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Abstract 
 

This thesis describes the characterisation of AtPQL4 and AtPQL6, two members of a 

hitherto uncharacterized gene family of A. thaliana with six members, AtPQL1-6. As their 

counterparts in other species and kingdoms AtPQL proteins contain seven transmembrane 

domains and two copies of the so-called ‘PQ-loop’ domain. AtPQL4 and AtPQL6 show 

high amino acid sequence identity between each other and they are the closest A. thaliana 

homologues of the mammalian LEC35/MPDU1 protein, which has been shown to be 

required for all types of Man-P-Dol dependent glycosylation in the ER.  

 

To address the functional homology between the two AtPQL proteins and MPDU1, the 

sub-cellular localisation of AtPQL4-GFP and AtPQL6-GFP fusion proteins was 

investigated. Confocal laser scanning microscopy analysis of Nicotiana tabacum leaf cells 

expressing AtPQL4-GFP or AtPQL6-GFP showed fluorescence patterns typical for ER. ER 

localisation of AtPQL4 and AtPQL6 was further confirmed by co-expression with the ER 

marker, YFP-HDEL.  

 

A second set of experiments employed YFP-fusion proteins of AtSYP121, a plasma 

membrane SNARE protein, and AtTIP2, a tonoplast aquaporin. Confocal microscopy 

confirmed plasma membrane/tonoplast localisation of the YFP proteins when expressed on 

their own in tobacco leaf cells. However, both proteins were found to be retained in the ER 

when co-expressed with AtPQL4-GFP or AtPQL6-GFP fusion proteins. These new 

findings point to a role of AtPQL4 and AtPQL6 in protein processing in the ER thereby 

enforcing previous results from microarray experiments indicating ER-stress in AtPQL4 

and AtPQL6 mutants. 

 

Finally, a number of AtPQL4 and AtPQL6 knockout and AtPQL6 overexpressor lines were 

tested under a variety of environmental stresses to investigate the function of the two 

AtPQLs at whole-plant level. Low sucrose conditions resulted in growth inhibition of 

mutants compared to wild type plants.  Considering previous findings that (a) AtPQL4 and 

AtPQL6 are localised in the ER (b) ATPQL mutants show differential expression of genes 

involved in the unfolded protein response (UPR) and (c) over-expression of AtPQL4 and 

AtPQL6 impacts on the targeting of other proteins, the observed phenotype could be linked 

to the unfolded protein response and autophagy that occurs during sugar starvation.. 
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In conclusion, it is proposed that AtPQL4 and AtPQL6 proteins function in retaining 

membrane proteins for sufficient time in the ER to allow ER-quality control and related 

processes to take place. Further experiments to investigate such function are discussed.
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Chapter 1: General introduction 
 
A novel family of Arabidopsis thaliana, named “PQ-loop repeat” (PQL) was characterised 

by Richard Pattison (PhD thesis, 2008, University of Glasgow). The AtPQL gene family 

consists of six members, AtPQL1-6, and is characterised by the presence of the PQ-loop 

domain. The objective of this project was the functional characterisation of two of the 

AtPQL proteins, AtPQL4 and AtPQL6. In this chapter I will describe what is known for the 

AtPQL family from the work carried out by Pattison (2008). In addition, I will review 

existing literature on yeast and mammalian PQL proteins that show high sequence identity 

and/or potential functional similarity with AtPQL proteins, especially with AtPQL4 and 

AtPQL6.  

 
1.1 Structural features of AtPQL proteins 
 
Six genes encoding AtPQL proteins are present in the Arabidopsis genome, AtPQL1 

(At4G20100), AtPQL2 (At2g41050), AtPQL3 (At4g36850), AtPQL4 (At5g59470), 

AtPQL5 (At5g40670) and AtPQL6 (At4g07390). The AtPQL proteins have two copies of 

the defining PQ-loop domain. The PQ-loop domain is a region of 40-60 amino acids 

including the highly conserved proline-glutamine (PQ) motif. Hydropathy analysis of each 

AtPQL protein showed that they are integral membrane proteins with seven transmembrane 

domains and a N-terminus facing the non-cytoplasmic side of the membrane. The seven 

transmembrane domains are a common characteristic of all PQL proteins identified so far 

(Hardwick and Pelham, 1990; Anand et al., 2001; Chung et al., 2001; Kalatzis et al., 

2001). In addition, hydropathy analysis showed that the PQ-loop domain usually spans two 

transmembrane domains and consists of two hydrophobic regions surrounding a 

hydrophilic core. The significance of PQ-loop is not yet clear, but it is suggested to 

constitute a way of forming the transmembrane domains of proteins. All AtPQL proteins 

contain a conserved PQ motif at position 22-23 of the PQ-loop domain. It was found that 

the PQ motif is close to the transition region of the transmembrane and non-

transmembrane domain. It might facilitate the change in direction of the polypeptide chain, 

as proline has the ability to bind the amino acid chain twice (Betts and Russell, 2003). 

Nevertheless, mutations in residues within the PQ-loop have suggested an additional role 

for the PQ-loop (discussed below). The alignment of full-length AtPQL amino acid 

sequences with other known non-plant PQL proteins led to the separation of AtPQL 

proteins into three sub-groups. Figure 1.2 represents a phylogenetic tree showing the 
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relationship between the AtPQL and PQL proteins from other species and the domain 

organization of each of the proteins. Sub-group 1 contains AtPQL1, AtPQL2 and AtPQL3, 

sub-group 2 contains AtPQL4 and AtPQL6 and sub-group 3 is defined by AtPQL5. The 

AtPQL genes are found throughout the genome, with AtPQL2 being on chromosome 2, 

AtPQL1, AtPQL3 and AtPQL6 on chromosome 4 and AtPQL4 and AtPQL5 on 

chromosome 5. The AtPQL genes also differ in intron-exon organisation, AtPQL1 contains 

no introns while its closest homologues AtPQL2 and AtPQL3 have 11 and 10 introns, 

respectively.  

 

 
Figure 1.1:  Predicted topology of PQL proteins. 
 
PQL proteins are integral membrane proteins. They contain seven transmembrane domains and two PQ-loop 
domains. The PQ-loop domains typically span two transmembrane domains with the conserved PQ situated 
at the interface between the cytoplasmic loop and the second transmembrane domain.  
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Figure 1.2: Classification of AtPQL proteins in three different subgroups. 

A) Phylogenetic tree shows the relationship between the AtPQL1-6 proteins and PQL proteins characterised 
in other eukaryotes. The tree was created from full-length sequence alignements of selected PQL proteins. 
Node numbers indicate bootstrap values. B) The distribution of the domains for each PQL protein and 
number of amino acids is also shown. Transmembrane domains are shown in red color, while PQ-loop 
domains are shown blue color (Figure taken form Pattison, 2008). 

 

1.2 AtPQL1, AtPQL2, AtPQL3 and STM1  
 
The sub-group 1 proteins AtPQL1-3 show high sequence identity with a PQL protein, 

STM1, from the fission yeast Schizosaccharomyces pombe. STM1 has been proposed to 

act as a G-protein coupled receptor (GPCR) and was implicated in the control of cell cycle 

under nitrogen-deficient conditions. It is suggested that nitrogenous signals may bind to 

STM1 resulting in its activation through structural changes and therefore facilitating its 

interaction with heterotrimeric protein Gpa2. Gpa2 is involved in sexual differentiation in 

response to poor nutritional conditions (Chung et al., 2001). This interaction occurs 

through the C-terminal region of STM1 that contains a putative Gpa2 binding site of 7-8 

residues within the second PQ-loop. Site-directed mutagenesis in the binding site revealed 

a lysine residue at position 199 to be important for the function of STM1. A Gpa2 binding 

site is absent in the AtPQL1-3 proteins. 

 

Transcriptional profiling by Pattison (2008) showed that AtPQL1 and AtPQL2 have similar 

expression patterns and were strongly expressed in floral tissues. AtPQL2 was also found 
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in rosette leaves and roots, though in much lower amounts. In contrast, AtPQL3 showed 

higher mRNA levels than AtPQL1 and AtPQL2, with highest expression in root tissues. 

Despite the overlapping expression profiles of AtPQL1 and AtPQL2, both genes exhibited 

temporal differences of expression. AtPQL1 showed peak expression in developing pollen 

whereas AtPQL2 was more strongly expressed in mature pollen. Transient expression of 

AtPQL1-GFP fusion protein in epidermal cells of Nicotiana tabacum indicated localisation 

to the tonoplast. No co-localisation data were obtained for AtPQL2 and AtPQL3 proteins. 

Pattison (2008) argued that a tonoplast localisation might not exclude a GPCR function of 

AtPQL1 as its N-terminus faces the vacuolar lumen where it could interact with the only 

identified Arabidopsis Ga subunit, GPA1. Such interaction could take place at points 

where the tonoplast and plasma membrane are in close contact. Huang et al. (2006) 

reported interaction of GPA1 with THF1, a plastid localised protein, at points where the 

plastid membrane is in very close proximity to the plasma membrane. GPA1 is expressed 

throughout development in almost all tissues, with the exception of mature seeds and 

mature pollen (Weiss et al., 1993). It is therefore unlikely that AtPQL2, which is highly 

expressed in mature pollen, interacts with GPA1. Single knockout lines of AtPQL1 and 

AtPQL3 and overexressors of AtPQL1, AtPQL2 and AtPQL3 did not show a phenotype 

different from wild type (Col0) when grown on soil or in different nutrient conditions 

(Pattison, 2008). 

 

1.3 AtPQL5 and cystinosin  
 
Human cystinosin (CTNS) is the closest homologue of AtPQL5 with 29.9% sequence 

identity at the amino acid level. CTNS is the only member of the PQL protein for which a 

function has been established at the molecular level. CTNS is a human H+-driven 

transporter, mediating the efflux of cystine from lysosomes (Kalatzis et al., 2001). Cystine 

is the disulfide form of the amino acid cysteine (cys) and is a by-product of lysosomal 

protein hydrolysis. Cystine is exported into the cytosol, where it is reduced to cys (Gahl et 

al., 2002). Mutations in CTNS result in cystinosis, an inherited lysosomal storage disease. 

Defective cystine efflux leads to cystine accumulation inside lysosomes where reduction to 

cys cannot take place (Kalatzis et al., 2004). CTNS is one of the PQL proteins that is 

affected in its function by mutations in the PQ-loop. 16 different point mutations leading to 

clinical symptoms have been shown to fall within the two PQ-loops of CTNS (Attard et 

al., 1999; Kalatzis et al., 2001; Kalatzis et al., 2004). Most of these mutations affected the 

cys transport activity of CTNS and not its localisation.  



 15
 

Based on expression profiling (Pattison, 2008) AtPQL5 appears to be the most strongly 

expressed member of the AtPQL family. Expression was apparent in all tissues, with 

highest transcript levels occurring in open flowers. In addition, AtPQL5 showed diurnal 

changes in expression, as transcript level was highest in the middle of the day, in both 

short and long days. This finding might argue against a function of AtPQL5 in cys 

production, as other genes involved in the cys production are more expressed at the end of 

the night to provide sufficient cys for sulfur metabolism in the morning (Saito et al., 2004). 

Similar to what was observed for the subgroup 1 PQL proteins, AtPQL5 was highly 

expressed in pollen and exhibited strong changes in expression level during pollen 

development. Sub-cellular localisation experiments suggested that AtPQL5 also localises 

to the tonoplast (Pattison, 2008). This is in agreement with a similar function to CTNS, 

which is localized to the lysosome. Lysosomes are small organelles containing a plethora 

of hydrolytic enzymes and they are responsible for the degradation macromolecules 

derived from extracellular environment through endocytosis or from the cytosol through 

autophagy (Sun-Wada et al., 2003). In plants, the vast majority of hydrolytic activity 

resides inside the vacuoles. However, vacuoles have additional functions such as storage of 

ions and various metabolites, control of osmotic pressure and detoxification (Marty, 1999). 

Given the localisation of AtPQL5, a CTNS-like function of AtPQL5 could be possible. In 

plants, the reduction of cystine to cys is essential, as cys is a key intermediate for sulfur 

metabolism (Saito et al., 2004). However, AtPQL5 knockout mutants did not show a 

phenotype when grown in low sulphur conditions (Pattison, 2008). The ers1Δ mutant 

disrupted in the yeast PQL gene ERS1, is sensitive to hygromycin (Gao et al., 2005). 

Expression of CTNS in the ers1Δ mutant resulted in increased hygromycin tolerance. 

However, functional complementation was not observed for any of the AtPQL proteins 

expressed in ers1Δ, suggesting either a function different from CTNS or a loss of function 

due to heterologous expression. 

 

1.4 AtPQL4, AtPQL6 and MPDU1  
 
An alignment of AtPQL4 and AtPQL6 full amino acid sequence showed 74% identity 

between the two proteins. AtPQL4 and AtPQL6 genes displayed similar expression 

patterns with little variation in transcript level between different tissues (Pattison, 2008). 

AtPQL4 was more strongly expressed in open flowers, while AtPQL6 showed peak 

expression in floral buds. In addition, AtPQL4 and AtPQL6 genes showed diurnal changes 
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in expression. In both short and long days, the transcript levels were increased throughout 

the course of the day and reached a maximum at the end of the day. Experiments using 

green fluorescent protein (GFP)-tagged AtPQL4 and AtPQL6 suggested localisation to the 

endoplasmic reticulum (ER), as GFP fluorescence was observed in net-like structures 

(Pattison, 2008).  

 

Transcriptional profiling of mutant lines for AtPQL4 and AtPQL6 genes as well as an 

overexpressor line for AtPQL6 gene showed differential expression of genes in the mutant 

lines compared to wild type. The differentially expressed genes could be classified into 

three main groups. The first group includes pathogenesis related (PR) genes and genes 

involved in cell-wall modification, such as lipid transfer proteins (LTPs), xyloglucan 

endotransglycosylase (XET) and glycosylphosphatidylinositol (GPI) anchored proteins. PR 

genes are induced in response to pathogen infection and encode proteins with various 

functions (Van Loon et al., 2006). PR-1 was up-regulated in both knockout and 

overexpressor lines for AtPQL6. PR-2 was up-regulated in all knockout lines, while down-

regulated in the AtPQL6 overxpressor line. Opposite changes in knockout and 

oxerexpressor lines were also observed for several LTPs the cell-wall modification 

associated gene XTR7.  Members of the COBRA family were up-regulated in AtPQL6 

knockout plants. All 12 members of the COBRA family encode GPI anchored proteins 

with a regulatory role in the deposition of cellulose microfibrils thus controlling the 

direction of cell wall expansion (Roudier et al., 2002). The second group of differentially 

expressed genes consists of lipid metabolism and ER stress-related genes. Several genes 

involved in lipid metabolism were differentially regulated in AtPQL4 and AtPQL6 

mutants. The most interesting observation was the down-regulation in the AtPQL4 

knockout of a DPS-like gene, which encodes for a dehydrodolichol pyrophosphate (dedol-

P-P) synthase that is responsible for the synthesis of dedol-P-P (Cunillera et al., 2000). 

Dedol-P-P is a precursor molecule of dolichol-pyrophosphate (Dol-P-P), which is the lipid 

acceptor of sugars in the synthesis of lipid-linked oligosaccharides (LLO) during N-

glycosylation in the ER. ER stress results from accumulation of unfolded proteins in the 

ER and is accompanied by increased expression of a number of genes implicated in the 

unfolded protein response (UPR) (Liu and Howell, 2010), such as the binding protein 

(BiP), the protein disulfide isomerase (PDI), calnexin (CNX) and calreticulin (CRT). BiP3, 

one of the three A. thaliana BiP genes, was up-regulated in both AtPQL6 knockout and 

overexpressing lines. The UTr1 gene was also up-regulated in the AtPQL6 overexpressing 

line. UTr1 is a UDP-glucose transporter that supplies glucose to the CNX/CRT cycle for 

the making of incorrectly folded proteins (Reyes et al., 2009). The third group contains 
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genes encoding N-glycoproteins and proteins targeted to the secretory pathway. Such 

proteins were over-represented among the differentially expressed genes in the AtPQL 

knockout lines, and under-represented in the AtPQL6 overexpressor line.  

 

Full-length alignments of amino acid sequence showed 29.3% and 30.4 % identity of 

AtPQL4 and AtPQL6 respectively with the mannose-phosphate-dolichol utilisation 1 

(MPDU1) gene from humans. The three proteins show similar organisation of the seven 

transmembrane and the PQ-loop domains. LEC35/MPDU1 has been shown to be required 

for the utilization of dolichol-phosphate (Dol-P) linked sugars in different types of 

glycosylation processes (Anand et al., 2001, see below). Mutations in MPDU1 and similar 

genes cause congenital disorders of glycolsylation (Kranz et al., 2001; Schenk et al., 2001; 

Koiwa et al., 2003). 

