fewer vibrations are 

felt whilst cycling on the fully suspended bike.   

 

The physiology and psychology results of VO2, heart rate, RPE and comfort 

rating obtained during the rolling road rig tests on a rough surface, correlate well 

with the mechanical results pertaining to the amount of power through the crank; 

force exerted on the crank and saddle; vertical and horizontal force exerted on 

the handlebars; crank, handlebar and saddle velocity; and handlebar and saddle 

acceleration and displacement.  The physiology, psychology and mechanical 

results do not highlight any significant differences between the hardtail and fully 

suspended bikes.    
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There is a further correlation between the physiology and psychology results of 

VO2, heart rate, RPE and comfort rating, and the mechanical results of saddle, 

handlebar and crank velocity; force exerted on the saddle; and saddle and 

handlebar velocity obtained during the experiments on the rolling road rig with a 

smooth surface.  These results all indicate that there is no significant difference 

between the hardtail and fully suspended bike.  There is, however, a lack of 

correlation between the physiology and psychology results and the mechanical 

results of power through the crank; the force exerted on the crank; and the 

horizontal force exerted on the handlebars - all of which are lower for the hardtail 

bike compared to the fully suspended bike.   

 

Additionally, the mechanical results of vertical force exerted on the handlebars; 

and handlebar and saddle acceleration, do not correlate with the physiology and 

psychology results.  It is, however, important to note that the differences between 

the hardtail and fully suspended bikes recorded during the experiments on the 

rolling road with a smooth surface are slight.   The most notable difference is 

between the physiology and psychology results and mechanical result relating to 

the amount of power exerted through the crank.  The results of VO2, heart rate, 

RPE and comfort rating all indicate that no significant difference is apparent 

between cycling on the hardtail and fully suspended bike, indicating that no more 

energy is exerted on one bike compared to the other.  However, the mechanical 

result pertaining to the mean power transmitted through the crank is lower for the 

hardtail bike, indicating that less energy is required to cycle on the hardtail bike 

compared to the fully suspended bike.   

 

The current study has shown that the roller rig can be used to isolate rear wheel 

dynamics and produces consistent results, which correlate well with the dynamic 

simulations.  The rolling road rig not only allowed the rear wheel dynamics to be 

considered, but also investigated front wheel dynamics, thus providing a more 

realistic representation of true riding conditions.  However, as aforementioned, 

due to the added friction caused by the rig belt, the rolling road rig was 
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representative of a cyclist riding uphill, and for this reason there is less 

correlation between the rolling road rig experimental and simulation results.  

Although no difference was highlighted between either bike for the rider’s 

physiology and psychology measurements when cycling on the rolling road rig 

with no bumps, less power was exerted through the pedals of the hardtail bike, 

compared to the fully suspended bike.  This finding suggests that when cycling 

with added resistance (as experienced on the rolling road rig) on a smooth 

surface, the hardtail bike performs better than the fully suspended bike.   

 

The experiments conducted on the rolling road rig with bumps provided results 

which showed no difference between the bikes with regards to the physiology, 

psychology, and mechanical results, highlighting that neither bike provides an 

advantage to the cyclist when cycling on a track with the equivalent magnitude 

and frequency of bumps, and added resistance, as experienced on the rolling 

road rig.   

 

The indoor track tests highlighted a difference between the hardtail and fully 

suspended bikes for subjects cycling on this track with the same bump 

magnitude and frequency as the rolling road, thus highlighting that it was the 

added friction which prevented a difference being apparent between the bikes on 

the rolling rig.  The indoor track test provided yet a more realistic means of 

testing and closely represented true riding conditions; however, mechanical 

aspects were not measured during the tests as it proved impractical to attach 

additional instrumentation to the subject and bike.   

 

The dynamic simulation models have shown that there are definite uses for 

simulations in future research in terms of optimising suspension systems and the 

design of new testing instrumentation.  All of the results from the experimental 

roller rig, rolling road rig, indoor track and dynamic simulations provide interesting 

results which can be used for further research into suspension systems.  
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9.4. Future Work 

 

Further research is necessary in order to further improve understanding of how 

rear suspension systems impact on rider performance.  This requires further 

experimentation on the rolling road rig at a maximal testing level under race 

conditions, where subjects are instructed to cycle as fast as possible as would be 

in true race conditions.  Furthermore, the subjects should have no restrictions on 

rider style as is also true of real race conditions.  A more accurate form of 

recording rider movement is necessary for the reconstruction of movement 

kinematics for differing riding styles.  The control exerted by the rider over the 

bike is likely to prove a critical factor and further research should explore whether 

particular riding styles need to be adopted to realise the best performance from 

different types of bike; whether these can be categorised and whether riders can 

optimise their riding technique through training. 

 

In addition to the physiology and psychology measurements of VO2, heart rate, 

RPE and comfort ratings, lactate levels should be recorded during the maximal 

tests; this can be identified by either blood sampling or from gas exchange data.  

Further maximal testing on the rolling road rig would allow the effect of the rear 

suspension to be investigated under conditions which have equivalent speeds 

and riding styles to those in race conditions.   

 

A new indoor track test should be developed which incorporates sections of 

varying terrain with bumps of different magnitudes and frequencies.  In addition 

to this, both uphill and downhill sections should be implemented in order to 

investigate the effects of rear suspension whilst cycling under these conditions.  

Instrumentation should be attached to the bike during testing which record the 

mechanical measurements in order to investigate the effects of the varying 

terrain on the bikes.  It would be beneficial to also investigate the effects that 

different types of rear suspension has on rider performance and not limit 

research to one particular rear suspension design.     
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A clear link has emerged between conducting experiments and validating results 

with the aid of dynamic computer simulations.  With this in mind, further, more 

complex, dynamic simulations should be run which simulate a more complex 

model of a rider to research in greater detail how rider interaction affects 

suspension systems.   
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11. Appendix 



 
 

Appendix A 

 

Questionnaire 

 



 

Cyclist Questionnaire 

 
The purpose of this questionnaire is to obtain information from mountain bikers. 
It has been designed to establish which type of suspension system you use; your 
opinion on the various suspension systems available and the riding styles that 
you adopt.    

 
(Please tick only one box) 

 

1)   Sex 

      Male     �    

      Female  �   

 
2)   Age 

     18-25 �   

     26-30 �   

     30+        �  

 

3) How long have you been cycling?   

Less than 1 year  �  

1-5 years �  

5-10 years �  

More than 10 years �  

 

4) How often do you cycle per week?  

1-2 times �    

3-5 times �    

5-7 times �    

More than 7 times �  

 

 

 



5) Do you take part in cycling races?      

     Yes �  No �      (If No please go to Question 7) 

        

6) At which level do you race at? 

Amateur Cyclist        �    

     Recreational Cyclist   �    

     Competitive Cyclist   �    

     Professional Cyclist   �  

 

7) Which type of bike do you ride?  

     Hard Tail Bike (front suspension only) �  

Full Suspension Bike (both front and back suspension) �  

 

8) Which make of bike do you ride most often? 

Specialized    �              Marin     �  

Cannondale   �              Trek      �  

Orange         �              Giant     �  

Santacruze    �              Scott     �                             

Gary Fisher   �              GT        �  

Other           ______________________ 

 

9) Which make of front suspension do you use? 

Rock Shox   �    Manitou       �  

Fox             �    Marzocchi    �  

     Other          _____________________ 

 

10)  Which type of rear suspension do you use? 

Single Pivot             �     Unified Rear Triangle      �  

Four Bar Linkage            �     Horst Link                      �  

Virtual Pivot Point           �      

Other          ______________________ 

   



11)   How much travel do you allow your front suspension? 

  0 – 3 inches           �     

  3 – 4 inches           �     

  4 – 5 inches           �   

  More than 5 inches  �  

 

12)  How much travel do you allow your rear suspension? 

  0 – 3 inches           �     

  3 – 4 inches           �     

  4 – 5 inches           �   

  More than 5 inches  �  

 

13) Which rear suspension system do you feel is the most effective?     

Single Pivot             �   Unified Rear Triangle      �  

Four Bar Linkage            �   Horst Link                      �  

Virtual Pivot Point           �    

Other          ______________________ 

 

14) When riding a full suspension bike do you feel a bobbing effect when riding    

uphill?    

Yes �   No �  

 

 

15) When riding uphill do you… 

Stand and jam �   Stay seated and spin �  

 

 

16) Do you use a different technique when riding a full suspension bike 

compared to a hard tail bike?  

Yes �   No �   

 

 



17) Please briefly describe your riding technique and body positioning whilst 

riding your bike in the following situations (i.e. do you remain seated or stand; 

which way do you shift your weight etc.) 

 

a) When riding uphill  

……………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………

………………………………………………………………………………………………………………….. 

 

b) When riding downhill 

……………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………

………………………………………………………………………………………………………………….. 

 

 

 

 

Please add any further comments if necessary.   

……………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………

………………………………………………………………………………………………………………….. 

……………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………

………………………………………………………………………………………………………………….. 

 

 

 

 

Thank you for completing this questionnaire.  The results will be confidential and 

there will be no way of identifying the respondents.   

Mark Davie 



 
 

Appendix B 

 

Physiology Results 

 

• Physiology Results for the Roller rig 

• Physiology results for the rolling road rig 

• Physiology results for the track test 

 

 

 

 



TEST RESULTS

Roller rig 

SUBJECT AGE MASS SPEED TEST

CODE kg km/h CODE VO2 HR VO2 HR

Training effect bump tests

subject 01 31 75 11 HTB 38.958 166 36.322 166

subject 01 HTB 34.949 143 33.693 145

subject 01 HTB 33.112 150 40.207 148

subject 02 23 94 10 HTB 26.355 145 29.669 138

subject 02 HTB 29.903 161 27.19 157

subject 02 HTB 28.996 172 27.65 164

subject 03 22 74.5 12 HTB 34.611 154 31.641 156

subject 03 HTB 38.092 162 33.51 168

subject 03 HTB 37.151 165 34.57 167

subject 04 23 83.5 14 SUB 22.86 98 30.451 96

subject 04 SUB 25.1 112 25.511 112

subject 04 SUB 23.796 114 23.063 115

subject 05 26 75 10 SUB 15.395 119 18.686 119

subject 05 SUB 18.325 110 18.009 107

subject 05 SUB 19.589 130 20.975 123

subject 06 23 78 10 SUB 17.66 136 18.33 138

subject 06 SUB 18.501 143 19.294 142

subject 06 SUB 17.136 135 19.575 136

Suspension effect bump tests

subject 01 30 72 10 HTB 25.396 175 31.784 160

subject 02 HTB 38.258 144 39.5 148

subject 03 HTB 24.993 141 25.179 140

subject 04 22 77 10 HTB 27.973 120 25.34 118

subject 05 HTB 39.162 166 43.346 168

subject 06 22 80 10 HTB 26.477 149 28.804 141

subject 01 SUB 30.614 154 30.683 152

subject 02 21 68 12.5 SUB 28.411 123 29.299 124

subject 03 23 74 10 SUB 21.421 117 21.82 116

subject 04 SUB 15.49 99 20.12 99

subject 05 23 64 11 SUB 17.336 110 22.107 109

subject 06 SUB 16.801 104 26.016 105

MEAN 24.89 76.67

SD 3.37 8.28

MINUTE 5 MINUTE 6



TEST RESULTS

Roller rig (continued)

SUBJECT

CODE VO2 HR VO2 HR VO2 HR

Training effect bump tests

subject 01 39.023 168 35.79 169 37.41 168.50

subject 01 35.774 150 34.18 151 34.98 150.50

subject 01 31.347 150 34.071 152 32.71 151.00

subject 02 24.249 137 30.619 138 27.43 137.50

subject 02 27.777 162 26.938 158 27.36 160.00

subject 02 26.371 160 26.207 158 26.29 159.00

subject 03 34.619 162 32.897 160 33.76 161.00

subject 03 35.922 169 35.881 169 35.90 169.00

subject 03 37.374 166 37.065 167 37.22 166.50

subject 04 24.34 102 23.854 102 24.10 102.00

subject 04 25.36 115 25.017 113 25.19 114.00

subject 04 24.397 116 25.892 114 25.14 115.00

subject 05 19.253 124 19.729 119 19.49 121.50

subject 05 18.791 110 15.845 108 17.32 109.00

subject 05 19.733 129 19.539 129 19.64 129.00

subject 06 18.311 142 18.176 128 18.24 135.00

subject 06 18.55 142 18.471 141 18.51 141.50

subject 06 18.781 135 15.835 137 17.31 136.00

Suspension effect bump tests

subject 01 31.47 163 33.411 162 32.44 162.50

subject 02 36.156 147 34.978 147 35.57 147.00

subject 03 25.499 140 25.097 143 25.30 141.50

subject 04 28.837 119 27.393 120 28.12 119.50

subject 05 38.751 162 38.202 163 38.48 162.50

subject 06 28.257 150 28.148 149 28.20 149.50

subject 01 27.667 148 26.988 147 27.33 147.50

subject 02 28.274 125 28.963 126 28.62 125.50

subject 03 22.649 118 22.55 115 22.60 116.50

subject 04 20.86 99 20.68 100 20.77 99.50

subject 05 20.633 114 23.297 112 21.97 113.00

subject 06 17.679 108 18.391 106 18.04 107.00

MEAN HTB MEAN 31.35 147.08

SD SD 5.04 15.96

Cv 0.16 0.11

SUB MEAN 23.22 118.17

SD 4.02 16.83

Cv 0.17 0.14

MINUTE 10 AVERAGE (9 & 10)MINUTE 9



TEST RESULTS

Roller rig (continued)

SUBJECT

CODE RPE COMFORT RPE COMFORT RPE COMFORT RPE COMFORT

Training effect bump tests

subject 01 8 4 9 4 10 3 9.0 3.7

subject 01 7 5 8 4 8 4 7.7 4.3

subject 01 7 4 8 3 9 3 8.0 3.3

subject 02 11 3 12 3 12 3 11.7 3.0

subject 02 11 3 12 3 13 3 12.0 3.0

subject 02 12 3 13 3 13 3 12.7 3.0

subject 03 11 1 12 1 12 1 11.7 1.0

subject 03 11 2 11 1 11 1 11.0 1.3

subject 03 11 1 12 1 12 1 11.7 1.0

subject 04 10 3 11 3 11 3 10.7 3.0

subject 04 9 3 10 3 11 3 10.0 3.0

subject 04 9 3 10 3 10 3 9.7 3.0

subject 05 9 3 9 4 9 4 9.0 3.7

subject 05 11 3 11 3 11 3 11.0 3.0

subject 05 12 3 12 3 12 3 12.0 3.0

subject 06 7 5 11 5 11 4 9.7 4.7

subject 06 11 5 12 4 13 4 12.0 4.3

subject 06 12 4 14 3 15 3 13.7 3.3

Suspension effect bump tests

subject 01 18 4 16 2 17 2 17.0 2.7

subject 02 13 1 15 1 16 1 14.7 1.0

subject 03 14 2 14 2 15 1 14.3 1.7

subject 04 11 3 12 2 13 1 12.0 2.0

subject 05 14 1 16 1 16 1 15.3 1.0

subject 06 10 2 12 1 12 1 11.3 1.3

subject 01 10 5 10 4 10 4 10.0 4.3

subject 02 11 2 11 2 12 2 11.3 2.0

subject 03 11 4 11 3 12 3 11.3 3.3

subject 04 8 4 9 4 10 4 9.0 4.0

subject 05 11 3 11 3 11 2 11.0 2.7

subject 06 8 5 10 4 11 4 9.7 4.3

MEAN HTB MEAN 14.11 1.61

SD SD 2.12 0.65

Cv 0.15 0.40

SUB MEAN 10.39 3.44

SD 0.98 0.96

Cv 0.09 0.28

MINUTE 6 MINUTE 9 AVERAGEMINUTE 3



Rolling Road test

SUBJECT AGE MASS SPEED TEST

CODE kg km/h CODE VO2 HR VO2 HR

subject 01 31 85 8 REST 3.944 55

subject 01 SUB 30.391 130 28.418 127

subject 01 HTB 30.496 131 30.135 127

subject 01 SUS 28.61 130 27.872 130

subject 01 HTS 25.879 130 26.252 128

subject 02 30 69.7 8 REST 4.923 69

subject 02 HTB 34.634 147 34.902 146

subject 02 SUB 36.593 148 35.099 147

subject 02 HTS 32.454 135 30.841 134

subject 02 SUS 33.16 140 33.532 147

subject 03 25 68.9 8 REST 5.118 51

subject 03 SUB 36.599 129 31.547 132

subject 03 HTB 37.387 135 35.555 135

subject 03 HTS 32.12 130 32.397 130

subject 03 SUS 30.526 130 32.628 130

subject 04 24 103.2 8 REST 6.576 72

subject 04 HTB 28.393 120 29.019 123

subject 04 SUB 29.182 120 28.265 120

subject 04 SUS 28.571 128 30.019 131

subject 04 HTS 28.207 121 28.543 130

subject 05 32 67 8 REST 4.865 60

subject 05 SUS 29.374 116 31.236 118

subject 05 HTS 34.61 118 29.808 117

subject 05 SUB 35.024 122 35.832 124

subject 05 HTB 39.758 126 38.786 128

subject 06 25 72 8 REST 5.923 87

subject 06 HTS 28.981 139 33.735 140

subject 06 SUS 32.403 133 33.869 138

subject 06 HTB 32.697 144 33.297 148

subject 06 SUB 33.268 140 33.086 143

subject 07 26 85.2 8 REST 3.944 55

subject 07 SUS 28.842 109 24.717 117

subject 07 HTS 27.228 114 27.024 115

subject 07 HTB 30.059 121 29.796 119

subject 07 SUB 30.627 115 29.343 120

subject 08 30 69.7 8 REST 4.923 69

subject 08 HTS 31.762 134 32.126 130

subject 08 SUS 32.196 135 33.334 139

subject 08 SUB 32.407 138 39.35 138

subject 08 HTB 36.221 135 37.159 135

MEAN 24.78 77.59

SD 9.76 12.60

MINUTE 4 MINUTE 5



Rolling Road test (continued)

SUBJECT

CODE VO2 HR VO2 HR VO2 HR

subject 01

subject 01 30.04 125 28.927 129 29.4 127.8

subject 01 30.697 128 30.66 131 30.5 129.3

subject 01 27.649 126 27.132 130 27.8 129.0

subject 01 25.713 124 26.374 130 26.1 128.0

subject 02 5

subject 02 35.309 149 35.191 151 35.0 148.3

subject 02 34.799 154 35.231 153 35.4 150.5

subject 02 30.78 134 30.582 138 31.2 135.3

subject 02 34.85 149 35.814 149 34.3 146.3

subject 03

subject 03 33.826 140 36.121 138 34.5 134.8

subject 03 35.59 140 35.022 140 35.9 137.5

subject 03 33.039 132 30.219 134 31.9 131.5

subject 03 31.42 133 30.572 131 31.3 131.0

subject 04

subject 04 28.585 124 28.438 123 28.6 122.5

subject 04 29.181 122 28.626 120 28.8 120.5

subject 04 29.835 134 28.061 134 29.1 131.8

subject 04 28.22 128 27.162 131 28.0 127.5

subject 05

subject 05 34.616 118 32.398 121 31.9 118.3

subject 05 34.025 119 29.911 125 32.1 119.8

subject 05 38.046 126 37.065 125 36.5 124.3

subject 05 39.305 127 40.754 130 39.7 127.8

subject 06

subject 06 32.649 140 36.251 141 32.9 140.0

subject 06 35.471 140 29.806 138 32.9 137.3

subject 06 34.271 149 32.818 149 33.3 147.5

subject 06 33.883 148 33.877 148 33.5 144.8

subject 07

subject 07 26.974 113 27.47 112 27.0 112.8

subject 07 28.375 116 29.326 118 28.0 115.8

subject 07 29.105 121 29.85 118 29.7 119.8

subject 07 30.157 120 29.986 120 30.0 118.8

subject 08

subject 08 32.636 136 31.194 137 31.9 134.3

subject 08 32.261 136 32.251 137 32.5 136.8

subject 08 36.145 141 34.432 140 35.6 139.3

subject 08 35.267 137 34.094 136 35.7 135.8

MEAN HTB MEAN 33.54 133.53

SD SD 3.74 10.66

Cv 0.11 0.08

SUB MEAN 32.98 132.56

SD 3.08 11.64

Cv 0.09 0.09

HTS MEAN 30.26 129.00

SD 2.52 8.09

Cv 0.08 0.06

SUS MEAN 30.86 130.38

SD 2.60 10.70

Cv 0.08 0.08

AVERAGE (9 & 10)MINUTE 9 MINUTE 10



Rolling Road test (continued)

