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Abstract

Gene and protein interaction networks have evolved to pre-
cisely specify cell fates and functions. Here, we analyse
whether the architecture of these networks affects evolvability.
We find evidence to suggest that in yeast these networks are
mainly acyclic, and that evolutionary changes in these parts do
not affect their global dynamic properties. In contrast, feed-
back loops strongly influence dynamic behaviour and are often
evolutionarily conserved. Feedback loops are often found to
reside in a clustered manner by means of coupling and nesting
with each other in the molecular interaction network of yeast.
In these clusters some feedback mechanisms are biologically
vital for the operation of the module and some provide auxil-
iary functional assistance. We find that the biologically vital
feedback mechanisms are highly conserved in both transcrip-
tion regulation and protein interaction network of yeast. In
particular, long feedback loops and oscillating modules in pro-
tein interaction networks are found to be biologically vital and
hence highly conserved. These data suggest that biochemi-
cal networks evolve differentially depending on their structure
with acyclic parts being permissive to evolution while cyclic
parts tend to be conserved.
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Chapter 1

Introduction

1.1 Background

How evolution works at the molecular level is a fascinating field of in-
vestigation. The study of evolution at the level of proteins and DNA
was commenced in the 1960s to understand the evolution of enzyme
functions, as was the use of nucleic acid divergence as molecular clock
to study species divergence, and to study the origin of nonfunctional and
junk DNA (Graur and Li (2000)). Recent advances in genomics such as
gene sequencing, high throughput protein characterisation, bioinformat-
ics and systems biology have prompted a dramatic increase in interest in
this field. Recent efforts to unravel the mechanisms of molecular evo-
lution involve comparison of sequenced genomes of different species.
Comparing gene and protein sequences of different organisms reveals
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1.1 Background

important information about the origin, conservation and divergence of
different genes and proteins found in them. Examples of such studies are
Butler et al. (2009); Kellis et al. (2003); Peng et al. (2005). These stud-
ies reveal that some genes are better conserved among certain species
compared to others. The reasons behind such disparities in conservation
among different genes are still unclear despite several efforts. Some
of the preliminary efforts to answer the above question focussed on the
structural and functional properties of individual genes and proteins. The
basic assumption of these studies was that the structure and function of
individual genes and proteins are somehow related to their evolutionary
potential.

For example, Lipman et al. (2002) suggested that the evolutionary
conservation of a protein depends on its sequence length, proteins with
longer amino acid sequences are better conserved than the ones with
relatively short sequences. Fraser et al. (2003) suggested that the proteins
which take part in larger number of biochemical interactions are better
conserved, which agrees with the findings of Lipman et al. (2002) since
proteins with long amino acid sequences are more likely to be involved in
large number of protein interactions due to presence of abundant potential
interaction domains. However, Agrafioti et al. (2005) suggested that
the proteins which are highly expressed are better conserved than the
others which are relatively less abundant. On the contrary, Warringer
and Blomberg (2006) found that differentially expressed proteins with
very different sequence lengths may evolve at the same rate. Hahn et al.
(2004); Jordan et al. (2003) opposed the findings of Fraser et al. (2003) by
claiming that there is no dependence between protein evolution rate and
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the number of protein interactions. Bloom and Adami (2003) claimed
that the apparent interdependence between protein interaction numbers
and the evolution rate found by Fraser et al. (2003) is a result of biases
in the protein interaction data used in the study.

The conclusions of the above research works are contradictory. The
confusion grew further as high throughput data started to become avail-
able which enabled scientists to compare the functions of conserved
genes and proteins among different species. For example, Rustici et al.
(2007) compared the set of genes which responds to changing iron and
copper levels in S. serevisiae and S. pombe. They found that only a
small set of genes with conserved sequences perform the same function
in both species, whereas a rather large set of conserved genes have differ-
ent function in these species. This finding is in sharp contradiction to the
very assumption that the conservation of genes and proteins are somehow
related to their individual structure and function. In another study Peng
et al. (2005) compared the cell cycle regulated genes in both S. cerevisiae
and S. pombe and found that a significant number of homologous genes
are regulated differently in these species. This finding is in agreement
with the conclusion of Rustici et al. (2007) that conserved genes may
have different functions in different species. Further experiments by
Dixon et al. (2008) suggested that only 23-30% of genetic interactions
are conserved between S. cerevisiae and S. pombe whereas they share
almost 60% of the conserved genome(Peng et al. (2005)). Since the
interaction patters are conserved to a much lesser extent than the gene
sequences themselves it can be inferred that a significant number of
conserved genes operate differently in these species.
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The above findings suggest the possibility of an alternative explana-
tion of molecular evolution. Such an explanation may be possible as
the focus of functional genomics shifts from the functional analysis of
individual genes and proteins towards the functional analysis of gene
and protein interaction networks. But the enormous complexity of these
network structures has so far prevented scientists from determining the
functional properties of the genetic and proteomic interaction networks
of even the most well studied organisms such as S. cerevisiae. Since the
architecture of these networks are complex it seemed necessary to under-
stand the architectural properties of these networks in order to understand
their dynamics. Some of the first efforts of structural characterisation of
large scale biochemical networks 1 revealed some interesting character-
istics of these networks. For example, Yook et al. (2004) suggested that
biochemical networks have scale free architectures, Pržulj et al. (2004)
suggested that these networks have the same properties as geometric
random graphs, Milo et al. (2002); Yeger-Lotem et al. (2004) found
that some specific small network modules, ’network motifs’ as termed
by them, are enriched in biochemical networks compared to random
networks. Pržulj et al. (2006) further integrated the previous meth-
ods to characterise biochemical networks by the degree distribution of
’graphlets’. However, the correlation between molecular evolution and
the architectural properties of biochemical networks remained unclear.

On the other hand, in a parallel effort, biologists and anthropologists
such as Davidson and Erwin (2006); Kwon and Cho (2007) found that

1from here on we shall refer to both gene regulatory and protein interaction networks as biochemical
networks unless otherwise stated
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certain small subnetworks of interacting genes are conserved for millions
of years. It has been argued that these gene regulatory network(GRN)
components are preserved for millions of years because of their piv-
otal role in designing animal body plan (Davidson and Erwin (2006))
. These components are termed as "kernel" components. Interestingly,
despite the rigid behaviour of the kernel components against evolution-
ary changes the network linkages surrounding them have altered almost
beyond recognition since pre-Cambrian time. The mechanisms which
account for such disparity in the rate of evolution in different parts of
GRN is still unclear.

After the discovery of network motifs, the statistically over-represented
small sub-networks found in GRNs, by Milo et al. (2002), Kashtan
and Alon (2005) argued that the reason behind their over abundance is
the preserving of their particular interaction patterns during evolution.
However, this theory has some drawbacks. First of all, the argument of
Kashtan and Alon (2005) does not explain the presence of "kernel" com-
ponents as discovered by Davidson and Erwin (2006), secondly, Mazurie
et al. (2005) presented strong and appealing evidence against the the-
ory of Kashtan and Alon (2005). Other noticeable efforts to elucidate
this matter made by the mathematical and statistical community, such
as those of Ciliberti et al. (2007) and Krishnan et al. (2008), are mainly
focussed on very specific structural and functional properties of GRNs
which either helps new innovations to take place during evolution, or
emerges from beneficial evolution. To the best of our knowledge, very
few efforts have been made so far to answer the question as to how
exactly evolutionary mechanisms alter the architecture of an organism’s
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biochemical network. To be more precise, which parts of a GRN are
most likely to be altered and which parts are most likely to be conserved
during the course of evolution? This calls for an integrative analysis of
both structural and functional genomics to understand the role of how
dynamic properties of biochemical networks relate to their evolution.

1.2 Contribution of this thesis

We have analysed molecular interaction data along with publicly avail-
able microarray and protein activation data obtained from a model eu-
karyot, Saccharomyces cerevisiae, commonly known as baker’s yeast,
in order to answer the questions mentioned in the previous section. In
particular, we seek to identify the structural and functional properties of
different parts of yeast GRN (i) which are flexible towards changes in
their architecture by means of evolution, and (ii) which are rather rigid
against any structural change.

The salient contributions of this thesis to the conceptual advancement
of the field are twofold. Firstly, we developed a mathematical analy-
sis to predict the dynamical behaviour of arbitrarily large biochemical
networks. Usually, biochemical networks are modelled using a set of
differential equations and their functionalities are predicted by simulat-
ing these equations. However, modelling the dynamic behaviour of a
biochemical network at a genomic scale is not feasible due to lack of data
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on interaction parameters. In this study we developed a mathematical
analysis to determine the global dynamic behaviour of an arbitrarily large
biochemical network from its structural properties rather than having to
model each of its interactions individually. Our theoretical analysis can
be used in a wide range of scientific and technological studies where
complex and large nonlinear systems are common. In this thesis we
show an example of applying this theory to investigate whether there
is a connection between network topologies and evolution. While such
a connection is plausible, neither its role and nor its nature has been
systematically analysed until now.

Secondly, our results reveal an unexpected link between network de-
sign features and evolution, which in some cases contradicts many early
studies on molecular evolution but explains many recent findings. We
provide a concrete mathematical explanation to suggest that there is a
balance between robustness of design and potential for evolution and
provide evidence from available biological data to support our hypothe-
sis. Parts of this thesis have been presented at the following conferences
and workshops:

• Gene expression profiling using Dirichlet process based non para-
metric trans-dimensional clustering ,April 2007, Mathematical and
Statistical Aspects of Molecular Biology, Manchester, U.K.

• Relationship between structure and dynamics of gene regulatory
networks, March 2008, Learning in Computational System’s Biol-
ogy, University of Glasgow, Glasgow, U.K.
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• An analysis of the relation between structure and dynamics of bio-
chemical networks, March 2008, Mathematical and Statistical As-
pects of Molecular Biology, University of Glasgow, Glasgow, U.K.

• Dynamic properties of large graphs, September 2008, Complex
Networks across the Natural and Technological Sciences , Univer-
sity of Strathclyde, Glasgow, U.K.

• The architecture of a gene Regulatory Network is related to evolu-
tionary potential, April 2009, Mathematical and Statistical Aspects
of Molecular Biology, London, U.K.

The remainder of the thesis is organised as follows. In chapter 2 I
discuss the dynamic properties of biochemical networks and the relation
of these properties with molecular evolution. I generalise the theory of
nonlinear dynamic systems for arbitrarily large biochemical networks
and find that their acyclic and cyclic parts contribute differently to their
dynamics. Further analysis led me to the question how much of a typical
yeast biochemical network is made of acyclic structure and how much is
made of cyclic loops. In chapter 3 I look into the structural properties of
biochemical networks to answer the above question. In chapter 4 I look
for evidences to support our conclusions of chapter 2 and 3 by comparing
gene sequence and network structures of multiple yeast species. Chapter
5, 6 and 7 are dedicated to case studies of different network modules
of yeast biochemical networks. In these case studies I analysed the
dynamic properties of biochemical modules related to signalling, mating,
metabolism and cell cycle and looked for their evolution in different yeast
species. In chapter 8 I concluded by discussing about the work and future
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directions.
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Chapter 2

Global dynamic properties of
biochemical networks

The description of “kernel” components in the gene regulatory networks
of mammals by Davidson and Erwin (2006) raised some interesting
possibilities. Since “kernels” are small subnetworks of interacting genes
and proteins it is possible that the function of a “kernel” as a module is
more important than the function of its individual components. Small
GRN modules are also found conserved in arthropods (Damen (2007)),
nematodes (Ge et al. (2006)) and echinoderms (Hinman et al. (2009))
due to their important roles in developmental biology. It is important
to understand the contribution of different modules of a biochemical
network to its global dynamic behaviour in order to determine which
modules are functionally important and which are not. Hence, in this
chapter we provide a mathematical analysis to determine the global

10



dynamic behaviour of biochemical networks and the contributions of
different types of network modules to its operation.

Determining the global dynamic behaviour of an arbitrarily large
biochemical network by conventional means is hardly possible in the
current context. Firstly, these networks are extremely large in size mak-
ing the realisation of an ordinary differential equation model to simulate
their dynamic behaviour impossible. Secondly, the exact architecture
of these networks are unknown for even the most well studied model
organisms like �S. cerevisiae. Finally, the reaction parameters for most
of the biochemical interactions which take place in these networks are
also unknown. Our analysis aims to determine the dynamic properties of
biochemical networks from their structural properties rather than having
to model all of their interactions individually.

One of the most important structural properties of biochemical net-
works is their modular architecture. The concept of modularity in bio-
chemical networks was introduced by Milo et al. (2002). According to
Milo et al. (2002), the modular architecture of biochemical networks is
caused by overabundance of certain small network modules, called ’net-
work motifs’. Considerable efforts have been made to explain the the
overabundance of network motifs in biochemical networks. Milo et al.
(2002) reasoned that each network motif is an important functional mod-
ule and according to Mangan et al. (2006) is functionally autonomous.

Since network motifs are functionally important small subnetworks
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found in biochemical networks we decided to start with a network motif
analysis of biochemical networks of S. cerevisiae. We chose S. cerevisiae

because of the wide availability of interaction data. We used the same
method and data used by Yeger-Lotem et al. (2004) in our analysis. We
enlisted all the network motifs found in that analysis (see fig. 2 for
some examples) and developed mathematical models for each of them
to describe their dynamic behaviour. We followed the same method
as Mangan and Alon (2003) to develop these mathematical models.
The network motifs of a biochemical network can be divided into two
categories cyclic and acyclic motifs. In the next two sections we shall
discuss the dynamic properties of one acyclic and one cyclic motif in
detail.

2.1 Dynamic properties of an acyclic motif

Acyclic motifs are small subnetworks of biochemical networks which
do not have feedback loops. In this section we determine the dynamic
properties of an acyclic motif called feed forward loop (figure 2.1(a)).
Following Mangan and Alon (2003) we developed a mathematical model
for a feed forward loop motif using Michaelis Menten kinetics. Michaelis
Menten kinetics is a derivative of mass action law and is usually used
to model regulatory interactions in GRNs. Protein interactions however
are usually modelled using mass action law as they are not enzymatically
catalised. For the time being we shall stick to Michaelis Menten kinetics
to derive the basic concepts of our analysis. A more generalised version

12
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Network motifs commonly found in the transcription regulatory and protein
protein interaction networks of Saccharomyces cerevisiae. (a) Feed forward loop, (b)
Bifan motif, (c) Dense Overlapping Regulon motif, (d) Regulatory chain motif, (e)
autoregulatory motif and (f) multicomponent loop motif. X ,Xi, Y , Yi,Z,Zi represents
interacting genes and proteins. The arrows represent biochemical interactions. (a),
(b),(c), and (d) are acyclic motifs; (e) and (f) have feedback loops.

of our theory shall be discussed later in this chapter, Our mathematical
model is shown in equation 2.1.

dx

dt
= Bx − αxx
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dy

dt
= By + βy

(
x2

K2
xy + x2

)
− αyy

dz

dt
= Bz + βz

(
x2

K2
xz + x2

)(
1

1 + y2/K2
yz

)
− αzz (2.1)

In equation 2.1, x,y,z represent the concentrations of the mRNA pro-
duced by hypothetical genes X,Y and Z. Bx, By and Bz are the basal
levels and αx, αy and αz are the decay rates of x, y and z respectively.
βy is the rate of activation of the gene Y by gene X and βz is the rate of
activation of the gene Z by both X and Y.Kxy,Kxz andKyz are Michaelis
constants. The Hill coefficient is fixed at n = 2 following Mangan and
Alon (2003). However, the results of our analysis are independent of the
value of n as will be shown later. Instead of analysing the transient and
steady state response of the above module due to different input signals
as done in most of the previous studies (Mangan and Alon (2003) ) we
analysed the stability of its steady states. Unlike the analysis of Mangan
and Alon (2003) our analysis reveals the nature of the trajectories of
the states of the relevant biochemical entities in response to all possible
values of the kinetic parameters and initial conditions. To understand
the nature of its steady states, i.e. whether they are stable, unstable or
oscillatory, we computed the Jacobian matrix (shown in equation 2.2)
for the set of differential equations shown in equation 2.1.

J =


−αx 0 0

2βyxepK
2
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(K2
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M =
(
x2
ep +K2

xz

) (
y2
ep +K2

yz

)2 (2.2)

The Jacobian matrix J shown in equation 2.2 is lower triangular with
negative real numbers in its diagonal elements. Hence the eigenvalues
λi : i = 1, 2, 3 of J are λi = −αi. As all the eigenvalues of the Jacobian
matrix J are negative real numbers, i.e., λi < 0, the system is stable near
its steady state xep, yep, zep and the stability of the system does not depend
on any of its parameters, i.e., the module will always remain stable for
all biologically plausible values of its parameters (>0). As the equation
2.1 has only one steady state, we conclude that a feed forward loop
is a monostable system whose stability is independent of its parameter
values, i.e. the reaction rate constants. A phase space representation of
the equation 2.1 is shown in figure 2.2.

Interestingly, similar analysis for all possible acyclic network motifs
results in the same conclusion. In other words, the steady states of all
acyclic network motifs are always stable disregarding their parameter
values. Further investigation reveals that the reason behind such phe-
nomena is the acyclic nature of these network structures. The acyclicness
of these motifs gives rise to triangular Jacobian matrices for the system
of equations describing their dynamics. Since the dynamics of these mo-
tifs are modelled using the Michaelis Menten kinetics which essentially
follow the rules of chemical kinetics, the diagonal elements of the Jaco-
bian matrices are always negative real numbers which indicate absolute
stability of their steady states. The biological implications of the above
results are discussed in detail in section 2.5. However, these results are
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Figure 2.2: Stability analysis of a feed forward loop. The schematic diagram of a feed
forward loop is shown in figure 2.2(a) and a sample phase portrait with two trajectories
are shown in figure 2.2(b). The trajectories shown in figure 2.2(b) originated from
initial concentrations IC1 and IC2 and terminated at the equilibrium point EP. The
tubes surrounding the trajectories can be termed as stability tubes and indicate that any
state in those tubes will always remain in them.

16



2.2 Dynamic properties of a cyclic motif

remarkable in the sense that it tells us that the stability of network motifs
depend on their structural property, i.e. acyclicness, rather than interac-
tion parameters and initial concentrations. The question that naturally
occurs at this point is what kind of dynamic behaviour does a cyclic
motif have. Hence in the next section we shall analyse the dynamics of
a motif with a feedback loop.

2.2 Dynamic properties of a cyclic motif

The simplest possible feedback loop is the autoregulatory loop where a
biochemical entity such as a gene or protein regulates its own expression.
Hence we developed a mathematical model of a positive autoregulatory
motif and analysed its dynamics. The mathematical model of a positive
autoregulatory circuit is shown in equation 2.3.

dx

dt
= β

(x/Kx)
2

1 + (x/Kx)2
− αx (2.3)

Here, β is the activation rate,α is the rate of decay andKx is Michaelis
constant. The auto-activating entity is monostable for β/α ≤ 2Kx and
bistable for β/α > 2Kx. The bifurcation surface in the parameter space
is shown in figure 2.3(b)

The dynamic behaviour of multi-component feedback loop motifs are
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(a) (b)

Figure 2.3: Bifurcation of auto-activating feedback loop. (a) shows a schematic
diagram of an auto activating feedback where X represents a gene or protein which
activates itself. (b) shows the surface of bifurcation in the parameter space of the
equation shown in 2.3.

discussed in detail by Kim et al. (2007). The dynamics of a biochemical
feedback loop can bifurcate between monostable, bistable, multi-stable,
graded response and oscillatory modes depending on the initial mRNA or
protein concentrations and corresponding reaction rate constants. Bista-
bility results in toggle switch like behaviour and flip flop like memory
system, multistable modules can act as genetic multiplexers, oscillators
act as biological clocks and some negative feedback mechanism act as
noise smoothers (Kim et al. (2007)). Hence, we conclude that the feed-
back loop motifs have rich dynamic behaviour with important potential
functional roles.

In summary, we divide the network motifs in two subcategories, cyclic
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and acyclic motifs. All acyclic motifs are stable systems and exhibit

rather simple dynamic behaviour whose stability is independent of their

corresponding parameters. On the other hand, cyclic motifs exhibit rich

and bifurcative dynamic behaviour and may have the potential of acting

as important functional modules.

Though, at this point we have a basic idea of the autonomous func-
tioning of some of the network motifs our goal is to find out how they
shape the dynamic behaviour of a large biochemical network. In the next
section we shall develop a mathematical theory to determine the dynamic
properties of a generic biochemical network from the ideas gathered from
the above analysis. Because of our observation that the acyclic motifs
are always stable, we first generalised the theory of nonlinear dynamical
systems to analyse the dynamics of an arbitrarily large acyclic biochem-
ical network. Then we extended our theory to determine the dynamic
properties of generic biochemical networks. Our mathematical analysis
of the dynamic properties of biochemical networks is as follows.

2.3 The dynamic properties of a generic arbitrarily
large biochemical network

The dynamics of biochemical networks are represented in state space,
where the change in the current state of a node (i.e. the concentrations
of mRNAs, proteins etc.) depends on the states of adjacent nodes and is
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modelled using differential equations. Appropriate functions describing
biochemical interactions are rather controversial topic. Though mass
action law and Michaelis Menten kinetic models, a derivative of mass
action law, are among the most commonly used approaches to model
biochemical interactions, there are significant controversies about their
applicability in an intracellular environment. Mass action law was de-
veloped to model interactions between reactants in a relatively dilute pH
buffered aqueous solution. In intracellular environments bound particles
may be prevented from dissociation by their surroundings or diffusion
is slow and anomalous and the model of mass action does not always
describe the reaction kinetics accurately. A consensus is not yet reached
to modify mass action law in order to make it applicable in intercellular
environment. An alternative approach is to replace the rate constants
with functions of time (commonly known as fractal kinetics, Kopelman
(1988); Savageau (1995) ) and/or concentrations. In another theory,
Grima and Schnell (2006) suggested that mass action law is applicable
in an intracellular environment under certain conditions but in different
rates than would be found in dilutes. However, the most widely accepted
way to model the kinetics of biochemical networks is to assume that
different types of chemical reaction follow different rate laws. For ex-
ample, homo and hetero dimer and polymer formations and compound
degradations are best described by mass action kinetics, but most of the
other interactions such as phosphorylation, enzymatic reactions and gene
regulations are best described by Michelis Menten kinetics. In a bio-
chemical network all these different types of interactions can take place
at the same time. However, determining the dynamic properties of a
biochemical network which contains reactions of heterogeneous kinetic
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laws are not easy. Hence, we pursue this problem in the classical way. In
this chapter, we shall first develop a theory to analyse large dynamic sys-
tems which follow Michaelis Menten kinetics and determine the relation
between their structural and dynamical properties. Then we discuss and
extend some of the existing theories which deals with the same problem
for arbitrarily large dynamic systems made of mass action type reactions
only. Based on these two analysis we make some conclusions about
the dynamic properties of biochemical networks. We further discuss the
relation between different dynamic properties of biochemical networks
and their evolution.

2.4 Arbitrarily large dynamic systems and Michaelis
Menten kinetics

Michelis Menten kinetics is generally used to model enzymatic reac-
tions, transcription regulatory interactions and protein phosphorylation
reactions. Some other biochemical interactions such as protein complex
formations are usually modelled using mass action law. However in the
first part of our theory we shall assume that all the biochemical interac-
tion that take place are of Michelis Menten type. Such an assumption
reduces the mathematical complexity of the problem to a great extent
and make the proofs easily comprehensible. The first part of our analysis
is divided into two theorems. The first theorem(Theorem 1) tells us that
the steady states of an arbitrarily large acyclic dynamic system which
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follows Michaelis Menten kinetics are always stable and their stability
is independent of the reaction parameters, initial concentrations, even
structural changes until and unless such changes alter their acyclic na-
ture. The second theorem discusses the effect of feedback loops in the
dynamics of such system. It tells us that an arbitrarily large generic dy-
namic system can have many different modes of dynamic behaviour such
as monostability (one single stable steady state), multistability(multiple
stable and unstable steady states), graded response, stable, unstable, pe-
riodic and aperiodic oscillation etc. But how these networks will behave
is principally determined by their feedback loops with the acyclic parts
having minimal role. The proofs of the above theorems are as follows.

The signal flow in a biochemical network can be represented as a di-
rected graph. The interacting entities of the graph are represented as ver-
tices and the directions of signal flow are represented as directional edges.
We represent a biochemical network S as a triplet S =< V,E, F >;
where V is set of vertices V = vi : i = 1...N or ’species’ as commonly
referred in systems biology literature. Each ’species’ or vertex represents
a biochemical compound such as a protein, mRNA etc. E is a set of
edges E = {eij = (vi, vj) : vi, vj ∈ V } whose elements are ordered sets
such that if (vi, vj) ∈ E then vi � vj where � denotes upstream. Each
edge eij ∈ E represents a biochemical reaction in which vi regulates
vj. Hence, vi is the regulator and vj is the regulated species. � defines
a relation on the vertices of the graph. For linguistic convenience we
call vi the substrate and vj the product and we assume that biochemical
signals flow from substrates to products. F is a vector valued function
F : RN → RN such that ~̇x = F (~x), where ~x = {xi : i = 1..N}T
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represents the states of the vertex set V , i.e. F determines the rate of
changes in the concentrations of the entities involved. In a biochemical
network, xi represents the concentration of vi, xi = [vi]. The ith projec-
tion of F , proji : F = fi defines the state trajectory of the ith species vi,
i.e., ẋi = fi(~x). In other words, fi determines the rate of change in the
concentration xi of the ith species vi.

Furthermore, we introduce a second relation ⇒ on the set of the
vertices. We say vi ⇒ vj if there exist a set of vertices Vs ⊆ V

such that vi � v1
s � v2

s � . . . vks � vj|Vs = {vls : l = 1 . . . k},
i.e. vj is reachable from vi. ⇒ is ’transitive’ since if vi ⇒ vj and
vj ⇒ vk then vi ⇒ vk. The relation ⇒ has specific properties in
specific type of networks. For example, in an acyclic network⇒ is also
irreflexive and antisymmetric. An acyclic network Sa can be defined as
Sa =< Va, Ea, Fa > such that @Vsc ⊆ Va|vi � v1

sc � v2
sc . . . v

k
sc � vi

where Vsc = {vlsc : l = 1..k}, i.e. no path of finite length exists from
a vertex to itself. Furthermore, vi � vi, i.e. no vertex regulates itself.
Therefore, for acyclic networks vi ; vi∀vi ∈ Va which gives rise to
the irreflexive property of⇒. Additionally, if ∃vi, vj ∈ Va, i 6= j such
that vi ⇒ vj and vj ⇒ vi then due to the transitive property of ⇒,
vi ⇒ vi. This is a contradiction to the definition of the acyclic networks,
which justifies the antisymmetric property of ⇒ in acyclic networks.
As mentioned before, we shall discuss the dynamic properties of an
arbitrarily large acyclic biochemical network first. But before going
into the dynamics of acyclic biochemical networks we shall discuss
some useful structural properties of directed acyclic networks in terms of
definitions, propositions and lemmas. Propositions 1 and 2 and definition
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1 are taken from Thulasiraman and Swamy (1992) and the rest of the
propositions, lemmas, definitions and theorems presented in this section
are contributions of this thesis.

Proposition 1. A directed acyclic network with finite number of ver-

tices(nodes) has at least one vertex(node) with indegree zero and one

vertex with outdegree zero Thulasiraman and Swamy (1992).

Proof: For a given acyclic network Sa =< Va, Ea >, choose any
vertex v ∈ V and follow any path from v along the direction of the edges.
We cannot return to any vertex since the network is acyclic and we must
eventually terminate since |V | is finite. The only way we can get stuck
is if we hit a vertex with outdegree zero. If we do the same as above,
but this time, travelling in the opposite direction of the edges we shall
eventually get stuck at the nodes with indegree zero.