 

1.5 Synthesis of Dol-P linked sugars 
 
Glycosylation is a post-translational modification of proteins that is highly conserved in all 

eukaryotes. There are five different types of glycosylation, N-glycosylation, O-

glycosylation, P-glycosylation, C-mannosylation and GPI anchoring, differing in the 

sugar-amino acid bond formed, all of which are initiated in the ER and Golgi. The first 

steps of N-glycosylation, C-mannosylation and GPI in the ER depend on mannose-

phosphate-dolichol (Man-P-Dol) and glucose-phosphate-dolichol (Glc-P-Dol) (Spiro et al., 

2002). In addition, a special type of O-glycosylation, known as O-mannosylation, is 

dependent on Man-P-Dol. In this chapter I will describe only those types of glycosylation 

that are dependent on Man-P-Dol. 

 

Dolichols are long-chain polyisoprenoid lipids comprising 15 to 23 isoprenic units 

depending on the organism. Biosynthesis of dolichols involves formation of geranyl (GPP) 

and farnesyl (FPP) diphosphates through the mevalonate pathway (Swiezewskaa and 

Danikiewiczb, 2005). Elongation of the polyisoprenoids is catalyzed by cis-

prenyltransferases that add isopentenyl diphosphates (IPPs) onto FPP. The lew1 mutant of 

A. thaliana is defective in a gene encoding a cis-prenyltranferase. lew1 plants show a  

hypersensitive response to tunicamycin and have altered levels of glycosylation (Zhang et 

al., 2008). Newly synthesized Dol-P is available for synthesis of Man-P-Dol and Glc-P-

Dol that are required for glycosylation. This process takes place on the cytoplasmic side of 

the ER and is mediated by Dol-P- mannosyltransferase and Dol-P-glusosyltransferase 
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using the nucleotide sugar donors, UDP-Man and UDP-Glc, respectively (Helenius et al., 

2002). Both Man-P-Dol and Glc-P-Dol require re-orientation in the ER membrane to be 

available for glycosylation-associated enzymes residing in ER lumen. Experiments using 

water-soluble analogues of Man-P-Dol and Glc-P-Dol suggested that translocation into ER 

sealed vesicles requires the involvement of so-called flippases (Schenk et al., 2001a). 

However, this remains to be identified.  

 

1.6 Protein glycosylation in the ER 
 
N-glycosylation of proteins is catalysed by the oligosaccharyltransferase (OST) complex in 

the ER lumen, where the LLO synthesized in the ER membrane is transferred to asparagine 

(Asn) residues of a strict consensus sequence Asn-X-Ser/Thr, with X being every amino 

acid except proline (Spiro et al., 2002, Koiwa et al., 2003). Several mutants defective in 

this process have been identified in plants. For instance, knockout of STT3a but not STT3b 

results in a salt sensitive phenotype in A. thaliana (Koiwa et al., 2003). The genes are 

homologues of yeast STT3 subunit of OST enzyme. Although single mutants are viable, 

double mutants of stt3a/stt3b show a gametophytic lethal phenotype. It was suggested that 

the two genes are redundant. At least the STT3a is involved in glycosylation, as stt3a 

mutants display decreased levels of glycosylation of proteins (Koiwa et al., 2003). 

 

A schematic representation of all the steps of the LLO biosynthesis along with the known 

mutations in A. thaliana and chemical inhibitors affecting this process is displayed in 

Figure 1.3 from Pattison and Amtmann, 2009. Biosynthesis of LLO requires the sequential 

attachment of sugar residues to Dol-P and is topologically split across the ER membrane. 

The first seven reactions take place on the cytoplasmic side of ER, whereas the remaining 

seven occur in the ER lumen. First, glycosyltranferases catalyse the addition of two N-

acetylglucosamine (GlcNAc) and five mannose (Man) residues to Dol-P using the 

nucleotide sugar donors, UDP-GlcNAc and GDP-Man. Subsequently, the Man5GlcNAc2-

P-Dol intermediate must be flipped across the ER membrane for elongation and 

completion of LLO. Man5GlcNAc2-P-Dol is flipped to the lumenal side by an ATP-

independent flippase (Rush and Waechter, 1995). The RFT1 protein of Saccharomyces 

cerevisiae was shown to be required for this translocation process (Helenius et al., 2002). 

The yeast strain alg11 is deficient in GDP-Man-dependent mannosyltransferase, which is 

required for the synthesis of Man5GlcNAc2-P-Dol, and shows accumulation of 

Man3GlcNAc2-P-Dol on the cytoplasmic side of the ER (Cipollo et al., 2001). 
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Overexpression of RFT1 in alg11 cells caused the accumulation of Man7GlcNAc2-P-Dol in 

the ER lumen suggesting that RFT1 is a potential candidate for an ER membrane flippase 

(Helenius et al., 2002). Once the Man5GlcNAc2-P-Dol intermediate is flipped to the 

luminal side of the ER, a further four mannose and three glucose (Glc) residues are added 

to make the complete LLO, Glc3Man9GlcNAc2-P-Dol. Sugar donors for these reactions are 

Man-P-Dol and Glc-P-Dol. The complete oligosaccharide is transferred from dolichol to 

proteins by the OST complex and further modified as part of the CNX/CRT cycle (see 1.8 

section). Additional modifications of the glycan take place in post-ER compartments such 

as the Golgi apparatus (Strasser et al., 2006).  

 

Although many genes are involved in N-glycosylation, few mutants have been isolated in 

plants that would allow understanding of the molecular significance of the individual 

proteins taking part in this process. However, the use of chemical inhibitors such as 

tunicamycin has given a great insight into the process of N-glycosylation. Tunicamycin is 

a specific inhibitor of UDP-N-acetylglucosamine:dolichol phosphate N-

acetylglucosamine-1-P transferase (GPT), the enzyme that catalyses the first 

glycosyltransferase reaction during LLO synthesis. Tunicamycin treatment is lethal for all 

eukaryotes, including plants (Zeng and Elbein, 1995). Sub-lethal doses of tunicamycin 

induce the expression of ER stress-related genes, particularly those involved in UPR. The 

first loss-of-function mutant of N-glycosylation identified in A. thaliana was asparagine-

linked glycosylation 3-2 (alg3-2). The ALG3 gene encodes for a1-3-mannosyltransferase, 

the enzyme responsible for the addition of the first Man residue after translocation of the 

LLO to the ER luminal face. Although alg3-2 mutants show an enhanced UPR, they do not 

show any physiological phenotype, suggesting that the latter steps in N-glycosylation are 

not vital (Henquet et al., 2008). Treatment of Cucumis sativus (cucumber) with sub-lethal 

amounts of tunicamycin resulted in an increased expression of PR proteins, increased 

levels of salicylic acid and increased systemic acquired resistance (SAR) against the fungal 

pathogen, Colletotrichum lagenarium (Sticher and Metraux, 2000), pointing to a close 

relationship between N-glycosylation and defence responses. The effect of AtPQL4 and 

AtPQL6 mutation on both UPR and defence related genes is therefore in agreement with a 

possible function in N-glycosylation as suggested by its homology to MPDU1 (see 1.4 

section). 

 

O-glycosylation comprises the linkage of glycans to amino acids containing a hydroxyl 

functional group like serine, threonine, tyrosine, hydroxyproline and hydroxylysine (Spiro 

et al., 2002). O-glycans are highly variable in structure as each sugar residue has 3 or 4 
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attachment sites for other sugar residues and they can also adopt different conformations. 

In addition, O-glycans can be long polysaccharide chains, namely glycosaminoglycans 

(GAGs) that consist of multiple disaccharide repeats such as N-acetylgalactosamine 

(GalNAc) or GlcNAc linked with glucuronic acid (GlcA) or galactose (Gal) residues 

(Wopereis et al., 2006). Few O-glycans contain Man residues and therefore require Man-P-

Dol. This special form of O-glycosylation, named O-mannosylation, involves the 

attachment of Man residues to either serine or threonine residue of proteins (Spiro et al., 

2002).  To date few O-glycosylated proteins have been identified. Most of them are 

derived from S. cerevisiae and the best described being a mammalian skeletal muscle 

extracellular matrix protein, the α-dystroglycan (Worepeis et al., 2006).  

 

C-mannosylation is another type of protein modification that occurs in the lumenal ER and 

involves the carbon-carbon linkage of a Man residue to the C-2 of the first tryptophan 

(Trp) residue of a consensus sequense Trp-x-x-Trp. (Spiro et al., 2002). The Man residue 

is derived from Man-P-Dol, as lec15 mutants, deficient in Man-P-Dol synthase activity, 

show a decrease in C-mannosylation (Doucey et al., 1998).  Few proteins containing C-

mannosylation sites have been identified in mammals, with the most well described being 

the ribonuclease2 (RNase2) protein (Krieg et al., 1997, Doucey et al., 1998).  

 

GPI anchoring is an additional type of glycosylation that enables tethering of proteins to 

the plasma membrane and is found in all eukaryotes. The first two steps of GPI synthesis 

occur at the cytoplasmic side of the ER. They involve the attachment of a GlcNAc residue 

to phosphatidylinositol (PI) and the subsequent deacetylation and acylation of the inositol 

ring of PI to produce the GlcN-acyl-PI intermediate. Re-orientation of the GlcN-acyl-PI in 

the ER membrane facilitates the attachment of additional Man residues derived from Man-

P-Dol sugar donors. Further species-specific modifications take place on the lumenal side 

of ER. A transamidase transfers the mature GPI to nascent proteins with a GPI-attachment 

site at carboxyl terminus (Kinoshita and Inoue, 2000).  
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Figure 1.3: Lipid linked oligosaccharide biosynthesis in the ER. 

N-glycosylation starts at the cytoplasmic side of ER membrane with (a) the attachment of two GlcNAc and 
five Man residues from nucleotide sugar donors to Dol-P generating the Man5GlcNAc2-P-Dol intermediate. 
(b) This intermediate is subsequently flipped across ER membrane and further four Man and 3 Glc residues 
are added to form the Glc3Man9GlcNAc2-P-Dol. The Man and Glc residues are derived from Man-P-Dol and 
Glc-P-Dol sugar donors. (d) The complete glycan is transferred to protein as they are co-translationally 
translocated into the ER lumen. A. thaliana mutants and chemical inhibitors of individual steps are shown in 
red color. (Figure is taken from Pattison and Amtmann, 2009) 
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1.7 LEC35/MPDU1 and Man-P-Dol usage in plants 
 
The MPDU1 protein, also known as LEC35, is implicated in all types of Man-P-Dol 

dependent glycosylation. The LEC35 gene was isolated from Chinese hamster ovary 

(CHO) cells through a screen using concanavalin (ConA), which binds high-mannose 

oligosaccharides (Kornfeld and Kornfeld, 1985), in combination with castanospermine 

(Cs) and swainsonine (Sw) that inhibit the Golgi-localised N-linked glycan processing 

enzymes. Cs inhibits glucosidase I and II whereas Sw inhibits mannosidase II (Elbein, 

1987; Tulsiani et al., 1982). lec35 mutants showed increased tolerance to both 

glycosylation inhibitors Cs and Sw  suggesting that they could produce complex glycans 

via an alternative pathway (Lehramn and Zeng, 1989). The authors suggested that lec35 

mutants were defective in LLO composition and therefore by-passed the necessary activity 

of the three enzymes to produce complex glycans. In addition, high-pressure liquid 

chromatography (HPLC) analysis of LLOs incubated with GDP-[3H]-Man showed an 

accumulation of Man5GlcNAc2-P-P-Dol at the expense of the mature LLO, 

Glc3Man9GlcNAc2-P-P-Dol (Lehramn and Zheng, 1989). The accumulation of this LLO 

intermediate was not the consequence of a defective enzyme involved in Man-P-Dol 

synthesis, as Man-P-Dol synthetase and transferase activity was the same in mutant and 

wild type CHO-K1 cells (Anand et al., 2001). lec35 mutants were also affected in glucose-

dolichol-phosphate (GDP)-dependent LLO synthesis. Lack of glucosylated LLOs was not 

due to presence of incomplete mannosylation of LLOs, as in lec15 mutants, which are 

defective in Man-P-Dol synthetase, glucosylation of the Man5GlcNAc2-P-P-Dol 

intermediate takes place producing Glc3Man5GlcNAc2-P-P-Dol instead of 

Glc3Man9GlcNAc2-P-P-Dol. Anand et al. (2001) also reported a defect of C-

mannosylation of tryptophan in lec35 mutants. lec35 cells expressing the C-mannosylated 

RNase 2.4 exhibited a 7.4-fold decrease in mannosylation compared to wild type CHO-K1 

cells. Moreover, mutations in the LEC35 gene resulted in a block of mannosylation of GPI 

during GPI synthesis. lec35 mutants accumulate GlcN-acyl-PI that suggests an arrest in 

elongation of GPI at the first mannosylation step in the ER lumen (Camp et al., 1993). 

From the combined results, Anand et al. (2001) concluded that MPDU1/LEC35 has a role 

in utilisation of Man-P-Dol, but its exact mode of function has not yet been identified. 

 

Man-P-Dol and Glc-P-Dol mediated glycosylation is essential for plant viability, as several 

mutants deficient in such processes resulted in gametic or embryonic lethality. However, 

the severity of the phenotype depends on the stage and location of glycosylation. As 

mentioned above, mutations occurring in later stages of N-glycosylation in the ER are not 
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lethal while those occurring in the first step of this process are. In addition, mutations that 

affect N-glycosylation in the Golgi are less severe than those occurring in the ER (Strasser 

et al., 2006). A possible explanation for the lethality associated with the inhibition of N-

glycosylation is the saturation of chaperones and folding catalysts in the ER lumen that 

causes ER dysfunction due to inability of such proteins to respond to ER stress (Vitale and 

Ceriotti, 2004). Although it was speculated that AtPQL4 and AtPQL6 might have a 

potential role in N-glycosylation in the ER, no gametic and embryonic lethality was 

observed (Pattison, 2008). 

 

1.8 ER Quality Control (ER QC) 
 

Many proteins have to enter the secretory pathway in order to be secreted or targeted to a 

specific sub-cellular location. Such proteins are termed secretory proteins and can be 

secreted proteins or proteins residing in the plasma membrane or in the lumen of different 

organelles such as vacuoles (Sanderfoot and Raikhel, 2003). The secretory pathway, 

alternatively known as anterograde pathway, begins with the co-translational translocation 

of a protein into the ER, followed by its flow to the Golgi and subsequent sorting to its 

final destination (Bassham et al., 2008).  The newly synthesized secretory proteins are 

subject to a quality control mechanism (QC) in the ER to adopt the correct conformation. 

ER QC involves retention of proteins that are not yet mature in the ER and targeting of 

misfolded proteins for degradation through the ER-associated degradation (ERAD) 

pathway (Vitale and Denecke, 2006). ER stress causes accumulation of non-native proteins 

in the ER that can form protein aggregates due to nonspecific interactions between 

hydrophobic residues that are exposed in the newly synthesized protein (Vitale and Boston, 

2008).  

 

Once the synthesized secretory protein enters the ER lumen, chaperones and other folding 

helper proteins bind to the nascent polypeptide chain to facilitate correct folding. The first 

folding helper is the enzyme signal peptidase that removes a N-terminal signal peptide 

present in the majority of secretory proteins (Vitale and Denecke, 2006). Subsequently, 

chaperones and co-chaperones bind to hydrophobic regions of proteins to prevent the 

formation of any aggregates (Liu and Howell, 2010). Several such folding proteins have 

been identified, with the most well described being the ER lumenal BiP. In A. thaliana 

three BiP genes have been found, named BiP1, BiP2 and BiP3. BiP is responsible for 

several additional processes in the ER. For instance, it facilitates the movement of the 
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protein through the translocation pore in association with the Sec61 protein (Vitale and 

Denecke, 2006). Studies have reported that environmental stresses such as drought, heat 

and pathogen attack can cause ER stress that in turn results in the enhanced expression of 

all three AtBiP genes (Wang et al., 2005; Iwata et al., 2008).  

 

Most of the proteins passing through the secretory pathway are modified by N-

glycosylation. N-glycosylation ensures ER QC as the core Glc3Man9GlcNAc2-P-P-Dol 

oligosaccharide is subject to further modifications inside the ER lumen by entering the 

calnexin/calreticulin cycle (Pattison and Amtmann, 2009). The CNX/CRT cycle depends 

on the de-glucosylation and re-glucosylation of the oligosaccharide by enzymes residing in 

the ER lumen. Figure 1.4 represents the CNX/CRT cycle including all the mutants 

identified in Arabidopsis to affect this process. Once the oligosaccharide is transferred to 

the protein, the two terminal glucose residues are removed by glucosidase I and II, 

respectively. The monoglucosylated oligosaccharide, GlcMan9GlcNAc2, binds to the two 

lectins CNX and CRT. CNX is an ER membrane protein, while CRT is a lumenal ER 

protein. Both lectins contain N-terminal regions forming β-sandwich domains that interact 

with the single glucose residue of the oligosaccharide of the proteins (Liu and Howell, 

2010).  Glucosidase II facilitates the release of the protein from the CNX/CRT cycle by 

removing the last glucose residue. However, if the protein has not adopted its native form, 

another ER resident protein, the UDP-glucose:glycoprotein glucosyltransferase (UGGT), 

will add a further glucose residue to the nonglucosylated oligosaccharide to allow further 

rounds of CNX/CRT cycle in order to control the folding status of the protein (Liu and 

Howell, 2010). The cycle is interrupted when the protein is correctly folded and the protein 

can then be exported to the Golgi (Pattison and Amtmann, 2009).   

