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Abstract 

Chk1 is a key regulator of DNA damage response and genome stability in 

eukaryotes. To better understand how checkpoint proficiency affects cancer 

development particularly tumours induced by chemical carcinogens in murine 

skin, I investigated the effect of conditional genetic ablation of chk1. I found 

that complete deletion of chk1 immediately prior to carcinogen exposure 

strongly suppressed papilloma formation, and the few, small lesions that did 

form always retained Chk1 expression. Remarkably, chk1 deletion was 

accompanied by spontaneous cell proliferation followed by DNA damage and cell 

death within the hair follicle. This also affected and led to proliferation and 

ultimately depletion of label-retaining stem cells (LRCs) within the bulge region 

of hair follicles, the principal source for carcinogen-induced tumours. At later 

times, ablated skin became progressively repopulated by Chk1-expressing cells 

and normal sensitivity to tumour induction was restored if carcinogen treatment 

was delayed. In marked contrast, papillomas formed normally in chk1 

hemizygous skin but showed an increased propensity to progress to carcinomas. I 

conclude that Chk1 is essential for the survival of incipient cancer cells but that 

partial loss of function (haploinsufficiency) fosters tumour progression. 
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1.1. Cell Cycle Control 
 

Progression through the cell cycle is a highly ordered process consisting of 

distinct phases which are regulated by a network of proteins, kinases and 

phosphatases [reviewed by (Pollard TD, 2004)]. The serine-threonine family of 

kinases known as cyclin dependent kinases (Cdks) are mainly responsible for cell 

cycle progression and are activated by binding to cyclins, the name alluding to 

their cyclical accumulation and destruction throughout different phases of the 

cell cycle. CDK-cyclins are negatively regulated by an equally complex network 

of proteins including phosphatases, the INK4 and CIP/KIP family of proteins and 

through preoteolysis. When the cell acquires DNA mutations or damage either 

through external stressors or errors in replication, it has in reserve a variety of 

different repair mechanisms equipped to deal with specific lesions for example 

non homologous end joining and homologous recombination to deal with double 

stranded breaks and base excision repair that deals with single or short patches 

of nucleotide damage. However in order for DNA repair to occur, normal 

progression thorugh the cell cycle needs to be temporarily suspended to allow 

the appropriate recognition of the lesion and the recruitment of various repair 

proteins and the actual repair process to proceed without error. Checkpoint 

proteins are central to this process and defects in these pathways have a 

significant effect of tumour formation and progression [reviewed by (Smith et al, 

2010)].  

Chk1 is a key DNA damage and replication stress-response kinase that controls a 

variety of cell cycle checkpoints fucntion and is activated in primarily in the S 

and G2/M phases.  Chk1 triggers cell cycle delay by down-regulating key cell-

cycle regulatory components such as Cdc25, Cdk2-cyclinE (A) and  Cdk1-cyclinB 

complexes, and acts to stabilize stalled replication forks and suppress 

replication origin firing when DNA replication is blocked [reviewed by (Smith et 

al, 2010)]. As mentioned above, collectively, these responses are thought to 

facilitate DNA repair, prevent aberrant replication, and minimise potentially 

lethal genetic damage under conditions of genotoxic stress (Zachos et al, 2003a). 

Increasing evidence suggest tumours are particularly reliant on Chk1 as they 

often have functional defects within other cell cycle components eg. p53, p21, 
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Chk2/ATM (Bartkova et al, 2005) and reviewed by (Zhou & Bartek, 2004). Chk1 is 

now emerging as a potential anti-cancer target and selective kinase inhibitors 

are currently beign developed [reviewed by (Dai & Grant, 2010; Garber, 2005)]. 

It is still unclear how best to combine Chk1 inhibiton with current anti-cancer 

strategies. However the successful introduction of novel DNA damage modulators  

(Fong et al, 2009) do serve as a template for the use of agents that interfere 

with DNA repair within cancer cells. 

In cancer development, malignant cells can often acquire somatic mutations of 

various components of the cell cycle leading ultimately to dysregulated 

progression [reviewed by (Malumbres & Barbacid, 2009; Pines, 1995; Sherr, 1996; 

Smith et al, 2010)]. This can include an overexpression of cyclins for example 

amplification and aberrant nuclear accumulation of cyclin D1 [reviewed by (Kim 

& Diehl, 2009)]. High total cyclin E levels or high levels of the low molecular 

weight forms of cyclin E have significantly correlated with poorer outcomes in 

breast cancer patients (Keyomarsi et al, 2002). Negative regulation of cell cycle 

is frequently affected leading to carcinogenesis. The INK4-ARF locus has been 

frequently found to be deleted or inactivated in a variety cancers including 

melanoma [reviewed by (Sharpless & Chin, 2003)], glioma (Tachibana et al, 

2000) and pancreatic cancer  (Gerdes et al, 2001). Mutations or direct alteration 

in Cdk function is less well documented. In murine models Cdk4 has been shown 

to be important in cyclin D1 mediated breast tumourigenesis driven by the ErbB-

2 oncogene (Yu et al, 2006) but there is emerging evidence that the 

chromosomal region responsible is amplified in human cancer (Mejia-Guerrero et 

al, 2010). Phosphtases which promote Cdk-cyclin binding have been found to be 

overexpressed, for instance CDC25A has been found to be overexpressed in 

human breast cancer (Cangi et al, 2000; Ray & Kiyokawa, 2008) and more 

example have been reviewed by (Boutros et al, 2007). Emerging evidence 

suggest checkpoint protein are also important in preventing tumourigenesis, 

particularly by acting as a counterpoint or barrier against incipient cancer 

formation and by facilitating onocgene induced senescence (Bartkova et al, 

2005; Gorgoulis et al, 2005). They may also play a central role in modulating 

response to cancer therapies (Bao et al, 2006) and reviewed by (Zhou & Bartek, 

2004).  
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1.1.1. The Cell Cycle  
 

1.1.1.1. G0 & G1-phase 

Post mitotic cells are in G0, which is term also applied to cells in quiescence or 

senescence. G0 is usually a relative state of metabolic inactivity and can be 

triggered by starvation (Pardee, 1974). It is a period where Cdk and cyclin 

expression is low or absent. To begin replication, quiescent cells in G0 have to 

pass through a restriction point (Zetterberg & Larsson, 1985) before they can 

become committed to completing cell division. This is usually associated with 

the availability and the production/synthesis of growth factors and nutrients in 

the environment.  

The E2F family of genes plays a key role in the G1 phase of cell cycle [reviewed 

(Harbour & Dean, 2000)] which is in turn primarily regulated by retinoblastoma 

(Rb) [reviewed by (Dyson, 1998)]. In early studies involving serum stimulation of 

quiescent fibroblasts it has been shown that  c-Fos, c-Jun (Kovary & Bravo, 1991) 

are required for cell cycle progression. Additionally a variety of Cdks and cyclin 

D are expressed to sustain progression through G1 (explained subsequently). The 

E2F family of transcription factors functions [reviewed by (Muller & Helin, 2000; 

Neuman et al, 1996)] by stimulating transcription of proteins involved in the 

next step of progression to late G1 (such as Cdk2, cyclin E) and S-phase (such as 

Cdk2, cyclin A). E2F is normally inhibited by binding to Rb (Helin et al, 1993; 

Lees et al, 1993). As cyclin D levels increase, Cdk4-cyclin D and Cdk6-cyclin D 

complexes are activated during G1 and phosphorylate Rb thus releasing E2F 

[reviewed by (Polager & Ginsberg, 2009)]. Cdk2-cyclin E has also been shown to 

cooperate with Cdk4/6 and cyclinD to inactivate Rb (Khleif et al, 1996). This 

allows self-propagation of the cell cycle once the restriction point is passed 

despite the eventual decline of Cdk4-cyclinD and Cdk6-cyclinD levels in late G1. 

This maintains the cell’s course into S-phase [reviewed by (Hochegger et al, 

2008; Pollard TD, 2004)].  
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1.1.1.2.  S-phase 

In S phase, DNA is replicated by a complex process involving proteins that 

unwind the double stranded DNA in order to syntehsize a new complementary 

strand using either single stranded DNA or chromatid as the template. This aims 

to duplicate the DNA with high fidelity and avoid mutational errors as much as 

possible. 

Eukaryotic DNA synthesis is initiated at multiple origins of replication (in the 

order of tens of thousands) throughout the chromosomes in S phase. Due to the 

relatively huge length of DNA needing to be completely duplicated, multiple 

origins facillitate timely replication within the constraints of the cell cycle. Pre-

replication complexes (pre-RC) [reviewed by (Mechali, 2010; Takisawa et al, 

2000)] are curucial to initiation and are assembled in G1 when Cdk levels are low 

(Nguyen et al, 2001).  In late M phase or G1 phase, protein complexes ORC 

(origin recognition complex) act as landing pads for the replication factors Cdc6 

(Liang et al, 1995) and chromatin licensing and DNA replication factor 1 (Cdt1) 

(Maiorano et al, 2000), which in turn recruits the mini chromosome maintenance 

proteins (MCM) 2–7 to chromatin (Chong et al, 1995; Forsburg, 2008). MCMs 

posses a ring structure with a central pore that accommodates double-stranded 

DNA and functions as helicases that unwind DNA when activated. The assembled 

structure, or pre-replication complex (pre-RC), allows the initiation of DNA 

synthesis at that site. 

As Cdk and cyclin levels increase in S-phase, pre-RC competence is destroyed. 

Cdc6 and Cdt1 are removed from the complex and this ensures the pre-RC is able 

to initiate only one round of replication till the following G1, thereby preventing 

so called relicensing of replication origins. Cdc6 is phosphorylated by Cdk2-cyclin 

A and released from pre-RCs and relocalised to the cytoplasm (Petersen et al, 

1999) and Cdt1 undergoes proteolysis (Liu et al, 2004). An additional mechanism 

involves geminin which binds Cdt1 to block the loading of the MCM complex onto 

DNA (McGarry & Kirschner, 1998). Geminin is subsequently degraded by 

anaphase promoting complex/cyclosome (APC/C) at the metaphase-anaphase 

transition allowing reformation of pre-RCs at a later stage (McGarry & Kirschner, 

1998). 
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As cells enter S phase two serine threonine protein kinases are activated the S-

phase Cdks (SCdk) (Masumoto et al, 2002) and Dbf4-dependent Cdc7 kinase 

(DDK). Their activity triggers replication at pre-RCs by recruiting a number of 

proteins onto the pre-RC and activating MCM helicase activity. Stillman and 

colleagues (Sheu & Stillman, 2006) report that DDK promotes assembly of a 

stable cell division control protein 45 (Cdc45)-MCM complex exclusively on 

chromatin in S phase. Cdc45-MCM recruits the single stranded binding protein 

replication protein A (RPA) which stabilizes single stranded DNA and prevents 

reannealing (Tanaka & Nasmyth, 1998). 

Cdc45 and RPA recuit the DNA polymerase and primase complex Pol α/Primase 

(Walter & Newport, 2000). The primase synthesizes short segments of RNA 

primer to initiate strand elongation. Replication factor C (RFC) binds the 3’ end 

DNA and recruits proliferating cell nuclear antigen (PCNA) that surrounds DNA 

and forms a clamp (Podust et al, 1998; Stoimenov & Helleday, 2009). The RFC-

PCNA complex displaces the intial Pol α/Primase and loads DNA polymerase δ 

and  ε which continue strand elongation. DNA polymerase adds deoxy-NTPs are 

onto to the growing strand in a 5’→3’ direction. DNA polymerase δ and  ε can 

also proofread and repair the DNA via their exonuclease capability. On the 

leading strand 5’→3’ elongation is continous but on the 3’→5’ lagging strand 

Okazaki fragment synthesis is discontinous; these are eventually joined by DNA 

ligases [reviewed by (Kao & Bambara, 2003)].  

DNA replication in S-phase can be assayed using a thymidine analogue, Br-dUTP 

(BrdU) (Gratzner, 1982), which incorporates into synthesizing strands and can be 

detected using appropriate antibodies. In S-phase euchromatic regions typically 

replicate first followed by heterochromatic regions. Replication origins generally 

cluster in groups of approximately 5 to form replication foci. In terms of spatial 

distribution of replicating events, early replicating-foci are said to be found 

throughout the nucleus and later-replicating foci at the nuclear periphery 

/perinucleolar regions (Dimitrova & Gilbert, 1999). 

1.1.1.3.  G2-phase 

The Cdk1-cyclin B complex is the main effector for entry into mitosis 

(Santamaria et al, 2007). Cyclin B transcription starts in S phase and peaks in G2 
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and falls dramatically once the cell enters mitosis (Pines & Hunter, 1989; 

Solomon et al, 1990). After Cdk1 binds to cyclin B (Pines & Hunter, 1989), Cdk1 

is then activated by Cdk-activating kinase or CAK (Kaldis et al, 1996) by 

phosphorylation of Thr161. In addition to this Cdk1 activity is normally inhibited 

by phosphorylation at Thr14 and Tyr15 which is then dephosphorylated by Cdc25 

(Archambault & Glover, 2009; Boutros et al, 2007; Timofeev et al). Negative 

regulators of the Cdk1-cyclinB1 complex include Wee1 (Lundgren et al, 1991) 

which phosphorylate Cdk1 on Tyr15 (Gould & Nurse, 1989). Myelin transcription 

factor 1 (Myt1) also function to phosphorylate Cdk1 at Thr14 and Tyr15 (Mueller 

et al, 1995). Degradation of cyclin B is regulated by APC/C [reviewed by (Peters, 

2002)]. A peak or rise in Cdk2-cyclin A (Pagano et al, 1992) levels at the end of 

S-phase is also likely to contribute to mitotic entry. Cells with abnormal levels of 

activated Cdk2-cyclin A were demonstrated to enter into mitosis prematurely.  

1.1.1.4. Phosphatases 

Phosphatases (Cdc25A in G1 and Cdc25B/Cdc25C in G2/M) regulate Cdk-cyclin 

complexes by de-phosphorylating and activating Cdk-cyclin complexes [reviewed 

by (Aressy & Ducommun, 2008; Boutros et al, 2007)]. In the G1→S transition, 

Cdc25A (transcriptionally regulated by E2F) (Vigo et al, 1999) is activated 

causing Cdk2 de-phosphorylation and allowing its activation together with cyclin 

E and A. Cdc25B and cdc25C are active at the G2-M transition causing Cdk1 de-

phosphorylation. Checkpoint activation in response to DNA insult targets 

phosphatases for degradation thus stalling cycle progression [reviewed by (Aressy 

& Ducommun, 2008; Boutros et al, 2007)]. 

1.1.1.5. Negative Regulation of the Cell Cycle 

There are 3 other negative regulatory networks to controlling Cdk activity and 

thus cell cycle progression in addition to positive and negative phosphorylation; 

these are CIP/KIP family of Cdk inhibitors (CdkIs), inhibitors of kinase 4 (INK4) 

and protein degradation. 

The 3 known Cdk Inhibitors (CdkIs) are p21(CIP 1/WAF 1), p27 (KIP 1) and p57 

(KIP 2) (Malumbres & Barbacid, 2009), all of which can bind Cdk-cyclin to exert 

negative regulation. p21 inhibits Cdk2-cyclin E causing G1 arrest. p27 inactivates 

Cdk4-cyclin D, Cdk2-cyclin A and Cdk2-cyclin E (Polyak et al, 1994). This targets 
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Cdk-cyclin complexed for degradation via polyubiqutination by SCF (Tsvetkov et 

al, 1999). p27 protein levels are highest during G0 and early G1 phases, then 

rapidly declines in late G1 and S phases (Reynisdottir et al, 1995). P57 is 

particularly associated with Cdk-cyclin complexes in G1 phase (Matsuoka et al, 

1995).  

Inhibitors of kinase 4 (INK4) (Gil & Peters, 2006) family consisting of p15, p16, 

p18 and p19 whose overexpression can induce G1 arrest. Whereas CIP/KIP 

protein have a broader spectrum of inhibiton, the INK4 family more specifically 

inhibit Cdk4 and Cdk6. They do so by binding and distorting its N- and C-terminal 

lobes preventing their binding to cyclin D, thus preventing phosphorylation of Rb 

and therefore activation of E2F. 

Many proteins involved in cell cycle regulation are degraded via ubiquitination. 

E1 (ubiquitin activating enzyme) activates ubiquitin by binding via a thioester 

bond (Hoeller & Dikic, 2009). E2 (ubiquitin conjugating enzyme) and E3 

(ubiquitin ligase) functions to transfer ubiquitin to the targeted protein and to 

elongate its lengthening polyubiquitin tail. Polyubiquitinated proteins are 

targeted for destruction by 26s proteosomes and the ubiquitin molecules 

released are recycled. Two E3 ligases are prominent for cyclin degradation – 

anaphase promoting complex/cyclosome (APC/C) (Matyskiela et al, 2009) and 

SCF (Skp1, Cullin, F-Box). APC/C bound to specificity factor Cdc20 ie. APC/CCdc20 

is inactive during S and G2 phases but is activated by Cdk1-cyclinB during mitosis 

and targets liscencing fator, geminin. SCF is synthesized as cells approach G1 → 

S transition targets Cdk2-cyclinE for degradation.  
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1.2. DNA Damage Repair Mechanisms 
 

Cellular DNA is constantly subjected to exogenous (eg. chemical agents, 

ultraviolet light, tobacco smoke, alcohol) and endogenous stressors (eg. 

replication errors, products of metabolism, oxidation) that may result in 

damage. To that end, cells have evolved complex mechanisms to ensure that 

damaged DNA is recognised and repaired in a timely fashion [reviewed by (Ciccia 

& Elledge, 2010; Lindahl & Barnes, 2000)]. However, in order for these processes 

to occur effectively, cell cycle progression needs to be temporarily halted and 

cell cycle checkpoints play a key role in this step [reviewed by (Smith et al, 

2010; Zhou & Bartek, 2004)]. If unrepaired, damage lesions can result in 

mutations that can then lead to a variety of human diseases, including cancer 

[reviewed by (Jackson & Bartek, 2009)]. Conversely, inhibition of DNA repair 

mechanisms either alone or in conjunction with chemotherapy agents or 

radiotherapy may offer exciting new opportunities in cancer treatment 

[reviewed by (Chalmers et al, 2010; Pallis & Karamouzis, 2010)].   

Environmental mutagens can transfer methyl or ethyl alkylating groups onto 

guanine at the O6 position to form O6-methylguanine (other bases can also be 

alkylated, however O6-methylguanine is generally considered to be the most 

cytotoxic lesion) thereby modifying base structure and intefering with base 

pairing [reviewed by (Beranek, 1990)]. O6-methylguanine-DNA methyltransferase 

(MGMT) is one of the principal cellular defences against methyl/alkyl damage. 

Utilising a single step, direct repair mechanism, MGMT transfers the 

methyl/alkyl group from the O6 position of guanine onto a cysteine residue found 

in its catalytic pocket (Pegg, 2000). This process occurs at a one to one ratio 

(enzyme to DNA lesion) and irreversibly inactivates MGMT leading to its 

ubiquitination (Srivenugopal et al, 1996) and subsequent proteosomal 

degredation (Xu-Welliver & Pegg, 2002). Epigenetic silencing of MGMT has been 

shown to be an important predictor of tumour response to temozolomide and 

radiotherapy in glioblastoma multiforme (Hegi et al, 2005), and has been 

adopted as a stratification factor in new therapeutic trials in this disease (Prof. 

Roy Rampling, personal communication). A large number of chemotherapeutic 

alkylating agents used in clinical practice have been shown to be able to cause 

cellular kill via this mechanism and the recently uncovered role of MGMT in 
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modulating chemosensitivity may be a useful tool in predicting their 

effectiveness (Kaina et al, 2007). 

The base excision repair (BER) pathway is engaged to repair either single or 

short sections of DNA bases that have been altered by oxidation, alkylation, 

deamination or through inappropriate incorporation of uracil [reviewed by (Pallis 

& Karamouzis, 2010). Short patch repair deals with single base repairs and long 

patch repair processes stretches of 2-10 nucleotides [reviewed by (Pallis & 

Karamouzis, 2010). Damaged, mismatched, or abnormal bases are recognised by 

DNA glycolases which initiate repair by removing the damaged base(s) via 

hydrolyzation of the N-glycosidic bond (Chakravarti et al, 1991). This forms an 

abasic site (AP) which is recognised by apurinic or apyrimidinic endonuclease 

(APE1). APE1 cleaves the abasic site to form a single strand break (Izumi et al, 

2005). In short patch BER, DNA polymerase β then incorporates the single correct 

nucleotide at the AP site. It also excises the deoxyribose phosphate moiety via 

lyase activity and releases the 5′-dRP residues from the incised AP site (Sobol et 

al, 2000). The fnal ligation step is carried out by DNA ligase III in partnership 

with the XRCC1 (Cappelli et al, 1997). In long patch repair, DNA polymerases  

or δ (Stucki et al, 1998) in association with proliferating cell nuclear antigen 

(PCNA) carry out nucleotide resynthesis.  DNA ligase III and DNA ligase I are then 

responsible for ligation (Tomkinson et al, 2001). Poly (ADP-ribose) polymerase 

(PARP) is an important enzyme involved in BER. It binds to single strand breaks 

and catalyzes polymerisation and formation of poly (ADP-ribose) complexes on 

itself and other protein substrates at the site of damage. This serves to recruit 

proteins involved in BER including DNA polymerase β (Dantzer et al, 2000), DNA 

ligase III and X-ray repair cross-complementing protein-1 (XRCC1) (Caldecott et 

al, 1996). PARP inhibition therefore results in inhibition of BER. In the clinic the 

use of PARP inhibitors are being trialled with promising results (Audeh et al, 

2010; Fong et al, 2009), therefore serving as a prototypical DNA repair inhibitor 

therapy.  

Nucleotide excision repair (NER) removes bulky DNA adducts (eg. formed by 

chemicals such as nitrosamines, benzo[a]pyrenes and aromatic amines that bind 

DNA to form bulky adducts), intra-strand crosslinks and is particularly important 

for removing UV induced dimers [reviewed by (Nouspikel, 2009; Pallis & 

Karamouzis, 2010)]. A common crosslinking agent used in oncological practice is 
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cisplatin. There are two type of NER, global genome NER (GG-NER) and 

transcription coupled NER (TC-NER), which is specifically involved in recognition 

of lesions affecting transcribed regions. They differ in the types of proteins 

involved in recognising the lesions causing DNA distortion. In GG-NER the 

xeroderma pigmentosum C (XPC)-HR23B dimer (Sugasawa et al, 1998; Sugasawa 

et al, 1997) is primarily responsible for lesion recognition whereas in TC-NER 

cockayne syndrome A  and B (CSA) and (CSB) perform this role. The following 

steps between both are similar. Helicases such as xeroderma pigmentosum B 

(XPB) (Coin et al, 2007) and XPD (Winkler et al, 2000) open up the helix around 

the damaged site. Proteins such as transcription factor II H (TFIIH), XPA and 

replication protein A (RPA) (Ito et al, 2007) are recruited and help stabilise the 

opening. Two NER endonucleases then perform strand incision; XPG 

endonuclease cuts DNA on the 3’ side of the lesion (O'Donovan et al, 1994) and 

the excision repair cross-complementing 1 (ERCC1)/XPF heterodimer cleaves 

DNA on the 5’ side (Mu et al, 1996), releasing an oligonucleotide segment 

containing the damaged bases. DNA polymerase δ and/or ε then resynthesize the 

excised sequence using the complementary DNA as a template. It has been 

shown that ERCC1 expression in lung cancer may be a marker of chemotherapy 

response, particularly for cisplatin containing regimes (Olaussen et al, 2006), 

and is currently being used as a biomarker/stratification marker for a national 

trial in the UK (see ET Trial, National Cancer Research Network United Kingdom, 

Trials Number 02370070).  

Double strand breaks (DSB) are potentially lethal DNA lesions that are repaired 

primarily by the non-homologous end joining (NHEJ) and homologous 

recombination (HR) pathways. NHEJ repairs DSBs by direct ligation of damaged 

ends and is active throughout the cell cycle [reviewed by (Pallis & Karamouzis, 

2010)]. The Ku70-Ku80 heterodimer binds the damaged ends and recruits DNA 

dependent protein kinase catalytic subunit (DNA-PKcs) (Gottlieb & Jackson, 

1993; West et al, 1998) which is then activated and undergoes 

autophosphorylation. The DNA-PKcs-Artemis complex can then act as an 

endonuclease (Ma et al, 2002) to process and remove any single-stranded 

overhangs in order to prepare the ends for ligation. Alternatively, DNA 

Polymerase μ and λ are also attracted by the Ku70-80 heterodimer and can fill in 

gaps in the overhang regions (Daley et al, 2005; Ma et al, 2004). The two 
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adjoining ends then undergo the ligation step of reformation of the 

phosphodiester bond mediated by XRCC4 like factor (XLF), XRCC4 and DNA ligase 

IV (Critchlow et al, 1997; Grawunder et al, 1997). NHEJ is an effective repair 

system but one that is necessarily imprecise and can result in the loss or 

insertion of nucleotides at the site of repair. This is however preferable to the 

much greater loss of genetic information that would result from failure to repair 

DSBs [reviewed by (Kotnis et al, 2009)]. A Ku70-80-independent NHEJ pathway 

known as microhomology mediated end joining (MMEJ) has also been described. 

The molecular mechanism of MMEJ is less well understood however it is also 

error-prone and frequently results in sequence deletions (Liang et al, 1996; Roth 

& Wilson, 1986). 

Homologous recombination repairs DSBs with much greater fidelity than NHEJ 

(Richardson & Jasin, 2000; Richardson et al, 1998). Due to the requirement for 

the use of the sister chromatid as a template, this process is restricted to 

certain phases of the cell cycle namely late S or G2 (Rothkamm et al, 2003; 

Saleh-Gohari & Helleday, 2004) and various cell cycle regulatory mechanisms 

interact with HR processes to ensure this temporal specificity. HR is a more 

complicated and time consuming affair compared to NHEJ due to the 

requirement for DNA processing in order to generate tracts of single stranded 

DNA (ssDNA). Therefore it is not surprising that cell cycle regulation plays an 

integral role within HR. I will discuss basic mechanism of HR and its relationship 

to the ATM/Chk2 and ATR/Chk1 pathways below (see also 1.3). 

The MRN complex, meiotic-recombination protein-11 (MRE11), RAD50 and 

Nijmegen-breakage-syndrome (NBS1) (MRE11/Rad50/NBS1) plays an important 

role in the early response to DSBs by binding DNA ends. NBS1 interacts with 

ataxia telengectasia mutant (ATM) (see 1.3.1) which promotes recruitment of 

ATM to DSBs (Gatei et al, 2003). Carboxy-terminal-interacting protein (CtIP) 

together with breast cancer 1 (BRCA1) (Sartori et al, 2007; Yun & Hiom, 2009) 

and ATM (Ciccia & Elledge, 2010), function to activate the MRE11 endo- and exo-

nuclease activity to resect DNA at damaged sites to generate 3’ single-stranded 

tails [reviewed by (Pallis & Karamouzis, 2010)]. Exonuclease 1 (EXO1), bloom 

(BLM) and Artemis are also thought to play roles in promoting efficient DNA 

resection [reviewed by (Ciccia & Elledge, 2010)], whereas p53-binding protein 1 

(53BP1) may exert a negative effect (Bunting et al, 2010). The ssDNA formed by 

http://en.wikipedia.org/wiki/MRE11A
http://en.wikipedia.org/wiki/Rad50
http://en.wikipedia.org/wiki/Nbs1
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resection then becomes coated with RPA which promotes strand stabilization. 

BRCA2 subsequently promotes recruitment and displacement of RPA by RAD51 to 

form the nucleofilament that initiates strand invasion into the homologous 

sequences of the sister chromatid. A displacement loop (D loop) is formed during 

strand invasion between the invading 3' ssDNA and the homologous chromosome 

after which DNA polymerase catalyses the formation of newly synthesized DNA 

to achieve repair. Because ATM and Rad3 related protein (ATR) (see 1.3 and 

1.3.2) is activated through recruitment onto RPA coated ssDNA in association 

with ATR interacting protein (ATRIP), ATR activation in response to DSBs is also 

intimately linked to DNA strand resection and thus dependent on ATM and the 

MRN complex. In contrast, activation of ATR by replication arrest does not 

depend on strand resection or ATM-MRN, since in this situation ssDNA is created 

directly by uncoupling of the replicative DNA polymerase and MCM helicase 

activities (Byun et al, 2005).  

In summary, the ATM/ Chk2 pathway is activated directly by DSBs whereas 

ATR/Chk1 is activated by ssDNA. Not all DNA damage lesions therefore activate 

ATR/ Chk1 signalling directly. In the context of DSBs, ssDNA generated via ATM 

and MRN-dependent strand resection is the key intermediate in initiating both 

ATR/Chk1 activation and HR. 
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Figure 1 - Cell Cycle Checkpoint – ATR/Chk1 and ATM/Chk2 
 

In the presence of DNA damage and/or replication stress, highly conserved protein kinases 
mediate signals between checkpoint sensor proteins and their effectors. The earliest intermediary 
signals involve ATM (ataxia telengectasia mutant) and ATR (ATM and Rad3 related) which activate 
the downstream serine/threonine kinases respectively Chk1 and Chk2 respectively. Subsequent 
activation of cell cycle checkpoints delay progression at the S-M and G2-M phases which allow 
DNA repair processes to occur.  
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1.3. Cell Cycle Checkpoints 
 

An orderly progression through each cell cycle phase allows time for completion 

of DNA synthesis in S phase and alignment and segregation of chromosomes prior 

to divion into daughter cells in mitosis. When replication errors occur or 

mutations are caused by exogenous sources, then time is required for repair to 

be completed (see 1.2). Premature exit from S-phase or mitosis is highly likely to 

lead to DNA damage and mutations being propagated in the daughter cells 

[reviewed by(Carr, 2002)] and this is not considered a desirable outcome. Cell 

cycle ceckpoints therefore play a crucial function in dividing cells as they detect 

such erros and via downstream signalling cascades slow and halt replication in 

order for repair to occur [reviewed by (Ciccia & Elledge, 2010; Jackson & Bartek, 

2009; Smith et al, 2010)]. There are checkpoints active at various cell cycle 

stages including at the G1/S boundary, G2/M checkpoint (Zachos et al, 2003b) 

and at the spindle checkpoint in early mitosis (regulating attachment and 

tension at tubules at kinetochores prior to anaphase) (Zachos et al, 2007) – see 

Figure 1.  

Highly conserved protein kinases mediate signals between checkpoint sensor 

proteins and their effectors when DNA aberrations are present. The crucial 

intermediary signals involve ATM (ataxia telengectasia mutant) and ATR (ATM 

and Rad3 related protein) which activate the downstream serine/threonine 

kinases respectively checkpoint kinase 1 (Chk1) and Chk2 respectively. ATR and 

ATM are large kinases  homologous to the phosphatidylinositol 3-kinases family 

of kinases (PI3K)  without lipid kinase activity but instead phosphorylate proteins 

(Kastan & Bartek, 2004). ATM/Chk2 seem to be primarily activated following 

double strand DNA damage whereas ATR/Chk1 is activated by ssDNA [reviewed 

by (Bartek et al, 2004; Kastan & Bartek, 2004; Smith et al, 2010)]. There is 

emerging data to suggest a degree of crosstalk between both pathways 

(Wakabayashi et al, 2008; Zaugg et al, 2007). Under physiological conditions, the 

ATM/Chk2 pathway is not essential for cellular division as humans and mice 

lacking either ATM or Chk2 are viable (Shiloh & Kastan, 2001; Takai et al, 2002). 

This contrasts with ATR/Chk1 pathway where embryonic lethality is observed in 
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ATR and chk1 null mice (Brown & Baltimore, 2000; Lam et al, 2004; Zhou & 

Bartek, 2004).  

 

1.3.1. ATM/Chk2 
ATM is thought to exist as homodimers in its inactive state. In response to DNA 

damage, ATM undergoes a conformational change which stimulates its kinase 

domain to auto-phosphophorylate Serine 1981 which leads to dissociation of the 

ATM homodimer producing the active monomer (Bakkenist & Kastan, 2003). The 

initial signal for ATM activation is still unclear but may be linked to changes in 

higher order chromatin structure (Kim et al, 2009) in addition to signals 

originating from the DSB itself. This was also noted by earlier studies that 

showed global ATM activation in cells almost immediately in response to DBSs 

and not just focally at damage sites (Bakkenist & Kastan, 2003). Although 

Serine1981 was the first autophosphorylation site to be described but 

subsequent studies showed that it was non-essential in knockout mice (Pellegrini 

et al, 2006) and other autophosphorylation sites have been shown to be 

important in ATM activation (Kozlov et al, 2006).   

