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Abstract 

 
 

Exaggerated metabolic perturbations during the postprandial period are likely to play a 

role in the development of vascular and metabolic diseases. Elevated levels of 

postprandial triglycerides (TG) are associated with increased risk for atherosclerosis 

independently of other cardiovascular risk factors, and exaggerated postprandial insulin 

excursions are known to contribute to lipid dysmetabolism and chronic insulin resistance.  

This, together with the fact that free-living humans spend most of their time in the 

postprandial state, suggests that interventions focusing on the improvement of 

postprandial metabolism could play a role in the prevention and management of 

cardiovascular and metabolic diseases. Exercise has a potent role in improving 

postprandial metabolism, by effectively attenuating postprandial lipaemia and 

insulinemia, as well as increasing fat oxidation, all of which providing positive outcomes 

for the prevention and treatment of metabolic disorders.  It is however unclear the extent 

to which these beneficial effects of exercise persist when food is consumed ad libitum.  In 

addition, the effects of exercise on appetite regulation and food intake require further 

elucidation.  It is possible that exercise may provoke compensatory adaptations in food 

intake in an effort to restore energy balance, through physiological and/or behavioural 

responses. This has implications for the efficacy of exercise in the regulation of a healthy 

body weight.  Therefore, the overall aim of this thesis is to describe the effects of exercise 

on postprandial metabolism, appetite responses and feeding behaviour in 

overweight/obese men. 

 

The first two experimental chapters of this thesis (Chapters 3 and 4) aimed to investigate 

the effects of single vs. repeated exercise sessions (~700 kcal per session) on postprandial 

metabolism, energy intake, appetite and gut peptide responses in response to ad libitum 

feeding. Ten sedentary, overweight/obese men underwent: i) no-exercise control; ii) one 

exercise session (Day 3); and iii) three exercise sessions over three consecutive days 

(Days 1-3); prior to a 7-h metabolic assessment day (Day 4). Energy substrate utilisation, 

postprandial TG, insulin, acylated ghrelin, PYY3-36 as well as appetite responses and ad-

libitum energy intake (breakfast, lunch, dinner) were determined. The findings of this 

study showed that the beneficial effects of a single exercise session on postprandial 

metabolism on postprandial metabolic responses persisted when meals were consumed ad 

libitum, but were not augmented by inducing a larger energy deficit by exercising on 
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consecutive days. Furthermore, while a single exercise session did not elicit 

compensatory responses in appetite and energy intake, exercising on consecutive days led 

to a partial compensation (~24%) in energy intake as well as increased hunger sensation. 

Gut peptide responses were unaltered by exercise.  

 

The next chapter (Chapter 5) aimed to determine the effects of exercise timing relative to 

meal ingestion on postprandial metabolism, appetite responses, and ad libitum energy 

intake. Ten, sedentary overweight men exercised for an hour (~400 kcal) before or after 

consuming a standardised breakfast meal, followed by an 8.5 h metabolic assessment 

period. Energy substrate utilisation, postprandial TG, insulin, as well as appetite 

responses and ad-libitum energy intake (lunch, dinner) were determined. The findings 

indicated that exercise performed prior to a breakfast meal and exercise performed after a 

breakfast meal waas similarly beneficial in improving postprandial metabolism. Exercise 

timing relative to meal ingestion also did not influence appetite responses and ad libitum 

energy intake.  

 

In the final experimental chapter (Chapter 6), a pilot study was designed to examine the 

effects of acute exercise on non-metabolic factors related to appetite using a computer-

based assessment. Twenty-seven men and women walked for an hour on the treadmill or 

rested on a control day. Appetite-related measures were assessed before and immediately 

after exercise, and hourly for 2 hours post exercise. The findings showed that an acute 

bout of moderate intensity exercise had an anorexigenic effect; characterised by 

diminished hunger and lower prospective food intake (ideal portion size) compared to no 

exercise. Although not a primary aim, this study discovered a novel association between 

loss aversion and prospective food intake and food liking.  

 

The collective findings of this thesis suggest that exercise attenuates postprandial TG and 

enhances fat oxidation in response to ad libitum feeding, indicating that exercise’s 

benefits can be extended into the ‘real world’ setting. The beneficial effects of exercise on 

postprandial metabolism are also independent of its timing relative to meal ingestion. In 

line with evidence in the literature, an acute bout of aerobic exercise does not induce 

compensatory responses in terms of energy intake and increased appetite, supporting the 

role of exercise in weight management. Other than physiological factors, the behavioural 

and cognitive aspects related to feeding can play a role in mediating compensatory 

responses to exercise and this requires further investigation. 
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the path to Heavens; it is our friend in the desert, our society in solitude, our companion 

when friendless; it guides us to happiness; it sustains us in misery; it is an ornament 

among friends, and an armour against enemies..” 

 

       - Prophet Muhammad PBUH 
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“If we could give every individual the right amount of nourishment and exercise, not too 

little and not too much, we would have found the safest way to health…” 

 

                                               - Hippocrates 
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CHAPTER 1 

 
 

General Introduction 
 
 
The following introductory chapter has been divided into several main sections. The first 

section primarily focuses on vascular and metabolic diseases, and how physical activity 

plays a role in minimising the risks. The next section addresses lipoprotein metabolism 

and associated implications of the postprandial state in the development and progression 

of cardiovascular diseases and other metabolic disorders. This section concludes by 

focussing on the beneficial role of exercise in postprandial lipid metabolism. The next 

section introduces the concept of energy balance and factors which influence it, with a 

focus on fat balance and exercise. Regulatory mechanisms for appetite and feeding 

behaviour are then discussed, including how exercise affects these elements. The final 

section addresses issues relating to experimental methods used in the appetite-related 

investigations. 

 
 
1.1 Vascular and Metabolic Diseases 

 
Cardiovascular and metabolic diseases are one of the leading causes of chronic disease 

morbidity and mortality in developed countries and are becoming increasingly prevalent 

in developing countries. Although these conditions are often considered to be diseases of 

affluence, the burdens of hypertension, diabetes mellitus, obesity, and dyslipidaemia are 

now becoming more common among the poorest citizens in the industrialised countries 

(Dahlöf 2010). Recent statistics from the British Heart Foundation stated that 

cardiovascular diseases (CVD) are the main causes of death in the UK, almost 191,000 

deaths each year, with majority are from coronary heart disease (CHD), followed by 

stroke, and further deaths from other circulatory diseases (Scarborough et al. 2010). Apart 

from CVD, diabetes is also becoming the one of the biggest health challenges facing the 

UK today. Since 1996, the number of people diagnosed with diabetes has increased from 

1.4 million to 2.6 million cases. According to forecasts, it is estimated that over 4 million 

people in the UK will be diagnosed with diabetes by 2025, with the majority of these 

cases being type 2 diabetes (T2D), due to the increasing ageing population and rapidly 

rising numbers of overweight and obese individuals (Diabetes UK 2010).  

 



  Chapter 1 | 22 

 

1.1.1 Physical Activity, CVD and Diabetes 

 
Exercise, either alone or in combination with diet, is fundamental in the prevention and 

management of cardiovascular and metabolic diseases. The link between physical activity 

and the protection against heart disease was first studied by Morris and his colleagues in 

the 1940s, who found that male conductors of London buses had lower annual total 

incidence of CHD compared to their driver colleagues (Morris et al. 1953). Since the 

initial observations of Morris et al, there has been substantial evidence, particularly from 

epidemiological studies (e.g. Li et al. 2006; Oguma & Shinoda-Tagawa 2004; Davey et 

al. 2000; Sesso et al. 2000), to support an inverse relationship between physical activity 

and CHD/CVD risk. A comprehensive meta-analysis of 33 prospective cohort studies 

with a total of 883 372 participants, with follow-ups ranging from 4 to 20 years have 

shown that physical activity is associated with risk reductions of 30-50% for 

cardiovascular mortality and 20-50% for all-cause mortality in both men and women, 

with pooled risk reductions of 35% for the former and 33% for the latter, even after 

adjusting for important risk factors such as hypertension, hypercholesterolaemia, and 

diabetes (Nocon et al. 2008). In addition, numerous studies have documented the 

importance of engaging in exercise-based interventions to attenuate or reverse the disease 

process in patients with CVD. For instance, a systematic review and meta-analysis of 48 

clinical trials revealed that exercise-based cardiac rehabilitation significantly reduced the 

incidence of all-cause and cardiovascular mortality, compared with usual care (Taylor et 

al. 2004). Improvements in functional capacity and quality of life such as increment in 

maximal oxygen consumption have also been observed in patients with heart failure who 

participated in exercise training (Smart & Marwick (2004). 

 

Apart from reducing cardiovascular risks, there is ample evidence from prospective 

cohorts reporting a consistent link between the protective effect of physical activity and 

the development of T2D (e.g. Villegas et al. 2006; Hsia et al. 2005; Perry et al. 1995; 

Manson et al. 1992; Manson et al. 1991), with regular physical activity presenting a 20-

30% reduction in risk after adjustment for confounding factors including age, health 

status including family history of diabetes and BMI (Gill & Cooper 2008). In addition to 

epidemiological data, at least five major clinical trials have demonstrated that lifestyle 

interventions can significantly delay or possibly prevent the onset of T2D (Ramachandran 

et al. 2006; Knowler et al. 2002; Tuomilehto et al. 2001; Pan et al. 1997; Eriksson & 

Lindgärde 1991). The Da Qing study, which involved over 110,000 men and women with 

IGT in China, showed a 31% reduction in risk of developing diabetes by diet intervention, 
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a 46% reduction by exercise intervention, and a 41% reduction for the combined diet and 

exercise intervention after 6 years (Pan et al. 1997). In the Diabetes Prevention Program 

which studied 3234 subjects of various races, lifestyle intervention (diet and physical 

activity) had a 58% reduction in risk of developing diabetes, compared to 31% reduction 

in the medication group, regardless of race or age (Knowler et al. 2002). For 

improvement of cardiovascular risk factors and weight management, at least 150 minutes 

of moderate intensity (approximately 40 – 60% of 2OV& max) of physical activity per week 

or at least 75 minutes of vigorous aerobic exercise per week, has been recommended by 

the American College of Sports Medicine (Haskell et al. 2007) and the American Heart 

Association (Buse et al. 2007), as well as by the panel of experts of the British 

Association of Sport and Exercise Sciences (BASES) (O’Donovan et al. 2010). The basis 

for this recommendation is supported by data from diabetes prevention trials 

(Ramachandran et al. 2006; Knowler et al. 2002; Tuomilehto et al. 2001) which showed 

that increasing moderate physical activity by approximately 150 minutes per week, 

reduced incidence of diabetes in men and women with impaired glucose tolerance (IGT), 

with this effect being greater if accompanied by weight loss (Gill & Cooper 2008). 

Accumulated bouts of physical activity over the day as opposed to one continuous session 

may also be an effective way to achieve recommended guidelines of a 30-min activity per 

day, as a meta-analysis revealed that active commuting in daily living which incorporates 

walking and cycling is associated with an overall 11% reduction in cardiovascular risk 

(Hamer & Chida 2008). Furthermore, evidence also suggest that this recommendation 

does not represent a minimum threshold level for risk reduction, especially among those 

with very low levels of physical activity or who are unfit, even smaller amounts of 

physical activity may be associated reductions in with CHD/CVD risk, thus conveying a 

"some is good; more is better" message (Shiroma & Lee 2010).  

 

1.1.2 Mechanisms of Physical Activity on Cardiovascular Diseases and Type 
2 Diabetes Risks 

 

Physical activity and fitness clearly reduces the risk of CVD. However, the precise 

mechanisms through which physical activity lowers CVD risk are not fully understood. 

Even after traditional cardiovascular risk factors such as hypertension (Paffenbarger et al. 

1986), body weight (Bijnen et al. 1998), and diabetes (Mora et al. 2007) are accounted 

for, the inverse relation between physical activity and CVD risk persists. The magnitude 

of the exercise effect is influenced by characteristics of the exercise intervention, 

individual variation, and whether exercise produces concomitant reductions in body 
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weight. In general, the effect of exercise on atherosclerotic risk factors is substantially less 

than that achieved by pharmacological therapies, and can be significantly augmented by 

other lifestyle changes such as changes in dietary habit and weight loss (Thompson et al. 

2003). One of the potential mechanisms mediating the cardioprotective effects of exercise 

is improved endothelium-dependent vasodilation that is believed to be the result of 

increased shear stress over the endothelium during exercise training bouts (Whyte & 

Laughlin 2010). The increase laminar flow brought on by regular exercise stimulated 

release of vasoactive substances such as nitric oxide and prostacyclin which decreases 

endothelium permeability to plasma lipoproteins as well as adhesion of leukocytes, and 

inhibits endothelial smooth muscle cell proliferation and migration, thus playing a role in 

the prevention of atherogenesis (Pan 2009). Regular exercise has also been shown to exert 

anti-inflammatory effects, with reductions in inflammatory markers such as C-reactive 

protein (CRP) and soluble intercellular adhesion molecules (ICAM) (Kasapis & 

Thompson 2005; Adamopoulos et al. 2001). Some of the protective effects of exercise are 

due to autonomic nervous system adaptations such as enhanced peripheral baroreflex 

function, such as reciprocal reduction in sympathetic activity and increased 

parasympathetic activity (Joyner & Green 2009). Many randomised controlled trials have 

also reported significant reduction on resting blood pressure with exercise training 

(Fagard 2001). With regards to lipid changes, exercise interventions have been associated 

with reductions in TG, particularly in the postprandial state (Petit & Cureton 2003) and 

increase in HDL-C concentrations (Halverstadt et al. 2007; Kodama et al. 2007; Durstine 

et al. 2001). Although the effect of exercise on LDL concentrations are somewhat 

inconsistent (Kelley & Kelley 2006; Kelley et al. 2005), the favourable effects are rather 

related to changes in LDL size and compositional characteristics. Exercise training has 

been associated with increase in peak LDL particle size which promotes a shift in the 

distribution of cholesterol carried by LDL from a smaller, denser particle (≤25.5 nm) to a 

larger (>25.5 nm), more cholesterol-rich LDL particle, thereby rendering the particles less 

atherogenic (Halverstadt et al. 2007; Beard et al. 1996). Details of these mechanisms will 

be discussed in a separate section. 

 

Physical activity also reduces insulin resistance, improves insulin sensitivity and reduces 

postprandial hyperglycaemia (Thompson et al. 2001). Evidence has shown that both acute 

and chronic exercise enhanced glucose uptake and utilisation (Dela et al. 2006; Giacca et 

al. 1998; Rogers et al. 1988) and glycogen storage (Praet et al. 2008; Dela et al. 2006; 

Christ-Roberts et al. 2004; Perseghin et al. 1996) in both normoglycaemic and diabetic 

subjects. This effect may be related to evidence showing that exercise acutely promotes 
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the translocation of GLUT4, the insulin-regulated glucose transporter, to the plasma 

membrane in skeletal muscle in both healthy and diabetic individuals (Taniguchi et al. 

2000; Kennedy et al. 1999). Furthermore, upregulation of GLUT4 protein expression 

content in the skeletal muscle has been shown to be induced by training (O’Gorman et al. 

2006; Christ-Roberts et al. 2004; Hughes et al. 1993). Whole-body insulin sensitivity 

during euglycaemic-hyperinsulinaemic conditions (Kirwan et al. 2009; Winnick et al. 

2008) and reduced secretion of hepatic glucose production have also been observed with 

chronic exercise in T2D patients (Kirwan et al. 2009, Segal et al. 1991). Enhanced 

insulin-mediated glucose metabolism with exercise training can be further attributed to 

the increased expression/activity of key signalling proteins involved in insulin signal 

transduction in skeletal muscle (Hawley & Lessard 2008), such as 5'-AMP-activated 

protein kinase (AMPK) (Sriwijitkamol et al. 2007) and the protein kinase B (Akt) 

substrate AS160 (Treebak et al. 2009; Frøsig et al. 2007) in diabetic individuals. 

Additionally, oxidative metabolism in skeletal muscles is improved in the obese and 

insulin-resistant individuals with regular exercise due to increase in muscle fibre size 

(Wang et al. 2009), mitochondrial content (Röckl et al. 2008; Bruce et al. 2006), and fatty 

acid transporters such as FAT/CD36 (Scheck & Horowitz 2006) and carnitine 

palmitoyltransferase complexes (Bruce et al. 2006), all of which are consequently 

associated with increased fatty acid oxidation in the skeletal muscle.  

 

 
1.2 Obesity: a Risk Factor for Cardiovascular Diseases and Type 2 

Diabetes 
 

The epidemic of obesity took off from the 1980s and is now treated as a major public 

health problem around the world (James 2008). According to the recent health survey in 

the UK, the average prevalence of overweight and obesity (BMI > 25) is 66.1% in men 

and 57.5% in women, while the prevalence of obesity (BMI > 30) alone is 24.8% in men 

and 25.3% in women (Scottish Health Survey 2010). The UK’s Foresight analysis 

projected that 60% and 40% of men and women respectively will be clinically obese by 

year 2050 (James 2008). Obesity is clearly associated with increased mortality and 

adverse health outcomes, especially CVD and T2D (Poirier et al. 2006; Yusuf et al. 

2006). In a study of 5,881 Framingham Heart Study participants, Kenchaiah et al. (2002) 

showed that during a 14-year follow-up, for every 1 kg·m2 increment in BMI, the risk of 

heart failure increased 5% in men and 7% in women. An integrated analysis of 33 cohorts 

from the Asia-Pacific region, followed for an average of 7 years, showed that the risk of 
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CVD, particularly ischaemic stroke and ischaemic heart disease, increases progressively 

with higher BMI (Ni Mhurchu et al. 2004).  The British Whitehall study, with over 

18,000 men followed up for up to 35 years, showed that all cause and ischaemic heart 

disease mortality rates were increased in the overweight/obese group (Batty et al. 2006). 

The Nurses' Health Study of 88 393 women followed for 20 years, reported that even a 

modest weight gain (4 - 10 kg) during adulthood was associated with 27% increased risk 

of CHD compared with women with a stable weight after adjusting for physical activity 

and other cardiovascular risk factors (Li et al. 2006). In a large meta-analysis involving 

302,296 participants worldwide, adverse effects of overweight on blood pressure and 

cholesterol levels account for about 45% of the increased risk of CHD, and 16% increased 

risk after adjustments of both factors (Bogers et al. 2007).  

 

Large cohort studies in men and women have shown that the development of T2D is 

strongly associated with increased BMI (Oguma et al. 2005; Wang et al. 2005; Weinstein 

et al. 2004; Folsom et al. 2000; Carey et al. 1997; Chan et al. 1994). For example, men 

with BMI > 35 kg·m-2 had an age-adjusted risk of 42 times greater than men with BMI 

between 23 kg·m-2 - 35 kg·m-2 for developing diabetes (Chan et al. 1994). A similar trend 

was observed in female nurses with a BMI > 35 kg·m-2, with the risk increasing to a 

staggering 93% of developing T2D (Carey et al. 1997). Moreover, it was found that those 

who have been at a of BMI > 30 kg·m-2 for more than 10 years possessed twice the risk of 

T2D compared with those who have been obese for less than 5 years (Chan et al. 1994). 

A prospective study from the Asia Pacific regions including 154,989 participants with an 

average of 8 years follow-up, found an association between baseline BMI and risk of 

diabetes, with each 2 kg·m-2 lower body mass index associated with 23-30% lower risk of 

diabetes (Ni Mhurchu et al. 2006). In most of these studies, the impact of waist 

circumference and waist-to-hip ratio were independent of BMI, suggesting that abdominal 

obesity may play a role in the pathogenesis of insulin resistance (Guh et al. 2009). 

Besides being the cornerstone of diabetes management, weight control can serve to lower 

the risk of CVD among diabetic individuals. Other cohort studies have also reported 

strong positive associations between increasing BMI and CVD and mortality in patients 

with IGT/T2D (Eeg-Olofsson et al. 2009; Ridderstråle et al. 2006; Batty et al. 2007; Cho 

et al. 2002). Interventions aimed at reducing obesity therefore appear to be a primary goal 

in the prevention of CVD and T2D. 
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1.2.1 Mechanisms by which Obesity Influences Risk Factors 

 

Adipose tissue plays a major role in maintaining metabolic functions by buffering the 

postprandial influx of fatty acids, a function which is often disturbed in obesity (Rogge 

2009; Goossens 2008). For a given degree of obesity, abdominal obesity confers a greater 

risk of insulin resistance, T2D, and CVD than gluteofemoral obesity (Zoeller 2007). 

Upper body adipocytes, as in abdominal obesity, have been shown to respond more 

readily to stimulation of lipolysis compared to lower body adipocytes (Jensen 1997), in 

part due to their complement of adrenergic receptors (Kahn & Flier 2000). This would 

increase intraportal free fatty acids (FFA) levels and flux, promotes FFA uptake by the 

liver and consequently, increased hepatic secretion of apo B-100 and accelerates synthesis 

of hepatic very low density lipoproteins (VLDL) levels, leading to hypertriglyceridaemia 

(Bamba & Rader 2007). Increased availability and uptake of fatty acids, together with 

diminished mitochondrial oxidative enzyme capacity in obese individuals (Kelley et al. 

2002), as well as chronic imbalances between uptake and oxidation of fatty acids 

ultimately result in excess intracellular lipid accumulation, both at the whole body level 

and in individual organs or tissues (Shulman 2000). Obesity is also associated with 

diminished responsiveness of lipoprotein lipase (LPL), a key enzyme in the regulation of 

lipid metabolism (Wang & Eckel 2009). Abnormalities in LPL function have been found 

to be associated with several pathophysiological conditions, including atherosclerosis and 

dyslipidaemia, associated with obesity and insulin resistance (Mead et al. 2002). 

 

Impaired responsiveness of skeletal muscle to insulin is a primary condition in obesity 

and a precondition for the onset of T2D. An important mediator in contributing to the 

pathogenesis of insulin resistance in obesity is elevated circulating FFA (Boden 1997). 

There have been a strong association of obesity and insulin resistance with high 

circulating FFA levels (Savage et al. 2007; Boden & Shulman 2002). Conversely, 

lowering plasma fatty acids for 1 week with acipimox in subjects with T2D reduced 

intramuscular long chain acyl-CoA and improved insulin sensitivity (Bajaj et al. 2005). 

Furthermore, failure of adipose tissue to respond to the antilipolytic effect of insulin in 

insulin resistant state causes non-adipose tissues such as skeletal muscle, liver and the 

pancreatic ß-cell to be subjected to an increased influx of FFA (Savage et al. 2007), 

leading to triglycerides (TG) accumulation and diacylglycerols, an intermediate product 

from the synthesis of TG (Itani et al. 2002), as well as other lipotoxic fatty acid 

derivatives such as ceramides and long chain acyl-CoA (Adams et al. 2004; Yu et al. 
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2002). These metabolites can interfere with insulin-signalling pathways, consequently 

reducing insulin-stimulated glucose uptake in tissues (Venables & Jeukendrup 2009). 

Lipotoxicity in pancreatic β-cell can contribute to mechanisms underlying β-cell 

dysfunction and apoptosis, further leading to insulin resistance and eventual failure of 

insulin secretion (Mcgarry 2002). In addition, enhanced inflammatory and thrombotic 

cytokines expression and secretion by intra-abdominal adipocytes such as tumor necrosis 

factor-alpha (TNF-alpha) (Rydén & Arner 2007), monocyte chemoattractant protein-1 

(MCP-1) (Sell et al. 2006) and C-reactive protein (Brooks et al. 2010; Lemieux et al. 

2001) are implicated in the impairment of insulin signalling pathways, thus contributing 

to insulin resistance as well as vascular inflammation (Kahn & Flier 2000).  

 

1.2.2 Atherogenic Lipoprotein Phenotype 

 
Abdominal obesity and insulin resistance are inter-related risk factors for atherosclerosis 

(Frayn 2002), and dyslipidaemia is one of the common mechanisms by which obesity and 

insulin resistance relates to CVD. The dyslipidaemia associated with obesity and insulin 

resistance is termed the ‘atherogenic lipoprotein phenotype’ (Rizzo & Bernais 2005; 

Austin et al. 1990). Atherogenic lipoprotein phenotype or ‘lipid triad’ is characterised by 

elevated plasma concentrations of TG in the fasted state, an exaggerated postprandial rise 

in plasma TG, low HDL concentrations, and the predominance of small, cholesterol ester-

depleted, dense LDL (Hardman 1999). Evidence from epidemiologic studies suggests that 

the co-occurrence of low HDL-C and elevated TG levels is a strong risk factor for CHD 

(Jeppesen et al. 1997; Assmann & Schulte 1992). Furthermore, individuals with small, 

dense LDL particles, designated as LDL subclass pattern B, exhibit higher risk for CHD 

relative to individuals with predominantly large and buoyant LDL particles (subclass 

pattern A) (Krauss 2001). It has been suggested that the clinical importance of the 

atherogenic lipoprotein phenotype (ALP) outweighs that of LDL-cholesterol, because 

many patients with CHD are found to have the ALP trait than hypercholesterolaemia 

(Sattar et al. 1998; Superko 1996). The small and dense LDL phenotype can also be an 

additional fasting marker of an exaggerated postprandial lipeamia and of an impaired 

clearance of triglyceride-rich lipoproteins (Lemieux et al. 2000). Many clinical studies 

have shown that the magnitude and duration of postprandial lipaemia is positively related 

to the pathogenesis and progression of CHD and CVD (Roche & Gibney 2000), and is a 

prominent feature in obesity and insulin resistance (Hardman 1999). The mechanisms and 

adverse effects of elevated postprandial lipaemic response will be discussed in detail in 

section 1.4.  
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1.2.3 Obesity and Physical Activity  

 
Obesity and physical inactivity are established risk factors for cardiovascular and T2D 

comorbidities (Warburton et al. 2006; Sullivan et al. 2005). Findings from 

epidemiological studies have consistently shown that regular physical activity prevents 

unhealthy weight gain and obesity (Lee et al. 2010; Saris et al. 2003; Fogelholm & 

Kukkonen-Harjula 2000). In addition, randomised controlled trials lasting 4 – 25 months 

and consisting of 3 – 5 exercise sessions of 30 – 60 min per week have shown that body 

weight and fat mass are reduced with exercise training in overweight/obese individuals, 

without dietary restrictions (Ross et al. 2004; Slentz et al. 2004; Jeffery et al. 2003; 

Andersen et al. 1999). Because obesity is strongly associated with CVD and T2D, weight 

loss is therefore recommended in the management of the risk factors. Much evidence have 

demonstrated that lifestyle modifications focusing on weight loss through dietary 

modification and increased physical activity are effective in reducing the progression 

from IGT to T2D and in reducing CVD risk factors (Horton 2009). However, it is also 

important to acknowledge that overweight and obese adults may benefit from significant 

improvements in health-related outcomes through physical activity independent of weight 

loss. Even in the absence of changes in body weight, the benefits of physical activity in 

improving CVD and T2D risk factors in the overweight/obese can be observed, such as 

lower blood pressure (King et al. 2009; Fagard 1999), increased HDL and decreased TG 

levels (Zois et al. 2009), increased insulin sensitivity (Boulé et al. 2005; Tokmakidis et 

al. 2004), and reduced hepatic and visceral fat (van der Heijden et al. 2010; Johnson et al. 

2009).  

 

There is a current interest in whether higher levels of physical fitness can ameliorate the 

increased risk for premature mortality or CHD/CVD associated with being overweight or 

obese (Fogelhom 2010). In an 8-year follow-up of 21 925 men in the Aerobics Center 

Longitudinal Study, Lee et al. (1999) found that men with low physical fitness (maximal 

aerobic power ~ 8.7 METs) had a higher risk of all-cause and CVD mortality than did fit 

men in all body fatness and fat-free mass categories. Moreover, unfit, lean men also had a 

higher risk of all-cause and CVD mortality than did men who were fit and obese (Lee et 

al. 1999). Contrary to Lee et al.’s earlier finding, data from the Nurses’ Health Study 

found that the relative risks of CHD were greater for women who were active but obese, 

than normal-weight, sedentary women (Li et al. 2006). Based on evidence to date, higher 

levels of physical fitness appear to be able to offset the increased risk of CVD associated 

with being overweight or obese, with the highest risks were observed among subjects who 
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were both inactive and overweight/obese (Fogelholm 2010; Gill & Malkova 2006). 

However, in T2D, the data are more consistent in showing that being overweight or obese 

is associated with far greater increases in risk of developing T2D than being unfit or being 

inactive, and that higher levels of physical fitness or activity do not fully ameliorate the 

increase in risk of diabetes associated obesity (Fogelholm 2010; Siegel et al. 2009; 

Weinstein et al. 2004). One of the acute benefits of physical activity in obesity is by 

improving the lipid and lipoprotein profile. Given that perturbations in postprandial lipid 

metabolism can influence the atherogenic disease process by a number of different 

mechanisms (described in section 1.4 below) (Karpe 1999), interventions focused on 

reducing exaggerations postprandial lipaemia are justified. The following section of this 

thesis will focus on lipoprotein metabolism and how exercise influences this. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1. Model describing the relationship between low levels of physical activity and 
increased risks for obesity, insulin resistance and cardiovascular diseases.  
Abbreviations: T2D: type2 diabetes; CVD: cardiovascular diseases 
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1.3 Lipoprotein Metabolism 
 
 
1.3.1 Structures and Functions 
 

Lipids are essential for energy homeostasis, reproductive and organ physiology, and 

numerous aspects of cellular biology (Lee et al. 2003). Lipids, which are water-insoluble, 

are transported in plasma as lipoprotein complexes, composed of several classes of lipids 

(i.e. cholesterol, triglycerides, and phospholipids) and proteins known as apolipoproteins.  

Triglycerides (TG) and cholesterol esters form the core of the lipoprotein molecule, while 

the phospholipids and apolipoproteins surround the surface of the molecule (Roheim 

1986). According to major lipid composition, lipoproteins can be classified into TG-rich 

lipoproteins (TRL), which are the chylomicrons and very low density lipoproteins 

(VLDL); and cholesterol-rich lipoproteins, which include LDL and HDL (Lee et al. 

2003). The major function of lipoproteins is to transport TG and cholesterol in the 

circulation (Frayn 2003). In the forward transport system, chylomicrons and VLDL, both 

TG-rich lipoproteins; transport dietary and hepatic TG to tissues, while LDL delivers 

cholesterol to peripheral tissues for steroidogenesis. Conversely, in the reverse transport 

system, HDL is involved in the transport of cholesterol from peripheral tissues to the liver 

for catabolism (Lee et al. 2003). Apolipoproteins (apo) play critical roles in the regulation 

of plasma lipid and lipoprotein transport. Among the major human apolipoprotein classes, 

apo B-100 is required for the generation of hepatic-derived VLDL, intermediate density 

lipoproteins (IDL), and LDL (Ginsberg at el. 2005). Apo B-48 is a truncated form of apo 

B-100 that is required for secretion of chylomicrons from the small intestine, while apo 

A-I is the major structural protein in HDL (Frayn 2003). The metabolism of lipoprotein 

can be divided into the exogenous and endogenous pathways. 

 
1.3.2 Chylomicron Metabolism : The Exogenous Pathway 

 
Dietary TG and esterifed cholesterol are absorbed and processed in the intestine and 

incorporated into the core of nascent chylomicrons (Ginsberg et al. 2005). The lipid 

composition of chylomicrons comprises ~90% TG, with the remainder comprising 

cholesterol ester, free cholesterol, phospholipids, and protein (Green & Glickman 1981). 

The key to the assembly of chylomicrons requires apo B-48 (van Greevenbroek & de 

Bruin 1998), after which the chylomicron complexes are liberated into the circulation via 

the lymphatic system (Frayn 2003).  Apart from apo B-48, chylomicrons also carry apo 

A-1 and A-IV (Frayn 2003) and acquire apo CII, apo CIII, and apo E from the circulation 
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(Ginsberg et al. 2005). While in the bloodstream, the TG within the chylomicrons is 

hydrolysed by lipoprotein lipase (LPL), an enzyme synthesised mainly in the 

parenchymal cells of adipocytes, skeletal and cardiac muscle before being translocated to 

functional sites at the luminal surface of endothelial cells (Wang & Eckel 2009).  

 

LPL plays a major role in the metabolism of lipids. One of the essential co-factors for 

LPL activity is apo C-II, as evidenced by patients exhibiting chylomicronaemia and 

hypertriglyceridaemia due to defects in apo C-II (Franssen et al. 2008; Fojo & Brewer 

1992). Apo C-III can inhibit LPL actions (Wang et al. 1985), and high levels of apo C-III 

are strongly associated with hypertriglyceridaemia and the progression of CVD (Ooi et al. 

2008). It is the balance between apo CII and apo CIII that determines, in part, the 

efficiency with which LPL hydrolyses TRL (Ginsberg et al. 2005). Hydrolysis of TG 

liberates glycerol and non-esterified fatty acids (NEFA), the latter can either enter the 

adipocytes to be esterified with glycerol-3-phosphate into new TG for storage, or released 

into the systemic NEFA pool for the uptake of peripheral tissues (Frayn 2003). The 

hydolysis process results in smaller chylomicron remnants, with altered composition of 

surface phospholipids and enriched in dietary-derived, and HDL-derived cholesterol ester, 

as well as apo E (Ginsberg et al. 2005). The remnant particles are carried to the liver 

where are cleared directly by the LDL receptor (Crawford & Borensztajn 1999) or further 

lipolysed by hepatic lipase (HL) (Sultan et al. 1990). Evidence indicates that the 

acquisition of apo E allows the chylomicron remnants to be recognised and removed by 

the LDL receptor-related protein in the liver (Cooper 1997), mediated by binding to cell-

surface proteoglycans in the space of Disse (Mahley & Ji 1999; Ji et al. 1993). 

 
 
1.3.3 VLDL Metabolism: The Endogenous Pathway 

 
VLDL is assembled and secreted by the liver, with apo B-100, phospholipids, and a small 

amount of free cholesterol forming the surface of VLDL, whereas TG and esterified 

cholesterol make up the core of the particle (Davis et al. 1982). Some apo C and apo E 

are present on the nascent VLDL particles as they are secreted from the hepatocytes, but 

the majority of these apolipoproteins are transferred to VLDL after their entry into 

circulation from other lipoproteins, mainly HDL (Ginsberg et al. 2003; Frayn 2003). 

Plasma chylomicrons and VLDL share common catabolic pathways, known as the 

‘common saturable removable process’ (Frayn 2003). Being a substrate for LPL in the 

capillary beds, the TG in VLDL is hydrolysed into NEFA and glycerol, resulting in 
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smaller and denser VLDL and, subsequently, IDL (Kwiterovich 2000). Some of the IDL 

particles are cleared through the interaction of apo E and apo B-100 with the LDL 

receptor and LDL receptor-related protein in the liver (Mahley & Ji 1999). Alternatively, 

TG in IDL can be further hydrolysed by hepatic lipase to produce cholesterol-enriched 

LDL (Frayn 2003; Ji et al. 1993). LDL particles are removed by uptake into tissues via 

the LDL receptor (Frayn 2003).  

 
1.3.4 HDL Metabolism and Reverse Cholesterol Transport 

 
Reverse cholesterol transport is a series of metabolic events resulting in the transport of 

cholesterol from peripheral tissues to the liver and plays a major role in maintaining 

cholesterol homeostasis in the body. HDL particles are central to this mechanism, which 

is inversely associated with atherosclerotic events (Hersberger & Eckardstein 2003; 

Franceschini et al. 1991). Nascent HDL or pre-β HDL particles are secreted 

predominantly by the liver (Castle et al. 1991) and intestine (Danielsen et al. 1993), 

containing mainly apo A-I and phospholipids (Frayn 2003). Deficiency in apo A-1 has 

been associated with low levels of HDL and coronary heart diseases (Ikewaki et al. 2004; 

Pisciotta et al. 2003). The subsequent acquisition of cholesterol and phospholipids by 

nascent HDL occurs mainly via ABCA-1 transporter protein-mediated efflux from 

extrahepatic cells (Oram & Vaughan 2000) and LPL-mediated lipolysis of TG-rich 

lipoproteins (Kwiterovich 2000) to form HDL3 particles. The cholesterol in the nascent 

HDL is then esterified by lecithin cholesterol acyl transferase (LCAT), carried on HDL3 

particles, and activated by apo A-1. Hydrophobic cholesterol esters are retained in the 

HDL core forming spherical, and mature α-migrating HDL2 particles (Lewis & Rader 

2005). The activity of LCAT is critical to normal HDL metabolism, as it has been shown 

that genetic LCAT deficiency syndromes are associated with markedly reduced HDL and 

apo A-I levels (Kuivenhoven et al. 1997). The cholesterol ester in the core of HDL2 is 

then returned to the liver for secretion into the bile via interaction with SR-B1 receptors 

expressed in the liver (Trigatti et al. 2003; Silver et al. 2001), after which the resultant 

lipid-poor apo A-I particles are recycled into the circulation to accept further cholesterol 

from peripheral tissues (Frayn 2003).  

 

Other indirect pathways that facilitate the removal of cholesterol ester and phospholipids 

from HDL involve cholesterol ester transfer protein (CETP) (Masson et al. 2009; Barter 

et al. 2003), phospholipid transfer protein (Settasatian et al. 2001) and hepatic lipase 

(Barrans et al. 1994). CETP catalyses the exchange of cholesterol esters of HDL2 with 
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TG of apo B–containing lipoproteins (i.e. chylomicrons, VLDL, IDL and LDL), 

producing TG-enriched but cholesteryl-ester–depleted HDL particles (Lewis & Rader 

2005). Subsequent hydrolysis of TG in HDL by hepatic lipase promotes HDL 

remodelling with the generation of smaller HDL together with the release of lipid poor 

apo A-I (Tall 1995). The removal of lipids from HDL regenerates pre-β HDL or lipid-free 

apo A-I, these small apolipoproteins can diffuse into the extravascular space where they 

serve as acceptors of cellular lipids and again initiate the generation of HDL, or can be 

catabolised rapidly by the kidney (Hersberger & Eckardstein 2003). In the steady state, 

CETP activity appears not to change the overall efficiency of reverse cholesterol 

transport, though by transferring cholesterol esters from HDL to apo B-containing 

lipoproteins, CETP potentially decreases the concentration of HDL and apoA-I and 

increases the concentration of cholesterol ester-enriched lipoprotein remnants (Masson et 

al. 2009). The adverse effects of this will be discussed further in the coming section. 

 
1.3.5 Regulation of Lipoprotein Metabolism 

 
Insulin plays a key role in the tight control of lipoprotein metabolism during 

postabsorptive and postprandial periods (Sparks & Sparks 1994). The fall in insulin levels 

during postabsorptive state upregulates the lipolytic activity within the adipocytes to 

liberate NEFA and TG from the adipose tissue and into the circulation (Frayn 2003). The 

major lipase integral to this process is hormone-sensitive lipase (HSL) (Holm 2003; 

Haemmerle et al. 2002). Catecholamines, released by the sympathetic innervations within 

the adipose tissue are also important stimulators of lipolysis, and HSL is one of the major 

targets of this regulation (Holm 2003). Other lipases involved in the adipose tissue 

lipolysis are triacylglycerol hydrolase (TGH) (Soni et al. 2004) and adipose triglyceride 

lipase (ATGL) (Schweiger et al. 2006). NEFA released into the circulation are 

predominantly taken up by skeletal muscles as substrates for oxidative fuel, and by the 

liver to produce VLDL-TG or used as substrates for gluconeogenesis (Frayn 2003).  

 

In the postprandial state, insulinaemia is responsible for the upregulation of LPL in 

adipose tissue, triggering the hydrolysis of chylomicron-TG particles, thus clearing them 

from the circulation (Frayn 2003). However, the removal of chylomicrons is a saturable 

process, reflecting the limited activity of LPL (Goldberg 1996). Evidence indicates that 

both chylomicrons and VLDL compete for the hydrolysis by LPL (Bjorkegren et al. 

1996; Karpe et al. 1993), although chylomicrons appear to be the favoured substrate for 

LPL due to their larger size (Karpe et al. 2007).  LPL-mediated lipolysis causes the 
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release of NEFA that are then taken up by receptors such as FAT/CD-36 located on the 

plasma membrane of adipocytes and myocytes (Goldberg et al. 2009). Within these cells, 

the fatty acids are re-esterified and used for storage or they provide direct energy through 

mitochondrial oxidation (Dallinga-Thie et al. 2010; Preiss-Landl et al. 2002). Meanwhile, 

insulin inhibits lipolysis in adipocytes, through the inhibition of adipose tissue lipases 

including HSL, which then suppresses the release of NEFA from adipocytes into the 

systemic circulation (Frayn 2003). In addition, any NEFA produced are re-esterified 

within the adipose tissue, a process stimulated by insulin (Frayn 2002). 

  

Evidence has shown that insulin also acutely suppresses hepatic apoB-100-containing 

VLDL production both in vitro (Taniguchi et al. 2000; Adeli & Theriault 1992) and in 

vivo (Malmström et al. 1998; Lewis et al. 1995), making it likely that VLDL-TG 

secretion is inhibited in the postprandial period. This is in part, due to the suppression of 

NEFA flux to the liver which acts as the substrate for hepatic VLDL-TG secretion (Frayn 

2003; Lewis et al. 1995). This is supported by findings by which elevations in 

intralipid/heparin-induced NEFA have been shown to stimulate hepatic and intestinally-

derived TRL particles production in healthy humans in the fed state (Pavlic et al. 2010; 

Duez et al. 2008). All these metabolic events emphasise the important role of insulin in 

regulating substrate metabolism in the postprandial state. In the presence of a 

dysregulation of insulin secretion or insulin resistance, these metabolic interactions will 

be interrupted and consequently contributing to perturbations in postprandial lipid 

metabolism (DeFronzo & Ferrannini 1991).  

 
 
1.4 Postprandial Lipid Metabolism 

 
Humans spend a considerable amount of time in the postprandial state. Based on typical 

Western food intake, most people consume three or more meals a day, each containing 

30–40 g fat, while the amount of TG in the circulation is typically around 3 g. Compared 

to glucose, there is a relatively slow rise in plasma TG, peaking 3 – 5 hours following a 

meal, before declining to baseline. The rise in the plasma TG following a meal is defined 

as ‘postprandial lipaemia’ (Frayn 2002). Except at breakfast, each of the subsequent meal 

in daily living is most likely consumed before plasma lipid levels have returned to 

baseline from the lipaemic conditions resulting from the previous intake. Therefore, the 

majority of time in a daily life is spent in a postprandial (fed) state, with a continual 

fluctuation in the degree of lipaemia throughout the day (Lopez-Miranda et al. 2007). 
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Insulin plays a major role in coordinating the mechanisms that minimise plasma TG 

excursions in the postprandial period by upregulating LPL activity in the adipose tissue, 

and suppression of NEFA from adipose tissue and hepatic VLDL-TG (Frayn 2002). Thus 

in conditions where insulin function is compromised (i.e. insulin resistance), impairment 

in postprandial lipid metabolism will ensue. 

 

In 1979, Donald Zilversmit proposed that atherogenesis was a postprandial phenomenon. 

He implied that remnants of lipoprotein particles in response to a meal might exert 

atherogenic effects on the vasculature, based on his observations in cholesterol-fed 

rabbits, that the predominant cholesterol-containing lipoproteins in the plasma of rabbits 

which developed atherosclerosis consisted of chylomicron remnants (Zilversmit 1979). 

