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Synopsis 

 

CD23 is a multi-functional protein which exists in membrane-bound and soluble forms.  Its 

functions include acting as the low affinity receptor for IgE and generating pro-inflammatory 

cytokine release in monocytes.   

 

CD23 has been found to interact with αvβ5 and this interaction greatly enhances growth of 

the B cell precursor cell line SMS-SB.  This interaction may have a role in the development 

of normal human B cells and in cancer as the integrin is expressed on both precursor and 

ALL cells but not on normal mature B cells.   

 

One of the aims of this investigation was to expand on the finding that CD23 peptides 

containing an RKC motif had the same positive growth effect on SMS-SB cells as CD23.  

Other B cell lines – representative of both precursor and mature stages – were studied to 

ascertain whether this proliferative effect was dependent upon cell differentiation stage 

and/or presence of the αvβ5 integrin.  It was found that peptides containing the basic RKC 

motif were mitogenic only for precursor B cells which were expressing αvβ5.  Details of 

these peptides and their varying effects on the different cell lines are in Chapter 4.      

  

Stimulation of SMS-SB cells, presumably via the αvβ5, results in signalling through PI3K 

and subsequent phosphorylation of Akt. The growth of SMS-SB cells observed following 

stimulation with peptides containing the RKC motif was abrogated by the PI3K inhibitor 

LY294002 and western blotting revealed that phosphorylation of Akt was enhanced by 

stimulation with RKS containing peptides.  

 

Among CD23’s receptors is the integrin αvβ3.  This integrin can form a signalling complex 

with CD47.  Ligation of CD47 by anti-CD47 antibodies induces apoptosis in some cell lines. 

To determine whether a pattern exists between response to this stimulation and expression of 

αvβ3 integrin, cell lines with and without the integrin were tested.  It was found that the 

myeloma cell lines KMS11 and H929 were responsive to this stimulus.  Since these cell lines 
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differ in their expression of αvβ3 (H929 cells express αvβ3 whereas KMS11 do not) it does 

not appear that any connection between the presence of the integrin and response via CD47 

exists and therefore this signalling mechanism would appear to occur independently of the 

complex formed by CD47 and αvβ3.   
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1.1 The immune system 

 

The vertebrate immune system is a highly evolved, complex, adaptive defence system that 

exists to protect the host from pathogenic invasion. It is composed of a vast number of cells 

and molecules that act collectively to ensure that “non-self” organisms are eliminated whilst 

the “self” is not attacked.  The immune response is categorised into two different types: 

innate and adaptive.  The innate immune response is mediated by invariant receptors and is 

non-specific.  This response is mainly mediated by cells of the myeloid lineage - the 

phagocytic cells, such as monocytes, neutrophils and macrophages in conjunction with the 

complement cascade of proteins.  The innate immune system can be likened to a first line of 

defence, which can hold off the invaders whilst a specific immune response is mounted.  The 

specific immune response is performed by the B and T lymphocytes and results in a stronger, 

explicit reaction to a particular invader and generates immunological memory. The cells of 

the adaptive immune system act via receptors that exhibit remarkable variation, generating a 

vast repertoire of receptors for antigen recognition.      

 

T cells mediate cellular immunity and can act in either helper or cytotoxic modes to destroy 

infected cells.  T cells generate receptors (T Cell Receptors, TCR) via random recombination 

of variable receptor gene segments to give rise to cells which each bear a distinct receptor.  

These receptors can recognise virtually any antigen and when T cells are presented with 

specific antigen by an antigen presenting cell (APC) they become activated.   B cells also 

carry cell surface receptors with specific binding qualities; these are called immunoglobulin 

(Ig) receptors and are of the same specificity as the antibody (immunoglobulin) that cell has 

the ability to secrete following activation.  B cells are activated by the binding of specific 

antigen to the Ig (or B cell receptor (BCR)) and by the receipt of signals from T cells in the 

form of cell-cell contacts and secreted cytokines. In the presence of all these signals, the B 

cell can develop into an antibody-secreting plasma cell.  

 

The antibodies produced by plasma cells are soluble immunoglobulins and have the ability to 

bind to available antigens.  Antibodies are generally very important in the primary response 

to extracellular pathogens such as bacteria and not so important in the response against 

intracellular invaders such as viruses (although it should be noted that during a secondary 
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immune response to a virus antibodies can prevent virion entry into cells).  Antibodies can 

neutralize soluble antigens, opsonise particles allowing engulfment and destruction by 

phagocytes, activate complement and mediate antibody-dependent cell cytotoxicity (ADCC).  

Besides producing antibodies, B cells can act as antigen presenting cells and develop into 

memory B cells.  The latter are important in immunological memory which comes into play 

during the rapid secondary immune response seen upon a second encounter with antigen.  

 

This thesis is an investigation into the role of the αvβ5 integrin in normal and neoplastic 

lymphopoiesis and the following will be discussed in this introduction: B cell development; 

malignancies of B cells; programmed cell death; the αvβ5 integrin, the CD23 molecule and 

finally the CD47 molecule.  

 

1.2 B Cell Development in Bone Marrow  

 

B cell development is a multi-step, ordered process during which mature B cells arise from 

haematopoietic progenitors.  Sequential changes in gene expression and external signals 

originating from microenvironments such as foetal liver and bone marrow direct this process 
1.   Early B cells are typified by the absence of CD19, rearrangement of diversity and joining 

immunoglobulin heavy chain (DJH) gene segments and the expression of proteins specific to 

the B cell lineage such as VpreB and Igα 1.  Support for the existence of early B cells comes 

from reports showing that DJH arrangements 2, cytoplasmic Igα protein 3 and VpreB protein 4 

are present in CD19- lymphoid progenitors.   

 

Using the Hardy classification system 5, pro-B cells are the next stage in B cell development 

and these cells are characterized by expression of CD10, CD34 and CD19 6.  In addition, 

virtually all pro-B cells express terminal deoxynucleotidyl transferase (TdT) 6 7 and variable 

(V)-DJH rearrangements are easily detected 2 8. A functional VDJ rearrangement is essential 

for normal pro-B cell differentiation into the pre-B cell compartment. Pro-B cells which do 

not make successful VDJ rearrangements undergo apoptosis and are thus removed from the 

proliferative compartment 1.  

 



 18 

Pre-B cells are divided into pre-BI and pre-BII: pre-BI cells have lost TdT and CD34 and 

have acquired cytoplasmic µ heavy chains (µHC) in over 95% of cells and pre-BII cells are 

re-arranging the light chain locus 6 7.  A crucial checkpoint in B cell maturation is the 

assembly and surface expression of the pre-BCR.  This complex is composed of µHC, 

VpreB, λ5 and the signal transducing heterodimer Igα/Igβ 9.  Signalling via the pre-BCR 

induces the pre-B cells to divide 10 and the consequent rearrangement of a κ or λ LC V gene 

allows cell surface expression of  conventional sIgM receptors (BCR)  on the immature B cell 

which exits the bone marrow and journeys to the periphery 11.  Mature B cells in tissues such 

as the spleen express both sIgM and sIgD receptors and in response to specific antigen and T 

lymphocytes proliferate and develop into Ig-secreting plasma cells or memory cells 11.  

 

1.2.1 Regulation of precursor B cell development by stromal cells 

 

Stromal cells, haematopoietic cells, extracellular matrix, colony stimulating factors and 

cytokines contribute to the complex bone marrow microenvironment.  These constituents 

interact to control the proliferation, differentiation and death of B cell precursors (i.e. all B-

lineage cells prior to the expression of the BCR)  12.  Stromal cells regulate B lymphopoiesis 

via cell-cell contacts and the production of cytokines.  A system was developed in 1982 by 

Whitlock and Witte using long term bone marrow cultures (LTBMC) and since then, lines 

developed from LTBMC have been used to analyse haematopoietic development 13. 

 

1.2.2 Role of cell-cell contacts  

 

Developing B cell precursors have been found in intimate contact with stromal cells in the 

bone marrow 14 and it has been shown in in vitro studies that these direct cell-cell or cell-

extracellular matrix (ECM) interactions are required for both murine and human B 

lymphopoiesis to take place 15,16.  These interactions are responsible for the localisation of 

precursors in the bone marrow and play an important part in the regulation of progenitor 

proliferation.  Adhesion within the bone marrow has been shown to be developmentally 

regulated 17 – the most immature B cells displayed the strongest specific adherence to stromal 

cells and this adherence waned steadily during progression of B lineage differentiation.  
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The integrin family of adhesion receptors is believed to have a role in early B cell 

development.  The principal interaction is between VCAM-1 (vascular cell adhesion 

molecule – 1, a member of the Ig superfamily) on bone marrow stromal cells and the integrin 

VLA-4 (α4β1) on B cell precursors 18-20.  Growth of precursor cells on stromal cell layers 

was inhibited by anti-VLA-4 antibodies 21 suggesting a functional role for this interaction in 

B lymphopoiesis.  It has also been found that fibronectin binds VLA-4 at a binding site 

distinct from that of VCAM-1 indicating a particular role for VLA-4 in the bone marrow.  In 

vivo studies using antibodies have identified a role for the β1 integrins in the retention of 

progenitors in the bone marrow and for the homing of progenitors to the bone marrow after 

bone marrow transplantation.  The β1 integrins, however, are not exclusively expressed on 

bone marrow cells and hence cannot fully account for the specific interactions.  Another 

receptor(s) must be responsible for the specific interactions of stromal cells and their 

immediate progeny with components of the bone marrow.   Selectins and cartilage link 

proteins (such as CD44) are also important in the adhesion of B cell progenitors to stromal 

cells and it is proposed that some of these molecular interactions initiate signals which 

suppress apoptosis and promote B lymphopoiesis 18.   

 

The influence of stromal cells on the proliferation of precursors is apparently dependent on 

the presence of cytokines 22.  It has been shown that when precursor cell integrins are 

engaged by physiological levels of cytokines proliferation is inhibited.  When precursors are 

cultured in pharmacological levels of cytokines integrin engagement triggers entry into the 

cell cycle 23.  In addition to receiving stromal cell signals, B cell progenitors also possess the 

ability to induce cytokine release from stromal cells through direct cell contact.  IL-6 

production by stromal cells was shown to increase 4-fold over three days when cultured in 

contact with B cells 24 and IL-7 production by stromal cells was shown to require cell-cell 

contacts with the IL-7 dependent B cell precursors 25.    

 

Although the precise roles of cell-cell and cell-ECM contacts taking place in the bone 

marrow are not fully understood they are of importance to the development of B cells.  In 

addition, a complete understanding of how B cell precursors affect and are affected by these 

adhesions has relevance to malignancies arising in the bone marrow.  Abnormal adhesion 

patterns occurring as a result of defective function/expression of adhesion receptors may 
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participate in the premature appearance of progenitors in the bloodstream or the deregulated 

proliferation and differentiation seen in leukaemias.    

 

1.2.3 Role of cytokines 

 

IL-7 is a prominent cytokine in B cell development. When it was first identified, IL-7 was 

described as a 25kDa soluble growth factor with the ability to stimulate the proliferation of B 

cell precursors in vitro in the mouse 26 and it was the first cytokine to be identified and cloned 

from a stromal cell line 27.   Mice that had been injected with antibodies to either IL-7 or its 

receptor (IL-7R) were found not to produce B cells – this was the first evidence of the 

importance of this cytokine 28,29.  Further investigations into IL-7 using mice deficient for IL-

7 30 and IL-7R 31 revealed that signals from IL-7 are required for B cells to progress from the 

pro-B to the pre-B developmental stage.  Injecting normal mice with IL-7 results in an 

increase in numbers of pre-B cells which then go on to develop into mature sIgM+/sIgD+ cells 
32.    

 

IL-7 has also been implicated in B cell differentiation.  The interaction between IL-7 and its 

receptor has been shown to regulate immunoglobulin (Ig) gene rearrangement.  Corcoran 

showed that if one prevents cell proliferation by abolishing binding of IL7R to 

phosphotidylinositol-3-kinase (PI3K) via mutation of the α-chain component of the receptor 

(Tyr449 →Phe) the cells still rearranged and expressed cytoplasmic µ heavy chain (Hµ).  The 

signals which are promoting cell proliferation are therefore distinct from those progressing 

cell differentiation 33.  The same group went on to analyse mice with IL-7Rα gene knockout 

and identified impairments in VH – (D)JH joining of Ig gene segments. Therefore IL-7Rα 

ligands may be contributing to the regulation of the primary repertoire of antibody 

specificities by increasing heavy chain diversity during Ig gene recombination 34.   

 

In addition, it has been shown that the steady decrease in B cell lymphopoiesis in aging mice 

is due to an impairment in release, rather than production of IL-7 from stromal cells.  It was 

discovered that cell contacts were required between the stromal cells and the B cell 

precursors to enable proliferation regardless of animal age 25.  Therefore IL-7 release may be 

influenced by physical contact with B cell precursors, suggesting that these B cells are able to 
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influence their own futures by signalling the stromal cells via contact.  By limiting the 

amount of IL-7 available to the developing precursor cells, the stromal cells are able to 

regulate B lymphopoiesis 25.    

 

Although IL-7 has been shown to have a role in the pro to pre B cell transition it does not 

have any influence over the subsequent maturation to sIgM+ immature B cells 35.  Henderson 

and colleagues found that late pre-BII cells and immature B cells no longer express IL-7R 

and therefore no longer respond to IL-7 36. They did not, however, define the precise 

developmental stage at which expression of the receptor ceased.  

 

IL-7 is vital for B cell development in the mouse but it is not as crucial in humans 30 - patients 

with mutations in the IL-7 receptor α chain have normal numbers of peripheral blood B cells 
37.   IL-7 was, however, shown to downregulate RAG-1/RAG-2 (RAG = recombinase 

activating gene) and TdT (terminal deoxynucleotidyl transferase).  These are involved in the 

rearrangement of Ig chains and their expression can be used to gauge VDJ recombination.  

Therefore, although IL-7 may not appear to be essential at the single cell level it does have a 

role in immunoglobulin receptor diversification and therefore contributes to the development 

of an optimally efficient immune response 38.   

 

Other factors have been found to have effects on B cell proliferation and development. Flt-3 

ligand has been reported to boost proliferation of CD19+/CD34+ pro-B cells 39 and the 

development of CD19+ B lineage cells from CD34+ cord blood haematopoietic stem cells 40.   

Stromal cell derived factor-1 (SDF-1) is a chemokine which may play an important role in B 

cell development.  Mice with targeted disruptions in the genes encoding SDF-1 and its 

receptor CXCR4 have defects in lymphopoiesis 41,42 and it has been concluded that an 

operational CXCR4 receptor is crucial for the retention of B cell precursors in the bone 

marrow microenvironment 43.     

  

Not all cytokines produced from stromal cells have positive effects on developing B cells.  

IL-1α 44,45, IL-3 44, IL-4 46 and IFNs α/β 47 have been shown to have an inhibitory effect on B 

cell precursors.  TGF-β is another cytokine which has demonstrated an inhibitory effect on 
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lymphopoiesis.  This effect is dose-dependent and has been shown to be partly due to its 

down-regulation of IL-7 release from stromal cells 48.  

 

Insight into the mechanisms responsible for maintaining the balance between lymphopoiesis 

and myelopoiesis in the bone marrow environment was gained by experiments performed by 

Ryan which demonstrated that cytokines inhibitory for lymphopoiesis (IL-1α, IL-4 and TNF-

α) simultaneously trigger the release of myeloid growth factors 49. 

 

In summary, many factors - both positive and negative present in the bone marrow milieu in 

soluble or matrix/membrane bound form – contribute to the tightly regulated advancement of 

precursor B cells through their sequential stages of development.  

 

Figure 1.1 shows a summary of events during B lymphopoiesis 1.  
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Figure 1.1 Schematic of Human B Cell Development in the Bone Marrow Six stages are 

shown with letters in brackets representing an approximation of the counterpart phases in 

murine B lymphopoiesis using the nomenclature of Hardy and colleagues.  Cellular and cell 

surface protein expression is illustrated pictorially and also shown are the effects of stromal 

cell cytokines on the developing B cells 1.  
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1.3 Apoptosis/programmed cell death 

 

Cell death is fundamental for the development and homeostatic maintenance of multicellular 

organisms.  It is involved in many processes, for example, limb sculpture, cell number 

adjustment and the riddance of abnormal, misplaced, non-functional or dangerous cells. Loss 

of control over processes governing cell death contributes to the pathogenesis of diseases 

such as Alzheimer’s disease, which involves increased apoptosis and cancers  (for example 

lymphomas and leukaemias) which involve decreased apoptosis.  Cell death is therefore a 

vital avenue of scientific enquiry. 

 

In 1972 Kerr and colleagues highlighted the significance of “normal cell death” when they 

identified a distinct set of morphological features that enabled classification of dying cells 

into one of two categories: necrosis or apoptosis.  Necrosis is sometimes referred to as 

“accidental cell death” because it occurs following acute cellular injury which is 

characterised by rapid swelling and bursting (lysis) of affected cells. Cell death by apoptosis, 

in contrast, is typified by regulated autophagy of the cell, evidencing the operation of an 

active or programmed mechanism of death 50,51.   The word apoptosis is derived from ancient 

Greek describing the process of leaves falling from the trees in the autumn and was chosen to 

imply that cell loss is desirable for the survival of the host 50.   

 

Programmed cell death (PCD) and apoptosis are frequently used interchangeably, however, 

PCD is a functional term describing a cell death that is a normal part of life whereas 

apoptosis is purely a descriptive term that represents a type of cell death with distinctive 

morphological features 52. 

 

1.3.1 The morphology of apoptosis 

 

Apoptosis involves the sequential occurrence of a defined sequence of morphological events.  

Initially, the cell nucleus shrinks and its chromatin becomes condensed into compact masses 

along the nuclear membrane.  The cytoplasm mirrors this process with compaction causing 
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organelles to become crowded yet maintained in form.  The overall cell shrinkage causes the 

plasma membrane to become “ruffled” – this is known as blebbing 53.  Apoptotic bodies 

(membrane-bound fragments which retain their integrity) are frequently formed at this point 

and these are rapidly phagocytosed by cells of the macrophage lineage or neighbouring cells 

taking on the role of semi-professional phagocytes.  

 

This efficient elimination of apoptotic cells ensures that an immune response is not initiated 

as cellular components are not released  – during necrosis this does occur and is one of the 

features which distinguishes the two processes.  The inflammation that occurs following 

release of intracellular components may cause collateral damage - destruction of normal cells 

– and it is therefore crucial that rapid removal of apoptotic cells occurs to prevent this. In the 

immune system programmed cell death occurs frequently and is vital to normal tissue 

function so this protection from collateral damage is paramount 53.           

 

Chromatin changes during apoptosis are accompanied by internucleosomal DNA cleavage.  

At this linker site the DNA is most loosely associated with histone H1 proteins.  The cleavage 

is not sequence-specific and is most likely due to the sensitivity of “open chromatin” to 

degradation. When first characterised this event was though to be the biochemical hallmark 

of apoptosis and can be visualised upon gel electrophoresis as multiples of 200 base pairs 

(bp) oligonucleosome fragments – the “DNA ladder” 51.  Further work has provided evidence 

that this is a late apoptotic event as larger fragments of either 300 or 50kb are generated prior 

to the cleavage of oligonucleosomal fragment.  These larger fragments are thought to 

represent rosettes (300kb) or loops (50kb) of chromatin 54 .  In addition, apoptosis has been 

demonstrated to occur in the absence of a DNA ladder, therefore internucleosomal cleavage 

cannot be a definitive indicator of apoptotic cells 53,55.   Programmed cell death has also been 

found to occur in the absence of a nucleus which suggests that a cytoplasmic regulator with 

many targets is a major player in PCD and that nuclear events are not necessary for the 

process 56.   
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1.3.2 The role of apoptosis in B cell development  

 

Most B cells that arise from haematopoietic stem cells are not destined to take part in a 

specific immune response.  These cells are removed from the proliferative compartment by 

apoptosis.  Some 75 % of B cells are lost in the bone marrow when precursor B cells which 

have failed to productively rearrange their immunoglobulin genes at the pro-B to pre-B cell 

stage are eliminated 57.    Cells with abortive rearrangements die by apoptosis and are 

engulfed by bone marrow macrophages 58,59.          