Proposition 1 is important since it tells us that there exists at least
one start vertex and one end vertex in a directed acyclic graph. We
shall use this property to impose a partial order on the vertices of such
graphs. To prove that such partial order exists we shall use common
graph theoretic concepts such as transitive reduction and node depth,
and introduce some new concepts such as depth class and some lemmas
and propositions regarding depth classes

Definition 1. The transitive reduction of a directed acyclic graph Sa =<

Va, Ea > is the minimal representation of the graph Sa such that the

reachability relation ⇒ is preserved in the reduced graph Sam =<

Va, Eam >, i.e. if in Sa, ∃vi, vj, vk such that vi ⇒ vj and vj ⇒ vk means
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vi ⇒ vk then the vi, vj, vk in Sam has the same relation Thulasiraman

and Swamy (1992).

Proposition 2. If Vr ⊂ Va is the set of vertices with indegree zero and

outdegree>0 in a directed acyclic network Sa then ∀vai ∈ Va \Vr, ∃vr ∈
Vr such that vr ⇒ va. In other words, every node of a directed acyclic

graph can be reached from at least one of its root nodes Thulasiraman

and Swamy (1992).

Proof: The proof is similar to the proof of proposition 1.

Definition 2. We redefine the depth of a node in this thesis for our

convenience. The depth of a node va in an acyclic graphSa =< Va, Ea >

is defined by the maximum number of edges one needs to travel to reach

va from a root node vr ∈ Vr ⊂ Va when travelling along the edges of its

transitive reduction. If |Vr| > 1 and va is reachable from more than one

root nodes, i.e. ∃vr1, vr2 . . . vrm ∈ Vr|vr1 ⇒ va, vr2 ⇒ va . . . vrm ⇒ va

and the maximum numbers of edges one needs to travel to reach va

from vr1, vr2 . . . vrm are dr1, dr2 . . . drm then the depth of va is defined as

da = max(dr1, dr2, . . . drm).

Under this definition every node has a unique depth given a transitive
reduction.

Definition 3. In this definition we introduce the concept of depth classes.

The set of depth classes of a directed acyclic network Sa is a partition

ΠVa = {Πi : i = 1, 2 . . . p} on its vertex set Va such that, if va1, va2 ∈ Πi

then da1 = da2 where da1 and da2 are the depths of the vertices va1 and
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va2. In other words, each element of ΠVa is a set of vertices with same

depth.

For example, the set of root nodes Vr is an element of ΠVa since all
the vertices (nodes) which belong to Vr has a depth zero. Each element
of the partition ΠVa has a depth associated with it. If we denote the
depth associated with Πi ∈ ΠVa as dπi then we say Πi B Πj if dπi > dπj .
B is a relation on the elements of the depth class of a directed acyclic
network. It is transitive, irreflexive and antisymmetric. Using B we
can impose a full order on the elements of ΠVa. Let us rearrange the
elements of ΠVa in ascending order such that ΠVa = {Π1,Π2 . . .Πk} and
Πi+1 B Πi∀i ∈ {1 . . . k − 1}.

Proposition 3. If Πi,Πj ∈ ΠVa|ΠiBΠj then @vΠi
∈ Πi|vΠi

⇒ vΠj
∈ Πj.

In other words, a node which belongs to a depth class of depth dπj cannot

be reached from a node which belongs to a depth class of depth dπi if

dπi > dπj .

Proof: Let us assume that there exists vertices of acyclic graph Sa,
vΠi
∈ Πi and vΠj

∈ Πj such that vΠi
⇒ vΠj

where dπi > dπj . Hence, by
definition of depth, dπj > dπi since dπj is the maximum possible depth
of vΠj

. This is a contradiction.

Proposition 4. @vπi1, vπi2 ∈ Πi ∈ ΠVa|vπi1 ⇒ vπi2. In other words, no

two vertices of the same depth class can be reached from one another.

Proof: The proof of this proposition is similar to the proof of
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proposition 4. Assume the contrary, i.e. ∃vπi1, vπi2 ∈ Πi ∈ ΠVa|vπi1 ⇒
vπi2. In that case from the definition of depth of a node(vertex), dπi1 must
be less than dπi2. But, since, vπi1 and vπi2 belong to the same depth class
they must have the same depth. This is a contradiction.

From propositions 3 and 4 it is obvious that if vi, vj ∈ Va|vi ⇒ vj

then Πi B Πj where vi ∈ Πi, vj ∈ Πj. The above observation allows us
to impose a partial order on Va.

Proposition 5. It is possible to impose a partial order on the vertices of

a directed acyclic graph.

Proof : A partial order on the vertices of a directed acyclic graph
can be imposed in many different ways. Here we propose one such
method. First, we determine the transitive reduction of a given directed
acyclic network Sa =< Va, Ea >. The definition of transitive reduc-
tion is given below. Let us consider the ordered set of depth classes
ΠVa = {Πi, i = 1 . . . p}|dπi+1

> dπi∀i ∈ {1 . . . p− 1}. Furthermore the
sizes(cardinalities) of each depth class Πi is given by σi. Relabel the
elements Π1 as ni : i = 1 . . . σi at random. Then relabel the elements of
Π2 as ni : i = σ1 +1 . . . σ1 +σ2 at random and so on. Under this scheme
of relabelling a vertex with label ni can never be reached from a vertex
with label nj if j > i. Hence the new labelling scheme imposes a partial
order on Va. For notational convenience, from now on we shall denote
each node by their new label for the rest of the first part of the proof.

Lemma 1. The Jacobian matrix of an acyclic dynamic system is lower

triangular with negative real diagonal elements.
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Proof: Let us consider an acyclic dynamic systemSa =< Na, Ea, Fa >

where Na is the set of nodes labelled under the partial sorting scheme
mentioned above, Ea are the set of edges and Fa is a vector valued func-
tion such that F : RNa → RNa. Fa represents the rates of changes of the
states of the nodes of Sa. In a biochemical network, Fa represents the
rates of changes of the concentrations of biochemical compounds over
time. Hence, ∂~x

∂t = F , where ~x = {xi : i = 1 . . . N} represents the
states of the nodes ni : i = 1 . . . N where N = |Na|. The projection
of F on the ith dimension of the space spanned by the states of nodes is
denoted by fi and can be given by ∂xi

∂t = fi. If the dynamics of the above
system is modelled using Michaelis Menten kinetics then fi has the form
fi = g(Xai) − αixi|Xai ⊂ Xa, where Xa represents the states of Na

and ∀nj ∈ Nainj ⇒ ni and αi is the degradation constant for xi. Ac-
cording to proposition 3 and 4, since nj ⇒ ni, @Πl ∈ ΠNa|nj, ni ∈ Πl

and @Πi,Πj ∈ ΠNa such that ni ∈ Πi, nj ∈ Πj and Πj B Πi. If
ni ∈ Πi, nj ∈ Πj and nj ⇒ ni then Πi B Πj, which indicates that i > j.
Hence, ∂fi

∂xj
= 0∀j > i. On the other hand, since Sa is acyclic, ni ⇒ ni

is always false. Hence, ∂fi
∂xi

= −αi. Hence the Jacobian matrix of an
acyclic network Sa has the following form.

J =



∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

. . . ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

. . . ∂f2
∂xN

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

. . . ∂f3
∂xN

. . . . . . . . . . . . . . .
∂fN
∂x1

∂fN
∂x2

∂fN
∂x3

. . . ∂fN
∂xN

 =


−α1 0 0 . . . 0

. . . . . . 0 . . . 0
δfi
δx1

. . . −αi . . . 0

. . . . . . . . . . . . 0

. . . . . . δfN
δxi

. . . −αN
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Since αi > 0 : i = 1 . . . N , J is a lower triangular matrix with negative
real diagonal elements.

Theorem 1. All possible equilibria (steady states) of an acyclic bio-

chemical network are always stable.

Proof From Lemma 1, J is lower triangular with negative real di-
agonal elements. Its eigenvalues are the solution of the characteristics
equation |J − Iλ| = 0, where I is an identity matrix. In this case, since J
is lower triangular its eigenvalues are the same as its diagonal elements
λi = −αi : i = 1 . . . N . Since, αi is always positive, the eigenvalues of
J are always negative real numbers which indicates absolute stability.

Theorem 2: Feedback mechanisms are solely responsible for the
nature of stability of the equilibria(steady states) of a biochemicial net-
works.

Proof of Theorem 2: We introduce a feedback loop from the k+ 1th

vertex nk+1 ∈ Na of Sa to the kth one, nk ∈ Na, where nk ⇒ nk+1. The
Jacobian matrix J of the new system becomes block triangular because
∂fk
∂xk+1

6= 0 where the rest of the matrix remains unchanged. Hence, the
eigenvalues of J becomes λi = ∂fi

∂xi
≤ 0; i = 1..N ; i 6= k, k + 1, whereas

λk, λk+1 are the eigenvalues of the matrix shown in equation 2.4, which
essentially is the diagonal block appearing due to the feedback loop
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introduced in the graph. (
∂fk
∂xk

∂fk
∂xk+1

∂fk+1

∂xk
− ∂fk+1

∂xk+1

)
(2.4)

The introduction of the feedback loop does not alter the eigenvalues
related to the acyclic parts of the network and they remain negative real
numbers. The only possible eigenvalues which can have nonnegative real
parts are those related to the feedback mechanism. Hence, the nature
of the equilibrium, i.e. whether it is stable, unstable or encircled by a
limit cycle is determined solely by the feedback loops. This result can be
generalised for an arbitrary number of feedback loops in a biochemical
network.

In the above analysis the law of biochemical interaction is assumed to
follow the Michaelis Menten law. The entire procedure of determining
the dynamic behaviour of a biochemical networks is shown in figure 2.4.
The main convenience of assuming Michaelis Menten kinetics is that the
dynamics of the nodes of the same depth are independent of each other
which is not the case when using a mass action law. This phenomena is
discussed in detail in the rather simple example shown below.

Let us assume a three node acyclic network, S3 =< V3, E3, F3 >,
where V3 = {v1, v2, v3}, E3 = {(v1, v3), (v2, v3)}, the projections of F3

on v1, v2, v3 are f1, f2, f3. Let us assume v1 and v2 repress v3. A graphical
representation of S3 is shown in figure 2.4. Hence, f1 = B1 − α1x1,
f2 = B2 − α2x2, f3 = B3 + k1

1+(x1/κ1)n+(x2/κ2)n − α1x1, where xi : i =

1 . . . 3 represent the states of vi : i = 1 . . . 3. Here, Bi, αi : i = 1, 2, 3,
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Figure 2.4: Dynamic properties of biochemical networks (BNs). An arbitrary BN is
shown in (a). In (b) we show how we determine the dynamic properties of acyclic
motifs. First, a mathematical model of a feed forward loop(FFL) is made. Then the
Jacobian matrix of this model is calculated. The Jacobian matrix indicates monostable
dynamics. In (c) we show the dynamic properties of arbitrarily large acyclic network.(d)
and (e) shows dynamic properties of small and arbitrarily large feedback loops. The
feedback loops have bifurcative dynamics. (f) shows the dynamic properties of an
arbitrary biochemical network. Arbitrary biochemical networks are locally bifurcative
in the cyclic regions.
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v1(x1) v2(x2)

v3(x3)

Figure 2.5: A three node toy network

k1, κi : i = 1, 2 and n are all constants. In this case, both v1 and v2 have
depth zero and ∂f1

∂x2
= 0, ∂f2

∂x1
= 0. Hence the Jacobian matrix for the

system of differential equations ~̇x = F3 is lower triangular with negative
real diagonal elements and the above theory holds.

Now, consider the same network shown in figure 2.4. But instead of
assuming that v1 and v2 regulates v3, let us assume that v1, v2 interact with
each other and produces v3. The chemical reaction for such a system is
given as following.

v1 + v2 → v3 (2.5)

Such reaction is usually modelled using a mass action law. Under the
mass action law the definition ofF3 is different from the one shown above.
In that case, the new definitions are f1 = f2 = −f3 = r = −k1x1x2.
Here, k1 is the rate constant for reaction r. However, if we also model the
degradation of biochemical compounds as suggested by Cooper (2006)
Steiger and Parker (2002) and Kornitzer (2002) then under the new
definition of F3, f1 = r − α1x1, f2 = r − α2x2, f3 = −r − α3x3.
Both v1 and v2 have depth zero, and ∂f1

∂x2
= −k1x1 is nonzero if x1 > 0.

32



2.5 Arbitrarily large dynamic systems and mass action kinetics

Since, ∂f1
∂x2

is an off-diagonal term in the Jacobian matrix of the system
equation ~̇x = F3, the Jacobian matrix is no longer triangular as can
be seen from equation 2.7. Hence the eigenvalues of such matrices
may not be guaranteed to be negative. However, in this particular case

the eigenvalues of the Jacobian matrix J3 are λ1,2 =
−2b±
√

(b2−4ac)

2 and
λ3 = −α3, where b = k1x2 + k1x1 + α1 + α2, a = 1, c = k1x2α2 +

k1x1α1 + α1α2. Since a, b, c > 0,
√
b2 − 4ac is either complex or < b.

Hence, the real parts of λ1,2 are always negative.

J3 =


∂f1
∂x1

∂f1
∂x1

∂f1
∂x3

∂f2
∂x1

∂f2
∂x1

∂f2
∂x3

∂f3
∂x1

∂f3
∂x1

∂f3
∂x3

 = (2.6)

 −k1x2 − α1 −k1x1 0

−k1x2 −k1x2 − α2 0

k1x2 k1x1 −α3



It is apparent from the above example that we need a more sophisticate
method for reaction networks whose dynamics follows mass action law.

2.5 Arbitrarily large dynamic systems and mass action
kinetics

From the example shown in 2.5 it may appear that the reaction systems
following mass action kinetic models have rather fragile dynamics when
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compared to the ones which follow Michaelis Menten kinetic models.
However, a series of mathematical theories published since 1972 have
shown the opposite. Most of these theories are based on the works of
Feinberg (1972), Horn and Jackson (1972) and Volpert and Hudjaev
(1985). Though Volpert and Hudjaev (1985)’s theory came out more
than a decade after that of Feinberg (1972) and Horn and Jackson (1972)
we shall discuss it first to keep consistency with our earlier study in
this chapter. First we shall describe the conceptual ideas of Volpert and
Hudjaev (1985)’s theorem without going into mathematical details (2).

Theorem 2. The solutions of an acyclic reaction system which follows

mass action law have the following properties:

• The solutions are defined for t > 0.

• There does not exist a nonnegative periodic solution.

• The solutions converge to an equilibrium as t → ∞, i.e. the

solutions are asymptotically stable.

• The equilibrium points or the steady states of such systems are

always non-negative(≥ 0).

Volpert and Hudjaev (1985)’s theory is a powerful result in chemical
reaction network theory. Siegel and Johnston (2003) has further extended
these results to show that a network of reversible reactions also has the
same properties as an acyclic chemical reaction network. A chemical
reaction system made of reversible reactions is often called ’reversible
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system’ in the literature regarding chemical reaction network theory.
The original work of Feinberg (1972); Horn and Jackson (1972) prior to
Volpert and Hudjaev (1985) discussed the dynamic properties of a more
generalised class of chemical reaction network, called ’weakly reversible
networks’ as termed by them. We shall further generalise these results
for a more practical class of networks which we call ’partially reversible
networks’. Partially reversible networks consist of both reversible and
irreversible reactions. We shall discuss some of the concepts introduced
by Feinberg (1972); Horn and Jackson (1972) and their main results
before going into our extension of their theory.

Feinberg (1972); Horn and Jackson (1972) developed a consistent
mathematical theory to predict the dynamic behaviour of a chemical
network from its structural properties rather than having to model their
dynamics explicitly. Though their theories are widely used in chemi-
cal engineering their application is rarely found in the systems biology
literature. In their theory, Feinberg (1972); Horn and Jackson (1972) dis-
cussed the dynamic properties of networks of chemical reactions which
follow mass action law. The commonalities of our problem and the prob-
lem pursued by Feinberg (1972); Horn and Jackson (1972) are apparent.
However, most of the theories developed by Feinberg (1972); Horn and
Jackson (1972) are applicable to finite and rather small networks of re-
actions. In our case, we want to determine the dynamic behaviour of
arbitrarily large networks which follow the mass action kinetic models.
We shall use many ideas and theorems deduced by Feinberg (1972);
Horn and Jackson (1972) to develop our theory. The notations that we
shall use to describe Feinberg (1972); Horn and Jackson (1972)’s theory
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and our extension are described as follows.

We shall describe the notations used in the following analysis in the
light of the simple example discussed before(2.5). Let us consider the
chemical reaction system shown in equation 2.5. The set of vertex
V3 = {v1, v2, v3} represents the set of biochemical species involved in
the network. The vector of concentrations of the species set {v1, v2, v3}
can be given in a vector space RV3 whose basis is spanned by the species
v1, v2, v3. Since the concentrations of the biochemical species are al-
ways nonnegative the representation of the concentration vector can be
constrained into the vector space P

V3. P
V3 is called the species space

of the network shown in figure 2.4 and described by the reaction shown
in equation 2.5. The complexes of reaction 2.5 are the left and right
hand side of the equation 2.5. Hence, in this case the complexes are
y1 = v1 + v2 and y2 = v3. In the complex space, the reaction of equation
2.5 takes the form of equation 2.7.

y1 → y2 (2.7)

The set of complexes involved in reaction 2.7 is given byY3 = {y1, y2}
and the vectors representing the states of the complexes are given in the
space RY3. On the other hand, each complex can be represented as a
linear combination of all the species, i.e. yi =

∑3
j=1 γijvj : i = {1, 2},

where γij are nonnegative integers which are stoichiometric coefficients
of the chemical reaction 2.5. In this case γ11 = 1, γ12 = 1, γ13 = 0, γ21 =
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y1 y2

Figure 2.6: Representation of the chemical reaction network shown in figure 2.4 in
complex space.

0, γ22 = 0, γ23 = 1. Hence, y1,2 ∈ NV3 where N is the set of nonnegative
integers. Each reaction network in species space forms a network of
reaction in the complex space too. For example, the chemical reaction
network shown in figure 2.4 takes the form of figure 2.5 in the complex
space. The reactions rate constants in the complex space remains the
same as the rate constants in the species space. Since the reaction
v1+v2 → v3 has a rate constant k1, the equivalent reaction in the complex
space has the same rate constant, i.e. the reaction y1 → y2 too has a
rate constant k1. Feinberg (1972); Horn and Jackson (1972) have shown
that the dynamics of a chemical network(or biochemical network in this
case) in the species space has exactly the same properties as that in the
complex space. But before going into any more detail we shall formally
define some of the basic concepts presented by Feinberg (1972); Horn
and Jackson (1972) for generic networks of chemical reactions. Some
of these definitions are also discussed in Gunawardena (2003).

Definition 4. A complex y is a linear combination of species y =∑N
i=1 γivi of a biochemical network consisting of N numbers of species.

Here γi ≥ 0 : i = 1 . . . N are stoichiometric coefficients. The projec-

tion of y on the ith species vi is denoted by yvi = γi. Hence, yvi is the

stoichiometric coefficient of the species vi in the complex y.

Definition 5. A biochemical reaction network is a quadruple S =

(V, Y,R, κ) where V is a finite set of species; Y is a finite set of multisets

of species, called complexes; R is a relation on Y, denoted y → ỳ for
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y, ỳ ∈ Y , which represents a reaction converting y to ỳ; and κ : R→ P

associates a positive rate constant to each reaction.

The dynamics of a biochemical reaction network S can be given as
follows

dc

dt
=
∑

y→ỳ∈R

ky→ỳf(y)(ỳ − y) (2.8)

Here c ∈ RV , f(y) =
∏

v∈V c
yv
v , ky→ỳ is the rate constant for the reaction

y → ỳ.

Let RY denotes complex space. It has a natural basis defined by the
characteristic functions of the singleton subsets {y}, where y ∈ Y . If
U ⊂ Y let ωU : Y → {0, 1} denote its characteristic function:

ωU(y) = 1, y ∈ U (2.9)

= 0, otherwise

For a singleton set, {y}where y ∈ Y , we shall use ωy in place of ω{y}.
Complex space then has the standard basis ωy|y ∈ Y Let ζ : RY → RV

be the linear map defined by ζ(ωy) = y. Let Ψ : RV → RY defined
by Ψ(y) = f(y) =

∏
v∈V c

yv
v . These two maps enable us to move back

and forth between species space and complex space. It remains only
to encode the dynamics on complex space. Let x ∈ RY and suppose
that x has components xy with respect to the standard basis ωy, so that
x =

∑
y∈Y xyωy. For a given kinetics define κ : R → P define the map
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Aκ : RY → RY by ∑
y→y1∈R

(ky→y1)xy(ωy1 − ωy) (2.10)

Note that Aκ(x) is evidently linear in x. It can now be seen that the
following diagram commutes:

RY Aκ←−− RY

Y
y xΨ

RV ←−−
f

RV

(2.11)

In other words, f = ζAκΨ.

Definition 6. A fixed point of a chemical reaction network is a state

c ∈ PV for which dc
dt = 0.

A fixed point is where f = 0. This may come about only in certain
ways along the composition ζAκΨ = 0. If c ∈ PV then Ψ(c) ∈ PY ,so
Ψ(c) 6= 0. The next possibility is that AκΨ(c) = 0, i.e. Ψ(c) is a kernel
(not to be confused with the biological kernel discussed in the introduc-
tion) of Aκ. According to Feinberg (1972) such phenomena occur when
a chemical reaction is weakly reversible and has zero deficiency. The
definition of weak reversibility and deficiency of a chemical network and
their significance is discussed in detail later in this section. However, the
third possibility of occurring a fixed point in a chemical reaction network
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is whenAκΨ 6= 0 but ζAκΨ = 0. In that case the solutions of the system
are the kernels of the transformation matrix ζ which transforms the states
of complexes back into the species space. In this thesis we shall discuss
about the situation where a fixed point occurs due to AκΨ = 0 because
as mentioned by Feinberg (1972), this situation occurs for a large class of
chemical networks including the type of network we intend to analyse.
We shall discuss about this later in the section, but, before going into any
more detail let us provide few more definitions regarding stoichiometric
subspace, linkage classes and deficiency of a biochemical or chemical
reaction network.

Definition 7. The stoichiometric subspace of a reaction network is the

vector subspace of RV defined by S = span{ỳ − y|y → ỳ}. Since dc
dt is

a linear combination of ỳ − y, dcdt ∈ S.

Definition 8. The linkage classes of a chemical reaction network are

the connected components of the standard reaction diagram formed by

assuming complexes as nodes and reactions as edges.

Definition 9. The deficiency of a chemical reaction network δ is defined

as δ = m− l − s, where m is the number of complexes, l is the number

of linkage classes, and s is the dimension of stoichiometric subspace.

Definition 10. A reaction network S is weakly reversible if ∀y, y1 ∈
L, y ⇒ y1andy1 ⇒ y in S, where L is a linkage class of S.

Given the above definitions the properties of fixed points or steady
states of a chemical reaction network can be given by Feinberg’s zero
deficiency theorem (Siegel and Chen (1995), Feinberg (1972)) as stated
below.
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2.5 Arbitrarily large dynamic systems and mass action kinetics

Theorem 3. For any reaction with deficiency zero the following state-

ments hold true Feinberg (1972).

1. If the network is not weakly reversible then for arbitrary kinetics

(not necessarily mass action law) the differential equations of the

corresponding reaction system cannot have either positive steady

states or periodic solutions along which the concentration of all the

species remains positive.

2. If the network is weakly reversible, then for mass action kinet-

ics(but regardless of the values of the kinetic parameters until and

unless they are positive) the set of differential equations of the cor-

responding reaction system have the following properties: there

exist within each stoichiometric compatibility class precisely one

positive steady state which is asymptotically stable, and there ex-

ist no periodic solution along which all species concentrations are

positive.

Notice that Feinberg (1972)’s theorem is applicable to weakly re-
versible systems only. From the definition of weak reversibility (defi-
nition 10) it is clear that a chemical network can be weakly reversible
if and only if each of its complexes is connected to a feedback loop.
However for the time being we are mainly interested in acyclic net-
work structures. Hence in the next few sections we shall discuss the
applicability of Feinberg’s zero deficiency theorem (Feinberg (1972))
on arbitrarily large acyclic biochemical networks which follow the laws
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2.5 Arbitrarily large dynamic systems and mass action kinetics

of mass action kinetics. We shall first investigate whether such net-
works fulfil the two main requirements of zero deficiency theory, i.e.
whether the deficiency of these networks are zero and they are weakly
reversible or not. There are existing theories, e.g. that of Siegel and Chen
(1995) which suggests that a certain class of acyclic reaction network
has zero deficiency. Following Siegel and Chen (1995) we discuss those
acyclic networks which have zero deficiency. Siegel and Chen (1995)
has shown that the deficiency of an biochemical network is zero if its
S-C-L (species-complex-linkage) graph is acyclic.

Definition 11. The support of a complex (reaction vector) y =
∑N

i=1 γivi

is a set of species supp(y) = Vi = {vi|γi 6= 0}. In other words, the

support of a complex(reaction vector) is the set of the species it is made

of.

Proposition 6. The support of any linear combination of the reaction

vectors of a linkage class must have more than 2 elements.

Proof: The supports of the complexes of a linkage class are mutually
exclusive. Hence, there must be at least two complexes present in the
linear combination of the reactions vectors. Since, each complex must
consist of at least one species the resultant vector must have a support of
cardinality > 2.

Definition 12. The S-C-L graph of a reaction network is a bipartite graph

whose vertex set is partitioned into the species set V of the network and

the set of its linkage classes L = Li : i = 1 . . . q assuming that the

reaction network has q numbers of connected components and whose

edges are draw as follows. For each complex y ∈ Y in which a species
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2.5 Arbitrarily large dynamic systems and mass action kinetics

appears draw an edge between the species and the linkage class which

contains the complex y. In addition label each edge by writing the

complex for which it was drawn.

Proposition 7. According to Siegel and Chen (1995) an S-C-L graph is

acyclic if and only if the none of the following is true.

1. Some species appear more than once within the same linkage class

2. There exists at least one pair of species sets corresponding to dif-

ferent linkage classes such that their interaction contains at least

two distinct species.

3. There exists at least one group of species set V i : i = 1 . . . p

corresponding to a set of linkage classes Li : i = 1 . . . p such that

V 1 ∩ V 2 = v12, V
2 ∩ V 3 = v13 . . . V

p ∩ V 1 = vp1 for some distinct

species vi,(i+1), 1 < i < p− 1, vp1.

Lemma 2. If the S-C-L graph of a biochemical reaction network is

acyclic then it has a deficiency zero.

Proof: If the S-C-L graph is acyclic then each linkage class is acyclic
with no repeating species. The minimum spanning tree of each link-
age class has exactly ni − 1 edges where ni = |Yi| and Yi is the set
of complexes involved in the reactions of linkage class Li. Each edge
y → y1; y, y1 ∈ Yi corresponds to a stoichiometric vector y1 − y. Since
no complex in Yi contains a common species y1 − y are linearly inde-
pendent vectors ∀y, y1 ∈ Y . Hence, there are exactly n − 1 linearly
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2.5 Arbitrarily large dynamic systems and mass action kinetics

independent stoichiometric vectors in every linkage class of the reaction
network. For each linkage class Li, δi = ni − li − si, where ni is the
number of complexes present in the linkage class Li, li is the number of
linkage classes, in this case li = 1, si = ni − 1 is the dimension of the
stoichiometric subspace. Hence, δi = ni − 1− (ni − 1) = 0.

The deficiency of a network is given by δ =
∑p

i=1mi − l − s =∑p
i=1(mi − 1) − s =

∑p
i=1 si − s. Here si is the dimension of the

stoichiometric subspace and mi is the number of complexes of the ith

linkage class, and s is the dimension of the stoichiometric subspace of the
entire network. Since δ ≥ 0,

∑p
i=1 si ≥ s. The stoichimetric subspace

of the entire network is smaller than the total stoichiometric subspaces
of the linkage classes if and only if the the stoichiometric subspaces of
the linkage classes are linearly dependent.