SUBJECT

CODE RPE COMFORT RPE COMFORT RPE COMFORT RPE COMFORT

subject 01

subject 01 10 4 10 4 10 4 10.0 4.0

subject 01 9 4 10 4 10 4 9.7 4.0

subject 01 11 2 11 1 10 2 10.7 1.7

subject 01 9 4 9 4 9 4 9.0 4.0

subject 02

subject 02 15 2 14 2 16 2 15.0 2.0

subject 02 13 2 13 2 12 2 12.7 2.0

subject 02 9 4 10 4 9 4 9.3 4.0

subject 02 10 4 11 4 11 4 10.7 4.0

subject 03

subject 03 11 1 10 1 10 1 10.3 1.0

subject 03 10 3 10 3 9 3 9.7 3.0

subject 03 10 4 11 4 11 4 10.7 4.0

subject 03 10 4 11 4 11 4 10.7 4.0

subject 04

subject 04 15 1 15 1 17 1 15.7 1.0

subject 04 10 4 10 4 12 4 10.7 4.0

subject 04 8 4 9 4 9 4 8.7 4.0

subject 04 11 4 11 4 13 3 11.7 3.7

subject 05

subject 05 11 5 11 5 11 5 11.0 5.0

subject 05 12 3 12 3 12 3 12.0 3.0

subject 05 11 5 11 5 11 5 11.0 5.0

subject 05 12 2 13 1 13 1 12.7 1.3

subject 06

subject 06 8 4 9 4 9 4 8.7 4.0

subject 06 7 5 8 5 8 5 7.7 5.0

subject 06 13 2 13 2 13 2 13.0 2.0

subject 06 12 1 12 1 12 1 12.0 1.0

subject 07

subject 07 10 4 12 4 11 4 11.0 4.0

subject 07 10 4 11 4 10 4 10.3 4.0

subject 07 9 4 10 4 10 4 9.7 4.0

subject 07 9 4 9 4 9 4 9.0 4.0

subject 08

subject 08 11 2 11 2 12 1 11.3 1.7

subject 08 9 4 9 4 9 4 9.0 4.0

subject 08 8 5 12 3 12 3 10.7 3.7

subject 08 12 2 12 1 15 1 13.0 1.3

MEAN HTB MEAN 12.29 2.33

SD SD 2.41 1.20

Cv 0.20 0.51

SUB MEAN 10.79 3.08

SD 1.14 1.53

Cv 0.11 0.50

HTS MEAN 10.38 3.54

SD 1.27 0.83

Cv 0.12 0.24

SUS MEAN 9.92 3.96

SD 1.28 1.03

Cv 0.13 0.26

AVERAGEMINUTE 3 MINUTE 6 MINUTE 9



 TRACK TEST

SUBJECT AGE MASS SPEED TEST

CODE kg km/h CODE VO2 HR RPE COMFORT

am01 23 70 10.5 HTB 21.89 106.4 7 4

dl01 27 80 10.5 HTB 17.87 127.2 11 4

am01 23 78 10.5 HTB 20.17 105.1 8 4

er01 23 70 10.5 HTB 17.64 109.3 8 4

rc01 24 60 10.5 HTB 20.58 105.3 8 4

pr02 18 55 10.5 HTB 24.69 108.4 8 4

ld02 22 87 10.5 HTB 15.70 94.1 7 3

de02 20 60 10.5 HTB 22.76 104.6 9 3

cm02 23 70 10.5 HTB 17.65 102.7 8 4

km02 23 78 10.5 HTB 14.56 104.2 8 3

am02 23 70 10.5 SUB 19.517 102.1 7 5

dl02 27 80 10.5 SUB 17.07 121.3 8 4

am02 23 78 10.5 SUB 19.96 103.1 6 5

er02 23 70 10.5 SUB 16.23 96.9 7 5

rc02 24 60 10.5 SUB 18.93 100.3 7 4

pr01 18 55 10.5 SUB 22.45 107.7 7 5

ld01 22 87 10.5 SUB 13.06 93.9 6 4

de01 20 60 10.5 SUB 22.63 96.9 8 4

cm01 23 70 10.5 SUB 16.24 102.6 7 5

km01 23 78 10.5 SUB 15.6 103.9 8 3

MEAN 22.60 70.80 HTB MEAN 19.35 106.73

SD 2.37 10.20 SD 3.22 8.2994043

SUB MEAN 18.17 102.87

SD 3.08 7.6239462

AVERAGE over 2-11th MINUTE 3



 TRACK TEST (continued)

SUBJECT

CODE RPE COMFORT RPE COMFORT RPE COMFORT

am01 8 3 8 3 7.7 3.3

dl01 12 3 13 2 12.0 3.0

am01 8 4 8 4 8.0 4.0

er01 8 4 8 3 8.0 3.7

rc01 9 3 9 2 8.7 3.0

pr02 8 3 8 3 8.0 3.3

ld02 7 4 7 3 7.0 3.3

de02 10 3 10 2 9.7 2.7

cm02 8 4 9 3 8.3 3.7

km02 8 2 8 2 8.0 2.3

am02 7 5 7 5 7.0 5.0

dl02 8 4 9 4 8.3 4.0

am02 7 5 6 5 6.3 5.0

er02 7 5 7 5 7.0 5.0

rc02 8 4 8 4 7.7 4.0

pr01 7 4 7 4 7.0 4.3

ld01 6 4 6 4 6.0 4.0

de01 8 4 9 4 8.3 4.0

cm01 7 5 8 4 7.3 4.7

km01 8 3 8 3 8.0 3.0

MEAN HTB MEAN 8.53 3.23

SD SD 1.40 0.50

SUB MEAN 7.30 4.30

SD 0.79 0.64

AVERAGEMINUTE 6 MINUTE 9



DIFFERENCE ANALYSIS (HT - SU)

SUBJECT

VO2 HR EXERTION COMFORT VO2 HR EXERTION COMFORT

Rolling Road

subject 01 1.1 1.5 -0.3 0.0 -1.8 -1.0 -1.7 2.3

subject 02 -0.4 -2.3 2.3 0.0 -3.2 -11.0 -1.3 0.0

subject 03 1.4 2.8 -0.7 2.0 0.7 0.5 0.0 0.0

subject 04 -0.2 2.0 5.0 -3.0 -1.1 -4.3 3.0 -0.3

subject 05 3.2 3.5 1.7 -3.7 0.2 1.5 1.0 -2.0

subject 06 -0.3 2.8 1.0 1.0 0.0 2.8 1.0 -1.0

subject 07 -0.3 1.0 0.7 0.0 1.0 3.0 -0.7 0.0

subject 08 0.1 -3.5 2.3 -2.3 -0.6 -2.5 2.3 -2.3

NULL HYPOTHESIS

n 8 8 8 8 8 8 8 8

average 0.6 1.0 1.5 -0.8 -0.6 -1.4 0.5 -0.4

sum 4.5 7.8 12.0 -6.0 -4.8 -11.0 3.7 -3.3

sum of squares 13.4 51.9 40.7 32.9 16.1 165.4 21.4 16.0

sd 1.25 2.52 1.80 2.01 1.38 4.63 1.68 1.44

sd(mean) 0.44 0.89 0.64 0.71 0.49 1.64 0.59 0.51

t 1.27 1.09 2.36 1.05 1.22 0.84 0.77 0.82

p 24.510% 31.280% 5.051% 32.717% 26.167% 42.896% 46.565% 44.153%

Cv 2.23 2.60 1.20 -2.69 -2.32 -3.37 3.67 -0.29

95% CONFIDENCE LIMITS t'crit = 2.36

Upper 1.6 3.1 3.0 0.9 0.6 2.5 1.9 0.8

Lower -0.5 -1.1 0.0 -2.4 -1.7 -5.2 -0.9 -1.6

Effect Size 0.45 0.38 0.83 -0.37 -0.43 -0.30 0.27 -0.29

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 33.5 133.5 12.3 2.3 30.3 129.0 10.4 3.5

% improvement 1.7% 0.7% 12.2% -32.1% -2.0% -1.1% 4.4% -11.8%

BUMPS SMOOTH (NO BUMPS)



DIFFERENCE ANALYSIS (HT - SU)

SUBJECT

VO2 HR EXERTION COMFORT

Track test

subject 01 2.4 4.3 0.7 -1.7

subject 02 0.8 5.9 3.7 -1.0

subject 03 0.2 2.0 1.7 -1.0

subject 04 1.4 12.4 1.0 -1.3

subject 05 1.7 5.0 1.0 -1.0

subject 06 2.2 0.7 1.0 -1.0

subject 07 2.6 0.2 1.0 -0.7

subject 08 0.1 7.7 1.3 -1.3

subject 09 1.4 0.1 1.0 -1.0

subject 10 -1.0 0.3 0.0 -0.7

NULL HYPOTHESIS

n 10 10 10 10

average 1.2 3.9 1.2 -1.1

sum 11.8 38.6 12.3 -10.7

sum of squares 26.1 296.0 23.4 12.2

sd 1.16 4.04 0.96 0.31

sd(mean) 0.37 1.28 0.30 0.10

t 3.22 3.02 4.08 11.01

p 1.046% 1.447% 0.277% 0.000%

Cv 0.98 1.05 0.78 -0.29

95% CONFIDENCE LIMITS t'crit = 2.36

Upper 2.0 6.9 1.9 -0.8

Lower 0.3 0.8 0.5 -1.3

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 19.4 106.7 8.4 3.2

% improvement 6.1% 3.6% 14.7% -33.0%

BUMPS



DIFFERENCE ANALYSIS (HT - SU)

SUBJECT

VO2 HR EXERTION COMFORT

Roller Rig

subject 01 5.11 15.00 7.00 -1.67

subject 02 6.95 21.50 3.33 -1.00

subject 03 2.70 25.00 3.00 -1.67

subject 04 7.35 20.00 3.00 -2.00

subject 05 16.51 49.50 4.33 -1.67

subject 06 10.17 42.50 1.67 -3.00

NULL HYPOTHESIS

n 6 6 6 6

average 8.1 28.9 3.7 -1.8

sum 48.8 173.5 22.3 -11.0

sum of squares 511.7 5968.8 99.7 22.3

sd 4.80 13.80 1.82 0.66

sd(mean) 1.96 5.63 0.74 0.27

t 4.15 5.13 5.01 6.82

p 0.889% 0.366% 0.406% 0.103%

Cv 0.59 0.48 0.49 -0.36

95% CONFIDENCE LIMITS t'crit = 2.57

Upper 13.2 43.4 5.6 -1.1

Lower 3.1 14.4 1.8 -2.5

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 31.3 147.1 14.1 1.6

% improvement 25.9% 19.7% 26.4% -113.8%

BUMPS



EFFECT SIZE

Rolling Road

SUBJECT VO2 HR EXERTION COMFORT VO2 HR EXERTION COMFORT

al 30.5 129.3 9.7 4.0 29.4 127.8 10.0 4.0

jt 35.0 148.3 15.0 2.0 35.4 150.5 12.7 2.0

fj 35.9 137.5 9.7 3.0 34.5 134.8 10.3 1.0

sb 28.6 122.5 15.7 1.0 28.8 120.5 10.7 4.0

ns 39.7 127.8 12.7 1.3 36.5 124.3 11.0 5.0

nr 33.3 147.5 13.0 2.0 33.5 144.8 12.0 1.0

db 29.7 119.8 9.7 4.0 30.0 118.8 9.0 4.0

jw 35.7 135.8 13.0 1.3 35.6 139.3 10.7 3.7

N 8 8 8 8 8 8 8 8

Mean 33.5 133.5 12.3 2.3 33.0 132.6 10.8 3.1

SD 3.741519 10.66238 2.40658818 1.195228609 3.0792826 11.639488 1.140001392 1.530120858

MeanHT

 -MeanSU 0.6 1.0 1.5 -0.8

SDp 3.426437 11.16163 1.88298564 1.372924118

Effect Size 0.2 0.1 0.8 -0.5

BUMPS  (HT) BUMPS  (SU)



EFFECT SIZE

Rolling Road

SUBJECT VO2 HR EXERTION COMFORT VO2 HR EXERTION COMFORT

al 26.1 128.0 9.0 4.0 27.8 129.0 10.7 1.7

jt 31.2 135.3 9.3 4.0 34.3 146.3 10.7 4.0

fj 31.9 131.5 10.7 4.0 31.3 131.0 10.7 4.0

sb 28.0 127.5 11.7 3.7 28.0 127.5 11.7 3.7

ns 32.1 119.8 12.0 3.0 31.9 118.3 11.0 5.0

nr 32.9 140.0 8.7 4.0 32.9 137.3 7.7 5.0

db 28.0 115.8 10.3 4.0 27.0 112.8 11.0 4.0

jw 31.9 134.3 11.3 1.7 32.5 136.8 9.0 4.0

N 8 8 8 8 8 8 8 8

Mean 30.3 129.0 10.4 3.5 30.7 129.8 10.3 3.9

SD 2.523619 8.0910003 1.265381554 0.83452296 2.731168 10.72958 1.302470181 1.035098339

MeanHT

 -MeanSU -0.5 -0.8 0.1 -0.4

SDp 2.629442 9.50232 1.284059782 0.94017476

Effect Size -0.2 -0.1 0.1 -0.4

SMOOTH (NO BUMPS) (HT) SMOOTH (NO BUMPS) (SU)



EFFECT SIZE

Track test

SUBJECT VO2 HR EXERTION COMFORT VO2 HR EXERTION COMFORT

am01 21.89 106.4 7.7 3.3 19.517 102.1 7.0 5.0

dl01 17.87 127.2 12.0 3.0 17.07 121.3 8.3 4.0

am01 20.17 105.1 8.0 4.0 19.96 103.1 6.3 5.0

er01 17.64 109.3 8.0 3.7 16.23 96.9 7.0 5.0

rc01 20.58 105.3 8.7 3.0 18.93 100.3 7.7 4.0

pr02 24.69 108.4 8.0 3.3 22.45 107.7 7.0 4.3

ld02 15.70 94.1 7.0 3.3 13.06 93.9 6.0 4.0

de02 22.76 104.6 9.7 2.7 22.63 96.9 8.3 4.0

cm02 17.65 102.7 8.3 3.7 16.24 102.6 7.3 4.7

km02 14.56 104.2 8.0 2.3 15.6 103.9 8.0 3.0

N 10 10 10 10 10 10 10 10

Mean 19.4 106.7 8.5 3.2 18.2 102.9 7.3 4.3

SD 3.215443 8.299404 1.398411798 0.498144706 3.0771847 7.6239462 0.792713733 0.637316907

MeanHT

 -MeanSU 1.2 3.9 1.2 -1.1

SDp 3.147073 7.968835 1.136650918 0.571979452

BUMPS  (SU)BUMPS  (HT)

SDp 3.147073 7.968835 1.136650918 0.571979452

Effect Size 0.4 0.5 1.1 -1.9



EFFECT SIZE

Roller Rig

SUBJECT VO2 HR EXERTION COMFORT VO2 HR EXERTION COMFORT

ba01 32.44 162.50 17.00 2.67 27.33 147.50 10.00 4.33

er02 35.57 147.00 14.67 1.00 28.62 125.50 11.33 2.00

mh02 25.30 141.50 14.33 1.67 22.60 116.50 11.33 3.33

nm01 28.12 119.50 12.00 2.00 20.77 99.50 9.00 4.00

rc02 38.48 162.50 15.33 1.00 21.97 113.00 11.00 2.67

rm01 28.20 149.50 11.33 1.33 18.04 107.00 9.67 4.33

N 6 6 6 6 6 6 6 6

Mean 31.3 147.1 14.1 1.6 23.2 118.2 10.4 3.4

SD 5.035037 15.957496 2.115200717 0.64693007 4.021495 16.8335 0.975628952 0.958393718

MeanHT

 -MeanSU 8.1 28.9 3.7 -1.8

SDp 4.556535 16.401346 1.647107453 0.81762982

Effect Size 1.8 1.8 2.3 -2.2

BUMPS  (SU)BUMPS  (HT)



 
 

Appendix C 

 

Mechanical Results 

 

• Mechanical Results for the Roller rig 

• Mechanical results for the rolling road rig 

 



The Roller Rig on the Rough track

Individual subjects average results for the hardtail bike 
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Accel Handlebar 0.000 0.000 0.000 0.000 0.000

Max Accel Handlebar 1.201 1.394 1.332 1.305 1.301

Min Accel Handlebar -1.064 -1.163 -1.096 -1.161 -1.179

Difference 2.265 2.558 2.428 2.466 2.480

Velocity Handlebar 0.000 0.000 0.000 0.000 0.000

Max Velocity Handlebar 0.138 0.148 0.136 0.154 0.157

Min Velocity Handlebar -0.118 -0.133 -0.123 -0.126 -0.130

Difference 0.256 0.281 0.259 0.280 0.287

Displ Handlebar 0.000 0.000 0.000 0.000 0.000

Max Displ Handlebar 0.004 0.004 0.003 0.004 0.004

MinDispl Handlebar -0.004 -0.004 -0.004 -0.004 -0.004

Difference 0.007 0.008 0.007 0.008 0.008

Accel Seat 0.000 0.000 0.000 0.000 0.000

Max Impact Accel 1.947 2.244 2.092 2.196 2.126

Max landing Acel Seat 5.385 5.897 5.752 5.789 5.848

Min impact Accel Seat -2.944 -3.291 -3.278 -3.231 -3.193

Difference 8.329 9.188 9.030 9.020 9.041

Velocity Seat 0.000 0.000 0.000 0.000 0.000

Max Velocity Seat 0.405 0.438 0.420 0.433 0.438

Min Velocity Seat -0.481 -0.547 -0.507 -0.529 -0.521

Difference 0.887 0.985 0.927 0.962 0.959

Displ Seat 0.000 0.000 0.000 0.000 0.000

Max Displ Seat 0.011 0.011 0.010 0.011 0.011

Min Displ Seat -0.006 -0.007 -0.007 -0.007 -0.007

Difference 0.017 0.018 0.017 0.018 0.018

Crank Velocity 0.514 0.353 0.649 0.509 0.576

Crank Force 129.898 66.360 120.362 146.361 119.794

Max Crank Force 184.112 211.626 201.293 227.191 222.932

Min Crank force 7.399145 6.981442 5.747619 5.902222 6.729149

Difference 176.713 204.644 195.545 221.289 216.202

Crank Power 132.932 34.162 155.561 148.452 137.460

Max Crank Power 198.855 222.370 221.927 244.347 238.578

Min Crank Power 7.572 10.521 7.428 5.987 7.722

Difference 191.283 211.848 214.498 238.360 230.857

Ground velocity 3.180 2.394 4.095 3.556 3.468

Force on roller 42.145 13.527 27.947 34.217 18.757

Horiz force from pedal 41.806 14.267 37.990 41.744 39.639

Horiz force from other 0.339 -0.741 -10.043 -7.526 -20.883

Max Front bracket force 247.751 255.223 250.853 255.581 256.638

Min Front bracket force -346.283 -371.265 -352.018 -375.420 -375.178

Front bracket power 134.010 32.389 114.436 121.687 65.045

Max Front bracket power 882.176 928.793 921.741 934.201 934.419

Min Front bracket power -1226.648 -1336.478 -1280.201 -1359.353 -1353.570



The Roller Rig on the Rough track (continued)

Individual subjects average results for the hardtail bike 
Subject 6 mean sd

Accel Handlebar 0.000 0.000 0.000

Max Accel Handlebar 1.205 1.290 0.075

Min Accel Handlebar -1.113 -1.129 0.045

Difference 2.317 2.419 0.109

Velocity Handlebar 0.000 0.000 0.000

Max Velocity Handlebar 0.142 0.146 0.009

Min Velocity Handlebar -0.120 -0.125 0.006

Difference 0.262 0.271 0.013

Displ Handlebar 0.000 0.000 4.90038E-07

Max Displ Handlebar 0.004 0.004 0.000257049

MinDispl Handlebar -0.004 -0.004 0.000242009

Difference 0.007 0.008 0.000459469

Accel Seat 0.000 0.000 0.000

Max Impact Accel 2.061 2.111 0.105

Max landing Acel Seat 5.446 5.686 0.216

Min impact Accel Seat -3.047 -3.164 0.139

Difference 8.493 8.850 0.350

Velocity Seat 0.000 0.000 0.000

Max Velocity Seat 0.411 0.424 0.014

Min Velocity Seat -0.491 -0.513 0.025

Difference 0.902 0.937 0.038

Displ Seat 0.000 0.000 4.8131E-07

Max Displ Seat 0.010 0.011 0.000382263

Min Displ Seat -0.006 -0.007 0.000214465

Difference 0.017 0.017 0.000538914

Crank Velocity 0.620 0.537 0.106

Crank Force 82.080 110.809 30.336

Max Crank Force 202.166 208.220 15.835

Min Crank force 6.736195 6.583 0.637

Difference 195.430 201.637 16.15067554

Crank Power 101.389 118.326 45.263

Max Crank Power 221.640 224.619 15.931

Min Crank Power 8.321 7.925 1.488

Difference 213.319 216.694 16.46466528

Ground velocity 3.839 3.422 0.594

Force on roller 9.077 24.278 12.717

Horiz force from pedal 26.409 33.643 11.089

Horiz force from other -17.332 -9.364 8.585

Max Front bracket force 252.869 253.152 3.373

Min Front bracket force -357.003 -362.861 12.703

Front bracket power 34.848 83.736 45.357

Max Front bracket power 921.687 920.503 19.606

Min Front bracket power -1293.630 -1308.313 51.228



The Roller Rig Statistical Results (hardtail - full suspension)