 

The next developmental stage sensitive to apoptosis is the immature B cell.  These cells 

characteristically express surface IgM and engagement of the antigen receptor (or B cell 

receptor – BCR) at this particular stage of development results in clonal deletion, the 

mechanisms of which appear to cause both anergy (unresponsiveness) and apoptosis 60.   

  

Mature (IgM+/IgD+) B cells are also susceptible to apoptosis. In order to generate antibodies 

with high affinity for antigen, mature B cells undergo affinity maturation via the processes of 

somatic hypermutation and antigen-driven selection.   Somatic hypermutation of IgV region 

genes occurs in activated B cells called centroblasts within the dark zones of germinal 

centres.  The descendants of these centroblasts,  centrocytes, are then subjected to positive 

and negative selection processes to ensure that high affinity mutants are retained and low 

affinity or autoreactive mutants are neglected or deleted by apoptosis 61.  The signals which 

mediate centrocyte survival are delivered via the antigen receptor and CD40 62  and also by 

soluble CD23 and IL-1α 63.   Soluble CD23 is thought to induce differentition into a memory 

B cell whereas IL-1α promotes plasmacytoid differentiation 63.   

 

1.3.3 The basic apoptotic machinery 

 

All nucleated cells express the protein components needed to execute the death pathway 

constitutively and therefore intrinsically possess the potential to undergo apoptosis 64.    The 

drug staurosporine has been used to gather evidence for this by exploiting its broad spectrum 

inhibitory effect on protein kinases.  When used in conjunction with cycloheximide, which 
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inhibits protein synthesis, staurosporine initiates PCD in all of the cells which can be 

dissociated from a 13 day mouse embryo 65 and in the cultures of a variety of neonatal and 

adult rodent organs 66.     Another feature of PCD is that a nucleus is not required in cells 

which usually possess one.  For example, anucleate cytoplasts undergo PCD when treated 

with staurosporine 56.  This means that all mammalian cells apart from red blood cells, which 

do not have a nucleus, are capable of undergoing PCD.  

 

The control of PCD and its molecular basis have long been a popular area of scientific 

research. Many details have been elucidated following the genetic analysis of Caenorhabditis 

elegans which revealed three genes, ced-3, ced-4 and ced-9 that are crucial to nematode PCD 
67.  Loss of function mutations determined that ced-3and ced-4 are both essential for the 

initiation of programmed cell death 67 whereas ced-9 acts to prevent cells from undergoing 

programmed cell death 68.  The order of action of these cell death genes has been determined 

and is as follows: ced-9 acts upstream of ced-4 which acts upstream of ced-3 69.  Further 

studies have revealed finer detail, e.g. the interaction of Ced-4 and Ced-3 which promotes 

Ced-3 activity and the interaction of Ced-9 and Ced-4 which prevents Ced-4 from binding to, 

and hence activating, Ced3.  These investigations have revealed that Ced-4 plays a central 

role in the pathway leading to cell death and links the apoptotic regulators to the effectors in a 

physical manner 70,71. 

          

When mammalian homologues to the nematode genes were identified their significance 

became far more appreciated.  The homologies within apoptotic regulators were found to be:  

Ced-3 with the caspase family 72, Ced-4 with Apaf-1 73 and Ced-9 with the bcl-2 family 74.    

 

1.3.4 The caspase family of apoptotic executioners 

 

The name caspase comes from the fact that the proteins are from a family of cysteine 

proteases which cleave their substrates after aspartate residues 75.  The first caspase to be 

identified was capase-1, also known as interleukin-1β-converting enzyme (ICE), and as 

previously stated has homology with the Nematode ced-3 gene and it was this sequence 

relationship which led to its recognition 72.  In evolutionary terms caspases are ancient and 

are common to multicellular organisms.  They have been found to take part in cell death and 
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inflammation and act by cleaving substrates that are particular to the signalling cascades of 

either of these two processes.  Mammalian Ced-3 homologues (caspase-3, caspase-6 and 

caspase-7) are effectors of many forms of apoptosis in response to various stimuli 76. The 

caspases that initiate the secretion of inflammatory mediators are phylogenetically distinct 

(caspase-1, caspase-4, caspase-5, caspase-11 and caspase-12) and achieve this by proteolysis 

of the precursors of the inflammatory cytokines IL-1β and IL-18 77.  The third class of 

caspases (caspase-2, caspase-8, caspase-9 and caspase-10) are termed initiator caspases as 

they act upstream of the effector caspases in apoptosis.   Despite the separation of caspases 

into inflammatory and apoptotic, some apoptotic caspases have been found to take part in 

other cellular processes, including cell cycle progression and, surprisingly, cell survival 78.  

 

1.3.5 Extrinsic and intrinsic pathways 

  

There are two separate pathways of cell death which caspases take part in: the extrinsic 

pathway and the intrinsic pathway.  Extrinsic signals, such as the ligands for the subset of 

Tumour Necrosis Factor Receptors (TNFRs) that act as death receptors, trigger initiator 

caspases such as caspase-8.  This kind of caspase can directly activate effector caspases like 

caspase-3, which cause cell death independently of mitochondrial depolarisation 78-80. These 

signals are often augmented by pro-apoptotic factors released from mitochondria – this 

pathway is named the type II extrinsic pathway and involves molecules such as BID.  BID 

stands for B-cell lymphoma-2 (BCL-2) homology domain 3 only (BH3 only) protein 

interacting BH3-interacting-domain agonist.   These types of molecule are cleaved by 

caspases.  The shortened BID is translocated to the outer membrane of the mitochondria 

where it interacts with the multidomain BCL-2 family members BCL-2-associated X protein 

(BAX) and/or BCL-2 antagonist/killer (BAK) and initiates their oligomerization.    

Activation of BAK and BAX is necessary for permeablisation of the outer mitochondrial 

membrane which enables release of apoptosis-promoting factors housed in the mitochondria 
78,81,82.          

 

On the other hand apoptotic stimuli involved in the intrinsic pathway effect the change in 

mitochondrial permeability either directly or via BH3-containing effector proteins in the 
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absence of caspases. This can be achieved either by inactivating anti-apoptotic molecules like 

BCL-2 or activating pro-apoptotic molecules such as BAK and BAX 83.   

 

Mitochondrial proteins released into the cytosol activate the central apoptotic pathway. 

Cytochrome c interacts with apoptotic-protease-activating factor (APAF-1) and caspase-9 to 

form a complex named the apoptosome 84.  Caspase-9 then drives effector caspase cleavage 

of apoptotic substrates that leads to the irreversible morphological changes and characteristic 

cleavage of DNA that typifies apoptosis. 

 

1.3.6 Regulation of BCL-2 family members 

 

Cytokines and other signals contribute to regulation of the BCL-2 family proteins. BAX, for 

example, is induced in some cells as part of the p53 damage response 85. Other pro-survival 

genes are expressed following cytokine stimulation 86 and cytokines also influence cell 

survival in a post-translational manner.   In haematopoietic cells stimulated by (for example) 

IL-3, BAD is phosphorylated by AKT (also known as PKB - Protein Kinase B) and in this 

phosphorylated state it is kept sequestered in the cytoplasm by the 14-3-3 protein - preventing 

it from moving to the mitochondria where it would promote apoptosis 87.  This signal appears 

to be transduced by phosphoinositide 3-kinase (PI3K) the products of which activate AKT 

via phosphorylation of threonine 308 and serine 473 88.    

 

Phosphorylation has the ability to both promote and suppress activity of pro-survival 

proteins.  BCL-XL activity is thought to be negatively regulated by phosphorylation sites 

which are located in its flexible loop and BCL-2 is possibly controlled via serine 70 

phosphorylation (activation) and several loop sites (suppression) 89.    

   

 

 

 

 

1.4 SMS-SB cells: a childhood pre-B Acute Lymphoblastic Leukaemia cell line 
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1.4.1 Acute Lymphoblastic Leukaemia 
 

Acute lymphoblastic leukaemia is thought to originate from various important genetic lesions 

in blood progenitor cells that are committed to the T-cell or B-cell lineages, including 

mutations that confer the capacity for unlimited self-renewal and those that lead to precise 

stage-specific developmental arrest 90,91.  The cells involved in acute lymphoblastic 

leukaemia have clonal rearrangements in their immunoglobulin or T-cell receptor genes and 

express antigen receptor molecules and other differentiation-linked cell-surface proteins that 

largely replicate those of immature lymphoid progenitor cells 90-92.  This malignancy is 

classified by means of immunotyping, determining the cell lineage and developmental status 

where the transformation occurred. Cluster of Differentiation (CD) antigens are used a part of 

this identification method and CD10 (also known as the Common ALL Antigen – CALLA) 

being the first marker used in the classification of ALL 93.  This antigen is a lineage-

independent marker and is not universally expressed in ALL, its absence often being 

associated with poor prognosis 94.    

 

Chromosomal translocations that activate specific genes are a defining characteristic of 

leukaemias in general and of acute lymphoblastic leukaemias in particular.  About 25% of 

cases of B-cell precursor acute lymphoblastic leukaemia harbour the TEL-AML1 fusion gene 

generated by the t(12;21)(13:q22) chromosomal translocation.  This is the most common 

form of acute leukaemia in children 90.  Although the precise molecular role of the fusion 

protein is unclear the Tel gene is an important regulator of haematopoietic cell development 

and the Aml1 gene is necessary for definitive embryonic haemopoiesis 95,96.  In adults the 

most frequent chromosomal translocation is the Philadelphia chromosome, which is a fusion 

of chromosomes 9 and 22.  This fusion results in the joining of the BCR signalling protein to 

the ABL non-receptor tyrosine kinase and results in constitutive tyrosine kinase activity and 

interaction with transforming elements such as the RAS signalling pathway 97. Finally, more 

than 50% of T-cell acute lymphoblastic leukaemias have mutations that involve the NOTCH1 

protein.  This protein in its receptor form regulates normal T-cell development and 

intracellular NOTCH1 can be induced to translocate to the cell nucleus where it activates 

responder genes including the MYC oncogene 98-100.     
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1.4.2 The SMS-SB cell line 

 

The SMS-SB cell line was originally characterized by Smith and colleagues in 1981.  The 

cells were derived from a 16 year old African-American girl (SB) in the leukaemic phase of a 

lymphoblastic lymphoma. The primary lymphoma was atypical in that its development 

occurred in and around skeletal bone and bone marrow rather than lymphatic tissue and did 

not express any T-lymphocyte markers which are ordinarily commonplace in lymphoblastic 

lymphomas 101,102.  This distribution of disease is typical of lymphomas induced in mice by 

the Abelson Leukaemia Virus 103.  The cultured leukaemic SMS-SB cells are classified as 

pre-B lymphocytes by virtue of the expression of B-cell markers, the presence of cytoplasmic 

heavy chains, and the absence of any T-cell specific markers.  It is unusual that these cells are 

referred to as pre-B cells as they do not express the pre-BCR, however, this is how Smith et 

al have classified them in their 1981 paper identifying this cell line101.  In culture these cells 

express µ heavy chain on the cell surface enabling their classification as pre-B cells (M. 

Acharya personal communication).   Smith et al also state that SMS-SB cells seem to most 

closely resemble the major population of pre-B cells found in normal bone marrow, and 

differ from other cultured pre-B ALL cell lines in that they do not express high levels of 

CD10 (CALLA) or the enzyme TdT 102.  

 

SMS-SB cells do not possess the Epstein-Barr Virus nuclear antigen, therefore this virus did 

not transform these cells 101.  Analysis of the karyotype of these cells did not reveal any gross 

chromosomal abnormalities such as the Philadelphia chromosome.  This t(9;22) translocation 

is implicated in acute leukaemia.  This transposes the c-abl gene (the cellular homologue of 

the Ableson viral oncogene) to the bcr (breakpoint cluster region) gene.  The chimeric protein 

produced has increased tyrosine kinase activity compared to the normal c-ABL protein 104.  c-

abl analysis in SMS-SB cells revealed no gross rearrangements but discovered 2 additional 

abl-related transcripts not found in normal cells.  It was postulated that these abnormal 

transcripts may have contributed to the commencement of malignancy in these cells perhaps 

in concert with other activated oncogenes 105 
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Advances in molecular diagnostic techniques have enabled the characterization of genetic 

abnormalities found in ALL that could not have been detected using routine karyotyping 106.  

It is therefore quite plausible that SMS-SB cells possess genetic abnormalities that have not 

been detected thus far.         

 

Further research by Tsai and colleagues has been carried out in an attempt to further classify 

SMS-SB cells by way of the examination of nuclear proto-oncogenes that are commonly 

found altered in leukaemias and lymphomas. It was noted that whilst c-myc, c-myb and c-jun  

are expressed at normal levels, c-fos (and hence the corresponding protein p55c-fos) was found 

to be over-expressed in SMS-SB cells in comparison with other cell lines. The elevated levels 

of c-fos transcripts were found to be due to up-regulated transcription rather than mutations 

and this up-regulation could be enhanced by serum.  When SMS-SB cells were compared 

with another ALL cell line, Nalm-6, it was found that SMS-SB cells expressed higher levels 

of p55c-fos protein.  This protein forms heterodimers with members of the Jun family of 

proteins to form the transcription factor (AP-1)(Activator Protein 1) 107.  SMS-SB cells were 

not, however, found to display increased amounts of AP-1 DNA binding activity compared to 

Nalm-6 cells 108. 

 

1.4.3 SMS-SB cells produce growth promoting factors 

 

Following removal from the patient SB, the leukaemic cells readily adapted to tissue culture 

without going through a crisis phase.  The cells could be grown in serum-free and protein-

free media without the addition of exogenous mitogens 101.  This immediate establishment is 

unusual and pointed to the expression of growth-regulatory factors.  Two growth activities 

were detected in culture supernatants: one which acts as an autocrine factor that is growth-

promoting to SMS-SB cells cultured in serum-free medium at low densities; and another 

named leukaemia-derived-transforming growth factor (LD-TGF), which enhances fibroblast 

growth but does not affect SMS-SB cells nor other haematopoietic cells 109.   
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The aforementioned SMS-SB autocrine growth factor (SB-AF) was found by White not to be 

directly mitogenic for SMS-SB cells, but only able to promote growth under stressful, serum-

free conditions in which the cells would normally undergo growth arrest and apoptosis 110.  

Subsequent testing of a panel of cytokines with the ability to recreate this specific growth 

enhancement identified soluble CD23 (sCD23) and platelet-derived growth factor (PDGF).  

The SMS-SB cells, however, do not express CD23 and the use of neutralising anti-PDGF 

antibodies ruled out PDGF as being the elusive autocrine factor 110.  

   

1.5 CD23 
 

CD23, also known as the low affinity receptor for IgE (FcRεII) and BLAST-2, exists in two 

forms: CD23a and CD23b.  CD23 is the only Ig receptor not to belong to the 

immunoglobulin superfamily and can exist as a monomer and a trimer in membrane-bound 

and soluble forms 111.  The membrane-bound form of CD23 (mbCD23) is cleaved by a 

membrane-associated metalloprotease to produce soluble CD23 (sCD23) fragments of 

37kDa, which are then further cleaved to give fragments of 33kDa, 29kDa, 25kDa and 

15kDa. All of the fragments contain the C-type lectin domain of CD23 and varying portions 

of the stalk region.  Cleavage of the mbCD23 producing the 37kDa fragment occurs at close 

proximity to the cell membrane 112.  These sCD23 fragments not only retain many of the 

properties of mbCD23, they also process activity akin to cytokines 113-115.   

 

CD23 is usually expressed on mature B cells, activated cells particularly, but in a number of 

pathological disorders its expression is considerably altered 116-121.  Normal CD23 levels in 

human serum ranges from 0.5 – 5ng/ml, with children and babies having levels higher than 

those found in adults 122.  In the malignancy chronic lymphocytic leukaemia (CLL), elevated 

levels of CD23 may have prognostic value and may correlate with progression of the disease 
123-126.    In the inflammatory condition rheumatoid arthritis, CD23 levels are observed where 

the levels of CD23+ B cells are increased as is the level of sCD23 in the blood and synovial 

fluid 127-130.  In addition to being a marker for certain pathological conditions, CD23 also 

displays cytokine-like properties when in its soluble form. sCD23 provides growth signals to 

cell lines transformed by the Epstein-Barr virus (EBV) 131, prevents apoptosis in germinal 

centre B cells 63 and induces prothymocyte differentiation 132.  CD23 is clearly a 
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multifunctional protein with many interesting properties associated with cell growth and 

development.  
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1.5.1 CD23 Structure 

 

CD23, as previously stated, is the only Ig receptor that does not belong to the 

immunoglobulin superfamily.  It can exist in soluble and membrane-bound forms and its 

presentation partly mediates its diverse activities. As Figure 2 shows at the structural level 

CD23 is made up of a number of domains and motifs that are central to its functions 111,133.  
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Figure 1.2 Schematic representation of CD23  

CD23 is comprised of distinct functional groups that define its biological roles.  Membrane-

bound CD23 is composed of an extracellular C-type lectin head connected to a 

transmembrane domain by a leucine zipper domain. Cleavage of membrane-bound CD23 

occurs in this region to generate a range of soluble forms of CD23.  The cytoplasmic domain 

of CD23 differs in sequence to produce the isoforms CD23a and CD23b.  
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1.5.3 C-type Lectin Domain 

 

The C terminal extracellular domain of CD23 is similar structurally to the C-type lectin 

family.  C-type lectins require calcium for carbohydrate binding.  The sequence of this 

domain of CD23 is also similar to a family of proteins including the asialoglycloprotein 

receptor and the selectin adhesion proteins 133. 

 

The 3-D structure of this head domain has recently been determined by NMR spectroscopy 
134. This domain was previously modelled on mannose binding protein (MBP) and has now 

been shown to have greatest sequence and structural homology with the lectin domains of 

DC-SIGN.  It consists of two α helices and 8 β strands which make up 2 antiparallel β sheets.  

Seven tryptophans contribute to the formation of a hydrophobic core and 4 disulphide bridges 

help to maintain tertiary structure.  This area of the protein also displays a polarity with 

regard to its electrostatic nature.  The positive and negative residues of the highly charged 

surface are located on opposite faces of the molecule which may affect the way CD23 

interacts with ligands/itself 134.  Figure 3 shows the structure of derCD23 (CD23 cleaved by 

Der p I, a dust mite protease that cuts the stalk of CD23 close to the lectin domain).   The 

NMR structure does not clearly define the calcium binding region but the crystal structure 

determined by Wurzburg in 2006 does.  This structure has determined that four CD23 

residues (E249, T251, N269 and D270) contribute five ligands for the calcium ion and it was 

also confirmed that calcium binding occurs at the principal binding site but not at an auxiliary 

binding site as was proposed by the NMR structure 135.   
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Figure 1.3 The structure of derCD23. (A) View of the backbone of 20 superimposed NMR-

derived structures of the head domain of CD23. (B) A ribbon diagram of the head domain of 

CD23, with secondary structural elements identified. (C) A surface representation of the head 

domain of CD23 coloured according to opposing charges.  
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1.5.4 Stalk/Leucine Zipper Domain 

 

The stalk domain of CD23 is an alpha helical coiled-coil structure consisting of 7 

hydrophobic repeats 136.   This part of CD23 connects the transmembrane domain to the lectin 

domain and is the site of oligomerisation into CD23 trimers.  The leucine zipper region is 

close to the transmembrane domain and has a motif consisting of 7 amino acids beginning 

with either a Leu or Ile residue which is repeated 5 times in human CD23 133.  The stalk is the 

site of proteolytic cleavage of CD23 into sCD23 fragments and therefore it contributes to the 

regulation of the functions of CD23 via production of CD23 molecules with particular 

functions 137.  

 
1.5.5 N terminal cytoplasmic sequence 
 
 
The N terminus of CD23 is cytoplasmic.  CD23 is found is two forms, namely CD23a and 

CD23b which differ in sequence at this region.  The a form contains the sequence “Met-Glu-

Glu-Gly-Gln-Tyr-Ser-Glu-Ile-Glu” (MEEGQYSEIE) at the N terminus, whereas the b form 

has the sequence “Met-Asn-Pro-Pro-Ser-Gln-Glu-Ile-Glu” (MNPPSQEIE) 138. The residues 

in bold represent the consensus N terminal pentameric sequence described by Vega and 

Strominger as being common to receptors capable of being internalised via coated pits 139.  