Decades later, subsequent studies provided further support to this earlier hypothesis by 

confirming that patients with CHD have increased postprandial levels of TG and 

intestinally-derived TRL in response to a fat load challenge, compared to healthy controls 

(Carstensen et al. 2004; Weintraub et al. 1996; Patsch et al. 1992; Groot et al. 1991; 

Simons et al. 1987). Many more studies then showed that postprandial, but not fasting, 

TG concentration is an independent cardiovascular risk factor (Nordestgaard et al. 2007; 

Bansal et al. 2007; Iso et al. 2001; Austin et al. 1998). A meta-analysis of 17 prospective 

population-based studies highlighted the role of hypertriglyceridaemia as an independent 

risk factor for CVD (Cullen et al. 2000). Rather than being an actual atherogenic agent, 

elevated TG levels can reflect impaired postprandial lipid metabolism and thus a poor 

ability in TRL clearance from the circulation (Ginsberg 2002). The elevated TRL and 

their prolonged residence time in the circulation may increase the exchange rate of 

esterified cholesterol from HDL and LDL to TRL, with TG being transported in the 

opposite direction, mediated by CETP. This consequently leads to TG-enrichment of LDL 

particles, rendering them better substrates for hepatic lipase, which hydrolyses TG from 

the core of LDL and turning them into smaller and denser LDL particles. Similarly, 

hydrolysis of TG-enriched HDL particles resulted in smaller and more rapidly catabolised 

HDL particles (Sposito et al. 2004; Frayn 2003; Weinthrop et al. 1996). Small, dense 

LDL and remnant lipoprotein particles can enter the subendothelial space and be trapped 

inside the arterial wall, where they can be oxidised and taken up by macrophages and 

smooth muscle cells, leading to the development and progression of atherosclerosis 

(Twickler et al. 2005; Carmena 2004). Thus, repeated episodes of exaggerated 

postprandial lipaemia can result in disturbances of the lipoprotein profile, characterised 

by elevated TG levels, increased hepatic VLDL-TG production and a decrease in their 
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clearance, a predominance of small, dense LDL particles, and reduced levels of HDL 

(Hardman 1999). 

 

1.4.1 Obesity and Postprandial Lipid Metabolism 

 
Abdominal obesity, especially when accompanied by an excess of visceral adipose tissue, 

has been associated with numerous metabolic disturbances including 

hypertriglyceridaemia and hyperinsulinaemia, which prematurely increase the risk of 

CVD (Gruson et al. 2010; Fox et al. 2009; Yusuf et al. 2006; Lamarche et al. 1998).  

Consistent with this, postprandial lipaemia is exacerbated in abdominal obesity 

(Blackburn et al. 2003; Couillard et al. 1998; Roust & Jensen 1993), a condition typically 

associated with insulin resistance (Frayn 2002). Even in the absence of the fasting 

hypertriglyceridaemia, abdominally-obese individuals may have higher postprandial 

hyperlipidemia compared to non-obese control patients (Nabeno-Kaeriyama et al. 2010; 

Lopez-Miranda et al. 2007; Castro-Cabezas et al. 2001; Mekki et al. 1999). The 

exaggerated postprandial lipaemic response commonly observed in such subjects is due to 

increased concentrations of both hepatic- and intestinally-derived lipoproteins (Couillard 

et al. 2002; Couillard et al. 1998). Due to the effects of insulin resistance, exaggerated 

lipolysis during the postprandial period results in an increased portal flux of fatty acids 

which has been shown to stimulate hepatic secretion of VLDL (Chan et al. 2004; Lewis 

1997). At the peripheral level, blunted LPL activity, commonly observed in visceral 

obesity (Kobayshi et al. 2007), decreases catabolism of VLDL, thereby exacerbating 

postprandial lipaemia. It is also evident that in insulin-resistant obese individuals, the 

occurrence of delayed clearance pathways of exogenous lipoproteins contributes to 

postprandial hyperlipaemia (Chan et al. 2002; Taira et al. 1999), through increasing 

competition between chylomicrons and VLDL for LPL lipolysis (Bjorkegren et al. 1996; 

Karpe et al. 1993) and between chylomicron remnants and VLDL remnants for LDL 

receptor-mediated clearance (Mamo et al. 2001). Thus, the inefficient metabolism of 

postprandial lipoproteins leading to exaggerations in postprandial lipaemia is a common 

feature in obesity presented with insulin resistance (Frayn 2002) Although insulin 

resistance is also associated with the adverse lipid profile in obesity, it would appear that 

this association is largely based on the fact obesity and insulin resistance are closely 

related (Nieves et al. 2003). Thus, interventions aimed at reducing obesity and improving 

insulin sensitivity would have a beneficial effect on atherogenic dyslipidaemia. One such 

intervention is exercise and this will be discussed in the following section. 
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Figure 1.2. Pathophysiology of atherogenic dyslipidaemia associated with insulin resistance. 
Dotted arrow represents resistant effect. Insulin resistance leads to enhanced lipolysis and 
increased FFA flux from adipose tissue to the liver. De novo hepatic lipogenesis in the liver 
increased TG levels and apo B secretions as VLDL. Delayed clearance of CM and VLDL 
remnants results in the increased presence of TRL in the plasma. Mediated by CETP, TG from 
TRL is exchanged for CE from LDL and HDL particles, producing TG-enriched HDL and LDL, 
which are rapidly hydrolysed by HL, producing smaller, denser LDL and HDL particles. Small 
and dense LDL particles are susceptible to glycation and oxidative modifications, rendering them 
atherogenic. TG-rich HDL particles can undergo further modification, leading to dissociation of 
the structurally important protein apo A-I. The unbound, lipid-poor apo A-I in plasma is cleared 
rapidly by the kidney, leading to decreased number of HDL particles. Abbreviations: Apo: 
Apolipoprotein; CE: cholesterol ester; CETP: cholesterol ester transfer protein; CM: chylomicron; 
FFA: free fatty acids; HL: hepatic lipase; IR: insulin resistance; LPL: lipoprotein lipase; sd: small 
and dense; TG: triglyceride; TRL: triglyceride-rich lipoproteins. 

VLDL 
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1.4.2 Exercise and Postprandial Lipid Metabolism 

 
Exercise has long been well-documented as a therapeutic approach in preventing and 

ameliorating lipid dysmetabolism in both postabsorptive (Durstine et al. 2001) and 

postprandial states (Hardman & Herd 1998). The mechanisms of TG-lowering effect of 

exercise have been of interest for the past decades and causal evidence has been 

established. The potential mechanisms that may result in reduction of postprandial 

lipaemia following an acute exercise bout are enhanced clearance rate of TG-rich particles 

from the circulation and/or a reduced rate of appearance.  

 

Studies have shown that exercise acutely increases the expression and activity of LPL in 

skeletal muscles and post-heparin plasma (Perreault et al. 2004; Zhang et al. 2002; Kantor 

et al. 1984), which can be responsible for clearing TG-rich particles from the circulation, 

with the magnitude of increase being greater following prolonged exercise than exercise 

of shorter duration (Katsanos et al. 2004; Ferguson et al. 1998). Post-heparin LPL activity 

is indeed higher in endurance-trained individuals compared with previously untrained 

condition (Miyashita et al. 2010; Duncan et al. 2003; Bergeron et al. 2001; Tikkanen et 

al. 1999) and untrained counterparts (Podl et al. 1994). It is also conceivable that 

increased LPL mass and activity induced by exercise would increase VLDL-TG 

hydrolysis, in addition to chylomicron-TG hydrolysis (Kiens et al. 1998). However, 

reductions in postprandial TG have been documented without accompanying increases in 

LPL activity (Miyashita & Tokuyama 2008; Gill et al. 2003; Herd et al. 2001), suggesting 

that besides LPL, there are other factors mediating the increased clearance rate of TG 

from the circulation. On the other hand, studies have also shown that reductions in TG 

following exercise can occur in the absence of increased TG clearance and uptake 

(Tsekouras et al. 2008; Gill et al. 2001b; Malkova et al. 2000), indicating that other 

mechanisms other than enhanced TG clearance are likely to contribute to the 

hypotriglyceridaemic effect of exercise.  

 

Decreased secretion of hepatic VLDL-TG has also been proposed to be responsible for 

the reduced appearance of TG in the circulation following acute exercise (Tsekouras et al. 

2008; Magkos et al. 2006; Gill et al. 2001a; Malkova et al. 2000). A possible cause for 

the attenuation in hepatic secretion of VLDL-TG could be increased in hepatic sensitivity 

to insulin, thereby suppressing hepatic VLDL production (Malmström et al. 1998). 

Furthermore, reduced secretion rate of VLDL-apoB-100 by the liver after 2-h of exercise 

at 60% of 2OV& max has been reported, which consequently resulted in fewer, but TG-
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richer VLDL particles (Magkos et al. 2006). Evidence has also suggested that increasing 

TG content and the size of the TG-rich VLDL particles enhance their susceptibility to 

hydrolysis by LPL (Karpe et al. 2007; Fischer et al. 1995). Following on from their 

earlier study, Magkos et al. had reported exercise at 60% of 2OV& max for 1 hour had no 

effect on plasma VLDL-TG and VLDL-apoB-100 concentrations, hepatic VLDL-TG and 

VLDL-apoB-100 secretion rates, and VLDL-TG and VLDL-apoB-100 plasma clearance 

rates in untrained lean men compared to rest (Magkos et al. 2007). Other studies 

demonstrated that whole-body resistance exercise at 80% of maximum peak torque 

production (Tsekouras et al. 2009) and brisk-walking for 90 min at 60% of 2OV& max 

(Tsekouras et al. 2007) reduced plasma VLDL-TG concentrations by augmenting VLDL-

TG removal from plasma, but without altering the secretion rate. Recently however, 

reduced VLDL-TG levels and secretion rate have been demonstrated in exercise training 

studies in animals (Barsalani et al. 2010) and humans (Yoshida et al. 2010; Tsekouras et 

al. 2008), suggesting that training may be effective in lowering hepatic VLDL-TG 

secretion rates than does acute exercise (Magkos 2009). The mechanisms responsible for 

the exercise-induced attenuation in plasma TG requires further elucidation but it is very 

likely that both LPL-mediated clearance and reduced hepatic VLDL secretion contribute 

to the effectiveness of exercise in modulating postprandial TG metabolism. 

 

1.4.2.1 Effects of Acute Exercise 

 
Cohen and Goldberg (1960) first reported that walking 6 miles after the ingestion of a 75-

g oral fat load reduced postprandial lipaemia, indicated by a decrease in plasma turbidity, 

for up to 7 hours. In the subsequent years, a large number of evidence have shown that a 

single bout of aerobic exercise performed prior to meal ingestion (high-fat or moderate-fat 

content) attenuates postprandial lipaemia in lean, normolipidaemic subjects (Harrison et 

al. 2009; Miyashita & Tokuyama 2008; Gill et al. 2006; Katsanos et al. 2004; Kolifa et 

al. 2004; Gill et al. 2003; Herd et al. 2001; Gill et al. 2001a; Gill et al. 2001b; Tsetsonis 

et al. 1997; Tsetsonis & Hardman 1996a), overweight and obese (Dekker et al. 2010; 

Hurren et al. 2011; MacEneaney et al. 2009; Burton et al. 2008; Mitchell et al. 2008; 

Miyashita 2008; Gill et al. 2004; Zhang et al. 2004), individuals with metabolic syndrome 

(Mestek et al. 2008; Zhang et al. 2007), as well as T2D (Tobin et al. 2008), although 

some reported no change in diabetic patients (Gill et al. 2007; Dalgaard et al. 2004). In 

studies investigating the effects of exercise after meal ingestion on postprandial lipaemia, 

less clear-cut evidence have been found, with some reporting exercise-induced reduction 

(Katsanos & Moffatt 2004; Hardman & Aldred 1995; Klein et al. 1992; Schlierf et al. 
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1987) while others had found no change (Zhang et al. 1998; Welle 1984). Specifically, 

with regards to exercise timing relative to meal ingestion on postprandial lipaemia, only 

two studies have compared the direct effects of pre-meal and post-meal exercise, and with 

contrasting results. Zhang et al. (1998) reported that although 1-h exercise at 60% of 

2OV& max prior to a high-fat meal attenuated postprandial lipaemia, exercise in the 

postprandial period did not. On the other hand, Katsanos & Moffatt (2004) found that 

walking at 50% of 2OV& max for 90 min reduced postprandial lipaemia irrespective of 

exercise timing relative to meal ingestion. It remains a topic of debate if exercise 

performed in the postprandial period is as effective as exercise prior to meal ingestion, 

therefore this warrants further investigation.  

 

Intermittent exercise, rather than continuous bout, has been shown to be similarly 

effective in reducing postprandial lipaemia in both lean (Miyashita et al. 2008; Barrett et 

al. 2006; Gill et al. 1998) and obese subjects (Miyashita 2008). Altena et al. (2004) 

however, reported that intermittent exercise (3 x 10 minutes at 60% of 2OV& max) was 

more effective than a 30-min continuous bout in lowering postprandial lipaemia. 

Conversely, intermittent exercise of 250 kcal (2 x 60-70% 2OV& max) did not seem to 

induce the hypotriglyceridaemic effect compared to continuous exercise bout at the same 

intensity in men with metabolic syndrome (Mestek et al. 2008). It is speculated that 

exercise may need to be distributed over more than two sessions to produce an effect 

(Miyashita & Stensel 2009). Regarding the duration of attenuation of postprandial 

lipaemia in response to exercise, there is clear evidence showing that postprandial 

lipaemia can be attenuated for up to 15 - 24 hours following acute exercise (Burton et al. 

2008; Miyashita 2008; Katsanos 2006; Gill et al. 2003; Herd et al. 2001).  

 

1.4.2.2 Effects of Energy Expenditure  

 
It has become apparent that the size of the exercise-induced energy expenditure is a 

critical factor in the manifestation of hypotriglyceridaemic effect, with higher the energy 

expenditures leading to greater reductions in postprandial lipaemia (Gill et al. 2002; Petitt 

& Cureton 2003). For example, doubling exercise energy expenditure by either doubling 

exercise intensity for the same duration (Tsetsonis & Hardman 1996a) or duration at the 

same intensity (Gill et al. 2002) doubles the magnitude of hypotriglyceridaemia. 

Furthermore, Tsetsonis & Hardman (1996b) reported that expending the same amount of 
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energy at different relative intensity (i.e. 30% 2OV& max for 180 min and 60% 2OV& max 

for 90 min) reduced postprandial lipaemia to the same degree compared to control. 

 

Therefore, the optimal benefits of exercise on postprandial lipemia are thought to likely 

be achieved with sufficient energy expenditure. According to a recent systematic review, 

the energy deficit threshold (prior to a high-fat meal) for the aerobic exercise-induced 

hyportriglyceridaemic effects to occur seems to lie around 500 kcal per session in a 

healthy population, but lower energy expenditures (~350 kcal per session) in obese 

individuals or those with metabolic syndrome (Maraki & Sidossis 2010). On the other 

hand, a few studies have demonstrated that lower energy deficit is required (~250 kcal) to 

reduce postprandial lipaemic response when a moderate-fat meal is given in both lean and 

overweight subjects (Miyashita 2008; Miyashita & Tokuyama 2008; Miyashita et al. 

2006; Kolifa et al. 2004), compared to studies giving high-fat meals. A similar finding 

was also noted in a group of overweight women consuming a high-carbohydrate meal 

prior to exercise (Mitchell et al. 2008). Therefore, these findings seem to suggest that, 

smaller exercise-induced energy deficit can still be effective in reducing postprandial 

lipaemia, especially in the obese, for whom performing exercise can be an arduous task. 

 

1.4.2.3 Effects of Energy Deficit 
 

Although it was earlier shown that the exercise-induced hypotriglyceridaemia cannot be 

replicated with an equivalent energy deficit induced by dietary intake restriction (Gill & 

Hardman 2000), recent evidence highlighted the importance of dietary energy intake in 

modulating the hypotriglyceridaemic effects of exercise. A single bout of exercise 

expending ~250 kcal, which was not likely to affect plasma TG by itself, was shown to 

exhibit attenuation in postprandial TG when the exercise was accompanied by 

superimposing a mild caloric restriction of ~ 350 kcal, compared to no-exercise control 

(Maraki et al. 2009). In another recent study, Maraki et al. (2010) demonstrated that 

moderate energy deficit (~500 kcal) independently of its method (i.e. diet or exercise, or 

combination of both) reduced fasting and postprandial lipaemia, although exercise elicited 

a somewhat greater effect than caloric restriction. These observations seem to suggest that 

both exercise-induced and diet-induced energy deficit may induce the TG-lowering 

effects, though the effect may be greater achieved with exercise. To further highlight the 

importance of negative energy balance in mediating the attenuation in postprandial 

lipaemia, replacing energy deficit created by exercise with increased energy intake to 

maintain zero energy balance was shown to markedly attenuate the TG-lowering effect of 
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exercise (Harrison et al. 2009; Burton et al. 2008). Thus, it appears that when individuals 

increase their energy intake post exercise, replacing exercise-induced energy deficit, the 

beneficial effects of exercise on postprandial lipaemia are blunted. This is of particular 

importance in daily life situations where energy intake is often uncontrolled. It is 

therefore important to understand the real magnitude of the effects of exercise on 

postprandial metabolism in the real world, however, there is a paucity of evidence in the 

literature with regards to postprandial lipid metabolism and feeding, hence, further 

research is warranted. 

 

1.4.2.4 Effects of Training 
 

Foger and Patsch (1995) indicated that exercise training decreases postprandial lipaemia 

and, in turn, increases HDL levels. The inverse relationship between the magnitude of 

postprandial lipaemia and the plasma levels of HDL (Patsch et al. 1983) described HDL 

cholesterol as an integrative marker for efficient TG metabolism (Patsch et al. 1992). 

Thus, high HDL levels in physically active individuals are likely to be contributed by the 

effects of habitual exercise on the improvement in TG clearance and reverse cholesterol 

transport (Hardman 1999). Having said that, the long term effects of exercise on 

postprandial lipaemia however, is still debatable. While some studies showed lower 

postprandial lipaemia (Tsetsonis et al. 1997; Ziogas et al. 1997; Hartung et al. 1993; 

Cohen et al. 1989; Merrill et al. 1989; Wirth et al. 1985) and enhanced TG clearance 

(Podl et al. 1994; Cohen et al. 1989; Sady et al. 1988; Wirth et al. 1985), in trained 

subjects compared to sedentary controls, it can be argued that these favourable changes 

were likely to be contributed by the recent exercise bout since exercise-induced 

attenuation in lipaemia persists for up to 24 hours (Burton et al. 2008; Miyashita 2008; 

Katsanos 2006; Gill et al. 2003; Herd et al. 2001). This is further supported by studies in 

which trained subjects refrained from exercise at least 2 days prior to test and showed no 

differences in postprandial lipaemic response compared to control (Bloomer et al. 2010; 

Herd et al. 2000; Tsetsonis et al. 1997; Aldred et al. 1995).  

 

Further evidence is illustrated in de-training studies where endurance athletes reportedly 

experienced ~37-41% increase in postprandial chylomicron and chylomicron remnant 

concentrations with 14-22 days of detraining (Mankowitz et al. 1992) and 40% increase 

in postprandial lipaemia after detraining for 6 days (Hardman et al. 1998). Similarly, in 

untrained individuals who underwent 13 weeks of training, postprandial lipaemia was 

increased by 37% and 46% within 60 hours and 9 days respectively after detraining (Herd 
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et al. 1998). Collectively, evidence is suggesting that the TG-lowering effects of exercise 

seem to be elicited by individual exercise sessions rather than adaptation from chronic 

training, however exercise training per se is likely to have beneficial, indirect effects on 

postprandial lipid metabolism through body weight loss and larger energy expenditure 

expended by trained individuals compared to untrained peers (Gill 2004). 

 
 
1.5 Energy Balance  

 
An individual’s body weight and composition represent the cumulative balance between 

all previous energy intake and energy expenditure. The classic equation of energy balance 

states that Estores = Eintake – Eexpenditure (Spiegelman & Flier 2001). Eintake consists of all 

ingested food and beverages with energy value. It is the foundation of energy, where 

nutrients are provided by the metabolism of proteins, carbohydrates, and fats to fulfil the 

energy requirement (Woo et al. 1985b). Eexpenditure is represented by three major 

components, which, when added together provide an accurate measure of an individual’s 

daily caloric requirement: the basal metabolic rate (BMR), activity energy expenditure, 

and the thermic effect of food (Woo et al. 1985b). When energy intake (Ein) equals energy 

expenditure (Eout), energy balance is achieved and hence, body adiposity is stable 

(Spiegelman & Flier 2001). However, when considering the regulation of body adiposity, 

the traditional concept of the energy balance equation, which describes weight gain as an 

excessive positive energy imbalance, might be too simplistic a concept, and that the 

concept of macronutrient balance should be taken into consideration. 

 
 
1.5.1 Macronutrient Balance 

 
The concept of macronutrient balance has been accepted as the physiological basis for 

determining body composition changes (Schutz 2004; Flatt 1988). The basis for this is 

that the composition of macronutrient intake tends to differ from their metabolic effects, 

in such a way that the oxidative hierarchy is inversely proportionate to the size of 

available stores for each macronutrient (Astrup 1999). Alcohol, amino acid, and glucose 

oxidation corresponds readily to alcohol, protein, and carbohydrate intakes, therefore 

carbohydrate and protein stores are tightly regulated by adjusting oxidation to intake 

(Frayn 1995). In contrast, there is virtually no acute feedback between fat intake and fat 

oxidation, resulting in much less accurately maintained fat stores (Schutz 2004; Abbot et 

al. 1988). Thus, for stability of body weight and body composition, not only does energy 
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intake have to match energy expenditure, but also macronutrient intake must balance 

macronutrient oxidation. Since fat is the only nutrient capable of causing a chronic 

imbalance between intake and oxidation, a positive energy balance is therefore equivalent 

to a positive fat balance, which subsequently leads to body fat gain (Galgani & Ravussin 

2008).  

 

1.5.2 Fat Balance 
 

Fat balance indicates the balance of all metabolic activity resulting in storage and 

utilisation of exogenous and endogenous lipid (Shah & Garg 1996). Negative fat balance 

is achieved when fat oxidation exceeds fat intake, which ultimately results in body fat loss 

(Schutz 2004). Indeed, studies have shown that low rates of fat oxidation and increased 

reliance on carbohydrate oxidation have been associated with accelerated weight gain in 

the Pima Indians, a population with a high prevalence of obesity. This effect was 

independent of 24-h metabolic rate (Zurlo et al. 1990). Similar findings have been 

reported in Caucasians (Seidell et al. 1992). In addition, others have shown that post-

obese individuals have low rates of fat oxidation (Larson et al. 1995; Astrup et al. 1994), 

and those successful at maintaining weight loss have higher fat oxidation rates than those 

experiencing weight relapse (Froidevaux et al. 1993). Unlike carbohydrate intake, 

increasing fat intake does not markedly lead to increase in fat oxidation (Roy et al. 1998; 

Bennett et al. 1992; Schutz et al. 1989; Flatt et al. 1985). Because increasing fat intake 

does not stimulate fat oxidation, therefore the maintenance of negative fat balance 

generally requires a reduction in fat intake and/or increase in fat oxidation via changes in 

physical activity.  

 
 
1.5.3 Physical Activity, Body Weight, and Fat Balance  

 
There is a large body of scientific evidence to support the importance of physical activity 

for the primary prevention of weight gain, successful weight loss, and the prevention of 

weight regain (Chaput et al. 2011; Jakicic 2009). Findings from prospective cohort 

studies investigating the relationship between obesity and levels of physical activity over 

time consistently reported that regular exercisers are less likely to gain weight compared 

to their sedentary peers (Hankinson et al. 2010; Drøyvold et al. 2004). Furthermore, 

physical activity may reduce health risks associated with body weight through changes in 

body composition, such as by decreasing fat-to-lean mass ratio and also by decreasing 

visceral-to-subcutaneous fat ratio (Fogelhom 2010). Evidence from prospective cohorts 
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(Meisinger et al. 2005; Nakanishi et al. 2004; Weinstein et al. 2004; Hu et al. 2003; 

Folsom et al. 2000; Okada et al. 2000; Hu et al. 1999; Burchfiel et al. 1995; Manson et 

al. 1992) with a total number of 201 653 participants suggests that the relative risk of 

developing T2D in physically active individuals is attenuated when adjusted for BMI or 

other markers of adiposity (Gill & Cooper 2008). Physical activity influences the energy 

expenditure side of the energy balance equation and effectively promotes negative fat 

balance by increasing whole-body fat oxidation, thereby helping to maintain fat balance at 

lower levels of body fatness (Hill & Commerford 1996).  

 

1.5.4 Exercise and Fat Oxidation 

 

The increase in fat oxidation in response to exercise results mainly from the increased in 

fatty acid availability, as a consequence of increased lipolysis (Romijn et al. 1993) and a 

reduced rate of re-esterification of fatty acids (Wolfe et al. 1990). One of the pathways 

involved in the stimulation of lipolysis with exercise is through activation of AMP-

activated protein kinase (AMPK) in adipocytes (Steinberg 2009). In skeletal muscle, 

exercise-induced activation of AMPK is associated with increases in fatty acid uptake and 

oxidation (Thomson & Winder 2009). In addition, increased blood flow to the skeletal 

muscles transports the fatty acids away from the adipose tissue and toward the exercising 

muscle (Romijn et al. 1993; Bulow & Madsen 1981) and can enhance partitioning of 

excess fatty acids toward IMTG synthesis (Schenk & Horowitz 2007). In addition to 

acute exercise, exercise training can induce adaptations that increase the capacity of 

skeletal muscle fat oxidation during submaximal exercise. Several factors contribute to 

these adaptive responses:  increased fatty acid transport protein content and localisation, 

which regulates transport of fatty acids within the muscle (Talanian et al. 2010); 

enhanced proliferation of capillaries within skeletal muscle, which enhances fatty acid 

delivery to muscle (Prior et al. 2004); increased density of skeletal muscles mitochondria, 

which increases the capacity for fat oxidation (Toledo et al. 2006); and increased carnitine 

palmitoyl transferase (CPT) complexes which facilitates fatty acid transport across the 

mitochondria membrane (Melanson et al. 2009b). 

 

1.5.4.1 Effects of Intensity and Duration 
 

It is well documented that the beneficial effects of aerobic exercise on maximising fat 

oxidation are best achieved with low to moderate intensity exercise (45–65% of 

2OV& max) (Achten & Jeukendrup 2004). High intensity exercise however, results in lower 
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contribution of fat to energy expenditure during exercise (Romijn et al. 1993). Despite the 

increased rate of lipolysis, the mobilisation of NEFA from adipocytes during high 

intensity exercise may be compromised due to restricted blood flow to adipose tissue 

(Coyle 1995) and suppressed mitochondrial uptake of fatty acids (Romijn et al. 1995). 

There is also evidence that IMTG oxidation contributes significantly to energy production 

during moderate intensity compared to high intensity exercise (van Loon et al. 2003; Watt 

et al. 2002; Romijn et al. 1993), which may partially explain the enhanced fat oxidation 

rate at moderate intensity. Prolonged exercise of moderate intensity is associated with a 

time-dependent decrease in carbohydrate oxidation and greater fat oxidation (Romijn et 

al. 1993; Ahlborg et al. 1974). The enhanced fat oxidation in prolonged exercise is a 

function of decreased muscle glycogen utilisation which results from reduced muscle 

glycogen availability (Vøllestad & Blom 1985) while the relative contribution from 

NEFA increases progressively with exercise duration (Ahlborg et al. 1974). 

 

1.5.4.2 Effects of Post-Exercise Fat Oxidation 
 

Studies have shown that prolonged, moderate intensity exercise stimulates fat oxidation in 

favour of carbohydrate for several hours in the post-exercise period (Kuo et al. 2005; 

Kimber et al. 2003; Marion-Latard et al. 2003; Kiens & Richter 1998; Bielinski et al. 

1985), extending the benefit of exercise on fat oxidation beyond the exercise period. 

These authors suggested that following glycogen-depleting exercise, muscle glycogen 

resynthesis is of high metabolic priority, resulting in the preferential utilisation of 

circulating NEFA and other lipids for oxidation by the recovering skeletal muscle. 

Meanwhile, elevations in catecholamines in the circulation postexercise, and increased 

blood flow to adipose tissue stimulate lipolysis, resulting in increased plasma NEFA 

concentrations and elevation in fat oxidation (Coyle 1995). Furthermore, studies have 

found that exercise-induced increase in NEFA mobilisation can persists for 12 - 24 hours 

after exercise, with a progressive decline over time; and dependent on the duration as well 

as the intensity of exercise (Magkos et al. 2009; Mulla et al. 2000), although the rate of 

fat oxidation is not strictly dependent on NEFA availability (Bennard et al. 2005). 

Regarding exercise intensities, the rates of post-exercise fat oxidation appear to be greater 

at higher exercise intensities compared to lower intensities when matched for energy 

expenditure (Pillard et al. 2010; Warren et al. 2009; Kuo et al. 2005). Thus, apart from 

the exercise period, there is also a great potential for the increase in post-exercise fat 

oxidation in inducing negative fat balance. 
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1.5.4.3 Effects of Pre-Exercise Meal Ingestion 
 

Carbohydrate ingestion prior to exercise has been shown to increase carbohydrate 

oxidation and concomitantly decreases fat oxidation during the exercise period, compared 

to exercise in the fasting or postabsorptive period (Wallis et al. 2006; Wu et al. 2003; 

Bergman & Brooks 1999; Coyle et al. 1997; Horowitz et al. 1997; Montain et al. 1991). 

The glycaemic and insulinaemic perturbations accompanying the consumption of 

carbohydrate stimulate carbohydrate oxidation while suppressing lipolysis and fatty acid 

oxidation during the exercise period (Coyle et al. 1997; Sidossis & Wolfe 1996). 

Furthermore, Montain et al. (1991) observed that increase in carbohydrate oxidation and 

decrease in plasma NEFA can persist for up to 6 hours after a pre-exercise carbohydrate 

meal, although this might be dependent on the size of the meal, thereby indicating that the 

effect of pre-exercise meal is not limited to the exercise period only but also during the 

post-exercise recovery periods. Interestingly, many studies have shown that unlike 

carbohydrate, ingestion of a high-fat meal prior to exercise does not increase fat oxidation 

during the exercise period (Paul et al. 2003; Bergman & Brooks 1999; Whitley et al. 

1998; Flatt 1988), although this is not unequivocal (Ainslie et al. 2002; Hawley et al. 

2000). These evidence collectively show that, while exercise intensity predominantly 

influences substrate utilisation during exercise, pre-exercise meal ingestion can alter this, 

although the dietary effect can depend on the amount of carbohydrate or fat ingested, 

timing of meal and duration of dietary treatment (Hansen et al. 2005). 

 

1.5.4.4 Effects of Post-Exercise Meal Ingestion 
 

Another consideration in the influence of exercise on fat oxidation is the effects of meal 

ingestion in the post-exercise period. A study has shown that post-exercise carbohydrate-

rich meal ingestion led to a decrease in fat oxidation for several hours, compared to 

exercise with placebo (Long et al. 2008). However, when comparing the effects of 

exercise on fat oxidation relative to a no-exercise control, others studies reported 

elevations in fat oxidation despite meal ingestions in the post-exercise period, and this 

effect appear to be evident for up to 24 hours (Votruba et al. 2002; Folch et al. 2001; Gill 

et al. 2001a). It could be that the energy content of a post-exercise meal influences the 

magnitude of fat oxidation thereafter, as it has been demonstrated that neither post-

exercise energy expenditure nor substrate metabolism differed over 24-h when sub-

maximal exercise was performed preceding a caloric-equivalent meal, compared to rest 

(Dionne et al. 1999). In support of this, Melanson et al. (2009b) recently reported that 
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exercise when performed with energy replacement (i.e. energy balance is maintained), 

does not increase 24-h fat oxidation. On the contrary, Burton et al. (2008) demonstrated 

that exercise with isocaloric energy replacement increased postprandial fat oxidation 

compared to control in the following day, albeit to a lesser degree than exercise with an 

energy deficit. Therefore it appears that there is some discrepancy between findings on 

subsequent meal ingestion on post-exercise fat oxidation, and much less is known on how 

this can translate into daily living with ad libitum feeding patterns. In addition, although 

meal ingestion influences fat oxidation, it is still unclear whether pre-exercise or post-

exercise food ingestion is more effective in creating a negative fat balance over the course 

of the day. Addressing this issue will help to plan exercise and dietary strategies in 

maximising fat oxidation, specifically by manipulating the temporal sequence of meal 

ingestion and exercise.  

 

1.5.4.5 Effects of Obesity 
 

There is strong evidence showing a blunted lipolytic response to catecholamines (Jocken 

& Blaak 2008; Horowitz & Klein 2000b) and beta-adrenergic stimulation (Jocken et al. 

2008), as well as to exercise stimulus (Mittendorfer et al. 2004; Pérez-Martin et al. 2001) 

in obese individuals. However, many other studies have demonstrated that whole-body fat 

oxidation during moderate exercise is similar across lean, overweight and obese subjects 

(Mittendorfer et al. 2004; Horowitz & Klein 2000a; Ezell et al. 1999), although the 

source of fatty acids for oxidation during exercise may differ between these groups. Fatty 

acid oxidation of non-plasma sources is quite common in obesity due to the blunted 

lipolytic response (Mittendorfer et al. 2004; Horowitz & Klein 2000a; Goodpaster et al. 

2002). Regardless, this shows that exercise is just as beneficial in improving fat oxidation 

in the overweight/obese populations as in the lean. However, it is unclear how subsequent 

ingestion of food, whether in the pre-exercise or post-exercise period can affect fat 

balance in this population, therefore further investigation is needed.  

 
 
1.5.5 Exercise and Fat Balance: Loss or Gain? 
 

The effect of exercise on 24-hour fat balance is most important in understanding the role 

of exercise in the prevention of fat accumulation and obesity. Although exercise increases 

energy expenditure and induces fat balance, long-term exercise studies have however, 

consistently shown that weight loss achieved with exercise alone appears to be modest 

and is typically ~3% of initial body weight (Jakicic 2009). Given that physical activity 
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and energy intake are the two major behavioural determinants of body weight, their 

independent and combined compensatory responses could serve barriers to exercise-

induced weight loss (King et al. 2007). The concept of compensatory adjustments to 

exercise-induced changes in energy expenditure was highlighted over 30 years ago by 

Epstein and Wing (1980) who stated that ‘…exercise may stimulate the appetite so that 

persons who exercise increase their eating and do not lose as much weight as expected’ 

and ‘…a person who exercises in the early evening may go to sleep earlier or require 

more rest in the evening…’. Speakman et al. (2002) in their review explained that 

alterations in the energy balance system will activate compensatory mechanisms to 

'defend' body mass at its existing level, or to restore it to that level once conditions allow, 

thus providing reason why some individuals fail to lose weight with exercise. Increased 

energy intake is commonly assumed to be the compensatory mechanism responsible for a 

lack of, or lower than expected, exercise-induced weight loss (King et al. 2007). 

Fundamental to feeding behaviour is the appetite system, which modulates the energy 

intake side of the energy balance equation. The balance between energy intake and energy 

expenditure is maintained via a complex homeostatic system, involving both the brain and 

the peripheral nervous system (Spiegelman & Flier 2001). Under stable conditions, 

equilibrium exists between anabolic signals that stimulate feeding behaviour, as well as 

decrease energy expenditure and lipid utilisation in favour of energy storage, and 

catabolic signals that attenuate food intake, while stimulating sympathetic nervous system 

activity and restricting energy storage by increasing lipid metabolism (Blundell et al. 

2008). This section henceforth will focus on the energy intake component of the energy 

balance system. 

 

 

1.6 The Appetite System 

 

Appetite is the internal driving force for the ingestion of food and is divided into three 

components: hunger, satiation, and satiety (Mattes et al. 2005). Hunger describes the 

motivational state that promotes food consumption and also reflects a physiologic state in 

which the metabolic fuels such as glucose and free fatty acids are low (Wardle 1987). 

Satiation is a process that occurs while foods are being eaten which govern meal size and 

duration (Blundell & MacDiarmid 1997). Following the initiation of a meal, hunger 

subsides while satiation becomes increasingly dominant.  Eventually, feelings of satiation 

will contribute to the cessation of eating and begins a period of abstinence from eating. 
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The sensation that determines the intermeal period of fasting is termed satiety (Mattes et 

al. 2005). The control of appetite is a complex process, involving the interactions of 

central and peripheral organs to influence feeding behaviour in the short term, and also an 

adaptive process responding to energy input and energy expenditure in the long term 

(Delzenne et al. 2010).                                             

 

1.6.1 Control of Appetite: Role of the Hypothalamus 

 

The hypothalamus plays a pivotal role in the control of body weight by regulating energy 

intake and energy balance. Two main regions in the hypothalamus that are involved in 

feeding and satiety are the lateral hypothalamic nuclei which serve as a feeding or 

‘hunger’ centre while the ventromedial nuclei serving as a ‘satiety’ centre (Wynne et al. 

2005). The role of hypothalamus in regulating food intake was first established when it 

was observed that lesions to the ventromedial nuclei resulted in hyperphagia and obesity, 

while lesions to the lateral hypothalamic nuclei caused aphagia and weight loss (Anand & 

Brobeck 1951). The lateral hypothalamic nuclei contain glucose-sensitive neurons that are 

sensitive to hypoglycemia and it is crucial in mediating hypoglycemia-induced 

hyperphagia. The ventromedical nuclei mainly acts as a satiety centre and is a key target 

for leptin and insulin, which act on the hypothalamus to inhibit feeding, and stimulate 

energy expenditure (Bernadis & Bellinger 1996). In addition, the paraventricular nuclei 

(PVN) structure contains neurosecretory neurons that project into the arcuate nucleus 

(ARC), at the base of the hypothalamus, where the neuron terminals release peptides 

neuropeptide Y (NPY), agouti-related peptide (AgRP) and the melanocortin precursor, 

proopiomelanocortin (POMC), as well as being the main site of corticotrophin-releasing 

hormone (CRH) and thyrotropin releasing hormone (TRH) secretions (Neary et al. 2004).  

 

The ARC, on the other hand, contains receptors for hormones and neuropeptides that 

regulate feeding (Arora & Anubhuti 2006). It is an area where the blood-brain barrier is 

modified to allow entry of various gut peptides and proteins including insulin and leptin, 

both of which are signals for adiposity (Banks 2008). The gut peptides act on the 

hypothalamus via the ARC to mediate appetite stimulation through activation of NPY and 

AgRP (Chen et al. 2004) or appetite inhibitory effects via POMC (Kristensen et al. 1998). 

NPY and AgRP act to stimulate feeding predominantly through activation of Y1 and Y5 

receptors (Kanatani et al. 2000) and antagonism of the melanocortin MC3 and MC4 

receptors. Stimulation of MC3 and MC4 receptors by POMC in turn, inhibits feeding 
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(Raffin-Sanson & Bertherat 2001). Afferent fibres of the vagus nerve also provide a 

gateway for neural signals (mainly satiety) from the gut to the brain stem (Williams et al. 

2001). The brain stem is linked to the hypothalamus via projections from nucleus tractus 

solitarius neurones to the PVN and lateral hypothalamus (Neary et al. 2004). 

 

1.6.2 Control of Appetite: Role of Gut Peptides 

 

Episodic signals arising from the gastrointestinal tract such as peptide YY (PYY), ghrelin, 

cholecystokinin (CCK), and glucagon-like peptide 1 (GLP-1)  regulate meal initiation and 

termination. Tonic signals such as leptin and insulin are responsible for maintaining 

energy balance and fat stores over weeks and months rather than meal-to-meal basis 

(Blundell et al. 2008). Together, the integration of episodic and tonic signals provides 

information to the hypothalamus that will further regulate feeding behavior to promote 

energy balance. 

 

1.6.2.1 Peripheral Orexigenic Peptide: Ghrelin 
 

Ghrelin is the only gastrointestinal hormone with potent orexigenic properties. It is a 28-

amino acid peptide, primarily released by the oxyntic glands of the human gastric mucosa 

(Sakata et al. 2002), but is also isolated from other tissues such as the hypothalamus 

(Cowley et al. 2003), pancreas (Volante et al. 2002a), lungs (Volante et al. 2002b), and 

anterior pituitary gland (Korbonits et al. 2001). The majority of ghrelin actions are 

produced through its binding with receptor growth hormone secretagogue receptors 1a 

(GHSR-1a) which are found distributed in the brain, stomach, pancreas, kidney (Ueno et 

al. 2005) and expressed abundantly in the hypothalamus (Guan et al. 1997). Modification 

of its hydroxyl group at the third residue, a serine, with n-octonoic acid produces acylated 

form of ghrelin, which is essential for binding to the GHSR-1a, therefore deemed to be 

the biologically active form of ghrelin (Castaneda et al. 2010). Due to its widespread 

expression in various tissues, ghrelin exerts multiple physiological effects in the human 

body. Ghrelin is a potent releasing-stimulator of growth hormone from the anterior 

pituitary via activation of the GHSR-1a (Kojima et al. 1999). Apart from GH, ghrelin has 

also been reported to influence other endocrine secretions such as insulin (Tong et al. 

2010) and cortisol (Schmid et al. 2005).  

 

Perhaps the most widely discussed ghrelin function is its role in the regulation of food 

intake and energy balance. The effects of ghrelin on food intake are by a large part 
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mediated by the hypothalamic arcuate nucleus (ARC). Upon binding to its receptors, 

ghrelin stimulates the activity of neurons expressing NPY and AgRP, both of which are 

appetite-stimulating (orexigenic) peptides (Morton & Schwartz 2001). The secretion of 

ghrelin by the stomach depends largely on the nutritional state. Plasma concentration of 

ghrelin peaks under fasting conditions before a meal, suggesting a role in meal initiation 

(Cummings et al. 2001) and levels off to a nadir after a meal and increase again after 

gastric emptying before next meal (Cummings et al. 2005). Many studies have shown that 

intravenous infusion of ghrelin increases energy intake from buffet meals by in both lean 

and obese humans (Druce et al. 2006; Druce et al. 2005; Wren et al. 2001). Ghrelin 

concentrations have been shown to correlate with hunger scores (Cummings et al. 2004; 

Wren et al. 2001) and inversely associated with intermeal interval (Cummings et al. 

2001). However, there is also strong evidence that ghrelin levels rise in anticipation of a 

meal, rather than eliciting a meal, and can be conditioned by habitual meal patterns 

(Frecka & Mattes 2008). Magnitude of ghrelin suppression in the postprandial period is 

dose-dependently related to amount of ingested calories (Callahan et al. 2004), and 

carbohydrate and protein suppress ghrelin more effectively than fat at equals loads 

(Foster-Schubert et al. 2008; Thorner et al. 2008). 

 

Besides playing a role in the short-term regulation of food intake, ghrelin might also play 

a role in the long-term regulation of energy balance. Peripheral chronic administration of 

ghrelin in rodents results in prolonged hyperphagia and increased adiposity (Tschop et al. 

2000). Supporting the role of ghrelin in inducing positive energy balance, some studies 

have shown that the pharmacologic blockade of ghrelin decreases food intake and body 

weight (Wortley et al. 2005) and mice lacking ghrelin signalling are protected against 

diet-induced obesity (Zigman et al. 2005). The putative adipogenic effects of ghrelin in 

humans however, remain to be shown because it is possible that ghrelin has different 

effects on energy balance in humans and rodents (Horvath et al. 2001). In humans, plasma 

ghrelin levels are inversely correlated with body adiposity (Tschop et al. 2001), being low 

in the obese, higher in lean subjects, and these levels increase with weight loss in obesity 

(Hansen et al. 2002). Whether low levels of ghrelin in obesity represent an adaptation to 

the state of positive energy balance or an increased sensitivity is open to debate.  