% Improvement by fitting suspension = 100*(average diff. / HT mean)

n average % Improvement sum sum of squares

Accel Handlebar 6 1.284E-05 135.97% 0.000 0.000

Max Accel Handlebar 6 0.028561 2.21% 0.171 0.015

Min Accel Handlebar 6 -0.0250053 2.21% -0.150 0.015

Difference 6 0.0535663 2.21% 0.321 0.060

Velocity Handlebar 6 8.863E-06 122.80% 0.000 0.000

Max Velocity Handlebar 6 0.0065622 4.50% 0.039 0.001

Min Velocity Handlebar 6 -0.0036009 2.88% -0.022 0.000

Difference 6 0.010163 3.75% 0.061 0.002

Displ Handlebar 6 -1.169E-07 119.04% 0.000 0.000

Max Displ Handlebar 6 0.0001725 4.55% 0.001 0.000

MinDispl Handlebar 6 -0.0001009 2.63% -0.001 0.000

Difference 6 0.0002734 3.59% 0.002 0.000

Accel Seat 6 1.435E-05 118.85% 0.000 0.000

Max Impact Accel 6 0.0715967 3.39% 0.430 0.098

Max landing Acel Seat 6 0.0744895 1.31% 0.447 0.103

Min impact Accel Seat 6 -0.023652 0.75% -0.142 0.009

Difference 6 0.0981415 1.11% 0.589 0.151

Velocity Seat 6 5.336E-06 72.45% 0.000 0.000

Max Velocity Seat 6 0.010065 2.37% 0.060 0.002

Min Velocity Seat 6 -0.0154542 3.01% -0.093 0.005

Difference 6 0.0255192 2.72% 0.153 0.012

Displ Seat 6 1.097E-07 -2571.10% 0.000 0.000

Max Displ Seat 6 0.0004004 3.72% 0.002 0.000

Min Displ Seat 6 -0.0001165 1.75% -0.001 0.000

Difference 6 0.0005169 2.97% 0.003 0.000

Crank Velocity 6 -0.0290473 -5.41% -0.174 0.101

Crank Force 6 42.80264 38.63% 256.816 14063.978

Max Crank Force 6 9.0659 4.35% 54.395 926.036

Min Crank force 6 -0.130461 -1.98% -0.783 0.611

Difference 6 9.196361 4.56% 55.178 940.055

Crank Power 6 42.29974 35.75% 253.798 20439.067

Max Crank Power 6 9.9438833 4.43% 59.663 993.539

Min Crank Power 6 0.3797435 4.79% 2.278 7.484

Difference 6 9.5641399 4.41% 57.385 908.895

Ground velocity 6 -0.2122007 -6.20% -1.273 2.154

Force on roller 6 6.8529502 28.23% 41.118 2178.859

Horiz force from pedal 6 12.824493 38.12% 76.947 1524.344

Horiz force from other 6 -5.9715498 63.77% -35.829 1902.974

Max Front bracket force 6 1.5703167 0.62% 9.422 99.967

Min Front bracket force 6 -9.42415 2.60% -56.545 1593.199

Front bracket power 6 22.527258 26.90% 135.164 29175.494

Max Front bracket power 6 5.0324667 0.55% 30.195 1239.710

Min Front bracket power 6 -31.791167 2.43% -190.747 18261.168



The Roller Rig Statistical Results (hardtail - full suspension) (continued)

% Improvement by fitting suspension = 100*(average diff. / HT mean)

sd sd(mean) t p Cv Upper Lower

Accel Handlebar 0.000 0.000 1.283 25.563% 1.909 0.000 0.000

Max Accel Handlebar 0.046 0.019 1.532 18.605% 1.599 0.029 0.028

Min Accel Handlebar 0.048 0.020 1.277 25.767% -1.918 -0.025 -0.025

Difference 0.093 0.038 1.415 21.612% 1.731 0.054 0.053

Velocity Handlebar 0.000 0.000 2.212 7.787% 1.107 0.000 0.000

Max Velocity Handlebar 0.009 0.004 1.755 13.963% 1.396 0.007 0.007

Min Velocity Handlebar 0.007 0.003 1.341 23.748% -1.826 -0.004 -0.004

Difference 0.016 0.006 1.593 17.194% 1.537 0.010 0.010

Displ Handlebar 5.5E-07 0.000 0.523 62.316% -4.681 0.000 0.000

Max Displ Handlebar 0.00022 0.000 1.913 11.400% 1.281 0.000 0.000

MinDispl Handlebar 0.00015 0.000 1.666 15.664% -1.470 0.000 0.000

Difference 0.00036 0.000 1.862 12.170% 1.316 0.000 0.000

Accel Seat 0.000 0.000 0.704 51.300% 3.481 0.000 0.000

Max Impact Accel 0.116 0.047 1.518 18.954% 1.614 0.072 0.071

Max landing Acel Seat 0.118 0.048 1.542 18.367% 1.588 0.075 0.074

Min impact Accel Seat 0.035 0.014 1.673 15.526% -1.464 -0.024 -0.024

Difference 0.136 0.056 1.762 13.843% 1.390 0.099 0.098

Velocity Seat 0.000 0.000 0.668 53.362% 3.666 0.000 0.000

Max Velocity Seat 0.014 0.006 1.786 13.408% 1.371 0.010 0.010

Min Velocity Seat 0.028 0.011 1.376 22.718% -1.780 -0.015 -0.016

Difference 0.041 0.017 1.523 18.821% 1.608 0.026 0.025

Displ Seat 8.7E-07 0.000 0.308 77.066% 7.959 0.000 0.000

Max Displ Seat 0.0006 0.000 1.641 16.163% 1.492 0.000 0.000

Min Displ Seat 0.00014 0.000 2.024 9.882% -1.210 0.000 0.000

Difference 0.00073 0.000 1.729 14.442% 1.417 0.001 0.001

Crank Velocity 0.138 0.056 0.515 62.878% -4.760 -0.028 -0.030

Crank Force 24.785 10.119 4.230 0.825% 0.579 42.911 42.695

Max Crank Force 9.305 3.799 2.387 6.265% 1.026 9.106 9.025

Min Crank force 0.319 0.130 1.002 36.243% -2.445 -0.129 -0.132

Difference 9.30179 3.797 2.422 5.999% 1.011 9.237 9.156

Crank Power 44.053 17.985 2.352 6.540% 1.041 42.492 42.108

Max Crank Power 8.947 3.653 2.722 4.166% 0.900 9.983 9.905

Min Crank Power 1.151 0.470 0.808 45.555% 3.030 0.385 0.375

Difference 8.48597 3.464 2.761 3.980% 0.887 9.601 9.527

Ground velocity 0.614 0.251 0.847 43.574% -2.893 -0.210 -0.215

Force on roller 19.479 7.952 0.862 42.820% 2.842 6.938 6.768

Horiz force from pedal 10.369 4.233 3.030 2.909% 0.808 12.870 12.779

Horiz force from other 18.379 7.503 0.796 46.221% -3.078 -5.891 -6.052

Max Front bracket force 4.127 1.685 0.932 39.413% 2.628 1.588 1.552

Min Front bracket force 14.562 5.945 1.585 17.377% -1.545 -9.361 -9.488

Front bracket power 72.292 29.513 0.763 47.973% 3.209 22.843 22.212

Max Front bracket power 14.750 6.022 0.836 44.139% 2.931 5.097 4.968

Min Front bracket power 49.390 20.164 1.577 17.570% -1.554 -31.576 -32.007



The Roller Rig on the Rough track

Individual subjects average results for the full suspension bike 
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Accel Handlebar 0.000 0.000 0.000 0.000 0.000

Max Accel Handlebar 1.153 1.334 1.395 1.257 1.270

Min Accel Handlebar -1.042 -1.090 -1.162 -1.116 -1.141

Difference 2.195 2.424 2.557 2.373 2.412

Velocity Handlebar 0.000 0.000 0.000 0.000 0.000

Max Velocity Handlebar 0.129 0.135 0.147 0.144 0.145

Min Velocity Handlebar -0.112 -0.123 -0.133 -0.121 -0.125

Difference 0.241 0.258 0.280 0.265 0.271

Displ Handlebar 0.000 0.000 0.000 0.000 0.000

Max Displ Handlebar 0.003 0.003 0.004 0.004 0.004

MinDispl Handlebar -0.003 -0.004 -0.004 -0.004 -0.004

Difference 0.007 0.007 0.007 0.008 0.008

Accel Seat 0.000 0.000 0.000 0.000 0.000

Max Impact Accel 1.900 2.076 2.240 2.044 2.009

Max landing Acel Seat 5.254 5.759 5.889 5.771 5.742

Min impact Accel Seat -2.952 -3.283 -3.290 -3.201 -3.115

Difference 8.206 9.042 9.179 8.971 8.857

Velocity Seat 0.000 0.000 0.000 0.000 0.000

Max Velocity Seat 0.390 0.419 0.437 0.420 0.421

Min Velocity Seat -0.461 -0.505 -0.545 -0.502 -0.501

Difference 0.851 0.925 0.983 0.922 0.922

Displ Seat 0.000 0.000 0.000 0.000 0.000

Max Displ Seat 0.010 0.010 0.011 0.010 0.011

Min Displ Seat -0.006 -0.007 -0.007 -0.007 -0.007

Difference 0.016 0.017 0.018 0.017 0.017

Crank Velocity 0.598 0.627 0.669 0.450 0.550

Crank Force 56.428 64.628 72.623 90.899 69.774

Max Crank Force 173.737 195.976 209.988 218.938 211.233

Min Crank force 7.390989 6.954234 5.737585 6.682507 6.753455

Difference 166.346 189.021 204.250 212.256 204.480

Crank Power 67.231 80.687 96.674 81.420 76.444

Max Crank Power 190.206 211.680 228.261 230.090 226.626

Min Crank Power 8.806 8.682 7.638 5.986 7.399

Difference 181.400 202.998 220.624 224.105 219.227

Ground velocity 3.246 3.803 4.113 3.707 3.476

Force on roller 16.459 14.922 -2.574 20.707 28.296

Horiz force from pedal 20.711 21.217 23.505 21.966 21.993

Horiz force from other -4.251 -6.296 -26.079 -1.259 6.303

Max Front bracket force 245.672 249.377 255.205 258.174 252.127

Min Front bracket force -337.296 -350.139 -370.709 -364.108 -355.339

Front bracket power 53.430 56.744 -10.586 76.754 98.351

Max Front bracket power 884.427 914.121 931.835 945.786 913.109

Min Front bracket power -1209.749 -1269.769 -1339.673 -1322.205 -1278.155



The Roller Rig on the Rough track (continued)

Individual subjects average results for the full suspension bike 
Subject 6 mean sd

Accel Handlebar 0.000 0.000 0.000

Max Accel Handlebar 1.158 1.261 0.096

Min Accel Handlebar -1.073 -1.104 0.045

Difference 2.231 2.365 0.134

Velocity Handlebar 0.000 0.000 0.000

Max Velocity Handlebar 0.134 0.139 0.007

Min Velocity Handlebar -0.115 -0.121 0.007

Difference 0.249 0.261 0.014

Displ Handlebar 0.000 1.86981E-08 2.71467E-07

Max Displ Handlebar 0.004 0.003621905 0.000201404

MinDispl Handlebar -0.004 -0.00372833 0.000244723

Difference 0.007 0.007350235 0.000423539

Accel Seat 0.000 0.000 0.000

Max Impact Accel 1.967 2.039 0.116

Max landing Acel Seat 5.254 5.611 0.282

Min impact Accel Seat -3.001 -3.140 0.143

Difference 8.255 8.752 0.417

Velocity Seat 0.000 0.000 0.000

Max Velocity Seat 0.397 0.414 0.017

Min Velocity Seat -0.470 -0.497 0.030

Difference 0.867 0.911 0.047

Displ Seat 0.000 -1.13946E-07 7.75505E-07

Max Displ Seat 0.010 0.010374472 0.000465064

Min Displ Seat -0.006 -0.006525118 0.000269182

Difference 0.016 0.01689959 0.000711952

Crank Velocity 0.502 0.566 0.081

Crank Force 53.686 68.007 13.409

Max Crank Force 185.051 199.154 17.376

Min Crank force 6.759768 6.713 0.543

Difference 178.292 192.4408937 17.71918344

Crank Power 53.702 76.026 14.512

Max Crank Power 201.190 214.676 16.460

Min Crank Power 6.762 7.545 1.092

Difference 194.428 207.130202 17.07036081

Ground velocity 3.461 3.634 0.306

Force on roller 26.743 17.425 11.162

Horiz force from pedal 15.516 20.818 2.764

Horiz force from other 11.226 -3.393 12.932

Max Front bracket force 248.938 251.582 4.553

Min Front bracket force -343.030 -353.437 12.614

Front bracket power 92.557 61.208 39.595

Max Front bracket power 903.545 915.470 21.448

Min Front bracket power -1239.582 -1276.522 48.880



Roller Rig RMS results for the hardtail bike Roller Rig RMS results for the hardtail bike (continued)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

RMS acc hb 0.5567189 0.3606906 0.4816939 0.5785291 0.6184565 0.3361851 0.489 0.118

RMS acc seat 1.789445 1.313479 1.630649 1.727443 1.849721 1.265435 1.596 0.249

RMS vel hb 0.1022832 0.0652056 0.06849719 0.1094143 0.1064376 0.04964699 0.084 0.026

RMS vel seat 0.2685074 0.1774216 0.2096365 0.2401229 0.2635176 0.1772229 0.223 0.041

RMS dist hb 0.004140077 0.003165505 0.002720435 0.004666297 0.003905051 0.001864038 0.003 0.001

RMS dist seat 0.00777643 0.004777784 0.004803884 0.006518986 0.007070794 0.004419894 0.006 0.001

Pedal force mean 129.8028 100.7805 126.4102 153.647 135.0487 123.9633 128.275 17.146

Pedal force max 216.533 207.4141 214.427 233.2572 228.1175 214.8532 219.100 9.641

Pedal force min 7.399145 6.981442 5.747619 5.902222 6.729149 6.736195 6.583 0.637

Pedal power mean 132.8344 151.88192 163.3782 155.8426 154.9645 153.1244 152.004 10.214

Pedal power max 228.6392 186.3639 229.1414 254.1059 246.3279 237.6081 230.364 23.713

Pedal power min 7.571955201 10.5214284 7.428480032 5.986564152 7.721504985 8.320816061 7.925 1.488

Pedal force min2 -9.314249 -16.03382 -13.47398 -5.901133 -1.208099 4.764853 -6.861 7.771

Pedal power min2 -9.531785 -8.254232 -17.41439 -5.985459 -1.386259 5.885734 -6.114 7.878

Velocity 1.023355428 1.507056623 1.292444755 1.014289898 1.147471246 1.235239785 1.203 0.186

Mean of all 

subjects

sd of all subjects



Roller Rig RMS results for the hardtail bike - the fully suspended bike

NULL HYPOTHESIS

n average % Improvement sum sum of squares sd sd(mean) t

RMS acc hb 6 0.152736317 31.25% 0.916 0.184 0.094 0.038 3.984

RMS acc seat 6 0.317433233 19.89% 1.905 0.821 0.208 0.085 3.736

RMS vel hb 6 0.041835302 50.05% 0.251 0.013 0.023 0.009 4.527

RMS vel seat 6 0.085662517 38.46% 0.514 0.052 0.040 0.016 5.302

RMS dist hb 6 0.001497399 43.91% 0.009 0.000 0.001 0.000 4.325

RMS dist seat 6 0.001934838 32.82% 0.012 0.000 0.002 0.001 3.130

Pedal force mean 6 35.90909 27.99% 215.455 10594.004 23.905 9.759 3.680

Pedal force max 6 13.36623333 6.10% 80.197 1761.659 11.745 4.795 2.788

Pedal force min 6 -0.130461 -1.98% -0.783 0.611 0.319 0.130 1.002

Pedal power mean 6 48.19704167 31.71% 289.182 15757.633 19.078 7.789 6.188

Pedal power max 6 10.66881667 4.63% 64.013 1687.958 14.178 5.788 1.843

Pedal power min 6 0.379743471 4.79% 2.278 7.484 1.151 0.470 0.808

Pedal force min2 6 -8.6572241 126.18% -51.943 1847.640 16.721 6.826 1.268

Pedal power min2 6 -9.282723983 151.82% -55.696 2953.339 22.074 9.012 1.030

Velocity 6 0.076193675 6.33% 0.457 0.169 0.164 0.067 1.141



Roller Rig RMS results for the hardtail bike - the fully suspended bike (cont)

NULL HYPOTHESIS 95% CONFIDENCE LIMITS % Improvement by fitting suspension

 = 100*(average diff. / HT mean)

p Cv Upper Lower HT mean % improvement

RMS acc hb 1.049% 0.615 0.153 0.153 0.1527 31.3%

RMS acc seat 1.349% 0.656 0.317 0.317 0.3174 19.9%

RMS vel hb 0.625% 0.541 0.042 0.042 0.0418 50.1%

RMS vel seat 0.319% 0.462 0.086 0.086 0.0857 38.5%

RMS dist hb 0.754% 0.566 0.001 0.001 0.0015 43.9%

RMS dist seat 2.597% 0.783 0.002 0.002 0.0019 32.8%

Pedal force mean 1.430% 0.666 35.909 35.909 35.9091 28.0%

Pedal force max 3.855% 0.879 13.366 13.366 13.3662 6.1%

Pedal force min 36.243% -2.445 -0.130 -0.130 -0.1305 -2.0%

Pedal power mean 0.161% 0.396 48.197 48.197 48.1970 31.7%

Pedal power max 12.462% 1.329 10.669 10.669 10.6688 4.6%

Pedal power min 45.555% 3.030 0.380 0.380 0.3797 4.8%

Pedal force min2 26.056% -1.931 -8.657 -8.657 -8.6572 126.2%

Pedal power min2 35.020% -2.378 -9.283 -9.283 -9.2827 151.8%

Velocity 30.549% 2.146 0.076 0.076 0.0762 6.3%



Roller Rig RMS results for the fully suspended bike

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

RMS acc hb 0.2837445 0.3272582 0.342016 0.4048825 0.3841959 0.2737591 0.336 0.053

RMS acc seat 1.234403 1.34046 1.411776 1.325659 1.378586 0.9806886 1.279 0.158

RMS vel hb 0.03182286 0.04021579 0.04285707 0.06136209 0.04145236 0.0327629 0.042 0.011

RMS vel seat 0.1327562 0.1412222 0.1478592 0.1377381 0.1429258 0.1199523 0.137 0.010

RMS dist hb 0.001320629 0.001870092 0.00202408 0.003228104 0.001786211 0.001247894 0.002 0.001

RMS dist seat 0.003833421 0.004162709 0.004684042 0.003682051 0.004140923 0.0032556 0.004 0.000

Pedal force mean 66.06692 89.52171 110.492 100.5032 79.62033 107.9938 92.366 17.327

Pedal force max 180.0189 195.1142 210.8997 225.9696 217.7644 204.6378 205.734 16.469

Pedal force min 7.390989 6.954234 5.737585 6.682507 6.753455 6.759768 6.713 0.543

Pedal power mean 78.71504 111.7654 147.0832 90.02244 87.23229 108.0254 103.807 24.691

Pedal power max 194.8421 188.5041 235.3831 240.3835 235.3869 223.6738 219.696 22.480

Pedal power min 8.805950009 8.682170445 7.637678403 5.985636134 7.39910705 6.761745972 7.545 1.092

Pedal force min2 0.6051185 -6.114453 26.63012 -8.46097 -0.6747999 -1.208099 1.796 12.658

Pedal power min2 0.7209648 -7.633726 35.44912 -7.57864 -0.7393129 -1.208453 3.168 16.215

Velocity 1.191444069 1.248472577 1.331166057 0.895717151 1.095603221 1.000292609 1.127 0.162

Mean of all 

subjects

sd of all subjects



The Rolling Road Rig

Individual subjects average results for the hardtail bike on the Rough track

Channel 0 Channel 3 Channel 4

Handlebar Acceleration

(N) (N) (m/s^2)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 137.26043 -533.5248 938.96145 109.09642 -690.6152 1092.8352 -0.002929 -4.160792 2.4531533

No data points 250 273 209 250 321 205

Max 1340.3185 1370.7854 6.4535714

Min -731.8014 -944.3683 -8.825

Difference 1472.4863 1783.4504 6.6139455

Subject 2 Average 156.10877 -621.9469 969.92826 98.877104 -731.361 1073.757 -0.002461 -3.69661 2.7513489

No data points 256 218 266 270 375 233

Max 1553.7614 1603.2158 11.65

Min -918.7297 -1041.367 -7.671429

Difference 1591.8751 1805.118 6.4479584

Subject 3 Average 138.62621 -590.8655 863.42401 135.40647 -744.4361 1015.1185 -0.004444 -4.291885 2.4315762

No data points 289 298 214 220 283 208

Max 1230.2827 1398.2378 9.7642857

Min -1138.801 -1273.797 -9.696429

Difference 1454.2895 1759.5546 6.7234616

Subject 4 Average 168.59696 -600.7652 974.34338 167.0636 -733.0938 1062.4579 -0.003534 -4.810714 2.3100889

No data points 251 200 193 268 266 217

Max 1262.1002 1469.6141 3.9571429

Min -873.6548 -969.9906 -7.360714

Difference 1575.1085 1795.5517 7.1208032

Subject 5 Average 112.68988 -566.8643 970.6303 -17.5741 -714.4521 913.18371 -0.002104 -3.180229 2.6744609

No data points 233 208 305 298 306 212

Max 1392.022 1594.065 3.9071429

Min -821.9512 -1149.346 -8.282143

Difference 1537.4946 1627.6358 5.8546897

Subject 6 Average 122.99149 -572.4156 885.35157 87.450873 -720.8038 1010.2121 -0.004028 -3.930233 2.4223036

No data points 267 303 212 232 301 200

Max 1197.1393 1218.882 3.4892857

Min -828.5799 -969.9906 -6.485714

Difference 1457.7672 1731.0159 6.3525361

Subject 7 Average 137.38651 -572.2201 983.48499 99.253391 -689.5041 1065.6027 -0.003467 -3.699596 2.7894876

No data points 266 232 256 278 292 230

Max 1463.6116 1460.4633 4.3428571

Min -873.6548 -1006.594 -7.639286

Difference 1555.7051 1755.1069 6.489084

Subject 8 Average 182.4721 -583.6091 1050.8635 123.75277 -736.061 1044.0009 -0.003463 -4.179544 2.5456633

No data points 302 131 282 227 393 322

Max 1340.3185 1343.333 5.4071429

Min -886.9121 -1068.819 -8.825

Difference 1634.4726 1780.0618 6.7252071

Force (Horizontal Right 

Handlebar) Force (Horizontal Left handlebar)



The Rolling Road Rig

Individual subjects average results for the hardtail bike on the Rough track (continued)

Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

(N) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 199.42043 163.67405 245.35125 0.3593333 0.2632161 0.5362513 1.7712082 1.5824726 1.9648717

No data points 223 141 90 62 226 196

Max 297.8767 0.6535986 2.1346889

Min 102.00041 0.0979398 1.3154998

Difference 81.677196 0.2730352 0.3823991

Subject 2 Average 193.52139 161.43221 224.43478 0.3734786 0.2794887 0.5406776 1.8411689 1.7123955 1.9589301