Both forms are derived from the same gene and formed by alternative splicing.  Different 

promoters drive expression of the distinct first exons which are then spliced to give forms 

CD23a and CD23b.  CD23a is expressed constitutively on certain cell types (for example B 

cells and follicular dendritic cells 140,141) whereas CD23b is induced by IL-4 and expressed on 

a wide range of cell types (T-cells, eosinophils, monocytes, platelets and Langerhan’s cells 
141,142). The two isoforms display different functions.  The a isoform has a role in endocytosis 

(Tyr based motif) and the b isoform is involved in phagocytosis (Asn-Pro motif). In terms of 

its structure and expression pattern CD23a is equivalent to murine CD23 138,143.  Murine 

CD23 is equivalent to the human CD23a isoform and has a Tyr reside in a similar position. 

This implies murine CD23 can be endocytosed and draws a parallel with the ability of murine 

CD23 to focus and present antigens to T cells in an IgE-dependent manner.  Murine CD23, 

however, does not contain the entire pentameric sequence from CD23a 133. 
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1.5.6 Inverse RGD Sequence (DGR)   

 

Located near the C terminus of human CD23 is a reverse RGD sequence (DGR). This 

sequence is not present in murine CD23. The RGD sequence is a well-characterised 

recognition motif for integrin binding and is found in a wide range of proteins that mediate 

cell adhesion 144.  Although a function for the DGR sequence has not yet been defined it has 

been suggested that it interacts with a sequence at the root of the N linked sugar chain.  This 

sequence has 8 out of 12 amino acid homology (in reverse) with an “RGD-binding inhibitory 

peptide”  (the gpIIIa chain of platelet-integrin gpIIb/IIIa).  This peptide prevents the binding 

of platelet-integrin and fibrinogen that contains the RGD sequence 145.  Further studies are 

required to further clarify the functions of these two reverse sequences.  

 

1.5.7 CD23 Functions 

 

CD23 participates in both protein-protein and protein-carbohydrate interactions.  To date, 

CD23 has been found to interact with IgE 146, CD21 147, and leucocyte integrins (αXβ2 and 

αMβ2) 148 and the vitronectin receptors αvβ3 and αvβ5 114.  The interaction of mbCD23 and 

sCD23 with these ligands results in specific cellular events and CD23 has been implicated in 

numerous processes such as antigen presentation, cellular adhesion, growth and 

differentiation of B and T cells, rescue from apoptosis, liberation of cytotoxic mediators and 

control of IgE synthesis 111. 

 

1.5.8 CD23 Interaction with IgE 

 

IgE is one of the classes of human antibodies and is produced exclusively in mammals.  IgE 

is well known for its efficacy in combating parasitic infections and is thus found at high 

levels in the skin, lungs and gut (sites of parasitic invasion).  IgE overexpression following 

exposure to common environmental antigens gives rise to allergies.  It accounts for a very 

low percentage of the total antibody in human serum but the actions of IgE are considerably 

augmented by its receptor interactions.  Immediate hypersensitivity reactions are caused by 

the interaction of IgE with its high affinity receptor (FcεRI) 122.        
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CD23 is the low affinity receptor for IgE and binds to IgE alone with an affinity of Ka ~ 

107M-1. It binds IgE-antigen complexes at 10-9 M-1. The high affinity receptor for IgE binds 

with an affinity of 10-9 M-1 133. Mutation of the glycosylation site Asn371 does not affect 

binding hence the interaction between IgE and CD23 is via protein-protein interactions and 

not protein-carbohydrate despite the binding site being located in the lectin (carbohydrate-

binding) domain 149.  The interaction between CD23 and IgE is important to the regulation of 

IgE levels.  The membrane bound and soluble forms of CD23 have distinct roles in the 

control of IgE expression 122. 

 

When CD23 and IgE bind on the surface of B cells synthesis of IgE is reduced and a fall in 

serum levels of IgE follows 111 150.  CD23 has to be in the membrane-bound trimeric format 

to facilitate this activity 151.  Release of sCD23 from the membrane is inhibited by IgE, which 

in turn represses synthesis of IgE further.  CD23-/- mice tend to have higher levels of IgE 

following stimulation with antigen, whereas mice overexpressing CD23 produce notably 

lower amounts of IgE following the same antigen treatment 152.  The ligation of mbCD23 by 

IgE is thought to stabilise the stalk region thereby preventing proteolytic cleavage. Support 

for this lies in the fact that sCD23 production is reduced by monoclonal antibodies which act 

to stabilise the stalk region, whilst the opposite is true of monoclonal antibodies which act to 

destabilise the stalk region 153.   mbCD23 expressed on B lymphocytes (trimeric form) also 

enhances the presentation of antigen complexes to T cells.  Antigen presentation requires 

internalisation of the antigen, its cytoplasmic processing and subsequent external 

presentation.  This fits with the role in endocytosis ascribed to CD23a.  IgE-dependent 

presentation of antigens to T cells 154 also involves mbCD23 and homotypic adhesion 

between B cells 155 and mbCD23 on follicular dendritic cells prevents apoptosis in germinal 

centre B cells 63.       

 

All sCD23 fragments can bind to IgE but only fragments larger than 28kDa promote IgE 

synthesis.  CD23 is found in solution in monomeric and trimeric form and the site of 

oligomerisation is located in the stalk region.  As such, only fragments over 25kDa which 

possess this part of the stalk region can form trimers 122.   The effect on IgE production is 

thought to be due to the ability of CD23 to cross-link CD21 and IgE at the cell surface 156. 
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Soluble CD23 also promotes the proliferation and differentiation of plasma cells, T cells and 

myeloid precursors, presumably through its cytokine activity 157 131. 

 

The interplay between IgE and CD23 is also significant in IgE-mediated cytotoxicity, IgE-

dependent antigen focussing, promotion of B-cell growth and prevention of germinal centre 

B cells, maturation of early thymocytes and proliferation of myeloid precursors 111,158.   

 

1.5.9 CD23 Interaction with CD21 

 

CD21 (the receptor for Epstein-Barr virus - EBV), also known as the Complement Receptor 

type 2 (CR2), is a 145kDa, type I transmembrane glycoprotein.  It is important to both human 

B cell proliferation and activation 155.  Like CD23, CD21 has both membrane bound 

(mbCD21) and soluble forms (sCD21) that retain biological activity.  Expression of CD21 

occurs on B cells, thymocytes, a portion of T cells and follicular dendritic cells.  CD21 

expression is developmental stage-dependent with greatest expression on mature B cells and 

a subset of immature thymocytes 147.    EBV infection of T and B cells results in an increase 

of CD21 expression 159.  CD21 and CD23 interact via protein-protein interactions and N-

linked sugar chains on CD21 and this takes place at the CD23 lectin head domain 147.  Figure 

4 shows a representation of a CD23 trimer.  

 

In humans, the interaction between mbCD21 and mbCD23 contributes to the homotypic 

adhesion of B cells 155.  It has been demonstrated that sCD21 acts as a functional ligand for 

CD23-expressing monocytes.  In such monocytes (IL-4-induced) this interaction leads to an 

increase in the production of IL-6 and TNF-α.   Also, CD23 interacting with sCD21 leads to 

monocyte differentiation via a process involving cyclic nucleotide metabolism and 

stimulation of the nitric oxide pathway 160.  The interaction also produces an upregulation of 

CD40 and HLA-DR.  This increase may reinforce the contact with T cells to facilitate antigen 

presentation or amplify cooperation with CD40 ligand expressing T cells which would further 

boost cytokine release 161.       

 

IgE synthesis can be both positively and negatively regulated by CD23.  Positive regulation 

of IgE synthesis occurs following co-ligation of membrane IgE and CD21 (on a human B cell 
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committed to IgE synthesis) by soluble CD23 that has been released from membrane-bound 

CD23.  CD23 trimers are unstable in the B cell membrane and can be cleaved by ADAM10 

(a disintegrin and metalloproteinase  10).  CD23 trimers are stabilized by binding of IgE and 

co-ligation of membrane CD23 and membrane IgE by IgE-antigen complexes negatively 

regulates IgE synthesis. Concentration of IgE is central to this model.  When IgE 

concentration is low CD23 is not protected from cleavage and therefore synthesis of IgE is 

increased.  At high IgE concentrations CD23 is protected from cleavage and positive 

signalling for IgE synthesis is prevented.  In addition the co-ligation of CD23 and IgE by 

antigen-IgE complexes results in negative signalling for IgE synthesis 134.  
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Figure 1.4 A (Ribbon) and B (cartoon) forms of the CD23 trimer. A – red and blue 

coloured areas correspond to opposing electrostatic charges. B – cartoon. The calcium 

binding site is shown in yellow, the IgE interaction region in green, the oligomerisation sites 

red and blue and the cyan area representing the CD21 binding site 134.   
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Figure 1.5  Diagram depicting competition between membrane (mb)CD21 and mbCD23 for 

IgE and its effect on IgE production 134.  Synthesis of IgE is inhibited by the crosslinking of 

mbCD23 and mbIgE by IgE-bound antigen and promoted by crosslinking of mbCD21 and 

mbIgE by soluble trimeric CD23.  
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1.5.10  Clinical relevance of CD23 

 

The involvement of CD23 in B cell development is highlighted by its atypical expression and 

regulation in a malignancy arising from the clonal expansion of mature B cells: chronic 

lymphocytic leukaemia (CLL).  It has been found in vitro that B cells from CLL patients 

produced 8-50 times more CD23 than normal B cells  162.  The excessive CD23 production in 

CLL patients is due to both the enlarged pool of CD23+ B cells and over-expression of CD23 

on B-CLL cells.  CD23 is not constitutively expressed on B-CLL cells and is upregulated by 

IL-4 163.  It has also been found that these abnormal CD23 levels are prognostic indicators in 

CLL – high soluble CD23 levels (sCD23) correlates with poor prognosis 164. 

 

Increased levels of sCD23 are present in the synovial fluid of patients with rheumatoid 

arthritis (RA) classified as of erosive status.  This may have predictive value in the 

monitoring of joint destruction 127. RA patients present with an increase in CD23 expression 

on B cells and an increase in CD23 produced by peripheral blood mononuclear cells 

(PBMCs) 65. A model for human RA has been established using collagen-induced arthritis in 

mice.  Anti-CD23 antibodies have been found to reduce the destruction of bone and cartilage 

as well as lessening the clinical severity of the disease 165. 

 

Patients with primary Sjogren’s syndrome and systemic lupus erythematosus (SLE) also 

exhibit elevated serum levels of CD23.  Treatment with glucocorticoids significantly lowers 

the CD23 levels in comparison with patients not receiving this treatment.  It appears that B 

cell hyperactivity in these diseases is associated with the elevation of serum sCD23 166.   
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1.6 Integrins 

 

CD23 has been shown to have multiple effects in soluble and membrane bound forms.  

Induction of pro-inflammatory cytokines by sCD23 is mediated by the interactions of CD23 

with members of the integrin family of cell surface adhesion molecules.  

 

Integrins are a family of cell surface receptors that attach cells to and mediate signals from 

the extracellular matrix (ECM).  They provide the cell with the means to communicate with 

its environment.  These signals regulate the activities of cytoplasmic kinases, growth factor 

receptors and ion channels and control the organisation of the actin cytoskeleton 167.  Cell 

adhesion is a fundamental event that is critical to a range of biological processes including 

embryonic development and tissue morphogenesis as well as pathological processes such as 

tumour cell invasion and metastasis, thrombosis and inflammation 168-171.   
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Figure 1.6 The integrin family. The α subunits shown darkened contain the A domain of 

von Willebrand factor (also known as the I domain) 172.  
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Integrins are heterodimeric transmembrane adhesion receptors made up of 2 subunits - α and 

β, and each αβ grouping has its own binding specificity and signalling characteristics 
168,171,173.  Figure 6 shows an illustration of the families.  The name integrin refers to their 

function of integrating the cell ECM to the cytoskeleton.   The 18 α and 8 β subunits that 

have been identified are known to form 24 distinct heterodimers.  The combination of the 

integrin pairing determines the ligand specificity of the integrin.  Many integrins have 

binding specificities for the same ligands and it is the amalgamation of the integrin 

expression/activation pattern and the accessibility of ligand that specifies the interactions in 

vivo 174.  Although this overlapping of integrin binding specificities exists, the loss of almost 

every integrin subunit results in some form of biological defect in knockout mice 175.  

 

1.6.1 Integrin Structure 

 

Integrins are formed by two non-covalently associated type I glycoprotein α and β subunits. 

The cytoplasmic domains are short except for in the case of the β4 subunit which is 

specialized to connect to the keratin cytoskeleton  176. The globular headpiece binds to ligand 

and two stalk-like regions connect this to the cytoplasmic domains.Twelve extracellular 

domains exist in integrins that do not contain an I domain 177.  

 

1.6.2 α  subunit 

 

The N terminal domain contains 7 segments which form a β-propeller structure 177-179 and 

mutagenesis studies show that ligand binding sites are located in this structure 180.  Half of all 

α integrin subunits contain a domain of approximately 200 amino acid known as the I 

(insertion) domain or a von Willebrand factor A domain. These I domains are the major sites 

for ligand binding in integrins which possess them 181.  The I domain forms a Rossmann fold 

and contains a divalent cation co-ordinating metal-ion-dependent-adhesion-site (MIDAS) 

which binds to negatively charged residues in ligands 182.    
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The domains C terminal to the β propeller account for approximately 500 residues of the 

extracellular portion and much of this corresponds to the stalk region and the crystal structure 

revels that there are three β-sandwich domains designated the thigh, calf-1 and calf-2 177.  

Figure 7 shows a visual representation of integrin domain arrangements in a primary form 

and structural illustration.  

 

1.6.3 β  subunit   

 

The N terminal region has been termed PSI (plexins, semaphorins and integrins) due to its 

structural likeness to plexins and semaphorins 183.  An I-like domain is present in the β 

subunit and this region appears to directly bind ligand in integrins that do not have an I 

domain 184.   The hybrid domain is a β-sandwich domain that is connected to the I-like 

domain by two covalent associations. Four EGF-like domains provide rigidity and with the 

cysteine-rich tail domain complete the extracellular β subunit.  
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Figure 1.7. Integrin structure. A shows integrin make up within the primary integrin 

structure.  Asterisks show Mg2+ (blue) and Ca2+ (red) binding sites and lines below the stick 

diagrams show disulphide bonds. B shows a representation of the 3 dimensional arrangement 

of domains derived from the crystal structure of αvβ3 184.    
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1.6.4 Integrin activation and signalling 

 

Integrins provide a physical link between the cytoskeleton and the ECM and activate 

intracellular signalling pathways.  They are capable of transmitting signals from the ECM 

into the cell (“outside-in signalling”) and from inside the cell to the exterior milieu (“inside-

out signalling”).  Stable integrin complexes need to form in order to allow mechanical signals 

to be sent between cells and the ECM 185.  Signal transmission via integrins requires long-

range conformational changes and co-operation between integrin domains.  Many integrins 

are not constitutively active but require activation before ligand binding and signalling can 

occur.  The current model for activation of integrins is called the “switchblade model” and 

was defined following the definition of the structure of the αvβ3 integrin 186.  The inactive 

form of the αvβ3 integrin has a bent or genuflexed conformation (the site of such bending 

being the genu region) and activation results in a straightening and separation of the legs 187.  

Binding of extracellular ligand – outside-in signalling – enhances separation of the 

cytoplasmic domains of the integrin and therefore enables their interaction with the 

cytoskeleton and signal transduction molecules.  Reciprocally, separation of the legs by 

activators inside the cell could activate the head to facilitate ligand binding.  This is inside-

out signalling 185.    

 

Integrins have a role in adhesion to ECM ligands and also trigger a large variety of signalling 

events that modulate processes such as proliferation, cell survival/apoptosis, shape, polarity, 

gene expression and differentiation.  Many cellular responses to soluble growth factors such 

as EGF, PDGF, thrombin etc are dependent upon the cell’s adherence to substrate via 

integrins 188.  Prevention of apoptosis via PI3K and Akt and progression of the cell cycle 

through ERK and cyclin D1 have been established to be integrin-mediated 185.     

  

1.6.5 Ligand recognition by integrins  

 

The classical recognition sequence for most integrins is the RGD (Arg-Gly-Asp) motif 189-191.  

ECM Proteins containing RGD motifs include fibronectin, vitronectin, fibrinogen, von 

Willebrand factor, thrombospondin, osteonectin, laminin and collagens 192.   
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Ligand binding is cation-dependent and involves amino acid residues from both α and β 

subunits.  The Asp of the RGD sequence is co-ordinated by a divalent cation co-ordinated by 

the MIDAS on the α subunit.  In I-domain containing integrins the MIDAS is found at the I 

domain and in integrins without I domains there is a corresponding MIDAS located on the β 

subunit.  The β-propeller structure from the α subunit can sometimes donate residues to bind 

the ligand. The β subunit possesses two sites which have metal ion-coordinating capability – 

the MIDAS and the LIMBS (ligand-associated metal binding site) that can contribute to 

ligand binding 179.    

 

Other recognition sequences include NGR which binds to α5β1 with low affinity 193.  This is 

exploited by the Adeno-Associated Virus Type 2 which uses this integrin as a co-receptor for 

cell entry 194.  The sequence LDV binds to α4β1 and α4β7 integrins and is found in a splice 

variant of fibronectin.  The α4β1 integrin can also recognise two other sequences in that 

region of fibronectin IDA(PS) and REDV 195.  The integrin-binding motifs all share one 

amino acid, the aspartic acid, or the closely related glutamic acid residue.  Asp may be 

important because of its potential to contribute to divalent cation binding 196.  Disintegrins are 

snake venom proteins which can interact with integrins and can prevent blood clotting 

through high-affinity binding to the αIIbβ3 integrin in platelets 197. Disintegrins contain an 

RGD sequence and in one instance this sequence is KGD.  Homologous to the integrins are 

the mammalian ADAMs which have disintegrin domains that lack RGD.  At least one 

ADAM, fertilin, can act as a ligand for α6β1 and this is via a TDE motif which is analogous 

to the disintegrin RGD 198. 

 

1.6.6 Alternate binding sites 

    

In addition to the RGD recognition site of integrins other ligand binding sites have been 

identified.  The binding of the integrin ligand tumstatin to αvβ3 was found by Maeshima and 

colleagues to be independent of RGD and that tumstatin contained two RGD-independent 

binding sites for αvβ3 as binding of tumstatin-derived peptides was not inhibited by cyclic 

RGD peptides 199.  
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The αvβ5 integrin interacts with the HIV Tat protein via the Tat basic domain not the Tat 

RGD domain.  This finding was based on experiments involving the binding of Tat peptides 

to the integrin and their ability to support cell attachment.  Given that HIV Tat protein 

contains an RGD sequence it is perhaps surprising that recognition does not occur in an 

RGD-dependent manner.  It is possible that the RGD sequence is not presented in a suitable 

context to allow binding to occur.  In addition to HIV Tat interacting with αvβ5 in an RGD-

dependent manner, the viral protein also interacts via a divalent cation-independent 

mechanism.  The physiological implications of this interaction are yet to be elucidated 200.    

 

1.6.7 CD23/Integrin interactions 

 

1.6.7a  Beta 2 (CD18) or Leukocyte Integrins 

 

The expression of β2 integrins is confined to leukocytes.  These are heterodimeric proteins 

composed of a partnership between the β2 integrin and one of αD, αL, αM or αX. The 

αMβ2 (Mac-1, CD11b/CD18 or CR3) and αXβ2 (CD11c/CD18 or p150/95) integrins are 

adhesion molecules that participate in many cell-cell and cell-ECM interactions and have 

been reported to bind to several ligands including CD54, fibrinogen, factor X, 

lipopolysaccharide (LPS), zymosan and concanavalin A 201,202. An absence of the β2 integrin 

results in defects in immune processes including the macrophage oxidative burst, 

phagocytosis and proliferation of lymphocytes and individuals afflicted with this deficiency 

present with recurrent, often life-threatening bacterial and fungal infections 202-205.  

Homozygous CD18 null mice display chronic dermatitis, increased numbers of neutrophils, 

increased immunoglobulin levels, lymphadenopathy, splenomegaly and a defect in T cell 

proliferation 206.  The αM and αL β2 integrins are involved in the functions of myeloid and 

lymphoid cells respectively 203 and the αDβ2 integrin is expressed on eosinophils 207.     