 

 

 

 

 



  Chapter 1 | 54 

 

1.6.2.2 Peripheral Anorexigenic Peptides: Peptide YY (PYY) 
 
 
PYY, or peptide tyrosine-tyrosine, is a 36-amino acid peptide produced by the entero-

endocrine cells of the ileum and colon (Adrian et al. 1985a). It is also found in the upper 

gastrointestinal tract, pancreas, and hypothalamus (Ekblad & Sundler 2002). There are 

two endogenous forms of PYY: PYY1-36 and PYY3-36, the latter is produced by the 

removal of two N-terminal Tyr-Pro residues by the action of dipeptidyl peptidase IV 

(DDP-IV) in the colon (Grandt et al. 1994). Removal of the N terminal amino acids 

changes the receptor affinity of PYY3-36 to Y2 receptors, in contrast to PYY1-36 which 

binds to Y1, Y2, Y4 and Y5 receptors (Blomqvist & Herzog 1997). PYY regulates a wide 

range of gastrointestinal functions that are mainly inhibitory such as inhibiting gastric and 

pancreatic secretion (Adrian et al. 1985b), delaying gastric emptying (Allen et al. 1984) 

and increases the absorption of fluids and electrolytes from the ileum after a meal 

(Hoentjen et al. 2001). Such PYY-mediated effects on digestion processes, by essentially 

increasing absorption time lead to another well-known function of PYY as a potent satiety 

signal. In humans, PYY3-36 is the main form produced postprandially, with levels peaking 

to a plateau 1 – 2 hours following food intake and can remain elevated for up to 6 hours 

(Adrian et al. 1985a). PYY concentrations are proportional to caloric load (Degen et al. 

2005), with progressively larger increases being seen after ingestion of fat as compared to 

carbohydrate and proteins (Adrian et al. 1985a). Helou et al. (2008) demonstrated that a 

high-fat meal induced immediate increase in postprandial PYY3-36, whereas the 

postprandial increase in PYY3-36  following a high-protein meal was delayed, concluding 

that increasing both fat and protein content of a meal may induce an immediate and 

prolonged satiety effect in humans.  

 

The role of PYY3-36
 in satiation demonstrated in many studies makes this peptide a 

promising anti-obesity therapy (Batterham et al. 2002). Peripheral administration of 

PYY3-36 at doses generating postprandial physiological concentrations has been shown to 

inhibit food intake (Neary et al. 2004). PYY3-36 crosses the blood brain barrier freely  to 

bind to the Y2 receptors in the hypothalamus (Ballantyne 2006), which leads to an 

inhibition of the NPY neurons in the arcuate nucleus and a possible reciprocal stimulation 

of the anorexigenic POMC neurons to decrease food intake through stimulation of satiety 

(Batterham et al. 2002). Consistent with this model, the satiating effects of PYY3–36 are 

abolished by pharmacologic blockade of Y2 receptors (Scott et al. 2005). Peripheral 

administrations of PYY3–36 demonstrate dose-dependent decreases in energy intake (le 

Roux et al. 2006), and is capable to inhibit food intake for several hours (Halatchev et al. 
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2004; Batterham et al. 2002). A study by Batterham et al. (2003) demonstrated a 30% 

reduction in caloric intake and subjective hunger during a buffet lunch offered two hours 

after the infusion of PYY3–36  in the obese subjects, also suggesting that obesity is not 

associated with resistance to PYY, in contrast to obesity-related leptin resistance 

(Bjørbaek 2009). Interestingly, obese subjects have been shown to have relatively lower 

postprandial PYY levels compared to lean subjects (le Roux et al. 2006; Stock et al. 

2005). However, PYY levels are reported to be elevated in obese patients following 

bariatric surgery (Reinehr et al. 2007) or vertical-banded gastroplasty (Alvarez et al. 

2002), which may have contributed to reduced food intake and consequently weight loss 

post-surgery. Taken together, all these findings suggest a role of PYY in satiety regulation 

by reducing the energy intake side of the energy balance equation. 

 

1.6.3 Control of Appetite: Role of Adiposity Signalling 

 

Apart from the neural stimulation and gut peptide signals that help regulate food intake on 

a meal-to-meal basis, satiety processes can be induced by changes in body adiposity (i.e. 

adiposity signals). Adiposity signalling involves circulating hormones which are 

relatively constant and proportional to adipose tissue mass and act as tonic signals to the 

brain for regulating food intake and body weight over long periods of time (Trayhurn & 

Bing 2006). Critical elements of this control system are hormones secreted in proportion 

to body adiposity, which are leptin and insulin. Insulin was the first hormone to be 

implicated in the hypothalamic control of food intake and long term stability of body 

weight (Kennedy 1953). Central administration of insulin to the hypothalamus caused a 

reduction in food intake in dogs (Baura et al. 1993). The ob/ob mouse, completely 

deficient in leptin, is characterised as hyperphagic, hyperinsulinaemic, and obese, while 

chronic administration of leptin to the ob/ob mouse results in sustained reduction in body 

weight, and reduced food intake (Chua et al. 1996). During states of negative energy 

balance (i.e. fasting, starvation), less insulin and leptin are secreted. As a result, anabolic 

pathways are stimulated which leads to conditions that favour increased food intake and 

energy storage. Conversely, during states of positive energy balance, the adipose tissue 

expands and increases concentrations of leptin and insulin. The resulting output from the 

brain favours reduced food intake and a reduction of the size of adipose mass. These key 

negative feedback pathways help maintain stability of the size of body adiposity over time 

(Trayhurn & Bing 2006). 
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Figure 1.3. Model of central and peripheral regulation of appetite and food intake. Solid 
arrows represent stimulatory action while dotted arrows represent inhibitory action. Plus signs 
indicate hunger stimulation, and minus signs indicate satiety stimulation. In the short-term 
regulation of food intake, ghrelin, released from empty stomach, binds to the receptors in the ARC 
to activate NPY and AgRP containing neurons to stimulate hunger, while inhibiting POMC-MSH 
neurons. In contrast, following a meal, PYY from colon binds to the receptors in the ARC, 
stimulating POMC-MSH neurons to activate satiety, while inhibiting the ghrelin-NPY/AgRP 
pathway. Signals from the gastrointestinal tract and various other gut hormones act on the 
hypothalamic centers via vagus nerve to reduce food intake. Long-term (tonic) signals such as 
insulin and leptin, released in proportion to body adiposity, positively regulate POMC-MSH 
neuronal pathways, stimulating satiety center and reducing activity of NPY/AgRP neurons driving 
the appetite behaviour. Abbreviations: AgRP: agouti-related peptide; ARC: arcuate nuclei; CCK: 
cholecystokinin; GLP-1: glucagon-like peptide 1; GIT: gastrointestinal tract; NPY: neuropeptide 
Y; PVN: paraventricular nuclei; POMC-MSH: melanocortin-derived proopiomelanocortin; PYY: 
peptide YY. 
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1.6.4 Control of Appetite: Role of Non-Metabolic Factors 

 

Traditional views of the regulation of energy homeostasis pointed strongly to the 

hypothalamus as the key area for the physiological controls of appetite and energy 

balance. Recently however, it was also considered that the regulation of appetite is not 

limited to the hypothalamus, but engage other parts of the brain, particularly the caudal 

brainstem and limbic forebrain circuit, which include the hippocampus, amygdala and the 

substantia nigra; areas that are implicated in mediating motivation and reward aspects of 

feeding behaviour (Figlewicz & Benoit 2009). This led to the expanded view of the 

control of energy homeostasis which includes neural integration of metabolic and 

behavioural drives in the regulation of food intake. It has been identified that adiposity 

signals and other metabolic signals can modulate brain areas that are involved in the 

processing of external food cues (e.g. sight and smell of palatable food) and reward 

functions (e.g. liking, wanting) (Blundell et al. 2010; Figlewicz et al. 2007). Liking 

reflects the immediate experience or anticipation of pleasure from the orosensory 

stimulation of eating a food of tasting a particular food (Mela 2006). Neural circuits in the 

hindbrain, as well as areas in the ventral striatum and amygdala are involved in the 

expression of liking (Shin et al. 2009). Intracerebroventricular (ICV) infusion of insulin 

in rats decreased activity in a 5-min sucrose ‘lick-rate’ task, which represents a ‘pure 

hedonic’ response of the animal to a solution (Figlewicz et al. 2007).  

 

Wanting, or incentive salience, refers to the desire to actually ingest a particular food, and 

is usually, but not always, follows liking (Blundell et al. 2010). While liking is a sensory 

process, wanting is linked to the mesolimbic dopamine system, which is crucial for the 

orchestration of motor action to obtain rewards (Shin et al. 2009). Leptin and ghrelin can 

act directly on the mesolimbic dopamine neurons to modulate ‘wanting’ of food; leptin 

administration decreased firing rate of dopamine neurons and food intake (Hommel et al. 

2006) while ghrelin ICV in rats increases progressive ratio performance to obtain food 

reward (Jewet et al. 2006). Thus, metabolic feedback signals involved in appetite do not 

act exclusively on hypothalamus, but also on sensory pathways and cortico-limbic 

structures, indicating that hedonic processes and cognitive functions are also important 

for the control of food intake and the regulation of energy balance (Shin et al. 2009). This 

concept is especially important for the study of feeding behaviour in the obesogenic, 

modern environment, where food is easily-accesible, energy-dense, and physical activity 

is being reduced to a luxury afforded by environment and lifestyle (Finlayson et al. 2007).  
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1.6.5 Control of Appetite: Role of Physical Activity 

 

Physical activity could influence the regulation of food intake by adjusting the sensitivity 

of appetite control or by altering energy balance that could adjust the drive to eat (King et 

al. 1997). Many efforts recently have also looked into how exercise can modulate appetite 

control by investigating gut peptides in response to exercise. Ghrelin and PYY are among 

the short-term signals that received wide attention as they are responsible for meal-to-

meal regulation and have potential correlation with subjective feelings of hunger and 

satiety (Benelam 2009). Leptin and insulin levels, while they are responsible for long-

term regulation of energy balance and appetite, their levels are unlikely to have changed 

in short-term exercise interventions where no change in body composition is observed 

(Kraemer et al. 2002).  

 

1.6.5.1 Effects of Acute Exercise on Appetite and Energy Intake 

 

Exercise leads to an increase in energy expenditure, and therefore results in negative 

energy balance. It seems rather natural that the energy deficit induced by exercise would 

be compensated for by an increase in food intake to maintain energy balance. This 

assumption was first made 50 years ago by Mayer et al. (1956), through a study assessing 

the relationship between physical work and caloric intake in Indian men, implying that 

‘ the regulation of food intake functions with such flexibility that an increase in energy 

output due to exercise is automatically followed by an equivalent increase in caloric 

intake’. However, evidence to date is still ambiguous. The majority of studies have shown 

that acute aerobic-type exercise did not alter energy intake and hunger sensations (King et 

al. 2010b; Unick et al. 2010; Malkova et al. 2008; Imbeault et al. 1997; King et al. 

1997b; Westerterp-Plantega et al. 1997; Thompson et al. 1988), and a few studies have 

reported reductions in hunger sensations without concomitant changes in food intake 

(King et al. 2010a; Borer et al. 2009; Lluch et al. 1998; King et al. 1997).  

 

However, other studies have documented an increase in appetite sensations (King et al. 

2011a; Dodd et al. 2008; Maraki et al. 2005; Verger et al. 1992) and absolute energy 

intake (Finlayson et al. 2009; Martins et al. 2007a; George & Morganstein 2003; Verger 

et al. 1994; Verger et al. 1992) in response to acute exercise. The lack of consistency 

among studies could be attributed to variations in exercise intensity (Thompson et al. 

1988), mode of exercise (King & Blundell 1995), nutritional state (Durrant et al. 1982), 
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or composition of test meals (Hubert et al. 1998). In addition, exercise has been shown to 

improve appetite sensitivity in response to covert preload energy manipulation, where 

active individuals seem more able to distinguish between preloads by adequately 

adjusting energy intake at a subsequent meal, denoting a better short-term appetite control 

(Martins et al. 2007b; Van Walleghen et al. 2007; King et al. 1999). Overall, the evidence 

points to a rather weak coupling between energy expenditure and energy intake.  

 

1.6.5.2 Effects of Chronic Exercise on Appetite and Energy Intake 

 

In one of the earliest work of monitoring the coupling between energy intake and energy 

expenditure over a long term, Edholm et al. (1955) demonstrated that there was a 

significant correlation between energy expenditure and energy intake 2 days later in 

military cadets. This led to Edholm (1977) to remark that ‘we do not eat for today but for 

the day before yesterday’. In further attempts to investigate this delayed compensatory 

response, many studies however, have found no compensation in energy intake in 

response to physical activity interventions (Blundell & King 1999; McGowan et al. 1986; 

Dickson-Parnell & Amos 1985; Woo et al. 1982). The limitations with long-term exercise 

intervention studies are that most energy intakes were monitored using dietary record, 

which may not always be accurate, and subjects often had a preconceived goal associated 

with weight reduction, therefore under these conditions, energy intake can be controlled 

deliberately and may not be entirely ad libitum.  

 

A few studies have reported a partial compensatory increase in energy intake 

corresponding to increases in energy expenditure in long term studies ranging from 6 – 19 

days (Whybrow et al. 2008; Stubbs et al. 2002a; Woo & Pi-Sunyer 1985a; Durrant et al. 

1982). Irrespective of gender, there is also a considerable variation in the extent of 

compensation, which may explain the variable success in exercise interventions on weight 

loss because some individuals possess adaptive mechanisms to oppose the negative 

energy balance resulting from the imposed exercise (Finlayson et al. 2011; King et al. 

2008). Overall, there is very little evidence of complete compensation in energy intake in 

response to exercise-induced energy expenditure. However partial compensation is 

possible. Partial compensation for exercise-induced energy deficits is detectable over two 

weeks, and is slow and variable between individuals (Blundell et al. 2003). Reasons for 

variability in energy intake compensation for the increased energy expenditure from 

exercise are still unclear, but might be at least partially explained by exercise-induced 

changes in neural and/or hormonal stimuli that influence sensations of hunger and satiety. 
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1.6.5.3 Effects of Exercise on Gut Peptides: Ghrelin  

 

Among many gut peptides, ghrelin is the only gut peptide associated with meal initiation, 

and as its levels correlate with energy deficit (Cummings et al. 2005), it is possible that 

exercise may influence ghrelin levels. Similar to energy intake, studies on the effects of 

acute exercise on plasma ghrelin are equivocal; many studies have reported no change 

(King et al. 2010b; Burns et al. 2007; Zoladz et al. 2005; Kraemer et al. 2004a; Schmidt 

et al. 2004), in addition to both exercise-induced suppression (Marzullo et al. 2008; 

Malkova et al. 2008; Toshinai et al. 2007; Vestergaard et al. 2007; Kraemer et al. 2004b) 

and augmentation (Jürimäe et al. 2007; Erdmann et al. 2007; Borer et al. 2005). The 

ambiguity in studies concerning acute exercise and ghrelin could be attributed to one 

important determinant: exercise energy expenditure. It is well known that energy deficit is 

a strong stimulus for ghrelin increase (Hagobian & Braun 2010; Ravussin et al. 2001), 

hence the likelihood for ghrelin levels to change may not occur with relatively small 

exercise-induced energy expenditures. Additionally, the effects of exercise on ghrelin 

levels can vary with subjects’ gender (Hagobian et al. 2009), body adiposity (Marzullo et 

al. 2008), exercise intensity (Fathi et al. 2010), among others, which may explain why 

findings are inconclusive. Several studies have examined changes in ghrelin with chronic 

exercise and reported increase in fasting ghrelin levels (Kelishadi et al. 2008; Foster-

Schubert et al. 2005; Leidy et al. 2004). One interesting point to note from these studies 

was that ghrelin levels increased commensurately with the amount of weight lost and no 

changes were observed in subjects who were weight stable post-intervention, thus 

suggesting that ghrelin levels are only altered if changes in body mass occur. Indeed, data 

from recent studies measuring changes in acylated ghrelin concentration with long-term 

exercise training in overweight adolescents paralleled with previous findings that exercise 

training does not affect ghrelin concentrations in the absence of weight loss (Jones et al. 

2009; Kim et al. 2008). The mechanisms underlying this response remain to be 

elucidated.  

 

1.6.5.4 Effects of Exercise on Gut Peptides: PYY 

 

Less is known regarding the response of other gut hormones to exercise. Only few 

investigators have examined the effects of exercise on alterations in PYY. Several studies 

have demonstrated increases in fasting and postprandial levels of other satiety hormones, 
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e.g. pancreatic polypeptide (PP) and GLP-1 after exercise (Unick et al. 2010; O’Connor 

et al. 1995), but there is a paucity of data on PYY. Emerging evidence is suggesting that 

exercise may stimulate PYY levels in a direction to suppress energy intake, which may 

provide a physiological explanation for reduced or no changes in food intake following 

exercise bouts. Ueda et al. (2009b) and Broom et al. (2009) recently reported that PYY 

levels were increased after an acute bout of moderate exercise, followed by a concomitant 

reduction in energy intake (Ueda et al. 2009b). With regard to long-term exercise training, 

one study has observed an increase in PYY concentrations after an 8-week aerobic 

exercise (Jones et al. 2009). Collectively, these findings suggest that PYY may regulate 

appetite during and after exercise, but more research is required to establish the role of 

exercise in modulating PYY concentrations. 

 

 

1.7 Issues Associated with Measurements of Energy Intake 

 
The measurement of food intake is crucial to the effort in understanding how exercise can 

influence energy intake, however this has proved to be very difficult in practice. The 

optimal experimental protocol is likely to remain elusive because of the complex and 

multifaceted nature of eating behaviour (Blundell et al. 2010). Reproducibility, 

sensitivity, and feasibility are among the issues that are often associated with the methods 

in assessing energy intake in laboratory studies. In addition, behavioural components such 

as dietary restraint and disinhibition should be taken into account when recruiting subjects 

for appetite-related studies.  

 
1.7.1 Dietary Record 

 
The traditional way of measuring food intake in the free living setting is by using the diet-

diary method, in which subjects are asked to record weight and type of food consumed on 

a daily basis for up to 7 days. Provided all food and leftovers are named and weighed and 

accurately, and the normal feeding pattern is not altered in the process, this procedure can 

produce a reliable and valid estimate of food intake (Bingham 1987). However, a 

reporting bias in measuring food intake with this method can easily affect the outcome of 

intervention studies (Lissner et al. 1998). Under-reporting is the most common bias, with 

discrepancies between reported energy intakes and measured energy expenditures 

(measured with the doubly labelled water method) by as much as 20-50% below what is 

normally ingested in both lean (de Castro 2000; Goris & Westerterp 1999) and obese 
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individuals (Goris et al. 2000). Thus, measurements of food intake using dietary records 

need to be scrutinised with care to ensure that the right conclusions are drawn. 

 

1.7.2 Buffet-Style Meals 

 

Laboratory-based, buffet-type meals serve as a popular alternate to the dietary record 

method, in which subjects are provided with a selection of food to choose from, and food 

weighing is done in a covert manner. Although the use of a buffet-type meal is not fully 

representative of free-living conditions and can lead to overfeeding, it can allow 

measurements of ad libitum energy and macronutrient intakes and can be used to assess 

short-term energy compensation, with subjects being blinded to real purpose of the buffet 

(Blundell et al. 2010). With little contamination from external influences, it is considered 

a valid and reliable method to assess feeding behaviour (Arvaniti et al. 2000; Stubbs et al. 

1998).  

 
 
1.7.3 Appetite Questionnaires (VAS) 

 
Appetite is a subjective concept used as a proxy of food intake and can be defined as a 

range of sensations associated with food consumption (Martins et al. 2008a; Blundell 

1991). Visual analogue scales (VAS) are the most common form of assessment to 

quantify subjective ratings of appetite, using appetite-related terminologies developed by 

Rogers and Blundell (1979). VAS exhibits a good degree of reliability and 

reproducibility, sensitive to exposure of food components, and is predictive of energy 

intake in experimental conditions (Flint et al. 2000; Stubbs et al. 2000). When used 

appropriately, VAS can provide useful information when combined with other aspects of 

feeding behavior (Stubbs et al. 1998). 

 

1.7.4 Biomarkers 

 
Biomarkers can be either indicators of appetite, or they can be proven to be causal factors 

of appetite (Delzenne et al. 2010).  The use of gut peptides as biomarkers for feeding 

behaviour is rapidly gaining interest as these gut signals form an integral part in the 

mechanisms behind the regulation of food intake and energy balance in humans. For a 

biomarker to be useful, it should be feasible, reproducible, sensitive, and specific (de 

Graaf et al. 2004). Feasibility represents relatively obtainable results by using methods 

that are both ethical and minimally invasive, and can be used to assess the effects of 
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interventions within a reasonable time. The sensitivity and specificity reflect the strength 

of the relation between marker and measures of appetite (de Graaf et al. 2004).  

Biomarkers however, cannot be used on their own to quantify satiety or hunger, but 

together with other measurements they can be indicators of appetite and food intake 

(Delzenne et al. 2010). 

 

1.7.5 Computer-Based Procedure 

 
Recently new to the assessment of food intake is a computer-based procedure. Several 

investigators have employed this innovative approach (Brunstrom & Rogers 2009; 

Finlayson et al. 2009), which can be designed to assess various indexes associated with 

food intake and feeding behaviour. Traditionally, methods such as test meals or buffet 

meals and visual analogue scales are used to assess the acute effects of exercise on food 

intake or preference. However, these methods are not designed and may not be sensitive 

enough to detect more subtle exercise-induced alterations in the hedonic measures as well 

as behavioural and cognitive processes that influence food intake (Finlayson et al. 2009). 

Furthermore, computer-based procedures allow for assessments using a wide array of 

food items that is usually impractical with buffet meals, in a relatively short amount of 

time.  

 

1.7.6 Restraint and Disinhibition 

 

Appetite is not only regulated by physiological processes, but also from external stimuli 

arising from food and the surrounding environment such as hedonic, psychological, social 

and cultural stimuli. In the face of current obesity pandemic, restricting food intake in 

order to maintain or lose weight is becoming an important behavioural concept (Martins 

et al. 2008b). Dietary restraint refers to the extent to which individuals are concerned with 

their body weight and it characterised by self-imposed resistance to internal and external 

cues that regulate feeding behaviour, e.g. dieting (Herman & Mack 1975). It is therefore a 

common practice to exclude restrained eaters from appetite-related studies on the basis 

that they have tendencies to exhibit atypical eating behaviour, as well as showing altered 

metabolic (Westerterp-Plantega et al. 1992) and endocrine functions (Pirke et al. 1990). 

Disinhibition reflects a tendency towards over-eating and failure to maintain dietary 

restriction. It includes eating in response to negative emotions (e.g. distressed, upset), 

over-eating when others are eating, not being able to resist stimulation to eat and over-

eating in response to the palatability of food (Bryant et al. 2008). In relation to appetite, 
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individuals with high disinhibition scores are associated with a higher liking for and 

consumption of high-fat foods, sweet foods and alcohol, and negatively associated with 

the consumption of vegetables, fruit and high-fibre bread (Contento et al. 2005). 

Disinhibition has also been linked to an increased tendency to eat when people are 

subjected to various challenges or interventions that threaten to disturb energy balance 

(i.e. exercise) (Bryant et al. 2008). This raises the likelihood of exercise-induced 

compensation in energy intake in exercise studies.  

 

1.7.7 Attachment Behaviours 

 

Attachment behaviour is a broad theory of social development that describes the 

representational model of close interpersonal relationships, and it reflects early-life 

interactions with primary caregivers. Attachment behaviours are interpersonal actions that 

are intended to increase an individual's sense of security, particularly in times of stress or 

need (Ravitz et al. 2010). These are assessed in terms of two dimensions (i.e. anxiety 

about abandonment and avoidance of intimacy) and a high score on one or both of these 

dimensions is taken as evidence of an insecure attachment orientation (Brennan 1998). 

Adult attachment is becoming increasingly important in psychosomatic research because 

attachment influences many biopsychosocial phenomena, including social functioning, 

stress response, psychological and well-being (Ravitz et al. 2010). It was recently noted 

that attachment anxiety is evident in eating behaviour, and is particularly associated with 

disinhibited eating and increase in BMI, manifested by the tendency to seek comfort 

through overeating (Wilkinson et al. 2010). Over time, this behaviour may lead to a 

positive energy balance and weight gain. Identifying attachment orientation as a 

potentially important aetiology of disinhibited eating may provide insight into the many 

behavioural aspects of feeding behaviour. 
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1.8 Aims of Thesis 

 

A large amount of evidence has shown that exercise is effective at ameliorating metabolic 

perturbations during postprandial state by lowering postprandial triglyceridaemia and 

insulinaemia as well as enhancing fat oxidation. However, most of the effects observed 

have been in absence of ad libitum food consumption. The question of whether exercise is 

as potent in favourably altering postprandial metabolism when meals are consumed ad 

libitum as compared to standardised laboratory test meals, is currently unknown as no 

such work has been published. Furthermore, given that increase in food intake being the 

most common form of compensatory response to exercise-induced energy deficits (King 

et al. 2007), this could pose a potential limitation on the effectiveness of exercise in 

inducing negative energy and fat balance. Therefore, the first experimental chapter 

(Chapter 3) of this thesis was aimed to determine the effects of exercise on postprandial 

metabolism in response to ad libitum feeding, in an effort to replicate free-living 

conditions more closely. 

 

Evidence from the short-term studies on exercise and energy intake is equivocal, with 

most studies pointing to a loose coupling between exercise and energy intake (Hopkins et 

al. 2010). It is likely that the body cannot detect small changes in energy balance, which 

might explain why some acute exercise studies failed to observe any compensation in 

energy intake. Therefore it is possible that there is a threshold for energy deficit to be 

achieved before the compensation drive in energy intake is kicked in. The aim of Chapter 

4 is to investigate the effects of different levels of exercise-induced energy deficits on ad 

libitum food consumption, appetite behaviour and gut peptide responses (i.e. ghrelin, 

peptide YY). 

 

The published literature present strong evidence that exercise, when undertaken in the 

fasted state, is very effective in inducing negative fat balance. However, as food is 

consumed under free-living conditions, and considering that fat oxidation can be 

suppressed following carbohydrate consumption, this can potentially reverse the negative 

fat balance induced by exercise. Thus, in determining the optimal exercise condition to 

maximise negative fat balance, the entire day should be evaluated, from pre-exercise, 

throughout post-exercise periods and subsequent meal intake. Chapter 5 was designed to 

address the gaps in the literature relating to maximising periods of negative fat balance 
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across daily meals and exercise periods, by investigating the effects of timing of meal 

around exercise period on postprandial metabolism as well as feeding behaviour.  

 

In human feeding behaviour, it is well known that the stimulus to eat is can be influenced 

by non-metabolic/behavioural (e.g. hedonics, reward, restraint) factors, which can 

sometime outweigh internal state signals. Because of this, the measurement of energy 

intake using the traditional buffet-style meal method can pose limitations in appetite-

related studies. Therefore, in the final experimental chapter of this thesis, a pilot study 

was designed to determine the factors that are associated with feeding behaviour using a 

novel, computer-based approach, in response to acute exercise. 

 

And finally, because lean individuals seem to be able to maintain stable body weight 

better than their overweight counterparts (Hankinson et al. 2010), and perturbations in 

postprandial metabolism are a common feature in obesity (Gill et al. 2004; Lewis et al. 

1990) and men (Knuth & Horowtiz 2006; Kolovou et al. 2006), this particular subset of 

the population was therefore chosen for most of the investigations. 
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CHAPTER 2 

 
General  Methods 

 

 

This chapter provides a description of all general methods that have been implemented in 

the following experimental chapters. Methods specific to individual chapters will be 

highlighted as such.  Methods used for statistical and data analyses are not reported here 

but rather are described separately in each experimental chapter.   

 

2.1 Subject Recruitment and Screening  

 

Subjects were recruited from the student population of University of Glasgow and 

residents in the Glasgow area via local advertising and advertisement websites. All 

subjects were required to attend a screening visit at the university prior to participation to 

ensure they met with the inclusion criteria of each study. They were provided with an 

information sheet describing the aim of the study, the experimental procedures involved 

and any potential risk or discomfort associated with these procedures.  Written, informed 

consent was recorded for each subject. Questionnaires detailing the subject’s past and 

present health status and family history of disease were completed (Appendix A). Resting 

blood pressure was measured using an automated sphygmomanometer (Omron 

Healthcare, Inc., Illinois, USA) and fasting finger-prick blood samples were taken to 

determine glucose and total cholesterol levels using Reflotron® Plus instrument and 

Reflotron® Test reagent strips. 

 

2.2 Anthropometric Measurements 

 

2.2.1 Standing Height 

 

Height was measured using the stretch stature method on a stadiometer (Seca, Hamburg, 

Germany). Stature is the maximum distance from the floor to the highest point of the 

skull when the head is held in the Frankfort plane position (Ross & Marfell-Jones 2001). 

Measurement was recorded to the nearest 0.1 cm. 
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2.2.2 Body Mass 

 

Body mass was measured in light and minimal clothing and without shoes using a 

balanced-beam scale. Measurement was recorded to the nearest 0.01 kg. Body mass was 

measured using the same balance scale throughout all experimental studies. BMI was then 

calculated at weight in kilograms divided by the square of height in meters.  

 

2.2.3 Circumference Measurement 

 

Waist and hip circumference were measured in contact with the skin using a flexible, steel 

tape measure (Supralip®160, West Germany). Waist circumference was taken with 

subjects standing with feet shoulder-width apart and arms on the side and landmarked as 

the narrowest part of the torso, mid-way between the inferior margin of lowest rib and the 

iliac crest with the abdominal muscles relaxed. Hip circumference was taken with the 

subjects standing with feet together and arms the side and landmarked as the maximum 

circumference over the trochanters (buttocks) (Lean et al. 1995). The tape was placed 

horizontally directly on the skin with respect to both landmarks. All measurements were 

taken at the end of a normal expiration, with repeat measurements. If the two 

measurements disagreed by more than 1 cm, a third measurement was made. 

 

2.2.4 Skinfold Thickness Measurement 

 

A skinfold thickness is defined as a measure of the double thickness of the epidermis, 

underlying fascia and subcutaneous adipose tissue on different standard anatomical sites 

around the body. The following four sites were used according to Durnin and Womersley 

(1974) who validated the sum of four skinfold thickness against densitometry and devised 

sex- and age-dependent population-based linear regression equations to estimate total 

body density:  

 

1) Biceps : vertical skinfold raised on the anterior aspect of the biceps; 

2) Triceps: vertical skinfold raised on the posterior aspect of the triceps, mid-way 

between the olecranon process and the acromion process (shoulder) when the hand is 

supinated; 
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3) Subscapular: oblique skinfold raised 1 cm below the undermost tip of the inferior 

angle of the scapula at approximately 45° to the horizontal plane following the natural 

cleavage lines of the skin; 

4) Suprailiac: diagonal fold raised immediately superior the crest of the ilium on a 

vertical line from the mid-axillary line  

 

Skinfold sites were landmarked on the body prior to measurement so that repeat measures 

can be taken at the same place. The skin at each respective site was pinched up firmly 

between thumb and forefinger to raise a double layer of skin and the underlying adipose 

tissue, excluding the muscle tissue. The calipers were then applied to the fold with 1 cm 

between the edge of fingers and the nearest edge of the calliper and a reading in 

millimeters (mm) was recorded. All skinfold measures were taken on the right side of the 

body with skinfold callipers (Holtain Ltd., Crymych, UK). Measurements were recorded 

in duplicate for each site, not taken consecutively but by running through all sites once 

and back again as to allow the skin to regroup between measurements. If the readings for 

each site were more than 5% apart, a third measurement would then be taken, and the two 

closest measurements were taken for calculation.  The sum of the four skinfolds (Σ4SF = 

biceps + triceps + subscapular + suprailliac) was calculated. Relative fat mass was 

derived from the formula of Durnin and Womersley (1974) equation for estimating body 

density in combination with Siri's equation for estimating body fat percentage (Siri 1961): 

 

Density (g.cm3) = c – m (log Σ4SF)   (Eq. 2.1) 

 

where: 

c and m = standard age and sex-specific coefficients 

Σ4SF = sum of all four-site skinfolds (mm) 

 

Once the density was calculated, the Siri equation was used to estimate body fat 

percentage: 

 

Body fat percentage (%)  =  [(4.95/body density) – 4.5] x 100 (Eq. 2.2) 

where: 

D = density 

4.95 and 4.5 = constants 
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2.3 Incremental Submaximal Exercise Test 

 

In Chapters 3, 4, and 5, a submaximal incremental exercise test was performed to predict 

maximum oxygen consumption ( 2OV& max) for each subject prior to commencing main 

trials. The test was designed to exercise subjects through a range of intensities from 

moderate to vigorous but not maximum. The test consisted of four, continuous 5-min 

stages of walking on a treadmill to determine the relationship between gradient and 

oxygen consumption at self-selected walking speed of about 5 – 6 km·h-1 (Figure 2.1). 

The first stage of the test was performed on a level treadmill and gradient was increased 

by 2.5 – 3.0% at the end of every stage depending on subject’s heart rate response in the 

previous stage: if heart rate exceeded 100 beats per minute in the first stage, a 2.5% 

increment was used for subsequent stages. Each stage lasted five minutes with expired air 

being collected into Douglas bags during the last two minutes for the determination of 

oxygen uptake and carbon dioxide output using the Douglas bag method (described in 

section 2.4.2). Five-minute stages were performed to ensure subjects were in steady state 

during expired air collection periods. Heart rate was recorded continuously during the test 

and the Borg scale was used to assess subject’s perceived exertion simultaneously with 

the expired air collections at the end of every stage. The test was terminated if subject’s 

heart rate reached 85% of his predicted maximum heart rate. At the end of the test, the 

oxygen uptake at each stage was plotted against the heart rate and gradient to estimate the 

gradient and speed necessary to elicit an intensity corresponding to 50% 2OV& max during 

the main trials. 

 

 

 

 

 

 

Time (minutes) 

 
Figure 2.1: A schematic diagram of a 4-stage submaximal incremental test (black boxes 
represent expired air collection and heart rate measurements). 
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2.3.1 Heart Rate Monitoring 

 

Exercise heart rates were monitored using a Polar® heart rate telemetry system which 

consisted of a heart rate transmitter and a wrist receiver (POLAR, Kempele, Finland) 

during the submaximal exercise test and all exercise trials. Exercise heart rates were 

obtained at 30-second intervals during the last one minute of every expired air collection 

stage and the average was then calculated. 

 

2.3.2 Rating of Perceived Exertion (RPE) 

 

RPE was determined using a 15-point category scale (from 6 to 20) introduced by Borg 

(1970), at the end of every expired air collection stage in all exercise bouts by presenting 

the subjects with the scale within easy reach and asking them to point to the number that 

corresponded to their respective level of effort and exertion. 

 

 

2.4 Expired Air Measurements 

 

2.4.1 Resting Metabolic Rate  

 

Resting metabolic rate (RMR) was measured at baseline using open circuit indirect 

calorimetry system with a ventilated hood (Oxycon Pro, Jaeger GmbH, Hoechberg, 

Germany) (Figure 2.2). The apparatus included a high-speed differential paramagnetic O2 

sensor and an infrared absorption CO2 analyser. Before each test, the gas analyser was 

calibrated using an automated calibration procedure, as provided by Jaeger, whereby a 

calibration gas mixture (16% O2, 5% CO2) was introduced to the system. A bi-directional 

flow-volume sensor (consisting of an amplifier, Triple V, and the pressure transducer) 

calibration was also performed using a calibrated 3-liter syringe connected to the Triple V 

assembly. A series of six complete pumps of the syringe was repeated until the percent 

difference between the current and the previous volume calibration was less than 1%. 

Further corrections were made for barometric pressure on the system. 

 

In Chapter 3 and 4, RMR measurement was performed prior to commencing main trials to 

help estimate energy requirements for the 3-day standardised diet for each subject. For 

RMR determination, subjects arrived in the laboratory in the morning following a 12-hour 
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overnight fast. Before the start of each measurement, each subject was asked to lie quietly 

in a semi-recumbent position for 10 min in a temperature-controlled (21°C – 23 °C) 

environment. Next, a transparent a ventilated plastic hood connected to the gas mixing 

chamber by corrugated flexible plastic tubing was placed over the subject’s head. 

Ventilation was run through the system by means of the flow volume sensor unit. Rates of 

oxygen uptake ( 2OV& ) and carbon dioxide production ( 2OCV& ) were obtained at intervals 

of 1 min. Measurement was performed for 20 minutes and the last 15 minutes of steady-

state values were averaged to determine RMR.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Resting metabolic rate / substrate utilisation measurement using the open-circuit 
indirect calorimetry system with a ventilated hood 
 
 
 
2.4.2 Postprandial Substrate Utilisation 

 

For measurement for substrate utilisation during the postprandial period (in Chapters 3 

and 5), the same procedure described above was run through with measurements of 2OV&  

and 2OCV& taken every minute for 15 minutes and the last 10 minutes of steady-state 

values were averaged.  

 

2.4.3 Measurements of Expired Air During Exercise  

 

Expired air during exercise was collected using the Douglas bag method, which involves 

the collection of exhaled air in large, impermeable canvas bags and subsequent 

measurement of gas fractions and expired volumes. The bags should be completely 
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emptied using an exhaust pump prior to usage. Subjects were fitted with a rubber 

mouthpiece and breathed ambient air through a two-way non-rebreathing valve (Kansas 

City, MO) which was connected to a previously evacuated 100-liter Douglas bag (Hans 

Rudolph P/N 112377, Hans Rudolph Inc., Kansas City, USA) on the expired side by a 1 

m corrugated flexible plastic hose of a 3.2 cm diameter. A nose clip was worn to prevent 

nasal breathing. After gas collection, a small quantity of air was extracted from the used 

Douglas bag at a constant flow rate (300 ml·min-1), measured by a flow meter and then 

passed into a gas analyser (Servomex, Sussex, UK) to determine fractions of O2 and CO2 

in the bag. The analyser was calibrated prior to each test using certified reference gases 

(BOC Gases, Surrey, UK) of known concentration (e.g. 100% nitrogen, 16% O2, 6% 

CO2). The remaining volume of air in the Douglas bag was vacuumed out using a dry gas 

meter (Harvard Apparatus, Kent, UK). Expired air volumes and temperature were 

recorded. Expired gas fractions and volumes were then corrected for standard temperature 

(0ºC) and barometric pressure at sea level (760 mmHg) to determine 2OV&  (STPD), 

2OCV&  (STPD), and respiratory exchange ratio (RER). RER was calculated as 

2OCV& divided by 2OV& . 

 

2.4.4 Expired Air Analysis  

 

Calculation of carbohydrate and fat oxidation rates, and energy expenditure were 

estimated from 2OV&  (STPD) and 2OCV&  (STPD) according to stoichiometric equations of 

Frayn (1983). According to the formula, O2 uptake and CO2 production can be assumed 

as: 

 

2OV&  (l·min-1)  = 0.746 c   +  2.03 f  +  6.04 n  (Eq. 2.3) 

 

2OCV& (l·min-1 ) = 0.746 c  +  1.43 f  +  4.89 n   (Eq. 2.4) 

 

 

where; 

c = carbohydrate oxidation in grams per minute 

f = fat oxidation in grams per minute 

n = urinary nitrogen excreted in grams per minute 
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For carbohydrate oxidation, a 2OV&  of 0.746 litres is associated with glucose oxidation but 

increases to 0.829 litres if glycogen is preferentially oxidised. Using equations based on 

glycogen as a fuel source in a situation where glucose oxidation predominates may lead to 

a substantial underestimation of carbohydrate oxidation (Jéquier et al. 1987). These 

equations have been derived assuming that there is an absence of net lipogenesis, 

gluconeogenesis, or ketogenesis or any acid-base disturbances. These equations were then 

solved for c grams of carbohydrate and f grams of fat oxidised per minute: 

 

f (g·min-1) = 1.67 2OV&  – 1.67 2OCV&  – 1.92 n  (Eq. 2.5) 

 

c (g·min-1) = 4.55 2OCV& – 3.21 2OV& – 2.87 n  (Eq. 2.6) 

 

Nitrogen excretion rate was assumed based on data from similar studies in the literature to 

be 0.00011 g·kg−1·min−1 throughout all trials (Romijn et al. 1995; Flatt et al. 1985). 

Energy expenditure (EE), expressed in kcal·min-1, was calculated as the sum of each 

macronutrient oxidation rate (g.min-1) multiplied by the appropriate conversion factor 

(glucose = 3.7 kcal·g-1; fat = 9.3 kcal·g-1) (Livesey & Elia 1998).  

 

EE (kcal·min-1) = f (g·min-1) x 9.3  + c (g·min-1) x 3.7 (Eq. 2.7) 

 

 

2.4.5 Measurement of Exercise Energy Expenditure 

 

Upon arrival for each exercise session, subjects were required to sit quietly on a chair 

while a resting expired air sample was collected for 10 minutes using the Douglas bag 

method. This baseline measurement would then be used to calculate resting energy 

expenditure and to determine the net energy expenditure of exercise above the resting 

value. The intensity at which subjects exercised was estimated individually based on the 

previous submaximal exercise test. Before the start of every exercise session, subjects 

were instructed to perform a 5-minute warm-up at a speed one step lower than their pre-

determined walking speed and on a horizontal gradient. During the actual exercise, speed 

was adjusted to match the same walking speed that was used in the prior submaximal 

exercise test and a gradient predicted to elicit 50% of 2OV& max. Expired air was collected 

for 2 min at every 13 – 15 minute intervals of exercise time to estimate the energy cost of 

exercise. If needed, the treadmill gradient was adjusted after each expired air collection to 
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ensure subject was working within required intensity. The values of expired 2OV& , 2OCV& , 

and minute ventilation from the 2-min expired air sample were then used to calculate the 

rate of rates of fat and carbohydrate oxidation as well as energy expenditure during 

exercise. Net energy expenditure of exercise was calculated by subtracting resting energy 

expenditure values from the gross energy expenditure of exercise. The exercise session is 

called to end once the required exercise time or energy expenditure was reached, usually 

after the final expired air sample was collected. Once the bout of exercise was completed, 

the treadmill gradient was returned to horizontal before it was stopped completely. 

Subjects were immediately seated on a chair with mouthpiece and nose clip still in place 

and recovery expired air was collected continuously for 15 minutes in three sets: 0-5, 5-10 

and 10-15 minutes. 

 

 

2.5 Dietary Assessment 

 

2.5.1 Dietary Restraint 

 

In Chapters 3, 4, 5 and 6, dietary restraint in subjects was evaluated using two types of 

questionnaires, the Three-Factor Eating Questionnaire (Stunkard & Messick 1985) and 

the Dutch Eating Behaviour Questionnaire (DEBQ) (Van Strien et al. 1986). These 

questionnaires were administered to subjects during preliminary testing to determine their 

attitude in relation to food intake. The restraint subscales in both questionnaires have been 

shown to measure the actual restriction of food intake in everyday life (Laessle et al. 

1989), therefore these two subscales were employed to establish if a subject was a 

restrained eater. A score in excess of the midrange for each restraint assessment is often 

deemed to indicate increased tendency towards dietary restraint (Stubbs et al. 2002).   