No data points 253 193 106 103 290 268

Max 264.69371 0.6446041 2.1254638

Min 123.90763 0.0929429 1.5756477

Difference 63.002572 0.2611889 0.2465346

Subject 3 Average 183.0541 130.27039 233.78735 0.3603848 0.2503252 0.5558986 1.7739151 1.5738112 1.9387057

No data points 86 90 119 75 216 202

Max 323.81098 0.6585955 2.0719582

Min 97.973351 0.043973 0.0276753

Difference 103.51697 0.3055733 0.3648945

Subject 4 Average 207.4894 166.05557 247.40213 0.3541999 0.2532889 0.5472889 1.7489648 1.621685 1.9221666

No data points 272 156 108 40 272 246

Max 288.37284 0.6096256 2.0369028

Min 127.12928 0.0929429 1.3782305

Difference 81.346558 0.294 0.3004816

Subject 5 Average 148.48206 97.072295 209.50579 0.366763 0.3019895 0.5524148 1.8114056 1.6863858 1.9429111

No data points 288 211 80 122 250 230

Max 264.69371 0.6446041 2.0719582

Min 53.997835 0.1169282 1.4686365

Difference 112.43349 0.2504253 0.2565253

Subject 6 Average 185.50504 149.03897 243.3473 0.3524766 0.2411494 0.5309297 1.7403029 1.5956446 1.9070288

No data points 260 162 121 43 266 240

Max 288.37284 0.5906372 2.0276777

Min 105.06098 0.0929429 1.3874556

Difference 94.308328 0.2897803 0.3113841

Subject 7 Average 198.1212 160.55826 247.19184 0.3780013 0.3103305 0.5472041 1.8532702 1.7009165 2.000705

No data points 203 155 71 137 297 281

Max 289.17825 0.6535986 2.1808145

Min 94.107371 0.1369159 1.5221421

Difference 86.633585 0.2368735 0.2997885

Subject 8 Average 185.52826 130.163 238.55003 0.384123 0.2782332 0.5585244 1.8990931 1.7194812 2.056691

No data points 150 190 99 166 189 262

Max 274.19758 0.7315507 2.2066447

Min 90.885722 0.1219251 1.5405923

Difference 108.38703 0.2802913 0.3372099



The Rolling Road Rig

Individual subjects average results for the hardtail bike on the Rough track (continued)

Channel 8 Channel 9 Channel 11

Force (On seat)

(N) (N) (N)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 85.806847 -47.93615 193.91659 200.09091 -214.98 648.55715 57.608172 -90.44521 168.61446

No data points 218 232 276 295 236 285

Max 271.61993 1039.1685 264.68549

Min -112.969 -298.2299 -163.9782

Difference 241.85274 863.53714 259.05967

Subject 2 Average 103.63323 -60.68308 215.45097 189.3427 -239.7412 764.4506 83.878748 -111.6779 214.56788

No data points 206 226 249 275 228 261

Max 305.33166 1138.0845 311.81267

Min -123.2889 -337.5253 -186.5734

Difference 276.13404 1004.1918 326.24574

Subject 3 Average 57.357164 -51.19613 163.68202 386.23434 0.5472858 891.66154 27.57358 -86.17056 143.58885

No data points 251 245 203 286 292 216

Max 251.3241 1369.7918 226.5964

Min -138.4248 -99.04287 -163.9782

Difference 214.87815 891.11426 229.75941

Subject 4 Average 52.666639 -47.53741 138.24693 277.25963 -82.28445 638.11146 33.165911 -86.23105 142.44472

No data points 229 274 223 201 251 208

Max 177.36469 793.91106 207.87465

Min -97.83311 -131.5632 -135.5727

Difference 185.78434 720.39592 228.67576

Subject 5 Average 102.05926 -31.54914 239.30111 268.8323 -81.36782 706.76439 61.250738 -100.7389 196.33428

No data points 240 244 276 257 283 242

Max 333.88344 2051.3636 296.31881

Min -106.433 -899.8559 -195.6115

Difference 270.85025 788.13221 297.07319

Subject 6 Average 69.724044 -48.06241 160.29135 253.08487 -112.4414 639.02215 28.663786 -99.19896 118.89999

No data points 199 261 277 237 242 230

Max 253.04408 959.22271 226.5964

Min -118.1289 -178.9887 -167.206

Difference 208.35377 751.46351 218.09896

Subject 7 Average 110.03362 -13.79605 227.19936 483.99247 -75.08973 1138.3621 72.544812 -127.7413 204.04372

No data points 257 245 217 205 214 258

Max 368.97116 1608.2742 311.81267

Min -163.5366 -185.7637 -198.8394

Difference 240.99541 1213.4518 331.78506

Subject 8 Average 56.885622 -80.9641 207.1853 221.78115 -83.32869 575.22171 15.953624 -126.2037 182.71881

No data points 157 122 273 303 197 119

Max 283.31584 913.15225 258.22972

Min -171.7925 -178.9887 -186.5734

Difference 288.1494 658.55039 308.92248

Force (Vertical Right Handlebar) Force (Vertical Left Handlebar)



The Rolling Road Rig

Individual subjects average results for the hardtail bike on the Rough track

(continued)

Channel 12

Seat Acceleration Crank Power

(m/s^2) (W)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average -0.016521 -7.164521 10.790804 71.658408 43.081649 131.56992

No data points 269 370

Max 27.390244 194.69179

Min -31.7439 9.9899049

Difference 17.955325 88.488276

Subject 2 Average -0.010523 -7.222416 9.5054384 72.276091 45.118481 121.34687

No data points 210 296

Max 47.512195 170.62265

Min -27.92683 11.516336

Difference 16.727854 76.228385

Subject 3 Average -0.010334 -6.870817 11.245209 65.969912 32.609967 129.96206

No data points 285 392

Max 31.02439 213.26046

Min -58.65854 4.3081815

Difference 18.116026 97.352092

Subject 4 Average -0.016629 -7.003669 11.554426 73.492731 42.060029 135.40043

No data points 236 324

Max 34.597561 175.79946

Min -25.2439 11.815766

Difference 18.558095 93.340402

Subject 5 Average -0.015605 -6.482982 9.4965648 54.45772 29.314817 115.7341

No data points 177 213

Max 22.865854 170.62265

Min -27.86585 6.3138689

Difference 15.979547 86.419285

Subject 6 Average -0.011904 -6.912024 11.329047 65.386194 35.940661 129.20032

No data points 257 331

Max 30.073171 170.32374

Min -23.04878 9.7646739

Difference 18.241072 93.259656

Subject 7 Average -0.011847 -6.87561 8.1306058 74.890076 49.826129 135.26438

No data points 195 186

Max 43.890244 189.00649

Min -23.40244 12.884796

Difference 15.006216 85.438252

Subject 8 Average -0.020502 -6.905062 10.69645 71.265669 36.215662 133.23602

No data points 265 450

Max 38.646341 200.58943

Min -28.28049 11.081252

Difference 17.601512 97.020358



The Rolling Road Rig

Individual subjects average results for the full suspension bike on the Rough track 

Channel 0 Channel 3 Channel 4

Handlebar Acceleration

(N) (N) (m/s^2)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 158.85774 -419.9007 790.25645 136.65857 -540.0248 865.28758 -0.00355 -1.882023 1.7320807

No data points 240 204 210 250 119 115

Max 1093.7322 1209.7312 2.9464286

Min -608.5083 -783.3142 -11.03929

Difference 1210.1572 1405.3123 3.6141036

Subject 2 Average 126.00413 -482.2788 757.90387 97.216803 -601.0234 839.62941 -0.006849 -2.422837 1.9724181

No data points 242 222 217 237 213 231

Max 1023.4684 1182.2788 8.7178571

Min -743.733 -907.7651 -12.46786

Difference 1240.1827 1440.6528 4.3952551

Subject 3 Average 161.79686 -529.9303 771.26049 122.23636 -640.7622 878.26037 -0.00284 -2.088743 1.7796908

No data points 269 287 292 268 270 201

Max 1093.7322 1262.8059 3.6464286

Min -848.4659 -969.9906 -4.760714

Difference 1301.1908 1519.0225 3.8684342

Subject 4 Average 155.03919 -469.8006 734.97513 147.35025 -783.774 814.26 -0.004061 -1.944481 1.9542602

No data points 228 172 199 234 143 140

Max 913.4326 1057.8278 8.5785714

Min -783.505 -892.8705 -8.021429

Difference 1204.7757 1598.034 3.8987407

Subject 5 Average 167.29719 -508.7751 770.89378 167.73142 -619.4722 847.1535 -0.004103 -1.914996 1.7171659

No data points 306 323 258 329 176 62

Max 1055.286 1182.2788 2.8607143

Min -783.505 -926.0667 -4.307143

Difference 1279.6689 1466.6257 3.6321618

Subject 6 Average 109.01404 -459.8351 745.50455 65.415085 -588.2262 820.59415 -0.002514 -1.935627 1.7304989

No data points 326 229 307 245 164 189

Max 983.69642 1138.3549 2.5821429

Min -776.8763 -872.9921 -2.860714

Difference 1205.3397 1408.8203 3.666126

Subject 8 Average 154.43281 -462.3955 771.88214 113.02348 -569.31 860.77673 -0.00304 -2.041263 1.8927062

No data points 357 337 323 323 224 213

Max 1028.7713 1200.5804 6.5928571

Min -808.6939 -979.1414 -3.503571

Difference 1234.2776 1430.0867 3.933969

Subject 7 Average 177.9439 -439.8761 788.85407 166.58231 -542.9959 865.14072 -0.003927 -2.374647 1.9201773

No data points 261 263 242 292 243 274

Max 1093.7322 1182.2788 3.9428571

Min -815.3225 -827.238 -6.314286

Difference 1228.7302 1408.1366 4.2948245

Force (Horizontal Right 

Handlebar) Force (Horizontal Left handlebar)



The Rolling Road Rig

Individual subjects average results for the full suspension bike on the Rough track (continued)

Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

(N) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 196.06762 154.56922 232.65236 0.3553065 0.2832894 0.5414972 1.7515391 1.6045176 1.9263429

No data points 193 126 123 47 261 235

Max 285.15119 0.6046287 2.1346889

Min 112.95402 0.1069343 1.3505551

Difference 78.083143 0.2582078 0.3218253

Subject 2 Average 166.01342 119.07912 232.2981 0.3118492 0.2248619 0.5517145 1.5160116 1.5991955 1.9460014

No data points 244 134 88 75 291 216

Max 288.37284 0.6585955 2.0996335

Min -167.0073 0.0389761 -0.009225

Difference 113.21899 0.3268526 0.3468059

Subject 3 Average 193.17879 162.98036 226.51607 0.3781498 0.2923506 0.5585903 1.8648112 1.7246262 1.9816347

No data points 252 147 83 150 268 246

Max 261.63314 0.6535986 2.1254638

Min 112.14861 0.131919 1.603323

Difference 63.535713 0.2662397 0.2570085

Subject 4 Average 182.21875 145.8911 218.10291 0.3565964 0.2565832 0.5346341 1.7575964 1.6350391 1.920697

No data points 169 140 81 80 263 242

Max 269.52619 0.6146225 2.0719582

Min 109.89345 0.0929429 1.3690054

Difference 72.211809 0.278051 0.2856579

Subject 5 Average 207.38827 158.94946 245.79571 0.3461654 0.2430232 0.5356488 1.7110603 1.5386129 1.8899417

No data points 252 229 116 45 206 314

Max 287.56742 0.6046287 2.0276777

Min 106.6718 0.0979398 1.3505551

Difference 86.846253 0.2926256 0.3513287

Subject 6 Average 186.1055 145.54459 233.97883 0.356615 0.2683289 0.5368925 1.7608463 1.6428205 1.9205685

No data points 211 177 79 72 341 207

Max 272.58675 0.6246164 2.0442829

Min 105.86639 0.1169282 1.422511

Difference 88.43424 0.2685636 0.277748

Subject 8 Average 203.50381 167.50057 237.51611 0.3817075 0.3073031 0.5594393 1.8783117 1.7137008 2.0159553

No data points 152 135 61 152 251 280

Max 292.23881 0.6735863 2.2158698

Min 115.37026 0.1559042 1.5221421

Difference 70.015541 0.2521362 0.3022545

Subject 7 Average 181.57678 130.21943 230.23357 0.3786352 0.286666 0.5603897 1.8751403 1.7164061 2.0438

No data points 147 154 76 124 244 149

Max 277.41923 0.6735863 2.1900396

Min 99.584175 0.1369159 1.5313672

Difference 100.01414 0.2737237 0.3273939



The Rolling Road Rig

Individual subjects average results for the full suspension bike on the Rough track (continued)

Channel 8 Channel 9 Channel 11

Force (On seat)

(N) (N) (N)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 67.621655 -32.00961 161.03293 182.79043 -53.05907 355.62413 37.280152 -104.4397 148.59729

No data points 321 212 344 226 191 223

Max 248.22812 509.35821 239.50796

Min -114.689 -204.7339 -391.2215

Difference 193.04254 408.6832 253.03695

Subject 2 Average 60.889865 -39.35747 171.22448 315.29077 -152.2494 726.92517 33.173295 -109.7998 165.08008

No data points 265 246 274 326 193 232

Max 249.60411 1230.2254 258.22972

Min -101.2731 -449.9914 -160.7503

Difference 210.58195 879.17458 274.87988

Subject 3 Average 93.093253 -60.05238 194.3776 280.06042 -119.6008 642.95179 66.485486 -101.4005 209.06195

No data points 210 276 297 277 268 230

Max 258.20404 899.60211 296.31881

Min -123.2889 -264.3545 -163.9782

Difference 254.42998 762.55254 310.46242

Subject 4 Average 53.055385 -51.20359 149.37623 446.52945 196.18729 683.34896 22.108643 -91.2534 126.87533

No data points 250 229 283 232 229 312

Max 209.35643 899.60211 239.50796

Min -114.689 26.973388 -6415.108

Difference 200.57983 487.16167 218.12873

Subject 5 Average 48.828031 -46.19804 129.71595 281.53786 4.6359892 520.00475 36.572007 -81.85144 156.95763

No data points 223 235 200 189 210 193

Max 179.08467 648.92461 226.5964

Min -101.2731 -85.49274 -148.4843

Difference 175.91399 515.36876 238.80907

Subject 6 Average 74.687337 -31.38025 156.63719 255.00585 -22.77642 503.37188 25.547448 -97.04674 143.08252

No data points 297 310 267 201 198 146

Max 219.67635 727.51539 204.64676

Min -86.1372 -145.1133 -158.168

Difference 188.01744 526.1483 240.12926

Subject 8 Average 98.645598 -52.92071 225.35047 529.6748 83.722765 991.87039 74.07974 -108.2095 243.62235

No data points 232 281 269 266 223 276

Max 311.86761 1535.1035 377.66161

Min -173.5125 -126.1431 -173.6618

Difference 278.27118 908.14762 351.83185

Subject 7 Average 53.893262 -71.0208 178.46884 277.94115 35.042432 460.65262 34.373976 -119.9333 185.12879

No data points 159 205 222 199 102 150

Max 278.15588 734.29046 273.72358

Min -136.7048 -52.97241 -160.7503

Difference 249.48963 425.61019 -426.2786 -154.3073 305.06209

Force (Vertical Right Handlebar) Force (Vertical Left Handlebar)



The Rolling Road Rig

Individual subjects average results for the full suspension bike on the Rough track

(continued)

Channel 12

Seat Acceleration Crank Power

(m/s^2) (W)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average -0.010608 -6.485216 11.401926 69.664107 43.787825 125.98061

No data points 179 214

Max 25.304878 172.41058

Min -21.08537 12.078662

Difference 17.887142 82.192781

Subject 2 Average -0.006094 -6.467068 10.319371 51.771158 26.776356 128.16223

No data points 227 260

Max 28.52439 189.92105

Min -20.90244 -6.509288

Difference 16.786439 101.38587

Subject 3 Average -0.013413 -6.526911 8.7867431 73.050516 47.6474 126.52967

No data points 150 232

Max 44.365854 171.00305

Min -22.09756 14.79453

Difference 15.313654 78.882271

Subject 4 Average -0.015754 -6.828057 11.095395 64.978545 37.433198 116.60526

No data points 151 259

Max 25.365854 165.65686

Min -25.18293 10.213818

Difference 17.923452 79.172063

Subject 5 Average -0.015425 -7.07387 12.41232 71.790633 38.628399 131.66018

No data points 122 195

Max 30.426829 173.8715

Min -28.40244 10.44742

Difference 19.486191 93.031779

Subject 6 Average -0.065854 -6.69341 10.136511 66.368008 39.053816 125.62148

No data points 152 198

Max 0 170.26215

Min -0.658537 12.378765

Difference 16.829921 86.567659

Subject 8 Average -0.011625 -6.662778 7.2199545 77.678936 51.47344 132.87585

No data points 115 193

Max 32.512195 196.84806

Min -27.45122 17.986713

Difference 81.40241

Subject 7 Average -0.015199 -6.636947 9.6748546 68.751361 37.329489 129.02052

No data points 135 281

Max 22.036585 186.86579

Min -24.12195 13.634658

Difference 16.311801 91.69103



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike on the Rough track

Channel 0 Channel 3 Channel 4

Handlebar Acceleration

(N) (N) (m/s^2)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

mean 144.5 -580.3 954.6 100.4 -720.0 1034.6 0.0 -4.0 2.5

Mean sd 23.21 26.11 58.96 53.96 20.63 56.65 0.00 0.49 0.17

 Max 1347.4 1432.3 6.1

Max sd 120.57 128.71 3.03

 Min -884.3 -1053.0 -8.1

Min sd 117.37 110.94 1.01

Average Diffrence 1534.9 1754.7 6.5

Avg Diffrence sd 67.15 56.58 0.36

Average no data points 264.3 232.9 242.1 255.4 317.1 228.4

Force (Horizontal Right 

Handlebar) Force (Horizontal Left handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike on the Rough track (Continued)

Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

(N) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8.000 8.000 8.000 8.000 8.000 8.000

mean 187.6 144.8 236.2 0.366 0.272 0.546 1.805 1.649 1.962

Mean sd 17.89 24.07 13.33 0.012 0.025 0.010 0.056 0.062 0.048

 Max 286.4 0.6483518 2.107

Max sd 19.41 0.0413017 0.066

 Min 99.4 0.0995639 1.277

Min sd 22.59 0.0278291 0.513

Average Diffrence 91.4 0.274 0.312

Avg Diffrence sd 16.52 0.023 0.048

Average no data points 216.9 162.3 99.3 93.5 250.8 240.6



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike on the Rough track (Continued)

Channel 8 Channel 9 Channel 11

Force (On seat)

(N) (N) (N)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

mean 79.8 -47.7 193.2 285.1 -111.1 750.3 47.6 -103.6 171.4

Mean sd 23.54 19.63 35.75 101.10 78.91 184.64 24.48 16.75 33.92

 Max 280.6 1234.1 263.0

Max sd 58.09 421.88 40.69

 Min -129.1 -288.7 -174.8

Min sd 26.73 259.48 21.11

Average Diffrence 240.9 861.4 275.0

Avg Diffrence sd 36.15 178.77 46.56

Average no data points 219.6 231.1 249.3 257.4 242.9 227.4

Force (Vertical Right Handlebar) Force (Vertical Left Handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike on the Rough 

track (Continued)

Channel 12

Seat Acceleration Crank Power

(m/s^2) (W)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8

mean 0.0 -6.9 10.3 68.7 39.3 129.0

Mean sd 0.00 0.22 1.19 6.66 6.89 6.97

 Max 34.5 185.6

Max sd 8.39 16.31

 Min -30.8 9.7

Min sd 11.62 2.94

Average Diffrence 17.3 89.7

Avg Diffrence sd 1.25 7.07

Average no data points 236.8 320.3



The Rolling Road Rig

Mean of the combined subjects average results for the full suspension bike on the Rough track (Continued)

Channel 0 Channel 3 Channel 4

Handlebar Acceleration

(N) (N) (m/s^2)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

mean 151.3 -471.6 766.4 127.0 -610.7 848.9 0.0 -2.1 1.8

Mean sd 22.63 35.46 19.43 35.11 78.22 22.76 0.00 0.21 0.11

 Max 1035.7 1177.0 5.0

Max sd 63.63 59.48 2.58

 Min -771.1 -894.9 -6.7

Min sd 72.59 67.0 3.55

Average Diffrence 1238.0 1459.6 3.9

Avg Diffrence sd 35.42 67.77 0.30

Average no data points 278.6 254.6 256.0 272.3 194.0 178.1

Force (Horizontal Right 

Handlebar) Force (Horizontal Left handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the full suspension bike on the Rough track (Continued)

Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

(N) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8.000 8.000 8.000 8.000 8.000 8.000

mean 189.5 148.1 232.1 0.358 0.270 0.547 1.764 1.647 1.956

Mean sd 13.37 16.61 8.03 0.023 0.027 0.011 0.120 0.067 0.053

 Max 279.3 0.6384829 2.114

Max sd 10.75 0.0296439 0.067

 Min 74.4 0.1098076 1.268

Min sd 97.68 0.0355568 0.524

Average Diffrence 84.0 0.277 0.309

Avg Diffrence sd 16.59 0.024 0.034

Average no data points 202.5 155.3 88.4 93.1 265.6 236.1



The Rolling Road Rig

Mean of the combined subjects average results for the full suspension bike on the Rough track (Continued)

Channel 8 Channel 9 Channel 11

Force (On seat)

(N) (N) (N)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

mean 68.8 -48.0 170.8 321.1 -3.5 610.6 41.2 -101.7 172.3

Mean sd 18.70 13.73 29.36 112.05 111.78 197.28 18.81 11.79 38.49

 Max 244.3 898.1 264.5

Max sd 41.45 334.93 53.73

 Min -118.9 -162.7 -971.5

Min sd 26.86 146.51 2201.03

Average Diffrence 218.8 614.1 274.0

Avg Diffrence sd 37.03 203.57 45.20

Average no data points 244.6 249.3 269.5 239.5 201.8 220.3

Force (Vertical Left Handlebar)Force (Vertical Right Handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the full suspension bike on the 