 
 

CD23 interacts with the α chains of the leukocyte integrins αMβ2 (CD11b/CD18) and αXβ2 

(CD11c/CD18) 148.  Liposomes coated with CD23 were found to bind to monocytes and 

CD23 was found to interact with these integrins on macrophages  148.  CD23 appears to 
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recognise an epitope on CD11b and c with similarity to factor X as this ligand inhibited the 

CD23 interaction.  Fibrinogen did not decrease the interaction therefore it is not likely that 

binding occurs via the RGD motif. The interaction is likely to be cation dependent as Ca2+ 

chelation by EDTA decreased binding of CD23 to monocytes and addition of Ca2+ led to a 

dose-dependent increase in monocytes binding.  Tunicamycin (glycosylation disrupting 

agent) decreases the interaction between CD11b/c and CD23 and therefore CD23 may be 

acting like a C type lectin recognizing sugars on the integrins to facilitate binding 148.      

 

sCD23 was shown to be capable of inducing proinflammatory cytokine synthesis in 

monocytes via the CD11b and CD11b integrins.  This increased production of IL-1β, IL-6 

and TNF-α occurred in response to CD23 ligation of CD11b/c in a nitric oxide synthase 

(NOS) dependent manner 208.   The signalling pathways of this mode of cytokine production 

is not yet well defined.  

 

1.6.7b  CD23 interaction with alpha v (αv) integrins 

 

The αv family of integrins (vitronectin receptor family) include the αv subunit paired with 

either β1, β3, β5, β6 or β8.  All of these group members bind to the RGD sequence found in 

substrates including vitronectin, fibronectin, osteonectin, fibrinogen, von Willebrand factor 

and thrombospondin.  Apart from αvβ6 all the integrins bind vitronectin.   

 

Some cell types including embryonic fibroblasts 209, smooth muscle cells, 210, neural crest 

cells 211 and melanoma cells 212 express up to three αv heterodimers which could potentially 

act as vitronectin receptors.  This apparent redundancy could reflect the same ligand binding 

to different receptors to facilitate the transmission of separate signals to invoke various cell 

behaviours.  An example of this is seen in the Chinese hamster ovary cell line which 

expressed the α5β1 fibronectin receptor and does not undergo apoptosis when plated on 

fibronectin following withdrawal of serum.  In the same cells αvβ1 is also expressed where is 

also acts as a receptor for fibrinogen but does not have the same effect of protection from 

apoptosis 213.  In addition, co-operation between integrins has been observed where αvβ5-

expressing FG carcinoma cells which bind to but do not migrate on vitronectin were able to 
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migrate on vitronectin but variants of this cell type which expressed αvβ3 were capable of 

migration on vitronectin. Further, addition of epidermal growth factor (EGF) to an αvβ3-

deficient FG carcinoma cells allowed vitronectin migration via an αvβ5-mediated signalling 

event through PKC (protein kinase C).  This suggests that ligation of the αvβ3 integrin 

produced a signal not generated through αvβ5 that could be replicated by activation of PKC 
214.   In the differentiation of oligodendroglial cells the relative levels of αvβ1 and αvβ5 alter, 

perhaps indicating a role for particular integrins at defined windows in cell development 200.  

These integrins are therefore capable of acting alone or in conjunction with other integrins or 

environmental cues to modify cellular behaviours/functions 212.    

 

Out of all the vitronectin receptors, αvβ3 and αvβ5 are the best described in terms of 

function.  αvβ5 appears to mediate spreading only on vitronectin 211,214 whereas αvβ3 can 

mediate migration via a range of substrates including fibronectin, vitronectin, fibrinogen, 

laminin, osteopontin and collagen 210,215,216.  In addition the cytoplasmic tail of β5 does not 

appear to be able to convey growth promoting signals following ligation but β3 has been 

implicated in providing positive growth signals to melanoma cells 217-219.  This evidence 

makes αvβ3 a prime candidate for a major role in tumour progression and metastasis 212.    

 

CD23 interacts with the vitronectin receptor αvβ3.  αvβ3 is associated with CD47 (also 

called Integrin Associated Protein – IAP), a 50kDa 5-transmembrane protein to form the 

αvβ3 signalling complex.  This complex regulates leukocyte activation and mediates the 

phagocytosis of aging apoptotic leukocytes. This function resolves inflammation by 

removing these leukocytes before they disgorge their potentially harmful contents 220.  The 

highest expression levels of αvβ3 are found on osteoclasts, specialised macrophage variant 

cells that degrade mineralised tissue and are responsible for the modelling and remodelling of 

bone 221.  Osteoclasts express both αvβ5 and αvβ3 integrins and it has been demonstrated by 

Inoue et al that this expression is developmentally regulated.  The sole integrin expressed on 

these cells at a precursor stage is αvβ5 and this integrin is replaced by αvβ3 as differentiation 

progresses 222. 
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Studies of β3-/-, β5-/- and β3-/-/β5-/- mice reveal abnormalities in angiognesis but not 

lymphopoiesis 223 which suggests αvβ5 does not have a role in murine lymphocyte 

development.  The CD23-αvβ5 interaction may well be exclusive to humans – although 

murine CD23 does act as a receptor for IgE it is devoid of cytokine activities and apparently 

does not bind integrins.  Likewise, the functions of human and murine IL-7 in lymphopoiesis 

are dissimilar 1,224 and murine stromal cells have been found to be inferior to human stromal 

cells in sustaining human B lymphopoiesis in vitro 225. 

 

1.7 Multiple Myeloma  

 

Multiple myeloma accounts for 10% of malignant blood diseases. It is defined by the clonal 

proliferation of malignant plasma cells in the bone marrow compartment, secretion of 

monoclonal antibodies, and inhibition of normal antibody synthesis and of normal 

differentiation.  The malignant plasma cells found in the bone marrow originate from lymph 

nodes and then migrate across the endothelium of bone marrow sinuses to the bone marrow 

environment where they can interact with bone marrow stromal cells 226. This interaction with 

stromal cells is crucial to the homing and survival of these cells in the bone marrow.  It is also 

found that osteoclast activity is increased in areas close to the multiple myeloma cells and 

patients often exhibit skeletal destruction 227.   

 

This migration is though to be mediated via the action of the chemokine SDF-1 (stromal cell-

derived factor 1) and its receptor CXCR4.  Stromal cells constitutively secrete SDF-1 at high 

levels and this chemokine is a chemotactic factor for many cells including haematopoietic 

progenitor cells 228.  CXCR4 has a role in B cell migration and proliferation and is expressed 

by endothelium and myeloma cells but not by marrow stromal cells 229. It is thought that 

SDF-1 regulates the migration of myeloma cells by transiently upregulating VLA-4 

(α4β1)/VCAM-1 inducing cell adhesion to the endothelium and contributing to the 

trafficking of multiple myeloma cells 230.  Other chemokine receptors expressed by multiple 

myeloma cells are CXCR3, CCR1, CCR5 and CCR6.  These receptors are ligands for MIP-

1α, MIP-1β, CXC and RANTES.  These chemokines, along with the “homing” chemokine 

SDF-1, have a role to play in the processes of tumour growth and bone destruction in 

multiple myeloma 231.  
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1.8 CD47 

 

Multiple myeloma cells have been found to undergo apoptosis when exposed to an antibody 

directed against CD47 232.  A bivalent single chain antibody fragment directed against CD47 

has been put forward as a potential anti-tumour treatment in conjunction with conventional 

chemotherapy due to its induction of apoptosis via a caspase-independent manner.  The 

model used by Kikuchi et al (grafting of CD47-expressing human KPMM2 cells into SCID 

(Severe Combined Immunodeficiency) mice) showed that this molecule can be used with 

chemotherapy as the cells do not possess Fc and therefore do not rely on induction of 

apoptosis with assistance from other immune cells.  During chemotherapy these cells would 

be in short supply and therefore success of treatment would be greatly reduced 232.   

 

Ligation of CD47 also promoted caspase-independent apoptosis in cells such as T cells and 

B-CLL 233,234. The cell death induced by CD47 in B-CLL was characterised by cell shrinkage, 

exposure of phosphatidylserine (PS), and mitochondrial matrix swelling in the absence of 

nuclear degradation 233.  It was then further elucidated that there is loss of mitochondrial 

membrane potential and generation of reactive oxygen species (ROS) but this does not result 

in release of cytochrome c or apoptosis inducing factor (AIF) from the mitochondria 235. In 

addition, the CD47 ligand thrombospondin and anti-CD47 antibodies caused apoptosis-like 

cell death in breast tumour cells 236, monocytes and dendritic cells 237 and certain fibroblasts 
238. Mateo et al found that blood cells susceptible to CD47-induced cell death included U937 

cells (monocytes), Jurkat cells (T cells) and RPMI8866 (lymphoblastoid cells) 234. Further, on 

immune cells, ligation of CD47 by soluble mAbs resulted in inhibition of cytokine release 

from dendritic cells 239 and, when immobilized, CD47 mAb costimulated T-cell receptor 

(TCR) activated T cells 240.  How CD47 acts appears to be influenced by the way it is 

engaged, the surface molecules it interacts with and the cell type it is expressed upon 241,242.  

 

CD47 (also known as IAP – integrin associated protein) is a member of the Ig superfamily 

and runs on SDS-PAGE at 45-55 kDa.  This broad migration is due to heavy glycosylation of 

the extracellular IgV (V for variable) domain. CD47 is a transmembrane type I glycoprotein 

(C terminus is cytoplasmic and N terminus is extracellular) 243 which spans the membrane 5 
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times and is ubiquitously expressed on haematopoietic cells and non-haematopoietic cells 244.  

It acts as a receptor for thrombospondin 245 and for SIRPα (transmembrane signal recognition 

particle) 246.  Through its interaction with β1, β2 and β3 integrins it modulates processes such 

as cell motility, leukocyte adhesion, phagocytosis and platelet activation via heterotrimeric G 

protein signalling 243.  The complex formed between CD47 and the integrin has been 

described as an “ad hoc” seven-transmembrane receptor composed of two membrane-bound 

domains from the heterodimeric integrin and the five membrane spanning CD47 domains 247. 

As previously mentioned, CD47 forms a signalling complex through an association with the 

αvβ3 integrin and on monocytes this complex binds to CD23 and results in cytokine 

synthesis 114.  The apoptotic effects of CD47 ligation seen in B-CLL cells are not thought to 

be mediated by the αvβ3/CD47 complex however, this is though to be distinct from integrin 

binding as ligation of αvβ3, αvβ5 or CD23 with their respective immobilised antibodies did 

not induce apoptosis 233.  In B-CLL cells treated with anti-CD47 the resultant apoptosis could 

not be reversed by addition of survival factors such as IL-4 or IFN-γ.  These are “rescuing” 

cytokines that do not function this way in this context 233.   

 

1.9 Work leading up to the project 

 

The Cushley laboratory has recently discovered an interaction between CD23 and αvβ5.  The 

interaction between sCD23 and αvβ5 is implicated in the inhibition of apoptosis of pre-B 

cells and is independent of the classical RGD recognition site on the integrin as RGDS 

peptide did not inhibit the interaction.  The region of CD23 which binds to the integrin 

contains the motif RKC (Arg-Lys-Cys). Peptides derived from CD23 containing this motif 

were able to bind cells expressing αvβ3 and αvβ5 and to αvβ3 and αvβ5 alone.  These new 

data suggest an alternative recognition site on CD23 and a further role for this multi-

functional protein.   

 

A library of overlapping nonapeptides derived from CD23 was produced and several of these 

peptides (#9-12) were found to bind to the pre-B cell line SMS-SB.  This cell line does not 

express any of the known CD23 receptors and affinity isolation identified the αvβ5 integrin 

as the receptor on these cells. αvβ5 is expression is limited to B cell precursors and 
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universally expressed on acute lymphocytic leukaemia (ALL) cells.  B-CLL (B-chronic 

lymphocytic leukaemia) cells do not express αvβ5 (figures 8 and 9).  In addition to this 

identification of a new CD23 receptor it was found that binding of CD23 to the integrin was 

via a novel motif, the RKC motif.  Classical integrin recognition is via the RGD motif and the 

RKC motif was discovered following collection of evidence that RGD was not involved – 

RGDS peptide did not inhibit the interaction and the active site on CD23 did not contain the 

RGD sequence.  This motif is located at a site distinct from those of the IgE binding site, the 

CD21 binding site and the oligomerisation site (figure 10). 

 

Soluble CD23 has been shown to influence growth of SMS-SB cells in a dose-dependent 

manner (figure 11). It was found the CD23 peptides containing the RKC motif exhibited 

biological activity.  When SMS-SB cells are seeded at low densities (5 X 104 cells/ml or less) 

they will undergo apoptosis.  As previously stated, the SMS-SB cells are adapted to culture in 

protein free hybridoma medium by virtue of the production of an unidentified autocrine 

factor. It has been determined that this autocrine factor is not CD23 110. Seeding of these cells 

at such low densities removes the autocrine factor and places the cells under stress and it is 

under these conditions that “rescue from apoptosis” treatments can be assessed. Use of 

peptides containing the RKC motif leads to significant increase in proliferation and this 

mimics the effect of full length sCD23.   
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1.10 Research Aims 

 

One of the aims of this thesis was to examine the interaction between stromal cells and SMS-

SB cells in terms of CD23 and αvβ5.  It has been found previously that hMSCs (human 

marrow stromal cells) support the growth of SMS-SB cells in protein-free medium and it was 

intended to test the importance of the interplay between CD23 from stromal cells and αvβ5 

expressed on the B cell precursors.   

 

Another aim of this thesis was to examine the effects of the CD23-derived peptides on pre-B 

cell lines other than SMS-SB and also multiple myeloma cell lines.  These cells were to be 

assessed for their expression of CD23 receptors and response to peptides in terms of binding 

and proliferation in order that information could be gathered to determine whether response 

to CD23-derived peptides was dependent upon the CD23 receptor(s) expressed or the 

developmental stage of the cell line being examined.  

 

The final aim of this thesis was to investigate the effects of anti-CD47 antibodies on a range 

of cell types at varying stages of development.  It was hoped to further expand upon work 

already in the literature which has found that some cell types undergo apoptosis upon ligation 

of CD47 and others are resistant to such apoptosis.  The cell types in question were to be 

assayed for their expression of CD47 and its signalling partner, the CD23 receptor, αvβ3.  It 

was hoped that such information could enable the identification of a pattern between 

induction of apoptosis/resistance to apoptosis and presence/absence of αvβ3 or whether the 

response depends upon developmental stage.      
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Figure 1.8.  αvβ5 expression. Graph produced from FACS data showing expression of 

αvβ5 integrin on various leukaemia cells.  It can be seen that only B-CLL cells do not 

express this integrin.    
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Figure 1.9. αvβ5 expression. FACS staining showing expression of αvβ5 on non-leukaemic 

peripheral blood and bone marrow.  B cell precursors express αvβ5 but mature B cells do 

not.  
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Figure 1.10. CD23 and its binding sites 248.   Cartoon of full membrane-bound CD23 trimer 

(a) and ribbon diagram of the head domain showing binding sites of IgE, CD21 and αvβ5 

integrin (b).  The αvβ5 binding site is the RKC motif.  
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Figure 1.11.  Effect of sCD23 on SMS-SB cell proliferation.  Data from a tritiated 

thymidine incorporation proliferation assay.  It can clearly be seen that proliferation increases 

with increasing concentrations of sCD23.  At 10nM the proliferation rate reaches a plateau 

and proliferation no longer depends on raising sCD23 concentration.  
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2.1 Materials 
 
Unless otherwise stated all chemicals were purchased from Sigma, Poole, Dorset.  
 
2.1.1 General chemicals and materials 
 
 
Bovine Serum Albumin 
  
DMSO (Dimethyl Sulphoxide) 
 
Propidium Iodide 
 
 

 
 
Sigma, Poole, Dorset 
 
 

Supersignal West Pico western blotting 
detection system 
 

Perbio Science UK Ltd, Cramlington, UK 

Protein multicoloured standards Invitrogen, paisley UK 
Annexin V – FITC PharMingen International 
NOVEX 4-12% polyacrylamide gels and 
gel tanks including blotting module and 
20X MES Running buffer 

Invitrogen, Paisley, UK 

TRIZOL reagent Sigma, Poole, Dorset 
RNase free plasticware Thistle Scientific, Glasgow UK  
 
 
2.1.2 Cell culture materials and reagents 
 
G418 Calbiochem-Novabiochem, Nottingham, 

UK 
Tissue culture flasks 
Disposable cell scrapers 
96 well plates 
60mm cell culture dishes 
 
 

Corning Costar, Birmingham, UK 

RPMI-1640 medium 
Dulbecco’s Modified Eagle’s Medium 
(DMEM) 
Trypsin 
Trypan blue 
L-glutamine 
Penicillin/streptomycin 

Sigma, Poole, Dorset, UK 

Haemocytometer Philip Harris Scientific, Lanarkshire, UK 
Protein-Free Hybridoma Medium II 
(PFHM II) 

Gibco, Invitrogen, Paisley UK 



 79 

DOTAP liposomal transfection reagent 
(1,2-Dioleoyl-3-Trimethylammonium-
Propane (Chloride Salt) 

Boehringer Mannheim Ltd, Sussex, UK 

Foteal Calf Serum (FCS) TCS Cellworks Ltd, Buckingham UK 
Cryovials Corning Costar, Birmingham, UK 
25ml pipettes 
10ml pipettes 
Cell scrapers 
96 well plates (flat bottom) 
75cm flasks 
25cm flasks 
 

Corning Inc., Costar, BirminghamUK 
 
 
 

 
 
2.1.3 Antibodies 
 
Mouse anti-human CD23 Clone BU38 
(Inhibits IgE binding) 

Alexis Corporation UK, Nottingham, UK  

Mouse anti-human CD23 Clone ML233 
(binding site unknown) 

 

Mouse anti-human Akt (PKB) 
(cat #2966) 

New England Biolabs, Hitchin, Herts UK 

Rabbit anti-human phospho-Akt (PKB) 
(Ser473 cats #4058 and 9271 ) 

New England Biolabs, Hitchin, Herts UK 

Rabbit anti-human Akt (PKB)  
(cat #9272) 

New England Biolabs, Hitchin, Herts, 
UK 

Mouse anti-human αvβ5 Clone P1F6 
(precise binding site unknown but 
inhibits binding of HT29 cells, carcinoma 
cells and myeloma cells to vitronectin.) 

Upstate (Now Millipore),Chandlers Ford, 
Hampshire UK 

Mouse anti-human αv Clone AMF7 Chemicon (Now Millipore), Chandlers 
Ford, Hampshire UK 

Mouse anti-human αvβ5 Clone 15F11 
(precise binding site unknown but does 
not block ligand binding or adhesion)  

Chemicon (Now Millipore), Chandlers 
Ford, Hampshire UK  

Mouse anti-human αvβ3 Clone 23C6 
(precise binding site unknown but 
inhibits binding in adhesion assays) 

Chemicon (Now Millipore), Chandlers 
Ford, Hampshire UK 

Mouse isotype control IgG1 Sigma, Poole, Dorset, UK 
Mouse isotype control IgG2a Sigma, Poole, Dorset, UK 
Goat anti-mouse immunoglobulins PE 
conjugate 

Dako, Ely, Cambridgeshire, UK 

anti-rabbit HRP conjugate  
Cat#A6154 
 

Sigma, Poole, Dorset, UK 
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2.1.4 Cell Lines 
 
BLIN-1 Pre-B cell stage of development, 

abnormality in chromosome 9p.  
NALM-6 Human pre-B cell line established from 

ALL (acute lymphocytic leukaemia) 
patient. T(5;12) (translocation of 
chromosomes 5 and 12) 

SMS-SB Pre-B cell line established from ALL 
patient. c-fos overexpressed.  

697 Pre-B ALL cell line t(1;19) 
BAF03 Mouse pro-B cell line. Dependent upon 

IL-3.  
RPMI8866 EBV transformed lymphoblastoid cell line 

from CML patient.  
hMSC-TERT Bone marrow stromal cells immortalised 

with the catalytic subunit of telomerase 
249.  

KMS11 Multiple myeloma cell line. t(4;14) 
H929 Multiple myeloma cell line (t4;14) 

FGFR (fibroblast growth factor receptor) 
negative 

HEK293 Human embryonic kidney cells.  
 
 
2.1.5 Plasmids 
 
CD23a Lab stocks 
CD23b Lab stocks  
 
2.1.6 CD23 Peptides - Synthesized by Mimotopes. CD23 sequence (M151-S321). RKC 

sequence shown in bold. Peptide sequences indicated by black lines.  
 
