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ABSTRACT 

This research is concerned with analytical modelling of the effects of cracks 

in structural plates and panels within aerospace systems such as aeroplane 

fuselage, wing, and tail-plane structures, and, as such, is part of a larger body 

of research into damage detection methodologies in such systems. This study 

is based on generating a so-called reduced order analytical model of the 

behaviour of the plate panel, within which a crack with some arbitrary 

characteristics is present, and which is subjected to a force that causes it to 

vibrate. In practice such a scenario is potentially extremely dangerous as it 

can lead to failure, with obvious consequences. The equation that is obtained 

is in the form of the classical Duffing equation, in this case, the coefficients 

within the equation contain information about the geometrical and mass 

properties of the plate, the loading and boundary conditions, and the 

geometry, location, and potentially the orientation of the crack. This 

equation has been known for just over a century and has in the last few 

decades received very considerable attention from both the analytical 

dynamics community and also from the dynamical systems researchers, in 

particular the work of Ueda, Thompson, in the 1970s and 1980s, and Thomsen 

in the 1990s and beyond. An approximate analytical solution is obtained by 

means of the perturbation method of multiple scales. This powerful method 

was popularized in the 1970s by Ali H.Nayfeh, and discussed in his famous 

books, ‘Perturbation Methods’ (1974) and ‘Nonlinear Oscillations’ (1979, with 

D.T.Mook), and also by J.Murdock (1990), and M.P.Cartmell et al. (2003) and 

has been shown to be immensely useful for a wide range of nonlinear 

vibration problems. In this work it is shown that different boundary conditions 

can be admitted for the plate and that the modal natural frequencies are 

sensitive to the crack geometry. Bifurcatory behaviour of the cracked plate 

has then been examined numerically, for a range of parameters. The model 

has been tested against experimental work and against a Finite Element 

model, with good corroboration from both. In all events, this is a significant 

new result in the field and one that if implemented within a larger damage 

detection strategy, could be of considerable practical use.  
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Chapter 1  

INTRODUCTION 

__________________________________________ 

1.1 Motivation 

Nonlinearity in plate structures has been of general interest to the scientific 

and engineering communities for many years. These structures have multitude 

of applications in almost every industry. The aircraft industry has shown much 

interest in this, some of the early solutions were motivated by this industry 

[Trendafilova, 2005]. In electrical engineering, nonlinear behaviour is quite 

evident in Micro-Electro-Mechanical-Systems (MEMS) [Wei et al., 2005]. In civil 

engineering, this is also of interest and was illustrated in regard to the 

behaviour of window glass plating [Wang, 1948]. The current application 

which is being worked on at University of Glasgow is to predict the nonlinear 

behaviour of parametrically excited beams, rotor dynamics, and momentum 

exchange tethers for space vehicle propulsion. Therefore, studying the 

dynamic response, both theoretically and experimentally, of plate structures 

with minor cracks under various loading conditions would help in 

understanding and explaining the behaviour of more complex, real structures 

under similar loading.  

In this research, an approximate analytical model of a cracked plate is 

developed, and a study, both theoretically and experimentally of the 

nonlinear vibrations of a plate with a crack at the centre consisting of 

continuous line under transverse harmonic excitations with three sets of 

boundary conditions has been undertaken. In addition, the bifurcatory 

behaviour within this system has been investigated for a nonlinear transition 

to chaos through the use of available software such as Dynamics 2 and by 

means of code written in Mathematica™. Therefore, the eventual goal is to 
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provide an understanding of vibration and dynamic system analysis of plate 

structures associated with a centrally located crack. 

1.2 Overview 

Plate and beam structures are fundamental elements in engineering and are 

used in a variety of structural applications. Structures like aircraft wings, 

satellites, ships, steel bridges, sea platforms, helicopter rotor blades, 

spacecraft antennae, and subsystems of more complex structures can be 

modelled as isotropic plate elements. In this dissertation, only aircraft wing 

structures modelled as an isotropic plate are discussed. The plate panels on 

the tips of aircraft wings are mainly under transverse pressure, and are often 

subjected to normal and shear forces which act in the plane of the plate. The 

plate panels may not behave as intended if they contain even a small crack, 

or form of damage, and such small disturbances can create a complete loss of 

equilibrium and cause failure.  

Interesting physical phenomena occur in structures in the presence of 

nonlinearities which cannot be explained by linear models. These phenomena 

include jumps, saturation, sub-harmonic, super-harmonic, and combination 

resonances, self-excited oscillations, modal interactions, periodic doubling, 

and chaos. These various phenomena have been discussed in most of the 

literature to date. In reality, no physical system is strictly linear and hence 

linear models of physical systems have limitations of their own. In general, 

linear models are applicable only in a very restrictive domain such as when 

the vibration amplitude is very small. Thus, to accurately identify and 

understand the dynamic behaviour of a structural system under general 

loading conditions, it is essential that nonlinearities present in the system also 

be modelled and studied. Nayfeh and Mook (1979), Moon (1987), Cartmell 

(1990), Strogatz (1994), Thomsen (1997), Sathyamoorthy (1998) and Murdock 

(1999) explain various types of nonlinearities in detail, along with examples. 

Here, some of these nonlinearities are briefly described which can be broadly 

classified into two main categories i.e. geometric nonlinearity and material 

nonlinearity. The accurate representation of displacement may involve 

geometric nonlinearity. Geometric nonlinear problems may arise because of 
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two reasons (a) the nonlinear strain–displacement relationship; (b) the 

nonlinearity in the governing differential equation due to the coupling of in-

plane and transverse displacement fields. As the deflection of the plate 

increases, the stretching effect becomes more pronounced than the bending 

effect, particularly when the edges of the plate are restrained. These types of 

problems are also referred to as large deflection problems which result in 

nonlinear equations. There is another class of problem, where the stress 

strain relationship of the material of the structure is not linear. In the case of 

steel, linearity occurs up to the yield point, but beyond that it deviates from 

linear to nonlinear. Therefore it involves nonlinear material behaviour. Many 

other types of nonlinearities exist in structures such as inertia, impacts, 

backlash, boundary conditions, fluid effects and damping.  

Plate structures undergoing transverse deflection can be classified into 

numerous regimes that describe the nature of their behaviour and thus the 

characteristics of the mathematical problem. This behaviour can generally be 

classified in the literature by carefully observation of the amount of 

deflection in comparison to the plate dimensions. These regimes include (a) 

small deflection theory (Linear) which can typically be used for deflections 

less than twenty percent of the thickness, (b) moderately large deflection 

theory (Nonlinear) is applied when the deflection is a multiple of the plate 

thickness but much less than the plate side length, (c) and very large 

deflection theory (Highly Nonlinear) is applied when the deflection of the 

plate is similar in magnitude to the plate side length. These large 

deformations occur in structures subjected to shock loads, and can not be 

adequately analysed by linear theory since the deflection of the panels does 

not remain small in comparison with the thickness. Depending on the plate 

classification the solution to these problems can be relatively simple or highly 

complex, and typically impossible without the implementation of 

approximating techniques. In this literature review, discussion will only be 

made of linear and moderately nonlinear systems, very large deflection is 

currently not pertinent to this work and subsequently will not be covered. 

Interestingly, the majority of physical systems appear to belong to the class of 

weakly nonlinear or quasi-linear systems. For certain phenomena, these 

systems exhibit behaviour only slightly different from that of their linear 
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counterpart. In addition, they can also exhibit phenomena which do not exist 

in the linear domain. Therefore, for weakly nonlinear structures, the usual 

starting point is still the identification of the linear natural frequencies and 

mode shapes. Then, in the analysis, the dynamic response is usually described 

in terms of the linear natural frequencies and mode shapes. The effect of 

small nonlinearities is seen in the equations governing the amplitude and 

phase of the structure’s response. Weak nonlinearity can be seen for example 

in wave drift forces, whereby waves generate steady forces on floating 

bodies. Wave drift forces are typically proportional to the square of the wave 

height, and can be analysed with a perturbation scheme. Whereas, strong or 

highly nonlinear systems can not be analysed with a perturbation scheme. 

At the turn of the 20th century, Henri Poincare made one of the first 

predictions of the existence of chaos, of what is prosaically now called the 

butterfly effect. These chaotic or nonlinear systems exhibit surprising and 

complex effects that would never be anticipated by someone trained only in 

linear techniques. Nonlinearity has its most profound effects on dynamical 

systems and can be found in much of the literature.  

1.3 Research Objectives 

This research proposes a new analytical model for the nonlinear vibration 

analysis of an aircraft panel structure modelled as an isotropic cracked plate 

and based on classical plate theory with different possible boundary 

conditions including clamped – clamped – free – free (CCFF), clamped – 

clamped - simply supported – simply supported (CCSS), and all sides simply 

supported (SSSS), and subjected to transverse harmonic excitation. A crack is 

arbitrarily located at the centre of the plate, consisting of a continuous line. 

This model is developed by assuming that the effects of rotary inertial and 

through thickness stresses are negligible. The emphasis, however, is to 

develop an approximate analytical model of the cracked plate, which is in the 

form of single-degree-of-freedom system. Secondly, an approximate solution 

technique is proposed by use of the method of multiple scales, and in 

addition, direct integration and finite element analysis in ABAQUS are also 

employed for comparison. This model can also be studied for the nonlinear 
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vibration analysis of the plate without the application of the transverse 

harmonic excitation. Thirdly, dynamical systems analysis is performed by the 

use of commercially available software Dynamics 2 and Mathematica™ and 

generates interestingly complex phenomena from the nonlinear transitions to 

chaos. Finally the results are verified via experimental investigations followed 

by useful results and conclusions.  

1.4 Outline and Methodology 

In Chapter 2 an extensive literature review is presented that is related to the 

present work. 

The equations of motion governing the nonlinear vibrations of isotropic plates 

are derived with possible boundary conditions, using the equilibrium principle 

based on classical plate theory, in Chapter 3. An arbitrary located crack at 

the centre of the plate is defined by a continuous line. Assumptions used in 

this derivation are also elaborated. The derived equations are used in the 

theoretical analysis which is explained in subsequent chapters. Furthermore, 

the governing partial differential equation is converted into the time domain 

by defining the characteristic or modal functions depending upon the 

boundary conditions, using Galerkin’s method1.  

In Chapter 4, an approximate analytical solution is proposed via the method of 

multiple scales for the governing differential equation of the cracked plate 

subjected to transverse loading, for studying the effect of nonlinearity caused 

by the crack within plate structures. Similarly, solution of the problem is also 

obtained by direct integration and finite element analysis in ABAQUS.  

In Chapter 5, the bifurcatory behaviour of the proposed cracked plate model 

is discussed to analyse the nonlinear transition to chaos through the use of 

                                         
1 Galerkin’s method is used to reduce the set of partial differential equations to a set of 
ordinary differential equations, and then it is possible to study linear, nonlinear, and chaotic 
behaviour of the system. It uses the shape or characteristic functions which depend upon the 
boundary condition of the system. Galerkin’s method can be divided into two main categories 
such as Petrov-Galerkin method and Ritz-Galerkin method. In the Ritz-Galerkin method the 
solution is expended in terms of a series with unknown coefficients which depend on time and 
satisfy the given boundary conditions. In the Petrov-Galerkin method the residual be 
orthogonal to each of the expansion functions, one may define a different set of test 
functions and require the residual to be orthogonal to each of these test functions. 
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Dynamics 2 and Mathematica™. In this chapter, we briefly introduce the chaos 

and some important properties of chaotic systems including time plots, phase 

planes, Poincaré maps, bifurcation diagrams, and the Lyapunov exponent.  

An experimental study of the response of rectangular, aluminium CCFF 

cracked and un-cracked plates to transverse harmonic excitations is presented 

in Chapter 6.  

In Chapter 7, results and discussions are presented and show that a model of 

the cracked plate with different boundary conditions can exhibit a multitude 

of nonlinear dynamical phenomena, followed by conclusions and future 

recommendations in Chapter 8. 
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Chapter 2  

LITERATURE REVIEW 

__________________________________________ 

To cover some general historical background, we begin with a discussion of 

linear homogenous beams and plates. This is followed by nonlinear aspects of 

plates, brief coverage of damage in plate structures, solution methodologies, 

and finally an introduction to nonlinear transitions to chaos. 

2.1 Historical Background 

Plate theory, and its behaviour in the dynamic and static domains has been 

applied to reduce vibration and noise in structures since the end of the 19th 

century where it began with the work of German physicist Chladni (1827) who 

discovered various modes of free vibrations experimentally [Szilard, 2004]. 

Since then it has developed into an escalating and expansive field with a wide 

variety of theoretical and empirical techniques, dealing with increasingly 

complicated problems. The first mathematical solutions to the free vibration 

problem of the membrane theory of plates were formulated by Euler in 1766 

and his student Bernoulli in 1789. Lagrange developed the first correct 

governing equation for the free vibration of plates in 1813 [Szilard, 2004]. The 

plate problem has progressed through history to the present, where it is 

commonly analyzed using the finite element method and other rigorously 

applied computational methods that are capable of accommodating many 

different geometries and ranges of parameters. Navier can be credited with 

developing the first correct differential equation of plates subjected to 

distributed static lateral loads in 1836 followed by Kirchhoff who derived the 

same differential equation through the use of a different energy approach in 

1887. The first correct statement of the differential equation governing plate 

vibrations is attributed by Rayleigh to Sophie German in the early 19th 

century. In 1877, Rayleigh published the first edition of his famous book 
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Theory of Sound and the second edition appeared in 1945, in which he 

proposed seminal methods for determining natural frequencies of vibration.  

Tomotica presented work on the vibrations of square plates in 1936. In 1950, 

Young adopted the Ritz method to approximate the first six natural 

frequencies for clamped square plates, and in 1954, Warburton proposed the 

first comprehensive collection of solutions for rectangular plates. He used 

Rayleigh’s method to obtain the approximate frequency expressions for plates 

with a series of different boundary conditions. In addition to that a useful 

discussion on the mode shapes of rectangular plates, and the method for 

obtaining the mode shapes, were also a part of this paper. The frequency 

equation was not fully explored until seven years later by Mindlin in 1960. To 

extend the range of applicability of classical theories to higher frequencies, 

refined dynamic theories of beams and plates were introduced by Timoshenko 

in 1921, and by Mindlin in 1951, respectively, and included the effects of 

transverse shear and rotary inertia. Mindlin not only generalised the 

Timoshenko beam theory to the plate, but also compared and coordinated the 

results of his plate theory with those derived by Lord Rayleigh from elasticity 

theory. This was one of the first attempts to establish a connection between 

the exact dynamic elasticity theory and an approximate plate theory, by 

means of which the shear factor introduced in Mindlin’s theory could be 

determined. 

Small deflection vibrations in plates have been widely studied due to the 

relative ease of obtaining solutions in these cases. Therefore a variety of 

literature is available concerning such linear vibration problems. A monograph 

on the vibration of plates was published by Leissa in 1969, reprinted in 1993; 

in which he reviewed the contemporary literature on plate vibrations. Later, 

in 1973, this author presented a review paper on free vibrations of 

rectangular plates, and comparisons were made with Warburton’s useful 

approximate formulas of 1954. One of the classical references for plate 

problems is Theory of Plates and Shells by Timoshenko, 1940, which provides 

an expansive amount of information on plates and derivative systems. Szilard, 

in 2004, also provides an excellent overview of the linear plate problem with 

an emphasis on finite difference techniques. Laura and Duran, in 1975, used 

the simple polynomial approximation and Galerkin’s method to determine the 
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response of a clamped plate subjected to a harmonic excitation. The results 

were presented in terms of amplitudes and bending moments as a function of 

the relative frequency (ratio of the frequencies) for different aspect ratios for 

simply supported and clamped rectangular plates. For simply supported 

rectangular plates the agreement of the approximate solution with the exact 

solution for the relative frequency of 0.30 and aspect ratios of 1 and 2, were 

quite reasonable, while for clamped rectangular plates the results were in 

good agreement for a zero relative frequency. Jones and Milne applied an 

extended Kantorovich method in 1976, as proposed by Kerr in 1968 for the 

evaluation of the eigen frequencies of vibration of clamped rectangular plates 

in detail, and this was also applied for the cases of clamped – clamped – 

simply supported - simply supported (CCSS) and clamped – clamped – clamped 

- simply supported (CCCS) sets of boundary conditions. The results were 

compared with those of Leissa from 1973, and a very close agreement was 

found. Bhat investigated the vibration problem of rectangular plates with 

different boundary conditions in 1985 by using a set of characteristic 

orthogonal polynomials in the Rayleigh-Ritz method. The result when 

compared with the published literature yielded good agreement for the lower 

modes only. Some developments in the finite element method have been led 

by Han and Petyt et al. in 1996(a) leading to a new approach now known as 

the hierarchical finite element method (HFEM) for the study of linear 

vibrations of symmetrically laminated rectangular plates with clamped 

boundary conditions. The results showed that the solutions converged rapidly 

with the increase in the number of polynomials used, which resulted in far 

fewer degree of freedom than those when used the conventional finite 

element method. These authors further investigated the same problem in 

1996(b), however at this time they considered the analysis of forced 

vibration. The loads considered were harmonic acoustic plane waves 

impinging on the plate surface in a normal direction and at grazing incidence. 

These authors obtained the natural frequencies of five layer symmetrically 

laminated rectangular plates for different grazing incidents and found a 

decreasing trend of frequencies with the increase of incident. Furthermore, 

they found that the maximum surface bending strains might not occur at the 

middle of the edges due to the distorted mode shapes.  
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Fan, in 2001, analyzed the transient vibration and sound radiation of a 

rectangular plate with visco-elastic boundary supports subjected to an impact 

loading and obtained the sound radiation pressure in the time and frequency 

domain by means of the Rayleigh integral. Au and Wang, in 2005, studied the 

dynamic responses in terms of sound radiation from the forced vibration of an 

orthotropic plate with the effects of moving mass, damping coefficient, and 

boundary conditions. Yagiz and Sakman, in 2006, observed the dynamic 

response of a bridge modelled as an isotropic plate under the effect of a 

moving load with all sides simply supported. They considered a vehicle with 

seven degrees of freedom system as the moving load. A mathematical model 

was obtained by the use of Lagrange’s formulation, and used to investigate 

the dynamic response of the bridge and vehicle. 

2.2 Nonlinear Deflection Theory 

Many formulations for nonlinear deflection theory have been proposed and 

tested to give a closed-form solution to the problem. Higher deflections, of 

the order of approximately a tenth the thickness of the plate, can cause 

stiffening of the structure that cannot be predicted by linear theory. The 

credit for uncovering the nonlinear theory that satisfactorily accounts for both 

bending and stretching of the plate is given to G. Kirchhoff (1824–1887). The 

final form of the nonlinear differential equations governing the moderately 

large deflection behaviour of a statically deflected plate was published by Von 

Karman in 1910. A review concerning the nonlinear vibration analysis of plates 

and shells was presented by Leissa in 1984, followed by Sathyamoorthy in 

1988, and who summarised work on nonlinear vibrations of plates from 1983 

to 1986, including 99 published references. The nonlinear analysis of plates 

has led to the production of famous reference books such as Non-linear 

Analysis of Plates by Chia, 1980, and Nonlinear Oscillations by Nayfeh and 

Mook in 1979.  

One of the first studies dealing with the problem of nonlinear plate vibrations 

was due to Chu and Hermann in 1956. They obtained a solution for the 

nonlinear free vibrations of rectangular elastic plates with fixed and hinged 

edges through the use of a perturbation method and the principle of 



Chapter 2: Literature Review 
 

11 

conservation of energy.  Later, in 1961, Yamaki used a Galerkin approach to 

obtain the solutions for rectangular plates simply supported on all edges and 

clamped on all edges. Berger, in 1955, derived a simplified set of equations 

describing the large deflection of plates. He solved several static problems 

and concluded that his simplified theory gave results in substantial agreement 

with more elaborate methods. Wah, in 1963, employed an approximate 

formulation based on Berger’s hypothesis of 1955 for the numerical solution of 

rectangular plates with various boundary conditions for large vibration 

amplitudes. He plotted his results for relative time period and bending 

stresses as a function of the ratio of the amplitude and thickness of the plate 

for various values of the aspect ratios. Srinivasan, in 1965, used the Ritz–

Galerkin method to study the case of hinged-hinged beams and circular plates 

with different boundary conditions at large vibration amplitudes. Stanišić and 

Payne introduced a technique in 1968 which was based on the Galerkin 

approach for determining the natural frequencies of rectangular plates with 

discrete masses added for simply supported and clamped boundary conditions. 

Their results indicated the expected trend that natural frequencies decreased 

with the added mass whereas the deflections and stresses of the plate 

increased. Rehfield, in 1973, developed an approach for analysing the 

nonlinear free vibrations of elastic structures by the use of Hamilton’s 

principle and a perturbation procedure, and this was extended to the case of 

forced vibration of beams and rectangular plates. Mei applied the finite 

element method in 1973 for the prediction of large amplitude free flexural 

vibrations of beams and plates with various boundary conditions. The 

nonlinearity considered was due to large deflections, and not due to nonlinear 

stress-strain relationships, and the results showed the hard spring nonlinear 

characteristics as the dimensionless amplitude increased. Various analytical 

formulations of the problem of large-amplitude free vibration behaviour of 

simply supported beams with immovable ends based on the Rayleigh–Ritz 

technique were formulated by Singh et al. in 1990. At the same period, 

another model based on Hamilton’s principle and spectral analysis was 

proposed for nonlinear free vibrations of thin straight structures by Benamar 

et al. in 1990; this was applied to clamped-clamped beams, homogeneous and 

symmetrically laminated fully clamped rectangular plates in 1991, and further 

extended to fully clamped thin plates in 1993. These studies showed that the 
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mode shapes were amplitude dependent. The general trends of the mode 

shape change were an increase of the displacement, or curvature, near the 

edges, and flattening near the centre of the beam or plate. However, the 

theoretical models employed in these studies considered transverse 

displacements only and neglected the effects of in-plane displacements. At 

the start of the 21st century, this model has been extended and improved to 

determine the geometrically nonlinear free and forced vibrations of clamped - 

clamped and simply supported beams by El Kadiri et al. in 2002(a). In this 

model, the nonlinear free vibration problem was reduced to the solution of a 

set of nonlinear algebraic equations, which was performed numerically using 

appropriate algorithms in order to obtain a set of nonlinear mode shapes for 

the structure. They were considered in each case with the corresponding 

amplitude-dependent nonlinear frequencies. This approach was also applied 

in order to determine the amplitude-dependent deflection shapes associated 

with the nonlinear steady-state periodic forced response. The authors applied 

the same procedure for determining the first and second nonlinear mode 

shapes of fully clamped rectangular plates in 2002(b), and in 2003 they 

proposed an improved form for determining the geometrically nonlinear 

response of rectangular plates which were excited by concentrated, or 

distributed harmonic forces. This approach was applied to the cases of fully 

clamped (CCCC), simply supported and clamped - clamped - simply supported 

(SCCS) rectangular plates. Similarly, these studies showed that the relative 

frequency was a function of the ratio of the amplitude and thickness of the 

plate. Further studies showed that El Bikri et al. extended Benamar’s model 

in 2003 to determine the fundamental nonlinear mode shape, the associated 

amplitude dependent natural frequencies, and the flexural stress distribution 

of a clamped – clamped - simply supported - simply supported (CCSS) 

rectangular plate. Later, Beidouri et al. extended this model in 2006 to the 

cases of clamped - simply supported – clamped - simply supported (CSCS) and 

clamped - simply supported - simply supported - simply supported (CSSS) 

rectangular plates and determined iteratively the amplitude dependence of 

the first nonlinear mode shapes for aspect ratios of 0.66 and 1.5, and for 

various vibration amplitudes. Han and Petyt in 1997(a) developed the HFEM 

for the geometrically nonlinear vibration analysis of thin laminated 

rectangular plates with clamped boundary conditions to study the variation of 
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the natural frequencies and the mode shapes with the change of vibrational 

amplitude. They observed the hardening spring effect for the fundamental 

mode of rectangular isotropic plates and compared the nonlinear frequency 

ratios for the first and higher modes with fully clamped boundary conditions 

with, without in-plane displacements and with the average of in-plane strains. 

The first and higher modes of isotropic and laminated plates were also 

reported in 1997(b).  

The large deflection theory for the Mindlin plate was employed by Wang and 

Kuo in 1999 for the examination of the nonlinear vibration of the plate 

induced by the coupling of moving loads with the weight of the plate. In the 

initial part of the studies one of the equations of static equilibrium due to the 

weight of the plate was derived and secondly, static responses of the plate 

were accounted for in deriving the equations of motion of the plate. Static 

and dynamic findings were presented for a simply supported square plate of 

length 20 m and thickness of 10 cm. Static results showed that the deviation 

in amplitude between the large deflection theory and the small deflection 

theory increased as the thickness decreased, and similarly it increased with 

the area of the plate. Results also showed that changes in dynamic transverse 

deflection and dynamic bending moment between the large deflection theory 

and the small deflection theory are significant for thin plates with large area. 

2.3 Damage in Plate Structures 

Cracks present a serious threat to the performance of structures. Most failures 

are due to material fatigue. It is for this reason that methods allowing early 

detection and localisation of cracks are of the utmost necessity for smooth 

running and longevity of machines and structures. The dynamic responses of 

rectangular plates with cracks, or minor irregularities under different loading 

conditions, have been investigated in the past by many researchers for 

different boundaries conditions, and various methods have been proposed to 

deal with the problem. Nevertheless fewer material has been published on 

the vibration analysis of cracked plates. Dimarogonas, in 1996, reported a 

comprehensive review of the vibration of cracked structures. This author 

covered a wide variety of areas that included cracked beams, coupled 
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systems, flexible rotors, shafts, turbine rotors and blades, pipes and shells, 

empirical diagnoses of machinery cracks, and bars and plates with a 

significant collection of references. Irwin, in 1962, examined a part-through 

crack in a plate subjected to tension and derived a relation for the crack 

stress-field parameter and the crack extension force at the boundaries of a 

flat elliptical crack. Gross et al., in 1964, described in their technical report 

that stress intensity factors can be obtained by a boundary value collocation 

procedure applied to the Williams stress function for a single edge notch 

tension specimen. The results were presented in terms of non-dimensionalised 

stress intensity factors and ratio of the crack length to the specimen width, 

and this showed an increasing trend with the increase of crack ratio. 