 

Mutations affecting proteins involved directly or indirectly in the CNX/CRT cycle have 

severe effects on plant fitness and phenotypes can range from being completely lethal to no 

obvious morphological phenotype (Pattison and Amtmann, 2009). For instance, the ER-

localised protein, UDP-glucose/galactose transporter (AtUTR) 1 in A. thaliana is 

responsible for the transport of UDP-glucose into the ER lumen. Mutations in the AtUTR1 

gene cause 50% decrease in UDP-glucose uptake suggesting that the protein is essential for 

the correct functioning of the CNX/CRT cycle (Reyes et al., 2006). In addition, a genetic 

screen for Arabidopsis mutants insensitive to the surrogate peptide elf18 for the elongation 

factor (EF)-TU, has identified several genes that provide a link between ER QC and 

pathogen response, including CRT3, UGGT and the ER retention receptor (ERD2) (Li et 

al., 2009; Nekrashov et al., 2009).  
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Figure 1.4: Calnexin/calreticullin cycle. 

After transfer of the mature Glc3Man5GlcNAc2 oligosaccharide to protein, the newly produced glycoprotein 
enters the CNX/CRT cycle. The outermost and following glucose residue are removed by glucosidase I and 
II. The two lectins, CNX and CRT can bind the monoglucosylated oligosaccharide, promoting correct 
folding of the protein. After removal of the last glucose residue the protein can be exported to the Golgi. If it 
is still misfoded, it re-enters the CNX/CRT cycle by addition of a further glucose residue by UGGT 
(indicated as GT). A. thaliana mutants are shown in red color. (Figure is taken from publication by Pattison 
and Amtmann, 2009) 
 

 
ER stress induces the UPR which in turn results in the enhanced expression of folding 

helpers to relieve the stress either by promoting correct folding or by eliminating defective 

proteins. UPR is not only stimulated by environmental stresses like pathogen attack, but 

also by normal developmental processes such as seed development that involves 

accumulation of storage bodies (Pattison and Amtmann, 2009). Studies in yeast have 

revealed that a key player in UPR is the BiP protein. Under normal conditions BiP is found 

to be associated with a RNA splicing factor, the inostol-required 1 (Ire1) protein (Liu and 

Howell, 2010). Upon accumulation of misfolded proteins free BiP decreases causing BiP 

dissociation from Ire1, which in turn activates a transcription factor that up-regulates 

expression of ER stress related genes (Travers et al., 2000; Ceriotti and Roberts, 2006). 

Such genes are not only chaperones and folding helpers, but also genes implicated in the 

secretory pathway or secretion (Travers et al., 2000). Microarray studies in A. thaliana 

showed a similar set of genes to be up-regulated during UPR, though down-regulation of 

proteins with signal peptides, especially cell wall proteins, was also evident (Martinez and 

Chrispeels, 2003). In addition, two ERAD genes, a putative ubiquitin and an AAA-type 

ATPase, were up-regulated suggesting a link between UPR and ERAD pathway.  
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 As discussed before, N-glycosylation inhibition induces UPR that in turn up-regulates 

expression of BiP, CNX, CRT and other folding-related proteins (Ceriotti and Roberts, 

2006). Many of the chaperones induced by UPR are also implicated in the ERAD pathway. 

The discrimination between native and misfolded proteins is facilitated by the CNX/CRT 

cycle. Permanently misfolded proteins remain in the ER lumen much longer than the 

folding intermediates and therefore the possibility to be trimmed by ER-localised 

mannosidase increases. This enzyme is responsible for the removal of the last Man residue 

from the nonglucosylated oligosaccharide. Hence, the re-glucosylation of the 

Man8GlcNAc2 is less probable than of the Man9GlcNAc2 causing the misfolded protein to 

be translocated to the cytosol (Ceriotti and Roberts, 2006). However, it is mostly unknown 

how defective proteins are recognised by folding factors (Liu and Howell, 2010). Studies 

have suggested that dislocation of these proteins occurs through the Sec61 complex. 

Translocation to the cytosol is dependent on ubiquitinylation of the defective protein that 

will allow proteasomal degradation to take place (Ceriotti and Roberts, 2006).  

 

Not all defective proteins follow the ERAD pathway. Degradation of non-native proteins 

can be achieved in vacuoles through two different mechanisms, the Golgi-mediated 

pathway and autophagy (Vitale and Boston, 2008). The first mechanism entails the 

vesicular traffic of the protein through golgi and pre-vacuolar compartment, the subsequent 

sorting to the vacuole by a Vps 10 receptor and eventually the degradation by vacuolar 

proteases (Kruse et al., 2006). The alternative mechanism is based on autophagy. ER stress 

is shown to provoke the assembly of pre-autophagosomal structures (Yorimitsu et al., 

2007). Studies in yeast have suggested that the autophagosome requires the early secretory 

pathway to supply membranes for its formation (Regiori et al., 2004). It has also been 

reported that ER fragments containing misfolded proteins are selectively recognised and 

transported to the vacuole within the autophagosome (Rose et al., 2006).  
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1.9 Objectives and thesis outline 
 
The aim of this project is to give further insight into the function of two AtPQL proteins, 

AtPQL4 and AtPQL6. This is achieved by investigating the sub-cellular localisation of the 

two proteins, the effect of overexpression on the localization of other membrane proteins 

and the phenotypic analysis of mutant lines for both genes under certain environmental 

conditions. The thesis contains three Results chapters (chapters 3-5). Chapter 2 provides 

details about the materials and methods used in this project. 

 

Chapter 3 presents the sub-cellular localisation of the AtPQL4 and AtPQL6 proteins, using 

GFP-fusion constructs and confocal laser scanning microscopy of tobacco leaf cells. A 

previous study reported localization to the ER. Here, I confirm this finding by co-

expressing the proteins with an ER marker protein. In addition, novel information on the 

sub-cellular localisation of a third protein from the same family, AtPQL2, is also presented. 

 

Chapter 4 presents new information on the molecular function of AtPQL4 and AtPQL6. 

Overexpression of the two AtPQL proteins in tobacco leaves is shown to affect the 

targeting of secretory proteins. This was investigated by co-expressing GFP-AtPQL 

proteins with a number of different fluorescent-tagged proteins. The implications of this 

observation for a possible function of AtPQL4 and AtPQL6 in the ER are discussed. 

 

Chapter 5 describes the phenotypic analysis of mutant lines for AtPQL4 and AtPQL6 in a 

variety of environmental stresses. The observations at whole-plant level are discussed in 

the context of putative functions of the proteins at the (sub-)cellular level. 

 

A general discussion of all the data presented in the thesis is provided in chapter 6.  A 

possible function of the AtPQL4 and AtPQL6 proteins is proposed and ideas for future 

experiments are presented. 
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Chapter 2: Material and Methods 
 

2.1 Materials 
 
2.1.1 Chemicals 

 
Except where otherwise stated, all chemicals used are from Sigma (Poole, UK) and 

Fischer-Scientific (Southampton, UK). Enzymes for molecular biology were from 

Invitrogen (Paisley, UK), Promega (Southampton, UK) and New England Biolabs 

(Hitchin, UK). Kits for DNA extraction were form Fischer-Scientific (Southampton, UK) 

and kits for gel extraction were from Qiagen (Crawley, UK). Custom primers were 

purchased from Invitrogen.  

 

2.1.2 Plants 
 
Arabidopsis thaliana ecotype Columbia (Col0) was the background for all mutants and 

transgenic lines. Six different Arabidopsis thaliana genotypes were used; wild-type Col0 

(WT), pql4-1, pql4-2, pql6-1, pql4-2/6-1 and 35S::AtPQL6-1. 

 

2.2 Plant Growth and Treatment 
 
2.2.1 Growth on soil 
 

To grow A. thaliana plants on soil, approximately 6 seeds were sown on moist compost 

(Levington F2, Fisons, Ipswich, UK) inside a standard circular plant pot (4 cm in diameter) 

and placed in a tray under propagator in darkness at 4°C for two days to allow 

stratification. The pots subsequently were placed in a controlled growth chamber (Sanyo 

Fitotron) in either long-day conditions  (16 hours light, 8 hours darkness; light intensity 

100-120 μmol m-2 sec-1; temperature approximately 20°C/18°C day/night; relative 

humidity of 60%/70% day/night) or short-day conditions (9 hours light, 15 hours darkness; 

light intensity 120-150 μmol m-2 sec-1; temperature approximately 20°C/18°C day/night; 

relative humidity of 60%/70% day/night). After one week, plants were transplanted in 

individual pots and the propagator was removed. Plants were watered every 4th day until 

senescence. For seed collection, Aracon tubing was placed on top of the rosettes and 
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watering stopped once the first siliques became discoloured. The plants were allowed to 

first completely dry out before collecting the seeds. 

 

2.2.2 Viral infection 
 

Four seeds per genotype were sown on soil and placed in a controlled growth chamber in 

short-day conditions as described. After the emergence of the first true leaves, Arabidopsis 

seedlings were inoculated with CaMV isolate Cabb B-JI. 2μL of sterile water mixed with a 

small amount of cellite, used as an abrasive, and 0.1 μg of purified virus were pipetted onto 

the leaf. The leaf was rubbed using a small glass rod. Control plants were not infected. 

Three plants from each genotype were pooled to extract DNA at different time points as 

described below and quantified with qPCR (see below).  

 
2.2.3 Growth on agar plates 

 

A. thaliana seeds were surfaced sterilised. About 400 seeds were placed in 1.5 mL 

Eppendorf tube with 1mL 100% ethanol for one minute and mixed by inverting tube 

several times. The ethanol was discarded and 1 mL of sterilising solution (2.5% sodium 

hypochlorite and 0.01% Tween 20) was added into the tube and mixed by inverting several 

times. After incubation for five minutes, the bleach solution was replaced by 1 mL of 

double distilled water. Washing was repeated five times to ensure complete removal of 

bleach solution and the seeds kept in water. The tubes were wrapped in aluminium foil and 

placed in darkness at 4°C for two days to ensure stratification. 

 

Different media were used for physiological experiments. For most of the experiments in 

this project, a full minimal medium (Control medium) was used (Table 2.1). To prepare the 

medium, reagents were mixed and diluted with double distilled water to the final 

concentration. 0.5x Muraskige and Skoog (MS) medium was also used where stated. 2.2 g 

of MS powder (Sigma, M5519) per litre was dissolved in double distilled water. Media 

were supplemented with sucrose to a concentration 1% and pH was adjusted to pH 5.6 

with either 0.5 M of NaOH or using MES-TRIS buffer. To solidify the media, 1% Agar 

(Type A, Sigma) was added before autoclaving at 121°C for 20 minutes. Once the 

autoclaved medium had cooled to about 60°C, it was suspended into square plates (120 x 

120 mm, Greiner) using titration pipettes.  
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Seeds were sown individually onto the solidified media using a sterile cut P200 pipette tip 

attached to a Gilson pipette. Generally, 6 seeds sown per plate containing 50 mL medium 

and spaced evenly into horizontal line approximately 15 mm form the top of the plate. The 

plates were sealed with 3M Micropore Tape (MidMeds Ltd, Nazeing, UK) and placed in 

controlled growth chamber (24 hours photoperiod; light intensity approximately 110 μmol 

m-2 sec-1; temperature 20°C and relative humidity of 60%), except where otherwise stated. 

 

Table 2.1: Final concentration of reagents used to prepare full minimal Control 

medium. 

 

Reagents Concentration 

KNO3 1.25 mM 

Ca(NO3)2 0.5 mM 

MgSO4 0.5 mM 

FeNaEDTA 42.5 μM 

KH2PO4 0.625 mM 

NaCl 2 mM 

CuSO4 0.16 μΜ 

ZnSO4 0.38 μΜ 

MnSO4 1.8 μΜ 

H3BO3 45 μΜ 

(NH4)6Mo7O24 0.015 μΜ 

CoCl2 0.01 μΜ 

 

 

2.2.4 Stress treatments 
 
Salt and Osmotic stress 

 

Plants were grown on MS agar plates supplemented with 50 mM NaCl or 50 mM KCl to 

measure sensitivity to salt and osmotic stress, respectively.  
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Macronutrient depletion 

 

Plants were grown on agar plates supplemented with varied strength of MS to measure 

sensitivity of seedlings to macronutrient depletion. 1/3, 1/10, 1/30, 1/100 and 1/300 MS 

dilutions were used. Four seeds of two different genotypes were sown on agar plate.  

 

Sucrose starvation 

 

Response of plants in varied carbon concentrations was measured by growing plants on 

MS agar plates supplemented with 0%, 0.5%, 1%, 3% and 4% of sucrose.  

 
2.2.5 Analysis of growth and water content 
 
From nine days of germination and onwards, plates were scanned to allow measurement of 

the roots using the EasyRhizo software (Armengaud et al., 2000). Fourteen days post 

germination, shoots and roots were harvested to measure fresh weight and placed in foil at 

60°C for three days to measure dry weight.  

 

Water content was estimated according to the following formula: 

Wcont (%)= 100-(DW/FW x 100) 

 

Statistical analysis was performed using ANOVA test with SOFA Statistics version 0.9.25 

(Paton-Simpson & Associates Ltd, Auckland, New Zealand). 

 

2.2.6 Growth on liquid medium 
 

Plants grown in liquid 0.5x MS medium prepared as described above. Sterile seeds were 

sown directly into either 6-well plates containing liquid medium. The plates were sealed 

with Micropore tape and placed in control growth chamber (24 hours photoperiod; light 

intensity approximately 110 μmol m-2 sec-1; temperature 20°C and relative humidity of 

60%). 
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2.3 DNA and RNA extraction, quantification  
 

For the extraction of either DNA or RNA, plant material was placed into a 2 mL screwcap 

tube together with a grinding ball and placed directly into liquid nitrogen. Subsequently, 

the tubes were placed in a pre-cooled rack and the plant material ground using the Qiagen 

Tissue Lyser for 45-110 seconds depending on the amount of plant material, with a 

frequency of 28.6 Hz.  

 

2.3.1 DNA extraction 

 

DNA was extracted from A. thaliana using the Nucleospin® Plant II kit (Fischer-Scientific) 

according to the manufacturer’s instructions, with an additional step of digestion with 

Proteinase K. After lysis step, 8 μL of Proteinase K (20μg/μL) were added into the tubes, 

followed by thorough vortexing. The tubes were incubated at room temperature for three 

hours. Proteinase K was inactivated by incubating the samples at 65°C for thirty minutes. 

DNA was twice eluted from the column in 50 μL of the supplied elution buffer. DNA 

quantity and purity was determined spectrophotometrically by preparing 1 to 50 dilutions 

of DNA and measuring the absorbance at 260 nm in an Eppendorf UVette® in the 

Eppendorf Biophotomoter Plus. Absorbance readings were compared to double distilled 

water. The purity of DNA was estimated from the A260/A280 ratio. 

 

2.3.2 RNA extraction 
 

To prepare RNAse free water, 1 mL of DEPC (Diethyl pyrocarbonate, Fluka) was added to 

1 L of double distilled water and stirred for approximately two hours. This water was 

subsequently autoclaved and used in all methods involving RNA.  

 

RNA was extracted from A. thaliana by adding 1.4 mL of TRIzol solution (0.8M 

Guanidium thiocynate, 0.4 M Ammonium thiocynate, 0.1M NaAc pH 5.2, 5% Glycerol 

and 3% Phenol saturated in water pH4.5) to 100 mg of ground frozen plant material. The 

samples were mixed by vortexing for one minute and incubated at room temperature for 

five minutes. This was followed by centrifugation at 8000g for two minutes. The 

supernatant was transferred into new 2 mL Eppendorf tube and 300 μL of 

chloroform:isoamylalcohol (24:1) were added. The samples were mixed by vortexing for 

one minute, incubated at room temperature for two minutes and then centrifuged at 13000g 

at 4°C for ten minutes. The aqueous phase was carefully transferred into a fresh 1.5 mL 
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tube followed by adding isopropanol in a volume ratio of 1:1. The samples were mixed by 

inverting the tubes for several times and left at room temperature for 5 minutes to allow the 

precipitation of RNA. Subsequently, the samples were centrifuged at 13000g at 4°C for 10 

minutes, washed with 1 mL of 70% ethanol and centrifuged at 13000g at 4°C for five 

minutes. The supernatant was removed and the pellet allowed to dry at air and resuspended 

in 50 μL of DEPC-treated water. The samples were placed at 42°C to ensure dissolving of 

dried RNA. 