 
 
MELQVSSGFVCNTCPEKWINFQRKCYYFGKGTKQWVHARYACDDMEGQLVSIHSP
EEQDFLTKHASHTGSWIGLRNLDLKGEFIWVDGSHVDYSNWAPGEPTSRSQGEDCV
MMRGSGRWNDAFCDRKLGAWVCDRLATCTPPASEGSAESMGPDSRPDPDGRLPTP
SAPLHS 
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Peptide 9 sequence KWINFQRKC 
Long Peptide sequence KWINFQRKCYYFGKG 
Peptide 8 sequence PEKWINFQR 
Peptide 58 sequence GSGRWNDAF 
2.2 Methods 

 

2.2.1 Culture of Human B Lymphocytes 

 

SMS-SB cells were routinely maintained in RPMI-1640 medium supplemented with 10% 

(v/v) heat inactivated foetal calf serum (FCS) (heated at 57°C for 50 minutes), 2mM L-

glutamine and 50 units/ml penicillin and 50µg/ml streptomycin.  These cells were also 

cultured in Protein-Free Hybridoma Medium II (PFHM II).  It should be noted that when 

adapting these cells to PFHM II this must be done by passaging every 2 days by adding 10ml 

of cells growing in complete RPMI to 10ml of PFHM II. After 7 of such passages the cells 

are fully adapted to PFHM.  If these cells are taken from complete media culture, centrifuged 

and resuspended in PFHM II immediately then the cells will become strongly adherent to 

plastic and their morphology will resemble apoptotic cells. 

 

All other B cells were cultured in supplemented RPMI-1640 medium only. Cells were sub-

cultured every 2-3 days depending on experimental demands.  Cells were cultured in 75cm2 

flasks at 37°C in a humidified 6% CO2 incubator and manipulated aseptically in a Laminar 

flow hood.  

 

2.2.2 Culture of non-B cell lines 

 

hMSC-TERT cells were routinely maintained in Dullbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with 10% (v/v) FCS, 2mM L-glutamine and 50 units/ml penicillin 

and 50µg/ml streptomycin.  Cells were sub-cultured at a 1 in 10 split every week using 

trypsin (0.25 w/v) in PBS.  HEK293 cells were detached from the flask once per week and 

subcultured at a split of 1 in 10.  All cells were cultured in 75cm2 flasks under the same 

conditions as the B cells.  Transfected HEK cells were revived from liquid nitrogen stocks 

and maintained in the presence of 70µg/ml G418. 
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2.2.3 Frozen Cell Stocks  

 

Frozen stocks of each cell line routinely used in culture were stored long-term in liquid 

nitrogen.  107 logarithmically growing cells were centrifuged and resuspended in 1ml of 

freezing medium (90% (v/v) heat inactivated FCS and 10% (v/v) dimethyl sulphoxide 

(DMSO) and quickly transferred to cryovials. The vials were kept at –70°C for 3-4 days 

before being conveyed to liquid nitrogen.  Cells being taken from liquid nitrogen were 

allowed to thaw and then washed in 10ml of appropriate medium to eliminate any remaining 

DMSO.   The cells were then resuspended in medium and placed into culture flasks where 

they were allowed to recover prior to any experimental use or manipulation.    

 

2.2.4 Flow Cytometry 

 

Flow cytometry was performed using a Becton Dickinson FACScan Flow Cytometer fitted 

with an argon laser. Samples were prepared in 5ml FACS tubes. 

 

2.2.5 Cell Phenotyping 
 

5µl of antibody (at appropriate concentration and either unlabelled or flurophore conjugated) 

was added to the cells and incubated in the dark for 30-60 minutes.  The samples were 

washed twice in cold PBS and, if necessary (i.e. for unlabelled primary antibodies), 5µl of 

secondary flurophore-conjugated antibody was added and the samples incubated for a further 

30-60 minutes.  Cells were then washed a further two times in cold PBS and resuspended in 

300µl of PBS for analysis on the FACScan.  Cytometer channel FL1 (525nm) was used to 

detect FITC fluorescence against cell count and FL2 (575nm) was used to detect PE 

fluorescence.  FL3 (>630nm) was used to detect Cy5.  

 

2.2.6 Annexin V/Propidium Iodide Staining 
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Ninety-six well flat-bottomed plates were coated with 10µg/ml antibody in 100µl 0.1M 

NaHCO3
- pH9 and left overnight at 4-8°C to immobilise. The following day the plates were 

washed and blocked with culture medium.  4 X 106/ml cells in 100µl were added to the wells 

and the soluble antibodies/treatments were also added and incubated at 37°C for 16 hours.  

The cells were transferred to FACS tubes, washed twice in ice-cold PBS and resuspended in 

binding buffer to a concentration of 2 X 106/ml in 200µl.  100µl of this was taken into a 

separate FACS tube and added to this was 0.5µg/ml Annexin V-FITC and 0.5µg/ml 

propidium iodide. The samples were then incubated at room temperature in the dark for 15 

minutes, resuspended in 400µl of binding buffer and analysed on the FACScan within the 

hour. For Annexin V-FITC staining cytometer channel FL1 (525nm) was used and FL3 

(>630nm) was used for detection of propidium iodide.  

 

All cells were assayed by flow cytometry for FL1/FL3 (no gating of populations/elimination 

of debris). 

Quadrants were applied as follows on the flow cytometric data from the above assay:- 

 

  
Single stained for propidium iodide                             Single stained for annexin V 

 

2.27 Proliferation Assay 
 

This assay was carried out in 96-well plate format. Treatments were carried out in triplicate 

and are as detailed in separate figures.  Cells were added at densities of 2,000 – 10,000 per 
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well in a volume of 80µl bringing the total volume to 100µl.  The plates were incubated for 3 

days at 37°C in a humidified incubator.  Cells were then pulsed with 0.3µCi/well 3H-

thymidine for 16-18 hours, following standard radioactivity safety procedures, then harvested 

to a filtermat, dried and counted in scintillation counter.  Mean counts per minute (CPM) 

were calculated for triplicates and graphs constructed using Microsoft Excel. Statistical 

analysis was performed by way of a Student’s T test and asterisks were applied where p 

values were <0.5 when comparing like for like.      

 

2.2.8 Transfection Assay 

 

All transfections were carried out using the DOTAP transfection reagent (Boehringer 

Mannheim Ltd).  Cells were sub-cultured into 60mm culture dishes and grown overnight to 

60-70% confluence.  The cells were then transfected with 5µg of plasmid DNA plus 70µl 

DOTAP transfection reagent in accordance with the manufacturer’s instructions.  Fresh 

medium was supplied 24 hours post-transfection.  Selection in 500µg/ml G418 sulphate for 

plasmids containing the neomycin resistance gene began 48 hours later.  Cells which had 

been successfully transfected survived the antibiotic selection and were then further sub-

cultured.  

 

2.2.9 Fluorescent Microscopy 

 

20mm diameter coverslips were placed into wells of 6-well plates and seeded onto these was 

approximately 105 cells. The cells were incubated for 2-3 days and then the coverslips were 

rinsed three times in ice-cold PBS.  Primary antibody was then added to the cells and 

incubated at room temperature for 30 minutes.  The coverslips were then rinsed again three 

times and secondary antibody added.  After a further 30 minute incubation at room 

temperature the coverslips were rinsed three times and then examined using a fluorescent 

microscope. 

 

2.2.10  Cell Lysate Preparation 

 



 85 

Cells were washed twice in ice-cold PBS and resuspended in RIPA buffer (see Appendix) to 

a concentration of 5 X 107/ml.  The cells were then left on ice for 30 minutes and then the 

samples were centrifuged at 13,600g for 15 minutes.  The supernatant was collected and then 

centrifuged for a further 15 minutes.  The supernatant was then aliquotted for freezing at -

20°C.  When preparing lysates from time-course experiments, the samples were placed into 

RIPA buffer without detergents, centrifuged and the pellets resuspended in RIPA buffer for 

30 minutes etc as above.  

 

2.2.11  Immunoprecipitation 

 

1µg of antibody was added to 100µl of cell lysate and gently mixed.  The cells were then left 

on ice for 30 minutes before addition of 30µl of protein G-sepharose beads in RIPA buffer 

without detergents. The samples were incubated overnight at 4-8°C on a rotary shaker.  The 

next day the beads were pelleted by centrifugation in a microfuge at 3000g and the 

supernatant discarded.  The beads were washed five times with RIPA buffer and then 

suspended in 20µl of 2X protein loading dye (see Appendix), vortexed and boiled for 5 

minutes.  The supernatant was then either frozen or used in SDS-PAGE.   

      

2.2.12 SDS-PAGE Gel Electrophoresis, Western Blotting and ECL detection  

 

2.2.14a SDS-PAGE 

 

Reducing sample buffer (see Appendix) was used in a 1:1 ratio with sample before loading 

onto the gel.  NOVEX pre-cast gels were used in conjunction with NuPAGE® MES SDS 

running buffer (Invitrogen). The gel was electrophoresed at 200V for approximately 45 

minutes in this running buffer.   

 

2.2.12b Western Blotting 

 

The protein was transferred from the gel to nitrocellulose in transfer buffer at 30V for one 

hour and then blocked for one hour in PBS/10% marvel (w/v).  The blot was then washed 5 

times over one hour in PBS/0.1% Tween 20 (v/v). Primary antibody was diluted to the 
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optimum concentration determined in PBS/0.1% Tween (v/v)/5%BSA (w/v) and incubated 

overnight with shaking.  The blot was then washed 5 times over one hour in PBS/0.1% 

Tween 20 (v/v).  Secondary antibody was then added and the blot incubated for one hour 

with shaking and washed a further 5 times.   

 

2.2.12c  ECL Detection  

 

Pierce Supersignal West kit was used according to the manufacturers instructions.  Solutions 

1 and 2 were mixed in equal proportions and added to the blot in a dish and the blot 

submerged for one minute.  Excess liquid was removed from the blot and the blot was placed 

inside a development cassette and exposed to Kodak film in the darkroom for between 10 

seconds and 1 hour, depending on the strength of signal, to detect antibody binding.       

 
2.2.13  RNA Isolation 
 

RNA was isolated from cells using TRIZOL reagent according to the manufacturer’s 

instructions using Rnase-free pipette tips and plasticware. Briefly, the pelleted cells (2.4X107) 

were washed once with 1XPBS then lysed with 0.2ml TRIZOL per 106 cells by pipetting the 

cells.  Chloroform was then added (0.1ml per 1ml of cell homogenate) and the samples were 

shaken vigorously for 15 seconds and put on ice for 5 minutes.  The samples were then 

centrifuged at 12,000 g for 15 minutes at 4°C.  Following centrifugation the homogenate 

forms two phases; a lower phenol-chloroform phase and an upper aqueous phase where the 

RNA is found.  This phase was carefully removed and transferred into a fresh tube and added 

to this was an equal volume of isopropanol and this was left on ice for 15 minutes to allow 

the RNA to precipitate.  The sample was then centrifuged as before and the resultant pellet 

was washed with 75% ethanol, air dried and resuspended in 30µl of RNase- free water.  

Samples were then either analysed or stored at -80°C prior to analysis.  Before use, sample 

concentrations were determined by spectrophotometer readings at A260 and A280.  Samples 

had A260/280 ratios greater than 1.9 indicative of DNA and protein-free preparations.    
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2.2.14  PCR (polymerase chain reaction) 
 
The following oligonucleotides were used as PCR primers for detection of CD23 mRNA: 

 

Forward: 

5’ CGT GTA CGG TGG GAG G 3’ 

Reverse: 

5’ CTT CGT TCC TCT CGT TCA ATT C 3’ 

 

and for GAPDH as control: 

 

Forward: 

5’ TCC ACC ACC CTG TTG CTG 3’ 

Reverse: 

5’ ACC ACA GTC CAT GCC ATC AC 3’ 

 

PCR reactions were performed using a Promega RT-PCR kit.  Reactions were carried out in 

0.5ml microcentrifuge tubes and were performed in a Techne Genius PCR machine.  After 

PCR, the samples were analysed on a 1% (w/v) agarose gel.   

 

Reaction mixture: 

 

mRNA    1ug 

upstream primer  50mol-1 

downstream primer  50mol-1 

DNTP mix   1µl  

AMV/Tfl 5X buffer  10µl 

DNA Pol Tfl    2µl 

AMV Reverse Transcriptase  1µl  
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dH20     to make up volume to 50µl 

 

Cycle parameters: 

 
94°C 5 minutes 1 cycle 

 
94°C 30 seconds     (denaturation) 

 
62°C 30 seconds 30 cycles (annealing) 

 
72°C 1minute     (extension) 

 
72°C 1 minute 

 
72°C 10 minutes 1 cycle 

 
4°C HOLD 
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CHAPTER 3 

 

RESULTS 

 

 

ANALYSIS OF HUMAN BONE MARROW STROMAL CELLS AND SMS-SB CELLS 
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3.1  Introduction 

 

Human Marrow Stromal Cells (hMSCs) are found in the bone marrow and contribute to the 

microenvironment which supports early B cell development from pluripotent stem cells 1.  

Stromal cells express cytokines such as IL-7 26, Flt-3 ligand 250 and SDF-1 43 which have a 

positive effect on the progression of B cell development and TNF-α, TGF-β and IFNγ which 

have a negative effect on B cell development.  In addition, stromal cells are believed to 

express CD23 249, which has a supportive effect on the growth and proliferation of precursor 

B cells.  Some precursor B cells have been found to express the integrin αvβ5 which acts as a 

receptor for CD23 and it is proposed that in precursor cells which express αvβ5 as the sole 

CD23 receptor the interaction between the two proteins has a supportive effect on growth, 

whether this effect is due to enhanced proliferation or suppressed apoptosis.   

 

3.1.1 hMSCs and SMS-SBs  

 

It is possible to plate out approximately 5,000 hMSCs per well in 96-well plate format and to 

use this layer of cells as a “feeder layer” upon which to grow SMS-SB cells. SMS-SB cells 

are pre-B cell-like and, as discussed earlier, overexpress the oncogene c-fos and express 

cytoplasmic µ heavy chains but not light chains 101.  These cells have been found to survive 

under culture conditions of growth in protein-free hybridoma medium and do not require 

additional protein growth factor supplements.  The reason for this unusual characteristic is 

that the cells produce an autocrine factor which, when expressed at an adequate level, 

sustains the cells in protein-free medium.  In order to perform experiments with these cells it 

is necessary to remove the influence of this autocrine factor either by centrifugation and 

medium replacement, or by seeding the cells at extremely low densities.  SMS-SB cells 

treated in this manner will certainly die unless rescued by specific experimental treatments.   

 

It has been discovered that “seeding” very low densities of SMS-SB cells onto the “feeder 

layer” of hMSCs described above allows growth of the SMS-SB cells, resulting in wells full 

of SMS-SB cells after approximately two weeks.  This has been observed to be the case when 

cells are seeded as low as 5 cells per well.  When the cells are at this very low density the 

time taken for the SMS-SBs to reach confluence is longer than, for example, cells seeded at 
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100 cells/well.  From this it is clear that the stromal cells are providing the SMS-SB cells 

with all the signals they require for growth and proliferation and in addition it has been 

observed that the stromal cells enjoy better viability in the presence of the SMS-SB cells 

(stromal cells plated in protein-free medium alone have been observed to lose adherence and 

do not survive). The cells are displaying symbiotic behaviour and appear to benefit hugely 

from the presence of each other – especially in the case of the SMS-SB cells, which face 

rapid cell death in the absence of survival signals.  To determine whether this benefit to the 

SMS-SB cells was due to secreted factors conditioned medium from stromal cells was used to 

culture the SMS-SB cells but it was found that growth was not supported (data not shown).  

 

3.2 Results 

 

3.2.1 SMS-SB Cells 

 

As previously stated, the SMS-SB cells do not express any CD23 receptors other than the 

integrin αvβ5.  This means that any effect CD23 has on these cells has to occur via this 

receptor.   

 

Figure 3.1 shows the results of flow cytometry performed with SMS-SB cells.  It can be seen 

that the SMS-SB cells stain positive for αvβ5 (antibody P1F6) and negative for αvβ3 

(antibody 23C6).  If the SMS-SB cells are interacting with the stromal cells in a growth-

affecting manner it has to be via the only CD23 receptor expressed on these cells, i.e. the 

integrin αvβ5.  Other CD23 receptors - β2 integrins (found on monocytes), CD21 and αvβ3 

are not found on SMS-SB cells 110.   

 

3.2.2  hMSCs and SMS-SBs 

 

Figure 3.2 shows a photograph of hMSCs and SMS-SB cells.  At some points (shown by 

arrows) it appears that the SMS-SB cells are growing in physical contact with the stromal 

cells.  This leads to the hypothesis that a physical interaction between membrane bound cell 

surface molecules (perhaps CD23 and its receptor the integrin αvβ5) is sustaining SMS-SB 

cell growth.  It is possible, of course, that simple random placement of the cells in this 
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particular field gives this impression.  As previously stated, Fourcade and colleagues 

identified long term bone marrow culture derived stromal cells which expressed CD23 

mRNAs at high levels and secreted soluble CD23 in their supernatants 249.  The hypothesis 

that hMSCs express CD23 was evaluated.   

 

3.2.3 Detection of CD23 protein in hMSCs 

 

Flow cytometry was performed on hMSCs obtained in solution via their removal from the 

bottom of the tissue culture flask using a cell scraper and subsequent resuspension.  The cells 

were incubated with an anti(α)-CD23 antibody as the primary antibody and an RPE-

conjugated secondary antibody.  As a positive control RPMI-8866 cells were also stained for 

CD23 – this cell line produces a high level of surface CD23 and the cells can be seen 

microscopically as large clumps as a result of the interaction between the CD21 and CD23 

surface molecules 155.   From the results of the flow cytometry it could not be demonstrated 

that the stromal cells have surface CD23.  Comparison with the high levels of CD23 

produced by the RPMI8866 cells indicates that the stromal cells are not producing CD23 

within the detection limits of flow cytometry (Figure 3.3).  

 

Western blotting analysis of stromal cell lysates also failed to detect CD23 protein.  Figure 

3.4 shows immunoblots of recombinant sCD23 and stromal cell lysates and it can be seen that 

only the control sCD23 can be identified.    

 

Some growth factors are not secreted by bone marrow cells until they are induced to do so by 

precursor cells; for example, IL-7.  Stromal cells were incubated in a flask with SMS-SB 

cells for one week, the SMS-SB cells washed off and lysates prepared from the stromal cells 

left behind in the flask. The rationale behind this experiment was that if the stromal cells do 

not express CD23 without contact from precursor cells, this might induce the hMSCs to 

produce CD23.  However, again, western blotting failed to detect any CD23 protein from 

these lysates (data not shown). hMSC cell culture supernatants were assayed for CD23 

protein using a CD23 ELISA.  No CD23 could be detected in these supernatants (Figure 3.5).   

   

3.2.3 Detection of CD23 mRNA in hMSCs 
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The level of CD23 transcripts was assessed by RT-PCR analysis of hMSC RNA.  Primers 

were selected to encompass the coding sequences of exons X and Y, thereby avoiding 

spurious products arising from contaminating DNA and also including both CD23a and 

CD23b transcripts as potential amplification targets.  

 

Figure 3.6 shows a scanned picture of a DNA gel.  The DNA fragments separated in this gel 

were produced by RT-PCR from stromal cell RNA which was obtained using Trizol reagent.  

The predicted PCR fragment size produced using CD23 left and right primers is 256 and this 

gel shows that a fragment of this size has been produced by the PCR and confirms that the 

hMSCs contain CD23 mRNA.  From the intensity of the DNA fragment it is clear that, from 

this sample, the cells are not producing a high level of CD23 RNA compared to GAPDH. A 

positive control from RPMI8866 cDNA is not included due to failure of the PCR but would 

have been extremely revealing in terms of mRNA levels as it is known that these cells 

express a very high amount of CD23.  

 

3.2.4 Transfections 

 

Attempts were then made to transfect the hMSCs with a CD23a plasmid.  This would 

hopefully have boosted the CD23 levels to a detectable level and investigations could have 

been made into the effect of this on the SMS-SB cells seeded thereon.  The plasmid used 

carried a drug resistance gene for kanamycin resistance to enable selection of cells which 

survive culture in kanamycin and are therefore successfully expressing the CD23a plasmid.    

 

The cells were transfected using DOTAP as the transfection reagent and this appeared to have 

been successful as cell growth occurred over the next few days through 3 passages.  