 

2.5.1.1 Three-Factor Eating Questionnaire (TFEQ) 

 

Dietary restraint was determined using the restraint scale of the TFEQ (Appendix B). The 

51-item instrument contained 36 items with a yes/no response format, and 15 items on a 

1-4 response scale used to measure three dimensions of eating behaviour: 1) cognitive 

restraint of eating, 2) disinhibition, and 3) hunger. Cognitive restraint (21 items) measures 

dieting behaviour and restrained eating in order to influence body weight and body shape 

and high scores show a high restraint. Disinhibition (16 items) measures episodes of 
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losing control of dietary restraint and overeating. Perceived hunger (14 items) measures 

self-reported hunger and food cravings. The validity of and reliability of this instrument 

has been established (Laessle et al. 1989). 

 

2.5.1.2 Dutch Eating Behaviour Questionnaire (DEBQ) 

 

DEBQ (Appendix C) was constructed to reflect three psychological dimensions of eating 

behaviour: restraint theory, externality theory, and emotionality theory (Elfhag & Morey 

2008).  The instrument consists of 33 items: restrained eating (10 items), external eating 

(10 items), and emotional eating (13 items). Emotional eating reflects an inclination to eat 

in response to negative emotions such as depression, disappointments and feelings of 

loneliness; e.g. ‘Do you have the desire to eat when you are irritated?’. External eating 

displays susceptibility to eating more in response to external food cues such as the sight, 

smell and taste of food; e.g. ‘If food smells and looks good, do you eat more than usual?’. 

Scores were rated on a 5-point Likert scale with categories ranging from ‘never’ (1) to 

‘very often’ (5). Both reliability and validity of this instrument have been proven to be 

adequate (Williamson et al. 2007).   

 

2.5.2 Standardised Diet 

In Chapters 3 and 4, subjects were instructed to consume a controlled diet 3 days prior to 

each experimental trial. The purpose of this diet was to standardise energy and 

macronutrient intakes. The measured RMR was multiplied by an activity factor of 1.55, 

which corresponds to the physical activity level of a non-active adult (Shetty 2005; FAO 

1985) to estimate total daily energy expenditure for each subject. To ensure that all 

subjects consumed the right amount of calories, all meals were provided throughout the 

study. The diet was designed to provide 20% of the daily energy intake at breakfast, 35% 

at lunch and 45% at dinner and consisted of whole and frozen foods (e.g. cereal, bread, 

fruits, yogurt, pasta, etc.). The macronutrient ratio of the diet was formulated to consist of 

48% carbohydrate, 37% fat and 15% protein to match the typical Scottish daily 

macronutrient intake (DOE 2004). Energy, protein, lipid, and carbohydrate intake were 

calculated using nutrient information obtained from respective online sources or food 

labels. Prior to the provision of each three-day diet, subjects were asked to complete a 

questionnaire giving information on their preferred i) breakfast cereal, ii) type of milk, iii) 

type of bread, iv) choice of sandwich filling, v) crisp and yogurt flavour, vi) type of pasta 

meal, vii) tea and coffee consumption and vii) food dislikes and allergies. Foods were 
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individually weighed and rationed to provide the calculated energy intake and then 

packaged and labelled according to meal types (breakfast/lunch/dinner) and days (1/2/3) 

(Figure 2.4). 

 

 In addition to the main meals for each day, subjects were provided with a pre-weighed 

bottle of sugar-free fruit squash to be consumed freely and tea or coffee if needed. They 

were also given two optional snacks, consisted of an apple and a bag of crisps, which they 

were allowed to consume should they experience extreme hunger. Subjects were 

instructed to consume all food provided and to return used containers at the end of the 

third day including any uneaten food. If subjects had not consumed all of the food or 

squash provided or if they had eaten any of the snacks during the three days leading up to 

the first experimental trial, this information was recorded and the diet was adjusted 

accordingly before being provided again for the days preceding subsequent trials. The 

three-day diet provisions were identical for all trials. They were instructed to refrain from 

alcohol throughout the intervention and not to consume foods other than what was 

provided.  An example of the three-day diet can be seen in Table 2.1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Individually-packed and weighed food provided for standardised diet 
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Table 2.1. An example of foods provided during the three days preceding each experimental trial. 

 Day 1 Day 2 Day 3 

Breakfast Crunchy nut cornflakes Crunchy nut cornflakes Weetabix 

 Wholemeal roll Wholemeal roll Wholemeal roll 

 Margarine* Margarine* Margarine* 

 Strawberry jam Strawberry jam Banana 

 Semi-skimmed milk Semi-skimmed milk Semi-skimmed milk 

Lunch Wholemeal bread Wholemeal rolls Wholemeal bread 

 Margarine* Margarine* Margarine* 

 Cheese slices Cheese slices Cheese slices 

 Chicken slices Tuna & sweetcorn Chicken slices 

 Clementines Clementines  Apple 

 Flapjack Mars bar Twix bar 

Dinner Lasagne Bolognese bake Chicken and potatoes 

 Wholemeal rolls Chicken soup Hazelnut yogurt 

 Margarine* Wholemeal roll Wholemeal roll 

 Jaffa cake bars Chocolate mousse Margarine* 

 Grapes Grapes Grapes 

Drink Orange squash Orange squash Orange squash 

Snacks 1 x Apple 1 x Apple 1 x Apple 

 1 x packet crisps 1 x packet crisps 1 x packet crisps 

* polyunsaturated fat margarine 

 

2.5.3 2-Day Dietary Record 

 

In Chapter 5, a 2-day food intake diary was provided to subjects for the purpose of 

recording their food intake for two consecutive days prior to commencing each trial. They 

were given verbal and written instructions on how to keep the diet records and were 

instructed to record as detailed as possible every item that they either ate or drank, the 

time they ate it, the amount they ate in grams, brand names, and recipes. Subjects were 

then reminded to replicate the 2-day dietary intake for subsequent trials. Diets were 

analysed using a computerized version of food composition table (CompEat Pro; 

Nutrition Systems, Banbury, UK). 
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2.6 Metabolic Day Assessment 

Subjects underwent metabolic day assessments in Chapters 3, 4, and 5. In the morning 

after a 12-hour fast, subjects reported to the Metabolic Suite. They rested quietly for 10 

minutes and RMR was measured for 25 minutes by the ventilated hood system. 

Afterwards, a cannula was inserted into an antecubital vein in a forearm for the purpose of 

blood sampling. Buffet-style breakfast, lunch, and dinner were served at specific times, 

according to study protocols stated in Chapters 3, 4, and 5. Appetite sensations, 

postprandial blood samples and substrate utilisation were obtained at specific intervals 

throughout the entire day. Apart from the test measurements, subjects were free to do as 

they pleased while being the metabolic suite, e.g. watching television, reading, working or 

relaxing.  

 

2.6.1 Ad-Libitum Energy Intake Assessment 

 

Buffet-style breakfast, lunch and dinner meals were provided during metabolic 

assessment days to determine ad libitum food intake. Foods were provided in excess of 

typical consumption and subjects were instructed to eat according to their appetite until 

they were comfortably full. All meals were consumed in isolation. An example of types 

and amounts of food served for breakfast, lunch, and dinner are presented in Table 2.2.  

Food items were cut into identical portions whenever possible to disguise the amount 

being offered which could potentially affect eating behaviour, e.g. bread and fruits were 

cut into smaller slices to avoid subjects feeling obliged to finish the food if it was served 

as a whole. Time allocation for meal consumption was 15 minutes for breakfast and 20 

minutes for both lunch and dinner. Subjects were blinded to the purpose of the buffet-type 

meal setting, which was designed to assess ad-libitum energy intake, to avoid conscious 

eating (de Castro 2000). The foods were covertly weighed before being served to the 

subjects and reweighed after completion of meal to quantify the intake of each type of 

food. Energy, protein, lipid, and carbohydrate intake were calculated using information on 

food labels and food composition tables when food labels were not available. Water 

consumption as well as reading and watching television were not permitted during all 

meals as these activities have been shown to influence food intake (Stroebele & De 

Castro 2004). Ad libitum access to water was made available throughout the day after the 

completion of each meal. All food items were identical for all subjects and across all 

trials. Additional measures were taken to ensure the foods were served in a standardised 
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setting for all the trials to avoid any bias in eating behaviour such as using neutral-colored 

tablewares (e.g. white), presenting food in the same dishes for the same type of meals as 

well as scheduling meals at the same time of the day in every trial. Examples of a buffet-

type meal presentation are as in Figure 2.4. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.4. Examples of buffet-type meals 
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Table 2.2. An example of foods provided during ad libitum buffet meals. 

 

Period Food Approx. amount  

Breakfast Cornflakes 350 g  

 Weetabix 500 g 

 Coco Shreddies 450 g 

 Strawberry jam 80 g 

 Orange marmalade 80 g 

 Margarine* 60 g 

 Low-fat croissants 3 large pieces 

 Wholemeal toast 6 slices 

 Semi-skimmed milk 1 pint 

   

Lunch Spaghetti bolognaise 

Oven chips 

1000 g 

400 g 

 Salad 

Salad dressing 

Low-fat yogurt 

150 g 

100 g 

700 g 

 Crisps 150 g 

 Clementines 

Banana 

3 whole fruit 

2 whole fruit 

 Chocolates 100 g 

 

Dinner 

 

Chicken arrabiata 

Baguette 

Margarine* 

Crisps 

Mini flapjacks 

Grapes 

Apples 

 

900 g 

Whole foot long 

60 g 

150 g 

120 g 

150 g 

2 whole fruit 

* polyunsaturated fat margarine 
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2.6.2 Appetite Rating Assessment 

 

Visual analogue scales (VAS) were used to assess subjective appetite sensations in 

Chapters 4 and 5. It was consisted of a 100-mm line in length with words anchored at 

each end expressing the most positive and negative ratings, e.g. ‘I am not hungry at all’ (0 

mm) / ‘I have never been more hungry’ (100 mm). Subjects were instructed to mark a 

vertical line on the 100 mm scale anywhere between the two extreme ratings, which they 

considered to indicate the degree of the subjective feeling being rated. The VAS score 

was quantified by measuring the distance in millimeters from the 0 mm point to the 

position of mark. The questionnaire that was used consisted of five scales adapted from 

Flint et al. (2000) (Appendix D): 

 

1. How hungry do you feel now? 

2. How full do you feel now? 

3. How satisfied are you now? 

4. What is your desire to eat now? 

5. How much can you eat now? 

 

Subjects were given a booklet consisting of several sets of VAS questionnaires, each to be 

completed at 30 or 60 min intervals up until dinner was served during the metabolic 

assessment day. Each page of the questionnaire was folded out of view after each rating 

assessment so they could not refer to previous ratings when marking the VAS. All 

appetite rating assessments were administered prior to each blood venous sample 

collection. The areas under curve (AUC) were calculated for each time points to measure 

the response of each appetite rating over time using the trapezoidal method.  

 

 

2.7 Daily Physical Activity Assessment 

 

In Chapter 4, daily physical activity was objectively measured using a uniaxial 

accelerometer for three days prior to metabolic assessment day. The Actitrainer model 

(Actigraph, FL, USA) is a small (8.5 cm x 3.2 cm x 1.5 cm) and lightweight device that is 

specially designed to detect the range of movement that corresponds to most activities 

that humans perform (Figure 2.6). The Actitrainer has an internal time clock and 



  Chapter 2 | 83 

 

extended memory and is able to record and store the magnitude of acceleration and 

deceleration associated with movement. The actual data collected by the Actitrainer is a 

series of numbers representing the intensity of activity in each epoch; translated as raw 

activity counts and steps. Raw physical activity data can be downloaded to a personal 

computer via a reader interface unit and later summarised into duration (time spent doing 

physical activity) and intensity (stepcount·min-1). Subjects were instructed to wear the 

accelerometers during waking hours (to be removed during water-based activities e.g. 

bathing) for three consecutive days, which was to put in on when they get out of bed in 

the morning and to take it off when to go to bed at night. The Actitrainer was worn at 

waist level on the right side, clipped to a belt or trousers. Subjects were given detailed 

instructions including how to care for and wear their Actitrainer as well as a log sheet to 

provide details of wearing time, and activity during non-wearing time for each day. The 

device was initialized using 1-min epochs for data collection. A cut-off point of <100 

counts·min-1 was chosen to categorise sedentary time, which included activities such as 

sitting, or working quietly (e.g. reading, typing). Time spent in different levels of activity 

in was summarised based on Freedson’s cut-offs: light activity (100-1951 counts·min-1), 

moderate activity (1952-5724 counts·min-1), hard activity (5725-9498 counts·min-1) and 

very hard (>9498 counts·min-1) (Freedson et al. 1998). A criterion of at least 20 minutes 

of continuous zero counts, as well with diary information, was identified as non-wearing 

periods.  

 

 

 

 

 

 

 

 

 

Figure 2.5. Actitrainer® accelerometer used in the study 
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2.8 Blood Sampling and Analysis 

 

Venous blood samples were collected during metabolic day assessment in Chapters 3, 4, 

and 5. Subjects arrived at the metabolic suite in the morning on an overnight fast. After 

RMR measurement, subjects rested in a semi-supine position while a cannula was 

inserted into the antecubital vein in a forearm. A baseline or fasting blood sample was 

drawn after 10 min. Patency of the cannula was maintained by flushing with a small 

amount of non-heparinized saline 0.9% sodium chloride (B.Braun, Melsungen, Germany) 

after each blood sample collection. Immediately before each blood samples was drawn, 

saline waste remaining in the connector tube after flushing was drawn off with a 2 ml 

syringe. Venous samples of 20 ml each were drawn at 30 or 60 min intervals during the 

assessment period, as specified in Chapters 3, 4, and 5 protocols. Blood samples were 

collected into 2 x 10 ml K2EDTA blood collection tubes (Becton Drive Vacutainer, New 

Jersey, USA) preserved in ice.  

 

In Chapters 3 and 5, blood samples used for analysis of postprandial metabolites analysis 

were immediately spun at 3500 rpm for 15 minutes in a refrigerated centrifuge. The 

plasma supernatant was then aliquoted into Eppendorf tubes and frozen for analysis. In 

Chapter 4, blood samples used for the analysis of gut peptides were split into two 

aliquots: (1) 1 ml aliquot of blood into duplicate microtubes treated with bovine aprotinin 

500 KIU (Sigma-Aldrich, UK) and 10 µl of dipeptidyl peptidase-IV inhibitor 

(Calbiochem, Darmstardt, Germany) per ml of blood for determination of peptide YY3-36; 

and (2) 1.5 ml aliquot of blood into duplicate microtubes treated with 15 µl of 

phenylmethanesulphonylfluoride (PMSF) (Sigma-Aldrich, UK), for the analysis of 

acylated ghrelin. After all samples were spun in a microcentrifuge at 3500 rpm for 5 

minutes, samples treated with aprotinin were promptly aliquoted into Eppendorf tubes 

while samples treated with PMSF, were further added with 1 N hydrochloric acid (HCL) 

per 1 ml of plasma to acidify the samples. Samples were then centrifuged again for 5 

minutes and finally aliquoted into separate tubes. All aliquoted samples were immediately 

frozen in -80ºC until assayed.  
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2.8.1 Plasma Metabolites Analysis 

 

2.8.1.1 Insulin Analysis 

 

The quantitative determination of insulin was performed using a commercial enzyme-

linked immunosorbent assay (ELISA) kit (Mercodia AB, Uppsala, Sweden). The intra- 

and interassay coefficients of variance for the analysis were 3.4% and 3.6%, respectively. 

It is based on the sandwich technique in which two monoclonal antibodies are directed 

against separate antigenic determinants on the insulin molecule. Plasma samples (25 µl) 

were pipetted into the assay wells. A 100 µl of freshly prepared enzyme conjugate 

solution was then added to each well. Plates were then incubated on a plate shaker for 1 

hour at room temperature. During this incubation period, insulin in the samples reacted 

with peroxidase-conjugated anti-insulin antibodies and anti-insulin antibodies bound to 

plate wells. After incubation, the plates were washed and dried 5 times by automatic 

washer to remove any unbound enzyme labelled antibody using the provided wash buffer 

solution. Bound conjugates which remained in the wells were detected by adding 200 µl 

of 3,3’,5,5’-tetramethylbenzidine (TMB). The plates were then incubated for 15 minutes 

at room temperature to allow reaction between substrate TMB and bound conjugates. 

After incubation, 50 µl of the Stop solution containing 0.5 M sulphuric acid were added to 

each well to stop the reaction. A yellowish-tint color developed according to the 

concentration of conjugate-substrate complex. The optical density of each well was read 

at 450 nm using a spectrophotometer.  All samples were run in duplicate together with the 

standards ranging from 0 to 200 mU/l. A standard curve was obtained by computerised 

data reduction of the absorbance for the standards against the concentration using cubic 

spine regression. The concentration of insulin in the samples was then determined by 

comparing the optical density of the samples to that of the standard curve for each 

respective plate. All reagents and samples were brought to room temperature before use. 

Coefficients of variation for the assay were <5%. 
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2.8.1.2 Glucose Analysis 

 

Determinations for glucose were performed using kit reagents (Glucose HK CP Reagent 

ABX Pentra, Horiba ABX, France) on an automated Roche Cobas Mira 

spectrophotometric analyser (Horiba ABX, Montpellier, France). All samples within each 

subject were performed on a single run and in duplicates with coefficients of variation of 

<3%. The principle of glucose determination is based on the following colorimetric 

reactions: 

 

Glucose + ATP                          glucose-6-phosphate + ADP 

 

 

Glucose-6-phosphate + NADP+                       gluconate-6-phosphate + NADPH + H+ 

 

(HK: hexokinase; G-6-PDH: glucose-6-phosphate-dehydrogenase) 

 

 

2.8.1.3 Triglyceride Analysis 

 

Determinations for TG were performed using kit reagents (Triglycerides CP Reagent 

ABX Pentra, Horiba ABX, France) on an automated Roche Cobas Mira 

spectrophotometric analyser (Horiba ABX, Montpellier, France). All samples within each 

subject were performed on a single run and in duplicates with coefficients of variation of 

<2%. The principle of TG determination is based on the following colorimetric reactions: 

 

Triglycerides + H2O                                                       glycerol + fatty acids 

 

Glycerol + ATP                                                   glycerol-3-phosphate + ADP 

 

Glycerol-3-phosphate + O2                                                          DHAP + H2O2 

 

H2O2 + 4-AAP + p-chlorophenol                                        Quinoneime  + 4 H2O  

 

(DHAP: dihydroxyacetote phosphate; 4-AAP: 4-aminoantipyrine) 

 

G-6-PDH 

HK 

lipoprotein lipase 

glycerokinase 
 

glycerol-3-phosphate oxidase 

peroxidase 
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2.8.1.4 NEFA Analysis 

 

Determinations for NEFA were performed using kit reagents (NEFA-HR Reagent, Wako 

Chemicals USA Inc., USA) on an automated Roche Cobas Mira spectrophotometric 

analyser (Horiba ABX, Montpellier, France). All samples within each subject were 

performed on a single run and in duplicates with coefficients of variation of <2%. The 

principle of NEFA determination is based on the following colorimetric reactions: 

 

RCOOH (NEFA) + ATP + CoA-SH                         Acyl-CoA + AMP + Ppi 

 

Acyl-CoA + O2                         2,3-trans-Enoyl-CoA + H2O2 

 

2 H2O2 + 4-Aminoantipyrine + MEHA                          blue purple pigment + 3 H2O 

 

(ACS: acyl-CoA synthetase; ACOD: acyl-CoA oxidase; MEHA: 3-methyl-N-ethyl-N-β-

hydoxyethyl-aniline) 

 

 

2.8.1.5 Total Cholesterol Analysis 

 

Determinations for total cholesterol were performed using kit reagents (Cholesterol CP 

Reagent ABX Pentra, Horiba ABX, France) on an automated Roche Cobas Mira 

spectrophotometric analyser (Horiba ABX, Montpellier, France). All samples within each 

subject were performed on a single run with coefficients of variation of <4%. The 

principle of cholesterol determination is based on the following colorimetric reactions: 

 

Cholesterol esters + H2O                                               cholesterol + RCOOH 

 

Cholesterol + O2                                                   cholesterol-3-one + H2O2 

 

2 H2O2 + 4-aminophenazone + phenol                          Quinoneime  + 4 H2O 

 

 

 

 

ACS 

ACOD 

peroxidase 

cholesterol oxidase 

peroxidase 

cholesterol esterase 
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2.8.1.6 HDL Cholesterol Analysis 

 

Determinations for HDL-C were performed using kit reagents (HDL Direct Reagent ABX 

Pentra, Horiba ABX, France) on an automated Roche Cobas Mira spectrophotometric 

analyser (Horiba ABX, Montpellier, France). All samples within each subject were 

performed on a single run with coefficients of variation of 3%. The principle of 

cholesterol determination is based on the following colorimetric reactions: 

 

HDL-C, LDL-C, VLDL, chylomicron                                  non-reactive LDL-C, VLDL, 

chylomicron 

 

HDL                                              HDL disrupted 

 

HDL cholesterol                                              ∆4-cholestenone + H2O2 

 

2 H2O2 + DSBmT + 4-AAP                                        color development + 5 H2O 

 

(DSBmT: N,N-bis(4sulphobutyl)-m-toluidine-disodium; 4-AAP: 4-aminoantipyrine) 

 

 

2.8.1.7 Gut Peptides Analysis 

 

Quantitative analysis of acylated ghrelin and PYY3-36 from plasma samples was 

determined by competitive binding radioimmunoassay using a commercial kit (Millipore, 

MO, USA). Radioimmunoassay is based on the antigen-antibody reaction in which tracer 

amounts of the radio-labelled antigen competes with endogenous antigen for limited 

binding sites of the specific antibody against the same antigen. Thereafter, a standard 

curve was generated using a set of known concentrations of the unlabeled standards and 

from this curve the amount of antigen in unknown samples can then be calculated. All the 

procedures were carried out by a colleague at the Medical Genetics Department, Yorkhill 

Hospital, Glasgow. Samples were run in duplicates and the procedure was carried out 

according to manufacturer’s instructions. The active form of ghrelin molecule is very 

unstable in the serum or plasma due to the nature of the octanoyl group on serine-3 

position. In order to prevent degradation and loss of the octanoyl group, acylated ghrelin 

samples were processed with 1 N HCL and the addition of phenylmethylsulfonyl fluoride 

cholesterol oxidase 

peroxidase 

DSBmT + peroxidase 

HDL-specific detergent 

cholesterol esterase 

cholesterol oxidase 
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(PMSF) per 1 ml of plasma. PYY3-36 samples were treated with DDP-IV inhibitor per 1 

ml of blood to prevent the action of DPP-IV in the blood which could cause abnormal 

release of this peptide form upon storage and measurement, thus avoiding false 

interpretation of PYY increase. The addition of aprotinin is to protect against degradation 

by serine protease enzymes. Radioactivity in the processed samples was counted with a 

gamma counter (ARC-600, Aloka, Tokyo). The intra- and inter-assay CV, as given by the 

manufacturer, were 6.5 – 9.5% and 9.6 – 16.2% respectively for acylated ghrelin and 6.4 

– 11.0% and 7.0 – 15.0% for PYY3-36. The procedures for the acylated ghrelin and PYY3-

36 assays were detailed in Appendix F and Appendix G respectively. The intrassay CV 

for acylated ghrelin and PYY3-36 samples were 8.9% and 7.6% respectively. 
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CHAPTER 3 

 
Effects of Exercise on Postprandial Responses to      

Ad Libitum Feeding in Overweight Men 
 
 
 
3.1 Introduction 
 
A number of lines of evidence indicate that exaggerated metabolic disturbances occurring 

during the postprandial period contribute to the development of vascular and metabolic 

diseases. High postprandial concentrations of triglyceride (TG)-rich lipoproteins are the 

primary driver of the atherogenic lipoprotein phenotype characterised by a preponderance 

of small dense low-density lipoprotein (LDL) and low concentrations of high-density 

lipoprotein (HDL) (Cohn 1998), and postprandial lipoproteins and their remnants can 

contribute to endothelial dysfunction (Vogel et al. 1997) and may deposit into the arterial 

wall (Zilversmit 1979). Furthermore, it has been proposed that exaggerated postprandial 

insulin excursions may contribute to development of atherosclerosis (Frayn 2002; Boquist 

et al. 2000; Tsuchihashi et al. 1999), chronic insulin resistance and type 2 diabetes (Yki-

Jarvinen 1990). As humans spend much of their days in a postprandial state, repeated 

episodes of exaggerated postprandial metabolism represent a daily, recurring atherogenic 

environment (Karpe & Hamsten 1995). Thus, interventions which reduce postprandial TG 

and insulin disturbances may play a role in the preventing the development of vascular 

and metabolic diseases. 

 

Exercise is a potent regulator of postprandial lipid metabolism. There is a large body of 

evidence showing that postprandial lipemia can be attenuated by a prior session of 

exercise performed ~12-18 hours before a meal, with the magnitude of TG-lowering 

being essentially proportional to the exercise energy expenditure (Gill & Hardman 2003; 

Petitt & Cureton 2003). The TG-attenuation from an exercise-induced energy deficit is 

greater than that elicited by an equivalent diet-induced energy deficit (Gill & Hardman 

2000), however, replacement of the energy expended during exercise by increasing 

subsequent energy intake markedly attenuates or abolishes the exercise-induced TG 

reductions (Harrison et al. 2009; Burton et al. 2008). In addition, replacing the energy 

expended during exercise has been shown to attenuate exercise-induced reductions in 

postprandial insulin concentrations and increases in postprandial fat oxidation (Burton et 

al. 2008). This has potential implications for the ‘real world’ effectiveness of exercise in 
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the regulation of postprandial metabolism. The available evidence suggests that 

individuals replace some, but not all, of the energy expended during exercise in 

subsequent meals when fed ad libitum (Whybrow  et al. 2008; Pomerleau et al. 2004). 

Thus, controlled laboratory experiments in which either all or none of the additional 

energy expended during exercise (compared to a control trial) is replaced do not provide 

information about the likely extent of changes to postprandial metabolism which might 

occur following exercise in a ‘real-world’ setting with ad libitum post-exercise energy 

intake. It is therefore important to determine the effects of prior exercise on postprandial 

responses to ad libitum feeding. We hypothesised that that performing exercise prior to 

consumption of ad libitum buffet meals would lead to lower postprandial TG and insulin 

responses, and increased postprandial fat oxidation. 

 

While increasing exercise energy expenditure (and therefore exercise-induced energy 

deficit) up to ~800 kcal, on the day prior to a postprandial challenge has been shown to 

increase the postprandial TG-attenuation in a dose-dependent manner (Gill et al. 2002; 

Tsetsonis & Hardman 1996), it is unclear whether inducing larger exercise-induced 

energy deficits by exercising on consecutive days would augment this effect. This would 

help understanding about whether the potential for exercise to lower TG is maximised by 

a single exercise session or whether an augmented acute effect can be seen by exercising 

on consecutive days, without increasing energy intake, to incur a larger exercise-induced 

energy deficit. We hypothesised that, by inducing a larger energy deficit, three days of 

consecutive exercise would have greater effects on postprandial responses to ad libitum 

buffet meals than a single exercise session. Overweight/obese men were chosen for the 

study, as this group typically has exaggerated postprandial metabolic responses (Gill et al. 

2004), which would benefit from attenuation via exercise. 
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3.2 Methods 
 
 
3.2.1 Participants 

Ten overweight men, (mean ± SD) aged 35 ± 6 years, with body mass 90.6 ± 7.2 kg, body 

mass index (BMI) 28.2 ± 2.4 kg·m-2, waist circumference 94.4 ± 6.4 cm, body fat 24.6 ± 

3.1%, systolic blood pressure 126 ± 6 mm Hg, diastolic blood pressure 79 ± 7 mm Hg, 

and predicted maximal oxygen uptake (2OV& max) 43.0 ± 6.4 ml·kg-1·min-1 volunteered to 

participate in this study.  All volunteers were healthy, normocholesterolemic, non-

smokers, were not consuming any type of specialised diet, had a sedentary to moderately 

active lifestyle (less than two hours of planned exercise per week), and were not highly 

restrained eaters. Exclusion criteria included BMI < 25 kg·m-2, fasting blood glucose > 

7.0 mmol·l-1, total cholesterol levels > 6.0 mmol.l-1, diagnosed heart disease, presence of 

diseases known to cause metabolic disturbances, current tobacco use, and use of any 

medications that are known to alter carbohydrate or lipid metabolism or energy intake 

behaviours. The study was approved by the Faculty of Biomedical and Life Sciences 

Research Ethics Committee at the University of Glasgow, and all procedures complied 

with the Declaration of Helsinki.  Each participant provided written, informed consent 

before participation. They were asked to remain in their normal daily activities and to 

refrain from consuming alcohol during the course of the study.  

 
 
3.2.2 Experimental design 

Each participant undertook three main trials, in counter-balanced order, with an interval 

of at least seven days with, no exercise (CON), a single exercise session (EX-1) and three 

exercise sessions (EX-3), as the intervention. Each trial was conducted over four days.  In 

CON, participants performed no exercise on Days 1 to 3; in EX-1, participants performed 

a single exercise session on Day 3; and in EX-3 participants undertook exercise sessions 

on Days 1, 2 and 3. On Day 4 of each trial participants attended the metabolic 

investigation suite for a 7-h metabolic assessment, described in detail below.  On Days 1 

to 3 in all trials, participants were provided with a controlled diet by the experimenters 

(see below for description) and, other than the imposed exercise in the EX-1 and EX-3 

trials, were asked to refrain from planned exercise and maintain their usual day-to-day 

activities during this period. An overview of the experimental protocol is shown in 

Figure 3.1. 
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Figure 3.1. Experimental design. Subjects completed three trials: Control (CON), single-
exercise trial (EX-1), and three-exercise trial (EX-3). Controlled diet foods (CD) were provided 
on Days 1-3. Exercise sessions ( ) were performed to expend 8 kcal·kg-1. Expired air (●), blood 
samples, and appetite questionnaires (↓) were collected at regular intervals on Day 4. Ad libitum 
buffet breakfast (B), and lunch (L) were provided at designated times. 
 
 
3.2.3 Preliminary tests 

Before undertaking the main experimental trials, participants undertook a number of 

preliminary tests.  Resting metabolic rate (RMR) was measured after an overnight fast 

using a ventilated hood system (Oxycon Pro, Jaeger GmbH, Hoechberg, Germany) as 

described in section 2.4.1.  A four-stage incremental sub-maximal treadmill walk test was 

performed to estimate 2OV& max and calculate the speed and gradient required to elicit the 

intensity of 50% 2OV& max for the exercise intervention as described in section 2.3 

(ACSM 1995). Blood pressure was measured using an automated blood pressure monitor 

(Omron HEM705 CP, Omron Healthcare UK Limited, Milton Keynes, UK). Skinfolds 

were measured at four sites (biceps, triceps, subscapular, suprailiac) to enable estimation 

of percentage body fat using the equations of Durnin and Womersley (Durnin & 

Womersley 1974). Height, body mass, waist circumference were measured.  Additionally, 

subjects completed the Three Factor Eating Questionnaire (TFEQ) (Stunkard & Messick 

1985) (Appendix B) and the Dutch Eating Behaviour Questionnaire (DEBQ) (Van Strien 

et al. 1986) (Appendix C). Scores on the TFEQ and DEBQ were (mean ± SD): 7.1 ± 4.1 

and 2.3 ± 0.7 respectively; none of the participants was classified as a restrained eater. 
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3.2.4 Main trials 

a) Days 1 to 3: Experimental intervention days 

Control trial (CON). Participants refrained from alcohol and all planned exercise over 

Days 1 to 3 of CON.  They were provided with all of their food and drink by the 

experimenters in diets designed to maintain energy balance over this period.  Energy 

intakes were calculated as RMR multiplied by a physical activity level of 1.55, which 

corresponds to the energy requirement of a non-active adult (FAO 1985). The 

macronutrient content of the diet reflected the average Scottish diet (49% carbohydrate, 

37% fat and 14% protein) (DOE 2004), with 20% of energy provided at breakfast, 35% at 

lunch, and 45% at dinner. Participants were allowed ad libitum access to water and sugar-

free fruit cordial.  Average daily energy intake was 2693 ± 66 kcal (mean ± SD). Dietary 

adherence was monitored and verified by daily email and telephone contact. 

 
Single exercise session trial (EX-1). On Days 1 to 3 of EX-1, participants consumed 

exactly the same diet as in CON (i.e. energy intake 1.55 x RMR), consumed no alcohol 

and refrained from all planned exercise other than that undertaken as part of the 

intervention. Participants performed a single exercise session on the afternoon of Day 3, 

in which they walked on a treadmill at an intensity of 50% 2OV& max to induce a net 

energy expenditure of 8 kcal·kg-1 body mass. Thus, relative to CON, participants were in 

negative energy deficit by 8 kcal·kg-1 body mass at the start of Day 4. The duration of the 

walk differed between individuals, ranging from 65 to 110 min. Expired air samples were 

collected in Douglas bags at rest, at 15-min intervals during the walk and for 15 min after 

the completion of exercise for the determination of oxygen uptake and carbon dioxide 

production. Exercise energy expenditure was determined using indirect calorimetry 

(Frayn 1983) described in section 2.4.3. The net energy expenditure of exercise was 

determined by subtracting resting energy expenditure from the gross energy expenditure 

of exercise. Heart rates and ratings of perceived exertion were recorded at 15-min 

intervals during the exercise. 

 
Repeated exercise session trial (EX-3). This trial was identical to EX-1 except 

participants walked at 50% 2OV& max to induce a net energy expenditure of 8 kcal·kg-1 

body mass on each of Days 1 to 3. Thus, on the morning of Day 4, participants were in 

negative energy balance by 24 kcal·kg-1 body mass relative to CON. 
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b) Day 4: Metabolic assessment 

 Participants reported to the metabolic suite on the morning of Day 4 after a 12-hour 

overnight fast, approximately 14-16 h after completion of exercise in the EX-1 and EX-3 

trials. Following a 10-min supine rest on a couch, a 25-min expired air measurement was 

taken using the ventilated hood system to determine resting metabolic rate and substrate 

utilisation. A cannula was inserted into an antecubital vein and, after a 10-min interval, a 

fasting blood sample was taken. Immediately after fasting measurements were made, an 

ad libitum buffet-style breakfast was provided containing a variety of breakfast cereals, 

semi-skimmed milk, toast, croissants, margarine, jam and marmalade. A total of ~4600 

kcal of energy was available in the buffet and participants were instructed to eat according 

to their appetite until they felt comfortably full. They were given 20 min to complete this 

meal. Participants were not informed that consumption was being measured, and 

consumed breakfast without experimenters present, to minimise potential alterations to 

usual feeding behaviour (Herman & Polivy 2005). All foods were covertly weighed 

before they were made available to subjects and re-weighed again after meal ingestion to 

quantify food intake. An ad libitum buffet lunch, containing spaghetti Bolognese, salad, 

vinaigrette dressing, bread, margarine, potato crisps, fruit, yogurt and chocolate cake 

(~3700 kcal of energy available) was provided 3.5 h after breakfast in a similar manner, 

and participants were given 30 min to consume this meal. Participants were not provided 

with drinks during the meals but ad libitum access to water was made available 

throughout the day after the completion of each meal. During the observation period, 

blood samples were collected at 30, 60, 120, 180 min after breakfast and the same pattern 

was repeated after lunch (270, 300, 360 and 420 min after the start of the observation 

period). Fifteen-min expired air measurements were made using the ventilated hood 

immediately following the 60, 120, 180, 300, 360 and 420 min blood samples. 

 
 
3.2.5 Blood analysis 

Venous blood samples were collected into potassium EDTA tubes and placed on ice 

before centrifugation to separate plasma within 15 min of collection. Plasma was stored at 

-80°C until analysis. Glucose, triglycerides (TG), non-esterified fatty acid (NEFA), total 

cholesterol and HDL cholesterol concentrations were determined by enzymatic 

colorimetric methods using commercially available kits (Horiba ABX, Montpellier, 

France; and Wako Chemicals GmbH, Neuss, Germany). LDL cholesterol was calculated 

using the Friedewald equation (Friedewald et al. 1972). Insulin was determined using a 

commercially-available enzyme-linked immunoassay (ELISA) with < 0.01% cross-
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reactivity with pro-insulin (Mercodia, Uppsala, Sweden). All samples for each subject 

were analysed in a single analyser run. 

 

3.2.6 Statistical analysis  

Statistical analyses were performed using Statistica (version 6.0, StatSoft Inc., Tulsa, 

USA) and Minitab (version 13.1, Minitab Inc., State College, Pennsylvania). Data were 

tested for normality using the Ryan-Joiner normality test and transformed as appropriate. 

Box-Cox plots were used to determine the most appropriate transformation for data which 

did not follow a normal distribution. Consequently, statistical analyses for insulin and TG 

were performed on reciprocal-transformed data and are presented as values back- 

transformed to their original units. The total areas under the 420-min variable vs. time 

curve (AUC), calculated using the trapezium rule, and the incremental AUC, calculated as 

the increment in AUC over baseline concentrations, were used as summary measures of 

the postprandial responses. One-way repeated measures ANOVAs were used to compare 

fasting values, summary data and energy intakes across the three trials. Two-way repeated 

measures ANOVAs (trial × time) were used to compare changes over time and across the 

three trials. Post-hoc Tukey tests were used to identify where differences lay. 

Associations between variables were determined using Pearson product-moment 

correlations. A priori power calculations, based on our data for intra-subject 

reproducibility of postprandial TG responses and insulin responses in men (between-day 

coefficients of variation 10.1% and 22.9%, respectively) (Gill et al. 2006) indicated that 

10 participants would enable detection of exercise-induced changes of ~10% in the TG 

response and ~23% in the insulin response with 80% power. Data are presented as means 

± SEM, unless otherwise stated. Statistical significance was accepted at p < 0.05. 
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3.3 Results 
 
 

3.3.1 Responses to the exercise sessions  

The duration, and treadmill speed and gradient for each of the four exercise sessions (one 

session in EX-1, three sessions in EX-3) were identical within each participant. 

Participants walked on the treadmill at a speed of 5.3 ± 0.1 km·h-1at a gradient of 6.7 ± 

0.7% for a duration of 93.5 ± 2.2 min. Mean oxygen uptakes and heart rates over the 

course of the exercise sessions were 21.6 ± 1.1 mL·kg-1·min-1 (50.2 ± 0.4% 2OV& max) and 

122 ± 5 beats·min-1, respectively in EX-1, and 21.8 ± 1.1 mL·kg-1·min-1 (50.6 ± 0.4% 

2OV& max) and 124 ± 3 beats·min-1, respectively in EX-3. These values did not differ 

between EX-1 and EX-3. Net exercise energy expenditure was 715 ± 25 kcal in EX-1 and 

2140 ± 74 kcal in EX-3. Net fat oxidation during exercise was 29.6 ± 2.6 g and 96.9 ± 8.2 

g for EX-1 and EX-3 respectively. Net carbohydrate oxidation during exercise was 114.8 

± 10.4 g for EX-1 and 322.9 ± 23.3 g for EX-3. 

 

3.3.2 Responses in the fasted state 

Due to difficulties with blood sampling in one participant, data for plasma variables are 

presented for n = 9; data for the energy intake and substrate utilisation are presented for n 

= 10. A summary of all fasting values is shown in Table 3.1. Compared to CON, fasting 

TG concentrations were 17% lower in EX-1, and 15% lower in EX-3 (p < 0.05 for both). 

Fasting NEFA concentrations were significantly higher in EX-1 than CON (p < 0.01). 

There were no significant differences between trials in fasting insulin, glucose, or total, 

HDL or LDL cholesterol. There were no differences between trials in resting metabolic 

rate, but rate of fat oxidation was 16% higher in EX-1 (p < 0.05) and 39% higher in EX-3 

(p < 0.01), compared to CON. Reciprocally, carbohydrate oxidation was 39% lower in 

EX-3 condition compared to CON (p < 0.01). There were no differences between EX-1 

and EX-3 for any other measured variables. 
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Table 3.1. Summary of fasting plasma and metabolic values in all trials (n = 9). Values are mean 
± SEM. 
 
Variables CON EX-1 EX-3 

Triglyceride (mmol·l-1) 1.48 ± 0.23 1.23 ± 0.30* 1.26 ± 0.28* 

Insulin (mU·l-1) 8.89 ± 1.96 9.06 ± 2.04 8.18 ± 2.31 

Glucose (mmol·l-1) 5.45 ± 0.14 5.41 ± 0.11 5.23 ± 0.14 

NEFA (mmol·l-1) 0.50 ± 0.03 0.63 ± 0.03**  0.58 ± 0.05 

Total cholesterol (mmol·l-1) 5.38 ± 0.44  4.74 ± 0.44 4.63 ± 0.14 

HDL-C (mmol·l-1) 1.07 ± 0.08 1.05 ± 0.05 1.11 ± 0.04 

LDL -C (mmol·l-1) 3.63 ± 0.45 3.13 ± 0.33 2.94 ± 0.11 

Resting metabolic rate (kcal·day-1) 1801 ± 47 1819 ± 49 1819 ± 68 

Fat oxidation (g·h-1) 4.1 ± 0.4 5.1 ± 0.4*  5.7 ± 0.3**  

Carbohydrate oxidation (g·h-1) 10.1 ± 1.0 7.7 ± 1.0 6.1 ± 0.7**  

CON, control; EX-1, single exercise session; EX-3, three exercise sessions; NEFA, non-esterified fatty 
acids; HDL, high density lipoprotein; LDL, low density lipoprotein. * significantly different from CON (p < 
0.05); ** (p < 0.001) 
 
 
 
3.3.3 Ad libitum energy intake 

Energy and macronutrient intakes at the buffet breakfast and lunch meals are presented in 

Table 3.2. There were no differences between trials in energy, fat, carbohydrate or 

protein intakes at breakfast, but energy, carbohydrate and protein intakes at lunch were 

significantly higher in EX-3 than both CON and EX-1. For breakfast and lunch combined, 

energy intake was significantly higher in EX-3 than CON and protein intake was 

significantly higher in EX-3 than CON and EX-1. There were no differences in energy or 

macronutrient intake between EX-1 and CON, and fat intake did not differ significantly 

between any of the trials at either breakfast or lunch. 
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Table 3.2. Buffet meal energy and macronutrient intake (n = 10). Values are mean ± SEM. 