Moreover, at small ratios of crack length to specimen width (0.15-0.40) the 

results were in good agreement with other authors’ results, and above 0.40 

differences in their results were implicitly due to bending, which was not 

taken into account in their analytical solutions.  

The vibrations of a cracked rectangular plate were first investigated by Lynn 

and Kumbasar in 1967, who used a Green's function approach to obtain a 

homogenous Fredholm integral equation of the first kind which satisfied the 

mixed edge condition along a fictitious line partially formed by the crack. 

Lynn and Kumbasar used the Krylov and Bogolivbov method to solve the 

integral equation for narrow cracks, and for a simply supported plate on all 

sides. The result was presented in terms of variations of frequencies with 

respect to different crack lengths, and the relative moment distributions 

along the un-cracked segments. The dynamic characteristics of centrally 

located cracked plates in tension were analyzed by Petyt in 1968 by the use of 

the finite element displacement method. In addition, the effect of an 

increase in the width of the plate was described and this showed the decrease 

in amplitude in the area of the crack and the increase in the curvature of the 

plate in the region of the crack tip. The results were presented in terms of 

frequencies vs. crack length, and stresses and defections vs. length of the 

plate. Okamura et al., in 1969, obtained the lateral deflection, the load 

carrying capacity, and the stress intensity factor of a rectangular cross-

section single-edge cracked column with hinged ends under compression. 

They compared an un-cracked column with a cracked column, and examined 
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the effect of a crack on load carrying capacity and deflections, with the ratio 

of crack length to column width, and the ratio of column width to column 

length as important parameters. In particular these authors considered the 

effect of compliance due to bending, and ignored the effect of compliance 

due to rotation induced by the axial load. Stahl and Keer, in 1972, as well as 

Aggarwala and Ariel, in 1981, solved the eigenproblem of simply supported 

plates by using homogeneous Fredholm integral equations of the second kind 

by taking the stress singularity at the crack tips into account. These authors 

presented methods which were limited to crack locations that allowed the 

problem to be reduced to a dual series equation, however the procedure of 

the model involved lots of computation. Aggarwala and Ariel pointed out that 

the frequency appeared to be higher when the cracks started from outside of 

the plate as compared to the case when cracks started from inside. The 

reason for this discrepancy was explained for the cracks starting from the 

outside, that in the limiting case when they reached the centre, on account of 

symmetry the condition /w x∂ ∂  (where w  is the transverse displacement of 

the plate) must be satisfied at the centre, which was not applicable when the 

cracks started from the centre. Rice and Levy, in 1972, introduced the line 

spring model that reduced the truly three dimensional problem to one using 

two dimensional plate or shell theory. This approach is computationally 

inexpensive compared to full three dimensional models, and, within certain 

restrictions, provides acceptable accuracy. They employed two dimensional 

generalised plane stresses, and used Kirchhoff’s plate bending theories with a 

continuously distributed line spring to represent a part-through crack, and 

also chose compliance coefficients to match those of an edge-cracked strip in 

plane strain. The line of discontinuity was of length 2a and the plate was 

subjected to remote uniform stretching and bending loads along the far sides 

of the plate. These authors computed the force and moment across the 

cracked section to determine the stress intensity factor, and the solution to 

the problem was characterised in terms of the Airy stress function.  Their 

results showed that rs rsK K  (where rsK  is the stress intensity factor for an all-

over crack, and rsK  is the stress intensity factor of an edge crack in plane 

strain for the same relative depth ol h , and for remote tensile or bending 

load) approaches unity with an increase in the ratio of crack length to plate 
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thickness 2a h . Furthermore, at small values of relative depth ol h , the ratio 

rs rsK K  approaches unity for small values of 2a h .  Moreover Rice and Levy, 

1972, pointed out that the line spring approximation appears to be most 

appropriate along regions where the crack depth varies slowly. Hirano and 

Okazaki, in 1980, and Nezu, in 1982, applied a finite Fourier transform to the 

differential equations governing the problem of the plates in which one pair 

of simply supported edges was perpendicular to the line of the crack. They 

obtained a system of integral equations which possessed the unknown 

discontinuities of the deflection and slope across the crack. These unknown 

quantities were expanded into a Fourier series. The results were presented 

for symmetric and anti-symmetric cases of their proposed models with 

excellent conclusions. 

Bending of a cracked rectangular plate was first investigated by Keer and Sve 

in 1970. Their analysis was limited to such a location of the crack that 

allowed reduction of the problem to a dual series equation. Hence the crack 

was confined to a position along the symmetry axis. They formulated the 

problem as dual series equations and used a modification of the technique 

proposed by Westmann and Yang in 1967 to obtain a solution in terms of a 

Fredholm integral equation of the second kind. Keer and Sve studied three 

cases comprising two collinear external cracks of equal length, an internal 

centrally located crack, and a single external crack. In all these cases the two 

plate boundaries perpendicular to the line of the crack were simply supported 

and clamped. The authors found that there was a change in strain energy due 

to the crack for both support cases, and for different aspect ratios of the 

plate. By comparing the two support conditions it was concluded that the 

clamping will tend to decrease the possibility of fracture since the strain 

energy release rate is smaller. An analogous method was applied by Stahl and 

Keer in 1972 for the analysis of natural vibration and stability of rectangular 

plates and was bounded by the similar limitations encountered by Keer and 

Sve in 1970. Solecki, in 1975, attempted to remove existing restrictions by 

developing a method that would allow the study of rectangular plates with 

arbitrarily located cracks. Solecki, in 1983, extended this work and developed 

a method to study the natural flexural vibration of simply supported 

rectangular plates with an arbitrarily located crack parallel to one edge, and 
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the method was based on the combination of finite Fourier transformation 

and of the generalized Green-Gauss theorem. A simply supported rectangular 

plate with a centrally located, and off-centre, crack was discussed as one of 

the examples. Numerical data was not obtained however, partially because 

the singularity of the curvature at the tips was not explicitly isolated. 

Rossmanith, in 1985, used the Westergaard stress function approach and 

solved for the stress intensity factor of associated, centrally located, cracked 

plate bending problems. 

Rectangular plates with cut-outs are frequently found in engineering 

structures and these cut-outs are principally made for saving weight, for 

venting, for altering the natural frequencies and for providing accessibility to 

other parts of the structures. Many authors have investigated these types of 

structures and a few of them are mentioned here. Ali and Atwal, in 1980, 

used Rayleigh’s method to study the natural vibration of rectangular plates 

with cut-outs. A comparison of the results obtained from Rayleigh’s method 

and those obtained from the finite element method indicated that the 

maximum discrepancy between the two results was of the order of 10-11% for 

the first mode, and increased as the mode number increased. To reduce the 

percentage discrepancies in their results they proposed a correction factor 

depending on the cut-out size, and modified the deflection shape function 

which reduced the values from the corresponding finite element results to 

below 5%. Similarly, Lee et al., in 1990, proposed an alternate method for the 

prediction of natural frequencies of rectangular plates with an arbitrarily 

located rectangular cut-out, and the plate was simply supported along one 

pair of opposite edges with any other boundary conditions in force at the 

remaining edges. The deflection function was chosen to satisfy all, or part of, 

the internal free edge conditions along the four edges of the cut-out, whereas 

the deflection function assumed by Ali and Atwal, 1980, was continuous 

throughout the whole domain of the plate, including the cut-out. Symmetric 

and anti-symmetric modes of vibration were considered in order to formulate 

the problem, and the results compared with those from finite element.  

The Line Spring Model (LSM) has been rigorously treated by many researchers 

since it was initially proposed by Rice and Levy in 1972. Wen and Zhixe, in 

1987, suggested a  modified line spring model by taking into account the non-
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local effect of the deformation for the line spring for the fracture analysis of 

part-through and slender cracks under tension and shearing. These authors 

investigated the accuracy and the relationship of the LSM between Reissner’s 

theory of plates and shells and Kirchoff’s theory, and calculated the stress 

intensity factors under different loading conditions and geometry of the 

cracked body. Two sets of problems were discussed; an infinite plate with an 

embedded symmetric elliptical crack under tension, and a rectangular surface 

crack under uniform shearing, and it was found that the relative error 

increased with the increase of the ratio of crack depth to plate thickness. 

Oliveira et al., in 1991, described the Integrated Line Spring Element, which 

was designed to be associated with Semiloof shell elements for the simulation 

of the structural behaviour of the remaining ligament in a part-through crack 

in a thin shell. This shell element was used to determine the stress intensity 

factor for internal and external semi-elliptical cracks in arbitrary shells under 

mode I, II and III load conditions. Liu et al., in 1999, obtained a three 

dimensional boundary element method with mixed boundary conditions for a 

nonlinear surface crack analysis, and used the LSM for the formulation of the 

problem and studied the fracture parameter J integral of a nonlinear surface 

crack. They also presented a predictor-corrector method for the nonlinear 

compliance matrix of the mixed boundary condition. The authors gave 

examples to illustrate their proposed method, in the first case a thick plate 

with a semi-elliptical surface crack with maximum crack depth of 0.6 was 

considered and the results showed that the plastic J integral appeared at 

around a normalised load of 0.6, and after 0.9 the results seemed to show a 

big difference, as compared with existing solutions, whereas in the case of 

the second example in which a hollow cylinder contained a circumferential 

external crack of constant depth, plastic behaviour was observed around a 

normalised load of 0.65, and uncertainty occurred after 0.85. Therefore, it 

was concluded that this method was not suitable for a surface crack problem 

with large scale plastic deformation. Zeng et al., in 1993, developed a new 

LSM based on the boundary element method to find the surface flaws in the 

plate in the form of crack. The virtual crack extension technique was 

employed to obtain the stress intensity factor at the intersection of the crack 

front and free surface. These authors found by detail investigations that the 

stress intensity factor at the crack front-free surface intersection was barely 
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acceptable. Cordes and Joseph, in 1995, analyzed the LSM and used it to 

determine the stress intensity factors for the surface and internal cracks in a 

Reissner plate that contained residual stresses. Such stresses are usually 

caused by intentional or unintentional activities during manufacturing and 

installation, and need to be determined to ensure that the material responds 

in a safe, predictable manner during its lifetime. These authors presented a 

series of results for different crack length and depth, and compared their 

results with the LSM classical theory (the Irwin model of 1962) and the finite 

element model, which showed that the current model results ranged from 

0.6-0.8% higher, whereas the average percentage difference was found to be 

4.2%. The discrepancy increased slightly as the order of the loading increased. 

Goncalves and Castro reviewed the LSM in 1999, and its implementation in the 

finite element program i.e. ABAQUS. Some part-through crack configurations 

in plates were studied and these authors obtained the stress intensity factors 

for the case of pure tension and pure bending. It was pointed out that the LSM 

does not take into account the curvature of the crack front and is not a good 

approximation near the ends where the crack intersects the free surface and 

in cases where the crack depth varies rapidly. 

Liew et al., in 1994, employed the decomposition method to determine the 

vibration frequencies of cracked plates with any combination of boundary 

conditions. They assumed the cracked plate domain to be an assemblage of 

small sub-domains and used the appropriate functions to obtain a governing 

eigenvalue equation. The results were plotted and compared with those of 

other authors for a symmetric and anti-symmetric plate mode, for two sets of 

crack locations. Ramamurti and Neogy, in 1998, applied the generalized 

Rayleigh–Ritz method to determine the natural frequency of a cracked blade 

of a turbo-machine, modelled as a cracked non-rotating cantilevered plate. It 

was found through their results that the cracked frequencies were lower than 

the corresponding un-cracked frequencies, although the authors were not 

satisfied with these findings and argued that the natural frequency is not a 

good criterion for damage detection. Similarly Neogy and Ramamurti, in 1997, 

proposed a model of a damaged blade, and the damage was in the form of 

non-propagated crack for determining the natural frequency, however at this 

time they modelled a blade as a rotating shell. In their findings, they 
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observed that the effect of rotation in the first mode was very pronounced 

but the effect of the crack was marginal, and so rotation failed to alter 

considerably the pattern of frequency reduction. In the case of the second 

and third modes both the crack and the rotation produced noticeable effects 

and the relatively larger effect of rotation to the decrease in frequency was 

observed. Therefore, it was concluded from these results that the small 

cracks in turbine blades, when modelled as a cantilevered plate, cannot easily 

be detected by the natural frequency criterion.  

At the start of the 21st century, Khadem and Rezaee, in 2000(a), introduced a 

new technique for the vibration analysis of cracked plates and considered the 

effect of compliance due to bending only. Later in 2000(b), they established 

an analytical approach for damage in the form of a crack in a rectangular 

plate using the application of external load for different boundary conditions. 

They concluded from their results that the presence of a crack at a specific 

depth and location would affect each of the natural frequencies differently. 

Wang et al., in 2003, extended a boundary collocation method based on 

complex variable theory which was proposed for calculating the stress 

intensity factors of cracks in a finite plate. Five examples including a 

rectangular/circular plate with a central crack, a rectangular plate with a 

slanted crack, a simply supported plate with a central crack and a plate with 

two cracks were discussed, and it was concluded that good agreement for 

short cracks was evident with those obtained by other methods. Wu and Shih, 

in 2005, theoretically analyzed the dynamic instability and nonlinear response 

of simply supported cracked plates subjected to a periodic in-plane load. The 

incremental harmonic balance method was applied to solve the nonlinear 

temporal model. Their results indicated that the stability behaviour and the 

response of the system were governed by the crack location of the plate, the 

aspect ratio, conditions of in-plane loading, and the amplitude of vibration. 

They also explained that increasing the crack ratio i.e. the ratio of the crack 

length to the length of the edge where the crack lies or/and the static 

component of the in-plane load decreases the natural frequency of the 

system. Purbolaksona et al., in 2006, proposed a dual boundary element 

method for the geometrically nonlinear analysis of a square cracked plate 

with fully clamped and simply supported boundary conditions. The results 
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showed that the normalised stress intensity factors in the membrane of the 

plate increase significantly after a few increments of the load. However, in 

bending the normalised stress intensity factors decrease if compared with the 

linear results. 

2.4 Finite Element Approach in Cracked Plate Struct ures 

The Finite Element Method (FEM) has also been employed for the study of the 

vibration of cracked structures and is very useful in analysing real engineering 

constructions. Cracked plates can be modelled in many ways using FEM. 

Circular or penny-shaped cracks and an elliptical crack completely embedded 

in a finite thickness plate subjected to uniform tension were analyzed by Raju 

and Newman in 1979 using a three dimensional FE model. Isoparametric and 

singular elements were used in combinations to model elastic bodies with 

cracks. The calculated stress intensity factors for these crack configurations 

were compared with the exact solutions to verify the validity of the FEM as 

used, and concluded that the stress intensity factors for embedded circular 

and elliptical cracks were generally about 0.4-1% below the exact solutions. 

However, for the elliptical crack the calculated stress intensity factors in the 

region of the sharpest curvature of the ellipse were about 3% higher than the 

exact solution. 

Markström and Storàkers, in 1980, obtained a solution which was based on 

separating the nodes of the elements on both sides of the crack. The buckling 

characteristics of cracked elastic plates subjected to uni-axial tensile loads 

were analyzed by the aid of a FEM which was based upon linear bifurcation 

theory. Centrally cracked plates and some edge cracked members were tested 

in detail and the results were presented for the symmetric and anti-

symmetric mode of cracked plates. In 1983, Alwar and Nambissan proposed 

that stress intensity factors can be obtained for finite rectangular plates by 

the use of FE techniques. Three dimensional isoparametric singular brick 

elements were used to analyse the bending of plates with cracks. This analysis 

showed the values of stress intensity factor to be about 5-10% higher than the 

two dimensional analysis and these authors found that the stress intensity 

factor varied in a nonlinear fashion across the plate thickness. 
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Qian et al., in 1991, built a FEM of cracked plates using the integral of the 

stress intensity factor, and used this to solve the vibration problem of a 

damaged plate, one with a crack at the centre of a simply supported and a 

cantilever type square plate. In these cases mesh subdivision in the 

neighbourhood of the crack tip was unnecessary, and the time of the 

numerical computations was short. These authors compared their results with 

the model of Solecki (1983) with good agreement. Krawczuk, in 1993, 

presented a FE model based on the stiffness matrix for a rectangular plate 

and shell consisting of a through, non-propagating, open crack. He studied the 

effects of the crack length and location on the changes of the 

eigenfrequencies of the simply supported and cantilever rectangular plate. 

The centre of the crack was located in the middle of the span of the element 

and assumed a linear normal stress and constant shear stress distribution 

across the crack element. It can be concluded from this work that decreasing 

natural frequencies are a function of the length and location of the crack, the 

modes shape, and the boundary conditions of the plate. Later, in 1994 similar 

findings were obtained except that Krawczuk showed the influence of the 

crack length and its location upon the amplitudes of the transverse forced 

vibration for aluminium cantilevered cracked plates and beams, and found 

that an increase in the transverse forced vibration amplitude of the cracked 

plate was a function of the crack location and its length. Further studies show 

that Krawczuk et al. introduced elasto-plastic properties into cracked plates 

in 2001. Su et al., in 1998, extended the fractal two level finite element 

method (F2LFEM) to analyze the free vibration of a thin cracked plate with 

arbitrary boundary conditions. The results for a simply supported centre 

cracked square plate subjected to edge moments for three modes of 

vibrations were compared with the model of Stahl and Keer (1972). 

Saavedra and Cuitino suggested in 2002 an improved FE model for studying the 

dynamic behaviour of a test rotor affected by the presence of a crack in the 

shaft. The results indicated that changes in the shaft orbits with rotational 

speed were the indication of crack identification. It was also observed that at 

a sub-harmonic resonance experienced a peak when the rotating speed 

coincided with half of the first natural frequency of the system. Furthermore, 

these authors observed another characteristic that was an important 
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indication of the existence of a crack in the case of low rotational speed when 

the unbalance effects were negligible, and found that the vibration at the 

excitation frequency was due to the crack. Numerical results were in good 

agreement between the analytical model and the experimental work. 

Fujimoto et al., in 2003, reported a vibration analysis of rectangular plates 

subjected to a tensile load and containing a centrally located crack along the 

line of symmetry perpendicular to the direction of the tensile load. These 

authors used the FEM for finding the eigenvalue analysis, and the body force 

method was implemented for in-plane stress analysis associated with the 

eigenvalue analysis. Their numerical and experimental results confirmed that 

the natural frequencies of all vibration modes increased monotonously with 

increase in tensile load, whereas the rate of increasing frequency depended 

upon the mode shapes. It was also observed that this method was well suited 

to the plate with a long crack and that this showed noticeable variations of 

mode shapes for a small range of tensile load. Failure assessment of a cracked 

plate subjected to biaxial loading was presented by Kim et al. in 2004. Their 

analyses were based on two dimensional and three dimensional elastic-plastic 

finite element analysis, while the through thickness and semi elliptical 

surface crack was considered in the plate. It was found that the effect of 

biaxiality on crack tip stress triaxiality was more pronounced for a thicker 

plate and in the case of semi elliptical surface cracks, the crack aspect ratio 

was found to be more important than the relative crack depth, and the effect 

of biaxiality on crack tip stress triaxiality was found to be more pronounced 

near the surface points along the crack front. 

2.5 Damage Detection Methodologies in Plate Structu res 

The field of damage detection has received considerable attention during the 

past few years and a major collection of literature is now available. Cawley 

and Adams, in 1979(a), proposed a method which described a non-destructive 

assessment of the integrity of structures using measurement of the structural 

natural frequencies. This model was based on reducing the elastic coefficients 

of the element at the crack location. The main disadvantage of this method 

was that the reduced elastic coefficients were not related to the real 

dimensions of the crack. It was shown how measurements made at a single 
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point in the structure could be used to detect, locate and roughly to quantify 

damage in a wide variety of one and two dimensional structures. In 1979(b) 

these authors developed an experimental method to estimate the location 

and depth of the damage from the changes in the natural frequencies. 

Cornwell et al., in 1999, used a strain energy method to detect and locate 

damage in plate-like structures. This method required the mode shapes of the 

structure before and after damage. The algorithm was found to be effective 

in locating areas with stiffness reductions as low as 10% using relatively few 

modes. 

In 2002, Yan and Yam detected damages in composite plates by using wavelet 

analysis to decompose the dynamic responses. An application of spatial 

wavelet theory to damage identification in structures was initially proposed 

by Liew and Wang in 1998. The damage was in the form of crack and 

considered a simply supported beam with a transverse on-edge non-

propagating open crack for modelling the problem. They calculated the 

wavelets along the length of the beam based on the numerical solution for the 

deflection of the beam. The damage location was then indicated by a peak in 

the variations of some of the wavelets along the length of the beam. 

Krawczuk et al., in 2003, and later in 2004, applied a versatile numerical 

approach for the analysis of wave propagation and damage detection within 

cracked plates. They considered the spectral plate element as a tool for the 

investigation of such phenomena and showed that when a propagating wave 

runs to the crack location of the plate it divides itself into two signals, which 

show an indication of the damage section. Chang and Chen, in 2004, 

presented a spatial wavelet approach for damage detection in a rectangular 

plate with clamped edges on four sides. In this method the only need was for 

spatially distributed signals in terms of displacement, or mode shapes of the 

rectangular plate after damage. These spatially distributed signals can be 

obtained by FEM and can then be analysed by wavelet transformation. The 

results showed that the distributions of the wavelet coefficients can identify 

damage position by showing a peak at this location. However, some 

indications of damage were also observed at the clamped edges of the 

rectangular plate. Therefore, it was concluded that it was very hard to detect 

the crack position at the edges. In 2004, Epureanu and Yin monitored 
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structural health while employed vibration based damage detection. They 

investigated a panel excited by flow induced loads and considered the 

nonlinearity resulted from the stretching and bending of the panel. The panel 

was modelled as a one dimensional, homogenous, isotropic and elastic thin 

plate with spring-supported end points. This method used probability density 

functions for determining the structural response. These authors argued that 

nonlinearities interfered with linear behaviour, and small parameter 

variations were difficult to detect using linear methods, and that this lack of 

sensitivity arose from the fact that linear methods minimized the influence of 

nonlinearities. Vibration based damage detection and location in an aircraft 

wing scaled model was studied by Trendafilova in 2005. In this study localised 

and distributed damage was considered, and a simplified FEM in ANSYS was 

used to model the problem for the vibration response. The wing was split into 

five volumes for the purpose of analysing the damage detection for the first 

ten natural frequencies. It was shown that the cracks of length less than half 

of the wing width are undetectable in the case of localised damage, whilst in 

the case of distributed damage damage less than 30% in any of the volumes 

was not detectable using natural frequencies. The author proposed in her 

concluding remarks that changes in the lower modal frequencies were 

affected by damage close to the wing root, and their changes decreased when 

the damage moved towards the wing tip, or conversely the higher frequencies 

were more affected by damage close to the wing tip and their changes 

increased when damage moved from the wing root towards the tip. Later in 

2006, Trendafilova et al. applied a similar technique for vibration based 

damage detection in aircraft panels modelled as isotropic plates with a crack 

at some specified location, and they obtained extremely good results.  

The modal frequencies are often used as a principal parameter for 

determining how a structure will respond to a known dynamic forcing, or, as 

the main parameter for vibration health monitoring of structures. In this 

connection, Gorman et al., in 2006, used the modal frequencies approach for 

the vibration health monitoring of a coupled plate/fluid interacting system. A 

theoretical-analytical method based on the Galerkin method was developed 

for the frequency–modal analysis and the theory was further extended to 
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describe the natural coupled modes in terms of the relative energy associated 

with each of the two sub-systems of the plate and the fluid. 

2.6 Damaged Plates of Various Sizes and Shapes 

The past literature covers different types of plate structures from rectangular 

to circular shapes for the analysis of damage detection. Shawki et al., in 

1989, formulated the power-law line spring model for deep cracks in a fully-

plastic semi-infinite body subjected to remote tension and bending to find the 

stress intensity factors and they implemented the model within the ABAQUS 

FE program. These authors also applied the LSM to three dimensional 

structural problems with semi-elliptical surface cracks which revealed the 

shifting of the loading axis with increasing loads and indicated the change in 

the local ratio of bending to tension. Lee, in 1992, introduced a method based 

on Rayleigh’s principle and the sub-sectioning of plate domains for the 

determination of the fundamental frequency of annular plates. This method 

can be applied to annular plates with various boundary conditions, however, 

only the first natural frequency of the plate can be determined. The results 

showed that the fundamental frequency increases when the crack is located 

near one of the two edges and on the other hand the fundamental frequency 

decreases with increasing crack length for a crack located near the centre 

between the two edges. The determination of the dynamic stress intensity 

factor (DSIF) in structures having a stationary crack can provide information 

about crack propagation as reported by Polyzos et al. in 1994. They employed 

a frequency-domain boundary element method for the computation of the 

DSIF for cracked viscoelastic plates in conjunction with the numerical Laplace 

transform and the corresponding principle of linear viscoelasticity along with 

quarter-point boundary elements. Their results showed that viscoelasticity 

generally reduced the plate response.   

Lele and Maiti, in 2002, extended the work of crack location detection in 

short beams based on frequency measurement by taking into account the 

effects of rotational inertia and shear deformation. A series of case studies 

was presented to justify this work for different locations of the crack in the 

short beam. The results presented in this paper were not so encouraging due 
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to the fact that the errors in the natural frequencies were in a reasonable 

range for first mode, whilst the error increased for second and third modes of 

vibration. Bamnios et al., in 2002, investigated the influence of a transverse 

open crack in beams using mechanical impedance under different boundary 

conditions, both analytically and experimentally. These authors modelled the 

crack by an appropriate equivalent spring connecting the two segments of the 

beam. The results of this work showed that the mechanical impedance of the 

beam strongly depends on the size and location of the crack. The location of 

the crack was found by the indication of jumps in the slope of the response 

curve depending upon the crack’s depth. The proposed method lacked 

accuracy for small cracks of a/w < 0.20 (a is the depth of the crack and w is 

the amplitude). Horibe and Watanabe, in 2006, proposed an inverse method 

that used a genetic algorithm (GA) for the identification of width and position 

of the cracks derived from changes in the natural frequencies in plate 

structures. In this method, the natural frequencies were calculated by FEM 

which was based on the Bogner, Fox and Schmidt model and employed the 

response surface method (RSM) for minimising the processing time. They 

discussed two types of crack in the analysis comprised internal and edge 

cracks for a cantilever, and a plate with two ends clamped. The results 

showed that the proposed method provides satisfactory identification of 

cracks in plates and explained the fact that the problem within the 

approximation accuracy of the interpolation function, and rapid changes in 

natural frequency could not be resolved due to coarse lattice-point intervals.  