As previously discussed (see 1.2) although not entirely understood, a key player 

in sensing DSB is the MRN complex (Ljungman, 2005; Usui et al, 1998). ATM 

monomers are then recruited to DSB via interactions with the MRN complex (Lee 

& Paull, 2005). ATM kinase targets downstream activators such as p53 (Lee & 

Paull, 2005), H2AX (Burma et al, 2001), 53BP1 (DiTullio et al, 2002), BRCA1 

(Cortez et al, 1999) and Chk2 (Matsuoka et al, 1998) to promote key components 

of DNA damage response to localize at DSBs and mediate checkpoint activation. 

ATM phosphorylates Chk2 on Thr68 (Ahn et al, 2000) and this leads to 

homodimerisation involving binding with the fork head associated (FHA) domain 

(Li et al, 2002). Dimerisation is required for the activation of the kinase domain 

through loop autophosphorylation (Cai et al, 2009; Schwarz et al, 2003; Xu et al, 

2002). Known Chk2 substrates include p53 (Chehab et al, 2000; Hirao et al, 

2000), BRCA1 (Lee et al, 2000) and CDC25 (Falck et al, 2001).  



Lye Mun Tho Chapter 1  28 

Activation at G1 and S-phase is achieved by ATM/Chk2 (and ATR/Chk1) via 

phosphorylation of Cdc25A at Serine 123 which targets it for degradation (Falck 

et al, 2001) prevents dephosphorylation of Cdk2. Chk2 is known to stabilise p53 

(Chehab et al, 2000) and [reviewed by (Riley et al, 2008)] and promote 

transcription of p21 in response to DNA damage (Hirao et al, 2000). Cdk2 activity 

is required for progression at the G1/S boundary (Tsai et al, 1993). p21 has been 

shown to inhibit Cdk2-cyclin E activity and thus restrain progression into S-phase 

(Stewart et al, 1999) and reviewed by (Abbas & Dutta, 2009). In addition, Chk2 

appears critical in inducing apoptosis following ionizing radiation as Chk2-/- 

thymocytes are resistant to apoptosis and do not activate p53 (Hirao et al, 

2000). Chk2 is also shown to phosphorylate CDC25C (Ahn & Prives, 2002) which 

leads to inactivation of Cdk1 which is key at the G2/M boundary. However, the 

evidence for Chk2 playing a major role in the G2/M checkpoint is not extensive 

[reviewed by (Naim & Rosselli, 2009)] at least compared to the central role 

played by Chk1 here.  

 

1.3.2. ATR/Chk1 
The ATR/Chk1 pathway is activated most strongly when encountering DNA 

replication stress and ssDNA generation [reviewed by (Cimprich & Cortez, 2008; 

Smith et al, 2010)] and as previously discussed (see 1.2), has a central role in 

responding to external DNA damage particularly in cooperation with HR DNA 

repair. Replication stress maybe encountered due to misincorporation/mismatch 

pairing of nucleotides or direct damage caused by exogenous agents on newly 

synthesized strands [reviewed by (Cox et al, 2000)].  

The ATR/Chk1 checkpoint response is important in :  

1) Preventing replication fork collapse and maintain replication fork viability in 

S-phase to allow resumption of DNA synthesis when conditions permit 

2) Preventing futile origin firing in S-phase (eg. when newly formed forks cannot 

elongate) 
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3) Preventing premature entry into mitosis because incompletely replicated DNA 

and premature chromosome condensation or segregation lead to the propagation 

of mutations and/or cell death.  

Single-stranded DNA (ssDNA) becomes coated by replication protein A (RPA) to 

create a platform for the recruitment of the ATR-interacting-protein ATRIP-ATR 

complex (Zou & Elledge, 2003). The concomitant loading of other factors — such 

as DNA topoisomerase binding protein-1 (TopBP1) (Delacroix et al, 2007; 

Kumagai et al, 2006), the 9-1-1 complex (Delacroix et al, 2007) and claspin 

(Kumagai & Dunphy, 2000; Kumagai & Dunphy, 2003) cooperate with ATR to 

achieve efficient phosphorylation of Chk1 by ATR. It is important to note that 

DSB can activate the ATR/Chk1 pathway but this requires prior processing of the 

breaks to generate ssDNA for example during NER or HR [reviewed by (Smith et 

al, 2010)]. ATR phosphorylates Chk1 at multiple sites within its C-terminal 

regulatory domain but most notably at serine 317 and serine 345 which are often 

used as surrogate indicators for Chk1 activity. However, only serine 345 

phosphorylation seems to be critical for actual Chk1 biological activity (Niida et 

al, 2007; Walker et al, 2009) and it is still unclear how Chk1 phosphorylation 

events influence catalytic activity. There is some evidence that Chk1 release 

from chromatin following phosphorylation at Ser 317 and/or Ser 345 is required 

for its activity (Smits et al, 2006).  

Chk1 phosphorylation inhibitory targets include CDC25A (Sorensen et al, 2003) 

and CDC25C (Blasina et al, 1999). CDC25A is targeted for ubiquitin mediated 

degradation (Falck et al, 2001) and phosphorylation of CDC25C at Serine 123 

promotes binding with 14-3-3 leading to cytoplasmic sequestration (Peng et al, 

1997). The CDC25 family of proteins are of course important in progressing the 

cell cycle by targeting Cdks for dephosphorylation/activation (see 1.1.1.4). Chk1 

activating phosphorylation of Wee1 results in inhibiton of Cdk1 activity and 

delayed progression at the G2/M checkpoint (Rowley et al, 1992). Other positive 

Chk1 phosphorylation targets include BRCA2 (Bahassi et al, 2008) and RAD51 

(Bahassi et al, 2008; Sorensen et al, 2005) which promote HR DNA repair. More 

recently Nakanishki and colleagues have shown a novel role for Chk1 in Histone 

H3 Threonine 11 phosphorylation which represses transcription of pro-cell cycle 

factors such as cyclin B/A/E and Cdk1 in response to DNA damage (Shimada et 

al, 2008).  
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When DT40 cells are treated with the DNA polymerase inhibitor aphidicolin, Chk1 

phosphorylation (at Serine 345) results in cells being able to delay entry into 

mitosis for prolonged periods (Lopez-Girona et al, 2001; Zachos et al, 2005). 

However, when aphidicolin is added to Chk1 knockout mutants, an initial delay is 

observed for up to 9 hours but the cells eventually progress into mitosis. A large 

proportion of these cells exhibit 2N and sub-4N DNA content indicating mitotic 

entry prior to completion of DNA replication (Zachos et al, 2005). Thus Chk1 

appears important for sustained but not initial S-M checkpoint activation. When 

Chk1-/- cells are arrested for >4 hrs in aphidicolin and then released, they 

demonstrate a loss of viability of replication forks and cannot resume synthesis 

when released (Zachos et al, 2003b). Also new (futile) origin firing occurs in 

these Chk1 deficient cells. When blocked for >8hrs, a significant decrease in 

clonogenic survival and increased cell fragmentation is observed. Inhibition of 

the ATR/Chk1 pathway has been shown to result in DSBs (Syljuasen et al, 2005) 

and activation of p38 mediated S-phase checkpoint and apoptosis (Jirmanova et 

al, 2005). Consistent with these results, Chk1 -/- cells were viable but 

proliferated more slowly and exhibited higher levels of spontaneous apoptosis by 

Annexin V staining (Zachos et al, 2003b). In response to ionizing radiation (IR) 

DT40 cells activate Chk1 and accumulate in G2. However, Chk1 deficient DT40 

cells (Zachos et al, 2003b), as well as conditional knockout mouse cells (Liu et 

al, 2000b), demonstrated premature mitotic entry (phospho-Ser10 histone H-3 

staining) and continued cell cycling. Consequently Chk1 deficient cells were 

hypersensitive to killing by IR via with evidence of premature mitotic entry in 

the presence of incompletely replicated or repaired DNA (Zachos et al, 2003b).  
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1.4. The Role of Chk1 and Other DNA Damage 
Checkpoints in Either Preventing or Treating 
Cancer – Opposing Paradigms 

 

1.4.1. Checkpoints as a Barrier to Tumorigenesis  
During the transformation of normal cells into cancer cells, incipient tumours 

often need to acquire multiple oncogenic mutations (see Figure 2). These can 

evoke counter-responses by tumour suppressor mechanisms to engage 

senescence or apoptosis in order to halt carcinogenesis. Cell cycle checkpoint 

and DNA damage response proteins are thought to play a major role in this 

process (Bartkova et al, 2005; Bartkova et al, 2006; Gorgoulis et al, 2005). In a 

study by Bartkova et al (Bartkova et al, 2005), early tumours (carcinoma in situ 

or early T1 lesions) were found to high constitutive expression and activation of 

DNA damage response proteins including ATM/Chk2, H2AX, p53. In contrast, 

more advanced tumours (T2-4) appear to have lower levels of staining. 

Functional loss of these pathways was then shown to precede the presence of 

increased genomic instability as assayed by genome-wide SNP array analysis. In 

vitro overexpression of cyclin E, Cdc25A and E2F1 induced DNA damage 

responses in U2OS cells. The authors postulate that mutations affecting 

checkpoint function, particularly those affecting the ATM−Chk2−p53 pathway, 

confer inordinate survival advantage and promote genomic instability and 

tumour progression. In another study by Gorgoulis et al (Gorgoulis et al, 2005) 

they observed activation of DNA damage response proteins and checkpoint 

pathways in a panel of human non-small cell cancer and preneoplastic and 

neoplastic melanoma lesions. In hyperplastic tissue, 53BP1 was present in a 

discrete nuclear localization, histone H2AX and Chk2 were phosphorylated, and 

apoptosis observed, all signs of ongoing/active DNA damage response. However, 

in more advanced disease, there were several tumours that displayed a 

suppression of apoptosis accompanied by lack of 53BP1 localization, presence of 

p53 mutation, lack of Chk2 phosphorylation but a persistence of histone H2AX 

phosphorylation. Finally Bartkova et al (Bartkova et al, 2006) reported that  

http://www.nature.com/nature/journal/v434/n7035/fig_tab/nature03482_F4.html
http://www.nature.com/nature/journal/v434/n7035/fig_tab/nature03482_F4.html
http://www.nature.com/nature/journal/v434/n7035/fig_tab/nature03482_F4.html
http://www.nature.com/nature/journal/v434/n7035/fig_tab/nature03485_F1.html
http://www.nature.com/nature/journal/v434/n7035/fig_tab/nature03485_F1.html
http://www.nature.com/nature/journal/v434/n7035/fig_tab/nature03485_F1.html
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Figure 2 - The Role of Chk1 and Other DNA Damage Checkpoints in Either Preventing or 
Treating Cancer – Opposing Paradigms 
 

During the transformation of normal cells into cancer cells, incipient tumours acquire multiple 
oncogenic mutations. These can evoke counter-responses by tumour suppressor mechanisms to 
engage senescence or apoptosis in order to halt carcinogenesis and DNA damage response 
proteins are thought to play a major role in this process. On the other hand it has been shown that 
loss of cell cycle checkpoints can enhance tumour cell death and thus, has been proposed as a 
novel anti-cancer strategy. Whereas most studies have focussed on the ATM/Chk2 pathway, 
relatively less is known about the potential role of the ATR/Chk1 pathway.  
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oncogene induced senescence may represent a tumourigenesis barrier 

mechanism initiated by DNA damage checkpoints. They show that oncogene 

induced senescence is commonly associated with precancerous lesions and in 

cancer cells, mos, cdc6 and cyclin E over expression led to activation of the DNA 

damage checkpoints and the presence of senescence associated β-galactosidase 

activity. U2OS cells expressing cyclin E were assayed with IdU and CldU to 

distinguish ongoing and newly fired replication forks and this demonstrated an 

increase in DNA DSBs and prematurely terminated replication forks. In tumour 

cells injected into SCID mice, inhibiton of ATM resulted in suppressed activation 

of cell cycle checkpoints and led to larger and more invasive tumours. When 

human cancer paraffin-embedded tissue was studied, progression from 

preneoplastic lesions to more aggressive tumours was associated with decreased 

expression of markers for senescence and cell cycle checkpoint activation and 

these two factors demonstrated close co-segregation.  

Whereas most studies have focussed on the ATM/Chk2 pathway, relatively little 

is known about the potential role of the ATR/Chk1 pathway as a barrier to 

carcinogenesis [reviewed by (Smith et al, 2010)]. In contrast to ATM/Chk2/p53, 

complete loss of Chk1 appears to be a very rare event in tumourigenesis. Instead 

Chk1 appears to be upregulated in various tumour types (Sriuranpong et al, 

2004; Stawinska et al, 2008; Tort et al, 2005; Verlinden et al, 2007) and has only 

shown to be downregulated in only one study within a small group of highly 

aggressive lymphomas (transcriptionally and post-transcriptionally) (Tort et al, 

2005). Chk1 mutation has rarely been reported (Bertoni et al, 1999; Kim et al, 

2007). This suggests that Chk1 function might be particular important for 

tumours, even into the latter stages of cancer development.  Extrapolating from 

what we already understand about Chk1 function, presumably Chk1 is playing a 

role in maintaining DNA repair/orderly cell cycle progression competence in the 

face of genotoxic stress. It has been suggested that reliance on the ATR/Chk1 

pathway may be (Zhou & Bartek, 2004) marked in cancer cells since p53 function 

is commonly lost in advanced cancers and as recent evidence suggests, so is 

ATM/Chk2 function (Bartkova et al, 2005; Gorgoulis et al, 2005). According to 

our current understanding, it is not clear if the loss of Chk1 will promote the 

development of more aggressive tumours or instead, cause tumour cell death 

due to loss of competence for genomic replication (see Figure 2).  
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1.4.2. Therapeutic Potential of Chk1 Inhibition 
Whilst checkpoints may have an important role as a barrier against cancer 

progression, it has also been shown that Chk1 inhibition can be an effective 

means to enhance tumour cell death and thus, has been proposed as a novel 

anti-cancer strategy (Dai & Grant, 2010; Zhou & Bartek, 2004) (see Figure 2). 

Whilst a cell is undergoing DNA replication, this is particularly sensitive period 

when replication errors or DNA damage if not repaired, may lead to genomic 

instability and cell death. To overcome this, checkpoint responses are engaged 

to allow replication forks to stall, undergo repair and restart synthesis (Jackson 

& Bartek, 2009). Chk1 is central in mediating the S-phase and G2/M checkpoint 

delay (Zachos et al, 2003b; Zachos et al, 2005) in response to a wide variety of 

genotoxic anti-cancer therapies (Zhou & Bartek, 2004). Taking this forward 

therapeutically it suggests that Chk1 inhibition in combination with the delivery 

of chemotherapy and radiotherapy has the potential to overcome the natural 

defences of tumour cells thus causing lethality.  

As approximately 50% of cancers are thought to have an inactivated p53 pathway 

(Zhou & Bartek, 2004) and that a significant proportion have defects in the 

ATM/Chk2 pathway  (Bartkova et al, 2005; Bartkova et al, 2006; Gorgoulis et al, 

2005), this creates a situation where cancer cells are deficient G1 checkpoint 

which hampers the tumour cell’s ability to arrest in response to genotoxic stress. 

As discussed previously (see 1.4.1) studies have also shown a role for intact 

checkpoint pathways in mediating oncogene induced sensescence thereby 

preventing early and incipient tumours (Bartkova et al, 2005). Thus it has been 

postulated that when other defects in checkpoint pathways already exist, these 

cancer cells become extremely reliant on Chk1 in order to respond to DNA 

damage (Dai & Grant, 2010; Zhou & Bartek, 2004). Therefore the strategy of 

Chk1 inhibtion may have the advantage of preferentially sensitizing tumour 

cells, as opposed to normal tissue which does not have p53 inactivation, to DNA 

damage thus achieving a desirable therapeutic ration between tumour cell death 

and acceptable side effects on normal tissue.  
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This idea is beginning to be tested in the clinic. UCN-01 originally a well-known 

laboratory checkpoint inhibitor and protein kinase C inhibitor (PKC) was tested 

as a single agent in early phase clinical trials (Sausville et al, 2001) and in 

combination with various chemotherapy drugs (Edelman et al, 2007; Jimeno et 

al, 2008; Welch et al, 2007). There was some early indication of anti-tumour 

activity but disappointingly the toxicity profile was unacceptable with dose-

limiting toxicities of pulmonary dysfunction, nausea and vomiting, and metabolic 

acidosis observed. It has been shown subsequently that an unusual 

pharmacokinetic profile with a prolonged elimination time due to increased 

plasma protein binding and also the fact it was not a “clean” kinase inhibitor (it 

targeted PKC as well) might have explained the results (Mackay & Twelves, 

2003). More recently, a new generation Chk1 inhibitors with an improved 

pharmacokinetic profile and enhanced Chk1 selectivity are being developed and 

several are on the cusp of entering Phase I clinical trials (Dai & Grant, 2010; 

Garber, 2005; Tao & Lin, 2006). The results of these agents are eagerly awaited.  

1.4.2.1. Synthetic Lethality 

Synthetic lethality is where mutations in two genes individually have no 

deletrious effect on the organism, but combining the mutations leads to death 

(Dobzhansky, 1946). In the context of the delivery of DNA damaging agents to 

destroy cancer cells, the concept of synthetic lethality relies on the knowledge 

of particular genetic profiles in the tumour and delivering appropriate therapy to 

take advantage of an inability to respond to and repair DNA damage [reviewed 

by (Kaelin, 2005) and (Chalmers et al, 2010)]. This concept can be illustrated in 

human gliomas where O6-methylguanine-DNA methyltransferase (MGMT) protects 

tumours against methyl/alkyl damage. Utilising a one step, direct repair 

mechanism, MGMT transfers the methyl/alkyl group from the O6 position of 

guanine onto the cysteine residue found in its catalytic pocket (Pegg, 2000). This 

process occurs at a one to one ratio (enzyme to DNA lesion) and will irreversibly 

inactivate MGMT. In recent clinical trials the addition of temozolomide to 

radiation has been shown to significantly improve outcomes in glioblastoma 

multiforme a disease in which outcomes have remained poor for many decades 

(Stupp et al, 2005). Indeed in the trial at 5 years, there were up to 10% of 

patients alive and this has never been seen before. Temozolomide is a classical 

alkylating agent that alkylates DNA with particular affinity to the O6 position of 
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guanine. On closer analysis of the trial data, it appears that the patients who 

had epigenetic silencing of MGMT derived significant benefit from the addition of 

temozolomide in contrast to the non-silenced group (Hegi et al, 2005). 

Therefore, we are now able to identify glioma patients who are susceptible to 

alkylating agent damage and by adding temozolomide to radiotherapy achieve 

even more effective killing of cancers leading to a dramatic improvement in 

outcomes. Another recent example is PARP inhibition in BRCA1 patients 

(Chalmers et al, 2010; Fong et al, 2009). PARP is a key component of base 

excision repair (discussed in 1.2) and BRCA1 is essential in HR (discussed in 1.2). 

Here in tumours already known to be defective in responding to DNA damage 

such as platinum intra-strand crosslinking (Taniguchi et al, 2003) and HR repair 

(Bunting et al, 2010), targeting these cells by inhibting a separate DNA repair 

pathway (ie. base excision repair) achieves enhanced cell killing (Farmer et al, 

2005; Loser et al, 2010; Rottenberg et al, 2008) and dramatic clinical results in 

research trials (Audeh et al, 2010; Fong et al, 2009). 

As it pertains to Chk1 inhibiton, the concept of synthetic lethality applies 

because the majority of cancer cells are already deficient in some components 

of checkpoint pathway activation (discussed in 01.4.2) and by removing the 

ATR/Chk1 axis this would potentially sensitize these cells to lethality using a 

number of conventional anti-cancer drugs. Furthermore due to the apparent 

reliance of cancer cells on the ATR/Chk1 pathway compared to the normal cells, 

the latter could potentially be spared cytotoxicity thus achieving a favourable 

therapeutic ratio (discussed in 01.4.2).  
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1.5. Chk1 Mouse Models 
 

 Chk1 knockout mice (Lam et al, 2004; Liu et al, 2000b) have been generated by 

ES cell gene targeting, where homologous recombination with the targeting 

vector replaced 3kb of chk1 containing exons 2 to 5 which encodes the initiator 

methionine, the “GxGxxG” ATP-bonding motif and half of the kinase domain. 

Chimeras were bred to produce germ-line transmission. When chk1+/- 

heterozygotes were intercrossed, complete chk1-/- knockout offspring were 

never observed due to embryonic lethality around E3.5 to E7.5 (Lam et al, 2004; 

Liu et al, 2000b). In utero examination revealed empty deciduas and remains of 

resorbed embryos were often observed at E6.5 to E7.5. Analysis of early 

blastocyts at E3.5 showed grossly abnormal morphology and increased apoptosis 

which appears independent of p53 (evidence obtained when chk1 knockout mice 

were crossed with p53-/- mice). This suggests that chk1 is required for the 

survival of cells during embryonic development. 

Conditional knockouts were therefore necessary to study the effect of complete 

absence of chk1. Chk1+/- ES cells were targeted with a construct containing loxP 

sites flanking exon 2 where the translational initiation sequence and ATP-binding 

site of the kinase are found (Liu et al, 2000b). No viable clones were obtained 

from chk1flox/- ES cells after undergoing Cre-loxP mediated excision. Analysis of 

DNA content by FACS revealed a significant sub-G1 population at 72 hours post 

recombination. In the interim, these cells exhibited defective G2/M DNA damage 

checkpoint in response to ionising radiation and entered mitosis prematurely. In 

chk1flox/+ ES cells, Cre-loxP mediated excision resulted in viable chk1Δ/+ cell 

lines. Chk1+/- heterozygous mice were healthy, fertile and tumour free up to 

1.5 years (Liu et al, 2000b). To determine if allelic loss of chk1 could enhance 

tumour formation, chk1+/-mice were crossed to WNT-1 transgenic mice, driven 

by a mammary specific promoter, MMTV. Heterozygous mice showed a modest 

and only marginally statistically significant increase in tumourigenesis compared 

to the wild type (WT). Southern blot assays noted that none of the tumours were 

found to have loss of heterozygosity (LOH) of chk1, and the authors postulate 

that the possible explanation being homozygous lethality when chk1 is 

completely absent.  
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Due to embryonic lethality as a result of constitutive chk1 loss, as is the case in 

cell lines, conditional knockouts have been employed to investigate the 

biological consequences of gene deletion in adult mice. This has been modelled 

in 3 different physiological systems – the mammary gland (Lam et al, 2004), gut 

(Greenow et al, 2009) and thymus (Zaugg et al, 2007). As described above (Liu et 

al, 2000b), the same loxP system flanking exon 2 of chk1 was used– these mice 

being termed chk1flox mice. Cre-mediated recombination was possible in 

different tissue types by using tissue specific promoters to drive Cre expression. 

Lam et al  (Lam et al, 2004) used a system where Cre is expressed under the 

control of a mammary specific WAP (whey acid protein) promoter which allows 

conditional chk1 deletion in somatic lobuloalveolar precursor cells in the 

mammary gland.  This achieved 50-60% recombination during day 10 of 

pregnancy and a further 10-15% at the beginning of lactation. Complete chk1 

loss resulted in impaired development of mammary cells, increased apoptosis 

and non-viability by day 11.  Hemizygous loss only marginally impaired mammary 

cell development and survival. However, hemizygous cells displayed marked cell 

cycle dysregulation with premature entry into mitosis (with incompletely 

replicated DNA) and greater levels of endogenous DNA damage. From these 

results, the authors inferred that chk1 hemizygosity revealed a haploinsufficient 

tumour suppressor role by virtue of the presence of multiple defects relating to 

cell cycle regulation potentially increasing the propensity for propagating 

carcinogenic mutations. However they did not go on to demonstrate the 

presence of genomic instability in chk1 deficient tissues in vivo nor if the cell 

cycle aberrations they observed in vitro translated into a phenotype in mice or 

increase in tumour development. Therefore although a haploinsufficint tumour 

suppressor effects is inferred from their in vitro data it has not been clarified 

whether chk1 loss complete or hemizygous, promotes carcinogenesis (Liu et al, 

2000a) or alternatively causes death of incipient cancer cells and acts as a 

barrier for cancer formation (Bartkova et al, 2005; Bartkova et al, 2006; 

Gorgoulis et al, 2005) (see 1.4).   

Greenow et al (Greenow et al, 2009) investigated the effect of chk1 loss in gut 

epithelium. The mice they used were gifted by our laboratory (Prof David 

Gillespie, Beatson Institute for Cancer Research – see 2.1 and 2.2) and were 

crossed with mice expressing Cre under the control of a CYP1A1 (AhCre) 



Lye Mun Tho Chapter 1  39 

promoter. Genetic recombination was achieved after treatment with β-

naphthoflavone intraperitoneally. The investigators noted efficient chk1 deletion 

in the gut as evidenced by a marked reduction in Chk1 mRNA expression and 

western blot analysis. An increase in the presence of the recombined allele was 

also demonstrated by semi-quantitative PCR of genomic DNA. Recombination 

resulted in intestinal crypt death, DNA damage and p53 induction. However, 

after an initial peak of recombination detected at around day 2 (D2), Chk1 

expression returned in the tissue and was restored by D5 and D21. The authors 

concluded that unrecombined cells repopulate the tissue after death of the chk1 

recombined cells. Overall the mice remained viable, without any apparent gross 

pathological changes suggesting that repopulation was able to maintain 

intestinal homeostasis. In contrast, the authors observed that chk1 excision in 

the liver was not accompanied by a similar repopulation phenomenon and that 

recombination persisted even up to 35 weeks. It was suggested that chk1 loss is 

tolerated better in post mitotic organs such as the liver and this might be 

explained because chk1 is essential only in actively cycling cells which is 

predominant in the intestine.  

Finally Zaugg et al (Zaugg et al, 2007) bred the conditional chk1 mice to Lck-Cre 

mice which causes T-cell lineage specific recombination in the thymus gland. 

Their findings were in agreement with the other studies described. The 

investigators observed that chk1 was essential for thymocyte development and 

that its absence resulted in apoptosis. When crossed to a bcl2-tg background 

they did not observe an increase in tumourigenesis associated in chk1flox/flox 

animals but the authors did not go on to establish the chk1 status of the tumours 

nor did they report the observation of a repopulation phenomena (Greenow et 

al, 2009).    
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1.6. Murine Skin as an Experimental Model 
 

The skin is the largest organs found in mammals with both neuroectodermal and 

mesodermal lineages contributing to its structure. The epithelium consists of  

keratinocytes, merkel cells, melanocytes and Langerhans cells (Schmidt-Ullrich 

& Paus, 2005). Mitosis in the basal layer of the epidermis produces skin cells 

which move up the strata changing shape and composition and eventually die 

due to isolation from their blood source. Various cytoskeletal proteins or 

keratins are expressed in these cells which can be used as markers for 

identifying the various layers of the epidermis; for example keratin-14 or K14 

(Arin et al, 2001) is expressed in keratinocytes in the basal layer of the 

epidermis, the outer root sheath of the hair follicle and the sebaceous gland and 

also in epidermal stem cells and multipotent stem cells that reside in the bulge 

region of the hair follicle (Tumbar et al, 2004). I will describe genetic 

manipulation using a K14 promoter [(Li et al, 2000; McLean et al, 2004) see 

3.1.3] to drive expression of certain genes within specific layers of the skin in 

this thesis. The skin is amenable for experimentation as it presents an externally 

accesible organ which can be visualised directly in living mice and a variety of 

procedures can be performed without the need for invasive surgery.  

 

1.6.1. The Two Stage DMBA/TPA Skin Carcinogenesis 
Protocol 

In this thesis I utilise the two-stage DMBA/TPA tumour initiation and promotion 

protocol (see Figure 3). This is a well described and proven model for studying 

the evolution of tumours in mouse skin (Kemp, 2005; Perez-Losada & Balmain, 

2003; Quintanilla et al, 1986).  It involves treating the dorsal skin with an 

initiating dose of DMBA (7,12-dimethyl-benz[a]anthracene) (Berenblum & Shubik, 

1949) as a single application typically, followed by multiple applications of 

tumor promoter TPA (12-O-tetra-decanoyl-phorbol-13-acetate) (Roe et al, 1972) 

over several months. This gives rise to benign, pre-malignant papillomas, which  

http://en.wikipedia.org/wiki/Merkel_cell
http://en.wikipedia.org/wiki/Melanocyte
http://en.wikipedia.org/wiki/Langerhans_cell
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Figure 3 - DMBA/TPA Chemical Carcinogenesis Protocol 
 

The two stage DMBA/TPA tumour initiation and promotion protocol is a well described and proven 
model for studying the evolution of tumours in mouse skin (Kemp, 2005; Perez-Losada & Balmain, 
2003).  It involves treating the dorsal skin with an initiating dose of DMBA (7,12-dimethyl-
benz[a]anthracene) as a single application typically, followed by multiple applications of tumor 
promoter, TPA (12-O-tetra-decanoyl-phorbol-13-acetate) over several months. This gives rise to 
hyperplasic epidermis and stroma and outgrowths of pre-malignant papillomas. With continued 
TPA promotion, these lesions enlarge and a small percentage of papillomas transform into 
malignant, invasive squamous cell carcinomas. [Scale bars represent (black) 200μm and (red) 
100μm]  
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comprise hyperplasic epidermis and stroma. With continued TPA promotion, 

these lesions enlarge and a small percentage of papillomas develop into 

malignant, invasive squamous cell carcinomas. The number, size, and growth 

rate of these tumors is readily quantified and the tumours harvested for further 

laboratory analysis. Various pharmacological treatments or genetic 

manipulations can be built into the protocol to test their effect on the different 

stages of carcinogenesis – namely to test the effects of experimental 

manipulation on papilloma initiation and outgrowth or papilloma to carcinoma 

transition respectively [reviewed by (Kemp, 2005)].  

In this protocol the vast majority of tumours produced following DMBA initiation 

possess a h-ras mutation with amino acid change CAA to CTA in codon 61, over 

90% (Balmain et al, 1984; Quintanilla et al, 1986). Even though DMBA can induce 

different types of mutations, eg. k-ras (it’s mutagenic action is random) it 

appears that promotion specifically by TPA selects for outgrowth of h-ras 

bearing papillomas. For instance, when the DMBA treated skin is subject to a 

different method of tumour promotion such as a constitutive overexpression of 

ornithine decarboxylase (Megosh et al, 1998), less than 50% showed typical 

codon 61 h-ras mutation, instead a variety of k-ras mutations were observed in 

the majority (Megosh et al, 1998). It has been found that in tumours promoted 

by TPA, there is an associated overexpression of adhesion molecules, keratins, 

growth factors, cyclins and cyclin-dependent kinases (Owens et al, 1999). The 

prolonged duration of promotion is conducive for the acquisition of additional 

genetic mutations, commonly found hits include, p53mutation (Burns et al, 

1991) and trisomy of chromosome 7 (h-ras is found on chromosome 7)  (Bianchi 

et al, 1990). These additional hits appears to be crucial in promoting  

transformation from benign papilloma into malignant carcinoma (Perez-Losada & 

Balmain, 2003).  

Mice treated with DMBA without subsequent promotion by TPA do not develop 

tumours or where TPA is discontinued, tumours regressed (Kemp, 2005). Mice 

only treated with TPA without DMBA likewise do not develop tumours (Boutwell 

et al, 1982; Perez-Losada & Balmain, 2003). Age of initiation of carcinogenesis 

appears crucial, the younger the age of commencement, the more papillomas 

that develop. Mice that commenced DMBA/TPA at ages 6, 44, and 56 weeks, 

showed a decreasing average number of papillomas per mouse (Van Duuren et 
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al, 1975). The effect of DMBA initiation can have a long latency period. Even 

when promotion with TPA is started 1 year after exposure to DMBA, papilloma 

burden was considerable albeit less than when TPA was started 1 week after 

initiation (Van Duuren et al, 1975). Taken together, this indicates that increasing 

age of the mouse at commencement of TPA reduces tumour burden. However, 

the initiating effect of DMBA persists over a long duration, even if promotion is 

delayed.  
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1.7. Stem Cells And Cancer 
 

According to a workshop convened by the American Association for Cancer 

Research (AACR), the consensus definition of a cancer stem cell is a “cell within 

a tumor that possesses the capacity to self-renew and to cause the 

heterogeneous lineages of cancer cells that comprise the tumor” (Clarke et al, 

2006). This is essentially a functional definition which has come to rely on in 

vivo growth assays to test the ability of cells to seed tumours in animal hosts. 

