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 ABSTRACT 

The genomes of higher eukaryotes are marked by distinct chromatin domains, which allow for 

the control of different gene expression states. It is thought that the boundaries of chromatin 

domains could be formed by DNA sequence elements called insulators. The paradigm HS4 

insulator element is located at a boundary between the β-globin gene cluster and an adjacent 

condensed chromatin domain. Proteins that bind to the HS4 sequence recruit enzymes that 

mediate a number of histone modifications generally associated with chromatin accessibility.  

Inspired by yeast genetic studies, we hypothesised that H2B ubiquitination might be a key 

regulator of these ‘active’ marks. It was found that HS4 and another chromatin boundary at the 

neighbouring FOLR1 gene locus, HSA/HSB, are sites of H2B ubiquitination. The ubiquitination 

E3 ligase RNF20 was found to be necessary for global H2B ubiquitination and for methylation 

of H3K4, in a trans-histone modification pathway that is conserved from yeast to man. 

RNAi-mediated knockdown of RNF20 not only resulting in the depletion of H2B ubiquitination 

normally found at chromatin boundaries, but also disrupted their H3K4 methylation and 

acetylation at multiple histones. H2B ubiquitination is a master controller of the active chromatin 

state at the HS4 and HSA/HSB chromatin boundaries. Long term depletion of RNF20 expression 

leads to a compromise of the boundaries, allowing the spreading of heterochromatin into the 

FOLR1 and β-globin gene loci, resulting in gene silencing. This study also looked at the 

recruitment of factors that mediate the incorporation of the histone variant H2A.Z at chromatin 

boundary elements in vertebrates. It was found that insulator binding proteins control H2A.Z 

incorporation and acetylation. 
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CHAPTER 1 

Introduction 

DNA (deoxyribonucleic acid), the genetic material passed to the next generation in every cell 

division, is packaged into nucleosomes to form chromatin. The DNA information shapes all the 

cellular phenotypes that form multicellular organisms. However, the study of DNA sequence 

alone has not fully explained why and how cells differentiate into different cell types. While 

every cell of a multicellular organism contains the same genetic material in the form of DNA, the 

cell phenotypes are a result of gene expression that is tightly regulated. It has become clear over 

the last two decades that epigenetic information stored in chromatin contributes to the regulation 

of gene expression without altering DNA sequence. Epigenetic information is contained in 

chemical modifications of DNA or histone proteins, another major component of chromatin. It 

has been proposed that genes are located in chromatin domains that can have different chromatin 

states to allow or repress gene expression. Chromatin boundaries are required to separate these 

domains to allow regulation of gene expression independent of the genomic neighbourhood. It is 

predictable that loss of chromatin boundaries would lead to disease, cancer or even lethality 

resulting from aberrant gene expression. Here, I will present a study of chromatin boundary 

establishment and maintenance. Results suggest a novel histone modification cascade occurring 

at chromatin boundaries to antagonise nearby intrusive silencing effects.  
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1.1 DNA packaging and chromatin structure 

1.1.1 Hierarchical structure of chromatin 

In most eukaryotic cell nuclei, DNA is tightly packaged into chromatin. A nucleosome, the basic 

unit of chromatin, consists of ~146 base pairs (bp) of DNA wrapped around a histone octamer of 

two copies of histone H2A-H2B dimers and H3-H4 dimers (Figure 1.1) [Campos & Reinberg, 

2009]. A linker histone binds the DNA coming in and out of the nucleosome to stabilise the 

structure. Nucleosomes are linked by linker DNA that ranges in size from 10 – 80 bp to form a 

“10 nm beads-on-a-string” structure. It is thought that the strings of nucleosomes are folded into 

a 30 nm chromatin fibre, resulting in approximately 50-fold compaction (Figure 1.2). The 

folding process is suggested to be driven by interaction between individual nucleosomes. There 

are two proposed models, the solenoid and zigzag models, describing the structure of a 30 nm 

chromatin fibre [Tremethick, 2007].  In the solenoid model, consecutive nucleosomes are next 

to each other in the fibre, forming a simple one-start helix (Figure 1.3, left panel). In the zigzag 

model, nucleosomes are arranged as a zigzag such that two rows of nucleosomes form, and the 

straight linker DNA crisscrosses each stack of nucleosomes leading to a two-start helix (Figure 

1.3, right panel). The 30 nm chromatin fibre is subject to further levels of compaction to form 

interphase chromatin [Németh & Länst, 2003]. Mitotic chromosomes are in the highest order of 

structures which formation is suggested to be a result of hierarchical folding facilitated by 

condensin proteins [Woodcock & Ghosh, 2010]. Except in mitosis when the chromosome is 

entirely tightly folded, chromatin in interphase is not uniformly folded. Regions consisting of 

actively transcribed genes are generally more permissive while heterochromatin is usually more 

compact and resistant to protein access. Such specialised chromatin organisation is regulated by 

chromatin remodelling complexes accompanied with histone modifications.  
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Figure 1.1 Structure of a nucleosome. A 
histone octamer constituted of two copies of 
each of the four histone core proteins is 
wrapped by double-stranded DNA (white 
helices) with around 146 bp. Adapted from 
Lodish et al, 2004.    

Figure 1.2 The DNA folding within a 
chromatin structure. Adapted from 
Felsenfeld and Groudine, 2003. 

 

Figure 1.3 Proposed models for the 30 nm 
chromatin fibre. A simple one-start helix is 
proposed in the solenoid model, in which 
nucleosomes are arranged next to each other along 
the same helical path. Alternative helical gyres are 
shown in blue and magenta. A two-start helix is 
proposed in the zigzag model, in which 
nucleosomes are arranged as a zigzag and the linker 
DNA crisscrossing between the adjacent rows of 
nucleosomes. Alternative helical gyres are shown in 
blue and orange. Adapted from Tremethick, 2007.  

 

1.1.2 Hierarchical structure of genes 

In eukaryotic genomes, genes are usually comprised of a promoter, transcribed region and a 

transcription termination site (Figure 1.4). The transcribed region consist of segments of coding 

sequences (exons) which are intervened by non-coding sequences (introns) that are excised from 
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the primary transcript after transcription. Regulatory elements for gene expression are not 

necessary to be adjacent to their target genes. Many of them are indeed distal regulatory elements 

that could be located as far as a million base pairs apart from the target gene [Noonan & 

McCallion, 2010] (Figure 1.5).  

 

Figure 1.4 Schematic representation of an eukaryotic gene. Modified from Griffiths et al, 
2000.  

 

Figure 1.5 Genome organisation of transcription regulatory elements. A promoter is typically 
composed of a core promoter element and few proximal promoter elements. Enhancers, silencers, 
insulators and locus control regions are regarded as distal regulatory elements because of their 
distal action on promoters. Adapted from Maston et al, 2006.  

 

1.1.2.1 Promoters 

Promoters are the sites for the assembly of transcription machinery that is required to initiate 

transcription. A promoter determines the orientation and origin of transcription, and is usually 

composed of a core promoter element and several proximal promoter elements (Figure 1.5). The 

core promoter element serves as a docking site for the assembly of the transcription preinitiation 

complex (PIC), which directs RNA polymerase II to TSS [Matson et al, 2006]. TATA box within 

the core promoter element was initially thought to be indispensable for the PIC assembly 
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because of the binding of transcription factor II D (TFIID) that is essential to initiate the 

assembly but bioinformatincs analysis revealed that there may be undefined elements to serve as 

a nucleation point for the PIC assembly [Gershenzon & Ioshikhes, 2005]. Nevertheless, the low 

transcription activity of the assembled PIC, only referred as basal transcription level, requires 

proximal promoter elements for efficient transcription. Proximal promoter elements typically 

located upstream of the core promoter element are binding sites for transcription activators 

(Figure 1.5). The binding of transcription activators in turn facilitates the recruitment of 

transcription machinery components and chromatin modifying factors that are essential for the 

PIC to overcome barriers to transcription initiation and elongation [Orphanides et al, 1996]. 

Transcription efficiency is further regulated by distal regulatory elements such as enhancer and 

silencers as discussed below (Figure 1.6). 

 

Figure 1.6 Functions of various regulatory elements. a. Promoter is the nucleation site for the 
assembly of transcription machinery, but the assembled complex only confers basal 
transcriptional activity. Transcription activity can be further activated or repressed by a distal 
enhancer (b) or silencer (c), respectively. Modified from Noonan & McCallion, 2010.  