Let us consider that there exist a stoichiometric vector ˜svp in the pth

linkage class which is a linear combination of the stoichiometric vectors
of the other linkage classes.

˜svp =
∑p

i=1

∑mi−1
j=1 aij ỹij (2.12)

=
∑p

i=1 dis̃vi

In equation 2.13 ỹij is jth stoichiometric vector of the ith linkage class,
aij are linear coefficients, s̃vi are the linear combination of the reaction
vectors of the ith linkage class.

Let Li be the linkage class corresponding to svi, Vi be its species
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set. Let G be the graph with vertices Li and edge eij links Li with Lj
if |Vi ∩ Vj| ≥ 1, i 6= j. Since by proposition 7 |Vi ∩ Vj| ≤ 1. Since
supp(vi) ≥ 2, ∀i∃i1 6= i2 6= i such that |Vi ∩ Vi1| = 1, |Vi ∩ Vi2| = 1.
Hence, G is cyclic which violates condition 3 of proposition 2. Since
the reaction vectors of the linkage classes are linearly independent the
deficiency of such network is always zero.

The above theory considers only those networks whose S-C-L graph is
acyclic. Though such networks cover a large classes of acyclic reaction
network it is however not possible to show that the zero deficiency
phenomena is true for all acyclic networks. In fact it can be easily shown
that there exist certain classes of acyclic networks whose deficiency are
grater than zero. For example consider the following reaction system.

A+B → C +D (2.13)

C +D → E

A → B

B → C

C → D

D → E

It can easily be shown that the reaction vector C+D−A−B is linearly
dependent on the vectors B − A,C − B,D − C and hence the system
has a deficiency greater than zero. However such networks fall into a
rather small and degenerate class of acyclic graphs.

Though the networks whose S-C-L graphs are acyclic, have a zero
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2.5 Arbitrarily large dynamic systems and mass action kinetics

deficiency, they are by no means either reversible or weakly reversible.
However, if all the reactions of the above network were reversible then
the system would have been both reversible and zero deficiency and
hence all of its stoichiometric compatibility class would have had one
asymptotically stable equilibrium (Feinberg (1972); Horn and Jackson
(1972)). This is so because assuming reversible reactions only add a
negative reaction vector corresponding to each reaction vector and hence
the stoichiometric subspace neither grow nor shrink in dimension. But
in reality large reaction networks often consist of both reversible and
irreversible reactions. In that case clearly the stoichiometric subspace
does not change in dimension, however the system does not remain
reversible or even weakly reversible. In the next theorem we show that
such reaction networks are weakly reversible under certain assumptions
and hence always converge towards asymptotically stable equilibria.

Theorem 4. A system of partially reversible reactions are weakly re-

versible and have zero deficiency under the following assumption. If the

sources (complexes with indegree zero) of a chemical reaction network

have a constant source and the sinks (complexes with outdegree zero)

are degradable then the corresponding network have zero deficiency and

weak reversibility.

The assumption of theorem 4 is biologically more realistic than as-
suming total reversibility in reaction network (Gunawardena (2003)).
Under the above assumption all the complexes lies at the bottom of the
reaction hierarchy are constantly degradable where as there are constant
supplies of the reactants which lie on the top layer. Let us assume that
Yr and Yt are the sets of root (source) and terminal (sink) complexes in
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a reaction hierarchy. Under the assumption of the theorem 4 ∀yt ∈ Yt
the following reaction exists y → ∅. On the other hand ∀ yr ∈ Yr the
following reaction exist ∅ → yr. If we add the null complex to every
linkage class then all the linkage classes will be joined together to form
one linkage class. It can be easily seen that the minimum spanning tree
of the new linkage class will still have m − 1 edges where m is the
number of complexes in the network including the null complex. Since
the supports of all the complexes are mutually exclusive the network will
have a deficiency zero.

Since each linkage classes are connected components the terminal
nodes can be reached from at least one root node. Again, since there
exist at least one path from a root node to a terminal node via any other
node any node can be reached from any other node via the null complex.
This is due to the fact that the null complex connects the terminal nodes
of a reaction network with its source nodes. Hence such a reaction
network retains weak reversibility.

Since partially reversible networks are zero deficiency networks with
weak reversibility they always have positive asymptotically stable equi-
libria.

The summary of the above theories and findings is as follows.

• Arbitrarily large acyclic dynamic system whose dynamics follow
Michelis Menten kinetics will always converge to a stable equilib-
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rium. But whether the network has a global attractor or not is not
clear. Since such systems are nonlinear, there is a possibility that
they might have more than one stable state but no unstable or oscil-
latory state. This is a very different phenomenon than bistability or
multistability since there exists at least one unstable equilibrium in
bistable or multistable systems. It is the unstable equilibria which
help the system bifurcate between different steady states. The lack
of such unstable steady states make the system non-bifurcative.

• If there are feedback loops present in such a network then the
dynamics of the network is determined solely by the feedback loops.
The feedback loops in a Michelis Menten type reaction system
are rather sensitive to parameter values and can bifurcate between
different dynamic modes. Their bifurcation, however, depends
mainly on their type, and their own parameter values and can be
called local bifurcation.

• Mass action reaction systems are much more stable compared to
Michelis Menten kinetic models. It has been shown that all acyclic
mass action systems have at least one asymptotically stable equi-
librium, so does most reversible, partially reversible and weakly
reversible systems. Since weak reversibility of a mass action net-
work comes from feedback interactions only it might appear that
mass action networks are stable for even a large class of cyclic
networks. This, however, is not true when it comes to biological
systems. The primary condition of stability of weakly reversible
mass action system is that the system has to be a zero deficiency
system. Zero deficiency systems are irreducible. But biochemical
networks are reducible systems (Clements et al. (2009); Liu and
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Ochman (2007) and Adami (2007)). In case of reducible systems,
Feinberg (1972); Horn and Jackson (1972) and Volpert and Hud-
jaev (1985) have shown that even in mass action kinetics bifurcation
can only arise from cyclic structures. Hence in case of reducible
systems the bifurcation is originated and determined by the cyclic
structures only.

• From the analysis we see that no matter what kind of kinetic laws
a network follows it is always the feedback mechanisms which
are responsible for its bifurcation. Without feedback loops such
networks will not be bifurcative and will always converge towards
asymptotically stable equilibria.

2.6 Interpretation of the dynamic properties of bio-
chemical networks

Before going into the biological interpretations of the above theorems
we describe the type of dynamics exhibited by acyclic Michaelis Menten
and mass action system. It has been shown that they can only converge
to stable or asymptotically stable steady states but not to unstable or
oscillatory states. However whether they always converge to the same
steady state or not is not yet clear. In fact, Horn and Jackson (1972)
and Feinberg (1972) at first thought that they proved just that. Hence, in
their original paper the theorem states that the above type of networks
converge towards global attractors. Later Volpert and Hudjaev (1985)
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proved that it is only true for a particular class of networks but a general
proof does not exist. Hence the global attractor theorem remains a
conjecture rather than a theorem. The difference between global and
local attractors are as follows:

Imagine a concave surface. If a small sphere is left anywhere in the
concave surface it will always roll down to the centre of the concave. In
this case the centre of the concave can be thought of as a global attractor.
Now imagine a plane horizontal surface. If a sphere is left on the plane
it will remain there until certain force is applied to move it to another
place. If such a force is applied then the sphere will move to a certain
distance and then finally come to rest at a different point. Hence both
the initial and the final position of the sphere are local attractors. In fact
every possible point on such a plane is a potential local attractor. Which
attractor will be chosen by the sphere depends on the applied force. By
this analogy the dynamics of an acyclic or reversible or weakly reversible
biochemical network is similar to that of a sphere on a plane which is
made by joining some concave surfaces together so that there is no
space between their peripheral boundaries. It is assumed by Volpert and
Hudjaev (1985) that solutions do not exist on the peripheral boundaries
of these surfaces. The centre of each such concave is a local attractor.

This explanation is true until the Feinberg conjecture is proved. If
Feinberg’s conjecture is proved then the dynamics of the above type of
biochemical networks becomes even simpler. In that case, the dynamics
will be similar to that of a sphere on a concave plane. Such systems are
termed as monostable systems.
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In a cellular environment there are many different kinds of interac-
tions, such as gene regulatory interaction, protein protein interaction,
enzymatic reactions, phosphorylation reactions. Some of these interac-
tions have been shown to follow Michaelis Menten kinetics and some of
them follow mass action kinetics. The dynamic properties of a reaction
network made of both type of reactions can only be determined by devel-
oping a general theory of nonparametric chemical kinetics. However, the
above analysis suggests beyond doubt that the bifurcations in network,
no matter what the reaction type is, are always determined by feedback
mechanisms.

2.7 The implications of network dynamics on network
evolution

How organisms as complex as human beings evolved from a single
cellular organism is a fascinating question. One of the fundamental
mechanisms of evolutions is driven by random mutations of genetic
structures. The changes in the structures of the genes may result in
changes in the structures of their product proteins. Such changes in the
protein structures may ultimately lead to altered functional behaviour
since the function of a protein depends on its structure. A large number
of genes and proteins interact with each other in a cellular environment.
Changes in the functions of some genes and proteins may affect the
dynamic properties of the cellular biochemical interaction network. For
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evolution to work, such functional changes are necessary unless they
disturb the stability of the entire system. The analysis in this chapter
suggests that the global dynamics of a biochemical network is usually
shaped by feedback loops present in it. Perturbation in these loops
might bring about erratic changes in the bifurcation pattern of a cellular
network, i.e. the stability properties of these networks may be altered.
Such perturbations might not always be deleterious. But, the possibility
of such perturbations to produce deleterious phenotypes is higher in the
feedback loops than anywhere else. Hence, we posit that the feedback
mechanisms of biochemical networks should evolve at a slower rate
compared to the rest of the network. One way to test the above hypothesis
is to look for conserved feedback loops in biochemical networks of
multiple species. We shall do just that in chapter 4. But before we
address the question of applicability of the biochemical reaction network
theory on molecular evolution we shall address a corollary question.

The quantity of feedback loops in biochemical networks is important
for many reasons. If most of the chemical complexes in such networks
are involved in feedback loops then two possibilities might occur. If such
a system has deficiency zero then high numbers of feedback mechanisms
might in fact ensure asymptotic stability if the network was made fully
of mass action type of reactions. However, the essential condition of
asymptotic stability is zero deficiency which means the system must be
irreducible. Modern systems biology studies suggest that biochemical
systems are reducible. Some recent studies regarding reducibility of bio-
chemical systems are as follows, Adami (2007); Clements et al. (2009);
Liu and Ochman (2007). Due to reducibility of biochemical systems

52



2.7 The implications of network dynamics on network evolution

presence of too many feedback mechanisms may not help in achiev-
ing asymptotic stability and may instead increase the bifurcativeness of
the system disregarding the type of reaction present in such a network.
Whether highly bifurcative behaviour is desirable in a biochemical net-
work is a different issue but clearly the stability of such systems are
sensitive to perturbations. Hence if a biochemical system has too many
feedback loops then there is little scope for evolutionary changes to take
place without altering the stability of the network which might produce
deleterious phenotypes. On the other hand, if these networks have a
small number of feedback loops then evolutionary renovations may take
place more freely in the acyclic parts of these network without disturbing
the stability of the network. Hence as a corollary question of the analysis
pursued in this chapter, we shall first investigate the percentage of genes
and proteins involved in feedback mechanisms in a typical biochemical
network. If we find that a rather small percentage of genes and proteins
form feedback structures than our assumption regarding the effects of
dynamic properties on the evolution of a biochemical network will make
sense.
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Chapter 3

Structural properties of biochemical
networks

In this chapter we shall determine the amount of feedback loop in the
biochemical networks of S. cerevisiae. Biochemical networks are made
of many different kinds of interactions, such as gene regulatory interac-
tions, protein protein interactions, metabolic interactions etc. The most
detailed picture of a biochemical network can be obtained by taking
all these interactions into account. However, doing so will make any
network analysis extremely complicated. Most of the studies on the
structural properties of biochemical networks take into account only one
kind of interaction for the sake of simplicity. For example, Yu and Ger-
stein (2006) analysed the gene regulatory network of S. cerevisiae and
concluded that these networks have hierarchical structures. Such hier-
archy arises due to highly acyclic nature of these networks. The studies
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by Yu and Gerstein (2006) include only interactions between transcrip-
tion factors and their target DNA binding sites (TF-DNA), and ignore
other biochemical interactions. On the other hand there are several other
studies which focussed only on the protein interaction networks, e.g.
Schwikowski et al. (2000). So far there has been relatively few efforts
on analysis of the integrative networks of gene regulations and pro-
tein interactions. One such effort is by Yeger-Lotem et al. (2004) who
built a collective model of yeast biochemical network by integrating
TF-DNA interactions with protein interactions. Though Yeger-Lotem
et al. (2004)’s method is used in some other studies regarding structural
analysis of biochemical networks it has some drawbacks. The main
problem with Yeger-Lotem et al. (2004)’s method is that it does not
consider the fact that the structures of biochemical networks change be-
tween different phases in the yeast life cycle. The first comprehensive
analysis of the changes in the structure of gene regulatory networks of
S. cerevisiae during different phases of its life cycle was pursued by
Luscombe et al. (2004b). Luscombe et al. (2004b) reconstructed the
gene regulatory networks of yeast for different phases of sporulation and
cell cycle and found that the reconstructed networks had very different
structural properties. However, Luscombe et al. (2004b) considered only
TF-DNA interactions in their study and ignored other kinds of interac-
tions such as protein protein interactions. The most accurate information
about the structural properties of a biochemical network can be gained
by analysing the integrated networks of gene regulations and protein
interactions specific to different cellular phases of yeast life cycle.

Before going into details we shall discuss the outline of our method
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of structural analysis of biochemical networks. A workflow diagram for
our structural analysis is shown in figure 3.1.

The main steps of the structural analysis are as follows.

Inferring cellular phase specific biochemical network

We used the analysis of Luscombe et al. (2004b) as the backbone of
our analysis. Luscombe et al. (2004b) divided the life cycle of budding
yeast in many different cellular phases such as metabolic phase; early 1,
2, early mid, middle and mid late phases of sporulation and early, late
G1; G2, M and S phases of cell cycle and inferred the subset of tran-
scription regulations that take place during each of these cellular phases.
We used this data to infer protein interaction networks specific to each
of the cellular phases mentioned by Luscombe et al. (2004b). The most
obvious way to infer protein interactions from gene regulation data is
to assume that the protein products of highly expressed genes are also
present in high concentration in the cytoplasm. Recently Bharhadwaj
and Lu (2005); Rogers et al. (2008) find that the protein concentrations
are rather uncorrelated to the concentrations of their corresponding mR-
NAs. Hence, we are left with little choice but to consider gene ontology
annotations as features for the purpose of assigning protein protein in-
teractions to specific cellular phases. Since gene ontology annotations
provide information about the biological processes, the cellular compart-
ments and the molecular functions of proteomic and genetic interactions,
we choose these annotations as logical choice for the purpose of clus-
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Figure 3.1: Flowchart showing the processing and clustering of protein protein in-
teraction data to form cellular state specific molecular interaction networks. Firstly
we made a list of all the GO terms present in Luscombe et al. (2004b)’s dataset. We
filtered in all the PPIs which are annotated with the GO terms present in the above
mentioned list. Before clustering we applied Liu et al. (2009) ’s algorithm to detect
directional interactions (such as phosphorylation, dephosphorylation, acetylation etc.)
and the relevant directions of signal flow, i.e. which protein phosphorylates whom etc.
Once the directional interactions are identified and directions of interactions are deter-
mined we clustered the PPI data. The GO distribution of each cellular state specific
subnetwork is considered as prior observations and used as initial cluster definition.
The GO annotation of each PPI is then used as feature for the clustering algorithm and
the filtered set of PPIs are clustered in different cellular phases. Finally the clustered
PPI subnetworks are merged with their corresponding GRNs to make cellular phase
specific integrated biochemical network. The fractions of proteins and DNAs of each
subnetwork which take part in cyclic structures are then calculated.
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tering. We cluster binary protein interaction data taken from the curated
interaction database BIND (Bader et al. (2001)) based on their gene
ontology(GO) annotations. For clustering, we consider the GO distri-
butions of the cellular phase specific GRNs Luscombe et al. (2004b) as
prior observations and select the protein interactions which have simi-
lar GO distributions. The detailed methodology is described in section
3.1 and 3.2. Finally, following Yeger-Lotem et al. (2004) we integrated
the inferred PINs to their corresponding GRNs to build 10 different
biochemical networks which corresponds to 10 cellular phases in yeast
life cycles (Luscombe et al. (2004b) reported 12 cellular phases but we
merged three of them together for convenience of statistical inference)
We analysed the amount of feedback mechanisms in these biochemical
networks.

Inferring direction of signal flow in cellular phase specific biochem-
ical networks

Our goal in this chapter is to determine the amount of feedback
loops present in the cellular phase specific biochemical network. The
integrated cellular phase specific biochemical networks contain both
directed (TF-DNA interactions) and undirected (protein-protein interac-
tion) edges. To infer the relevant structural properties we need to know
the direction of signal flow in the protein interaction networks. Thus, we
inferred the direction of signal flow in the cellular phase specific protein
interaction networks from their domain interaction information as sug-
gested by Liu et al. (2009). This yielded a complete picture of signal flow
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through protein interaction networks and how they affect gene regulation
and vice versa in each cellular state of yeast life cycle. The resulting
networks are fully directed graphs which we finally used to determine
the amount of feedback loops their architecture. The methodology of
inferring the signal flow direction in a protein interaction network is
shown in section 3.3.

Determining the amount of feedback loops in cellular phase specific
biochemical networks

To quantify the relative abundance of cyclic and acyclic motifs we
first enlist all the feedback mechanisms present in each of the inferred
networks. Then we calculate the ratio between the number of nodes(i.e.
genes or proteins) involved in feedback mechanisms and the total number
of nodes. Multiplying these numbers by 100 gives us the percentage of
genes and proteins which forms feedback loops. These percentages
represent the amount of cyclicity in a biochemical network.

Determining the effect of data specific and sampling noise on our
calculation

The percentages calculated above are not entirely correct due to pres-
ence of noise in the interaction data that we used. The statistical inference
methodologies used to recreate cellular phase specific biochemical net-
works introduced further sampling noise. Hence the inferred networks
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are not accurate representation of biochemical networks that take place
during different cellular phases of yeast life cycle. There are several
efforts to determine the effect of different types of noise on the structural
properties of biochemical network. For example Huang et al. (2007)
found that the global structural properties such as the diameter of a net-
work do not have significant variations even if 50% of the interaction
data accounts for noise. Even before Huang et al. (2007), Yu and Ger-
stein (2006) have used the same methodology as Huang et al. (2007) to
account for noise in their data. Hence we used Yu and Gerstein (2006)
and Huang et al. (2007)’s methodology to account for noise in our data.
Instead of using the percentages mentioned above we have calculated
means and variances of these percentages over an ensemble of networks
created by randomly adding, deleting and rewiring 20% of the nodes and
edges of the networks as suggested by Huang et al. (2007). This method
and the results are discussed in detail in the section 3.4.

In the next few sections we shall discuss the above steps in detail.

3.1 Network Data Preprocessing

The network data is taken from the curated protein interaction database
BIND(Bader et al. (2001)). There are over 100000 binary protein in-
teractions in the BIND database. Before clustering, we pre-processed
the protein interaction data-set in order to reduce computational cost. In
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order to preprocess we first enlisted all the GO annotations of Luscombe
et al. (2004b)’s data. We used only the GO terms which are independent
of each other. More generic GO terms are not included mainly because
almost all the proteins are annotated by the generic terms. We assumed
that the leaves of the graph constructed from the interdependencies of
GO terms as described in Ashburner et al. (2000) are independent of
each other. We find that 37625 interactions are annotated with the same
annotations of Luscombe et al. (2004b)’s data. This reduction in number
of binary interaction in the filtered set might be questionable since Lus-
combe et al. (2004b) covers almost all the phases of cellular life cycle.
We find that there are almost 15000 independent GO terms in the GO
map presented in Ashburner et al. (2000). However, the genes and tran-
scription regulatory interactions mentioned in Luscombe et al. (2004b)
are annotated by only 426 of them. There are only 37625 interactions
which are annotated by these 426 independent GO terms. Including the
more generic GO terms includes more interactions in the filtered set.
However, including all the generic GO terms found in the dataset of Lus-
combe et al. (2004b) filters in all protein protein interaction present in the
dataset. This increases the computational complexity in the later stages
of our analysis. Hence we kept our dataset limited to the filtered set of
37625 interactions. This set of interactions are then used for clustering.
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3.2 Clustering protein protein interaction data

Cellular state specific protein interaction networks are constructed based
on the Gene Ontology(GO) distribution of the cellular state specific tran-
scription regulatory subnetworks reported by Luscombe et al. (2004b).
We clustered binary protein interactions based on their GO distribution
using a Bernoulli mixture model based clustering method. Let us assume
we have N numbers of protein interactions xi : i = 1..N . Since, the
set of filtered interactions contains 37625 protein interactions, N=37625.
Each protein interaction xi is represented by a binary string of length
D, xji : j = 1...D, which represents whether jth GO term is present in
the annotation of the ith interaction. In our case, we have taken only
426 GO terms into account, hence, D=426. If |{xij : xij = 1}| = 1,
i.e. the ith protein interaction is tagged with only one independent GO
term then it is assigned to all the cluster labels where it’s GO annota-
tion xij is observed apriori. All other interactions are clustered using
Bernoulli Mixture Model. To make xji i.i.ds we considered only the
leaf terms of GO networks. If xji is governed by Bernoulli distribution
then p(xi|µ) =

∏D
j=1 µ

xji
j (1− µj)(1−xji ). A finite mixture of these distri-

butions is given by p(xi|µk, π) =
∑K

k=1 πkp(xi|µk), where p(xi|µk) =∏D
j=1 µ

xji
kj(1−µkj)(1−xji ) and the log likelihood function for this model is

given by ln(p(X|µ, π)) =
∑N

i=1 ln{
∑K

k=1 πkp(xi|µk)}. For the purpose
of clustering we introduced a binary latent variable zi = {zki : k = 1..K}
so that zki = 1 if xi belongs to the kth cluster, where p(zi|π) =

∏K
k=1 π

zik
k

and p(xi|zi, µ) =
∏K

k=1 p(xi|µk)zik . Hence, the posterior probability
p(zik = 1|xi) ∝ πkp(xi|µk). We set up a Gibbs sampler with simulated

62



3.3 Directionality in binary protein interaction data

annealing considering p(zik = 1|xi) ∝ πk exp( ln(p(xi|µk))
T ), where T is

the temperature parameter. We sampled the posterior while cooling the
temperature until we found the optimal clustering allocation for each
protein interaction. In this case, the GO distribution of the cellular state
specific TF-DNA subnetworks are considered as prior observations.

3.3 Directionality in binary protein interaction data

Binary protein protein interaction data are bidirectional. It only tells
us which two proteins interact with each other. In order to analyse the
amount of cyclic structures or feedback contents in protein interaction
networks we need to consider the direction of signal flow through the
network since the concept of feedback loop exists only in directed graphs.
Introducing the sense of directionality in protein interaction networks
makes them directed graphs which might have very different topological
characteristics compared to their undirected counterparts. Following
Liu et al. (2009) we used domain interaction data to assign signal flow
direction to binary protein interaction in our dataset. if Di and Dj

represent sets of protein domains present in two interacting proteins Pi
and Pj then the function

F (dmn) =
Pr(dm → dn)− Pr(dn → dm)

Pr(dm)Pr(dn)
(3.1)
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3.3 Directionality in binary protein interaction data

represents the direction of signal flow when domain dm interacts with
domain dn. Here, dm ∈ Di and dn ∈ Dj are two protein domains,
Pr(dm → dn) is the probability of protein interactions in which one
protein has dm and the other has dn, Pr(dm) and Pr(dn) are probabilities
of dm and dn. In this case, if F (dmn) > 0 the signal flows from dm to dn
and vice versa. The directionality of protein interactions are determined
by

Pij =

∑
dm∈Di,dn∈Dj

F (dmn)

Nij
(3.2)

where Nij is the number of domain interactions between Pi and Pj. If
Pij > 5 the signal flows from Pi to Pj and if Pij < −5 the signal flows
fromPj toPi. The choice of this threshold value is suggested by Liu et al.
(2009) since it is found by them that 5 is the minimum threshold which
results in high prediction accuracy. The interactions with −5 < Pij < 5

are left bidirectional. For more details see Liu et al. (2009).

Once the direction of signal flow in the protein interaction network
is inferred we integrate each protein interaction network with its cor-
responding gene regulation network as provided by Luscombe et al.
(2004b). Doing so gives us a comprehensive picture of signal flow
from the environment through the protein interactions to the gene regu-
latory networks and vice versa in each cellular phase of yeast life cycle.
Though, the above method is supposed to give us accurate pictures of
biochemical machinery in yeast life cycle it does not do so in reality.
Rather the inferred networks are coarse representation of cellular phase
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specific biochemical networks due to presence of data specific and sam-
pling noise in them. Currently no method exists to quantify the amount
of errors in the inferred network. However, some studies such as Huang
et al. (2007) discusses the effect of noise on the global structural prop-
erties of biochemical networks. In the next section we shall discuss the
effect of noise on our results.

3.4 Relative abundance of cyclic and acyclic structures
in cellular state specific biochemical networks

We quantify feedback mechanisms by calculating the percentage of genes
and proteins present in each of the inferred biochemical network. Since
our integrated networks contain both data specific and inferential noise
we carry out statistical analysis to determine the effect of noise in our
estimates. Following Yu and Gerstein (2006), Huang et al. (2007) we
constructed 2000 biochemical networks for each cellular sates by adding,
deleting and rewiring 20% of the vertices and edges and then calculating
the mean and variance of the above percentage estimates. The results
of our analysis is shown in table 3.1. It can be seen from table 3.1
that on an average 10± 5% of genes and proteins take part in feedback
mechanisms in a typical cellular phase specific biochemical network, i.e.
approximately 90±5% genes and proteins form only acyclic architecture.
The detailed results of our analysis are shown in table 3.2.
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Tables

Cellular states Mean% Variance
Metabolic phase 4.9% 1.97
Early I phase 5.25% 2.24
Early II phase 9.4% 3.47
Early mid phase 7.05% 2.63
Mid, Mid late, Late phase 12.95% 3.91

Cellular states Mean% Variance
Early G1 phase 4.5% 1.88
Late G1 phase 8.4% 3
G2 phase 7.4% 2.64
M phase 8.25% 2.97
S phase 7.4% 2.6

Table 3.1: The percentage of genes and proteins which take part in feedback mecha-
nisms in the cellular state specific biochemical networks of yeast.

3.5 Some critical points regarding the above analysis

3.5.1 Protein interaction data

In our analysis we used protein interaction data from BIND database
(Bader et al. (2001)) which contains both curated and high throughput
data. Interaction data resulting from high throughput experiments can
be both incomplete and unreliable. von Mering et al. (2002) showed
that there is little overlap between some early high throughput protein
interaction data sets. This may be due to both incompleteness and high
number of false positives present in those datasets. Though the quality
of high throughput data have improved recently ( Gavin et al. (2006)
) false positive and false negative interactions in these datasets remain
problems. Several attempts have been made to increase the degree of
confidence in protein protein interaction data. Some of these approaches
use multiple validations assuming that interactions observed in more than
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one experiments are more likely to be true than those which are observed
once. Assigning different weights to interactions derived from different
types of experiments is also proposed ( e.g. Suthram et al. (2006) ).
One of the most reliable yeast protein interaction dataset developed by
Batada et al. (2006) also uses multiple validation to reduce the number of
false positives. However, Batada et al. (2006) do not address the issues
of sampling and biases associated with multiple validations. Multiple
validation is in some ways desirable, as it will decrease the false-positive
rate. However, it introduces other different kinds of biases. Accept-
ing interactions that are observed at least twice results in a tendency to
reject certain classes of interaction data. For example, the set of inter-
actions that will be retained in a multi-validated dataset will tend to be
biased towards those that are highly studied. This has a drastic effect
on network topology Hakes et al. (2008). To be credible, any biological
conclusions drawn from network structure should be robust with respect
to the additional validation of interactions. However, Hakes et al. (2008)
demonstrated that the removal of interactions results in a radical change
of many network properties. The effects of multiple validation will be
similar in any dataset until we have unbiased multiple observations of
all interactions. Thus, the highest-quality datasets currently available
contain interactions which, though reliable, are not necessarily represen-
tative of the network as a whole. This means that drawing conclusions
about the structure of a network as a whole is problematic even if each
of its interactions is rigorously validated.