Phenotypic features of cancer stem cells have been well described [reviewed by 

(Alison et al, 2010; Bomken et al, 2010; Clarke et al, 2006; Lathia et al, 2010; 

Rosen & Jordan, 2009; Visvader & Lindeman, 2008)]. Cancer stem cells are 

thought to possess the capacity for self-renewal and longevity. In addition they 

are thought to possess multipotency and the capability to produce differentiated 

progeny. Cancer stem cells are said to be able to undergo either asymmetric or 

symmetrical cell division. The former term refers to a type of cell division that 

results in a daughter stem cell and another possessing a more differentiated 

phenotype, lacking tissue regeneration ability. Indeed after transplantation of a 

suspension of cells enriched for stem cells into an animal host, the resultant 

tumour often shows loss of this enrichment leading to cellular heterogeneity 

resembling the original tumour from which the putative stem cells were derived.  

 

1.7.1. Identification of Stem Cells and Markers 
Pioneering studies performed by Dick and colleagues (Lapidot et al, 1994) in the 

1990s showed that using an in vivo assay involving transplantation of acute 

myeloid leukaemic cells into severe combined immune-deficient (SCID) mice, 

they were able to isolate a small sub-population of cells (1 in 250,000 cells) that 

displayed pluripotency and the ability to reconstitute the phenotype of the 

human disease. The leukaemia-initiating cells were identifiable by surface 

markers CD34+ve and CD38-ve. However, historically as far back as Furth and 

Kahn in 1937 (Furth & Kahn, 1937) it had been observed that a single cancer cell 

was able to cause leukaemia in inoculated mice from the same strain but that 

only around 5% of inoculations were successful. These and other early studies 
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along the same lines [(Hewitt, 1953; Ishibashi, 1950; Makino, 1956), reviewed by 

(Bomken et al, 2010)] established the conceptual paradigm that a hierarchical 

organisation may exist within tumours whereby only a small but distinct sub-

population of cancer cells possess the properties of self-renewal, longevity and 

the ability to differentiate into multiple cell types and reconstitute the 

heterogeneity found in tumours. 

Extrapolation of these ideas into solid tumour oncology has led to extensive 

efforts to identify and characterise “cancer stem cells” functionally and 

molecularly in numerous tumour types.  One of the first pieces of in vivo 

experimental evidence in solid tumours was provided by Clarke and colleagues 

(Al-Hajj et al, 2003) who used a system to grow human breast cancers in the 

mouse mammary fat pad of non-obese diabetic/severe combined 

immunodeficient (NOD/SCID) mice. Using limited dilution and flow cytometry 

techniques they were able to identify a CD44+ve/ CD24-ve/ lo/ lineage-ve 

(lineage markers: CD2, CD3, CD10, CD16, CD18, CD31, CD64 and CD140b) sub-

population of putative stem cells with high engraftment potential. The tumours 

which arose from these were observed to reflect the phenotypic heterogeneity 

of the original tumours. In this study, samples were primarily obtained from 

pleural effusions from patients and in doing so avoided what has become a 

controversial area in solid tumour work as compared to haematological 

malignancies – ie. the necessity to dissociate an intact tumour in order to obtain 

single cells for experimentation. It is unclear and some propose potentially 

confounding how the process of dissociating the intact tumour to isolate single 

cells affects cell behaviour or indeed compromises viability [reviewed by (Rosen 

& Jordan, 2009)]. Another objection to studying solid tumours after 

disaggregation is the uncertainty about the origin of the cells being investigated 

and the role within the context of the tissue and host microenvironment (Gupta 

et al, 2009).  Following the delineation of cancer stem cells in breast tumours, 

this was followed by work in brain cancers where Dirks and colleagues (Singh et 

al, 2004) using a xenograft NOD/SCID mice implantation assay found that only 

brain tumour cells positive for CD133 surface markers were able to initiate 

tumour formation. As few as 100 injected cells could reproduce tumours which 

could then be serially transplanted, in contrast injecting as many as 105 CD133-

ve tumour cells did not result in tumour formation.    
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What both these seminal studies showed was that it was possible to separate a 

heterogenous population of cancer cells based on cell surface markers ie. in 

breast cancer cell CD44+ve/ CD24-ve/ lo/ lineage-ve (Al-Hajj et al, 2003), and in 

brain cancer cells CD133+ve (Singh et al, 2004), thereby obtaining a small but 

distinct sub-population with “stem cell” like properties. Following on from this a 

substantial amount of work was directed at analysing a variety of different 

tumour types in order to define unique features which mark out cancer stem 

cells. A summary of markers has been reviewed by (Alison et al, 2010; Lathia et 

al, 2010; Visvader & Lindeman, 2008). These include, for example, for colon 

cancer CD133+ve (O'Brien et al, 2007; Ricci-Vitiani et al, 2007), for lung cancer 

CD133+ve (Eramo et al, 2008), and for head and neck cancer CD44+ve (Prince et 

al, 2007). In addition to markers found on the cell surface other biological 

characteristics have also been suggested to identify stem cells. One is the ability 

of to exclude Hoechst dye (Hoechst33342 binds AT rich regions of DNA), enabling 

living dye-negative cells to be isolated using fluorescence activated cell sorting 

[(Goodell et al, 1996), reviewed by (Wu & Alman, 2008)]. The Hoechst negative 

cells are known as a “side” population as they were initially discovered as a 

small but distinct group on FACS plots. The efflux pumps ATP-binding cassette 

subfamily G (ABCG) in particular ABCG2 (Scharenberg et al, 2002) and ABCG5 are 

largely thought to be responsible for this phenomenon (Jonker et al, 2005). 

ABCG pumps also seem to be involved in conferring chemotherapy resistance via 

drug efflux capacity (Doyle & Ross, 2003; Kusuhara & Sugiyama, 2007), thus 

raising the possibility of being able to direct therapy specifically at cancer stem 

cells. Another marker found to be distinct in both haemopoetic (Pearce et al, 

2005) and solid tumours (Ginestier et al, 2007) cancer stem cells is high 

aldehyde dehydrogenase expression or activity, an enzyme originally studied for 

its role in detoxifying metabolic waste products particularly in the liver.   

Another method of detecting stem cells involves BrdU pulse-labelling neonatal 

mice followed by extended chase periods (Bickenbach, 1981; Cotsarelis et al, 

1990). This reveals the existence of so-called label retaining cells (LRCs) that 

incorporate BrdU during neonatal tissue development but which subsequently 

enter quiescence, thus retaining the incorporated label for months or even 

years. This technique has been widely used to visualise normal stem cells in 

mouse skin (Bickenbach, 1981; Cotsarelis et al, 1990). I describe the use of this 
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technique in this thesis (see 2.10 and 5.1.1). Although a well characterised tool 

for stem cell work in a non malignant context, its use for detecting the cancer 

stem cells remains unproven. Furthermore, the use of both Hoechst dye staining 

and BrdU labelling has been criticised due to potential toxicity as a result of 

incorporation and interference with DNA structure and integrity [reviwed by (Wu 

& Alman, 2008)]. Another drawback seems to be the inability of isolate BrdU 

labelled cells for further experimentation [reviewed by (Li & Clevers, 2010)]. 

Fuchs and colleagues seem to have overcome this limitation by using a 

doxycycline induced H2B-GFP system and further in vivo work was able to be 

performed (Tumbar et al, 2004). I do not utilise the H2B-GFP system in this 

thesis. 

It is becoming increasingly evident that there is uncertainty over the application 

of markers to define cancer stem cells as the field continues to evolve. 

Furthermore although we currently utilise various markers to pursue stem cell 

research, little is understood about their role in cellular physiology, and even 

less is known about their role in cancer formation and progression.  

 

1.7.2. Important Pathways in Stem Cells 
The field of cancer stem cell research has illuminated several pathways, some of 

which overlap with the fields of developmental biology and cellular renewal and 

whose significance was previously unrecognised in cancer development. WNT 

signalling is involved in embryonic development and tissue homeostasis 

[reviewed by (Espada et al, 2009; Grigoryan et al, 2008; Wend et al, 2010)].  

High WNT activity was noted originally in cancers of familial adenomatous 

polyposis patients (Kinzler et al, 1991) caused by APC mutations.  In skin it has 

been shown that WNT signalling is crucial for hair development and stem cell 

differentiation (Castilho et al, 2009; DasGupta & Fuchs, 1999; Gat et al, 1998; 

Greco et al, 2009; Huelsken et al, 2001; Nguyen et al, 2006). In skin tumours 

induced by DMBA/TPA carcinogenesis, isolated putative cancer stem cells with 

high engraftment potential displayed high nuclear localization of β-catenin, and 

ablation of β-catenin resulted in loss of cancer stem cells and tumour regression 

(Malanchi et al, 2008). In the intestine, WNT signalling appears to be essential 
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for maintaining crypt stem cells. In colon cancer, it has been shown that high 

WNT activity functionally defines the cancer stem cell population (Vermeulen et 

al, 2010). 

The DNA damage and checkpoint pathways have been shown to be preferentially 

activated in glioma stem cells following radiotherapy and appear to play an 

important role in mediating radioresistance (Bao et al, 2006). Rich and 

colleagues showed that CD133+ve glioma cells growing in xenografts were more 

radioresistant than their CD133-ve counterparts with lower rates of apoptosis 

seen. Further analysis showed an upregulation of phosphorylated Rad17, Chk1 

and Chk2. If treated with debromohymenialdisine (a Chk1 and Chk2 inhibitor) 

prior to irradiation, the radioresistance of CD133+ve cells was able to be 

reversed.   

This raises the clinically relevant question to whether cancer stem cells can be 

targeted for therapy. It has long been considered that cancer stem cells might 

represent the “Holy Grail” of cancer treatment [reviewed by (Alison et al, 2010; 

Baumann et al, 2008)]. Certainly this has been proposed as a potentially 

important mechanism of resistance to anti-cancer therapy ie. although the vast 

majority fo cancer cells might be destroyed by the treatment intially, unique 

characteristics of the stem cell confers resistance and due to multipotency and 

longevity they proliferate to reconstitute the recurrent tumour. One problem is 

that directing therapy towards pathways or processes crucial to the cancer stem 

cell may also do the same in normal stem cells. This could potentially limit 

normal tissue tolerability due to an unacceptable side effect profile. If we 

consider the case of checkpoint pathways in glioma stem cell resistance, normal 

brain stem cells are likely to utilise the same checkpoint pathways to deal with 

replication errors and/or DNA damage incurred by the anti-cancer 

treatment/radiotherapy given concurrently. In the case of checkpoint pathways 

however, there is substantial evidence to suggest cancer cells compared to 

normal tissue may be overly reliant on particular components of these pathways 

ie. ATR/Chk1 axis and anti-cancer agents being designed should take advantage 

of this [reviewed by (Dai & Grant, 2010; Smith et al, 2010; Zhou & Bartek, 2004)] 

and see 1.4.2. Other studies have similarly investigated differences in pathway 

activation between normal versus cancer stem cells and have offered potential 

opportunities which might be exploited for therapeutic purposes (Wei et al, 
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2008; Yilmaz et al, 2006). Morrison and collegues (Yilmaz et al, 2006) showed 

that conditional mutation and functional deletion of PTEN in haemopoetic cells 

led to excessive proliferation of haemopoetic stem cells and their depletion 

from bone marrow. But these mice also developed myeloproliferative type 

disorder and eventually leukaemia. They showed that treatment with rapamycin 

(mTOR inhibition) was able to prevent leukaemia formation but on the other 

hand restore normal haemopoetic stem cell function.  

 

1.7.3. Role of the Host Environment in Transplantation 
Assays 

As the field expands, it is becoming more apparent that there are many areas of 

debate and controversy which have yet to be resolved in the cancer stem cell 

field. There is evidence to suggest that the prevalence of cancer stem cells may 

be higher than thought and frequency of detection may be determined by 

experimental methodology. The fraction of cancer cells possessing stem cell-like 

properties compared to non stem cells, obtained from the conventional limited 

dilution and in vivo implantation assays (Quintana et al, 2008; Shackleton et al, 

2006), have typically been found in the order of 1 to 103-6 [reviewed by 

(Quintana et al, 2008)]. However several studies have challenged these findings. 

In a study by Morrison and colleagues (Quintana et al, 2008) they show altering 

the host environment of the transplanted cancer cells radically increased the 

tumourigenic potential. Instead of using NOD/SCID mice, which retain some 

natural killer cell activity (Shultz et al, 2005), they used a more highly 

immunocompromised variant lacking the interleukin-2 receptor gamma chain 

(NOD/SCID IL2Rγnull). They showed that the tumourigenic frequency was 

markedly increased, around one in 4 cells were able to produce tumours from 

unselected melanoma samples from human patients. To see if growth in 

NOD/SCID IL2Rγnull mice selected out aggressive clones, subsequent tumours 

were re-implanted in NOC/SCID mice and the frequency of tumourigenic cells 

decreased suggesting host factors were solely responsible. In fact using 

xenografted tumors obtained from 4 different patients, flow cytometry sorted 

single cells were mixed with Matrigel and injected into NOD/SCID IL2Rγnull, and a 

stunning 27% of cells developed into tumours. In contrast, studies of melanoma 
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stem cells using NOD/SCID mice have only typically demonstrated a 1 in 106 

tumourigenic capacity (Schatton et al, 2008). Similar studies using other types of 

more highly immunocompromised host mice have also shown an increased 

tumourigenic proclivity (Agliano et al, 2008; Feuring-Buske et al, 2003; Taussig 

et al, 2008) but even then antibody mediated clearance has been observed to 

reduce engraftment (Archambault & Glover, 2009). Therefore it is now becoming 

recognised that experimental assay conditions or host microenvironment plays a 

crucial role in identifying stem cells and the gold standard in vivo engraftment 

assay for cancer stem cell detection is unlikely to be NOD/SCID mice (Bomken et 

al, 2010). It is also unclear how emerging data obtained from these newer, more 

immunocompromised models will alter our existing criteria for defining cancer 

stem cells based on previous studies that have identified various marker using 

NOD/SCID mice.  

 

1.7.4. Quiescence versus Proliferation – the LGR5 
Positive Stem Cell 

It has been a long held belief that adult stem cells are relatively quiescent 

compared to the rest of the surrounding tissue [reviewed by (Moore & Lyle, 

2010) and (Li & Clevers, 2010) and (Cotsarelis et al, 1990)]. Experimental 

evidence from BrdU assays for label retaining cells suggest that label-retention 

in the skin bulge region can be detected even after 1 year in murine models 

(Cotsarelis et al, 1990; Lyle et al, 1999). Work from intestinal murine models 

also suggests a slow-cycling stem cell population occupying the crypts (Potten et 

al, 2002). This is in contrast to germ stem cells which have been shown to be 

actively dividing [reviewed by (Kimble & White, 1981; Spradling et al, 2001) and 

(Crittenden et al, 2006)] and are thought to go into a quiescent only under 

certain specific circumstances such as a starvation (Narbonne & Roy, 2006). As 

maintenance of homeostasis in adult tissue, particularly in rapidly dividing tissue 

such as skin and gut, requires constant cell renewal (Lajtha, 1979) this has posed 

a conundrum - to explain the mechanism by which a pluripotent but crucially 

quiescent sub-population of cells is able to be responsible for the generation of a 

continual supply of replacement cells. Most researchers up till now have used 

the transit amplifying population (TA cells) model to explain the “bridge” 
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between these two populations (Potten, 1981) and reviewed by (Jones et al, 

2007). TA cells are thought originate from asymmetric stem cell division to 

produce a quiescent stem cell and an actively dividing TA cell which obviously 

enters into cell cycle. TA cells are thought to be committed to a number of 

finite symmetric cell divisions but they lack any significant degree of 

pluripotency or more specifically, the capacity to return into a state of 

“stemness” [reviewed by (Jones et al, 2007)]. The evidence to support this 

hypothesis however has not been satisfactory [reviewed by (Jones et al, 2007)]. 

The TA cell model suggests the existence of two distinct cell types each with 

different cell kinetic properties. However, data from cell labelling experiments 

in the adult interfollicular epidermis have shown otherwise, and thus questions 

the existence of an intermediary TA population (Clayton et al, 2007). The 

investigators observed that genetically inducible labelled stem cells were 

responsible for repopulating a distinct tissue area. The cells were able to 

undergo both symmetric and asymmetric division and in a subset of cells doing 

so demonstrated cell kinetics of an actively cycling population (Clayton et al, 

2007; Klein et al, 2007).  

Because of the likelihood that cancer stem cells arise from normal stem cells, or 

at least this the pre-eminent hypothesis (Clarke et al, 2006), it follows that 

cancer stem cells are also likely to be quiescent. Again there remains limited 

evidence for this. Krauss and colleagues using [Vybrant-DiI™] cell-labelling, a 

slowly-cycling population of pancreatic cancer cells (DiI+/SCC) showed the 

necessary propensity for engraftment in xenograft models as well as in vitro 

colony forming assays. (Moore & Lyle, 2010)]. CD24+ve ovarian cancer cells (Gao 

et al, 2010), which express nestin, Bim-1, β-catenin, oct and notch, were found 

to proliferate more slowly compared to other tumour cells as well as displaying 

relative chemoresistance.  

In a series of paradigm changing discoveries in intestinal (Barker et al, 2007) and 

skin (Jaks et al, 2008) models, our conventional understanding of the stem cell is 

now being challenged. These studies have described a previously unrecognised 

sub-population of cells expressing LGR5 (leucine-rich G protein-coupled receptor 

5), a downstream target of WNT signalling, possessing all the classical properties 

of stem cells including pluripotency, longevity, self-renewal potential and 
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enhanced engraftment potential, yet are continually cycling. They do not retain 

BrdU, are located in separate tissue sites from the quiescent population and 

demonstrate minimal co-expression of conventional markers.  

In the skin, it has been previously shown that stem cells represent a quiescent 

sub-population, particularly through label retaining cell (LRC) experiments 

(Braun et al, 2003; Cotsarelis et al, 1990; Fuchs, 2007; Tumbar et al, 2004). 

There are only a few situations where LRC proliferation has been documented. In 

the anagen phase of the hair cycle LRCs have been shown to enter into cell cycle 

and proliferate (Blanpain et al, 2004) in a limited manner. When there is direct 

tissue damage to the skin, and when wound healing is required (Ito et al, 2005), 

LRCs appear to proliferate to a much greater degree in response to this stimuli. 

Hence, it has been postulated that LRCs represent a quiescent population that 

acts as a “reserve” in cases of tissue perturbation. However Toftgard and 

colleagues (Jaks et al, 2008) have described a sub-population of LGR5 expressing 

cells located between the dermal papilla and lower bulge (or hair germ) see 

Figure 4, which are continually cycling. They display all the accepted hallmarks 

of stem cells including pluripotency as confirmed by in vivo lineage tracing and 

transplantation experiments. In contrast to LRCs, LGR5 cells continue to 

proliferate throughout the hair cycle and actively contribute to tissue renewal. 

They are also long lived and are able to self-renew.   

Therefore a new model is being proposed that suggests that there exists two 

distinct stem cell populations within the skin, a quiescent LRC population and an 

actively dividing LGR5 population (Li & Clevers, 2010). Each has a defined niche 

and interestingly apparently different roles in homeostasis, which has also been 

referred to as the “zoned” model previously (Scoville et al, 2008). The LGR5 

expressing population actively divides to renew constant cell turnover whereas 

the quiescent population appears to function as a “reserve” in case of tissue 

perturbation (Ito et al, 2005). It is less clear however how these two cell 

populations are maintained in their different states or whether they signal 

between each other in a dynamic interplay. It is also unknown if one population 

may revert to the other and under what circumstances this may occur. In 

Chapter 5 (see 5.2) and Chapter 8 (see 8.2) I go on to discuss the role of WNT 

signalling and the different microenvironments of the bulge and dermal papillae  
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Figure 4 - Epidermal Stem Cell Populations 
 

Stem cells have previously been identified in both the bulge region of the hair follicle and 
interfollicular epidermis and it appears both populations may be responsible for giving rise to 
DMBA/TPA induced papillomas.  
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which is beginning to offer clues as to how these two distinct populations are 

regulated. Finally, this new model appears to offer a more credible alternative 

to the transit amplifying cell model (Jones et al, 2007) which as mentioned, has 

limited supportive data and has failed to explain important aspects of stem cell 

kinetics (Clayton et al, 2007).  

 

1.7.5. Tissue Specific Stem Cells are Targets for 
Chemical Carcinogenesis  

Despite controversy, substantial data exists to suggest that skin tumours arising 

due to chemical carcinogenesis derive from stem cells within the skin [reviewed 

by (Frame & Balmain, 1999; Fuchs et al, 2004; Morris, 2004; Perez-Losada & 

Balmain, 2003)]. There are three main reasons as to why stem cells are thought 

to be the cell of origin for tumours, reviewed by (Perez-Losada & Balmain, 

2003). The first is that these cells are long lived. This feature is advantageous 

for the accumulation of multiple genetic alterations required for transformation 

and undergoing tissue promotion over time. As described, the initiating effect of 

DMBA within the skin can persist for prolonged periods even when TPA promotion 

was delayed for a year. This supports the view that stem cells are targets 

because they are the only cell population which could potentially retain these 

changes over this period (Van Duuren et al, 1975). The second reason is that 

stem cells generally possess intrinsic genetic advantages, for example bulge 

stem cells are adept at invading the surrounding dermis as a prerequisite for 

normal hair follicle formation, which is conferred onto the newly transformed 

cancer cell and this sets them apart from non-stem cells. Third, it has been well 

documented that tumours consist of heterogenous cell types. Tumours are 

generally enriched with a subpopulation of cells possessing stem cell like 

properties including increased clonogenic potential for example, CD133 cells in 

glioma brain tumours which confer regenerative ability and resistance to 

treatment (Bao et al, 2006; Singh et al, 2004). 

In this thesis, my experimental work was largely performed prior to the LGR5 

population being described (Jaks et al, 2008) and hence, my investigations 

pertain to the LRC stem cells only. LRC stem cells have previously been 
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identified in both the bulge region of the hair follicle and interfollicular 

epidermis (see Figure 4) and it appears both populations may give rise to 

papillomas. Epidermal abrasion experiments have been shown to reduce 

papilloma formation which suggests interfollicular stem cells may be targets for 

transformation (Argyris & Slaga, 1981). However, more detailed experiments 

have been performed to investigate the relative contribution of the two 

populations of stem cells – the hair bulge versus the interfollicular region. Using 

Keratin-10 to direct mutant h-ras expression in the interfollicular epidermis 

(Bailleul et al, 1990) and Keratin-5 in the bulge region (Brown et al, 1998), with 

the advantage of lineage traceability, it was shown that malignant conversion in 

the interfollicular epidermis is much less frequent than in the bulge. Additionally 

in experiments performed by Morris et al (Morris et al, 1997) in which treatment 

with 5-flurouracil (5FU) induced epidermal sloughing and cell loss, prior to 

carcinogen exposure, caused a significant reduction in papilloma formation from 

DMBA/TPA carcinogenesis. Taken together although there appears to be a role 

for interfollicular stem cells in the genesis of tumours, the majority of malignant 

tumours seem to originate from bulge stem cells in the hair follicle.  

At this stage it is also entirely unknown if these LGR5+ve stem cell develop into 

cancer stem cells if subjected to appropriate pro-carcinogenic stimulus. It is also 

unknown whether these cells constitute human cancers nor in what way they 

may contribute to tumourigenesis (Li & Clevers, 2010). 
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1.8. Objectives of the thesis 
 

This thesis had 3 broad aims which were to : 

1. Establish and characterise the effects of conditional chk1 deletion in mouse 

skin.  

2. Study the effect of conditional chk1 loss on tumour formation and carcinoma 

progression using DMBA/TPA skin chemical carcinogenesis  

3. Study the effect of chk1 loss on epithelial biology and skin homeostasis – with 

a specific focus on the putative LRC stem cell population, in the bulge region of 

the skin.  

 

 
 
 



 

Chapter 2. Materials and Methods 
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2.1. Generation of Chk1 Null mice 
These mice were made by Stephen Elledges’s group, Harvard Medical School, 

Boston (Liu et al, 2000b). Briefly, chk1 was disrupted in ES cells by homologous 

recombination using a targeting vector containing a neo positive selection 

marker, TK negative selection marker, flanked by 1.9kb and 4.5kb homologous 

sequences. Targeting replaced 3kb of genomic sequence, exons 2, 3, 4 and 5 

that encode the putative first methionine, the “GxGxxG” ATP-binding motif and 

half of the kinase domain. Cell lines generated were injected into females to 

generate chimeric offspring and these were bred on to produce germ-line 

transmission. Heterozygote chk1 +/- were healthy, fertile and tumour free up to 

1.5 years. When heterozygote mice were intercrossed, no chk1 -/- progeny were 

obtained. Analysis of pregnant females revealed constitutive chk1-/- knockout 

resulted in embryonic lethality between day E4.5 to E7.5 (Liu et al, 2000b; Takai 

et al, 2000). Attempts at sequential gene targeting of chk1 +/- ES with a second 

targeting vector, using an hprt marker was also unsuccessful underlying the 

lethality of a complete knockout.  

 

2.2. Generation of Chk1 Flox Mice 
These mice were made by Stephen Elledges’s group at the Harvard Medical 

School, Boston (Liu et al, 2000b). A chk1 flox targeting vector was used to 

replace exon 2 of chk1 which contains the translational initiation sequence and 

ATP-binding site of the kinase. No viable clones were obtained from chk1flox/- 

ES cells after undergoing Cre-loxP mediated excision. Cre-loxP mediated excision 

of chk1flox/+ ES cells resulted in viable chk1Δ/+ cell lines.  

 

2.3. Generation of Rosa26-LacZ Mice  
These mice were made by Philippe Soriano, Fred Hutchinson Cancer Research 

Centre, Seattle (Soriano, 1999; Tsien et al, 1996). To generate mice that express 

LacZ, the ROSA26 locus was targeted with a 5kb genomic fragment containing 

LacZ and a  triple polyadenylation 3’sequence  to prevent transcriptional read 
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through flanked by loxP sites (referred to as a “stop” sequence). Only after Cre-

loxP mediated recombination is LacZ expressed under control of the endogenous 

locus promoter and this was assayed using a B-galactosidase reaction.   

 

2.4. Breeding Strategy and Colony Maintenence  
Mice bearing the chk1 null and flox alleles and the Rosa-LacZ allele were kindly 

provided by Jeffrey Rosen, Baylor College of Medicine, Houston (Lam et al, 2004) 

in Sept 2003. Our colony was maintained on an FVB genetic background and all 

mice undergoing experiments were on this background unless stated otherwise. 

Mice were bred and maintained in the animal facility, Beatson Institute for 

Cancer Research, Glasgow as stipulated by Home Office project licence 

conditions, rules and regulations. Animals were humanely culled using Schedule 

1 techniques as stipulated in our project liscence. 

 

2.5. B-Galactosidase Assay 
Lac Z activity and expression was assayed using a B-galactosidase reaction. 

Mouse tissue, for example dorsal skin (shaved), tail skin (with bone removed) or 

oesophageal tissue, was dissected and secured on wax plates with pins. Wax 

plates were made by heating 100ml ralwax beads, adding 10ml paraffin oil and 

cooling solution in a 15cm plate. 50-100mls of a 0.1g magnesium chloride, 0.48g 

potassium ferricyanide and 0.64g potassium ferrocyanide in 500mls PBS solution 

and 200μL of 5% X-Gal in DMF or DMSO was added. The plate was allowed to 

incubate in the dark for 24-48 hours, room temperature.  

 

2.6. DNA Preparation and PCR Genotyping 
Mice were genotyped by PCR analysis. Ear or tail tips were prepared in lysis 

buffer (100mM Tris HCl pH8.5, 5mM EDTA, 0.2% SDS, 200mM NaCl, 100μg/mL 

proteinase K) at 55°C overnight. The following day samples were heated to 96°C 
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for 5 minutes, cooled then stored at 4°C. The following were primers and 

conditions used (Lam et al, 2004; Liu et al, 2000b; Rijnkels & Rosen, 2001). 

chk1 – Fchk1 5’acc tgc ccg caa ctc cct ttc 3’, Rchk1 5’cca tga ctc caa gca cag cga 3’, 

94°C /3min (1 cycle), 94°C /30s then 54°C /40s then 65°C/70s (40 cycles), 4°C 

hold. Product is 380bp (flox allele) and 318bp (wild type allele). 

LacZ – FLacZ 5’aaa gtcgct ctg agt tgt tat 3’, RLacZ1 5’gcg aag agt ttg tcc tca acc 3’, 

RLacZ2 5’ gga gcg gga gaa atg gat atg 3’,94°C /30s then 54°C /40s then 65°C/70s 

(40 cycles), 4°C hold. Product is 500bp (wild type untargeted locus) and 250bp 

(lacZ allele). 

Neo (this PCR will detect both chk1 null or LacZ and cannot differentiate 

between the two) - FNeo 5’gat cgg cca ttg aac aag atgg 3’, RNeo 5’cct gat gct ctt 

cgt cca gatc 3’, 94°C /3min (1 cycle), 94°C /30s then 57°C /40s then 65°C/70s 

(40 cycles), 4°C hold. Product is 500bp. 

K14CreERT2 - FCre 5’att tgc ctg cat tac cgg tc 3’, RCre 5’atc aacgtt ttc ttt tcgg 3’, 

94°C/60s then 55°C/30s then 72°C/30s (x30 cycles), 4°C hold. Product is 350bp 

(Indra et al, 1999) 

PCR primers were designed to assay for chk1 recombination. The exact sequence 

for the targeting insert was not obtainable from the original publication nor from 

the authors. Primers were therefore targeted at endogenous DNA, forward 

primer Fchk1Δ 5’acc tgc ccg caa ctc cct ttc 3’was 5’ upstream to exon 2 and first 

loxP sequence. Reverse primer Rchk1Δ was 3’ to the second loxP sequence and 

exon 3, 5’ggg aag tca tgt aca att tca ctac3’. Following 4OHT mediated 

recombination, DNA was prepared from dorsal skin of chk1 flox/- // K14CreERT2 

and chk1 +/-// K14CreERT2 animals. PCR analysis using primers Frec and Rrec using 

conditions as follows, 94°C /3min (1 cycle), 94°C /30s then 56-60°C /40s then 

65°C/90s (40 cycles) then 4°C hold. This showed presence of recombined allele 

only in 4OHT treated chk1 flox/- // K14CreERT2 animals and not in control 

animals. The product was cloned and sequenced which confirmed a 1216bp 

product. Sequence was compared with mouse chk1 sequence (NC_000075) and 

aligned 5’ to 3417 to 3925 and 3’ to 5525 to 6233. 
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2.7. Tamoxifen (4-OHT) Preparation and 
Administration 

Intraperitoneal 4-OHT was prepared by dissolving 5mg of 4-OHT (Sigma H7904, 

active Z-isomer >98%) in 500μL 100% ethanol. This was diluted further in 4500μL 

of autoclaved sunflower oil (Sigma S5007). Mice received 100μL of this solution 

of 4-OHT IP, daily over 5 days. 

Topical 4-OHT was prepared by dissolving 50mg 4-OHT (Sigma H6278, active Z-

isomer ~70%) in 7mL DMSO. 300μL was applied to shaved back skin or 150μL to 

tail, the solution was delivered in two separate applications, 30 minutes apart. 

At each application, the solution was rubbed onto skin using the back of plastic 

pipette.  

 

2.8. DMBA/TPA Chemical Carcinogenesis 
The DMBA/TPA protocol for chemical carcinogenesis is well characterised. DMBA 

(7,12-dimethylbenz[a]anthracene), D3254 SIGMA 100mg, was dissolved in  15mls 

acetone to make up a x40 stock solution. TPA (12-O-tetradecanoylphorbol-13-

acetate), P8139 SIGMA 25mg, was dissolved in 15mls acetone to make up a x40 

stock solution. Further dilution to x1 working solution was done in acetone.  

Cohorts were matched for age and comprised only of females FVB mice. The 

mice had undergone backcrossing onto an FVB background for 7 generations. All 

were housed and cared for under identical conditions thoughout the whole 

period of the experiment. Prior to topical application, dorsal hair was shaved 

and animals left for at least 2 days. DMBA (x1) 150μL or 25μg was applied once. 