 

1.1.2.2 Enhancers 

Enhancers are distal regulatory elements that activate transcription (Figure 1.6b). Enhancers can 

function on a promoter that is up to a million base pairs apart [Noonan & McCallion, 2010]. 

They can be located either 5’ or 3’ end of the gene promoter. Moreover, the action of enhancers 

on promoters is usually temporal and modular, so they can activate transcription in different cells 
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at different times. The function of enhancers is similar to that of the promoter. Enhancers contain 

binding sites of transcription activator proteins, which in turn, recruit histone modifying and 

chromatin remodelling enzymes to facilitate the chromatin opening and transcription activity 

[Noonan & McCallion, 2010].  

 

1.1.2.3 Silencers 

In contrast to enhancers, silencers are DNA sequence elements that repress gene transcription 

(Figure 1.6c). Like enhancers, silencers can be resided on either 5’ or 3’ of the gene promoter and 

they can work on target promoters that are up to one million base pair apart. The orientation and 

distance between a promoter and silencer generally do not affect the function of silencers, 

although some position- and orientation-dependent silencers also have been identified [Ogbourne 

& Antails, 1998]. Transcription repressor proteins interact with specific DNA elements within 

silencers for recruiting histone modification enzymes and chromatin remodelers to generate a 

compact chromatin structure that is unfavourable for transcription [Maston et al, 2010]. 

Repressor proteins bind to a silencer could in turn compete with an enhancer for the same 

promoter, or block the binding of activators indirectly. Alternatively, the effect of silencers could 

even more directly act on the promoter by inhibiting the PIC assembly. Polycomb response 

elements (PRE) are well known silencers that negatively regulate homeotic genes in ES cells. 

Protein factors such as GAGA have been found to bind to both PRE and promoters of PRE target 

genes, suggesting that PRE and target promoters are brought together in close proximity [Levine 

et al, 2004].  

 

1.1.3 Histone proteins 

Histone proteins are constituents of chromatin, accounting for up to 45% of total nuclear proteins 

[Frederik et al, 1980]. Presumably because of their structural role and functional role that 

regulates gene expression, they are well conserved from yeast to man [Thatcher & Gorovsky, 

1994]. In order to bind to negatively charged DNA, they are evolved as highly basic proteins. 
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There are three major classes of histone proteins: core histones, histone variants and linker 

histones. All of them are responsible for both the basic structural and functional roles in 

regulating the chromatin accessibility.  

 

1.1.3.1 Core histones 

The canonical core histones H3, H4, H2A and H2B are generally expressed during S phase so 

their incorporation into chromatin is mostly replication-dependent [Osley, 1991]. The crystal 

structure of a nucleosome revealed that the histone dimer and octamer formation, as well as the 

interaction between histones and DNA, are via their conserved histone fold domains [Arents & 

Moudrianakis, 1995; Luger et al, 1997]. The histone fold domain is a well conserved, ordered 

structure whereas the N-terminal tail of histone is poorly structured and varies between histones 

[Davey et al, 2002; Luger et al, 1997] (Figure 1.7). These random-coil structures of the 

N-terminal regions as well as the short protease-accessible C-terminal domains protruding the 

nucleosome are highly accessible for post-translational modifications and protein binding. 

 

a              b 

Figure 1.7 The overall organisation of core histone proteins. a. Conservation of histone fold 
domain between core histones. b. A tertiary structure of histone fold domain. Modified from 
Alberts et al, 2008.  

 

The conserved histone fold domain is comprised of three α-helices (α1, α2 and α3) separated by 

two loops (L1 and L2) [Arents et al, 1991] (Figure 1.7a). These helices provide an interface for 

interaction between histone proteins to form H3-H4 and H2A-H2B dimers, an (H3-H4)2 tetramer 

and eventually a histone (H3-H4)2 – (H2A-H2B)2 octamer [Arents et al, 1991; Arents & 

Moudrianakis, 1995; Luger et al, 1997] (Figure 1.8). The histone fold domains and regions 
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extended from them confer a docking site for DNA that is wrapped the histone octamer with 1.7 

turns with ~146 bp to form a nucleosome [Luger et al, 1997]. The extensive binding of the 

histone octamer to DNA with 142 hydrogen bonds directs the DNA double helix twisting to form 

superhelix, resulting in DNA compaction [Richmond & Davey, 2003].  

 

 

 

Figure 1.8 Schematic representation of nucleosome 
assembly. Histone dimers of H4-H3 and H2A-H2B are 
formed by interaction between their histone domain 
interfaces. The histone domain interactions further direct the 
association of histone dimers to form a H4-H3 tetramer that 
binds to DNA. Two H2A-H2B dimers eventually bind to the 
DNA wrapping H3-H4 tetramer to form a nucleosome. 
Adapted from Alberts et al, 2008.  

 

 

 

 

 

 

1.1.3.2 Histone variants 

Histone variants describe core and linker histone genes with amino acid sequence difference 

compared with their canonical counterparts, which are also incorporated into chromatin. These 

variants, unlike canonical histones, are expressed throughout the cell cycle, and their deposition 

does not rely on replication; they could be incorporated into chromatin in any phases of the cell 

cycle [Hardy & Robert, 2010]. Variants of histones H3 and H2A have been the most studied to 

date, while those of H4 and H2B have only been recently identified [Hardy & Robert, 2010]. 

Although the structures of histone variants are very similar to their canonical counterparts, they 

are incorporated into specific chromosomal locations to carry out distinct functions.  
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Figure 1.9 Sequence alignment of H2A (NP_066390) and H2A.Z (NP_002097). The histone 
fold domain is shaded in gray. 
 

Histone H2A has the most number of variants among the four core histones to date; they are 

H2A.Z, H2A.X, H2A.Bbd (H2A Barr body-deficient) and macroH2A. They have different 

molecular sizes and are localised at specific loci within the genome. H2A.Z, sharing 58% 

identity with the canonical H2A (Figure 1.9), is the variant with most complicated roles in 

chromatin structure maintenance. Unlike canonical H2A, H2A.Z is actively deposited into 

chromatin in interphase in a replication-independent manner by chromatin remodelling 

complexes, the SWR1 complex in yeast and the SRCAP/TIP60 complexes in human [Mizuguchi 

et al, 2004; Wong et al, 2007]. 

 

H2A.Z has been reported to negatively and positively regulate chromatin accessibility; both of 

the regulatory roles might be explained by the structural differences between H2A.Z and H2A. 

The difference in amino acid sequences between H2A.Z and H2A was found to be responsible 

for weakening the interaction between the (H2A.Z-H2B) dimer and the (H3-H4)2 tetramer [Suto 

et al, 2000]. Nucleosomes containing H2A.Z are more susceptible to salt-induced dissociation 

compared with H2A nucleosomes [Abbott et al, 2001; Zhang et al, 2005]. A recent study has 

found that nucleosomes containing both H2A.Z and H3.3 are the least stable among nucleosome 

with different combinations of canonical histones and histone variants [Jin et al, 2009]. However, 

contrasting reports showing H2A.Z nucleosomes are more stable in high salt condition compared 

with their canonical H2A counterparts were also documented [Park et al, 2004; Thambirajah et 

al, 2006]. Note that these studies were performed on nucleosomes reconstituted from 

recombinant H2A.Z, which lacks post-translational modifications that may significantly 

influence nucleosomal properties, so the true scenario in genomes and specific loci might be 
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missed. Moreover, H2A.Z may regulate chromatin accessibility by recruiting linker proteins, 

assembly factors and chromatin remodelling complexes via its additional metal binding site and 

an extended acidic patch [Suto et al, 2000].  