 CON EX-1 EX-3 

Breakfast    
Energy intake (kcal) 656 ± 77 731 ± 94 745 ± 93 

   Fat intake (g) 7.6 ± 1.4 8.5 ± 1.8 8.3 ± 1.7 

   Carbohydrate intake (g) 124.0 ± 14.0 136.7 ± 16.8 139.3 ± 17.0 

   Protein intake (g) 19.2 ± 2.3 23.0 ± 2.5 24.0 ± 2.4*  

Lunch    

Energy intake (kcal) 1222 ± 65 1261 ± 99 1458 ± 84** ,†† 

   Fat intake (g) 32.7 ± 3.4 35.7 ± 3.8 40.5 ± 3.3 

   Carbohydrate intake (g) 170.0 ± 12.5 169.7 ± 16.6 197.0 ± 15.9* , † 

   Protein intake (g) 55.1 ± 2.8 58.3 ± 3.4 68.4 ± 3.9** , †† 

Breakfast plus lunch    

Energy intake (kcal) 1878 ± 117 1992 ± 163 2202 ± 160*  

   Fat intake (g) 40.4 ± 3.6 44.2 ± 4.3 48.8 ± 4.4 

   Carbohydrate intake (g) 294.0 ± 21.4 306.3 ± 27.5 336.3 ± 27.3 

   Protein intake (g) 74.3 ± 4.7 81.3 ± 5.7 92.5 ± 6.0** ,† 

CON, control; EX-1, single exercise session; EX-3, three exercise sessions; * significantly different from 
CON (p < 0.05); ** (p < 0.001); † significantly different from EX-1 (p < 0.05); †† (p < 0.01) 
 
 

3.3.4 Postprandial plasma metabolic responses 

Postprandial responses for plasma variables over the 7-h observation period are presented 

in Figure 3.2. Two-way ANOVA revealed a significant trial effect for TG (p = 0.031) 

and insulin responses (p  =  0.006), but not for glucose and NEFA. Summary measures of 

these responses are shown in Table 3.3. The postprandial TG total AUC was 27% lower 

in EX-1 and 25% lower in EX-3 than CON (both p < 0.05). Incremental TG AUC did not 

differ between trials. Total insulin AUC was 31% lower in EX-3 than CON (p < 0.05); 

the 26% reduction in insulin AUC between CON and EX-1 did not quite achieve 

statistical significance (p = 0.06). No differences were observed in NEFA AUC between 

trials, but incremental NEFA AUC was significantly lower in EX-1 than CON (p < 0.05), 

indicating greater postprandial NEFA suppression. Postprandial glucose responses did not 

differ between trials. None of these values differed between EX-1 and EX-3.  
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Figure 3.2. Postprandial plasma (a) glucose, (b) insulin, (c) triglyceride and (d) NEFA responses 
in CON (♦), EX-1 (○), and EX-3 (●) trials. Rectangles indicate the times at which the buffet meals 
were provided. Values are expressed as means, with standard errors represented by vertical bars (n 
= 9). (*) significantly different from CON (p < 0.05); (***) (p < 0.001); (†††) significantly 
different from EX-1 (p < 0.001)  
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Table 3.3. Postprandial total AUC and incremental AUC for plasma metabolic variables over 7-h 
observation period (n = 9). Statistical analyses for insulin and TG performed on reciprocal-
transformed data and values are presented as means back-transformed to original units with 
positive and negative SEMs in brackets below. Values are mean ± SEM for glucose and NEFA. 
 
 CON EX-1 EX-3 

TG (mmol·l-1)     

Total AUC 840                           

(-84, +105)  

617                    

(-77, +102)* 

628                             

(-67, +85)* 

Incremental AUC 204                           

(-45, +80) 

160                      

(-56, +188) 

172                    

(-38, +68) 

    
Insulin (mU·l-1)    

Total AUC 16783                       

(-2250, +3076) 

12367              

(-1847, +2635) 

11649             

(-1694, +2390) * 

Incremental AUC 13034                        

(-2000, +2885) 

8896                 

(-1475, +2207) 

9206                  

(-1299, +1809) 

    
Glucose (mmol·l-1)    

Total AUC 2413 ± 58 2484 ± 96  2408 ± 64 

Incremental AUC 125 ± 58 211 ± 71 211 ± 30 

    
NEFA (mmol·l-1)    

Total AUC 132 ± 7 136 ± 7 137 ± 11 

Incremental AUC -77 ± 12 -127 ± 9* -107 ± 17 

CON, control; EX-1, single exercise session; EX-3, three exercise sessions; * significantly different from 
CON (p < 0.05) 
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3.3.5 Postprandial energy expenditure and substrate utilisation 

Postprandial energy, fat, and carbohydrate utilisation, measured over the 7-h observation 

period for each trial are shown in Figure 3.3. Summary AUC for energy expenditure and 

substrate utilisation data are presented in Table 3.4. There were no differences between 

trials in energy expenditure over the 7-h postprandial observation period, but the relative 

contribution of energy from fat and carbohydrate oxidation were different between trials 

(fat, p = 0.003; carbohydrate, p = 0.001). Fat oxidation over this period was 20% higher in 

EX-1 and 27% higher in EX-3 than CON (p < 0.05 for both). Reciprocally, carbohydrate 

oxidation was 18% lower in EX-1 and 26% lower in EX-3 than CON (p < 0.05 for both). 

No trial x time interaction effects were observed for any of the measures and none of 

these values differed between EX-1 and EX-3. 

 
 
Table 3.4. Postprandial area under curve for energy expenditure and substrate utilisation over the 
7-h observation period (n = 10). Values are means ± SEM. 
 
 CON EX-1 EX-3 

AUC energy expenditure (kcal) 607 ± 18 615 ± 24 621 ± 22 

AUC fat oxidation (g) 33.9 ± 2.9 40.6 ± 2.1* 42.9 ± 2.3* 

AUC carbohydrate oxidation (g) 80.9 ± 5.5 66.5 ± 4.8* 59.7 ± 6.0* 

CON, control; EX-1, single exercise session; EX-3, three exercise sessions; * significantly different from 
CON (p < 0.05). 
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Figure 3.3. Postprandial (a) energy expenditure, (b) fat, and (c) carbohydrate utilisation in CON 
(♦), EX-1 (○), and EX-3 (●) trials. Rectangles indicate the times at which the buffet meals were 
provided. Values are expressed as means, with standard errors represented by vertical bars (n = 
10). (**) significantly different from CON (p < 0.01); (***) (p < 0.001). 
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3.3.6 Correlation between variables 

There was a significant positive correlation between the energy deficit-induced change in 

reciprocal TG AUC (i.e. difference between values in EX-1 or EX-3 and CON) and the 

energy deficit-induced change in postprandial fat oxidation (r = 0.50, p = 0.03) (Figure 

3.4). As taking the reciprocal of a value reverses the direction of effect, this indicates that 

participants with the largest increases in postprandial fat oxidation between CON and the 

exercise trials experienced the largest reductions postprandial TG AUC. 

 

 

 
Figure 3.4. Relationship between changes in postprandial fat oxidation and reciprocal 
postprandial TG total AUC in EX-1 (○), and EX-3 (●) trials.  
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3.4 Discussion 

 

The aims of this study were: i) to determine the effect of a prior exercise session on 

postprandial responses to ad libitum meal consumption, and ii) to determine whether three 

days of consecutive exercise altered postprandial responses to ad libitum meals to a 

greater extent than a single exercise session. The present data demonstrate that a single 

exercise session significantly reduced the postprandial TG response to an ad libitum 

breakfast and lunch by 27%, with no further TG-attenuation seen in response to three 

consecutive days of exercise (25% lower than control). Postprandial fat oxidation 

increased significantly and to a similar extent in response to one and three sessions of 

prior exercise, and while the postprandial insulin response was only significantly 

attenuated in response to three prior exercise sessions, the reduction in insulin response to 

the single exercise session approached statistical significance (p = 0.06) and was similar 

in magnitude to the reduction seen in response to three exercise sessions (26% vs. 31% 

reduction). Thus, the findings reveal that the favourable effects of prior moderate exercise 

on postprandial metabolism remain evident when food is provided ad libitum – 

suggesting that these changes are likely to persist into ‘real-world’ settings – and that 

consecutive days of exercise do not markedly augment the effects elicited by a single 

exercise session. 

 
A key observation in interpreting the present findings is that ad libitum energy intake on 

the day following the single exercise session was not significantly increased compared to 

the control trial. Thus, in EX-1, the participants were in energy deficit by ~600 kcal 

compared with CON at the end of the postprandial observation period. This deficit is of 

similar magnitude to that seen in previously published studies in which prior exercise 

significantly attenuated postprandial TG responses (Gill & Hardman 2003, Petitt & 

Cureton 2003). The maintenance of this energy deficit despite ad libitum access to food is 

likely to play an important role in mediating exercise’s effects on postprandial responses, 

in light of recent reports demonstrating that replacement of the exercise-induced energy 

deficit leads to a marked diminution of prior exercise’s TG-lowering effect (Harrison et 

al. 2009; Burton et al. 2008). 

 
A number of reports in the literature have shown that the extent of reduction in 

postprandial TG by of a prior exercise session is broadly proportional to the exercise 

energy expenditure. Increasing the energy expended in a 90-minute exercise session from 

~400 to ~800 kcal by doubling the intensity (from 30% to 60% 2OV& max) increased the 



  Chapter 3 | 106 

 

reduction in postprandial lipaemia, compared to a control trial, from 16% to 26% 

(Tsetsonis & Hardman 1996); and increasing energy expenditure from ~350 to 700 kcal 

by doubling the duration of exercise at 50% 2OV& max from 60 to 120 minutes increased 

postprandial TG-lowering 9% to 23% (Gill et al. 2002), in studies on young adults. In 

addition, a meta-analysis of 13 studies with exercise energy expenditures ranging from 

~350 to ~1600 kcal reported a correlation co-efficient of 0.62 between exercise energy 

expenditure and reduction in postprandial lipaemia (Petitt & Cureton 2003). Thus, the 

present observation that three exercise sessions performed on consecutive days did not 

influence postprandial metabolism to a greater extent than a single exercise session is an 

interesting one. The energy expended in EX-3 was three times as great as in EX-1 (2140 

± 74 vs. 715 ± 25 kcal) and although energy intake during the ad libitum test meals, 

particularly at lunch, was higher in the EX-3 than the other two trials, the cumulative 

energy deficit, compared to CON, was still 3-times as great in EX-3 compared to EX-1 

(~1800 kcal vs. ~600 kcal).  

 
There are two factors which could potentially explain this observation. Firstly, the first 

two of the three exercise sessions in the EX-3 trial were performed ~40-64 hours before 

the postprandial observation period. It is known the effects of exercise on postprandial 

lipaemia are relatively short-lived, with the maximal effect observed ~8-16 hours post-

exercise (Gill & Hardman 2003) and markedly diminishing from ~24 hours onwards 

(Zhang et al. 2004). Thus, despite the energy deficit incurred from the two earlier exercise 

sessions not being replaced, the TG-lowering effects of these sessions may not have 

persisted until the postprandial observation day. Secondly, it is likely that the TG-

lowering effect of exercise plateaus once a certain threshold energy expenditure is 

achieved. For example, in a study of young trained men, Ferguson and colleagues found 

that reductions in fasting TG concentrations 24 hours following an exercise session were 

similar following exercise sessions expending between 750 kcal and 1500 kcal of energy 

(Ferguson et al. 1998). Thus, it is possible that the potential for exercise to lower 

postprandial TG concentrations was maximised by the energy expended in the single 

exercise session undertaken in the EX-1 trial. Irrespective of relative importance of these 

two effects, in practical terms, the present data imply that the TG-lowering effects of 

exercise are effectively maximised by a single session of exercise (provided the energy 

expended in this session is sufficient), and that increasing the total exercise-induced 

energy deficit via repeated days of exercise do not augment this effect. However, it 

important to recognise that, because an exercise session was performed on each of Days 

1, 2, and 3 in the EX-3 trial, a TG-lowering effect of exercise would likely have been 
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evident on Days 2 and 3 as well as 4 of this trial (although this was not directly 

measured), as opposed to only on Day 4 in the EX-1 trial. Thus, although performing 

exercise on consecutive days does not increase the magnitude of the TG-lowering effect 

elicited by a single exercise session, repeated daily exercise sessions would act to 

maintain the TG attenuation incurred in response to the single session. 

 
This study also confirms our previous findings that the extent of attenuation in 

postprandial TG concentrations in response to exercise is proportional to the exercise-

induced increase in postprandial fat oxidation (Burton et al. 2008). The exercise-induced 

increase in whole-body fat oxidation is likely to reflect increased fat oxidation in skeletal 

muscle and/or the liver. Muscle TG utilisation is elevated for at least 18 hours following 

prolonged endurance exercise, which is thought to occur to facilitate resynthesis of 

muscle glycogen depleted during exercise (Kiens & Richter 1998). In addition, post-

exercise increases in circulating 3-hydroxybutyrate concentrations, reflecting increased 

hepatic fatty acid oxidation (Williamson &  Whitelaw 1978), are evident for at least 24-

hours following exercise (Burton et al. 2008, Gill et al. 2001), which, analogous to the 

post-exercise increase in muscle fat oxidation, may occur in response to exercise-induced 

hepatic glycogen depletion (Casey et al. 2000). The responses to glycogen deficits in 

muscle and/or liver, and the associated increases in fat oxidation, may mediate the TG-

lowering effects of exercise by stimulating skeletal muscle LPL activity and increasing 

TG clearance (Gill & Hardman 2003) and/or by directing the hepatic fatty acid flux 

towards oxidation and away from re-esterification, thereby reducing VLDL production 

(Gill et al. 2006; Gill & Hardman 2003). Interestingly, the increase in postprandial fat 

oxidation in EX-3 did not differ significantly from EX-1. Although in energy deficit on 

the exercise days in EX-3, subjects consumed ~350 g of carbohydrate per day over this 

period, which should have been sufficient to replace the liver and muscle glycogen used 

during the exercise sessions (~110 g per session). Thus it is likely that muscle and liver 

glycogen levels would have been similar at the end of exercise on day 3 in the EX-1 and 

EX-3 trials, and this might explain the similar increases in postprandial fat oxidation and 

decreases in postprandial TG concentrations between these two conditions. 

 
It is important to recognise that the energy expended in each exercise session in the 

present study, at 700 kcal, was relatively large and beyond the level currently 

recommended in physical activity for health guidelines (Haskell et al. 2007), although the 

moderate nature of the exercise undertaken meant all volunteers completed the sessions 

without difficulty. Other studies have shown that 30 minutes of brisk walking, performed 
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in either a single session or multiple smaller sessions spread throughout the day, can 

effectively lower lipaemic responses to meals of a fixed size (Miyashita et al. 2008; 

Murphy et al. 2000). The exercise dose used in the present study, compared to a smaller 

dose, would be expected to increase the chances of a compensatory increase in energy 

intake under ad libitum feeding conditions. Thus the finding that the exercise induced 

energy deficit was largely maintained and the effects of exercise on postprandial 

metabolism were similar to those observed in response to test meals of fixed size, would 

likely extend to studies utilising smaller exercise doses. However, it is not clear whether 

the finding that the TG-lowering effect of a single exercise session was not augmented by 

exercise on consecutive days would still hold if the exercise doses were smaller. If an 

energy expenditure threshold exists for maximising the TG-lowering effect of exercise, is 

possible that the TG-lowering effect of a single session eliciting, say, 250-350 kcal 

exercise-induced energy deficit would be augmented by sessions of repeated exercise on 

consecutive days. This possibility warrants further investigation. Further study is also 

needed to determine whether the present findings extend to women, who may alter energy 

intake in response to exercise in a different manner to men (Stubbs et al. 2002a, Stubbs et 

al. 2002b). 

 

 

3.5 Summary 

 

In conclusion, the results of this study extend the literature on the effects of prior exercise 

on postprandial metabolism in two important ways. Firstly the data show that the 

exercise-induced attenuation of postprandial TG concentrations, previously documented 

in response to meals of a fixed size, persist when meals are consumed ad libitum. This 

suggests that the TG-lowering effect of prior exercise is likely to extend into a ‘real-

world’ setting where food intake is not carefully controlled. Secondly, we have 

demonstrated that the effects of a single exercise session on postprandial metabolism are 

not augmented by inducing a larger energy deficit by exercising on consecutive days, 

which implies that the potential for exercise to attenuate postprandial TG is effectively 

maximised by a single session of exercise. 
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CHAPTER 4 

 
Effects of Exercise on Ad-Libitum Energy Intake, 

Appetite, and Gut Peptide Responses                              
in Overweight Men 

 

 

4.1 Introduction 

 

Exercise can be effective for creating the energy deficit needed for weight loss, 

maintaining energy balance for the primary prevention of weight gain, as well as for 

preventing weight re-gain in the formerly obese (Donnelly et al. 2009). However, the 

ability of exercise in the absence of dietary restriction to facilitate weight loss is less 

certain, as some individuals lose less weight than predicted in response to an exercise 

intervention (King et al. 2008). A possible explanation for this is that exercise may induce 

a compensatory increase in appetite and hence, energy intake. It is common sense to 

believe that a regulatory mechanism will trigger an increase in energy intake in order to 

match the energy expenditure expended at some stage (Schwartz et al. 2000). Therefore, 

the energy deficit created by exercise may not lead to appreciable weight loss if 

individuals increase their food intake following exercise. However, the extent to which 

the compensation in energy intake occurs still remains unclear.   

 

Short-term exercise studies have attempted to examine the relationship between energy 

intake and energy expenditure over relatively short periods ranging from hours to a day. 

Some have found a strong coupling between energy intake and energy expenditure 

demonstrated by an increase in energy intake corresponding to an acute increase in 

exercise-induced energy expenditure (Finlayson et al. 2009; Pomerleau et al. 2004; 

George & Morganstein 2003; Verger et al. 1992). Conversely, studies that found no 

compensatory increases in energy intake suggest no direct link between exercise and 

energy intake (King et al. 2010a; King et al. 2010b; Harris & George 2008; Imbeault et 

al. 1997; King et al. 1997a; King et al. 1996; Thompson et al. 1988; Durrant et al. 1982). 

Such conflicting results may partly stem from differences in study protocols, exercise 

intensities, participant characteristics (i.e. lean vs. overweight/obese, dietary restraint 

level), and energy expenditures. High intensity exercise appears to suppress appetite to a 

greater extent than low to moderate intensities (King et al. 1997a, Imbeault et al. 1997; 
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Kissileff et al. 1990), while one study showed that a mild bout of exercise neither 

suppressed nor stimulated appetite (King et al. 1994). It is possible that exercise-induced 

energy expenditures is an important factor that influence post-exercise energy intake as 

studies have shown that expending ~300-500 kcal resulted in the absence of any 

compensation after exercise (King et al. 2010b; Harris & George 2008; Imbeault et al. 

1997; Thompson et al. 1988; Durrant et al. 1982). It could be that expending a larger 

amount of energy expenditures would drive an increase in energy intake due to the state 

of greater negative energy balance the body is in. Having said that, others who have 

investigated the effects of higher exercise-induced energy expenditures (i.e. ~1200 kcal) 

on subsequent energy intake have not observed any compensatory responses (King et al. 

2010a, King et al. 1997a). It is worthwhile mentioning however, that lean men were 

involved in these studies, thus it is possible that responses may be different in 

overweight/obese subjects. Furthermore, although most short-term studies have shown 

that exercise may not lead to an automatic increase in energy intake, there are evidence 

that when exercise is continued over several days, energy intake appears to track energy 

expenditure (Whybrow et al. 2008, Stubbs et al. 2002a).  

 

Changes in energy balance can have a marked impact on the hormonal responses that 

modulate appetite, and energy intake (Suzuki et al. 2010). Peripheral gut hormones such 

as cholecystokinin (CCK), peptide YY (PYY), glucagon-like peptide 1 (GLP-1), and 

ghrelin are integral to the process in mediating short-term sensations of hunger and satiety 

(Suzuki et al. 2010). Ghrelin is the only known orexigenic (appetite-stimulating) peptide 

and all others act as satiety signals (appetite-suppressing). In the recent past, investigators 

have reported that changes to ghrelin levels are evident in individuals who underwent a 

long-term exercise program (Foster-Schubert et al. 2005; Leidy et al. 2004), suggesting 

that it possible that exercise may influence ghrelin through modification of energy 

balance. However, findings on the effects of exercise on ghrelin are similarly divided, 

with some investigators reporting no change (Burns et al. 2007; Martins et al. 2007a; 

Kyriazis et al. 2007; Zoladz et al. 2005), while others reporting increased (Mackelvie at 

al. 2007; Erdmann et al. 2007), as well as suppressed levels (King et al. 2011a; Malkova 

et al. 2008; Broom et al. 2007; Olive & Miller 2001) following acute exercise. Again, the 

discrepancies in these study outcomes could be due to the variability in exercise 

intensities and that the regulation of ghrelin is likely to differ between energy status (i.e. 

energy deficit vs. energy balance). Some studies did not include assessment of appetite 

(Broom et al. 2007; Burns, et al. 2007; Kyriazis et al. 2007; Mackelvie at al. 2007), 

making the physiological and behavioural relevance of the findings unclear. Others only 
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measured total ghrelin (Burns et al. 2007; Erdmann et al. 2007; Kyriazis et al. 2007; 

Zoladz et al. 2005) instead of acylated ghrelin; the latter is thought to play a more 

important role in appetite regulation (Suzuki et al. 2010). Less is known regarding the 

response of PYY to exercise, which appears to function in its truncated form; PYY3–36. 

PYY3–36 is released into the circulation following food intake and the level of release is 

directly proportional to caloric load ingested (Chelikani et al. 2004). Current evidence are 

showing that acute exercise transiently increases plasma total PYY (Broom et al. 2009; 

Ueda et al. 2009a; Martins et al. 2007a) but only one study has measured PYY3–36 

responses to acute exercise in overweight subjects (Ueda et al. 2009b). The role of PYY3–

36 in exercise and appetite regulation therefore requires more attention.  

 

Many previous studies in the research literature regarding exercise and appetite regulation 

have tended to assess appetite and energy intake responses within the same day as an 

exercise bout, but it may be possible that changes may occur over a longer duration, or 

after several meals have being taken. Indeed, it has been proposed by Edholm (1977) that 

‘we eat not for today but for the day before yesterday’. While a single bout of exercise 

have been shown not to increase appetite and energy intake, it is unclear whether inducing 

exercising on consecutive days would augment subsequent appetite and energy intake, 

and whether these compensatory responses are induced by changes in the gut hormones. 

In addition, to fully understand the effects of exercise on the hormonal regulation of 

appetite and food intake, it is therefore important to assess all three variables 

simultaneously within the same study. The purpose of the present study was therefore to 

examine the effects of two levels of exercise-induced energy expenditures (single session 

vs. three sessions over consecutive days) on ad libitum energy intake, appetite sensations, 

and gut peptide responses under laboratory conditions. The analysis for gut peptides 

would be focused on acylated ghrelin, and peptide YY3-36, the two hormones that are 

receiving increasing interest in the literature for their roles in energy balance and appetite 

regulation. While lean individuals seem to show that they regulate and maintain body 

weight well, studies in overweight/obese subjects are inconclusive, therefore this 

population was chosen for the study. 
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4.2 Methods 

 

4.2.1 Participants 

The participants recruited for this study were the same participants who took part in the 

study in Chapter 3. Ten overweight men, (mean ± SD) aged 35 ± 6 years, with body mass 

90.6 ± 7.2 kg, body mass index (BMI) 28.2 ± 2.4 kg·m-2, waist circumference 94.4 ± 6.4 

cm and predicted maximal oxygen uptake (2OV& max) 40.8 ± 10.4 ml·kg-1·min-1 

volunteered to participate in this study. All volunteers were healthy, 

normocholesterolemic, non-smokers, were not consuming any type of specialised diet, 

non-dieters, had a sedentary to moderately active lifestyle (less than two hours of planned 

exercise per week), and were not highly restrained eaters. Exclusion criteria included BMI 

< 25 kg·m-2, fasting blood glucose > 7.0 mmol.l-1, total cholesterol levels > 6.0 mmol.l-1, 

diagnosed heart disease, presence of diseases known to cause metabolic disturbances, 

current tobacco use, and use of any medications that are known to alter appetite or feeding 

behaviours. The study was approved by the Faculty of Biomedical and Life Sciences 

Research Ethics Committee at the University of Glasgow, and all procedures complied 

with the Declaration of Helsinki. Each participant provided written, informed consent 

before participation. They were asked to remain in their normal daily activities and to 

refrain from consuming alcohol during the course of the study.  

 

4.2.2 Experimental design 

This chapter utilised the same experimental protocol as described in Chapter 3. Each 

participant undertook three main trials, in counter-balanced order, with an interval of at 

least seven days: no exercise (CON), a single exercise session (EX-1) and three exercise 

sessions (EX-3). Each trial was conducted over four days. In CON, participants 

performed no exercise on Days 1 to 3; in EX-1, participants performed a single exercise 

session on Day 3; and in EX-3 participants undertook exercise sessions on Days 1, 2 and 

3. On Day 4 of each trial participants attended the metabolic investigation suite for a 7-h 

metabolic assessment, described in detail below. On Days 1 to 3 in all trials, participants 

were provided with a controlled diet by the experimenters and, other than the imposed 

exercise in the EX-1 and EX-3 trials, were asked to refrain from planned exercise and to 

maintain their usual day-to-day activities during this period. An overview of the 

experimental protocol is shown in Figure 4.1. 
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Figure 4.1. Experimental design. Subjects completed three trials: Control (CON), single-exercise 
trial (EX-1), and three-exercise trial (EX-3). Controlled diet foods (CD) were provided on Days 1-
3. Exercise sessions ( ) were performed to expend 8 kcal·kg-1. Blood samples and appetite 
questionnaires (↓) were collected at regular intervals on Day 4. Ad libitum buffet breakfast (B), 
lunch (L), and dinner (D) were provided at designated times. 
 

4.2.3. Preliminary tests 

This chapter utilised the same preliminary tests as described in Chapter 3. Before 

undertaking the main experimental trials, participants undertook a number of preliminary 

tests.  Resting metabolic rate (RMR) was measured after an overnight fast using a 

ventilated hood system (Oxycon Pro, Jaeger GmbH, Hoechberg, Germany) as described 

in section 2.4.1.  A four-stage incremental sub-maximal treadmill walk test was 

performed to estimate 2OV& max and calculate the speed and gradient required to elicit the 

intensity of 50% 2OV& max for the exercise intervention as described in section 2.3 

(ACSM 1995). Height, body mass, waist circumference were measured. Additionally, 

subjects completed the Three Factor Eating Inventory (TFEI) (Stunkard & Messick 1985) 

(Appendix B) and the Dutch Eating Behaviour Questionnaire (DEBQ) (Van Strien et al. 

1986) (Appendix C). Scores on the TFEI and DEBQ were (mean ± SD): 2.3 ± 0.7 and 

7.1 ± 4.1 respectively; none of the participants was classified as a restrained eater. 

  

4.2.4 Main trials 

a) Days 1 to 3: Experimental intervention days 

Control trial (CON). Participants refrained from alcohol and all planned exercise over 

Days 1 to 3 of CON. To ensure participants consumed the appropriate amount of energy 

requirement, all of their food and drink were provided by the experimenters.  The energy 

intakes were calculated as RMR multiplied by a physical activity level of 1.55, which 
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corresponds to the energy requirement of a non-active adult (FAO 1985). The 

macronutrient content of the diet reflected the average Scottish diet (49% carbohydrate, 

37% fat and 14% protein) (DOE 2004), with 20% of energy provided at breakfast, 35% at 

lunch, and 45% at dinner. The diet consisted of whole and frozen foods (e.g. cereals, 

bread, fruits, pasta, etc.). Participants were allowed ad libitum access to water and sugar-

free fruit cordial. They were required to consume all food provided and to return the used 

containers. Dietary adherence was monitored and verified by daily email and telephone 

contact. Daily physical activity outside the laboratory during the intervention period was 

assessed using an Actigraph monitor (Model GT1M, Actigraph, LLC, Florida, USA). 

Instructions on wearing the Actigraph were provided to all participants, and they were 

required to wear the activity monitor during waking times for everyday of the 3-d period. 

 

Single-exercise trial (EX-1). On Days 1 to 3, participants consumed exactly the same diet 

as CON (i.e. energy intake 1.55 x RMR), consumed no alcohol and refrained from all 

planned exercise other than that undertaken as part of the intervention. Participants 

performed a single exercise session on the afternoon of Day 3, in which they walked on a 

treadmill at an intensity of 50% 2OV& max to induce a net energy expenditure of 8 kcal·kg-

1 body mass. Duration of the walk varied for each individual. Expired air samples were 

collected in Douglas bags at rest, at 15-min intervals during the walk and for 15 min after 

the completion of exercise for the determination of oxygen uptake and carbon dioxide 

production. Exercise energy expenditure was calculated using indirect calorimetry, as 

described in section 2.4.4.  The net energy expenditure of exercise was determined by 

subtracting resting energy expenditure from the gross energy expenditure of exercise. 

Heart rates and ratings of perceived exertion were recorded at 15-min intervals during the 

exercise.  

 

Three-exercise trial (EX-3). This trial was identical to EX-1 except participants walked at 

50% 2OV& max to induce a net energy expenditure of 8 kcal·kg-1 body mass on each of 

Days 1, 2 and 3. 

 

b) Day 4: Metabolic assessment 

Participants reported to the metabolic suite on the morning (~8.00 am) of Day 4 after a 

12-hour overnight fast, approximately 14-16 h after completion of exercise in the EX-1 

and EX-3 trials. Following a 10-min supine rest on a couch, a 25-min expired air 

measurement was taken using the ventilated hood system to determine metabolic rate and 
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substrate utilisation. A cannula was inserted into an antecubital vein and after a 10-min 

interval, a fasting blood sample was taken. Ad libitum breakfast, lunch and dinner were 

provided during the observation period. Blood samples along with appetite ratings were 

collected at 30, 60, 120, 180 min after completion of breakfast and the same pattern was 

repeated after completion of lunch (270, 300, 360 and 420 min).  

 

4.2.5 Ad libitum energy intake 

Immediately after fasting measurements were made, an ad libitum buffet-style breakfast 

was provided containing a variety of breakfast cereals, semi-skimmed milk, toast, 

croissants, margarine, jam and marmalade (~4500 kcal of energy available). They were 

given 15 min to consume this meal. An ad libitum buffet lunch, containing spaghetti 

Bolognese, salad, vinaigrette dressing, bread, margarine, potato crisps, fruit, yogurt and 

chocolates (~3700 kcal of energy available) was provided 3.5 h after breakfast in a similar 

manner. An ad libitum buffet dinner, containing penne and mozzarella pasta, salad, 

vinaigrette dressing, garlic bread, potato crisps, fruit and cakes (~4900 kcal of energy 

available) was provided at 3.5 h after lunch. Participants were given 30 min to consume 

lunch and dinner meals. They were instructed to eat according to their appetite until they 

felt comfortably full. Participants were not informed that consumption was being 

measured, and consumed breakfast without experimenters present, to minimise potential 

alterations to usual feeding behaviour (Herman & Polivy 2005). All foods were covertly 

weighed before they were made available to subjects and re-weighed again after meal 

ingestion to quantify food intake. Drinks were not provided during the meals but ad 

libitum access to water was made available throughout the day after the completion of 

each meal. 

 

4.2.6 Visual analogue scales 

Subjective assessment of appetite was made using visual analogue scales adapted from 

Flint et al. (2000) (Appendix D). Each scale consisted of a 100-mm horizontal line 

anchored at either end with statements “not at all” and “extremely”. The questionnaire 

that was used consisted of five visual analogue scales to rate ‘hunger’, ‘fullness’, 

‘satisfaction’, ‘desire to eat’ and ‘prospective food consumption’. 

 

4.2.7 Blood analysis for gut hormones 

 Venous blood samples were collected into potassium EDTA tubes and placed on ice 

before separation and centrifugation for analysis of gut hormones. Acylated ghrelin and 

PYY3-36 were quantified using commercially-available radioimmunoassay kits (Millipore, 
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St. Charles, Missouri, USA). Stability of acylated ghrelin in plasma was maintained by 

treating blood with p-hydroxymercuribenzoic acid (PMSF) before centrifugation and 1 N 

HCL were added to acidify the plasma. Blood samples were treated with aprotinin and 

dipeptidyl peptidase IV inhibitor (DDP-IV inhibitor) to prevent degradation of PYY3-36. 

All samples from the same subject were assayed in duplicate and in single assay-run to 

eliminate the effects of interassay variation.  

 

4.2.8 Statistical analysis 

Statistical analyses were performed using Statistica (version 6.0, StatSoft Inc., Tulsa, 

USA) and SPSS (version 10.0, SPSS Inc., Chicago, US). Data were tested for normality 

using the Kolmogorov-Smirnov normality test and transformed as appropriate. Box-Cox 

plots were used to determine the most appropriate transformation for data which did not 

follow a normal distribution. Consequently, statistical analyses for acylated ghrelin were 

performed on log-transformed data and are presented as values back-transformed to their 

original units. The total areas under the 420-min variable vs. time curve (AUC), 

calculated using the trapezium rule were used as summary measures of the postprandial 

appetite and gut peptide responses. One-way repeated measures ANOVAs were used to 

compare fasting values across the three trials. Two-way repeated measures ANOVAs 

(trial × time) were used to examine changes over time and across the three trials for 

energy and macronutrient intake, appetite, and gut peptides responses. Post hoc Tukey 

tests were used to identify where differences lay. Associations between variables were 

determined using Pearson product-moment correlations. Data are presented as means ± 

SEM, unless otherwise stated. Statistical significance was accepted at p < 0.05. 
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4.3   Results 

 

4.3.1 Responses to the exercise sessions 

The mean absolute 2OV& values were similar in all exercise conditions (EX-1: 1.72 ± 0.08 

L·min-1; EX-3: 1.74 ± 0.07 L·min-1). The duration, and treadmill speed and gradient for 

each of the four exercise sessions (one session in EX-1, three sessions in EX-3) were 

identical within each participant. The duration of the walk differed between individuals, 

ranging from 65 to 110 min. Participants walked on the treadmill at a speed of 5.3 ± 0.1 

km·h-1 at a gradient of 6.7 ± 0.7% for a duration of 93.5 ± 2.2 min. Mean oxygen uptakes 

and heart rates over the course of the exercise sessions were 21.6 ± 1.1 ml·kg-1·min-1 and 

122 ± 5 beats·min-1, respectively in EX-1, and 21.8 ± 1.1 ml·kg-1·min-1 and 124 ± 3 

beats·min-1, respectively in EX-3. These values did not differ between EX-1 and EX-3. 

Net exercise energy expenditure (energy expenditure above resting level) was 714 ± 25 

kcal in EX-1 and 2140 ± 74 kcal in EX-3.  

 

4.3.2 Metabolic responses in the fasted state 

A summary of all fasting values is shown in Table 4.1. By design, participants were in 

negative energy deficit by 8 kcal·kg-1 and 24 kcal·kg-1 at the start of Day 4 in EX-1 and 

EX-3 respectively, relative to CON. There were no differences between trials in fasting 

resting metabolic rate (RMR). Due to difficulties with blood sampling in one participant, 

data for plasma variables are presented for n = 9; data for the energy intake and appetite 

variables are presented for n = 10. No between-trial differences were observed for fasting 

plasma acylated ghrelin and PYY3-36. Fasting hunger ratings were higher in EX-3 

compared CON (p < 0.001). There were no differences between EX-1 and EX-3 for any 

of the measured variables.  
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Table 4.1. Summary of fasting values in all trials (n = 10). Values are mean  ±  S.E.M. 
 

 CON EX-1 EX-3 

RMR (kcal·day-1) 1802 ± 47 1819 ± 49 1819 ± 68 

Acylated ghrelin (pmol·l-1) 15.2 ± 1.5 16.0 ± 1.1 17.8 ± 1.8 

PYY3-36 (pmol·l-1) 45.2 ± 5.0  41.5 ± 6.7 43.0 ± 5.9 

Hunger ratings (mm) 52 ± 6 61 ± 5 73 ± 4 ** 

Desire to eat ratings (mm) 51 ± 8 64 ± 6 69 ± 5  

PFC ratings (mm) 62 ± 6 66 ± 5 73 ± 5  

Satisfaction (mm) 33 ± 5 32 ± 5 25 ± 4  

Fullness (mm) 24 ± 4 22 ± 4 20 ± 5  

CON, control; EX-1, single exercise session; EX-3, three exercise sessions; * significantly different from 
CON (p < 0.05); ** (p < 0.001) 
 

 

4.3.3 Ad libitum energy intake 

Energy intakes at the buffet breakfast, lunch and dinner meals are presented in Figure 

4.2. Two-way ANOVA showed a main effect of trial (p = 0.003) and time (p < 0.001), but 

no trial x time interaction.  Post hoc analysis showed energy intake was 19% greater at 

lunch in EX-3 (1458 ± 84 kcal) compared to CON (1222 ± 66 kcal; p=0.041), with no 

difference noted between EX-3 and EX-1 (1261 ± 99 kcal). Energy intakes at breakfast 

and dinner did not differ between all trials. In total, energy intake was 18% and 13% 

greater in EX-3 (3364 ± 235 kcal) compared to CON (2844 ± 219 kcal; p = 0.003) and 

EX-1 (2976 ± 201 kcal; p = 0.022) respectively. In terms of energy intake compensation 

[(total energy intake in EX-1 or EX-3 – total energy intake in CON)/net exercise energy 

expenditure x 100], participants compensated about 18% and 24% of the energy expended 

during exercise in EX-1 and EX-3 respectively. 
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Figure 4.2: Ad libitum energy intake at breakfast, lunch, dinner, and total in CON (■), EX-1 (□), 
and EX-3 (■) trials (n = 10). Values are expressed as means, with standard errors represented by 
vertical bars. (*) significantly different from CON (p < 0.05); (†) significantly different from EX-
1 (p < 0.05). 
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4.3.4 Macronutrient intake 

Table 4.2 summarised the macronutrient intakes at all meal times in all three trials. For 

all meals (breakfast, lunch, and dinner) combined, compared to CON, carbohydrate intake 

was 16.7% higher in EX-3 (p = 0.011). The same trend was also observed for fat intake, 

which was 19.7 % higher in EX-3 (p = 0.010) compared to CON. Consumption of protein 

were 22.6% and 14.5% higher in EX-3 (p < 0.001) and EX-1 (p = 0.001) respectively, 

compared to CON. No differences were noted different between EX-1 and EX-3 trials in 

total carbohydrate and fat intake, and across meals. 

 

 
Table 4.2. Macronutrient intake during ad libitum breakfast, lunch, and dinner for all trials (n = 
10). Values are expressed as mean  ±  S.E.M. 
 

 CON EX-1 EX-3 

Carbohydrate    

     Breakfast (g) 124.0 ± 14.0 136.7 ± 16.8 139.3 ± 17.0 

     Lunch (g) 170.0 ± 12.5 169.7 ± 16.6 197.0 ± 15.9  

     Dinner (g) 130.7 ± 17.5 136.0 ± 13.8 159.1 ± 15.9 

     Total (g) 424.7 ± 35.5 442.3 ± 31.9 495.4 ± 39.3 * 

Fat    

     Breakfast (g) 7.6 ± 1.4 8.5 ± 1.8 8.3 ± 1.7 

     Lunch (g) 32.7 ± 3.4 35.7 ± 3.8 40.5 ± 3.3 

     Dinner (g) 36.5 ± 4.2 36.6 ± 4.0 43.3 ± 5.1 

     Total (g) 76.9 ± 7.1 80.7 ± 6.4 92.1 ± 6.8 * 

Protein    

     Breakfast (g) 19.2 ± 2.3 23.0 ± 2.5   24.0 ± 2.4 

     Lunch (g) 55.1 ± 2.8 58.3 ± 3.4 68.4 ± 3.9 **† 

     Dinner (g) 22.6 ± 3.6 21.6 ± 2.6 26.5 ± 3.1  

     Total (g) 97.0 ± 6.7 103.0 ± 6.0 ** 118.9 ± 6.4 **† 

* significantly different from CON (p < 0.05); ** (p < 0.001); † significantly different from EX-1 (p < 0.05) 
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4.3.5  Appetite responses 

Time-averaged area under the curve (TAUC) for postprandial appetite scores are 

summarised in Table 4.3. Overall hunger scores were significantly higher in EX-3 

compared to CON (p = 0.011). No differences were observed for other appetite variables. 

Appetite responses over the 7-h observation period are illustrated in Figure 4.3. Two-way 

ANOVA revealed a main effect of trial (p = 0.009), time (p < 0.001), and trial x time 

interaction (p = 0.027) for hunger scores. No significant effect of trial was observed for 

other appetite scores (desire to eat, prospective food consumption, fullness, and 

satisfaction), although a time effect was evident for these responses (p < 0.001), 

indicating that appetite sensations changed significantly during the observation period but 

were not influenced by trials.  

 

Table 4.3. Postprandial time-averaged area under curve for subjective ratings of appetite over 7-h 
observation period (n = 10). Values are expressed as mean  ±  S.E.M. 

Appetite variables CON EX-1 EX-3 

Hunger (mm) 27.2 ± 2.5 30.4 ± 2.4 34.2 ± 2.2 * 

Desire to eat (mm) 23.1 ± 3.2 25.0 ± 3.8 28.4 ± 4.0 

Prospective food consumption (mm)  27.0 ± 3.0 27.6 ± 3.1 30.8 ± 3.1 

Fullness (mm) 67.7 ± 3.9 67.9 ± 4.9 68.8 ± 4.0 

Satisfaction (mm) 70.8 ± 4.0 69.4 ± 4.7 68.8 ± 3.9 

CON, control; EX-1, single exercise session; EX-3, three exercise sessions; (*) significantly different from 
CON (p < 0.05). 
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**  

 

 

        (a)          (b) 

 

    (c)         (d)                            

   

            (e) 

 

 

 

 

 

 

 

 

 

Figure 4.3. Postprandial (a) hunger, (b) desire to eat, (c) prospective food consumption, (d) 
fullness, and (e) satisfaction in CON (♦), EX-1 (○), and EX-3 (●) trials. Times at which buffet 
breakfast, lunch, and dinner (■) were provided are shown. Values are expressed as means, with 
standard errors represented by vertical bars (n = 10). (**) significantly different from CON (p < 
0.001). 
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♦  CON 
○  EX-1 
●  EX-3 

Ptrial          = 0.009 
Ptime        < 0.001 
Pinteraction   = 0.027 

Ptrial          = 0.125 
Ptime        < 0.001 
Pinteraction   = 0.177 

Ptrial          = 0.371 
Ptime        < 0.001 
Pinteraction   = 0.536 

Ptrial          = 0.285 
Ptime        < 0.001 
Pinteraction   < 0.001 

Ptrial          = 0.848 
Ptime        < 0.001 
Pinteraction   = 0.341 



  Chapter 4 | 123 

 

 

4.3.6  Gut hormone responses 

Statistical analyses for acylated ghrelin were performed on log-transformed data and 

back-transformed to original units for data reporting. Summaries of area under curve for 

acylated ghrelin and PYY3-36 responses over the 7-h observation period are presented in 

Table 4.4. Total AUC for acylated ghrelin and PYY3-36 concentrations vs. time curve was 

not significant between trials. When assessing the AUC in separate intervals, pre-lunch 

(30-180 min) and post-lunch (270-420 min), no differences were observed for gut peptide 

responses during these intervals. Figure 4.4 illustrates the responses of plasma acylated 

ghrelin and PYY3-36 over the observation period. Acylated ghrelin and PYY3-36 responses 

changed significantly over time (p = 0.028 and p = 0.025 respectively), but no trial or 

interaction effects were found.  

 

Table 4.4. Postprandial time-averaged area under curve (TAUC) for gut peptide responses over 7-
h observation period (n = 9). Statistical analyses for acylated ghrelin were performed on log-
transformed data and values are presented as means back-transformed to original units with 
positive and negative S.E.M. Values are expressed as mean  ±  S.E.M for PYY3-36. 