This was followed by 20 weeks of twice weekly TPA (x1) 150μL or 6.25μg 

applications (McLean et al, 2004).  

Papilloma and carcinoma appearance was directly visible and palpable on mouse 

skin.  Tumour numbers was quantified weekly and dimensions measure as 
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necessary. Mice were culled if papilloma diameter exceeded 1.2cm or if 

carcinoma diameter exceeded 2cm. All animals were culled by 60 weeks of 

starting the experiment. All procedures were conducted according to the 

UKCCCR Guidelines for the Welfare of Animals in Experimental Neoplasia.  

 

2.9. Antibodies  
For western blotting, antibodies used include mouse monoclonal total Chk1 

(Santa Cruz sc-8408, 1:1000), actin (Sigma AC-40, 1:1000). 

For immunohistochemistry antibodies used include rabbit monoclonal total Chk1 

(Epitomics Clone ID:EPR3952, 1:200), rabbit polyclonal total Chk1 (ProteinTech 

65016-1-Ig, 1:200) – discontinued from production in 2008 (reason unknown), p53 

(Labvision, MS104, 1:50),  Ki67 (Vector Labs, VP-K452, 1:100).  

For immunofluorescence and confocal microscopy, antibodies used include 

rabbit monoclonal total Chk1 (Epitomics Clone ID:EPR3952, 1:200), γ-h2ax 

(Upstate JBW 301, 1:200), Active (cleaved) caspase-3 Asp175 (Cell Signalling 

Technology Antibody 9661, 1:200), rat anti-brdu (Serotec OBT0030, 1:100). 

Secondary antibodies include Cy3 donkey anti-rat to detect BrdU (Jackson 

Immunoresearch 712-165-153, 1:200), Alexa Fluro 488, 568 (Invitrogen, 1:200).   

 

2.10. Labelling Mice with BrdU to Assay for Label 
Retaining Cell (LRC) Properties 

4 day old pups were injected with 50μL BrdU (Amersham RPN 201) 

intraperitoneally  once a day, per mouse, over 3 days consecutive days. 
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2.11. Preparation of Tail Epidermal Wholemounts 
The protocols were adapted from methods published by Braun (Braun et al, 

2003). 

Mouse tail skin was slit length wise with scalpel and peeled off bone. It was 

immersed into 20mls of 0.005M EDTA in PBS. It was heated in a water bath at 

37°C for 4-5 hours. 

The epidermis was peeled off the dermis with careful separation to ensure hair 

follicles remain intact. If not, then it was soaked in water bath for 30min longer. 

It was then fixed in 4% formaldehyde in PBS for 2 hours at room temperature. It 

was washed in PBS x3. The tail can be stored in 0.2% sodium azide at 4°C for up 

to 8 weeks.  

 

2.12. Confocal Microscopy of Tail sections   
The protocols were adapted from methods published by Braun (Braun et al, 

2003). 

The tail was cut into pieces according to size requirements, typically 1.0cm x 

0.5cm. They were put into a 24 well plate. The pieces were blocked and 

permeabilized in PB Buffer (0.5% BSA + 0.5% Triton-X in PBS, make up fresh 

everytime) at 30 min minimum at room temperature. Tail pieces were then 

immersed in 2N HCl at 20 minutes at 37°C (if staining for BrdU, if not then this 

step was not necessary). It was important to adhere to an immersion time of 30 

min, not more as it would adversely affect staining. Pieces were washed in PBS 

x3.  

The primary antibodies were diluted in PB Buffer and incubated with the pieces 

overnight with gentle agitation at room temperature. The following day they 

were washed with 0.2% tween in PBS, 4-5 washes over at least 4 hours at room 

temperature.  Secondary antibodies were diluted in PB Buffer and incubated 

with pieces overnight with gentle agitation at room temperature. The following 

day the pieces were washed in 0.2% tween in PBS, 4-5 washes over at least 4 
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hours at room temperature. They were then mounted on a glass slide using 

Cover Well chamber gasket to secure tail onto glass slide (Invitrogen C18161). 

The nuclei were counterstained with DAPI in Vectashield mounting medium. The 

slides could be stored in dark for up to 6 months.  

 

2.13. Tissue Fixation  
Tissue samples were harvested and fixed in 10% formaldehyde in PBS for 24 

hours. They were paraffin embedded and tissue section cut and fixed onto 

slides.  

 

2.14. Immunohistochemistry  
For staining, the Dako EnVision ™ System (Dako) was used for both primary 

mouse and rabbit antibodies. Slides were deparafinized and rehydrated by x3 

washes in Xylene, x2 washes in 100% ethanol (10min each), x1 wash in 95% 

ethanol (10min) and x1 wash in 70% ethanol (10min). This was followed by x2 

washes in dH20 (5min) and x1 wash in PBS (5 min). Antigen retrieval was then 

performed (see below). Slides were washed x3 in dH20 (5min), peroxidase block 

performed (5 min) and primary antibody or negative control incubation 

performed (30 min). x3 in PBS wash (5min each). Slides were incubated with 

labeled peroxidase polymer (30 min). x3 in PBS wash (5min each). Liquid DAB+ 

substrate chromogen was applied to cover specimen (5-10 min). Slides were 

counterstained with Mayer’s Haematoxylin for 45 seconds. They were then 

dehydrated with 70% ethanol (10min), 95% ethanol (10 min) and then 100% 

ethanol (10 min). Xylene washes were performed (at least 10min). Finally slides 

were mounted using Histoclear™ solution with coverslips.  
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2.15. Antigen retrieval 
The following solutions were prepared, Solution A - 10.5g of citric acid in 500 

mls dH20 and Solution B - 29.4g sodium citrate in 1 litre dH20. 

A 1.5L solution of 27mls of solution A + 123mls of solution B and made up to 1.5L 

with dH20 with pH adjusted to 6.0. This solution was added to a pressure cooker 

to generously bathe the slides in solution contained in a slide holder. It was 

microwaved for 8 minutes or until solution is boiling (yellow top pops up) and 

microwave was continued for another 1 minutes or so. It was allowed to cool in 

pressure cooker uncovered for at least 20 min before removal. 

 

2.16. Deriving Carcinoma Cell Lines from Mice 
About a ¼ of the tumour was harvested. It was place immediately into sterile 

PBS (universal bottle). Subsequent work was performed in a fume hood which 

had been thoroughly cleaned with ethanol wipes. Two scalpels were put into a 

beaker of ethanol for sterilization and allowed to air dry. On a sterile petri dish, 

the tumour was cut into small pieces of less than 0.5cm. They were then 

positioned on the bottom surface of aT25 flasks (use 4 flasks) with 6 pieces 

evenly spread out. They left for 2-5 minutes in order for them to become 

adherent to the plastic surface. Medium was then slowly trickled in to the flask, 

roughly 5mls. Medium consists of MEM 500mls (INVITROGEN 21090-022 +Earle’s, -

ve L-Glut), NEAA 10mls, Glutamine 5mls (2mM), 10% fetal bovine serum 50mls, 

Sodium Pyruvate 5mls, Vitamins 5mls, Penicillin 2.5mls (30µg/ml), Streptomycin 

2.5ml (50µg/mls), Amphotericin B 5mls. The flask was left in an incubator at 

37°C, 5%CO2, no O2 for 5-7 days initially. The purpose is not to disturb the tissue 

pieces so as not to detach them from the bottom of T25 flasks. After 5-7 days, 

the tumour cells were observed to be growing out from bottom of tumour 

adherent to plastic base.  

Being careful not to dislodge tumour, the medium was either changed or add 

further 5 mls of medium was added and the medium changed after another 2-3 
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days. Once the cells had established growth the tumour pieces were discarded 

and the culture was passaged as per the adherent cell protocol.  

 

2.17. Mouse Tail Keratinocyte Culture 
Mouse tail skin was slit length wise with scalpel and peeled off bone and 

immersed in PBS. They were then transferred into 8mg/ml Dispase II in PBS (eg. 

1 tail = 10mls) and incubated overnight at 4°C. The following day, the epidermis 

was separated from the dermis with forceps & scalpel (epidermis being the 

thinner, white upper layer). The epidermis was cut into small pieces and put 

into a trypsin solution for 10 min at 37°C water bath or incubator. The mix was 

vortexed to help dissociation of cells. The trypsin was neutralised with DMEM 

(+20% FCS) – equal volumes of each used. The vortexed sample was then strained 

through a cell strainer and the solution spun down at 1min 1000rpm. This was 

resuspended with PBS and spun down again for 1min at 1000rpm. The 

supernatant was removed and resuspended in Keratinocyte Growth Medium 

(KGM) and plated out. 

Keratinocyte Growth Medium (KGM) : 

Supplements supplied as a 5 pack from manufacturer, Clonetics KGM Single 

Aliquots (Catalog No. CC-4131) - Gentamicin/Amphotericin-1000 0.5ml (CC 

4081E), BPE 2.0ml (CC 4002E), Insulin 0.5ml (CC 4021E), hEGF 0.5ml (CC 4015E), 

Hydrocortisone 0.5ml (CC 4031E). Additionally 83μL calcium (CaCl2 tissue culture 

grade, stored at room temp) was added. 

The cells were grown in a humidified incubator at 37°C, 5% CO2 and 3% humidity. 

 

2.18. Passaging Adherent Cells 
All work was performed in a sterile fume hood. The media was aspirated away 

leaving the cells which were then washed x3 with 10mls of pre-warmed PBS.  

The cells were then washed with 10mls of pre-warmed PE.  1ml of pre-warmed 
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0.25% trypsin in PE was added to the flask (the volume of trypsin depended on 

the size of the flask/dish eg. 1ml is sufficient for a T25 flask). The flask was 

tipped to allow the trypsin solution to become evenly distributed over the cells 

on the surface of the flask/dish.  The flask was then returned to the incubator 

for 2-3 minutes until the cells had detached from the plate, this was checked 

under a microscope.  Once detached, 10mls of fresh pre-warmed media was 

added to the cells to inactivate the trypsin.  An aliquot of this cell suspension 

was then added to a flask containing fresh media.  The cells were then returned 

to the incubator to allow re-attachment of the cells to the bottom surface of the 

flask.   

 

2.19. DT40 Cell Culture  
DT40 cells were cultured in high glucose DMEM containing pyruvate 

supplemented with 10% FBS, 1% heat inactivated chicken serum, 2mM 

Glutamine, 10μM β-mercaptoethanol, 50U/ml penicillin G and 50μg/ml 

Stereptomycin.  The cells were grown in a humidified incubator at 39°C. Cells 

were passaged by diluting 1:10-1:20 into fresh media every 2-3 days to maintain 

the cells in exponential growth phase.  

 

2.20. Cryogenic Preservation of Cell lines 
In order to store cells for future use, cells were cryogenically frozen and 

preserved in liquid nitrogen tanks. Cells growing exponentially (trypisinsed if 

needed to overcome adherence to the flask) were resuspended in 90% FBS/10% 

DMSO and divided into 500μl aliquots in 1.5ml cryovials.  Initial freezing was 

carried out in a container containing isopropanol at -70°C to give a cooling rate 

of 1°C/minute.  Once a temperature of -70°C was reached the cells were 

transferred to storage in liquid nitrogen vapour phase tanks at -180°C.  To 

recover the cells the vials were immersed into a 37°C water bath.  Once thawed 

the cells were added to pre-warmed media.  The following day the cells were 

passaged or the media was changed depending on the confluency of the cells. 
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2.21. Making Protein Extracts From Mouse Tissue 
The mice were sacrificed. The tissue of interest was harvested and cut into 

small <0.5cm sections. They were then put into an extract buffer without delay 

(x5 pieces into approximately 1 to 1.5mls of buffer). Ten mililitres (10mL) of 

buffer consisted of 4.2mls dH20, 100μL 0.5M Ethylenediamine tetraacetic acid, 

4mls 1M Potassium Chloride, 40μL Triton X-100, 1mL Glycerol, 100μL 0.5M 

Sodium Fluorate, 100μL 100mM Benzamidine, 100μL 100mM Sodium Vanadate, 

20μL 0.5M DTT, 25μL 25μg/mL Okadaic Acid, 25μL 2mg/mL Leupeptin, 57μL 

50mM Phenylmethylsulphonyl fluoride, 200μL 1M Hepes, 28μL 1.8mg/mL 

Aprotinin. Tissue in buffer was collected and stored on ice. Tissue was mashed 

using a tissue grinder, microfuged x3min 3000rpm, the supernatant removed for 

use.  

 

2.22. SDS-PAGE 
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

carried out in order to separate proteins so they could be analysed further by 

Western Blotting.  To cast the resolving gel a solution containing 6-15% 

acrylamide (acrylamide:bisacrylamide 37.5:1), 375mM Tris-HCl pH 8.8 and 0.1% 

SDS was made.  To polymerise the gel ammonium persulphate and TEMED was 

added to a final concentration of 0.1% and 0.08% respectively.  The gel mix was 

placed in the gel casting apparatus and over-laid with water-saturated butanol.  

Once set the stacking buffer (5% acrylamide (acrylamide:bisacrylamide 37.5:1), 

125mM Tris-HCl pH6.8, 0.1% SDS, 0.1% ammonium persulphate and 0.1% TEMED) 

was layered on top and the combs were inserted to allow the loading of samples.  

Once set the gel apparatus was correctly assembled and 1 × Running Buffer was 

added to the upper and lower chambers of the tank. 

Samples to be analysed were added to an equal volume of 2 × SDS-PAGE loading 

buffer (120mM Tris-HCl pH6.8, 20% Glycerol, 5% SDS, Bromophenol blue 

supplemented with 100mM DTT before use) and were boiled for 5 minutes to 
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denature the proteins.  The samples were centrifuged briefly to remove debris 

and the samples were then loaded into the wells.  Molecular weight markers 

were also run to estimate the size of the proteins to be analysed.  The gels were 

then run at 180V at constant voltage until the dye front had just entered the 

running buffer. 

To examine Chk1 phosphorylation by an electrophoretic mobility shift a 10% 

acrylamide gel but used and the acrylamide to bisacrylamide ratio was changed 

to 125:1. 

 

2.23. Western Blotting  
Western Blotting was carried out using the semi dry blotting technique.  Once 

the SDS-PAGE was run it was placed on top of 6 sheets of 3MM paper pre-soaked 

in dry blot buffer and cut to the size of the gel.  On top of this was placed the 

nitrocellulose membrane and 6 more sheets of soaked 3MM paper.  Air bubbles 

were removed by gently rolling with a marker pen.  The ‘sandwich’ was placed 

on the transfer apparatus such that the gel was closest to the negative 

electrode.  The proteins were transferred as standard at 20V, 200mA, 8W for 1 

hour 20 minutes. In order to transfer high molecular weight proteins onto the 

membrane they were transferred at 12V, 200mA, 8W for 2 hours and 30 minutes. 

Then the membrane was blocked in blocking buffer 5% Marvel (non-fat dried milk 

powder) solution in 1 × TBS-T for 1 hour at room temperature with gentle 

agitation.  The membrane was then incubated with the appropriate primary 

antibody. Membrane was washed x3 10 minutes with 1 × TBS-T with gentle 

agitation.  Membrane was incubated with the secondary antibody coupled to 

horseradish peroxidase for 1 hour at room temperature.  The appropriate 

secondary antibodies were diluted 1:5000 in blocking buffer.  After this 

incubation the membrane was washed as before and the bound secondary 

antibody was detected using enhanced chemiluminesence and autoradiography 

film.  The film was developed in a Kodak X-Omat 3000RA automatic film 

processor. 
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2.24. Irradiating Cells and Mice 
As a method of inducing DNA damage cells and mice were treated with γ-IR. 

Cells were irradiated with γ-IR using an Alcyon II Cobalt-60 Teletherapy Unit.  

Dose rates varied from 1-2.5 Gymin-1.  Cells were irradiated directly in the 

media in the culture flask.  Mice were treated in a specialized mouse holding 

chamber which allowed a large degree of immobilization whilst keeping the mice 

safe and in minimal distress.  
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3.1. Results 
 

3.1.1. Genetically Engineered Mice - Chk1 Flox and 
Null Alleles 

The generation of the conditional and constitutive chk1 knockout alleles have 

been previously described (see 2.1 and 2.2) (Liu et al, 2000b). The mice bearing 

these alleles were donated to us by our collaborator Prof Stephen Elledge, 

Harvard Medical School, and maintained in our animal facility (see 2.4).  

 

3.1.2. Breeding Strategy 
In Sept 2003, a chk1flox/- female and chk1flox/flox //Rosa26-LacZ male were 

donated to our group by Jeffrey Rosen (Lam et al, 2004), Baylor College, 

Houston, a collaborator of Stephen Elledge. The male mouse was bigenic, 

possessing both the chk1flox allele and LacZ allele (Rosa26 locus). The chk1 

floxed, chk1 null and LacZ alleles were non sex-linked. Both donated mice were 

on a mixed C57/BL6 and FVB background. I then bred them with FVB wild type 

mice and the colony was subsequently maintained on an FVB background.   

 

3.1.3. Cre-LoxP // ROSA26 LacZ Reporter System and 
B-Gal Assay 

Cre recombinase catalyzes recombination between 34 bp loxP recognition 

sequences. The DNA sequence between two directly repeated loxP sequences is 

excised as a circular molecule upon Cre activation. In our model, it was 

necessary to monitor that Cre activity had occurred under the required temporal 

[ie. Cre-ERT2 (Indra et al, 1999) activation only after treating with tamoxifen] 

and spatial (ie. activation only in hair follicles and epidermal skin where Cre 

expression is under control of the keratin-14 promoter) control, and not for 

example, spontaneously during embryogenesis or in aberrant tissue sites.  
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Figure 5 - The LacZ Reporter Allele 
 

A The LacZ transgene is inserted into the ROSA26 locus under control of the endogenous 
promoter (Soriano, 1999). Inserted 5’ upstream to LacZ is a PGK-neo expression cassette and 
polyadenylation sequence flanked by loxP sites also known as the “stop” segment. (SA) splice 
acceptor sequence. B LacZ expression is conditional on Cre-recombinase mediated recombination 
and removal of this intervening “stop” segment. Using a B-gal assay (see Methods) performed 
either on fixed or fresh wholemount tissue we were able to assay for LacZ activity and chk1 
recombination by the detection of blue staining.  
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Figure 6 - Diagnostic PCR for Chk1, Cre and LacZ Alleles 
 

Animals were genotyped using PCR analysis, full details can be found in Methods. Diagnostic PCR 
products are shown for A chk1 wild type (318bp) and chk1 floxed (unrecombined) alleles (380bp) B 
cre allele (350bp) C LacZ (250bp) and wild type (500bp) allele. 
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The LacZ gene encodes β-galactosidase, an enzyme which ordinarily cleaves the 

disaccharide lactose into glucose and galactose. LacZ can also cleave a 

colourless substrate X-gal (4-chloro-5-bromo-3-indolyl-β-galactosidase) into 

galactose and a blue insoluble product which forms the basis for a chemical 

assay referred to as the β-Gal Assay.  

We acquired transgenic mice expressing LacZ, under the control of the ROSA26 

promoter (see Figure 5A). ROSA26 is active in embryonic development and 

throughout adulthood (Soriano, 1999) and the locus has been proven to be a 

reliable integration site allowing strong and predictable transgene expression 

(Soriano, 1999; Tsien et al, 1996). Inserted 5’ upstream to LacZ was a PGK-neo 

expression cassette and polyadenylation sequence flanked by loxP sites. 

Therefore LacZ expression was conditional on Cre mediated recombination and 

removal of this intervening “stop” segment, (see Figure 5B). Using a β-Gal assay 

performed using either fixed paraffin embedded sections or fresh wholemounted 

tissue I was able to detect LacZ activity and hence, assay for recombination.  

 

3.1.4. Genotyping of Mice 
Mice were genotyped by PCR analysis. Ear or tail tips were harvested into lysis 

buffer and DNA extracts prepared. Primers and PCR conditions are described 

fully in Methods and Materials (see 2.6) (Lam et al, 2004; Liu et al, 2000b; 

Rijnkels & Rosen, 2001). Typical genotyping results are shown in Figure 6A 

(chk1), Figure 6B (Cre) and Figure 6C (LacZ).  

 

3.1.5. Phenotype of Chk1 Null, Heterozygous and Flox 
Mice 

When interbreeding chk1+/- or chk1flox/- mice, it was observed that no 

homozygous chk1 knockouts were born. For example when a chk1+/- male is 

crossed with a chk1+/- female, offspring ratios were approximately 1⁄3 (+/+), 2⁄3 

(+/-), 0⁄3 (-/-) instead of the expected 1⁄4 (+/+), 2⁄4 (+/-), 1⁄4 (-/-) (see Figure 

7A). This is consistent with previous observations that complete chk1 loss is 

 

http://en.wikipedia.org/wiki/Beta-galactosidase
http://en.wikipedia.org/wiki/Disaccharide
http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Galactose
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embryonically lethal. Liu (Liu et al, 2000b) observed empty decidua and remains 

of resorbed embryos at E6.5 to E7.5. Takai (Takai et al, 2000) observed lethality 

between E3.5 to E7.5 with embryonic nuclei demonstrating aberrant nuclear 

morphology, defective growth and defective cell cycle regulation.  

Heterozygote chk1+/- mice (see Figure 7B) were viable and demonstrated no 

gross pathology. They had normal lifespan, were fertile, displayed no premature 

ageing and no increased incidence of tumourigenesis. This is also consistent with 

previous observations (Lam et al, 2004; Liu et al, 2000b; Takai et al, 2000). In 

the paper by Lam (Lam et al, 2004), they noted that mammary gland tissue in 

chk1+/- mice was viable and the mice were able to lactate normally.   

Chk1flox/flox (Cre uninduced) mice (see Figure 7B) had a normal lifespan, were 

fertile, displayed no premature ageing and no increased incidence of 

tumourigenesis. No previous phenotype was reported for chk1 flox/flox mice 

(Cre uninduced) (Lam et al, 2004; Liu et al, 2000b; Takai et al, 2000).  

 

3.1.6. Achieving Conditional Knockout of Chk1 in the 
Skin 

Bigenic chk1 flox mice bearing the loxP-stop-loxP LacZ marker were crossed with 

mice expressing Cre-recombinase-ERT2 (CreERT2) under the control of a Keratin-

14 (K14) promoter (see Figure 8), the latter being donated by Prof Margaret 

Frame from the Beatson Institute in Glasgow (Indra et al, 1999; McLean et al, 

2004). The result of these crosses produced chk1flox/flox // K14CreERT2 // LacZ 

trigenic animals. The fusion protein CreERT2 allows Cre-recombinase to activate 

only when 4-hydroxytamoxifen (4OHT) is bound to the modified oestrogen 

receptor ERT2 (Indra et al, 1999). The keratin14 promoter is expressed in the 

squamous epithelia of the skin including the basal layer of the epidermis 

interfollicular epidermis, outer root sheath and bulge region of the hair follicle 

(McLean et al, 2004; Serrels et al, 2009; Vassar et al, 1989). The bulge region is 

part of the outer root sheath and is located below the sebaceous glands,  
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Figure 7 - Phenotype of Constitutive and Conditional Chk1 Knockout Mice 
 

A Schematic representation of a chk1+/- male with a chk1+/- female cross, the offspring ratios 
were approximately 1⁄3 (+/+), 2⁄3 (+/-), 0 (-/-) instead of the expected 1⁄4 (+/+), 2⁄4 (+/-), 1⁄4 (-/-) ratios. 
This is due to chk1 loss being embryonically lethal at around E3.5 to E7.5 (Liu et al, 2000b). B 
Photographs of a chk1+/+ (wild type), chk1+/- and chk1flox/flox and mouse at 1 year. There were 
no distinguishable differences in phenotype between mice from these genotypes. They had a 
normal lifespan, were fertile, displayed no premature ageing and no increased incidence of 
spontaneous tumourigenesis.  
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Figure 8 - Conditional Floxed Chk1 Allele and K14-CreERT2 Allele  
 
Chk1 flox mice bearing the loxP-stop-loxP LacZ transgene were crossed with mice expressing Cre-
recombinase-ERT2 (CreERT2) under the control of a Keratin-14 (K14) promoter. The CreERT2 fusion 
protein allows an inducible Cre system that is activated only in the presence of the synthetic 
oestrogen tamoxifen (4OHT). The result of these crosses produced trigenic chk1flox/flox // 
K14CreERT2 // LacZ animals which were used to conditionally delete chk1 in the skin. 
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Figure 9 - Chk1 Knockout in Adult Mouse Skin  
 

Chk1flox/flox // K14CreERT2 // LacZ mice were treated with either vehicle or 4OHT (both 
intraperitoneally and topically). A β-Gal assay showed strong positivity in whole mounted (i) skin 
and (ii) tail in animals treated with 4OHT. Vehicle treated animals displayed no positive reaction. B 
Microscopy of sectioned skin wholemounts showed strong β-Gal assay positivity in animals treated 
with 4OHT but not vehicle. β-Gal staining was confined to keratin 14 (K14) expressing regions in 
keeping with anticipated tissue distribution ie. the (i) epidermis and (ii) hair follicles including the 
outer root sheath (ORS) and bulge region. C Chk1+/+ // K14CreERT2 // LacZ animals treated with 
4OHT demonstrated strong β-Gal positivity and served as the positive control. D 
Immunohistochemistry of formalin-fixed tissue showed substantial reduction in Chk1 protein 
expression in the epidermis and hair follicles using two separate antibodies. E Western blot of 
protein extracts from epidermal tissue (as shown in D) showed gradual knockdown of Chk1 
detected over the course of a 5 day (Day -5 to -1) intraperitoneal injection protocol. Scale bar 
represents 200μm.
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adjacent to the insertion site of the erector pili muscle and is considered to be 

the niche for tissue specific stem cells in the hair follicle (Perez-Losada & 

Balmain, 2003). K14 is also expressed in the interfolliclular epidermis and other 

squamous epithelia including tail and aerodigestive mucosa.  

Following tamoxifen treatment in chk1flox/flox // K14CreERT2 // LacZ trigenic 

animals, either injected intraperitoneally or applied topically onto skin, β-Gal 

assay performed on wholemounted tissue showed strong staining, approximately 

70-90% of tissue in skin and tail (see Figure 9A (i) skin and (ii) tail). Microscopy of 

these sections showed staining confined to K14 expressing regions (Coulombe et 

al, 1989) which are primarily the basal epidermis and hair follicles excluding the 

inner root sheath, cuticle and hair shaft. As shown in Figure 9B both the 

interfollicular epidermis (i) and hair follicles (ii) particularly the outer root 

sheath (ORS) and bulge region stained strongly. No β-Gal activity was seen in 

chk1flox/flox // K14CreERT2 // LacZ mice that had not been exposed to 4OHT or 

treated with vehicle alone. Positive control chk1+/+// K14CreERT2 // LacZ 

animals treated with 4OHT showed a similar pattern for β-Gal staining to 

chk1flox/flox // K14CreERT2 // LacZ animals treated with 4OHT (see Figure 9C).  

Immunohistochemistry of formalin fixed skin from chk1flox/flox // K14CreERT2 

// LacZ mice treated with IP 4OHT (D -5 to -1), showed markedly reduced Chk1 

expression in the interfollicular epidermis and hair follicles using 2 separate 

antibodies (see Figure 9D). Protein extracts were made from dorsal skin of 

chk1flox/flox // K14CreERT2 // LacZ mice treated with IP 4OHT (D -5 to -1). Care 

was taken to separate out as much subcutaneous fat and dermis as possible from 

samples. Western blot analysis showed strong diminution of Chk1 protein 

expression after 5 days of 4-OHT (see Figure 9E).  

PCR primers were designed to assay for chk1 recombination (see Methods, 2.6). 

Following 4OHT mediated recombination, DNA was prepared from dorsal skin of 

chk1F/- // K14CreERT2 and chk1+/-// K14CreERT2 animals. PCR analysis using 

primers Frec and Rrec showed presence of recombined allele only in 4OHT treated 

chk1 F/- // K14CreERT2 animals (see Figure 10) and not in control animals. The 

product was cloned and sequenced which confirmed a 1216bp product which 

aligned to mouse chk1 sequence (NC_000075).  
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Figure 10 - PCR for Recombined Chk1 Allele 
 

PCR analysis of skin DNA preparations are shown on a 100bp ladder gel. A 1216bp product from 
the recombined allele is seen from 3 different mice, chk1flox/null // K14CreERT2 // LacZ treated with 
4OHT. No recombined product is seen from chk1+/+ // K14CreERT2 // LacZ animals treated with 
4OHT or chk1flox/null // K14CreERT2 // LacZ treated with vehicle. The PCR product was cloned 
and sequenced. This aligned to bp positions 3417 to 3925 and 5525 to 6233 of the mouse chk1 
gene accession number CHEK1 NC_000075. 
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Figure 11 - Early Deaths Associated with Chk1 Knockout   
 
A Weight charts were plotted for chk1+/+ // K14CreERT2 // LacZ mice (control group) and 
chk1flox/flox // K14CreERT2 // LacZ mice treated with 4OHT at 5 week of age. In the control (blue 
line), weight increased steadily till plateau adult weight was achieved. However in chk1flox/flox & 
4OHT (pink line) the rate of weight gain temporarily decreased for approximately 3-4 weeks 
following Cre induction. Following that the majority of the mice were able to revert back to normal 
weight gain patterns and eventually achieve similar adult plateau weights as controls. However, a 
small proportion of chk1flox/flox & 4OHT animals (yellow line) continued to lose weight and this 
was associated with feeding difficulties. They eventually died within 2-3 weeks. B Pathological 
examination of the chk1flox/flox // K14CreERT2 // LacZ animals which died revealed positive β-Gal 
staining in the aerodigestive mucosa including the (i) buccal mucosa (ii) tongue (iii) oesophagus. It 
is postulated that chk1 loss, which is associated with epithelial cell death (see Chapter 3 for further 
details), was responsible for causing feeding difficulties and subsequent death due to compromised 
aerodigestive tract epithelial function.   
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Figure 12 - Chk1 Expression in Different Mouse Tissues 
 
A Differential expression of Chk1 protein in different mouse tissues. Tissue from various organs 
were harvested and protein extracts made. Total Chk1 was measured by western blot which 
showed varying expression levels from very low expression in the brain to relatively high 
expression in skin and intestine. Higher expression roughly correlated with higher proliferative 
potential and activity of the organ. B Comparing adult brain to embryonic brain. Adult cerebral 
cortex showed low proliferative activity (Ki67) and low Chk1 expression. Developing embryonic 
brain, E12.5, however showed high proliferative activity and Chk1 expression, in particular the peri-
ventricular regions (black arrows) which is the region of brain known to have high proportion of S-
phase and G2/M phase cells. V:ventricle C Cranial-caudal cross section of embryonic brains E12.5 
show high expression of Ki67 with corresponding strong total Chk1 and the active phosphorylated 
serine-345 form of Chk1 staining. Again highest expression concentrated in the periventricular 
regions. Scale bar represents 100μm.  
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Given that chk1-/- embryos are non-viable, the survival and normal litter 

numbers of chk1 flox/flox // K14CreERT2 mice suggests CreERT2 was not 

spontaneously activated at any significant level during embryogenic 

development.  

 

3.1.7. Phenotype of Conditional Chk1 Knockout in the 
Skin 

Chk1flox/flox // K14CreERT2 // LacZ mice were treated with 4OHT over age 

ranges 5 weeks to 1 year. The majority of animals survived 4OHT treatment 

without incident except when 4OHT was applied to 5 week old chk1flox/flox // 

K14CreERT2 // LacZ animals. In this cohort mortality was observed in 7/24 

animals (29.2%) which was associated with feeding difficulties, weight loss and 

death occurring within 2 weeks (see Figure 11A). In the remaining 17/24 

animals, the rate of weight gain temporarily decreased following Cre induction, 

for approximately 3-4 weeks but the mice were then able to recover and achieve 

similar adult plateau weights. K14 is known to be expressed in squamous 

epithelia in organs other than the skin, namely the upper aerodigestive tract 

which is involved in feeding (Hosoya et al, 2008; Mulherkar et al, 2003). 