2.7 Solution Methodologies  

Differential equation solution for beams and plates is a vast topic with many 

variations, although there is a consistent stream of more popular methods. 

These can be broken down into two solution groups the first being exact 

analytical solutions and the second being approximate solutions. A limited 

number of exact solutions exist and these are for fairly specific conditions. 

There are 21 independent boundary conditions that can be applied to 

rectangular plates. Leissa, in 1973, detailed these boundary conditions for 

rectangular plates, pointing out that the only exact solutions known were for 

the six cases of plates with simply supported opposite edges. Later, Leissa, in 
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1993, studied a wide range of plates and explained how to obtain the mode 

shapes and natural frequencies. Navier also proposed an exact method to 

solve these equations using a double Fourier series [Szilard, 2004]. Navier’s 

solution, or Levy’s solution, is valid for plates with simply supported edges 

and still remains the basic approach for the solution of plates. In methods for 

the solution of plate problems which are not based on differential equations, 

the beam function with free edges can be successfully applied, however, 

where the solution is based on differential equations of the plate, the beam 

function for free edges will give incorrect results, as discussed by 

Mukhopadhyay in 1979, who presented a numerical method for the solution of 

rectangular plates having different edge conditions and loading.  

The most common and readily available solutions are those of the 

approximate techniques. These range from the familiar Rayleigh-Ritz 

technique [Warburton, 1954] to the hierarchical finite element technique 

[Han and Petyt, 1996]. In the case of Warburton's and Leissa's analysis they 

used the Rayleigh-Ritz technique in conjunction with beam functions to obtain 

approximate solutions for the remaining 15 boundary conditions [Leissa, 

1973]. This technique is still widely used and can be found in a large 

assortment of the literature, referenced in Leissa's monograph (1993). 

Similarly, the Ritz method was applied by Young in 1950, and investigated the 

set of functions defining the normal modes of vibration of a uniform beam, 

and this author obtained a solution for the plate problem with more than one 

set of boundary conditions. Nagaraja and Rao, in 1953, and Stanišië, in 1957, 

obtained an approximate solution to the dynamical behaviour of rectangular 

plates for different boundary conditions. In these studies the Rayleigh-Ritz 

and Galerkin methods were adopted for the analysis.  

The wide use of the finite difference technique to obtain solutions to 

problems of mathematical physics is also evident in the beam and plate 

literature. Szilard, in 2004, details this technique for multiple plate 

applications in his famous book, Theories and Applications of Plate Analysis, 

in order to develop this technique to plates with irregular boundaries and also 

plates with orthotropic properties. In the 1970s and early 1980s nonlinear 

plate elements were being developed using the FE techniques. The finite 

element technique is currently a popular technique within the field of 
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numerical solutions. One of the more recent finite element solution 

techniques for the linear plate problem is the hierarchical finite element 

method (HFEM) [Han & Petyt, 1996, and Ribeiro & Petyt, 1999]. These authors 

showed that this technique can be advantageous in that it reduces the 

number of degrees of freedom that must be used to yield an accurate result, 

when compared with the linear finite element method. They also used the 

harmonic balance method in conjunction with HFEM. The HFEM, which uses 

high-order polynomial displacement functions, allows the entire plate to be 

modelled with one element. This technique is illustrated for both isotropic 

and laminated plates by Han and Petyt in 1997. Later, Leung and Zhu, in 

2004, applied the same technique for the analysis of nonlinear free and forced 

vibration of skew and trapezoidal Mindlin plates. 

Prabhakara and Chia, in 1977, used the method of Fourier cosine series and 

applied it to analyze the dynamic of von Karman-type equations of the plate 

with all clamped and all simply supported stress free edges. These results 

showed that the nonlinear frequency increased with its amplitude and hence 

only a hardening type of nonlinearity was observed.  

Wykes, in 1982, used Electronic Speckle Pattern Interferometry methods 

(ESPI) to measure the dynamic surface displacement followed by Wang et al., 

in 1996, who used ESPI technique for vibration measurement, and compared 

three image processing methods based on time averaged techniques 

comprised the video-signal addition method, the video-signal-subtraction 

method, and the amplitude-fluctuation method, and found that amplitude-

fluctuation method produced the best visibility. Liu and Lam, in 1994, 

provided a valuable technique for detecting horizontal cracks and determined 

both the length and depth of the crack by exciting the anisotropic laminated 

plate with harmonic loads moved along the plate surface. Numerical 

experiments were undertaken by using the strip element method.  

Solutions for the nonlinear equations have been examined extensively in the 

literature. These solutions are substantially more complicated in the 

geometrically nonlinear case than those discussed for the linear problem. 

However, some of the same solution techniques are applied in the nonlinear 

case as applied in the linear variant, with little modification. Exact solutions 
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to the nonlinear plate are obviously difficult to obtain. To the author’s best 

knowledge, no exact solutions exist for the dynamic behaviour of nonlinearly 

deflecting rectangular plates, but approximate solution techniques exist for 

some nonlinear plate problems. Generally these solutions either use 

approximating functions, or these assume certain terms to be negligible, or 

these use some form of finite discretisation method. Chia, in 1980, published 

an excellent compilation of information on nonlinear plates, and many of the 

methods needed to solve different plate problems, in his book, Nonlinear 

Analysis of Plates. One of the very prominent techniques found in the 

literature is attributed to Berger, in 1955, and consequently referred to as 

Berger’s formulation. Writing the standard energy expression at the mid-plane 

of the plate, Berger assumed that the second strain invariant is negligible. 

This then results in decoupling and linearisation of the governing equations. 

Although, the caveat with this assumption is that there is no direct physical 

interpretation of the validity of the assumption used. Many other authors use 

the Berger technique in their analysis of a multitude of plate problems. In 

Leissa's monograph (1993) other techniques are illustrated which extend the 

Berger technique to include the vibrational behaviour of these nonlinear 

plates. Part of this approach is to assume a solution based on the spatial 

modes and on some function in time. This has been shown, in this thesis, to 

reduce to the well known Duffing oscillator problem. 

Another very popular technique is the double series, typically a Fourier series, 

although in some cases a one term or single-mode solution is used for the 

transverse deflection [Han and Petyt, 1997]. Teng et al., in 1999, used a 

Fourier series to obtain a governing equation for nonlinear plates that is 

exactly the well known Duffing equation. Lighthill's extension of the 

perturbation method was then used and a transient solution for rectangular 

plates under blast loading was obtained.  

Hamilton's principle has also been applied by Benamar et al. (1990) to 

examine the changes in mode shapes and frequencies of vibration in nonlinear 

clamped plates and beams. A dependence on mode shapes and frequencies 

was found, curvatures near the clamped edge increased as the deflection 

increased. Also spatial distortion was analysed and it was found that there is 

an interaction at large deflection between the first and higher order odd 
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symmetric modes. This technique was also applied to symmetrically laminated 

rectangular plates by Beidouri (2006), and by El Bikri (2003) to rectangular 

plates with a combination of simply supported and clamped boundary 

conditions.  

Vibration solutions for damaged plates have been investigated using various 

methods in the past, as has already been discussed in detail in section 2.3. 

Each solution technique is of some form of special relevance and treatment 

involves some particular type of approximations. A brief introduction to the 

methods used follows on. The finite displacement method was used by Petyt 

(1968) and the finite Fourier transform was used by Hirno and Okazaki (1980), 

Nezu (1982) and Solecki (1975) for their analyses. Ali and Atwal (1980) used 

Rayleigh’s method for studying the natural vibration of rectangular plates 

with cut-outs, followed by the work of Ramamurti and Neogy (1998) who 

applied the Rayleigh-Ritz method for damaged plate structures. The finite 

element method is a fast growing technique which  has also been applied to 

cracked plates by many researchers, such as Raju and Newman (1979), 

Markström and Storàkers (1980), Qian et al. (1991), Krawczuk (1992), Su et al. 

(1998), Saavedra and Cuitino (2002), and Fujimoto (2003) etc.  

The method to be applied in this dissertation is the perturbation method of 

multiple scales. It has been previously applied in linear case of parametrically 

excited systems, and nonlinear cases for different structures. However, no 

literature has been found for its use in the case of damage in the form of 

cracks in plates. Comparisons are made with other papers and experimental 

results, and some reasonable agreement between the solutions has been 

found, which is discussed further. 

2.7.1 Perturbation Theory 

The development of basic perturbation theory for differential equations was 

fairly complete by the middle of the 19th century, when the French 

astronomer, mathematician and physicist Pierre Simon Laplace (1749–1827) 

was the first to use perturbation methods to solve the problem of equilibrium 

of a large weightless drop on a plane. It was at that time that Charles-Eugène 

Delaunay (1816–1872) was studying the perturbative expansion for the Earth-
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Moon-Sun system, and discovered the so-called problem of small 

denominators.  

The perturbation method is only capable of treating problems with weak 

nonlinearity, and quickly becomes difficult to work with when calculating 

higher order approximations, therefore other techniques must be explored in 

order to obtain results for stronger nonlinearity. Many perturbation methods 

have been envisaged in the resolution of nonlinear problems. These include 

such well established methods as Incremental Harmonic Balance (IHB), 

Averaging, Krylov-Bogolioubov (KB), Krylov-Bogolioubov-Mitropolski (KBM), 

Lindstedt-Poincaré (LP) and the Method of Multiple Scales (MS).  

Many authors such as Lau and Cheung (1981), Lau et al. (1984), and Pierre and 

Dowell (1985) have all applied the IHB method to various problems in 

nonlinear dynamics. In addition, Pierre et al., in 1985, proposed a multi-

harmonic analysis of a dry, friction damped system using the IHB method, 

where they found that the IHB method can yield very accurate results over 

the time domain methods. Ferri, in 1986, showed the equivalence of the IHB 

method and the harmonic balance Newton Raphson method. Cheung and Lu, 

in 1988, presented a development of a simple algorithm for the 

implementation of the harmonic balance method for solving a nonlinear 

dynamic system. The versatility of this algorithm is demonstrated for a variety 

of nonlinear vibration responses, namely, the combination resonances of 

hinged-clamped beam, the nonlinear effect on the degenerate vibration 

modes of a square plate and the nonlinear oscillation of thin rings. Jezequel 

et al. in 1990, proposed a nonlinear synthesis in the frequency domain by 

using the Ritz-Galerkin-Newton-Raphson method in conjunction with IHB 

method.  

A perturbation solution has also been investigated by Chu and Herrmann 

(1956) where the dynamic w-F formulation (w and F are the deflection and 

stress functions respectively) was used. A double sine series was used for the 

deflection term and a double cosine series was used for the stress function 

term, but only the first mode shape was accounted for. Lynn and Kumbasar 

(1967) used the Krylov and Bogoliubov method to solve the integral equation 

for the vibration analysis of cracked rectangular plates. Rehfield (1973) 
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applied Hamilton’s principle and a perturbation procedure for the nonlinear 

free vibrations of beams and rectangular plates. Nayfeh (1979) used the 

perturbation method of multiple scales to solve the differential equations for 

symmetrically excited circular and rectangular plates, and documented this in 

the famous book Nonlinear Oscillations. Niyogi and Meyers, in 1981, applied 

the perturbation technique to the nonlinear dynamic response of orthotropic 

plates and found good agreement with other available numerical results of 

the time. Chati et al., in 1997, used the perturbation method to predict the 

nonlinear normal modes of vibration and the associated period of the motion 

in a cracked beam. Teng et al., in 1999, used the Lindstedt-Poincaré 

perturbation method and the Fourier series method for analysing the 

nonlinear dynamics of a square plate subjected to blast loading. Results were 

plotted for an exponentially decaying load function at various times, and 

central deflection and bending moments were noted. Wu and Shih (2005) 

analyzed the dynamic instability and nonlinear response of simply supported 

cracked plates subjected to periodic in-plane load by the use of the IHB. 

2.7.2 The Method of Multiple Scales 

The history of multiple scales is more difficult to chronicle than, say boundary 

layer theory. This is because the method is so general that many apparently 

unrelated approximation procedures are special cases of it. One might argue 

that the procedure got its start in the first half of the 19th century. For 

example, Stokes, in 1843, used a type of coordinate expansion in his 

calculations of fluid flow around an elliptic cylinder. Most of these early 

efforts were limited, and it was not until the later half of the 19th century 

that Poincaré, in 1886, basing his idea on the work of Lindstedt (1882), made 

more extensive use of the ideas underlying multiple scales in his investigations 

into the periodic motion of planets. He found that the approximation obtained 

from a regular expansion accurately described the motion for only a few 

revolutions of the planet, after which the approximation was incorrect. The 

error was due, in part, to the contributions of the second term of the 

expansion. He referred to this difficulty as the presence of a secular term. To 

remedy the situation, he expanded the independent variable with the 

intention of making the approximation uniformly valid by removing the 
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secular term. This idea is also at the heart of the modern version of the 

method. What Poincaré was missing was the introduction of multiple 

independent variables based on the expansion parameter [Holmes, 1995]. 

Various similar methods were later rediscovered by such workers as Whittaker 

(1914), Schrödinger (1926), and Lighthill (1949) in the contexts of various 

different applications. Several variants of the method of Lindstedt and 

Poincaré have been widely used formally in the applied literature since the 

early 1950s. The books by Nayfeh (1973), Nayfeh and Mook (1979), and 

Kevorkian and Cole (1981) contain numerous references to this literature. 

Particular note can be made of the work of Sturrock (1957), Kuzmak (1959), 

Cole and Kevorkian (1963), Cole (1968), and Levey and Mahony (1968), in 

which multiscale methods were used in the study of various important 

oscillation problems, although error estimates are not included in these 

references. Morrison (1966) and Perko (1969) proved a certain equivalence 

between the two-variable method of Kevorkian and Cole and the averaging 

method of Krylov, Bogoliubov, and Mitropolsky, thereby providing such error 

estimates indirectly, because such estimates had been given for the averaging 

method in Bogoliubov and Mitropolsky (1961) and Perko (1968) [Smith, 1985]. 

Classical perturbation methods generally break down because of resonances 

that lead to what are called secular terms. The first scheme to address this 

problem is what van Dyke (1975) refers to as the method of strained 

coordinates. Nayfeh (1986) gave an overview of the perturbation methods 

used to obtain analytical solutions of nonlinear dynamical systems. 

In terms of useful, generic, engineering applications, the method of multiple 

scales is used to study the local dynamics of weakly nonlinear systems about 

an equilibrium state. To obtain an approximate analytical solution of a weakly 

nonlinear continuous system, one can either directly apply a perturbation 

method to the governing partial differential equations of motion and 

boundary conditions, or first discretise the partial differential system to 

obtain a reduced-order model and then apply a perturbation method to the 

nonlinear ordinary differential equations of the reduced order model. The 

former procedure is usually referred to as the direct approach. Application of 

the method of multiple scales, or any other perturbation method, to the 

reduced-order model, obtained by the Galerkin, or other discretisation 
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procedures, of a weakly nonlinear continuous system with quadratic 

nonlinearities can lead to both quantitative and qualitative erroneous results. 

This is primarily associated with the names of Pakdemirli, Nayfeh S., and 

Nayfeh (1995), Nayfeh and Lacarbonara (1997), Alhazza and Nayfeh (2001), 

Emam and Nayfeh (2002), and Nayfeh and Arafat (2002). The direct approach 

is completely devoid of this problem. Also, such a problem does not exist for 

systems with just cubic nonlinearities. Lacarbonara, in 1999, showed that 

quadratic nonlinearities produce a second-order contribution from all of the 

modes to the system response in the case of a primary resonance. Hence, 

reduced-order discretisation models may be inadequate to describe the 

dynamics of the original continuous system in the presence of quadratic 

nonlinearities. Nayfeh, in 1998, proposed a method for constructing reduced-

order models of continuous systems with weak quadratic and cubic 

nonlinearities that overcomes this shortcoming of the discretisation 

procedures. Application of the method of multiple scales to dynamical 

systems expressed in second-order form can lead to modulation equations 

that cannot be derived from a Lagrangian in the absence of dissipation and 

external excitation, which is contrary to the conservative character of these 

dynamical systems. More specifically, this problem is encountered while 

determining approximate solutions of nonlinear systems possessing internal 

resonances to orders higher than the order at which the influence of the 

internal resonance first appears, as associated with the work of Rega et al., 

(1999). Interestingly, transforming the second-order governing equations into 

a system of first-order equations and then treating them with the method of 

multiple scales yields modulation equations derivable from a Lagrangian, and 

is presented in Nayfeh (2000) and  Nayfeh and Chin (1999), and Malatkar 

(2003). 

According to Nayfeh (1973), 'the method of multiple scales is so popular that 

it is being rediscovered just about every 6 months'. Yasuda and Torii, in 1987, 

also used multiple scales to obtain the oscillation characteristics of a square 

membrane near a primary resonance with one nodal line and showed that this 

method matched experiment results. Although to simplify the analysis, mode 

shapes composed of a multiple of two sine functions were used and only the 

(1,2) and (2,1) modes were accounted for. Lee and Park, in 1999, investigated 
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a weakly nonlinear, harmonically excited, spring pendulum system, which is 

known to be a good model for a variety of engineering systems. Rahman and 

Burton, in 1989, proposed a version of the method of multiple scales which 

can be used to determine the periodic, steady state, primary response of a 

single degree of freedom, lightly damped, weakly nonlinear, forced oscillator. 

A comprehensive review of the method of multiple scales has been compiled 

by Cartmell et al., in 2003, in which they examined the role of term ordering, 

the integration of the small perturbation parameter within system constants, 

non-dimensionalisation and time-scaling, series truncation, inclusion and 

exclusion of higher order nonlinearities, and typical problems in the handling 

of secular terms. These authors showed in a comparative example that the 

form of the adopted power series and the ordering terms can have a major 

bearing on the structure of the solution, with clear suggestion for accuracy 

and physical relevance. They then gave suggestions on how one can deal with 

ordering by basing it on some sort of physical appreciation of the problem in 

terms of hard and soft or strong and weak quantities within the equation of 

motion such as damping mechanisms, excitation amplitudes, and the 

coefficients of nonlinear terms. At present, the method of multiple scales has 

been computerised by means of specialised packages within Mathematica™ 

code constructed by Khanin and Cartmell (1999), Khanin et al. (2000) and 

Khanin and Cartmell (2001) with parallelisation strategies introduced for 

reasons of optimisation.  

2.8 Dynamical Systems and Nonlinear Transitions to 

Chaos 

Chaos theory began as a field of physics and mathematics dealing with the 

structure of turbulence and the self-similar forms of fractal geometry. It 

stems, in part, from the work of Edward Lorenz, in 1960, of MIT, a 

meteorologist, who simulated weather patterns on a computer. The theory of 

chaos brings the principles of quantum physics to the pragmatic world. At 

present, it is relatively easy to map chaotic behaviour by the use of various 

available software. The newly discovered underlying order to chaos sparked 

new interest and inspired more research in the field of chaos theory. The 

recent focus of most of the research on chaos theory is specifically on non-
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equilibrium statistical mechanics and its applications to quantum systems, and 

in particular to nano-systems. 

The founder of geometric dynamics is universally acknowledge to be Henri 

Poincaré (1854–1912), who alone among his contemporaries saw the 

usefulness of studying topological structure in the phase space of dynamical 

trajectories. The theoretical foundations laid by Poincaré were strengthened 

by G. D. Birkhoff (1844–1944); but, apart from a few instances such as the 

stability analysis of Lyapunov, Poincaré’s ideas seemed to have had little 

impact on applied dynamics for almost half a century. In 1927, Van der Pol 

and Van der Mark reported irregular noise in experiments with an electronic 

oscillator. It has been well mentioned that chaotic vibrations occur when 

some strong nonlinearity exits. Some examples of nonlinearities that can be 

observed in many physical systems are; nonlinear elastic or spring elements, 

damping, boundary conditions etc. In mechanical continua, nonlinear effects 

arise from a number of different sources which includes kinematics, 

constitutive relations, boundary conditions, nonlinear body forces, geometric 

nonlinearities associated with large deformations in structural solids. 

[Thompson (1986), and Moon (1987)] 

Wolf et al., in 1985, presented a technique which estimated the non-negative 

Lyapunov exponents from experimental data. Lyapunov exponents are the 

average exponential rates of divergence or convergence of nearby orbits in 

phase space. They are positive for chaos, zero for a marginally stable orbit, 

and negative for a periodic orbit. It means that an attractor for a dissipative 

system with one or more positive Lyapunov exponents is said to be strange or 

chaotic. Wolf et al. tested this method on famous model systems such as 

those of Hénon (1976), Rössler (1976), Lorenz (1989), the Rössler-hyperchaos 

(1979) problem and MacKey-Glass (1997) with known Lyapunov spectra and 

observed that deterministic chaos can be distinguished in some cases from 

external noise and topological complexity.  

The work by Maestrello, Frendi and Brown in 1992 demonstrated the nonlinear 

vibration and nonlinear acoustic radiation of a typical aircraft fuselage panel 

forced by plane acoustic waves at normal incidence, and investigated their 

finding both experimentally and numerically. Numerically, the nonlinear plate 
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equations were integrated through the use of an approximate method. The 

motion normally starts periodically and eventually becomes chaotic with time 

by the increase of the pressure level. A good agreement between the 

experimental and numerical results were obtained, which showed that when a 

panel is excited at a resonant frequency by plane acoustic waves, linear, 

nonlinear and chaotic responses can be obtained by changing the intensity of 

the loading. Guitiérrez and Iglesias, in 1998, introduced a Mathematica™ 

package for analyzing discrete and continuous systems, and much of the 

attention was focused on controlling the chaotic behaviour of these systems. 

This program is capable of obtaining the periodic points and the stability 

regions of nonlinear systems, as well as bifurcatory analysis and Lyapunov 

exponents. These author’s results showed a good numerical results for the 

logistic and Hénon maps as well as for the Duffing and Rössler systems. 

Alighanbari and Hashemi, in 2003, reformulated the integro-differential 

aeroelastic equations of motion for an airfoil in an investigation of the 

potential nonlinear dynamical behaviour of the model. The bifurcation 

analysis was performed for the airfoil containing a cubic nonlinearity in the 

pitch stiffness under the action of a two dimensional incompressible flow. An 

approximate technique in the form of the Defect-Controlled Method and AUTO 

software package were employed for the analysis. Lyapunov spectra were also 

calculated to predict and confirm the chaotic behaviour of the airfoil. The 

result showed good agreement between two methods. Xiao et al., in 2006, 

derived the nonlinear equations of motion based on Reissner plate theory and 

the Hamilton variational principle for moderate thickness rectangular plates 

with transverse surface penetrating cracks on an elastic foundation, under the 

action of external excitation and from these they investigated the 

bifurcations and chaotic motion. These nonlinear equations were solved by 

the use of the Galerkin and the Runge-Kutta integration techniques. It was 

seen from these results that the plate’s motion bifurcated and then moved to 

more complex motions with the increase of external excitation amplitude. 

The Poincaré maps showed a double period motion for a nondimensionalised 

crack position of 0.1 and crack depth of 0.3, and this turned into chaotic 

motion with the increase in nondimensionalised crack position. 



Chapter 3: Formulation of Cracked Plates 
 

39                    

Chapter 3  

FORMULATION OF CRACKED PLATES 

__________________________________________ 

In this chapter, we derive the equation of motion for a given set of boundary 

conditions governing the nonlinear vibrations of an isotropic plate with an 

arbitrarily located part-through crack at the centre of the plate, consisting of 

a continuous line. The equilibrium principle is followed to derive the 

governing equation of motion in order to get a tractable solution to the 

vibration problem. Principally, the effects of rotary inertia and through-

thickness shear stress are neglected. Galerkin’s method is applied to 

reformulate the governing equation of the cracked plates into time dependent 

modal coordinates. The simplifying assumptions, and their validity, are 

described as and when they are made during the derivation of the equations. 

Berger’s formulation is used to generate the form for the in-plane forces and 

make the model differential equation of motion nonlinear. 

3.1 Governing Equation of Cracked Rectangular Plate  

The classical form of the governing equation of rectangular plate is rigorously 

treated by Timoshenko (1940), Leissa (1993), and Szilard (2004), and so, by 

neglecting the effect of rotary inertia and through-thickness shear forces, it 

can be stated that:  

ρ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + = − + + + +  ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ 

4 4 4 2 2 2 2

4 2 2 4 2 2 22 2 .x y xy z

w w w w w w w
D h n n n P

x yx x y y t x y
 

(3.1-1) 

where w  is the transverse deflection, zP  is the load per unit area acting at 

the surface, ρ  is the density, h  is the thickness of the plate and xn , yn , xyn  

are the in-plane or membrane forces per unit length. D  is the flexural rigidity 
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and can be defined as  3 212(1 )D Eh υ= − ; E  is the modulus of elasticity, and 

υ  is the Poisson’s ratio.  

Initially, the derivation of the governing equation of the plate having a part-

through crack consisting of a continuous line of length 2a which is located at 

the centre and parallel to the x-direction of the plate as depicted in Figure 3-

1 is performed by considering that the cracked plate is linear with the 

following basic assumptions. Later, the governing equation of the cracked 

plate transforms into nonlinear form by the application of Berger’s 

formulation. 

1. The plate is made of a perfectly elastic, homogeneous, isotropic 

material and has a uniform thickness h which is considered small in 

comparison with its other dimensions. 

2. All strain components are small enough to allow Hooke’s law to hold. 

3. The normal stress component in the direction transverse to the plate 

surface is small compared with other stress components, and is 

neglected in the stress-strain relationship.  

4. Shear deformation is neglected in this case and it is assumed that 

sections taken normal to the middle surface before deformation remain 

plane and normal to the deflected middle surface of the plate. 

5. The effect of the rotary inertia, shear forces and in-plane force in the 

y-direction i.e. yn and xyn  are neglected mainly to make the problem 

more tractable. 