 

The RNA quantity and purity was measured spectrophotometrically in Eppendorf 

Biophotometer Plus. RNA was 50x diluted in DEPC-treated water and absorbance 

measured from 220 to 320 nm into an Eppendorf UVette®. RNA concentation was 

calculated following the formula: (A260-230) x 40 x Dilution factor (ng/μL). The purity of 

RNA was estimated from the A260/A280 ratio. 

 

2.4 Polymerase Chain Reaction (PCR) 
 

PCR was performed using the Gen Amp PCR System 9700 (Applied Biosystems). Primer 

sequences are shown in appendix A. 

 

2.4.1 Standard PCR 

 

Standard PCR was carried out using GoTaq DNA polymerase (Promega). Table 2.2 and 

2.3 display the composition of the standard PCR mix prepared to a final volume of 25 mL 

and the cycling conditions. Template was genomic DNA. Aliquots of the mastermix were 

pipetteded into standard thin-wall PCR reaction tubes. Templates were added individually 

to each PCR tube. 

 

2.4.2 Agarose gel electrophoresis and gel purification 
 

PCR products were resolved by agarose gel electrophoresis. 15 μL of PCR product was 

loaded on a DNA agarose gel (1.5% agarose, 1x TAE containing 32μL/L ethidium 

bormide solution). 10 μL of DNA lambda ladder was loaded on each gel. DNA bands were 

separated at 100mV for 25-35 minutes and visualised under UV light using GelDoc 2000 

scanner (Biorad). 
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PCR products were extracted from gels under UV light and purified using a QiaQuick gel 

extraction kit (Qiagen) according to manufacturer’s instructions. DNA was eluted in 50μL 

elution buffer. DNA quantity and purity was determined spectrophotometrically as 

described above. 

  

Table 2.2: Standard PCR reaction mix. 

 

Component Volume (μL) 

5x Green GoTaq Buffer 5 

MgCl2 (25mM) 3 

dNTP Mix (10mM of dATP, dCTP, dGTP and 

dTTP) 
1 

Forward Primer (10mM) 1 

Reverse primer (10mM) 1 

GoTaq (5U/μL) 0.2 

Double distilled water 11.8 

Template 2 

 

 

Table 2.3:  Cycling conditions of standard PCR. 

 

Cycles Step Temperature 
Time 

(minutes) 

1 Denaturation 95°C 5 

Denaturation 95°C 0.5 

Primer Annealing 60°C 0.5 30 

Extension 72°C 1 

1 Final extension 72°C 5 

 

 

 

 

 

 



 35
2.4.3 Quantitative PCR (q PCR) 
 
qPCR was performed in 96-well plates using Mx3000 (Stratagene) real-time PCR system 

and the Brilliant SYBR Green qPCR kit (Stratagene). Table 2.4 and 2.5 display the 

composition of the qPCR reaction mix prepared to a final volume of 12.5 mL and cycling 

conditions. The template was genomic DNA or DNA standards and nucleotide-free water. 

DNA standards were prepared from gel-extracted PRC products by performing standard 

PCR using the same primers as for qPCR. Purified PCR products were adjusted to 10 

pg/μL and subsequently diluted to produce six different standards ranging from 1 pg/μL to 

10-5 pg/μL.   

 

At the end of the annealing step of every PCR cycle, SYBR green fluorescence was 

measured and the Ct (the number of cycles required to reach threshold fluorescence) was 

calculated using the machine software (MX3000). Plotting the Ct value of each dilution 

against the log initial template quantity created a standard curve. qPCR reactions were 

made in duplicates. To control and correct any errors occurring in each qPCR, the 

expression of the gene of interest should be tested relative to a stably expressed gene. 

 

 For viral infection experiments, the amount of virus DNA was estimated. The reference 

gene used was the Arabidopsis 18S ribosomal RNA gene. The Arabidopsis genome 

contains a fixed number of copies of the 18S rRNA gene and therefore 18S rRNA provides 

the most accurate measure of the amount of total DNA. CaMV DNA was quantified by Q-

PCR, and for each sample, duplicates of reactions were performed.  Table 2.6 displays the 

primers were used to amplify the CaMV Cabb B-JI gene and the Arabidopsis 18S 

ribosomal RNA gene. 
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Table 2.4: QPCR reaction mix. 

 

Component 
Volume per reaction 

(μL) 

SYBR green qPCR Master mix 10 

Forward Primer (10mM) 0.4 

Reverse primer (10mM) 0.4 

Double distilled water 4.2 

Template 5 

 

 

Table 2.5:  Cycling conditions for qPCR. 
 

 Cycles Temperature Time (minutes) 

1 95°C 3 

95°C 0.10 

55°C 1 

A
m

pl
ifi
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n 

pr
og
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m

 

40 

72°C 1 

95°C 1 

55°C 0.30 

D
is
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n 
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m

 

1 

95°C 0.30 
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2.5 Molecular cloning procedures 
 
2.5.1 Transformation of chemically competent E.coli cells 
 

Aliquots of chemically competent E.coli (strain TOP10TM, Invitrogen) cells were thawed 

on ice for five minutes and then 1 μL of plasmid was added and mixed by stirring for five 

seconds. The tubes were placed into liquid nitrogen for five minutes. This was followed by 

placing the tubes in a prewarmed water bath at 42°C for 45 seconds. Luria Bertani (LB) 

medium was added to each tube that was then incubated at 37°C for one hour by shaking at 

200 rpm. Bacteria cells were harvested by centrifugation at 8000g for two minutes. The 

cells were resuspended into 100 μL of the supernatant and the whole volume was spread 

on LB agar plates (1% agar) under a flow hood using or autoclaved glass beads or a 

Drigalski spatula sterilised by ethanol flaming. The agar plates were supplemented with the 

appropriate antibiotics for selection of positive transformants as shown on Table 2.7. All 

the plates were incubated overnight at 37°C.  

 

Table 2.6: Antibiotics used for selection of positive transformants. 

 

Antibiotic Final concentration (μg/mL) 

Gentamycin 25 

Kanamycin 50 

Rifampicin 50 

Spectinamycin 100 

 

 

2.5.2 Plasmid minipreps 
 

Single colonies picked with a sterile pipette tip and inoculated in 4 mL of LB medium 

containing the appropriate antibiotics. The cultures were grown overnight at 37°C by 

shaking at 200 rpm. Once cultures reach saturation they were transferred into 2 mL tubes 

and centrifuged at 4000g at 4°C fifteen seconds. The cell pellets were resuspended in 400 

μL resuspension buffer (50 mM Tris-Cl, 10 mM EDTA, RNase A (10μg/ml), Lysozyme, 

pH 8 adjust) by vortexing. This was followed by adding 400 μL of lysis buffer (0.2 M 

NaOH, 1% SDS) and mixing by inverting the tubes for four times. The lysates were 

resuspend in 400 μL of neutralisation buffer (3M Potassium acetate, pH 5) and centrifuged 
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at 14000g at 4°C for ten minutes. 1 mL of the supernatant was transferred into fresh 2 mL 

tube and mixed with 1 mL of chloroform-isoamylchohol (24:1) by inverting the tubes for 

thirty seconds. The suspension was centrifuged at 14000g at 4°C for one minute and 950 

μL of the supernatant was transferred into fresh 2 mL tubes. Isopropanol was added in a 

volume ratio of 1:1, the suspension was mixed and incubated at -20°C for twenty minutes. 

This was followed by centrifugation at 14000g at 4°C for fifteen minutes. The supernatant 

was transferred into a new tube containing 500 μL of 70% ethanol and centrifuged at 

14000g at 4°C for five minutes. The DNA pellet was allowed to dry at air for ten minutes. 

The DNA pellet was dissolved in 100 μL of double distilled water by incubating them at 

65°C for ten minutes. 

 

2.5.3 Restriction digestion reactions 
 

Plasmids were digested with restriction enzymes purchased from NEB or Promega. Table 

2.8 shows the composition of the restriction digestion mix in a final volume of 20 μL. The 

mix was prepared with the appropriate reaction buffers for each enzyme and BSA where 

required. If necessary, the reaction was performed by using two enzymes into the same 

tube and choosing a reaction buffer to be compatible with both enzymes. The reactions 

were incubated at 37°C for approximately 1 hour. The samples were separated by agarose 

(1.5%) gel electrophoresis as described above.  

 

Table 2.7: Composition of restriction digestion mix. 

 

Component 
Volume per 

reaction (μL) 

Reaction buffer 5.1 μL 

BSA (10μg/μL) 0.5 μL 

Restriction enzyme 0.4 μL 

Double distilled water 11 μL 

Template 3 μL 
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2.5.4 Transformation of chemically competent Agrobacterium tumefaciens 

cells 
 
Aliquots of chemically competent A. tumefaciens (strain GV3101) cells were transformed 

with binary plasmids using a thermal shock protocol. The cells were left to thaw at room 

temperature for five minutes and 5 μL of plasmid DNA was added. The cells were 

incubated first on ice and then on liquid nitrogen for five minutes. The tubes were then 

heated in a prewarmed water bath at 37°C for five minutes. 1 mL of liquid YEB medium 

was added into the tubes and the cells were incubated at 28°C for two hours while shaking 

at 200rpm. The cells were harvested by centrifugation at 8000g for two minutes and were 

suspended in 100 μL of supernatant. 10%, 30% and 60% of the suspensions were spread 

on LB or YEB agar plates containing gentamycin and rifampicin in addition the specific 

antibiotic for selection of the binary plasmid. The plates were sealed with parafilm and 

incubated at 28°C degrees for two days. Single colonies were picked from the plates with a 

sterile pipette tip and inoculated in 4 mL liquid LB medium supplemented with the same 

antibiotics as those used on the plates. The inoculums were incubated at 28°C overnight 

and used for plasmid extraction, restriction digest analysis, verification of correct 

transformation of agrobacteria with plasmid DNA, re-inocculation and then production of 

glycerol stocks, or for direct preparation of glycerol stocks as described below. 

 

2.5.5 Bacterial glycerol stocks 
 

 For direct inoculation of transformed agrobacteria, glycerol stocks were produced. 590 

mL of 4 mL overnight bacterial cultures were added into 2 mL screwcap tubes containing 

900 mL of 40% glycerol under flow hood. The tubes were mixed by inversion and were 

snap frozen in liquid nitrogen. Stocks were stored at -80°C for long-term use. A sterile 

filter tip was used to scrape off some frozen bacterial stock for inoculation into liquid LB 

or YEB medium. 

 

2.6 In vivo subcellular localisation and co-localisation of fusion 
proteins 
 

The fluorescent fusion protein constructs 35S::AtPQLs::GFP used for in vivo subcellular 

localization were created by Dr Richard Pattison (University of Glasgow) using the 
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Gateway recombination system (Invitrogen). Vectors used for transient A. tumefaciens 

transformations were provided by Dr. Grefen and Prof. Blatt (University of Glasgow).  

 

 

2.6.1 Creation of expression clones 

 

Expression clones were created combining a gateway entry clone with an attR containing 

destination vector using the gateway LR-clonase II (Invitrogen). The LR-recombination 

reaction mix was made up to a final volume of 2.5 μL. 1 μL (=150 ng) of destination 

vector and mixed with 1 μL (=150 ng) of entry clone and 0.5 μL of LR-clonase II. The 

reaction was incubated at room temperature for one hour. 1 μL of the reaction was used to 

transform E. coli cells and positive transformants were verified by restriction digestion as 

described before. The destination vectors pH7YWG2 and pH7RWG2 were used to create 

YFP and RFP fusions respectively. Both vectors contain a cauliflower mosaic virus 

(CaMV) 35S promoter. The destination vector pUBC-Dest including fluorophores was 

used to create protein fusion constructs with either GFP or YFP driven by the A. thaliana 

ubiquitin-10 gene promotor (Grefen et al., 2010). Table 2.9 displays the expression clones 

created for this thesis. 

 

Table 2.8: Expression clones created in this thesis using Gateway system.  

 

Gene Entry Clone 
Destination 

vector 
Expression clone 

pH7RWG2 pH7YWG2 35S::AtPQL4-RFP 
AtPQL4 pENTR 201 PQL4 NS 

pUBC-DEST pUB10::AtPQL4-GFP 

pH7YWG2 pH7YWG2 35S::AtPQL6-YFP 
AtPQL6 pENTR 201 PQL6 NS 

pUBC-DEST pUB10::AtPQL6-GFP 

 

 

2.6.2 Transient expression of protein fusion constructs in Nicotiana tabacum 
  
N. tabacum was used for transient expression of all the constructs using the agroinfiltration 

method. 4 mL Agrobacterium inoculations containing the appropriate construct and 

antibiotics were grown as described in general methods. Half amount of the cultures were 

added into 2 mL tubes and centrifuged at 13200g for two minutes. The supernatant was 
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removed, the other half of the culture was added and the centrifugation step was repeated. 

The bacteria cells were suspended in 2 mL of transformation buffer (10 mM MgCl2, 100 

μM acetosyringone) and centrifuged at 8000g for two minutes. The washing step was 

repeated three times to remove any residual medium. This was followed by resuspension in 

1 mL of transformation buffer to measure the OD600. The final OD600 was 0.3 and 0.2 for 

subcellular localisation and co-localisation respectively. The cell suspensions were left at 

room temperature for approximately one hour. To infiltrate the N. tabacum plants, the 

underside of a young mature leaf was pierced with a fresh razor blade (without cutting 

through the tissue) and a 1 mL syringe used to inject the cells. The infiltrated areas of the 

leaf were marked and the plants were returned to the control growth room (16 hours light, 

8 hours darkness; light intensity 100-120 μmol m-2 sec-1; temperature approximately 

26°C/18°C day/night; relative humidity of 60%/70% day/night) for two to three days 

before observation under the confocal microscope. 

 

2.6.3 Transient expression of protein fusion constructs in Arabidopsis  
 

A. thaliana seeds were surfaced sterilised, incubated at 4°C for two days to ensure 

stratification and then placed in control growth room under continuous light as described 

before. Seeds were incubated in six-well plates supplemented with 3 mL of 0.5x MS 

medium (pH 5.7) for three to four days to allow germination. The whole procedure was 

performed under the flow hood. Agrobacterium inoculations were prepared as described in 

general methods. Bacteria were pelleted by centrifugation at 4000g at 4°C for fifteen 

minutes and resuspended in 2 mL sterile transformation buffer (0.5x MS medium, 100 μM 

acetosyringone, 0.003% sylwet-77). This step was repeated twice and bacteria were finally 

resuspend in 1 mL of transformation buffer to measure the OD600. A final OD600 of 0.1-0.2 

was reached by diluting the bacteria in transformation buffer. The growth medium was 

removed from the six-well plates using 1 mL filter pipetting tip and replaced with 3 mL of 

Agrobacterium suspsension. The plates were resealed and transferred back to the control 

growth room for two to three days before confocal imaging. 

 

2.6.4 Confocal  laser scanning microscopy and analysis 
 
Confocal imaging was performed on a Carl Zeiss CLSM-510-META-UV confocal laser-

scanning microscope (Carl Zeiss, Inc., http://www.zeiss.co.uk). 20x lens and 40x 

immersion oil lenses were used. For visualizing GFP and YFP, an argon ion laser was 

used. Laser light of 514 nm was used to excite YFP. Reflected light was subsequently 
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reflected by a secondary NFT490 dichroic mirror and passed through a 530-600 nm 

bandpass filter to allow collection of fluorescence. For GFP visualization, excitation was at 

488 nm and light was reflected by a secondary NFT 545 dichroic mirror. GFP fluorescence 

was collected as the light passed through a 505 long pass filter. In both cases, emitted light 

passed through a 635VIS dichroic mirror to allow collection of chloroplast 

autofluorescence using a META detector of a bandwidth of 621-700 nm. 

 

For co-localisation experiments the settings were slightly altered to minimize potential 

problems caused by bleed through between the two fluorophores. Sequential acquisition of 

images in the yellow channel and then green channel was used. YFP fluorescence was 

collected using the same configuration as that for single expression of fusion proteins. 

However, for GFP fluorescence detection, excitation occurred at 458 nm and reflected 

light was collected using a 505-530 bandpass filter.  

 

Control experiments were performed to test for bleed through between the fluorophores.  

For this purpose, single expression of GFP-tagged proteins were analysed using different 

confocal microscope configurations. GFP was excited at 458 nm, 488 nm or 514 using a 

range of light transmission from 1% to 30% and collecting fluorescence using GFP and/or 

YFP settings. In addition, single expression of YFP-tagged proteins was carried out. 