Gut peptides CON EX-1 EX-3 

Acylated ghrelin (pmol·l-1)    

   TAUC -30 – 420 min 13.6 ± 1.6, 1.5 14.5 ± 1.6, 1.4 14.5 ± 2.3, 2.0 

   TAUC 30 – 180 min 13.0 ± 1.5, 1.4 12.9 ± 1.5, 1.4 13.8 ± 2.2, 1.9 

   TAUC 270– 420 min 13.6 ± 1.8, 1.6 14.9 ± 2.2, 1.9 15.1 ± 2.7, 2.3 

PYY3-36 (pmol·l-1)    

   TAUC -30 – 420 min 13.6 ± 0.7 13.3 ± 0.9 13.6 ± 0.9 

   TAUC 30 – 180 min 12.4 ± 0.9 12.9 ± 1.0 11.8 ± 0.9 

   TAUC 270– 420 min 14.9 ± 1.0 14.2 ± 1.5 15.3 ± 0.9 

CON, control; EX-1, single exercise session; EX-3, three exercise sessions 
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Figure 4.4: Postprandial plasma (a) acylated ghrelin, and (b) PYY3-36 during the 7-h observation 
period in CON (♦), EX-1 (○), and EX-3 (●) trials. Times at which buffet breakfast, lunch, and 
dinner (■) were provided are shown. Values are expressed as means, with standard errors 
represented by vertical bars (n = 9).  
 

 

 

 

♦  CON 
○  EX-1 
●  EX-3 

Ptrial          = 0.596 
Ptime        = 0.027 
Pinteraction   = 0.280 

Ptrial          = 0.936 
Ptime        = 0.025 
Pinteraction   = 0.707 
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4.3.7  Physical activity outside laboratory 

Physical activity for the preceding 3-d period before observation day (Day 4) is illustrated 

in Figure 4.5. Data is expressed as mean time (minutes) spent in various levels of 

physical activity as defined by the Freedson’s cut-off point for adults (Freedson et al. 

1998): sedentary (< 100 counts·min-1), light (100-1952 counts·min-1), moderate (1952-

5724 counts·min-1), and vigorous activities (> 5724 counts·min-1). Prior to statistical 

analysis, accelerometry data during the period of exercise bouts performed in EX-1 and 

EX-3 were substituted with data from the corresponding period in the control trial, so 

only physical activity outside the laboratory was analysed.  About 68-70% of each day 

was spent in sedentary activities, 23-27% was in the light intensity category, and the 

remaining time was spent in the at least moderate activity category. Two-way ANOVA 

revealed a significant level (p < 0.001), but no trial and interaction effects, indicating that 

although the absolute amount of time spent differed between activity levels, daily 

physical activity outside the structured exercise in the laboratory did not differ across 

trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Mean time spent in various physical activity levels during the preceding 3-d period in 
CON (■), EX-1 (□), and EX-3 (■) trials (n = 10). Values are expressed as means, with standard 
errors represented by vertical bars. 
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4.4   Discussion 

 

The purpose of this study was to investigate ad libitum energy intake, appetite and gut 

hormone responses to a single session vs. consecutive sessions of exercise in overweight 

men. The findings demonstrated that while a single exercise session did not result in a 

significant compensation in energy intake, performing exercise for three consecutive days 

evidently resulted in increased ad libitum energy intake and hunger perception. In 

contrast, the consecutive exercise sessions did not influence plasma acylated ghrelin, 

PYY3-36 and other appetite perceptions. These results support our hypothesis that higher 

energy deficit stimulated greater energy intake, however, these responses were not related 

to appetite-related hormones.  

 

The findings of the present study showed that a single exercise session (~700 kcal) led to 

a slight (~18% of expended energy expenditure) but not significant increase in energy 

intake. No changes in appetite perceptions were observed. This is somewhat in agreement 

with previous reports that have shown no differences in energy intake (King et al. 2011a; 

King et al. 2010a, King et al. 2010b; Unick et al. 2010; Erdmann et al. 2007; King et al. 

1997a, Imbeault et al. 1997) and appetite responses (Unick et al. 2010; King et al. 2010a, 

King et al. 2010b; Imbeault et al. 1997) in the post-exercise period. However, it is not 

known whether energy intake would remain unaltered beyond the observation period of 

these studies. In an elegant study by Edholm et al. (1955) five decades ago, a correlation 

between energy expenditure and energy intake was found only 2 days later, which ignited 

the possibility of a delayed compensatory augmentation in energy intake. Indeed, Stubbs 

et al. (2002a) found that raising energy expenditure by exercise (~400-800 kcal·day-1) for 

7 consecutive days in free-living women resulted in a partial compensation (~25-30%) 

throughout the experimental period, but not in men (Stubbs et al. 2002b). In a longer term 

study lasting 16 days, Whybrow et al. (2008) reported ~30% compensation in energy 

intake due to graded elevations in exercise-induced energy expenditures (~400-900 

kcal·day-1) in lean men and women feeding ad libitum. 

 

In the present study, the participants showed a partial compensation of ~24% (of energy 

expended in exercise) after expending ~ 2100 kcal through exercise in EX-3. Apart from 

energy intake, an increase in ‘hunger’ ratings compared to control was also observed. 

Given that the accumulated energy expenditure induced by the exercise in EX-3 was 
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substantially greater than in EX-1, therefore it can be reasonably assumed that the 

elevation in exercise energy expenditure is likely to induce a compensatory response in 

hunger and hence, energy intake. In a somewhat similar study, Hagobian et al. (2009) 

reported increased appetite ratings for hunger (i.e. hunger, desire to eat, prospective food 

consumption) in overweight men who underwent 4 days of consecutive exercise (~750 

kcal·day-1) with a concurrent energy deficit (daily energy intake not matched to energy 

expenditure) compared to when studied in energy balance. Collectively, previous findings 

and the present data indicate that it may be possible that changes in appetite and energy 

intake may not be evident 1-2 days post-exercise, but instead may take 3-4 days or longer 

to become apparent. Indeed, Bray et al. (2008) recently stated that corrective responses in 

human food intake to deviations from average energy intake occurs with a lag of 3-4 

days, not 1-2 days, thus supporting the findings of the present study. It might also be that 

overweight/obese individuals are less resistant, compared to lean counterparts, in 

tolerating substantial negative energy balance that compensation in energy intake will 

eventually sets in, in the direction to restore energy balance. Furthermore, overweight 

individuals have been shown to experience greater sensitivity to food-cue reward 

(Franken & Muris 2005), and this reward-driven behaviour might be implicated in the 

compensatory behaviour in response to exercise. In the present study, we observed greater 

macronutrient intakes for carbohydrate, protein, and fat in the EX-3 trial. However, we 

attributed this finding to the resultant increase in energy intake, and not likely due to 

changes in macronutrient preferences, as the distributions of energy in meals in this study 

were typical of a Western diet. A majority of previous work have shown that 

macronutrient preferences were unaltered in response to exercise (Elder & Roberts 2007).  

 

Changes in energy balance (i.e. deficit, surplus) can have a marked impact on appetite-

related hormones that modulate energy intake. Many studies in the past have typically 

measured total ghrelin, and a majority of these studies have consistently shown no effects 

of exercise on total ghrelin responses (Ueda et al. 2009b; Burns et al. 2007; Jürimäe et al. 

2007; Martins et al. 2007a; Kraemer et al. 2004; Schmidt et al. 2004; Dall et al. 2002). 

Although there is a close relationship between total and the biologically-active appetite-

stimulating acylated ghrelin (Lucidi et al. 2004), it cannot be excluded that this 

relationship may be somewhat different in response to exercise. It was hypothesised that 

any increases in appetite perceptions and energy intake in this study would be attributed 

to increased circulating levels of acylated ghrelin. However the findings demonstrated 

that this was not the case, as plasma acylated grelin was unaltered in all trials, therefore 

the increase drive to eat observed in EX-3 could not have been due to effect of this gut 
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peptide. This apparent uncoupling between feelings of hunger and ghrelin levels has been 

previously reported in other studies (Hagobian et al. 2009; Malkova et al. 2008). It is 

unclear why elevated ghrelin levels were not observed in this investigation. Plasma 

acylated ghrelin have been measured in a few studies recently but with slightly mixed 

results. A single bout of running at 70% 2OV& max for 60 min was reported to reduce 9-h 

AUC acylated ghrelin (Broom et al. 2007). In a more recent investigation by Broom et al. 

(2009), it was demonstrated that while acylated ghrelin was suppressed during a 60-min 

run, the 8-h AUC remained unchanged compared to control. Both studies recruited lean 

male subjects. A similar trend was observed in a recent study by King et al. (2010a), that 

despite the brief suppression of acylated ghrelin during and immediately after 90-min of 

treadmill running at 69% 2OV& max, ghrelin levels did not differ from control during the 

postprandial period, and the following morning in lean, male subjects. Unick et al. (2010) 

reported acylated ghrelin concentrations appeared to be unaffected for two hours 

following a 40-min brisk-walking exercise in overweight women. In longer term studies, 

5 days of consecutive exercise is associated with an increase in 4-h AUC acylated ghrelin 

in lean male adolescents, but not in the overweight group (Mackelvie et al. 2007), while 

Hagobian et al. (2009) observed no change in 2-h AUC acylated ghrelin on the following 

morning after 4 days of consecutive exercise in overweight male subjects.  

 

Taken together, most of the evidence above seem to suggest that ghrelin may be 

influenced acutely only during exercise, mostly in the manner of suppression (King et al. 

2010b; Broom et al. 2009; Marzullo et al. 2008; Broom et al. 2007); and that the effect is 

only transient and disappears after the cessation of exercise. Only a minority reported 

sustained suppression (Malkova et al. 2008; Broom et al. 2007) or increase (Erdmann et 

al. 2007) in the post-exercise period. Furthermore, ghrelin concentrations have been 

shown to elevate preprandially, and decline postprandially, suggesting that the hormone 

act episodically to influence acute eating behaviour rather than influence feeding in the 

long term (Cummings et al. 2001; Tschöp et al. 2001). Thus, this may conceivably 

explain the lack of changes in plasma acylated ghrelin observed on the day following 

exercise in the present study. Furthermore, evidence has also suggested that the 

relationship between ghrelin and energy balance becomes less significant in obesity, 

where ghrelin levels seem to be unresponsive to feeding (Maier et al. 2010; Maier et al. 

2008; le Roux et al. 2005; Salbe et al. 2004), which may partly explain for the lack of 

plasma ghrelin changes during the postprandial period in our overweight subjects. 

Alternatively, it could also be possible that responses in ghrelin may be more pronounced 
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in response to energy deficit caused by reduced energy availability in meals, rather than 

that induced by exercise (Borer et al. 2009). Indeed, increase in fasting ghrelin levels has 

been observed in individuals following an energy restriction diet to achieve weight loss 

(Kotidis et al. 2006; Hansen et al. 2002; Cummings et al. 2002). Other authors have 

observed an increase in total ghrelin and/or acylated ghrelin concentrations with long-

term exercise intervention up to one year, but only when it is associated with weight loss 

(Martins et al. 2010; Foster-Schubert et al. 2005; Leidy et al. 2004). The duration of our 

study was too short to produce weight loss therefore the lack of exercise-induced effects 

on acylated ghrelin is somewhat expected.  

 

Very few studies have examined the effects of exercise-induced energy deficit on PYY 

responses, particularly the more potent form – PYY3-36. In the postprandial state, PYY3-36 

contributes to ~60% of circulating total PYY and is more potent as a satiety signal than its 

precursor PYY1-36 (Chelikani et al. 2004). Similar to acylated ghrelin responses, we 

demonstrated that there were no changes observed in postprandial PYY3-36 levels in 

response to both exercise trials. Very few studies in the current literature address the 

effects of short-term exercise-induced energy deficits on PYY3-36 responses. So far, 

evidence are consistently indicating that circulating total PYY and PYY3-36 increased 

during a single bout of exercise (Broom et al. 2009; Ueda et al. 2009a; Ueda et al. 2009b; 

Martins et al. 2007a). All of these studies, except by Martins et al. 2007a, reported that 

plasma PYY remained elevated in the post-exercise period and were different to that of 

control (no exercise). Perhaps one of the candidate factors contributing to the lack of 

change observed in plasma PYY in our study is similar to that explaining ghrelin, which 

is timing of observation, therefore the acute transient changes that may have occurred 

during the exercise sessions could not be captured on the day following exercise. Similar 

to ghrelin, some studies have confirmed that fasting and postprandial plasma PYY levels 

are also attenuated in obesity (le Roux et al. 2006; Stock et al. 2005; Batterham et al. 

2003). We also failed to observe any association between PYY3-36 and energy intake as 

well as satiety sensations (i.e. fullness and satisfaction). However, this study finding does 

not rule out the potential role of PYY3-36 in appetite regulation in the longer term as Jones 

et al. (2009) recently reported increased fasting total PYY concentrations in overweight 

adolescents after an 8-month exercise intervention.  

 

By virtue of our study design, we are unable to determine macronutrient balance in this 

study. Pannacciulli et al. (2007) demonstrated that energy intakes were negatively 

correlated with carbohydrate deficit, independent of energy balance, which indicates that 
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carbohydrate balance is a contributing metabolic factor affecting food intake. Thus 

macronutrient imbalances could also be a contributing factor to the feeding responses 

observed in the present study. Alternatively, we cannot dismiss the contributions of 

cognitive (e.g. palatability, motivation to eat) and environmental (e.g. laboratory setting) 

factors that may have affected the feeding behaviours in our subjects (Berthoud 2006). 

Furthermore, when allowed to eat ad libitum, obese subjects have been showed to 

consume more than do normal weight subjects (Wing et al. 1978).  

 

 

4.5   Summary 

 

In summary, our findings showed that consecutive days of exercise produced a partial 

compensation in energy intake (~24%) and increase in hunger perceptions in overweight 

men, an effect that was not observed with a single exercise. The present study also 

highlights the findings that the gut hormones are not influenced by the exercise-induced 

negative energy balance. It would be of interest to examine the hormonal responses 

during the exercise period and observe how consecutive days of exercise can affect this. 

Although we cannot clearly distinguish the roles of acylated ghrelin and PYY3-36 in this 

experiment alone, it is not unlikely that these gut peptides can be influenced by exercise 

in the longer term. Future studies to confirm or refute these initial results are eagerly 

anticipated.  
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CHAPTER 5 

 
Effects of Exercise Before or After a Meal on 
Postprandial Metabolism, Energy Intake and 

Appetite Responses in Overweight Men 
 

 

5.1 Introduction 

 

Loss of body fat requires the imposition of a negative fat balance. Fat balance is 

determined by fat oxidation and fat intake, and negative fat balance is achieved under 

conditions when more fat is oxidised than is ingested (Schutz 2004). Exercise is effective 

at increasing fat oxidation, both during and in hours following exercise (Hansen et al. 

2005). However, the ability of exercise to induce negative energy balance or fat balance 

within a given period of time depends on its energy expenditure, and its effects on 

nutritional status across the exercise and the post-exercise periods (Tremblay & Therrien 

2006). Beyond the energy cost of exercise, studies have shown that consuming a meal 

prior to exercise increased the contribution of carbohydrate oxidation to energy 

expenditure, relative to fat, during the exercise period (Derave et al. 2007; Wu et al. 

2003; Coyle et al. 1997; Horowitz et al. 1997), while a post-exercise meal can attenuate 

the shift from carbohydrate to fat oxidation that normally follows exercise (Long et al. 

2008; Dionne et al. 1999; Montain et al. 1991). While these research efforts have 

examined the effects of pre- and post-exercise meals on fat oxidation in controlled 

laboratory conditions, not much is known regarding which exercise timing around meal 

ingestion induces greater overall fat oxidation in ‘real-life’ condition. Schneiter et al. 

(1995) compared the effects of preprandial and postprandial exercise on fat oxidation and 

suggested that preprandial exercise stimulates greater fat oxidation over an 8-h period. 

This inference is weak, however, because the experimental condition did not include 

subsequent food intake and therefore, was not representative of free-living situations. In 

order to achieve overall negative fat balance, the increased energy expenditure induced by 

exercise must not be compensated by subsequent food intake. This can prove to be 

difficult in ‘real-life’ situations where food intake is often uncontrolled. Furthermore, it is 

unclear how exercise timing around meal ingestion could conceivably affect appetitive 

behaviour and ad libitum food intake, and how these subsequent meals can influence 
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variations in substrate oxidation and overall fat balance throughout the post-exercise 

period.  

 

An additional consideration in the temporal association of exercise and meal ingestion is 

its effects on postprandial lipid metabolism. Much evidence has shown that exercise is 

efficient in ameliorating the unfavourable exaggerations in postprandial lipaemia and 

insulinaemia, adding to the health benefits of physical activity in potentially curbing the 

progression of atherogenesis (Katsanos 2006). In most of these studies, exercise 

performed 4-18 hours prior to a high-fat meal effectively reduced postprandial TG and 

insulin responses (Mestek et al. 2008; Miyashita et al. 2008; Pfeiffer et al. 2005; Kolifa et 

al. 2004; Petridou et al. 2004; Gill et al. 2002; Gill & Hardman 2000; Murphy et al. 2000; 

Tsetsonis et al. 1997). However, in studies which evaluated the effects of post-meal 

exercise on postprandial lipaemia, findings have been mixed. Some studies reported a 

decrease in postprandial TG when exercise was performed after a meal (Hardman & 

Aldred 1995; Klein et al. 1992; Schlierf et al. 1987) while a study by Zhang et al. (1998) 

reported no change from a no-exercise control. Katsanos & Moffatt (2004) compared the 

effects of pre-meal and post-meal exercise on postprandial lipaemia and found that the 

exercise-induced reduction in TG is irrespective of timing of exercise around meal 

ingestion. The finding of this study however, is limited by the absence of subsequent 

meals in the post-exercise period. Subsequent meal ingestion in the post-exercise period 

can have an impact on the magnitude and duration of the exercise-induced metabolic 

responses, e.g. dietary carbohydrate consumed after exercise has been shown to reduce 

the exercise-induced improvement in insulin sensitivity up until the next day (Newsom et 

al. 2010). Therefore, it is not known how exercise timing relative to meal ingestion and 

subsequent food ingestion may impact postprandial lipid metabolism.  

 

To improve the effectiveness of exercise and its role in increasing fat oxidation and 

improving postprandial metabolism, further investigation is required to clarify which 

conditions of exercise timing relative to meal ingestion permits the greatest overall 

negative fat balance and magnitude of hypotriglyceridaemic effect across daily meals and 

the post-exercise period. The purpose of this study is therefore, to investigate the effects 

of an acute bout of moderate intensity exercise, preceding or after a standardised breakfast 

meal, on macronutrient and postprandial metabolism, as well as appetite responses and 

subsequent energy intake in overweight subjects. 
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5.2 Methods 

 

5.2.1 Participants 

Ten healthy, overweight sedentary (engagement in exercise activity <1 h·wk-1) men were 

recruited to participate in this study. Their age, BMI, waist circumference, and predicted 

maximum oxygen uptake were (mean ± SD) 28.1 ± 10.7 years, 29.0 ± 2.8 kg·m-1, 93.2 ± 

8.6 cm, and 39.1 ± 5.4 kg·ml·min-1 respectively. Participants were healthy, 

normocholesterolemic, non-smokers, with no known history of CVD or diabetes, and 

were not consuming any type of specialised diet or taking a medication thought to 

interfere with energy substrate metabolism and appetite. Dietary restraint was measured 

by the restraint scale on the Three Factor Eating Questionnaire (TFEQ) (Stunkard & 

Messick 1985) (Appendix B) and Dutch Eating Behaviour Questionnaire (DEBQ) (Van 

Strien et al. 1986) (Appendix C). The dietary restraint scores were 6.1 ± 3.0 and 2.4 ± 0.4 

respectively. None of the participants was classified as a restrained eater. The present 

study was conducted according to the guidelines stated in the Declaration of Helsinki and 

all procedures involving human subjects were approved by the Faculty of Biomedical and 

Life Sciences Ethics Committee at the University of Glasgow, UK. Each participant gave 

written informed consent prior to participation. 

 

5.2.2 Experimental design 

After preliminary testing, each participant completed three, 8.5 h experimental trials in 

counter-balanced order with an interval of 1-2 weeks: exercise before breakfast-meal 

(EXM), exercise after breakfast-meal (MEX), and control (CON). An overview of the 

study protocol is shown in Figure 5.1. For 2 days prior to their first trial, participants 

recorded all of their food and drink intake and were instructed to replicate this diet for the 

two days preceding their subsequent experimental trials. They were also asked to refrain 

from alcohol and planned exercise and maintain their usual day-to-day activities during 

this recording period. 

 

5.2.3 Preliminary tests 

Before undertaking the main experimental trials, participants undertook a four-stage 

incremental sub-maximal treadmill walk test, described in section 2.3, to estimate 

2OV& max and calculate the speed and gradient required to elicit the intensity of 50% 

2OV& max for the exercise intervention. Height, body mass, waist circumference were 

measured. Each participant was also asked about food they disliked and whether they 
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have any food allergies. This information was used to ensure that foods provided in the ad 

libitum buffet were suitable and acceptable for their consumption.  

 

Figure 5.1. Experimental design. Subjects completed three trials: exercise before breakfast-meal 
(EXM), exercise after breakfast-meal (MEX), and control (CON). Expired air measurements (●), 
as well as blood samples and appetite questionnaires (↓) were collected at regular intervals. Test 
breakfast (TB), buffet lunch (BL), and buffet dinner (BD) were provided at designated times. 
 

5.2.4 Main trials 

Exercise before breakfast-meal (EXM). Participants arrived at the metabolic suite at 8.00 

am after a 12-hour overnight fast. Following 10 min supine rest on a couch, a 25 min 

fasting expired sample was collected using a ventilated hood system (Oxycon Pro, Jaeger 

GmbH, Hoechberg, Germany) to determine resting metabolic rate and substrate 

utilisation, described in section 2.4.1. A cannula was then introduced into an antecubital 

vein for repeated blood sampling. Participants were asked to rate their fasting appetite 

sensations using 100-mm visual analogue scales and a fasting blood sample was taken 

immediately before the commencement of exercise session. The exercise session began at 

9.00 am (-90 min in Figure 5.1) and all participants completed a 60-min treadmill walk at 

50% of 2OV& max. Expired air samples were collected at 15-min intervals during the walk, 

and for 15 min in the recovery period using Douglas bags for the determination of oxygen 

uptake and carbon dioxide production. Calculation of fat and carbohydrate oxidation 

during exercise were determined using indirect calorimetry (Frayn 1983) described in 

section 2.4.3. Heart rate and ratings of perceived exertion were recorded every 15 min 

during the walk. Blood samples were collected at 30 min during the walk and 

immediately after the walk ended. Participants also recorded their appetite sensation 

ratings at the end of walk. At 10.30 am (0 min in Figure 5.1), 30 minutes after 

completion of the exercise session, participants were provided with a test breakfast as 

described below. On completion of the meal, participants underwent a 7-hour 

postprandial observation period, during which blood samples and VAS ratings were 



  Chapter 5 | 135 

 

collected at 30, 60, 90, 120, 180, 210, 240, 270, 330, 390, and 420 min. Subsequent 

expired air measurements were made using the ventilated hood system for 15 min at 60, 

120, 180, 270, 330, and 390 min. Ad libitum lunch and dinner, as described below, were 

served at 210 (2.00 pm) and 420 min (5.30 pm).  

 

Exercise after breakfast-meal trial (MEX). This trial was identical to the EXM trial, 

except that participants rested for 1 h from 9.00 – 10.00 am, and performed the 1-h 

exercise session at 11.00 am (30 min in Figure 5.1), 30 minutes after test breakfast was 

provided. 

 

Control trial (CON). This trial was identical to both exercise trial, except that participant 

remained rested during the periods (i.e. 9.00 – 10.00 am and 11.00 am – 12.00 pm) which 

corresponded to the exercise session in EXM and MEX trials respectively. 

 

5.2.5 Test breakfast 

Participants were provided with a standardised breakfast made up to provide 5 kcal·kg-1 

of body mass. The meal comprised a bagel, polyunsaturated fat margarine, and a meal-

replacement drink (Complan Foods Ltd, UK) made with whole milk, and provided 49% 

of energy from carbohydrate, 37% from fat, and 14% from protein. Participants were 

asked to consume the meal within 10 min.  

 

5.2.6 Ad libitum energy intake 

An ad libitum buffet lunch, containing spaghetti Bolognese, salad, vinaigrette dressing, 

microwaved chips, potato crisps, fruit, yogurt and chocolate (~3500 kcal of energy 

available) was provided 3.5 h after breakfast. Participants were given 20 min to consume 

this meal. Ad libitum dinner was provided 3.5 h after lunch, consisting of chicken 

arrabiata pasta, bread, margarine, potato crisps, fruit, and cakes (~3500 kcal of energy 

available). Food was presented in excess of expected consumption and participants were 

told to eat until they felt comfortably full. Participants were given 20 min to consume 

both lunch and dinner. They were not informed that consumption was being measured, 

and consumed all meals without experimenters present, to minimise potential alterations 

to usual feeding behaviour (Herman & Polivy 2005). All foods were covertly weighed 

before they were made available to subjects and re-weighed again after meal ingestion to 

quantify food intake. Participants were not provided with water during the meals but ad 

libitum access to water was made available throughout the day after the completion of 

each meal.  
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5.2.7 Visual analogue scales 

Subjective assessment of appetite and mood was made using subjective visual analogue 

scales adapted from Flint et al. (2000) described in section 2.6.2 (Appendix D).  

 

5.2.8 Blood analysis 

Venous blood samples were collected into pre-cooled potassium EDTA tubes and placed 

on ice before centrifugation to separate plasma within 15 min of collection. Plasma was 

stored at -80°C until analysis. Glucose, TG, total cholesterol and HDL cholesterol 

concentrations were determined by enzymatic colorimetric methods using commercially 

available kits (Horiba ABX, Montpellier, France; and Wako Chemicals GmbH, Neuss, 

Germany). Insulin was determined using a commercially-available enzyme-linked 

immunoassay (ELISA) with <0.01% cross-reactivity with pro-insulin (Mercodia, 

Uppsala, Sweden). All samples for each subject were analysed in a single analyser run.  

 

5.2.9 Statistical analysis 

Statistical analyses were performed using Statistica (version 6.0, StatSoft Inc., Tulsa, 

USA) and SPSS (version 10.0, SPSS Inc., Chicago, US). Data were tested for normality 

prior to analysis. The total areas under the variable vs. time curve (AUC), calculated using 

the trapezium rule, and the incremental AUC, calculated as the increment in AUC over 

baseline concentrations, were used as summary measures of the postprandial responses. 

One-way repeated measures ANOVAs were used to compare fasting values, summary 

data and energy intakes across the three trials. Two-way repeated measures ANOVAs 

(trial x time) were used to compare changes over time and across the three trials. Post hoc 

Tukey tests were used to identify where differences lay. Data are presented as means ± 

SEM, unless otherwise stated. Statistical significance was accepted at p < 0.05. 
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5.3 Results 

 

5.3.1 Responses during the treadmill walk 

The treadmill speed and gradient for both exercise sessions (EXM and MEX) were 

identical within each participant.  Participants walked for 60 min at an average speed of 

5.5 ± 0.1 km·h-1 on a gradient of 4.3 ± 0.8%. All exercise sessions were completed 

without difficulty, participants rated the exercise as ‘light’ on the Borg scale of 6-20 in 

both EXM (10.4 ± 0.6) and MEX (10.5 ± 0.6) trials. Mean oxygen uptakes and heart rates 

over the course of the exercise sessions were 20.1 ± 0.8 ml·kg-1·min-1 and 127 ± 4 

beats·min-1, respectively in EXM, and 19.5 ± 0.8 ml·kg-1·min-1 and 129 ± 4 beats·min-1, 

respectively in MEX. Values were not different between trials.  

 

5.3.2 Metabolic responses in the fasted state 

Resting metabolic rate, measured first thing in the morning at 8.00 am in all trials, was 

not different between trials, nor were resting fat oxidation rate and resting carbohydrate 

oxidation rate between trials. There were no significant differences between trials in 

fasting triglyceride, insulin, glucose, or total-, HDL- or LDL- cholesterol (Table 5.1).   

Table 5.1. Summary of fasting metabolic and plasma values (n = 10). Values are mean  ±  S.E.M. 

 EXM MEX CON 

RMR (kcal·day-1) 1810 ± 65 1842 ± 73 1831 ± 48 

Fat oxidation (g·day-1) 108.4 ± 12.3 129.5 ± 11.7 121.1 ± 7.0 

CHO oxidation (g·day-1) 216.7 ± 24.5 172.3 ± 24.3 190.3 ± 20.9 

TG (mmol·l-1) 0.97 ± 0.08 0.99 ± 0.10 1.01 ± 0.99 

Insulin (mU·l-1) 6.16 ± 0.95 6.97 ± 1.07 7.05 ± 0.82 

Glucose (mmol·l-1) 5.11 ±0.16 5.32 ± 0.14 5.17 ± 0.11 

Total cholesterol (mmol·l-1) 4.61  ±0.30 4.27 ± 0.31 4.39 ± 0.36 

HDL-C (mmol·l-1) 1.22  ±0.10 1.20 ± 0.10 1.20 ± 0.07 

LDL -C (mmol·l-1) 2.95 ± 0.34 2.62 ± 0.35 2.73 ±0.34 

EXM, exercise before meal; MEX, exercise after meal; CHO, carbohydrate; TG, triglycerides.  
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5.3.3 Metabolic responses during exercise 

Summary data for energy expenditure and substrate utilisation during exercise are 

presented in Table 5.2. The total net exercise energy expenditure was similar during both 

exercise trials (p = 0.657). The net amount of fat oxidised during exercise was 33% 

greater in the EXM compared to MEX trial (p = 0.005). Conversely, the net amount of 

carbohydrate oxidised was 18% greater in the MEX trial than in EXM (p = 0.003). The 

relative contributions of fat and carbohydrate oxidation to energy expenditure during the 

15-min post exercise recovery were however, not different between EXM (fat: 1.2 ± 0.2 

g; carbohydrate: 4.4 ± 0.4 g) and MEX (fat: 1.1 ± 0.1 g; carbohydrate: 5.1± 0.1 g).  

 

5.3.4 Postprandial energy and macronutrient utilisation 

The summary AUC for postprandial energy expenditure and substrate utilisation are 

presented in Table 5.2. As expected, total energy expenditure over the 8.5 h observation 

period was greater in both EXM and MEX trials, compared to CON (p < 0.001 for both). 

Total fat oxidation over this period was 53% and 43% greater in EXM and MEX 

respectively compared to CON (p < 0.001 for both). Similarly, total carbohydrate 

oxidation was 55% greater in EXM and 65% greater in MEX than CON (p < 0.001 for 

both). None of these values differed between EXM and MEX. However, when the net 

energy expenditure and substrate utilisation during exercise are subtracted from the total 

AUC, there were no differences observed in energy expenditure and substrate utilisation 

over the observation period between trials. 
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Table 5.2. Total net energy expenditure and substrate utilisation during exercise, and postprandial 
area under curve for energy expenditure and substrate utilisation over 8.5 h observation period (n 
= 10). Values are expressed as mean  ±  S.E.M. 

 EXM MEX CON 

During exercise:    

   Energy expenditure (kcal) 433 ± 24 429 ± 24  

   Fat oxidation (g) 23.0 ± 1.3 † 17.3 ± 1.3  

  CHO oxidation (g) 59.2 ± 6.7 † 72.4 ± 6.5  

Total AUC (including exercise):    

   Energy expenditure (kcal) 1207 ±  40 ** 1192 ± 43 ** 783 ± 26 

   Fat oxidation (g) 76.1  ±  4.6 ** 71.1  ± 2.8 ** 49.6  ±  2.2 

  CHO oxidation (g) 134.9  ±  12.7 ** 143.9  ±  8.0 ** 87.0  ±  5.3 

Total AUC (excluding exercise):    

   Energy expenditure (kcal) 773± 24 763 ± 23 783 ± 26 

   Fat oxidation (g) 53.0 ± 3.8 53.6 ± 2.5 49.6  ±  2.2 

  CHO oxidation (g) 75.8 ± 8.4 72.4 ± 5.5 87.0  ±  5.3 

**significantly different from CON (p < 0.001); † significantly different from MEX (p < 0.01); CHO, 
carbohydrate; EXM, exercise before meal; MEX, exercise after meal  
 

 

5.3.5 Ad libitum energy intake and relative energy intake 

Table 5.3 shows the energy intake and macronutrient intake for ad libitum lunch and 

dinner. Two-factor ANOVA showed no trial or interaction (trial × meal) main effects for 

energy intake (p > 0.05). Thus, ad libitum energy intake for lunch, dinner, and total were 

not significantly different between trials. Calculation of the relative energy intake [total 

energy intake - (exercise energy expenditure - resting energy expenditure)] however, 

showed that this was significantly lower in the EXM (1470 ± 121 kcal) and MEX (1525 ± 

156 kcal) trials, compared to the control trial (1929 ± 158 kcal, p < 0.001 for both). After 

adjusting for the net energy expenditure of exercise, there was an energy deficit of 433 ± 

24 kcal and 429 ± 24 kcal in EXM and MEX trials respectively, compared to CON. There 

was no significant difference between trials in the quantity of energy consumed derived 

from fat, carbohydrate and protein. 
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Table 5.3. Ad libitum energy intake and macronutrient intake for lunch and dinner (n = 10). 
Values are expressed as mean  ±  S.E.M. 
 

 EXM MEX CON 

Lunch intake (kcal) 1206 ± 90 1239 ± 106 1247 ± 94 

   Carbohydrate (kcal) 645 ± 47 652 ± 54 665 ± 53 

   Fat (kcal) 311 ± 35 338 ± 48 334 ± 33 

   Protein (kcal) 249 ± 16 248 ± 15 247 ± 18 

Dinner intake (kcal) 767 ± 76 715 ± 75 682 ± 106 

   Carbohydrate (kcal) 393 ± 35 408 ± 34 389 ± 51 

   Fat (kcal) 174 ± 25 167 ± 29 166 ± 37 

   Protein (kcal) 130 ± 16 140 ± 19 127 ± 24 

Total energy intake (kcal) 1882 ± 130 1955 ± 162 1929 ± 158 

   Carbohydrate (kcal) 1038 ± 64 1061 ± 78 1055 ± 79 

   Fat (kcal) 486 ± 53 506 ± 74 501 ± 62 

   Protein (kcal) 379 ± 13 388 ± 21 373 ± 27 

 

 

5.3.6 Postprandial appetite responses 

Time-averaged AUC values for postprandial appetite ratings are shown in Table 5.4. 

Postprandial responses for appetite sensations (hunger, prospective food consumption, 

desire to eat, satisfaction, and fullness) over the 8.5 h observation period are illustrated in 

Figure 5.2. Appetite ratings changed significantly over time (p < 0.001) but no trial or 

interaction main effects were found for any of the appetite ratings assessed (hunger, 

prospective food consumption, desire to eat, satisfaction, and fullness), indicating that 

appetite ratings changed significantly during the trials but were not influenced by 

exercise. 

Table 5.4. Postprandial time-averaged area under curve (TAUC) for subjective ratings of appetite 
over 8.5 h observation period (n = 10). Values are expressed as mean  ±  S.E.M. 

Appetite variables (mm) EXM MEX CON 

TAUC Hunger  44.6 ± 2.8 40.4 ± 3.5 43.7 ± 4.2 

TAUC Desire to eat  44.7 ± 3.2 40.0 ± 4.1 43.1 ± 3.8 

TAUC Prospective food consumption  50.2 ± 2.0 45.9 ± 3.1 48.1 ± 3.2 

TAUC Fullness  49.1 ± 3.1 51.8 ± 2.7 51.7 ± 3.1 

TAUC Satisfaction  49.6 ± 2.4 40.4 ± 3.5 51.5 ± 3.0 
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Figure 5.2: Postprandial (a) hunger, (b) prospective food consumption, (c) desire to eat, (d) 
fullness, and (e) satisfaction in CON (♦), EXM (○), and MEX (●) trials. Dotted arrow (        )             
represents exercise session in EXM, black arrow (        ) represents exercise session in MEX. 
Times at which test breakfast (□) and buffet meals (■) were provided are shown. Values are 
expressed as means, with standard errors represented by vertical bars. (*) significantly different 
from CON (p < 0.05), (†) significantly different between exercise trials (p < 0.05). 
 

 

 

(a) (b) 

(c) (d) 

(e) 

♦  CON 
○  EXM  
●  MEX  

♦  CON 
○  EXM  
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5.3.7 Cumulative energy balances 

Cumulative energy, fat, and carbohydrate balances, measured over an 8.5 h observation 

period during each trial are shown in Figure 5.3. Two-factor ANOVA revealed a 

significant main effect of trial (p < 0.001), time (p < 0.001), and interaction (trial × time) 

(p < 0.001) for cumulative energy, fat, and carbohydrate balances as well as substrate 

utilization over time. Energy balance at the end of the 8.5 h observation period (after 

consumption of ad libitum dinner) did not differ between EXM (+1045 ± 122 kcal) and 

MEX (+1128 ± 145 kcal) trials but were significantly lower than CON (+1549 ± 146 kcal; 

p < 0.001 and  p < 0.01 respectively). Cumulative carbohydrate balance remained positive 

in all three trials but were significantly lower in EXM (+708 ± 54 kcal) and MEX (+695 ± 

69 kcal) compared to CON (+916 ± 63 kcal, p < 0.001 for both). Compared to CON 

(+190 ± 70 kcal), participants remained in negative fat balance at the end of the 

observation period in both EXM (-106 ± 86 kcal, p < 0.001) and MEX (-22 ± 72 kcal; p < 

0.001), but these did not differ between exercise trials.  
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Figure 5.3: Cumulative (a) energy balance, (b) carbohydrate balance, and (c) fat balance in CON 
(♦), EXM (○), and MEX (●) trials. Dotted arrow (        ) represents exercise session in EXM, 
black arrow (       ) represents exercise session in MEX. Times at which test breakfast (□) and 
buffet meals (■) were provided are shown. Values are expressed as means, with standard errors 
represented by vertical bars. (*) significantly different from CON (p < 0.001), (†) significantly 
different between exercise trials (p < 0.001). 

♦  CON 
○  EXM  
●  MEX  Ptrial          < 0.001 

Ptime        < 0.001 
Pinteraction   < 0.001 

Ptrial          < 0.001 
Ptime        < 0.001 
Pinteraction   < 0.001 

Ptrial          < 0.001 
Ptime        < 0.001 
Pinteraction   < 0.001 
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5.3.8 Plasma metabolic responses during exercise 

Figure 5.4 summarises the plasma metabolic variables during 0, 30, and 60 min of 

exercise period in EXM and MEX trials. TG concentrations were significantly higher in 

the MEX trial at 30 and 60 min of exercise (p < 0.05). Similarly, insulin concentrations 

were significantly higher at all time points in MEX compared to EXM. There were no 

differences in glucose concentrations across both exercise conditions.  

 

(a)  
 

 

 

 

 

 

(b)  
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Figure 5.4: Plasma (a) triglycerides, (b) insulin, and (c) glucose during 0, 30, and 60 min of 
exercise in EXM (○), and MEX (●) trials. Values are expressed as means, with standard errors 
represented by vertical bars. (*) significantly different between trials (p < 0.05), (**) (p < 0.001). 
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5.3.9 Postprandial plasma metabolic responses across time 

Table 5.5 summarises the overall postprandial responses for TG, insulin, and glucose. 

Figure 5.5 illustrates the postprandial responses for TG, insulin, and glucose over the 8.5 

h observation period. Two-factor ANOVA revealed a significant main effect of trial (p = 

0.043), time (p < 0.001), and interaction (trial × time) (p < 0.001) for postprandial TG 

response. Plasma TG concentrations increased progressively over time and peaked after 

the consumption of lunch. The overall postprandial TG response was 17% lower in EXM 

compared to CON (p = 0.02) and no significant changes were observed between MEX 

and EXM or between MEX and CON. Similar to TG responses, insulin responses differed 

over time (p < 0.001), and across trials (p = 0.009), with a significant trial × time 

interaction observed (p < 0.001). Plasma insulin concentrations peaked from fasting 

values following both breakfast and lunch in all trials, followed by a gradual decline 

throughout the rest of the 4-h postprandial period. Compared to CON, the overall 

postprandial insulin response was 19% (p = 0.008) and 23% (p < 0.001) lower in EXM 

and MEX respectively. The postprandial glucose response did not differ across between 

all trials. 

 

Table 5.5. Postprandial time-averaged and incremental area under curve (AUC) for plasma 
metabolic variables over 8.5 h observation period (n = 10). Values are mean  ±  S.E.M. 

 EXM MEX CON 

TG (mmol·l-1)    

   Total TAUC 1.24 ± 0.10 * 1.34 ± 0.13 1.50 ± 0.15 

   Incremental TAUC 0.27 ± 0.08 * 0.35 ± 0.09 0.48 ± 0.10 

Insulin (mU·l-1)    

   Total TAUC 25.05 ± 4.09 ** 23.61 ± 3.49 ** 30.85 ± 4.76 

   Incremental TAUC 18.89 ± 3.27 * 16.64 ± 2.53 ** 23.80 ± 4.15 

Glucose (mmol·l-1)    

   Total TAUC 5.50 ± 0.09 5.43 ± 0.13 5.32 ± 0.14 

   Incremental TAUC 0.32 ± 0.11 0.18 ± 0.16 0.15 ± 0.12 

* significantly different from CON (p < 0.05); ** (p < 0.001) 
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Figure 5.5: Postprandial plasma (a) triglycerides, (b) insulin, and (c) glucose in CON (♦), EXM 
(○), and MEX (●) trials. Dotted arrow (        ) represents exercise session in EXM, black arrow       
(         ) represents exercise session in MEX. Times at which test breakfast (□) and buffet meals 
(■) were provided are shown. Values are expressed as means, with standard errors represented by 
vertical bars. (*) significantly different from CON (p < 0.001), (†) significantly different between 
exercise trials (p < 0.001). 
 

♦  CON 
○  EXM  
●  MEX  

Ptrial          < 0.043 
Ptime        < 0.001 
Pinteraction   < 0.001 

Ptrial          = 0.009 
Ptime        < 0.001 
Pinteraction   < 0.001 

Ptrial          = 0.087 
Ptime        < 0.001 
Pinteraction   = 0.381 
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5.3.10 Postprandial plasma metabolic responses across intervals 

AUC for TG, insulin, and glucose in three separate intervals: pre-breakfast (-90 – 0 min), 

post-breakfast (0 – 210 min) and post-lunch (210 – 420 min) are shown in Figure 5.6. 

When analysed in separate intervals, postprandial TG responses following lunch (210 – 

240 min) were 20% (p = 0.02) and 17% (p = 0.03) lower in EXM and MEX respectively, 

than CON, with no difference between all trials for pre-breakfast or post-breakfast 

intervals. In the pre-breakfast interval, the insulin responses were 21% lower in EXM 

compared to CON (p = 0.007), and 20% lower compared to MEX (p = 0.010). Following 

post-breakfast interval, insulin responses were 27% (p = 0.033) and 39% (p = 0.002) 

lower in EXM and MEX respectively, compared to CON, with no differences between 

EXM and MEX. However, insulin responses did not differ between trials in the post-

lunch interval. There were no changes in glucose responses across all intervals.  
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Figure 5.6. Area under curve for plasma (a) TG, (b) insulin, and (c) glucose, in separate intervals: 
pre-breakfast (-90 – 0 min), post-breakfast (0 – 210 min) and post-lunch (210 – 420 min) in CON 
(■), EXM (□), and MEX (■) trials. Values are expressed as means, with standard errors 
represented by vertical bars. (*) significantly different from CON (p < 0.05), (†) significantly 
different between exercise trials (p < 0.05). 
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5.4 Discussion 

 

The aim of the present study was to determine the effects of exercise undertaken before or 

after a meal on macronutrient and postprandial metabolism, appetite responses and ad 

libitum feeding. The main finding of the study was that an acute bout of moderate 

intensity exercise elicited negative fat balance and greater total fat oxidation at the end of 

the day, irrespective of timing of exercise relative to consumption of a meal. Despite 

inducing a moderate energy deficit, exercise did not seem to modify appetite, or increase 

ad libitum energy intake.  In addition, overall postprandial insulin responses were lower, 

in both exercise conditions compared to no exercise, and postprandial TG responses were 

decreased after the consumption of ad libitum lunch. These findings lend support for the 

role of exercise in weight control as well as improving postprandial lipid metabolism. 