For relatively thick plates 20
h
l

 > 
 

, where h is the plate thickness and l is an 

average length in its plane, the effects of shear deformation and rotary 

inertia become significant, as explained by Leissa (1978). Moreover, in 

vibration problems, the effect of rotary inertia and shear deformation 

corresponding to higher modes are more pronounced than on those 

corresponding to lower modes, and also yields mathematical complexity. In 
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the present model, the first mode is discussed in more detail, therefore the 

assumption made that the effect of the rotary inertia, and shear forces are 

both negligible is applicable in the subsequent derivation. 

The equilibrium equations are obtained by resolving the forces in the z-

direction and taking moments about the x and y-axes. The forces acting on 

the plate element are shown in Figure 3-1. 

 Summing the forces along the z-axis leads to, 

ρ
∂∂ ∂= − + + − + + + =

∂ ∂ ∂∑
2

20; ( ) ( ) ,yx
z x x y y z

QQ w
F Q dy Q dx dy Q dx Q dy dx P dxdy h dxdy

x y t
 

(3.1-2) 

where xQ  and yQ  are the forces per unit length which are projected  along  z 

direction, ρ  is the density, h  is the thickness and zP  is the load per unit area 

acting over the surface of the plate. 

Later, this zP  is replaced by a point load zP  based on the application of the 

appropriate delta function in equation (3.4-8) to make it compatible with the 

experimental configuration. Furthermore, in practice, it is straightforward to 

implement this type of loading. 

 

 

 

 

 

 

Figure 3-1: Isotropic plate loaded by uniform press ure and a small crack at the 
centre 
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Therefore, 2

2
.yx

z

QQ w
h P

x y t
ρ

∂∂ ∂+ = −
∂ ∂ ∂

 (3.1-3) 

The moment equilibrium about the y-axis gives, 

 
0; ( ) ( )

( ) 0.
2 2

yxx
y x x yx yx

x
x x

MM
M M dy M dx dy M dx M dy dx

x y

Q dx dx
Q dx dy Q dy

x

∂∂= − + + − + +
∂ ∂

∂− + − =
∂

∑
 (3.1-4) 

After simplification, the term containing 
∂
∂

21
( )

2
yQ

dx dy
x

is neglected, since it is 

a small quantity of higher-order. Therefore,  

 
,yxx

x

MM
Q

x y

∂∂ + =
∂ ∂

 (3.1-5) 

and hence,  22

2
.yxx x

MM Q
x y x x

∂∂ ∂+ =
∂ ∂ ∂ ∂

 (3.1-6) 

Similarly, the moment equilibrium about the x-axis can be written as, 

 
( )0; ( )

( ) ( ) 0.
2 2

y y
x y y y y xy

xy y
xy y y

M M
M M M dx M dy M dy dx M dy

y y

M Q dy dy
M dx dy Q dy dx Q dx

x y

∂ ∂
= + − + + + −

∂ ∂
∂ ∂

+ + + + + =
∂ ∂

∑
 (3.1-7) 

After simplification, the term containing 21
( )

2
yQ

dy dx
y

∂
∂

is neglected, since it is 

a small quantity of higher-order. Therefore,  

 
,y y xy

y

M M M
Q

y y x

∂ ∂ ∂
− − + = −

∂ ∂ ∂
 (3.1-8) 

and so,  2 2 2

2 2
.y y xy yM M M Q

y y x y y

∂ ∂ ∂ ∂
− − + = −

∂ ∂ ∂ ∂ ∂
 

(3.1-9) 

 



Chapter 3: Formulation of Cracked Plates 
 

43 

where yM  is the bending moment per unit length due to the crack at the 

centre of the plate and this is treated later in section 3.3. Now, substituting 

equations (3.1-6) and (3.1-9) into equation (3.1-3), gives, 

 2 2 22 2

2 2 2 2
2 xy y yx

z

M M MM w
h P

x x y y y t
ρ

∂ ∂ ∂∂ ∂+ + + = −
∂ ∂ ∂ ∂ ∂ ∂

 (3.1-10) 

where xM , yM  and xyM  are the bending moments per unit length along the x 

and y directions and can be defined as  

 / 2

/ 2

h

x x
h

M Z dzσ
−

= ∫  (3.1-11) 

 / 2

/ 2

h

y y
h

M Z dzσ
−

= ∫  (3.1-12) 

and, / 2

/ 2

h

xy xy
h

M Z dzτ
−

= ∫  (3.1-13) 

Also, xσ , yσ  and xyτ  are the stresses along the x and y directions of the plate 

and these can be written as  

 2 2

2 2 21x

EZ w w
x y

σ υ
υ

 ∂ ∂= − + − ∂ ∂ 
 (3.1-14) 

    2 2

2 2 21y

EZ w w
y x

σ υ
υ

 ∂ ∂= − + − ∂ ∂ 
 (3.1-15) 

    and, 
( )

2

2
1

1xy

EZ w
x y

τ υ
υ

∂= −
− ∂ ∂

 (3.1-16) 

Substituting the quantities xσ , yσ  and xyτ  from equations (3.1-14), (3.1-15) 

and (3.1-16) into equations (3.1-11), (3.1-12) and (3.1-13) respectively, we 

get the following form of xM , yM  and xyM , 
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 2 2

2 2x

w w
M D

x y
υ

 ∂ ∂= − + ∂ ∂ 
 (3.1-17) 

 2 2

2 2y

w w
M D

y x
υ

 ∂ ∂= − + ∂ ∂ 
 (3.1-18) 

and,      
( )

2

1xy yx

w
M M D

x y
υ ∂= − = − −

∂ ∂
 (3.1-19) 

where D  is the flexural rigidity and can be stated as 3 2/12(1 )D Eh υ= − ; E  is 

the modulus of elasticity, and υ  is the Poisson’s ratio.   

Expressing the moments in terms of the curvatures, as given in equations  

(3.1-17), (3.1-18) and (3.1-19) to (3.1-10), leads to the following result, 

 24 4 4 2

4 2 2 4 2 22 .y
z

Mw w w w
D h P

x x y y t y
ρ

∂ ∂ ∂ ∂ ∂+ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 
 (3.1-20) 

3.2 Addition of In-plane or Membrane Forces 

In-plane forces occur when the displacements of the plate parallel to its 

middle surface are constrained by the supports, and we naturally assume 

small displacements throughout. Occasionally, membrane forces apply at the 

boundaries and are usually caused by temperature variations, pre-stressing 

and large deflection. The magnitude of the membrane forces are a function of 

the boundary conditions. This is easily visualised by considering two different 

plates, one clamped along its edges to prevent any translation or rotation and 

the other simply supported along its edges allowing only rotation. For equal 

maximum displacements, the deflected surface length of the clamped plate is 

greater than that of the simply supported plate, resulting in higher membrane 

forces. 

Considering the equilibrium of the dxdy element in Figure 3-2, and given that 

it is subjected to in-plane forces xn , yn  , xy yxn n=  and yn  (caused by the 

crack at the centre of the plate) per unit length, then since there are no body 
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forces, the projection of the membrane forces on the x-axis leads to the 

following, 

 
( ) ( ) 0,yxx

x x yx yx

nn
n dy n dx dy n dx n dy dx

x y

∂∂− + + − + + =
∂ ∂

 (3.2-1) 

Therefore, 
0.yxx

nn
x y

∂∂ + =
∂ ∂

 (3.2-2) 

 

 

 

 

 

Figure 3-2: In-plane forces and a crack of length 2 a at the centre of the plate 
element 

Similarly, along the y-axis we find that,   

( ) ∂ ∂ ∂   
− − + + + + − + + =   ∂ ∂ ∂   
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(3.2-3) 

leading to,   
0y y xyn n n

y y x

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (3.2-4) 

The equilibrium of the dxdy element in the z direction is considered next. It is 

arbitrarily assumed that the left hand and rear edges of the plate element are 

fixed and lie in the xy plan, as shown in Figure 3-3. Other boundary conditions 

are equally possible. 
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∂ ∂∂ ∂ ∂  ∑ = + + + + +   ∂ ∂ ∂ ∂ ∂   

∂ ∂∂ ∂  + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

2 2

2 2

2 2

( , )

,

y yx
z x y y

xy yx
xy yx

n nn w w
F x y n dx dy dx n dy n dy dx dy

x x y y y

n nw w
n dx dy dx n dy dx dy

x x y y y x

 

(3.2-5) 

So, after neglecting higher order quantities, we obtain, 

 ∂ ∂ ∂ ∂
∑ = + + +

∂ ∂ ∂ ∂ ∂

2 2 2 2

2 2 2
( , ) 2 .z x y y xy

w w w w
F x y n n n n

x y y x y
 (3.2-6) 

 

    

  

 

 

 

Figure 3-3: Two sided constraints and plate deforma tion having a part-through 
crack at the centre 

Thus, it can be deduced from equation (3.2-6) that the effect of the 

membrane forces on the deflection is equivalent to an assumed lateral force, 

denoted here by ( , )zF x y . Adding this to the lateral forces in the governing 

equation, and noting that this force acts just in the x-direction, then the 

terms in the y and xy directions can be neglected; leading to the final version 

of equation (3.1-20) which now takes the following form: 

 24 4 4 2 2 2

4 2 2 4 2 2 2 22 .y
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Mw w w w w w
D h n n P
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ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂+ + = − + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (3.2-7) 

Equation (3.2-7) is the equation of motion for the cracked vibrating plate, and 

for the case of free vibration 0zP = . The value of w  should be such that it 

must satisfy the boundary conditions at the edges of the plate. 
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3.3 Crack Terms Formulation 

Machines and structural components potentially require continuous monitoring 

for the detection of cracks and crack growth for ensuring an uninterrupted 

service in critical installations. Cracks can be present in structures due to 

various reasons such as impact, fatigue, corrosion and external and 

environmental factors like temperature, relative humidity, rainfall and the 

general properties of structures. Complex structures such as aircraft, ships, 

steel bridges, sea platforms etc., all use metal plates. The presence of a 

crack does not only cause a local variation in the stiffness, but can affect the 

mechanical behaviour of the entire structure to a considerable extent. Cracks 

present in vibrating components can lead to catastrophic failure. [Neogy and 

Ramamurti (1997), Ramamurti and Neogy (1998), Trendafilova (2005), 

Trendafilova et al. (2006)]. For these reasons, there is a need to understand 

the dynamics of cracked structures. The vibration characteristics of structures 

can be useful for on-line detection of cracks without actually dismantling the 

structure. In particular, the natural frequencies and mode shapes of cracked 

plates can provide insights into the extent of damage.  

In the present theory, the Rice and Levy (1972) model is used for the 

formulation of the crack terms. This approach is based on Kirchoff’s bending 

theory for thin plates and shells. The assumptions involved in this theory lead 

to important simplifications in the governing equations. Accurate values for 

the stress intensity factors in part-through cracked plates can be calculated, 

provided that the crack is not too deep. Rice and Levy, 1972, obtained an 

approximate relationship between nominal tensile and bending stresses at the 

location of the crack. These two relations are taken after some 

rearrangement, and then by making use of the relationships within equations 

(3.3-8) and (3.3-9) it can be shown that 6rs rsm σ= . A representation of these 

stresses is given in Figure 3-4. 

 

( ) 2

2
,

6 (1 ) 2
rs rso o

tb tt

a

h a
σ σ

α α υ
=

+ − +
 (3.3-1) 
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and,  

 

2
.

3 (3 )(1 ) 2
6
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a
m m
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α α υ υ

=
 

+ + − + 
 

 
(3.3-2) 

We define rsσ  and rsm  as the nominal tensile and bending stresses 

respectively, at the crack location and on the surface of the plate, rsσ  and 

rsm  are the nominal tensile and bending stresses at the far sides of the plate, 

h  is the thickness of the plate, a  is the half length of the crack, and o
bbα , o

ttα , 

o o
bt tbα α=  are the non-dimensional bending compliance, stretching compliance 

and stretching-bending compliance coefficients at the crack centre, 

respectively.  

 

 

 

 

 

Figure 3-4: Line Spring Model (LSM) representing th e bending and tensile 
stresses for a part-through crack of length 2 a, after Rice and Levy, 1972  

These relationships show that the nominal tensile and bending stresses at the 

crack location can be regarded as a function of the nominal tensile and 

bending stresses at the far side of the plate. It is worth noting that Okamura 

et al. (1969) and Khadem and Rezaee (2000) also restricted their analysis to 

the effects of bending compliance, and thus avoided the coupling effect by 

ignoring the stretching compliance. These three compliance coefficients 

depend upon the crack depth d  to plate thickness h  and vanish when 0d = . 

It has been shown by Rice and Levy (1972) that in general the compliance 

coefficient is a function of the ratio of crack depth to plate thickness, and can 

be calculated as: 

O  
x  

y  
rsσ

 

rsσ  

2a 

rsm  

rsm  
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 2( ) 1 ; , ,oX X b tλµλµα α λ µ= − =  (3.3-3) 

where 1X x a=  is a dimensionless variable introduced for simple 

approximation. 1x  shows the values along crack length and a  is the half-crack 

length. Also, , ,b tλ µ =  are intermediate variables proposed by Rice and Levy, 

1972, for algebraic simplification. Let set 1 2x a=  then the dimensionless 

compliance coefficient at the centre of the cracked plate takes this form, 

 1.1547 ,o
λµ λµα α=  (3.3-4) 

The appropriate compliance coefficients, λµα , may then be calculated from 

the following relation, noting that these equations were originally presented 

as being for the range 0 / 0.7d hζ< = < [Okamura et al. (1969), Rice and Levy 

(1972), and Khadem and Rezaee (2000)]. In the present analysis, we take 

0.6ζ = , leading to calculation of the compliance coefficients as follows: 

 1 2 3 4
2

5 6 7 8

1.98 0.54 18.65 33.70 99.26
,

211.90 436.84 460.48 289.98
tt

ζ ζ ζ ζ
α ζ

ζ ζ ζ ζ
 − + − +

=   − + − + 
 (3.3-5) 

 1 2 3 4
2

5 6 7 8

1.98 3.28 14.43 31.26 63.56
,

103.36 147.52 127.69 61.50
bb

ζ ζ ζ ζ
α ζ

ζ ζ ζ ζ
 − + − +

=  
− + − + 

 (3.3-6) 

and, 1 2 3 4
2

5 6 7 8

1.98 1.91 16.01 34.84 83.93
.

153.65 256.72 244.67 133.55
bt tb

ζ ζ ζ ζ
α α ζ

ζ ζ ζ ζ
 − + − +

= =  
− + − + 

 (3.3-7) 

This means that uniformly distributed tensile and bending stresses are at the 

two sides of the crack location, and these tensile and bending stresses can be 

expressed in term of tensile and bending force effects. Therefore, we can 

write the tensile and bending stresses at the far sides as, [Rice and Levy, 

1972],  

 / 2

/ 2

1
( , , ) ,

h
rs

rs rs
h

n
x y z dz

h h
σ τ

+

−

= = ∫  
(3.3-8) 
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 / 2

2 2
/ 2

6 6
( , , ) ,

h

rs rs rs
h

m M z x y z dz
h h

τ
+

−

= = ∫  (3.3-9) 

where , 1,2r s =  are intermediate variables required for algebraic 

simplification. rsn  and rsM  are the force and moment per unit length in the y-

direction at the far sides of the plate, respectively, and ( , , )rs x y zτ  is the stress 

state. Subsequently, the force and moment were calculated from two-

dimensional plane stress plate bending theory, with the cracked section 

represented as a continuous line spring having its compliance matched to that 

of the edge cracked strip in plane strain as shown in Figure 3-4. Accordingly, 

we can write equations (3.3-1) and (3.3-2) in the form of force and moment 

as,  

 

( ) 2

2
,

6 (1 ) 2
rs rso o

tb tt

a
n n

h aα α υ
=

+ − +
 (3.3-10) 

and,  2
,

3 (3 )(1 ) 2
6

rs rso
obt
bb

a
M M

h a
α α υ υ

=
 

+ + − + 
 

 
(3.3-11) 

where rsn  and rsM  are the force and moment per unit length in the y-

direction at the crack location of the plate, respectively. 

It is evident from the work of Rice and Levy (1972) that when two forces are 

acting on the plate element to stretch and bend it, the results of their work 

show that the Airy stress function satisfies the compatibility condition in a 

region where the body force field is zero.  Here, it is very useful to mention 

that the present theory, and the model of Rice and Levy, are both based on 

classical plate theory; therefore the force and moment obtained from 

equations (3.3-10) and (3.3-11) are the required terms and are added into the 

cracked plate model with a negative sign because damage causes a reduction 

in the overall stiffness of the plate structure, a phenomenon which can also 

be seen in most of the literature, such as that of Keer and Sve (1970), Stahl 

and Keer (1972), Solecki (1983), and Khadem and Rezaee (2000). Therefore, 

we can write,                
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( ) 2

2
,

6 (1 ) 2
y rs rso o

tb tt

a
n n n

h aα α υ
≡ − = −

+ − +
 (3.3-12) 

and,   2
,

3 (3 )(1 ) 2
6

y rs rso
obt
bb

a
M M M

h a
α α υ υ

≡ − = −
 

+ + − + 
 

 
(3.3-13) 

Substituting the values of yn  and yM  from equations (3.3-12) and (3.3-13) 

into equation (3.2-7), so the governing equation of the plate with a crack at 

the centre extends to the following form, 

( )

ρ
α α υ υ

α α υ

  ∂∂ ∂ ∂ ∂ ∂+ + = − + + − 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂  + + − + 
 

∂−
∂+ − +

24 4 4 2 2

4 2 2 4 2 2 2

2

22

2
2

3 (3 )(1 ) 2
6

2
.

6 (1 ) 2

rs
x z o

obt
bb

rso o
tb tt

Mw w w w w a
D h n P

x x y y t x y
h a

a w
n

yh a

   (3.3-14) 

As the bending stresses at the far sides of the plate are defined by,  

 2 2

2 2 ,rs

w w
M D

y x
υ

 ∂ ∂= − + ∂ ∂ 
 (3.3-15) 

then equation (3.3-15) can be substituted into equation (3.3-14) to get the 

final form, 

 

( )

ρ

υ

α α α υα υ υ

 ∂ ∂ ∂ ∂ ∂+ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂+ ∂ ∂ ∂ ∂ + −
∂  + − ++ + − + 

 

4 4 4 2 2

4 2 2 4 2 2

4 4

4 2 2 2

22

2

2
2

.
6 (1 ) 2

3 (3 )(1 ) 2
6

x z

rso o o
obt tb tt
bb

w w w w w
D h n P

x x y y t x

w w
aD

y y x a w
n

yh a
h a

 (3.3-16)

3.4 Galerkin’s Method for a Vibrating Cracked Plate  

Solutions based on linear models are considered adequate for many practical 

and engineering purposes although it is recognized that linearised equations 
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usually provide no more than a first approximation. Linearised models of 

vibrating systems are inadequate in cases where displacements are not small. 

In addition, problems treated by nonlinear theory exhibit new phenomena, for 

example the dependence of frequency of vibration on amplitude that cannot 

be predicted by means of linear theories. Moreover, an example of such a 

source of nonlinearity is a crack within a plate, which can lead to profound 

changes in the vibrational response of the system.  

 

 

 

 

 

 

Figure 3-5: Isotropic plate loaded by arbitrary loc ated concentrated force and 
small crack at the centre, and parallel to the x-axis 

Galerkin’s Method is applied to reformulate the governing equation of the 

cracked plate into time dependent modal coordinates by the application of 

given boundary conditions, and Berger’s formulation is used to express 

formally the in-plane forces, which can then be used to transform the 

governing equation of the cracked plate into a nonlinear system, which is well 

explained in the following section. To accomplish this we consider the 

rectangular plate of Figure 3-5, of length 1l  in the x-direction and 2l  in the y-

direction containing a crack which consists of a continuous line of length 2a 

located at the centre and parallel to the x-direction of the plate. A point load 

zP  based on the application of the appropriate delta function (in equation 

(3.4-8)) is introduced at the arbitrary location of ( , )o ox y . 

The solution for the governing differential equation of the plate subjected to 

transverse loading is obtained by defining the characteristic functions 

,z w  
y  

O  

zP  

x  

2l  

1l  

ox  

oy  

Crack of length 2a 

h  
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depending upon the boundary conditions of the plate. The basic model for 

solution is the one in which all edges are simply supported, while for other 

boundary conditions the principle of superposition holds [Timoshenko (1940), 

and Berthelot (1999)].  The most general form of the transverse deflection of 

the plate is, 

 
1 1

( , , ) ( ),mn m n mnn m
w x y t A X Y tψ∞ ∞

= =
=∑ ∑  (3.4-1) 

where mX  and nY  are the characteristic or modal functions of the cracked 

rectangular plate, mnA  is an, as yet, arbitrary amplitude and ( )mn tψ  is the 

time dependent modal coordinate.        

The appropriate expressions for the characteristic or modal functions are 

given below and satisfy the stated boundary conditions of the plate. For all 

cases 1l  and 2l are the lengths of the sides of the plate along the x and y 

directions respectively. Three boundary condition cases are given next. These 

boundary conditions have been treated by different researchers, and a few of 

them are as follows: The case in which two adjacent edges are clamped while 

the other two edges are free (CCFF) was examined by Thimoshenko (1940), 

Young (1950), Nagaraja and Rao (1953), in the monograph of Leissa (1993), 

and Berthelot (1999). The condition in which two adjacent edges are clamped 

while the other two edges are simply supported (CCSS) was examined by Iwato 

(1951), and the one in which all sides are simply supported (SSSS) was studied 

by Szilard (2004), and Yagiz and Sakman (2006). 

Boundary Condition 1. Two adjacent edges are clamped while the other two 

edges are free – CCFF  

 

1 1 1 1

cos cosh sin sinh ,m m m m
m m

x x x x
X

l l l l
λ λ λ λγ

        
= − − −        

        
 (3.4-2) 

 

2 2 2 2

cos cosh sin sinh .n n n n
n n

y y y y
Y

l l l l
λ λ λ λγ

        
= − − −        

        
 (3.4-3) 
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The ,m nλ  and the ,m nγ  are the mode shape constants and can be found in 

standard reference text such as Leissa (1993), and Berthelot (1999).  

Boundary Condition 2. Two adjacent edges are clamped while the other two 

edges are freely supported – CCSS 

 
1

11 1 1 1

1 3
sin sin cos cos ,

2 2 2 2m m
m

m x m x m x m x
X

l l l l
π π π π∞

∞

=
=

 
= = − 

 
∑ ∑  (3.4-4) 

 
1

12 2 2 2

1 3
sin sin cos cos .

2 2 2 2n n
n

n y n y n y n y
Y

l l l l
π π π π∞

∞

=
=

 
= = − 

 
∑ ∑  (3.4-5) 

 Boundary Condition 3. All sides are simply supported – SSSS 

 
1

1

sin ,m m

m x
X

l
π∞

=

 
=  

 
∑  (3.4-6) 

 
1

2

sin .n n

n y
Y

l
π∞

=

 
=  

 
∑  (3.4-7) 

The lateral load zP  at position ( , )o ox y  can be readily expressed as follows 

[Fan, 2001]  

 ( ) ( ) ( )z o o oP P t x x y yδ δ= − − . (3.4-8) 

Substituting the definition of ( , , )w x y t  from equation (3.4-1) and zP  from 

equation (3.4-8) into equation (3.3-16) and rearranging the terms, we get, 

( )α α υ
ψ

υ
α α υ υ

ψρ

 ∂ ∂ ∂ ∂ ∂
+ + − + 

∂ ∂ ∂ ∂ ∂ ∂+ − + 
 

  ∂ ∂− +     ∂ ∂ ∂  + + − +   
  

∂= − +
∂

4 4 4 2 2

4 2 2 4 2 22

4 4

4 2 2

2

2

2
2

6 (1 ) 2

( )2

3 (3 )(1 ) 2
6

( )
( )

m m n n m n
n m x n rs mo o

tb tt

mnn m n
mo

obt
bb

mn m n o

X X Y Y X Ya
Y X n Y n X

x x y y x yh a

D A tY X Ya
D X

y y x
h a

t
h A X Y P t

t
δ δ− −0( ) ( ).ox x y y

                              (3.4-9)   
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In 1955, Berger determined the deflection of a plate by neglecting the strain 

energy due to the second invariant of the middle surface strains and when the 

deflection is of the order of magnitude of the thickness of the plate. This can 

be used to obtain forms for the in-plane forces xn  and rsn  per unit length in 

the x and y direction respectively. Berger showed that this approach works 

well for combinations of simply supported and clamped boundary conditions. 

We note in passing that Wah, in 1964, and Ramachandran and Reddy, in 1972, 

also applied Berger’s formulation efficiently for analysing the nonlinear 

vibrations of un-damped rectangular plates.  

To derive the in-plane forces, the middle surface strains in the x and y 

directions can be taken as given by [Timoshenko, (1940)], 

 2
1

,
2x

u w
x x

ε ∂ ∂ = +  ∂ ∂ 
 (3.4-10) 

 2
1

,
2y

v w
y y

ε  ∂ ∂= +  ∂ ∂ 
 (3.4-11) 

where u and v are the displacements in the x and y directions respectively. 

Accordingly, we can write the in-plane forces as, [Timoshenko, (1940)], 

 ( )2 ,
1x x y

Eh
n ε υε

υ
= +

−
 (3.4-12) 

 ( )2 .
1rs y x

Eh
n ε υε

υ
= +

−
 (3.4-13) 

Substituting equations (3.4-10) and (3.4-11) into equations (3.4-12) and (3.4-

13), we get, 

 222 1 1
,

12 2 2
xn h u v w w
D x y x y

υ υ  ∂ ∂ ∂ ∂ = + + +   ∂ ∂ ∂ ∂   
 (3.4-14) 

and therefore for y,  
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 2 22 1 1
.

12 2 2
rsn h v u w w

D y x y x
υ υ ∂ ∂ ∂ ∂ = + + +   ∂ ∂ ∂ ∂  

 (3.4-15) 

We multiply equations (3.4-14) and (3.4-15) by dxdy and integrate over the 

plate area, and then impose the conditions that u and v vanish at the external 

boundaries and around the crack due to symmetry, leading to, 

 1 2
222

1 2

0 0

1
,

12 2

l l

xn h l l w w
dxdy

D x y
υ

  ∂ ∂ = +   ∂ ∂    
∫ ∫  (3.4-16) 

and,  1 2
2 22

1 2

0 0

1
.