 

A distinct feature of H2A.Z within eukaryotic genomes is that it is present in nucleosomes that 

are highly positioned around the transcription start sites (TSS), +1 nucleosomes in particular, of 

both active and inactive genes [Albert et al, 2007; Barski et al, 2007; Mavrich et al, 2008; 

Raisner et al, 2005] (Figure 1.10). Even so, a certain positive correlation between the gene 

expression level and H2A.Z occupancy is observed in human [Barski et al, 2007; Conerly et al, 

2010]. The role of H2A.Z in transcription is complicated as it is responsible for the recruitment 

of RNA polymerase II and RNA polymerase pausing [Adam et al, 2001; Hardy et al, 2009; 

Mavrich et al, 2008]. Apart from transcription, H2A.Z is also enriched at other regulatory 

elements including enhancers in human and chromatin barriers in yeast [Barski et al, 2007; Jin et 

al, 2009; Meneghini et al, 2003]. H2A.Z at yeast barriers was clearly shown to block the binding 

of Sir (silent information regulator) proteins, thus preventing the spreading of heterochromatin 

[Babiarz et al, 2006; Meneghini et al, 2003; Venkatasubrahmanyam et al, 2007]. The acetylation 

state of H2A.Z is the key to yeast barrier activity. Yeast mutants bearing no Htz1 or unacetylable 

Htz1 (yeast ortholog of H2A.Z) exhibit similar phenotypes of boundary defects [Babiarz et al, 

2006]. Whether H2A.Z plays a role at vertebrate insulators is undefined although genome-wide 

studies have found that H2A.Z occupancy is commonly elevated at sites of CTCF binding, 

suggesting a role in enhancer blocking [Barski et al, 2007; Jin et al, 2009].  
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Figure 1.10 H2A.Z distribution around TSS. 
The genome-wide distribution of H2A.Z was 
examined with chromatin immunoprecipitation 
(ChIP) coupled with DNA sequencing (ChIP-seq). 
The red and blue lines represent forward and 
reverse reads of sequencing data, respectively. 
The ovals indicate the nucleosome position. 
Modified from Jin et al, 2009. 

 

 

A study in Arabidopsis thaliana found that H2A.Z occupancy is refractory to DNA methylation 

in the genome. DNA methylation is considered to be a repressive epigenetic mark that is 

occurred at CpG (cytosine-guanosine) dinucleotides in vertebrates, of which the 5th carbon of 

cytosine is covalently linked to a methyl group to form a 5’-methylcytosine. The process is 

catalysed by DNA methyltransferases (DNMT) using S-adenosylmethionine (SAM) as substrate. 

DNA methylation is also found in other eukaryotes including plants except yeast, fruit flies and 

roundworms [Lee et al, 2010]. DNA methylation is considered as an epigenetic mark associated 

with gene silencing. The binding of transcription factors could be blocked by the extra methyl 

group on DNA. CTCF is an example that its binding to DNA is abolished by DNA methylation 

[Bell & Felsenfeld, 2000; Hart et al, 2000]. Apart from that, many methylated DNA binding 

proteins are associated with chromatin repressive complexes so their binding would in turn lead 

to transcription repression and inhibition of chromatin accessibilities [Jones et al, 1998; Le 

Guezennec et al, 2006; Nan et al, 1998; Prokhortchouk & Hendrich, 2002; Prokhortchouk et al, 

2001; Yoon et al, 2003]. Therefore, preventing DNA methylation is a way of protecting genes 

from silencing. The mutually exclusive occupancy of DNA methylation and H2A.Z in the 

genomes of Arabidopsis thaliana and other eukaryotes including human suggests that H2A.Z is a 

potential mechanism of preventing DNA methylation [Conerly et al, 2010; Zemach et al, 2010; 

Zilberman et al, 2008]. Knockout of the Arabidopsis homolog of the histone replacement factor 

Swr1, PIE1 (photoperiod-independently early flowering 1), results in a loss of H2A.Z 

incorporation and leads to an increase in DNA methylation at previous sites of H2A.Z 
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incorporation. However, knockout of MET1 (methyltransferase 1) not only reduces DNA 

methylation but also results in an elevation of H2A.Z at previously methylated sites, implicating 

H2A.Z deposition could be both a cause and consequence of retaining DNA unmethylated or 

active DNA demethylation. The counteracting mechanism between H2A.Z deposition and DNA 

methylation remains undetermined.  

 

1.1.4 Chromatin remodelling complexes 

Chromatin state is very dynamic as DNA has to be exposed in a regulated manner for many DNA 

activities, such as transcription, repair, recombination and replication. Chromatin remodelling 

complexes are involved in nucleosome eviction, repositioning or deposition.  

 

1.1.4.1 ATPase family types 

Chromatin remodelling complexes utilise ATP hydrolysis to generate energy for chromatin 

remodelling; therefore, all of them consist of at least one ATPase subunit. Two well conserved 

domains DExx and HELICc are found in the ATPase subunit of chromatin remodelling 

complexes (Figure 1.11). There are at least four families of chromatin remodelling complexes: 

SWI/SNF (switching defective/sucrose nonfermenting), ISWI (Imitation switch), CHD 

(chromodomain, helicase, DNA binding) and INO80 (Inositol requiring 80) (Table 1.1). They are 

classified based on the differences of regions flanking the two ATPase domain parts. These 

regions vary in size and domain components, allowing binding of different non-catalytic 

complex subunits and histone proteins. The two ATPase parts of SWI/SNF, ISWI and CHD are 

separated by a short insertion and INO80 by a long insertion (Figure 1.11). Apart from the 

ATPase domain, the catalytic subunit also contains other domains for the binding of 

non-catalytic subunits and histone proteins to regulate the ATPase activity and direct the 

remodelers to suitable locations (Table 1.2). For instance, the HSA domain in both SWI/SNF and 

INO80 have been reported to allow the binding of several actin-related proteins (ARP) while the 

bromodomains and chromodomains are for recognition of acetylated and methylated histone tails, 
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respectively [Brehm et al, 2004; Hassan et al, 2002; Szerlong et al, 2008; Winston & Allis, 

1999]. ARPs are suggested to regulate the ATPase activity [Szerlong et al, 2003; Szerlong et al, 

2008]. The binding to histone proteins, on the other hand, targets the remodelers to specific loci, 

such as the chromodomain of CHD1, which selectively tethers the remodelling complex to 

methylated lysine 4 on histone H3 (H3K4me) [Flanagan et al, 2005]. Although the ATPase 

subunit of ISWI does not contain either bromo- or chromo-domain, it is also able to bind to 

histones or DNA via its SANT or SLIDE domains, respectively, tethering the remodelling 

complex on the chromatin substrate [Boyer et al, 2004; Grüne et al, 2003].  

 

 

Figure 1.11 Structures of ATPase 
subunits of different families of chromatin 
remodelling complexes. Adapted from 
Clapier & Cairns, 2009. 
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Remodelling 
complex family 

Yeast Human
Complex ATPase Function on chromatin Complex ATPase Function on chromatin 

 
 
 
 
 
SWI/SNF 

 
SWI/SNF 

 
Swi2/Snf2 

- Transcription activation, elongation and repression 
- Replication 
- DSB repair 
- Targeting by activators or corepressors 

 
BAF 

hBRM/BRG1 
(SMARCA2/
SMARCA4) 

- Targeting by activators 
- Transcription elongation  

 
RSC 

 
Sth1 

- Pol II/III regulation 
- Spindle-assembly checkpoint 
- Chromosome segregation and cohesion 
- Targeting by activators 
- DSB repair 

PBAF 
(Polycomb- 
associated  
BAF) 

BRG1 
(SMARCA4) 

- Function at kinetochore during mitosis 
- Ligand-dependent transcriptional activation 

    
ATRX 

 
ATRX 

- H3.3 incorporation with Daxx 
- Transcription repression 
- Heterochromatin formation and maintenance of chromatin stability 

 
 
 
ISWI 

ISW1 Isw1 - Transcription activation, elongation and termination NURF SNF2L 
(SMARCA1) 

- Transcription activation 

 
ISW2 

 
Isw2 

- Replication 
- Transcription repression 
- Repression of antisense transcription 

 
CHRAC 

SNF2H 
(SMARCA5) 

- Chromatin assembly 

   ACF SNF2H 
(SMARCA5) 

- Replication 
- Chromatin assembly 

 
CHD 

 
CHD1 

 
Chd1 

- Replication regulation 
- Transcription regulation, elongation and termination 

 
CHD1 

 
CHD1 

- Maintain open chromatin structure for pluripotency of ES cells 
- Transcription activation 
- H3.3 incorporation with histone chaperone HIRA 

   NURD CHD3, CHD4 - Transcriptional repression and silencing with deacetylation 
 
 
 
 
INO80 

 
INO80 

 
Ino80 

- DNA repair 
- Pol II activation 
- Replication 
- Core histone removal 

 
INO80 

 
hINO80 

- DNA repair 
- Transcription activation 

SWR1 Swr1 - Htz1 (H2A.Z) deposition 
- DNA repair coupled with phoso-H2A recruitment 