Rough track (Continued)

Channel 12

Seat Acceleration Crank Power

(m/s^2) (W)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8

mean 0.0 -6.7 10.1 79.6 40.3 127.1

Mean sd 0.02 0.20 1.62 7.67 7.51 4.97

 Max 26.1 178.4

Max sd 12.53 11.24

 Min -21.2 10.6

Min sd 8.77 7.36

Average Diffrence 17.2 86.8

Avg Diffrence sd 1.35 7.99

Average no data points 153.9 229.0



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike - full suspension bike on the Rough track

HT - SUS Channel 0 Channel 3 Channel 4

Handlebar Acceleration

NULL HYPOTHESIS

(N) (N) (m/s^2)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

average -6.8 -108.7 188.2 -26.6 -109.3 185.8 0.0 -1.9 0.7

sum -54.3 -869.4 1505.5 -212.9 -874.7 1486.1 0.0 -15.3 5.7

sum of squares 7701.9 101538.8 308022.4 40796.5 128850.7 300997.1 0.0 31.8 4.3

sd 32.37 31.74 59.43 70.84 68.87 59.70 0.00 0.58 0.18

sd(mean) 11.44 11.22 21.01 25.05 24.35 21.11 0.00 0.21 0.06

t 0.59 9.68 8.96 1.06 4.49 8.80 0.81 9.35 11.23

p 57.209% 0.003% 0.004% 32.331% 0.283% 0.005% 44.633% 0.003% 0.001%

Cv -4.77 -0.29 0.32 -2.66 -0.63 0.32 3.51 -0.30 0.25

95% CONFIDENCE LIMITS

Upper -6.8 -108.7 188.2 -26.6 -109.3 185.8 0.0 -1.9 0.7

Lower -6.8 -108.7 188.2 -26.6 -109.3 185.8 0.0 -1.9 0.7

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 144.5 -580.3 954.6 100.4 -720.0 1034.6 0.0 -4.0 2.5

% improvement -4.7% 18.7% 19.7% -26.5% 15.2% 18.0% -16.9% 48.0% 27.9%

Ht-Sus Channel 0 Channel 3 Channel 4

Difference Force (Horizontal Right Handlebar) Force (Horizontal Left handlebar) Handlebar Acceleration

n 8 8 8

average 296.9 295.1 2.6

sum 2374.9 2360.8 21.0

sum of squares 751226.0 746392.9 56.3

sd 81.26 84.28 0.39

sd(mean) 28.73 29.80 0.14

t 10.33 9.90 18.87

p 0.002% 0.002% 0.000%

Cv 0.27 0.29 0.15

95% CONFIDENCE LIMITS

Upper 296.9 295.1 2.6

Lower 296.9 295.1 2.6

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 1534.9 1754.7 6.5

% improvement 19.34% 16.82% 40.18%

Force (Horizontal Right 

Handlebar) Force (Horizontal Left handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike - full suspension bike on the Rough track

(continued)

Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

(N) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8.000 8.000 8.000 8 8 8

average -1.9 -3.3 4.1 0.008 0.002 -0.001 0.0 0.0 0.0

sum -14.9 -26.5 32.5 0.064 0.016 -0.010 0.3 0.0 0.0

sum of squares 5576.2 9508.8 2827.8 0.005 0.011 0.001 0.1 0.1 0.0

sd 28.15 36.69 19.62 0.024 0.039 0.011 0.13 0.09 0.04

sd(mean) 9.95 12.97 6.94 0.009 0.014 0.004 0.04 0.03 0.01

t 0.19 0.26 0.59 0.934 0.141 0.319 0.90 0.07 0.45

p 85.658% 80.599% 57.685% 38.145% 89.195% 75.922% 39.668% 94.772% 66.875%

Cv -15.08 -11.09 4.83 3.029 20.081 -8.874 3.13 41.62 6.34

95% CONFIDENCE LIMITS

Upper -1.9 -3.3 4.1 0.0 0.0 0.0 0.0 0.0 0.0

Lower -1.9 -3.3 4.1 0.0 0.0 0.0 0.0 0.0 0.0

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 187.6 144.8 236.2 0.4 0.3 0.5 1.8 1.6 2.0

% improvement -1.0% -2.3% 1.7% 2.2% 0.7% -0.2% 2.2% 0.1% 0.3%

Ht-Sus Channel 5 Channel 6 Channel 7

Difference Force (On crank) Crank speed Road Speed

n 8 8.000 8

average 7.4 -0.003 0.0

sum 58.9 -0.025 0.0

sum of squares 5252.0 0.009 0.0

sd 26.23 0.035 0.07

sd(mean) 9.28 0.013 0.03

t 0.79 0.252 0.14

p 45.305% 0.808 88.915%

Cv 3.56 -11.216 19.57

95% CONFIDENCE LIMITS

Upper 7.4 -0.003 0.0

Lower 7.4 -0.003 0.0

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 91.4 0.3 0.3

% improvement 8.06% -1.15% 1.17%



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike - full suspension bike on the Rough track

(continued)

Channel 8 Channel 9 Channel 11

Force (On seat)

(N) (N) (N)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

average 10.9 0.3 22.4 -36.0 -107.6 139.7 6.4 -1.8 -0.9

sum 87.5 2.4 179.1 -288.2 -860.6 1117.4 51.0 -14.5 -7.2

sum of squares 11188.7 5354.3 18830.3 193508.2 181327.0 837287.3 10075.1 1202.7 13581.2

sd 38.23 27.65 46.01 161.74 112.60 311.96 37.32 12.96 44.04

sd(mean) 13.52 9.78 16.27 57.18 39.81 110.29 13.19 4.58 15.57

t 0.81 0.03 1.38 0.63 2.70 1.27 0.48 0.39 0.06

p 44.531% 97.620% 21.121% 54.870% 3.054% 24.588% 64.362% 70.481% 95.556%

Cv 3.50 91.48 2.06 -4.49 -1.05 2.23 5.85 -7.17 -48.98

95% CONFIDENCE LIMITS

Upper 10.9 0.3 22.4 -36.0 -107.6 139.7 6.4 -1.8 -0.9

Lower 10.9 0.3 22.4 -36.0 -107.6 139.7 6.4 -1.8 -0.9

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 79.8 -47.7 193.2 285.1 -111.1 750.3 47.6 -103.6 171.4

% improvement 13.7% -0.6% 11.6% -12.6% 96.8% 18.6% 13.4% 1.7% -0.5%

Ht-Sus Channel 8 Channel 9 Channel 11

Difference Force (Vertical Right Handlebar) Force (On seat) Force (Vertical Left Handlebar)

n 8 8 8

average 22.1 247.2 0.9

sum 176.7 1978.0 7.3

sum of squares 20773.3 566086.4 13595.8

sd 49.09 104.90 44.06

sd(mean) 17.36 37.09 15.58

t 1.27 6.67 0.06

p 24.390% 0.029% 95.505%

Cv 2.22 0.42 48.42

95% CONFIDENCE LIMITS

Upper 22.1 247.2 0.9

Lower 22.1 247.2 0.9

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 240.9 861.4 275.0

% improvement 9.17% 28.70% 0.33%

Force (Vertical Right Handlebar) Force (Vertical Left Handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike - full suspension 

bike on the Rough track (continued)

Channel 12

Seat Acceleration Crank Power

(m/s^2) (W)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8

average 0.0 -0.3 0.2 0.7 -1.0 1.9

sum 0.0 -2.1 1.7 5.3 -8.0 15.3

sum of squares 0.0 1.7 31.7 862.5 684.9 732.7

sd 0.02 0.41 2.12 11.08 9.83 10.03

sd(mean) 0.01 0.14 0.75 3.92 3.48 3.54

t 0.70 1.79 0.28 0.17 0.29 0.54

p 50.594% 11.654% 78.435% 86.941% 78.295% 60.719%

Cv 4.03 -1.58 9.95 16.58 -9.88 5.26

95% CONFIDENCE LIMITS

Upper 0.0 -0.3 0.2 0.7 -1.0 1.9

Lower 0.0 -0.3 0.2 0.7 -1.0 1.9

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 0.0 -6.9 10.3 68.7 39.3 129.0

% improvement -35.2% 3.7% 2.1% 1.0% -2.5% 1.5%

Ht-Sus Channel 12 Channel 12

Difference Seat Acceleration Seat Acceleration

n 8 8

average 2.2 2.9

sum 17.6 23.2

sum of squares 249.4 1347.6

sd 5.48 13.52

sd(mean) 1.94 4.78

t 1.14 0.61

p 29.263% 56.297%

Cv 2.49 4.66

95% CONFIDENCE LIMITS

Upper 2.2 2.9

Lower 2.2 2.9

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 17.3 89.7

% improvement 12.77% 3.24%



The Rolling Road Rig

Individual subjects average results for the hardtail bike on the Rough track

(m) (m) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 7.26E-08 0.0139361 -0.0182717 1.33E-07 0.04457778 -0.0584117 -6.48E-06 0.6701633 -0.2851353 -2.02E-05 2.27363814 -0.983298

No data points 450 421 557 484 344 607 348 585

Max 0.03651241 0.1246782 1.064998 3.636593

Min -0.0308241 -0.1052681 -0.5107694 -1.7441

Difference 0.03220776 0.10298946 0.95529859 3.2569361

Subject 2 Average -4.92E-07 0.01219002 -0.0171633 -1.77E-06 0.03803588 -0.0552823 -3.00E-05 0.65487281 -0.2634585 -0.0001022 2.22572425 -0.9137638

No data points 241 369 388 421 349 600 352 560

Max 0.0190938 0.06519805 1.030911 3.520169

Min -0.0503136 -0.1718044 -0.6720769 -2.294747

Difference 0.02935334 0.09331813 0.91833127 3.13948803

Subject 3 Average 1.15E-07 0.01342643 -0.0182561 3.67E-07 0.04218128 -0.0586715 -2.22E-06 0.65699539 -0.2790768 -9.54E-06 2.23256206 -0.9652896

No data points 393 395 536 449 336 560 339 533

Max 0.03087762 0.1054117 0.9535812 3.256086

Min -0.02956 -0.1009287 -0.5695721 -1.944854

Difference 0.03168248 0.10085283 0.93607217 3.19785166

Subject 4 Average -2.63E-07 0.01242335 -0.0175985 -7.82E-07 0.03973215 -0.0558675 1.57E-05 0.67222817 -0.2737987 5.33E-05 2.28757535 -0.9523778

No data points 351 366 472 430 325 572 327 532

Max 0.02102178 0.07177185 0.9344748 3.191007

Min -0.0266202 -0.0908882 -0.4582888 -1.564783

Difference 0.03002187 0.09559965 0.94602685 3.23995318

Subject 5 Average -2.90E-07 0.01180694 -0.0166343 -1.02E-06 0.0374193 -0.0554339 6.26E-07 0.58164557 -0.2536736 2.78E-06 1.98609728 -0.8793547

No data points 210 327 323 346 335 457 335 423

Max 0.02069717 0.07067518 0.9502824 3.244918

Min -0.026333 -0.0899224 -0.4300649 -1.468484

Difference 0.02844121 0.09285324 0.83531922 2.86545199

Subject 6 Average -1.13E-07 0.01217658 -0.0169992 -3.30E-07 0.03845788 -0.0544431 7.55E-06 0.65008344 -0.2654253 2.40E-05 2.21979316 -0.9246096

No data points 319 400 472 463 321 563 321 517

Max 0.01970795 0.06730175 0.8743101 2.985527

Min -0.0246437 -0.0841438 -0.4275284 -1.459665

Difference 0.02917575 0.09290096 0.91550878 3.14440274

Subject 7 Average 6.55E-07 0.01203821 -0.0154036 2.18E-06 0.03818858 -0.0499717 -1.56E-06 0.62658926 -0.2531705 -6.73E-06 2.13320072 -0.8788939

No data points 182 355 271 406 349 405 351 372

Max 0.02293965 0.07834042 0.8530201 2.912634

Min -0.0257852 -0.0880502 -0.4655679 -1.589672

Difference 0.02744183 0.08816028 0.8797598 3.01209466

Subject 8 Average -1.24E-08 0.01331188 -0.0199184 -7.34E-08 0.04096139 -0.0652405 -2.82E-06 0.73701246 -0.2926538 -1.01E-05 2.50808644 -1.0204173

No data points 283 374 426 405 348 533 350 497

Max 0.0439627 0.1501399 1.143625 3.905138

Min -0.0294548 -0.1005801 -0.6048046 -2.065177

Difference 0.0332303 0.10620188 1.02966622 3.52850378

Velocity (Seat)Distance (Handlebar) Distance (Seat) Velocity (Handlebar)



The Rolling Road Rig

Individual subjects average results for the full suspension bike on the Rough track

(m) (m) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 6.91E-08 0.01411721 -1.43E-02 2.81E-07 0.04615326 -4.57E-02 3.14E-06 0.35543661 -2.43E-01 1.14E-05 1.19586071 -0.8482483

No data points 347 488 397 601 158 270 173 238

Max 0.03657738 0.1249016 0.5542924 1.892698

Min -0.0228426 -0.0779976 -0.5539111 -1.891402

Difference 0.02844343 0.09189094 0.59874085 2.04410897

Subject 2 Average 1.42E-07 0.01360999 -0.0139974 4.49E-07 0.04265118 -0.0451106 2.27E-06 0.35944117 -0.2634923 5.40E-06 1.21227155 -0.9169883

No data points 303 466 409 561 177 330 190 303

Max 0.02137483 0.07299507 0.5756723 1.965505

Min -0.0242386 -0.0827637 -0.4770518 -1.629014

Difference 0.02760738 0.08776174 0.62293344 2.12925985

Subject 3 Average -1.05E-06 0.01425769 -0.0140764 -3.56E-06 0.04579943 -0.045307 7.68E-08 0.34734892 -0.2498706 3.02E-08 1.17495413 -0.8697551

No data points 215 318 260 384 85 207 91 205

Max 0.03010529 0.1027846 0.5159238 1.761541

Min -0.025897 -0.0884366 -0.4954668 -1.691774

Difference 0.02833405 0.09110648 0.59721948 2.04470926

Subject 4 Average -1.20E-07 0.01256045 -0.0132145 -5.46E-07 0.03988918 -0.0419318 -5.03E-06 0.36577372 -0.2569414 -1.69E-05 1.24186396 -0.8915445

No data points 258 365 342 465 130 355 134 328

Max 0.01809414 0.0618 0.5529003 1.887813

Min -0.0207647 -0.0709 -0.4462092 -1.523498

Difference 0.02577498 0.08182101 0.62271513 2.13340844

Subject 5 Average -3.42E-07 0.01439406 -0.0145639 -1.17E-06 0.04508269 -0.0471856 2.14E-05 0.34826826 -0.2596925 7.34E-05 1.17189213 -0.8972828

No data points 467 610 610 713 121 335 134 316

Max 0.02994119 0.1022429 0.4760596 1.625384

Min -0.0315395 -0.1077015 -0.4552072 -1.554293

Difference 0.02895796 0.09226826 0.60796079 2.06917489

Subject 6 Average 4.45E-07 1.30E-02 -0.0123286 2.60E-06 2.45E-02 -0.0524305 -2.03E-05 4.01E-01 -0.261615 -6.95E-05 1.37E+00 -0.881112

No data points 410 430 409 542 330 341 330 312

Max 0.02279 0.0698243 0.4415 2.221345

Min -0.031298 -0.0765398 -0.510778 -1.675567

Difference 0.02530492 0.07689927 0.66259759 2.24674188

Subject 7 Average 1.34E-07 0.0178573 -0.0180375 4.75E-07 0.0588301 -0.0590802 6.63E-06 0.38151905 -0.2801614 2.14E-05 1.28529422 -0.9731555

No data points 832 886 899 968 396 786 421 738

Max 0.03405866 0.1162938 0.6652483 2.271527

Min -0.0367255 -0.1254022 -0.5798698 -1.979846

Difference 0.03589481 0.11791033 0.66168047 2.25844976

Subject 8 Average 7.60E-07 1.36E-02 -0.0151159 2.60E-06 4.34E-02 -0.0492305 -2.03E-05 4.01E-01 -0.2569266 -6.95E-05 1.36E+00 -0.8925363

No data points 331 550 419 626 348 357 359 328

Max 0.02090279 0.0713743 0.6496215 2.218122

Min -0.0242631 -0.0828398 -0.4909838 -1.676567

Difference 0.02874987 0.09267738 0.6579525 2.25083511

Velocity (Handlebar) Velocity (Seat)Distance (Handlebar) Distance (Seat)



The Rolling Road Rig

Mean of the combined subjects average results for displacement and velocity of the hardtail 

bike on the Rough track

(m) (m) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8 8 8 8

mean 0.0 0.0127 -0.0175 0.0000 0.0399 -0.0567 0.0000 0.6562 -0.2708 0.0000 2.2333 -0.9398

sd 0.00 0.0008 0.0013 0.0000 0.0025 0.0044 0.0000 0.0438 0.0144 0.0000 0.1471 0.0500

difference 0.03019432 0.09660955 0.92699786 3.17308527

sd 0.00199678 0.00611589 0.05685783 0.19307498

Distance (Handlebar) Distance (Seat) Velocity (Handlebar) Velocity (Seat)



The Rolling Road Rig

Mean of the combined subjects average results for displacement and velocity of the full 

suspension bike on the Rough track

(m) (m) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8 8 8 8

mean 0.0000 0.0142 -0.0145 0.0000 0.0433 -0.0483 0.0000 0.3700 -0.2590 0.0000 1.2508 -0.8963

sd 0.0000 0.0016 0.0017 0.0000 0.0095 0.0054 0.0000 0.0220 0.0108 0.0000 0.0779 0.0371

difference 0.02863342 0.09154193 0.62897503 2.14708602

sd 0.0032354 0.01207485 0.02797862 0.09316446

Velocity (Handlebar) Velocity (Seat)Distance (Handlebar) Distance (Seat)



The Rolling Road Rig Mean of the combined subjects average results for displacement and velocity of the hardtail 

bike - the full suspension bike on the Rough track

HT - SUS (m) (m) (m/s) (m/s)

NULL HYPOTHESIS

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8 8 8 8

average -4.57E-08 -1.51E-03 -3.07E-03 -3.02E-07 -3.35E-03 -8.41E-03 -8.74E-07 2.86E-01 -1.18E-02 -3.06E-06 9.83E-01 -4.34E-02

sum -3.65E-07 -1.21E-02 -2.46E-02 -2.42E-06 -2.68E-02 -6.73E-02 -6.99E-06 2.29E+00 -9.44E-02 -2.44E-05 7.86E+00 -3.47E-01

sum of squares 2.96E-12 4.41E-05 1.18E-04 3.91E-11 7.24E-04 1.05E-03 3.15E-09 6.66E-01 4.94E-03 3.56E-08 7.83E+00 5.85E-02

sd 6.48E-07 1.92E-03 2.47E-03 2.34E-06 9.52E-03 8.30E-03 2.12E-05 3.82E-02 2.34E-02 7.13E-05 1.26E-01 7.88E-02

sd(mean) 2.29E-07 6.78E-04 8.75E-04 8.28E-07 3.36E-03 2.93E-03 7.49E-06 1.35E-02 8.27E-03 2.52E-05 4.44E-02 2.79E-02

t 1.99E-01 2.23E+00 3.51E+00 3.65E-01 9.94E-01 2.87E+00 1.17E-01 2.12E+01 1.43E+00 1.21E-01 2.21E+01 1.56E+00

p 8.48E-01 6.10E-02 9.81E-03 7.26E-01 3.53E-01 2.41E-02 9.10E-01 1.30E-07 1.97E-01 9.07E-01 9.77E-08 1.63E-01

Cv -1.42E+01 -1.27E+00 -8.05E-01 -7.74E+00 -2.84E+00 -9.86E-01 -2.42E+01 1.33E-01 -1.98E+00 -2.33E+01 1.28E-01 -1.81E+00

95% CONFIDENCE LIMITS

Upper -4.57E-08 -1.51E-03 -3.07E-03 -3.02E-07 -3.35E-03 -8.41E-03 -8.74E-07 2.86E-01 -1.18E-02 -3.06E-06 9.83E-01 -4.34E-02

Lower -4.57E-08 -1.51E-03 -3.07E-03 -3.02E-07 -3.35E-03 -8.41E-03 -8.74E-07 2.86E-01 -1.18E-02 -3.06E-06 9.83E-01 -4.34E-02

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean -4.57E-08 -1.51E-03 -3.07E-03 -3.02E-07 -3.35E-03 -8.41E-03 -8.74E-07 2.86E-01 -1.18E-02 -3.06E-06 9.83E-01 -4.34E-02

% improvement 111.6% -11.9% 17.5% 187.3% -8.4% 14.8% 36.5% 43.6% 4.4% 35.6% 44.0% 4.6%

HT - SUS

NULL HYPOTHESIS

Diffrence

n 8 8 8 8

average 0.0016 0.0051 0.2980 1.0260

sum 0.0125 0.0405 2.3842 8.2080

sum of squares 0.0002 0.0018 0.7351 8.6860

sd 0.2997 0.2566 0.3219 0.3206

sd(mean) 0.1060 0.0907 0.1138 0.1134

t 1.0100 0.9608 14.2222 14.9271

p 34.6132% 36.8650% 0.0002% 0.0001%

Cv 192.0166 50.6295 1.0800 0.3125

95% CONFIDENCE LIMITS

Upper 0.0016 0.0051 0.2980 1.0260

Lower 0.0016 0.0051 0.2980 1.0260

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 0.0016 0.0051 0.2980 1.0260

% improvement 5.2% 5.2% 32.1% 32.3%

Velocity (Seat)Velocity (Handlebar)Distance (Seat)Distance (Handlebar)