12 2

l l
rsn h l l w w

dxdy
D y x

υ
  ∂ ∂ = +    ∂ ∂    

∫ ∫  (3.4-17) 

Applying the definition of ( , , )w x y t  from equation (3.4-1) we get,   

 2 2
1 ( )x mn mn mnn DF A tψ= , (3.4-18) 

where the quantity mnA  is a modal peak amplitude function, normalised in 

this case to unity, 

 1 2
22

2 2
1 2 1 1

1 2 0 0

6
,

l l

m n
mn n mn m

X Y
F Y X dxdy

h l l x y
υ∞ ∞

= =

  ∂ ∂ = +   ∂ ∂    
∑ ∑ ∫ ∫  (3.4-19) 

and, 2 2
2 ( ),rs mn mn mnn DF A tψ=  (3.4-20) 

where 1 2
2 2

2 2
2 2 1 1

1 2 0 0

6
.

l l

n m
mn m nn m

Y X
F X Y dxdy

h l l y x
υ∞ ∞

= =

  ∂ ∂ = +    ∂ ∂    
∑ ∑ ∫ ∫  (3.4-21) 

Substituting the in-plane forces xn  and rsn  from equations (3.4-18) and (3.4-

20) into equation (3.4-9), multiplying each part of equation (3.4-9) by the 

modal function mX  and nY  for one of the three example boundary conditions 

mentioned above, and then integrating over the plate area, we find that,  
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 3( ) ( ) ( ) .mn mn mn mn mn mn mnM t K t G t Pψ ψ ψ+ + =ɺɺ  (3.4-22) 

where     1 2

2 2

1 1
0 0

,
l l

mn mn m nn m

h
M A X Y dxdy

D
ρ ∞ ∞

= =
= ∑ ∑ ∫ ∫  (3.4-23) 

( )υ

α α υ υ

∞ ∞

= =

 
 ′′ ′′ + ′′ ′′= + + −  
 + + − +   

  

∑ ∑ ∫ ∫
1 2

1 1
0 0

2
2 ,

3 (3 )(1 ) 2
6
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m n n miv iv

mn mn m n m n n m m non m
obt
bb

a X Y Y X
K A X Y X Y Y X X Y dxdy

h a

                                       (3.4-24)  

( )
1 2 2

23 2
11 1 2

0 0

2
,

6 (1 ) 2

l l
mn m n n

mn mn mn m m nn m o o
tb tt

aF X Y Y
G A F X X Y dxdy

h aα α υ
∞ ∞

= =

 ′′
 ′′= − +
 + − + 

∑ ∑ ∫ ∫  

(3.4-25) 

The integral of the delta function is given by 0( ) ( ) ( )m m oX x x x dx X xδ
∞

−∞

− =∫ . 

Therefore, the force term in equation (3.4-22) can be expressed as 

 ( )
,o

mn mn

P t
P Q

D
=  (3.4-26) 

where   
0 0( ) ( ).mn m nQ X x Y y=  (3.4-27) 

Equation (3.4-22) is in the form of the well known Duffing equation containing 

a cubic nonlinear term, and can be re-stated as 

 2 3( ) ( ) ( ) ( ),mn
mn mn mn mn mn ot t t P t

D
λψ ω ψ β ψ+ + =ɺɺ  (3.4-28) 

where  2 ,mn
mn

mn

K
M

ω =  (3.4-29) 

 
,mn

mn
mn

G
M

β =  (3.4-30) 
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,mn

mn
mn

Q
M

λ =  (3.4-31) 

and mnω  is the natural frequency of the cracked rectangular plate. mnβ  is the 

nonlinear cubic term and can be either a positive (hard spring) or a negative 

(soft spring) depending upon the system parameters.  

3.5 Linear Viscous Damping 

Damping is essentially a nonlinear phenomenon. Linear viscous damping is an 

idealization, which provides a term proportion to velocity. Hysteretic 

damping, Coulomb dry friction, aerodynamic drag, etc. are examples of 

nonlinear damping.  

Now if it is assumed that the system is attached to a nonlinear spring under 

the influence of weak linear viscous damping µ , then the equation of the 

model of the rectangular cracked plate becomes, 

 2 3( ) 2 ( ) ( ) ( ) ( ).mn
mn mn mn mn mn mn ot t t t P t

D
λψ µψ ω ψ β ψ+ + + =ɺɺ ɺ  (3.5-1) 

Letting the load be harmonic, such that,  

 ( ) coso mnP t p t= Ω  (3.5-2) 

leads to, 

 2 3( ) 2 ( ) ( ) ( ) cos .mn
mn mn mn mn mn mn mnt t t t p t

D
λψ µψ ω ψ β ψ+ + + = Ωɺɺ ɺ  (3.5-3) 

This problem is not too hard to nondimensionalise, however, physical units of 

the parameter are used throughout this dissertation, because there are no 

significant scale effects, or data complications which would otherwise require 

the one of formal nondimensionalisation. 
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3.6 Investigation of Natural Frequencies for Cracke d Plate 

Model  

Here, we consider a test plate made of aluminium alloy 5083. 5083 is an 

international designation used for classification. This aluminium alloy contains 

5.2% magnesium, 0.1% manganese and 0.1% chromium. In the tempered 

condition, it is strong and retains good formability due to excellent ductility. 

It has high resistance to corrosion, and is used for various applications such as 

shipbuilding, aircrafts, rail cars, vehicle bodies, pressure vessels etc. It has 

low density and excellent thermal conductivity common to all aluminium 

alloys and has the following material properties: 

Modulus of elasticity, E  = 7.03 x 1010 N/m2 

Density, ρ  = 2660 kg/m3 

Poisson’s ratio, υ  = 0.33 

While the geometric properties of the plate are 

Length along x-direction, 1l  = 0.5 m, Length along y-direction, 2l =1 m 

Half crack length, a = 0.01 – 0.025 m and thickness of the plate, h = 0.01 m 

and, 10p =  N is the chosen load magnitude acting upon the surface of the 

plate at some arbitrary specified point given here by 0 0.375x =  m and 

0 0.75y =  m, and with a damping factor of 0.08µ = . 

The natural frequencies without and with a crack for different boundary 

conditions and aspect ratios have been calculated and tabulated in Table 3-1. 

It may be seen from Table 3-1 that the presence of the crack at the centre of 

the plate significantly influences the natural frequency of the first mode of 

the plate, in all three cases. 
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First Mode Natural Frequency, ωmn [rad/s] 
for a Half-crack Length, a = 0.01 and 0.025 [m] 

Lengths 

of the  

sides of 

the 

plate 

Two adjacent edges 

clamped, the other 

two free (CCFF) 

Two adjacent edges 

clamped, the other 

two simply supported 

(CCSS) 

All edges simply 

supported (SSSS) 

cracked cracked cracked l1 

[m] 

l2 

[m] 

un-

cracked
0.01m 0.025m 

un-

cracked
0.01m 0.025m 

un-

cracked
0.01m 0.025m 

1 1 80.46 77.39 74.10 445.67 432.51 418.58 77.58 75.54 73.39 

0.5 1 231.06 229.95 228.80 1161.77 1154.27 1146.53 193.95 192.54 191.09 

1 0.5 231.06 213.85 194.61 1161.77 1089.98 1011.04 193.95 183.18 171.42 

0.5 0.5 321.85 309.54 296.38 1782.66 1730.04 1674.31 310.32 302.17 293.57 

 
Table 3-1: Natural frequencies of the cracked plate  model for different boundary 

conditions and aspect ratios 

 
In the subsequent section results are plotted for the first mode and three 

cases of boundary conditions. The natural frequency is influenced if the 

geometry of the plate is changed, in particular its length and thickness, in 

addition to the effect of the half-crack length. Figure 3-6 shows the decrease 

in the natural frequency as we go on to increase the half-crack length for the 

same parameters as considered earlier. These changes are very small for small 

half-crack lengths, as one would expect.  
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                               (c) SSSS                                                     (d) Combined effect 

Figure 3-6: Plate first mode natural frequency of a spect ratio 0.5/1 as a function 
of half-crack length 

Similarly, it may be seen from Figure 3-7 that by increasing the thickness of 

the plate the natural frequency of the first mode also increases for different 

values of half-crack length. This means that this natural frequency is directly 

related to the thickness of the plate.  

The present theory can also be verified with existing linear theories as 

proposed by different authors, namely, Stahl and Keer (1972), Solecki (1983), 

Qian et al. (1991) , Krawczuk (1993), and Krawczuk et al. (1994) and (2001) 

for the vibration analysis of cracked plates. Let us consider a square plate of 

sides 0.1 m x 0.1 m made of steel having a material properties such as, 

young’s modulus, E = 2.04x1011 N/m2, Poisson’s ratio, υ  = 0.3, and mass 

density, ρ  = 7860 kg/m3. The thickness is 0.001 m and the plate is simply 

supported from all sides. In general, linear models are applicable only in a 

very restricted domain such as when the amplitude of vibration is very small 

as discussed in chapter 1, whereas nonlinear models capture a large range of 

phenomena such as jumps, modal interactions, periodic doubling and chaos. 

Therefore by the implication of the nonlinear model one may see all these 

CCSS 

CCFF SSSS 
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phenomena, and this is discussed in chapters 4 and 5 for the model of the 

cracked plate.  
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Figure 3-7: Plate first mode natural frequency as a  function of the thickness of 
the plate for the half-crack length of 0.01 m  

Table 3-2 presents a comparison of the ratio of frequencies of cracked and un-

cracked plates. It shows that the percentage changes between the linear 

models and present nonlinear model for the range of 2a/l1 ratio (0.1-0.2) is 

approximately (1-2) %. 
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2a/l1 

Linear Models 

0.00 0.05 0.10 0.15 0.20 

Stahl & Keer (1972) 1 - 0.9940 - 0.9775 

Solecki (1983) 1 - 0.9940 - 0.9780 

Qian et al. (1991) 1 - 0.9950 - 0.9820 

Krawczuk (1993) 1 0.9971 0.9942 0.9874 0.9806 

Krawczuk et al. (1994) 

and (2001) 
1 0.9971 0.9942 0.9874 0.9806 

Present Nonlinear 

Model 
1 0.9995 0.9992 0.9990 0.9989 

 
Table 3-2: Relative changes of the natural frequenc ies of the cracked simply 

supported plate for the first mode only 

 
The approximate analytical solution of the nonlinear Duffing ordinary 

differential equation is obtained in chapter 4 by the use of the perturbation 

method of multiple scales for analyzing the nonlinear behaviour of the same 

plate of aluminium alloy 5083. 
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Chapter 4  

APPROXIMATE ANALYTICAL TECHNIQUES 

__________________________________________ 

Many exact solutions are available in the literature for the problems of linear 

vibration. However, for nonlinear problems, no single exact solution exists 

because of the general complexity of such analysis. Therefore, approximate 

techniques are widely used for numerical solution. We use the perturbation 

method of multiple scales for obtaining a close-form solution, in addition 

direct integration within Mathematica™ and a finite element analysis in 

ABAQUS, are also performed for the comparison of numerical solutions for the 

model of the cracked plate. 

There are several so-called perturbation methods. Each of these techniques 

has its own advantages and limitations. They all rely on the same idea of 

splitting the co-ordinate up into successively smaller parts, in the form of a 

power series in terms of a small parameter, usually defined by ε . So, for the 

co-ordinate that we are using here is, ψ , and the expansion would have of 

this form 

 2
0 1 2 ....... n

nψ ψ εψ ε ψ ε ψ= + + + +  (4-1) 

Each term in the series is known as a perturbation. The parameter,ε , is 

called the perturbation parameter. If ε  is small then it can be seen that the 

contribution to ψ  which is offered by 1iψ +  is smaller then that offered by iψ . 

On that basis most of the solution is encoded within 0ψ , with a so-called first 

order correction given by 1ψ  and a second order correction given by 2ψ  and so 

on. In practice, if one uses a series of this sort then it is important to know 

where to truncate the series. This is the basis of the perturbation methods. In 

each method the co-ordinate or dependent variable is represented by a 
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suitable series, such as equation (4-1). It is also relevant to note that since 

( , )tψ ψ ε=  then the rate of changes of ψ  should also be perturbed (ideally). 

Simple perturbation methods do not do this, and as a result their accuracy is 

limited, even when higher order perturbations are included. Here, we are 

used the perturbation method of multiple scales to formulate the Duffing’s 

equation (3.5-3) for the vibration analysis of a rectangular plate having a 

part-through crack at the centre of the plate. 

4.1 The Method of Multiple Scales 

The popularisation of the method of multiple scales is commonly attributed to 

Ali H. Nayfeh (1973), however, many other peoples have contributed to its 

development, and as this method is well discussed in the seminal work of 

Nayfeh and Mook (1979) and in the well known books of Perturbation Methods 

in Applied Mathematics by Kevorkian and Cole (1981), Introduction to Linear, 

Parametric and Nonlinear Vibrations by Cartmell (1990) and Perturbation 

Theory and Methods by Murdock (1999). We also note in passing that Cartmell 

et al., in 2003, reviewed the multiple scales method as applied to weakly 

nonlinear dynamics of mechanical systems.  

For the method of multiple scales, the solution of the equation (3.5-3) is 

approximated by a uniformly valid expansion of the form as indicated in 

equation (4-1),        

 2
0 0 1 1 0 1( , ) ( , ) ( , ) ( ),mn mn mnt T T T T oψ ε ψ εψ ε= + +  (4.1-1) 

where 0 0 1( , )mn T Tψ  and 1 0 1( , )mn T Tψ  are functions yet to be determined.  

Since the highest order derivative in the equation (3.5-3) is 2, therefore, the 

first and the second time derivative of the function, mnψ  are, mn
mn

d
dt
ψψ =ɺ  and 

2

2
mn

mn

d
dt
ψψ =ɺɺ . The derivative perturbations rely on the notion that the real 

time, t, can be expressed in the form of a set of successively independent 

time scales, nT , and is given by  
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 n
nT tε=  for n=0,1,2,… (4.1-2) 

In equation (4.1-1), 0T  is nominally considered as fast time and 1T  as slow 

time, such that, 0T t=  and 1T tε=  as from equation (4.1-2).  

Excitation can also be expressed in term of 0T  and 1T  as 

 ( )0 0 1( ) cos .mn mnP t p T Tε ω σ= +  (4.1-3) 

According to that the derivatives are perturbed as follows, starting with the 

first time derivative 

 
0 1

0 1

...
dT dTd

dt dt T dt T
∂ ∂= + +

∂ ∂
 (4.1-4) 

or, 

0 1

...
d
dt T T

ε∂ ∂= + +
∂ ∂

 (4.1-5) 

It can also be written for first and second time derivative using D-operator 

notation for simplicity as 

 2
0 1 2 ... n

n

d
D D D D

dt
ε ε ε= + + + +  (4.1-6) 

 ( )
2

2 2 2
0 0 1 1 0 22 2 2 ...

d
D D D D D D

dt
ε ε= + + + +  (4.1-7) 

Before apply this method to obtain a uniformly valid approximate solution to 

this problem (in case of equation (3.5-3)), it is necessary to order the cubic 

term, the damping, and the excitation. To accomplish this we choose to set 

the following to O(ε)1,                                                                                                                                               

 , ,  .mn mn p pµ εµ β εβ ε= = =  (4.1-8) 

This philosophy is pragmatic and realistic in that it permits the pre-

determined generation of linear, homogeneous generating solutions for each 
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co-ordinate. Moreover, instead of using the excitation frequency, mnΩ  as a 

parameter, we introduce a detuning parameter, mnσ , which quantitatively 

describes the nearness of mnΩ  to mnω . This has the advantage of clarifying 

identification of the terms in the governing equation at first order 

perturbation that lead to secular terms. Accordingly we write, [Nayfeh and 

Mook (1979)],  

 
mn mn mnω εσΩ = +  (4.1-9) 

where ε  is an arbitrarily small perturbation parameter.  

In general, equation (4.1-9) is called the primary resonance condition. After 

substituting equations (4.1-8) and (4.1-9) into equation (3.5-3), it becomes as 

follows,  

 2 3( ) 2 ( ) ( ) ( ) cos( ) .mn
mn mn mn mnt t t t p t

D
λψ εµψ ω ψ εβ ψ ε ω εσ+ + + = +ɺɺ ɺ  (4.1-10) 

This introduces damping, the cubic nonlinearity, and the excitation to first 

order perturbation, which is considered to be in-line with the appropriate 

experimental configuration, and other work on weakly nonlinear vibrating 

systems [Nayfeh and Mook, (1979), Kevorkian and Cole (1981), and Murdock, 

(1999)]. It is important to note here that for Duffing equations the coefficient 

of the cubic term, in this ordered case mnεβ , can be numerically positive or 

negative, leading to overhangs of the response curve in the frequency domain 

to the right or left, respectively. Substituting the expansion of equation (4.1-

1), the excitation term from equation (4.1-3) and the two time derivative 

series of equations (4.1-6) and (4.1-7) into the Ordinary Differential Equation 

(ODE) of the form (4.1-10), we get, 

( ) ( )
( ) ( )

( ) ( )

2 2 2 2 2 2 2
0 0 1 1 0 0 0 1 1 1

2 2 2
0 1 0 0 1 1 0

2 2 2 3 3 2
1 0 1 0 1

2 2 ( )

2 2 2 ( )

( ) ( ) cos .

mn mn

mn mn mn mn

mn
mn mn mn mn mn mn mn mn

D D D D D D D D o

D D D D o

o o p T T
D

ε ε ψ ε ε ε ψ ε

εµ ε ψ ε µ ε ψ εµ ε ω ψ
λεω ψ ω ε εβ ψ εψ ε ε ω σ

+ + + + + +

+ + + + + +

+ + + + + = +

 

(4.1-11) 
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Separating terms of like order ε  yields, to order εo:  

 2 2
0 0 0 0,mn mn mnD ψ ω ψ+ =  (4.1-12) 

This is a linear, homogeneous, second order perturbation equation and can be 

thought of as an ordinary differential equation with respect to timescale 0T . 

It is usually referred to as the zeroth order perturbation equation. 

and to order ε1:  

( )2 2 3
0 1 1 0 1 0 0 0 0 0 12 2 cos .mn

mn mn mn mn mn mn mn mn mnD D D D p T T
D

λψ ω ψ ψ µ ψ β ψ ω σ+ = − − − + +        

(4.1-13) 

This is referred to as the first order perturbation equation. The higher orders 

of 2ε , 3ε  and so on, may be neglected because higher order perturbation 

equations will yield negligible corrections for the problem as set up here. The 

general solution of equation (4.1-12) can be written as 

 0 0
0 1 1( ) ( ) ,mn mni T i T

mn B T e B T eω ωψ −= +  (4.1-14) 

where B  is an unknown complex amplitude, and B  is the complex conjugate 

of B . This amplitude will be determined by eliminating the secular terms 

from 1mnψ . Substituting the solution from equation (4.1-14) into equation 

(4.1-13), we get, 

{ } { }
{ } ( )

ω ω ω ω

ω ω

ψ ω ψ µ

λβ ω σ

− −

−

+ = − + − +

− + + +

0 0 0 0

0 0

2 2
0 1 1 0 1 1 1 0 1 1

3

1 1 0 1

2 ( ) ( ) 2 ( ) ( )

( ) ( ) cos ,

mn mn mn mn

mn mn

i T i T i T i T
mn mn mn

i T i T mn
mn mn mn

D D D B T e B T e D B T e B T e

B T e B T e p T T
D

(4.1-15) 
 
which, after dropping the argument 1T  in the complex amplitudes, leads to 

the following, 
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( ) ( )
( ) ( )

0 0 0 0

0 0 0 0

2 2
0 1 1 1

33 33
0 1

2 2

3 cos .

mn mn mn mn
mn

mn mn mn mn

i T i T i T i T
mn mn mn mn mn mn

i T i T i T i T mn
mn mn mn

D iD Be Be i Be Be

B e B e BB Be Be p T T
D

ω ω ω ω

ω ω ω ω

ψ ω ψ ω ω µ ω ω

λβ ω σ

− −

− −

+ = − − − −

 − + + + + +
  

 
(4.1-16) 

Expressing ( )0 1cos mn mnT Tω σ+  in complex form, and take the common factor 

of 0mni Te ω  out from the right hand side of equation (4.1-16), we get, 

ω ωσλψ ω ψ ω µω β β + = − − − + − + 
 

0 01 32 2 2 3
0 1 1 12 2 3 ,

2
mn mnmn i T i Ti Tmn

mn mn mn mn mn mn mnD i D B i B B B pe e B e cc
D

 
(4.1-17) 

where cc denotes the complex conjugate of the preceding terms.  

It can be seen that some of the right hand side terms contain the term 0mni Te ω . 

The important characteristic here is that mnω  is explicitly present, it means 

that those terms are resonant. Such terms frequently occur in perturbation 

analysis and are called secular terms. Now the secular terms can be identified 

immediately due to the removal of the common factor of 0mni Te ω . To eliminate 

the secular terms from equation (4.1-17), we must put,  

 
12

12 2 3 0.
2

mni Tmn
mn mn mni D B i B B B pe

D
σλω µω β− − − + =  (4.1-18) 

This means that equation (4.1-17) will be much simpler and can then be 

solved directly using the conventional particular integral method. In solving 

equation (4.1-18), it is convenient to write the complex amplitude B  in the 

polar form, 

  1
2

iB be α= , (4.1-19) 

where 1( )B B T= , the physical reasoning behind that is to keep amplitude in a 

steady state or nearly so. If this is imposed then it also has to impose the 

conditions that real amplitude, 1( )b b T=  and phase, 1( )Tα α= .  
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Substituting equation (4.1-19) into equation (4.1-18), we get, 

3
1 1

3
[cos( ) sin( )] 0,

8 2
mn mn

mn mn mn mn mnb i b i b b p T i T
D

β λω α ω ω µ σ α σ α′ ′− − − + − + − =    

        (4.1-20) 

where the prime denotes the derivative with respect to 1T .  

Now, separating the result into real and imaginary parts, we obtain,   

 
Re:  

3

1

3
cos( ),

8 2
mn mn

mn
mn mn

b
b p T

D
β λα σ α
ω ω

′ = − −  (4.1-21) 

 
Im:  1sin( ).

2
mn

mn
mn

b b p T
D

λµ σ α
ω

′ = − + −  (4.1-22) 

Equation (4.1-21) contains α ′ , where this is the slowly varying phase angle, 

and equation (4.1-22) contains the slowly varying amplitude, b′ . 

Equations (4.1-21) and (4.1-22) can then be transformed into an autonomous 

system i.e. one in which 1T  does not appear explicitly, by letting,   

 
1 .mnTκ σ α= −  (4.1-23) 

Substituting equation (4.1-23) into equations (4.1-21) and (4.1-22), we get, 

 33
cos ,

8 2
mn mn

mn
mn mn

b
b b p

D
β λκ σ κ
ω ω

′ = − +  (4.1-24) 

 
sin .

2
mn

mn

b b p
D

λµ κ
ω

′ = − +  (4.1-25) 

In the case of steady-state motion 0b κ′ ′= ≈ , and this corresponds to the 

singular points of equations (4.1-24) and (4.1-25); that is,  
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 33
cos ,

8 2
mn mn

mn
mn mn

b
b p

D
β λσ κ
ω ω

− + = −  (4.1-26) 

 
sin .

2
mn

mn

b p
D

λµ κ
ω

=  (4.1-27) 

Squaring and adding these equations, we obtain, 

 22 2
2 2 2

2 2

3
.

8 4
mn mn

mn
mn mn

b
b p

D
β λµ σ
ω ω

  
 + − = 
   

 (4.1-28) 

It is then possible to rearrange equation (4.1-28), we get, 

 2 2
2 2

2 2 2

3
.

8 4
mn mn

mn
mn mn

b
p

b D
β λσ µ
ω ω

= ± −  (4.1-29) 

This is a frequency response equation which gives the modal amplitude 

response,b  as a function of the detuning parameter, mnσ , and the amplitude 

of the excitation, p , this being a measure of deviation from the perfect 

forced resonance condition. It also indicates that the peak amplitude, pb is 

independent of the value of mnβ  (cubic nonlinear term) and is given by  

 

2
mn

p
mn

b p
D

λ
ω µ

=  (4.1-30) 

We can plot the linear ( )0mnβ =  and nonlinear response curves from equation 

(4.1-29). The linear results are symmetric to this order of approximation and 

represent the solution in a very narrow band around the resonant frequency. 

The effect of the nonlinearity is to bend the amplitude curve left or right 

depending upon the negative or positive value of the cubic nonlinear term 

respectively. 
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4.2 Analytical Results 

In this section, analytical results are presented based on the approximate 

method of multiple scales. Linear and nonlinear response curves for the three 

cases of boundary conditions and a half-crack length of 0.01 m, are plotted to 

see their effects at the resonance condition. Secondly, a detailed comparison 

is made between the linear and nonlinear cracked plate models. Finally, 

nonlinearity is also affected by changing the location of the point load, and by 

means of the damping factor, and these aspects are discussed next. 

4.2.1 Linear and Nonlinear Response Curves 

Linear and nonlinear response curves are plotted for analysing the behaviour 

of a model of the cracked rectangular plate. To construct such a curve, one 

solves for, mnσ  in terms of b . Figure 4-1 shows the plots of amplitude, b  as a 

function of mnσ  for given µ  and p  in the form of a frequency-response curve 

for three sets of boundary conditions as discussed in section 3.4 in detail. 

Each point on this curve corresponds to a singular point.  

Now, we consider the same mechanical and geometric properties of test 

aluminium plate as motioned in section 3.6 for plotting of system responses. 

The results are shown for the first mode only. Figures 4.1(a) and 4.1(b) are 

the linear and nonlinear response curves for the CCFF, CCSS and SSSS 

boundary conditions respectively. As shown, the nonlinearity bends the 

frequency-response curve away from the linear curve ( )0mnβ = , to the right 

for hard springs i.e. 0mnβ >  for the cases of CCSS and SSSS, and bends to the 

left for soft springs i.e. 0mnβ <  for the case of CCFF. These are shown in 

Figure 4-1(b), with some attendant change in the modal natural frequency, or 

we can say that as the amplitude of the excitation increases, the frequency 

response curves bend away from the 0mnσ =  axis. The natural frequency is 

also influenced if the geometry of the plate is changed, in particular its 

length and thickness, in addition to the effect of the half-crack length as 

discussed in chapter 3 (see Figures 3-6 and 3-7 for more detail).  