Pathological examination of the chk1flox/flox // K14CreERT2 // LacZ and 4OHT 

animals which died revealed positive B-Gal staining in the (i) buccal mucosa (ii) 

tongue (iii) oesophagus (see Figure 11B). It is possible that chk1 loss is associated 

with epithelial cell death in the upper aerodigestive tract leading to feeding 

difficulties and subsequent death due to compromised epithelial function (see 

Chapter 5 for further details on the effects of chk1 loss on epithelial 

homeostasis). The surviving animals were aged up to one and a half years, 

displayed no premature ageing or deaths compared to control, were fertile and 

displayed no increased incidence of tumourigenesis. There were no overt 

phenotypic differences between control animals, chk1flox/flox // K14CreERT2 // 

LacZ treated with vehicle and chk1+/+ // K14CreERT2 // LacZ treated with 4OHT 

and experimental animals chk1flox/flox // K14CreERT2 // LacZ treated with 

4OHT.         
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3.1.8. Chk1 Expression in Different Organs  
Little is known about the level of Chk1 protein expression in different organs. In 

general Chk1 is important in maintaining genomic integrity during cell 

replication and it is expected that higher Chk1 expression will correlate with a 

higher degree of proliferation (Tort et al, 2005; Zhou & Bartek, 2004).  

Tissue from various organs were harvested from wild type animals and protein 

extracts made. Total Chk1 was measured by western blot and showed varying 

expression levels from very low levels in the brain to high levels in skin and 

intestine (see Figure 12A). Higher expression roughly correlated with known 

relative proliferative activity of the organ.  

More detailed analysis of brain tissue was performed (see Figure 12B). Adult 

cerebral cortex showed very low proliferative activity, as shown by very weak 

Ki67 staining and correspondingly low Chk1 expression. Developing embryonic 

brain, E12.5, however showed high proliferative activity (Ki67 staining) and 

abundant Chk1 expression, in particular the peri-ventricular regions, which is 

known to have high number of S-phase and G2/M phase cells (Frade, 2002; 

Takahashi et al, 1995). Cranial-caudal cross section of the brain shows 

corresponding high expression of Ki67 with total Chk1 and the active 

phosphorylated serine-345 form of Chk1. Again highest expression of 

phosphorylated serine-345 Chk1 concentrated in the periventricular regions.  
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3.2. Discussion 
 

Due to the embryonic lethality in constitutive chk1 knockout mice (Liu et al, 

2000b; Takai et al, 2000), it was necessary to employ a conditional knockout 

model to study the effect of chk1 loss in an adult somatic system. Both the 

constitutive and conditional chk1 alleles were kindly provided by our 

collaborator Prof. Stephen Elledge, in 2003 (Liu et al, 2000b). Using a 4-hydroxy 

tamoxifen (4OHT) activated CreT2-LoxP system (Indra et al, 1999) driven by a 

Keratin 14 (K14) promoter (Li et al, 2000; McLean et al, 2004) I was able to 

effect chk1 genetic recombination and inactivation under appropriate spatial 

and temporal control within the skin. When chk1flox/flox // K14CreERT2 // 

LacZ trigenic animals were treated with 4OHT, β-Gal assay showed strong 

staining in K14 expressing regions. Immunohistochemistry and western blotting 

of skin protein extracts showed markedly reduced Chk1 expression. PCR 

confirmed presence of chk1 recombined allele. Control wild type animals 

treated with 4OHT and floxed animals treated with vehicle controls served as 

reliable controls. 

I observed no overt pathology with chk1 loss in chk1flox/flox animals apart from 

early mortality in very young (5 weeks old) mice. This was not due to skin 

abnormalities but rather associated with feeding difficulties and weight loss 

which was attributed to K14 activation and chk1 loss in the aerodigestive 

mucosa. As will be shown and discussed later in Chapter 5, chk1 loss resulted in 

apoptosis in epithelial cells and replacement by unrecombined cells. Therefore, 

disruption of epithelial function in juvenile mice is a likely explanation for the 

observations. This phenomenon was not observed in older mice. Hemizygous 

chk1 loss was again not associated with pathology.  

I also found a differential level of Chk1 protein expression in various tissues 

which correlates with the proliferative activity within that organ. In skin, 

expression was moderate to high. Interestingly Chk1 expression was also found 

to be substantial in embryonic brain but virtually absent in adult brain. As Chk1 

function is crucial in preventing genomic instability during cellular division, the 

highly proliferative developing brain may be particularly reliant on its activity. 
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From an cancer treatment perspective perhaps targeting Chk1 in proliferating 

tumours in the brain, set amongst an environment of non-proliferating lowly 

expressing Chk1 brain tissue, may be a way to maximize tumour kill whilst 

reducing side effects to normal tissue. It has already been shown that 

pharmacological inhibition of checkpoint mechanisms in glioma stem cells is a 

novel and effective method to reverse radioresistance; radiotherapy being the 

mainstay of brain tumour therapy  (Bao et al, 2006).   

 
 
 
 

 



 

Chapter 4.  Chk1 Ablation and Tumour 
Formation 
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4.1. Results 
 

4.1.1. Chk1 Ablation in the Skin Delayed Papilloma 
Formation and Reduced Papilloma Numbers 
and Sizes 

 
The DMBA/TPA protocol is a well characterised tool used for the study of 

papilloma and carcinoma development in mouse skin (see Figure 3). Tumours can 

be easily visualised, quantified and then harvested for further analysis. 

Additionally the genetic mutations caused by DMBA and TPA promotion are well 

known (Kemp, 2005). Details of the protocol are provided in Methods (see 2.8). 

The primary targets for carcinogen transformation are thought to be the bulge or 

hair follicle stem cells (Perez-Losada & Balmain, 2003) (see Figure 4).  

Cohorts of 7-8 week old female mice were used. They underwent dorsal shaving 

prior to topical carcinogen application. Chk1flox/flox // K14CreERT2 // LacZ 

mice (n=18) animals were treated with 5 days of 4OHT to induce Cre-

recombinase and effect chk1 conditional knockout in epidermis and hair 

follicles. A single topical dose of DMBA was applied 3 days later (D3) and this was 

followed by 20 weeks of twice weekly topical TPA application. Control 

chk1flox/flox // K14CreERT2 // LacZ mice were treated with vehicle prior to 

DMBA (n=19) and control female chk1+/+ // K14CreERT2 // LacZ mice were 

treated with 4OHT prior to DMBA (n=20). Papilloma numbers were counted 

weekly till 30 weeks after the start date of TPA. Animals were culled if they 

developed either a papilloma or carcinoma burden exceeding the limit set in the 

project license (see Methods 2.4) or by 60 weeks whichever was earlier. 

In the chk1flox/flox // K14CreERT2 // LacZ + 4OHT group, the rate of papilloma 

formation was significantly delayed compared to the chk1flox/flox // 

K14CreERT2 // LacZ + vehicle group (log rank, p<0.0001) and the chk1+/+ // 

K14CreERT2 // LacZ + 4OHT group (log rank, p<0.0001) (see Figure 13A). By 77 

days, all control animals had developed papillomas. In contrast, 16.7% of  
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Figure 13 - Chk1 ablation Prior to DMBA/TPA Carcinogenesis 
 
Cohorts of 7-8 weeks old female mice underwent dorsal skin shaving and were treated with 5 days 
of intraperitoneal 4OHT to induce Cre-recombinase activity and effect chk1 conditional knockout in 
epidermis and hair follicles or 5 days of vehicle. Three days later, a single dose of topical DMBA 
was applied (D3) and this was followed by 20 weeks of twice weekly TPA tumour promotion. 
Control mice were chk1flox/flox // K14CreERT2 // LacZ + vehicle (n=19) and chk1+/+ // K14CreERT2 
// LacZ mice + 4OHT (n=20). Experimental group was chk1flox/flox // K14CreERT2 // LacZ + 4OHT 
(n=18).  A In the experimental group (chk1flox/flox + 4OHT), the rate of papilloma formation was 
delayed compared to controls chk1flox/flox + vehicle (log rank, p<0.0001) and chk1+/+ + 4OHT 
(log rank, p<0.0001). There was no statistical difference between the two control groups (log rank, 
p=0.075). By 70 days, all control animals had developed papillomas. In contrast, 16.7% (3/18) of  
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experimental animals remained tumour free and never developed papillomas up to 30 weeks. The 
remaining 15/18 that developed papillomas, did so within 100 days. B The average number of 
papillomas per mouse in each cohort increased in an exponential fashion upon commencement of 
TPA and reached a plateau between 15-25 weeks. No new papillomas were observed after this 
maximum burden was reached. At 30 weeks, a significantly lower average number of papillomas 
per mouse was observed in the experimental chk1flox/flox + 4OHT cohort versus control 
chk1flox/flox + vehicle, 5.5 versus 15.4 (Mann Whitney p<0.0001). A significantly lower average 
number of papillomas per mouse developed in the experimental chk1flox/flox + 4OHT cohort 
versus control chk1+/+ + 4OHT, 5.5 versus 17.8 (Mann Whitney p<0.0001). No statistically 
significant difference was seen between the two control groups, Mann Whitney, p=0.065. C 
Photographs of a representative animals from the control chk1flox/flox + vehicle versus 
chk1flox/flox + 4OHT experimental groups. D The majority of papillomas that formed in 
chk1flox/flox // K14CreERT2 // LacZ + 4OHT animals were <2mm (94.6%) and none exceeded 
5mm. This contrast with control chk1flox/flox // K14CreERT2 // LacZ + vehicle animals where 
papilloma diameters were larger <2mm (41.2%), 2-5mm (48.5%) and >5mm (10.3%).  
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Figure 14 - Rate of Conversion of Papillomas to Carcinomas 
 
The rate of conversion from papillomas to carcinomas in each cohort was calculated as the total 
number of carcinomas formed/total number of lesions (papillomas formed , including those that 
transformed into carcinomas) x100% Figure 4. Rates of conversion were as follows, chk1+/+ // 
K14CreERT2 // LacZ + 4OHT (5.9%, 21/355), chk1 flox/flox // K14CreERT2 // LacZ + vehicle (5.1%, 
15/293) and chk1flox/flox // K14CreERT2 // LacZ + 4OHT (2%, 2/99). There was no statistical 
difference between chk1+/+ + 4OHT and experimental group (chi squared p=0.191), chk1flox/flox + 
vehicle and experimental group (chi squared p=0.259) and no difference between control groups 
(chi squared p>0.25).  
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Figure 15 - Chk1 Expression in Papillomas 
 
Papillomas from the experimental and control cohorts were analysed for recombination, using β-
Gal assay, and for Chk1 expression, using Chk1 immunohistochemistry. All papillomas from the 
chk1+/+ // K14CreERT2 // LacZ + 4OHT cohort stained positive for β-Gal. In the other control group 
chk1flox/flox // K14CreERT2 // LacZ + vehicle, none of the papillomas stained positive for β-Gal. In 
both control groups, all papillomas stained positive for Chk1 as determined by 
immunohistochemical staining of paraffin embedded sections, with the majority staining strongly 
positive. In the experimental chk1flox/flox // K14CreERT2 // LacZ + 4OHT group, none of the 
papillomas stained positive for β-Gal. However, all papillomas stained positive for Chk1, with the 
majority staining strongly positive. Scale bar represents 50μm. 
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Figure 16 - Chk1 Expression in Carcinomas 
 
Carcinomas that formed from papillomas were analysed for Chk1 expression by 
immunohistochemistry. All of the carcinomas from the chk1+/+ // K14CreERT2 // LacZ + 4OHT 
group displayed a degree of Chk1 staining however, approximately half displayed strong positivity 
but the other half low levels of staining only. Therefore, there was a greater variability of Chk1 
staining amongst the carcinomas compared to papillomas.  Scale bar represents 100μm. 
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chk1flox/flox // K14CreERT2 // LacZ + 4OHT animals remained tumour free and 

never developed papillomas up to 30 weeks. The average number of papillomas 

in each cohort increased in an exponential fashion upon commencement of TPA 

and plateaued between 20-25 weeks later (see Figure 13B). At 30 weeks the 

average number of papillomas that developed in chk1flox/flox // K14CreERT2 // 

LacZ + 4OHT group was significantly less than chk1flox/flox // K14CreERT2 // 

LacZ + vehicle mice were 5.5 versus 15.4 (Mann Whitney, p<0.0001). A 

significantly smaller average number of papillomas per mouse developed in 

chk1flox/flox // K14CreERT2 // LacZ + 4OHT group versus chk1+/+ // K14CreERT2 

// LacZ + 4OHT + 4OHT, 5.5 versus 17.8 (Mann Whitney, p<0.0001).  There was 

no statistically significance difference in the average number of papillomas 

between the control groups (Mann Whitney, P=0.065). Maximum tumour 

diameter of each papilloma on each mouse was measured at 18 weeks post TPA 

commencement (see Figure 13D). The majority of papillomas that formed in 

chk1flox/flox // K14CreERT2 // LacZ + 4OHT animals were small <2mm (94.6%) 

and none exceeded 5mm. This contrasted with control chk1 flox/flox // 

K14CreERT2 // LacZ + vehicle animals where papilloma diameters were larger 

<2mm (41.2%), 2-5mm (48.5%) and >5mm (10.3%).  

The rate of conversion from papillomas to carcinomas in each cohort was 

calculated as the total number of carcinomas formed/total papillomas formed 

x100% (see Figure 14). Rates of conversion were as follows, chk1+/+ // 

K14CreERT2 // LacZ + 4OHT (5.9%, 21/355), chk1flox/flox // K14CreERT2 // LacZ 

+ vehicle (5.1%, 15/293) and chk1flox/flox // K14CreERT2 // LacZ + 4OHT (2%, 

2/99). There was no statistical difference between chk1+/+ + 4OHT and 

experimental group (chi squared p=0.191), chk1flox/flox + vehicle and 

experimental group (chi squared p=0.259) and no difference between control 

groups (chi squared p>0.25).  

Although not statistically significant, the results suggest a trend towards a 

reduction in conversion rate from papilloma to carcinoma when chk1 was 

ablated. Indeed the only 2 carcinomas in the chk1 ablated group developed and 

results were not able to be analysed using chi squared but required Fisher’s 

testing due to the small number of events. In order to definitively test this 

effect, I propose that it is necessary to repeat the experiment with a larger 

chk1flox/flox // K14CreERT2 // LacZ + 4OHT cohort (approximately 60 animals). 
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It was not anticipated prior to the experiment that chk1 ablation would result in 

markedly reduced papilloma (approximately 1/3 compared to control) and 

carcinoma numbers which subsequently presented limitations in terms of 

statistical analyses.  

 

4.1.2. Papilloma Formation Requires Chk1 
Papillomas from the experimental and control cohorts were analysed for 

recombination, using β-Gal assay, and for Chk1 expression, using Chk1 

immunohistochemistry (see Figure 15). Analysis of papillomas from every animal 

was not always possible due to technical or collection difficulties (eg. 

discontinuation of the production of ProteinTech Chk1 antibody in 2008, animals 

that died on the weekend and tissue therefore not amenable for late 

harvesting). Papillomas from the chk1+/+ // K14CreERT2 // LacZ + 4OHT cohort 

(papillomas from 18/20 animals examined) stained positive for β-Gal. In the 

other control group chk1flox/flox // K14CreERT2 // LacZ + vehicle (papillomas 

from 18/19 animals examined), none of the papillomas stained positive for β-

Gal. In the experimental chk1flox/flox // K14CreERT2 // LacZ + 4OHT group 

(papillomas from 16/18 animals examined), none of the papillomas stained 

positive for β-Gal. 

In the chk1+/+ // K14CreERT2 // LacZ + 4OHT (papillomas from 15/20 animals 

examined) and chk1flox/flox // K14CreERT2 // LacZ + 4OHT (papillomas from 

15/19 animals) control groups, papillomas stained positive for Chk1 by 

immunohistochemistry. In the experimental chk1flox/flox // K14CreERT2 // LacZ 

+ 4OHT group (papillomas from 14/18 animals examined), papillomas also 

stained positive for Chk1 by immunohistochemistry. All papillomas examined 

demonstrated strong positivity for Chk1. 

Given that 4OHT induced recombination in the skin is not complete, 

approximately 70-90% efficient (Ruzankina et al, 2007), it is expected that chk1 

unrecombined (or “wild type”) stem cells will persist in tissue. Papillomas that 

did arise in the chk1flox/flox // K14CreERT2 // LacZ + 4OHT group expressed 

Chk1 which implies they derived initially from cells which had escaped 
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recombination. This suggests that chk1 is essential for papilloma formation. No 

papillomas that formed lacked Chk1 expression. Furthermore, the vast majority 

of papillomas stained strongly for Chk1 suggesting that this gene function plays 

an important role in continued tumour survival.   

 

4.1.3. Chk1 Expression in Carcinomas Varies in 
Intensity 

Carcinomas that formed from papillomas were also analysed for Chk1 expression 

by immunohistochemistry (see Figure 16). Not all carcinomas were evaluated for 

the same reasons as that described in 4.1.2. 11 of the 15 carcinomas were 

examined for Chk1 staining by immunohistochemistry in the chk1flox/flox // 

K14CreERT2 // LacZ + vehicle group, all displayed positive Chk1 staining. 6 

displayed strong positivity and the other 5 displayed a lower level of positivity. 8 

of the 21 carcinomas examined for Chk1 staining by immunohistochemistry in the 

chk1+/+ // K14CreERT2 // LacZ + 4OHT group displayed positive Chk1 staining. 2 

displayed strong positivity and the other 6 displayed a lower level of positivity. 

Therefore, there was a greater variability in the strength of Chk1 staining 

amongst the carcinomas compared to papillomas. Only 2 carcinomas developed 

in the chk1flox/flox // K14CreERT2 // LacZ + 4OHT group, both of which stained 

strongly for Chk1.  
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4.2. Discussion 
 

The two stage DMBA/TPA tumour initiation and promotion protocol (see Figure 

3) is a well described and proven model for studying the evolution of tumours in 

mouse skin (Kemp, 2005; Perez-Losada & Balmain, 2003).  This model was 

chosen for reasons outlined in the Introduction (for a full description and 

discussion see Introduction1.6) as well as longstanding local expertise related to 

the development and utilization of this protocol for cancer research within the 

Beatson Institute (McLean et al, 2004; Quintanilla et al, 1986). It involves 

treating the dorsal skin with an initiating dose of DMBA (7, 12-

dimethylbenz[a]anthracene) as a single application typically, followed by 

multiple applications of tumor promoter, TPA (12-O-tetradecanoylphorbol-13-

acetate) over several months (Methods 2.8). The age of commencement of 

chemical carcinogens was standardized as age variations can alter the yield of 

tumours (Van Duuren et al, 1975). The primary targets for transformation are 

thought to be the bulge or hair follicle stem cell population (Brown et al, 1998; 

Owens & Watt, 2003; Perez-Losada & Balmain, 2003) (see Figure 4).  

The original chk1 mice we obtained in 2003 from our collaborators (Liu et al, 

2000b) were genetically of a mixed FVB and C57BL6/J background. They were 

further backcrossed onto FVB for at least 6 generations in order to minimize 

genetic heterogeneity (see Methods, 3.1.2). The albino FVB is considered 

optimal for conducting skin carcinogenesis experiments as opposed to other 

strains such as C57BL6/J, which are less susceptible to tumour formation (Kemp, 

2005; Naito & DiGiovanni, 1989). Papilloma numbers in the control cohort in my 

experiments were similar to those reported in the literature using the same 

DMBA/TPA protocol (Kemp, 2005; McLean et al, 2004). This indicated an 

acceptable level of genetic homogeneity within my mouse cohorts on the FVB 

strain which allows reliable comparisons to be made between the different 

experimental groups. In our experiments, the final yield of papillomas from the 

two different control cohorts chk1+/+ // K14CreERT2 // LacZ + 4OHT and 

chk1flox/flox // K14CreERT2 // LacZ mice + vehicle were not statistically 

different (see Figure 13B). This indicated that, at least on gross observation, 

there was no evidence for the floxed chk1 allele affecting tumour yield without 
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recombination (a hypomorphic effect for example). Similarly, previous studies 

published using this allele did not report any evidence for the floxed allele 

exerting a hypomorphic effect in embryogenesis, development and 

carcinogenesis (Greenow et al, 2009; Lam et al, 2004; Liu et al, 2000b; Zaugg et 

al, 2007). In my observations, treatment with 4OHT did not interfere with 

phenotype nor tumour yield which agrees with previous studies (Indra et al, 

1999; McLean et al, 2004).  

DMBA/TPA treatment gave rise to benign, pre-malignant papillomas, which 

comprise hyperplasic epidermis and stroma. The number, size and rate of 

development of these tumours were readily quantified (see Figure 13). I show 

that chk1 ablation prior to DMBA significantly reduced the total yield of 

papillomas (1/3 the average number compared to control. Papilloma formation 

was delayed and the size of papillomas that formed were smaller. In fact in 

16.7% of mice undergoing chk1 ablation, this prevented completely the 

development of any papillomas. Furthermore, papillomas that did arise in the 

chk1 ablated mice arose from cells that had escaped recombination (we know 

that recombination is only 70-90% effective) and they stained positive for chk1 

on immunohistochemistry and /or displayed absence of β-Gal positivity (see 

Figure 15). Taken together, this indicated that chk1 ablation inhibited the 

formation of papillomas and the tumours that did form arose from cells that had 

escaped initial 4OHT mediated recombination. This suggests that papilloma 

formation required chk1.  

 After papilloma appearance, continued TPA promotion caused a small 

percentage of papillomas to develop into malignant, invasive squamous cell 

carcinomas. Although not statistically significant, the results suggest a trend 

towards a reduction in the rate of papilloma to carcinoma conversion following 

chk1 ablation (see Figure 14). However, as only 2 carcinomas in the chk1 ablated 

group developed, results were not able to be analysed using chi squared test but 

required the use of fisher’s test due to small numbers. In order to verify this 

effect, I propose that it is of scientific interest and warranted to repeat the 

experiment with an expanded chk1flox/flox // K14CreERT2 // LacZ mice + 4OHT 

cohort (approximately 60 animals). It was not anticipated initially that such a 

significant reduction in papilloma and hence carcinoma numbers would be 
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observed and that this would present limitations in our ability to statistically 

analyse the true nature of this effect. Furthermore, I observed that carcinomas 

almost always originated from larger papillomas which were >5mm in diameter. 

As similar effect of papilloma size affecting propensity to carcinoma conversion, 

has previously been noted in Familial Adenomatous Polyposis (FAP) syndromes in 

human subjects (Lynch et al, 2008a; Lynch et al, 2008b; Rozen & Macrae, 2006) 

although the explanation for this phenomenon is unknown. Since chk1 ablation 

significantly reduced that size of papillomas, this could be a potential 

explanation for the reduced rate of carcinoma conversion. Alternatively it is also 

possible that chk1 ablation selectively removes a sub-population of stem cells 

which would ordinarily be at higher risk for carcinoma development.   

 



 

Chapter 5.  Chk1 Ablation Affects Skin and 
Label Retaining Cell Homeostasis   
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5.1. Results 
 

5.1.1. BrdU Label Retention Can be Imaged in Bulge 
Stem Cells 

The properties of bulge stem cells in the hair follicle have been discussed in the 

Introduction (see Introduction, 1.7.5).  In addition to being pluripotent, they are 

long-lived and are thought to divide infrequently in the unperturbed epidermis 

(Braun et al, 2003; Cotsarelis et al, 1990). In order to label and identify these 

cells in tissue sections, neonatal mice undergoing a time of rapid tissue 

expansion, can be injected in vivo with BrdU (Bickenbach, 1981; Bickenbach & 

Chism, 1998; Braun et al, 2003; Cotsarelis et al, 1990; Morris & Potten, 1999). 

The thymidine analogue is incorporated into the DNA of cells undergoing 

replication and cell division. By adulthood, due to subsequent rounds of 

homeostatic cellular division the vast majority of cells will have diluted their 

BrdU DNA concentrations down to undetectable levels. However, bulge stem 

cells divide relative infrequently and are for the most part quiescent therefore 

they manage to retain a high BrdU concentration which can be readily 

detectable. When isolated, these cells have been shown to posses enhanced 

clonogenic potential and are capable of giving rise to progeny that differentiate 

into separate lineages (eg. keratinocytes, sebocytes etc) (Braun & Watt, 2004). 

These bulge label-retaining cells or LRCs are considered to represent one pool of 

stem cells within the skin. In order to investigate the effects of DMBA/TPA 

carcinogenesis on the skin, we have focused on LRCs in subsequent experiments 

as they are thought to be a primary source of tumours in this system (Bailleul et 

al, 1990; Brown et al, 1998; Owens & Watt, 2003; Perez-Losada & Balmain, 

2003).  

In our protocol, we injected 3-4 day old mice with 3 doses of BrdU on 3 

consecutive days and allowed them to age to 8-10 weeks before sacrifice (see 

Figure 17A). Wholemount sections of tail epidermis were prepared, stained with 

an anti-BrdU antibody and visualised using confocal microscopy (Figure 17B, i, 

ii). Bulge LRCs (b) were generally observed just below the sebaceous glands (sg). 
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Figure 17 – BrdU Label Retaining Cell (LRC) Assay in Mouse Epithelium 
 
A Neonatal mice aged 3-4 days old, which are undergoing a time of rapid tissue expansion, are 
injected with three consecutive daily doses of BrdU. The thymidine analogue is incorporated into 
the DNA of cells undergoing replication and cell division. By adulthood, due to subsequent rounds 
of homeostatic cellular division the vast majority of cells will have diluted their BrdU DNA 
concentrations down to undetectable levels. However, as bulge stem cells divide relative 
infrequently and are for the most part quiescent they manage to retain high BrdU concentrations 
which can be readily detectable. These BrdU-labelled cells are known as Label Retaining Cells (or 
LRCs). We have focused on bulge LRCs in subsequent experiments as they are thought to be the 
cells of origin of tumours derived from DMBA/TPA carcinogenesis. B (i) When mice reach 
adulthood at around 8 weeks, tail epidermal wholemounts are prepared, stained using anti-BrdU 
antibody and imaged using Z-stacked confocal microscopy. The presence of LRCs can be 
visualised in the bulge region (b) just below the sebaceous glands (sg). (ii) A schematic 
representation of the hair follicle is depicted. (iii) In the experimental chk1flox/flox // K14CreERT2 // 
LacZ trigenic animals, the fusion protein CreERT2 recombinase is transcribed only in keratin 14 
expressing regions. In this image, confocal microscopy confirms widespread K14 expression in tail 
epidermis, including the bulge region. Scale bar represents 40μm. 
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In our experiments chk1flox/flox // K14CreERT2 // LacZ trigenic animals 

produced the fusion protein CreERT2 recombinase under the control of the K14 

gene promoter and should therefore be transcribed only in keratin 14 expressing 

regions. We confirmed widespread K14 expression in tail epidermis, including 

the stem cell bulge region by staining with an anti-K14 antibody (Figure 17B, iii).   

 

5.1.2. Chk1 Ablation Induces Label Retaining Cell 
(LRC) Proliferation 

To determine if 4OHT induced Chk1 protein knockdown can be imaged using 

confocal microscopy in mouse cells, adult chk1flox/flox // K14CreERT2 // LacZ 

mice treated with either vehicle or 4OHT. Two samples were used to assay Chk1 

staining which were tail wholemount preparations (see Figure 18A) and 

keratinocyte cell suspensions prepared from the tail epidermis (Figure 18B). 

Both showed reduced level of Chk1 staining, albeit not all the cells became 

negative.  

It is not known what the effect of chk1 ablation on the normally quiescent LRC 

population would be. To investigate this, we performed neonatal BrdU labelling 

in chk1flox/flox // K14CreERT2 // LacZ pups. The mice were allowed to age to 8 

weeks and then treated with either topical 4OHT or vehicle. At 8 weeks the skin 

is said to be undergoing a second phase of prolonged telogen lasting several 

weeks, thereby providing a synchronous hair follicle regeneration phase for 

standardised analysis (Muller-Rover et al, 2001). Wholemount tail epidermal 

preparations were taken over a time course, staining for BrdU and LRC numbers 

quantified using confocal imaging (see Figure 19A, B, C). The number of LRCs per 

follicle were counted for 3 triplet follicles (9 follicles) per animal in 3 separate 

animal for each data set at each time point. The difference in median number of 

LRCs was compared between control and experimental group using Mann 

Whitney Test. No significant difference was noted in the first 3 hours. Although 

statistically significant, only a small magnitude of difference appeared in the 

subsequent 24 hour period. In the following period from day 1-5 however, a  
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Figure 18 - Chk1 Expression in Wholemount Epidermis 
 
A Wholemount tail epidermal preparations were made from chk1flox/flox // K14CreERT2 // LacZ 
mice treated either with vehicle or 4OHT (5 days of intraperitoneal 4OHT and sacrifice the day after 
the final injection) and stained for Chk1. B Cell suspensions were made from epidermal 
preparations taken from dorsal skin. Cells were adhered onto poly-L-lysine cover slips and stained 
for Chk1. Both were imaged using confocal microscopy. Mice treated with 4OHT showed a 
substantial reduction in Chk1 staining. Scale bar represents 20μm. 
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Figure 19 - Label Retaining Cell Quantification Following Chk1 Abaltion 
 
A time course experiment was performed to follow LRC fate after chk1 ablation in skin. Neonatal 
BrdU labelling was performed in chk1flox/flox // K14CreERT2 // LacZ mice treated with either 
vehicle or topical 4OHT and animals sacrificed at various time points. A Wholemount tail 
preparations made from tail skin, stained for BrdU and imaged using confocal microscopy. B LRC 
numbers were quantified per follicle, for 3 triplet follicles (9 follicles) per animal in 3 separate 
animals for each data set at each time point. This is shown as the mean +/- SD. C The difference in 
median LRC number was compared between control and experimental group using Mann Whitney 
Test. A marked increase in LRC numbers were seen at the D3 and D5 timepoints. Scale bar 
represents 40μm. 
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significant increase in LRC numbers was observed, with a peak recorded at D3 

and D5, around x9 fold more than control. This gradually decreased by D14 with 

significantly fewer LRCs observed compared to control at D21 and at 6 months. 

My interpretation of this data is that following chk1 loss, LRCs which normally 

exist in a quiescent state, are stimulated to proliferate. The long term loss of 

LRC numbers can also be explained by the premature recruitment of the LRCs 

into active proliferation following chk1 loss thus depleting the original number of 

labelled cells.  

In order refine this analysis, in the same wholemount tail preparations as used in 

the experiment above, strong (red arrow) versus weakly (yellow arrow) staining 

LRCs were quantified separately (see Figure 20A). Strong staining was taken to 

indicate cells that have not undergone division and weak staining to indicate 

cells that are actively undergoing division and thus diluting their label. The 

numerical results were plotted (Figure 20B) – in the chk1flox/flox // K14CreERT2 

// LacZ + vehicle group, strong staining LRCs are represented as black bars 

versus weak staining LRCs in grey bars, and in the chk1flox/flox // K14CreERT2 

// LacZ + 4OHT group, strong staining LRCs are represented in red bars versus 

weak staining LRCs in pink bars. In the control group, the proportion of strong 

staining LRCs remained fairly constant at around 85 to 95% throughout the time 

course. In the 4OHT treated group, the proportion of strong staining LRC at the 

beginning of the time course was similar to control but decreased after the first 

24 hours. It continued to reduce to nadir around D5. At D5 only 26% of the LRCs 

were scored as strongly BrdU positive, the majority of cells were weakly stained 

implying active cell division. Following that, the proportion of strong staining 

LRCs increased and returned to control levels by D21.  