Measurements of fluorescence intensity from images (512x512) suggested that false YFP 

fluorescence was apparent in single expression of GFP-tagged protein as transmission 

exceeds 20%. However, YFP fluorescence detected in the co-expression experiments was 

30.4-fold and 2.81-fold higher than the false YFP fluorescence detected when using 10% 

and 20% of transmission, respectively. Therefore, the transmission used to visualize GFP 

and YFP fluorescence in this thesis was from 3% to 10%.  

Colocalisation events were evaluated using Zeiss LSM 510 AIM (v3.2) for analyzing line 

scans and IMAGEJ 1.43u software - particularly the Mander’s/Pearson’s coefficient plugin 

created by Tony Collins (Wrigth Cell Imaging Facility, Toronto, Canada) and Wayne 

Rasband (NIH, USA) – for creating scatter plots based on Pearson’s coefficient 

(http://www.rsbweb.nih.gov/ij). 
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Chapter 3: Subcellular localisation of AtPQL2, AtPQL4 and 
AtPQL6. 

 
3.1 Introduction 
 

In this chapter, I will present data for the subcellular localisation of three proteins of the 

AtPQL family, AtPQL2, AtPQL4 and AtPQL6. Previous studies have provided evidence 

for the ER localisation of AtPQL4 and AtPQL6 homologous proteins. However, no 

subcellular localisation data are available for AtPQL2. The first part presents the 

subcellular localisation of the three proteins, and the second part presents supporting data 

showing co-localisation with an organelle marker.  

 

To identify the subcellular localisation of the proteins Agrobacterium-mediated 

transformation was used. AtPQL proteins fused to green fluorescent protein (GFP) at the 

C-terminus were transiently expressed in leaf epidermal cells of N. tabacum. Expression 

was under the control of the strong constitutive 35S promoter (P35S) of cauliflower mosaic 

virus (CaMV). Figure 3.1 displays a schematic representation of the expression cassette of 

the plasmids used to express the AtPQL proteins. Analysis of the localisation was carried 

out using confocal laser microscopy, 72 hours after transformation, when protein 

expression was expected to be at its maximum.  

 

 
Figure 3.1: Expression cassette of palsmid containing the AtPQL2, AtPQL4 and AtPQL6 gene. 

The diagram shows the pGWB5 vector. The Gateway attB recombination sites and plant selectable markers 
NPTII and HPTII, which confer resistance to hygromycin and kanamycin respectively, are indicated. The 
position of the coding region relative to the CaMV 35S promoter, sGFP tag and NOS terminator is also 
shown. (Figure is taken from PhD thesis by Pattison, 2008) 
 
 

3.2 Results 
 
3.2.1 Subcellular localisation of AtPQL2 
 

Confocal images of tobacco epidermal cells transformed with AtPQL2-GFP fusion protein 

are presented in Figure 3.2. Frames a-c are projections of image stacks. Frame d is a single 

plain image and shows the bright field image for frames a-c. GFP fluorescence (shown in 
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green colour) is visible as a smooth line at the edge of the cell suggesting localisation of 

AtPQL2 to the tonoplast. However, without a membrane marker it is difficult to distinguish 

between plasma membrane and tonoplast. One point, where separation of the plasma 

membrane from tonoplast appears to take place, is indicated by the arrow in frame b. The 

green spherical structures observed in frame b were chloroplasts, as indicated in frame c 

showing chloroplast autofluorescence. Autofluorescence mainly depends on the laser 

intensity used to visualise the fluorophore. In this particular case, high-intensity light was 

used to visualise AtPQL2-GFP resulting in chloroplast fluorescence contributing to the 

GFP signal. AtPQL2-GFP fluorescence was detected only in a small number of cells, 

although a number of various time points (36h, 48h, 72h, 84h) after infiltration were 

analysed and infiltration of tobacco leaves with Agrobacterium at various densities (OD600 

nm) was tested.  
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Figure 3. 2.: AtPQL2 localises to the tonoplast. 

Tobacco leaf epidermal cells expressing AtPQL2-GFP fusion protein. Cells were transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-c are z-stacks of 9 optical sections of 3.50 μm each and show composite fluorescence (a), GFP 
fluorescence (b) and chloroplast autofluorescence (c). Frame d is the single plane, bright-field image for a-c. 
GFP fluorescence labels the tonoplast (arrow).  
Scale bar = 10μm 
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3.2.2 Sub-cellular localisation of AtPQL4 and AtPQL6. 
 

Confocal images of tobacco epidermal cells expressing AtPQL4-GFP and AtPQL6-GFP 

fusion proteins are shown in Figures 3.3 and 3.4, respectively. In both figures, frames a-c 

are single plane images. Frames d-f represents projections of image stacks. The GFP 

fluorescence signal is shown in green colour in frame e, and frame g is the single plain 

bright-field image for frames d-f. In contrast to AtPQL2-GFP, the fluorescence signal of 

AtPQL4-GFP and AtPQL6-GFP was detectable in approximately 50% of the transformed 

cells. GFP fluorescence was clearly visible in internal compartments forming net-like 

patterns within the cell (Figure 3.3c and 3.4c). GFP fluorescence also labeled the nuclear 

envelope that is continuous with the lattice-like network (see arrow in figures 3.3e and 

3.4c). Additionally, fluorescence signal was distributed in long fast-moving strands, 

described as cytoplasmic ER (see arrow in Figures 3.3b and 3.4e).  Fluorescence patterns 

were indicative of typical ER (Fluckiger et al., 2003, Sparkes et al., 2009) and provide 

evidence for ER localisation of the AtPQL4 and AtPQL6 proteins.  

 

To exclude the possibility of mislocalisation due to overexpression under the control of the 

strong constitutive P35S promoter, the coding sequences of AtPQL4 and AtPQL6 were also 

expressed as C-terminal fusions to YFP under the control of the ubiquitin-10 (PUBQ10) 

promoter that facilitates moderate expression of the transgene (Grefen et al., 2010). YFP 

fluorescence was again detected in typical ER-like patterns (data not shown). In addition, 

photobleaching experiments showed that both proteins appeared to be highly mobile when 

imaged during a time series (data not shown). 
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Figure 3.3: AtPQL4 localises to the ER. 

Tobacco leaf epidermal cells expressing AtPQL4-GFP fusion protein. Cells were transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-c are single plane images from different cells. Frames e-f are z-stacks of 8 optical sections of 3.50 
μm and show composite fluorescence (d), GFP fluorescence (e) and chloroplast autofluorescence (f). Frame 
g is the single plane, bright-field image for d-f. GFP fluorescence labels the cortical ER (tubules and 
cisternae), cytoplasmic ER and nuclear envelope (arrows).  
Scale bar = 10μm 
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Figure 3.4: AtPQL6 localises to the ER. 

Tobacco leaf epidermal cells expressing AtPQL6-GFP fusion protein. Cells were transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-c are single plane images from different cells. Frames e-f are z-stacks of 12 optical sections of 3.50 
μm and show composite fluorescence (d), GFP fluorescence (e) and chloroplast autofluorescence (f). Frame 
g is the single plane, bright-field image for d-f. GFP fluorescence labels the cortical ER (tubules and 
cisternae), cytoplasmic ER and nuclear envelope (arrows).  
Scale bar = 10μm 
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3.2.3 Co-localisation of AtPQL4 and AtPQL6 with ER marker 
 

To confirm the ER localisation patterns of AtPQL4 and AtPQL6, the fusion proteins were 

co-expressed with an ER lumenal marker protein. A construct in which the ER retention 

signal HDEL was fused to the C-terminus of the yellow fluorescent protein (YFP) was 

already available in the laboratory. Expression of fusion protein was driven by the strong 

constitutive P35S promoter. Confocal images of tobacco cells expressing the YFP-HDEL 

fusion protein are shown in Figure 3.5. Frames a-c are projections of image stacks. Frame 

d is the single plain bright-field image for frames a-c. YFP fluorescence labelled the 

typical ER as has been reported in previous studies (Brandizzi et al., 2003; Sparkes et al., 

2009). 

 

For co-localisation experiments tobacco leaves were infiltrated with Agrobacterium 

containing the appropriate constructs at a ratio of 0.2 (OD600 nm) (see chapter 2, Molecular 

cloning procedures section). Figure 3.6 and 3.7 present co-localisation data for AtPQL4-

GFP and AtPQL6-GFP with YFP-HDEL, respectively. Frames a-e are projections of image 

stacks. Frame f is the single plain bright-field image for frames a-e. Both GFP and YFP 

fluorescence signals produced network-like patterns (Figures 6(b,c) and 7(b,c)). Figures 

3.6d and 3.7d show merged images that clearly show co-localisation of the two 

fluorescence signals and confirmed the ER localisation of the two AtPQL proteins. 

Quantification of the co-localisation events are shown in Figures 3.6g and 3.7g and was 

achieved by using fluorescence intensity analysis and Pearson’s correlation analysis. 

Fluorescence intensity analysis was performed along a line scan (red arrows, Figure 3.6g 

and 3.7g). Fluorescence intensities were measured in arbitrary units and plotted against the 

distance from the origin of the line scan. The coefficient produced by the Pearson’s 

correlation analysis provided evidence for the degree of the co-localisation between the 

two fluorophores. The value can range from -1 to 1, with 1 indicating complete positive 

correlation, 0 no correlation and -1 negative correlation (Bolte and Cordelières, 2006). 

AtPQL4-GFP and YFP-HDEL co-expression resulted in complete colocalisation (Figure 

3.6g). The GFP and YFP fluorescence signals displayed the same intensity patterns and 

completely overlapped along the line scan. Pearson’s correlation analysis also suggested a 

high degree of co-localisation, with Pearson’s coefficient of 0.948. Similarly, co-

expression of AtPQL6-GFP and YFP-HDEL resulted in high co-localisation (Figure 3.7g). 

Although GFP and YFP fluorescence intensities did differ at some points along the line 

scan, the two fluorescence signals generally overlapped. A high degree of co-localisation 

was also evident from the GFP/YFP scatter plot, with a Pearson’s coefficient of 0.920.  
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Figure 3.5: HDEL labels the ER. 

Tobacco leaf epidermal cells expressing YFP-HDEL fusion protein. Cells were transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-c are z-stacks of 25 optical sections of 1.15 μm and show composite fluorescence (a), YFP 
fluorescence (b) and chloroplast autofluorescence (c). Frame d is the single plane, bright-field image for a-c. 
YFP fluorescence is distributed across tubular ER, cisternal ER and nuclear envelope. 
Scale bar = 10μm 
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Figure 3.6: Co-localization of AtPQL4 with ER marker. 

Tobacco leaf epidermal cells co-expressing AtPQL4-GFP and YFP-HDEL. Cells were transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-e are z-stacks of 19 optical sections of 1.15 μm. Frames show (a) composite fluorescence, (b) GFP 
fluorescence, (c) YFP fluorescence, (d) GFP and YFP overlay (yellow color) and (e) chloroplast 
autofluorescence. Frame f is the single plane, bright-field image for a-e. In frame g fluorescence intensities of 
GFP (green line) and YFP (red line) are plotted against position on a line scan (red arrow). Fluorescence 
intensity is shown in arbitrary units. GFP/YFP scatter plot for frame d indicating strong positive correlation 
between two signals (P = 0.948). GFP and YFP co-localise to cortical ER and nuclear envelope. 
Scale bar = 10μm 
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Figure 3.7: Co-localization of AtPQL6 with ER marker. 

Tobacco leaf epidermal cells co-expressing AtPQL6-GFP and YFP-HDEL. Cells were transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-e are z-stacks of 20 optical sections of 1.15 μm. Frames show (a) composite fluorescence, (b) GFP 
fluorescence, (c) YFP fluorescence, (d) GFP and YFP overlay (yellow color) and (e) chloroplast 
autofluorescence.  Frame f is the single plane, bright-field image for a-e. In frame g fluorescence intensities 
of GFP (green line) and YFP (red line) are plotted against position on a line scan (red arrow). Fluorescence 
intensity is shown in arbitrary units. GFP/YFP scatter plot for frame d indicating strong positive correlation 
between two signals (P = 0.920). GFP and YFP co-localise to cortical ER, cytoplasmic ER and nuclear 
envelope. 
Scale bar = 10μm 
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3.3 Discussion 
 
3.3.1 Subcellular localisation of AtPQL2 protein 
 

The subcellular localisation data for AtPQL2-GFP provide the first in vivo evidence for 

tonoplast localisation. The results are consistent with the previously detected tonoplast 

localisation of AtPQL1, which is a close homologue of the AtPQL2 (Pattison, 2008). To 

confirm the tonoplast localisation, co-localisation experiments using tonoplast marker 

proteins, such as TIP3;1 and TIP2, were carried out. Although the statistical analysis of 

colocalisation of AtPQL2-GFP with TIP2-YFP suggested a high degree of colocalisation, 

this result was only obtained once as the detection of AtPQL2-GFP fusion protein was very 

rare. The absence of fluorescence signal might be the result of the strong constitutive P35S 

promoter. Overexpression of fusion proteins in combination with the Agrobacterium-

mediated transformation might trigger post-transcriptional gene silencing (Johansen and 

Carrington, 2001; Mishiba et al., 2005). For this reason, experiments using gene silencing 

suppressors might facilitate the expression of AtPQL2-GFP fusion protein. In addition, 

expression of fluorescent-tagged AtPQL2 protein under the control of a weak or even 

better its native promoter could be more effective and might allow co-localisation data 

with fluorescent-tagged marker proteins. An equivocal tonoplast localisation of AtPQL1 

and AtPQL2 argues against previously reported plasma membrane localisation of STM1, a 

GPCR protein from S. pombe, which is the closest homologue of these two proteins (see 

chapter 1). In line with its speculated function as a GPCR, STM1 was proposed to be 

localised in the plasma membrane with its N-terminus facing the extracellular space, where 

it can bind external ligands (Chung et al., 2001). It will therefore be worthwhile to co-

express AtPQL2 with a plasma marker protein to exclude the possibility of plasma 

membrane localisation. 

 

3.3.2 Subcellular localisation of AtPQL4 and AtPQL6 proteins 
 

Confocal microscopical analysis of AtPQL4-GFP and AtPQL6-GFP proteins showed in 

typical ER pattern. The term “typical ER” refers to nuclear envelope and cortical ER. The 

latter describes the interconnected membrane system formed by two distinct domains of 

ER: the cisternae and the tubules. Tubules can extend and fuse by three-way junctions 

forming polygonal networks. Loss of the high angle curvature of the polygon results in the 

formation of flattened membrane sheets, known as cisternae (Sparkes et al., 2009). The 

cortical ER is subject to dynamic modifications depending on the physiological conditions. 



 54
For instance, overexpression of GFP-tagged calnexin resulted in enlargment of cisternae 

(Runions et al., 2006).  In addition, pathogen attacks induced cisternalisation. Takemoto et 

al. (2003) showed that upon inoculation of A. thaliana cotyledons with oomycete 

pathogens, more cisternae were formed. This shift to the cisternal form of the ER might be 

the consequence of increased production of proteins and lipids required for a defence 

response. Similar ER modifications have been observed under a range of stresses, such as 

temperature, radiation and water stress (Quader and Zachariadis, 2006). Moreover, the 

cortical ER network is in close proximity to the plasma membrane and is also continuous 

with the outer nuclear envelope. It was suggested that the outer nuclear envelope functions 

as a distinct ER domain that regulates the exchange of proteins between the nucleus and 

ER (Quader and Zachariadis, 2006). The outer nuclear envelope also controls the flow of 

membrane lipids required for the quick and proper reassembly of the nuclear envelope 

during the last stages of cell division (Staehelin, 1997; Quader and Zachariadis, 2006). The 

AtPQL6-GFP fluorescence signal also stained another distinct domain of the ER, the 

cytoplasmic ER. The cytoplasmic ER describes the long fast-moving strands that extend 

the ER membrane to distant cellular locations such as the vacuole (Sparkes et al., 2009). 

The ER localisation of AtPQL4 and AtPQL6 supports the notion that they might have a 

similar function as their closest characterised homolog MPDU1. The human MPDU1 is 

considered to be a chaperone required for utilisation of Man/Glc-P-Dol as sugar donors in 

glycosylation (Anand et al., 2001). Although experimental data confirming ER-localisation 

of MPDU1 have not been published, ER localisation is assumed, as Man/Glc-P-Dol is 

synthesised and utilised in the ER. ER localised fluorescence of both GFP-tagged AtPQL 

proteins was additionally confirmed by co-localisation with YFP-HDEL fusion protein. 