Chapter 4: Approximate Analytical Techniques 

73 

σmn  [rad/s] σmn  [rad/s] 

b 
[m

] 

σmn  [rad/s] σmn  [rad/s] 

b 
[m

] 

σmn  [rad/s] σmn  [rad/s] 

b 
[m

] 

-10 -5 0 5 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

    -20 -10 0 10 20 30

0.002

0.004

0.006

0.008

0.01

 

                           (a) Linear - CCFF                                              (b) Nonlinear - CCFF   

-6 -4 -2 0 2 4 6
0

0.005

0.01

0.015

0.02

0.025

    -20 -10 0 10 20 30

0.002

0.004

0.006

0.008

0.01

 

                            (a) Linear - CCSS                                              (b) Nonlinear - CCSS   

-6 -4 -2 0 2 4 6
0

0.005

0.01

0.015

0.02

0.025

    -20 -10 0 10 20 30

0.002

0.004

0.006

0.008

0.01

 

                          (a) Linear - SSSS                                               (b) Nonlinear - SSSS   

Figure 4-1: Linear and nonlinear response curves fo r three different cases of 
boundary conditions and half-crack length of 0.01 m  

4.2.2 Comparison of Linear and Nonlinear Cracked Pl ate Model 

If the cubic nonlinearity, mnβ  is set to zero then the problem is linearised as 

discussed earlier, but in the case of the nonlinear problem the significant 

effect of including this term is apparent from the numerical results depicted 

in Figure 4-2 for the two sets of the plate aspect ratios 0.5/1 and 1/1. Figure 

4-2 shows that the ratio of the linear and nonlinear solution amplitude 

(where mnβ is set to zero) is very large for negative detuning. This exactly 

emulates the softening nonlinear characteristic for the case of CCFF boundary 
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σmn  [rad/s] 

b 
[m

] 

b N
L/

b L
  

σmn  [rad/s] σmn  [rad/s] 

conditions as shown in Figure 4-1(b). It can also be seen that this ratio 

reduces close to unity for zero and positive detuning, again fully in-line with 

the softening characteristic observable in Figure 4-1(b) for the case of CCFF 

boundary condition. In addition, it can also be seen that there is a very small 

difference in amplitude ratio between the two aspect ratios of the plate in 

Figure 4-2. In the Figure 4-2, bNL is the nonlinear amplitude and bL is the 

corresponding linear amplitude. 
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                (a) Plate aspect ratio 0.5/1                                    (b) Plate aspect ratio 1/1 

Figure 4-2: Comparison between linear and nonlinear  model of the cracked 
rectangular plate and the boundary condition CCFF 

4.2.3 Nonlinearity affects by changing the location  of the Point Load 

It has been observed that changing the location of the load on the plate 

slightly affects the global nonlinearity of the system, as shown in Figure 4-3 

for the case of CCFF boundary condition and evidenced by the increasingly 

wide nonlinear region as the excitation location moves closer to the 

unsupported corner. 
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Figure 4-3: The amplitude of the response as a func tion of the detuning 

parameter, σmn [rad/s] and the point load at different locations [m] of the plate 
element 
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4.2.4 Damping Coefficient influences Nonlinearity 

It is also interesting to note that the damping coefficient, µ  influence the 

response curves. In the absence of damping, the peak amplitude is infinite, 

and the frequency response curve consists of two branches having as their 

asymptote the curve, 
23

8
mn

mn
mn

bβσ
ω

= . However, in the presence of damping, 

the peak amplitude is finite as in the present case. 

4.2.5 Peak Amplitude 

The peak amplitude, pb  as given in equation (4.1-30) for an un-cracked and 

cracked plate is tabulated in Table 4-1. As expected, the amplitude increases 

as the insertion of the crack at the centre of the plate and increases further 

by the increase of half-crack length from 10 mm to 25 mm. 

Cracked Plate with Half-crack 

Lengths, a [mm] 
 

Boundary 

Conditions 

Un-cracked 

Plate [mm] 

10 mm 25 mm 

CCFF 35.19 35.36 35.54 

CCSS 27.62 27.80 27.99 Peak amplitude 

SSSS 82.72 83.33 83.96 

 
Table 4-1: Peak amplitudes for three sets of bounda ry conditions and two sets of 

half-crack length for a plate aspect ratio of 0.5/1   

4.3 Direct Integration – NDSolve within Mathematica™   

The NDSolve integrator within Mathematica™ (Wolfram, 1996) is used for the 

numerical solution of nonlinear ordinary and partial differential equations. 
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Frequency  [rad/s] 

A
m

pl
itu

de
 [m

] 

Special program code is developed for integrating the Duffing equation (3.5-3) 

for given initial conditions and is shown in Appendix A.  

The results obtained are in the time domain and can be transformed into the 

frequency domain by running this program code as described in Appendix A 

several times for a range of frequency values from -40 rad/s to 40 rad/s to 

obtain a list of amplitude values. While going through all the data 

individually, one selects that portion of the amplitude values where the 

values are in steady state condition, and then one averages them for the plot 

of amplitude and frequency. These provide a basis for comparison with the 

approximate analytical solutions obtained from equation (4.1-29). 

-40 -20 0 20 40

0.0005

0.001

0.0015

0.002

0.0025

0.003

 

Figure 4-4: Nonlinear overhang in the form of the s oftening spring characteristic 
by the use of NDSolve within Mathematica™  for an aspect ratio of 0.5/1, and 

initial conditions zero 

Figure 4-4 shows the responses of the plate obtained from direct integration 

by the use of NDSolve within Mathematica™. Reasonably close agreement can 

be observed, however the numerical solution does not predict the same 

degree of nonlinear overhang in the form of the softening spring 

characteristic as the approximate analytical solution. The over-prediction of 

the softening overhang by the multiple scales solution is undoubtedly due to 

an over-correction to the solution from the first order perturbation 

contribution, and the assumptions that necessarily went with that in order to 

obtain a closed-form solution.  

4.4 Finite Element (FE) Technique – ABAQUS/CAE 6.7- 1 

ABAQUS/CAE is a general purpose finite element analysis tool with a group of 

engineering simulation programs capable of modelling structures under 
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different loading conditions. It can solve problems of relatively simple 

structural analysis to the most complicated linear to nonlinear analyses. In a 

nonlinear analysis ABAQUS/CAE automatically chooses appropriate load 

increments and convergence tolerances and continually adjusts them during 

the analysis to ensure that an accurate solution is obtained. ABAQUS/CAE 

consists of a widespread library of elements, wherein any type of geometry 

can be modelled. Apart from solving structural problems, it can also solve 

problems in other different areas like fracture mechanics, soil mechanics, 

static analysis, piezoelectric analysis, coupled thermal-electrical analyses, 

heat problems, and acoustics etc. The detailed description of the 

ABAQUS/CAE finite element program has been included in Appendix B. 

In this analytical framework, ABAQUS/CAE is used for evaluating the 

frequencies, displacements and mode shapes of the model of a cracked plate 

to investigate the theoretical predictions. The required inputs for the 

ABAQUS/CAE finite element analysis consists of model geometry, material 

properties, loading, boundary conditions, and an initial crack configuration.  

4.4.1 Steps Taken to Perform FE Analysis 

A description of the steps taken to perform an elastic FE analysis using 

ABAQUS/CAE are as follows: 

• Create a 3D solid model of the plate element in the ABAQUS/CAE Part 

module for a given geometric and mechanical properties of aluminium 

alloy – 5083. 

• Create a part-through crack of depth 0.06 m at the centre of the plate 

by the use of cut feature under shape in the main menu. 

• Define material properties for an aluminium plate in the Property 

module, including modulus of elasticity, Poisson’s ratio, and density. 

Further, create section and section assignment of the part in the same 

module. 
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• Create partitions of the whole part for proper structural meshing in the 

mesh module. The partition feature can be access under tool in the 

main menu.  

• Create an assembly of the part in the Assembly module. 

• Create steps for the analysis in the step module i.e. specific output 

requests including field and history output requests.  

• Create sets to define the boundary conditions of the part. 

• Apply boundary conditions and loadings in the load module. Here, CCFF 

boundary condition and a concentrated force of 10 N are applied.   

• Create the mesh of the part using element shape and analysis type 

standard, 3D stress, C3D8R - 8 node linear brick with reduced 

integration. Mesh and seed part instances are also required for the 

creation of the mesh. ABAQUS/CAE offers a number of different 

meshing techniques. The default meshing technique assigned to the 

model is indicated by the colour of the model. If ABAQUS/CAE displays 

the model in orange, it cannot be meshed without assistance from the 

user. 

• When all the keywords are defined, submit the job in the job module to 

solve for the analysis. 

• In post processing, interpret the output in the Visualisation module, 

including standard stress, strain and displacement distributions. 

There are two basic types of dynamic analysis in ABAQUS/CAE step module; 

implicit and explicit. ABAQUS/Standard uses the implicit Hilber-Hughes-Taylor 

operator for integration of the equations of motion. This offers the use of all 

elements in ABAQUS, however, it can be slower than explicit, whereas 

ABAQUS/explicit uses the central-difference operator. In an implicit 

dynamical analysis the integration operator matrix is inverted and a set of 

nonlinear equilibrium equations are solved at each time increment. A dynamic 
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analysis for the cracked model is performed by employing implicit, and edits 

the Step module as 

Basic tab Time period: 6 

Incrementation tab 

 

Type: Fixed 

Maximum number of increments: 6000  

Increment size: 0.001 

Check: Suppress half-step residual calculation 

The periodic load is applied at a distance of 0.375 x 0.75 m from the fixed 

edges of the plate (see Figure 3-6) with a magnitude of 10 N under the 

resonant frequency. This can be defined in ABAQUS/CAE as Go to tools, 

amplitude, create, give it a name and choose periodic. The model may take a 

long time to run. However, it could be monitored during the runs.  

4.4.2 ABAQUS/CAE Results 

The results obtained from ABAQUS/CAE are shown in Figures 4-5, 4-6 and 4-7 

for the nonlinear FE analysis of the plate with a part-through crack at the 

centre of the plate for a boundary condition of CCFF, and the aspect ratio of 

the plate is 0.5/1. Equally, results can readily be obtained by employing other 

boundary conditions, such as CCSS and SSSS. 

4.4.2.1 Frequency Analysis 

Figure 4-5 shows three modes of vibration for an un-cracked plate. Similarly, 

Figures 4-6 and 4-7 shows a decreasing trend as the inclusion of damage in the 

form of crack at the centre of the plate. The frequency values are tabulated 

in Table 4-2 for a three modes of vibration for a cracked and un-cracked 

plate. 
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                    (a) Mode – I                                (b) Mode – II                           (c) Mode – III 

Figure 4-5: Three modes of vibration for an alumini um plate without a crack 
 

     

                   (a) Mode – I                               (b) Mode – II                        (c) Mode – III 

Figure 4-6: Three modes of vibration for an alumini um plate of sides 0.5x1 m and 
a half-crack length of 0.01 m 

          

                     (a) Mode – I                              (b) Mode – II                            (c) Mode – III 

Figure 4-7: Three modes of vibration for an alumini um plate of sides 0.5x1 m and 
a half-crack length of 0.025 m 



Chapter 4: Approximate Analytical Techniques 

81 

4.4.2.2 Amplitude Analysis 

The amplitude responses for an un-cracked and cracked plate model are 

obtained by employing implicit dynamic nonlinear analysis within 

ABAQUS/CAE. As expected, the amplitudes values increase due to the 

insertion of a small crack in the aluminium plate. These amplitudes values are 

also tabulated in Table 4-2, and the comparison is made between the 

theoretical model and the FEA results.  

Theoretical Results for 

M-1 only 

FEA Results 

Frequency [Hz] 
Amplitude 

[mm] 

 

Frequency 

[Hz] 

Amplitude 

[mm] 

M-I M-II M-III M-I only 

Un-cracked Plate 36.77 1.1913 36.819 77.85 157.07 1.016 

10 mm 36.60 1.1974 36.240 76.73 154.82 1.222 
Cracked  

Plate 
25 mm 36.41 1.2045 36.232 76.67 154.78 1.386 

 
Table 4-2: Finite element analysis results 

The analytical results via the method of multiple scales can be extended for 

the evaluation of higher modes for the cracked plate problem. However, 

including higher modes makes the computation of the problem more lengthy 

and complex to a greater extent. As one then could see, that the general 

form of the transverse deflection of the plate (equation 3.4-1) will take multi-

part form. It would be advantageous if this could be investigated further for 

the higher modes. 
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Chapter 5  

DYNAMICAL SYSTEM ANALYSIS 

__________________________________________ 

In this chapter, we discuss dynamical systems theory and its application for 

providing an introduction to nonlinear behaviour, principally through the 

study of the Duffing ODE of equation (3.5-3), used as the model of the 

cracked rectangular plate as discussed in chapters 3 and 4. This study begins 

with the stability of the phase states, and the Poincaré map, and this is 

followed by a study of the bifurcations, that are observed from the analysis of 

saddle trajectories, and the calculation of the Lyapunov exponent. This lead 

us to the emergence of strange attractors of fractal dimension; the evolution 

of saddle orbits into chaos, and leads to the observation idea that in this 

system seemingly chaotic behaviour can emerge from perfectly deterministic 

origins. Chaotic behaviour might, in principle, be predicted as an outcome for 

a deterministic system, however, in some systems it is difficult to envisage, as 

the dynamics of the system are necessarily of high precision. Therefore, the 

understanding of the dynamics of an analytically modelled system, or a 

system defined by a finite element model, can be extended further by 

recourse to techniques based on specialised numerical investigations.  

Nonlinear dynamical systems are used as models in every field of science and 

engineering and universal patterns of behaviour, including chaos, have been 

observed in many examples. Various, freely available pieces of software such 

as, AUTO2, XPPAUT3, Matcont4, Content5, DynPac6, and Dynamics Solver7 have 

been specifically designed for the analysis of dynamical systems, and to allow 

the user to compute the equilibria and limits cycles, bifurcation points and 

                                         
2 http://indy.cs.concordia.ca/auto/ 
3 http://www.math.pitt.edu/~bard/bardware/tut/xppauto.html 
4 http://www.matcont.ugent.be/matcont.html 
5 http://www.enm.bris.ac.uk/staff/hinke/dss/continuation/content.html 
6 http://www.me.rochester.edu/~clark/dynpac.html 
7 http://www.enm.bris.ac.uk/staff/hinke/dss/ode/dynsolver.html 
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Lyapunov exponents for their own systems. In practice, it has been observed 

that every software package has its own specific significance, and 

performance, and this gives the user the choice of many. A primary function 

of these dynamical systems software packages is to perform numerical 

integration and numerical continuation. Numerical integration is an iterative 

technique which is applied to the majority of nonlinear systems that are not 

solved analytically for some reason, therefore, the trajectory is approximated 

by calculating a sequence of solutions over a given time span. On the other 

hand, numerical continuation is a technique to trace the solution path to a 

given system as the value of a control parameter varies, so it allows the 

bifurcations to be found, and stable and unstable solutions to be traced.  

In this study, computational methods for the analysis of dynamical systems as 

system parameters varies are discussed by implementing the Dynamics 2 

dynamical system software, and also by the use of bespoke code written by 

the author in Mathematica™. In addition, these analyses are for high 

excitation and frequency values of the Duffing equation (3.5-3). 

5.1 Dynamical System Theory 

Chaos is broadly defined as a major type of irregular, unpredictable behaviour 

observable in deterministic nonlinear dynamic systems. In the mathematical 

literature, it is usually defined as a phenomenon seen in a dynamical system 

that has a sensitive dependence on its initial conditions. Stanisław Marcin 

Ulam (1909–1984) famously stated that nonlinear science is like non-elephant 

zoology. Chaos theory began as a field of physics and mathematics dealing 

with the structures of turbulence and the self-similar forms of fractal 

geometry. The idea that many simple nonlinear deterministic systems can 

behave in an apparently unpredictable and chaotic manner was first noticed 

by the great French mathematician Henri Poincaré (1854–1912). Other early 

pioneering work in the field of chaotic dynamics were found in the 

mathematical literature by such luminaries as Birkhoff (1844–944), Andronov 

(1901–1952) and his students, Littlewood (1885–1977), Kolmogorov (1903–

1987), Pontryagin (1908–1988), Cartwright (1900–1998), and Smale (1930–

present), amongst others. In spite of this, the importance of chaos was not 
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fully appreciated until the widespread availability of digital computers for 

numerical simulations and the demonstration of chaos in various real-time 

systems. This realisation has broad implications for many fields of science, 

and it is only within the past three decades that the field has undergone an 

explosive growth in such diverse disciplines as engineering, fluid mechanics, 

physics, biology, economics, and chemistry.  

Poincaré wrote in his essay Science and Hypothesis (1903) that “If we knew 

exactly the laws of nature and the situation of the universe at the initial 

moment, we could predict exactly the situation of that same universe at a 

succeeding moment. But even if it were the case that the natural laws had no 

longer any secret for us, we could still only know the initial situation 

approximately. If that enabled us to predict the succeeding situation with the 

same approximation, that is all we require, and we should say that the 

phenomenon had been predicted, that it is governed by laws. But it is not 

always so; it may happen that small differences in the initial conditions 

produce very great ones in the final phenomena. A small error in the former 

will produce an enormous error in the latter. Prediction becomes impossible, 

and we have the fortuitous phenomenon”. We can conclude from this that it 

is very hard to get exact predictions of any system from the initial conditions. 

These initial conditions can cause enormous divergence in the results, as we 

can see in the case of the cracked plate model in the following sections. 

The book by Abrahams and Shaw, in 1982, used artistic techniques to 

represent phase space structures and bifurcation diagrams in three 

dimensions. Today the capabilities of the dynamical systems research 

community are far more mature, and the nomenclature of bifurcation theory 

is hardwired into almost all fields of scientific study. Champneys, in 2006, 

presented an overview of a famous book Dynamical Systems and Bifurcations 

of Vector Fields written by Guckenheimer and Holmes (1983). He pointed out 

that if physics was the great science of the twentieth century, then surely it 

will be the life sciences that increasingly dominate in the twenty-first 

century, to say nothing of the social sciences, economics, models of human 

behaviour, perception and cognition. All of these will need the insight of 

applied dynamical systems theory.  
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5.2 A Model of the Cracked Plate for Dynamical Syst em 

Analysis 

The model of the cracked plate in the form of the Duffing equation (3.5-3) as 

discussed in chapter 3 is used after some modification, to represent the 

behaviour of this dynamical system from nonlinear transition to chaos, by the 

use of Dynamics 2 – a tool for bifurcation analysis, and by means of special 

bespoke code in Mathematica™. Therefore, we can write the Duffing equation 

(3.5-3) in the following form: 

 ( )3
1 2 3 cos .x C x C x C x tρ+ + + = Ωɺɺ ɺ  (5.2-1) 

where  
1 2C µ=  (5.2-2) 

 2
2 mnC ω=  (5.2-3) 

 
3 mnC β=  (5.2-4) 

 λρ = =mn mn

mn

P
p

M D
 (5.2-5) 

and, Ω = Frequency of excitation  

5.2.1 Nondimensionalisation  

Nondimensionalisation of the timescale in equation (5.2-1) is introduced by 

putting tτ ω=  in order to show realistic plots in the subsequent Figures, 

where ω  is the natural frequency of the first mode of the cracked plate 

model. 

Therefore,  
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(5.2.1-1) 
In dimensionless timescale, equation (5.2-1) 

 3
1 2 3 cosx C x C x C xω ω ρ τ

ω
Ω ′′ ′+ + + =  
 

 (5.2.1-2) 
 

Where the prime (′) denotes differentiation with respect to dimensionless 

time τ . 

 Dividing the equation (5.2.1-2) by ω , we get 

 3
1 2 3

1 1 1
cosx C x C x C x

ρ τ
ω ω ω ωω

Ω ′′ ′+ + + =  
 

 (5.2.1-3) 
 

Let assume that ωΩ = . Therefore,  

 ( )x C x C x C x
ρ ω τ

ω ω ωω
′′ ′+ + + =3

1 2 3

1 1 1
cos  (5.2.1-4) 

 

The 2nd order differential equation is split into two first order ordinary 

differential equations to make a more compact form for these types of 

analyses. 

 x y′ =  

(5.2.1-5) 

 ( )331 2 cos
CC C

y y x x
ρ ω τ

ω ω ωω
′ = − − − +  (5.2.1-6) 
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Similarly, the mechanical properties of the material used, in this case 

aluminium alloy 5083, are used for the calculation of system parameters, 

which are tabulated in Table 5-1.  

System Parameters 

Boundary 

Conditions 

Half-

crack 

Lengths 

[m] 

Damping, 

1C  [ 1s− ] 

Linear 

Stiffness, 2C  

[ 2s− ] 

Cubic 

Nonlinearity, 

3C  [ 2 2m s− − ] 

Excitation 

amplitude, 

ρ [ 2m s− ] 

Reference 

Frequency, 

ω [ 1rad s− ] 

0.01 37072.80 3.84962x108 192.54 

SSSS 

0.025 36514.30 3.78199x108 

2.56708 

191.09 

0.01 1.33234x106 2.40601x109 1154.27 

CCSS 

0.025 1.31453x106 2.36375x109 

5.13416 

1146.53 

0.01 52875.30 -1.00988x109 229.95 

CCFF 

0.025 

0.16 

 

52348.10 -9.92135x108 

1.30113 

228.80 

 
Table 5-1: Data used for dynamical system analysis for various cases of 

boundary conditions and half-crack lengths 

5.3 Dynamics 2  - A Tool for Bifurcation Analysis 

The Dynamics 2 software package was developed by Nusse and Yorke in 1998 

to enable the use of computational numerical investigations for investigating 

system dynamics. Prior to this, a previous edition, Dynamics, was offered by 

Nusse and Yorke in 1994. Several other authors have used this software for 

system dynamics investigations namely, Nusse et al. (1994), Chin et al. (1994) 

and Nusse et al. (1995). Lim, in 2003, used Dynamics 2 for a preliminary 

investigation into the effects of nonlinear response modification within 

coupled oscillators and his numerical results showed that the Dynamics 2 



Chapter 5: Dynamical System Analysis 
 

88 

software package has the capability of resolving a variety of complex 

nonlinear problems very efficiently. 

Dynamics 2 combines different tools for visualising the dynamical systems, 

such as tools for plotting basins of attraction, computing saddle trajectories, 

automatically searching for all periodic orbits of a specified period, 

computation of Lyapunov exponents and plotting of bifurcation diagrams. In 

Dynamics 2, there are numerous built-in examples of maps and differential 

equations, particularly the Henon, Logistic, and Piecewise linear maps, 

amongst others, and differential equations includes Goodwin’s equation, the 

Lorenz system, the forced-damped pendulum equation, a parametrically 

excited Duffing equation, the Rössler equation, and many more. Although a 

variety of program codes are made available in the form of maps and 

differential equations, it allows the user to add his/her own mathematical 

model within the editor menu. Figure 5-1 shows a screen dump of the program 

code that is created for the analysis of the Duffing system of equation (5.2-1). 

 

 
Figure 5-1: Dynamics 2  program code for the cracked plate model and a 

boundary condition SSSS 
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5.3.1 Bifurcation Analysis 

In the study of dynamical systems, a sudden qualitative or topological change 

can occur under the variation in a parameter of the system. These changes in 

the dynamics are called bifurcations, and the parameter values at which they 

occur are called bifurcation points. Bifurcations can take place in both 

continuous systems described by differential equations, and in discrete 

systems, described by maps. They define transitions and instabilities in the 

systems and are scientifically important. In the literature, there are various 

types of keys, defined, bifurcations, however, in the present analysis a period 

doubling bifurcation can mostly be observed and is analysed in the following 

sections in detail. A period doubling bifurcation is a bifurcation in which the 

system switches to new behaviour at integer multiples of the periodicity of 

the original response.  

5.3.2 Lyapunov Exponents 

Numbers that measure the exponential attraction or separation in time of two 

adjacent trajectories in phase space, with different initial conditions, are 

called Lyapunov (or Liapunov) exponents. A positive Lyapunov exponent 

indicates a chaotic motion in a dynamical system with bounded trajectories.  

 

Figure 5-2: Explanation of Lyapunov exponent 

By considering two points in space, X0  and X0 + ∆x0, and assuming an orbit in 

that space generated by using some equation or system of equations, then 

these orbits can be thought of as parametric functions of a variable like time. 

If one of the orbits is used as a reference orbit, then the separation between 

the two orbits will also be a function of time. As sensitive dependence can 

arise only in some portions of a system, this separation is also a function of 
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the location of the initial value and has the form ∆x(X0, t). In a system with 

attracting fixed points or attracting periodic points, ∆x(X0, t) diminishes 

asymptotically with time. If a system is unstable, then the orbits diverge 

exponentially for a while, however they finally settle down. For chaotic 

points, the function ∆x(X0, t) behaves erratically. It is therefore appropriate 

to study the mean exponential rate of divergence of two initially close orbits 

using the formula 

 ( )
| |

| , |1
lim ln

| |
o

o

t
ox

x X t

t x
λ

→∞
∆

∆
=

∆
 (5.3.2-1)                          

0λ <  The orbit attracts to a stable fixed point, or stable periodic orbit. 

Negative Lyapunov exponents are characteristic of dissipative or non-

conservative systems. Such systems exhibit asymptotic stability; the 

more negative the exponent, the greater the stability. Superstable 

fixed points and superstable periodic points have a Lyapunov exponent 

ofλ = −∞ . This is something analogous to a critically damped oscillator 

in that the system heads towards its equilibrium point as quickly as 

possible. 

0λ =  

 

The orbit is a neutral fixed point or an eventually fixed point. A 

Lyapunov exponent of zero indicates that the system is in some sort of 

steady-state mode. A physical system with this exponent is 

conservative. Such systems exhibit Lyapunov stability.  