However, further culture of the transfected cells failed and the cells lost adherence and 

viability. This occurred approximately 10 days post-transfection.  The cells were not assayed 

for CD23 expression.  

 

This was repeated numerous times, varying the antibiotic concentration from 10µg/ml to 

50µg/ml but the cells never survived longer than 10 days post-transfection.  The cells were 
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only transiently expressing the CD23 plasmid and therefore were not going to prove 

appropriate for use in the long-term culture system used.  Further attempts to transfect these 

stromal cells with CD23 were abandoned.  

 

The only evidence that the stromal cells produce CD23 came from the RT-PCR performed 

using CD23 primers on hMSC mRNA. It was not possible to confirm whether these cells 

expressed either membrane bound or soluble CD23, only message was able to be detected 

and not protein.  If these cells are expressing CD23 it may be at very low levels beneath the 

detection limits of the techniques attempted.  

 

3.2.5 Disruption of CD23/αvβ5 Interaction 

 

Using the assay described above involving stromal cells and low densities of SMS-SB cells, 

various different clones of anti-CD23 antibodies were added to the stromal cells prior to the 

seeding of SMS-SB cells.  This was carried out in an attempt to prevent the integrin from 

physically contacting the CD23, if present, on the surface of the hMSCs.   Figure 3.7 shows 

photographs of cells subjected to these treatments.  Examination of these fields reveals that 

the antibodies do not have any effect on the growth of the SMS-SB cells.  The SMS-SB cells 

still have a viable appearance, are still able to adhere to the stromal cells and have not 

decreased in number.  The photograph showing the cells treated with the BU38 clone does 

have some novel features, however, when compared with the ML233 clone-treated cells.  The 

SMS-SB cells are found in “beads on a string” along the stromal cells rather than in 

individual sites.  The cells appear to be dividing in very close contact with the hMSCs.  In the 

absence of any effect on the growth of SMS-SB cells following these treatments, this 

approach was not continued any further.  If CD23 is expressed on these hMSCs, then its 

interaction with αvβ5 on the SMS-SB cells is not required for the growth of these precursor 

B cells.  Alternatively, it is possible that the antibodies used did not bind at the interaction 

site and the CD23/αvβ5 contact was not prevented (it is known that BU38 and MHM6 both 

block IgE binding and the IgE binding site is distinct from the αvβ5 binding site).   The data 

of figure 3.7 show that anti-CD23 Mabs had no effect on adhesion of SMS-SB cells to hMSC 

monolayers.  This may be explained either by a failure of the anti-CD23 Mabs to bind at or 

near the site on CD23 recognised by the integrin, or that a second adhesion interaction, 
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particularly the VLA-4/VCAM-1 interaction, has a dominant role that swamps any effect of 

the CD23-αvβ5 interaction.  A further possibility is that the stromal cell line does not express 

CD23 either at all or not at sufficient levels to allow it to have a meaningful effect on SMS-

SB adhesion or survival.     

  

3.2.6 Conclusions 

 

The data for CD23 expression by hMSC cells are inconclusive but suggest that the line does 

not express CD23.  The only results which support the assertion that the hMSCs have CD23 

are those from the RT-PCR.  FACS, microscopy and western blotting did not detect CD23.  It 

is possible that the levels of CD23 expressed by the hMSCs were below that of the detection 

limits in these assays, or perhaps the cells do not produce CD23 until driven to do so by other 

cells/matrix factors in the bone marrow stroma.   

 

SMS-SB cells express only αvβ5 as a CD23 receptor.  This means that any effect on the 

SMS-SB cells from CD23 has to occur via this integrin.  

 

The stromal cells support the growth of the SMS-SB cells at extremely low densities (as low 

as 5 cells per well on top of 5,000 stromal cells).  This growth cannot be prevented using 

antibodies against CD23.  Perhaps the interaction is simply not the sole factor in the growth 

sustenance, or, perhaps the antibodies are not directed against the epitopes specifically 

involved in the interaction.       

 

Physical separation of these two cell types using, for example, the Corning transwell system, 

would allow for diffusion of soluble factors from stromal cells to SMS-SBs and vice versa.  

This would allow for determination of the importance of secreted factors versus physical 

interactions between the cells.  
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Figure 3.1 Integrin expression on SMS-SB cells:  

 

A. staining for αvβ5 and B. staining for αvβ3.  Green solid represents the experimental 

antibody staining and the pink line represents isotype control antibody staining.  These data 

are representative of experiments performed five times.   
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Figure 3.2 SMS-SB cells adhere to and grow upon human stromal cells.   

 

The stromal cells are the adherent cells and the SMS-SB cells are the rounded cells. Arrows 

show SMS-SB cells growing directly alongside hMSC cells. This photograph shows a field 

of a well in a 96-well plate.  Stromal cells were plated at 5,000 cells per well and SMS-SBs at 

25 cells per well.  Pictures were taken one week after addition of SMS-SB cells.  This result 

is typical of experiments performed in excess of 20 times.  
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Figure 3.3 A CD23 Expression on RPMI8866 cells.   

 

(i) shows the isotype control antibody staining of the RPMI8866 cells and (ii) shows the 

staining achieved using α-CD23.  (iii) shows an overlay of the isotype control (green line) 

and the CD23 staining (pink solid).  This experiment was performed five times and the data 

shown are representative data.   
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Figure 3.3 A 

 

   (i)                                         (ii) 

        (iii) 
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Figure 3.3 B CD23 expression on hMSCs  

 

(i) shows the isotype control antibody staining of the hMSC cells and (ii) shows the staining 

achieved using α-CD23 (iii) shows an overlay of the isotype control (green line) and the 

CD23 staining (pink solid).  This experiment was repeated five times and the data displayed 

are representative.   
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Figure 3.3 B 

 

    (i)                                       (ii) 

 

         (iii) 
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Figure 3.4 CD23 Immunoblots.   

 

A. recombinant sCD23 and B. hMSC lysates.  In A 3 lanes of the same sample were analysed 

and in B 3 lanes were also analysed.  The result seen in A is representative of two 

experiments and in B the result is representative of 8 experiments.  
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Figure 3.5  CD23 ELISA.  

 

Standard curve graph for CD23 ELISA.  Inset box shows values for hMSC supernantants 

(s/n) (G. Borland, unpublished results).  This is data from an experiment performed once.  
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Figure 3.6 Stromal cells produce CD23 mRNA.   

 

Photograph shows Lane 1 - fragment produced following RT-PCR using primers for 

housekeeping gene GAPDH; Lane 2 – DNA fragment produced following RT-PCR with 

CD23 primers (predicted size 256 bp) and Lane 3 – no fragment (no primers used in this RT-

PCR reaction). Lane 4 – DNA ladder showing high intensity fragment of 500bp. This 

experiment was repeated twice with the same result both times.  
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Figure 3.7 Interaction between hMSCs and SMS-SBs.  

 

A shows cells without treatment, B shows cells treated with clone BU38, C shows cells 

treated with an isotype control antibody and D shows cells treated with clone ML233.  This 

experiment was performed 5 times and that pictures shown are representative of these.  
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CHAPTER 4 

 

GROWTH OF B CELL PRECURSORS AND PLASMA CELLS 
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4.1 Introduction 

 

The cells which are used as the model cell line in this thesis are SMS-SB cells.  These cells 

produce an autocrine factor which sustains the growth of SMS-SB cells once above a certain 

culture density (this density is 10,000 cells/well). If the SMS-SB cells are plated out at low 

densities, the effect of the autocrine factor is negated and the cells will not survive unless 

they are rescued.  Proliferation assays span 72 hours and during this time cells become 

apoptotic and are lost in the absence of protective treatments.  Previous work has 

demonstrated that sCD23 will inhibit apoptosis in these cells and that the AMF7 antibody, 

which recognises the αv integrin subunit, also has a positive effect on the growth of these 

cells.  Here the effects of CD23 peptides are assessed, on SMS-SB cells and on other 

precursor B cell lines and on myeloma lines.  The presence of CD23 receptors on these cell 

lines is also measured and binding of CD23 peptides determined.  It was also intended to 

initiate investigations into the mechanisms at work following peptide stimulation.   

 

4.1.1 CD23 Peptides 

 

In this thesis use of CD23-derived peptides is described.  A library of 83 overlapping 

nonapeptides was synthesised and the effects of these peptides investigated.  Biotinylated 

peptides were used to identify which peptides could bind to cells using streptavidin 

conjugated to a fluorophore to allow detection by flow cytometry.  Some of these peptides 

have been found to have the ability to bind to SMS-SB cells and noted to have effects on cells 

similar to those seen following treatment with the intact  sCD23 molecule.  These peptides all 

contain a tripeptide motif of Arg-Lys-Cys (RKC) derived from the CD23 molecule, and are 

#9-#12 in the library.   

 

Peptides 9 – 12 were investigated for their ability to bind to cells which express the CD23 

receptors αvβ5 and αvβ3.   Although all 4 peptides have been found to bind to cells bearing 

these receptors only two have been found to have an obvious agonistic effect.  These are 

peptides 9 and 12, and peptide 9 has been used exclusively for further investigation due to its 

more consistent effects.  In addition, a peptide was synthesised which spans the entire area of 



 115 

sequence between peptides 9 – 12 and this has been found to bind to cells and also to have a 

positive effect on growth.   This peptide has been termed the “long peptide”. The work in this 

chapter concentrates on the effects of two peptides on various cell lines: 9 and long.   

 

4.2 Results 

 

4.2.1 Growth of Precursor and Mature B Cells 

  

Proliferation assays were carried out using incorporation of tritiated thymidine into DNA as 

the method of detection.  As previously stated SMS-SB cells cannot grow at low cell 

densities unless rescued, so these cells were plated out in 96-well plates at between 2,000 and 

7,000 cells per well.  Treated and untreated cells were incubated for 72 hours then pulsed 

with tritiated thymidine for 16-24 hours.  Untreated cells do not survive over the 4-day 

experiment window.  Treatments were performed in triplicate and averages and standard 

deviations calculated for the results.  P values were determined and statistical significance is 

indicated by the presence of asterisks. Individual figures specify treatments and cell densities.  

The finding that SMS-SB cells at this density are predisposed towards apoptosis creates an 

intrinsic difficulty when performing these assays.  When preparing the cell suspensions for 

the experiments the longer they remain without stimulation the more likely it is that they will 

no longer be able to be rescued. This resulted in experiments being rendered useless due to 

the cells being non-viable prior to treatments even being applied.  In addition it was observed 

that, at these low densities, the SMS-SB cells would adhere very strongly to the plastic of the 

plates.  This was not such an issue for this particular assay as when harvesting the plates the 

cells are aspirated to a filter by the power of a vacuum pump but this property of the cells 

could be problematic in other instances.       

 

Figure 4.1 shows the results of a typical proliferation assay performed using SMS-SB cells.  

The cells were plated out at a concentration of 3,000 cells per well. A stimulatory effect is 

obvious in the cells treated with peptide 9 and the long peptide (both at 5µg/ml) and the 

AMF7 antibody (also at 5µg/ml). The AMF7 antibody recognises the αv subunit of the 

integrin heterodimer. The P1F6 antibody reacts with an epitope formed by the entire 

heterodimer. The cells treated with P1F6 antibody, the untreated cells, the cells treated with 
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isotype control antibodies and control peptide-treated cells do not survive being placed at low 

density.   Figure 4.2 demonstrates that the effects of #9 and long peptide (LP) on SMS-SB 

cells growth are dose-dependent.  Peptide 58 has no effect.  

 

As previously discussed, the SMS-SB cells do not express any other of the known receptors 

for CD23 and, therefore, it must be the αvβ5 integrin that is being ligated by the growth-

promoting peptides and antibody and presumably transmitting some form of survival/anti-

apoptotic signal.  The CD23-derived peptides which have been shown to bind to the integrin 

have in common a sequence of three amino acids, arginine-lysine-cysteine (RKC).  Much of 

this work has been in the form of binding assays using the BIACORE platform and has 

shown that the peptides bind the integrin with varying affinities.  SMS-SB cells have been 

tested using flow cytometry for peptide binding and it has been found that peptides 9, 11 and 

12 bind to SMS-SB cells.  As previously mentioned these peptides possess a biotin tag and 

therefore can be detected using a streptavidin secondary reagent. Figure 4.3 shows the data 

obtained from this flow cytometry analysis.   The peptides binding to the cells to the greatest 

extent are 9, 11 and 12.  Peptides 8, 13 and 58 do not bind appreciably to the cells.  

 

Other B cell precursor cell lines were used in proliferation assays to determine their responses 

to peptides.  The cell lines used express either one or both of the integrins αvβ3 and αvβ5 

and it was investigated whether the integrin expression profile of the cells correlated with 

their growth response to the CD23 peptides 9 and the long peptide.  One such cell line is the 

697 line which, like SMS-SB cells, expresses the αvβ5 integrin as the sole CD23 receptor.  

Figure 4.4 shows flow cytometry data to confirm that 697 cells only express the αvβ5 

integrin and are negative for αvβ3. On the basis of this similarity to the SMS-SB cells it was 

predicted that they may respond in a comparable manner when subjected to growth assays.   

697 cells were also analysed for peptide binding and Figure 4.5 shows the results of this.  

Like the SMS-SB cells peptides 9-12 bind to the 697 cells with peptides 11 and 12 binding to 

the greatest extent. It should be noted that the peptide binding profiles are quite distinct with 

regard to these two cell types despite comparable expression of αvβ5.  697 cells express a 

very small amount of αvβ3, which does not necessarily account for the differences in peptide 

binding observed. The possibility that the peptides are binding to other αv integrins on these 
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cells must be considered. Further analysis of the 697 cells was not undertaken in this thesis 

but should be considered for future work.   

 

Figure 4.6 illustrates the data for a proliferation assay using 697 cells and shows that these 

cells do respond similarly to SMS-SB cells.  Peptide 9 and LP both have a positive growth 

effect on the cells at a concentration of 5µg/ml.  LP has a much more pronounced effect than 

peptide 9 which is the converse of what is seen with the SMS-SB cells which respond most 

robustly to peptide 9.  It should be noted that the long peptide is not available in biotinylated 

form and so is not included in the binding analysis.  The SMS-SB cells and the 697 cells 

express αvβ5 as the sole CD23 receptor in common and 697 cells appear to express slightly 

more αvβ5 than SMS-SB cells (comparing Figures 3.5 and 4.4). Perhaps variation in integrin 

conformation or activation could account for this disparity, e.g. the integrins on the 697 cells 

have a conformation more suited to binding or activation by the long peptide.  It is also 

possible that these peptides are also able to signal through other αv integrins present on the 

cells, following on from the peptide binding results.  Support for this hypothesis can be 

gained from the fact that the AMF7 antibody (which only binds αv) has a positive effect on 

growth, but this hypothesis is not supported by the finding that peptide 9 binds to the integrin 

β chain 251.       

 

Two additional precursor B cell lines, NALM-6 and BLIN-1 cells were assayed for their 

integrin profiles using flow cytometry.  Figure 4.7 shows that these precursor B cell lines 

express both αvβ3 and αvβ5 integrins.  This is where the NALM-6 and BLIN-1 cells differ 

from the SMS-SB cells and 697 cells.  NALM-6 and BLIN-1 cells are representative of a 

more advanced developmental stage of B cells and perhaps it could be proposed that 

expression of the integrins is stage-dependent, i.e. at earlier phases in development the αvβ5 

integrin is expressed and this expression wanes as differentiation progresses and progressive 

expression of the αvβ3 integrin occurs concomitantly with αvβ5 integrin loss.  Osteoclasts 

have been shown to follow this pattern of integrin expression so perhaps a similar process is 

relevant in B lymphopoiesis 222.      
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Peptide binding was then carried out on the NALM-6 and BLIN-1 cells and the results are 

shown in Figure 4.8 and 4.9.  These cells display higher peptide binding than SMS-SB cells 

and 697 cells as would be predicted given that the cells are expressing more than one receptor 

for CD23.  Proliferation assays were then carried out on these cells to determine how they 

would respond to the growth-promoting peptides given their possession of more than one 

receptor.   

 

Figure 4.10 demonstrates that NALM-6 cells show a broadly similar pattern of response to 

peptide 9 and LP to that observed in SMS-SB cells.  Thus both CD23-derived, RKC-

containing peptides promote thymidine incorporation in a dose-dependent manner in NALM-

6 cells, while peptide 58 is without effect on the cells.  Figure 4.11 illustrates the equivalent 

data set for BLIN-1 cells and these cells also respond in a specific, dose-dependent manner to 

stimulation with peptide 9 or LP.  As stated previously, the NALM-6 and BLIN-1 cell lines 

are thought to be representative of a stage in B cell development that is more advanced than 

that of the SMS-SB cells and 697 cells.  A further growth assay was carried out using the IL-

3-dependent mouse pro-B cell lineBAF03.  

 

Figure 4.12 shows a graph of the response of the mouse pro-B cells to peptide 9 in the 

presence and absence of IL-3.  A combination of IL-3 and peptide 9 causes a striking increase 

in growth – approximately 24-fold, compared with an approximately 14-fold increase upon 

provision of IL-3 alone.   

 

The myeloma cell lines KMS11 and H929 were also subjected to proliferation assays using 

CD23-derived peptides and the results contrasted with those from the B cell precursor lines.  

Neither of these cell lines responded to the peptide treatments and the counts were so low in 

the case of KMS11 cells that it is likely these cells were no longer viable at the time of 

harvesting.  The H929 cells appeared to have better viability at these low densities, but there 

was no growth enhancement achieved with the peptide treatments.   Figure 4.13 shows a flow 

cytometric analysis of these two cell lines to establish which of the CD23 receptor integrins 

they expressed.  The KMS11 cells express αvβ5 integrin but not αvβ3 whereas H929 cells 

express αvβ3 but not αvβ5.  The presence of αvβ5 on the KMS11 cells does not render these 

cells responsive to the CD23 peptides.  From the results (Figures 4.14 and 4.15) it can be 
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deduced that the positive growth response to CD23 peptides occurs in the B cell precursor 

lines but not in the mature B cell lines.  Thus, in H929 cells, peptide 9 causes an enhancement 

in proliferation compared to untreated controls, but this is no greater than that detected with 

peptide 13 which lacks the RKC motif and does not bind cells. The enhancement of 

proliferation, which has been observed and documented in this thesis, is confined to cells that 

express the αvβ5 receptor and are at an early stage in B cell differentiation.  The lack of 

precursor B cell lines expressing only αvβ3 as a CD23 receptor precluded further testing of 

the CD23 peptides to attempt to characterise growth responses in cells with such a profile.  

Further testing of CD23 peptides in the cell line RPMI8866 (a plasma cell line) revealed that 

these cells do not undergo proliferation in response to the peptides.  These cells express αvβ3 

but not αvβ5 (i.e. same profile as H929 cells) as shown in Figure 4.17 and the proliferation 

data is shown in Figure 4.16.  Peptide binding for these cells is shown in Figure 4.18.    

 

4.2.2 Action of RKC-containing peptides 

 

Previous studies had indicated that the pro-survival effect of recombinant soluble CD23 on 

the growth of SMS-SB cells could be explained by sustained expression of the protein Bcl-2.  

Intracellular staining using of SMS-SB cells following treatment with recombinant soluble 

CD23 using flow cytometry showed maintenance of Bcl-2 levels 110.  As this protein is an 

anti-apoptotic member of the Bcl-2 family, it was a reasonable assumption that 

phosphatidylinositol 3-kinase (PI3K) signalling could be implicated because integrin 

signalling via PI3K through Akt (also known as protein kinase B (PKB)) and the Bcl-2 

family member Bad inhibits mitochondrial induction of apoptosis.  This form of apoptosis is 

known as negative induction whereas positive induction involves ligand binding e.g. the 

FAS/FAS ligand system.  Phosphorylation of Akt at serine 473 by PI3K leads to 

phosphorylation of Bad at serine 112 and when bad is phosphorylated it is sequestered in the 

cytosol by the 14-3-3 protein252. When Bad is dephosphorylated it interacts with other Bcl-2 

family members and is though to contribute to the overall balance between pro- and anti-

apoptotic Bcl-2 family proteins.  These proteins influence the mitochondrial induction of 

apoptosis via changes in mitochondrial membrane permeability which is dependent upon the 

balance of homo/heterodimers of pro and anti-apoptotic Bcl-2 family proteins.  The 
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sequestration of Bad in the cytosol and the increased expression of Bcl-2 would contribute to 

suppression of apoptosis.   