SRCAP SRCAP - H2A.Z incorporation 

   
TIP60 

 
p400 

- H2A.Z deposition and acetylation 
- Transcription activation and repression 
- DNA repair 
- Mitotic checkpoint 

Table 1.1 Summary of chromatin remodelling enzymes in yeast and human. Derived from Barak et al, 2003; Batsche et al, 2006; Baumann et al, 2010; Clapier et al, 2009; 
Gaspar-Maia et al, 2009; Hall & Georgel, 2007; Ho & Crabtree, 2010; Konev et al, 2007; Lewis et al, 2010; Mohrmann & Verrijzer, 2004; Picketts et al, 1996; Saha et al, 2006; 
Sapountzi et al, 2006; Tang et al, 2004; Xue et al, 2000. A nomenclature system has been introduced for ATPases of the human SWI/SNF and ISWI complexes [Ring et al, 1998], 
referring to SMARC (SWI/SNF-related, Matrix-associated, Actin-dependent Regulator Chromatin). The new names under the SMARC nomenclature system of the human ATPase 
subunits are shown in brackets. While the new names are still not commonly employed in publications to date, the old naming system will be still used in this thesis hereafter.  
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Remodelling complex family Remodelling complex ATPase subunit Non-catalytic subunits
 

 
 

  SWI/SNF 

 
 
 

BAF 

 
 
 

hBRM/BRG1 

- BAF155 
- BAF170 
- BAF60a/b/c 
- hSNF5 
- BAF57 
- BAF53A/B 
- β-ACTIN 

ISWI NURF SNF2L - BPTF 
- RbAp46, 48 

 
 

CHD 

 
 

NURD 

 
CHD3, CHD4 
(also known as 
Mi-2α, Mi-2β) 

- MBD3 
- MTA1, 2, 3 
- HDAC1, 2 
- RbAp46/48 
- p66α,β 

 
 
 
 
 
 
 
 
 

INO80 

 
 
 
 

SRCAP 

 
 
 
 

SRCAP 

- REPTIN52 
- PONTIN52 
- BAF53A 
- ARP6 
- GAS41 
- DMAP1 
- YL-1 
- H2A.Z, H2B 
- ZnF-HIT1 

 
 
 
 
 
 

TIP60 

 
 
 
 
 
 

p400 

- REPTIN52 
- PONTIN52 
- BAF53A 
- ACTIN 
- GAS41 
- DMAP1 
- YL-1 
- BRD8 
- TRRAP 
- TIP60 
- MRG15, MRGX 
- FLJ11730 
- MRGBP 
- EPC1, EPC-like 
- ING3 

Table 1.2 Components of some human chromatin remodelling complexes. Derived from Bao & 
Shen, 2007; Clapier & Cairns, 2009.  

 

1.1.4.2 Mechanisms of action 

Nucleosome sliding is a proposed mechanism of chromatin remodelling complexes’ action 

[Clapier and Cairns, 2009; Saha et al, 2006]. The DNA binding domain binds linker DNA so that 

the remodelling complex is tethered on chromatin. The ATPase subunit interacting with a 

nucleosome is thought to use ATP hydrolysis as a source of energy to push the DNA towards the 

nucleosome dyad and a DNA loop is generated. The DNA loop may propagate along the 

nucleosome following breaking some histone-DNA contacts, when the loop propagation resolves 
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into the linker DNA where the DNA binding domain binds to, nucleosome repositioning occurs. 

The remodelling complex releases from the nucleosome and reloads on the chromatin again for 

another round of action (Figure 1.12). After several cycles of ATP hydrolysis required 

nucleosome repositioning, nucleosome sliding occurs.  

 

 

 

Figure 1.12 Schematic diagram showing the 
action mechanism of chromatin remodelling complex. 
Modified from Clapier and Cairns, 2009.  

 

 

 

 

Chromatin remodelling complexes not only repositions nucleosome, but also facilitates histone 

variant exchange. It is thought that following DNA loop formation, histone chaperones may be 

able to remove histone dimers, which in turn allows incorporation of histone dimers with histone 

variants. Chz1, for instance, it is a histone chaperone specific to H2A.Z-H2B dimer and was 

found to work cooperatively with the Swr1 complex in yeast to catalyse H2A-H2A.Z exchange 

[Luk et al, 2007]. However, it is not known whether DNA loop formation is a prerequisite for the 

Chz1 binding to nucleosomes, if so, how the loop is formed precisely on the nucleosome where 

H2A-H2B resides is not understood.  

 

1.1.4.3 Targeting and specific roles in transcription 

Although these chromatin remodelers share some similarities, they do not function redundantly; 

rather, they have diverse functions and are recruited to specific chromatin regions (Table 1.1). 

Almost all of them have been reported to have both positive and negative effects on the 

chromatin structure. The ISWI family, for instance, it is primarily suggested to be responsible for 
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chromatin assembly [Ito et al, 1997], maintenance of the high-order of chromatin structure 

[Deuring et al, 2000] and transcription repression [Goldmark et al, 2000]. However, one of its 

family members, NURF (nucleosome remodelling factor), can positively regulate transcription 

possibly because of its nucleosome sliding activity [Hamiche et al, 1999; Mizuguchi et al, 1997].  

 

Similarly, SWI/SNF can promote transcription activation as well as repression. The SWI/SNF 

family is known to promote transcription by remodelling the chromatin structure for binding of 

transcription activators or even recruiting activators itself [Burns & Peterson, 1997; Hirschhorn 

et al, 1992; Neely et al, 2002]. However, a genome-wide study showed that transcription 

activation is not a universal function of SWI/SNF remodelers. Deletion of both Swi and Snf in 

yeast leads to elevated expression of some genes, suggesting they could also play a repressive 

role in transcription [Sudarsanam et al, 2000].  

 

A dual role in regulation of chromatin structure is also observed in the CHD family. The NURD 

(nucleosome remodelling and deacetylation) complex containing histone deacetylation activity 

can be detected at both active and inactive genes, suggesting that it can both activate and repress 

transcription [Miccio et al, 2010]. The CHD family is classified by the presence of a 

chromodomain-containing ATPase subunit, which appears to target the remodelers to specific 

genetic loci. The specificity of CHD1 to histone tails of H3 with trimethylation on lysine 4 

(H3K4me3) directs the complex to active chromatin but excludes it from H3K4me3 depleted 

heterochromatin [Flanagan et al, 2005; Kelley et al, 1999; Strokes et al, 1995; Strokes et al, 

1996].  

 

1.1.4.4 Histone replacement 

The INO80 family is well known to be associated with histone variants. The INO80 complex 

interacts with H2A.X for DNA repair, whereas the closely related family member, SWR1 in 

yeast is responsible for H2A.Z deposition into chromatin via facilitating the exchange of 
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H2A-H2B for H2A.Z-H2B dimers [Kobor et al, 2004; Mizuguchi et al, 2004; Morrison et al, 

2004]. INO80 is suggested to mediate remodelling at DSB by generating single-stranded DNA, 

exposing the lesion for repairing factors [van Attikum et al, 2004]. In contrast, SWR1 

incorporates H2A.Z mostly at promoters and other regulatory elements. The non-redundant roles 

of chromatin remodelers and their specific occupancy across the genome contribute the complex 

regulation of chromatin organisation.  
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1.2 Histone Modifications 

The core histone proteins are subject to many post-translational modifications including 

methylation, acetylation, phosphorylation, poly(ADP-ribosyl)ation (PARylation), proline 

isomerisation, sumoylation and ubiquitination (Figure 1.13). These mostly occur on the 

protruding, unstructured N-terminal histone tails and the short but accessible C-termini. Histone 

modifications are a major component of epigenetic information and can regulate the binding of 

other factors, and in some cases, can alter the chromatin stability by changing the interaction 

between histones and DNA. The functions of histone modifications are diverse, depending on 

which amino acid of histone is modified and what the modification status is.  
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Figure 1.13 Commonly found histone modifications on core histones and the responsible 
enzymes. The numbering of amino acid residues are according to the human histone sequences. 
Note that CARM1 is PRMT4 under the new nomenclature system for arginine 
methyltransferases. Adapted from Kouzarides, 2007.  

 

1.2.1 Histone methylation 

There are several methylation states of both lysine and arginine, and each can have differing 

effects on chromatin structure and function (Figure 1.14). Lysine can be mono- (me1), di- (me2) 

or even tri-methylated (me3), whereas arginine can only be mono- or di-methylated but 

dimethylation can be symmetrical (me2s) or asymmetrical (me2as) (Figure 1.15). Methylation on 
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lysines 4, 9, 27 and 36 of histone H3, on lysine 20 of H4, on arginine 8 of H3 and on arginine 3 

of H4, has gained the most attention in the past years.  