In our study, we used protein interaction data from BIND database
which contains data from many high throughput studies. Since this
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database is a collection of datasets derived from multiple experiments,
false positives should be a bigger issue in this case than incompleteness.
Large number of false positives may only increase the amount of feed-
back loops in a network topology. Hence, in the worst case scenario,
presence of large number of false positives may have resulted in over
estimation of cyclicity in our analysis. Which means the cyclicities of
yeast biochemical networks are more likely to be smaller in noise free
networks than those which we have estimated. This does not affect the
main conclusion of the analysis presented in this chapter. Hence, though
the presence of false positives in network data may cause problems in
structural analysis of biochemical networks it is unlikely to do so in our
analysis.

3.5.2 Assigning directionality in protein interaction data

Another arguably controversial aspect of our analysis is assigning direc-
tionality in protein interaction networks. Usually binary protein interac-
tions represent complex formation by physical association of proteins.
These type of interactions are bidirectional. Hence, assigning direction-
ality to these interactions does not make much sense. We, used Liu et al.
(2009)’s approach to determine directionality in protein interactions. Liu
et al. (2009) used the statistics of domain interactions to determine the di-
rectionality of signal flow in a protein interaction network. They noticed
that the interactions which are directional in nature, such as phosphoryla-
tion, dephosphorylation, acetylation etc. have statistically significantly

68



3.5 Some critical points regarding the above analysis

higher Pij values (described before in this chapter) compared to the bidi-
rectional interactions. Based on this observation it is then possible to
determine which protein interactions in a given database are directional.
Since BIND database contains heterogeneous protein interaction data,
finding which interactions are bidirectional and which are directional is
necessary. However, Liu et al. (2009)’s method is not yet scrutinised by
the scientific community and has its own limitations. Hence, the results
of using this method can be questioned. In our case, among 37625 inter-
actions only≈ 2500 interactions are found to be directional and assigned
a directionality. This consists of only< 7% of the entire dataset. Even if
some of the inferred directions are wrong they will have too little effect
on the network topology to affect the main conclusion of this chapter.

3.5.3 PPI clustering

Clustering protein interactions into functional groups is a common ap-
proach used by bioinformaticians in different areas of computational
biology Asur et al. (2007). However, clustering them into cellular phase
specific subnetworks is not common. We used GO annotation data as
feature vectors for clustering. GO annotation data is very noisy. Relying
on GO annotation for clustering protein interactions may not be the best
approach to find cellular phase specific protein interaction networks. A
better approach will be to integrate multiple heterogeneous data types
such as genomic context data (gene fusion, gene neighbourhood, and
phylogenetic profiles), primary experimental evidence (physical pro-
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tein interactions and gene co-expression), manually curated pathway
databases, automatic literature mining, protein expression levels, protein
phosphorylation levels, GO annotations, domain interaction statistics
etc. into a clustering framework. Recently, efforts are being made to
integrate heterogeneous data sets to infer functional protein interaction
networks Szklarczyk et al. (2011). However, to the best of our knowl-
edge no effort has been made yet to integrate the above types of data
to infer cellular phase specific interaction networks. This is mainly due
to lack of efforts to investigate at least some of the above factors in
the context of different phases of cellular life cycle. Until high quality
cellular phase specific heterogeneous datasets become available we have
to rely on noisy subsets of features for the purpose of inference. Hence,
the networks inferred in this chapter are not accurate representations of
cellular phase specific biochemical networks. Instead, they are coarse
and noisy representations of the real biochemical events which take place
during different cellular phases of yeast life cycle.

3.6 Structural properties and evolution of biochemical
networks

Our analysis clearly suggests that most parts of the cellular phase specific
biochemical networks are made of acyclic interactions patterns. How-
ever, it is also apparent from table 3.2 that there is considerable number
of feedback loops present in these networks. In almost all the networks
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3.6 Structural properties and evolution of biochemical networks

there are multiple feedback loops which spans as many as 200-300 genes
and proteins. The number and size of the feedback loops detected in these
networks might be surprising, especially in view of the fact that a small
percentage of genes and proteins are involved in them. This dilemma is
perfectly explainable. The maximum number of feedback loops detected
in the cellular phase specific biochemical networks is 4582. In theory,
this many feedback loops can be generate from only 13 proteins since
theoretically the number of feedback loops that can generated from N
number of proteins is 2N − 1. However we have also detected feedback
loops which spans few hundred proteins. But since all these feedback
loops are nested and tangled with each other they contain many common
genes and proteins between themselves. This explains the relative small
percentage of the genes and proteins involved in feedback mechanism.
However, it is perfectly possible that such highly connected feedback
clusters are results of too many false positives in the analysed data set.
We argue that such false positive can only provide us with overestimates
of the above calculation, i.e. if the data was in-fact free of false positives
we would have found even smaller fraction of genes and proteins to
take part in feedback mechanisms. This only suggests that in the real
biochemical networks the proportion of acyclic structure are even higher
than we have detected. This does not influence our argument in any
deleterious way. As discussed in the previous sections, the acyclic parts
are rather amenable to evolutionary changes where the feedback loops
should be resistant. If most of the biochemical networks are acyclic
this only means that most part of a biochemical networks can accom-
modate evolutionary changes without any immediate deleterious effect.
Whereas a rather small proportion of biochemical networks which are
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3.6 Structural properties and evolution of biochemical networks

involved in feedback mechanism are rather resistant to such changes and
should remain conserved for a long period of time.

In the next chapter we shall try to find evidence to support the above
hypothesis by comparing biochemical networks of yeast species. We
shall mainly focus on modules which have feedback mechanisms. We
shall compare the conservation of those feedback mechanisms and parts
of the acyclic structure surrounding them.

Cellular
states

Some of the proteins
present in the net-
work

Some of the enriched GO
terms

Mean histogram of cycle
lengths

% of vertices to
form cycle

Metabolic
phase

cit1, cit2, cit3, put2,
gdh1, sdh4, sdh3,
idh1, gtt1, srb2, car2,
srb2, alg2, alg8,
cdc21, rad9, yah1,
swc1, nat4, mig1,
med10, spt20, rrp44,
ccl1 , mdh2, sdh3,
aco1, mls1, rav2,
rav1, ppa1, vph1,
skp1

Glutamate metabolic
process, Primary metabolic
process, Cellular metabolic
process, Regulation of
macromolecule metabolic
process, Coenzyme
catabolic process, Vacuolar
acidification, pH reduction

mean: 4.9%,
Std. Dev.: 1.97

Early I
phase

mus81, rad9, rps3,
elg1, pol3, rad16,
hof1, mms4, rps3,
ski8, far1, sod1,
tim18, cdc8, cin8,
elg1, cdc13, ste50,
hof1, spo11, mcm5,
ant1, pol30, pol12,
srb2, ant1, ubp2,
chs7, msi1, cdc73,
psf1, kar3, tof1

RNA metabolic process,
DNA metabolic process,
DNA replication, DNA
repair, Metabolic process,
Cell Cycle Process, M
Phase of meiotic cell cycle,
Meiosis, Regulation of
DNA metabolic process,
Mitotic recombination,
Macromolecule
biosynthesis process, Sex
determination

mean: 5.25%,
Std. Dev.: 2.24

Continued on next page
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Table 3.2 continued from previous page
Cellular
states

Some of the proteins
present in the net-
work

Some of the enriched GO
terms

Mean histogram of cycle
lengths

% of vertices to
form cycle

Early II
phase

sfb3, cin8, arf2, sar1,
pac1, gos1, elp2,
sec16, sec4, sec2,
kap123, rmd7, sgg1,
far1, sar1, lcb4, eri1,
syg1, hkr1, zpr1,
bem4, gtp1, rdi1,
cdc11, ste20, myo5,
elm1, cdc3, sfb3,
sac6, rvs161, ste2

Establishment of cell
polarity, Golgi vesicle
transport, Establishment of
localization, Establishment
/ maintenance of cell
polarity, Anatomical
structure development,
Anatomical structure
morphogenesis, Cellular
structure morphogenesis,
Asexual reproduction

mean: 9.4%,
Std. Dev.: 3.47

Early
mid
phase

cdc55, nrg2, ste50,
kss1, ste20, rst1,
elm1, dfg5, dia1,
spt3, ste4, bud5,
ste20, pho5, bud8,
chs1, rvs161, myo5,
las17, dfg5, bem1,
bem4, cdc24, chs1,
ase1, hof1, gic1,
gic2, swi1, msb4

Invasive growth in response
to glucose limitation,
Asexual reproduction,
Regulation of cell size,
Pseudohyphal growth,
Cellular structure
morphogenesis,
Anatomical structure
development, Cytokinesis,
Establishment/ or
maintenance of cell polarity

mean: 7.05%,
Std. Dev.: 2.63

Middle
phase,
mid late
phase,
late
phase

cin8, swc1, cdc73,
irr1, sif2, sas10, ssn6,
rsc1, vps71, rsc2,
rox1, elg1, hdf1, tel1,
fob1, rtt101, cse4,
pnc1, top1, sap30,
set1, hst3, rap1, hdf2,
fob1, fkh1, set2, set2,
yox1, hst1, reg1,
nam7, top1, sap30

Chromosome organization
and biogenesis, Negative
regulation of nucleoside
nucleotide and nucleic acid
metabolic process,
Double-strand break repair,
Establishment and/or
maintenance of chromatin
architecture, DNA
packaging, Chromatin
assembly or disassembly,
Telomere maintenance, etc.

mean: 12.95%,
Std. Dev.: 3.91

Continued on next page
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Table 3.2 continued from previous page
Cellular
states

Some of the proteins
present in the net-
work

Some of the enriched GO
terms

Mean histogram of cycle
lengths

% of vertices to
form cycle

Early
G1 phase

cdc28, swi4, swi5,
swi6, hsl1, ste11,
fus3, hsl7, swi1, ste7,
cdc4, cdc34, cdc45,
pho85, pcl1, far1,
ste5, pcl5, bub1,
skp1, gal11, ctr9,
orc1, mcm3, sis2,
clb5, bfa1, rmd11,
mms4, top3, mcm6,
rad24, msi1 etc.

G1 phase, G1 to G0
transition, G/S transition,
Cell cycle, Cell cycle
process, Cell cycle phase,
DNA integrity checkpoint,
Biopolymer biosynthetic
process, Cellular
component assembly, Cell
development etc.

mean: 4.5%,
Std. Dev.: 1.88

Late G1
phase

cln1, cln2, cln3,
cdc1, cdc15, cdc19,
cdc2, cdc20, cdc25,
cdc26, cdc28, cdc30,
cdc31, cdc33, swi1,
swi4, swi5, swi6,
swe1, pho11, pho12,
pho84, pho85, fus1,
fus2, ste20, ste23,
ste4, ste6, hsl1, hsl7,
gal1, gal11

G1 phase, G/S transition,
Cell cycle, Cell cycle
phase, Cell division,
Metabolic process,
Response to stress, DNA
repair, DNA integrity
checkpoint, DNA
replication, DNA
dependent DNA
replication, Cell budding,
Mismatch repair

mean: 8.4%,
Std. Dev.: 3

G2
phase

mbp1, swi4, swi6,
abp1, actin, bap60,
bap55, bat2, bbp1,
clb2, bck1, bdf2,
swe1, cbp6, dbf2,
dbf4, dcc1, ddef1,
ddef2, sh3kbp1, act1,
cg7846, mad2l2,
cln1, ymr31, pre8,
shu1, mrp4, npr2 etc.

G2 phase, G2/M transition
DNA damage checkpoint,
G2/M transition size
control check point, Cell
cycle, Cell cycle process,
Cell cycle phase, Cell
division, DNA repair,
Spindle organization and
biogenesis, Cytokinesis,
Chromosome segregation

mean: 7.4%,
Std. Dev.: 2.64

M phase

cin8, rim4, ime1,
nap1, ask1, ubc9,
ccl1, mms22, mms4,
sae3, ctf4, mcm2,
cdc16, pms2, rad24,
med9, ypk1, ssl1,
rev7, mob2, spc25,
tom1, nup53, spo12,
ctf8, cdc5, apc4,
ctf18, cse1, mlh1,
zip3, cdc27, mer1,
msh2, cse2, rad51
etc.

M phase, M phase of
mitotic cell cycle, Cell
cycle, Cell cycle process,
Cell cycle phase, Cell
division, Mitotic metaphase
anaphase transition,
transcription, Regulation of
transcription, Cyclin
catabolic process, Mitotic
cell cycle

mean: 8.25%,
Std. Dev.: 2.97

Continued on next page
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Table 3.2 – concluded from previous page
Cellular
states

Some of the proteins
present in the net-
work

Some of the enriched GO
terms

Mean histogram of cycle
lengths

% of vertices to
form cycle

S phase

rsc6, bap60, bem2,
sit4, sap190, sap155,
tap42, sap185, dbf2,
dbf20, bik1, kem1,
ski8, ski3, lsm3,
lsm5, lsm6, lsm7,
pat1, psu1, dbf4,
kar3, cdc73, rrp6,
ctf8, chs1, pdc1,
pph3, rrd1, sit4, adr1,
ppt1, mac1, sti1,
rpp1, hsp82, ssa1.

G/S transition, S phase, S
phase of mitotic cell cycle,
Cell cycle, Cell cycle
process, mRNA metabolic
process, Biopolymer
metabolic process, G1/S
transition of mitotic cell
cycle, Cellular
carbohydrate metabolic
process

mean: 7.4%,
Std. Dev.: 2.6

Table 3.2: Cellular state specific protein interaction networks. Metabolic phase, early 1,2 ; early
mid, middle, mid-late and late phases represent different phases of sporulation. Early and late G1,
G2, M and S phases are different phases of cell cycle. In the second column, we have shown some
of the proteins present in the corresponding network. Some of the most enriched GO terms found
in the reconstructed networks are shown in the third column. The fourth column shows the mean
histograms of cyclic structures for each reconstructed network. The ’X’ axis represents the the
cycle lengths, the ’Y’ axis represents the number of cycles in log scale(zero values are plotted as
zeros instead of −∞ in Log scale). We constructed 2000 protein interaction networks for each
cellular state by randomly adding, deleting and rearranging 20% of the interactions of the inferred
networks and calculated mean histograms for each state in order to make our inference robust
against noise Yu and Gerstein (2006). The last column shows the mean and variance of percentage
of proteins which take part in cyclic structures. On an average less than 15% of all the proteins
in a particular cellular state form feedback mechanisms. The rest of the proteins operate in a
hierarchical manner. The standard deviation of the above quantity is moderately small indicating
that our estimation of cyclicity is fairly insensitive to observational and inferential noise.
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Chapter 4

Differences in network topologies
preferentially occur in acyclic network
parts

In the last two chapters we find that the feedback loops of a biochemical
network are more likely to remain conserved than the rest of the network
due to their dynamic properties. In this chapter we shall look into the
available data to provide evidence in support of our theory. The best way
of doing so is to compare the cyclic and acyclic parts of biochemical
networks of different yeast species and find out which patterns are more
conserved than the others. This is not possible in the current context
since the interaction data is not available for most of the yeast species
apart from S. cerevisiae. Though the genomes of many yeast species
are sequenced their interactomes are yet to be determined. However,
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4.1 Comparison of genomes interactomes of S. cerevisiae and S. pombe

there are several signalling, cell cycle and metabolic modules which are
studied in multiple yeast species such as S. cerevisiae, S. pombe, C.

albicans, C. lusitaniae, C. glabrata, K. lactis. We shall consider the
cyclic and the acyclic parts of these modules for our analysis to find
out which parts are more conserved than the others. Before going into
such analysis we shall look into different aspects of the genomes and
interactomes of two of the most well studied yeast species, S. cerevisiae

and S. pombe. This is because the genome of S. pombe is fully sequenced
and partial data is also available for its interactome.

4.1 Comparison of genomes interactomes of S. cere-

visiae and S. pombe

Saccharomyces cerevisiae, has diverged from fission yeast Schizosac-

charomyces pombe, almost a billion years ago (Peng et al. (2005)).
Despite such a large evolutionary distance both yeast species have re-
markably similar physiological properties. For example, S. cerevisiae

usually grows on sugars such as glucose, galactose, fructose, cellulose,
sucrose etc and is capable of both aerobic and anaerobic respirations.
Ammonia and urea are its main nitrogen sources. It can live in both hap-
loid and diploid form. Fission yeast too has limited aerobic respiration
and anaerobic fermentation capabilities on many different sugars. Like
budding yeast, fission yeast has both haploid and diploid cell types.
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On the other hand, these two yeast species are different in many
aspects, such as:

• budding yeast is round to ovoid shaped, fission yeast is rod shaped

• budding yeast is often diploid, fission yeast is often haploid

• budding yeast stays in the G1 phase of cell cycle for an extended pe-
riod where as fission yeast remains in the G2 phase for an extended
period, etc.

The genomes of these two species also carry evidence of their large evo-
lutionary distance. Both species carries genes which are found conserved
in higher Eukaryots but are not conserved between themselves. Budding
yeast genome is considerably larger than fission yeast. Budding yeast
has 5600 open reading frames where fission yeast has approximately
4970. We discuss a comparison of the genomes of budding and fission
yeast as found in literature in order to seek evidence to support our theory
of biomolecular network evolution.

4.1.1 Genome conservation in budding and fission yeast

The genome of fission yeast is fully sequenced in 2002 at Sanger in-
stitute. A comparison of budding and fission yeast genome has been
done by Peng et al. (2005). It is observed by Peng et al. (2005) that
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among 4061 fission yeast genes 2675 (66%) are conserved in budding
yeast. The rest of the genes in fission yeast genomes have no ortholog in
budding yeast. Among 5052 budding yeast genes 2636(52 %) are found
conserved in fission yeast. It’s fair to say around 50-70% of yeast genes
are conserved even among the most distant yeast species. The genome
conservation of budding and fission yeast are shown in figure 4.1(a).
However, even the conserved genes may have different functionality due
to evolutionary rewiring. For example, Peng et al. (2005)’s study reveals
that although almost half of all 800 budding yeast cell cycle regulated
genes are conserved in fission yeast, only 142 of the conserved genes are
also regulated by cell cycle in fission yeast. Thus, around 256 budding
yeast cell cycle regulated genes are found conserved in fission yeast but
their fission yeast homologues do not oscillate in correlation with cell
cycle. Similarly, among 747 fission yeast cell cycle regulated genes 417
are found conserved in budding yeast but do not oscillate in synchrony
with cell cycle. This indicates large differences between the topologies
of biochemical networks of these two species. In another study of tran-
scription regulation during copper and iron uptake (Rustici et al. (2007))
by both species it was revealed that conserved gene clusters perform dif-
ferent tasks in different species. These studies suggest that differences
in the architecture of topologies of the gene regulatory network exceed
genetic conservation. The above argument is further supported by the
experiments performed by Dixon et al. (2008) . Rather than comparing
genome homology, Dixon et al. (2008) compared the transcription inter-
actions of budding and fission yeasts and found that only 23% of budding
yeast interactions are conserved in fission yeast and the rest of the genes
are rewired due to evolutionary renovation. The conservation of gene
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(a) (b)

Figure 4.1: Conservation of genomes and gene regulatory networks in budding and
fission yeast. (a) shows the number of conserved open reading frames in both species
and (b) shows the percentage of genetic interaction conserved in both species.

regulation in budding and fission yeast are shown in figure 4.1(b).

From the above studies it can be concluded that a large portion, ap-
proximately 75% of gene regulatory networks of budding and fission
yeast have different topologies which arise from extensive evolution-
ary renovation for almost a billion years. Since their gene regulatory
networks have gone through extensive evolutionary rewiring it is logi-
cal to predict similar phenomena for their protein interaction networks.
However, a statistical comparison of protein interaction networks of six
different species, namely,E. coli, H. pylori, S. cerevisiae, C. elegans, D.

melangoster, M. musculus by Liang et al. (2006) confirms that despite
relatively high level of sequence conservation in proteins of different
species their interaction patterns have altered extensively. According to
Liang et al. (2006), such alteration may or may not re-allocate differ-
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ent protein complexes to different functional groups. Though in many
cases changes in interaction patterns altered the function of homologous
proteins in different species, in some cases it is also found that despite
reshuffling their interaction patterns a group of proteins retain their func-
tionality in many different species (Liang et al. (2006)). In other words,
evolutionary renovations altered the interactions patterns of even the con-
served proteins both globally and within the same modules. We presume
that the global rewiring of protein protein interactions must not result
in instability in the dynamic behaviour of a protein interaction network
, additionally, the local intra-modular rewiring of PPIs must not violate
the stability of the corresponding module in order for such rewiring to
sustain in future progeny.

The studies of Dixon et al. (2008); Liang et al. (2006) suggest that
most of the molecular interaction networks of budding and fission yeast
have dissimilar network topologies. Since, most parts of yeast biochem-
ical networks are acyclic it’s evident that most evolutionary renovations
take place in the acyclic parts of the network. But this is only indirect
and anecdotal evidence to support our hypothesis that the evolutionary
renovations preferentially occur in the acyclic parts of biochemical net-
works. The above studies do not provide conclusive evidence to suggest
that the feedback loops in the biochemical networks of yeast are better
conserved than their acyclic counterparts. Hence, in the next section we
shall discuss the evolutionary conservation of metabolic pathways, cell
cycle and signalling modules in different yeast species. Among all dif-
ferent types of pathways metabolic networks are the most widely studied
in many different yeast species and high quality data are available for
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these networks. So, we shall first investigate the conservation of network
structures of the metabolic networks of different yeast species.

4.2 Differences in network topologies preferentially oc-
cur in the acyclic parts of yeast metabolic networks

In order to investigate the evolution of network topologies in yeast
metabolic networks we downloaded the integrated metabolic networks
of thirteen different yeast species namely,C. albicans, C. dubliniensis,

C. glabrata, C. tropicalis, D. hansenii, K. lactis, L. elongisporous, L.

thermotolerans, P. pastoris, S. cerevisiae, S. pombe, V. polyspora and
Z. rouxii from KEGG pathway database 1. Each pathway is then trans-
formed into a set of biochemical reactions following the KEGG reaction
database 2. Each set of reactions is then converted into a directed graph
by drawing edges from reactants to products since metabolic flux flows
in the direction of reactant to product. The topologies of the resulting
metabolic networks are then compared with each other. In order to find
out whether the topologies of the acyclic or the cyclic parts are evolu-
tionarily more conserved we separated the cyclic parts of the networks
from the acyclic parts. We then determined the similarities between the
cyclic parts of the metabolic networks of different yeast species with
each other and the acyclic parts of the metabolic networks with each
other. The similarities between the cyclic structures are measured by

1http://www.genome.jp/kegg/pathway.html
2http://www.genome.jp/kegg/reaction/
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finding % of edges common between the cyclic structures of two differ-
ent yeast species. For example, the conservation of the cyclic structures
of the metabolic network of C. albicans in S. cerevisiae is calculated as
Ccyc
CAL−SCE =

100EcycCAL−SCE
EcycCAL

, where, Ecyc
CAL−SCE is the number of common

edges found in the cyclic parts of the metabolic networks of C. albicans
and S. cerevisiae and Ecyc

CAL are the total number of edges in the cyclic
parts of the metabolic network of C. albicans. The conservation of the
acyclic parts of the metabolic networks of different yeast species are also
calculated in a similar manner. For example, Cacyc

CAL−SCE =
100EacycCAL−SCE

EacycCAL
.

Finally, for each pair of yeast species the conservation score of the cyclic
parts are compared with the conservation score of the acyclic parts. For
example, when investigating the evolution of the topology of metabolic
networks of C. albicans and S. cerevisiae we compare Ccyc

CAL−SCE and
Ccyc
SCE−CAL withCacyc

CAL−SCE andCacyc
SCE−CAL. IfCcyc

CAL−SCE > Cacyc
CAL−SCE

and Ccyc
SCE−CAL > Cacyc

SCE−CAL we conclude that the cyclic structures of
the metabolic networks are more conserved between C. albicans and S.

cerevisiae compared to the acyclic structures. Since we have data for 13
different yeast species we have 169 comparison scores for both cyclic
and acyclic structures, 13 of which are self comparisons, i.e. Ccyc

CAL−CAL

and Cacyc
CAL−CAL etc. The results of the analysis of conservation scores

of the cyclic and acyclic parts of yeast metabolic network is shown in
figure 4.2.

From figure 4.2 it can be noticed that there is a clear difference
between the conservation of the cyclic and acyclic structures of the
metabolic networks of different yeast species. Evidently, in most cases
each block of figure 4.2(a) is lighter than the corresponding block of fig-
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(a) (b)

Figure 4.2: Conservation of network structures in cyclic (a) and acyclic (b) parts of
yeast metabolic network. Each block represents the conservation score of the cyclic
(a) and acyclic structure (b) of the corresponding species. For example, the third block
in the second row of figure (a) maps the conservation score Ccyc

CDU−CGL in the colour
space shown on the right of each figure. Figure (a) is visibly lighter than figure (b)
, except from first and fifth column, suggesting, generally, higher conservation in the
network structures of the cyclic parts of yeast metabolic pathways. The first and fifth
column of both figure (a) and (b) suggests the opposite for C. albicans and D. hanseii.
The first(fifth) column of figure (a) suggests that only around (50-60%) of the cyclic
structures found in the other yeast species are also found present in C. albicans(D.
hanseii). But a closer look at the first(fifth) row suggest that (80-90%) of the cyclic
structures found in the C. albicans(D. hanseii) are also present in other yeast species.
This can only be possible if there are fewer cyclic structures in the metabolic networks
of C. albicans and D. hanseii compared to the other species. Most of the cyclic
structures that are present in the metabolic networks of C. albicans and D. hanseii
are also present in the other yeast species but since the other species have many more
cycles in their metabolic networks the opposite is not true. The anomaly in the first and
fifth column of figure (b) can be explained in a similar way.
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ure 4.2(b) suggesting higher conservation of cyclic structures compared
to the acyclic parts. However, there are two exceptions. The first and
fifth columns of figure 4.2(a) are darker than the first and fifth columns of
figure 4.2(b) suggesting, apparently the opposite for C. albicans and D.

hansenii , i.e. Cacyc
...−CAL > Ccyc

...−CAL and Cacyc
...−DHA > Ccyc

...−DHA. A closer
look at the first and the fifth row of both figure 4.2(a) and 4.2(b) reveals
that Ccyc

CAL−... > Cacyc
CAL−... and Ccyc

DHA−... > Cacyc
DHA−.... This anomaly re-

sults from the fact that C. albicans and D. hansenii has smaller number of
cyclic structures (according to the KEGG pathway database) compared
to the other yeast species. Hence only a fraction of the cyclic structures
that are found in the other yeast species are also found conserved in the
metabolic networks of C. albicans and D. hansenii. On the other hand,
the rows of figure 4.2(a) and 4.2(b) corresponding to C. albicans and
D. hansenii suggest that most of the feedback loops that are found in
the metabolic networks of C. albicans and D. hansenii are also found
conserved in other yeast species. Hence the above anomaly is not in
violation of our hypothesis.