Further confirmation of proliferation was sought by performing a short term 

BrdU labelling time course experiment (Figure 20C, D), which assayed active 

incorporation of BrdU during DNA synthesis. Chk1 flox/flox // K14CreERT2 // 

LacZ mice were treated with topical 4OHT and at various time points prior to 

sacrifice, BrdU was injected intraperitoneally 3 hours beforehand. Wholemount 

preparations were made, staining performed for BrdU, imaged using confocal 

microscopy and BrdU positive cells quantified. At D1, there was no significant 

difference in median number of BrdU positive cells in 4OHT treated mice  

 



Lye Mun Tho Chapter 5 112 

 

Figure 20 - Dilution of Long Term BrdU Label and Cell Proliferation Following Chk1 Abaltion 
 
A In the same wholemount tail preparations as used in Figure 3 the number of strong (red arrow) 
versus weak (yellow arrow) staining LRCs were quantified. Strongly stained LRC indicate cells that 
have not undergone division and weak staining indicates cells that are actively undergoing division. 
B The graph depicts in the control group, the proportion of strong staining LRCs (black) versus 
weak staining LRCs (grey), and in the experimental group, the proportion of strong staining LRCs 
(red) versus weak staining LRCs (pink). C,D A short term BrdU labelling time course experiment 
was performed to confirm active cell division. Chk1flox/flox // K14CreERT2 // LacZ mice were 
treated with topical 4OHT and BrdU injected intraperitoneally 3 hours prior to sacrifice at various 
time points. Epidermal preparations were made and imaged using confocal microscopy and BrdU 
cells quantified. These results indicate that following chk1 loss, LRCs in the bulge region are 
stimulated to undergo proliferation. Scale bar represents 40μm. 
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Figure 21 - Label Retaining Cells and the Hair Follicle Cycle 
 
A Adapted from Tumbar et al Science (2004) 16: p359-363 (Tumbar et al, 2004). This shows 
confocal images of murine hair follicles at different stages of the hair cycle – (i) telogen, early 
anagen I, early anagen II and (ii) late anagen. Bulge label retaining cells (LRCs) which here are 
H2B-GFP expressing rather than BrdU labelled, only modestly contributes to hair follicle regrowth 
in early anagen but not in telogen or late anagen. Abbreviations: Bu, bulge; DP, dermal papilla; Mx, 
matrix; hg, hair germ; Ep, epidermis; asterisk, hair shaft (autofluorescent); hf, hair follicle; Cx, 
cortex; ORS/IRS, outer/inner root sheaths; BM, basement membrane; In, infundibulum; W, wound. 
Scale bars, 50 µm. Arrowheads denote transition zone between bulge and newly generated follicle 
downgrowth. H2B-GFP (green), 4',6'-diamidino-2-phenylindole (DAPI) (blue), Ki67 (red). B This 
shows a confocal image of hair follicles 3 days following chk1 ablation. In contrast to normal 
homeostasis, there is marked LRC proliferation with positive cells found in the entire bulge region 
(B) and secondary germ regions (SecG). Scale bar represents 40μm. 
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Figure 22 - Activated Caspase 3 and γ-H2AX Expression in Skin After Irradiation  
 
Animals were irradiated with either 4Gy or 12Gy of γ-irradiation and sacrificed 4 hours later. Tail 
wholemounts were prepared, as described in Figure 1, and stained for γ-H2AX and activated 
caspase 3 (AC3). Results show absent or minimal levels of staining in control tails with graduated 
levels of increased staining with increasing doses of γ-irradiation. Scale bar represents 20μm. 
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compared to vehicle treated control. However from D2 onwards to D21 a 

statistically significant increase was observed compared to vehicle treated 

control. Maximum numbers were seen at D3 where the average number of BrdU 

positive cells versus control was 109.7 vs 8.7. This confirms active proliferation 

occurring in skin where chk1 was ablated in keeping with previously observed 

multiplication of LRCs. 

In a paper published by Tumbar et al (Tumbar et al, 2004) label retaining cells 

were identified by transient conditional expression of H2B-GFP regulated by a 

Tet-“on” system. In murine hair follicles, bulge label retaining cells (LRCs) which 

are H2B-GFP positive, only modestly contributes to hair follicle regrowth in early 

anagen and not in telogen nor late anagen (see Figure 21A). Bulge cells do not 

generally cross the transition zone between bulge and newly generated follicle 

downgrowth (denoted by arrowheads). In contrast, following chk1 ablation, LRC 

multiplication is associated with the presence of BrdU positive cells in the entire 

bulge region (B) and secondary germ regions (SecG) in telogen (Figure 21B - 

demonstrated by a confocal image taken 3 days after 4OHT treatment).  This 

suggests the original LRC which were confined to the bulge or stem cell niche 

have now expanded to populate and constitute the rest of the hair follicle and 

this implies LRC differentiation in order to fulfill this function (Cotsarelis et al, 

1990; Ito et al, 2002; Jaks et al, 2008; Morris & Potten, 1999). The label which is 

detected now identifies keratinocytes in various stages of differentiation but 

which have originated from the stem cell population.  

 

5.1.3. Chk1 Ablation Results in an Accumulation of 
DNA Damage in the Skin 

In response to double strand DNA breaks (DSB), for example due to γ-irradiation, 

H2AX becomes phosphorylated at serine 139 (which is then known as γ-H2AX) 

which acts to recruit DSB break recognition and repair proteins to these nascent 

sites. It is crucial that DSBs are repaired, thereby preventing mutations, genomic 

instability and cell death. Accumulation of unrepaired DSB often leads to cellular 

death which can be observed by detecting the cleaved or the activated form of 

caspase 3 (AC3). In a control experiment animals were irradiated with either 4Gy  
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Figure 23 - γ-H2AX Expression in Skin Following Chk1 Abaltion 
 
Chk1flox/flox // K14CreERT2 // LacZ mice were treated with vehicle or topical 4OHT and animals 
sacrificed at various time points. A Wholemount tail preparations were made from tail skin, stained 
for γ-H2AX and imaged using confocal microscopy. B γ-H2AX positive cells were quantified per 
follicle, for 3 triplet follicles (9 follicles) per animal in 3 separate animals for each data set at each 
time point. This is shown as the mean +/- SD. C The difference in median number of γ-H2AX 
positive cells between control and experimental group was compared using Mann Whitney Test. A 
marked increase in γ-H2AX staining was seen at D5 and D7. Scale bar represents 40μm. 
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Figure 24 - Activated Caspase 3 Expression in Skin Following Chk1 Abaltion 
 
Chk1flox/flox // K14CreERT2 // LacZ mice were treated with vehicle or topical 4OHT and animals 
sacrificed at various time points. A Wholemount tail preparations were made from tail skin, stained 
for activated caspase 3 (AC3) and imaged using confocal microscopy. B AC3 positive cells were 
quantified per follicle, for 3 triplet follicles (9 follicles) per animal in 3 separate animals for each data 
set at each time point. This is shown as the mean +/- SD. C The difference in median number of 
AC3 positive cells between control and experimental group was compared using Mann Whitney 
Test. A marked increase in AC3 staining was seen at D7 and D14. Scale bar represents 40μm. 
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Figure 25 - Timelines for Tissue Changes Following Chk1 Abaltion 
 
It has been shown that following chk1 loss, hair follicle LRCs were stimulated to proliferate and 
undergo cell division. This was accompanied by an accumulation of γ-H2AX and AC3 staining. To 
attempt to chronologically order these events, graphs were plotted for each event, normalized to 
100% of the maximum average score. Results demonstrated peak LRC counts occurred before 
peak H2AX counts, which was followed by peak AC3 counts.  
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Figure 26 - p53 Expression in Skin Following Chk1 Abaltion 
 
To determine if apoptosis seen subsequent to chk1 loss is associated with the accumulation of 
p53, immunohistochemical staining was performed on paraffin fixed skin following 5 days of IP 
4OHT treatment in chk1 flox/flox // K14CreERT2 // LacZ mice (middle panels). Increased p53 
staining was observed. Mice irradiated with 2Gy and 12Gy γ-irradiation served as positive controls 
(lower panels). Scale bar represents 50μm. 
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Figure 27 - Repopulation of Skin by Unrecombined Cells Following Chk1 Abaltion 
 
A time course study was conducted using β-Gal staining to allow lineage tracing and determine the 
long-term fate of chk1 recombined cells (chk1 Δ/Δ) in skin. Chk1flox/flox // K14CreERT2 // LacZ 
mice were treated with 4OHT or vehicle and chk1+/+ // K14CreERT2 // LacZ mice were treated with 
4OHT. At various time points (shown here at D1, D10 and 4 months) A dorsal skin and B tail skin 
was harvested, wholemounts prepared and β-Gal staining performed. C Protein extracts were 
made from the dorsal skin of these animals. After undergoing initial recombination, β-Gal staining 
showed chk1 Δ/Δ cells were gradually lost and tissue was repopulated by unrecombined cells. 
Western blotting showed substantial decrease in Chk1 expression initially but Chk1 expression 
returned at later times following recombination.  
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Figure 28 - The Interfollicular Epidermis Maybe Repopulated by Cells from the Follicle 
Following Chk1 Abaltion 
 
To study the pattern of repopulation by unrecombined cells in the epithelium, chk1 flox/flox // 
K14CreERT2 // LacZ mice were treated with 5 days of IP 4OHT (D-5 to D-1). Skin was harvested at 
various time points A D0 and B D3, prepared in paraffin blocks and sections stained for Chk1. As 
repopulation by unrecombined cells occurred, the first areas where Chk1 expression reappeared 
was in the hair follicles, and only later in the interfollicular epidermis. This observation suggests that 
the interfollicular epithelium is being repopulated by cells originating from the hair follicles. Scale 
bar represents 50μm. 
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or 12Gy of γ-irradiation and sacrificed 4 hours later (see Figure 22). Tail 

wholemounts were prepared and stained for γ-H2AX and AC3. Results show 

absent or minimal levels of staining in control tails with graduated levels of 

increased staining with increasing doses of γ-irradiation. In order to determine 

whether deletion of chk1 induces DNA damage, chk1 flox/flox // K14CreERT2 // 

LacZ mice were treated with vehicle or topical 4OHT and animals sacrificed at 

various time points (Figure 23A, B, C). Wholemount epidermal preparations were 

made, γ-H2AX staining performed and imaging performed using confocal 

microscopy. The number of γ-H2AX positive cells per follicle was counted for 3 

triplet follicles (9 follicles) per animal in 3 separate animal for each data set at 

each time point. Control γ-H2AX staining was minimal, <1 positive cell on 

average per follicle. However, following chk1 loss, there was substantial 

increase in γ-H2AX staining in tissue. A significant increase in the median number 

of γ-H2AX positive cells between vehicle and 4OHT treated groups was observed 

from D3 to D14. The peak difference was observed at D7 of 120 fold over 

control. Thereafter staining decreased and by D21 there was no statistical 

difference compared to normal. These findings indicate that following chk1 

ablation from D3 to D14, there is an accumulation of DNA damage as 

demonstrated by γ-H2AX staining.  

 

5.1.4. Chk1 Ablation Results in Increased Apoptosis in 
the Skin 

In the same tissue samples as used in the experiment above staining for active 

caspase 3 (AC3) was also performed to assay for apoptosis (see Figure 24A, B, C). 

The number of AC3 positive cells per follicle was counted for 3 triplet follicles (9 

follicles) per animal in 3 separate animals for each data set at each time point. 

Control AC3 staining was minimal, <1 positive cells on average per follicle. A 

significant increase in the median number of AC3 positive cells was observed in 

the 4OHT treated group compared to vehicle alone from D1 to D21. Peak 

difference was seen around D14 of 36 fold over control. These findings indicate 

that following chk1 ablation from D3 to D14, there is greatly increased level of 
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apoptosis. It is likely that apoptosis is being initiated in cells which accumulate 

unrepaired DNA, as assayed by γ-H2AX staining (see 5.1.3).  

 

5.1.5. The Frequency of Staining Events Suggest LRC 
Proliferation Precedes DNA Damage and 
Apoptosis 

Following chk1 loss in tissue several events have been recorded (see Figures 19-

24). Hair follicle LRCs were stimulated to proliferate and undergo cell division. 

This was accompanied by an accumulation of γ-H2AX and AC3 staining. To 

visualise the order of these events a combined graph was plotted with each 

event normalized to 100% (of the maximum score) (see Figure 25). Results 

demonstrate that LRC proliferation peaked at around 3 days. This was followed 

by a peak of γ-H2AX positive cells at around 7 days which was followed by a peak 

of AC3 positive cells at 14 days. As Chk1 signalling is an essential pathway in 

maintaining genomic integrity during cell division (particularly by signalling S-M 

and G2-M delay in response to replication errors), the loss of chk1 is a convincing 

explanation for the accumulation DNA damage. The burden of unrepaired DNA is 

the likely trigger for subsequent apoptosis. The order of events however, 

suggests chk1 loss caused LRC multiplication as an early event and it is not clear 

whether γ-H2AX and AC3 activation are required for LRC multiplication or if this 

process is reliant on alternative signals.  

 

5.1.6. Chk1 Loss Results in p53 Induction 
To determine if apoptosis seen subsequent to chk1 loss is associated with the 

accumulation of p53, immunohistochemical staining was performed on paraffin 

fixed skin following 5 days of IP 4OHT treatment in chk1flox/flox // K14CreERT2 

// LacZ mice (see Figure 26). Increased p53 staining was observed after 3 and 5 

days of IP 4OHT particularly in the bulge region, outer root sheath and basal 

epidermis.This indicates an upregulation and stabilization of p53 following chk1 
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loss which is most likely due to activation of DNA damage response pathways. 

Mice irradiated with 2Gy and 12Gy γ-irradiation served as positive controls.  

 

5.1.7. Chk1 Ablated Skin is Repopulated by 
Unrecombined Cells (Unfloxed “Wild Type”) 

Chk1 loss caused apoptosis in mouse skin tissue, however no overt long-term 

pathology was noted. Using β-Gal staining to trace the fate of chk1 recombined 

cells (chk1 Δ/Δ) in skin, a time course was performed. Chk1 flox/flox // 

K14CreERT2 // LacZ mice were treated with a 5 day protocol of intraperitoneal 

4OHT (D-5 to D-1) and at various time points (D1, D10 and 4 months) dorsal skin 

(see Figure 27A) and tail (see Figure 27B) was harvested, wholemounts prepared 

and β-Gal staining performed. In the dorsal skin, at D1 there is widespread β-Gal 

staining suggesting a large proportion of chk1 Δ/Δ cells in the epithelium. 

However, at D10 the pattern of β-Gal staining appeared variegated, with β-Gal 

positive areas being interspersed with white areas indicative of unrecombined 

cells. With time, the proportion of white areas increased till at 4 months there 

was minimal representation of chk1 Δ/Δ cells. In the tail, a similar pattern of 

replacement of chk1 Δ/Δ areas by unrecombined cells occurred except that the 

loss of β-Gal positive cells occurred at a somewhat slower rate. For example, at 

D10 recombined cells were still numerous but over time the skin was ultimately 

repopulated by unrecombined cells. This data indicates that chk1 Δ/Δ cells do 

not persist in tissue. As previously shown there is evidence for an accumulation 

of γ-H2AX and apoptosis which suggests cells lacking chk1 go on to accumulate 

genomic instability and die. In turn, unrecombined cells repopulate the skin thus 

maintaining overall tissue homeostasis.  

Protein extracts were also made from the dorsal skin of these animals (Figure 

27C). Western blotting showed a substantial decrease in Chk1 expression that 

peaked at around D0 to D3. However, Chk1 expression returned between D12 

and D18. This confirms that unrecombined cells progressively repopulate the skin 

presumably to replace chk1 Δ/Δ cells then die. Interestingly the level of Chk1 

expression was higher compared to unperturbed skin following recombination at 
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D18 and D21. This could be explained by increased proliferative activity of the 

unrecombined cells, required to compensate for cellular death compared to the 

normal telogen or resting state hair follicles. 

 

5.1.8. Hair Follicle Stem Cells May be Responsible for 
Repopulation of the Interfollicular Epidermis   

To study the pattern of repopulation by unrecombined cells in the epithelium, 

chk1 flox/flox // K14CreERT2 // LacZ mice were treated with 5 days of IP 4OHT 

(D-5 to D-1). Skin was harvested at various time points, prepared in paraffin 

blocks and sections stained for Chk1 (see Figure 28). Immediately after 4OHT 

treatment, there was significantly reduced expression Chk1 throughout the 

epithelium (Figure 28A). D3 after 4OHT treatment, consistent with tissue 

repopulation by unrecombined cells, Chk1 expressing cells were now detected 

(Figure 28B). Chk1 positive cells seemed to appear first in the hair follicles and 

only later in the interfollicular epidermis. This observation is suggestive that the 

epithelium is being repopulated by cells originating from the hair follicles. The 

red arrow shows the potential “direction” of reconstitution taken by these cells. 
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5.2. Discussion 
 

Hair follicle bulge stem cells have been shown to exhibit pluripotency, increased 

clonogenic potential and are able to reconstitute various tissue types within the 

skin, such as epithelium, hair follicles and sebaceous glands in transplantation 

experiments (Braun et al, 2003; Cotsarelis et al, 1990; Tumbar et al, 2004). The 

accepted view is that these long lived cells remain relatively quiescent over 

their lifetime. LRCs can be recruited into active proliferation during hair growth, 

but this involves only a very small number of cells (Morris & Potten, 1999) or in 

response to epithelial wounding (Ito et al, 2005). 

 Recently this understanding has been challenged by the discovery of an actively 

cycling LGR5 positive population (Jaks et al, 2008) which is also pluripotent and 

exhibits increased clonogenicity and longevity. It is unclear if these represent 

different populations within a spectrum of stem cell types required for normal 

homeostasis (Lin & Andersen, 2008; Matyskiela et al, 2009), how they may 

interact with one another or indeed if they are interchangeable. Given data 

suggesting that bulge stem cell represent the cells of origin of DMBA/TPA 

derived tumours (Bailleul et al, 1990; Brown et al, 1998; Owens & Watt, 2003; 

Perez-Losada & Balmain, 2003), I decided to focus my studies on this cell 

population.  

Using a BrdU labelling technique (Bickenbach, 1981; Bickenbach & Chism, 1998; 

Braun et al, 2003; Cotsarelis et al, 1990) (see Figure 17), long-term label 

retention within DNA was used to assay for bulge stem cells. The mice were 

injected with BrdU early in neonatal life, when they were relatively hairless and 

undergoing a period of rapid tissue expansion and hair morphogenesis (Braun et 

al, 2003). Given the active role for hair follicle stem cells in constituting various 

skin lineages during this period, this is understood to be the reason why BrdU 

incorporates into DNA of cells which otherwise remain relatively quiescent in 

adulthood (Castilho et al, 2009). After these mice were aged, staining for BrdU 

identifies these quiescent long-term label retaining cells or LRCs. The dose of 

BrdU used in this protocol was titrated to provide optimum staining efficacy on 

confocal microscopy (see Figure 17) in mice aged 8-11 weeks (see Methods, 
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2.10). The optimal dose was found to be lower than in published studies (Braun 

et al, 2003). Indeed, published doses were sometimes, associated with a high 

variability of LRCs counts in control animals after short aging intervals from 4-10 

weeks (Morris & Potten, 1994; Morris & Potten, 1999) although it appeared 

reliable for long term aging experiments (Morris & Potten, 1999). Using doses 

employed in this study, I found highly reproducible and consistent LRC counts for 

short term aging (see Figure 19) which provided a more stringent platform for 

inter-mouse comparisons.  

Tail harvesting and assays for LRC numbers commenced when the mice were 8 

weeks of age. This corresponds to mice undergoing the second prolonged phase 

of telogen which is thought to last several weeks (Muller-Rover et al, 2001). This 

allowed standardisation of the hair cycle phase between mice during which 

experimentation was performed. When choosing follicles for cell quantification, 

only those conforming morphologically to telogen were selected and follicles 

that appeared to be in catagen or anagen were excluded. This is crucial as 

follicles undergoing catagen for example, would under normal hair cycling 

conditions be expected to demonstrate a degree of activated caspase 3 (AC3) 

staining but not follicles in anagen or telogen, which naturally should not be 

mistaken for AC3 activity occuring as a result of experimental manipulation.  

They key finding from this chapter is that chk1 ablation in skin resulted in 

substantial LRC proliferation. This is a novel finding. Two hypotheses are 

proposed to explain this phenomenon.  

The first is that a novel mechanism involving chk1 mediated checkpoint 

activation exists within stem cells in order to maintain LRC quiescence. In 

somatic cells stable ectopic expression of a few select genes can in fact induce a 

pluripotent growth active state, for example Oct4, Sox2, Nanog and Lin28 (Yu et 

al, 2007) which shows that a small but select number fo factors can influence 

stem cell phenotype and fate. In skin stem cells, WNT has been shown to be a 

major regulator of hair follicle morphogenesis, renewal and anagen promotion 

(Castilho et al, 2009; DasGupta & Fuchs, 1999; Gat et al, 1998; Greco et al, 

2009; Nguyen et al, 2006). WNT has already been implicated in a variety of 

processes required for embryonic development and primitive germ stem cells 

(Liu et al, 2008). Continuous and unrestrained tissue growth is neither 
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physiological nor desirable. In a study by Gutkind and colleagues, they show that 

constitutive overexpression of Wnt1 in mouse skin led to unrestrained hair 

follicle growth resulting in alopecia and exhaustion of the bulge stem cell 

population, ie. depletion of the LRC compartment (Castilho et al, 2009). To 

counteract continual activation of WNT would therefore suggest an important 

role for negative regulation. In key study by Fuchs and colleagues (Tumbar et al, 

2004), microarray analysis of skin LRCs (marked by transient expression of “Tet-

on” regulated H2B-Green Fluorescent Protein, see Figure 21A) showed 

upregulated mRNA expression of factors involved in inhibiton of the WNT 

signalling cascade, such as Secreted frizzled-related protein 1 (Sfrp1) and 

Disabled homolog 2 (Dab2) (Hocevar et al, 2003). In a subsequent study by Vogel 

and colleagues (Ohyama et al, 2006) they isolated skin bulge stem cells and 

performed microarray expression analysis. Again they found an upregulatino of 

negative WNT signalling factors such as WNT inhibitory factor 1 (WIF1) and Bone 

morphogenetic protein 1 (BMP1). Unsurprisingly a variety of cell cycle associated 

factors were shown to eb upregulated (Tumbar et al, 2004) as part of this 

inhibitory network including Growth Arrest Specific 1, Latent TGFβ binding 

protein 1/2/3 and Transforming Growth Factor β2 .  

Taken together these studies suggest LRCs require active negative regulation in 

order to counteract and restrain ongoing proliferation signals [reviewed by (Li & 

Clevers, 2010)]. Proliferation and participation in morphogenesis is suggested to 

be the default state of these stem cell (Fuchs, 2007) which highlights the 

importance of this negative regulatory network. Interestingly, this is in complete 

contrast to the situation with LGR5+ve cells where the dermal papillae region 

has been shown to have high levels of WNT signalling (Kishimoto et al, 2000; 

Shimizu & Morgan, 2004) and secrete noggin, a BMP antagonist (Botchkarev et al, 

2001). This is also discussed in Chapter 8 (see 8.2).  

Chk1 has not been identified in either of these experiments performed on skin 

stem cells but in a microarray analysis of mammary stem cells, chk1 was found 

to be transcriptionally upregulated (Behbod et al, 2006). To date follow 

experiments to test the function of chk1 in mammary stem cells have yet to be 

performed. Although this evidence only points to a possible association in stem 

cells, evidence to suggest a possible role of checkpoints in regulating or 

influencing cell quiescence or senescence has been published in separate 
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context. For example, a study by Rimkus et al (Rimkus et al, 2008) demonstrates 

dramatic evidence for negative checkpoint in quiescent neuronal cells. RNAi 

knockdown of ATM in Drosophila, which signals downstream via chk2 and chk1, 

resulted in reentry of post mitotic neurons into cell cycle. Cell cycle reentry was 

followed by DNA damage and apoptosis and these events resemble the fate of 

chk1 ablated LRCs. The animals displayed pathological changes similar to that 

found in the human disease equivalent Ataxia Telangiectasia (Savitsky et al, 

1995). Furthermore, key evidence exists to show checkpoint proteins have a 

significant role in maintaining oncogene induced senescence – both in 

transformed cells in vitro and from in vivo studies that demonstarate that this 

pathway is crucial in restraining tumourigenesis (Bartkova et al, 2005; Di Micco 

et al, 2006). This evidence suggests that the possible role of chk1 in maintaining 

stem cell quiescence cannot be excluded, although if confirmed would represent 

a novel function of this protein. Also, given chk1 is understood to be active only 

in cells undergoing cell division or that have incurred DNA damage during the 

cell cycle [reviewed by (Smith et al, 2010)], its role in a quiescent population of 

cells would certainly challenge our understanding of the role of checkpoint 

pathways. Therefore I would argue that the role for chk1 in LRC warrants further 

investigation. 

The second explanation for chk1 ablation induced LRC proliferation could lie in 

the fact that LRCs become active and cycle in response to tissue wounding. LRCs 

are thought to contribute only modestly to hair follicle homeostasis. As shown in 

Figure 21 in telogen and catagen LRC are confined to the upper bulge region 

(Figure 21A). In early anagen there is some evidence to show modest LRC 

proliferation in the lower bulge contributing to the formation of the nascent hair 

follicle (Tumbar et al, 2004). However the number of LRCs involved is small and 

they seldom venture across the bulge/dermal papillae boundary. In late anagen 

they again localize to the upper bulge only (Figure 21B). In contrast, my data 

demonstrates marked LRC proliferation with positive cells found in the entire 

bulge region (B) and secondary germ regions (SecG) (Figure 21B). This is 

therefore consistent with a non-physiological event. It has been shown that LRCs 

can be induced to proliferate in vast numbers by epithelial perturbation for 

example in response to epithelial wounding (Ito et al, 2005). Given chk1 ablation 

induces a significant degree of DNA damage and apoptosis (Figure 23 and 24) in 
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the hair follicles as well as the interfollicular epithelium, this may in fact 

represent sufficient perturbation to normal homeostasis with which to trigger 

LRCs proliferation and reconstitution of the damaged hair follicles. Using 

immunohistochemical staining, following chk1 ablation, Chk1 expressing cells 

seemed to appear first in the hair follicles only later followed by the epidermis 

(see Figure 28). This observation is suggestive that the epithelium is being 

repopulated by cells originating from the hair follicles. The red arrow shows the 

potential “direction” of reconstitution taken by these cells. Ordinarily hair 

follicle bulge cells do not contribute to interfollicular epidermal homeostasis, 

which is maintained by their own population of interfollicular stem cells (Clayton 

et al, 2007; Ito et al, 2005). However, under certain circumstances, such as 

epithelial wounding (Ito et al, 2005), bulge stem cells play a crucial role in re-

epithelialization and thus they are postulated to serve as a “reserve” progenitor 

population for the interfollicular epithelium. The pattern of Chk1 expressing cell 

repopulation observed suggests the possibility of a similar “wounding 

phenomena” occurring as a result of chk1 ablation. In response to this, the bulge 

cells are induced to repopulate the entire epidermal layer. The exact 

mechanism of this “wounding phenomenon” induced by chk1 ablation is unclear. 

To summarise, LRC proliferation might in fact be in response to chk1 mediated 

disruption of epithelial function leading to recruitment of LRCs in order to 

maintain homeostasis.  

However, peak proliferation preceded DNA damage and apoptosis (see Figure 

25). Therefore, the kinetics favour the explanation that chk1 loss lead to a 

removal of negative regulation which triggered proliferation which resulted in 

dysregulated DNA synthesis and segregation leading to acquisition of DNA 

damage followed by apoptosis. Nevertheless neither possibility can be dismissed 

at this stage, nor that both events are occurring concurrently. Proposed 

investigations to test these hypotheses further and establish the mechanisms 

involved in chk1 mediated LRC proliferation are discussed in Future 

Perspectives. (see 8.2)   

I showed an upregulation and stabilization of p53 linked to chk1 loss (see Figure 

26), however at this stage the role of p53 in mediating apoptosis is unclear. It 

has been shown in that in an AhCre murine model, conditional chk1 knockout 

induces apoptosis and p53 but the  phenotype was not rescued by crossing onto a 
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p53 knockout background (Greenow et al, 2009). Hence it appears that p53 is 

not obligatory for apoptosis secondary to chk1 loss.   

Following chk1 ablation in the skin, I showed that the tissue is eventually 

repopulated over 1-3 weeks by unrecombined cells (see Figure 27). Greenow et 

al noted a similar phenotype in the intestine (Greenow et al, 2009). Using AhCre 

conditional chk1 knockout murine model, chk1 loss resulted in death of crypt 

cells associated with loss of Chk1 mRNA and protein expression. But Chk1 was re-

expressed by day 5 in the tissue as a result of repopulation by cells bearing the 

unrecombined allele. As with my skin data, it was interesting to note that 

despite a seemingly major tissue regeneration process occurring there was no 

evidence of pathological changes. Reconstitution of the tissue by unrecombined 

cells was therefore evidently able to adequately maintain homeostasis in both 

the skin and intestine.  

 



   

Chapter 6. Mechanisms for Explaining Chk1 
Ablation and Resultant Tumour 
Suppression  
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6.1. Results 
 

6.1.1. Chk1 Ablation Caused a Depletion of Label 
Retaining Cells and Reduced Tumour Formation 
but Homeostasis is Maintained 

In Chapter 5 (see 5.1.3 and 5.1.4), I have shown that chk1 ablation leads to LRC 

proliferation and an accumulation of DNA damage and apoptosis. In chk1 ablated 

skin, the tissue is eventually repopulated by cells which had escaped 

recombination. During this process, skin homeostasis appears intact with no 

gross pathology observed. Working models for LRC or bulge stem cell fate 

following chk1 ablation are represented schematically in Figure 29. This will be 

explored in greater detail in Chapter 6, Discussion 6.2.  One possible view is that 

bulge stem cells in chk1flox/flox // K14CreERT2 // LacZ mice (in blue) when 

undergoing 4OHT mediated recombination into chk1 Δ/Δ cells (in red) undergo 

aberrant replication, accumulate DNA damage and eventually undergo apoptosis 

Figure 29A. Recombination however, is not achieved in all cells and 

unrecombined stem cells go on to proliferate and repopulate the bulge stem cell 

niche.  

In order to test this hypothesis, two experiments were performed. In the first, 

Keratin 15 staining was used as a cell cytokeratin or cytoskeletal protein to 

identify cells possessing progenitor like properties within mouse epithelia (Liu et 

al, 2003; Lyle et al, 1998; Serrels et al, 2009). It should be noted however, that 

Keratin15 marks not only stem cells but also the transit amplifying cell 

populations. The latter is an intermediary cell type which is thought to arise 

from stem cell division, capable of multiple rounds of divisions before becoming 

terminally differentiated [reviewed by (Jones et al, 2007)]. In chk1flox/flox // 

K14CreERT2 // LacZ mice following 5 days of intraperitoneal 4OHT treatment (D-

5 to D-1), as described previously, LRC numbers are reduced at day 10 (see 

Figure 30). However, levels of keratin 15 positive cells remains relatively 

constant compared to control. This could suggest that unrecombined progenitor 

cells are able proliferate to maintain this population.  
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Figure 29 - Models of Stem Cell Fate Following Chk1 Ablation 
 
A schematic diagram showing potential consequences of chk1 ablation on both the bulge stem cell 
compartment (left column) and somatic cell compartment (right column).  
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Figure 30 - Keratin 15 Expression Following Chk1 Ablation 
 
Neonatal chk1 flox/flox // K14CreERT2 // LacZ mice were labelled with brdU to assay for label 
retaining cells (LRCs). The mice were allowed to age to around 8 weeks, then treated with IP 
4OHT (D-5 to D-1) or vehicle. Wholemount epidermis was prepared, stained for keratin 15 (K15) 
and imaged using confocal microscopy. Numbers of K15 positive cells remains relatively constant 
although LRC cells were reduced following 4OHT. Scale bar represents 40μm. 
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Analyses of the pattern of co-staining (yellow) between BrdU positive (red) and 

K15 positive (green), allowance being given for the fact that BrdU is a nuclear 

stain and K15 a cell cytokeratin, allows a degree of insight into the hierarchy of 

differentiation or “stemness” in these two populations. The true bulge region 

contains BrdU cells which do not co-stain. Co-staining is seen in the region below 

the bulge which has been understood to be the region containing bulge stem 

cells which have exited the niche and are undergoing differentiation and 

proliferation (Braun et al, 2003; Ito et al, 2002; Ito et al, 2005; Jaks et al, 2008). 

Therefore, this implies K15 fails to mark a subset (arguably, the majority) of 

cells traditionally associated with a high degree of “stemness” ie. LRCs.  