 

Figure 1.14 Schematic diagram showing 
major methylation on histones H3 and H4 
and their related functions. Methylation 
states are indicated as number of dots and 
their associated functions are depicted as 
distinct colours in the figure key. Adapted 
from Mosammaparast and Shi, 2010.  

 

 

 

 

Figure 1.15 Methylation states of arginine and lysine. a. Arginine can be mono- or 
di-methylated, and the latter can be symmetrical and asymmetrical. Symmetrical dimethylation 
refers to one methyl group added to each nitrogen of the guanidinium group, whereas two methyl 
groups are added to the same nitrogen of the guanidinium group in asymmetrical dimethylation. 
b. Lysine can be mono-, di- or tri-methylated, depending on the number of methyl groups added 
to one lysine. Adapted from Klose and Zhang, 2007.  
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1.2.1.1 Lysine methylation 

Lysine methylation on histones is catalysed by lysine methyltransferases (KMT) that are specific 

for both the methylation states and sequence context of lysine residues (Table 1.3). Methylation 

of histone H3 on lysine 4 (H3K4me) is catalysed by the Set1 protein in yeast and the SET1 

complexes or the SET domain-containing MLL (mixed-lineage leukemia) complexes in human 

[Briggs et al, 2001; Santo-Rosa et al, 2002; Yokoyama et al, 2004]. H3K4 methylation is linked 

to active gene transcription. Genome-wide studies have shown that promoters and transcription 

start sites are enriched in H3K4me3, and the levels are positively correlated to gene expression 

[Barski et al, 2007; Bernstein et al, 2005; Wang et al, 2008]. This scenario appears to be 

conserved from yeast to higher eukaryotes [Liang et al, 2004; Santo-Rosa et al, 2002; Schneider 

et al, 2004]. Deletion of the Set1 gene in S. cerevisiae leads to repression of most genes [Boa et 

al, 2003], further confirming the essential role of H3K4 methylation in transcription. The 

distribution of dimethylated H3K4 (H3K4me2) is broader and differs between yeast and other 

eukaryotes. H3K4me2 spans gene coding regions in yeast but the distribution of H3K4me2 is 

more likely to overlap the H3K4me3 enriched sites around TSSs in higher eukaryotes [Barski et 

al, 2007; Bernstein et al, 2002; Schneider et al, 2004; Liang et al, 2004]. H3K4me can act as a 

signal for the binding of chromodomain containing proteins of various chromatin remodelling 

enzymes, and can promote both the binding as well as the activity of the transcription machinery 

(Table 1.4). For example, it has been shown that H3K4me3 is crucial for the binding of the 

NURF complex to the promoter and loss of such binding results in impaired expression of the 

HOX gene in Xenopus during development [Wysocka et al, 2006]. Moreover, genome-wide 

patterns of H3K4me3 and RNA polymerase II significantly overlap [Barski et al, 2007] and the 

binding of TFIID to promoters is dependent on H3K4me3 [Vermeulen et al, 2007]. Apart from 

transcription activation, H3K4 methylation is also involved in V(D)J recombination during 

lymphocyte development and repression of RNA polymerase II mediated cryptic transcription 

[Liu et al, 2007; Matthews et al, 2007; Pinskaya et al, 2009], suggesting plasticity of H3K4 

methylation in chromatin activity regulation.  



Chapter 1 

23 | P a g e  
 

Histone residue New name Old name Methylation state Function 

 
 

 
H3K4 

KMT2A MLL1 mono/di  
 
 

- Transcription activation 
- Chromatin remodelling 
 

KMT2B MLL2 mono/di/tri 
KMT2C MLL3 mono/di/tri 
KMT2D MLL4 mono/di/tri 
KMT2E MLL5 di/tri 
KMT2F hSET1A mono/di/tri 
KMT2G hSET1B mono/di/tri 
KMT2H ASH1 di/tri 
KMT7 SET7/9 mono/di/tri 

 
 
 
 
 

H3K9 

KMT1A SUV39H1 di/tri - Heterochromatin 
formation/silencing 

KMT1B SUV39H2 di/tri - Heterochromatin 
formation/silencing 

KMT1C G9a mono/di - Euchromatic H3K9 
methylation 

KMT1D EuHMTase/GLP mono/di - Heterochromatin 
formation/silencing 

KMT1E ESET/SETDB1 di/tri - Transcription repression 
KMT1F CLL8 Unknown - Unknown 
KMT8 RIZ1 mono/di - Transcription repression 

H3K27 KMT6 EZH2 mono/di/tri - Transcription repression 

 
H3K36 

KMT3A SET2 mono/di/tri - Transcription activation 
- Transcription repression 

KMT3B NSD1 mono/di/tri - Transcription activation 
KMT3C SYMD2 mono/di/tri - Transcription activation 

 
H3K79 

 
KMT4 

 
DOT1L 

 
mono/di/tri 

- Transcription activation 
- Checkpoint activation 
- DNA repair 

 
 

H4K20 

KMT5A Pr-SET7/8 mono - Transcription repression 
 

KMT5B 
 

SUV4-20H1 
 

mono/di/tri 
- DNA damage response 
- Heterochromatin 

formation/silencing 
KMT5C SUV4-20H2 mono/di/tri - Heterochromatin 

formation/silencing 

Table 1.3Summary of human KMTs. Derived from Allis et al, 2007; Hublitz et al, 2009; Li et al, 
2008; Lucio-Eterovic et al, 2010; Schotta et al, 2004; Sebastian et al, 2009; Shilatifard, 2008; 
Shukla et al, 2009; Wang et al, 2007; Yuan et al, 2009.  
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H3K4me binding protein Methylation state recognition Function 
BPTF H3K4me3 Chromatin remodelling 
CHD1 H3K4me2/3 Chromatin remodelling, 

splicing 
ING2 H3K4me3 Gene silencing 
ING1 H3K4me3 DNA repair 
TAF3 H3K4me3 Gene activation 

Table 1.4 Table showing protein factors recognising methylated H3K4 and their functions in 
chromatin activities. Modified from Shukla et al, 2009.  

 

Besides H3K4 methylation, H3K36 and H3K79 methylation are also associated with 

transcription regulation. Unlike H3K4me2 and H3K4me3 that are commonly found at promoters, 

levels of H3K36 and H3K79 methylation, especially those with higher methylation states (me2 

or me3), are usually enriched at gene bodies [Guenther et al, 2007; Pokholok et al, 2005; 

Shanbazian et al, 2005; Vakoc et al, 2006]. H3K36me3 and K79me2/3 positively correlate with 

transcription activity [Guenther et al, 2007]. However, similar to H3K4 methylation, H3K36 

methylation also appears to be responsible for gene repression in certain scenarios. Deletion of 

Set2, which is responsible for H3K36 methylation in yeast leads to dramatic induction of GAL4 

[Landry et al, 2003]. Moreover, artificial tethering of Set2 to the promoter in a lacZ reporter 

assay also results in reduced expression of lacZ [Strahl et al, 2002], suggesting a dual role of 

H3K36 methylation in transcription. The repressive role of H3K36 methylation in transcription 

appears to prevent cryptic transcription initiation by cooperation with histone deacetylases 

(HDAC) [Lee & Shilatifard, 2007]. H3K79 methylation, in addition, has been shown to be 

required for preventing the spread of heterochromatin. Lysine 79 on H3 is not on the exposed 

N-tail; rather, it is located close to the core histone domain (Figure 1.13), and where is suggested 

to be an interface for binding of silencing factors that are essential for transcriptional silencing in 

yeast [Park et al, 2002]. Therefore, methylation on this residue catalysed by DOT1, an unusual 

KMT without a SET domain, might lead to changes of the nucleosome structure or, simply block 

the binding of Sir proteins. The affinity of Sir proteins towards the H3K79 unmethylated tail is 

shown to be higher than to the methylated one [van Welsem et al, 2008].  
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By contrast, methylation of H3K9, H3K27 and H4K20 are generally associated with 

transcription repression, conferring a negative effect on chromatin accessibility. Like other lysine 

methylation, their functions are also dependent on methylation state. The trimethylation states of 

H3K9 (H3K9me3) and H4K20 (H4K20me3) are usually associated with chromatin repression 

and commonly found in heterochromatin and transcriptionally silenced loci, whereas mono- and 

di-methylation are more widely spread, and also present in euchromatin [Rice et al, 2003; 

Schotta et al, 2004; Zhou et al, 2010]. H3K9me3 and H4K20me3 are responsible for position 

effect variegation (PEV) resulting in variegated expression of transgenes commonly observed in 

Drosophila [Reuter & Spierer, 1992; Schotta et al, 2004]. The causes of PEV will be discussed in 

Section 1.3.2.4. In vertebrates, SUV39H1 and SUV39H2 trimethylate H3K9, G9a and 

G9a-related protein (GLP) dimethylate the same residue but mostly in euchromatin [Aagaard et 

al, 1999; O’ Carroll et al, 2000; Rea et al, 2000; Tachibana et al, 2001; Tachibana et al, 2005]. 