 

There have been a large number of studies examining the effects of pre-exercise meal 

ingestion on macronutrient metabolism during exercise. The finding of the present 

investigation is in agreement with previous work that showed pre-exercise feeding altered 

substrate utilisation during the exercise period in favour for carbohydrate oxidation, 

compared to exercise in the fasted state (Derave et al. 2007; Wu et al. 2003; Coyle et al. 

1997; Horowitz et al. 1997; Schneiter et al. 1995; Montain et al. 1991). Reciprocally, the 

rate of fat oxidation during exercise was greater when exercise was performed in the 

fasted state prior to a meal. Consumption of carbohydrate prior to exercise has been 

shown to suppress fat oxidation and this is largely due to the concomitant rise in plasma 

insulin and insulin-induced suppression of lipolysis (Hansen et al. 2005; Horowitz et al. 

1997). Therefore, the present findings support the prevailing notion that, with regards to 

macronutrient partitioning, exercise performed before a meal (e.g. fasted state) maximises 

fat oxidation during the exercise itself whilst ingesting a meal prior to exercise results in 

greater carbohydrate disposal by the working muscles.  

 

Although a considerable body of evidence has shown that fat oxidation during exercise is 

enhanced in the fasted state compared to after meal ingestion, relatively few studies have 

directly compared the effects of exercise timing around meal ingestion on macronutrient 

oxidation in the post-exercise period. Data from these studies (Bennard & Doucet 2006; 

Schneiter et al. 1995) reported that exercise performed before a morning meal resulted in 

a greater total amount of fat oxidised in the postprandial period of 2 – 8 hours compared  
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to exercise after a meal. However, it is important to note that meals were not provided in 

the post-exercise period in these studies, which does not reflect ‘real-life’ setting. To 

mimic a more realistic, typical daily life scenario, we extended the protocol by including 

ad libitum lunch and dinner meals in the present study. The finding of this study 

demonstrates that, overall fat oxidation was greater in both exercise conditions, compared 

to control, and that exercise before a meal is no more efficient in stimulating greater 

overall fat oxidation than exercise after a meal, even with ad libitum lunch in the post-

exercise period. Upon closer inspection however, when the energy costs of exercise were 

adjusted for, it appears that fat oxidation rates were highly congruent in all trials. Thus, 

the greater amount of fat oxidised at the end of the day in both exercise conditions was 

mainly contributed by the exercise sessions, and not during the post-exercise postprandial 

period. Some studies have shown that whole-body fat oxidation rate induced by acute 

exercise still remained elevated until the following day, despite food consumption, 

compared to no exercise (Burton et al. 2008; Folch et al. 2001; Gill et al. 2001a; Bielinski 

et al. 1985). Therefore, this present finding seems to contradict the notion that exercise 

substantially increases whole-body fat oxidation in the post-exercise period. Perhaps the 

discrepancy between our findings and previous studies can be explained by the greater 

caloric expenditure (~700-2100 kcal) others had imposed on their subjects, compared to 

~400 kcal session in this study. Additionally, it could also be that any increases in fat 

oxidation during the post-exercise period in this study are offset by subsequent 

meal/carbohydrate ingestion, which induced hyperinsulinaemia and attenuated the 

exercise-induced fat oxidation in the postprandial period (Achten & Jeukendrup 2004).  

 

Although many studies have examined the effects of short-term exercise on meal 

consumption and appetite, research examining the potential interactive effects of exercise 

timing and appetitive behaviour is lacking. To the author’s knowledge, only one 

published study has compared the effects of pre-meal and post-meal exercise on appetite 

responses. Cheng et al. (2009) reported that 50-min of exercise at 60% 2OV& max after 

consumption of a test meal appears to suppress overall appetite and prolong depressed 

hunger scores for a longer time (~5 h) compared to exercise before a meal. It is postulated 

that exercise helped to extend the postprandial satiating effect caused by meal ingestion, 

compared to meal alone, in the postprandial period. However, Cheng’s study did not 

assess ad libitum food intake, therefore it is unknown if the observed appetite suppression 

would translate into lower food intake during the postprandial period. In the present 
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study, exercise, irrespective of its timing relative to meal ingestion, did not seem to 

influence appetite and food intake in the post-exercise period, as energy intake was 

similar between trials. This observation also confirms previous findings that have 

typically shown that short term energy intake (1-2 d) is unaltered in response to an acute 

exercise bout (Hopkins et al. 2010).  

 

More importantly, when addressing the effects of exercise in maximising fat oxidation, 

substrate balances should be looked into. In the present study, energy balance was 

positive, but lower than control, in both exercise conditions at the end of the 8.5 h 

postprandial observation period. The individual substrate balances however, differed 

markedly. Fat balance was negative at the end, whereas carbohydrate balance was 

positive, in both exercise conditions respectively, and this is irrespective of exercise 

timing relative to meal ingestion. Also key to the present findings is that participants did 

not compensate in energy intake, as demonstrated by the lower relative energy intake, 

therefore they were in energy deficit relative to control in both exercise conditions. 

However, the present study was only short term (~9 h), and energy intakes and physical 

activity outside the laboratory were not recorded, therefore 24-h fat balance could not be 

determined. In 24-h room calorimeter studies comparing the effects of exercise on 24-h 

fat oxidation, findings have consistently shown that fat oxidation on the days with 

exercise did not differ from a sedentary control day in lean adults (Melanson et al. 2002), 

obese individuals (Melanson et al. 2009a; Saris & Schrauwen 2004) and endurance-

trained individuals (Melanson et al. 2008) when subjects were fed to maintain energy 

balance. Nonetheless, it is not impossible to believe that in the absence of deliberate 

attempts to restore energy balance in the post-exercise period, transient exercise-induced 

energy deficit and negative fat balance may still persist through one or more postprandial 

periods under real-life conditions. 

 

This study also highlights the effect of timing of exercise relative to meal ingestion on TG 

and insulin responses. It is well established that pre-meal exercise performed 4-18 h 

before a meal is effective in attenuating the lipaemic response to a fatty meal (Mestek et 

al. 2008; Miyashita et al. 2008; Pfeiffer et al. 2005; Kolifa et al. 2004; Petridou et al. 

2004; Gill et al. 2002; Gill & Hardman 2000; Murphy et al. 2000; Tsetsonis et al. 1997). 

Reports have suggested that decreased hepatic VLDL secretion (Gill & Hardman 2003; 

Malkova et al. 2000), diminished entry of intestinally-derived TG into the circulation 

(Kolifa et al. 2004; Hardman & Aldred 1995) or increased LPL-mediated TG clearance  
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(Petit & Cureton 2003; Zhang et al. 1998; Tsetsonis & Hardman 1997) may have 

contributed to the hypotriglyceridaemic effect observed following exercise. However, the 

effect of exercise timing on postprandial TG is less clear. Specifically, only Katsanos & 

Moffatt (2004) and Zhang et al. (1998) directly compared the effects of exercise timing 

relative to meal ingestion on postprandial lipemia (without ad libitum feeding), but 

produced contradicting results. Both studies reported attenuation in postprandial TG when 

exercise was performed before a meal, and while Katsanos & Moffatt (2004) found a 

similar attenuation with post-meal exercise, the earlier study reported that post-meal 

exercise did not have any effect on postprandial TG (Zhang et al. 1998). But because 

these two studies did not include ad libitum food consumption, it remains a topic of 

debate whether exercise performed during postprandial period is as effective in everyday 

living. In agreement with previous findings in the literature, our findings showed that 

exercise prior to meal ingestion caused an overall reduction in postprandial TG responses. 

However, contrary to previous reports that found lower lipaemic response to exercise in 

the postprandial state (Katsanos & Moffatt 2004; Hardman & Aldred 1995; Klein et al. 

1992; Schlierf et al. 1987), the overall attenuation in TG response was not evident when 

exercise was performed after a meal in this study, implying that the timing of exercise 

relative to meal ingestion appears to be important. Support for this finding is found in the 

work of others who showed that plasma TG was unaltered following post-meal exercise 

bouts on the same day (Henderson et al. 2010; Zhang et al. 1998; Chinnici & Zaugner 

1971).  

 

However, when examining the data for postprandial TG in separate intervals, we 

observed lower postprandial TG in the post-lunch interval in both exercise conditions 

compared to control. This data suggests that the TG-reduction effect may be delayed 

when exercise was performed after meal ingestion, as the exercise session began 2 h later 

than when exercise was performed prior to a meal. This delayed response in postprandial 

TG following exercise after meal ingestion may be due to a delayed increase in exercise-

induced LPL activity, as LPL has been reported to increase, not immediately, but ~3 – 4 h 

after exercise (Perreault et al. 2004; Kiens et al. 1989). This would tie in with the present 

observation in the exercise after meal condition, as the reduction in postprandial TG is 

only evident after consuming ad libitum lunch, and not earlier. However this is only 

speculative. Reductions in postprandial TG have been documented without a concomitant 

increase in muscle LPL activity (Miyashita & Tokuyama 2008; Gill et al. 2003; Herd et 

al. 2001), thereby suggesting that the reduction in TG may be accounted for by 

mechanisms other than increased LPL. It could also be that exercise after a meal acutely 
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decreased the rate of VLDL-TG secretion into the circulation (Magkos et al. 2006) or 

increased clearance rate of chylomicron/VLDL-TG (Gill et al. 2001). Despite the delayed 

response in the attenuation of plasma TG when exercise was performed after consumption 

of a meal, the beneficial effects of exercise in ameliorating postprandial TG can still be 

achieved and maintained beyond the observation period, as reductions in plasma TG 

following exercise has been shown to last for at least 12 – 24 hours post exercise (Burton 

et al. 2008; Silvestre et al. 2007; Gill & Hardman 2000).  

 

A single session of exercise can enhance insulin sensitivity for up to 48 h post-exercise 

(Cartee et al. 1989; King et al 1988). Although exercise typically reduces postprandial 

TG, the effect on postprandial insulin however, is less consistent, as some studies reported 

reduction (Burton et al. 2008; Gill et al. 2007; Hagobian & Braun 2006; Hardman & 

Aldred 1995), while others did not (Harrison et al. 2009; Tsetsonis & Hardman 1996). In 

addition, others have reported that changes in postprandial TG and insulin are not 

correlated (Gill et al. 2002). The present study demonstrated lower overall insulin 

responses in both exercise conditions compared to control, with no effect of exercise 

timing. Exercise-induced suppressions of insulin levels were particularly evident during 

exercise in both exercise conditions, as has been previously noted (Hardman & Aldred 

1995; Welle 1984), and this effect was also independent of timing of meal ingestion. 

When analysing the data in separate intervals, neither exercise conditions had an effect on 

insulin responses post ad libitum lunch as plasma insulin were restored to levels similar to 

that of control. Together, these findings suggest that the exercise-induced reduction effect 

on insulin is only transitory and that an acute bout of exercise in the morning, either 

before or after a breakfast meal, had no effect on postprandial insulin responses to a meal 

ingested 2-4 hours later. It is conceivable that the consumption of lunch had diminished 

the insulin-reducing effect of exercise. This observation confirms recent findings 

(Harrison et al. 2009; Holtz et al. 2008), that providing replacement energy after exercise, 

especially in the form of carbohydrate, will therefore reverse the attenuation effect of 

exercise on postprandial insulin concentrations. This finding also confirms the 

dissociation between insulin and triglyceride responses, as reported in Chapter 3.  
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5.5 Summary 

 

It is well-recognised that exercise is a key component of a healthy lifestyle, and abundant 

evidence clearly dictates that significant metabolic health improvements occur even after 

a single exercise session. Our findings demonstrated that exercise performed prior to a 

breakfast meal is no more beneficial than exercise after a meal in reducing fat balance and 

promoting greater overall fat oxidation at the end of the day, despite consuming ad 

libitum. Secondly, an acute bout of moderate intensity exercise did not lead to a 

subsequent increase in appetite (i.e. hunger, prospective food consumption, and desire to 

eat) and energy intake. Additionally, we demonstrated that postprandial TG responses to 

ad libitum lunch were lower with exercise, irrespective of exercise timing. From a 

practical standpoint, it shows that timing of exercise relative to meal ingestion is not a 

major factor influencing the beneficial effects of exercise observed in the present study. 

Furthermore, it is also the case that exercise after one meal is equivalent to exercise 

before another meal, when this is extended into a ‘real-world’ setting where exercise and 

food ingestion are often interspersed with each other.  
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CHAPTER 6 

 
An Assessment of the Effects of a Single Bout of 
Exercise on Appetite-Related Measures Using a 

Computer-Based Approach:                                                           
a Pilot Study 

 
 

 
6.1 Introduction 

Individuals who undertake high levels of physical activity maintain their energy balance 

and achieve a stable body weight more effectively than their sedentary peers (Wareham et 

al. 2005; Jeffery et al. 2003) and long-term maintenance of weight loss in the formerly 

obese is facilitated by high physical activity (Schoeller 1998). In support of this, studies 

measuring food intake have fairly consistently shown that energy intake remains 

unchanged immediately following an exercise session (Hopkins et al. 2010). However, 

over more prolonged periods of time, evidence suggests that some degree of dietary 

compensation for the exercise-induced energy expenditure may occur, which perhaps 

explain why some overweight/obese individuals in particular, are resistant to the 

theoretical weight loss benefits of exercise (King et al. 2008; Franz et al. 2007). Thus, 

there appears to be a discrepancy between the short and long term effects of exercise on 

energy intake.  This may be a true effect, but may also reflect difficulties in obtaining 

accurate functional measures of appetite and ‘usual’ food intake in response to acute 

exercise in a laboratory setting as the setting is not completely natural and this may lead 

to under or overconsumption relative to ‘usual’ feeding behaviour (Blundell et al. 2010). 

This is because the initiation and maintenance of feeding behavior is co-determined by 

metabolic and non-metabolic factors. Among the latter, environmental cues, as well as 

reward, cognitive, and emotional factors, play an important role, particularly in human 

food intake in the modern world (Berthoud 2006).  

 

In appetite research, the optimal experimental protocol to determine short-term energy 

intake still remain elusive because of the complex and multifaceted nature of eating 

behaviour (Blundell et al. 2010). The standard laboratory practice of offering different 

foods in a buffet meal scenario will not necessarily guarantee a sensitive experimental 

protocol as food consumption are likely to be influenced by a range of external factors 
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such as amount/volume of food presented (Rolls et al. 2006), food variety (Norton et al. 

2006), and palatability (Yeomans et al. 2001), all of which can override internal appetite 

cues and delay satiation, as well as promote increased food intake (Hetherington et al. 

2006). These issues make it difficult to determine whether exercise acutely influences the 

regulation of appetite. Thus, measuring food intake per se using the commonly used 

method (i.e. ad libitum buffet meals) may not be the best way of detecting changes in 

eating behavior and appetite as it may not be sensitive enough to detect more subtle 

alterations in the non-metabolic processes that can influence energy intake. How much 

and what we eat might be influenced by a brief period of cognitive activity during which 

we select a particular food and portion-size shortly before the onset of a meal (Brunstrom 

et al. 2007), therefore it is possible that exercise may affect how much people perceive 

they should eat and some aspects of food preference or liking. Differences in the impact 

of exercise on these perceptual factors may explain some inter-individual variability in 

compensatory eating after exercise. If exercise can influence the decisions associated with 

meal planning, it could then help understanding of if and how exercise influences 

subsequent energy intake.  

 

Therefore the objective of the present pilot study is to determine the effects of acute, 

moderate-intensity exercise on non-metabolic measures of food intake (i.e. ideal portion 

size, liking, food utility) that may potentially affect decisions associated with energy 

intake, using a novel, computer-based procedure, across an array of food items. This may 

provide a more sensitive tool to detect, perhaps fairly subtle changes in appetite variables 

compared to buffet meals, as it can provide aggregate measures of ‘ideal portion sizes’ (in 

kcal units) for a number of different foods at the same time (analogous to performing a 

number of buffet meal trials) and enables us to explore temporal changes of such effects, 

a measurement that a test meal will not be able to do. In addition, further information 

about other appetite-related measures can be obtained in concert, providing further 

information about how exercise can influence energy intake over time. This pilot study 

aims to answer several research questions: (1) Does exercise influence how individuals 

perceive their ideal food portion size, food liking and food utility? (2) If exercise does 

influence the above measures, do these responses differ across sex, lean/overweight, and 

dietary restraint? In addition, measurements of disinhibition, loss aversion, as well as 

adult attachment anxiety will be obtained from all subjects, to determine whether these 

behavioural factors may also explain some of the variance in the effects of exercise.  
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6.2 Methods 

 

6.2.1 Participants 

Twenty-seven (men = 14, women = 13) healthy participants were recruited from the staff 

and student population of University of Glasgow. Their age, body mass, and BMI were 

(mean ± SD) 31.2 ± 8.9 years, 72.7 ± 14.2 kg, and 24.6 ± 3.6 kg·m-1. Participants had no 

known history of CVD or diabetes, were non-vegetarians, and were not consuming any 

type of specialised diet or taking a medication thought to interfere with appetite. The 

present study was conducted according to the guidelines stated in the Declaration of 

Helsinki and all procedures involving human subjects were approved by the Faculty of 

Biomedical and Life Sciences Ethics Committee at the University of Glasgow, UK. Each 

participant gave written informed consent prior to participation. 

 

6.2.2 Questionnaires 

Dietary restraint and disinhibition were measured by the Three Factor Eating 

Questionnaire (TFEQ) (Stunkard & Messink 1985) (Appendix B) with mean scores of 

8.1 ± 5.5 and 5.7 ± 2.9 respectively. Restrained eaters were classified by a score of above 

10 (Stubbs et al. 2002b). Attachment anxiety style was evaluated using Experiences in 

Close Relationships questionnaire (ECR) (Appendix E) with a mean score of 3.1 ± 0.7. A 

high score is taken as evidence of an insecure attachment orientation (Brennan 1998).  

 

6.2.3 Experimental design 

Each participant completed 2 experimental trials in counter-balanced conditions separated 

by approximately one week: exercise (EX), control (CON). An overview of the study 

protocol is shown in Figure 6.1. Participants were asked to refrain from alcohol and 

planned exercise on the day before each trial.  

 

 

 

 

 

 

 
Figure 6.1. Experimental design. Subjects completed two trials: exercise (EX), and control 
(CON). Computer tasks (↓) were completed at 0, 60, 120 and 180 min. 
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a) Exercise trial (EX) 

Participants arrived at the metabolic suite at 9.00 am after a 12-hour overnight fast. They 

were asked to complete a set of computer tasks (described below) before performing the 

exercise session (0 min). The exercise bout began at ~9.30 am, which involved a 60-min 

treadmill walk at a speed of 5.5 km·h-1 and 4.5% gradient for all participants (intensity ~6 

METs). Expired air samples were collected at 15-min intervals during the walk, for the 

determination of oxygen uptake and carbon dioxide production. Heart rate and rate of 

perceived exertion were recorded every 15 min during the walk. Participants completed 

their responses on the computer immediately, 60, 120, and 180 min after the completion 

of the exercise. They were free to sit, read, use a computer, relax, or work at a desk 

between the measurements. Participants are allowed to consume only water ad-libitum 

throughout the measurement period. The trial ended after the last computer task 

measurement was taken. 

 

b) Control trial (CON) 

This trial was identical to the exercise trial, except that participants remained rested for 

from 9.30 – 10.30 am, the period during which corresponded to the exercise session in 

EX trial. 

 

6.2.4 Computer task procedure 

A set of computer tasks designed to provide stimulus to explore the several behavioural 

responses towards certain foods was used in this study. The software was developed by 

Dr. J.M. Brunstrom and his colleagues from the University of Bristol, as described in 

Brunstrom & Rogers (2009). The procedure is comprised of 5 tasks designed to assess: 1) 

appetite sensations, 2) mood, 3) food utility, 4) food liking, and 5) ideal portion sizes. 

Measures of ideal portion size, utility, and liking involved showing subjects pictures of 16 

different test foods that are commonly consumed in the UK (fish fingers, pasta and 

tomato sauce, raw banana, pizza, crackers, chicken tikka masala, Jaffa cakes, oven chips, 

Pringles potato crisps, peanut M&Ms, garlic bread, KitKat, potato salad, chicken chow 

mein, cheese baguette and cornflakes). The composition of macronutrient for each test 

food is listed in Table 6.1. Responses were recorded for each food item before the next 

item was shown. Each food was photographed using a high-resolution digital camera on 

the same white, 255-mm diameter plate. Constant lighting and camera angle were 

maintained for each picture. For all food except cornflakes, picture number 1 showed a 20 

kcal portion and for the subsequent pictures, the portion is increased by 20-kcal (i.e. 

picture 2 = 40 kcal, picture 3 = 60 kcal, etc). For the cornflakes, each portion picture is 
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spaced in logarithmic steps, i.e. the absolute difference between the amounts of calories 

shown increases with picture number. In total, each food was photographed between 40 

and 70 times, depending on the total amount of food that could be positioned on the plate. 

Participants were navigated through the procedures at all times by instructions presented 

on-screen. The code for the computer task procedure was written in Visual Basic and 

presented on a 17” monitor. 

 

Table 6.1. Macronutrient composition of each test food (values given per 100 g). 
 

Food Calories (kcal) Carbohydrate (g) Fat (g)       Protein (g)     

Fish fingers 185.2 15.7 7.4 13.0 

Pasta and sauce 152.7 21.4 5.3 5.3 

Cornflakes 370.0 84.0 0.8 7.0 

Banana 95.0 23.2 0.3 1.2 

Pizza 408.2 42.9 18.4 18.4 

Crackers 488.0 65.5 20.7 6.9 

Tikka masala 168.1 18.5 6.7 9.2 

Jaffa cakes 384.0 73.3 8.1 4.4 

Oven chips 180.0 31.4 3.2 4.6 

Potato crisps 558.0 50.0 37.5 4.6 

M&M® 515.0 60.6 26.2 9.6 

Garlic bread 370.0 35.9 20.5 7.7 

KitKat® 512.8 61.5 25.6 5.1 

Potato salad 141.0 10.4 10.6 1.1 

Chow mein 82.0 7.1 3.4 5.7 

Cheese baguette 318.5 28.0 16.2 15.6 
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1) Appetite sensations 

Subjective appetite sensations for ‘hunger’ and ‘fullness’ were recorded using the 100 

mm visual analogue scales (VAS), anchored on each end with “not at all” and 

“extremely”. 

 

2) Food utility 

Participants were shown a standard-sized portion (200 kcal) of each test food and were 

instructed to “Imagine you are having this food RIGHT NOW. What is the maximum you 

would pay for this food?” (Figure 6.2). Using a computer mouse, participants selected 

their price on a vertical scale that was displayed to the left of the food image. By moving 

the scale up increased the value, and moving the scale down decreased the value. Values 

can be selected in increments of one penny. All test foods were presented in random order 

each time. 

 

 

Figure 6.2. Screenshot of food utility task 

 

 

3) Liking 

Participants were shown a standard-sized portion of each test food and were instructed to 

rate their liking for each test food using a 100-mm visual analogue rating scale with end 
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anchor points “not at all” and “extremely” (Figure 6.3). All test foods were presented in 

random order each time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Screenshot of food liking task 

 

 

 

4) Ideal Portion Size 

A randomly-selected portion size of each test food was displayed on the screen. 

Participants were instructed to “Imagine you are having this food for lunch RIGHT 

NOW. Select your IDEAL portion size” (Figure 6.4). Pressing the left arrow-key on the 

keyboard caused the portion size to decrease and the right arrow-key to increase portion 

size. The pictures were loaded with sufficient speed that gave the appearance that the 

change in portion size was ‘animated’. Once participants selected their ideal portion size, 

hitting the ‘continue’ button will take them to a different test food. All test foods were 

presented in random order each time.  
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Figure 6.4. Screenshot of ideal portion size task 

 

5) Mood states 

Subjective mood states were recorded using a 20-item mood scales to measure positive 

affect (attentive, interested, alert, excited, enthusiastic, inspired, proud, determined, 

strong and active) and negative affects (distressed, upset, hostile, irritable, scared, afraid, 

ashamed, guilty, nervous, and jittery). Participants were asked to rate the extent to which 

they were experiencing each particular emotion with reference to a 5-point scale: ‘very 

slightly or not at all’, ‘a little’, ‘moderately’, ‘quite a bit’ and ‘very much’. The mood 

scales were based on the Positive and Negative Affect Schedule (PANAS) (Watson et al. 

1988). 

 

6) Loss aversion cash task 

At the end of participation, each participant was asked to accept or reject a series of 

outcomes of winning or losing a variable amount of money using the classic coin toss 

procedure. These were presented on a computer screen as the prospective outcomes of a 

coin flip (Figure 6.5). Participants indicated their willingness to take the gamble by 



  Chapter 6 | 163 

 

pressing YES or NO. A total of 49 trials were presented. The gamble had potential gains 

ranging from +£0 to +£50, and potential losses ranging from −£0 to −£50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Screenshot of loss aversion cash task 

 

 

6.2.5 Statistical analysis 

Statistical analyses were performed using Statistica (version 6.0, StatSoft Inc., Tulsa, 

USA) and SPSS (version 10.0, SPSS Inc., Chicago, US). The main analyses for this study 

are focused on the differences in the appetite-related measures across experimental trials 

(exercise vs. control); subjective hunger and fullness, ideal portion size, food liking, and 

food utility. For liking, food utility, and ideal portion size measures, participants’ 

responses for each test food were compiled and a mean response was calculated. The total 

areas under the 180-min variable vs. time curve (AUC) were used as summary measures 

of hunger, fullness, and food liking. Summary measures for ideal portion size and food 

utility were reported as the sum of the values of each time point. Paired-samples t tests 

were used to compare summary measures between trials. Two-way repeated measures 

ANOVAs (trial × time) were used to compare changes over time and across the two trials. 

Post hoc Tukey tests were used to identify where differences lay. Pearson correlations 

were used to assess the relationship between variables. Data are presented as means ± 

SEM, unless otherwise stated. Statistical significance was accepted at p < 0.05. 

 

 

YES NO or 

WIN + £40 
LOSE - £ 20 
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6.3 Results 

 

6.3.1 Responses during the treadmill walk 

The treadmill speed and gradient in the exercise trial (EX) were identical for all 

participants.  The exercise session was completed without difficulty, participants rated the 

exercise as ‘light’ (10.8 ± 1.8) on the Borg scale of 6-20. Mean gross exercise energy 

expenditure was 444 ± 80 kcal. Mean oxygen uptakes and heart rates over the course of 

the exercise sessions were 21.4 ± 3.4 ml·kg-1·min-1 and 124 ± 16 beats·min-1.  

 

6.3.2 Summary responses for appetite-related measures 

The summary for appetite-related measures is presented in Table 6.2. Participants 

experienced 17.4% less hunger in the EX trial compared to control (p = 0.004). 

Participants also chose to eat significantly smaller portions (by -7.7%) in the EX trial 

compared to control (p = 0.003). Correspondingly, exercise also resulted in lower 

macronutrient portion size for carbohydrate (p = 0.003), fat (p = 0.004) and protein (p = 

0.004). There were no differences observed in AUC liking and fullness, and total food 

utility between trials.  

 

Table 6.2. Time-averaged area under curve (TAUC) for appetite sensations and liking; total food 
utility and ideal portion size over 3-h observation period (n = 27). Values are mean  ±  S.E.M. 
 

Appetite-related measures CON EX p value 

TAUC hunger (mm) 56 ± 4 46 ± 4 0.004 

TAUC fullness (mm) 25± 3 30 ± 3 0.065 

Total food utility (£) 6.54 ± 0.33 6.45 ± 0.30 0.528 

TAUC food liking (mm) 46 ± 3 44 ±3 0.153 

Total ideal portion size (kcal) 1620 ± 111 1495 ± 105 0.003 

   -  carbohydrate (kcal) 764 ± 52 705 ± 49 0.003 

   -  fat (kcal) 630 ± 44 581 ± 42 0.004 

   -  protein (kcal) 189 ± 13 176 ± 12 0.004 
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6.3.3 Appetite sensations: hunger & fullness 

Figure 6.6a and 6.6b summarise the appetite responses over the 180-min observation 

period in both CON and EX trials. Hunger increased over time in both trials (p < 0.001). 

Post hoc analysis revealed that hunger was significantly lower (-31%) immediately post 

exercise (60 min) compared to the same time point in the control trial (p = 0.001) (Figure 

6.6a). Fullness did not change between trials but changed over time (p = 0.001) with 

progressively lower fullness ratings compared to baseline in both trials (Figure 6.6b). No 

interaction effect was found for hunger and fullness. 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 
 
Figure 6.6. Subjective (a) hunger and (b) fullness in control (CON, ○) and exercise (EX, ●) trials 
(n = 27). The 1-h exercise bout is represented by a black rectangle (▄).Values are expressed as 
means, with standard errors represented by vertical bars. (**) significantly different between trials 
(p < 0.001). 
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6.3.4 Food utility 

Figure 6.7a summarises the food utility responses over the 180-min observation period in 

both CON and EX trials. Exercise did not affect how much participants were willing to 

pay for food but a main effect of time (p < 0.001) indicated that the values for food utility 

increased over time in both trials.  

 

6.3.5 Food liking 

Figure 6.7b summarises the liking responses over the 180-min observation period in both 

CON and EX trials. Participants did not experience a change in liking between trials but 

there was a significant increase in liking scores over time (p < 0.001) compared to 

baseline in both CON and EX trials.  

 

6.3.6 Ideal portion size 

Figure 6.7c summarises the ideal portion size responses over the 180-min observation 

period in both CON and EX trials. Two-factor ANOVA revealed significant main effects 

of trial (p < 0.001) and time (p < 0.001) with significantly lower portions (-14.1%) 

observed immediately post exercise (60 min) (p < 0.001) compared to corresponding 

control. To explore this effect further, the effect of exercise on each food was analysed 

separately. Overall, participants reported significantly lower portion sizes for pasta (p = 

0.004), crackers (p = 0.014), garlic bread (p = 0.041), KitKat (p = 0.016), and cheese 

baguette (p = 0.014) in the exercise trial relative to control. There were no significant 

differences between trials in the ideal portion size for other test foods.  
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Figure 6.7. (a) Food utility, (b) food liking, and (c) ideal portion size in (CON, ○) and exercise 
(EX, ●)  trials (n = 27). The 1-hr exercise bout is represented by a black rectangle (▄).Values are 
expressed as means, with standard errors represented by vertical bars. (**) significantly different 
between trials (p < 0.001). 
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6.3.7 Mood responses: positive & negative affects 

Figure 6.8 summarises the positive and negative affect responses respectively over the 

180-min observation period in both CON and EX trials. Positive affects did not change 

between trials but decreased significantly (p < 0.001) over time and there was a 

significant trial × time interaction (p = 0.049). Similarly, negative affects were not 

different between trials but decreased significantly over time (p < 0.001) with the 

interaction effect approaching significance (p = 0.055). 

 

(a) 
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Figure 6.8. (a) Positive affect, and (b) negative affect (CON, ○) and exercise (EX, ●) trials (n = 
27). The 1-h exercise bout is represented by a black rectangle (▄).Values are expressed as means, 
with standard errors represented by vertical bars. (**) significantly different between trials (p < 
0.001). 
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6.3.8 Correlations between appetite-related measures 

The associations between summary of ideal portion sizes and hunger, fullness, food 

utility, and food liking in each experimental condition are illustrated in Figure 6.9. Larger 

ideal portion size was strongly correlated with greater hunger and food liking in control 

and exercise trial respectively. No correlations were found between ideal portion size with 

fullness and food utility in both trials.  
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Figure 6.9. Relationship between ideal portion size and (a) hunger, (b) fullness, (c) food utility, 
and (d) food liking in CON (right panel) and EX (left panel) trials separately. Each panel includes 
associated r and p values. 
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6.3.9 Correlates of the exercise-induced change in ideal portion size 

Changes in total ideal portion size between control and exercise trials were related to 

change in AUC liking scores (r = 0.600, p = 0.001), as illustrated in Figure 6.10. The 

correlations were also significant at 0 min (r = 0.383, p < 0.05), 60 min (r = 0.482, p < 

0.05), and 120 min (r = 0.413, p < 0.05). No significant associations were found between 

change in ideal portion size and change in hunger, fullness, and food utility. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.10: Relationship between change in total ideal portion size and change in TAUC food 
liking (change = exercise trial – control trial). 
 
 

 

 

 

 

 

 

 

 

 

 

-20

-15

-10

-5

0

5

10

15

20

-600 -500 -400 -300 -200 -100 0 100 200 300 400

Change in total ideal portion size (kcal)

C
ha

ng
e 

in
 T

A
U

C
 li

ki
ng

 s
co

re
s 

(m
m

)

r = 0.600 
p = 0.001 



  Chapter 6 | 172 

 

 

 

6.3.10 Effects of sex, BMI, and dietary restraint  

The summary of appetite-related measures across sex, BMI, and dietary restraint 

categories in separate trials is presented in Table 6.3. The statistical analyses were 

repeated using sex (men = 14, women = 13), BMI (lean = 15, overweight/obese = 12), 

and dietary restraint (non-restrained = 19, restrained = 8) as categorical variables. There 

was a sex effect for food utility [F(1,25) = 12.80, p = 0.001] with women willing to pay 

more for food compared to men. Women, lean, and non-restrained individuals, tended to 

feel less hungry in the exercise trial compared to control. In contrast, this effect was not 

observed in men, overweight/obese, and restrained individuals. Despite this, there were 

no significant main effect of sex, BMI, and dietary restraint or by trial interaction on 

appetite sensation, food liking, food utility, and ideal portion size. 
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Table 6.3. Time-averaged area under curve (TAUC) for appetite sensations and liking; total food 
utility and ideal portion size over 3-h observation period across sex, BMI, and dietary restraint 
categories. Values are expressed as mean  ±  S.E.M. 
 
 TAUC 

hunger 
(mm) 

 

TAUC 
fullness 
(mm) 

 

Food utility    
(£) 

TAUC 
liking 
(mm) 

Ideal 
portion size        

(kcal) 

CON trial      

Sex:      

     Male (n=14) 48 ± 7 28 ± 5 5.55 ± 0.39 46 ± 5 1747 ± 172 

    Female (n=13) 65 ± 5  33 ± 4 7.61 ± 0.38* 47 2 1483 ± 136 

BMI:       

    Lean (n=15) 58 ± 5  24 ± 4 6.98 ± 0.47 49 ± 3 1538 ± 129 

    Overweight (n=12) 53 ± 8 27 ± 4 5.99 ± 0.45 44 ± 5 1722 ± 194 

Dietary restraint:      

    Non-restraint (n=19) 59 ± 5  24 ± 3 6.42 ± 0.40 47 ± 3 1659 ± 121 

    Restraint (n=8) 49 ± 9 29 ± 5 6.82 ± 0.66 45 ± 7 1528 ± 253 

EX trial      

Sex:      

     Male (n=14) 42 ± 6 22 ± 3 5.67 ± 0.31 44 ± 5 1634 ± 160 

    Female (n=13) 51 ± 5 a 26 ± 4 7.29 ± 0.42 44 ± 3 1345 ± 127 

BMI:      

    Lean (n=15) 45 ± 5 a 29 ± 4 6.59 ± 0.47 46 ± 3 1405 ± 117 

    Overweight (n=12) 48 ± 7 31 ± 4 6.27 ± 0.35 43 ± 5 1607 ± 187 

Dietary restraint:      

    Non-restraint (n=19) 47 ± 5 a 29 ± 3 6.30 ± 0.37 44 ± 2 1525 ± 111 a 

    Restraint (n=8) 45 ± 8 32 ± 6 6.81 ± 0.51 45 ± 8 1423 ± 250 

a significantly different from control (p < 0.05), * significantly different from men (p < 0.05) 
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6.3.11 Correlations between appetite-related measures across categories 
 
Table 6.4 summarises the relationship between ideal portion size and appetite-related 

measures across sex, BMI, and dietary restraint categories in separate trials. In both 

exercise and control trials, ideal portion size was positively correlated with hunger in men 

and women, and overweight/obese individuals, but not in lean, and restrained eaters. 

Hunger correlated with ideal portion size in non-restrained individuals in the exercise trial 

but not in control. Increased in liking is strongly associated in increased ideal portion size 

across all categories in both trials. There is no relationship between change in total ideal 

portion size across BMI range and dietary restraint scores as illustrated in Figure 6.11. 

 
 
Table 6.4. Correlation coefficients between appetite-related measures and ideal portion size 
across gender, BMI, and dietary restraint categories  
 
Correlation 
coefficient 

Sex BMI Dietary Restraint 
Male      

(n =14) 
Female  
(n =13) 

Lean      
(n =15) 

OW      
(n =12) 

NR       
(n =19) 

 

Restraint 
(n = 8) 

CON trial       

  AUC hunger 0.617* 0.580* 0.016 0.779* 0.422 0.476 

  AUC fullness -0.439 -0.025 -0.35 -0.516 0.045 -0.792* 

  Food utility 0.166 0.101 0.130 0.522 0.179 0.406 

  AUC liking 0.852** 0.554* 0.654** 0.857** 0.644** 0.817* 

EX trial       

  AUC hunger 0.609* 0.658* 0.466 0.579* 0.657** 0.350 

  AUC fullness -0.468 0.298 -0.042 -0.270 0.105 -0.392 

  Food utility 0.495 0.389 0.233 0.285 0.193 0.305 

  AUC liking 0.843** 0.635* 0.718** 0.848** 0.604** 0.902* 

 (*) significant at p < 0.05; (**) p < 0.01; AUC, area under curve; OW, overweight; NR, non-restraint 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.11. Relationship between change in total ideal portion size and (a) BMI range, and (b) 
dietary restraint scores (as indicated by restraint measures in Three Factor Eating Questionnaire).  
Each panel includes associated r and p values. (change = exercise trial – control trial) 
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6.3.12 Correlations between appetite-related measures and other variables 
 
Table 6.5 summarises the relationship between appetite-related measures and other 

behavioural variables (i.e. disinhibition, attachment anxiety, and loss aversion) in separate 

experimental trials. Higher disinhibition was associated with increase in food liking in the 

exercise trial, but not in control. Interestingly, increases in loss aversion scores were 

significantly correlated with increases in food liking (r = 0.683, p < 0.001) and ideal 

portion size (r = 0.514, p < 0.05) in both trials. None of the appetite-related measures 

relate with attachment anxiety scores. There was no relationship between change in ideal 

portion size across disinhibition, attachment anxiety and loss aversion scores as illustrated 

in Figure 6.12. 

 

Table 6.5. Correlation coefficients between appetite-related measures and disinhibition, 
attachment anxiety and loss aversion scores in control and exercise trials separately  
 

Correlation coefficients Disinhibition Attachment 
anxiety 

Loss aversion 

CON trial    

    AUC hunger (mm) -0.063 -0.144 0.337 

    AUC fullness (mm) -0.017 -0.039 -0.242 

    Total food utility (£) -0.108 0.030 0.184 

    AUC food liking (mm) 0.268 0.136 0.683** 

    Total ideal portion size (kcal) 0.306 0.104 0.514** 

EX trial    

    AUC hunger (mm) 0.101 -0.161 0.422* 

    AUC fullness (mm) -0.133 0.056 -0.260 

    Total food utility (£) -0.029 -0.162 -0.032 

    AUC food liking (mm) 0.424* 0.178 0.546** 

    Total ideal portion size (kcal) 0.338 0.140 0.488* 

(*) significant at p < 0.05; (**) p < 0.01; AUC, area under curve; CON, control; EX, exercise 
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Figure 6.12. Relationship between change in total ideal portion size and (a) disinhibition scores 
(as indicated by disinhibition measures in Three Factor Eating Questionnaire), (b) attachment 
anxiety scores and (c) loss aversion scores. Each panel includes associated r and p values. (change 
= exercise trial – control trial) 
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6.4 Discussion 
 
 
The aim of the present study was to assess the role of exercise in influencing appetite-

related outcomes measured using a novel, computer-based procedure. Three hypotheses 

were proposed: (1) acute exercise influences hunger and fullness, prospective ideal 

portion size of food, food liking, and how much they want to spend on food; (2) these 

responses vary across gender, BMI, and dietary restraint; (3) behavioural factors such as 

disinhibition, attachment anxiety, and loss aversion may correlate with the responses 

above. The primary finding of the investigation was that a single bout of moderate 

intensity exercise attenuated hunger and thereby led to lower prospective ideal portion 

size compared to control. The observed exercise-induced suppression in hunger and 

perceived food intake are of importance in the perspective of exercise and appetite 

regulation, and these findings confirm exercise induces an anorexigenic effect in the short 

term, contrary to the widespread belief that exercise stimulates hunger.  

 

The most prominent decrease in hunger was observed after the cessation of exercise, 

which is consistent with many studies that reported suppression of hunger following acute 

exercise (Unick et al. 2010; King et al. 2010a, King et al. 2010b; Westerterp-Plantenga et 

al. 1997; King et al. 1994; Thompson et al. 1988). Although this suppression effect was 

short-lived, feelings of hunger for subsequent hours were persistently lower than control. 

Attenuation in hunger was also accompanied by lower prospective ideal portion size in 

the exercise trial relative to control. In contrast to hunger, the decrease in ideal portion 

size was not observed after exercise compared to baseline. This however, was due to 

participants choosing slightly but not significantly smaller portion sizes at the start of the 

exercise trial, in addition to feeling less hungry compared to control. These responses 

could conceivably be explained by the anticipation of exercise which may have caused 

hunger to be diminished and hence reduced prospective energy intake, due to an increased 

sympathetic nervous system activity before the commencement of an exercise activity 

(Frayn 2003). With regards to macronutrient preference, prospective portion size of 

carbohydrates, fat and protein were reduced simultaneously, indicating that exercise-

induced macronutrient preference was not evident in this study.  

 

Using the computer-based approach, we were able to explore additional non-metabolic 

factors, namely food utility (indicated by the amount of money they would be willing to 
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spend on food) and food liking in response to exercise. Exercise is also known to activate 

the dopaminergic neurons in the mesolimbic structures of the brain that is associated with 

the reward pathway (Chaouloff 1989), therefore it is possible that exercise has a 

sensitising effect that enhances reward sensitivity to food. Currently, available research 

on exercise and the components of reward has been limited to liking, wanting, and 

palatability of food (Finlayson et al. 2011; Finlayson et al. 2009; Schneider et al. 2009) 

and there are no data examining the effect of exercise on the monetary value of food. Our 

initial findings showed that how much people were willing to pay for food was not 

affected by exercise. There also seemed to be a positive association between food utility 

and ideal portion size, this relationship was however non-significant. Liking is also 

associated with the food reward component and increased liking may promote an increase 

in food intake (Finlayson et al. 2007). Recently, an enhanced liking for food after acute 

exercise has been observed in the ‘compensators’ group (i.e. who lost less weight than 

expected) after a 12-week of exercise program (Finlayson et al. 2011), which may help to 

explain why some people lose less weight than expected during an exercise intervention. 