To further test the idea that bulge stem cell repopulation affects tumour 

formation, chk1flox/flox // K14CreERT2 // LacZ mice were treated with 5 days 

(days -5 to -1) of intraperitoneal 4OHT but DMBA treatment was delayed till D10 

instead of the usual application at D3 (see Figure 31A). This was compared to 

two cohorts from previous experiments described in Chapter 4 (see 4.1.1) which 

were chk1 flox/flox // K14CreERT2 // LacZ mice + vehicle and chk1 flox/flox // 

K14CreERT2 // LacZ mice treated with 4OHT and then 3 days later with DMBA. All 

received the standard TPA protocol. As shown previously, D3 DMBA resulted in 

significantly fewer papillomas. Given that the disappearance of β-Gal staining 

and re-expression of Chk1 takes place over 1-3 weeks, a 10 day delay in DMBA 

application (D10 DMBA) was expected to allow the bulge time to undergo 

substantial repopulation by unrecombined stem cells before being subjected to 

carcinogens. Papillomas were quantified weekly for 30 weeks beginning at TPA 

application. The D10 DMBA group developed a similar number of papillomas to 

the control group with no statistically significant difference observed for tumour 

numbers at 30 weeks (Mann Whitney p=0.50). There was however a statistically 

significant difference between DMBA D10 versus DMBA D3 tumour numbers at 30 

weeks (Mann Whitney, p<0.0001). Hence the delay in DMBA application was able 

to rescue the papilloma suppression phenotype. This suggests that chk1 ablation 

reduced the number of available stem cell targets for chemical carcinogenesis in 

the short term but unrecombined stem cells were able to repopulate the bulge 

niche reconstituting the number of targets available for transformation. This is 

graphically represented in Figure 31B. Following 4OHT treatment at DMBA  

 



Lye Mun Tho Chapter 6 142 

 

 

 

Figure 31 - Delaying DMBA Application Following Chk1 Ablation 
 
A Chk1 flox/flox // K14CreERT2 // LacZ mice were treated with IP 4OHT (D-5 to D-1) but DMBA 
treatment was delayed till D10 instead of the usual application at D3. This was compared to two 
cohorts from previous experiments described in Figure 3, Chapter 2 which were chk1 flox/flox // 
K14CreERT2 // LacZ mice + vehicle and chk1 flox/flox // K14CreERT2 // LacZ mice treated with 
4OHT and then 3 days later with DMBA. All received the standard TPA protocol. The D10 DMBA 
application group displayed papilloma development similar to the vehicle treated group (Mann 
Whitney p=0.50). A statistically significant difference between D10 DMBA versus D3 DMBA 
papilloma numbers was observed (Mann Whitney, p<0.0001).   
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B Graphical representation showing that the reduction in papilloma formation when DMBA is 
applied at D3 following 4OHT treatment versus at D10 may be due to the prevalence of chk1 
recombined stem cells (Δ/Δ)  versus unrecombined (F/F) in skin tissue. At D10 following 4OHT 
treatment, F/F cells are repopulating the skin following attrition of Δ/Δ cells.  
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application at D3, carcinogen treatment occurs when a large proportion of the 

target stem cells are chk1 recombined (Δ/Δ). When DMBA application is delayed, 

unrecombined (flox/flox) cells to repopulate the tissue (see Figure 27), thereby 

increasing the number of stem cells.  

 

6.1.2. Chk1 Ablation Reduces Hyperplasia Normally 
Caused by TPA 

Tissue hyperplasia is an important step in selecting the outgrowth of H-ras 

mutant cells to form papillomas (Boutwell et al, 1982; Kemp, 2005). If chk1 

ablation led to transient stem cell depletion, it follows the ability of skin to 

respond to tissue promotion might be impaired. To test this, chk1 flox/flox // 

K14CreERT2 // LacZ mice were treated with either 5 days of intraperitoneal 

4OHT or vehicle and then 4 weeks of TPA (twice a week) (Figure 32A). Animals 

were sacrificed after 4 weeks, skin sections prepared from paraffin blocks and 

stained with H&E. Epidermal thickness and length of telogen and anagen hair 

follicles were recorded (Figure 32B). Mice treated with 4OHT had significantly 

reduced epidermal thickness (Mann Whitney test, p=0.017), telogen follicle 

length (Mann Whitney test, p=0.004) and anagen follicle length (Mann Whitney 

test, p=0<0.001). This indicates that chk1 ablation attenuated TPA induced 

hyperplasia. This may also be a contributory factor for the reduction in numbers 

of papillomas observed following chk1 ablation (Figure 32C).  

 

6.1.3. Chk1 Ablation May be Selectively Targeting H-

Ras Mutant Stem Cells for Apoptosis  
To test if chk1 ablation selectively induces a greater degree of DNA damage and 

apoptosis in oncogene-transformed stem cells compared to non-transformed 

stem cells, DMBA application was performed 3 days prior to 4OHT treatment in 

chk1flox/flox // K14CreERT2 // LacZ mice (DMBA  4OHT). Skin was then 

exposed to TPA as per standard protocol over 20 weeks. In Figure 33A data from 

these mice are compared to two cohorts from previous DMBA/TPA  
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Figure 32 - TPA Induced Skin Hyperplasia and Chk1 Ablation 
 
A Chk1 flox/flox // K14CreERT2 // LacZ mice were treated with IP 4OHT or vehicle and then with 4 
weeks of TPA (twice a week). B Epidermal thickness and length of telogen and anagen hair 
follicles were recorded at the end of the experiment. Mice treated with 4OHT had significantly 
reduced epidermal thickness (Mann Whitney test, p=0.017), telogen follicle length (Mann Whitney 
test, p=0.004) and anagen follicle length (Mann Whitney test, p=0<0.001). C Papilloma outgrowth 
from skin pre-treated with DMBA is thought to depend on intermediary hyperplasia. If this reaction 
is attenuated, it may well be a contributory factor for the reduction in papillomas following chk1 
ablation. 
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Figure 33 - TPA Induced Skin Hyperplasia and Chk1 Ablation 
 
A Chk1 flox/flox // K14CreERT2 // LacZ mice were treated with IP 4OHT or vehicle and then with 4 
weeks of TPA (twice a week). B Epidermal thickness and length of telogen and anagen hair 
follicles were recorded at the end of the experiment. Mice treated with 4OHT had significantly 
reduced epidermal thickness (Mann Whitney test, p=0.017), telogen follicle length (Mann Whitney 
test, p=0.004) and anagen follicle length (Mann Whitney test, p=0<0.001).  
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C Papilloma outgrowth from skin pre-treated with DMBA is thought to depend on intermediary 
hyperplasia. If this reaction is attenuated, it may well be a contributory factor for the reduction in 
papillomas following chk1 ablation. D Comparing apoptosis in mouse skin following chk1 ablation 
with or without prior DMBA treatment.  
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experiments as detailed in Figure 13. In brief, chk1flox/flox // K14CreERT2 // 

LacZ mice were treated with vehicle, 3 days later with DMBA, then TPA (control) 

and chk1flox/flox // K14CreERT2 // LacZ mice were treated with 4OHT, 3 days 

later with DMBA, then TPA (4OHT  DMBA). DMBA  4OHT mice showed 

substantially reduced papilloma formation over 30 weeks (Figure 33B,C) 

compared to control, as was the case with 4OHT  DMBA mice. The average 

number of papillomas per mouse DMBA  4OHT versus control was 3.1 vs. 15.4 

(Mann Whitney, p<0.0001). Interestingly, the average number of papillomas per 

mouse in the DMBA  4OHT versus 4OHT  DMBA cohorts was statistically 

different, 3.1 vs. 5.5 (Mann Whitney, p=0.032).  

To attempt to quantitate the degree of apoptosis in hair follicles, chk1flox/flox 

// K14CreERT2 // LacZ mice were treated with IP 4OHT alone or DMBA 2 weeks 

prior to IP 4OHT application. Wholemount epidermis samples were prepared, 

stained for activated caspase 3 (AC3) and visualised using confocal microscopy 

(Figure 33D). The number of AC3 positive cells were quantified per follicle, for 2 

sets of triplet follicles in one animal, for each cohort at each time point. No 

significant difference in average number of AC3 positive cells per follicle was 

seen between the two groups at D1 and D2 following 4OHT (D-5 to D-1), Mann 

Whitney, p=0.173 and p=0.379 respectively. Nevertheless, at both time points 

there was a trend towards a greater number of AC3 cells observed in the DMBA 

pre-treated skin. Perhaps statistical significance was not observed due to the 

small difference in magnitude and small sample size (2 animals per time point). 

Given a significant reduction in average number of papilloma formation in DMBA 

pre-treated skin, it is possible that a chk1 ablation induces apoptosis to a 

greater degree in H-ras transformed stem cells as opposed to non-transformed 

stem cells.  

 

6.1.4. Chk1 Ablation Delays Hair Regrowth  
Although no gross pathology was noted in the skin following chk1 ablation, we 

investigated the effect on hair regrowth after shaving, which is an indicator of 

the rate of epithelial renewal following chk1 ablation. Chk1flox/flox // 

K14CreERT2 // LacZ and chk1+/+ // K14CreERT2 // LacZ mice were treated with  

 



Lye Mun Tho Chapter 6 149 

 

 

 

 

Figure 34 - Effect of Chk1 Ablation on Hair Growth 
 

A Chk1 flox/flox // K14CreERT2 // LacZ and chk1 +/+ // K14CreERT2 // LacZ mice were treated with 
IP 4OHT and underwent shaving of the lower ⅓ to ½ of the dorsal skin. The time taken for hair 
regrowth was recorded. B Time taken for hair regrowth was significantly longer in chk1 flox/flox 
animals compared to control (log rank p=0.024). C Also noted in a small number of chk1 flox/flox // 
K14CreERT2 // LacZ treated with 4OHT and the DMBA/TPA protocol, after 20+ weeks, bald 
patches began to emerge in the dorsal skin.  
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IP 4OHT and underwent shaving of the lower ⅓ to ½ of the dorsal skin (see 

Figure 34A). The time taken for hair regrowth was recorded. This was found to 

be significantly longer in chk1flox/flox animals compared to chk1+/+ control (log 

rank p=0.024) (Figure 34B).  

In a subset of chk1flox/flox // K14CreERT2 // LacZ mice treated with 4OHT and 

then commenced on DMBA/TPA (Figure 13), after around 20 weeks bald patches 

were noted to occur in the dorsal skin (Figure 34C). These regions of alopecia 

persisted till the animals were eventually sacrificed.  

Taken together, these two observations suggest that the loss of chk1 reduces the 

rate of epithelial renewal in adult skin. The explanation of this phenomenon 

possibly lies in my previous observations that chk1 loss causes stem cell (LRC) 

proliferation (see Figure 19). Ruzankina et al (Ruzankina et al, 2007) using ATR 

knockout mice (ATR being the direct upstream activator of chk1), observed that 

genetic deletion in the presence of proliferative stimulus resulted in an ageing 

phenomenon with hair greying, delayed hair regeneration and baldness. In these 

mice, conditional ATR ablation resulted in attrition of recombined cells followed 

by repopulation by unrecombined cells over time - which is similar to our 

observations in chk1 conditional knockout mice. After three rounds of ATR 

ablation with intervals to allow for repopulation by unrecombined cells, 

accompanied by hair plucking / depilation, this resulted in progressively more 

severe delay hair regeneration, hair greying and alopecia after each cycle. The 

authors note that loss of tissue homeostasis through stem and progenitor cell 

attrition has previously been proposed as a model to explain the general 

organismal decline associated with ageing (Chen, 2004; Pelicci, 2004; Rando, 

2006; Sharpless & DePinho, 2004). Because ATR deletion led to the depletion of 

stem and progenitor cells, their interpretation of their results indicate that stem 

and progenitor cell attrition may be the primary cause of reduced regenerative 

capacity. They propose that ATR deletion may render a majority of stem cells 

replication incompetent, leading to an overreliance on the remaining ATR-

expressing ATRflox/− stem cells that escaped lox recombination. These surviving 

ATR-expressing stem and progenitor cells may subsequently be lost either by 

natural causes or by additional replicative stress acquired during pool 

regeneration; thus, these residual cells may be insufficient to maintain tissue 

homeostasis over the long term. In support of this model, they also observed a 
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dramatic loss of CD34+ follicle bulge stem cells soon after depilation-induced 

anagen (Ruzankina et al, 2007). While these bulge stem cells regenerated to a 

sufficient degree to drive a delayed anagen phase, they recovered poorly in 

subsequent regenerative cycles, and their depletion was ultimately associated 

with follicle degeneration and hair loss.   

The explanations proposed by Ruzankina et al (Ruzankina et al, 2007) may also 

explain my observations with regards delayed hair regrowth and apolecia seen in 

chk1 ablated animals (see Figure 34). Loss of chk1 may be inducing stem cell 

proliferation leading to additional “replicative stress” on the remaining pool of 

unrecombined cells reducing their regenerative capacity in the long term.  
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6.2. Discussion 
 

6.2.1. Models for Label Retaining Cell / Stem Cell Fate 
Following Chk1 Ablation 

Two working models to explain label retaining cell / stem cell fate following 

chk1 ablation are represented schematically in Figure 29.  

One possible view is that bulge stem cells in chk1flox/flox // K14CreERT2 // LacZ 

mice (in blue) undergo 4OHT mediated recombination into chk1 Δ/Δ cells (in 

red), and as a result undergo aberrant replication without the usual licensing 

mechanisms to halt cell division in the face of replication damage or errors 

occurs. This leads to an accumulation of DNA damage, the burden of which will 

eventually result in apoptosis Figure 29A. From published data (Greenow et al, 

2009; Ruzankina et al, 2007) and from work in this thesis, we know 

recombination is not achieved in all cells. In this model, the hypothesis states 

that unrecombined stem cells proliferate to repopulate and reconstitute the 

bulge stem cell niche thereby maintaining normal tissue homeostasis. In Chapter 

4 (see Figure13), it is shown that chemical carcinogenesis initiation 3 days after 

chk1 ablation, caused a marked reduction in papilloma formation. If stem cell 

numbers are indeed reduced, then this piece of experimental data supports the 

hypothesis. Furthermore, when the tissue is allowed to recover by delaying 

DMBA till day 10 (see Figure 31), the number of papillomas that developed were 

similar to controls which suggests a restoration of the number of stem cell 

targets available for carcinogenesis. Figure 31B is a further graphical 

representation illustrating the importance of the DMBA timing after 4OHT 

application in influencing the number of papillomas that develop. In these chk1 

ablated mice which are aged no gross pathology is noted which implies 

homeostasis is being maintained. In this model it is presumed the stem cells and 

somatic cells which escape initial recombination contribute significantly to 

maintaining homeostasis.  

As demonstrated in Figure 19 (see 5.1.2), chk1 ablation causes proliferation of 

LRC cells. The alternative hypothesis (see Figure 29B) states the main trigger for 
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LRC proliferation are signals derived from somatic tissue. I have observed an 

accumulation of DNA damage (see Figure 23) and apoptosis (see Figure 24) 

occurring in mouse skin following recombination. It is possible that these 

processes (and associated events) result in changes in tissue homeostasis which 

trigger response mechanisms that cause the normally quiescent LRCs to 

proliferate in order to replenish cell death within the somatic compartment. It is 

also entirely possible that both hypotheses are true, and that both processes 

occur simultaneously following chk1 ablation.  

In order to clarify the situation above, experiments would need to be conducted 

to allow separate assessment of events occurring in two separate cell 

populations within the skin stem cells and somatic cells – focussing on chk1 

expression, proliferation, DNA damage and apoptosis. This would require an 

ability to assay stem cells over a period of time and even after stem cell division 

has occurred. Unfortunately the BrdU LRC assay presents limitations in this 

regard because subsequent rounds of cell division lead to dilution of the label. 

Additionally, it is not possible to re-label a mouse with BrdU subsequent to the 

neonatal period. Therefore it has not been possible to define, if following chk1 

ablation in adult skin for example, the bulge is truly reconstituted by stem cells 

which have escaped recombination even though K15 staining did not diminish 

(see Figure 30).  Nor has it been possible to determine if proliferating LRCs 

consisted of cells which successfully underwent recombination or had escaped 

recombination or both. As alluded to, expression of surface markers, for 

example K15 or CD34, as surrogates for label retention presents limitations as 

there is limited agreement on co-expression as is their validity for identifying 

stem cells as defined by pluripotency, clonogenicity and longevity (Fuchs, 2009; 

Myung et al, 2009a; Myung et al, 2009b; Tumbar et al, 2004). 

Further experimental limitations I encountered emerged due to the acid 

denaturation step used to reveal the BrdU epitope for antibody staining. Acid 

denaturation has been reported to destroy antibody binding epitopes (Cappella 

et al, 2008; Eisch & Mandyam, 2007), ie. affecting the accuracy of assaying for 

Chk1 expression, DNA damage and apoptosis. Methods to overcome this have 

been described including using EdU (5-ethynyl-2’deoxyuridine) (Cappella et al, 

2008; Lin et al, 2009) as an alternative thymidine analogue to BrdU. The 

detection of EdU, using the Invitrogen Click-iT® kit, does not require an acid 
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denaturation step but instead relies on an azide- ethynyl copper catalysed 

reaction. Although no protocols have been published for the use of EdU in in vivo 

skin or tail staining, I attempted to trial EdU as an alternative to brdU staining to 

assay for proliferation by in vivo injections. Unfortunately I was not able to 

successfully optimize the protocol and hence was not able to utilize this reagent 

in this thesis. This work is currently being followed on by other members of my 

laboratory. Another approach would be to endogenously label cells with a 

fluorescent marker to obviate the need for epitope recovery and antibody 

binding. I have obtained a mice expressing the conditionally activated ROSA26 

loxP-stop-loxP RFP reporter (Luche et al, 2007) which are currently being 

crossed with the chk1flox/flox strain in order to produce a chk1flox/flox // 

K14CreERT2 // loxP-stop-loxP RFP mouse. This will eventually allow chk1 genetic 

ablation to be assayed by RFP expression which is amenable to detection using 

confocal imaging, cell sorting and other techniques without the need for epitope 

recovery. Both of these approaches are discussed in greater detail in Future 

Perspectives 8.2.  

In the DMBA/TPA carcinogenesis protocol, skin hyperplasia is an important step 

for the outgrowth of papillomas (Boutwell et al, 1982; Kemp, 2005). H-ras 

transformed cells require ongoing promotion for clonal expansion and growth 

into visible papillomas. If TPA promotion is withheld or terminated prematurely, 

the result is a reduction in number of papillomas observed (Balmain et al, 1984; 

Kemp, 2005).  In skin that was chk1 ablated, there was an overall reduction in 

epidermal thickness and hair follicle length compared to control, indicating a 

reduced hyperplastic response to TPA induction (see Figure 32). This could also 

be a factor contributing towards the reduction in numbers of papillomas 

observed following chk1 ablation. Prior reports have suggested “stem cell 

exhaustion” as a means to explain a reduced hair regrowth following depilation 

(Ruzankina et al, 2007).  Stem cell depletion was brought about by the 

conditional ablation of ATR which is the direct upstream activator of chk1. In my 

mice, presumably the skin has an attenuated ability to develop tissue 

hyperplasia in response to TPA due to reduction in number of stem cells 

available following chk1 ablation – at least within 10-14 days following first 

application of tamoxifen (see Figure 31). Therefore, in addition to a reduction in 

number of available stem cell targets for carcinogenesis, the reduction in 
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papilloma number following chk1 ablation may be due to an attenuated 

hyperplastic response.  

It is also possible that chk1 loss might be selectively targeting H-ras mutant cells 

for apoptosis (see Figure 33).  By reversing the order of DMBA and 4OHT 

application, (DMBA  4OHT) in chk1 flox/flox // K14CreERT2 // LacZ mice the 

average number of papillomas per mouse was significantly reduced compared to 

4OHT  DMBA and vehicle treated mice. This suggests that fewer targets were 

available for carcinogenesis in the DMBA and 4OHT treated skin compared to 

DMBA treated skin alone. Nevertheless quantification of the number of apoptotic 

cells using confocal microscopy in DMBA  4OHT versus 4OHT alone mice did not 

show any significant difference (Figure 33D). In this experiment however 

statistical significance may have been compromised by lack of numbers and I 

believe verification would require a bigger cohort. Previous studies have shown 

oncogene transformation induces a marked DNA damage response in cultured 

cells. Consequent checkpoint activation is essential for the cell to undergo 

oncogene-induced senescence (Bartkova et al, 2005; Bartkova et al, 2006; Di 

Micco et al, 2006). If these checkpoint mechanisms were abrogated there could 

be a significant accumulation of potentially lethal genetic lesions. Work carried 

out on human in vivo specimens show a marked upregulation of senescent 

markers and checkpoint activation in pre-malignant lesion compared to normal 

tissue (Bartkova et al, 2005; Bartkova et al, 2006; Di Micco et al, 2006). This 

argues that once oncogene-activation occurs, cells may actually engage 

checkpoint mechanisms preferentially compared to the non-transformed state. 

In mice which undergo chk1 ablation followed by DMBA treatment, my results 

suggest that H-ras transformed cells maybe particularly sensitive to chk1 

deletion. This would be consistent with the hypothesis that oncogene 

transformed cells are preferentially reliant on checkpoint mechanisms to engage 

senescence and escape abortive DNA replication and apoptosis. 

 

 



Lye Mun Tho Chapter 6 156 

6.2.2. Chk1 Ablation May be Causing Bulge Niche 
Exhaustion 

When the skin was shaved and hair growth rate recorded, chk1 ablation delayed 

hair re-growth. Additionally sporadic bald patches appeared after long term TPA 

which induces a state of forced anagen (see Figure 34). A similar phenomenon 

has been observed in ATR knockout mice (Ruzankina et al, 2007). Repeated 

rounds of hair depilation accompanied by ATR conditional ablation resulted in 

delayed hair regeneration as well as hair greying. This was attributed to 

depletion of the bulge stem cell compartment. In my mice chk1 ablation is 

followed by repopulation by unrecombined cells. This will likely have the effect 

of recruiting normally quiescent stem cells into active cycling. Premature or 

repeated rounds of stem cell division have the consequence of terminal ageing, 

due to the finite number of divisions permissible within the cells’ lifespan (He et 

al, 2009; Muller-Sieburg & Sieburg, 2008; Voog & Jones, 2010). In this case, chk1 

ablation seems to have reduced the regenerative capability of the skin leading 

to alopecia in the presence of continual proliferative stimulus (TPA) and delayed 

hair regrowth. 

 

6.2.3. H-Ras and Non-H-Ras Transformed Stem Cells 
do not Repopulate the Bulge Niche Symetrically 

DMBA treatment will result in only a tiny proportion of stem cells actually 

acquiring an H-ras mutation, estimated to be in the order of one in 106. As 

discussed I hypothesize that chk1 ablation temporarily reduces the number of 

bulge cells available for carcinogenesis. In the following 1-3 weeks, there are 2 

possible patterns in which the surviving H-ras transformed and non-H-ras 

transformed stem cells might repopulate the bulge niche 1) symmetrical 

repopulation would result in proportionately increased numbers of both H-ras 

transformed and non-H-ras transformed cells 2) non-symmetrical repopulation 

resulting in proportionately fewer of either H-ras transformed or non-H-ras 

transformed cells (see Figure 35A). If scenario 1 was true then I would expect a 

1-3 week delay in papilloma development but that eventual papilloma numbers  
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Figure 35 - The Effect of Chk1 Ablation on the Stem Cell Niche and Tumour Formation 
 
When chk1 flox/flox // K14CreERT2 // LacZ mice are treated with 4OHT, bulge stem cells undergo 
recombination (chk1 Δ/Δ) thereby presenting fewer cells available for chemical carcinogenesis. 
From lineage tracing experiments, Chk1 protein expression assays (Chapter 3) and chemical 
carcinogenesis experiments where the papilloma reduction phenotype is rescued, it can be 
concluded that repopulation of the bulge niche is relatively complete within 1-3 weeks. Given this 
time scale the question remains as to why permanent suppression of papilloma numbers occurs 
(Figure 35B, solid red line). A It is likely that DMBA treatment will result in only a tiny proportion of 
stem cells acquiring the H-ras mutation, in the order of one in 106. Chk1 ablation reduces the 
number of bulge cells available for carcinogenesis and presumably, proportionately the number of 
transformed stem cells. In the following 1-3 weeks, there are 2 possible patterns in which the 
remaining H-ras and non-H-ras transformed stem cells might undergo repopulation to reconstitute 
the bulge niche 1) Symmetrical repopulation resulting in equivalent numbers of H-ras and non-H-
ras transformed cells 2) Non-symmetrical repopulation resulting in fewer of more of either H-ras or 
non-H-ras transformed cells. B If scenario 1 was true, then we would expect a 1-3 week delay in 
papilloma development but eventual papilloma numbers similar to control (dotted red line). 
However, papilloma numbers were permanently suppressed to around ⅓ that of control (solid red 
line).  
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would reach a similar plateau to control (Figure 35B, dotted red line). However, 

experimentally it was observed that papilloma numbers were suppressed to 

around ⅓ that of control (Figure 35B, solid red line). This observation would 

therefore be more consistent with scenario 2, where asymmetrical repopulation 

of the niche resulted in fewer H-ras transformed cells compared to non-H-ras 

transformed cells. It is unclear why this is the case. Studies have shown ras 

oncogene transformation induces cellular senescence, and in pre-malignant 

tumours this has been implicated as a barrier against tumour progression (Braig 

et al, 2005; Collado et al, 2005; Di Micco et al, 2006; Ferbeyre, 2007; Sun et al, 

2007). In one study, lung adenomas from K-rasV12 activated mice were 

examined (Collado et al, 2005). They were found to strongly express senescence 

associated immunohistochemical markers, stained strongly for senescence-

associated β-gal and senescence-associated heterochromatin foci. In contrast 

malignant lung adenocarcinomas were negative or stained very weakly. The 

authors also compared protein extracts from DMBA/TPA induced skin papillomas 

versus normal skin by immunoblotting for senescent markers p19ARF, p16INK4a, 

DcR2, Dec1 and p15INK4b. Levels were upregulated in papillomas but not normal 

skin. Therefore, in my experiments, perhaps H-ras transformed stem cells 

became senescent and thereby repopulated the bulge at a reduced frequency. 

If H-ras transformed cells repopulated the bulge at a slower rate (compared to 

non transformed cells) this will result in bulge niches containing proportionately 

fewer transformed cells. This being the case, a lower burden of transformed 

cells in each niche might be responsible for the observation of fewer papillomas. 

An observation by Williams et al (Williams et al, 1992) alludes to this hypothesis, 

whereby in murine intestine, crypts in which only a minority of cells undergo 

oncogene transformation are not able to form tumours. Only in crypts where the 

majority of cells undergo initial transformation are able to form tumours. It is 

known that the bulge niche is a tightly regulated environment, paracrine 

signaling being a major player, with significant control constantly being exerted 

over the fate of stem cell differentiation and proliferation (Scadden, 2006). High 

Ras expression for example, has been shown to decrease gap junction 

intercellular communication (GJIC) (Ito et al, 2006; Lee et al, 2004) which is 

thought to be important for tumourigenesis. Therefore, it is possible that only 
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when a critical number of ras transformed cells are present in the bulge, that 

papilloma outgrowth is permissible.
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Chapter 7. Additional Results 

 



Lye Mun Tho Chapter 7 161 

7.1. Results 
 

7.1.1. Hemizygous Chk1 Ablation did not Affect 
Papilloma Incidence but Increased the Rate of 
Conversion to Carcinomas 

To assess the consequences of hemizygous chk1 deletion on skin tumour 

formation in vivo, DMBA/TPA chemical carcinogenesis was performed in chk1 

flox/+ // K14CreERT2 // LacZ mice which were treated with IP 4OHT prior to 

DMBA (n=19). As results from previous experiments (see Figure 13) had shown no 

statistical significance between papilloma numbers between control group chk1 

flox/flox // K14CreERT2 // LacZ, n=19 (+ vehicle) and chk1 +/+ // K14CreERT2 // 

LacZ, n=20 (+ 4OHT), [Mann Whitney p=0.065] these two groups were combined 

and used for the purpose of comparison with this experimental group. After 30 

weeks, there was no significant difference in average papilloma numbers 

between chk1 flox/+ // K14CreERT2 // LacZ mice & IP 4OHT versus control 

groups, 16.6 versus 14.6 respectively, Mann Whitney p=0.183 (see Figure 36A). In 

contrast, the rate of conversion from papilloma to carcinoma was significantly 

higher in the chk1 flox/+ // K14CreERT2 // LacZ mice + IP 4OHT group compared 

to control group, 9.7% versus 5.6%, chi squared test p<0.025.  

In previous experiments (see Figure 14) the rate of carcinoma conversion of chk1 

flox/flox // K14CreERT2 // LacZ treated with IP 4OHT 3 days prior to DMBA was 

documented. In comparison, the rate of conversion of papillomas to carcinomas 

in chk1 flox/+ // K14CreERT2 // LacZ mice & IP 4OHT was significantly higher 

compared to chk1 flox/flox // K14CreERT2 // LacZ & 4OHT, 9.7% versus 2%, chi 

squared test p<0.020 (Figure 36B). There was no statistically significant 

difference between control and chk1 flox/flox // K14CreERT2 // LacZ & 4OHT, 

5.6% versus 2%, chi squared test p>0.10. β-Gal assay performed on (Figure 36C, i) 

papillomas and carcinomas obtained from chk1 flox/+ // K14CreERT2 // LacZ 

mice & IP 4OHT produced a positive reaction. These tumours were obtained 

from mice that were sacrificed either due to unsustainable tumour burden 

according to Home Office regulations or when they had reached 60 weeks post  
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Figure 36 - The Effect of Chk1 Hemizygosity on Tumour Formation 
 
A DMBA/TPA chemical carcinogenesis was performed in chk1 flox/+ // K14CreERT2 // LacZ mice 
following IP 4OHT (D-5 to D-1) treatment, n=19. The control group consisted of chk1 flox/flox // 
K14CreERT2 // LacZ, n=19 (no 4OHT) and chk1 +/+ // K14CreERT2 // LacZ, n=20 (+ vehicle). After 
30 weeks, there was no significant difference in average papilloma numbers between control and 
F/+ groups, 16.6 versus 14.6 respectively, Mann Whitney p=0.183. B The rate of conversion from 
papilloma to carcinoma was significantly higher in the chk1 flox/+ // K14CreERT2 // LacZ mice & IP 
4OHT (D-5 to D-1) group compared to the control group, 9.7% versus 5.6% chi squared test 
p<0.025. Rate of conversion of chk1 flox/+ // K14CreERT2 // LacZ mice & IP 4OHT (D-5 to D-1) was 
significantly higher compared to chk1 flox/flox // K14CreERT2 // LacZ, (4OHT and DMBA at D3), 
9.7% versus 2% chi squared test p<0.020. There was no statistically significant difference between 
control and chk1 flox/flox // K14CreERT2 // LacZ, (4OHT and DMBA at D3), 5.6% versus 2% chi 
squared test p>0.10. C β-galactosidase assay performed on (i) papillomas and carcinomas 
obtained from chk1 flox/+ // K14CreERT2 // LacZ mice & IP 4OHT (D-5 to D-1) produced a positive 
reaction. Similarly the (ii) tails taken at sacrifice from these animals also produced a positive β-
galactosidase reaction.  
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Figure 37 - The Effect of Chk1 Ablation on Pre-Formed Papillomas 
 
A To determine the effect of complete or hemizygous chk1 ablation in tumours that have already 
formed, chk1 flox/flox // K14CreERT2 // LacZ (n=21) and chk1 flox/+ // K14CreERT2 // LacZ (n=22) 
mice were commenced on the DMBA/TPA carcinogenesis protocol. When the mice had achieved 
near maximal papillomas burden – usually between weeks 12 to 15, the mice were treated with IP 
4OHT (D-5 to D-1) to induce genetic recombination. Control group was chk1 +/+ // K14CreERT2 // 
LacZ (n=20) treated with 4OHT. B At 30 weeks, there was no significant difference between 
average number of papillomas between control and FF (+ 4OHT) group, 16.2 versus 16.4, Mann 
Whitney p=0.968. No significant difference between average number of papillomas between control 
and flox/+ (F+) + 4OHT group, 16.2 versus 15.0, Mann Whitney p=0.339. No significant difference 
between average number of papillomas between flox/flox (FF) + 4OHT and flox/+ (F+) + 4OHT 
group, 16.4 versus 15.0, Mann Whitney p=0.501. C In some animals chk1 ablation resulted in the 
regression of smaller papillomas, diameter <2mm. In flox/flox (FF) + 4OHT, the rate of papilloma 
regression (no. papillomas that regressed / no. of papillomas that formed x100 %) was 5.8%, in 
flox/+ (F+) + 4OHT the rate was 0.6% and in control animals the rate was 0%. Regression was 
never observed in tumours greater than 2mm in diameter.  
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TPA. Similarly (Figure 1C, ii) tails taken at sacrifice from these animals also 

produced a positive β-Gal reaction. This indicates that hemizygous chk1 ablation 

does not result in cell death and repopulation by unrecombined cells as was the 

case with chk1 Δ/Δ.  