Most of the biochemical reactions regarding metabolic networks are
enzymatic reactions. Hence the above results naturally give rise to a
different question: whether the enzymes which take part in the feed-
back reactions are better conserved compared to those which take part in
acyclic chains. To investigate this possibility we carry out two different
experiments. Firstly, we calculate what percentage of enzymes which
take part in the cyclic and acyclic parts of the metabolic network have
ortholog in other yeast species. Here, we call two enzymes ortholo-
gous if the Smith-Waterman-Gotoh similarity scores between them is
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(a) (b)

Figure 4.3: : Conservation of enzyme sequences in the cyclic(a) and acyclic(b) parts
of the metabolic networks of different yeast species. Each small square in figure (a)
and (b) maps the Oscycspecies1−species2 and Osacycspecies1−species2 to the colour space shown at
the right. It can be seen that each small square in figure (a) is visibly lighter than the
corresponding square of figure(b) suggesting that higher percentage of enzymes which
take part in feedback interactions have orthologs in other species compared to those
which take part in acyclic reactions chains.

greater than 100 as suggested in KEGG orthology database. This per-

centage is calculated as Oscyc/acycspecies1−species2 =
100Enz

cyc/acyc
species1−species2

Enz
cyc/acyc
species1

, where

Enz
cyc/acyc
species1−species2 represents the number of enzymes that are found in

the cyclic/acyclic parts of the metabolic network of species1 and have at
least one ortholog in species2. Enzcyc/acycspecies1 represents the total number
of enzymes found in the cyclic/acyclic parts of the metabolic network of
species1. The Oscyc/acycspecies1−species2 scores are shown in figure 4.3. It can be
seen from figure 4.3 that a higher percentage of the enzymes which take
part in cyclic interaction patterns have orthologs in other species indi-
cating a higher sequence conservation compared to the enzymes which
take part in acyclic reaction chains.
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We also investigated whether there is a statistically significant differ-
ence between the sequence conservation of the enzymes which take part
in feedback loops and those which take part in acyclic reaction chains.
Let us denote the set of enzymes of the ith species by ηi = {sij : i ∈
I, j = 1 . . . Ni}, here Ni is the number of enzymes present in the ith

species, and sij is the amino acid sequence of the jth enzyme of the ith

species. Each ηi has two subsets ηci , the set of enzymes which take part
in the cyclic structures of the metabolic network of the ith species and
ηai , the set enzymes which take part in its acyclic interactions. Hence,
ηi = {ηci ∪ ηai }. For each enzyme sik ∈ ηi we looked for its ortholog in
other yeast species by its relevant ’ko’ number (Kanehisa et al., 2008).
Let us assume that the kth enzyme sik of the ith species have a set of
orthologs ηikj = {sikjl : l = 1 . . . nijk} ⊂ ηj in the jth, i 6= j yeast
species. We computed a set of distance measures between the amino
acid sequences of sik and its orthologs in the jth species. We denote this
set by δikj = {dikjl : l = 1 . . . nijk}. Distances between two amino acid
sequences are calculated using the following formula.

dikjl = (1− Skl
Skk

)(1− Skl
Sll

) (4.1)

whereSkl is the sequence similarity score between the enzyme sequences
sik and sikjl , which is calculated using Smith Waterman Gotoh sequence
alignment algorithm. Clearly, 0 ≤ dikjl ≤ 1. If the two sequences have
close resemblance to each other then dikjl ≈ 0 and in the opposite case
dikjl ≈ 1. If the distance between two sequences is high then it assume that
the corresponding enzyme have evolved at a higher rate and vice versa.
However, if ηikj = ∅we assign δikj = {1}. Doing so takes into account the
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fact that enzyme sik has no orholog in the jth yeast species. This reduces
statistical bias in our study. We constructed two large sets of distance
measures between amino acid sequences ∆c = {∪i,j∈I;i6=j ∪∀sik∈ηci δ

ik
j }

and ∆a = {∪i,j∈I;i6=j ∪∀sik∈ηai δ
ik
j }. Hence, ∆c is the set of distance

measures of the enzymes which take part in feedback interactions from
their orthologs and ∆a is the same for the enzymes which take part in
acyclic interactions. We carried out statistical comparisons of ∆c and
∆a to investigate whether the rates of evolution in feedback enzymes are
significantly different to those which take part in acyclic interactions.
We estimated the probability density functions (pdf) of ∆c and ∆a using
kernel density estimation 1. The pdfs are shown in figure 4.4. It can be
seen from figure 4.4 that the pdf of the rate of evolution of the enzymes
which take part in the cyclic interactions, pdf(dc) has a sharper peak
near 0 compared to pdf(da). This suggests that a larger fraction of the
enzymes which take part in the cyclic structures evolves at a slower rate.

We further investigated whether the distributions of ∆a and Deltac
are statistically significantly different. As the most primitive statistical
measures we calculated the means and medians of ∆c and ∆a. The
means and medians of the above samples are mean(dc) ≈ 0.3 and
median(dc) ≈ 0.17, mean(da) ≈ 0.4 and median(da) ≈ 0.27. This
suggests that the average distances between feedback loop related en-
zymes and their orthologs are smaller compared to the acyclic interaction
related enzymes, i.e., the feedback related enzymes have a slower rate
of evolution. However, a more systematic way of comparing ∆c and
∆a is to do statistical hypothesis tests and confirm that they come from

1ksdensity() function in MATLAB
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Figure 4.4: PDF of rate of evolution in the conserved enzymes(Smith-Waterman-Gotoh
sequence similarity score >100) found in cyclic and acyclic parts of the metabolic
networks of all 13 yeast species. The rate of evolution is represented by evolutionary
distance calculated from the similarity scores and ranges from 0-1. Enzymes whose
orthologs have an evolutionary distance closer to 0 evolve at a slower rate and vice
versa. The above picture shows that the probability density function of the rate of
evolution of the enzymes which take part in cyclic interactions has a considerably
sharper peak near zero compared to that of the acyclic parts. This suggests that a
larger fraction of the enzymes which take part in the cyclic reactions of the metabolic
networks of different yeast species evolve in a slower rate.
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different distributions. Kolmogorov Smirnov (KS) test is one of the most
commonly used hypothesis test in similar scenario. In our case, a KS
test suggest that p(dc) 6= p(da) with very high certainty p = 0. But,
a classical hypothesis test such as KS test may become overpowered
due to large number of samples in ∆c and ∆a and may not be reliable.
Hence, we resort to a Bayesian alternative to KS test (Wolpert, 1995).
It calculates a distance measure between the two data samples. Let us
consider that ∆c comes from a distribution p(dc) and ∆a comes from
p(da) and the parameters of the distributions p(dc) and p(da) are πc and
πa. The distance between the samples ∆c and ∆a is calculated using the
following formula which is taken from (Wolpert, 1995).

E(Σac) =

∫
(πc − πa)2p(πc, πa|∆c∆a)dπcdπa (4.2)

=
J

K

J =
m∑
i=1

K(hc + 2(i), ha) +K(hc, ha + 2(i))− 2K(hc + 1(i), ha + 1(i))

K = K(hc, ha) =

∏m
i=1 Γ(hc(i) + 1)Γ(hc(i) + 1)

Γ(N1 +m)Γ(N2 + 1)

where p(πc, πa|∆c∆a) is calculated using the Bayes formula, i.e.,

p(πc, πa|∆c∆a) =
p(∆c,∆a|πc, πa)p(πc, πa)∫

p(∆c,∆a|πc, πa)p(πc, πa)dπcdπa
(4.3)

hc and ha are the histograms of ∆c and ∆a with m numbers of bins.
hc + 2(i) denotes the histogram hc with an extra 2 added to its ith bin.
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Figure 4.5: A Bayesian distance measure between the probability distributions of
∆a and ∆c. The expected distances between the distributions of ∆a and ∆c, de-
noted by

√
(E(Σac)), are plotted against the bin sizes m = 2 . . . 50.

√
(E(Σaa))

and
√

(E(Σcc)) are also plotted which represents the expected distance between
two samples drawn from the same distribution. It can be seen from this figure that√

(E(Σac)) >
√

(E(Σaa/ac))∀m = 2 . . . 50.

Γ() is the gamma function and hc(i) is the value of the ith bin of hc.
The formula of equation 4.3 is derived assuming that the samples ∆a

and ∆c come from multinomial distributions with Dirichlet priors. The
distance measure E(Σac) depends on the number of bins m. Hence we
calculatedE(Σac) form = 2 . . . 50. Additionally, we generated two data
samples R∆c and R∆a by resampling the distributions p(dc) and p(da).
R∆c and R∆a have the same number of data samples as ∆c and ∆a. We
computed the distances between R∆c and ∆c, R∆a and ∆a, using the
formula shown in equation (1) and denoted them byE(Σcc) andE(Σaa).
We used E(Σcc) and E(σaa) as reference distance between two data
samples if they were drawn from the same distributions. We have plotted√

(E(Σac)),
√

(E(Σcc)) and
√

(E(Σac)) form = 2, 3, . . . 50 in Fig. 4.2.
It can be seen from Fig. 2I that E(Σac) >> E(Σcc/aa),∀m ∈ 2, 3 . . . 50

suggesting significant difference between the distributions of ∆c and ∆a.
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Figure 4.6: Quantile-quantile plot of ∆a and ∆c.

The above statistical test tells us that ∆c and ∆a come from different
distributions. To understand the qualitative statistical difference between
these samples we plotted a quantile-quantile (q-q) plot of the two samples
in Fig. 4.2. It can be seen from fig. 4.2 that the q-q plot has a
significant upward deviation from the 45o reference line suggesting that
qi(∆

a) > qi(∆
c)∀i, where qi(∆a/c) is the ith quantile of ∆a/c. This

suggests that a larger fraction of ∆c has smaller values than ∆a which
essentially suggests that the enzymes of the cyclic interactions evolve
slowly compared to the enzymes of acyclic interactions.

As an example of the conservation of cyclic network structures and
rewiring of acyclic reaction paths in yeast metabolic pathways we present
a comparison of the phospholipid biosynthesis pathway of S. cerevisiae

and C. albicans in Fig. 4.7 1. We found that the feedback mechanisms of
this pathway are highly conserved in both species, whereas the acyclic
interaction sequences have changed.

1http://www.genome.jp/kegg/pathway.html
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Figure 4.7: Differential evolution in the cyclic and acyclic parts of yeast metabolic
network. In this figure we compare phospholipid biosynthesis pathways of S. cerevisiae
and C. albicans. The feedback mechanisms responsible for the glyoxylate cycle, serine
and threonine biosynthesis are conserved in both species. Main differences arise in
its regulation by exogenous precursors, inositol and choline, which is governed by the
acyclic parts of the pathway that is responsible for the biosynthesis of lipids. The red
nodes represent the compounds which are parts of conserved cyclic modules present
in the metabolic networks of both species. The acyclic parts of this pathway are
represented by dark ( S. cerevisiae ) and light gray ( C. albicans ) nodes. The Kennedy
pathways are not explicitly shown.
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The above results provide reasonable evidence that the feedback
mechanisms of the metabolic networks of yeast are better conserved
than the acyclic reaction chains. It is also found that the enzymes which
form these feedback loops also evolve at a slower rate. This raises the
question whether the above results hold true for non-metabolic path-
ways, such as gene regulatory networks, signalling and cell cycle related
pathways etc. We attempt to answer this question in the next section.

4.3 t S. cereviciae genes which take part in biochemical
feedback interactions evolve slowly

To understand how the topologies of biochemical networks evolve one
need to compare the biochemical networks of several species. Among
all the yeast species only S. cerevisiae has a near complete interactome.
The unavailability of network data for other yeast species renders such
studies infeasible. Hence we are left with little choice but to investigate
the evolution of the genes which take part in feedback interactions in
the biochemical network of �S. cerevisie. If we find that these genes are
better conserved compared to average S. cerevisiae genome then at least
we can provide evidence to support some of our claims.

We manually compiled a list of 753 genes in S. cerevisiae which
are found to take part in feedback interactions in S. cerevisiae gene
regulatory, signalling, cell cycle and metabolic networks from avail-

94



4.3 t S. cereviciae genes which take part in biochemical feedback interactions
evolve slowly

able literature. A detailed description of the data, and relevant litera-
ture references are provided in supplementary table ??. Let us denote
the set of amino acid sequences related to the S. cerevisiae genome
by ηi = {sik : k = 1 . . . Ni, i = SCE} and the sequences of the
genes which form feedback loops in the biochemical network of S.

cerevisiae by ηci . For each gene sik, where i = SCE, we looked
for its orthologs (the genes with same ’ko’ number in KEGG orthol-
ogy database Kanehisa et al. (2008)) in other yeast species. Let us
denote the set of orthologs of gene sik in the jth yeast species by
ηikj , i = SCE, j ∈ I, j 6= i. For each sik we calculated the set of
evolutionary distance δikj between sik and its orthologs ηikj as described
in the previous section. If ηikj = ∅ we assign δikj = {1}. Finally
we constructed the set ∆t = ∪j∈I,j 6=SCE ∪sik∈ηi,i=SCE δikj which repre-
sents the set of distances of the yeast genes from their orthologs found
in other species. Similarly, we constructed a similar set of distances
for the genes which form feedback loops in S. cerevisiae and their or-
thologs in other yeast species. We denote this set by ∆l. We then
carried out statistical comparison of ∆t and ∆l to investigate the qual-
itative and quantitative differences between these samples. Firstly, as
the simplest statistical measure we calculated the mean and median of
∆l and ∆t, mean(∆l) = 0.52, median(∆l) = 0.44, mean(∆t) = 0.77,
median(∆t) = 1, Since mean(∆l) < mean(∆t), it can be assumed
that on an average the genes which form feedback loops are better con-
served compared to an average gene in S. cerevisiae genome. For more
systematic statistical analysis, we calculated the difference between the
probability distributions of ∆t and ∆l using the formula shown in equa-
tion (4.2) for multiple bin sizes m = 2 . . . 50. As stated in the previous
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(a) (b)

Figure 4.8: Differential evolution in the amino-acid sequences of the genes related
to the feedback mechanisms of S. cerevisiae bochemical networks. (A) shows the
Bayesian distance measures between ∆l and ∆t. (B) shows the quantile-quantile plot
of ∆l and ∆t

section, we generated two samples, R∆l and R∆t by re-sampling the
distributions of ∆l and ∆t and calculated the differences between ∆t

and R∆t, denoted by E(Σtt), and, ∆l and R∆l denoted by E(Σll). We
used E(Σtt) and Σll as reference. We have shown

√
E(Σlt),

√
E(Σtt)

and
√
E(Σll) in Fig. 4.8(a). It can be seen from Fig. 4.8(a) that√

E(Σlt) >>
√
E(Σll/tt),∀m ∈ 2 . . . 50, which suggests that distribu-

tions of ∆l and ∆t have significant statistical difference. A quantile-
quantile plot of ∆l and ∆t is shown in Fig. 4.8(b). The stiff upward
deviation of the qq-plot from the 45 degree reference line suggests that
the average distance of the S. cerevisiae genome from other yeast species
is much higher compared to the genes which form feedback mechanisms,
i.e. the feedback related genes are better conserved in other species.

Though there is a lack of data on the biochemical networks of yeast
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species other than S. cerevisiae, many specific pathways regarding im-
portant physiological mechanisms of yeast have been studied in different
yeast species. In the next section, we use available data from literature
to provide anecdotal evidence of differential evolution of the topology
of cyclic and acyclic parts of yeast biochemical networks, especially
signalling, cell cycle and other transcription regulatory networks.

4.4 Conservation of feedback mechanism in different
signalling and cell cycle network of yeasts

The best way to provide evidence to support our hypothesis is to exe-
cute a systematic statistical comparison of the biochemical networks of
different yeast species. Though the genomes of many yeast species are
sequenced, their interactome is yet to be determined. In other words,
there are not enough interaction data for yeast species other than S. cere-

visiae to carry out a statistical comparison of their conserved and non
conserved modules. Therefore, we resort to case studies for the modules
for which data are available for at least two different yeast species. Some
examples are as follows.

The regulatory negative feedback interactions of HOG1, SKO1 and
PTP3 in S. cerevisiae is also conserved in its distant relative S. pombe

in the form of a feedback made of STY1, ATF1, PYP2 (Fig. 4.9) Proft
et al. (2005); Wilkinson et al. (1996). However, the orthologs SKO1
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Figure 4.9: Conserved regulatory feedback module in the osmoregulation pathways of
S. cerevisiae and S. pombe. Conserved genes are shown in colour and the genes which
are not conserved in both species or not regulated by the same genes in both species
are shown in grey.

and ATF1 regulate different sets of genes in different species (Proft et al.
(2005); Wilkinson et al. (1996)). This is likely because S. cerevisiae has
different signalling and regulatory pathways for different types of stress
responses (Wilkinson et al. (1996)) and the above module only deals with
osmotic stress. Hence, the genes related to heat shock, oxidative stress,
nitrogen stress etc. are not regulated by SKO1. On the other hand, S.

pombe shares the same signalling and regulatory pathway for many kinds
of stress. Hence, ATF1, the S. pombe ortholog of SKO1 regulates genes
that deal with many different kinds of stress (Davidson et al. (2004);
Nguyen and Shiozaki (1999)) including oxidative stress, heat shock, and
nitrogen scarcity. This is an illustrative example of regulatory modules
where the feedback loops are conserved but the surrounding network of
regulators and effector has undergone extensive evolutionary rewiring.

The transcriptional negative feedback mechanism mediated by MET30
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Figure 4.10: Conserved regulatory feedback module in the cadmium response pathways
of S. cerevisiae and S. pombe. Conserved genes are shown in colour and the genes
which are not conserved in both species or not regulated by the same genes in both
species are shown in grey.

and MET4 in the cadmium response module of yeast S. cerevisiae is con-
served in S. pombe in the form of a negative feedback mediated by POF1
and ZIP1(Harrison et al. (2005); Jonkers and Rep (2009))(Fig. 4.10).
S. cerevisiae MET4 is found to regulate genes which are involved in
nitrogen starvation, sulfur amino acid synthesis, arsenite response etc.
whereas the genes regulated by S. pombe ortholog ZIP1 of S. cerevisiae

MET4 are not found to take part in these events (Harrison et al. (2005);
Jonkers and Rep (2009)). This module is also another example of a
regulatory unit where the feedback modules are conserved but the sur-
rounding regulatory setting have evolved.

The transcriptional feedback loops mediated by SBF, YOX1 and
SWI4 that promotes G1-S transition (Fig. 4.11) are conserved in S.

pombe in the form of feedback loops made of MBF, YOX1 and CDC10
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Figure 4.11: Conserved regulatory feedbacks in the cell cycle modules of S. cerevisiae
and S. pombe. Conserved genes are shown in colour and the genes which are not
conserved in both species or not regulated by the same genes in both species are shown
in grey. CLB5 and CIG2 are shown in grey because the feedback loop mediated by
them are not conserved in both the species. CLB5 mediates a positive feedback loop
with SBF in S. cerevisiae whereas CIG2, the S. pombe ortholog of CLB5 mediates
a negative feedback loop with MBF, the S. pombe ortholog of SBF. The rest of the
feedback loops in this modules are conserved in exact form.

(Aligianni et al. (2009); Horak et al. (2002); Raithatha and Stuart (2005)).
We also look into the set of genes which are regulated by the YOX1 in
both S. cerevisiae and S. pombe. YOX1 regulates PHD1 and PHO4 in
S. cerevisiae which control psudohyphal growth and phosphate genes
respectively. A similar mechanism is not found in S. pombe (Aligianni
et al. (2009); Horak et al. (2002); Raithatha and Stuart (2005)). On the
other hand, S. pombe YOX1 regulates histone 2A and B genes which
are not found regulated by S. cerevisiae YOX1 (Aligianni et al. (2009);
Horak et al. (2002); Raithatha and Stuart (2005)).

GAL genes mediate feedback loops which are involved in galactose
metabolism are found to be partly conserved between S. cerevisiae and
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Figure 4.12: Conserved regulatory feedback module in the galactose metabolism path-
ways of S. cerevisiae and K. lactis. Conserved genes are shown in colour and the genes
which are not conserved in both species or not regulated by the same genes in both
species are shown in grey. RAG1 is shown in grey because the feedback loop between
GAL80, GAL4 and RAG1 might not be present in K. lactis, because, unlike GAL2, the
S. cerevisiae homolog of RAG1, it does not act as a galactose sensor, rather it act as a
glucose transporter in K. lactis.

K. lactis. The feedback loops made of GAL4, GAL80 and GAL1/3 in
S. cerevisiae are found conserved in K. lactis in the form of feedback
loops between GAL80, GAL4/LAC9 and GAL1(Fig. 4.12)(Anders et al.
(2006); Bhat (2008); Zenke et al. (1993)). One of the principle com-
ponent of this module, GAL4 regulates different sets of genes in S.

cerevisiae and K. lactis. GAL4 in S. cerevisiae is found to regulate
glucose repression genes and is also regulated by genes which promote
ATPase synthesis. These activities are not detected in S. pombe for its
GAL4 homolog (Anders et al. (2006); Bhat (2008); Zenke et al. (1993)).

Another feedback module mediated by coupled negative feedbacks
made of RPN4, YAP1 and PDR1 modulate drug resistance in S. cere-

visiae. This module is found to be conserved in C. glabrata in the form
of a feedback module mediated by RPN4, CGAP1, PDR1 (Fig. 4.13)(
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Figure 4.13: Conserved regulatory feedback module in the drug resistance pathway
of S. cerevisiae and C. glabrata. Conserved genes are shown in colour and the genes
which are not conserved in both species or not regulated by the same genes in both
species are shown in grey.

Salin et al. (2008)). YAP1 is found to regulate around 80 different genes
in S. cerevisiae, whereas, CGAP1, the C. glabrata homologue of S.

cerevisiae YAP1 regulate only 52 genes. Among the genes regulated
by YAP1 and CGAP1 only 14 genes have homologues in both species (
Salin et al. (2008)). This suggests extensive evolutionary rewiring in the
genetic circuit surrounding the above module.

.

The above examples give strong evidence in support of our theory.
However, in case of multiple coupled feedback loops only a selected
few are found conserved in other species. For example, in the S. cere-

visiae cell cycle module, the positive feedback between CLB5 and SBF
is not conserved in S. pombe. Instead, CIG2 and MBF, the S. pombe

orthologs of S. cerevisiae CLB5 and SBF, are engaged in a negative
feedback mechanism (Fig. 4.11). However, the other regulatory feed-
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backs associated with them are conserved. In a separate instance, the
feedback between GAL80, GAL4 and GAL2 of S. cerevisiae may not
be present in the galactose metabolism module of K. lactis (Fig. 4.12).
This is so because RAG1, the K. lactis homologue of GAL2 is thought
to act as glucose transporter rather than galactose sensor (Betina et al.
(2001)). One plausible explanation behind such phenomena is that when
multiple feedback mechanisms are coupled together, not all of them have
biologically vital roles in the operation of the whole module. Rather,
only few of them have dominant kinetic roles, whereas the rest provides
functional modulation. In that case it is possible that the most essential
feedback mechanisms remain conserved. To confirm the above hypothe-
sis we examined regulatory modules with coupled feedback loops where
such disparities of conservation are observed. The nitrogen catabolite
repression and glucose repression modules are excellent examples. In
addition, necessary data on these two modules are available for our anal-
ysis. Hence, in the next chapter we focus on the kinetic properties of
these two modules and explain the disparities in conservation of their
different parts.
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Pathway Genes Reference
Metabolic YCL040W, YFR053C, YGL253W, YNR012W, YGL026C, YHR144C, YDR127W,

YPL231W, YOR388C, YER069W, YER061C, YKL182W, YML106W, YMR271C,
YBL039C, YJR103W, YBR243C, YGL065C, YKL067W, YKL060C, YBR018C,
YBL035C, YBR278W, YDL102W, YDR121W, YIL139C, YIR008C, YJR006W,
YJR043C, YKL045W, YNL102W, YNL262W, YOR330C, YPL167C, YPR175W,
YAL012W, YKL106W, YLR027C, YDR502C, YLR180W, YLR245C, YBR084W,
YGR204W, YKR080W, YBR110W, YBR117C, YPR074C, YGR192C, YJL052W,
YJR009C, YJR057W, YDL232W, YEL002C, YGL022W, YGL226C-A, YJL002C,
YML019W, YMR149W, YOR085W, YOR103C, YIR032C, YKL211C, YOR196C,
YJR130C, YLL058W, YML082W, YDR178W, YJL045W, YKL141W, YKL148C,
YLL041C, YLR164W, YMR118C, YEL029C, YNR027W, YDL131W, YDL182W,
YBL082C, YLR359W, YBR035C, YGR208W, YPR069C, YOL140W, YDR297W,
YHR104W, YDR300C, YGR043C, YLR354C, YLR028C, YMR120C, YER073W,
YMR169C, YMR170C, YOR374W, YPL061W, YOR236W, YDR111C, YLR089C,
YIL145C, YNL130C, YJL167W, YPL069C, YOL052C, YPL117C, YPR183W,
YCR073W-A, YGR248W, YHR163W, YNR034W, YCR012W, YDR408C, YDL066W,
YLR174W, YNL009W, YGL234W, YHR190W, YML035C, YHR123W, YNL141W,
YBR154C, YDL140C, YDL150W, YDR045C, YDR156W, YDR404C, YGL070C,
YHR143W-A, YIL021W, YJL140W, YJL148W, YJR063W, YKL144C, YNL113W,
YNL151C, YNL248C, YNR003C, YOL005C, YOR116C, YOR151C, YOR207C,
YOR210W, YOR224C, YOR340C, YOR341W, YPR010C, YPR110C, YPR187W,
YPR190C, YPR127W, YOR074C, YBR263W, YLR058C, YLR209C, YLR420W,
YBL068W, YER099C, YHL011C, YKL181W, YOL061W, YJL088W, YER070W,
YGR180C, YIL066C, YJL026W, YGL148W, YER015W, YIL009W, YMR246W,
YOR317W, YJL101C, YJL200C, YLR304C, YGR155W, YHR025W, YDR454C,
YPL111W, YBR196C, YMR250W, YGR061C, YDR062W, YMR296C, YDR007W,
YBR208C, YBR029C, YCL009C, YMR108W, YBR070C, YGL047W, YCL064C,
YER086W, YER091C, YJL130C, YJR109C, YOR303W, YLR438W, YPR035W,
YAL038W, YOR347C, YOR128C, YCR005C, YNR001C, YPR001W, YHL003C,
YKL008C, YAR015W, YKL184W, YKR031C, YEL046C, YEL021W, YHL012W,
YKL035W, YMR300C, YHR018C, YDR441C, YML022W, YJR105W, YDR019C,
YKR097W, YBR221C, YER178W, YFL018C, YNL071W, YPL017C, YBR249C,
YDR035W, YGR019W, YJR016C, YDR158W, YDL078C, YKL085W, YOL126C,
YER081W, YIL074C, YPL262W, YLR303W, YMR062C, YOL058W, YER065C,
YPR006C, YBR218C, YGL062W, YOR184W, YDL246C, YJR159W, YDR050C,
YGR244C, YOR142W, YAL054C, YLR153C, YDL021W, YKL152C, YKR043C,
YGR170W, YNL169C, YNL220W, YER026C, YDL080C, YGR087C, YLR044C,
YBR176W, YLR239C, YCR053W, YBR006W, YOR095C, YNL037C, YOR136W,
YNL241C, YIR029W, YGR256W, YHR183W, YJL121C, YAL062W, YDL171C,
YDL215C, YOR375C, YBR252W, YKL024C, YDR354W, YHR216W, YLR432W,
YML056C, YLR377C, YER090W, YFR014C, YGR240C, YMR205C, YOL016C,
YMR217W, YKL216W, YHR063C, YER052C, YOR323C, YNR016C, YMR189W,
YNL277W, YJR139C, YIR031C, YNL117W, YGR254W, YHR174W, YMR323W,
YOR393W, YOL049W

Kanehisa et al. (2008)
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Secondary metabolite syn-
thesis

YBR196C, YDR050C, YGR192C, YJL052W, YJR009C, YOR095C, YCR012W,
YBR117C, YPR074C, YPL028W, YGR043C, YLR354C, YJL167W, YPL069C,
YDL066W, YLR174W, YNL009W, YKL060C, YJL121C, YPL111W, YGR254W,
YHR174W, YMR323W, YOR393W, YNL037C, YOR136W, YHR018C, YCL040W,
YFR053C, YGL253W, YGL026C, YPL117C, YCR073W-A, YGR248W, YHR163W,
YNR034W, YJL088W, YBR249C, YDR035W, YNL241C, YGR240C, YLR377C,
YMR205C, YDL078C, YKL085W, YOL126C, YOL058W, YDL021W, YKL152C,
YKR043C, YML126C, YGR256W, YHR183W, YBR019C, YKL106W, YLR027C,
YPL262W

Kanehisa et al. (2008)

MAPK mediated stress re-
sponse

YBR200W, YER118C, YBL105C, YHL007C, YDL235C, YLR362W, YJL095W,
YLR113W, YNL271C, YHL007C, YHL007C, YJL128C, YGR040W, YAL041W,
YLR229C, YNL098C, YLR362W, YLR362W, YLR342W, YOR231W, YGR032W,
YML004C, YHR084W, YHR030C, YDL159W, YLR332W, YBR083W, YMR043W,
YDL159W, YPL089C, YLR229C, YCL027W, YOR212W, YBL016W, YKL178C,
YGR088W, YPR165W, YER118C, YFL026W, YHR005C, YHR084W, YNL053W,
YJL157C, YJR086W, YIL147C, YLR006C, YDR461W , YNL145W , YMR037C,
YKL062W , YLR182W, YER111C , YOR212W, YJR086W , YDR480W, YPL049C ,
YPL187W , YGL089C , YCR073C, YNR031C , YPL049C, YDR480W , YDL159W ,
YBL105C , YCL027W , YHL007C , YHR005C , YER118C , YNL271C , YDL235C ,
YBR200W , YOR231W , YHR084W , YLR229C , YHR030C , YLR229C , YGR088W
, YLR362W , YBR083W , YJL095W , YGR040W , YIL147C , YLR362W , YLR362W
, YPL089C , YML004C , YMR043W , YHL007C , YNL053W , YLR342W , YHL007C
, YPR165W , YAL041W , YNL098C , YLR332W , YLR006C , YER118C , YLR113W
, YKL178C , YFL026W , YJL157C , YJL128C , YBL016W , YDL159W , YHR084W ,
YGR032W

Kanehisa et al. (2008);
Klipp et al. (2005); Ko-
fahl and Klipp (2004);
Paliwal et al. (2007);
Ross et al. (2000.)