 

Western blotting was performed on immunoprecipitates (IPs) obtained from lysates prepared 

from SMS-SB cells treated with peptide 9 over a short time-course. These lysates were then 

incubated overnight with an anti-Akt antibody and then immune complexes were collected 

using protein G-sepharose beads.  These IPs were then subjected to SDS-PAGE, transferred 

to nitrocellulose, blocked and probed using anti-phospho Akt (serine 473).   Figure 4.19 

shows the result obtained from this immunoblot and it can be seen that treatment with peptide 

9 results in phosphorylation of Akt at serine 473. At time zero there is less phorphorylated 

protein present than at times 10 minutes, 30 minutes, 60 minutes and 90 minutes.  The 

loading control immunoblot shows that constant levels of total Akt protein were present.  

This indicates that when SMS-SB cells are stimulated with peptide 9 sustained 

phosphorylation of Akt-1 occurs as a result of signalling via the αvβ5 integrin. A clear 

elevation of Akt phosphorylation is evident at 10-90 minutes, but this begins to reduce after 

90 minutes.    

 

Following on from this proliferation experiments were carried out using the specific PI3K 

inhibitor LY294002.  Cells treated with this inhibitor failed to undergo proliferation in the 

presence of peptide 9 (see Figure 4.20), which reinforces the hypothesis that growth induced 

by CD23-derived peptides containing the RKC motif occurs via a signalling mechanism 

involving PI3K and Akt.   

 

4.3 Conclusions 

 

Studies performed with various cell lines have revealed that those which correspond to early 

stages of B cell differentiation undergo proliferation when treated with the CD23-derived 

RKC-containing peptides whereas those derived from later stages of differentiation do not.   

 

The SMS-SB cell line and the 697 cell line express only αvβ5 as a CD23 receptor and 

therefore it is assumed that this integrin is the one these peptides are signalling through in 

these cells.  Other precursor B cell lines, which respond in the same way to the peptides, 



 121 

express αvβ3 in addition to αvβ5, hence the peptides could conceivably be signalling 

through both of these CD23 receptors to enhance growth and division.  Further 

experimentation with these cell lines would have been important – using siRNA, for example, 

to abrogate expression of each integrin separately could have revealed information regarding 

which integrin is crucial to this growth mechanism. Such studies would be a logical 

progression to the work in this thesis.  In addition work to test the hypothesis that other αv 

integrins are present on B cell precursors and can be bound by and affected by CD23-derived 

peptides would also be important.       

 

In SMS-SB cells it was found that peptide 9 enhances phosphorylation of Akt at residue 

ser473.  This residue is a target of PI3K and therefore the growth mechanism induced by 

RKC operates via these proteins.  These experiments should be followed up with further 

studies to elucidate the remainder of the signalling pathway.  Use of inhibitors and antibodies 

relevant to various Akt cascades would be of particular importance.  The MAPK (Mitogen 

Activated Protein Kinase) pathway would be one such candidate for examination.       
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Figure 4.1 Effect of CD23 peptides on SMS-SB cells.   

 

This proliferation assay graph shows the incorporation of tritiated thymidine into the DNA 

(cpm = counts per minute).  The cells (3,000 per well) were treated with peptides 9, long and 

13 and also with the antibodies P1F6 and AMF7 and isotype control antibody (all at 5µg/ml).  

It should be noted that the P1F6 antibody recognises the entire αvβ5 integrin heterodimer 

whilst AMF7 recognises only the αv portion of the integrin.      

 

The data displayed represent average values of triplicate treatments.  Error bars denote 

standard deviations and statistics were calculated using the Student’s T test.  Asterisks signify 

P values of < 0.05 against peptide 13.  The data shown are representative of experiment 

repeated approximately 10 times.  It should be noted that technical difficulties necessitated 

the repetition of this experiment and that these difficulties related to excessive cell death.  

When positive results were achieved the graph shown in this figure is representative of n=4.      
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Figure 4.2 Effect of peptides on SMS-SB cells.   

 

Proliferation data from assay carried out on SMS-SB cells plated at 3,000/well.  This 

experiment was designed to ascertain whether the cells responded to variation in peptide 

dosage.  

 
The data displayed represent average values of triplicate treatments.  Error bars denote 

standard deviations and statistics were calculated using the Student’s T test.  Asterisks signify 

P values of < 0.05 against corresponding concentrations of peptide 58 (which does not bind 

to SMS-SB cells) and peptides 9 and LP.  

 

The data shown are representative of experiment repeated approximately 10 times.  It should 

be noted that technical difficulties necessitated the repetition of this experiment and that these 

difficulties related to excessive cell death.  When positive results were achieved the graph 

shown in this figure is representative of n=4. 
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Figure 4.3 Peptide binding to SMS-SB cells.   

 

This assay uses biotinylated peptides and a streptavidin-Cy 5 conjugated secondary capture 

antibody.  The panels show data for peptides 8, 9 10, 11, 12, 13 and 58 (A-G respectively) 

with peptide 8 being used as the negative control marker.  

 

The data shown are representative of and experiment performed 3 times.  
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Figure 4.4 Integrin expression on 697 cells.  

 

A. αvβ5 and B. αvβ3 integrins in 697 cells.  Green solid shows integrin staining and pink 

line shows isotype control staining.  

 
The data shown are consistent with 3 experimental repeats.  
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Figure 4.5 Peptide binding to 697 cells.  

 

As before, this assay uses biotinylated peptides and a streptavidin-Cy 5 conjugated secondary 

capture antibody.  The panels show data for peptides 8, 9, 10, 11, 12, 13 and 58 (A-G 

respectively) with peptide 8 being used as the negative control marker.   

 
The data shown are consistent with 3 experimental repeats.  
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Figure 4.6 Effect of CD23 peptides on growth of 697 cells.   

 

Proliferation assay graph showing the response of cells to peptides 9, long and 8 (all at 

5µg/ml).  Peptide 8 does not bind to 697 cells and is used here as a negative control.  

 

The data displayed represent average values of triplicate treatments.  Error bars denote 

standard deviations and statistics were calculated using the Student’s T test.  Asterisks signify 

P values of < 0.05 against peptide 8 (non-binding peptide).      

 

The data shown are representative of experiment repeated approximately 6 times.  It should 

be noted that technical difficulties necessitated the repetition of this experiment and that these 

difficulties related to excessive cell death.  When positive results were achieved the graph 

shown in this figure is representative of n=3. 
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Figure 4.7 Integrin expression on NALM-6 and BLIN-1 cells.   

 

Panel A is αvβ5 staining of NALM-6 cells and panel B is αvβ3 staining of NALM-6 cells.  

Panel C is αvβ5 staining of BLIN-1 cells and panel D is αvβ3 staining of BLIN-1 cells.  

Green solid represents specific antibody staining and pink line represents isotype control.  

 

This experiment was repeated 3 times and these data are consistent with these results.  
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Figure 4.8 Peptide staining of NALM-6 cells.  

 

As before, this assay uses biotinylated peptides and a streptavidin-Cy 5 conjugated secondary 

capture antibody.  The labelled panels show data of peptides 8, 9, 10, 11, 12, and 58 with 

peptide 8 being used as the negative control marker.  

 

This experiment was repeated 3 times and these data are representative of these experiments. 
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4.9 Peptide staining of BLIN-1 cells.  

 

As before, this assay uses biotinylated peptides and a streptavidin-Cy 5 conjugated secondary 

capture antibody.  The panels show data of peptides 8, 9, 10, 11, 12, and 58 with peptide 8 

being used as the negative control marker.  Peptides 9, 11 and 12 bind most strongly to the 

BLIN-1 cells.  

 

These data are consistent with experiments repeated 3 times.  
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4.10 Effect of CD23 peptides on NALM-6 cells.   

 

Proliferation assay graph showing effect of peptides 9, long and 8 on NALM-6 cells. 

 

The data displayed represent average values of triplicate treatments.  Error bars denote 

standard deviations and statistics were calculated using the Student’s T test.  Asterisks signify 

P values of < 0.05 between corresponding concentrations of non-binding peptide 8 and 

peptides 9 and LP.      

 

These data are consistent with experiments repeated to n=2. 
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4.11 Effect of CD23 peptides on BLIN-1 cells.  

 

Proliferation assay graph showing effect of peptides 9, long and 8 on BLIN-1 cells.  

 

The data displayed represent average values of triplicate treatments.  Error bars denote 

standard deviations and statistics were calculated using the Student’s T test.  Asterisks signify 

P values of < 0.05 between the corresponding concentrations of non-binding peptide 8 and 

peptides 9 and LP.       

 

These data are consistent with experiments repeated twice.  
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4.12 Effect of CD23 peptides on BAF03 cells.   

 

Proliferation assay graph showing effect of IL-3 (1ng/ml) and peptides 9, long and 8 (all at 

5µg/ml) on the mouse cell line BAF03.  

 

The data displayed represent average values of triplicate treatments.  Error bars denote 

standard deviations and statistics were calculated using the Student’s T test.  Asterisks signify 

P values of < 0.05 between IL-3 treated cells and cells treated with peptide 9 in addition to 

IL-3. 

 

The data shown represent experiments performed 3 times.  
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4.13 Expression of αvβ5 and αvβ3 integrins on myeloma cell lines H929 and KMS11.  

 

KMS11 cells are shown on the left and H929 cells are shown on the right.  15F11 are A & D, 

P1F6 are B & E and 23C6 are C & F.  15F11 and P1F6 are both antibodies directed against 

αvβ5 and 23C6 antibody recognises αvβ3.  Antibody staining is the filled area and isotype 

control is the pink line.  

 

These data are representative of n=2. 
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4.14 Effect of CD23 peptides on KMS11 cells.   

 

Proliferation assay graph showing effect of peptides 9, long and 13 (all at 5µg/ml) on KMS11 

cells plated at 3,000 cells/well. 

 

The data displayed represent average values of triplicate treatments.  Error bars denote 

standard deviations and statistics were calculated using the Student’s T test.  Asterisks signify 

P values of < 0.05 between non-binding peptide 13 and peptides 9 and LP.         

 

These data are representative of n=5.
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4.15 Effect of CD23 peptides on H929 cells.   

 

Graph showing proliferation data from an experiment carried out on H929 cells plated at 

3,000 cells/well using peptides 8 and 9 and the long peptide (all at 5µg/ml).   

 

The data displayed represent average values of triplicate treatments.  Error bars denote 

standard deviations and statistics were calculated using the Student’s T test.  Asterisks signify 

P values of < 0.05 between non-binding peptide 8 and peptides 9 and LP.         

 

The data shown are representative of experiments performed 5 times.  
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4.16 Effect of CD23 peptides on RPMI8866 cells.  

 

Graph showing proliferation assay data from an assay performed on the plasma cell line 

RPMI8866.  Cells were plated at 5,000/well and peptides 9 and 58 were the treatments used 

(at 5ug/ml).   

 

The data displayed represent average values of triplicate treatments.  Error bars denote 

standard deviations and statistics were calculated using the Student’s T test.  Asterisks signify 

P values of < 0.05 between non-binding peptide 58 and peptide 9.        

 

The data shown are representative of experiments performed 5 times.  
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4.17 Expression of αvβ5 and αvβ3 integrins on RPMI8866 cells.   

 

Flow cytometry data showing integrin expression.  Panel A shows αvβ5 expression, the line 

represents isotype control and the filled area is integrin staining.  Panel B shows αvβ3 

expression.  As before, the line is isotype control and the filled area is integrin staining.  

 

The data shown are representative of experiments performed 2 times.  
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Figure 4.18 Peptide Binding to RPMI8866 cells.   

 

As before, this assay uses biotinylated peptides and a streptavidin-Cy 5 conjugated secondary 

capture antibody.  Panels A to F show data of peptides 8, 9, 10, 11, 12, and 58 respectively 

with peptide 8 being used as the negative control marker.  Peptides 9, 11 and 12 bind most 

strongly to the NALM-6 cells.  

 

The data shown are representative of experiments performed 3 times.  
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4.19 Expression of phospho-Akt-1 in SMS-SB cells.  

 

Immunoblot showing protein expression from IPs performed on SMS-SB cells treated with 

peptide 9.  Panel A shows phospho-Akt protein at times 0, 10, 30, 60 and 90 and panel B 

shows total Akt protein at times 0, 10, 30, 60 and 90.  

 

This result was achieved twice.  
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4.20 Effect of PI3Kinase (PI3K) inhibitor on SMS-SB cells.  

 

Graph showing data from a proliferation assay performed using the P13K inhibitor 

LY294002 on SMS-SB cells.      

 

The data displayed represent average values of triplicate treatments.  Error bars denote 

standard deviations and statistics were calculated using the Student’s T test.  Asterisks signify 

P values of < 0.05 between inhibitor plus peptide 9/peptide 9 and inhibitor plus peptide 

9/AMF7.  

 

This assay was performed twice and these data are representative of these.  
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5.1 Introduction 

 

Integrin associated protein (IAP), also known as CD47, is known to form a signalling 

complex with the CD23 receptor αvβ3.  This complex regulates leukocyte activation and 

mediates the phagocytosis of aging apoptotic leukocytes. This function resolves inflammation 

by removing these leukocytes before they disgorge their potentially harmful contents and 

trigger an inflammatory reaction 243. 

 

Experiments using the B6H12 monoclonal antibody directed against CD47 have been 

performed by Mateo and colleagues upon various cell types and in soluble and immobilised 

format 233,234.  To date, results have indicated that ligation of CD47 has an effect on apoptosis 

– in some cell types CD47 stimulation initiates apoptosis and other cell types are resistant to 

apoptosis via this signal. Apoptosis occurring through CD47 has been found to take place via 

a caspase-independent pathway.   The end results of CD47 ligation appear to be dependent 

upon the cell type involved and the presentation of the antibody, i.e. whether the antibody is 

soluble or immobilised 234.  Precursor and mature B cell lines were investigated for their 

apoptotic response following ligation of CD47 by the B6H12 antibody and the expression of 

CD47 was also determined to investigate whether a pattern could be established.  Also, given 

that some of the B cells express αvβ3 and some do not, stimulation with the antibody was 

thought to be interesting as perhaps it would indicate whether the effect of the antibody was 

dependent upon the presence of the αvβ3/CD47 signalling complex or whether its effects 

were only due to signalling through CD47 alone.   Apoptosis was measured following 

overnight incubation by staining with Annexin V and propidium iodide and CD47 expression 

was determined by flow cytometry.  When analysing the flow cytometric data cells were not 

pre-gated on the basis of size and granularity so all events were included in the analysis.  

Quadrant gates were established following examination of singled-stained cells and an 

example of this is located in the materials and methods section (2.26).  It should be noted that 

an observation of cells subjected to this assay is that extreme adherence occurs following the 

overnight incubation.  Repeated pipetting up and down dislodged the majority of the cells but 

it is not possible to retrieve 100% of the cells initially plated out.  This means that the 
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apoptotic status of these cells cannot be included in the data generated and it is not possible to 

be completely certain that the data represent accurately what is actually occurring in the cells.     

 

5.2 Results 

 

5.2.1 KMS 11 and H929 cells 

 

These cell lines are derived from multiple myeloma patients and both have the chromosomal 

translocation, t(4:14).  Previous studies of primary cells taken from multiple myeloma 

patients had shown that the cells underwent apoptosis upon CD47 ligation.   

 

Figure 5.1 shows the pattern of expression of αvβ3 and αvβ5 by KMS11 and H929 cells as 

determined by flow cytometry.  The KMS11 cells express αvβ5 (Figure 5.1 panels A and B) 

but not αvβ3 (Figure 5.1 panel C), whereas the H929 cells express little αvβ5 (Figure 5.1 

panels D and E) but do express αvβ3 (Figure 5.1 panel F).  The contrasting expression of 

integrins makes these cells useful for investigating apoptotic responses via anti-CD47 

antibody as one line expresses the CD47 signalling partner αvβ3 and the other does not.  It 

could be postulated that if the apoptotic stimulus requires CD47 to be partnered to αvβ3 then 

these two cell types should not respond identically.  The antibody used is not identical to the 

stimulus used previously by another group on myeloma cells – they used bivalent single 

chain antibody fragments in an in vivo model 232.  

 

All haematopoietic and non-haematopoietic cells express CD47 244.  The KMS11 cells and 

H929 cells were stained with anti-CD47 and analysed cytometrically to ascertain their CD47 

expression.  Figure 5.2 shows the results of this analysis and it can be seen that both cell lines 

express high levels of CD47 – the KMS11 cells (panel B) express more than the H929 cells 

(panel A).  Figure 5.3 shows data obtained from KMS11 cells treated overnight with anti-

CD47, or suitable controls, and stained with both Annexin V and propidium iodide and it can 

be seen that these cells respond to both soluble anti-CD47 and immobilised anti-CD47.  In 

both cases, the CD47 treatments performed on the KMS11 cells result in increased apoptosis 

when compared with untreated and isotype control treated cells.  This is consistent with 

previous findings by Kikuchi and colleagues working with primary cells from myeloma 
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patients 232.   A detailed analysis of the quadrant percentages shows that there is a decrease in 

viable cells (lower left quadrant) from the control soluble treatments to the soluble anti-CD47 

treatments of 17.5% and this difference is due mainly to an increase in cells positive for both 

annexin V and propidium iodide (cells undergoing apoptosis).  Examination of the 

experiments performed with anti-CD47 in an immobilised form again shows a decrease in 

viable cells (55% to 34%) and this decrease is due for the most part to an increase in cells 

only positive for propidium iodide (late apoptotic, dying cells) – 12% change versus 7% 

change in the upper right quadrant.     

 

Figure 5.4 shows data from the same experiment performed on H929 cells.  Similar results 

were recorded with the anti-CD47 treatments, with both increasing apoptosis.  Inspection of 

the upper right quadrant reveals that when comparing the soluble control treatment with the 

soluble anti-CD47 treatment that the CD47 stimulation has caused a 7% increase in cells 

double positive for annexin V and propidium iodide (i.e. cells actively undergoing apoptosis).  

The cells treated with immobilised antibodies had a different profile from the control cells 

and treated cells having upper right quadrant percentages of 14.5% and 14% respectively.  

Here the main difference was in the upper left quadrant – the propidium iodide positive, 

annexin V negative cells.  A 17% increase in these cells was observed between the control 

and the CD47 ligation.  These cells are late apoptotic, dying cells.  The difference between 

the two cell types was minimal with slightly more apoptosis in KMS11 cells treated with 

soluble anti-CD47 and slightly more apoptosis in H929 cells treated with immobilised anti-

CD47.  No pattern connecting the expression levels of CD47 or the presence/absence of αvβ3 

is revealed by these experiments. 

 

5.2.2 SMS-SB cells and 697 cells 

 

As shown previously, these cells express only αvβ5 as a CD23 receptor and do not express 

CD47’s signalling partner αvβ3.  Any effect on apoptosis via CD47, it could therefore be 

postulated, would be due to signalling through only CD47 and not the signalling complex 

formed with αvβ3.  These cells are representative of an early stage in B cell development – 

the pre-B phase.  
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Figure 5.5 shows a flow cytometric analysis of the expression of CD47 on these two cell 

types and it can be seen that, again, both express high amounts of CD47 on their surfaces and 

that it is the 697 cells which have the most CD47.   Overnight treatments with anti-CD47 

were applied and the results are shown in Figures 5.6 and 5.7.  In Figure 5.6 it was observed 

that when SMS-SB cells were exposed to soluble anti-CD47 an increase in apoptotic cells 

occurred but when the cells were placed upon immobilised anti-CD47 the opposite happened 

and more viable cells were detected.    Comparing the control soluble antibody to the soluble 

α-CD47 treatment there has been an increase in cells in the upper right quadrant (5% 

increase) and an increase in the upper left quadrant (4% increase).  As for the immobilised 

antibody data, when comparing control to treatment this time there was a decrease of 6% of 

cells staining positive for annexin V and propidium iodide and a slight increase in cells 

positive for only propidium iodide (2.5%).  The viable cell percentage increased by 5% from 

39% in the control to 44% in the immobilised α-CD47 treatment.  