The Rolling Road Rig

Individual subjects average results for the hardtail bike on the smooth track

Channel 0 Channel 3 Channel 4

Handlebar Acceleration

(N) (N) (m/s^2)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 112.03064 -141.26123 406.83991 90.603287 -186.32919 431.97112 -0.0031597 -0.70006 0.7030864

No data points 207 293 270 345 238 243

Max 543.55324 646.04161 2.0928571

Min -233.32599 -345.90568 -2.1607143

Difference 548.10114 618.30031 1.4031464

Subject 2 Average 118.68902 -126.62256 347.3883 80.237674 -190.78542 352.46501 -0.0042275 -0.6821334 0.6780894

No data points 294 244 227 273 376 326

Max 556.81056 565.51452 1.1857143

Min -233.32599 -371.52794 -2.0392857

Difference 474.01086 543.25043 1.3602228

Subject 3 Average 106.667 -176.76956 356.74257 99.463592 -191.00449 366.80406 -0.0034377 -0.6698858 0.6545142

No data points 271 124 221 252 294 322

Max 615.14279 636.89081 1.5178571

Min -285.02955 -380.67874 -2.6142857

Difference 533.51212 557.80855 1.3244

Subject 4 Average 150.52645 -142.59754 477.52529 138.84896 -195.36377 520.80486 -0.0043749 -0.7440698 0.7633075

No data points 181 287 48000 246 361 48000 268 230

Max 588.62814 664.34322 2.9642857

Min -258.5149 -345.90568 -2.9464286

Difference 620.12284 716.16863 1.5073773

Subject 5 Average 96.433614 -150.88488 338.99223 -83.143663 -398.93828 295.09669 -0.0036331 -0.6778259 0.6041361

No data points 259 273 261 238 206 234

Max 1068.5433 1325.0314 5.2142857

Min -258.5149 -541.73291 -11.753571

Difference 489.87711 694.03497 1.2819621

Subject 6 Average 131.18686 -145.70654 395.93231 127.64929 -164.09341 425.05875 -0.0052906 -0.6310525 0.7039783

No data points 208 214 225 302 226 237

Max 556.81056 664.34322 3.8535714

Min -245.25758 -309.30246 -4.1142857

Difference 541.63885 589.15217 1.3350308

Subject 7 Average 168.83302 -64.495702 385.12438 135.59044 -111.10754 420.02172 -0.002278 -0.632489 0.6203151

No data points 152 173 143 183 227 433

Max 938.62151 933.3769 3.925

Min -220.06866 -1890.5616 -2.4928571

Difference 449.62008 531.12926 1.2528041

Subject 8 Average 149.94819 -79.665308 365.40469 137.59443 -103.39497 443.37438 -0.0038184 -0.5621186 0.5819739

No data points 160 204 191 198 529 465

Max 550.1819 673.49403 2.8964286

Min -245.25758 -281.85004 -2.0571429

Difference 445.07 546.76935 1.1440924

Force (Horizontal Right Handlebar) Force (Horizontal Left handlebar)



The Rolling Road Rig

Individual subjects average results for the hardtail bike on the smooth track (continued)

Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

(N) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 198.2955 151.62358 236.98976 0.3528033 0.3318587 0.3628771 1.7390477 1.6450383 1.8892318

No data points 99 72 16 10 269 266

Max 275.8084 0.5026913 1.9557219

Min 132.60608 0.1998772 1.4501863

Difference 85.366186 0.0310185 0.2441935

Subject 2 Average 179.44909 146.6456 203.45936 0.3679162 0.3396175 0.3635949 1.8166955 1.694215 1.94331

No data points 89 42 46 11 224 231

Max 245.04165 0.5176821 2.0811833

Min 121.65247 0.2098711 1.5405923

Difference 56.813763 0.0239774 0.249095

Subject 3 Average 185.41831 148.7266 219.33749 0.3661609 0.2751354 0.3545156 1.8094475 1.6865393 1.9414321

No data points 105 49 46 15 281 204

Max 344.26845 0.5076882 2.0369028

Min 120.84706 0.0389761 0.0276753

Difference 70.610886 0.0793802 0.2548927

Subject 4 Average 183.12884 140.45838 217.96849 0.3425989 0.2167274 0.3129429 1.6922183 1.5084098 1.8453803

No data points 48000 170 57 48000 43 37 48000 359 590

Max 297.07129 0.5126851 1.9557219

Min 61.085464 0.0389761 0

Difference 77.510111 0.0962156 0.3369705

Subject 5 Average 185.02611 143.35446 225.04764 0.3566374 0.2975232 0.3628541 1.7646215 1.6528801 1.9152645

No data points 135 57 17 13 207 222

Max 348.93985 0.5126851 2.053508

Min 61.085464 0.0389761 -0.0092251

Difference 81.693181 0.0653309 0.2623844

Subject 6 Average 187.22495 148.48364 221.64551 0.3530626 0.3400988 0.3667747 1.7511119 1.6488776 1.8983936

No data points 81 37 13 5 265 292

Max 274.19758 0.5026913 2.0000024

Min 123.90763 0.1998772 1.422511

Difference 73.161865 0.0266759 0.249516

Subject 7 Average 216.34742 193.85693 241.03537 0.3760465 0.3435668 0.3627772 1.853972 1.7121004 1.9830847

No data points 106 62 27 15 234 242

Max 289.17825 0.5176821 2.1162387

Min 151.45273 0.2048742 1.5405923

Difference 47.178439 0.0192104 0.2709843

Subject 8 Average 172.5728 135.94993 206.90157 0.3749253 0.3404576 0.3655255 1.8618049 1.7241751 1.9817171

No data points 116 53 12 16 279 235

Max 260.82773 0.5266765 2.1088586

Min 110.53778 0.219865 1.603323

Difference 70.951642 0.0250679 0.257542



The Rolling Road Rig

Individual subjects average results for the hardtail bike on the smooth track (continued)

Channel 8 Channel 9 Channel 11

Force (On seat)

(N) (N) (N)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 81.423448 30.530317 132.90886 99.549946 25.658822 219.69275 34.328382 -16.227153 102.76791

No data points 282 266 67 119 187 232

Max 192.50057 297.9761 138.15225

Min -30.753646 -231.8342 -60.040136

Difference 102.37855 194.03393 118.99506

Subject 2 Average 106.86185 60.281976 155.00196 339.52327 288.56232 388.12016 75.727066 42.15728 134.001

No data points 217 237 114 114 316 251

Max 233.09224 502.58314 182.69711

Min -19.05774 151.63463 -69.723802

Difference 94.719989 99.557838 91.843721

Subject 3 Average 69.18887 10.453157 132.6779 302.25052 250.84978 376.16764 31.707807 -12.223161 99.325777

No data points 203 178 77 112 219 218

Max 165.66878 509.35821 132.34205

Min -49.329498 -19.097073 -72.951691

Difference 122.22474 125.31786 111.54894

Subject 4 Average 64.579415 30.630902 109.29341 336.99922 333.7781 404.68981 34.714101 5.9435902 86.206441

No data points 48000 254 274 48000 64 106 48000 273 153

Max 147.43693 575.75388 112.97471

Min -37.633591 158.4097 -60.040136

Difference 78.662506 70.91171 80.262851

Subject 5 Average 85.070958 25.893439 141.84468 417.28645 331.02665 502.5284 24.694962 -49.378386 111.69673

No data points 364 300 92 297 299 196

Max 184.24463 800.68612 169.78556

Min -55.865445 -46.197344 -252.42232

Difference 115.95124 171.50175 161.07512

Subject 6 Average 81.333213 36.339478 123.23174 212.12346 189.10923 286.33892 32.986293 -2.2442846 76.277854

No data points 277 214 32 34 194 198

Max 169.10875 371.14683 97.480846

Min 7.7740454 79.818916 -66.495913

Difference 86.892261 97.229695 78.522138

Subject 7 Average 105.9965 42.46333 163.50473 439.29436 354.03646 556.49113 75.571401 21.607522 154.70903

No data points 297 220 102 176 288 297

Max 216.23638 846.75659 233.05218

Min -52.76947 -99.042873 -908.32935

Difference 121.0414 202.45466 133.10151

Subject 8 Average 68.731927 10.023387 137.20139 163.14378 128.11547 237.75574 50.271194 -13.154553 119.97576

No data points 206 159 42 61 163 251

Max 197.66053 377.9219 166.55767

Min -51.049484 -32.647209 -51.002046

Difference 127.178 109.64027 133.13031

Force (Vertical Right Handlebar) Force (Vertical Left Handlebar)



The Rolling Road Rig

Individual subjects average results for the hardtail bike on the smooth track (continued)

Channel 12

Seat Acceleration Crank Power

(m/s^2) (W)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average -0.0155447 -1.3754146 1.3233796 69.959298 50.3176 85.998166

No data points 250 292

Max 5.6585366 138.64647

Min -8.8780488 26.504938

Difference 2.6987942 35.680565

Subject 2 Average -0.0163826 -1.5318177 1.4870455 66.022221 49.803411 73.97678

No data points 243 273

Max 3.1585366 126.85366

Min -3.9268293 25.531339

Difference 3.0188632 24.173368

Subject 3 Average -0.0131481 -1.2504796 1.2269602 67.892943 40.919949 77.758562

No data points 267 298

Max 6.2560976 174.78103

Min -6.195122 4.7101426

Difference 2.4774398 36.838613

Subject 4 Average -0.0130305 -1.3244215 1.3578397 62.739732 30.441173 68.211699

No data points 48000 156 210

Max 5.7804878 152.30403

Min -5.4756098 2.3808708

Difference 2.6822612 37.770525

Subject 5 Average -0.0201799 -1.301021 1.4213329 65.987232 42.651271 81.659452

No data points 215 284

Max 7.804878 178.89627

Min -8.0365854 2.3808708

Difference 2.7223539 39.008181

Subject 6 Average -0.0201799 -1.301021 1.4213329 66.102137 50.499111 81.293973

No data points 215 284

Max 7.804878 137.83673

Min -8.0365854 24.766315

Difference 2.7223539 30.794862

Subject 7 Average -0.0154167 -1.274599 1.3056794 81.356682 66.6028 87.442136

No data points 555 487

Max 7.3780488 149.70239

Min -9.6463415 31.028753

Difference 2.5802784 20.839336

Subject 8 Average -0.0156941 -1.1974766 1.2703823 64.701906 46.285183 75.627803

No data points 347 356

Max 6.4268293 137.37185

Min -5.2439024 24.303386

Difference 2.4678589 29.342619



The Rolling Road Rig

Individual subjects average results for the full suspension bike on the smooth track 

Channel 0 Channel 3 Channel 4

Handlebar Acceleration

(N) (N) (m/s^2)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 151.10417 -91.219058 429.23386 138.20101 -136.33619 428.99026 -0.0041879 -0.4536683 0.4503139

No data points 183 225 228 382 590 512

Max 588.62814 592.96694 2.7535714

Min -193.55401 -265.37859 -10.167857

Difference 520.45291 565.32644 0.9039822

Subject 2 Average 140.858 -107.35943 370.18685 123.50703 -171.56501 391.78933 -0.0036407 -0.4911346 0.48420735

No data points 181 148 154 209 226 237

Max 615.14279 611.26855 1.1321429

Min -245.25758 -336.75488 -2.3714286

Difference 477.54627 563.35435 0.975342

Subject 3 Average 115.01635 -179.86137 376.00371 114.94382 -199.59738 400.59414 -0.0036804 -0.4465233 0.41455904

No data points 268 115 210 240 377 392

Max 628.40012 655.19242 2.5464286

Min -310.21847 -380.67874 -6.7678571

Difference 555.86508 600.19151 0.8610823

Subject 4 Average 177.71482 -143.08608 581.76932 174.90176 -205.91441 619.76908 -0.0032746 -0.578729 0.58209948

No data points 206 288 228 273 204 247

Max 718.54992 754.02111 2.5285714

Min -271.77223 -389.82955 -4.7071429

Difference 724.8554 825.68349 1.1608285

Subject 5 Average 119.01272 -182.26799 403.15296 -42.896934 -380.30553 378.06074 -0.0032094 -0.3179418 0.32548518

No data points 230 229 255 299 253 265

Max 783.51082 825.39739 1.4464286

Min -310.21847 -560.03452 -7.9857143

Difference 585.42096 758.36627 0.643427

Subject 6 Average 155.75047 -131.64654 414.34488 153.19788 -138.15869 437.87089 -0.0038343 -0.4237425 0.4969182

No data points 188 236 193 317 142 124

Max 595.25681 710.09725 2.8071429

Min -233.32599 -291.00085 -3.8

Difference 545.99142 576.02959 0.9206607

Subject 7 Average 180.46113 -56.982962 388.56814 176.29818 -101.97317 441.60782 -0.0034545 -0.5219196 0.53729396

No data points 193 190 144 343 240 260

Max 666.84636 710.09725 2.4071429

Min -174.99376 -256.22779 -1.8642857

Difference 445.5511 543.58099 1.0592136

Subject 8 Average 159.12872 -71.425232 382.21241 148.01895 -102.33311 439.99072 -0.0032616 -0.3966472 0.44771557

No data points 115 163 159 203 147 111

Max 556.81056 700.94644 2.8607143

Min -226.69732 -300.15165 -3.4

Difference 453.63764 542.32383 0.8443628

Force (Horizontal Right Handlebar) Force (Horizontal Left handlebar)



The Rolling Road Rig

Individual subjects average results for the full suspension bike on the smooth track (continued)

Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

(N) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 205.63125 153.97828 242.29529 0.3550874 0.3327956 0.3654678 1.7540101 1.6502527 1.9175356

No data points 28 81 16 13 234 165

Max 288.37284 0.5176821 2.0719582

Min 138.08289 0.1998772 1.4594114

Difference 88.317018 0.0326722 0.2672829

Subject 2 Average 182.08024 150.08031 206.38186 0.3624308 0.3417901 0.3638765 1.7902508 1.6670807 1.9191984

No data points 75 56 33 20 203 328

Max 261.63314 0.5176821 2.0811833

Min 121.65247 0.2098711 1.5313672

Difference 56.301546 0.0220864 0.2521177

Subject 3 Average 190.16739 150.48454 226.47926 0.3566624 0.2339353 0.3162574 1.7632306 1.5395647 1.9156504

No data points 95 51 38 31 158 224

Max 337.18082 0.4976943 2.0184526

Min 119.23624 0.0489699 0.1623618

Difference 75.994722 0.0823221 0.3760857

Subject 4 Average 191.80699 146.77727 222.89843 0.355975 0.3263785 0.3621109 1.7606393 1.6463501 1.916636

No data points 198 129 19 21 237 233

Max 264.69371 0.5176821 1.9907773

Min 116.98108 0.1948803 1.4501863

Difference 76.121156 0.0357324 0.2702859

Subject 5 Average 202.76638 158.65679 245.11571 0.3591204 0.3122527 0.3587796 1.7823891 1.6641072 1.9346308

No data points 202 87 9 7 200 153

Max 289.98366 0.5176821 2.0442829

Min 126.32387 0.1998772 1.4870867

Difference 86.458924 0.046527 0.2705236

Subject 6 Average 194.60918 149.72945 230.89568 0.3525139 0.3237103 0.3673458 1.7490295 1.6477477 1.9088252

No data points 53 22 11 7 307 189

Max 282.09062 0.5026913 2.0000024

Min 130.99526 0.1808889 1.4317361

Difference 81.166226 0.0436355 0.2610775

Subject 7 Average 222.93402 200.84025 244.24519 0.3693628 0.3415402 0.3668461 1.8225608 1.6867558 1.9604073

No data points 87 54 24 14 195 228

Max 300.93727 0.5176821 2.0627331

Min 157.09062 0.2048742 1.4501863

Difference 43.404938 0.0253059 0.2736516

Subject 8 Average 175.70494 140.72732 206.0818 0.3707711 0.3501599 0.3652757 1.8414931 1.7208212 1.9753187

No data points 108 51 16 10 424 140

Max 264.69371 0.5266765 2.0996335

Min 107.47722 0.214868 1.5682676

Difference 65.354476 0.0151157 0.2544975



The Rolling Road Rig

Individual subjects average results for the full suspension bike on the smooth track (continued)

Channel 8 Channel 9 Channel 11

Force (On seat)

(N) (N) (N)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average 49.23149 -8.9902975 123.82985 81.809036 -19.184929 230.75621 6.4339337 -27.498672 70.719467

No data points 218 163 1203 314 327 311

Max 175.9887 323.72136 116.2026

Min -54.145459 -131.5632 -69.723802

Difference 132.82015 249.94114 98.218138

Subject 2 Average 101.83774 46.842304 158.65753 395.6383 306.14207 485.85745 62.944061 26.36052 133.19649

No data points 266 186 151 326 260 170

Max 202.82049 543.23355 185.925

Min -52.76947 224.80537 -81.989781

Difference 111.81522 179.71538 106.83597

Subject 3 Average 65.011576 5.802737 133.82353 296.94169 172.50047 436.49397 31.04613 -24.265678 108.83695

No data points 219 263 198 168 123 149

Max 157.41285 548.6536 138.15225

Min -64.465377 -19.097073 -76.17958

Difference 128.02079 263.9935 133.10263

Subject 4 Average 49.543818 9.3104032 101.57806 323.95563 189.35724 445.32039 23.444357 -23.809527 98.447046

No data points 281 247 280 227 165 149

Max 118.88516 483.61295 122.65838

Min -52.76947 151.63463 -53.584358

Difference 92.267653 255.96315 122.25657

Subject 5 Average 79.611328 5.2729645 162.49561 427.25472 221.2416 729.9719 17.113983 -62.691891 122.47343

No data points 218 254 173 155 251 185

Max 236.18822 1018.8433 173.01345

Min -59.305418 139.43951 -129.76254

Difference 157.22265 508.7303 185.16532

Subject 6 Average 70.489968 14.783822 131.61914 216.16094 115.24383 320.75186 31.505943 -14.418135 87.345274

No data points 310 339 195 282 184 160

Max 148.81292 383.34195 116.2026

Min -54.145459 52.718645 -69.723802

Difference 116.83532 205.50802 101.76341

Subject 7 Average 110.49354 49.861569 191.87466 445.28078 271.85184 661.76302 66.923806 -11.693532 168.01857

No data points 287 205 182 297 180 232

Max 268.17996 780.36092 229.82429

Min -67.561352 192.28504 -113.62309

Difference 142.01309 389.91118 179.7121

Subject 8 Average 59.264392 -1.2226747 133.01309 187.18627 98.199718 234.83627 44.944478 -23.919271 109.78684

No data points 202 186 469 1425 123 242

Max 185.96462 364.37176 157.51958

Min -59.305418 -0.1268835 -56.812247

Difference 134.23576 136.63655 133.70611

Force (Vertical Right Handlebar) Force (Vertical Left Handlebar)



The Rolling Road Rig

Individual subjects average results for the full suspension bike on the smooth track (continued)

Channel 12

Seat Acceleration Crank Power

(m/s^2) (W)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject 1 Average -0.0154667 -1.3930582 1.5030647 73.017073 51.243293 88.5511392

No data points 195 191

Max 5.8902439 149.28544

Min -7.8658537 27.599626

Difference 2.8961229 37.307846

Subject 2 Average -0.013328 -1.2126764 1.1463916 65.991496 51.295961 75.097511

No data points 223 243

Max 2.6829268 135.44278

Min -3.2195122 25.531339

Difference 2.359068 23.80155

Subject 3 Average -0.0164548 -1.3546989 1.3905627 67.825562 35.203642 71.6257377

No data points 211 153

Max 4.2926829 167.81298

Min -6.4878049 5.8389895

Difference 2.7452616 36.422096

Subject 4 Average -0.0108981 -1.4402439 1.4711841 68.278491 47.904945 80.7139585

No data points 140 124

Max 9.2926829 137.02718

Min -6.8536585 22.79731

Difference 2.911428 32.809013

Subject 5 Average -0.0103342 -1.2098687 1.1349214 72.81754 49.541005 87.9425283

No data points 312 210

Max 7.6011274 150.11934

Min -6.1453201 25.249266

Difference 2.3447901 38.401523

Subject 6 Average -0.0203887 -1.3075251 1.2384046 68.602444 48.468963 84.8185618

No data points 129 122

Max 7.0243902 141.80449

Min -10.365854 23.695588

Difference 2.5459297 36.349599

Subject 7 Average -0.0151784 -1.3656011 1.2428976 82.343531 68.595026 89.6003996

No data points 338 267

Max 5.6585366 155.78982

Min -8.8170732 32.18381

Difference 2.6084987 21.005374

Subject 8 Average -0.0143067 -1.217973 1.1428846 65.146322 49.277072 75.2766653

No data points 206 127

Max 7.5609756 139.40797

Min -6.0121951 23.093418

Difference 2.3608576 25.999594



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike on a smooth track

Channel 0 Channel 3 Channel 4

Handlebar Acceleration

(N) (N) (m/s^2)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

mean 129.3 -128.5 384.2 90.9 -192.6 406.9 0.0 -0.7 0.7

Mean sd 25.20 37.75 44.51 73.97 91.06 68.14 0.00 0.05 0.06

 Max 677.3 763.6 3.0

Max sd 205.69 250.99 1.35

 Min -247.4 -558.4 -3.8

Min sd 20.05 543.83 3.30

Average Diffrence 512.7 599.6 1.3

Avg Difference sd 59.32 71.08 0.11

Average no data points 216.5 226.5 223.0 269.0 295.5 311.3

Force (Horizontal Right Handlebar) Force (Horizontal Left handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike on a smooth track (continued)

Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

(N) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8.000 8.000 8.000

mean 188.4 151.1 221.5 0.3612689 0.3106232 0.3564828 1.786 1.659 1.925

Mean sd 13.41 17.98 13.04 0.0118444 0.0453293 0.0179641 0.059 0.068 0.047

 Max 291.9 0.5125602 2.039

Max sd 37.35 0.0081967 0.064

 Min 110.4 0.1439116 0.947

Min sd 32.65 0.0871245 0.781

Average Diffrence 70.4 0.0458596 0.266

Avg Diffrence sd 12.73 0.0298761 0.030

Average no data points 112.6 53.6 27.5 15.3 264.8 285.3



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike on a smooth track (continued)

Channel 8 Channel 9 Channel 11

Force (On seat)

(N) (N) (N)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

mean 82.9 30.8 137.0 288.8 237.6 371.5 45.0 -2.9 110.6

Mean sd 16.22 16.50 17.08 120.55 115.61 120.10 20.21 27.36 25.48

 Max 188.2 535.3 154.1

Max sd 27.93 199.59 43.22

 Min -36.1 -4.9 -192.6

Min sd 21.76 131.69 296.73

Average Diffrence 106.1 133.8 113.6

Avg Diffrence sd 18.09 49.11 28.94

Average no data points 262.5 231.0 73.8 127.4 242.4 224.5

Force (Vertical Right Handlebar) Force (Vertical Left Handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike on a smooth track (continued)

Channel 12

Seat Acceleration Crank Power

(m/s^2) (W)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8

mean 0.0 -1.3 1.4 68.1 47.2 79.0

Mean sd 0.00 0.10 0.09 5.76 10.32 6.40

 Max 6.3 149.5

Max sd 1.52 18.61

 Min -6.9 17.7

Min sd 2.00 12.24

Average Diffrence 2.7 31.8

Avg Diffrence sd 0.17 6.69

Average no data points 281.0 310.5



The Rolling Road Rig

Mean of the combined subjects average results for the full suspension bike on the smooth track

Channel 0 Channel 3 Channel 4

Handlebar Acceleration

(N) (N) (m/s^2)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

mean 149.9 -120.5 418.2 123.3 -179.5 442.3 0.0 -0.5 0.5

Mean sd 24.15 46.97 69.05 70.60 90.26 75.70 0.00 0.08 0.08

 Max 644.1 695.0 2.3

Max sd 75.27 75.58 0.65

 Min -245.8 -347.5 -5.1

Min sd 49.62 99.06 2.91

Average Diffrence 538.7 621.9 0.9

Avg Diffrence sd 90.37 108.11 0.15

Average no data points 195.5 199.3 196.4 283.3 272.4 268.5

Force (Horizontal Right Handlebar) Force (Horizontal Left handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the full suspension bike on the smooth track (Continued)

Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

(N) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8.000 8.000 8.000

mean 195.7 156.4 228.0 0.3602405 0.3203203 0.358245 1.783 1.653 1.931

Mean sd 14.75 18.68 15.79 0.0067339 0.0369032 0.0171893 0.034 0.052 0.024

 Max 286.2 0.514434 2.046

Max sd 25.02 0.0094168 0.040

 Min 127.2 0.1817634 1.318

Min sd 15.19 0.0546197 0.469

Average Diffrence 71.6 0.0379247 0.278

Avg Diffrence sd 15.58 0.0208411 0.040

Average no data points 105.8 66.4 20.8 15.4 244.8 207.5



The Rolling Road Rig

Mean of the combined subjects average results for the full suspension bike on the smooth track (Continued)

Channel 8 Channel 9 Channel 11

Force (On seat)

(N) (N) (N)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

mean 73.2 15.2 142.1 296.8 169.4 443.2 35.5 -20.2 112.4

Mean sd 22.85 21.64 27.79 127.79 104.10 183.39 21.36 24.42 29.78

 Max 186.8 555.8 154.9

Max sd 48.34 236.19 40.05

 Min -58.1 76.3 -81.4

Min sd 5.62 121.82 26.87

Average Diffrence 126.9 273.8 132.6

Avg Diffrence sd 19.88 120.70 33.57

Average no data points 250.1 230.4 356.4 399.3 201.6 199.8

Force (Vertical Right Handlebar) Force (Vertical Left Handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the full suspension bike on the smooth track (Continued)

Channel 12

Seat Acceleration Crank Power

(m/s^2) (W)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8

mean 0.0 -1.3 1.3 70.5 50.2 81.7

Mean sd 0.00 0.09 0.15 5.56 9.06 7.02

 Max 6.3 147.1

Max sd 2.09 10.97

 Min -7.0 23.2

Min sd 2.13 7.67

Average Diffrence 2.6 31.5

Avg Diffrence sd 0.24 6.87

Average no data points 219.3 179.6



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike - the fully suspended bike on the smooth track

HT - SUS Channel 0 Channel 3 Channel 4

Handlebar Acceleration

NULL HYPOTHESIS

(N) (N) (m/s^2)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

average -20.6 -8.0 -33.9 -32.4 -13.1 -35.4 0.0 -0.2 0.2

sum -164.7 -64.2 -271.5 -259.3 -104.8 -283.1 0.0 -1.7 1.6

sum of squares 4159.8 4192.0 17009.1 9715.5 4158.2 20015.6 0.0 0.4 0.3

sd 10.47 22.92 33.37 13.68 19.94 37.79 0.00 0.07 0.06

sd(mean) 3.70 8.10 11.80 4.84 7.05 13.36 0.00 0.03 0.02

t 5.56 0.99 2.88 6.70 1.86 2.65 0.62 7.99 8.64

p 0.085% 35.534% 2.375% 0.028% 10.546% 3.303% 55.234% 0.009% 0.006%

Cv -0.51 -2.86 -0.98 -0.42 -1.52 -1.07 -4.53 -0.35 0.33

95% CONFIDENCE LIMITS

Upper -20.6 -8.0 -33.9 -32.4 -13.1 -35.4 0.0 -0.2 0.2

Lower -20.6 -8.0 -33.9 -32.4 -13.1 -35.4 0.0 -0.2 0.2

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 129.3 -128.5 384.2 90.9 -192.6 406.9 0.0 -0.7 0.7

% improvement -15.9% 6.2% -8.8% -35.7% 6.8% -8.7% 5.5% 31.5% 29.6%

DIFFERENCE ANALYSIS (HT - SU)

ht Channel 0 Channel 3 Channel 4

Force (Horizontal Right Handlebar) Force (Horizontal Left handlebar) Handlebar Acceleration

Difference (max - Min) Difference (max - Min) Difference (max - Min)

n 8 8 8

average -25.9 -22.3 0.4 0.77972 2.17282

sum -207.4 -178.2 3.2 1.3931

sum of squares 21483.0 21485.7 1.4

sd 47.97 50.02 0.13

sd(mean) 16.96 17.68 0.05

t 1.53 1.26 8.52

p 17.027% 24.810% 0.006%

Cv -1.85 -2.25 0.33

95% CONFIDENCE LIMITS

Upper -25.9 -22.3 0.4

Lower -25.9 -22.3 0.4

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 512.7 599.6 1.3 2.17282

% improvement -5.1% -3.7% 30.5% 35.9%

Force (Horizontal Right Handlebar) Force (Horizontal Left handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike - the fully suspended bike on the 

smooth track (continued)

Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

(N) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8.000 8.000 8.000

average -7.3 -5.3 -6.5 0.001 -0.010 -0.002 0.003 0.006 -0.006

sum -58.2 -42.2 -52.0 0.008 -0.078 -0.014 0.025 0.050 -0.050

sum of squares 581.0 367.7 611.3 0.000 0.014 0.004 0.009 0.042 0.008

sd 4.74 4.56 6.25 0.007 0.044 0.024 0.037 0.077 0.033

sd(mean) 1.67 1.61 2.21 0.003 0.016 0.008 0.013 0.027 0.012

t 4.35 3.27 2.94 0.403 0.623 0.211 0.245 0.227 0.532

p 0.337% 1.363% 2.161% 69.886% 55.289% 83.871% 81.385% 82.725% 61.111%

Cv -0.65 -0.86 -0.96 7.016 -4.538 -13.389 11.568 12.485 -5.315

95% CONFIDENCE LIMITS

Upper -7.3 -5.3 -6.5 0.001 -0.010 -0.002 0.003 0.006 -0.006

Lower -7.3 -5.3 -6.5 0.001 -0.010 -0.002 0.003 0.006 -0.006

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 188.4 151.1 221.5 0.4 0.3 0.4 1.8 1.7 1.9

% improvement -3.9% -3.5% -2.9% 0.3% -3.1% -0.5% 0.2% 0.4% -0.3%

DIFFERENCE ANALYSIS (HT - SU)

ht Channel 5 Channel 6 Channel 7

Force (On crank) Crank speed Road Speed

Difference (max - Min) Difference (max - Min) Difference (max - Min)

n 8 8 8

average 0.1594 0.008 0.0

sum -9.8 0.1 -0.1

sum of squares 172.2 0.0 0.0

sd 4.78 0.02 0.05

sd(mean) 1.69 0.01 0.02

t 0.73 0.95 0.68

p 49.092% 37.605% 51.557%

Cv 30.01 2.99 -4.13

95% CONFIDENCE LIMITS

Upper 0.2 0.0 0.0

Lower 0.2 0.0 0.0

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 70.4 0.0 0.3

% improvement 0.2% 17.3% -4.7%



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike - the fully suspended bike on the 

smooth track (continued)

Channel 8 Channel 9 Channel 11

Force (On seat)

(N) (N) (N)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8

average 9.7 15.6 -5.2 -8.0 68.2 -71.7 9.5 17.3 -1.7

sum 77.7 125.0 -41.2 -64.1 545.8 -574.0 75.6 138.4 -13.9

sum of squares 1562.3 3289.8 1475.8 4391.5 54474.1 78970.6 1231.8 2957.1 1787.6

sd 10.74 13.83 13.43 23.54 49.63 73.48 8.59 8.96 15.87

sd(mean) 3.80 4.89 4.75 8.32 17.55 25.98 3.04 3.17 5.61

t 2.56 3.20 1.08 0.96 3.89 2.76 3.11 5.46 0.31

p 3.768% 1.516% 31.388% 36.804% 0.599% 2.802% 1.700% 0.095% 76.646%

Cv 1.11 0.89 -2.61 -2.94 0.73 -1.02 0.91 0.52 -9.16

95% CONFIDENCE LIMITS

Upper 9.7 15.6 -5.2 -8.0 68.2 -71.7 9.5 17.3 -1.7

Lower 9.7 15.6 -5.2 -8.0 68.2 -71.7 9.5 17.3 -1.7

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 82.9 30.8 137.0 288.8 237.6 371.5 45.0 -2.9 110.6

% improvement 11.7% 50.7% -3.8% -2.8% 28.7% -19.3% 21.0% -588.5% -1.6%

DIFFERENCE ANALYSIS (HT - SU)

ht Channel 8 Channel 9 Channel 11

Force (Vertical Right Handlebar) Force (On seat) Force (Vertical Left Handlebar)

Difference (max - Min) Difference (max - Min) Difference (max - Min)

n 8 8 8

average -20.8 -140.0 -19.0

sum -166.2 -1119.8 -152.3

sum of squares 4527.2 224341.9 6177.9

sd 12.39 98.28 21.64

sd(mean) 4.38 34.75 7.65

t 4.74 4.03 2.49

p 0.211% 0.501% 4.175%

Cv -0.60 -0.70 -1.14

95% CONFIDENCE LIMITS

Upper -20.8 -140.0 -19.0

Lower -20.8 -140.0 -19.0

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 106.1 133.8 113.6

% improvement -19.6% -104.6% -16.8%

Force (Vertical Right Handlebar) Force (Vertical Left Handlebar)



The Rolling Road Rig

Mean of the combined subjects average results for the hardtail bike - the fully 

suspended bike on the smooth track (continued)

Channel 12

Seat Acceleration Crank Power

(m/s^2) (W)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8

average 0.0 0.0 0.1 -2.4 -3.0 -2.7

sum 0.0 -0.1 0.5 -19.3 -24.0 -21.7

sum of squares 0.0 0.1 0.3 94.1 405.3 258.4

sd 0.00 0.14 0.20 2.61 6.90 5.34

sd(mean) 0.00 0.05 0.07 0.92 2.44 1.89

t 1.22 0.14 0.95 2.61 1.23 1.43

p 26.022% 89.640% 37.387% 3.504% 25.830% 19.484%

Cv -2.31 -20.95 2.98 -1.08 -2.30 -1.97

95% CONFIDENCE LIMITS

Upper 0.0 0.0 0.1 -2.4 -3.0 -2.7

Lower 0.0 0.0 0.1 -2.4 -3.0 -2.7

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 0.0 -1.3 1.4 68.1 47.2 79.0

% improvement 10.2% 0.5% 5.0% -3.5% -6.4% -3.4%

DIFFERENCE ANALYSIS (HT - SU)

ht Channel 12

Seat Acceleration Crank Power

Difference (max - Min) Difference (max - Min)

n 8 8

average 0.1 0.2939345

sum 0.6 2.4

sum of squares 0.8 70.0

sd 0.33 3.15

sd(mean) 0.11 1.11

t 0.65 0.26

p 53.603% 79.923%

Cv 4.35 10.71

95% CONFIDENCE LIMITS

Upper 0.1 0.3

Lower 0.1 0.3

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 2.7 31.8

% improvement 2.8% 0.9%



The Rolling Road Rig

Individual subjects average results for the hardtail bike on the smooth track

(m) (m) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject1 Average -2.13E-07 0.00706165 -0.0072956 -7.55E-07 0.02233106 -0.0255892 5.70E-06 0.14587166 -0.1480549 2.15E-05 0.49162354 -0.4987087

No data points 462 533 591 488 428 496 460 530

Max 0.01542412 0.05266806 0.2721795 0.9293764

Min -0.0188978 -0.0645234 -0.2467028 -0.8423903

Difference 0.0143572 0.04792031 0.29392656 0.99033219

Subject2 Average -1.43E-07 0.00401327 -0.0040838 -4.50E-07 0.01347886 -0.0136833 -3.54E-08 0.11695223 -0.1160128 -7.03E-07 0.40697449 -0.4046169

No data points 372 466 397 500 345 357 302 304

Max 0.00891313 0.03043393 0.1732974 0.5916613

Min -0.0113863 -0.0388835 -0.2100371 -0.7173146

Difference 0.00809703 0.02716217 0.232965 0.81159136

Subject 3 Average -2.24E-07 0.00382718 -0.0039078 -7.96E-07 0.01276812 -0.0130743 4.22E-06 0.11389145 -0.1144556 1.43E-05 0.39541239 -0.3982267

No data points 370 397 412 433 177 151 154 128

Max 0.00847637 0.02894114 0.1676794 0.5725331

Min -0.0095496 -0.0326103 -0.1791599 -0.61178

Difference 0.00773497 0.02584238 0.2283471 0.79363909

Subject 4 Average -3.51E-07 0.00809567 -0.0081986 -1.25E-06 0.02613126 -0.0287351 -3.42E-07 0.16073755 -0.1605611 -1.52E-06 0.53909673 -0.5407782

No data points 864 863 993 806 938 931 1006 980

Max 0.01836568 0.06271202 0.3020123 1.031218

Min -0.0185216 -0.0632536 -0.2913525 -0.9948546

Difference 0.01629431 0.05486638 0.32129861 1.07987495

Subject 8 Average 2.90E-08 0.00387695 -0.0031143 1.31E-07 0.00904158 -0.0112771 -1.57E-06 0.08799843 -0.0832876 -6.03E-06 0.28987926 -0.3061142

No data points 364 321 283 280 224 210 259 264

Max 0.012654 0.04611296 0.21942635 0.7119625

Min -0.0131211 -0.0428773 -0.2181132 -0.7194531

Difference 0.00699124 0.0203187 0.17128608 0.59599349

Subject 6 Average -8.85E-08 0.00687298 -0.0071165 -3.81E-07 0.02163687 -0.0253719 4.71E-06 0.14617674 -0.1470581 1.66E-05 0.48890753 -0.4940663

No data points 377 387 500 334 299 323 335 350

Max 0.01752803 0.0598595 0.3428437 1.170719

Min -0.0205189 -0.0700532 -0.4153998 -1.418472

Difference 0.0139895 0.04700878 0.29323486 0.98297378

Subject 7 Average -2.35E-07 0.00397059 -0.0040717 -8.62E-07 0.01338912 -0.0136637 4.45E-07 0.1180839 -0.1159331 1.42E-06 0.40904653 -0.4044916

No data points 521 622 548 664 87 184 79 155

Max 0.010369 0.0354033 0.2427749 0.8288638

Min -0.0142268 -0.0485845 -0.2071161 -0.7074212

Difference 0.00804229 0.02705287 0.23401701 0.81353815

Subject 8 Average 3.97E-08 0.00295056 -0.0029301 1.03E-07 0.01074158 -0.0105712 -1.67E-06 0.09432571 -0.0947681 -5.98E-06 0.29705554 -0.294625

No data points 329 338 256 270 143 132 242 242

Max 0.01316692 0.04495941 0.2346221 0.8011457

Min -0.0127375 -0.0434925 -0.2176391 -0.7431032

Difference 0.00588066 0.02131279 0.18909378 0.59168056

Distance (Handlebar) Distance (Seat) Velocity (Handlebar) Velocity (Seat)



The Rolling Road Rig

Individual subjects average results for the full suspension bike on the smooth track (continued)

(m) (m) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Subject1 Average 1.60E-08 0.00651586 -0.0065146 4.10E-08 0.02033768 -0.02295 -5.79E-08 0.12151833 -0.1215366 -1.34E-08 0.37901649 -0.3758574

No data points 208 255 300 222 265 232 426 383

Max 0.03109176 0.1061714 0.5127371 1.750716

Min -0.0124999 -0.04268 -0.4527939 -1.546233

Difference 0.01303051 0.04328768 0.2430549 0.75487392

Subject2 Average -1.09E-07 0.00382198 -0.0038307 -3.99E-07 0.01276839 -0.0147988 -4.73E-07 0.09377008 -0.0939989 -9.38E-07 0.31799948 -0.2963866

No data points 282 349 312 191 296 224 310 374

Max 0.0084804 0.02895551 0.1533351 0.5235784

Min -0.0076559 -0.0261427 -0.1674916 -0.5719441

Difference 0.00765271 0.02756723 0.187769 0.61438603

Subject 3 Average -1.40E-07 0.00407479 -0.0040989 -5.00E-07 0.01371488 -0.0156249 -1.34E-06 0.09422935 -0.0963186 -4.99E-06 0.31990695 -0.3043469

No data points 465 491 491 313 261 183 271 279

Max 0.01833089 0.06259778 0.3624728 1.237703

Min -0.0142299 -0.0485908 -0.2799479 -0.9559311

Difference 0.00817373 0.02933979 0.19054795 0.62425388

Subject 4 Average 4.48E-07 0.00420628 -0.0044467 1.55E-06 0.01410816 -0.0164073 -6.76E-06 0.10083778 -0.097598 -2.30E-05 0.34147231 -0.3140968

No data points 704 764 749 585 541 450 563 611

Max 0.0131054 0.04475543 0.2147924 0.7334242

Min -0.0093196 -0.0318225 -0.2854907 -0.9748453

Difference 0.00865296 0.03051541 0.19843579 0.65556907

Subject 8 Average 4.78E-08 0.00281593 -0.0035563 1.35E-07 0.01118231 -0.011457 -1.12E-06 0.06117651 -0.0561426 -4.13E-06 0.19144328 -0.1954662

No data points 337 389 301 298 311 345 397 354

Max 0.01432108 0.03712867 0.18911238 0.5998205

Min -0.0103249 -0.0321142 -0.1781437 -0.5629177

Difference 0.00637219 0.02263934 0.11731906 0.38690947

Subject 6 Average -3.91E-07 0.00431978 -0.0042552 -1.31E-06 0.01444844 -0.0160497 -2.49E-06 0.09815154 -0.1007862 -8.61E-06 0.33180134 -0.3190368

No data points 312 374 334 260 143 112 151 158

Max 0.01376695 0.04700789 0.2309312 0.7886721

Min -0.0181086 -0.0618299 -0.2868082 -0.9792134

Difference 0.00857494 0.03049812 0.19893777 0.65083818

Subject 7 Average 5.36E-07 0.00702717 -0.0069717 1.85E-06 0.02598334 -0.0257936 -1.28E-05 0.1208364 -0.1211084 -4.39E-05 0.37809893 -0.4205076

No data points 751 783 548 567 370 489 590 441

Max 0.01534999 0.05241534 0.2111765 0.7209858

Min -0.0167868 -0.0573185 -0.2259907 -0.771595

Difference 0.01399892 0.0517769 0.24194484 0.79860648

Subject 8 Average 5.46E-08 0.00271787 -0.0026634 1.66E-07 0.01066421 -0.0103338 -1.72E-06 0.06064202 -0.0558875 -5.70E-06 0.18449414 -0.1858458

No data points 312 376 181 219 240 291 456 331

Max 0.01075643 0.03672689 0.177177 0.6049806

Min -0.0092813 -0.0316856 -0.1670117 -0.5702896

Difference 0.00538132 0.02099797 0.1165295 0.37033998

Velocity (Handlebar) Velocity (Seat)Distance (Handlebar) Distance (Seat)



The Rolling Road Rig

Mean of the combined subjects average results for displacement and velocity of the hardtail 

bike on the smooth track

(m) (m) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8 8 8 8

mean 0.0 0.0051 -0.0051 0.0000 0.0162 -0.0177 0.0000 0.1230 -0.1225 0.0000 0.4147 -0.4177

sd 0.00 0.0019 0.0021 0.0000 0.0063 0.0075 0.0000 0.0258 0.0272 0.0000 0.0901 0.0893

difference 0.0101734 0.03393554 0.24552112 0.83245295

sd 0.00401577 0.01367001 0.05297135 0.17927789

Distance (Handlebar) Distance (Seat) Velocity (Handlebar) Velocity (Seat)



The Rolling Road Rig

Mean of the combined subjects average results for displacement and velocity of the full 

suspension bike on the smooth track (continued)