Interestingly, although SUV39H1 is only able to methylate H3K9, double null Suv39h mouse 

embryonic fibroblasts (MEF) exhibit a loss not only of H3K9me3 at pericentric heterochromatin, 

but also of H4K20me3, which is established by Suv4-20h1 and Suv4-20h2 [Schotta et al, 2004]. 

It suggests that there is interplay between these two modifications, in which H3K9me3 appears 

to precede H4K20me3 during heterochromatin establishment. Chromodomain-containing HP1 

proteins are suggested to bridge these two histone modifications together. Methylated H3K9 

provides an epitope for HP1 binding, which in turn recruits Suv4-20h1 and Suv4-20h2 to 

methylate H4K20me3 at heterochromatin [Lachner et al, 2001; Schotta et al, 2004]. Apart from 

H4K20me3, H3K9me3 also works cooperatively with H3K27 methylation. It was showed in 

mice that H3K9me3 and H3K27me1 are enriched at pericentric heterochromatin. However, in 

the H3K9me3 depleted condition resulting from Suv39h knockout, H3K27me3 appears to take 

up the leading role in heterochromatin to compensate the loss of H3K9me3 [Peters et al, 2003].  

 

Active and repressive methylation marks do not always oppose each other. There are chromatin 

domains, called bivalent domains, which are enriched in both H3K27me3 and H3K4me3. Genes 
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residing in these domains are silent but poised for activation [Bernstein et al, 2006]. This 

bivalent feature is believed to be especially crucial in development as well as differentiation as 

shown in ES cells [Bernstein et al, 2006; Mikkelsen et al, 2007; Pan et al, 2007]. Among various 

developmental-related loci, HOX genes are mostly repressed by the H3K27me3 mark in stem 

cells [Cao et al, 2002; Müller et al, 2002]. Several groups have shown that EZH2 (enhancer of 

zeste homologue 2), a SET domain containing of polycomb group (PcG) protein, is responsible 

for the trimethylation of H3K27 [Cao et al, 2002; Czermin et al, 2002; Kuzmichev et al, 2002; 

Müller et al, 2002]. Deletion of this KMT does lead to derepression of Hox genes in Drosophila 

[Cao et al, 2002]. The H3K27me3 mark contributes gene silencing by acting as a recognition 

mark on the polycomb response elements (PRE) of HOX genes for binding of the chromodomain 

protein Pc (Polycomb) of repressive complex PRC1 (polycomb repressive complex 1). Such 

binding in turn facilitates a series of gene silencing effects accompanied with monoubiquitination 

of H2A [Cao et al, 2005; Fischle et al, 2003; Min et al, 2003; Wang et al, 2004]. Even so, recent 

genomic studies of histone methylation profiles in differentiated cells showed that bivalent 

domains are not restricted to undifferentiated ES cells but also present in differentiated cells, 

suggesting a crucial role of H3K27me3 in gene silencing in diverse cell types [Barski et al, 2007; 

Mikkelsen et al, 2007]. 

 

1.2.1.2 Arginine methylation 

Arginine is another residue that can be methylated on histones. Arginines 2, 8, 17 and 26 of 

histone H3 and arginine 3 of histone H4 were shown to be methylated in mammals (Figure 1.13) 

[Klose & Zhang, 2007]. There are up to 11 protein arginine methyltransferases (PRMT) (PRMT 

1 – 11) have been identified in human so far even though not all of them are able to methylate 

histone proteins. Of the identified PRMTs, only PRMT1, PRMT4, PRMT5 – 9 are found to be 

responsible for arginine methylation on histone proteins to date (Table 1.5) [Chen et al, 1999; 

Cook et al, 2006; Guccione et al, 2007; Lee et al, 2005a; Lee et al, 2005b; Schurter et al, 2001; 

Strahl et al, 2001]. Functions and impacts on chromatin activities of arginine methylation have 
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not been examined in depth but similar to lysine methylation, the effects on chromatin are also 

dependent on the methylation site and state. Even dimethylation, whether the arginine is 

asymmetrically or symmetrically methylated can impose opposite effects on chromatin activities 

[Lee et al, 2005c]. Such discrepancy in the symmetry of dimethylation may result in recruiting 

different binding proteins to the chromatin for regulation of transcription or other activities.  

 

PRMT Type Substrate specificity Function 
PRMT1 I H4R3 Transcriptional activation 
PRMT4 I H3R2, 17, 26, 128, 129, 131, 134 Transcriptional activation 
PRMT5 II H3R8, H4R3 Transcriptional repression 
PRMT6 I H2A, H3R2, H4 Inhibit H3K4 trimethylation 
PRMT7 II H2A, H4R3 Imprinting in male germ cells 
PRMT8 I H4 Unknown  
PRMT9 II H2A, H4 Unknown 

Table 1.5 Table showing substrate specificity of PRMTs and impacts of the arginine methylation 
on chromatin activities. Derived from Hyllus et al, 2007; Pal & Sif, 2007; Guccione et al, 2007. 
Only PRMTs can methylate histone proteins are shown here.  

 

1.2.1.3 Histone demethylation 

Histone methylation was considered for some time as a stable mark that was not subject to 

turnover. However, the discovery of a large number of histone lysine demethylases (KDM) 

reveals a more dynamic nature to these modifications. KDMs have specificity against histone 

residue and even methylation state (Table 1.6). LSD1 (lysine specific demethylase 1) was the 

first KDM to be identified, which removes the methyl group on lysine 4 monomethylated histone 

H3 [Shi et al, 2004]. Although the crystal structure of LSD1 revealed the capability to 

demethylate all the three methylation states of H3K4, LSD1 has no demethylase activity towards 

trimethylated H3K4 [Shi et al, 2004; Stavropoulos et al, 2006].  
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Table 1.6 Summary of human KDMs. Derived from Allis et al, 2007; Shin & Janknecht, 2007a; 
Shin & Janknecht, 2007b. As these KDMs are better known with their old names, the old naming 
system will be used in this thesis.  

 

JmjC (Jumonji-C)-containing enzymes define the largest class of KDMs that are capable to 

demethylate trimethylated lysines. There are at least 27 JmjC-containing proteins identified in 

recent years. 15 of them have been shown to demethylate lysines on the H3 tails and one to 

demethylate arginines on H3 and H4 [Agger et al, 2008]. Like KMTs, JmjC-containing KDMs 

are specific to both the sequence context and methylation state for demethylation (Table 1.6).  

 

New name Old name Specificity  Function 

KDM1 LSD1/BHC110 - H3K4me1/2 

- H3K9me1/2 

- Transcription activation 

- Transcription repression 

- Heterochromatin formation 

KDM2A JHDM1a/FBXL11 - H3K36me1/2 - Transcription elongation 

KDM2B JHDM1b/FBXL10 - H3K36me1/2 - Transcription elongation 

KDM3A JHDM2a - H3K9me1/2 - Androgen receptor gene activation 

- Spermatogenesis 

KDM3B JHDM2b - H3K9me - Unknown 

KDM4A JMJD2A/JHDM3A - H3K9me2/3 

- H3K36me2/3 

- Transcription repression 

- Genome integrity 

- Activation of androgen receptor 

dependent transcription 

KDM4B JMJD2B - H3K9me2/3 

- H3K36me2/3 

- Heterochromatin formation 

KDM4C JMJD2C/GASC1 - H3K9me2/3 

- H3K36me2/3 

- Transcription activation 

- Transcription repression 

KDM4D JMJD2D - H3K9me2/3 - Activation of androgen receptor 

dependent transcription 

- Transcription activation 

- Transcription repression 

KDM5A JARID1A/RBP2 - H3K4me2/3 - Retinoblastoma-interacting protein 

KDM5B JARID1B/PLU-1 - H3K4me1/2/3 - Transcription repression 

KDM5C JARID1C/SMCX - H3K4me2/3 - X-linked mental retardation 

KDM5D JARID1D/SMCY - H3K4me2/3 - Male-specific antigen 

KDM6A UTX - H3K27me2/3 - Transcription activation 

KDM6B JMJD3 - H3K27me2/3 - Transcription activation 
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The mechanism of arginine demethylation is not fully understood. It has been suggested that 

histone demethylimination is involved in the process in which peptidylarginine deiminase (PADI) 

enzymes can convert unmodified or methylated arginine residues to citrulline (Figure 1.16). 