Nitrogen response, Glu-
cose sensing, Galactose
metabolism

YBR020w, YLR081w, YDR009w, YPL248c, YML051w, YDL194w, YDL138w,
YHR094c, YMR011w, YDR345c, YHR092c, YOR047c, YDR277c, YGL035c,
YGL209w, YDR477w, YIL162w, YER040w, YNL229c, YFL021w, YKR034w,
YJL110C, YLR113w, YER075c, YNL167c, YOR208w, YIL046w, YNL103w,
YML027w, YPR065w, YOL116W, YMR016c, YDL020c, YML007w, YGL013c,

Boczko et al. (2005); Ka-
niak et al. (2004); Ram-
sey et al. (2006)

Transcription regulation YBR202W, YPL049C, YDR043C, YDR451C, YDR207C, YCL067C, YML027W,
YER040W, YOR372C, YJR060W, YMR070W, YGL073W, YAL040C, YOL148C,
YFR034C, YLR183C, YLR182W, YDR146C, YPR072W, YML007W, YJL110C,
YPL016W, YKL112W, YDR138W, YPR065W, YPR104C, YBR083W, YDR259C,
YLR451W, YKL109W, YMR043W, YKL062W, YKR034W, YDR123C, YGL209W,
YGL207W, YPL248C, YBR112C, YGL162W, YJL176C, YMR280C, YJR147W,
YIR018W, YNL068C, YNL103W, YLR399C, YJL168C, YCR065W, YFL021W,
YER111C, YKL043W, YHR084W, YHL027W, YLR013W, YNL216W, YOR028C,
YJR127C, YMR016C, YLR131C, YEL009C, YLR256W, YBR049C, YGL096W,
YPL177C

Lee et al. (2002); Lus-
combe et al. (2004b)

Cell cycle YAL040c, YMR199w, YPL256c, YPR120c, YGR109c, YLR079w, YGL003c,
YLR079w, YGL003c, YGR108w, YPR119w, YGL116w, YDR146c, YFR028c,
YDR113c, YMR043w

Chen et al. (2000)
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Pathway Genes Reference
Protein ubiquitination YOR249C, YLR102C, YGL240W, YGL116W, YGL003C, YIR025W, YDR118W,

YNL008C, YHR166C, YBL084C, YFR036W, YNL172W, YKL022C, YGR225W,
YLR127C, YDL132W, YGR003W, YJL047C, YBR259W, YDR069C, YGL094C,
YFR005C, YNL186W, YKR098C, YJL197W, YBL067C, YBR058C, YMR304W,
YPL072W, YDL122W, YOR124C, YER151C, YER144C, YFR010W, YIL156W,
YMR223W, YER098W, YHL013C, YFL044C, YPL020C, YIL031W, YHR134W,
YPL096W, YDL117W, YER162C, YDR314C, YFR004W, YDL216C, YOR261C,
YHR165C, YJR099W, YPL003W, YPR180W, YHR171W, YKL210W, YDR390C,
YPR066W, YHR111W, YHR003C, YKL027W, YDR054C, YGL087C, YGR133W,
YMR022W, YGL058W, YBR171W, YCL008C, YOR339C, YLR306W, YDR092W,
YDR177W, YBR082C, YDR059C, YER100W, YEL012W, YDL064W, YNR007C,
YBR165W, YDL008W, YDL074C, YLR394W, YLR323C, YHR115C, YNL116W,
YJL157C, YDL013W, YOL013C, YOL133W, YLR427W, YER068W, YOR156C,
YLR148W, YMR231W, YDR265W, YMR026C, YOL054W, YBR114W, YCR066W,
YLR032W, YOR191W, YDR143C, YDR409W, YER116C, YDR103W, YDR460W,
YKL034W, YGR184C, YLR024C, YAL002W, YBR062C, YDR128W, YDR266C,
YHL010C, YKR017C, YLR247C, YMR247C, YOL138C, YPR093C, YDL190C,
YKL059C, YIL030C, YEL019C, YLL036C, YML068W, YER125W, YDR457W,
YJR036C, YGL141W, YKL010C, YDR313C, YLR128W, YDR255C, YMR119W,
YIL046W, YML088W, YFL009W, YJR090C, YNL311C, YJL204C, YDR131C,
YLR368W, YJL149W, YBR203W, YOR080W, YDR219C, YLR097C, YNL230C,
YDR306C, YLR224W, YMR258C, YMR094W, YBR158W, YBR280C, YLR352W,
YER143W, YGL181W, YOR138C, YKL090W, YOR042W, YDR273W, YML097C,
YOL087C, YNR006W, YDL161W, YDR464W, YLR206W, YHL002W, YDR082W,
YNL059C, YKL213C, YHR079C, YNL155W, YOR052C, YNR051C, YGR048W,
YNL119W, YGL211W, YGR200C, YMR312W, YDL126C, YMR100W, YOR057W,
YBL047C, YJR052W, YMR275C, YML111W, YNR069C, YOR197W, YDR260C,
YMR316W, YBL057C, YPL002C, YIR011C, YDR002W, YNL159C, YJR102C,
YPL084W, YNR068C, YML101C, YBR111W-A, YPL065W, YLR417W, YGL017W,
YJR062C, YLR207W, YBR201W, YKL054C, YDR411C, YDR057W, YGL110C,
YMR264W, YDR328C, YPL046C, YIL001W, YLR108C, YDR132C, YOR043W,
YBL041W, YER012W, YPR103W, YJL001W, YFR050C, YMR314W, YOL038W,
YGR135W, YML092C, YOR362C, YOR157C, YGR253C, YER094C, YGL011C,
YHR200W, YER021W, YDL097C, YDR427W, YPR108W, YMR309C, YDL147W,
YBR079C, YKL145W, YOR259C, YGL048C, YOR117W, YDR394W, YDL007W,
YHL030W, YHR027C, YFL007W, YDR363W-A, YIL075C, YFR052W, YDL020C,
YBR173C, YLR421C, YGR232W, YGL004C, YLR021W, YPL144W, YBR135W,
YIL007C, YKL206C, YMR191W, YLR199C, YIL071C, YJR084W, YOL117W,
YDR179C, YMR025W, YPR049C, YMR276W, YNR032C-A, YER007W, YEL037C,
YIL148W, YKR094C, YLR167W, YDR139C, YDR510W, YLL039C, YML029W,
YOL111C, YML013W, YBL058W, YDL091C, YMR067C, YDR330W, YJL048C,
YBR273C, YIL008W, YPL149W, YBR170C, YBR217W

Venancio et al. (2009)
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Chapter 5

A comparative study of transcriptional
feedback modules in different yeast
species

The roles of biochemical feedback mechanisms in the evolution of organ-
isms only begins to emerge. Many studies suggest that some "kernel"
modules are evolutionary well preserved while their input and output
often have adopted different functionalities (Hinman et al. (2009)). In
our integrated networks we find many different kinds of feedback loops,
e.g., loops made of TF-DNA interactions, protein-protein interactions,
and composite loops made of both type of interactions. The feedback
loops found in TF-DNA interactions are typically small, spanning two
to five genes, whereas many long feedback mechanisms are found in
PINs (see table 3.2). However, in most cases, feedback loops are clus-
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Figure 5.1: Cyclic modules reside in the hierarchical middle layer of yeast GRNs. The
module shown in panel (a) is part of the yeast sporulation GRN. The modules shown in
panel (b) and (c) are part of stress response GRNs. The cyclic modules are drawn in red
nodes and blue edges. The subnetworks are generated from regulatory interaction data
Lee et al. (2002); Luscombe et al. (2004b); Yu and Gerstein (2006). The regulatory
hierarchy is made by imposing a partial order on the set of genes which form these
subnetworks. We used only TF-DNA interaction data to build these subnetworks in
order to simplify the visualization procedure.

tered together by means of coupling and nesting to form cyclic modules.
Among them, those made of transcription regulation interactions pref-
erentially lie in the middle level of regulatory hierarchy as shown in
figure 5. In GRNs the middle layer of the regulatory hierarchy has a
pivotal role in genetic decision making (Yu and Gerstein (2006)). Due
to bifurcative behaviour of feedback mechanisms in response to para-
metric perturbations (see below) such phenomena alter their functional
behaviour profoundly and thereby affect the decision making procedures
of GRNs. Thus, evolutionary adaptation is more likely to be successful
outside such feedback modules, in the acyclic parts.
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We observe that feedback loops reside in a clustered manner both in
transcription regulation and protein interaction networks. Such clusters
occur due to coupling and nesting of several feedback mechanisms with
each other. Thus, a key question is whether all the feedback loops in these
modules are similarly important to their operations, or, some of them are
biologically vital and the rest provide functional assistance. From here
on we shall call the biologically vital loops as ’dominant’ feedback loop
and the ones which provide functional assistance as ’auxiliary’ loop. The
best way to find out whether a feedback loop is ’dominant’ or ’auxiliary’
is to determine phenotypes after disrupting different parts of these feed-
back loops. If disrupting a feedback loop by knocking out one or more
of its component produces deleterious phenotype then it can be thought
of as a ’dominant’ feedback and if such knockout experiments do not
produce any harmful effect then it can be thought of as an ’auxiliary’
loop. Such biological experiments were performed by other scientists in
the past on certain S. cerevisiae pathways e.g. nitrogen catabolite repres-
sion pathway Boczko et al. (2005), carbon catabolite repression circuit
Kaniak et al. (2004), pheromone response pathway Paliwal et al. (2007),
osmoregulation pathway Klipp et al. (2005) etc. Though these studies
determined which feedback loops in those pathways are vital, the role
of the auxiliary feedback loops in these pathways were not elucidated.
Hence, it is interesting to find out the roles of the auxiliary feedback
mechanisms of these pathways and investigate whether the dominant
and auxiliary feedback loops of these pathways evolve differently.

In a study, Kwon and Cho (2008) found that feedback loops are
generally clustered in signalling pathways in a coherent manner, i.e.
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same type of feedback loops (either positive or negative) are coupled
together to form these clusters. Kwon and Cho (2008) also proposed that
coherent couplings can enhance the robustness of a signalling network
and tend to be evolutionarily stable. In this chapter, we investigate
those cases where at least one of the coupled feedback is not found to
be evolutionarily conserved in other species to find the reasons behind
differential evolution in different parts of these feedback clusters.

5.1 Dominant and auxiliary feedback in transcriptional
feedback modules

To understand the functional roles of individual feedback loops in a
transcriptional feedback module we investigate the dynamic properties
of two of the most well studied transcriptional feedback modules found
in yeast, i.e. nitrogen catabolite repression circuit (NCR) and carbon
catabolite repression circuit (CCR). The detailed analysis of these mod-
ules are as follows:

5.1.1 Nitrogen catabolite repression (NCR) circuit

Nitrogen is a basic building block of biomolecules such as proteins,
nucleic acids etc. All living cells need to induct nitrogen from growth

110



5.1 Dominant and auxiliary feedback in transcriptional feedback modules

medium for many biological processes. Nitrogen catabolite repression is
the physiological process by which budding yeast prefers good nitrogen
(glutamine, asparagine, ammonia) sources over the poor ones (allantoin,
proline, urea). A schematic diagram of the NCR circuit is shown in
figure 5.1.1 (Boczko et al. (2005)).

The yeast NCR circuit gets activated in the presence of limiting or poor
nitrogen supply and transcribes the genes which transport and degrade
poor nitrogen sources. On the other hand, in the presence of excess
nitrogen NCR circuit is repressed and the repression of genes which
take part in transportation and degradation of good nitrogen sources is
released. In the NCR circuit, nitrogen scarcity is sensed by Ure2p and
Gln3p proteins which then regulate the transcription of GAT1, DAL80
and DEH1 genes. GAT1, DAL80 and DEH1 genes regulate each other’s
transcriptions and give rise to a module made of two coupled feedback
loops, one made of GAT1 and DAL80 and the other made of DAL80 and
DEH1. In this section our objective is to analyse the dynamics of NCR
circuit in order to determine which of its feedback loops has ’dominant’
and which one has ’auxiliary’ functional role. Our intuition is that the
’dominant’ feedback loop among these two should be found conserved in
other yeast species as well. Following Boczko et al. (2005) we develop
a mathematical model to simulate the functioning of the NCR circuit.

111



5.1 Dominant and auxiliary feedback in transcriptional feedback modules

Figure 5.2: Wild type nitrogen catabolite repression circuit of budding yeast. Arrows
indicate activation and blunt arrows indicate repression. The feedback module in this
network is formed due to transcription regulations of GAT1, DAL80 and DEH1 genes
by each other.
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5.1.2 Dynamics of wild type NCR circuit

A detailed mathematical representation of the NCR switch can be found
in Boczko et al. (2005). The kinetic model described by Boczko et al.
(2005) includes the time delays between transcription and translation(δi),
the time delays during shuttling of proteins in and out of nucleus(τ ) and
changes in protein concentrations due to cell cycle. We simplified the
model assuming that the changes in protein concentrations due to cell
cycle are slower compared to the changes due to nitrogen scarcity in the
medium, thus assuming such rates to be constants. Following Boczko
et al. (2005), we also ignored the time delays of the model in our anal-
ysis as a further simplification. The functions representing the binding
of transcription factors with the DNA molecules are also changed in our
model. We used Michaelis Menten kinetics to model the binding of
Transcription factors with their corresponding DNA molecules. Most
of the parameters are unaltered in the new model. However, the basal
production rate of both URE2 (ru) and GLN3 (rg) mRNA molecules,
the binding affinity of GAT1 (a1), DAL80 (a2) and DEH1 (a3) and
the Michaelis constants kij were subjected to further parameter infer-
ence using simulated annealing based inference technique (Schmidt and
Jirstrand (2006)). The Hill Coefficients are set to 2 following com-
mon convention. The resulting model in shown in equation 5.1 and its
parameter values are shown in table 5.1
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dx(t)

dt
= Kimp(ξ(t− τ))−Kexp(x(t))− α(N)x(t)

dX(t)

dt
= rg − β(N)X(t)

dξ(t)

dt
= T (X(t− δ1))− γ(N)ξ(t)− kf(N)ξ(t)µ(t) + kr(N)C(t)

+ Kexp(x(t− τ))−Kimp(ξ(t))

dU(t)

dt
= ru − θ(N)U(t)

dµ(t)

dt
= T (U(t− δ2))− κ(N)µ(t)− kf(N)ξ(t)µ(t) + kr(N)C(t)

dC(t)

dt
= kf(N)ξ(t)µ(t)− kr(N)C(t)

dy(t)

dt
= Kimp(ψ(t− τ))−Kexp(y(t))− π(N)y(t)

dY (t)

dt
= H1(x, y, z, w)− φ(N)Y (t)

dψ(t)

dt
= T (Y (t− δ3))− η(N)ψ(t) + Kexp(y(t− τ))−Kimp(ψ(t))

dz(t)

dt
= Kimp(ζ(t− τ))−Kexp(z(t))− ρ(N)z(t)

dZ(t)

dt
= H2(x, y, z)− ν(N)Z(t)

dζ(t)

dt
= T (Z(t− δ4))− χ(N)ζ(t) + Kexp(z(t− τ))−Kimp(ζ(t))

dw(t)

dt
= Kimp(w(t− τ))−Kexp(w(t))− ϕ(N)w(t)

dW (t)

dt
= H3(x, y, z)− %(N)W (t)

dω(t)

dt
= T (W (t− δ5))−$(N)ω(t) + Kexp(w(t− τ))−

Kimp(ω(t)) (5.1)
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The definition of the conjugate variables in 5.1 are as follows.

Kimp(x) = Kexp(x) =
Akx(1 +Bkx)

Ck + x

T (x) =
ATx
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In equation 5.1, x(t), y(t), z(t), w(t) represents the concentrations of
nuclear Gln3, Dal80, Gat1 and Deh1 proteins. ξ(t), µ(t), ψ(t), ζ(t) and
ω(t) represent the concentrations of the cytoplasmic Gln3, Ure2, Dal80,
Gat1, Deh1 proteins. X(t),U(t), Y (t),Z(t),W (t) represent the concen-
trations of mRNA molecules produced by GLN3, URE2, DAL80, GAT1,
DEH1. T (x) simulates the translation initiation of mRNA molecules in
the cytoplasm ( Boczko et al. (2005)). Kimp and Kexp simulates the
shuttling of proteins in and out of nucleus. α(N), β(N), γ(N), θ(N),
κ(N), π(N), φ(N), η(N), ρ(N), ν(N), χ(N), ϕ(N), %(N) and $(N)

are degradation rates which, in this case, depend on nitrogen concen-
tration in the medium (Boczko et al. (2005)). In our analysis, we kept
the degradation parameters constants and studied the behaviour of the
system for different values of these parameters which, in effect, reflects
the fluctuation in nitrogen concentrations. Parameter values for equation
5.1 are shown in table 5.1 . We executed multiple runs of simulated
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Params Values
Ak 60
Bk 0.03
Ck 4
AT 0.1
BT 0.26
α 0.00485
β 0.022
γ 0.009
θ 0.022

Params Values
κ 0.009
π 0.00485
φ 0.095
η 0.009
ρ 3.6
ν 0.009
χ 0.067
ϕ 0.00485
% 0.022

Params Values
$ 0.009
kf 1e-05
kr 0.13
rg 0.0031
ru 0.00063
a1 0.181
k11 0.00055
k12 0.162
k13 0.000852

Params Values
k14 0.198
a2 0.108
k21 0.032
k22 0.028
k23 0.016
a3 0.0124
k31 0.1
k32 0.2
k33 0.186

Table 5.1: Parameter values of equation 5.1 which represents the mathematical model
of Nitrogen Catrabolite Repression Circuit of wild type yeast cells.

(a) (b)

Figure 5.3: Simulation of the model shown in equation 5.1 (a) and the observed
expression levels (b) of components of the NCR circuit during nitrogen starvation.

annealing on our model for Boczko et al. (2005)’s data set and collected
the best fit among them. The parameter values are given in table 5.1.

In figure 5.3 we show the result of simulation of the model shown
in equation 5.1 with the parameter values shown in table 5.1 and the
expression levels observed by Boczko et al. (2005) .
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We characterise the autonomous behaviour of the wild type NCR
circuit by carrying out bifurcation analysis of the mathematical model
shown in equation 5.1. Bifurcation analysis reveals that the model of
wild type cells can exhibit bistability. Bistability provides twofold ad-
vantages to the wild type NCR circuit. Firstly, it introduces a switch
like behaviour via DEH1 gene which flips between ’on’ and ’off’ state
due to fluctuations in kinetic rate constants, especially the degradation
constants(figure 5.4). The degradation constants depend on the nitrogen
concentration in the growth medium Boczko et al. (2005). Hence, in ef-
fect, the system switches the DEH1 gene ’on’ and ’off’ due to fluctuations
in the nitrogen concentration, thus gains extra control over NCR genes
. Secondly, it realises a cellular memory system where DEH1 keeps a
back up of the initial state of DAL80, which is helpful to modulate its
behaviour during future episodes of nitrogen scarcity. The responses of
the wild type NCR model to different initial concentrations of DAL80
and DEH1 mRNA are shown in figure 5.5. A truth table of the responses
for different combinations of high ([X] ≥ 0.5) and low ([X] < 0.5)
initial concentrations of DAL80 and DEH1 genes are shown in table 5.2.
Table 5.2 shows that the wild type NCR circuit resembles a ’D’ type flip
flop which has the boolean logic [DEH1]n+1 = [DAL80]n.
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Figure 5.4: Bifurcation diagrams for the wild type NCR model shown in equation 5.1.
The control mechanism of the NCR circuit relies on nitrogen state dependent control of
its degradation rates (Boczko et al. (2005)).The observed saddle node bifurcations(SN)
are mainly due to fluctuations in degradation rates (β, φ, η, ρ, µ, χ, see equation 5.1).
Interestingly, the concentration changes of DAL80 caused by bifurcation are negligible,
whereas DEH1 goes through a stiff hysteresis curve which switches its state between
’on’ (> 0.5) and ’off’ (< 0.5). Hence, in the wild type NCR circuit DEH1 acts as a
nitrogen state dependent toggle switch.
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Figure 5.5: Responses of the wild type NCR circuit due to changes in initial concentra-
tions of DAL80 and DEH1 mRNAs. We have simulated the responses of the wild type
NCR circuit for four different combinations of initial concentrations, i.e. ([DAL80]
=0, [DEH1]=0), ([DAL80] =0, [DEH1]=1) , ([DAL80] =1, [DEH1]=0) and ([DAL80]
=1, [DEH1]=1). It can be seen from this figure that in steady state DAL80 always
comes down to ’off’ state. However, the steady state response of DEH1 gene depends
on the initial state of DAL80 and follows the Boolean logic [DEH1]n+1 = [DAL80]n

which realizes a D type flip flop (truth table shown in table 5.2). The importance of
such a backup system lies in the fact that the functioning of DAL80 is mainly transient
and always comes down to its ’off’ state needing a memory to remember its initial
condition for future reference.
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[Dal80]n [Deh1]n [Dal80]n+1 [Deh1]n+1

0 0 0 1
0 1 0 1
1 0 0 0
1 1 0 0

Table 5.2: Truth table for the cellular memory system in the wild type NCR circuit.
[DAL80]n and [DEH1]n represent the current state of DAL80 and DEH1 gene and
[DAL80]n+1 and [DEH1]n+1 represent their next states. ’1’ and ’0’ represents high and
low concentrations. High concentration of mRNA occurs when a gene is upregulated
and vice versa.

5.1.3 DEH1 as an auxiliary gene

To understand the functional role of the genes involved in yeast NCR
circuit Coffman et al. (1997) performed a knock out analysis. Coffman
et al. (1997) found that knocking out GAT1 and DAL80 produces lethal
phenotype in nitrogen scarce medium, whereas a deh1∆ mutant does not
produce any deleterious phenotypes. This finding suggests that GAT1
and DAL80 are essential to the functioning of the NCR circuit, whereas
the DEH1 gene provides non essential functional benefits. On the other
hand, an wild type NCR circuit has a feedback module which consists
of two coupled small transcriptional feedback mechanisms whereas a
deh1∆ mutant has only one feedback mechanism made of GAT1 and
DAL80 and lacks the extra feedback loop which appears due to the
presence of the DEH1 gene (see figure 5.1.3). To investigate the roles of
the feedback loop made of DEH1 we analysed the dynamic behaviour of
the NCR circuit of a deh1∆ mutant and compared it with that of a wild
type NCR circuit.
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Figure 5.6: Schematic diagram of a NCR circuit in a deh1∆ mutant.
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5.1.4 Dynamics of a deh1∆ mutant

The ODE model for the deh1∆ mutant is shown in equation 5.2. The
relevant parameter values are unchanged and can be found in table 5.1.

dx(t)

dt
= Kimp(ξ(t− τ))−Kexp(x(t))− α(N)x(t)

dX(t)

dt
= rg − β(N)X(t)

dξ(t)

dt
= T (X(t− δ1))− γ(N)ξ(t)− kf(N)ξ(t)µ(t) + kr(N)C(t)

+ Kexp(x(t− τ))−Kimp(ξ(t))

dU(t)

dt
= ru − θ(N)U(t)

dµ(t)

dt
= T (U(t− δ2))− κ(N)µ(t)− kf(N)ξ(t)µ(t) + kr(N)C(t)

dC(t)

dt
= kf(N)ξ(t)µ(t)− kr(N)C(t)

dy(t)

dt
= Kimp(ψ(t− τ))−Kexp(y(t))− π(N)y(t)

dY (t)

dt
= H∆

1 (x, y, z, w)− φ(N)Y (t)

dψ(t)

dt
= T (Y (t− δ3))− η(N)ψ(t) + Kexp(y(t− τ))−Kimp(ψ(t))

dz(t)

dt
= Kimp(ζ(t− τ))−Kexp(z(t))− ρ(N)z(t)

dZ(t)

dt
= H∆

2 (x, y, z)− ν(N)Z(t)

dζ(t)

dt
= T (Z(t− δ4))− χ(N)ζ(t) + Kexp(z(t− τ))−Kimp(ζ(t))

(5.2)
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Where the definitions for the conjugate variables are as follows.

Kimp(x) = Kexp(x) =
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(5.3)

Bifurcation analysis of the deh1∆ NCR model shown in equation 5.2
reveals that it does not exhibit bistability and hence lacks the memory
module and the extra nitrogen controlled switching mechanism found in
wild type cells. The bifurcation diagrams of the deh1∆ model are shown
in figure 5.7.