0λ >  

 

The orbit is unstable and also chaotic. Nearby points, no matter how 

close they are, diverge to any arbitrary separation. All neighbourhoods 

in the phase space are eventually visited. These points are said to be 

unstable. For a discrete system, the orbits would be a bit lumpy like 

snow. For a continuous system, the phase space would be a tangled 

sea of wavy lines like a pot of spaghetti. 

The bifurcation behaviour of a system for the cases of the half-crack lengths 

of 0.01 m and 0.025 m within equation (5.2-1) is plotted next in terms of  
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• Amplitude of response, x, as a function of normalised excitation 

frequency, ω and the Lyapunov exponent.  

• Amplitude of response, x, as a function of normalised excitation 

acceleration, and the Lyapunov exponent. 

The first mode is examined in detail around the resonant region, and it is 

observed that at the high frequency end, a new phenomenon occurs. This 

could imply chaos. 

All the numerical data used for these plots are tabulated in Table 5-1. Certain 

Dynamics 2 commands which are necessary for the smooth plotting of all 

these Figures are summarised in the Table 5-2. The author has included some 

of the definition of these commands in Appendix C, that are necessary to get 

good plots. For a fuller understanding of these commands, the reader is 

referred Dynamics: Numerical Explorations by Nusse and York (1998), and the 

work of Lim (2003).  

Commands IPP SPC BIFD BIFPI BIFV CON 

Bifurcation diagrams 30 30 1000 1500 1000 Off 

Lyapunov exponent diagrams 30 30 1000 1500 1000 On 

Time plots 1 30 200 0 400 On  

Phase Planes 1 30 200 0 400 On  

Poincaré Maps 30 30 200 0 400 Off  

Table 5-2: Dynamics 2  command values for plotting 
 

5.3.3 Amplitude of response, x, as a function of normalised 

excitation frequency, ω and the Lyapunov exponent 

The following observations have been made, and summarised as follows:  
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• The first mode is examined around the resonant region, and it is 

evident that the cubic nonlinear coefficient accentuates the nonlinear 

effect in all three boundary conditions cases, mirroring the effect 

noticeable in Figures 4-1(b). Therefore, both methods show the same 

nonlinear trends.  

• The system becomes chaotic with the increase in normalised excitation 

frequency. This can be observed in Figures 5-3(a) and 5-3(b), and 

Figures 5-4(a) and 5-4(b) for the two cases of the half-crack length. 

Moreover, the route to chaos can easily be seen in Lyapunov exponent 

plots.  

• An early indication of chaos is observed, with the increase in half-crack 

length from 0.01 m to 0.025 m, as indicated in Figures 5-4(a) and 5-

4(b). 

• No indication of chaos is found in the case of the CCFF boundary 

condition within the normalised excitation frequency range of 0 – 30 

(see Figures 5-3(c) and 5-4(c)). 

• Softening characteristics can be observed for the cases of the SSSS and 

CCSS boundary conditions, and hardening features can be found in the 

CCFF case (see Figures 5-3 and 5-4). 
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                       ω                                           ω                                         ω  

       

       

                    (a) SSSS                                   (b) CCSS                                  (c) CCFF  

Figure 5-3: Bifurcation diagrams for three differen t cases of boundary conditions 
and a half-crack length of 0.01 m for the normalise d control parameter, ω 

                        ω                                         ω                                          ω  

       

       

                    (a) SSSS                                 (b) CCSS                                   (c) CCFF 

Figure 5-4: Bifurcation diagrams for three differen t cases of boundary conditions 
and a half-crack length of 0.025 m for the normalis ed control parameter, ω 
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5.3.4 Amplitude of response, x, as a function of normalised 

excitation acceleration and the Lyapunov exponent 

The following are the general points observed from these analyses: 

• Figures 5-5 and 5-6 show the bifurcation of x as controlled by the 

normalised excitation acceleration, and using the first mode 

eigenvalue, ω from Table 5-1. By increasing the normalised excitation 

acceleration to a very high value, the periodic response bifurcates to 

chaos. Positive Lyapunov exponents for these respective Figures show 

clear indication of chaos, while the negative Lyapunov exponents show 

stable motion. As the response becomes chaotic, higher normalised 

excitation acceleration is required in each of the three boundary 

conditions cases and half-crack lengths, successively. 

• Period doubling bifurcation can best be observed in Figures 5-5(b), 5-

5(d), 5-6(b), and 5-6(d) with the increase of normalised excitation 

acceleration. In the case of SSSS, period-2 and period-4 motion can be 

found in the region of normalised excitation acceleration 47.70 to 

48.90 and 48.90 to 49.15 respectively. Similarly, further period 

doubling bifurcations i.e. period-8 and period-16 can be found in the 

same way. These period doubling bifurcations continue and lead finally 

to chaotic motion. 

• It can be seen from these Figures that when the system bifurcates to 

higher multiple of periodic motion, a jump up to the zero level in the 

Lyapunov exponent plot occur, which is also an indication that the 

system moves to higher multiples of the period. 

• Interesting bifurcations and period doubling routes to chaos are 

predicated via the Lyapunov exponent in the cases of the SSSS and 

CCSS boundary conditions. 

• As the increase in half-crack length goes from 0.01 m to 0.025 m, the 

system bifurcates to period-2, -4, -8, and so on, due to the decrease in 
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normalised excitation frequency and cubic nonlinear coefficient (see 

Figures 5-5(b), 5-5(d), 5-6(b), and 5-6(d)). 

• These Figures also indicate bifurcation to periodic motion after the 

chaos region. 

• In the case of the CCFF boundary condition and for each case of the 

half-crack length, the Dynamics 2 program arbitrarily depicts these as 

negative values, and the analysis is automatically truncated in Figure 5-

5(e) due to the computational limitations of the program. 
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                    (a) SSSS                 (b) SSSS – Enlarged view of Z1  

                                                                              

      

      

                                         (c) CCSS                   (d) CCSS – Enlarged view of Z2  
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                                        (e) CCFF                               

Figure 5-5: Bifurcation diagrams for three differen t cases of boundary conditions 
and a half-crack length of 0.01 m for the normalise d excitation acceleration in the 

x-direction 
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                                         (a) SSSS                   (b) SSSS – Enlarged view of Z3 

                                                                           

    

    

                                        (c) CCSS                   (d) CCSS – Enlarged view of Z4  

Figure 5-6: Bifurcation diagrams for three differen t cases of boundary conditions 
and a half-crack length of 0.025 m for the normalis ed excitation acceleration in 

the x-direction  
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Discrete normalised excitation acceleration points in Figures 5-5(b), 5-5(d), 5-

6(b), and 5-6(d) are selected for the plotting of time plots, phase planes, and 

Poincaré maps for a more detailed understanding of the system’s dynamics in 

the proceeding section. However, in the case of the CCFF boundary condition, 

the analysis of the Dynamics 2 program automatically truncates due to the 

computational limitations of the program, and depicts these as negative 

values. Therefore, it is not currently possible to observe bifurcations in the 

case of the CCFF boundary condition for the cracked plate. 

5.3.5 Time plots, Phase planes, and Poincaré maps  

The term period(s) for a periodic motion is defined as the number of period(s) 

for a cycle to repeat itself. This definition is applied here and the period for 

these analyses is measured as 2 /T π ω= . It means that cycle repeats itself 

after every T sec and is called period-1 motion. 

The time plots and phase planes are plotted for steady-state interval of time 

i.e. from 499.50 to 500 seconds. However, the Poincaré maps are plotted over 

the transient time, from 0 to 500 seconds as most of them converged to a 

periodic motion with just a point, therefore richer diagrams are preferred and 

so these maps converge to a point, and this is usually called a point attractor. 

The break-down of the observations made for different normalised excitation 

acceleration values are as follows:  

5.3.5.1 Figures 5-7(a) to 5-10(a) 

• All the bifurcation diagrams for the two cases of the half-crack length 

indicate periodic and stable motion, as depicted in Figures 5-5(b), 5-

5(d), 5-6(b) and 5-6(d) with negative Lyapunov exponents. 

• Time plots in each boundary condition case illustrate clear evidence of 

a periodic response. 

• In the phase planes, all the Figures show stationary and post-transient 

motion by the elimination of the initial part of the solutions. These 
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phase planes shows periodic orbits corresponding with the bifurcation 

diagrams. 

• All the Poincaré maps converge into single points. The maps consist of 

a finite number of points, which implies periodic motion because there 

is only one point, which indicates a period-1 motion. 

5.3.5.2 Figures 5-7(b) to 5-10(b) 

• All the bifurcation diagrams for the two cases of the half-crack length 

show periodic and stable motion of period-2, with negative Lyapunov 

exponents. 

• All the time plots depict periodic motion. 

• The phase plane in each case indicates the periodic doubling 

phenomenon to period-2 motion, which is in-line with the bifurcation 

diagrams (see Figures 5-5(b), 5-5(d), 5-6(b) and 5-6(d)). 

• The Poincaré maps again converge to two points, indicating period-2 

motion. 

5.3.5.3 Figures 5-7(c) to 5-10(c) 

• The bifurcation diagrams in Figures 5-5(b), 5-5(d), 5-6(b) and 5-6(d) 

show a period-8 motion. 

• In time plots, a careful observation show that the oscillation repeats 

itself after every 8 intervals of time. 

• The Phase planes show complicated and rich phase plots, however, the 

orbit repeat itself on the same path, as the simulation time is 

continued. 
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• The Poincaré maps illustrate how the transient motion converges into 8 

stationary points. These finite number of points implies period-8 

motion as corresponding with the bifurcation diagrams. 

5.3.5.4 Figures 5-7(d) to 5-10(d) 

• The bifurcation diagrams for these cases show chaotic motion with 

positive Lyapunov exponents. 

• In all the time plots the oscillations never repeat. This could be a 

qualitative visual indicator of chaotic motion. 

• In the phase planes a densely filled phase plane is obtained. As the 

simulation is allowed to continue, the planes would be even more 

overlaid by repeated orbit cross-overs. No dominant single orbit is 

observed and so this coordinates a chaotic motion. 

• The Poincaré maps show a large number of points. This describes a 

highly nonlinear behaviour which generally indicates chaotic motion. 

This conclusion is supported from the Lyapunov exponent plots of 

Figures 5-5(b), 5-5(d), 5-6(b) and 5-6(d).  

Finally, it is concluded from these numerical results that when the system is 

excited at its resonant frequency, linear, nonlinear (period doubling), and 

chaotic responses can be obtained by changing the normalised excitation 

accelerations (see Figures 5-5 and 5-6). Similarly, a route to chaos can also be 

obtained by changing the normalised excitation frequency at a constant value 

of the normalised excitation acceleration (see Figures 5-3 and 5-4). 
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                   Time Plots                       Phase Planes                      Poincaré Maps 
             (t = 499.5 –  500sec)                (t = 499.5 – 5 00sec)                     (t = 0 – 500sec) 

                  Time, t                                            x                                                 x     

       
(a) Normalised excitation acceleration at 47.6 (Period-1 motion) 

       
(b) Normalised excitation acceleration at 48.5 (Period-2 motion) 

       
(c) Normalised excitation acceleration at 49.2 (Period-8 motion) 

       
(d) Normalised excitation acceleration at 49.7 (Chaotic motion) 

Figure 5-7: Dynamical system analysis for a half-cr ack length of 0.01 m and the 
boundary condition SSSS 
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                  Time Plots                        Phase Planes                      Poincaré Maps 
            (t = 499.9 –  500sec)                 (t = 499.9 – 500sec)                     (t = 0 – 500sec) 

                  Time, t                                            x                                                 x     

       
(a) Normalised excitation acceleration at 680 (Period-1 motion) 

       
(b) Normalised excitation acceleration at 695 (Period-2 motion) 

       
(c) Normalised excitation acceleration at 705.17 (Period-8 motion) 

       
(d) Normalised excitation acceleration at 714 (Chaotic motion) 

Figure 5-8: Dynamical system analysis for a half-cr ack length of 0.01 m and the 
boundary condition CCSS 
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                   Time Plots                       Phase Planes                     Poincaré Maps 
             (t = 499.5 –  500sec)                ( t = 499.5 – 500sec)                    (t = 0 – 500 sec) 

                  Time, t                                            x                                                 x     

       
(a) Normalised excitation acceleration at 47 (Period-1 motion) 

       
(b) Normalised excitation acceleration at 48 (Period-2 motion) 

       
(c) Normalised excitation acceleration at 48.9 (Period-8 motion) 

       
(d) Normalised excitation acceleration at 49.5 (Chaotic motion) 

Figure 5-9: Dynamical system analysis for a half-cr ack length of 0.025 m and the 
boundary condition SSSS 
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                  Time Plots                        Phase Planes                     Poincaré Maps 
           (t = 499.9 –  500sec)                   (t = 499.9 – 500sec)                   (t = 0 – 500sec) 

                  Time, t                                            x                                                 x     

       
(a) Normalised excitation acceleration at 680 (Period-1 motion) 

       
(b) Normalised excitation acceleration at 690 (Period-2 motion) 

       
(c) Normalised excitation acceleration at 703 (Period-8 motion) 

       
(d) Normalised excitation acceleration at 710 (Chaotic motion) 

Figure 5-10: Dynamical system analysis for a half-c rack length of 0.025 m and the 
boundary condition CCSS 
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5.4 Specialised Numerical Calculation Code written in 

Mathematica™   

In this work the numerical nonlinear dynamical systems analysis has been 

performed by employing the NDSolve integrator within Mathematica™ for the 

integration and prediction of the dynamics of the cracked plate, for given 

initial conditions. The program code has been developed for time plots, phase 

planes and Poincaré maps and is presented in Appendix A. This program code 

is used for the prediction of chaos for the three boundary condition cases and 

the half-crack length of 0.01 m by using the numerical data from Table 5-1.  
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Figure 5-11: Poincaré map for the three boundary co ndition cases and a half-
crack length of 0.01 m from the use of specialised code written in Mathematica™  
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(a) t = (0 – 0.5) seconds 
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(b) t = (0 – 1) seconds 
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(c) t = (0 – 10) seconds 
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(d) t = (0 – 50) seconds 

Figure 5-12: Time plots, and phase planes for a hal f-crack length of 0.01 m by the 
use of specialised code written in Mathematica™  and the boundary condition 

SSSS 
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(b) t = (0 – 1) seconds 
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(d) t = (0 – 10) seconds 
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(d) t = (0 – 50) seconds 

Figure 5-13: Time plots, and phase planes for a hal f-crack length 0.01 m by the 
use of specialised code written in Mathematica™  and the boundary condition 

CCSS 
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(a) t = (0 – 0.5) seconds 
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(c) t = (0 – 10) seconds 
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(d) t = (0 – 50) seconds 

Figure 5-14: Time Plots, and phase planes for a hal f-crack length 0.01 m by the 
use of specialised code written in Mathematica™  and the boundary condition 

CCFF 
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All of these plots show that the system is stable and motion is periodic. The 

phase planes indicate periodic orbits in which system starts at the centre and 

moves outward in a form of circular motion. Corresponding Poincaré maps are 

plotted from the transient times, as most of them converge to period-1 

motion with just a point, therefore, richer diagrams are preferred and so 

these maps converge to darker areas and finally to a point (see Figure 5-11).  

Hence, it is concluded from these results that there is no clear indication of 

chaos in the model of the cracked plate. The Mathematica™ program code 

gives relatively good results when compared with Dynamics 2. Dynamics 2 uses 

different command parameters such as IPP, SPC, BIFBI, BIFV, BIFD, and many 

more (see Appendix C) for plotting. Therefore it is very difficult to understand 

what happens behind the process. To avoid this complexity, a Mathematica™ 

program code was developed, which uses the powerful NDSolve function to 

integrate numerically the two equations of motion. The method used is as 

specifically stated in the code is Stiffness-Switching. This NDSolve function 

can potentially use a wide variety of other integration methodologies such as 

Adams, Gear, and RungeKutta methods. The only drawback of using this 

method is the computational time over Dynamics 2. 
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Chapter 6  

EXPERIMENTAL INVESTIGATIONS 

__________________________________________ 

Many experimental studies have been carried out in the past on rectangular 

plates, and a variety of nonlinear phenomena has been observed. The author 

refers the reader to Nayfeh and Mook (1979), Chia (1980), and Sathyamoorthy 

(1997) for a detailed review of the nonlinear vibration of plates. However, 

rectangular plates with cracks have been studied by Krawczuk et al. (2003) 

and (2004), Trendafilova (2005), and Trendafilova et al. (2006), and by others 

for the vibration analysis. 

In order to justify the theoretical predictions as proposed in the previous 

chapters, experimental measurements are carried out to verify the 

dependence of the cracked aluminium plate’s fundamental mode shape and 

resonance frequency on the vibration displacement amplitude. The nonlinear 

resonance frequency is defined as the frequency at which the maximum 

vibration amplitude is observed when the excitation frequency is increased 

through the range of interest during a frequency response test. This definition 

is adopted in the plate tests and a set of measurements are carried out in 

which the excitation frequency is increased for a given value of force until the 

jump phenomenon occurs and the corresponding values of frequency and peak 

amplitude are noted. An interesting nonlinear dynamics phenomenon is 

observed in the test case of the plate with a small crack. 

6.1 Instrumentation 

A 500 x 1000 x 10 mm rectangular plate made of aluminium alloy 5083 is 

selected for the experimental investigations. The layout of the whole setup is 

shown in Figure 6-1. It can be noted from this Figure that the electro-dynamic 

exciter is driven by a function generator connected to a signal amplifier. A 
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vibrometer controller connected to a spectrum analyzer enables the 

identification of plate responses through the signal which comes from the 

Helium-Neon laser vibrometer. The list of the instruments used in this 

investigation has been included in Appendix D. 

 

 

 

 

 

 

 

Figure 6-1: Simple layout of the experimental setup  
 

6.2 Machining Procedure of the Crack in the Alumini um 

Plate 

The machining of the crack can inflict additional damage on the pavement 

and it is desirable to use a high-precision machine that follows cracks well and 

produces minimal spalls or fractures. A straight part-through crack of 50 x 1 x 

6 mm is required to be made at the centre and parallel to the x-direction of 

the aluminium plate by the use of an X-Y-Z Vertical Milling machine. 

For an easy initiation of the crack machining, a scratch on the plate surface at 

the starting edges is required. The scratch is made using a diamond point 

tool. The plate is placed on the X-Y-Z coordinate table such that the desired 

place to be cut is below the moving cutting tool. A 2-flute solid carbide 

cutting tool of diameter 1 mm is used. The movement of the cutting tool is 

set to be 0.1 mm for each deep cut, with 40 mm per minute cutting feed in 
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the X direction and 25 mm per minute down feed in the Z direction. The crack 

propagation in the desired path is achieved by moving of the X-Y-Z coordinate 

table with the plate mounting, at a spindle speed of 2000 rpm under the 

moving cutting tool on the machine. The crack in the plate appears after an 

initial dwelling period. Figure 6-3 shows a 50 mm cut on the aluminium plate. 

 

Figure 6-2: Aluminium plate with crack at the centr e 
 

Plate cutting using precision machines such as vertical milling machine gives a 

better profile than using a manual table. This is because of the controlled and 

uniform motion of the plate with the milling machine table. It is also possible 

to cut a repetitive profile using this milling machine procedure. This is much 

more difficult when it is attempted using a manual table. 

6.3 Test Setup  

A heavy steel rig was specifically designed for the support of the plate’s ends 

in such a way that it could be clamped in between the clamps on the two 

adjacent edges of the plate, and then these clamps are tightened by a series 

of screws. The remaining two edges of the plate are unconstrained. A rigid 

guided support made of a steel frame carrying the laser vibrometer is 

constructed, enabling displacement measurements to be made at any point on 

the surface of the plate. The plate is harmonically excited by an electro-

dynamic exciter which imposes no added stiffness and no additional mass on 

the plate. The arrangement of the two rigs and the electro-dynamic exciter is 

shown in Figure 6-3. The excitation of the exciter is monitored by means of a 

force transducer fitted into the exciter clamping fixture. This also provides a 

means for the control of the periodic load, as per the requirement. The 

excitation point is chosen to be at a distance of 37.5 x 75 mm from the fixed 
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ends of the plate in the x and y directions respectively. The signal from the 

force transducer is monitored by an oscilloscope, and the amplitude signals in 

terms of voltages, are monitored by the spectrum analyzer. At different 

points of interest over the plate’s surface, the signals are recorded for further 

analysis. These signals are ultimately converted into mechanical amplitudes 

for the generation of the first mode shape of the plate at the resonance 

frequency. Care has to be taken to check in all tests that non-desirable 

vibration of the two frames and laser vibrometer occurs. The support could 

otherwise affect the plate displacement signals derived from the laser 

vibrometer. The complete instrumentation setup used in this work is 

illustrated in Figure 6-3. 

 

Figure 6-3: Complete assembly of the test rig 
 

Initially, a rough estimate of the natural frequency of the cracked and un-

cracked plates is obtained using a hammer test. The plate is impacted by the 

hammer, and an estimate of the natural frequency is obtained from the peak 

in the frequency spectra. An average from multiple readings is taken for each 
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natural frequency. Later a sweep test around those averaged values is done to 

determine the exact natural frequency. 

6.4 Experimental Results 

Tests are carried out for the un-cracked and cracked plate of crack length 50 

mm. This crack is at the centre of the plate and is parallel to the x-direction 

of the plate, so that comparisons can be made between the theoretical 

results and the experimental data. It is necessary initially to avoid having the 

excitation frequency too near to the unstable region where the jump effect 

could occur in the first mode. Curves show similar trends of decreasing 

resonance frequency with the increase of dynamic displacement amplitude for 

a given crack length. As may be expected the theoretical values are higher 

than the experimental measurements predominantly due to the inherent slip 

at the clamp edges, and any microscopic flaws or cracks that always exist 

under normal conditions at the surface, and within the interior of the body of 

the material. Furthermore, while developing the analytical modal, shaker-

structure interaction was ignored, as was one possible nonlinear damping, and 

any initial geometrical distortion of the plate. It is possible that one or more 

of these factors could have played a significant role, and this could be further 

investigated.  

The measured responses of the plate from repeated tests are shown in Figures 

6-4 and 6-5 for an un-cracked and cracked plate of crack length 50 mm 

respectively, and Figure 6-6 shows the combined effect on the cracked and 

un-cracked plates of an excitation level of 2.5 v (This excitation level 2.5 v is 

equivalent to a force of 10 N approximately; this being measured from the 

sensitivity of the force transducer 123.78 mv/N), then as the excitation level 

is increased, a region of hysteresis combined with amplitude jumps and stable 

and unstable multivalued responses becomes evident.  

Experimental investigation shows the same trend as explained in early 

chapters that the crack influences the excitation frequency and amplitude. In 

the case of the un-cracked plate an excitation frequency of 24 Hz is obtained, 

while it reduces to 23.6 Hz for the insertion of a crack of length 50 mm. A 

similarly decreasing trend in frequencies can be observed as the crack length 
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at the centre of the plate increases. In addition, amplitude of the vibration 

increases, this being summarised in Table 6-1. 

 

 

 
Figure 6-4: First mode shape for an un-cracked alum inium plate of aspect ratio 

0.5/1 

 
 

     

 
Figure 6-5: First mode shape for cracked aluminium plate of crack length 50 mm, 

and aspect ratio of the plate 0.5/1 
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Figure 6-6: Amplitude responses (in terms of voltag e signals) for first mode of an 
un-cracked (white mesh area) and cracked (coloured mesh area) aluminium 

plates of aspect ratio 0.5/1 

Aluminium Plates 
Frequency of excitation 

[Hz] 

Amplitude at the tip of 

the free end of the 

aluminium plate [mm] 

Un-cracked 24.0 0.90880 

Cracked 23.6 0.93696 

 
Table 6-1: Experimental results of first mode of vi bration for an un-cracked and 

cracked aluminium plates 

 

Cracked  
Un-cracked  
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Chapter 7  

RESULTS AND DISCUSSION 

__________________________________________ 

The analytical modelling of the cracked plate and their theoretical and 

experimental analyses have been presented in Chapters 3 to 6. The 

formulation of the model of the cracked plate was obtained in Chapter 3. The 

numerical and analytical techniques, including the method of multiple scales, 

direct numerical integration by the use of Mathematica™, and finite element 

analysis, were discussed in Chapter 4 for the prediction of the response of the 

cracked plate model as shown in Figures 3-1 to 3-3 and 3-5. A numerical study 

into the system’s dynamics was extended into Chapter 5, where a study of the 

bifurcations and the stability of the solutions via time plots, phase planes and 

Poincaré maps, bifurcation diagrams and Lyapunov exponents were 

summarised. Experimental work is presented in Chapter 6 to justify the 

theoretical predictions. 

The purpose of this chapter is to examine the results from Chapters 3 to 6, 

extending the discussion where appropriate, and allowing conclusions to be 

derived from the respective results.  

7.1 Analytical Results 

A new mathematical model for a cracked plate is proposed for vibration 

analysis. The general observations are summarised as follows: 

• The natural frequency results for a cracked plate model with different 

aspect ratios shows that the presence of a line-crack at the centre of 

the plate significantly influences the natural frequency of the first 

mode, in all three cases of the boundary conditions investigated, which 

included CCFF, CCSS, SSSS (Table 3-1). 
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• The physical reason that cracks lower natural frequencies is due to the 

local flexibility in the vicinity of the crack, which in turn reduces the 

overall stiffness of the structure. This is intuitively discuss and clearly 

borne out in this research. 

• In addition to the effect of the half-crack length, the natural frequency 

is also influenced if the geometry of the plate is changed, in particular 

its length and thickness (Figure 3-7). 

• The results of the present nonlinear theory have been partially verified 

by means of existing linear models (but no such literature was found for 

the forced nonlinear vibration analysis of a cracked plate) as proposed 

by different authors, namely Stahl and Keer (1972), Solecki (1983), 

Qian et al. (1991), Krawczuk (1993) and Krawczuk et al. (1994) and 

(2001), and close agreement was found. The percentage difference 

between the linear models and the new nonlinear model of the cracked 

plate, for the chosen range of the 2a/l1 ratio is approximately (1-2) % 

(Table 3-2).   