 

7.1.2. Chk1 Ablation in Formed Papillomas Resulted in 
Regression in Smaller Papillomas but did not 
Lead to an Overall Reduction in Tumour Burden 

To test the effect of complete and hemizygous chk1 ablation on papillomas that 

have already formed, chk1flox/flox // K14CreERT2 // LacZ (n=21) and chk1 

flox/+ // K14CreERT2 // LacZ (n=22) mice were commenced on the DMBA/TPA 

carcinogenesis protocol (see Figure 37A). Control group was chk1+/+ // 

K14CreERT2 // LacZ (n=20). When the mice had achieved near maximal 

papillomas burden – between weeks 12 to 15, the mice were treated with IP 

4OHT (D-5 to D-1) to induce genetic recombination. At 30 weeks, there was no 

significant difference between average number of papillomas in control versus 

chk1flox/flox groups, 16.2 versus 16.4, Mann Whitney p=0.968 (Figure 37B). No 

significant difference was observed between average number of papillomas in 

control versus chk flox/+ groups, 16.2 versus 15.0, Mann Whitney p=0.339. No 

significant difference was observed between average number of papillomas in 

chk1flox/flox versus chk1flox/+ groups, 16.4 versus 15.0, Mann Whitney p=0.501.  

It was noted however, that in some animals chk1 ablation resulted in the 

regression of smaller papillomas with diameters <2mm (Figure 37C). In the 

chk1flox/flox group, the rate of papilloma regression [number of papillomas that 

regressed / number of papillomas that formed x100 (%)] was 5.8%, in the 

chk1flox/+ group the rate was 0.6% and in control animals the rate was 0%. 

Regression was never observed in tumours greater than 2mm in diameter in any 

group. These results suggest that chk1 ablation may lead to regression of smaller 

tumours.  
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7.1.3. Generation of Murine Carcinoma Cell Lines from 
DMBA/TPA Induced Carcinomas 

In order to establish a system to analyse the effects of chk1 deletion in 

carcinoma cells, cell lines were generated (see Figure 38). DMBA/TPA induced 

carcinomas that developed in chk1flox/flox // K14CreERT2 // LacZ mice (where 

no 4OHT treatment was given) were cut into pieces and placed in culture flasks 

with medium. Outgrowth cells were isolated and passaged. PCR confirmed a 

chk1flox/flox // K14CreERT2 // LacZ genotype. In vitro when these cells were 

cultured in the presence of 4OHT over 5 days, subsequent western blotting for 

Chk1 showed substantial protein depletion (Joanne Smith, personal 

communication).  

Cells were then implanted as allografts in nude mice to confirm tumourigenic 

capability in vivo. One cell line consisting of predominantly squamous carcinoma 

cell type was chosen (Identification number - 57468), and cells injected 

subcutaneously in nude mice at 1 x 106 and 2 x 106 cells / animal in 100uL 

medium. Successful tumour formation rates were 30% (6 out of 20) and 60% (12 

out of 20) respectively. Carcinomas that formed were fixed and embedded in 

paraffin and analysis confirmed histological features consistent with an 

epithelial carcinoma.  

Six mice which were injected with 2 x 106 cells / animal in 100uL medium and 

which had formed allograft tumours were treated with 5 days of IP 4OHT. Two 

mice were sacrificed the day after the final injection and β-Gal assay performed 

which showed positivity, confirming the ability to genetically inactivate chk1 in 

transplanted carcinomas. The tumours in the other four mice were allowed to 

progress over 2 weeks and the mice were then sacrificed and tumour size 

measured. This was compared to four mice injected with 2 x 106 cells / animal in 

100uL medium which formed allograft tumours but did not receive 4OHT 

treatment, also sacrificed after 2 weeks. The average longest tumour diameter 

in the 4OHT treated animals was 73mm (SD 33mm) and in the control group 

95mm (SD 27mm), the difference not being statistically significant (Mann 

Whitney Test p=0.16).  
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Figure 38 - Generation of Murine Cancer Cell Lines from DMBA/TPA Induced Carcinomas 
 

Cell lines were generated from carcinomas that developed in chk1 flox/flox // K14CreERT2 // LacZ 
mice secondary to DMBA/TPA. When the mice were culled, carcinomas were cut into pieces and 
plated in culture flasks with medium. Outgrowth cells were isolated and passaged. PCR confirmed 
chk1 flox/flox // K14CreERT2 // LacZ genotype. In vitro when these cells were cultured in the 
presence of 4OHT over 5 days, subsequent western blotting for chk1 showed significant protein 
knockdown (Joanne Smith, personal communication). To confirm that these carcinoma cells 
possessed tumourigenic capability in vivo, the cells were implanted as allografts in nude mice. 
Implanted carcinomas that formed were fixed and embedded in paraffin and analysis confirmed 
histological features consistent with an epithelial carcinoma. Mice bearing allograft carcinomas 
were also treated with 5 days of IP 4OHT and β-galactosidase assay performed which showed 
positivity, confirming the ability to genetically inactivate chk1 in transplanted carcinomas. Scale bar 
represents 20μm. 
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Figure 39 - Genotoxic Treatment and Chk1 Knockout DT40 Lymphoma Cells 
 
Four common agents used in oncology care were used to treat chk1 -/-, WT and chk1 revertant 
DT40 avian lymphoma cells to determine if these could synergistically enhance tumour cell kill. 
These were γ-irradiation, cisplatin, 5-fluorouracil, and etoposide. Drugs were cultured with cells for 
12 hours, then washed free and clonogenic survival assays performed. Cells were exposed to γ-
irradiation and then cultured. All agents reduced clonogenic survival in chk1 -/- cells to a much 
greater extent than in controls. 
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7.1.4. Chk1 Loss Sensitizes Tumour Cells to the 
Cytotoxic Effects of Anti-Cancer Therapy in 
DT40 Lymphoma Cells 

Four common agents used agents in oncology care were used to treat chk1 -/-, 

WT and chk1 revertant DT40 avian lymphoma cells. These cell lines were 

generated within our own laboratory (Zachos et al, 2003b). These were γ-

irradiation, cisplatin, 5-fluorouracil, and etoposide (see Figure 39). Drugs were 

cultured with cells for 12 hours and washed away, and clonogenic survival assays 

performed. For the experiment involving irradiation, cultured cells were 

exposed to γ-irradiation and subjected to clonogenic survival assays. All agents 

reduced clonogenic survival in chk1 -/- cells more severely than controls, thus 

confirming synergistic tumour kill (Robinson et al, 2006; Zachos et al, 2003b).  
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7.2. Discussion 
 

In mice, constitutive chk1 knockout is embryonic lethal (Liu et al, 2000b; Takai 

et al, 2000). Mice with hemizygous loss are able to age normally and no gross 

pathology is noted. However, when chk1+/- mice were crossed onto a WNT-1 

transgenic background, mammary tumours appear to occur marginally earlier 

although at a similar incidence (Liu et al, 2000b). In one report, analysis of 

mammary tissue from chk1+/- mice revealed evidence of cell cycle 

miscoordination  with inappropriate cell  cycle entry despite incompletely 

repaired or replicated DNA (Lam et al, 2004). Therefore, partial chk1 loss was 

proposed to exert a haploinsufficient tumour suppressor effect putatively 

through disruption of normal cell cycle co-ordination. Nevertheless their findings 

were based on in vitro data and it has not been clarified whether chk1 loss 

complete or hemizygous, promotes carcinogenesis (Liu et al, 2000a) or 

alternatively causes death of incipient cancer cells and acts as a barrier for 

cancer formation in vivo (Bartkova et al, 2005; Bartkova et al, 2006; Gorgoulis et 

al, 2005). 

To assess the effect of chk1 hemizygosity on skin tumour formation in vivo, 

DMBA/TPA chemical carcinogenesis and chk1 recombination was performed in 

chk1 flox/+ // K14CreERT2 // LacZ mice (see Figure 36). No significant 

difference in papilloma formation was observed but compared to controls, 

hemizygosity significantly increased the rate of conversion to carcinomas. β-Gal 

assays indicate that skin, papillomas and carcinomas retained the recombined 

allele in sacrificed animals, confirming the presence of long term hemizygosity 

during the stages of tumour initiation and progression. This is in contrast to 

previously described chk1flox/flox // K14CreERT2 // LacZ animals treated with 

tamoxifen where repopulation of the ablated tissue by unrecombined (wild type) 

cells occurred within 1-3 weeks. These findings appear to confirm chk1 

hemizygosity exerts a haploinsufficient tumour suppressor effect (Lam et al, 

2004) however, only in carcinoma conversion but not in papilloma development. 

It is unclear however if the wild type allele is retained during DMBA/TPA 

carcinogenesis. Limited preliminary work using Chk1 protein antibody staining on 

paraffin embedded papillomas and carcinomas specimens suggest Chk1 
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expression is retained (data not shown), which suggests a functioning wild type 

allele, but further work is required to fully confirm this.  

To test the effect of complete and hemizygous chk1 ablation on papillomas that 

have already formed, chk1flox/flox // K14CreERT2 // LacZ and chk1flox/+ // 

K14CreERT2 // LacZ mice were commenced on the DMBA/TPA carcinogenesis 

protocol (see Figure 37). The control group was chk1+/+ // K14CreERT2 // LacZ. 

When the mice had achieved either  maximal or near to maximal papilloma 

burden – between weeks 12 to 15, the mice were treated with IP 4OHT (D-5 to D-

1) to induce chk1 genetic recombination. Chk1 ablation in pre-formed papillomas 

did not lead to a statistically significant overall reduction in papilloma numbers. 

It was noted however, that in some animals chk1 ablation resulted in the 

regression of smaller papillomas with diameters <2mm (Figure 37C). In the 

chk1flox/flox group, the rate of papilloma regression was 5.8%, in the chk1flox/+ 

group the rate was 0.6% and in control animals the rate was 0%. Regression was 

never observed in tumours greater than 2mm in diameter in any group. This is a 

very interesting result as it suggests chk1 ablation may lead to tumour regression 

in small papillomas. Perhaps this is explained by the fact that smaller papillomas 

have less connective tissue component and do not have necrotic areas compared 

to larger tumours. This might allow the epithelial components to be better 

perfused by the vasculature. This would result in better delivery of 4OHT and an 

increased degree of recombination. Given previous results showing chk1 ablation 

leads to apoptosis in somatic stem cells, tumour cell death could potentially 

explain the regression observed.  

In the experiment described, 4OHT was administered when the majority of the 

papillomas were relatively advanced ie. at least >2mm diameter. However to 

study the effect of tumour regression in small or incipient papillomas, it would 

be necessary to repeat the experiment with 4OHT administered at an earlier 

stage of tumourigenesis for example at 6-8 weeks after TPA commencement, 

when the majority of papillomas would be <2mm in diameter. Another useful 

experimental approach would be to use topical 4OHT (Lo Celso et al, 2004; 

Murayama et al, 2007). This could potentially allow long term ablation beyond 

the 5 days of IP 4OHT, without encumbering significant systemic toxicity (for 

example aerodigestive epithelial toxicity as described in Chapter 3, Figure 11.  
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My results in Chapter 5 (see 5.1.3, 5.1.4 and 5.1.6) show an accumulation of DNA 

damage and apoptosis following chk1 ablation within the hair follicle. Therefore, 

it is reasonable to hypothesize that papilloma regression might be caused by 

apoptosis following chk1 ablation. In order to confirm this, I would propose a 

lineage tracing experiment to track the fate of chk1 deleted cells. We have 

obtained mice expressing RFP where promoter is under loxP-stop-loxP control 

(see Figure 40) (Luche et al, 2007) and we are currently crossing these mice to 

our  floxed chk1 mice. The goal would be to produce mice in which genetic 

ablation of chk1 can be assayed by RFP expression which is amenable to 

detection using confocal imaging, cell sorting and other techniques. This will 

allow analysis on a cell by cell basis of the tumour which may show heterogenous 

response depending on chk1 status or other molecular determinants. This will be 

discussed further in Concluding Remarks (see 8.1) and Future Perspectives (see 

8.2).  

Chk1 inhibition has been proposed as a novel strategy for anti-cancer treatment 

(Zhou & Bartek, 2004) and Chk1 inhibitors are currently in development and are 

entering early phase clinical trials (Garber, 2005). Using our model it would have 

been a relevant experimental question to ablate chk1 after carcinoma formation 

to determine the effect on carcinomas progression. However, in our mice, the 

window period between the first appearance of a carcinoma and when the 

animal needs to be culled for animal welfare reasons as stipulated in our Home 

Office Project License, is only between 1-2 weeks at most. This did not allow 

enough duration for a full course of IP 4OHT to be applied followed by a 

reasonable period of observation to record any objective responses, so these 

experiments were not conducted. In order to take advantage of a conditional 

knockout murine system to assess the effect of chk1 ablation in murine 

carcinomas, I derived carcinoma cell lines from the DMBA/TPA carcinomas.  

I established in vitro cell lines derived from DMBA/TPA induced carcinomas that 

had developed in chk1flox/flox // K14CreERT2 // LacZ mice (where no 4OHT 

treatment was given). When these cells were cultured in the presence of 4OHT 

over 5 days, subsequent western blotting for Chk1 showed substantial protein 

knockdown (Joanne Smith, Beatson Institute, personal communication). Cells 

were then implanted as allografts in nude mice to confirm tumourigenic 

capability in vivo and tumours demonstrated histological features consistent 
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with a malignant epithelial carcinoma. Mice bearing allograft carcinomas were 

also treated with 5 days of IP 4OHT and β-Gal assay performed which showed 

positivity, confirming the ability to genetically inactivate chk1 in transplanted 

carcinomas. I observed that the size of tumours formed after 4OHT treatment 

after 2weeks compared to non treated control were not statistically significantly 

different however, there was a trend towards larger tumours in the treated 

group. This is in keeping with the data demonstrated in Figure 36 where loss of 

Chk1 in the late stages of tumour growth appears to accelerate carcinogenesis. 

This has already been discussed in more detail earlier in this section. These 

mammalian cell lines generated could potentially be utilised for a variety of 

experimental purposes.  

The Cre/LoxP system provides the option for temporal control over genetic 

ablation. In our laboratory we have previously generated a DT40 chk1-/- 

vertebrate, avian lymphoma cell line which was engineered to possess a 

constitutive chk1 knock out. Using this system it has been shown that chk1 loss 

synergises tumour cells to cytotoxic kill using common anti-cancer agents 

including γ-irradiation (Zachos et al, 2003b) and 5-flurouracil (Robinson et al, 

2006). The potential for Chk1 inhibition as a novel cancer as well as the concept 

of synthetic lethality has been discussed in Chapter 1 (see 01.4.2.11.4.2.1). In 

the series of experiments using clogenic survival assays I show synergistic 

elimination of tumour cells in cells deficient in Chk1 with γ-irradiation, 5-

flurouracil, cisplatin and etoposide (see Figure 4). The mammalian murine cell 

lines would be useful to confirm these findings and to determine the relative 

efficacy of different anticancer therapies in combination with chk1 knockdown. 

As stated previously Chk1 inhibiton is currently being explored as a potential 

anti-cancer strategy Currently it is uncertain as to which agents would synergise 

most effectively with chk1 inhibitors.  
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Chapter 8. Summary Conclusion and Future 
Perspectives
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8.1. Summary Conclusion 
 

Chk1 knockout mice are embryonically lethal and this necessitated a conditional 

knockout approach in this project (Liu et al, 2000b). I utilised a Cre/LoxP 

regulated system whereby exon 2 of mouse chk1, which bears the translational 

initiation sequence as well as a region of the kinase domain, was flanked by loxP 

regions. Recombination was effected by activation of Cre-ERT2 (Indra et al, 1999) 

from tamoxifen administration. In this system to limit chk1 deletion to specific 

tissues only, Cre-ERT2 was expressed under the control of a keratin-14 promoter 

(McLean et al, 2004) in primarily the epidermal skin as well as other squamous 

epithelia. Verification of genetic recombination was assisted by β-galactosidase 

assay performed for the conditional expression of a ROSA26 LacZ reporter gene 

 

8.1.1. Summary of Chapter 3 
In Chapter 3, I outline the breeding, maintenance and genotyping of these mice 

on an albino FVB background. As expected, no chk1 homozygous knockout mice 

were born. Hemizygous knockout mice were phenotypically similar to chk1 

competent mice, without any demonstrable pathology. When chk1flox/flox // 

K14CreERT2 // LacZ were induced with 4OHT, immunohistochemistry of the 

interfollicular epidermis and hair follicles and western blotting of skin extracts 

confirmed a significant reduction in Chk1 protein expression. PCR genotyping 

revealed the presence of the recombined allele and by β-galactosidase assay of 

fresh prepared tissue confirmed genetic recombination. When aged these mice 

did not display any gross pathology. A survey of Chk1 protein levels in different 

organs in wild type mice revealed variable Chk1 expression from very low 

expression in brain to higher expression in the skin and gut.  

 

 

http://en.wikipedia.org/wiki/Beta-galactosidase
http://en.wikipedia.org/wiki/Beta-galactosidase
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8.1.2. Summary of Chapter 4 
In Chapter 4, I describe how I induced papillomas and carcinomas in the dorsal 

skin of mice using a chemical carcinogenesis protocol of DMBA (tumour initiator) 

followed by TPA (tumour promoter) application. In the chk1flox/flox // 

K14CreERT2 // LacZ + 4OHT group, rate of papilloma formation was significantly 

delayed compared to control. The average number of papillomas was 

significantly reduced as were their average sizes. There was a trend toward a 

reduction in the rate of conversion from papillomas to carcinomas but this was 

not statistically significant. Papillomas from ablated animals, as was the case 

with controls, all expressed Chk1 strongly. This means papillomas that arose in 

genetically ablated animals did so out of cells which escaped recombination. 

These results suggest that papilloma formation requires chk1.  

 

8.1.3. Summary of Chapter 5 
In Chapter 5, I describe studies looking at the effects of chk1 ablation on adult 

skin, including especially consequences on the bulge label retaining cell (LRC) 

population (the putative stem cell population in the skin). Following chk1 

ablation, I observed initial proliferation of LRCs with a significant increase in 

numbers. Proliferation was confirmed using short term BrdU labelling. 

Additionally I observed an accumulation of DNA damage and apoptosis with p53 

induction in the skin. Over the longer term, depletion of the LRC bulge 

population was observed. It became evident that the recombined or chk1 floxed 

cells were being removed by apoptosis and being replaced by unrecombined cells 

over a period of 2-3 weeks in the skin. During this process no gross pathology is 

demonstrable in the normal skin and homeostasis is apparently maintained. It is 

unclear how LRC proliferation is triggered, and two possibilities have been 

proposed. The first is that the loss of chk1 is occurring within LRCs which 

directly stimulates proliferation. It has been noted from array studies of skin 

stem cells that WNT pathway is repressed by expression of negative regulators 

(Tumbar et al, 2004) and that WNT signalling is intricately linked to hair follicle 

growth and morphogenesis (Castilho et al, 2009; Greco et al, 2009). Chk1 has 

been upregulated in mammary stem cells (Behbod et al, 2006). Therefore Chk1 

could be regulating proliferation of LRCs through a yet unknown mechanism. The 
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time line of proliferation followed by DNA damage and apoptosis observed would 

support the former. The second possibility is that cellular DNA damage and 

apotosis in the skin may be signalling the LRC to proliferate. It is well known 

that in LRC respond to tissue damage by proliferating in order to renew the 

tissue and maintain homeostasis (Ito et al, 2005). In fact it has been proposed 

that the LRC bulge population represent a “reserve” of stem cells that is 

activated by tissue perturbation [reviewed by (Li & Clevers, 2010)]. In my 

opinion neither hypothesis can be ruled out at this stage, neither can the 

possibility that the two are occurring concurrently. Certainly modulation of LRC 

proliferation following chk1 ablation would be a novel phenomenon and I go on 

to dicuss possible experiments that might help elucidate this in Future 

Perspectives (see 8.2) 

 

8.1.4. Summary of Chapter 6 
In Chapter 6, I show that despite loss of LRC stained cells in the bulge following 

chk1 ablation, the niche is repopulated by keratin-15 expressing cells. This 

suggests that despite a transient decrease in the number of bulge stem cells 

(which is supported by the fact that there is a reduction in tumour formation 

induced by DMBA/TPA), the niche is repopulated within 2-3 weeks. In further 

experiments, induction of tumours with DMBA/TPA was delayed following chk1 

ablation to allow the skin and stem cell niche to recover and be repopulated by 

unrecombined cells. This reversed the phenotype of papilloma suppression and 

the average number of tumours formed were similar to control. Again this 

provides further evidence that the mechanism for papilloma reduction could be 

attributed to stem cell depletion. However, I also show that the “number of 

targets” model may be insufficient to explain tumour suppression. I observed 

that chk1 ablation also reduced the ability of skin to mount a hyperplastic 

response to tumour promotion by TPA. Hyperplasia is a key intermediary step 

required to allow the outgrowth of h-Ras transformed cells into papillomas. 

Additionally, when chk1 ablation was performed after DMBA application on the 

skin, this reduced papilloma formation even further compared to chk1 ablation 

before DMBA application. Thus it is possible that chk1 ablation induces apoptosis 

to a greater degree in h-ras transformed stem cells as opposed to non-
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transformed stem cells. Finally, although chk1 ablation did not result in gross 

pathology in the skin, it delayed hair re-growth when the dorsal skin was shaved. 

 

8.1.5. Summary of Chapter 7 
In Chapter 7, I show that hemizygous chk1 ablation did not reduce papilloma 

formation but increased the rate of conversion to carcinomas. This is in keeping 

with a previously suggested role for chk1 in exerting a haploinsufficient tumour 

suppressor effect. However my data suggests that this role is only relevant in the 

latter stages of carcinoma development. In chk1flox/flox // K14CreERT2 // LacZ 

mice which had already formed papillomas, 4OHT administration resulted in 

regression of the smaller subset of papillomas but not those >2mm. The average 

number of papillomas was not significantly different compared to controls. This 

effect remains unexplained and further experiments to investigate this are 

discussed in Future Perspectives (see 8.2). I also describe the generation of 

murine carcinoma cell lines from chk1flox/flox // K14CreERT2 // LacZ mice and 

their ability to form tumours in allogenic nude mice assays. I also describe data 

showing synergistic tumour cell killing using a chk1-/- DT40 avian lymphoma cell 

line with a variety of cytotoxic agents.  

In summary in this thesis, I present my experiemental findings using a novel 

conditional chk1 knockout mouse model in the skin. Abrogation of chk1, a serine-

threonine kinase that is activated after DNA damage, strongly reduced the 

formation of chemically induced skin tumours. Further investigation of the role 

of chk1 on a tissue level suggests that this effect could be mediated via hair 

follicle stem cells, the sub-population from which tumours are thought to arise. I 

have observed that deletion of chk1 causes cell proliferation, DNA damage, and 

apoptosis within the hair follicle, however the populations affected and the 

order of events in individual cells have yet to be clearly defined.  

It has been proposed that the combination of existing conventional DNA 

damaging agents ie. chemotherapy and radiotherapy with G2 checkpoint 

inhibitors may provide a novel way to treat human cancers (see 1.4.2). This 

strategy is based on the observation that G1 checkpoint defects occur commonly 
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in the majority of all cancer types, and that these cancers become more reliant 

(compared to normal tissues) on G2 checkpoints particularly in responding to 

DNA damage – radiotherapy and chemotherapy. Therefore, combining a G2 

checkpoint inhibitor with a DNA damaging agent could selectively kill tumor 

cells, but spare the normal cells, thus offering a clinically relevant therapeutic 

option with a wide therapeutic window. Chk1 kinase has a dominant role in 

regulating the G2 checkpoint. Therefore, not surprisingly, pharmaceutical Chk1 

inhibitors are currently in development. 
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8.2. Future Perspectives 
I have demonstrated that chk1 ablation in mouse skin leads to proliferation of 

label retaining cells (LRCs) accompanied by an accumulation of DNA damage and 

apoptosis. However the populations affected and the order of events in 

individual cells have not been clearly defined. For example, it is not clear if 

chk1 depletion is occurring within LRCs which triggers a limited number of 

rounds of cell division, leading to DNA misreplication, damage and subsequent 

apoptosis. Alternatively, LRCs are known to be a repository cells responsible for 

maintaining tissue homeostasis in the face of physiological perturbation (Ito et 

al, 2005). In that case, LRC proliferation may be a homeostatic response to 

tissue death occurring in non-stem cells following chk1 ablation. The limitations 

of labeling cells with BrdU include the necessity of using an acid denaturation 

step to recover the nuclear epitopes (Braun et al, 2003). This reduces the 

accuracy of further antibody staining which is necessary to allow co-localization 

with proliferation, DNA damage and apoptotic markers to trace events on a cell 

to cell basis. Therefore we are trialing the use of EdU (5-ethynyl-2’deoxyuridine) 

(Cappella et al, 2008) as an alternative thymidine analogue to BrdU which does 

not require acid denaturation but whose identification relies on an azide- 

ethynyl copper catalysed reaction. Although the use of EdU has been reported in 

the in vivo setting (Zeng et al, 2010), its use for long term labeling is not 

reported and it is not known if “housekeeping” DNA repair mechanisms will 

remove EdU over time which would limit its usefulness. If successful however, 

this technique should allow us to co-localize LRCs and correlate their location 

with cellular proliferation, DNA damage and apoptosis on a cell by cell basis 

following chk1 ablation. 

In order to assay gene recombination, 2 methods have been employed in this 

project, direct antibody staining and LacZ reporter gene detection using B-

galactosidase reaction. Protein quantification may have its limitations. Chk1 is 

not expressed uniformly in all cell types (see Chapter 3). Even within the same 

tissue, there can be wide variability. In the skin, a higher expression is expected 

in actively proliferating cells (for example during anagen) but low expression in 

slowly or non-proliferating cells (for example in telogen). This may lead to a 

failure to identify recombined cells which are not expressing a detectable level  
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Figure 40 - In vivo RFP Reporter System 
 
A conditionally activated ROSA26 loxP-stop-loxP RFP reporter mouse has been obtained and is 
being crossed with the conditional chk1 knockout strain in order to produce a chk1 flox/flox // 
K14CreERT2 // loxP-stop-loxP RFP mouse. This will allow traceability of chk1 recombined cells 
using confocal microscopy and in vivo imaging in future experiments  
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Figure 41 - LGR5 Stem Cells  
 
Confocal microscopy of tail wholemounts showing (i) label retaining cells (LRC) marked by long 
term BrdU retention. These are typically found in the bulge region during hair telogen. (ii) LGR5 
positive stem cells, which express enhanced green fluorescent protein (EGFP) under the control of 
the Lgr5 promoter, identify cells in the secondary germ region in hair telogen. Scale bar represents 
40μm. 
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of protein due to the hair cycle phase they are in. A B-galactosidase reaction 

allows for a more direct method to identify genetic recombination but requires 

the tissue fixed in a different way compared to that for immunohistochemistry 

(see Methods 2.5) which hampers the subsequent use of this material for 

additional antibody staining. Therefore to overcome these limitations I have 

obtained a conditionally activated ROSA26 loxP-stop-loxP RFP reporter mouse 

which I am in the process of crossing with our own chk1flox/flox strain to 

produce a chk1flox/flox // K14CreERT2 // loxP-stop-loxP RFP mouse. The RFP 

construct consists of a tandem-dimer (Luche et al, 2007) where 2 modified 

DsRed subunits are covalently fused (see Figure 40). The construct also contains 

a floxed transcriptional “stop” element and targeted into the ROSA26 locus via 

homologous recombination. This reporter strain has been shown not to undergo 

spontaneous recombination after monitoring in a variety of tissues. When 

ubiquitously activated in embryogenesis, no developmental effects were 

observed. There was reliable detection in fixed tissue and wholemount tissue 

and compatibility with co-GFP expressing cells. My results in Chapter 5 (see 

5.1.3 and 5.1.4) show an accumulation of DNA damage and apoptosis following 

chk1 ablation within the hair follicle. Therefore, it is reasonable to hypothesize 

that following 4OHT application and chk1 ablation, tumour regression in a subset 

of papillomas could be caused by apoptosis (see Chapter 7). In order to confirm 

this, I propose a lineage tracing experiment to track the fate of chk1 deleted 

cells using the loxP-stop-loxP RFP mice (Luche et al, 2007). The aim would be to 

allow genetic ablation of chk1 to be assayed by RFP expression which is 

amenable to detection using confocal imaging, cell sorting and other techniques. 

These animals can also be be subjected to DMBA/TPA tumourigenesis. In the 

papillomas that form, 4OHT administration will cause concurrent chk1 ablation 

and RFP expression in the same cells. This could potentially allow analysis on a 

cell by cell basis of the live (in vivo) tumour which is not possible using LacZ 

staining  - as described by Morton et al (Morton et al, 2010). This could also 

provide information as to the role of wild type cell recombination in tumours 

following chk1 ablation as is seen in normal skin. 

Stem cells are conventionally thought to represent only a small minority of skin 

cells and have been shown to reside in the bulge region of the hair follicle. They 

have been identified using BrdU label retention (LRCs) and have been shown to 
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possess multipotency, longevity and quiescence under normal homeostatic 

conditions (see Figure 41A). More recently, a separate and distinct cell 

population marked by leucine-rich G protein-coupled Receptor 5 expression 

(LGR5+ve) has been identified and has been shown to also possess stem cells like 

properties  - in the gut (Barker et al, 2007) and the skin (Jaks et al, 2008) 

(Figure 41B). In the skin, LGR5+ve stem cells have been found primarily in the 

region between the lower bulge and dermal papilla. LGR5+ve cells displayed 

enhanced clonogenicity in in vitro and in vivo assays. In nude mice 

transplantation assays, LGR5+ve cells were able to reconstitute all major hair 

follicle components. Strikingly, rather than being quiescent, they seem to be 

actively dividing and participate in reconstituting hair follicles in lineage tracing 

experiments. This is a completely novel finding and challenges our conventional 

understanding of stem cells. 

In skin stem cells, WNT has been shown to be a major regulator of hair follicle 

morphogenesis, renewal and anagen promotion (Castilho et al, 2009; DasGupta & 

Fuchs, 1999; Gat et al, 1998; Greco et al, 2009; Nguyen et al, 2006). Studies 

however, show that there is active WNT signalling inhibition in the bulge region. 

Microarrray analysis of skin LRCs demonstrate upregulated mRNA expression of 

factors involved in inhibiton of the WNT signalling cascade (Ohyama et al, 2006; 

Tumbar et al, 2004) In contrast to the bulge, the dermal papillae region which 

regulates development of the epidermal follicle, has been shown to have high 

levels of WNT signalling (Kishimoto et al, 2000; Shimizu & Morgan, 2004). In 

addition, there is active secretion of noggin, a Bone Morphogenic Protein 

antagonist (Botchkarev et al, 2001) – BMP a negative regulator of WNT signalling. 

The dermal papillae happens to be the tissue region where LGR5+ve cells reside 

(Jaks et al, 2008). Therefore the two populations clearly occupy a different 

tissue niche which is regulated quite differently.  

It has now been proposed that  there exists two distinct stem cell populations 

within the skin, a quiescent LRC population and an actively dividing LGR5+ve 

population [reviewed by (Li & Clevers, 2010)]. Each appears to have a defined 

niche and interestingly apparently different roles in homeostasis. The LGR5+ve 

expressing population actively divides to renew constant cell turnover whereas 

the quiescent population appears to function as a “reserve” in case of tissue 

perturbation (Ito et al, 2005). It is less clear however how these two cell 
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population interact, whether the cell populations are interchangeable and how 

they ultimately affect carcinogenesis. Furthermore, it is not known what the 

role of chk1 and checkpoint mechanisms play in this newly discovered but 

important LGR5+ve population, in particular in the interplay with carcinogenesis. 

To investigate this, we have obtained Lgr5-EGFP-Ires-CreERT2 (Jaks et al, 2008) 

where the endogenous Lgr5 promoter controls expression of enhanced green 

fluorescent protein (EGFP) and the CreERT2 fusion protein. By crossing these 

mice to our chk1flox/flox mice we will be able to selective knockout chk1 in 

LGR5+ve cells in the skin and trace their fate in vivo and in vitro following cell 

isolation procedures. Furthermore, the role of Lgr5 in carcinogenesis is unknown 

for example, it is not known if these stem cells can give rise to tumours (Rosen & 

Jordan, 2009).  It will be possible to chemically induce DMBA/TPA tumours in 

these mice and trace the fate of LGR5+ve cells to address this question.  
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