PADI4 is suggested to be responsible for the conversion of methylated histone arginine to 

citrulline, such that the level of histone arginine methylation is reduced [Cuthbert et al, 2004; 

Wang et al, 2004]. However, it is not known whether the citrullinated arginine can be fully 

reversed to an unmodified arginine, other enzymatic pathways might be required or alternatively, 

the citrullinated histone is simply replaced by an unmodified one by chromatin remodelling 

complexes.  

 

Figure 1.16 Deimination of arginine (left) and demethylimination of methylated arginine 
(right) using PADI4 as an example. After the conversion, methylated arginine becomes citrulline. 
Adapted from Klose and Zhang, 2007.  

 

1.2.2 Histone acetylation 

While histone methylation plays a dual role in transcription and regulation of chromatin structure, 

histone acetylation is mostly responsible for maintaining a transcriptionally permissive 

chromatin structure. All four core histones can be acetylated (Figure 1.13). Histone 

acetyltransferases (KAT) catalyse the addition of an acetyl group to a lysine residue using acetyl 

Co-A as substrate (Figure 1.17). Like KMTs, KATs have substrate specificity, targeting specific 

histones and lysine residues for modification (Table 1.7).  
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Figure 1.17 Lysine acetylation and deacetylation. Modified from Pelletier et al, 2008. 

 

As the addition of an acetyl group neutralises the positive charge of the lysine side chain, it is 

hypothesised that histone acetylation weakens the interaction between negatively charged DNA 

and basic histone tails. Some previous studies showed that there are indeed some perturbations to 

histone-DNA contacts by histone acetylation [Ausió & van Holde, 1986; Simpson, 1978]. 

However, contrasting results question whether neutralisation of histone charges is sufficient to 

alter chromatin structure. Even in the same study performed by Ausió and van Holde, they found 

that in physiological ionic strength, nucleosomes containing hyperacetylated or minimally 

acetylated histones are persistently folded [Ausió & van Holde, 1986]. It was also observed that 

hyperacetylated and hypoacetylated histones exhibit similar binding affinities for nucleosomal 

DNA [Mutskov et al, 1998]. Furthermore, mutating the acetylable lysines of histone H3 to same 

charged arginine or uncharged glycine residues also display similar phenotypes in yeast [Mann 

and Grunstein, 1992], altogether arguing against the essential role of the lysine positive charge in 

chromatin folding. Taken together, these results suggest that factors other than charge 

neutralisation contribute to the role of histone acetylation in alteration of chromatin structure.  
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New name Old name Specificity  Function 

KAT1 HAT1 - H4K5/K12 - Histone deposition 

- DNA repair 

KAT2A hGCN5 - H3K9/K14/K18 

- H2B 

- Transcription activation 

KAT2B PCAF - H3K9/K14/K18 

- H2B 

- Transcription activation 

KAT3A CBP - H2AK5 

- H2BK12/K15 

- Transcription activation 

KAT3B p300 - H2AK5 

- H2BK12/K15 

- Transcription activation 

KAT4 TAF1 - H3 

- H4 

- Transcription activation 

KAT5 TIP60/PLIP - H4K5/K8/K12/K16 

- H2A 

- H2A.Z 

- Transcription activation 

- DNA repair 

KAT6A MOZ/MYST3 - H3K14 - Transcription activation 

KAT6B MORF/MYST4 - H3K14 - Transcription activation 

KAT7 HBO1/MYST2 - H4K5/K8/K12 

- H3 

- Transcription 

- DNA replication 

 

KAT8 

 

HMOF/MYST1 

 

- H4K16 

- Chromatin boundaries 

- Dosage compensation 

- DNA repair 

KAT9 ELP3 - H3 

- H4 

- Transcription elongation 

KAT12 TFIIIC90 - H3K9/K14/K18 - Polymerase III transcription 

KAT13A SRC1 - H3 

- H4 

- Transcription activation 

KAT13B ACTR - H3 

- H4 

- Transcription activation 

KAT13C P160 - H3 

- H4 

- Transcription activation 

KAT13D CLOCK - H3 

- H4 

- Transcription activation 

Table 1.7 List of human KATs and their substrate specificities and related functions in chromatin 
activities. Derived from Allis et al, 2007; Han et al, 2008; Winkler et al, 2002. Old names of 
KATs will still be used throughout this thesis because they are better known with these names.  
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In addition to the potential effects on histone charge, histone acetylation also acts as a 

recognition mark for the transcription factors and chromatin remodelling complexes. Like 

histone methylation, there is a recognition domain specific to histone acetylation, called the 

bromodomain, commonly found in transcription coactivators and chromatin remodelling 

complexes [Hassan et al, 2002; Hassan et al 2007; Sanchez & Zhou, 2009; Winston & Allis, 

1999] (Table 1.8). It has been shown that H3 lysine 14 acetylation (H3K14ac) can enhance 

binding affinity of the RSC (remodels the structure of chromatin) complex to the nucleosomes 

and acetylated H4 can increase catalytic activity of the complex [Ferreira et al, 2007]. 

Furthermore, the SWI/SNF complex preferentially displaces acetylated histones in vitro [Chandy 

et al, 2006], demonstrating the necessity of histone acetylation in chromatin remodelling activity. 

Moreover, a bromodomain protein Bdf1 (bromodomain-containing protein 1) recognising 

acetylated H4 is a subunit of the TFIID  complex that initiates transcription [Durrant & Pugh, 

2007], suggesting that histone acetylation is required for transcription. 

 

Protein category Bromodomain protein Function 
 
 

Histone acetyltransferase 

p300  
 

Transcription coactivation 
PCAF 
CBP 

TAFII250 
GCN5 

Histone methyltransferase MLL Transcription coactivation 
Chromatin remodelling BRM Transcription 

coactivation/corepression BRG1 
Table 1.8 Table showing bromodomain containing proteins in human and their functions. 
Modified from de la Cruz et al, 2005.  

 

There is also a relationship between gene body acetylation and transcription elongation. Several 

KATs such as CBP (CREB binding protein) and PCAF (p300/CBP-associated factor) have been 

shown to physically interact with complexes involved in transcription elongation [Cho et al, 

1998; Wery et al, 2004; Wittschieben et al, 1999]. Therefore, the trailing patterns of H3 and H4 

acetylation along active transcribed regions may be a result of the passage of RNA polymerase II 
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and may set as epigenetic memory to facilitate subsequent rounds of transcription [Wang et al, 

2008]. On the other hand, the presence of bromodomains in KATs associated with RNA 

polymerase II suggests the possibility that the transcription machinery is directed to sites for 

transcription via binding to acetylated histones [Kanno et al, 2004; Jacobson et al, 2000; Obrdlik 

et al, 2008].  

 

Due to the intrinsic potential of histone acetylation to initiate transcription, it needs to be tightly 

regulated to prevent aberrant transcription activation and cryptic transcription within gene bodies 

[Carrozza et al, 2005; Joshi & Struhl, 2005]. At least 18 histone deacetylases (HDAC) have been 

identified thus far in mammals and up to 11 (HDAC 1 – 11) in human [Hildmann et al, 2007; 

Ropero & Esteller, 2007]. The substrate specificity of HDACs is still poorly understood. HDACs 

are generally considered to be transcription corepressors due to the interaction with several 

repressive complexes, including mSin3A (mammalian Sin3 homolog A), NuRD and CoREST 

[Dannenberg et al, 2005; You et al, 2001; Zhang et al, 1999]. The Rpd3 (reduced potassium 

dependency 3, the yeast homolog of mammlian HDAC1/2) complex, for instance, possesses 

histone deacetylation activity and can prevent transcription initiation. The 

bromodomain-containing subunits Eaf3 (Esa1p-associated factor 3) and Rco1 appear to target 

the entire complex towards transcribed regions to carry out deacetylation in order to prevent 

transcription initiation within the coding regions [Carrozza et al, 2005; Joshi & Struhl, 2005; 

Keogh et al, 2005; Li et al, 2007]. Repression of gene expression mediated by histone 

deacetylation is also observed in higher eukaryotes [Brehm et al, 1998; Evert et al, 2006]. 