The analytical developments involved using the method of multiple scales, 

direct numerical integration and finite element analysis. In the following are 

summarised points which emerge from these studies: 

• The results from the method of multiple scales given in Figures 4-1, 4-2 

and 4-3 showed good conclusive results for the three cases of boundary 

conditions i.e. CCFF, CCSS, SSSS and one set of half-crack length of 10 

mm. The effect of a crack within the plate model produced a global 

effect on the nonlinear response of the overall system.  A hardening 

spring characteristic has been found in the case of CCSS and SSSS, 

whereas the softening spring characteristic is found in the CCFF system 

(Figure 4-1 for the three cases). This study can produce linear results if 

we set the nonlinear cubic term i.e. βmn  equal to zero. Comparison 

between the linear and nonlinear cracked plate models has also been 

made for the case of CCFF only, which exactly emulates the softening 

nonlinear characteristic as shown in Figure 4-1(b). The relative ratio of 
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Frequency  [rad/s] 

A
m

pl
itu

de
 [m

] 

nonlinear amplitude to linear amplitude is close to unity for zero and 

positive detuning, again fully in-line with the softening characteristic 

observable in Figure 4-1(b).  

• Similarly, changing the location of the concentrated load over the plate 

area slightly affects the nonlinear model of the cracked plate and that 

is evidenced by the increasingly wide nonlinear region as the excitation 

location moves closer to the unsupported corner (Figure 4-3).  

• The damping coefficient plays an important role, and obviously limits 

the finite peak amplitude. The peak amplitude shows an increasing 

trend with the insertion of crack into the model, as expected (see 

Table 4-1). 

                 -20 -10 0 10 20 30

0.002

0.004

0.006

0.008

0.01

 

Figure 7-1: Comparison between method of multiple s cales and that of numerical 
integration  

• Numerically integrating the governing equation of motion (3.5-3) within 

Mathematica™ has produced results that corroborate those of the 

method of multiple scales, and are shown in Figure 7-1. The amplitudes 

are marginally higher in the case of numerical integration. The over-

prediction of the softening overhang by the multiple scales solution is 

undoubtedly due to an over-correction to the solution from the first 

order perturbation contribution, and the assumptions that necessarily 

went with that in order to obtain a closed-form solution.  

• The numerical integration results give the response for the first mode 

only whereas the method of multiple scales generates results at that 

. Numerical Integration Results 
- Method of Multiple Scales Results 
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resonance condition and also around the region of perfect external 

tuning, by means of the detuning parameter, mnεσ  (equation 4.1-9). 

The cracked plate model is investigated in ABAQUS/CAE 6.7-1, one of the 

tools for finite element analysis. The following are the general points 

observed from these results: 

• The finite element analysis of the cracked plate model has produced 

results that corroborate those of the method of multiple scales and 

numerical integration for the case of CCFF only. The frequency results 

show a decreasing trend at the resonance condition, and similarly, the 

amplitude results show an increasing trend, when using a small crack, 

again fully in-line with the analytical model. (Figures 4-5 to 4-7, and 

Table 4-2). Similar results can also be obtained for other cases of the 

boundary conditions such as CCSS and SSSS. 

• The finite element analysis results are marginally higher; this over-

prediction is due to the crack geometry. In the FE analysis the crack 

width is taken as 1 mm, whereas it has been proposed as a continuous 

line spring in the derivation of the cracked plate model (chapter 3). 

7.2 Numerical Results 

The subsequent numerical analyses were undertaken by generating problem-

specific code within the public-domain software Dynamics 2. 

• Figures 5-3 and 5-4 give plots of the bifurcatory behaviour of amplitude 

response x as a function of normalised excitation frequency, ω . For the 

first response mode, it can be deduced that the cubic nonlinear 

coefficient accentuates the nonlinear effect in all the three cases of 

boundary conditions, mirroring the effect noticeable in the results of 

the method of multiple scales, numerical integrations, and finite 

element analysis (Figures 4-1(b), 4-4, and Table 4-2). The softening 

characteristic is observed for the cases of SSSS and CCSS, whereas the 
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response becomes more hardening in the case of CCFF, again fully in-

line with the analytical model of the cracked plate.  

• The calculated Lyapunov exponents support the notion that 

nonlinearities can generate undesirable responses, but only in cases of 

very high excitation level for this particular structural configuration, 

and damage in the form of a crack at the centre of the plate, as shown 

in Figures 5-3 and 5-4. As the half-crack length is increased, the system 

gets more chaotic, with a wider region of positive Lyapunov exponents, 

obviously rendering any practical system inefficient. 

• Similarly, no route to chaos is indicated in the case of CCFF for the 

normalised excitation frequency range of 0 – 30 (Figures 5-3(c) and 5-

4(c)). 

• Figures 5-5 and 5-6 shows the bifurcatory behaviour of the amplitude 

response x as a function of normalised excitation acceleration, 

accompanied by its respective Lyapunov exponent. For the most linear 

response from Chapters 3 to 5, a periodic response for a wide range of 

excitation values is achieved. As the half-crack length is increased, 

evidence of chaos surfaces, with a higher normalised excitation 

acceleration that is subsequently expected. 

• The results in Figures 5-5(b), 5-5(d), 5-6(b) and 5-6(d) shows period 

doubling bifurcations with the increase of normalised excitation 

acceleration. In addition, a jump up to the zero level in the Lyapunov 

exponent plots occurs, and indicates that the system has moved to 

higher period multiples. 

• The Dynamics 2 program is automatically truncated in Figure 5-5(e) due 

to the computational limitations of the program and arbitrarily depicts 

these as negative values in case of CCFF for the two sets of half-crack 

length. 

At discrete normalised excitation acceleration points of the above 

bifurcations, time plots, phase planes, the Poincaré maps are given in Figure 
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5-7 to 5-10. The following are general observations of the cracked plate 

model for three set of boundary conditions. 

• The periodic orbits in the phase planes move away from each other as 

the effect of the predominant system nonlinearity is changed, either by 

manipulation of the cubic nonlinear coefficient with the insertion of a 

small crack into the system, or by the normalised excitation 

acceleration. And therefore, the phenomenon behind this behaviour, as 

shown on the phase planes, could represent a bifurcation to chaos. 

• Complicated and richer phase plots are obtained for higher normalised 

excitation accelerations, indicating likely chaotic motions. However, 

the orbits repeat themselves in the same way, as the simulation time is 

continued. 

• Strange attractors are also obtained in the Poincaré maps for higher 

value of normalised excitation accelerations, again indicating chaotic 

motions. 

Figures 5-11 to 5-14 shows the nonlinear dynamic system analysis by the use 

of specialised code written in Mathematica™. From these plots the following 

is concluded: 

• The cracked plate model for the two sets of half-crack length is stable 

and the motion is periodic, in all three cases of boundary conditions. 

• The Poincaré map converges to darker areas, and finally to a point, 

which shows a period-1 motion. 

• The only drawback of using this method is the computational time 

when compared with Dynamics 2. 

7.3 Experimental Results 

The following results were obtained from an experimental setup carried out 

for the vibration analysis of the cracked plate.  
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• The experimental results qualitatively produce the same decreasing 

trend in frequencies and increasing trend in amplitudes with the 

insertion of a crack at the centre of the aluminium plate. However, the 

measured values through the experiments are significantly lower than 

those predicted by the theoretical calculations based on approximate 

techniques. This could be because of the fact that microscopic flaws or 

cracks that always exist under normal conditions at the surface and 

within the interior of the body of material, as explained by Griffith 

(1920). 

• An experimental investigation shows that there is a local stability loss 

in plates with cracks under periodic loading.  

7.4 Conclusions 

The three methods of investigating and identifying the response behaviour of 

the cracked plate model, in the form of a Duffing equation (3.5-3), have all 

shown similar trends with regard to the effect of decreasing natural 

frequencies and increasing amplitude values. Dynamical system studies have 

also indicated that chaos is evident as the system becomes more nonlinear 

due to an increase in excitation acceleration. Experimental results from the 

tests conclude that this novel theoretical approach is practically significant.   
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Chapter 8  

CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 

__________________________________________ 

8.1 Summary 

In this dissertation, a new analytical model of a cracked isotropic plate 

subjected to transverse harmonic excitations has been proposed, based on 

classical plate theory. This can be used to determine both the critical forcing 

amplitude as well as the jump frequencies in single mode systems such as this 

model depicts. This model can be applied to any single mode system with a 

weak cubic nonlinear geometric term, and damage in the form of a crack. 

This cubic nonlinear term was generated by the use of Berger’s formulation, 

which in turn replaced the in-plane forces within the analytical model of the 

cracked plate, which then reduced it to the well known Duffing equation. In 

particular, the author studied, both experimentally and theoretically, the 

nonlinear behaviour, the frequency of excitation, amplitudes, and mode 

shapes. Three cases of boundary conditions — CCFF, CCSS and SSSS and two 

sets of crack length — were considered. CCFF showed negative cubic stiffness 

effect whereas CCSS and SSSS showed positive cubic characteristics. 

In addition, the nonlinear vibration solutions of the cracked plate were 

investigated when it was subjected to transverse harmonic excitations, using 

the method of multiple scales, and the equation of motion was also 

numerically integrated by the use of NDsolve within Mathematica™. 

Interesting nonlinear behaviour was observed for the primary resonance 

condition, mn mn mnω εσΩ = + , where mnεσ  is the internal detuning parameter. 

In this study it was shown conclusively, by using a first order multiple scales 

approximation, that the nonlinear characteristics of the steady-state 
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responses are encoded within the non-autonomous modulation equations. A 

rectangular cross-section plate made of aluminium with a crack at the centre 

of the plate was considered for the numerical analysis. It was found that 

depending on increased crack length, the vibration frequency decreases and 

the amplitude increases. Furthermore, it was found that for a square CCFF 

plate there is an approximately 7.9 % reduction in natural frequency in the 

presence of a centrally located crack of length 0.05 m. However, the 

reduction in the value of natural frequency is lower for other plate aspect 

ratios, and linear and nonlinear results tend to coalesce for very low 

amplitude ratios (Table 3-1). There are limited references to such systems in 

the literature as there have not been many reported phenomena relating to 

nonlinear forced vibration of cracked plates to date. 

Finite element analyses were performed using ABAQUS 6.7-1 for a nonlinear 

vibrating cracked CCFF plate. Solution of this problem was then pursued using 

a step-by-step procedure in conjunction with an implicit Hilber-Hughes-Taylor 

operator for integration. From the solution produced by this analysis a variety 

of information was extracted. Three dimensional profiles for various modes, 

deflection, and frequency of vibration were obtained (Figures 4-5, 4-6, and 4-

7). It was then illustrated that these FE analyses were fully in line with the 

nonlinear dynamic regimes by means of comparison with the approximate 

analytical solution via the method of multiple scales, and numerical 

integration. 

Further study of the bifurcations and stability of the solutions via phase 

planes, Poincaré maps, time plots, bifurcation diagrams and Lyapunov 

exponents showed that additional and highly complex dynamics could be 

observed, particularly in more strongly excited systems. A range of numerical 

results was obtained for the model of a cracked plate in the physical co-

ordinate space, and these underpinned the fact that general finding of the 

response amplitude characteristics could be effectively achieved for different 

combinations of parameters. 

Experimentally, the response of a rectangular, aluminium cracked plate – 

CCFF to transverse harmonic excitations was observed. It was found that the 

amplitude of vibration is a function of the crack length of the plate. The 
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modulation frequency, which depends on various parameters such as the 

amplitude and frequency of excitation, damping factors, etc., has to be near 

the natural frequency of the first mode. In such a case, we see a marginally 

increase in amplitude of the plate due to presence of crack of the first-mode 

component in the plate response. This is very similar to primary resonance in 

a structural system where the closeness of an external excitation frequency to 

the natural frequencies of the structure dictates the magnitude of the 

structure response. 

The analytical model was able to predict results qualitatively similar to the 

experimentally observed motions, but the results differed quantitatively. 

Issues, such as the nonlinear damping, internal discontinuities within the 

plate, shaker-structure interaction, and initial curvature of the plate were 

ignored, when developing the analytical model. It is, therefore, possible that 

one or more of these factors might be playing a bigger role than expected, 

and this could be further investigated. Additionally, the instability region was 

manipulated by altering the tightness of the clamped edges of the plate. It is 

understood in the highly excited system that careful assembly of the system 

components is critical for better overall performance.  

Based on the present observations, it can be concluded that conventional 

methods used for the reduction in frequency response in the cracked plate 

element, might in fact lead to an increase in the amplitude of excitation for 

the first mode. In other words, we can say that a loss of local stability of 

plates with a small crack is possible under periodic loading. As shown, a 

simple cracked plate under harmonic excitation could display many different 

nonlinear dynamic phenomena. These types of nonlinear resonances have very 

high excitation level to be observed. Such unusual phenomena have been 

observed in real engineering structures and mechanical systems, therefore 

there is a potential need to study such phenomena in more detail in other 

cracked structures. Many physical systems display nonlinear behaviour, but 

only a watchful eye can recognize that. Most of the time the linear 

perspective makes one overlook such behaviour in many practical systems. 

Therefore, it would be advantageous generally to model nonlinearity for 

overall better approximation. 
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Finally, this research provides some basic theory and understanding of how 

nonlinear plate systems can be made to be more efficient. It has also initiated 

an identification of the nonlinear characteristics of cracked plate structures. 

Engineers and scientists could be encouraged to use this new approach for 

prior understanding of the behaviour of damaged plates and panels. By 

obtaining a basic understanding, an ideal and robust system can ultimately be 

configured, and hence more reliable and efficient industrial systems can be 

constructed for a vibration based analysis methodologies, and for further 

development of vibration based health monitoring in cracked plate structures. 

8.2 Future Recommendations 

There is scope to improve and extend this cracked plate nonlinear model for a 

crack in arbitrary locations and orientations. Such models could then be used 

to explain some of the more unusual motions as described in this dissertation. 

Similarly, if the location of the crack is at the high-stress area, the nonlinear 

bend may be wider, it is therefore necessary to look into these areas for the 

expansion of the existing cracked plate model. 

It would be interesting to see if one could introduce more than one crack and 

then study the influence of such cracks on the responses of the plate 

structures. Similarly, the study could also be extended for all-through cracks, 

and elliptical cracks.  

Improvement of the solution technique could be pursued by implementing a 

second order perturbation expansion, and one could see how this affects the 

overall response of the system. 

Finally, the solution of the cracked plate nonlinear model can further be 

extended for higher modes of vibration by means of approximate techniques. 
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APPENDIX A 

SPECIALISED CODE WRITTEN IN 

MATHEMATICA™  

__________________________________________ 

A.1 Numerical Integration 

2 3 * * cos[ * ]
[ ] * [ ] ( ) * [ ] * ( [ ]) mn

mn mn mn mn mn mn

p t
eqn t t t t

D
λψ µ ψ ω ψ β ψ Ω′′ ′= + + + −  

system= NDSolve[{eqn == 0, [0]ψ ==0, 
[0]ψ ′ ==0}, { }ψ ,{t,0,50),MaxSteps→ Infinity, 

AccuracyGoal→Automatic, PrecisionGoal→Automatic, WorkingPrecsion→20] 

Plot[Evaluate[ [ ]tψ /.system],{t,0,50},Frame→True,FrameTicks→Automatic, 
GridLines→Automatic,FrameLabel→ {Time, [ ]tψ }] 

Plot[Evaluate[ [ ]tψ ′ /.system],{t,0,50},Frame→True,FrameTicks→Automatic, 
GridLines→Automatic,FrameLabel→ {Time, [ ]tψ ′ }] 
 

A.2 Plotting of Poincaré Map 

Poincare[W_,C1_,C2_,C3_,rho_,ndrop_,nplot_]:=(T=2*p/W;g[{xold_,yold_}]:= 
{x[T],y[T]}/.NDSolve[{y'[t]ã-C2*x[t]-C3*x[t]^3C1*y[t]+rho*Cos[W*t],x'[t]ãy[t], 
x[0]ãxold,y[0]ãyold},{x,y},{t,0,T},MethodØStiffnessSwitching, 
MaxStepsØInfinity,WorkingPrecisionØ32][[1]]; 

lp=ListPlot[Drop[NestList[g,{0,0},nplot+ndrop],ndrop],PlotRangeØAll, 
FrameØTrue,AxesOriginØ{0.00105,-0.28},DisplayFunctionØIdentity]); 

Show[lp,DisplayFunctionØ$DisplayFunction] 
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For the case of SSSS boundary condition 

Poincare[192.543,0.16,37072.8,3.96872*108,2.56708,200,15000]; 

A.3 Plotting of Time plots and Phase planes 

{Ω,C1,C2,C3,rho}={192.543,0.16,37072.80,3.96872*108,9050} 

solution[tmax_]:=NDSolve[{y'[t]�-C2*x[t]-C3*x[t]^3-C1*y[t]+rho*Cos[Ω*t], 
x'[t]�y[t],x[0]�0,y[0]�0},{x,y},{t,49.5,tmax},Method→StiffnessSwitching, 
MaxSteps→Infinity,WorkingPrecision→32]; 

sol1=solution[50]; 

For time plots 

graph1[tmin_,tmax_]:=Plot[Evaluate[x[t]/.sol1],{t,tmin,tmax},Frame→True]; 

graph1[49.5,50]; 

For phase planes 

graph[tmin_,tmax_]:=ParametricPlot[Evaluate[{x[t],y[t]}/.sol1],{t,tmin,tmax}
,AxesStyle→{AbsoluteThickness[1]},Frame→True]; 
 

graph[49.5,50]; 
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APPENDIX B  

FINITE ELEMENT ANALYSIS 

B.1 Stages of ABAQUS/CAE 

A complete ABAQUS/CAE analysis usually consists of three distinct stages 

which includes pre-processing, simulation, and post-processing. These three 

stages are linked together by files as shown in Figure A-1. 

 

 

 

 

 

 

 

 

Figure B-1: Three stages of ABAQUS/CAE analysis 

B.1.1 Pre-processing  

In pre-processing, the model of the physical problem is defined and creates an 

ABAQUS input file. The model is usually created graphically using 

ABAQUS/CAE or another pre-processor, although the ABAQUS input file for a 

simple analysis can be created directly using a text editor. 

 

Pre-processing 
ABAQUS/CAE 

Input file; 
job.inp 

Simulation 
ABAQUS/Standard 
or ABAQUS/Explicit 

Output files; 
job.odb, job.dat 
job.res, job.fil 

Post-processing 
ABAQUS/CAE 
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B.1.2 Simulation (ABAQUS /Standard or ABAQUS /Explicit) 

The simulation, which normally is run as a background process, is the stage in 

which ABAQUS/Standard or ABAQUS/Explicit solves the numerical problem 

defined in the model. Examples of output from a stress analysis include 

displacements and stresses that are stored in binary files ready for post-

processing. Depending on the complexity of the problem being analyzed and 

the power of the computer being used, it may take anywhere from seconds to 

days to complete an analysis run. 

B.1.3 Post-processing  

In post-processing, the results can be evaluated once the simulation has been 

completed and the displacements, stresses, or other fundamental variables 

have been calculated. The evaluation is generally done interactively using the 

Visualization module of ABAQUS/CAE. The Visualisation module, which reads 

the neutral binary output database file, has a variety of options for displaying 

the results, including colour contour plots, animations, deformed shape plots, 

and X–Y plots. 

The ABAQUS/CAE is the complete environment that provides a simple, 

consistent interface for creating models, interactively submitting and 

monitoring jobs, and evaluating results from simulations. ABAQUS/CAE is 

divided into modules, where each module defines a logical aspect of the 

modelling process, for example, defining the geometry, defining material 

properties, and generating a mesh. When the model is complete, ABAQUS/CAE 

generates an input file that is submitted to the ABAQUS analysis product. The 

input file can also be created manually.  

B.2 Main Components of ABAQUS/CAE  

Figure A-2 shows the components that appear in the main window. These 

components are: 

Title bar It indicates the version of ABAQUS/CAE that runs and the name 

of the current model database. 
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Menu bar The menu bar contains all the available menus. This menu 

gives access to all the functionality in the product. Different 

menus appear in the menu bar depending on which module 

selected from the context bar. 

 

Figure B-2: Components of the main menu 

Toolbars The toolbars provide quick access to items that are also 

available in the menus. 

Model Tree The model tree provides with a graphical overview of the 

model and the objects that it contains, such as parts, 

materials, steps, loads, and output requests. In addition, it 

also provides a convenient, centralized tool for moving 

between modules and for managing objects. If model 

database contains more than one model, the model tree can 
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be used to move between models.  

Results Tree The results tree provides with a graphical overview of output 

databases and other session-specific data such as X–Y plots. If 

we have more than one output database open in successive 

session, the results tree to move between output databases.  

Toolbox area The toolbox area displays tools in the toolbox that are 

appropriate for that module. The toolbox allows quick access 

to many of the module functions that are also available from 

the menu bar. 

Canvas and  
Drawing area 

The canvas can be thought of as an infinite screen or bulletin 

board on which we post viewports. The drawing area is the 

visible portion of the canvas. 

Viewport Viewports are windows on the canvas in which ABAQUS/CAE 

displays model. 

Prompt area It displays instructions to follow during a procedure; for 

example, it asks to select a point in the part geometry. 

Message area It prints status information and warnings in the message area. 

To resize the message area, drag the top edge; to see 

information that has scrolled out of the message area, use the 

scroll bar on the right side. The message area is displayed by 

default, but it uses the same space occupied by the command 

line interface. If the command line interface has been 

recently used, click the tab in the bottom left corner of the 

main window to activate the message area. 

Command line  Command line interface is used to type Python commands and 
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interface evaluate mathematical expressions using the Python 

interpreter that is built into ABAQUS/CAE. The interface 

includes primary (>>>) and secondary (...) prompts to indicate 

when we must indent commands to comply with Python 

syntax. The command line interface is hidden by default, but 

it uses the same space occupied by the message area. Click 

the tab in the bottom left corner of the main window to 

switch from the message area to the command line interface. 

Click the tab to return to the message area.  

A completed model contains everything that needs to start the analysis. 

ABAQUS/CAE uses a model database to store models. When ABAQUS/CAE 

starts, the Start Session dialog box allows creating a new, empty model 

database in memory. After the start of ABAQUS/CAE, the model database can 

be saved to a disk by selecting File Save from the main menu bar and for 

retrieving a model database from a disk, select File Open. 

B.3 The ABAQUS/CAE File Environment  

During execution the system creates both temporary and permanent files, the 

exact number of which depends upon the instructions contained in the .inp 

file. For nonlinear problems, the analysis is broken down into a number of 

steps, each of which contains a number of increments, each of which requires 

a number of iterations to reach a solution. The schematic view of the file 

environment is shown in Figure A-3.  

.dat (‘dat’) It contains the data echo, the data checking information, 

information about the progress of the solution and the 

results. The first three are switched on or off by the 

*PREPRINT card while the results are controlled by the *EL 

PRINT and *NODE PRINT cards. 

.odb ('o-d-b') It is the output database, which contains results to be read 
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in by the Visualisation module of ABAQUS/CAE. 

.res ('res') 

 

The restart file, containing results to be read back in to 

ABAQUS itself to continue a nonlinear analysis from where it 

left off on a previous run. This .res file is generated by a 

*RESTART card.  

 

 

  

 

 

 
 

Figure B-3: The ABAQUS/CAE file environment 

.sta ('status') It contains a summary of the steps and increments in a 

nonlinear analysis. 

.log ('log') It contains a summary of the system commands invoked 

during the run together with CPU timing information. 

.msg ('message') It contains information on the progress of the run.  

The .dat, .sta, .log and .msg files are human-readable. They can be printed 

but are better scanned with the editor to look for errors beforehand, 

particularly since the .dat file can be very large. The .odb and .res files are 

unformatted and so aren't human-readable. 

ABAQUS/CAE 

.cae inp 

ABAQUS Solver 

.log .sta .res .dat .msg .odb 

Text editor 

Print results 
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APPENDIX C 

DYNAMICS 2 COMMANDS 

__________________________________________ 

C.1 Numerical Explorations Menu 

T : plot trajectory 

DYN : quit & start new map or differential equation 

OWN : quit & create own process 

P : pause the program 

Q : quit dynamics program 

BIFM : Bifurcation diagram Menu 

BM : Basin of attraction Menu 

DIM : Dimension Menu 

FOM : Follow (periodic) Menu 

LM : Lyapunov exponent Menu 

POM : Periodic Orbit Menu 

STM : Straddle Trajectory Menu 

UM : Unstable and stable manifold Manu 
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C.2 Plotting 

CON : connects consecutive dots 

PT : plots time horizontally 

SPC : number of differential equation steps in one period of the forcing 

period  

IPP : number of iterates per plot 

C.3 Storing Data 

DD : Dump Data to disk 

FD : retrieve picture from disk 

TD : save picture to disk 

C.4 Bifurcation Plotting Commands 

BIFS : bifurcation plot on the screen 

BIFD : number of the dots to be plotted for each parameter 

BIFPI : pre-iterates for each parameter 

BIFR : specifying range of parameter e.g. rho 

BIFV : set number of values of parameter for better picture quality 

PRM : parameter to be varied 

C.5 Lyapunov Commands 

L : sets number of Lyapunov exponents to be computed (0≤L≤2) 

LL : current values of the Lyapunov exponents to be printed on the screen 
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APPENDIX D  

LIST OF INSTRUMENTS - EXPERIMENTAL WORK 

The list of the instruments used in this investigation and their schematic views 

are shown in Figure D-1. 

• Power Amplifier–Model PA500L CE 

• Electro-dynamic Exciter–LING ATEC Model 407 

• Helium Neon Laser Vibrometer–Model Polytech OFV 303 
  (1 milli watt max/cw) 

• Vibrometer Controller–Model Ploytech OFV3001  
(100/115/230v- 50/60Hz) 

• Spectrum Analyser–Model HP 3582A 

• Function Generator 2Mhz–Model TG215 

• Oscilloscope 20Mhz–Model ISO-Tech ISR 622 

• Force Transducer IEPE – Model 8230  
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          (a) Power Amplifier        (b) Electro-dynamics Exciter          (c) He-Ne Laser Vibrometer 

       

 (d) Vibrometer Controller                (e) Spectrum Analyser                (f) Function Generator 

      

                                    (g) Oscilloscope                    (h) Force Transducer 

Figure D-1: Schematic view of the instruments used 