5.1.5 Dominant and auxiliary feedback in the budding yeast NCR
circuit

The dynamic analysis of both the wild type and deh1∆ mutant NCR
model suggests that the DEH1 gene provides the wild type NCR circuit
with both a switch like capability and a cellular memory system. How-
ever, since a deh1∆ mutant does not produce any deleterious phenotype
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Figure 5.7: Bifurcation diagrams of the deh1∆ mutant NCR model. No hysteresis
occurs due to perturbations in the reaction rates of the deh1∆ mutant NCR model.
Hence, it does not produce bistability. For the convenience of visualisation we have
shown the homeostasis levels GAT1 and DAL80 only.
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Figure 5.8: The ’dominant’ and ’auxiliary’ feedback loops of budding yeast NCR
circuit. The thick red arrows indicate the interactions that forms the main feedback
mechanism of budding yeast NCR circuit. The auxiliary feedback loops are represented
by black dotted lines.

we conclude that the DEH1 mediated switching and memory module is
not essential to the operation of the NCR module but an auxiliary upgrade
to it. On the other hand, since mutating GAT1 or DAL80 produces lethal
phenotype in nitrogen scarce medium we conclude that these two genes
are essential in the operation of the NCR circuit. Hence, we suggest
that the feedback mechanism made of DAL80 and GAT1 is biologically
most vital to its operation and can be termed as the ’dominant’ feedback
whereas the feedback mediated by DEH1 is beneficial but not essential
and can be termed as ’auxiliary’ feedback(see figure 5.8). Due to the
essential biological role of the main feedback we predict that it should
be conserved in many different yeast species. To validate our prediction
we carry out a phylogenetic analysis on the yeast NCR genes.
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5.1.6 Conservation of the main feedback loop of budding yeast
NCR module

In NCR circuit, Gat1, Dal80 and Deh1(Gzf3) are all GATA binding
Zn finger protein encoding genes(GZF), however, Dal80 and Gzf3 are
homologous to each other and they both have an extra Leucine zipper(LZ)
subunit which makes them negative regulators of NCR genes. In almost
all the yeast species of Saccharomycetaceae family, at least one GZF and
one GZF-LZ can be found which are homologous to S. cerevisiae Gat1
and Dal80(information collected from KEGG homology database, Rossa
and Peter (2005), and Low and Atchly (2000)). However, it is yet to be
confirmed whether these homologs engage in any feedback interaction
or not. In case of more distant yeast species such as S. pombe and N.
crassa, the GZF encoding genes do not have such clear homology with
their S. cerevisiae counterparts. It is argued by previous researchers that
the ancestral yeast had only one GZF encoding protein (Rossa and Peter
(2005)). The genes with double GZF-GZF encoding subunits found
in species like S. pombe might have originated from whole genome
duplication events and the ones with an extra LZ subunit evolved much
later (Rossa and Peter (2005)), most probably during the divergence of
Saccharomycetaceae family. In other words, the homologs of Gat1 and
Dal80 are mainly found in Saccharomycetaceae family and not other
yeast species because the ancestral yeast did not have both of them, they
originated much later in the yeast lineage. A graphical representation
of the evolution of GATA binding protein encoding genes is shown in
figure 5.9.
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In summery, GAT1 and DAL80 are found conserved in almost all the
species of the Saccharomycetaceae family. The homologs of DAL80 and
GAT1 in these species are also found to take part in nitrogen catabolism.
Hence it is highly likely that the ’dominant’ feedback mechanism of
budding yeast NCR module is also conserved in the yeast species under
the Saccharomycetaceae family.

5.1.7 Carbon catabolite repression (CCR) circuit

Our argument of differential functioning of feedback loops in a module
and conservation of the most vital one is more evident in several other
modules, such as the carbon catabolite repression (CCR) circuit, which
is the transcription factor sub-network controlling glucose uptake and
utilisation. The carbon catabolite repression network, otherwise known
as glucose repression network in budding yeast is a complex assembly
of multiple signal transduction pathways and interweaved transcription
regulatory networks. The whole glucose repression mechanism of yeast
can be divided into three functional modules (Kaniak et al. (2004)). One
of the modules operates through the Snf1 protein kinase and finally re-
presses gene expressions at high level of glucose concentration. Another
module senses the glucose signal via Snf3 and Rgt2 and induces the
expression of glucose transporter genes. A third module uses Gpr1 and
cAMP as messengers. Since the first two modules functions primar-
ily by regulating gene expressions we focus our attention on these two
modules. A representative diagram of these modules is shown in figure
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Figure 5.9: Evolution of GATA factor genes in fungi. Same colours indicate ho-
mologous genes. For example Gat1 in S. cerevisiae, C. albicans, and P. stipitis, and
KLLA0F25300g in K. lactis are homologous and so on. The domain organisation is
shown in a box right to the gene names and colour coded. For example, GAT1 and GZF
are written in same colour. The species of Saccharomycetaceae family have at least
one homolog of GZF(GATA binding Zn finger) and one of GZF-LZ(GATA binding Zn
finger with an additional Leucine Zipper). However, species of other families contain
double GZF-GZF encoding genes or many single GZF genes without any LZ. Hence,
it is predicted that the ancestral yeast had only one GZF encoding genes and the other
combinations appeared later in evolution. The data shown in this figure is collected
from Rossa and Peter (2005) and Low and Atchly (2000).
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5.10(a).

High level of glucose concentration is sensed by Snf3 and Rgt2 me-
diated pathways. In presence of glucose both Snf3 and Rgt2 binds with
Mth1 and Std1 thus resulting in dilution of these two proteins in the
cytoplasm. Mth1 and Std1 form a three protein complex with Rgt1 and
the new complex represses the glucose transporter genes (HXTs). Once
expressed the glucose transporters transport extracellular glucose into
the cell and initiate glucose metabolism which in effect inhibits Snf1
triggering the repression of a wide range of genes ( Kaniak et al. (2004)).
The genes which are regulated by these pathways regulate each other,
thus weaving a complex regulatory pattern. Several feedback mecha-
nism are found coupled and nested within each other in this transcription
regulatory network. We extracted the transcriptional interplay of this
module (see figure 5.10(b)) in order to study its kinetic behaviour.

As shown in figure 5.10(b) the CCR network in S. cerevisiae has
nested feedback loops involving MIG1, MIG2, SNF3 and MTH1, a
homolog of STD1 (Kaniak et al. (2004)). We develop mathematical
model for the budding yeast CCR network to simulate its dynamics and
understand its autonomous kinetic properties.
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(a) (b)

Figure 5.10: The glucose repression circuit of budding yeast (Kaniak et al. (2004)).
The transcription regulatory feedback mechanisms of fig 5.10(a) are shown in figure
5.10(b). In figure 5.10(b), the arrowheads represent activation and the blunt arrows
represent repression. The black solid lines represent direct transcription regulation and
the blue dashed lines represent indirect transcription regulation via chains of protein
interactions. In this case, both indirect transcription regulations are glucose dependent.
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5.1.8 Dynamics of budding yeast CCR network

We developed a minimal mathematical model (equation 5.4) reflecting
the transcriptional interplay of the genes which take part in the feedback
module embedded in the glucose repression network. The model ignores
many detailed mechanisms but captures the basic genetic regulations and
is able to reproduce the qualitative behaviour of the corresponding genes.
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dg1

dt
= −αg1g1 (5.4)

Here m1, m2, m3, s3 and g1 represent the concentrations of the prod-
ucts of MIG1, MIG2, MTH1, SNF3 and extracellular glucose. The
repression of MTH1 by glucose is not direct as modelled in equation 5.4,
instead, glucose represses GAL4 which in turn activates MTH1 resulting
in a glucose mediated MTH1 repression. In reality, the concentration
of extra cellular glucose depends on the HXTs which transport glucose
into cell. Instead of modelling the whole mechanism in detail we have
only simulated the changes in extracellular glucose concentration using
simple first order decay law in order to simulate the effect of glucose
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concentration on the expression of MTH1 gene. However, the kinetic
behaviour of this network is fairly insensitive to the effect of glucose on
MTH1 via GAL4. In equation. 5.4, ai are the affinity factors of corre-
sponding genes, αx are decay constants, kij are the Michaelis constants
and n is hill coefficient which is set to 2 following common convention.
The glucose repression pathway in budding yeast cross-talks with many
pathways such as the cAMP pathway, the heat shock response pathway,
the galactose induction pathway etc. (Kaniak et al. (2004)). Hence, to
simulate the response of this pathway all the pathways which it crosstalks
with need to be modelled in fair detail. Mathematical modelling of such
a large system is difficult and needs sophisticated biological experiments
to gather necessary data. We used a minimal modelling approach which
does not take many details of the pathway into account. Hence, the
parameter values of the pathway are chosen to qualitatively reproduce its
behaviour as observed by Tu et al. (2005a) and are shown in table 5.3.

Params Values
a1 1.1296
k11 0.059
k12 0.045
αm1 0.182
a2 0.195
k21 0.077

Params Values
k22 0.0167
αm2 0.084
a3 0.5859
k31 0.245
k32 0.07
k33 0.07

Params Values
αm3 0.303
a4 0.6086
k41 0.05675
k42 0.03436
αs3 0.045
αg1 0.0153

Table 5.3: Parameter values of equation 5.4 which represents the mathematical model
of Carbon Catrabolite Repression Circuit of wild type yeast cells.

The simulation of the model described in equation 5.4 along with
the mRNA concentrations of the relevant genes as observed by Tu et al.
(2005a) are shown in figure 5.11.
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(a)

(b)

Figure 5.11: Simulation of the mathematical model of carbon catabolite repression
circuit as shown in equation 5.4. 5.11(a) shows the mRNA levels normalised to unit
average as found by Tu et. al.Tu et al. (2005a). 5.11(a) is generated by SCEPTRANS
Kudlicki et al. (2007). 5.11(b) shows the result of simulation of our model.

Bifurcation analysis of the wild type CCR model shown in equation
5.4 shows that it can produce sustained oscillation for a wide range of
parameter values. The results of bifurcation analysis is shown in figure
5.12. It can be seen from figure 5.12 that the CCR network produces
sustained oscillation between flipping the states of its genes from on and
off. The switching occurs due to changes in its parameters which in many
cases are glucose dependent. Hence, our analysis suggest that the CCR
circuit produces sustained oscillations when the cell switches between
different sources of sugars (glucose, sucrose, fructose, galactose etc.).

The period of the oscillation also varies between 60 and 350 mins
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Figure 5.12: Bifurcation analysis of the dynamic behavior of the S. cerevisiae CCR
circuit (only MTH1 is shown) due to perturbations in its parameters (see equation 5.4,
table 5.3). Both saddle node(SN) and Hopf bifurcation(HB) are observed indicating that
it can show bistable behaviour and oscillations. The genes in CCR network can exhibit
sustained oscillations between ’on’ and ’off’ states due to changes in its parameters,
some of which are glucose dependent (e.g., k21, k22). The maximum and minimum
concentrations during oscillation are shown by dashed lines. The oscillatory regions in
the bifurcation diagrams are highlighted in yellow
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depending on the parameter values which varies between different yeast
strains and growth conditions. The period of oscillation is plotted against
some of the parameters of the wild type budding yeast CCR model in
figure 5.13. The timeframe is reminiscent of the ultradian clock that
controls yeast metabolic cycles (Reinke and Gatfield (2006)). Although
the exact cycle time is controversial and seems to depend on growth
conditions and yeast strain, the existence of these metabolic cycles,
where the cell switches between oxidative phosphorylation and anaerobic
glycolysis, is well documented (Reinke and Gatfield (2006)). Tu et al.
(2005a) suggested that such metabolic cycles helps to compartmentalise
biological process temporally and provides better time management in
cellular machinery.

5.1.9 MTH1 as an auxiliary gene

In the CCR circuit Rgt1 protein interacts with Std1 and Mth1 to form
a three protein complex which represses the glucose transporter genes
(HXTs). STD1 is homologous to MTH1 and have similar functions.
According to Flick et al. (2003); Lakshmanan et al. (2003) a std1∆

or a mth1∆ mutant does not produce any lethal phenotype whereas a
std1∆mth1∆ double mutant completely abolishes the Rgt1 mediated
repression of the HXT genes and renders the pathway useless. In other
words, the carbon catabolite repression circuit of budding yeast needs
only one of STD1 or MTH1 to operate satisfactorily. According to Jef-
frey and Brown (2009) the CCR pathway of other yeast species such as
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Figure 5.13: The variations in period of oscillation (T) due to changes in parameter
values. The period (T) can vary from 60 mins to 350 mins depending on the parameter
values.
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Figure 5.14: The transcriptional feedback mechanism of a mth1∆ mutant. The mth1∆
mutant has only one feedback loop made of SNF3 and MIG1/2

C. albicans has only one homolog of STD1 and lacks the extra MTH1.
Interestingly, presence of only one STD1 homolog in the pathway con-
siderably simplifies its structural complexity and reduces the feedback
cluster into one transcriptional feedback mechanism. Hence, we inves-
tigate the roles of the MTH1 gene and the feedback loops appear due
to its presence in the operation of the budding yeast CCR pathway by
analysing the dynamic behaviour of a mth1∆ mutant CCR circuit and
comparing it with that of a wild type one.

5.1.10 Dynamics of mth1∆ mutant

The transcriptional feedback mechanism of a mth1∆ mutant is shown
in figure 5.1.10. The mathematical model of a mth1∆ CCR circuit is
shown in equation 5.5.
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Bifurcation analysis of the mth1∆ model reveals that the CCR path-
way can not produce sustained oscillation without the MTH1 gene.
MTH1 forms a three gene negative feedback loop in the wild type
CCR pathway which is capable of producing sustained oscillation. This
feedback is disrupted in a mth1∆ mutant which results in inability of
producing oscillatory response.

5.1.11 Dominant and auxiliary feedback in the CCR pathway of
budding yeast

The above analysis suggests that the MTH1 gene in budding yeast CCR
pathway helps to produce sustained oscillation when switching between
carbon sources. Such oscillation is beneficial (as argued by Tu et al.
(2005b)) to the metabolism of yeast but not essential since a mth1∆

mutant produces no lethal phenotype. On the other hand, snf3∆ mutant
unable to grow in medium with low glucose concentration. Hence, we
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5.1 Dominant and auxiliary feedback in transcriptional feedback modules

Figure 5.15: Bifurcation analysis of mth1∆ mutant CCR network of budding yeast.
No bifurcation occurs for a wide range of parameter values in the neighbourhood of the
operating point. Hence the mth1∆ mutant is unable to produce sustained oscillation.
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5.1 Dominant and auxiliary feedback in transcriptional feedback modules

conclude that the transcriptional feedback between SNF3 and MIG1/2
acts as the main feedback in the CCR network whereas those mediated
by MTH1 provides auxiliary functionality.

5.1.12 Evolution of carbon catabolite repression circuit in different
yeast species

A complete picture of glucose repression mechanism is still not available
for most of the yeast species other than budding yeast. However, a recent
work by Jeffrey and Brown (2009) provides the most complete picture of
the carbon catabolite repression of a common human pathogen Candia

albicans. C. albicans is a yeast species which diverged from S. cerevisiae

around 500 million years ago. A schematic diagram of C. albicans CCR
network is shown in figure 5.16. It can be seen from figure 5.16 that the
entire budding yeast CCR pathway is conserved in C. albicans apart from
the interactions related to the MTH1 gene. Both S. cerevisiae and C.

albicans belong to the Saccharomycetaceae family. Hence, we conclude
that a basic mechanism which consists of a feedback loop between SNF3
and MIG1/2 might be conserved in the yeast species which belong to
Saccharomycetaceae family. To understand the exact nature of the CCR
evolution in yeast more experiments need to be done with other yeast
species.
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Figure 5.16: Glucose repression pathway of Candida albicans (Jeffrey and Brown
(2009)). In this figure we have shown only part of the pathway which forms the
transcriptional feedback mechanism. Some of the other interactions shown by Jeffrey
and Brown (2009) are not shown in this figure for the convenience of visualisation.

5.2 A critical assessment of the analysis presented in
this chapter

The analysis presented in this chapter is based on mathematical mod-
elling of biochemical pathways using differential equations. This type
of modelling approach comes with several limitations. Firstly, differ-
ential equation models are parameter rich and may exhibit similar tran-
sient properties for different sets of parameters Zenker et al. (2007).
Similar transient properties do not guarantee similar steady state prop-
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erties. Hence, accurate estimation of parameters is necessary for cor-
rect determination of steady states properties. Parameter estimation of
mathematical models of biochemical systems is a non trivial problem.
Earlier methods of parameter estimation used different optimisation tech-
niques to obtain a point estimate of the relevant parameter set Schmidt
and Jirstrand (2006). More recent techniques Girolami and Calderhead
(2011) estimates posterior probability over parameter values. Since bi-
furcation analysis needs a point estimate of parameter values we used
the method implemented by Schmidt and Jirstrand (2006). We carried
out mono-parameter bifurcation analysis in our study which computes
the change of steady states due to perturbation of a particular parameter
keeping the rest of the parameters fixed. This kind of analysis is called
local bifurcation analysis since they depend on the point estimate of sys-
tem parameters. A different set of point estimate which can also produce
desired transient behaviour with reasonable accuracy may or may not
lead to the same bifurcation properties. Since, the ODE models of bio-
chemical pathways are usually highly non linear often their parameters
have multimodal posterior distributions given a set of desirable transient
responses. Multimodal distributions indicates the possibility of multiple
set of parameters which can produce same transient response. Since
our analysis is based on only the most likely point estimate and ignore
other highly likely parameter values the bifurcation properties derived
in this analysis are local. Hence the steady state behaviours shown in
this analysis is one of many possibilities that can arise from the same
pathways and should be treated as hypothesis rather than fact.
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5.3 Concluding remarks

The two examples discussed in this chapter provide support to our hy-
pothesis that in transcriptional modules consisting of multiple feedback
mechanisms the biologically vital or the ’dominant’ feedback loops are
conserved and the ’auxiliary’ feedback loops are not. The above conclu-
sion in summarised in Fig. 5.17. We find that transcription regulatory
feedback modules are usually small in S. cerevisiae typically spanning 2-
5 genes. In protein interaction network however, feedback loops ranging
from small auto-regulatory units to a few hundred proteins are coupled
together (see table 3.2) and form complex clusters. This raises many
interesting questions, such as: how did evolution shape such organisa-
tion of feedback mechanisms in yeast biochemical networks? Which of
these feedbacks have dominant roles in the operation of the module and
why? We approach these questions by analysing the dynamic behaviour
of some well studied feedback mechanisms which appear in the stress
response and mating pathways of S. cerevisiae. Here, our goal is to
determine the role of different types of feedback mechanisms involved
in these modules and classify them into ’dominant’ and ’auxiliary’ loops.
Based on these data we can then examine the conservation of both types
of feedback loops in other yeast species.
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Figure 5.17: Biologically vital or functionally ’dominant’ feedback loops in a tran-
scriptional feedback module are most likely to be conserved. (a) A conceptual diagram
of evolutionary conservation in a four gene feedback module. The functionally dom-
inant loop is drawn as solid line and remains conserved during evolution. Auxiliary
loops are draw as thin broken lines and are less conserved. (b) shows the preferential
conservation of the possibly ’dominant’ loops in a cell cycle related transcriptional
feedback modules of S. cerevisiae and S. pombe. (c) shows another example of evolu-
tionary conservation of the GAL80-GAL4-GAL1/3 feedback module in S. cerevisiae
and K. lactis. The GAL2 mediated feedback in the same module of S. cerevisiae is not
conserved in K. lactis. (d) shows the conservation of functionally ’dominant’ feedback
loops of the carbon catabolite repression module in S. cerevisiae and C. albicans. The
MTH1-MIG1/2 mediated auxiliary feedback loop is not conserved in C. albicans.

144



Chapter 6

Study of feedback modules in protein
interaction networks of different yeast
species

According to Yu and Gerstein (2006) yeast transcription regulatory net-
works are hierarchical with four levels of hierarchy, i.e. long chains
of transcription regulations are rare. This is not the case in protein
interaction networks. In yeast long chains of protein interactions are
common in metabolic networks (Herrgard et al. (2008)), signalling cas-
cades (Posas et al. (1998)), cell cycle network etc. Hence some of the
feedback mechanisms found in protein interaction networks are longer
than those normally found in transcription regulation network of yeast.
Additionally, they often enclose small feedback loops in their paths, e.g.
pheromone response pathway (Paliwal et al. (2007)), osmoregulation
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pathway (Klipp et al. (2005)) etc. Such symbiotic organisation of long
and small feedback loops in protein interaction networks raises many
interesting questions, e.g., which feedback loops are biologically vital in
these clusters, the longer ones or the smaller ones nested within them?
Attempt to answer this question may lead to two different school of
thoughts.

• Firstly, it is possible that the small feedback mechanisms nested
within the longer ones are biologically vital and the long ones
enclosing them provide protection from stochastic noise.

• On the other hand, it’s also possible that the long feedback mech-
anisms are biologically vital where the small ones provide extra
modulation to their operation.

Answering this question may lead us to find the evolutionary trend of
conservation in feedback modules of protein interaction networks. For
example, if the long range feedback loops are biologically vital then it
makes more sense to assume that these feedback loops are evolutionar-
ily conserved (and vice versa) since disrupting the long cascades might
produce deleterious phenotypes. To select between the two hypothesis
discussed above we analyse the dynamics and evolution of few well
studied pathways which have nested feedback architecture, such as, the
pheromone response pathway and the osmoregulation pathway of yeast.
To remain consistent with the previous chapter we shall call the bio-
logically most vital feedback loops as ’dominant’ loops and the other
feedback loops as ’auxiliary’ loops. Our goal in this chapter is to deter-
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6.1 Pheromone response pathway

mine the ’dominant’ and ’auxiliary’ loops of pheromone response and
osmoregulation pathways and look for their evolutionary conservations
in different yeast species.

6.1 Pheromone response pathway

Yeast pheromone response pathway is a combination of long chains of
MAPK cascades and transcription regulations of several genes. It di-
rectly participates in yeast chemotropism in pheromone gradients (Pali-
wal et al. (2007)). This pathway senses pheromone gradient and helps
mating of two haploid cells of opposite mating types which results in
the formation of a diploid zygote. Several studies have investigated
this pathway in order to understand its operating procedures and pro-
vided many useful insights, e.g. Kofahl and Klipp (2004) explained its
graded dose response and Paliwal et al. (2007) explained the switch-like
behaviour of this pathway. In this section we shall re-visit some of
these studies in order to understand the relation between its structural
organisation and dynamical behaviour which will eventually lead us to
understand the plausible evolutionary trends in preserving this pathway
in other species.

In yeast pheromone response pathway, a long chain MAPK cascade
made of Ste2/3, Ste20, Ste11, Ste7, Fus3 , Ste12, Bar1 and Cdc25 is
activated when the pheromone sensors Ste2/3 sense high pheromone
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6.1 Pheromone response pathway

concentration in the growth medium (Kofahl and Klipp (2004)). The
pheromone signal is carried and amplified by the MAPK cascade which
eventually phosphorylates Ste12. Phosphorylated Ste12 enters nucleus
and activates its own transcription and that of FUS1, FUS3 and BAR1
(Paliwal et al. (2007)). Activated BAR1 then shuttles out of nucleus
and eventually degrades pheromone (Kofahl and Klipp (2004)). Thus
activation of the MAPK cascade by pheromone concentration and the
degradation of pheromone molecules by the pheromone response path-
way results in a long feedback mechanism which tracks the pheromone
concentration in growth medium. This long feedback mechanism en-
closes a number of small feedbacks such as the auto-regulation of Ste12
and the positive feedback loops between Ste12, Fus3 and Kss1 (Paliwal
et al. (2007)). A schematic diagram of the S. cerevisiae pheromone
response pathway is shown in figure 6.1.

In this section we shall revisit the dynamic properties of pheromone
response pathway. But unlike the earlier studies we shall rather focus on
the contributions of different kinds of feedback loops in the dynamics of
pheromone response pathway in order to determine its ’dominant’ and
’auxiliary’ loops. Finally we shall look for evolutionary conservation of
both ’dominant’ and ’auxiliary’ loops of pheromone response pathway
of different yeast species.
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6.1 Pheromone response pathway

Figure 6.1: Schematic diagram of pheromone response pathway of budding yeast. This
pathway has a long MAPK cascade which activates Bar1 and degrades pheromone
resulting in a feedback regulation in pheromone sensing. The long feedback encloses
many small transcriptional and proteomic feedback loops. Here we have shown only
the feedback loops caused by protein interaction. Such as the positive feedback loop
which arises due to the activation of Fus3 by Ste12 and vice versa. The self regulatory
transcriptional feedback of Ste12 is not shown in this figure.
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6.1.1 Dynamics of yeast pheromone response pathway

Several mathematical models of the yeast pheromone response pathway
have been proposed so far. Among them, Kofahl and Klipp (2004)’s
model presents one of the most detailed mathematical description of the
signalling cascade that this pathway possess but it does not describe the
transcriptional interplay between STE12, FUS3 and FUS1. Hence, their
model accurately describes the graded response to pheromone gradient
but is unable to explain the switch like behaviour observed by Paliwal
et al. (2007). On the other hand, Paliwal et al. (2007)’s model is rather
minimalistic and mainly focuses on the transcription regulations of the
pheromone sensing mechanism. Additionally Paliwal et al. (2007)’s
model does not take the Bar1 mediated pheromone degradation into ac-
count, thus eliminates the feedback mechanism which is responsible for
the pheromone sensing in the first place. Introducing the Bar1 mediated
interaction to Paliwal et al. (2007)’s model presents a rather complete
picture but alters its entire state space. In Paliwal et al. (2007)’s model
pheromone concentration is regarded as constant. However, introduc-
ing a biochemical interaction which continuously degrades pheromone
is possible only if pheromone concentration is considered as a separate
state. In this case the trajectory of the new state space might be entirely
different compared to the original trajectory observed by Paliwal et al.
(2007) due to introduction of a new state. We develop a mathematical
model for the pheromone response pathway of wild type budding yeast
by adding the Bar1 mediated feedback mechanism to the Paliwal et al.
(2007)’s model to understand the dynamics of the complete system. The
ordinary differential equation model we developed is shown in equation
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6.1 and the parameters are shown in table 6.1. The first eight equations
in 6.1 are taken from Paliwal et al. (2007) and the last three equations are
taken from Kofahl and Klipp (2004) which includes the Bar1 mediated
main feedback mechanism in the model.
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HereF =inactive Fus3,Fp=active Fus3,K =inactive Kss1,Kp =active
Kss1, S =inactive Ste12, Sp =phosphorylated Ste12, Sb = Ste12 re-
pressed by Fus3, Dig1 and Dig2,B1=inactive Bar1,B1p =phosphorylated
Bar1, α = pheromone. The description and the values of the kinetic pa-
rameters are similar to those in Kofahl and Klipp (2004); Paliwal et al.
(2007).

Params Values
k1 4
c1 4
c2 4
c3 50
c4 4
c5 0
c6 50
c7 1
c8 4
c9 60

Params Values
c10 0.25
c11 3
c12 150
c13 4
kf1 100
km1 1
kr1 10
kf2 20
kf3 10
kf3k 5

Params Values
kr3 30
kf4 2.5
kr4 5
kd1 0.04
kd2 0.02
kd3 0.04
kd4 0.02
kd5 0.04
kd6 0.02
kd7 0.04

Params Values
kd8 0.04
kd9 0
kd10 0
kd11 0.04
n1 2
n2 2
n3 3
n4 2
n5 2
m1 2

Params Values
m2 2
γ 1
δ 1
kb1p 0.01
kspb1 5
Bα 0.01
kab1p 0.03
kα 0.01
kfb 0.001
- -

Table 6.1: Parameter values for equation 6.1 which represents the mathematical model
of pheromone response pathway.

Paliwal et al. (2007) showed that their model exhibits bistability due
to changes in pheromone concentrations and provided experimental evi-
dences to confirm their claim. In our model pheromone concentration is
a state itself, hence we analyse the trajectory of the system due to fluctua-
tions in the basal rate of pheromone production. We considered such rate
to be constant in our model. The basal rate of pheromone production rep-
resents the rate by which the yeast cells of opposite mating type produces
pheromone. Like Paliwal et al. (2007) we also find that the pheromone
model exhibits bistability due to fluctuations in the basal pheromone
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production rate. Bistability results in hysteresis due to changes in the
parameters of the pathway (see figure 6.2). Hysteresis is beneficial for
the pheromone response pathway since it incorporates history dependent
activation in its dynamic behaviour. When a yeast cell encounters high
pheromone concentration it’s pheromone response pathway gets acti-
vated which degrades pheromone itself in the growth medium via Bar1.
Fast pheromone degradation may dilute the pheromone concentration in
the growth medium beyond a threshold level which might result in shut
down of the pathway before successful cell cycle arrest. Due to history
dependent activation the pathway remains activated long enough despite
fast pheromone degradation to ensure successful cell cycle arrest and
smooing. Hence the bistable behaviour of the system reduces the cost
of expensive pheromone dependent mating mechanism. However, we
also find that both Paliwal et al. (2007)’s model and our model exhibit
bistability due to fluctuations in many other reaction rates that governs
the system. A bifurcation diagram is shown in figure 6.2.