The present study demonstrates that exercise did not alter liking scores, suggesting that 

liking may not be easily affected by acute exercise. Support for this finding was found in 

the recent study of Finlayson et al. (2009), who utilised a computer-based approach in 

assessing explicit liking and implicit wanting in response to an acute bout of exercise, and 

found no change in liking, although the ‘compensators’ group increased their energy 

intake post-exercise. Instead, they proposed that an enhanced ‘implicit wanting’ for food 

after exercise is associated with the compensatory feeding behaviour.  

 

Do these responses vary across groups? Results showed that appetite, food liking, and 

prospective ideal portion size responses to exercise were not affected by sex, BMI 

categories or dietary restraint. Women, however, placed more value on food compared to 

men, independent of exercise. This finding suggests that women (limited to this study 

sample) may have a predisposition to perceive food as somewhat more rewarding than in 

men, and may perhaps relate to why women generally reported less weight loss compared 

to men following exercise interventions (Donnelly & Smith 2005; Donnelly et al. 2003). 

In addition, there appears to be a trend for diminished hunger in women, lean, and non-

restraint individuals with exercise. The lower hunger response observed in women was 

somewhat in contrast with previously published studies in women that reported no change 

in appetite or subjective feelings of hunger and fullness in response to exercise (Unick et 

al. 2010; Hagobian et al. 2009; Whybrow et al. 2008; Lluch et al. 2000). One of the 

likely explanations for this finding can be due to the fact that only 2 out of the 13 women 
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were classified as overweight, and there is evidence that lean individuals have been 

shown to regulate their appetite with exercise better than those with higher BMI (George 

& Morganstein 2003; Kissileff et al. 1990). The lack of decrease in hunger observed in 

the overweight individuals suggest that they may be less sensitive to the anorexigenic 

effects of exercise, which could possibly pose an unfavorable implications for weight 

control. In contrast to non-restrained eaters, restrained eaters have been shown to display 

no changes in the physiological feelings of hunger with exercise (Harris & George 2008; 

Lluch et al. 2000) and therefore, exercise has been shown to be effective in creating a 

negative energy balance in this particular group (Martins et al. 2008a). 

 

Finally, one novel finding of the pilot investigation was the evidence that loss aversion 

scores correlated highly with prospective ideal portion size and food liking. Loss aversion 

describes the widespread behavioral avoidance of choices that can lead to losses, even 

when accompanied by equal or much larger gains (Martino et al. 2010) and has been 

shown to influence decision making in a wide variety of domains, including investments, 

politics, and health (Kermer et al. 2006). The association between loss aversion and 

prospective portion size and food liking can be likened to that of avoidance of financial 

losses, in which loss aversive individuals are rather motivated to seek for food and eat 

than experiencing hunger or energy deficit. The processes that involve in the decision-

making of monetary gain and losses occur in the reward-processing center of the brain 

(Camara et al. 2008), therefore it may be possible that the components of food reward 

involved in appetite regulation can be influenced by this trait. 

 

The findings of this study should be considered in the context of certain limitations. The 

restricted sample size limited the opportunity to control for numerous background 

variables. A larger sample will provide more power to detect differences between various 

groups/categories and to evaluate interactions. Participants were only monitored for only 

2 h post-exercise, thus limiting the understanding of how exercise may influence these 

parameters beyond this period of time. With the computer-based approach, we are unable 

to claim with certainty that planned ideal portion size will actually influence actual food 

intake. However, there is good reason to believe that these two measures correspond 

closely, as serving size, whether determined by the individual or not, has been shown as 

an excellent predictor of the amount of food consumed (Wasink et al. 2005, Rolls et al. 

2002). Another issue is the usage of visual stimuli in assessing the hedonic evaluation of 

food, as non-attractive images can influence participants’ responses therefore masking a 

true response. Nevertheless, this pilot investigation demonstrates that the application of 
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this computer-based assessment in evaluating the exercise-induced appetite-related 

measures is particularly convenient in assessing several responses simultaneously and is a 

useful adjunct to measures of actual food and energy intake. 

 

6.5 Summary 

 

In consistence with previous reports demonstrating exercise-induced anorexia, the 

primary finding of this study was that an acute bout of exercise induced hunger 

suppression and prospective food intake. The outcomes of this pilot investigation also 

highlight the role of behavioural aspects that may influence food intake in relation to 

exercise and body weight control. In particular, the sex differences in food utility value 

has implications in the understanding of food reward perceptions between men and 

women. Also, further research is needed to explore the loss aversion trait in influencing 

feeding behavior in response to exercise or energy deficit.  
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CHAPTER 7 

 
General Discussion 

 
 
 

Free-living humans consume food throughout the day (i.e. ~ 3 meals and snacks in 

between), thus, most humans find themselves in the postprandial state for the majority of a 

24-h period, perhaps with the exception of the early morning hours. The food that we eat 

and the metabolic responses that ensue influence risks for vascular and metabolic 

diseases, as well as obesity. Exercise reduces these risks (Gill & Cooper 2008; Nocon et 

al. 2008), and this is partly mediated by the effects of exercise on postprandial 

metabolism (e.g. lowering postprandial lipaemia and insulinaemia, increasing fat 

oxidation). However, to gain better insights into the role of feeding and exercise on 

metabolic and obesity risks, it is important to understand how these factors interact in a 

‘real-life’ setting. Thus, the ‘real-life’ effect of exercise on metabolism need to take into 

account the potential effects of exercise on subsequent food intake. This is of particular 

interest because eating is almost inevitable after exercise, therefore, the benefits of acute 

exercise on postprandial metabolism may be overstated when studies do not account for 

any subsequent increases in food intake.  

 

7.1 Exercise and Postprandial Metabolism 

 

The first experimental study of this thesis (Chapter 3) showed that a single as well as 

three consecutive exercise sessions reduced postprandial TG and insulin responses, and 

increased postprandial fat oxidation in response to ad libitum feeding. The magnitude of 

reduction postprandial lipaemia demonstrated in this study is comparable to other 

published reports in the overweight cohorts (Burton et al. 2008; Miyashita 2008). These 

findings indicate that the ability of aerobic exercise to attenuate postprandial lipaemia 

does extend beyond the laboratory and into daily life setting, where food intake is not 

externally controlled. This study also showed that 3 days of consecutive exercise did not 

lead to greater changes in postprandial metabolism than a single exercise session. The 

next study (Chapter 5) dealt with the issue of timing of exercise relative to meal ingestion. 

The findings showed that exercising before or after a breakfast meal had the same overall 

effect on postprandial insulin responses and fat oxidation. However, only exercise before 

breakfast significantly attenuated postprandial TG over the 9-h observation period of the 
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study. To the author’s knowledge, there is no published evidence on comparing the 

effects of timing of exercise relative to meal ingestion on postprandial metabolism, 

particularly in the context of ad libitum feeding, therefore these findings can be 

considered pertinent to real life setting where food intake and exercise are often 

interspersed with each other.  

 

The findings of these two studies also highlight the importance of negative energy deficit 

in mediating the exercise-induced enhancement in fat oxidation. Chapter 3 showed that 

exercise (single and consecutive sessions) increased whole-body fat oxidation during 

following day, whereas this effect was not evident in the study reported in Chapter 5. 

Although it seemed that total fat oxidation was greater in both exercise trials compared to 

control in Chapter 5, this greater amount of fat oxidised was primarily contributed by the 

enhanced fat oxidation during the exercise period, and not brought about by increased 

whole-body fat oxidation in the post-exercise period. Thus, there seems to be an apparent 

paradox on the effects of exercise on fat oxidation observed in these two studies. 

Melanson et al. (2009b) in his recent review summarised that exercise does not result in 

negative 24-h fat balance when 24-h energy balance is maintained, independent of 

training status or obesity. Against this background, it seems reasonable to postulate that 

lack of post-exercise elevation in fat oxidation observed in Chapter 5 can be off-set by 

carbohydrate consumption and participants being in a positive energy balance state. On 

the contrary, the enhanced whole-body fat oxidation despite feeding ad libitum observed 

in Chapter 3 may be indicative of their negative energy balance state, considering that 

they expended a substantial amount of energy during the exercise sessions (~700-2100 

kcal) compared to the 400-kcal session in Chapter 5. But because 24-h energy balance 

was not measured, therefore we can only assume that this is the case.  

 

7.2 Exercise, Appetite Responses and Feeding Behaviour 

 

The study in Chapter 4 showed that a single exercise session (~700 kcal) did not result in 

a significant compensatory response in energy intake. However, there was a significant 

dietary compensation following 3 consecutive days of exercise (total ~2100 kcal), with 

the increase in energy intake reflecting 24% of the energy expended in exercise. While 

food intake does not appear to match elevated levels of energy expenditure in the short 

term (Hopkins et al. 2010), these findings suggests that a partial compensation is evident 

in the longer term. This study also showed no change in gut peptide responses (i.e. 
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acylated ghrelin and PYY3-36) over the course of a day following either 1 or 3 days of 

prior exercise. Findings from Chapter 5 demonstrated that timing of exercise relative to 

breakfast does not influence energy intake in subsequent meals over the course of a day. 

Exercise also lead to a negative fat balance and lower carbohydrate and energy balances 

relative to a no-exercise control over the course of a day, and this was not influenced by 

timing of exercise relative to breakfast. 

 

Published findings on exercise and appetite seems to be pointing in the direction that 

acute exercise does not stimulate appetite and food intake, however this does not seem to 

fit with mounting evidence recently concerning the limited efficacy of exercise in 

inducing weight loss. It appears that not all individuals who undertake long term exercise 

will lose weight under conditions of ad libitum feeding (Hopkins et al. 2010). Indeed, in 

an environment characterised by caloric-dense and palatable foods, dietary compensation 

can occur due to behavioural factors rather than homeostatic mechanisms linking energy 

expenditure and intake, therefore these elements need to be explored (Berthoud 2006; Hill 

et al. 1995). In the final experimental study (Chapter 6), a pilot study was designed to 

address the effects of exercise on non-metabolic factors related to appetite (i.e. food 

liking, food utility, ideal portion size) using a computer-based assessment. The findings 

showed that an acute bout of moderate intensity exercise produced the ‘anorectic’ effect, 

manifested by diminished hunger and lower prospective food intake (ideal portion size) 

compared to no exercise, which is in accordance with current literature. Although not a 

primary aim, this study discovered a novel association between loss aversion and 

prospective food intake and food liking.  

 

 

7.3 Strengths, Limitations and Future Directions 

 

A major distinction of the studies in this thesis compared to published literature involving 

exercise and postprandial metabolism was the inclusion of ad-libitum meals. An 

alternative to the typical high-fat test meals used in many previous studies, ad libitum 

consumption creates ‘real world’ setting to the experiments in determining the relevance 

of exercise for general population in everyday living. Mestek (2010) in his commentary in 

the November 2010 issue of the Medicine and Science in Sport and Exercise journal, 

commended the findings of Chapter 3 of this thesis (also published in the same November 

issue, Farah et al. 2010) as being ‘the most compelling results to date’ from a public 
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health perspective. As the consideration for exercise prescription continue to expand, the 

interest for the public, especially among the obese population, lies in maximising the 

periods of acute fat balance across daily meals and exercise periods. This thesis also 

addressed the issue of exercise timing around meal ingestion and has shown that timing of 

exercise does not influence the beneficial effects of exercise, even with ad libitum feeding 

throughout the day. The findings of this thesis are also in agreement with the large body 

of evidence supporting the beneficial role of exercise on appetite regulation, by 

demonstrating that moderate intensity exercise (~400-700 kcal) does not induce 

compensation in energy intake and hunger in overweight individuals, thus providing 

clinical relevance to the role of exercise in the prevention of obesity and weight 

management.  

 

Findings from Chapter 3 showed that repeated exercise sessions (~2100 kcal) did not 

further augment the attenuation in postprandial lipaemia and the enhanced fat oxidation 

compared to a single exercise bout (~700 kcal). This could be due to the short-lived 

effects of exercise on postprandial metabolism, thus the effects observed could be a result 

of exercise from the previous day. It is also important to consider the fact that the energy 

cost of each exercise session was substantially large (~700 kcal per session), therefore it 

is uncertain if an energy expenditure threshold exists for maximising the TG-lowering 

effect of exercise. Perhaps performing smaller doses (e.g. 250 – 350 kcal) of exercise on 

consecutive days would elicit an ‘additive’ effect, however, this warrants further 

investigation. One might argue that the energy cost of the exercise session in this 

particular study may be too substantial and therefore is not feasible for most sedentary 

and overweight/obese individuals. Although the study subjects managed to perform the 

exercise without any difficulty, it is worthwhile to acknowledge that other investigators 

have shown that smaller energy expenditures (~200-250 kcal) are just as effective in 

reducing postprandial lipaemia in both lean (Miyashita et al. 2008) and obese individuals 

(Miyashita 2008).  

 

The observed compensatory response in energy intake in Chapter 4 suggests the 

possibility of delayed compensatory response in energy intake to exercise-induced energy 

deficit, hence why many acute exercise studies with a relatively short follow-up (1-2 d) 

reported no change in energy intake (King et al. 2010a, King et al. 2010b; Unick et al. 

2010; Harris & George 2008; Imbeault et al. 1997). Further longer term studies are 

needed to confirm this, such as extending the observation period over a number of days to 

see if increases in food intake do continue to track energy balance. In order to create a 
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more ‘free-living’ condition, subjects can be allowed to maintain their usual daily 

activities and report to the laboratory for daily meals, instead of being confined to the 

laboratory during the whole observation period. Assessment of total daily energy 

expenditure using the doubly labelled water method will allow for the accurate 

determination of energy balance, although this method can be costly. An important issue 

to consider in evaluating the compensatory responses to exercise is the inter-individual 

variability. In comparing energy intake in response to exercise interventions, Stubbs et al. 

(2004) introduced the identification of ‘compensators’ and ‘non-compensators’. 

Compensators were labeled as those who exhibited a statistically significant increase in 

energy intake, whereas non-compensators did not increase energy intake. The large inter-

individual variability in body weight and fat mass changes to a 12-wk exercise 

intervention as demonstrated by King et al. (2008) indicates that general exercise 

prescription is no longer a ‘one size fits all’ situation (Caudwell et al. 2009). In future 

studies, expressing the data individually or exploring them in subgroups, instead of 

reporting the mean group response, will avoid overlooking the issue of individual 

variability and help identify the physiological and behavioural mechanisms that mediate 

compensatory responses to exercise.  

 

The findings that exercise did not alter gut peptide responses could be suggesting that 

appetite hormones may not be responsive to exercise-induced energy deficits. Hubert et 

al. (1998) in his study demonstrated that consuming a meal of reduced energy resulted in 

elevated hunger and energy intake at the next opportunity, while the same energy deficit 

but expended through exercise, did not produce any compensatory effect. This finding 

was later supported by a very recent study by King et al. (2011b) who demonstrated that 

9-h AUC for acylated ghrelin concentrations increased, whereas PYY3-36 decreased, in 

response to energy deficit imposed by food restriction, but not by exercise. Thus, it is 

possible that diet-induced energy deficit has a far greater effect on appetite hormone 

responses than exercise-induced energy deficit, which may explain why long term success 

of weight loss is usually poor with dieting (Aronne et al. 2009). Furthermore, there are a 

number of peptide candidates responsible for modulating satiety and food intake, 

therefore measuring only one or two peptides may not always guarantee a definitive 

relationship. On the other hand, measurement of gut peptides can be subjected to 

limitations such as costs, special conditions sampling, technical methods (Delzenne et al. 

2010), and the highly-unstable nature of some of the peptides (Hosoda et al. 2004).  
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Concerning the issue of exercise timing relative to meal ingestion, the reduction in 

postprandial TG response to exercise after breakfast was not significant but this 10.7% 

reduction is likely to be a real effect not detected due to low statistical power (0.35). It is 

also noteworthy to consider that the breakfast provided in the study was a test meal, with 

the energy content tailored to each participant’s body mass (average energy content ~430 

kcal). It might be that providing smaller or larger breakfast meals may lead to differences 

in postprandial responses and macronutrient balances in the post-exercise period. Thus 

this remains to be elucidated.  

 

Studies on dopaminergic systems and aspects of food motivation in humans underscore 

the potential relevance of the “liking” versus “wanting” differentiation in relation to food 

intake and obesity (Mela 2006).  Thus, it would be certainly useful to include measures of 

‘implicit wanting’ in the computer-based assessment described in the pilot study, as it has 

been recently shown that individuals who do not respond to weight-reducing effect of 

exercise exhibited enhanced wanting for food after exercise interventions (Finlayson et al. 

2011; Finlayson et al. 2009). Additionally, the computer-based approach could be used to 

investigate the effects of exercise-induced and diet-induced energy deficits on non-

metabolic factors associated with feeding behaviour, as well as identifying the 

characteristics of those individuals who are most likely to respond to the weight-reducing 

effects of regular exercise, the ‘responders’; and the individuals who do not, the ‘non-

responders’. This could help to better understand the factors other than physiological ones 

that drive compensation in food intake via exercise.  

 

Despite the wealth of studies being published in the literature with regards to the effects 

of exercise on the regulation of appetite in particular, the mechanisms involved are not 

fully understood and conclusions are have yet to be drawn. Methodological differences 

such as exercise-induced energy expenditures, exercise intensities, energy state, gender, 

BMI, and the time interval between exercise and meal consumptions are likely to explain 

for the inconsistencies in literature findings. As such, the findings reported in this thesis 

are limited to responses in overweight/obese, otherwise healthy white men, and may not 

represent the responses for lean individuals, women, and people of other ethnicity or with 

metabolic diseases. Further research in different groups of people is warranted to provide 

greater insight into how exercise might regulate postprandial metabolism, appetite control 

and feeding behaviour.  
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6.4 Conclusion 

 

In summary, the findings of this thesis present strong evidence that the effects of exercise 

on postprandial metabolism when food is consumed ad libitum is very similar to when 

food intake is externally controlled. Furthermore, timing of exercise relative to meal 

ingestion is not of significant importance when the metabolic effects are concerned. 

Finally, there is a loose coupling between moderate-intensity exercise and energy intake 

on an acute level (i.e. immediately to 1-2 days post-exercise). Ultimately, these findings 

should encourage the public, especially the overweight/obese population to take part in 

exercise without the need to worry about specific timing of exercise or altering food 

intake in order to elicit the beneficial effects. In light of the recently emerging concern 

regarding the ineffectiveness of exercise in weight control, the author strongly feels that 

the ultimate goal of exercise should not be directed towards weight loss per se, but rather 

to achieve overall health and maintain the quality of life.  

 

 

 

“There is more to health than the numbers on the bathroom scale” 
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Appendix A 
 

Health Screen for Study Volunteers 
 
 
  
It is important that volunteers participating in re search studies are currently in 

good health and have had no significant medical pro blems in the past.  This is to 

ensure (i) their own continuing well-being and (ii)  to avoid the possibility of 

individual health issues confounding study outcomes . 

 
Please complete this brief questionnaire to confirm  fitness to participate: 
 
 
At present,  do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise  yes [ ] no [ ] 

(b) attending your general practitioner    yes [ ] no [ ] 

(c) on a hospital waiting list    yes [ ] no [ ] 

 

In the past two years,  have you had any illness which required you to: 
(a) consult your GP     yes [ ] no [ ] 

(b) attend a hospital outpatient department  yes [ ] no [ ] 

(c) be admitted to hospital     yes [ ] no [ ] 

 

Have you ever  had any of the following: 

 
(a) Convulsions/epilepsy     yes [ ] no [ ] 

(b) Asthma      yes [ ] no [ ] 

(c)  Eczema      yes [ ] no [ ] 

(d)  Diabetes      yes [ ] no [ ] 

(e) A blood disorder     yes [ ] no [ ] 

(f) Head injury      yes [ ] no [ ] 

(g)  Digestive problems     yes [ ] no [ ] 

(h) Hearing problems     yes [ ] no [ ] 

(i) Problems with bones or joints    yes [ ] no [ ] 

(j) Disturbance of balance/co-ordination   yes [ ] no [ ] 

(k) Numbness in hands or feet    yes [ ] no [ ] 

(l) Disturbance of vision     yes [ ] no [ ] 

(m) Thyroid problems     yes [ ] no [ ] 

(n) Kidney or liver problems    yes [ ] no [ ] 

(o) Chest pain or heart problems    yes [ ] no [ ] 
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(p) Any other health problems    yes [ ] no [ ] 

 

4.  Have any of your family  (parents, grandparents, brothers, sisters, children, aunts, 

uncles, cousins) ever had any of the following: (if yes please give details including 

age of first diagnosis) 

(a) Any heart problems     yes [ ] no [ ] 

(b) Diabetes      yes [ ] no [ ] 

(c)  Stroke       yes [ ] no [ ] 

(d)  Any other family illnesses    yes [ ] no [ ] 

 

 

5.    Do you currently smoke     yes [ ] no [ ] 

 Have you ever smoked     yes [ ] no [ ] 

  

 If so, for how long did you smoke and when did you stop? …………………… 

 

6.    Are you currently dieting or consuming specialised diet?  yes [ ]  no [  ] 

7. How many units of alcohol do you typically drink in a week? …………………. 

 

 

 

If YES to any question, please describe briefly if you wish (e.g. to confirm whether 

problem was short-lived, insignificant or well cont rolled.)  

……………………………………………………………………………………………………… 

………………………………………………………………………………………………………

…………….….……………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………..……………………………………………………………

…………………………………………………………………………………………………...... 

 

 

 

THANK YOU 
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Appendix B 
 

Three Factor Eating Questionnaire (TFEQ) 
 
 
 
PART I : Answer the following questions by circling  true  (T) OR  false  (F) 

whichever is appropriate to  you. 
 
 
 
1. When I smell a sizzling steak or see a juicy piece of meat, I find it very  

difficult to keep from eating, even if I have just finished a meal.   T F 
 
2. I usually eat too much at social occasions, e.g. parties and picnics.   T F 
 
3. I am usually so hungry that I eat more than three times a day.    T F 
 
4. When I have eaten my quota of calories, I am usually good about not  

eating anymore.         T F 
 
5. Dieting is so hard for me because I just get too hungry.    T F 

 
6. I deliberately take small helpings as a means of controlling my weight.  T F 
 
7. Sometimes things just taste so good that I keep on eating even when 

 I am no longer hungry.        T F 
 
8. Since I am often hungry, I sometimes wish that while I am eating,  

an expert would tell me that I have had enough or that I can have  
something more to eat.        T F 

 
9. When I feel anxious, I find myself eating.      T F 
 
10. Life is too short to worry about dieting.      T F 
 
11. Since my weight goes up and down, I have gone on reducing diets more 

 that once.          T F 
 
12. I often feel hungry that I just have to eat something.    T F 
 
13. When I am with someone who is overeating, I usually overeat too.   T F 
 
14. I have a pretty good idea of the number of calories in common food.  T F 
 
15. Sometimes when I start eating, I just can’t seem to stop.   T F 
 
16. It is not difficult for me to leave something on my plate.    T F 
 
17. At certain times of the day, I get hungry because I get used to eating then. T F 
 
18. While on a diet, if I eat food that is not allowed, I consciously eat less for  

a period of time to make up for it.       T F 
 
19. Being with someone who is eating often makes me hungry enough to eat. T F 
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20. When I feel depressed, I often overeat.      T F 
 
21. I enjoy eating too much to spoil it by counting calories or watching my weight. T F 
 
22. When I see a real delicacy, I often get so hungry that I have to eat right away. T F 
 
23. I often stop eating when I am not really full as a conscious means of limiting 

 the mount I eat.         T F 
 
24. I get so hungry that my stomach often seems like a bottomless pit.  T F 
 
 
25. My weight has hardly changed at all in the last ten years.   T F 
 
26. I am always hungry so it is hard for me to stop eating before I finish the food  

on my plate.         T F 
 
27. When I feel lonely, I console myself by eating.     T F 
 
28. I consciously hold back at meals in order not to gain weight.   T F 
 
29. I sometimes get very hungry late in the evening or at night.   T F 
 
30. I eat anything I want, any time I want.      T F 
 
31. Without even thinking about it, I take a long time to eat.    T F 
 
32. I count calories as a conscious means of controlling my weight.  T F 
 
33. I do not eat some foods because they make me fat.    T F 
 
34. I am always hungry enough to eat at any time.     T F 
 
35. I pay a great deal of attention to changes in my figure.    T F 
 
36. While on a diet, if I eat a food that is not allowed, I often splurge and  

eat other high calorie foods.       T F 
 
 
 

 
 
Next page...
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PART II : Answer the following questions by circlin g the number  next to the 
response that is appropriate to you. 
 
 
37. How often are you dieting in a conscious effort to control your weight? 

1    2   3   4 
rarely  sometimes  usually   always   
   

 
38. Would a weight fluctuation of 5 lbs. affect the way you live your life? 

1    2   3   4 
not at all  slightly   moderately  very much  

  
 
 
39. How often do you feel hungry? 

1    2   3   4 
only at  sometimes  often between  almost   

  
mealtimes  between meals meals   always 

 
 
40. Do your feelings of guilt about overeating help you to control your food intake? 

1    2   3   4 
never  rarely   often   always   

  
 
 
41. How difficult would it be fro your to stop eating halfway through dinner and  

not eat for the next four hours? 
1    2   3   4 
easy  slightly   moderately  very    

   difficult   difficult   difficult 
 
 
42. How conscious are you of what are you eating? 

1    2   3   4 
not at all  slightly   moderately  extremely   

 
 
43. How frequently do you avoid ‘stocking up’ on tempting foods?  

1    2   3   4 
almost never seldom   usually   almost always   

 
 
44. How likely are you to shop for low calorie foods? 

1    2   3   4 
unlikely  slightly   moderately  very    

   unlikely  likely   likely 
 
 
45. Do you eat sensibly in front of others and splurge alone? 

1    2   3   4 
never  rarely   often   always   
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46. How likely are you to consciously eat slowly in order to cut down on how much 
you eat? 
1    2   3   4 
unlikely  slightly   moderately  very    

   unlikely  likely   likely 
 
 
47. How frequently do you skip dessert because you are no longer hungry? 

1    2   3   4 
almost never seldom   at least   almost    

      once a week  everyday 
 
 
48. How likely are you to consciously eat less than you want? 

1    2   3   4 
unlikely  slightly   moderately  very    

   unlikely  likely   likely 
 
 
49. Do you go on eating binges though you are not hungry? 

1    2   3   4 
never  rarely   often   at least    

         once a week 
 
 
50. On a scale of 0 to 5, where 0 means no restraint (eating whenever you want, 

whatever you want), and 5 means total restraint (constantly limiting food intake and 
never ‘giving’ in), what number would you give yourself? 

 
 0   eat whatever you want, whenever you want it     
 
1 usually eat whatever you want, whenever you want it 
 
2 often eat whatever you want, whenever you want it 

 
3 often limit food intake, but often ‘give in’ 

 
4 usually limit food intake, rarely ‘give in’ 

 
5 constantly limiting food intake, never ‘giving in’ 

 
 
51. To what extent does this statement describe your eating behaviour? 

“I start dieting in the morning, but because of any number of things that happen 
during the day, by evening I have given up and eat what I want, promising to start 
dieting again tomorrow.” 
1    2   3   4 
not like me  little   pretty good  describes me  

                         like me             description  perfectly   
      of me 

The End 
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Appendix C 
 

Dutch Eating Behaviour Questionnaire (DEBQ) 

 
 
PART I : Answer the following questions by circling  the corresponding number  

which describes you best. 
 

1 = never;  2 = seldom;  3 = sometimes;  4 = often;  5 = very often 
 
 
1. If you have put on weight, do you eat less that you  

usually do?        1     2     3     4     5    
 
 
2. Do you try to eat less at mealtimes than you would like to eat? 1     2     3     4     5    
 
3. How often do you refuse food or drink offered because you  

are concerned about your weight?    1     2     3     4     5    
 
4. Do you watch exactly what you eat?    1     2     3     4     5    
 
5. Do you deliberately eat foods that are slimming?   1     2     3     4     5    
 
6. When you have eaten too much, do you eat less than usual  

the following days?      1     2     3     4     5    
 
7. Do you deliberately eat less in order not to become heavier? 1     2     3     4     5    
 
8. How often do you try not to eat between meals because you  

are watching your weight?     1     2     3     4     5    
 
9. How often in the evening do you try not to eat because you  

are watching your weight?     1     2     3     4     5    
 
10. Do you take into account your weight with what you eat? 1     2     3     4     5    
 
11. Do you have the desire to eat when you are irritated?  1     2     3     4     5    
 
12. Do you have a desire to eat when you are depressed or  

discouraged?       1     2     3     4     5    
 
13. Do you have the desire to eat when you are cross?  1     2     3     4     5    
 
14. Do you have a desire to eat when you are approaching  

something unpleasant to happen?     1     2     3     4     5    
 
15. Do you have a desire to eat when things are going against  

you or when things have gone wrong?    1     2     3     4     5    
 
16. Do you have a desire to eat when you are frightened?  1     2     3     4     5    

 
17. Do you have a desire to eat when you are disappointed? 1     2     3     4     5    
 
18. Do you have a desire to eat when you are emotionally upset? 1     2     3     4     5    
 
19. Do you have a desire to eat when you have nothing to do? 1     2     3     4     5    
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20. Do you have a desire to eat when you are feeling lonely? 1     2     3     4     5    
 
21. Do you have a desire to eat when somebody lets you down? 1     2     3     4     5    
 
22. Do you have a desire to eat when you are bored or restless? 1     2     3     4     5    
 
23. If food tastes good to you, do you eat more than usual?  1     2     3     4     5    
 
24. If food smells and looks good, do you eat more than usual? 1     2     3     4     5    
 
25. If you see or smell something delicious, do you have desire   

to eat it?        1     2     3     4     5    
 
26. If you have something delicious to eat, do you eat it straight  

away?        1     2     3     4     5    
 
27. If you walk past the baker do you have the desire to buy  

something delicious?      1     2     3     4     5    
 
28. If you walk past a snackbar or a café, do you have the desire  

to buy something delicious?     1     2     3     4     5    
 
29. If you see others eating, do you also have the desire to eat? 1     2     3     4     5    
 
30. Can you resist eating delicious foods?    1     2     3     4     5    
 
31. Do you eat more than usual, when you see others eating? 1     2     3     4     5    
 
32. When preparing a meal, are you inclined to eat something? 1     2     3     4       5 
 
 
 
 
 
 
 
 

The End 
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Appendix D 
 

Appetite Questionnaire 
 

 

Please answer the following questions by placing a vertical mark through the line for 

each question. Regard the end of each line as indicating the most extreme sensation you 

have ever felt and mark how you feel NOW. 

 

 
Time:                                   
 
 
 
1. How hungry  do you feel (now)? 

            

          

                                                                                        

2. How satisfied do you feel (now)? 

   

                                                                                                                 

                      
 
 
3. How full  do you feel (now)? 
 
 
 

            

 
4. How much do you think you can eat  (now)? 
 
 

                    

 
 

            5. How strong is your desire to eat (now)? 
 
 

               

  
 

I am no t  
 hungry 

Never been 
hungrier 

I am not 
satisfied  
at all 

I cannot 
eat another 
bite 

Not at all 
full Totally full  

A lot  
Nothing at 
all 

Not at all  Very  



     appendix | 246 
 

Appendix E 
 

Experiences in Close Relationship Questionnaire 
 

 
 
Below are a number of statements regarding how people feel and behave in their closest 
relationships. Please respond according to how you feel and behave generally in these 
relationships. Please indicate the extent to which you agree with the following 
statements. Do this by placing a number from the scale below  (1 – 7) in front of each 
state. All information are strictly confidential.  

 
 

Strongly                                                             Neutral                                      Strongly                                                                                                                     
Disagree          Agree 
   1……….…….2….…………...3…….….….....4….……….….5…….……..…..6……………..7 

 

 

1. I prefer not to show people close to me how I feel deep down. 

2. I worry about being abandoned. 

3. I am very comfortable being close to others. 

4. I worry a lot about my relationships. 

5. Just when people start to get close to me I feel myself pulling away. 

6. I worry that people won’t care about me as much as I care about them. 

7. I get uncomfortable when people want to be very close. 

8. I worry a fair amount about losing my relationships. 

9. I don’t feel comfortable opening up to others. 

10. I often wish that my loved ones’ feelings for me were as strong as my feelings                     
for them. 

11. I want to get close to others but they keep pulling away. 

12. I often want to merge completely with others, and this sometimes scares them away. 

13. I am nervous when others get too close to me. 

14. I worry about being alone. 

15. I feel comfortable sharing my thoughts and feelings with those I am close to. 

16. My desire to be close sometimes scares others away. 

17. I try to avoid getting too close to others. 

18. I need a lot of reassurance that I am loved by those close to me. 

19. I find it relatively easy to get close to others. 

20. Sometimes I feel that I force others to show more feeling, more commitment. 

21. I find it difficult to allow myself to depend on others. 

22. I do not often worry about being abandoned. 

23. I prefer not to be close to others. 

24. If I can’t get those close to me to show interest in me, I get upset or angry. 

25. I tell those close to me just about everything. 
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26. I find that others don’t want to get as close as I would like. 

27. I usually discuss my problems and concerns with those close to me. 

28. When I’m involved in a relationship, I feel somewhat anxious and insecure. 

29. I feel comfortable depending on others. 

30. I get frustrated when those I am close to aren’t around me as much as I would like. 

31. I don’t mind asking others for comfort, advice, or help. 

32. I get frustrated when those close to me are not available when I need them. 

33. It helps to turn to others in times of need. 

34. When those close to me disapprove of me, I feel really bad about myself. 

35. I turn to others for many things, including comfort and reassurance. 

36. I resent it when those I am close to spend time away from me.  

 
 
 
 

 

The End 
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Appendix F 
 

Active Ghrelin (GHRA-88HK) 
 

Manufacturer: Linco Research Inc., St. Charles, MO, USA 

 
 
Active Ghrelin Standard Preparation 
 

1. Active Ghrelin Standard was reconstituted with 2 ml of deionised water. 
 
2. Serial dilutions were performed by adding 0.5 ml of the reconstituted standard to 

tubes (1-8) containing 0.5 ml of Assay Buffer (refer Table 1). 
 
 
Table 1. Standard preparation 

 
Tube no. Volume of Assay Buffer Volume of Standard Standard concentration 

(pg/ml) 

1 0.5 ml 0.5 ml of standard x/2 

2 0.5 ml 0.5 ml of tube 1 x/4 

3 0.5 ml 0.5 ml of tube 2 x/8 

4 0.5 ml 0.5 ml of tube 3 x/16 

5 0.5 ml 0.5 ml of tube 4 x/32 

6 0.5 ml 0.5 ml of tube 5 x/64 

7 0.5 ml 0.5 ml of tube 6 x/128 

8 0.5 ml 0.5 ml of tube 7 x/256 

 
 
Assay Procedure  
 
1) Day 1 
 

1. Assay Buffer (300 µl) was pipetted to the Non-Specific Binding (NSB) tubes (3-
4). 200 µl of Assay Buffer was pippeted in the Reference tubes (5-6). 100 µl of 
Assay Buffer was pipetted to tubes (7) through the end of the assay. 

 
2. Standards, Quality Controls, and samples of 100 µl each were pipetted in 

duplicate into respective tubes. 
 

3. 100 µl of Ghrelin Antibody was added to all tubes except Total Count tubes (1-2) 
and NSB tubes (3-4) (refer Table 2). 

 
4. All tubes were vortexed, covered, and incubated overnight (20-24 hrs) at 4ºC. 
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2) Day 2 
 

1. 125I-Ghrelin lyophilized tracer was hydrated with 13.5 ml of Label Hydrating 
Buffer containing 0.025% Triton-X 100 and guinea pig IgG as a carrier. Solution 
was mixed gently before 100 µl of the mixture was pipetted to all tubes. 

 
2. All tubes were vortexed, covered, and incubated overnight (20-24 hrs) at 4ºC. 

 
 
3) Day 3 
 

1. 1.0 ml of cold (4ºC) Precipitating Reagent containing goat anti-IgG serum, was 
added to all tubes except Total Count tubes (1-2). 

 
2. Tubes were vortexed and incubated at 4ºC. 

 
3. After incubation, tubes were centrifuged at 4ºC for 20 minutes at 2000-3000 xg.  

 
4. Supernatant from all centrifuged tubes except Total Count tubes (1-2) were 

immediately decanted and drained. 
 

5. Pellet was counted using the gamma counter. 
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Table 2. Assay procedure flow chart 
 

DAY ONE DAY TWO DAY THREE 
Set-
up 

Step 
1 

Step 2 
& 3 

Step 4 Step 5 Step 6 Step 7 Step 8 Step 9-
11 

Tube 
no. 

Add 
buffer 
assay 

Add 
standard 

/QC / 
sample 

Add 
Ghrelin 
antibody 

 
 
 
 

Vortex, 
cover, 
and 

incubate 
at 4°C 

Add 
125I-

ghrelin 
tracer 

 
 
 
 

Vortex, 
cover, 
and 

incubate 
at 4°C 

Add 
precipitatin
g reagent 

 
 
 
 

Incubate 
for 20 
min at 
4°C, 

centrifug
e at  4°C 
for 20 
min. 

Decant 
and 

count. 

1,2 - - - 100 µl - 
3,4 300 µl - - 100 µl 1.0 ml 
5,6 300 µl - 100 µl 100 µl 1.0 ml 
7,8 300 µl 100 µl of 

tube 8 
100 µl 100 µl 1.0 ml 

9,10 300 µl 100 µl of 
tube 7 

100 µl 100 µl 1.0 ml 

11,12 300 µl 100 µl of 
tube 6 

100 µl 100 µl 1.0 ml 

13,14 300 µl 100 µl of 
tube 5 

100 µl 100 µl 1.0 ml 

15,16 300 µl 100 µl of 
tube 4 

100 µl 100 µl 1.0 ml 

17,18 300 µl 100 µl of 
tube 3 

100 µl 100 µl 1.0 ml 

19,20 300 µl 100 µl of 
tube 2 

100 µl 100 µl 1.0 ml 

21,22 300 µl 100 µl of 
tube 1 

100 µl 100 µl 1.0 ml 

23,24 300 µl 100 µl of 
standard 

100 µl 100 µl 1.0 ml 

25,26 300 µl 100 µl of 
QC 1 

100 µl 100 µl 1.0 ml 

27,28 300 µl 100 µl of 
QC 2 

100 µl 100 µl 1.0 ml 

29,30 300 µl 100 µl of 
sample 

100 µl 100 µl 1.0 ml 

 



     appendix | 251 
 

Appendix G 
 

PYY3-36 (PYY-67HK) 
 

Manufacturer: Linco Research Inc., St. Charles, MO, USA 

 
 
Active Ghrelin Standard Preparation 
 

3. PYY Standard was reconstituted with 2 ml of deionised water. 
 
4. Serial dilutions were performed by adding 0.5 ml of the reconstituted standard to 

tubes (1-6) containing 0.5 ml of Assay Buffer (refer Table 1). 
 
 
Table 1. Standard preparation 
 

Tube no. Volume of Assay Buffer Volume of Standard Standard concentration (pg/ml) 

1 0.5 ml 0.5 ml of standard x/2 

2 0.5 ml 0.5 ml of tube 1 x/4 

3 0.5 ml 0.5 ml of tube 2 x/8 

4 0.5 ml 0.5 ml of tube 3 x/16 

5 0.5 ml 0.5 ml of tube 4 x/32 

6 0.5 ml 0.5 ml of tube 5 x/64 

 
 
Assay Procedure  
 
3) Day 1 
 

5. Assay Buffer (200 µl) was pipetted to the Non-Specific Binding (NSB) tubes (3-
4). 100 µl of Assay Buffer was pippeted in the Reference tubes (5-6) and sample 
tubes 25 through the end of the assay. Assay Buffer was not added to standard and 
QC tubes. 

 
6. 100 µl of Matrix Solution containing treated human serum was added to the NSB 

tubes (3-4), Reference tubes (5-6), and Standard tubes (7-20) and Quality Control 
tubes (21-24). 

 
7. Standards and Quality Controls of 100 µl each were pipetted into tubes (7-20) and 

(21-24) respectively, and 100 µl of samples into tubes (25-) 
 

8. 100 µl of PYY3-36 Antibody was added to all tubes except Total Count tubes (1-2) 
and NSB tubes (3-4) (refer Table 2). 

 
9. All tubes were vortexed, covered, and incubated overnight (20-24 hrs) at 4ºC. 
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4) Day 2 
 

3. 125I-PYY lyophilized tracer was hydrated with 13.5 ml of Assay Buffer. Solution 
was mixed gently before 100 µl of the mixture was pipetted to all tubes. 

 
4. All tubes were vortexed, covered, and incubated overnight (20-24 hrs) at 4ºC. 

 
 
3) Day 3 
 

6. 10 µl of Guinea Pig carrier was added to all tubes except Total Count tubes (1-2). 
 
7. 1.0 ml of cold (4ºC) Precipitating Reagent containing goat anti-IgG serum, was 

added to all tubes except Total Count tubes (1-2). 
 
8. Tubes were vortexed and incubated at 4ºC. 

 
9. After incubation, tubes were centrifuged at 4ºC for 20 minutes at 2000-3000 xg.  

 
10. Supernatant from all centrifuged tubes except Total Count tubes (1-2) were 

immediately decanted and drained. 
 

11. Pellet was counted using the gamma counter. 
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Table 2. Assay procedure flow chart

DAY 1 DAY 2  
Set-
up 

Step 1 Step 2  Step 3 
& 4 

Step 5 Step 6 Step 7 Step 8 

Tube 
no. 

Add 
buffer 
assay 

Add 
Matrix 

Solution 

Add 
standard/ 

QC/ 
sample 

Add   
PYY3-36 
antibody 

 
 
 
 

Vortex, 
cover, 
and 

incubate 
at 4°C 

Add 125I-
PYY 
tracer 

 
 
 
 

Vortex, 
cover, and 
incubate at 

4°C 

1,2 - - - - 100 µl 

3,4 200 µl 100 µl - - 100 µl 

5,6 100 µl 100 µl - 100 µl 100 µl 

7,8 - 100 µl 100 µl of 
tube 6 

100 µl 100 µl 

9,10 - 100 µl 100 µl of 
tube 5 

100 µl 100 µl 

11,12 - 100 µl 100 µl of 
tube 4 

100 µl 100 µl 

13,14 - 100 µl 100 µl of 
tube 3 

100 µl 100 µl 

15,16 - 100 µl 100 µl of 
tube 2 

100 µl 100 µl 

17,18 - 100 µl 100 µl of 
tube 1 

100 µl 100 µl 

19,20 - 100 µl 100 µl of 
standard 

100 µl 100 µl 

21,22 - 100 µl 100 µl of 
QC 1 

100 µl 100 µl 

23,24 - 100 µl 100 µl of 
QC 2 

100 µl 100 µl 

25,n - 100 µl 100 µl of 
sample 

100 µl 100 µl 

 DAY 3 
Set-up Step 9 Step 10 Step 11 
Tube no. Add 

guinea pig 
carrier 

Add 
precipitating 

reagent 

 
 
 
 

Incubate for 20 min at 
4°C, centrifuge at  4°C 

for 20 min. Decant 
and count. 

1,2 - - 

3,4 10 µl 1.0 ml 

5,6 10 µl 1.0 ml 

7,8 10 µl 1.0 ml 

9,10 10 µl 1.0 ml 

11,12 10 µl 1.0 ml 

13,14 10 µl 1.0 ml 

15,16 10 µl 1.0 ml 

17,18 10 µl 1.0 ml 

19,20 10 µl 1.0 ml 

21,22 10 µl 1.0 ml 

23,24 10 µl 1.0 ml 

25,n 10 µl 1.0 ml 
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