 

The same experiment was carried out using 697 cells and the data collected are represented in 

Figure 5.7.  Looking again at soluble control versus soluble α-CD47 cell stimulations, what is 

seen is that with the upper left quadrant (propidium iodide only positive cells) there has been 

a change from 40% to 34% - a decrease of 6%.  The upper right quadrant data has shifted in 

the opposite direction - from 34.5% to 42% (7.5% increase). The cells treated with 

immobilised control antibody and immobilised α-CD47 antibody have responded with an 

increase in late apoptotic/dying cells of only 1% and a decrease in cells undergoing apoptosis 

from 22% to 15%.  When compared to the data from the untreated cells which have been 

incubated for the same amount of time as the treated cells, a large change in the upper right 

quadrant has occurred in the soluble α-CD47 treated cells.  This change amounts to 26%.  

These cells appear to be responding with increased apoptosis when stimulated with the 

soluble CD47 stimulation and with less apoptosis (1% less than untreated cells) when treated 

with immobilised αCD47.    In terms of CD47 expression and expression of αvβ3 and αvβ5 

integrins these two cell types are very similar and from the data generated, they appear to 

respond similarly to stimulation through CD47.  It appears to be crucial that the ligation of 

CD47 is via the soluble phase to enable apoptosis to take place. A tentative suggestion could 

be that perhaps the absence of αvβ3 prevents induction of apoptosis via the CD47 



 169 

mechanism when the antibody is immobilised. This type of interaction is perhaps similar to 

the action of a cell-bound CD47 ligand with CD47 rather than a soluble contact and would 

allow for variation in response to soluble and membrane-bound CD47 partners.  Another 

possibility is that response to CD47 stimulation depends on the differentiation stage of the 

cells hence the mature B cells respond differently to the pre-B cells.   

 

5.2.3 NALM-6 and BLIN-1 cells 

 

NALM-6 and BLIN-1 cells are also pre-B cells but are thought to represent a slightly later 

phase in development than the SMS-SB cells and 697 cells.  These cell lines also express 

αvβ3 as well as αvβ5 as CD23 receptors and therefore signalling via the CD47/αvβ3 

complex is possible.   Figure 5.8 shows FACScan data confirming the expression of the two 

integrins and Figure 5.9 shows CD47 expression.   The data collected following analysis of 

apoptosis in BLIN-1 cells treated overnight with anti-CD47 is shown in Figure 5.10.  These 

cells do not respond to treatments with the antibody in either of its two presentations.  Figure 

5.11 shows the consequence of treatment of the NALM-6 cells and little response was noted 

in the cells exposed to soluble anti-CD47 antibody (increases of only 2% in upper right 

quadrant and 7% upper left quadrant).  However, treatment with immobilised antibody had 

the same effect here as it had on the SMS-SB cells and 697 cells, i.e. apoptosis decreased and 

the cells were more viable in comparison with the control. This increase in the number of 

viable cells from 66% to 72% is a consequence of a 7% decrease in dead cells and a 6% 

increase in early apoptotic cells so although cells positive for annexin V increased the overall 

viability increased with a drop in dead cells.  So what has been observed is that NALM-6 

cells, which express αvβ3 and αvβ5 respond similarly to SMS-SB cells and 697 cells which 

only express αvβ5 and appear to express less CD47 than the NALM-6 cells.  It is not 

possible to provide an explanation for this in terms of identifying a pattern between integrin 

and CD47 expression.  



 170 

 

5.3 Conclusions 

      

Different B cell types respond in different ways to stimulation via CD47.  Some cell types do 

not respond (BLIN-1 cells), whereas other cells respond by undergoing apoptosis regardless 

of whether the stimulation is from a soluble or immobilised antibody (myeloma cell lines 

KMS11 and H929).  SMS-SB cells, our model cell line, and 697 cells respond with an 

increase in apoptosis following stimulation by soluble antibody when compared with 

immobilised antibody treatment.  NALM-6 cells also respond in this way to the immobilised 

antibody but their response to the soluble antibody is less obvious at only a 4% difference in 

viable cells compared with the control. The NALM-6 cells treated in this way respond with 

an increased amount of dead cells, in the upper left quadrant which are staining only for 

propidium iodide, which amounts to 10%.         

 

Apoptosis induction via CD47 is thought not to be dependent upon signalling via the complex 

it forms with αvβ3 and the work shown in this thesis does not refute this since, with regard to 

the cells which responded with a decrease in overall apoptosis, one cell type expressed αvβ3 

and the other did not.  If an apoptotic response was depe ndent upon the formation of this 

signalling complex it would be more likely that the cells expressing αvβ3 would have 

responded with an overall increase in apoptosis. Cells which only express αvβ5 are capable 

of responding in an apoptotic manner to soluble anti-CD47 stimulation (SMS-SB and 697 

cells) so it would follow that the signalling complex is not required to facilitate transmission 

of the death signal via CD47.       
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Figure 5.1 Expression of αvβ5 and αvβ3 integrins on myeloma cell lines H929 and 

KMS11. KMS11 cells are shown on the left and H929 cells are shown on the right.  15F11 

are A & D, P1F6 are B & E and 23C6 are C & F.  15F11 and P1F6 are both antibodies 

directed against αvβ5 and 23C6 antibody recognises αvβ3.  Antibody staining is the filled 

are and isotype control is the pink line.  
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Figure 5.2.  Expression of CD47 (green solid) and isotype control (pink line) on A. H929 

cells and B. KMS11 cells.  
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Figure 5.3 Analysis of CD47-regulated apoptosis in KMS11 cells.   

A - Untreated 

B – Isotype control (soluble) 

C – Anti-CD47 (soluble) 

D – Isotype control (immobilised) 

E – Anti-CD47 (immobilised) 

 

Quadrant percentages are marked on each plot and represent as follows:-  lower left quadrant 

- cells which do not stain for either propidium iodide or annexin V and are not undergoing 

apoptosis; lower right - cells which stain positive for annexin V only and are undergoing 

early apoptosis; upper right – cells which stain positive for both markers and are in late 

apoptosis and upper left – cells which stain positive for propidium iodide only and represent 

dead cells.    

 

These are data for a single representative experiment repeated a minimum of 3 times. 
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Figure 5.4 Analysis of CD47-regulated apoptosis in H929 cells.   

A - Untreated 

B – Isotype control (soluble) 

C – Anti-CD47 (soluble) 

D – Isotype control (immobilised) 

E – Anti-CD47 (immobilised) 

Quadrant percentages are marked on each plot as before.  

These are data for a single representative experiment repeated a minimum of 3 times. 
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Figure 5.5. Expression of CD47 (green solid) and isotype control (pink line) on A. SMS-SB 

cells and B. 697 cells. 
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Figure 5.6 Analysis of CD47 regulated apoptosis in SMS-SB cells.   

A - Untreated 

B – Isotype control (soluble) 

C – Anti-CD47 (soluble) 

D – Isotype control (immobilised) 

E – Anti-CD47 (immobilised) 

Quadrant percentages are marked on each plot as before.  

These are data for a single representative experiment repeated a minimum of 3 times. 
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Figure 5.7 Analysis of CD47-regulated apoptosis in 697 cells.   

A - Untreated 

B – Isotype control (soluble) 

C – Anti-CD47 (soluble) 

D – Isotype control (immobilised) 

E – Anti-CD47 (immobilised) 

Quadrant percentages are marked on each plot as before.  

These are data for a single representative experiment repeated a minimum of 3 times. 
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Figure 5.8 Expression of αvβ3 and αvβ5 on BLIN-1 and NALM-6 cells.  Green solid 

represents integrin staining and pink lines isotype controls.  A and B show BLIN-1 staining 

of αvβ5 and αvβ3 respectively and C and D show NALM-6 staining of  αvβ5 and αvβ3 

respectively. 
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Figure 5.9.  Expression of CD47 (green solid) and isotype control (pink line) on A. BLIN-1 

cells and B. NALM-6 cells. 
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Figure 5.10 Analysis of CD47-regulated apoptosis in  

BLIN-1 cells.  

A - Untreated 

B – Isotype control (soluble) 

C – Anti-CD47 (soluble) 

D – Isotype control (immobilised) 

E – Anti-CD47 (immobilised) 

Quadrant percentages are marked on each plot as before.  

These are data for a single representative experiment repeated a minimum of 3 times. 
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Figure 5.11 Analysis of CD47-regulated apoptosis in NALM-6 cells.  A - Untreated 

B – Isotype control (soluble) 

C – Anti-CD47 (soluble) 

D – Isotype control (immobilised) 

E – Anti-CD47 (immobilised) 

Quadrant percentages are marked on each plot as before.  

These are data for a single representative experiment repeated a minimum of 3 times. 
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DISCUSSION 
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6.1 Main Conclusions 

 

CD23 has been described as a multi-functional protein which can be expressed in membrane 

and soluble forms 111.  In this thesis its interaction with the integrin αvβ5 and the effects 

thereof were investigated. CD23 expression on hMSCs has been described 249 but endeavours 

to confirm this in a telomerised stromal cell population were unfruitful.  The possibility that 

these cells are not producing CD23 protein has to be considered when taking results attained 

here into account.  Only CD23 message was detected following investigation of hMSCs RNA 

although real-time PCR was not carried out to fully characterise the gene expression of 

CD23.  Since CD23 protein was not found on the hMSCs it followed that interpretation of 

attempts to block the αvβ5 interaction with CD23 in cell culture experiments was precluded.  

These experiments were designed to exploit the observed growth pattern between hMSCs and 

SMS-SBs.  The hypothesis was that CD23 on the hMSCs and αvβ5 on the SMS-SB cells 

interacted to produce a pro-survival signal to the precursor cells. Data confirming the 

presence of αvβ5 on the SMS-SBs is displayed in Chapter 3. Antibodies directed against 

various CD23 domains had no effect on the growth of SMS-SB cells on hMSC feeder layers.  

Experiments (not shown) designed to ascertain whether soluble factors are solely responsible 

for the positive growth effect were carried out.  This involved taking conditioned media from 

the hMSCs and using this to culture the SMS-SB cells.  This media was not able to sustain 

SMS-SB growth.  In vivo in the bone marrow microenvironment strong adherence of B cell 

precursors to stromal cells occurs so logically it would follow that adhesions are very 

important to viability. The hMSCs obviously provide all of the contacts and growth factors 

required to sustain growth of the B cell precursors but a clear role for CD23 could not be 

established. Another interesting observation was made regarding this co-culture system.  It 

was noted that the hMSC cells enjoy better viability in the presence of the SMS-SB cells and 

without the presence of these cells the stromal cells lose adherence and die.  

 

Use of RKC-containing CD23-derived peptides revealed that growth was stimulated in cell 

lines which (a) express either αvβ5 alone or αvβ5 and αvβ3 together and (b) were of a 

precursor B cell phenotype.  Cells belonging to a later stage in development, e.g. myeloma 
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cell lines which are plasma cell-like, did not respond to these peptides.  The growth factor 

action of RKC-containing CD23 peptides appears to be confined to a particular stage in B 

lymphopoiesis and the presence of the integrins which are acting as receptors for the peptides 

is not sufficient to drive this proliferation.  Although the αvβ5 integrin is the main candidate 

as the receptor these peptides are acting through 251 it has to be considered that they are 

recognizing αv.  The anti-αv antibody AMF7 has a positive effect on SMS-SB growth and 

the peptides display varying binding and growth profiles when tested on other precursor B 

cell lines. Follow-up experiments to clarify this could include the use of the CD23 peptides 

on cell lines which express or have been engineered to express αv but not β5 or BIACORE 

analysis on αv and other αv integrins.  If the CD23-derived peptides have a truly 

representative effect to that of the entire CD23 molecule it would be reasonable to predict 

that they should interact with established CD23 receptors. The αv integrins identified as 

CD23 receptors are αvβ3 and αvβ5.  Perhaps the CD23-derived peptides are able to interact 

beyond the CD23 receptor repertoire and this is what is being observed here.      

 

In SMS-SB cells ligation of the αvβ5 integrin signals via phosphorylation of the kinase Akt 

and this occurs following activation of PI3K.  Due to time constraints and technical 

difficulties further elucidation of this signalling pathway was not possible.  

 

CD23 also interacts with the integrin αvβ3 and this integrin has been described as part of a 

signalling complex with CD47 or IAP.  Signalling through CD47 has been reported to induce 

apoptosis in various cell lines and primary cells but this signalling mechanism has not been 

fully defined at present.  Of the cell lines investigated in this thesis some express αvβ3 alone, 

some express αvβ5 alone and some express both αvβ3 and αvβ5 so they are suitable for 

analysis to determine whether CD47 requires αvβ3 to induce apoptosis. All cell lines express 

high amounts of CD47.  This investigation revealed that myeloma cell lines responded to 

stimulation via CD47 with increased apoptosis regardless of the presentation of the antibody. 

The responses of other cell lines were less decisive. The SMS-SB cells and 697 cells 

underwent increased apoptosis when the anti-CD47 antibody was in soluble form but not 

when it was in immobilised form and the NALM-6 cells also responded in this manner. SMS-

SB cells and 697 cells express αvβ5 but not αvβ3 and NALM-6 cells express both αvβ3 and 
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αvβ5. BLIN-1 cells also express both of these integrins and these cells were the only cell line 

which did not exhibit any increase in apoptosis when treated with either soluble or 

immobilised anti-CD47.    

 

6.2 Effect of RKC-containing CD23-derived peptides on proliferation 

  

Treatment of various cell lines with RKC-containing CD23-derived peptides revealed that a 

positive growth response depended upon two factors: the presence of the αvβ5 integrin; and a 

precursor phenotype.  Cell lines with a plasma cell-like phenotype were non-responsive to the 

peptides despite the presence of the αvβ5 integrin.  Other approaches such as testing of a 

precursor B cell line expressing only αvβ3 or using RNAi to knock down expression of αvβ5 

in NALM-6 or BLIN-1 cells would have confirmed whether stimulation via this integrin 

would produce an increase in cellular proliferation. In the absence of other evidence it is 

possible that the effect on cellular proliferation could occur via either of the αvβ3 and αvβ5 

integrins in NALM-6 or BLIN-1 cells but that in SMS-SB cells and 697 cells this can only 

occur via αvβ5 as this is the only CD23 receptor expressed by these cells.    

 

A pattern of integrin expression emerges when analysing these cells in that it appears αvβ5 is 

expressed at early stages with αvβ3 being expressed as development progresses.  The 697 

and SMS-SB cells express αvβ5 but not αvβ3 whereas the NALM-6 and BLIN-1 cells which 

are representative of a slightly more advanced stage in B lymphopoiesis express both of these 

integrins.  A precedent for such an integrin switch expression model exists in osteoclast 

development 222.  It is possible that as cells lose their αvβ5 expression whilst they progress 

through normal development they no longer respond to stimulation by CD23.  The fact that 

normal peripheral blood B cells do not express αvβ5 and ALL cells universally express αvβ5 

supports this assertion and suggests a role for this proliferative interaction in neoplasia.  

 

Signalling through αvβ5 in lymphoid precursors occurs via PI3K.  Changes in levels of 

phospho-Akt (phosphorylation site serine 473) were detected by immunoblotting. Further 

eludication of the signalling pathways upstream and downstream of this kinase was not 

possible due to time constraints but examination of proteins such as Erk, the BH3 only 
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protein Bad or Mdm2 and p53 would have been feasible due to their activation/inhibition by 

Akt and prominent role in proliferation and apoptosis. Use of inhibitors of these proteins or 

antibodies for immunoblotting/flow cytometric analysis would have been some of the 

methods included in any further investigations undertaken. It would also have been 

interesting to attempt to induce some of the cell lines to further differentiate to investigate 

whether αvβ3 expression would have been stimulated.  This would have revealed whether an 

expression pattern analogous to that seen in osteoclast development 222 exists in B cells.  

  

6.3 CD47-induced apoptosis 

 

Data already in the literature has shown that the ability of CD47 ligation to induce apoptosis 

is dependent upon the cell type involved and the presentation of the antibody used to 

recognise CD47.  It has been found that cell lines such as Jurkat T cells and U937 cells are 

susceptible to apoptosis induced by the B6H12 anti-CD47 antibody 234.  In this thesis it was 

found that using this antibody clone KMS11 and H929 myeloma cell lines underwent 

apoptosis whether the antibody was in soluble or immobilised format.  Of these two cell lines 

only one (H929) expresses the CD47 co-receptor αvβ3 and hence the presence of this 

integrin does not appear to affect induction of apoptosis in these cell lines.  Expression of 

CD47 on these two cell lines, as determined by flow cytometric analysis, was found to be 

higher than that found in other cell types with KMS11 expressing more CD47 than H929.   

Since these two cell lines were found to be the most responsive to anti-CD47-mediated 

apoptosis it is possible that the amount of CD47 expressed on the cell is relevant to whether 

or not apoptosis is triggered.   

 

SMS-SB cells, NALM-6 cells and 697 cells only responded to the apoptotic stimulus when 

the antibody was presented to the cells in soluble format.  When treated with immobilised 

anti-CD47 the cells were resistant to apoptosis.  Analysis of these cells reveals that SMS-SB 

cells and 697 cells do not express αvβ3 whereas NALM-6 cells do express αvβ3. BLIN-1 

cells express αvβ3 and were resistant to apoptosis regardless of whether the antibody was in 

soluble or immobilised form.  It would appear that, with regard to these experiments, no 

correlation exists between expression of αvβ3 and induction of apoptosis via CD47 ligation. 
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This was also the conclusion reached by Mateo et al 233.  Apoptotic induction is not thought 

to be mediated by the complex formed with αvβ3. 

  

The generation of apoptosis via ligation of CD47 has previously been described as occurring 

via a caspase-independent pathway 233.  Time constraints prevented experiments being carried 

out to confirm whether the same is true in these cell lines but further investigation should be 

undertaken to ascertain the mechanism occurring in the KMS11 and H929 cells. Analysis of 

caspase activity and mitochondrial studies would be useful in such an endeavour.       

    

6.4 Concluding remarks 

 

The studies of stromal cells and SMS-SBs failed to further knowledge of the interaction 

between CD23 and αvβ5 but use of RKC-containing CD23-derived peptides revealed that 

ligation of αvβ5 and/or αvβ3 by these peptides has a positive effect on proliferation.  This 

growth factor action of the RKC-containing CD23 peptides was exclusive to precursor B 

cells.  Preliminary studies revealed that the signalling mechanism underlying this growth 

promotion includes activation of PI3K and subsequent phosphorylation of Akt.  Further 

analysis is required to elucidate the complete signalling cascade responsible for this 

proliferative effect. 

 

Induction of apoptosis via CD47 stimulation appears to occur in the absence of CD47’s 

signalling complex partner αvβ3. Whether or not apoptosis occurs appears to be dependent 

upon cell type and the way CD47 is engaged.  Further analysis is required to confirm that 

apoptosis generated in the myeloma cell lines H929 and KMS11 takes place via a caspase-

independent mechanism and to elucidate the mechanism being utilised.  
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SOLUTIONS AND BUFFERS 
 
 
Unless otherwise stated all were made up in distilled water.  
 
 
10 X PBS STOCK    NaCl    1.37M 
(pH 7.2)     KCl    26.8M 
      Na2HPO4   42mM 
      KH2PO4   14.7mM 
 
10 X TBS STOCK    Tris base   200mM 
      NaCl    1.4M 
      pH to 7.2 
      with HCl 
 
 
RIPA BUFFER     Tris-HCl (pH7.4)  50mM 
      NP40    1% v/v 
      Na deoxycholate  1mM 
      NaCl    150mM 
      EGTA    1mM  
      Na3VO4     1mM 
      NaF    1mM 
 
(added just prior to use)   PMSF    1mM 
      Leupeptin   2µg/ml 
      DTT    0.5mM 
 
2 X PROTEIN LOADING DYE  Tris-HCl pH 6.8  125mM 
      SDS    4%  
     Bromophenol blue  0.01%  
      Glycerol   20% v/v 
      2-mercaptoethanol  5% v/v 
 
TRANSFER BUFFER Tris base   25mM 
 Glycine    0.2M 
 Methanol   20%v/v  
 
WASH BUFFER TBS    1 X 
 Tween 20   0.1% v/v 
 
 
ANTIBODY DILUTION  
BUFFER     TBS    1 X 
      Bovine Serum  
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      Albumin   5%w/v 
      Tween 20   0.1% 
 
BLOCKING BUFFER   TBS    1 X 
      Tween 20   0.1%v/v 
      Non fat milk   5% w/v 
 
 
BINDING BUFFER    HEPES/ 

NaOH pH7.4   10mM 
NaCl    140mM 
CaCl2     2.5mM 

 
 
 
 
 
 
 
 