The tetrapeptide Lys-Asp-Glu-Leu (KDEL) in mammals and His-Asp-Glu-Leu (HDEL) in 

the yeast S. cerevisiae have been shown to facilitate retention of proteins in the ER 

(Pelham, 1990). Reticuloplasmins, which are soluble proteins that function and reside in 

the luminal ER, carry the tetrapeptide H/KDEL at the C-terminus (Pagny et al., 1999, 

Frigerio et al., 2001). Reticuloplasmins escaping from ER are retrieved back to it by the 

action of a receptor that recognises the H/KDEL signal. In mammals, the receptor is 

distributed along the intermediate compartment between ER and Golgi apparatus and the 

early Golgi stacks (Griffith et al., 1994). The retrieval of reticuloplasmins from post-ER 

compartments has been suggested, as proteins residing in the ER were found to have 

undergone N-glycan modifications that occur in such compartments. For instance, addition 

of the KDEL signal to the lysosomal glycoprotein, cathepsin D, caused the protein to 

localise to the ER, but it also carried the N-acetylglucosamine-1-phosphate glycan that is 
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formed in the cis-Golgi compartment (Pelham, 1990). However, the distance over which 

ER retrieval occurs and the role of the HDEL/KDEL receptor in plants is under debate 

(Pagny et al., 2000; Frigerio et al., 2001). The results from the co-localisation experiments 

with YFP-HDEL provided evidence for the ER localisation of AtPQL4 and AtPQL6 

proteins. However, the observed degree of co-localisation was surprising. The AtPQLs are 

membrane proteins and would be expected to integrate into the ER membrane, whereas 

YFP-HDEL is a soluble protein residing in the ER lumen. Furthermore, while localisation 

of AtPQL4-GFP and AtPQL6-GFP to typical ER is plausible, YFP-HDEL was expected to 

be constricted to discrete parts of the ER network.  

 

It would be useful to perform co-expression of the AtPQL4 and AtPQL6 proteins with a 

marker protein that resides in the ER membrane. Such a marker could be the ER 

membrane-bound protein calnexin, a lectin-like protein promoting the correct folding of 

glycoproteins (Helenius, 1994). Moreover, beside the nuclear envelope that serves as a 

distinct ER domain (as explained above), there are several other functional domains within 

the ER network (Sparkes et al., 2009). For instance, ER exit sites (ERES) are defined as 

sites where anterograde protein transport from ER to Golgi takes place. Several proteins 

are involved in this process, such as the Sar1p guanosine triphosphatase (GTPase), Sec12 

and the coat protein (COP)II components Sec24/Sec23 and Sec13/Sec31 (Hawes et al., 

2008). Such proteins can be used as markers for ERES. Co-expression of AtPQL4 and 

AtPQL6 proteins with proteins that reside and function in discrete subdomains of the ER 

may provide further insights into the specific localisation and function of the two AtPQL 

proteins. Finally, it would be reasonable to investigate the localisation of the AtPQL 

proteins in A. thaliana to exclude any possibility of mislocalisation due to heterologous 

expression. Unfortunately, infiltration of Arabidopsis seedlings with fluorescent-tagged 

AtPQL proteins was not successful. Despite using a range of Agrobacterium densities and 

observation by confocal laser scanning microscopy at different time points, the 

fluorescence signal to noise ratio in the seedlings was very low making subcellular 

localisation very difficult.  

 

In conclusion, the results presented in this chapter provide new information on the 

subcellular localisation of the three AtPQL proteins. They suggest localisation of AtPQL2 

to the tonoplast implying functional similarity with its homolog, AtPQL1. In addition, they 

confirm localisation of AtPQL4 and AtPQL6 to the ER, supporting an involvement of these 

proteins in glycosylation and/or other ER. 
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Chapter 4: Effect of overexpressing AtPQL4 and AtPQL6 on the 
intracellular targeting of other proteins. 

 
4.1 Introduction 
 

The previous chapter presented evidence for the subcellular localisation of AtPQL4 and 

AtPQL6 proteins to the ER obtained by the co-localisation of either AtPQL protein with an 

ER marker protein. However, these experiments did not exclude the possibility of residual 

localisation to other membranes. To assess other subcellular locations, the plasma 

membrane protein AtSYP121, the tonoplast proteins AtTIP2 (δ-TIP) and AtTIP3;1 (α-TIP) 

and the glycoproteins EFR and FLS2 were obtained as fusion proteins with GFP or YFP. 

Transient Agrobacterium-mediated transformation of tobacco through leaf infiltration was 

used. Epidermal cells were analysed by using confocal laser scanning microscopy, 72 

hours post transformation. 

 

4.2 Results 
 
4.2.1 Co-localisation with membrane marker proteins 
 

AtSYP121 is a member of the Soluble N-ethylmaleimide-Sensitive Fusion Protein 

Attachment Protein Receptor (SNARE) superfamily in Arabidopsis. AtSyp121 resides at 

the plasma membrane where it functions in positioning of the Shaker channel KAT1 and in 

non-host resistance against barley powdery mildew fungi (Bassham & Blatt, 2008). In the 

plasma membrane of root cells AtSyp121 forms a complex with KC1 and AKT1 (Honsbein 

et al., 2009). Confocal images of tobacco leaf epidermal cells transformed with SYP121-

YFP fusion protein are presented in Figure 4.1. Frames a-c are projections of image stacks. 

Frame d is the single plain, bright-field image for frames a-c. YFP fluorescence (shown in 

red colour, frame b) was visible at the periphery of the cell. Fluorescent-tagged SYP121 

protein was previously shown to localise to the plasma membrane in transient expression 

experiments (Uemura et al., 2004; Honsbein et al., 2009; Kato et al., 2010). High intensity 

laser light was required for detection of the YFP fluorescence signal, since expression 

under the control of PUBQ10 promoter was weak. Consequently, strong chloroplast 

autofluorescence is also seen (frame c).  
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Confocal images of tobacco epidermal cells co-expressing AtPQL4-GFP or AtPQL6-GFP 

with SYP121-YFP are shown in Figure 4.2 and 4.3, respectively. The frames a-e are 

projections of image stacks and frame f is the corresponding bright-field image. GFP 

fluorescence (shown in green colour) was localised at the ER, as expected (Figure 4.2b and 

4.3b). Surprisingly, when co-expressed with AtPQL4-GFP or AtPQL6-GFP, YFP 

fluorescence (shown in red colour), deriving from SYP121-YFP, also labelled the ER 

network and the nuclear envelope (Figure 4.2c and 4.3c). Frame d displays an overlay of 

the two fluorescence signals, and regions where the two signals co-localise appear in 

yellow colour.  

 

Fluorescence intensity analysis and Pearson’s correlation analysis confirmed the co-

localisation. In Figure 4.2, the GFP/YFP scatter plot indicates a good correlation of GFP 

and YFP fluorescence signals, with a Pearson’s coefficient of 0.702. In addition, Figure 

4.2g shows a high degree of co-localisation of the two fusion proteins at the nuclear 

envelope. Figure 4.2h also shows that the two fluorescence signals mostly overlapped. 

However, there were points along the line scan where they appear to be discrete. This 

might be due to the strong chloroplast autofluorescence signal that is shown in Figure 4.2c. 

Similar quantitative results were gained for the co-localisation experiments of AtPQL6-

GFP with SYP121-YFP (Figure 4.3g). As evident from the fluorescent intensity graph, the 

two fluorescence signals appeared to overlap along the greatest part of the line scan. 

Similarly, the GFP/YFP scatter plot showed a positive correlation of the two fluorescence 

signals, with a Pearson’s coefficient of 0.720.  

 

EFR-GFP and FLS2-GFP fusion proteins (provided by Zipfel, JIC) had previously been 

shown to localise to the plasma membrane when expressed in Arabidopsis roots. 

Unfortunately, it was not possible to express these proteins in tobacco. Despite several 

modifications of the protocol, very few cells expressed the fusion proteins and GFP 

fluorescence was very low.  
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Figure 4.1: SYP121-YFP labels the plasma membrane. 

Tobacco leaf epidermal cells expressing SYP121-YFP fusion protein. Cells were transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-c are z-stacks of 15 optical sections of 1.46 μm. Frames show (a) composite fluorescence, (b) YFP 
fluorescence and (c) chloroplast autofluorescence. Frame d is the single plane, bright-field image for a-c. 
GFP fluorescence labels the plasma membrane.  
Scale bar = 10μm 
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Figure 4.2: SYP121-YFP co-expressed with AtPQL4-GFP localises to the ER. 

Tobacco leaf epidermal cells co-expressing AtPQL4-GFP and SYP121-YFP. Cells transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-e are z-stacks of 20 optical sections of 1.46 μm. Frames show (a) composite fluorescence, (b) GFP 
fluorescence, (c) YFP fluorescence, (d) GFP and YFP overlay (yellow color) and (e) chloroplast 
autofluorescence. Frame f is the single plane, bright-field image for a-e. In frame g and h fluorescence 
intensities of GFP (green line) and YFP (red line) are plotted against position on a line scan (red arrows). 
Fluorescence intensity is shown in arbitrary units. GFP/YFP scatter plot for frame d indicating positive 
correlation between two signals (P = 0.702). GFP and YFP co-localise to cortical ER, cytoplasmic ER and 
nuclear envelope. 
Scale bar = 10μm 
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Figure 4.3: SYP121-YFP co-expressed with AtPQL6-GFP localises to the ER. 

Tobacco leaf epidermal cells co-expressing AtPQL6-GFP and SYP121-YFP. Cells transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-e are z-stacks of 26 optical sections of 1.46 μm. Frames show (a) composite fluorescence, (b) GFP 
fluorescence, (c) YFP fluorescence, (d) GFP and YFP overlay (yellow color) and (e) chloroplast 
autofluorescence. Frame f is the single plane, bright-field image for a-e. In frame g fluorescence intensities of 
GFP (green line) and YFP (red line) are plotted against position on a line scan (red arrow). Fluorescence 
intensity is shown in arbitrary units. GFP/YFP scatter plot for frame d indicating positive correlation between 
two signals (P = 0.720). GFP and YFP co-localises to cortical ER and nuclear envelope. 
Scale bar = 10μm 
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4.2.2 Co-localisation with tonoplast marker proteins 
 
Co-localisation of either AtPQL4 or AtPQL6 protein with SYP121 resulted in the ER 

retention of the latter. The question arises whether this phenomenon is specific for 

SYP121. Therefore, I performed colocalisation experiments expressing the two AtPQL 

proteins with the tonoplast marker proteins, TIP2 and TIP3;1. Tonoplast intrinsic proteins 

(TIPs) function as aquaporins to regulate the transport of water and other molecules across 

the tonoplast (Jauh et al., 1999; Gattolin et al., 2009). YFP fusion constructs for these 

vacuolar markers were already available in the lab. Figure 4.4 show tobacco leaf epidermal 

cells overexpressing TIP2-YFP. Frames a-c are projections of image stacks and frame d 

represents the brightfield for a-c. In agreement with previous studies (Hunter et al., 2007), 

YFP fluorescence (shown in red colour) was found at the tonoplast (frame b). The YFP 

fluorescence also appeared in small spherical structures (see arrow), known as bulbs, 

which are a typical feature of tonoplast labeling. Little is known about the function of these 

structures, but a role as reservoir of membranes to facilitate vacuole expansion and/or as 

distinct vacuolar subregion, where hydrolytic activities occur, has been proposed  (Saito et 

al., 2002; Hunter et al., 2007).  

 

Tobacco cells co-expressing TIP2-YFP with either AtPQL4-GFP or AtPQL6-GFP are 

presented in Figures 4.5 and 4.6, respectively. Frames a-e are projections of image stacks. 

Frame f is the brightfield image for frames a-e. As shown before, AtPQL4 and AtPQL6 

proteins are localised in ER. YFP fluorescence is also seen in a lattice-like network and the 

nuclear envelope suggesting ER localization for TIP2 when co-expressed with AtPQL4 and 

AtPQL6 (Figures 4.5c and 4.6c). Co-localisation (appearing in yellow color) of the fusion 

proteins is more obvious in the merged images (Figures 4.5d and 4.6d). Figure 4.5g shows 

the fluorescence intensity graph, in which the fluorescence signals derived from TIP2-YFP 

and PQL4-GFP follow the same pattern. The overall higher intensity of YFP fluorescence 

is due to the higher-intensity laser light required to excite TIP2-YFP. In addition, the 

GFP/YFP scatter plot indicates a positive correlation of AtPQL4-GFP and TIP2-YFP, with 

a Pearson’s coefficient of 0.755. The fluorescence intensity graph for the AtPQL6-GFP and 

TIP2-YFP co-localisation event was more complex, but considerable overlap along the line 

scan of the two fluorescence signals was detected (Figure 4.6g). Positive correlation of 

GFP and YFP fluorescence signals is also evident in the GFP/YFP scatter plot, with a 

Pearson’s coefficient of 0.850. 
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Colocalisation experiments of the two GFP-tagged AtPQL proteins were also performed 

with TIP3;1-YFP (data not shown) and similar results were obtained, as TIP2. Thus, co-

expression with PQL4 or PQL6 leads to ER retention of both tonoplast intrinsic proteins.  

 

 

 

Figure 4.4: TIP2-YFP labels tonoplast. 

Tobacco leaf epidermal cells expressing TIP2-YFP fusion protein. Cells were transformed by agroinfiltration 
and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-c are z-stacks of 30 optical sections of 1.46 μm and show (a) composite fluorescence, (b) YFP 
fluorescence and (c) chloroplast autofluorescence. Frame d is the single plane, brightfield image for a-c. YFP 
fluorescence labels the tonoplast.  
Scale bar = 10μm 
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Figure 4.5: TIP2-YFP co-expressed with AtPQL4-GFP localises to the ER. 

Tobacco leaf epidermal cells co-expressing AtPQL4-GFP and TIP2-YFP. Cells transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-e are z-stacks of 20 optical sections of 1.46 μm. Frames show (a) composite fluorescence, (b) GFP 
fluorescence, (c) YFP fluorescence, (d) GFP and YFP overlay (yellow color) and (e) chloroplast 
autofluorescence. Frame f is the single plane, brightfield image for a-e. In frame g fluorescence intensities of 
GFP (green line) and YFP (red line) are plotted against position on a line scan (red arrows). Fluorescence 
intensity is shown in arbitrary units. GFP/YFP scatter plot for frame d indicating positive correlation between 
two signals (P = 0.745). GFP and YFP colocalises to cortical ER, cytoplasmic ER and nuclear envelope. 
Scale bar = 10μm 
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Figure 4.6: TIP2-YFP co-expressed with AtPQL6-GFP localises to the ER. 

Tobacco leaf epidermal cells co-expressing AtPQL6-GFP and TIP2-YFP. Cells transformed by 
agroinfiltration and analyzed by confocal microscopy 72 hours post transformation.  
Frames a-e are z-stacks of 22 optical sections of 1.46 μm. Frames show (a) composite fluorescence, (b) GFP 
fluorescence, (c) YFP fluorescence, (d) GFP and YFP overlay (yellow color) and (e) chloroplast 
autofluorescence. Frame f is the single plane, brightfield image for a-e. In frame g fluorescence intensities of 
GFP (green line) and YFP (red line) are plotted against position on a line scan (red arrows). Fluorescence 
intensity is shown in arbitrary units. GFP/YFP scatter plot for frame d indicating positive correlation between 
two signals (P = 0.850). GFP and YFP colocalises to cortical ER, cytoplasmic ER and nuclear envelope. 
Scale bar = 10μm 
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4.3 Discussion 
 
4.3.1 Co-localisation of AtPQL4 and AtPQL6 proteins with SYP121 
 

SNARES are thought to have an important role in membrane trafficking facilitating the 

flow of proteins and other molecules across the endomembrane system. The SNARE 

SYP121 in Arabisopsis has been shown to be involved in K+ channel trafficking. Studies 

using the dominant negative cytosolic Sp2 fragment showed that traffic of KAT1 to the 

plasma membrane is facilitated by SYP121 (Sutter et al., 2006b). Additionally, SYP121 

promotes gating of other K+ channels, such as the K+ inward-rectifying channel AKT1.  

Honsbein et al. (2009) demonstrated that SYP121 directly and selectively interacts with 

KC1 to enable assembly of SYP121 with AKT1 forming a tripartite SNARE-K+ complex 

at the plasma membrane. Root hair protoplasts of Arabidopsis syp121, akt1 and kc1 

mutants showed a decrease in K+ inward current and net K+ uptake. These results imply a 

role of SYP121 in plant K+ nutrition. Moreover, SYP121 forms a tetrameric complex with 

VAMP722 and SNAP33 to promote secretion of antifungal compounds at the site of 

penetration of powdery mildew fungi (Kwon et al., 2003). Arabidopsis syp121 mutants 

have been shown to be more sensitive to the barley powdery mildew demonstrating a 

specific role of SYP121 in non-host resistance (Bassham and Blatt, 2008).  

 

Co-expression of SYP121 with AtPQL4 or AtPQL6 resulted in its retention in the ER. 