6.1.2 Dynamics of a kss1∆ mutant

Finally, to understand the role of KSS1 in the pheromone response
pathway we analyse the dynamic behaviour of a kss1∆ mutant and
compare the analysis with that of the wild type one. Following Paliwal
et al. (2007), we simulate a kss1∆ mutant by making δ = 0. Our
analysis suggests that in kss1∆ mutant hysteresis is either absent or
too narrow to be beneficial for the operation of the system (see figure
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Figure 6.2: Bifurcation analysis of the mathematical model (equation 6.1, table 6.1)
of the budding yeast pheromone response pathway. The model exhibits hysteresis and
bistability (saddle node bifurcations, denoted by SN in the figure) due to fluctuations
in many of its parameters including the basal rate of pheromone production Bα. The
results are similar to Paliwal et al. (2007).

154



6.1 Pheromone response pathway

6.3). Hence, the role of KSS1 in the pheromone response pathway is
mainly to widen the distance between its stable states. The hysteresis
produced by KSS1 is beneficial to the organism since it reduces the
cost of pheromone dependent mating by making smooing possible more
often than otherwise during pheromone tracking (Paliwal et al. (2007)).
But such a system is not essential since a yeast cell survives without the
KSS1 gene (Paliwal et al. (2007)).

6.1.3 Dominant and auxiliary feedback loops in pheromone re-
sponse pathway

We suggest that the feedback loop made of the long chain of MAPK
cascades and the transcription regulation of the FUS1,3 and STE12
’dominant’ loop due to essential role in pheromone response whereas
the small feedback mechanism made of Kss1 is a beneficial upgrade
to the vital mechanism and can be termed as auxiliary loop. Hence,
in this case, it is highly likely that the biologically most vital feedback
mechanism is conserved among different yeast species since disruption
in this mechanism may proved to be deleterious. On the other hand, the
small feedback mechanism which occur due to the presence of Kss1 may
not be conserved in other yeast species due to its rather non-essential
role in pheromone sensing and tracking. To test this hypothesis we
reconstructed the pheromone response pathway of fission yeast from
published data and compared with that of budding yeast. The comparison
of budding and fission yeast pheromone response pathways are given in
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Figure 6.3: Bifurcation analysis of a kss1∆ mutant. In a kss1∆ mutant the hysteresis
is either absent or too narrow to make a difference.

the next section.
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6.1.4 Conservation of pheromone response pathway in other yeast
species

We have reconstructed the pheromone response pathway of fission yeast
to compare it with that of budding yeast. We used the interactions and
homology information provided by Herskowitz (1995); Hughes et al.
(1994); Imai and Yamamoto (1992); Marcus et al. (1995); Vohra et al.
(2003) to reconstruct the fission yeast counterpart of yeast pheromone
response pathway. For convenience of comparison we have shown the
budding and fission yeast pheromone response pathways side by side
in figure 6.4. It can be seen from figure 6.4 that the entire pathway is
conserved in fission yeast apart from the small ’auxiliary’ feedback loop
resulted due to the presence of KSS1. Since KSS1 is homologous to
FUS3 we presume that KSS1 appeared later in yeast family after the
divergence of fission and budding yeast probably due to whole genome
duplication events. There is only one homolog of FUS3 in S. pombe
and hence the nested feedback loops do not exist. From the above
analysis we find that in pheromone pathway the longest feedback loop
is the ’dominant’ loop and is conserved in even the most distant of its
relatives. However, the small KSS1 mediated feedback is beneficial
but not essential to the operation of the module and are rather species
specific.

The above analysis points toward some interesting possibilities. For
example, it is possible that in large feedback modules of yeast biochemi-
cal networks the long range feedback mechanisms might be functionally
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(a) (b)

Figure 6.4: Pheromone response pathways in budding (a) and fission yeast (b).Boxes
of same colours represent homologous genes. For example, mam2/map3,ste2/ste3;
Gα(budding yeast),Gα(fission yeast); byr2, ste11; byr1, ste7; spk1, fus3/kss1 are
homologous Herskowitz (1995). Similarly, ste12(budding yeast), ste11(fission yeast);
rgs1,sst2 Hughes et al. (1994); Vohra et al. (2003); and sxa2, bar1; Imai and Yamamoto
(1992) shk1, ste20 Marcus et al. (1995) are homologous.
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’dominant’, whereas the smaller nested ones might be ’auxiliary’. In
that case, the longer feedback loops should be conserved in other yeast
species, whereas the smaller ones may not be conserved. One plausible
argument to support this hypothesis is as follows. Long range feedback
loops are found mainly in signalling cascades which sense and respond
to environmental stimuli. Therefore, these mechanisms need to func-
tion quickly and decisively. Previous studies Nakabayashi and Sasaki
(2005) showed that the design of signalling cascades is usually optimal to
achieve certain end product concentration at minimal possible response
time. The optimal functionality of these cascades might be disrupted
by any perturbation and need to be protected against stochastic noises.
The feedbacks enclosing these cascades can provide such protection.
Hence, these feedback loops remain conserved to protect their optimal
functionality.

We decided to look for similar instances in other pathways of S.
cerevisiae, such as the osmo-regulation pathway before coming to a
conclusion.

6.2 Osmoregulation pathway

Osmoregulation pathway is another example where long and small feed-
back loops are found coupled with each other and assist in each others
operation. When a yeast cell is subjected to excess osmotic pressure its
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osmoregulation pathway produces glycerol to increase the cell turgor as
a counter measure (Klipp et al. (2005)). In budding yeast, it uses two
parallel pathways made of long chains of signalling cascades that con-
verge at Pbs2 (Klipp et al. (2005)). Pbs2 further activates Hog1 which
eventually produces glycerol and thereby completes a long feedback by
buffering excess osmotic pressure. Hog1, however, inhibits itself via a
small negative feedback loop mediated by the activation of Ptp2,3 which
inhibit Hog1. See figure 6.5 for a schematic diagram of the Sln1 branch
of the budding yeast osmoregulation pathway. In this section we analyse
the dynamic behaviour of the budding yeast osmoregulation pathway to
understand the role of ptp2,3 in its functioning.

6.3 Dynamics of wild type budding yeast osmoregula-
tion pathway

Several mathematical model have been developed so far to simulate and
predict the behaviour of the wild type osmoregulation pathway of S.

cerevisiae. Some of these models are very detailed and accurate in re-
producing the behaviour of this pathway and some of them are rather
minimalistic but still captures the basic dynamics of the osmoregula-
tion system. For example, the mathematical model developed by Klipp
et al. (2005) captures most of the molecular details of the osmoregulation
pathway in S. cerevisiae. On the other hand the models such as that of
Gennemark et al. (2006) are minimalistic and does not captures all details
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Figure 6.5: The osmoregulation pathway of budding yeast.
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of the osmotic shock response mechanism. There are both advantages
and disadvantages of both the modelling approach. Though detailed
modelling are more accurate, the state space and parameter space of
these models are extremely high dimensional which makes any com-
putational analysis difficult. For example, high dimensional parameter
space usually increases the computational cost of statistical inference of
parameter values from time series data and high dimensional state spaces
may destabilise numerical continuation algorithms in phase space. On
the other hand, minimal mathematical models do not have such problems
but they often miss important molecular details. Hence we developed
a mathematical model which is simple enough for our computational
purpose but complex enough to describe all necessary details.

Our model takes into account both the Sho1 and Sln1 mediated paths
and includes a small feedback loop mediated by ptp2 (protein tyrosine
phosphatase found in nucleus). It replicates the experimental condi-
tions of Krantz et al. (2004a). In Krantz et al. (2004a)’s experiment
the osmotic pressure of the growth medium of wild type yeast cells was
increased(hyper-osmotic shock) by adding 0.5M Nacl which exerts an
external osmotic pressure Πe of approx 2.4 MPa. In a typical growth
medium (osmotic pressure 1.4-1.5 MPa Gervais et al. (1996)) an average
yeast cell has a turgor pressure ∆P of approximately 0.18MPa (Gervais
et al. (1996)). Hence the internal osmotic pressure Πi of an average yeast
cell is around 1.4 + 0.18∼1.6 MPa. The difference between internal and
external pressure (Πe − Πi) is around 2.4-1.6=0.8 MPa. The increase
in cytoplasmic pressure is proportional to the molar concentration of
glycerol (P = imRT , where P is the osmotic pressure of a solution, i

162



6.3 Dynamics of wild type budding yeast osmoregulation pathway

is the Van’t Hoff constant, m is molar concentration, R is the Avogadro
number, T is the absolute temperature). Hence, ∆Pcyt = kgG, whre
kg is a constant, and G is the molar concentration of glycerol produced
in response to activation of the Hog1 pathway. In our model we con-
sidered only key components of the pathway. The model is shown in
supplementary equation 6.2.
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(6.2)

Parameters of this model were inferred using the simulated annealing
based parameter estimation algorithm of the Systems Biology toolbox
Schmidt and Jirstrand (2006) to produce similar response as Krantz et al.
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6.3 Dynamics of wild type budding yeast osmoregulation pathway

(2004a). The parameter values for the model shown in equation 6.2 are
given in table 6.2.

Params Values
B1 0.001
a1 0.9274
P 0.8
k1 2.0233
kg 0.5
kp 0.91
B2 1E-5
a2 1.655
K2 0.9717

Params Values
k2 2.5
n1 2
B3 0.001
a3 0.9562
K31 0.02
k31 1
n2 2
B6 0
a6 1.5

Params Values
K6 1
k6 0.1
n6 2
B7 0.001
a7 0.5
K7 0.3361
k7 0.3
n7 2
K32 0.0192

Params Values
n21 2
B4 0.001
a4 0.5
K4 0.6491
K41 0.9
k4 2
n4 2
k11 0.0997
K5 1.5

Params Values
k5 1.4
n41 2
B8 0.001
a8 0.2391
K8 0.9
k8 0.5
n8 2
ksho1 5
– –

Table 6.2: Parameter values for equation 6.2 which represents the mathematical model
of osmotic regulation pathway of wild type yeast cells

In figure 6.6 and 6.3 we show the results of simulation of the model
shown in equation 6.2 and the level of glycerol production observed by
Krantz et al. (2004a).

Figure 6.6: The response of the mathematical model of the osmoregulation pathway.
The concentration of the end product glycerol of the osmoregulation pathway as ob-
served by Krantz et al. (2004b) is plotted against the glycerol concentration simulated
by our model.
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6.3 Dynamics of wild type budding yeast osmoregulation pathway

(a)

(b)

Figure 6.7: The simulation results of osmoregulation pathway of yeast. (a) shows the
concentration levels observed by Krantz et al. (2004b) and (b) shown the simulation
results of our model.
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6.3 Dynamics of wild type budding yeast osmoregulation pathway

Our analysis suggests that the pathway does not exhibit any bifurca-
tion due to stochastic fluctuations in its parameters. Bifurcation diagrams
against some of its parameters are shown in figure 6.8. It can be seen from
figure 6.8 that the osmotic shock response system of budding yeast is
very stable and robust against parametric perturbations, i.e. fluctuations
in reaction rates.

6.3.1 The roles of ptp2,3

The osmoregulation of yeast has two parallel signalling pathways, one
senses external osmotic pressure via Sln1 and the other via Sho1 protein.
Both these pathways consist of long chains of MAPK cascades and finally
converge by activating Pbs1. Disrupting one of these MAPK cascades
does not produce any detectable phenotype. However, disrupting the
pathway after the convergence of two MAPK cascades by mutating
Pbs2 or Hog1 produces lethal phenotype during hyperosmotic shock
(Sakumoto et al. (2002)). Interestingly, disrupting the small negative
feedback mechanisms mediated by Hog1 and Ptp2,3 by mutating Ptp2,3
produces no lethal phenotype either (Sakumoto et al. (2002)). Hence,
we presume that the roles of the Ptp2,3 proteins in the functioning of
the osmoregulation pathway of budding yeast may be beneficial but
not essential. To understand the exact roles of Ptp2,3 in the reaction
mechanism of budding yeast to hyper osmotic shock we analysed the
dynamics of a ptp2,3∆ mutant and compared it with that of a wild type
system.
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6.3 Dynamics of wild type budding yeast osmoregulation pathway

Figure 6.8: Bifurcation analysis of the wild type budding yeast osmoregulation pathway.
No bifurcation occurs due to changes in the parameters of the osmoregulation pathway
of budding yeast.
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6.3 Dynamics of wild type budding yeast osmoregulation pathway

6.3.2 The dynamics of ptp2,3∆ mutant

A ptp2,3∆ mutant is realised by makingK41 arbitrarily large, in our case
K41 = 10. Bifurcation analysis of the ptp2,3∆ mutant suggests that the
osmoregulation pathway of the mutant cell exhibits Hopf bifurcation due
to small perturbations in many of its parameters, see figure 6.9. In other
words, in a ptp2,3∆ mutant the osmoregulation pathway has rather frag-
ile dynamics and may oscillate due to small changes in its reaction rate
constants. Oscillation is undesirable in stress response mechanisms such
as this because it results in sluggish and fluctuating response to environ-
mental stress. Since in a wild type cell the osmoregulation pathway does
not produce any oscillation we conclude that the Ptp2,3 mediated small
feedback mechanism act as a damper module and stabilises possible
oscillations due to fluctuations in its reaction rate constants. However,
since ptp2,3∆ mutants exhibit no deleterious phenotype we conclude
that such a module is beneficial but not essential for the survival of an
yeast cell in an episode of hyperosmotic shock.

6.3.3 The dominant and auxiliary feedback of yeast osmoregula-
tion pathway

Our analysis suggests that the Sln1 mediated long feedback mechanism
acts as a dominant feedback loop and the Ptp2/3 mediated small negative
feedback loops act as ’auxiliary’ systems. According to our hypothesis
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6.3 Dynamics of wild type budding yeast osmoregulation pathway

Figure 6.9: Bifurcation diagrams of the ptp2,3∆ mutant osmoregulation model. The
model shows both saddle node(SN) which promotes bistability and Hopf bifurcation
(HB) which promotes oscillation. The oscillatory regions are highlighted in yellow.
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6.3 Dynamics of wild type budding yeast osmoregulation pathway

the Sln1 mediated long feedback loop should be conserved due to its
dominant functional role and the Ptp2/3 mediated small feedback loop
may or may not be conserved due its auxiliary role in the functioning of
this pathway.

6.3.4 Evolution of osmoregulation pathway in different yeast species

We reconstructed the osmoregulation pathway of fission yeast from lit-
erature (Aiba et al. (1998); Boisnard et al. (2008); Cottarel (1997); Ikner
and Shiozaki (2005)) evidence and compare its structural conservation
with that of budding yeast. For comparison we present the osmoregula-
tion pathways of budding yeast (S. cerevisiae), fission yeast (S. pombe)
and Candida lusitaniae in figure 6.10. It can be seen from figure 6.10
that the entire osmoregulation pathway including the small feedback loop
mediated by Ptp2,3 is conserved in the distantly related yeast species bud-
ding and fission yeast. However, in case of Candida lusitaniae, though
the main Hog1 mediated feedback mechanism is conserved there are no
evidence of the Ptp2,3 mediated negative feedback regulation of Hog1
(Boisnard et al. (2008)). This presents an excellent evidence of our ar-
gument of conservation of the long feedback loops in protein interaction
networks due to their biological importance and relative evolutionary
plasticity of auxiliary small feedback mechanisms which provides extra
functional assistance. Our conclusion is summarised in figure 6.11
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(a) (b) (c)

Figure 6.10: Conservation of the osmoregulation pathway. Schematic diagrams of
the osmoregulation pathways of budding(a) and fission yeast (b) and Candiada lusi-
taniae (c). Boxes of same color represent homologous genes, i.e., mcs4, ssk1; wak1,
ssk2,22; wis1,pbs2; sty1,hog1 and pyp2,ptp2 are homologous Cottarel (1997). Simi-
larly, mak1,2,3, sln1; mpr1,ypd1 are homologous Santos and Shiozaki (2001). Some
of interactions of the osmoregulation pathways are taken from Aiba et al. (1998);
Ikner and Shiozaki (2005). (c)The osmoregulation pathway of Candida lusitaniae as
described by Boisnard et al. (2008).
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Figure 6.11: In protein interaction networks long range feedback modules are more
likely to be conserved compared to the small nested ones. (A) shows a conceptual dia-
gram of evolutionary conservation of long feedback loops. The small nested feedback
loops are drawn in gray and are less likely to be conserved in different yeast species.
(B)and (C) shows the evolutionary conservation of pheromone response pathways in S.
cerevisiae and S. pombe. All the long range feedback loops of S. cerevisiae pheromone
response pathway are conserved in S. pombe. Only the small Kss1 mediated small
feedback loop is not present in S. pombe. (D), (E) and (F) shows the evolutionary con-
servation of the osmoregulation pathway in S. cerevisiae, S. pombe and C. lusitaneae.
The Sln1-Pbs2-Hog1 mediated long feedback loop is found conserved in all three
species, however the small Ptp2/3 mediated negative feedback loops are conserved in
S. cerevisiae and S. pombe but not in C. lusitaneae (Aiba et al. (1998); Boisnard et al.
(2008); Cottarel (1997); Ikner and Shiozaki (2005); Santos and Shiozaki (2001)).
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6.4 A critical assessment and concluding remarks

Like previous chapter, the main conclusions in this chapter are also
results of local bifurcation analysis. The scopes and limitations of this
type of analysis are discussed in the previous chapter. However, there
are experimental evidence to support the results of bifurcation analysis
of the pheromone response pathway Paliwal et al. (2007). On the other
hand, the parameters of the osmoregulation pathway model are inferred
from time series data published by Krantz et al. (2004b). The data sets
consist of eight time series with seven time points each and the number of
estimated parameters are 44. High dimensionality of the parameter space
results in inaccurate parameter estimations especially in the presence of
small number of coarse time series data. Though the point estimates in
this study seem to fit the observed data reasonably well, a better estimate
can be achieved by using better data and models with smaller set of
parameters. However, similar dynamic properties of the same pathway
was also found by Hersen et al. (2007).

In most cases feedback mechanisms in yeast biochemical networks
exhibit monostability, bistability, multistability, graded response or os-
cillatory dynamics. In almost all cases the system converges to a global
homeostasis depending on their initial component concentrations and
reaction rate constants. Oscillatory systems are exceptions. The kinetic
importance of oscillatory modules and their implications in the evolution
of bio-molecular circuits are discussed in the next chapter.
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Chapter 7

Evolution of feedback modules which
generate autonomous oscillation

Oscillation arises from negative feedbacks in biochemical interaction
networks. Several modules with feedback mechanisms in yeast bio-
chemical networks such as the cell cycle module, the ultradian clock etc
are found to produce sustained autonomous oscillation. The cell cycle
module periodically divide cells Chen et al. (2000) whereas the ultradian
clock serves as a cellular clock which synchronises different biological
processes Tu et al. (2005b). The dynamics of oscillating modules are
different from any other stable dynamic system in the sense that oscil-
lating modules never reaches homeostasis. Additionally, when a cyclic
module oscillates in its normal operating condition it provides oscillating
input to its downstream gene or protein sub-networks. Liu et al. (2005)
suggested that, in this case the unforced equilibrium of the downstream
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sub-network collapses and it exhibits various periodic and aperiodic os-
cillations depending on the reaction rates and the period and amplitude
of the input oscillation. In other words the subnetwork downstream to
an oscillating module shows forced oscillation.

For example, Spellman et al. (1998) found that around 800 yeast genes
oscillate in synchrony with its cell cycle. To find out whether these genes
are indeed regulated by the yeast cell cycle oscillator we analysed the
hierarchy of yeast GRN from the transcription regulation data published
by Lee et al. (2002); Luscombe et al. (2004a); Milo et al. (2002). We
find that most (approximately 66%) of the genes which were found to
oscillate with the same period as cell cycle (see Spellman et al. (1998) for
a comprehensive list) are indeed directly or indirectly regulated by the
genes which generate the oscillation (Lipman et al. (2002)). However,
theoretically we should have found all the genes which oscillate with the
same period as cell cycle lie downstream to the the genes which generates
cell cycle oscillation in the first place. There could be several reasons
behind the fact that we found only 66% of the genes which oscillate in
synchrony with cell cycle lie downstream to the cell cycle genes. Two
main reasons are as follows: Firstly, Spellman et al. (1998)’s method is
based on a correlation measure of Fourier coefficients of the time series
of mRNA concentrations. Such method depends on the quality of mRNA
time series data and the threshold chosen for the correlation score. A
higher correlation score improves the percentage as we find that 86%

of the 200 genes with the highest correlation score lie downstream to
the cell cycle genes in the gene regulatory network(GRN) of yeast. The
noise in the mRNA time series data also affects the analysis. Secondly,
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the GRN data we used for our analysis is noisy too which might affect
our estimate.

However, from the above analysis it can be claimed unambiguously
that yeast cell cycle module affects the dynamics of a large number of
genes. Because of such diverse kinetic influences of oscillating mod-
ules on their downstream subnetworks any change in these modules may
result in wide spread effects on biological processes which are orches-
trated in synchrony with them. For example, biological processes such
as DNA replication, microtubule cytoskeleton organization, organelle
fission, nuclear division, chromatid segregation and different metabolic
processes are governed by genes and proteins which are found to oscil-
late in synchrony with the cell cycle (Spellman et al. (1998)). Disrupting
a cell cycle oscillator by mutating its components produces a wide range
of symptoms, e.g., delayed cell division, prevention of DNA replication
and even cell death (Chen et al. (2000)). Hence, we suggest that these
modules might be conserved because of their dynamic influences on
large parts of an organism’s GRNs.

Although the major transcription factors related to cell cycle network
and their DNA binding sites are conserved in both budding and fission
yeast and to a varying extent also in Metazoa, there are clear differences
in the cell cycle network circuitry reflecting evolutionary rewiring Bahler
(2005). Such rewiring adjusts the differences in inter-species cell cycle
phasing Bahler (2005). A core mechanism that generates cell cycle
oscillations are the oscillating expression levels of cyclins, the proteins
which regulate the catalytic activities of CDKs, the kinases that drive
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(a) (b)

Figure 7.1: Conservation of a prototypical cell cycle oscillator in budding (a) and
fission (b) yeast. The interactions of the budding yeast network are from Chen et al.
(2000), and of the fission yeast network from Sveiczer et al. (2004). Boxes of the
same colour represent homologous genes. The prototypical yeast cell cycle module is
conserved in both yeasts. A rather simplistic description of the prototypical cell cycle
oscillator is as follows. Cyclins, Clb2, Clb5(Cdc13,Cig2) are inhibited by Sic1(Rum1)
at the beginning(G1 phase) of S. cerevisiae (S. pombe) cell cycle. As the cell grows
Cln2/3(not shown in the figure, similar mechanism in S.pombe is not yet clear) degrades
Sic1(Rum1) and release Clb2(Cdc13) which represses Sic1(Rum1) thus letting free
Clb2, Clb5(Cig2,Cdc13) accumulate in the cell which triggers the G1-S transition. In
middle and late phases of the cell cycle, Clb2(Cdc13) acivates Cdc20(Slp1), which
activates Hct1(Ste9). Activated Hct1(Ste9) degrades Clb2(Cdc13) releasing Sic1 from
its inhibitory effect and the cell returns to G1 resembling an oscillator.

cell cycle progression. To locate such prototypical oscillators we looked
for conserved negative feedback mechanisms involving cyclins in both
budding and fission yeast. We find that such a minimal oscillator indeed
exists and is conserved in both yeast species (Fig. 7.1(a), 7.1(b)). The
genes involving these prototypes have considerable sequence similarity
and functional homology.
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Chapter 8

Conclusion

Evolution of GRNs has been mainly studied in the context of body plan
development in model organisms such as arthropods (Damen, 2007), ne-
matodes (Ge et al., 2006), and echinoderms (Hinman et al., 2009). From
these studies it is clear that GRNs specify the evolution of body plans.
Surprisingly, it also became apparent that the network architecture seems
to be conserved better than the components exerting specific functions,
and that such network modules tend to be organized as evolutionary
conserved "kernels" (Hinman et al., 2009). This, in turn, suggests that
network architecture may determine the evolvability of different parts of
the network.

We tested this hypothesis using a combined topological and dynamic
analysis of yeast biochemical networks. The results provide evidence to
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support this hypothesis. They show that the acyclic parts of a biochemical
interaction network evolve more rapidly than the cyclic parts, which are
relatively rigid against such changes. Furthermore, we show that long
range and oscillatory feedback mechanisms are more likely to resist
evolutionary changes. However, different oscillating modules in yeast
have appeared at many different stages of evolution. For example, the
most basic and vital oscillator, i.e. the prototypical cell cycle oscillator, is
found conserved in even the most distantly related yeast species such as
S. cerevisiae and S. pombe. On the other hand, the metabolic oscillators
are rather species specific and thought to have appeared after divergence
of the Saccharomycetaceae family from the S. cerevisiae lineage.

Our results also suggest that acyclic parts of networks are functionally
much more robust toward structural changes and hence can tolerate
evolutionary changes. This reveals an unexpected link between network
design features and evolution. It also shows that there is an intrinsic
balance between robustness of design and potential for evolution. An
interesting future question is to define why and under what conditions
acyclic parts become cyclic and evolutionary engrained.

Our study provides some interesting insights into the evolution of
biochemical networks. Most of our predictions are based on theoretical
analysis and we tested our predictions by carrying out both statisti-
cal analysis of large metabolic networks and case studies of individual
biochemical modules of yeast species. The best way to validate our
conclusions is to carry out systematic statistical analysis of biochemical
networks of different species. But the main obstacle in doing so is the
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lack of interaction data for most of the species. Though the genomes
of many yeast species are sequenced, their interactomes are yet to be
determined. Another big obstacle is in the concept of the statistical anal-
ysis itself. In order to determine whether the majority of the feedback
loops are conserved or not, we have to accurately determine the feedback
loops present in each of biochemical networks being compared. As we
already discussed before, determining feedback loops in a biochemical
network needs precise knowledge about the network itself. Such infor-
mation is not available for even the most well studied organism such as S.
cerevisiae. The interaction data used in such studies often contain false
negatives and false positives which can generate false negative and false
positive feedback loops. For accurate reliable inference of structural
properties it is also necessary to develop better strategies to deal with
noise present in interaction data.

Even if, in a hypothetical scenario, precise interaction data were
available for may species, determining the structural properties of these
networks would have been difficult because a large proportion of these
interaction data are binary protein interaction data. It is difficult to
estimate the direction of signal flow in biochemical networks made of
such interactions. In our study, we have used an algorithm developed
by Liu et al. (2009) to determine directionality (partially) in protein
interaction networks. Liu et al. (2009)’s method is one of the first of
its kind and yet to be approved by the larger computational biology
community. At present such methods can only be used to gather rough
estimates of certain structural properties.
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Hence, designing statistical analysis to compare the biochemical net-
works of different yeast species in a systematic way is not possible in
the current context. However such an analysis will be possible when
more data and sophisticated computational methods are available to deal
with the data in a more efficient way. Hence, a future direction of
this study will be to develop databases of biochemical reactions for non
metabolic pathways of multiple yeast species. Though such databases
exist for metabolic pathways, a collective database of biochemical re-
actions which take part in non metabolic pathways is not yet present.
Developing such database involves extensive literature curation and de-
velopment of new techniques, such as Saleem et al. (2010), to gather data
accurately in a genomic scale. Once reliable reactomes are available for
more than one yeast species we shall be able to carry out statistical
analysis to determine evolutionary conservation in different parts of bio-
chemical networks.
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