(m) (m) (m/s) (m/s)

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8 8 8 8

mean 0.0000 0.0044 -0.0045 0.0000 0.0154 -0.0167 0.0000 0.0939 -0.0929 0.0000 0.3055 -0.3014

sd 0.0000 0.0016 0.0015 0.0000 0.0052 0.0053 0.0000 0.0231 0.0252 0.0000 0.0762 0.0800

difference 0.00897966 0.03207781 0.18681735 0.60697213

sd 0.00302443 0.01040839 0.04820908 0.15476274

Distance (Handlebar) Distance (Seat) Velocity (Handlebar) Velocity (Seat)



The Rolling Road Rig

Mean of the combined subjects average results for displacement and velocity of the hardtail 

bike - the full suspension bike on the smooth track

HT - SUS (m) (m) (m/s) (m/s)

NULL HYPOTHESIS

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

Average 

Min

Average 

Max

n 8 8 8 8 8 8 8 8 8 8 8 8

average -2.06E-07 6.46E-04 -5.48E-04 -7.25E-07 7.89E-04 -1.07E-03 4.77E-06 2.91E-02 -2.96E-02 1.64E-05 1.09E-01 -1.16E-01

sum -1.65E-06 5.17E-03 -4.38E-03 -5.80E-06 6.31E-03 -8.55E-03 3.82E-05 2.33E-01 -2.37E-01 1.31E-04 8.74E-01 -9.30E-01

sum of squares 1.39E-12 3.26E-05 3.17E-05 1.68E-11 3.65E-04 4.01E-04 3.32E-10 9.27E-03 9.90E-03 3.99E-09 1.13E-01 1.42E-01

sd 3.87E-07 2.04E-03 2.04E-03 1.34E-06 7.17E-03 7.48E-03 4.63E-06 1.89E-02 2.03E-02 1.63E-05 5.06E-02 6.95E-02

sd(mean) 1.37E-07 7.22E-04 7.23E-04 4.75E-07 2.53E-03 2.64E-03 1.64E-06 6.67E-03 7.19E-03 5.75E-06 1.79E-02 2.46E-02

t 1.51E+00 8.94E-01 7.58E-01 1.53E+00 3.11E-01 4.04E-01 2.92E+00 4.36E+00 4.12E+00 2.85E+00 6.11E+00 4.73E+00

p 1.76E-01 4.01E-01 4.73E-01 1.70E-01 7.65E-01 6.98E-01 2.24E-02 3.31E-03 4.47E-03 2.48E-02 4.88E-04 2.13E-03

Cv -1.88E+00 3.16E+00 -3.73E+00 -1.85E+00 9.09E+00 -7.00E+00 9.69E-01 6.48E-01 -6.87E-01 9.93E-01 4.63E-01 -5.98E-01

95% CONFIDENCE LIMITS

Upper -2.06E-07 6.46E-04 -5.48E-04 -7.25E-07 7.89E-04 -1.07E-03 4.77E-06 2.91E-02 -2.96E-02 1.64E-05 1.09E-01 -1.16E-01

Lower -2.06E-07 6.46E-04 -5.48E-04 -7.25E-07 7.89E-04 -1.07E-03 4.77E-06 2.91E-02 -2.96E-02 1.64E-05 1.09E-01 -1.16E-01

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean -2.059E-07 0.00064615 -0.0005476 -7.255E-07 0.00078888 -0.0010689 4.7726E-06 0.02910946 -0.0295943 1.6365E-05 0.10922039 -0.1162604

% improvement 139.0% 12.7% 10.8% 136.2% 4.9% 6.0% 333.3% 23.7% 24.2% 330.7% 26.3% 27.8%

HT - SUS

NULL HYPOTHESIS

Diffrence

n 8 8 8 8

average 0.0012 0.0019 0.0587 0.2255

sum 0.0095 0.0149 0.4696 1.8038

sum of squares 0.0001 0.0015 0.0383 0.5063

sd 0.0621 0.0602 0.0079 0.0088

sd(mean) 0.0219 0.0213 0.0028 0.0031

t 0.8346 0.3603 4.2432 5.3474

p 43.1513% 72.9233% 0.3825% 0.1067%

Cv 52.0063 32.3790 0.1348 0.0388

95% CONFIDENCE LIMITS

Upper 0.0012 0.0019 0.0587 0.2255

Lower 0.0012 0.0019 0.0587 0.2255

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 0.0012 0.0019 0.0587 0.2255

% improvement     11.7%     5.5%     23.9%     27.1%

Distance (Handlebar) Distance (Seat) Velocity (Handlebar) Velocity (Seat)



Individuals reusults for the RMS Values on the rolling road

Hardtail bike over a rough surface

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

HB dist 6.28E-03 5.20E-03 5.59E-03 6.01E-03 4.85E-03 5.66E-03 4.91E-03 5.73E-03

Seat dist 2.14E-02 1.78E-02 1.91E-02 2.05E-02 1.65E-02 1.93E-02 1.68E-02 1.96E-02

HB Vel 1.39E-01 1.25E-01 1.31E-01 1.33E-01 1.10E-01 1.28E-01 1.12E-01 1.35E-01

Seat Vel 4.74E-01 4.26E-01 4.46E-01 4.54E-01 3.77E-01 4.38E-01 3.83E-01 4.61E-01

RMS Values for the hardtail bike over a rough surface

Mean of all subjects
Distance 

(Handlebar) Distance (seat)

Velocity 

(handlebar) Velocity (seat)

Average 0.005527656 0.018874756 0.126585913 0.432243613

Max 6.28E-03 2.14E-02 1.39E-01 4.74E-01

Min 4.85E-03 1.65E-02 1.10E-01 3.77E-01

Difference 0.001432111 0.0048902 0.0286197 0.0977262

n 8 8 8 8

mean 0.0055 0.0189 0.1266 0.4322

sd 0.0005 0.0017 0.0104 0.0356



Individuals reusults for the RMS Values on the rolling road

Full suspension bike over a rough surface

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

HB dist 6.17E-03 6.58E-03 5.34E-03 6.34E-03 7.49E-03 6.36E-03 1.12E-02 6.36E-03

Seat dist 2.11E-02 2.25E-02 1.82E-02 2.16E-02 2.56E-02 2.17E-02 3.82E-02 2.17E-02

HB vel 1.02E-01 1.02E-01 9.48E-02 1.03E-01 1.06E-01 1.05E-01 1.47E-01 1.05E-01

Seat vel 3.48E-01 3.49E-01 3.24E-01 3.53E-01 3.63E-01 3.59E-01 5.01E-01 3.59E-01

RMS values for the full suspension bike over a rough surface

Mean of all subjects
Distance 

(Handlebar) Distance (seat)

Velocity 

(handlebar) Velocity (seat)

Average 0.006980774 0.023836135 0.108219405 0.3695233

Max 1.12E-02 3.82E-02 1.47E-01 5.01E-01

Min 5.34E-03 1.82E-02 9.48E-02 3.24E-01

Difference 0.005856331 0.01999642 0.05203096 0.1776574

n 8 8 8 8

mean 0.0070 0.0238 0.1082 0.3695

sd 0.0018 0.0062 0.0160 0.0546



Individuals reusults for the RMS Values on the rolling road

Hardtail bike over a smooth surface

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

HB dist 3.29E-03 1.65E-03 4.61E-03 1.60E-03 1.29E-03 2.93E-03 1.94E-03 1.29E-03

Seat dist 1.12E-02 5.62E-03 1.57E-02 5.46E-03 4.41E-03 9.99E-03 6.63E-03 4.41E-03

HB Vel 6.43E-02 4.78E-02 8.48E-02 4.14E-02 3.31E-02 5.98E-02 3.77E-02 3.31E-02

Seat Vel 2.20E-01 1.63E-01 2.90E-01 1.41E-01 1.13E-01 2.04E-01 1.29E-01 1.13E-01

RMS Values for the hardtail bike over a smooth surface

Mean of all subjects
Distance 

(Handlebar) Distance (seat)

Velocity 

(handlebar) Velocity (seat)

Average 0.002324395 0.007936773 0.050234438 0.171531025

Max 4.61E-03 1.57E-02 8.48E-02 2.90E-01

Min 1.29E-03 4.41E-03 3.31E-02 1.13E-01

Difference 3.32E-03 0.011330879 0.05177574 0.176794

n 8 8 8 8

mean 0.0023 0.0079 0.0502 0.1715

sd 0.0012 0.0040 0.0182 0.0622



Individuals reusults for the RMS Values on the rolling road

Full suspension bike over a smooth surface

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

HB dist 2.55E-03 1.60E-03 2.27E-03 1.93E-03 1.16E-03 1.80E-03 4.31E-03 1.16E-03

Seat dist 8.72E-03 5.46E-03 7.76E-03 6.58E-03 3.97E-03 6.15E-03 1.47E-02 3.97E-03

HB vel 4.50E-02 3.42E-02 4.26E-02 3.55E-02 2.12E-02 3.26E-02 5.56E-02 2.12E-02

Seat vel 1.54E-01 1.17E-01 1.46E-01 1.21E-01 7.25E-02 1.11E-01 1.90E-01 7.25E-02

RMS values for the full suspension bike over a smooth surface

Mean of all subjects
Distance 

(Handlebar) Distance (seat)

Velocity 

(handlebar) Velocity (seat)

Average 0.002098111 0.007164208 0.03599923 0.122923515

Max 4.31E-03 1.47E-02 5.56E-02 1.90E-01

Min 1.16E-03 3.97E-03 2.12E-02 7.25E-02

Difference 3.15E-03 0.010741492 0.03438353 0.11740444

n 8 8 8 8

mean 0.0021 0.0072 0.0360 0.1229

sd 0.0010 0.0035 0.0117 0.0400



RMS values for the hardtail bike - full suspension bike over a rough surface

HT - SUS

Distance 

(Handlebar) Distance (seat)

Velocity 

(handlebar) Velocity (seat)

NULL HYPOTHESIS

n 8 8 8 8

average -0.0015 -0.0050 0.0184 0.0627

sum -0.0116 -0.0397 0.1469 0.5018

sum of squares 0.0000 0.0006 0.0067 0.0777

sd 0.0022 0.0074 0.0238 0.0813

sd(mean) 0.0008 0.0026 0.0084 0.0287

t 1.9024 1.9023 2.1824 2.1827

p 9.8852% 9.8867% 6.5410% 6.5382%

Cv -1.4867 -1.4868 1.2960 1.2959

95% CONFIDENCE LIMITS

Upper -0.0015 -0.0050 0.0184 0.0627

Lower -0.0015 -0.0050 0.0184 0.0627

% Improvement by fitting suspension = 100*(average diff. / HT mean)

HT mean 0.0055 0.0189 0.1266 0.4322

% improvement -26.3% -26.3% 14.5% 14.5% % improvement



RMS values for the hardtail bike - full suspension bike over a smooth surface

HT - SUS

Distance 

(Handlebar) Distance (seat)

Velocity 

(handlebar) Velocity (seat)

NULL HYPOTHESIS

n 8 8 8 8

average 0.0002 0.0008 0.0142 0.0486

sum 0.0018 0.0062 0.1139 0.3889

sum of squares 0.0000 0.0002 0.0037 0.0434

sd 0.0013 0.0046 0.0173 0.0591

sd(mean) 0.0005 0.0016 0.0061 0.0209

t 0.4771 0.4770 2.3263 2.3263

p 64.7827% 64.7870% 5.2900% 5.2900%

Cv 5.9284 5.9292 1.2158 1.2158

95% CONFIDENCE LIMITS

Upper 0.0002 0.0008 0.0142 0.0486

Lower 0.0002 0.0008 0.0142 0.0486

% Improvement by fitting suspension = 100*(average diff. / HT mean)

Average 0.0023 0.0079 0.0502 0.1715

   % improvement 9.7% 9.7% 28.3% 28.3%

kosk7822
Line
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Tree Chart 

 

 



 

Decision Matrix Tree 
 
 
 

Mechanical aspects Phisiological aspects

Riding Style

Compare a full suspension bike

With a front suspension bike

 
 

Manual Automatic

Adjustable Beam suspension Unified rear triangle

Reduce weight Reduce bobbing

Pivot optimisation Amount of links Piston Spring

Lincage

Rear Tyre

Double Single

Front

Types of suspension

  Gradient Grip

Leaning Downhill Uphill

Traction

Wet Bumpy Dry Smooth

Riding surface

Cornering

Control

 

None Soft Firm

Suspension Setup Tire Pressure Gears selected Saddle Height

Bike Setup

Terrain Suspension

Tyres

Grip Bad technique Suspension

Energy lost

Route taken Physically fitter Style Equipment

Improvment

Speed

 
 

Round corners

Stand Lift

Over bumps Changing centre of gravity

Shifting Weight Aerodynamics

Free Locked Strapped in

Type

Spin Jam

Motion

Pedal Body position

Body Movment

 
 

Muscles effected Teqnique Training

Muscular stress

Surroundings Track

Familiarisation Fitness level Motivation General health

Performance

Tyre pressure Suspension Terrain Seat

Comfort

 
 
 
 
 



 
 

Decision Matrix Tree (continued) 
 
 
 

Terrain induced Time Speed Fitness

Energy expenditure

Sub maximal Maximal Rate Terrain dependant

Fatigue

 
 

Gears Wheels Frame Pedals Suspension

Strain

Grip Suspension Gearing

Energy lost

Upward Leaning Sideways Downward

Rider

Upward At an angle Sideways Downward

Bike

Motion

Forces acting on Bike

 
 
 

Recriational Competing Expert Pro

level of rider

Bump size Frequency

When one

system gives

an advantage

Straight Navigate bumps

Route over terrain

Rear suspension Front Suspension

optimisation
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Rolling Road Concepts 

 

 



 
 

Concept A      Concept B 

 
 
 
 
 
 
 
 
 
 

Concept C      Concept D 
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Inertia Calculations for the Rolling Road Rig 

 

 



Inertia calculations for the rig 

 

To simulate riding outside the rolling road must have the equivalent inertia of 

a bike and cyclist outside.  Energy conservation has been used to determine 

the required inertia of the rig. 

 

Firstly the equivalent inertia to cycling outside has to be ascertained to 

establish the inertia requirements of the roller.  This calculation determines 

the additional inertia required to match cycling outside: 

Ek rig = 2* Ek roller + Ek belt 

½ m bike+rider v² = 2*½ Iroller ω² + ½ m belt v² 

½ m bike+rider v² = Iroller v² / r² + ½ m belt v² 

½ m bike+rider = Iroller / r² + ½ m belt 

½ (12 +74) = Iroller / 0.2304² + ½*11.844 

43 = Iroller / 0.053 + 5.922 

37 = Iroller / 0.053 

Iroller = 1.961 kg/m² 

 

The next step is to ascertain the inertia of the actual rollers: 

I roller = (I casing) + 2*(I roller ends) + (I bar) 

I casing = mr2 

I casing = 0.37*0.1252 

I casing = 0.0058 kg/m² 

 

I roller ends = ½ mr2 

I roller ends = ½ (1.9267*0.1252) 

I roller ends = 0.015 kg/m² 

 

I bar = ½ mr2 

I bar = ½ (0.674*0.01252) 

I bar = 0.000053 kg/m² 

 

I rollers = (I casing) + 2*(I roller ends) + (I bar) 

I rollers = (0.0058) + 2*(0.015) + (0.000053) 



I rollers = 0.036 kg/m² 

 

As the inertia of the rollers has been found this can then be used to determine 

the additional inertia that is required for the rig to simulate riding outside.    

 

I total = I roller + I disk 

I disk = 1.961 + 0.036 

I disk = 1.889 kg/m² 

 

Therefore two inertia disks of 1.889 kg/m² are required for the rolling road rig 

to equate to riding outside.  The size of disk required to produce this inertia is 

calculated below: 

I disk = ½ mr2 

1.889 = ½ mr2 

1.889 = ½ m*0.242 

3.778 = m*0.0576 

m = 65.6 kg 

Therefore two steel inertia disks are required with a width of 0.0462 m and a 

radius of 0.24 m. 
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Friction Calculation for the Rolling Road Rig 

 

 



Rig Friction calculations 

 

The rolling road rig presents a resistance to the rider due to the added friction 

of the belt; this additional resistance must be quantified to establish the effect 

this will have on the cyclists’ performance. 

 

Firstly the power required to ride on the rig must be established, this can be 

found via the results of the run down test figure 5-11 and 5-12 (chapter 5).  In 

these run down test the initial velocity of the bike was 10 km/h or 2.78 m/s, the 

average time taken for the bike to come to rest is 4.6 s, from the average area 

under the graph a distance of 6.394 m has been calculated. 

 

The deceleration has to then be estblished: 

v2 = 2as 

a = v2/ 2s 

a = 2.782/ 2*6.394 

a = 0.604 m/s2 

 

The force that would produce this deceleration is then calculated: 

F = ma 

F = (75+10)*06604 

F = 51N 

 

The power can then be obtained: 

P = Fv 

P = 51*2.78 

P = 142.8 W 

 

  



To find the power required for a bike to go from 2.78m/s to rest with no wind 

acting on the bike going over a flat surface with no gradient the equations 

from Martin et al (1998) can be used: 

 

PT = PAT + PRR + PWB + PPE + PKE 

 

Total Power          PT  

Aerodynamic Power        PAT  

Rolling resistance Power        PRR  

Wheel Bearing Friction Power       PWB  

Power Related to changes in Potential Energy     PPE  

Power Related to changes in Kenetic Energy     PKE 

 

PAT = ½ ρ (CD A + FW) Va
2
 VG 

PRR = VG Cos [Tan -1 (GR)] CRR mT g 

PWB =VG (91 + 8.7 VG) 10-1 

PPE = VG mT  g Sin [Tan-1 (GR )] 

PKE = ∆KE / ∆t = ½ (mT + I / r2) (VGF
2 - VGI

2
 ) / ( ti - tf ) 

  

Firstly find the aerodynamic power (PAT) to ride a bike with no wind: 

 

CD and A were taken from Sunter and Sayers (2001): 

Drag coefficient        CD  = 1.15  

Surface area        A = 0.41m2 

Density of air        ρ = 1.223 kg/ m2
 

Incremental drag area of the spokes     Fw = 0.0044m2   

Velocity of air, if zero this equals the velocity of the ground  Va = 2.78 m/s 

Velocity of the ground       VG = 2.78 m/s 

 

PAT = ½ ρ (CD  A + FW) Va
2
 VG 

PAT = ½*1.2234*(1.15*0.41 + 0.0044)*2.78*2.78 

PAT = 6.255 W 

 



The power required due to rolling resistance with a road gradient of zero is the 

calculated (PRR): 

 

Road gradient     GR = Rise/Run 

Coefficient of rolling resistance         = 0.0032 

Mass total, rider plus bike    mT = 75 + 10= 85kg 

 

PRR = VG  Cos [Tan -1 (GR)] CRR mT g 

PRR = 2.78*  Cos [Tan -1 (0)] 0.0032*85*9.81 

PRR  =7.4179W 

 

Wheel bearing friction power (PWB ): 

  

PWB = VG (91 + 8.7 VG )*10-1 

PWB = 2.78*(91 + 8.72.78 )*10-1 

PWB = 0.9252W 

 

Potential Energy (PPE ): 

 

PPE =VG mT g Sin [Tan-1 (GR )] 

PPE =2.78*85*9.81Sin [Tan-1(0)] 

PPE = 0W 

 

Kinetic energy (PKE): 

Initial speed        VGF = 2.87 m/s 

Final speed        VGF = 0 m/s 

Initial time        ti = 0s 

Final time        tf = 4.6s 

Radius of the wheels      r= 0.322m 

Moment of inertia for two wheels is      = 0.14 kgm2 

 

PKE = ∆KE/∆t = ½ (mT + I/r2) (VGF
2 - VGI

2
 ) / ( ti - tf ) 

PKE = ½*(85*0.14/0.3222) (02 –2.782) / (0 – 4.6) 

PKE = 29.04 W 



From these results the total power required can be found: 

 

PT = PAT + PRR + PWB + PPE + PKE 

PT = 6.255  + 7.4179 + 0.9252 + 0 + 29.04 

PT = 43.63W 

 

The power required to travel at 2.78 m/s with no wind resistance on a flat 

surface is 43.63 W. 

 

Established previously is that it requires 142.8 W to ride on the rig, it now 

must be established what grade of slope and wind resistance this equates to. 

 

To find the road gradient GR = Rise / Run the same equation for power is 

used: 

 

PT = PAT + PRR + PWB + PPE + PKE 

142.8 = 6.255 + VG  Cos [Tan -1 (GR)] CRR mT g + 0.9252 + 

VG mT g Sin [Tan-1 (GR )] + 29.04 

 

142.8  = 6.255 + 2.78*  Cos [Tan -1 (GR)] 0.0032*85*9.81 + 0.9252 

+ 2.78*85*9.81 Sin [Tan-1(GR)] + 29.04 

14.368  = Cos [Tan -1 (GR)] + 312.5* Sin [Tan-1 (GR)] 

Therefore GR = 1/23.355 

 

The rig represents riding up an incline of 1/23.355. 

The second consideration is that of the rig represents riding into a head wind, 

the calculations to ascertain the equivalent head wind are presented below: 

 

PT = PAT + PRR + PWB + PPE + PKE 

142.8 = PAT + 7.4179 + 0.9252 + 0 + 29.04 

PAT = 105.4169 W 

PAT = ½ ρ (CD A + FW) Va
2
 VG 

 



If the wind travels directly towards the bike the yaw angle is zero therefore: 

 

105.4169 = ½*1.2234*(1.15*0.41+ 0.0044)* Va
2*2.78 

Va = 11.4 m/s 

 

This rig is also equivalent to riding into an 11.4 m/s headwind. 
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Rig Electronics 
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Track Concepts 

 

 



Concept A           Concept B 
 
 

 
 
 

Concept C 
 

 
 
 

Concept D                 Concept E 
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