Several reports in the literature have demonstrated occasional localisation of SYP121 to 

intracellular compartments beside the plasma membrane. Kato et al. (2010) reported that in 

stable transformed Arabidopsis seedlings grown under dark conditions, the GFP-SYP121 

fusion protein localised to the vacuole. Also, studies using the GFP-tagged tobacco 

homolog of SYP121, NtSyr1-GFP, showed localisation of the fusion protein in ER and 

other small internal compartments (Di Sansebastaino et al., 2006). With time progressing, 

these observations changed, and in later stages of expression the fusion protein was 

detected exclusively in the plasma membrane.  However, the mislocalisation of SYP121-

GFP reported here was evident at all time points tested (36h, 48h, 72h and 84h post 

transformation). To exclude that mislocalisation of SYP121 was due to heterologous 

expression, the Arabidopsis lines 35S:AtPQL4-1 and 35S:AtPQL6-1, overexpressing 

AtPQL4 and AtPQL6 proteins, respectively, were transformed with PUBQ10-driven 

SYP121-YFP. Unfortunately, Arabidopsis infiltration posed many problems hindering 

detection of fluorescence (as discussed in chapter 3). To exclude the possibility that 
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overexpession of any ER resident proteins would result in the accumulation of SYP121 in 

the ER. SYP121-GFP was co-expressed with HDEL-YFP in tobacco leaf epidermal cells. 

As expected, localisation of SYP121 and HDEL in the plasma membrane and in the ER 

network, respectively (data not shown) could be clearly distinguished. 

 

4.3.2 Co-localisation of AtPQL4 and AtPQL6 proteins with TIP2 and TIP3;1 
 

The AtPQL-mediated ER retention was not specific for SYP121. The same phenomenon 

was observed when AtPQL4-GFP and AtPQL6-GFP proteins were co-expressed with 

TIP2-YFP and TIP3;1-YFP fusion proteins. TIPs represent a distinct group of membrane 

intrinsic proteins (MIP) that are highly abundant in plant vacuoles, where they mediate the 

transport of water, proteins, gases and small uncharged molecules across the tonoplast 

(Gattolin et al., 2009). Studies have shown that different TIPs are associated with distinct 

types of vacuoles. For instance, TIP1 (γ-TIP) is related with lytic-type vacuoles, TIP3;1 

with protein storage vacuoles containing seed-type storage proteins and TIP2 with 

vacuoles that store proteins synthesized in response to environmental and developmental 

cues (Jauh et al., 1998, Hunter et al., 2007). However, when co-expressed in the same cell 

they generally co-localise in the central vacuole (Gattolin et al., 2009).  

 

Both TIP2 and TIP3;1 proteins showed fluorescence in typical net-like ER structures and 

nuclear envelope upon co-expression with the AtPQL proteins. Recently, Gattolin et al. 

(2010) demonstrated that TIP3;1 shows dual localisation to plasma membrane and 

tonoplast during seed maturation and germination. In addition to tonoplast and plasma 

membrane, ER-like structures were detected, but only during the first 24 hours suggesting 

that accumulation in the ER reflects the passage of the protein through this compartment. 

The authors speculated that the dual localisation of TIP3;1 might compensate for the low 

number of PIPs residing in the plasma membrane of seeds. As already pointed out, the ER 

retention of TIP proteins in cells overexpressing AtPQL4 or AtPQL6 was observed at 

various time points excluding the assumption that it was due to transient overload of ER. 

 

The observation reported in this chapter indicates that both AtPQL4 and AtPQL6 

determine the time of residence of plasma membrane and tonoplast proteins in the ER. 

Such a role is in accordance with the results from microarray experiments, which showed 

differential expression of typical ER-stress marker genes (e.g BiP) in AtPQL4 and AtPQL6 

mutants (Pattison, 2008). To confirm a function of AtPQL4 and AtPQL6 in ER retention, 
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localisation of SYP121 and TIP proteins should now be monitored and quantified in 

Arabidopsis lines overexpressing AtPQL4 and AtPQL6.  

 

4.3.3 Future experiments 
 

One question arising from the co-localisation data is whether the overexpression of the 

AtPQL4 and AtPQL6 proteins causes an alteration in morphology of the internal 

compartments hindering the transport of proteins to their final destination? For instance, 

the decision when a protein enters the secretory pathway or is transported to the vacuole is 

taken in the Golgi  (Hanton and Brandizzi, 2006). Any morphological abnormality of the 

Golgi might inhibit protein transfer resulting in a build up of proteins in the ER. Co-

expression of the two AtPQL proteins with a typical Golgi marker protein, such as ST-

YFP, should be carried out to address the effects of AtPQL4 and AtPQL6 overexpression 

on Golgi morphology and more specifically in the anterograde ER-to-Golgi traffic. In 

addition, one can imagine that overexpression of AtPQL4 and AtPQL6 may rescue mutants 

defective in the retrograde pathway, since ER retention will reduce the transport of 

proteins to the Golgi. For example, it would be worthwhile to overexpress both AtPQL 

proteins in yeast erd1Δ and erd2Δ mutants defective in ER retention of proteins and 

monitor survival (Hardwick et al., 1990; Semenza et al., 1990).  Chatre et al. (2005) 

reported that overexpression of the v-SNARE proteins, Sec22 and Memb11 in tobacco 

resulted in ER localisation of the Golgi marker proteins, ERD2 and ST and in ER retention 

of soluble cargo (sec-YFP) that was previously shown to be secreted to the apoplast. When 

co-expression of AtPQL4-GFP or AtPQL6-GFP with sec-YFP was attempted during this 

project, both fluorescence signals were detected in ER-like structures; however, sec-YFP 

alone was also found in the ER suggesting that the fusion construct contained an ER 

retention signal. Regeneration of the sec-YFP fusion protein without the ER retention 

signal is required before the experiments can be repeated. 

 

Previous microarray experiments showed an upregulation of defence-related genes in 

AtPQL4 and AtPQL6 mutants (Pattison, 2008). Furthermore, AtPQL4 and AtPQL6 showed 

increased transcript levels in virus-infected plants. Since the human homolog MPDU1 is 

involved in ER glycosylation processes, it would be interesting to test whether 

overexpressing AtPQL4 and AtPQL6 proteins affects the targeting of FLS2 and EFR 

proteins. FLS2 and EFR are glycosylated plasma membrane proteins that specifically 

recognise pathogen effectors and elicit plant innate immune responses (Zipfel et al., 2006). 

Bacterial flagellin, ef-Tu or their peptide surrogates fls22 and elf18 are recognised by 
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FLS2 and EFR, respectively. Both proteins require transit through the ER to mature before 

reaching their final destination at the plasma membrane. Mutations in components 

involved in protein maturation resulted in less accumulation of EFR protein during the 

plant innate immune response (Zipfel et al., 2006; Li et al., 2009; Nekrasov et al., 2009). 

For instance, carleticulin3 (crt3) mutants showed insensitivity to elf18, which inhibits 

seedling growth in wild type plants (Li et al., 2009). However, initial attempts during the 

course of this project to express EFR-GFP and FLS2-GFP fusion proteins in tobacco 

leaves did not yield any fluorescence signal, despite the infiltration at various ratios (OD600 

nm) of Agrobacterium and observation at several time points after infiltration.  

 

Analysis of EFR and FLS2 localisation in AtPQL4 and AtPQL6 Arabidopsis mutants, and 

growth assays of AtPQL4 and AtPQL6 mutants with fls22 and elf18 are currently 

underway. Since AtPQL4 and AtPQL6 have the same effect on ER retention of proteins 

when overexpressed, it will be of interest to see if AtPQL4 and AtPQL6 function by 

forming a complex. Use of bimolecular fluorescent complex formation (BiFC) technique 

will reveal any such interaction between the two AtPQL proteins. 

 

In summary, this chapter provided new information on the function of AtPQL4 and 

AtPQL6 proteins. Both AtPQL proteins caused retention of the plasma membrane protein 

SYP121 and the tonoplast proteins TIP2 and TIP3;1 in the ER. From these and previous 

results, one can speculate that the two AtPQL proteins might act as “chaperones” for 

proteins in the ER during glycosylation, folding and quality control.  
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Chapter 5: Phenotypic analysis of mutant lines for AtPQL4 and 
AtPQL6 genes. 
 

5.1 Introduction 
 
In this chapter I will describe further experiments to characterize the function of AtPQL4 

and AtPQL6 proteins. To assess the function of the two AtPQL proteins in planta, a variety 

of A. thaliana mutant lines and one overexpressor line were used. The homozygous 

knockout lines had been isolated from T-DNA insertion lines obtained from the SALK 

institute (Pattison, 2008). Two knockout mutant lines were used for AtPQL4. The first, 

pql4-1, has an insertion in the second exon, 224 bp 5’ of the stop codon, whereas the 

second, pql4-2, has an insertion in the first exon, 109 bp 3’ of the start codon. Neither of 

the mutant lines produces any mRNA for AtPQL4 (Pattison, 2008). One knockdown 

mutant line was used for AtPQL6, pql6-1, having an insertion in the fifth intron. A small 

amount of AtPQL6 mRNA is still produced by this line (Pattison, 2008). The schematic 

diagram in Figure 1 represents the insertion site for each A. thaliana line. A double mutant 

line, pql4-2/6-1, and an overexpressor line for AtPQL6, 35S::AtPQL6-1, were also used.  

 

Previous studies have found no obvious phenotype for the single knockout lines or the 

overexpressor line under a variety of stresses such as salt, heat and drought (Pattison, 

2008). However, this might have been the result of functional redundancy between 

AtPQL4 and AtPQL6. Thus, I was interested in investigating the response of the double 

mutant in some of these stresses. Also, a number of additional experiments were carried 

out to search for physiological phenotypes. The rationale behind each experiment is 

described below. 

 

5.1.1 Sensitivity to macronutrient depletion and salt stress 
 

Depletion of macronutrients causes disturbance of ion homeostasis and depletion of 

essential metabolites, thus impacting on plant growth and development. Macronutrients 

such as nitrogen (N), phosphorus (P), sulphur (S) and magnesium (Mg) are essential for 

build-up of dry matter and energy, while potassium (K) and calcium (Ca) secure ion 

homeostasis by regulating ion transport and maintenance of water status (Amtmann and 

Blatt, 2008). Salinity causes ionic and osmotic stress with a detrimental effect on the 

fitness of the plant (Parida and Das, 2005). Because overexrepression of AtPQL4 and 
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AtPQL6 in tobacco leaves impacts on the targeting of plasma membrane proteins and 

tonoplast proteins (see chapter 4), one can speculate that the mutants are defective in ion 

and water transport and therefore show altered salt tolerance and/or sensitivity to 

macronutrient starvation.  

 

5.1.2 Sensitivity to sugar starvation 
 

Plant growth strongly depends on photosynthetic carbon fixation, and can be further 

enhanced by external sugar supply. Sugars are the principle substrates for energy 

generation via respiration and for biosynthesis of macromolecules such as proteins, lipids, 

DNA and RNA. Upon carbon starvation, cell viability is maintained by differential 

regulation of genes involved in transport facilitation, transcription, defence, metabolism 

and protein synthesis (Contento et al., 2004). Carbon starvation induces degradative 

pathways, such as autophagy to maintain cellular activities and compensate for the lack of 

carbohydrates (Rolland et al., 2006). Given the many implications of sucrose in plant 

fitness and its link to autophagy, it was of interest to investigate the growth of mutant lines 

in a range of sucrose concentrations. 

 

 

 
Figure 5.1: T-DNA insertion sites of SALK mutant lines used. 

The diagram shows the AtPQL4 and AtPQL6 genes and the T-DNA insertions sites for pql4-1, pql4-2 and 
pql6-1 mutant lines (Figure taken from Pattison, 2008). 
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5.2 Results 
 
5.2.1 Sensitivity to macronutrient starvation 
 
To investigate differences in sensitivity to nutrient deficiency between the mutants and 

wild type, four seeds of each line were sown directly on agar plates supplemented with 1/3, 

1/10, 1/30, 1/100 or 1/300 MS. Figure 5.2 shows representative images of these plants 9 

days after germination. Dilution of the growth media clearly inhibited growth but no 

noticeable differences were seen between wild type and mutants.  

 

Figure 5.3 shows the quantitative data for shoot and root fresh weight of the six genotypes 

used. The fresh weight was measured 14 days after germination. The shoot and root fresh 

weight of all lines decreased as the nutrient concentration decreased (Figure 5.3A and B). 

The shoot and root fresh weight of the double knockout mutant and overexpressor line was 

generally lower than of the wild type and the single knockout mutant lines, but this 

difference was not statistically significant. In higher concentrations, more variation 

between mutants and wild type was observed. Figures 5.3C and D presents the response to 

nutrient depletion within each line relative to the sufficient medium (1/3 MS). There is no 

obvious change in sensitivity among all the genotypes. To analyze further the sensitivity of 

the mutants in each condition, data were plotted relative to the wild type profile in each 

condition (Figures 5.3 E and F). Again, no significant difference was detected. The total 

root size (i.e. length of both main root and lateral roots) was measured 9 days after 

germination using EasyRhizo software (Armengaud et al., 2009). In all six genotypes the 

total root size decreased as the nutrient concentration decreased (data not shown). The 

mutant lines and overexpressor line did not show any significant difference in the 

sensitivity of root growth to nutrient deficiency compared to the wild type plants.   
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Figure 5.2: Effects of macronutrient starvation on A. thaliana (Col0) wild type, AtPQL4 and AtPQL6 
mutants and AtPQL6 overexpressor line. 

Four seedlings each, of wild type or indicated AtPQL line, grown on agar plates (120 x 120) containing 
media of various MS strength. Plants were grown under continuous light with intensity of approximately 120 
μmol m-2 sec-1. Photographs were taken 9 days after germination.  
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Figure 5.3: Quantification of sensitivity of A. thaliana (Col0) wild type, AtPQL4 and AtPQL6 mutants 
and AtPQL6 overexpressor line to nutrient depletion. 

Shoots and roots were harvested and weighed 14 days after germination. A), B) Bars represent the average 
fresh weight of shoots and roots, respectively, of each line in each condition. Error bars represent ± standard 
error (n=12 plants). C), D) Bars represent the average relative fresh weight of shoots and roots, respectively, 
of each line compared to sufficient medium in each condition. E), F) Bars represent the average relative fresh 
weight of shoots and roots, respectively, of each line compared to wild type within each condition. Error bars 
represent ± standard error (n=3 replicates of 4 plants). 
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5.2.2 Sensitivity to salt and osmotic stress 
 
To investigate the sensitivity to salt tolerance, six seeds of each mutant or wild type were 

sown on plates containing control medium and control medium supplemented with either 

50 mM KCl or 50 mM NaCl. Figure 5.4 shows examples of scanned images taken from 

these plants, 9 days after germination. Inhibition of growth was observed on media 

supplemented with 50 mM KCl and 50 mM NaCl, with the latter exhibiting a stronger 

effect on growth. No obvious changes were seen between wild type and mutants. 

 

The fresh weight of shoot and roots was measured 14 days after germination. Figure 5.4A 

and B show the average fresh weight of shoots and roots in each condition, respectively. 

The pql4-1 knockout mutant did not show sensitivity on growth to salt and osmotic stress, 

while the growth of pql4-2 knockout mutant was not strongly affected on 50mM KCl 

supplemented media. No significant difference was detected between the mutants and wild 

type. The growth response of the six lines compared to the control medium is shown in 

Figures 5.4C and D. The two AtPQL4 knockout mutants were less sensitive to osmotic 

stress and the pql4-1 was also less sensitive to salt stress. The response to salt and osmotic 

stress of each line within each condition relative to the wild type profile is presented in 

Figures 5.4E and F. No significant differences in the sensitivity to salt and osmotic stress 

were seen between the knockout and overexpressor lines comparing to wild type. Table 5.1 

presents the percentage of water content of shoots and roots of each line within each 

condition. No differences in water content were observed between the mutant and wild 

type plants. 
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Figure 5.4: Quantification of sensitivity of A. thaliana (Col0) wild type, AtPQL4 and AtPQL6 mutants 
and AtPQL6 overexpressor line to salt and osmotic stress. 

Shoots and roots were harvested and weighed 14 days after germination. A), B) Bars represent the average 
fresh weight of shoots and roots, respectively, of each line in each condition. Error bars represent ± standard 
error (n=12). C), D) Bars represent the average relative fresh weight of shoots and roots, respectively, of 
each line compared to control medium in each condition. E), F) Bars represent the average relative fresh 
weight of shoots and roots, respectively, of each line compared to wild type within each condition. Error bars 
represent ± standard error (n=2 replicates of 6 plants). 
 
 
Table 5.1: Percentage of water content of shoots and roots of the wild type and Arabidopsis lines.  
 
 Percentage of Water Content (%) 
 Shoots  Roots 

 Wt pql 
4-1 

pql 
4-2 

pql 
6-1 

pql 
4-2/6-1 

35S:: 
AtPQL 

6-1 

Wt pql 
4-1 

pql 
4-2 

pql 
6-1 

pql 
4-2/6-1 

35S:: 
AtPQL 

6-1 
Control 
Medium 

98.9 95 97.3 96.6 97.7 93 93.9 96.7 95.4 95.7 98.1 98.2 

+50 mM 
KCl 

98.5 99.8 98.3 99.6 99.4 96.6 91.4 82.3 83 89.1 871.1 84.4 

+50 mM 
NaCl 

97.7 96.6 96.9 98.5 97.8 92.9 n/a n/a n/a n/a n/a n/a 
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5.2.3 Sensitivity to sucrose starvation 
 
The sensitivity of growth of the six lines to sucrose was determined by growing three 

seedlings on 0.5 MS media supplemented with 0 %, 0.5 %, 1 %, 3 % and 4 % of sucrose. 

Figure 5.5 shows example images of the six different genotypes taken 9 days after 

germination. No noticeable differences were detected between different concentrations of 

sucrose, and the mutant and wild type plants.  

 

Figure 5.6 presents quantitative data for shoot and root fresh weight of the mutants and 

wild type.  The fresh weight of shoots and roots was measured 14 days after germination. 

Inhibition of growth on medium without sucrose was detected for all mutants, except pql4-

1 (Figure 5.6A and B). In the other conditions, no significant change in growth was 

observed. Plants grown on media supplemented with 1%  sucrose confirmed the growth 

pattern of the lines measured on sufficient medium in macronutrient starvation experiment, 

which contained 1% sucrose. The response to sucrose starvation in each line was therefore 

analysed relative to the 1% sucrose medium and is presented in Figure 5.6C and 5.6D. 

Again all the mutants, except pql-4-1, showed a higher sensitivity to low sucrose 

condition. Because differences vary among the six lines, sensitivity to sucrose starvation 

was investigated for each line relative to wild type within each condition (Figure 5.6E and 

5.6F). The knockout and overexpressor lines showed stronger dependence on sucrose than 

wild type. 
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Figure 5.5: Effects of sucrose starvation on A. thaliana (Col0) wild type, AtPQL4 and AtPQL6 mutants 
and AtPQL6 overexpressor line. 

Three seedlings each, of wild type or indicated AtPQL line, grown on agar plates (120 mm X 120 mm) 
containing 0.5 MS medium supplemented with different concentrations of sucrose (0 %, 0.5 %, 1 %, 3 % and 
4 %). Plants were grown under continuous light with an intensity of approximately 120 μmol m-2 sec-1. 
Photographs were taken 9 days after germination. 
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Figure 5.6: Quantification of sensitivity of A. thaliana (Col0) wild type, AtPQL4 and AtPQL6 mutants 
and AtPQL6 overexpressor line to sucrose starvation. 

Shoots and roots were harvested and weighed 14 days after germination. A), B) Bars represent the average 
fresh weight of shoots and roots, respectively, of each line in each condition. C), D) Bars represent the 
average relative fresh weight of shoots and roots, respectively, of each line compared to control medium in 
each condition. E), F) Bars represent the average relative fresh weight of shoots and roots, respectively, of 
each line compared to wild type within each condition. Error bars represent ± standard error (n=3 replicates 
of 3 plants). 
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5.3 Discussion 
 
In this study several mutant lines for AtPQL4 and AtPQL6 genes were used to facilitate 

functional characterization of the two proteins. If AtPQL4 and AtPQL6 are involved in 

Man/Glc-P-Dol dependent glycosylation, one could expect that mutations in these two 

genes will lead to gamete and embryo lethal phenotypes, as this type of glycosylation is 

essential for gametic transmission through pollen. As discussed in chapter 1, several 

mutants of genes with a role in Man/Glc-P-Dol synthesis showed embryo lethal 

phenotypes. Isolation of homozygous lines for AtPQL4 and AtPQL6 genes suggested that 

none of the mutations are gamete and embryo lethal. However, Pattison (2008) reported a 

small reduction in the gametic transmission of both pql4-1 and pql4-2, which was 

consistent with observations for mutants affected in Man/Glc-P-Dol glycosylation (see 

chapter 1). Given the overlap in sub-cellular localisation of AtPQL4 and AtPQL6, it is 

likely that the lack of phenotype is the result of functional redundancy between the two 

proteins. However, pql4-2/6-1 double mutants were also viable. In addition, pql6-1 is not a 

null mutation, as small amount of transcript is still produced that might explain the lack of 

a strong phenotype for both the pql6-1 and pql4-2/6-1 mutants. 

 

No obvious phenotype was observed at the whole plant level, when all mutants were tested 

in different condition with the exception of sucrose starvation.  All mutant lines, except 

pql4-1, showed a significant reduction in growth on media without sucrose, as determined 

by shoot and root fresh weight measurements. Sucrose depletion leads to arrest in growth 

as protein, lipid and amino acid synthesis are reduced. Sugar catabolism is substituted by 

protein and lipid catabolism allowing cellular homeostasis to be maintained. Two 

degradative pathways, the selective ubiquitin proteasome-depedent pathway and the non-

selective vacuolar autophagy, mediate protein breakdown (Yu, 1999; Roland et al., 2006).  

Rose et al. (2006) reported the up-regulation of autophagy genes (AtATG) when 4 day-old 

A. thaliana suspension-cultured cells were transferred to medium with no sucrose. Several 

studies have suggested an association between autophagy and ER function (Ishihara et al., 

2001; Reggiori et al., 2004). For instance, ER stress caused by addition of dithiothreitol 

(DTT) and tunicamycin facilitated the formation of pre-autophagosomal structure (PAS) in 

atg11Δ cells defective in assembly of PAS. As discussed in chapter 1, ER stress stimulates 

UPR to relieve the stress by inducing genes involved in protein folding and ERAD 

pathway. Additionally, it is suggested that autophagy functions as a backup to the ERAD 

pathway if the latter is saturated by degradative substrates (Yorimitsu et al., 2007). It is 

known that proteins involved in folding processes are also implicated in preparing 
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misfolded proteins for degradation (Liu and Howell, 2010).  Hence, one can speculate that 

the phenotype observed in sucrose-free medium might be the result of impaired flow of 

degradative proteins to autophagosomes inhibiting protein catabolism. This might be also 

consistent with the putative function of AtPQL4 and AtPQL6 proteins as folding helpers 

that was suggested by the co-localisation experiments (see chapter 4). Although several 

conditions reported to cause UPR were tested, it would be useful to investigate the effects 

of tunicamycin on the mutants as the former blocks the N-glycosylation process and 

triggers UPR (see chapter 1).   

 

In conclusion, phenotypic analysis of mutants did not yield a great insight into the function 

of AtPQL4 and AtPQL6 proteins. However, the arrested growth of the mutants compared 

to wild type on sucrose-free media could possibly implicate a function for the two proteins 

in autophagy-related processes, which should be further investigated in the future.  
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Chapter 6: General Discussion 
 

6.1 Introduction 

 
The main objective of this thesis was the functional characterisation of two novel proteins, 

AtPQL4 and AtPQL6 from AtPQL family from A. thaliana. This was achieved by 

following three different experimental approaches: 1) the subcellular localisation of the 

two AtPQL proteins and functional characterisation 2) at a molecular cellular level and 3) 

at whole-plant level. Discussion of each of these approaches is made in chapters 3, 4 and 5, 

respectively. This chapter presents the overall information gained on AtPQL4 and AtPQL6 

as well as suggests future experiments to answer questions that arose concerning the 

function of the two AtPQLs. Figure 6.1 represents the overall information on the AtPQL 

family, with a focus being on AtPQL4 and AtPQL6. The AtPQL1, AtPQL2 and AtPQL3 

showed high identity in amino acid sequence with the fission yeast plasma membrane 

protein STM1 (Pattison, 2008), which functions as a G-protein coupled receptor (Chung et 

al., 2001). Human MPDU1 is involved in Man-P-Dol dependent glycosylation processes, 

such as N-glycosylation (Anand et al., 2001; Kranz et al., 2001, Schenk et al., 2001) and 

shows high sequence identity with the AtPQL4 and AtPQL6 (Pattison, 2008). 

Overexpression of AtPQL4 and AtPQL6 proteins resulted in retention of membrane 

proteins in the ER. ERS1, a PQL protein from S. cerevisiae, was identified as a suppressor 

of the secretion of ER resident protein in erd1Δ mutants. Human CTNS is the closest 

homologue of AtPQL5 (Pattison, 2008) and is involved in H+-driven cystine transport from 

lysosomes to cytosol (Attard et al., 1999; Kalatzis et al., 2001). The hygromycin sensitive 

phenotype of ers1Δ yeast mutants was reversed by expression of CTNS (Gao et al., 2005).   

 

The novel function of AtPQL4 and AtPQL6 in retaining plasma membrane and tonoplast 

proteins in the ER, discovered in this project, suggests that the previously observed 

phenotypes of MPDU1, ERS1 and CTNS are in fact different sides of the same “coin”. For 

example, one could argue that the role of MPDU1 for N-glycosylation, the molecular basis 

of which has not yet been identified, is in fact linked to retaining proteins for a sufficient 

time in the ER membrane. This could concern either proteins to be glycosylated or the 

enzymes that act in different steps of N-glycosylation, or subsets of these in ER membrane 

associated functional complexes. A role of LEC35/MPDU1 as “chaperone” has indeed 

been proposed on the basis of the combined experimental data for this protein (Mark 

Lehrman, personal communication). 
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Figure 6.1: Information on the function of all the members of AtPQL family.  

The diagram shows all the members of AtPQL family and their closest homologues. The sub-cellular 
localisation of each PQL protein is indicated. The proposed function is indicated with red color. Question 
marks indicate lack of information on the function of AtPQL proteins.  
AtPQL1, 2 and 3 are localised to the tonoplast and show a high sequence identity with plasma membrane 
protein STM1, a putative G-protein coupled receptor.  AtPQL4 and AtPQL6 are localised in the ER and show 
high sequence identity with the human protein MPDU1 that is involved in N-glycosylation. Overexpression 
of AtPQL4 and AtPQL6 resulted to ER retention of plasma membrane and tonoplast proteins. The tonoplast-
localised protein ERS1 of S.cerevisiae was isolated as suppressor of erd1Δ yeast mutants defective in ER 
retention of proteins. Tonoplast CTNS protein is a proton-coupled cystine transporter and is the closest 
homologue of AtPQL5, which localises to the tonoplast. CTNS complemented the hygromycin sensitive 
phenotype of ers1Δ.  
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6.2 Is there a functional homology with LEC35/MPDU1? 
 

AtPQL4 and AtPQL6 are the closest homologues of the mammalian PQL protein 

LEC35/MPDU1. LEC35/MPDU1 is involved in all Man-P-Dol dependent glycosylation 

processes, such as N-glycosylation and GPI anchoring (Anand et al., 2001).  The ER 

localisation of the two AtPQL proteins is in agreement with a putative role in N-

glycosylation. The differential regulation of ER stress-related genes in AtPQL4 and 

AtPQL6 mutant and overexpressor lines additionally argues in favor of N-glycosylation 

(Pattison, 2008).  

 

A possible way to address the functional homology of AtPQL4 and AtPQL6 with 

LEC35/MPDU1 is to express the two AtPQL proteins in lec35 CHO cells and check for 

complementation. lec35 mutants showed less sensitivity to a combination of glycosylation 

inhibitors than the wild type cells (Lehramn and Zeng, 1989). HPLC analysis of lec35 

mutants showed an accumulation of Man5GlcNAc2-P-P-Dol instead of the mature LLO, 

Glc3Man9GlcNAc2-P-P-Dol (Lehramn and Zheng, 1989). Use of fluorophore-assisted 

carbohydrate electrophoresis (FACE) analysis will allow visualisation of LLOs from 

AtPQL4 and AtPQL6 mutants. FACE technique involves the cleavage of LLOs from 

dolichol with mild acid and the resolution of the removed LLOs on polyacrylamide gel 

according to size (Gao and Lehrman, 2002). If the two AtPQL proteins are functional 

homologous to LEC35/MPDU1, an accumulation of the intermediate oligosaccharide is 

expected. Mutants defective in LLO synthesis showed a hypersensitive phenotype upon 

treatment with tunicamycin, which inhibits the first step of lipid-linked oligosaccharide 

(LLO) synthesis (see 1.6 section, Zhang et al., 2008). Phenotypic analysis of AtPQL4 and 

AtPQL6 mutants and overexpressors treated with tunicamycin should be carried out to 

check for increased sensitivity.   

 

6.3 Do AtPQL4 and AtPQL6 have a “chaperone” role? 
 
As shown in chapter 4, overexpression of AtPQL4-GFP and AtPQL6 fusions resulted in 

retention of plasma membrane and tonoplast proteins in the ER.  These data indicate a 

potential role of AtPQL4 and AtPQL6 proteins in retaining proteins in the ER for sufficient 

time to allow ER quality control, including N-glycosylation, to take place. Several 

questions arose from these results and potential approaches to address such questions are 

discussed in chapter 4 (see 4.3.3 section). For instance, investigation of an altered 
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morphology of the ER resulting from overexpressing AtPQL4 and AtPQL6 should be 

undertaken, as it may cause disturbance of the ER exit sites (ERES) and prevent ER export 

of proteins. Complementation of yeast erd1Δ, erd2Δ and ers1Δ mutants defective in ER 

retention with AtPQL4 and AtPQL6 might also confirm a function as “chaperones”. 

Although, Pattison (2008) did not observe complementation of the ers1Δ mutant 

hygromycin sensitive phenotype by any member of the AtPQL family, it will be useful to 

repeat the same experiments, as he reported a lack of hygromycin phenotype of the ers1Δ 

mutants. Complementation of ers1Δ by AtPQL4 and/or AtPQL6 would argue in favor of an 

involvement in ER retention machinery, as ers1Δ was isolated in a screen for suppression 

of erd1Δ mutants defective in retention of ER lumenal proteins (Gao et al., 2005). If the 

chaperone function is valid, then a new mechanism of ER retention independent of the 

HDEL/KDEL signal might occur in plants. Such information could be valuable for the 

production of plant-made pharmaceuticals without having the plant-specific post-

translational modifications that are immunogenic to humans (Gomord et al., 2010).  

 

6.4 Are AtPQL4 and AtPQL6 essential for plant fitness? 
 
A further indication of a “chaperone” role of AtPQL4 and AtPQL6 proteins derived from 

the observed reduced growth of AtPQL4 and AtPQL6 mutants in low sucrose. Carbon 

starvation is known to trigger degradative pathways to ensure protein catabolism and 

therefore cellular homeostasis by inducing unfolded protein response (UPR) (Reggiori et 

al., 2004; Rose et al., 2006). It is known that folding factors are also implicated in UPR to 

ensure ER quality control (Ceriotti and Roberts, 2006). It will be thus interesting to try a 

variety of stresses, such as tunicamycin and DTT that induce UPR in AtPQL4 and AtPQL6 

mutants and check for hypersensitive phenotype. 

 

One could expect that mutations on proteins having a role in protein folding, N-

glycosylation and ER quality control processes will have a detrimental effect on plant 

fitness. The lack of embryo or gametic lethal phenotype might be the result of redundancy 

between AtPQL4 and AtPQL6. Epistatic complementation of the mutants might also 

explain the lack of a strong phenotype. Furthermore, AtPQL6 mutant is a knock-down 

rather than knock-out mutant and thus produces a small level of transcript.  Additionally, 

no information on the amount of protein produced from either AtPQL4 or AtPQL6 gene is 

available, at this stage.  For this reason, it could be worthwhile to use the moss 

Physcomitrella patens as another system to establish the function of PQL proteins because 
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it is an easy and feasible system for targeted ‘knockout’ of genes by homologous 

recombination. 
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Appendix A 
 
Table A-1: Primer sequences of AtPQL4 and AtPQL6. 
 
 

Gene AGI Primers 
Amplicon 

size (bp) 

Forward 

Primer 
CTAGGAATCGACTTGAGCTG 

AtPQL4 At5g59470 
Reverse 

Primer 
GAAGCTTAACGGTCATTGAA 

133 

Forward 

Primer 
GCATAAAGGTCTTCCCTTTT 

AtPQL6 At4g07390 
Reverse 

Primer 
GATTAATCTGTCCAGCAAGC 

173 

 
 
Table A-2: Other primer sequences. 
 

Gene Primers 
Amplicon 

size (bp) 

Forward Primer AGC GGT CAA AAT ATT GCT TA 

CaMV B-JI 
Reverse Primer 

AAC TTA CCG TAT GCT AGA TTA 

CCT 

141 

Forward Primer CGT GAT CGA TGA ATG CTA CC 
18S RNA 

Reverse Primer GGG GTT TGT TGC ACG TAT TA 
199 

 
 
 
Appendix B 
 
CD is provided with supplementary images for Chapter 4 
 
• Co-localisation of AtPQL4-GFP with SYP121-YFP 

• Co-localisation of AtPQL6-GFP with SYP121-YFP 

• Co-localisation of AtPQL4-GFP with SYP121-YFP 

• Co-localisation of AtPQL6-GFP with SYP121-YFP 
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