Nevertheless, histone deacetylation is not restricted to gene repression; it is also involved in 

other chromatin activities, such as DNA repair or even transcription activation in some cases, 

apparently depending on what protein complexes the HDAC associates with [Hildmann et al, 

2007].  
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1.2.3 Histone ubiquitination 

Unlike other post-translational modifications, ubiquitination involves the conjugation of a ~8.5 

kDa ubiquitin protein to a lysine residue of the target substrate covalently. The ubiquitination 

pathway typically involves E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) 

and E3 (ubiquitin ligase), where the E3 typically determines the substrate specificity (Figure 

1.18). Substrates can be mono- or poly-ubiquitinated; the ubiquitination state determines the fate 

of proteins. In general, polyubiquitinated proteins are targets of the 26S proteasome for 

degradation. In contrast, monoubiquitination does not usually result in degradation, and it is 

more likely to act as a signal for diverse cellular functions. Histone ubiquitination discussed 

hereafter mostly focuses on histone monoubiquitination. Histone ubiquitination is reversible 

through the action of deubiquitination enzymes.  

 

 

Figure 1.18 The ubiquitination pathway. Ubiquitin is firstly 
activated by E1 in an ATP-dependent manner. The activated 
ubiquitin is then transferred to E2 and ultimately conjugated to 
a target substrate in the presence of E3. The substrate can be 
either mono- or poly-ubiquitinated. There are two classes of E3 
ligases, RING (really interesting new gene) and HECT 
(homologus to the E6-AP carboxyl terminus). Ubiquitin usually 
does not form covalent bond with a RING E3 while it does with 
a HECT E3. The figure is modified from Woelk et al, 2007. 

 

 

 

All four core histones can be ubiquitinated but the functions of H3 and H4 ubiquitination are not 

very clear [Goldknopf & Busch, 1975; Osley, 2006; Wang et al, 2006; West & Bonner, 1980]. A 

ubiquitin moiety is conjugated to lysine 119 of H2A (H2AK119ub1) and to lysine 120 

(equivalent to lysine 123 in S. cerevisiae) of H2B (H2BK120ub1) in mammals [Böhm et al, 

1980; Thorne et al, 1987]. One might expect that the attachment of such a large molecule to 
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histones would induce massive structural changes on histones, nucleosomes or even chromatin, 

given that the sizes of histones (14 – 17 kDa) and ubiquitin (8.5 kDa) are quite comparable. 

However, evidence supporting this structural disturbance is scarce, and also replacement of 

ubiquitin by a bulkier SUMO (small ubiquitin-like modifier) protein does not even destabilise 

the chromatin [Chandrasekharan et al, 2009]. Interestingly, a recent report demonstrated that 

ubiquitinated H2B can enhance nucleosome stability [Chandrasekharan et al, 2009; Jason et al, 

2002]. Even so, ubiquitination of H2A and H2B is involved in the regulation of various 

chromatin activities, such as transcription activation, repression, elongation, heterochromatin 

establishment and DNA repair. There is growing consensus that the regulation of chromatin 

processes by this histone ubiquitination is more likely to be mediated via recruitment of other 

protein complexes, rather than altering the chromatin structure directly. 

 

1.2.3.1 H2A ubiquitination 

H2A and H2B ubiquitination appear to play opposite roles in transcriptional regulation. 

Ubiquitination of H2A correlates with gene silencing whereas that of H2B correlates with 

transcription activity. H2AK119ub1 is localised to heterochromatin and the inactivated X 

chromosome [Baarends et al, 1999; Baarends et al, 2005; Smith et al, 2004]. There are several 

E3 ligases specific to H2A in which RING1B and 2A-HUB are the two prevalent ones associated 

with repressive chromatin complexes (Figure 1.19). RING1B is a well characterised example 

that associates with at least three repressive complexes: the PRC1, E2F-6.com-1 (E2F 

transcription factor 6 complex 1) and FBXL10-BcoR corepressors complexes [Cao et al, 2005; 

Ogawa et al, 2002; Sánchez et al, 2007; Wang et al, 2004]. These repressive complexes are 

responsible for generating repressive histone marks, H3K9 and H3K27 methylation, as well as 

H3K4 demethylation, linking H2AK119ub1 to gene silencing [Cao et al, 2002; Muller et al, 

2002; Ogawa et al, 2002; Sanchez et al, 2007; Wang et al, 2004]. Conversely deubiquitination of 

H2AK119ub1 is correlated with transcription activity. At least four histone deubiquitination 

enzymes have been identified to be able to deubiquitinate H2A (Figure 1.19), they are associated 
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with complexes required for transcription and gene activation [Joo et al, 2007; Nakagawa et al, 

2008; Zhao et al, 2008].  

 

 

Figure 1.19 Examples of effects of H2A 
ubiquitination on gene expression. RING1B and 
2A-HUB are E3 ligases specific to H2A. RING1B 
is a component of several repressive complexes 
including PRC1, FBXL10-BcoR and 
E2F-6.com.1 whereas 2A-HUB associates with 
the N-CoR complex. These complexes are 
involved in gene expression repression through 
catalysing H2A ubiquitination. On the contrary, 
H2A deubiquitination enzymes promote gene 
activation by removing ubiquitin from H2Aub. 
Adapted from Zhou et al, 2009. 

 

1.2.3.2 H2B ubiquitination 

1.2.3.2.1 Factors required for H2B ubiquitination 

The first H2B ubiquitination ligase was firstly identified in S. cerevisiae as a cell size control 

factor Bre1 [Hwang et al, 2003]. It interacts with the E2 conjugating enzyme Rad6 [Wood et al, 

2003]. Both Bre1 and Rad6 are essential for monoubiquitination of H2B on lysine 123 

(H2BK123ub1) in yeast [Hwang et al, 2003; Robzyk et al, 2000]. The same H2B ubiquitination 

appears to be conserved from yeast to higher eukaryotes. Human Rad6 homologs, HR6A and 

HR6B, also serve as E2 conjugating enzymes [Kim et al, 2009]. By using sequence alignment, 

yeast Bre1 homologs were also found in other species including human [Hwang et al, 2003]. 

There are two Bre1 homologs in human, RNF20 and RNF40, forming a complex for the 

ubiquitination activity. siRNA induced knockdown of RNF20 or RNF40 results in a decreased 

level of H2B ubiquitination (H2BK120ub1) [Kim et al, 2005; Zhu et al, 2005]. In addition to 

RNF20/40, more other E3 ligases for H2B ubiquitination have been identified in humans. 

MDM2 (mouse double minute 2) and BRCA1/BARD1 (breast cancer susceptibility gene 
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1/BRCA1 associated RINF domain 1) have been shown to be able to ubiquitinate H2B in vitro 

[Minsky & Oren, 2004; Thakar et al, 2010]. A chromatin remodelling complex factor 

BAF250/ARID1 (BRG1-assoicated factor 250/AT rich interactive domain 1) was also recently 

shown to ubiquitinate H2B in vitro and siRNA induced knockdown of this E3 ligase leads to a 

reduction of H2BK120ub1 globally [Li et al, 2010]. Nevertheless, except RNF20/40, the other 

human E3 ligases have not been studied in depth and it remains elusive whether they target the 

same or different genomic loci of H2B for ubiquitination. 

 

 

Figure 1.20 The H2B ubiquitination 
pathway in humans. Ubiquitin (ub) is firstly 
activated by E1 with ATP hydrolysis. The 
activated ubiquitin attached to E1 is then 
passed to E2, HR6A or HR6B. The ubiquitin is 
finally transferred from E2 to H2B in the 
presence of RNF20/40 and PAF1 complexes 
where only RNF20/40 determines the substrate 
specificity. 

 

 

 

 

Unlike the conventional ubiquitination pathway, E1, E2 and E3 are not sufficient to drive 

efficient H2B ubiquitination on gene loci (Figure 1.20). The PAF1 (RNA polymerase II 

associated factor) complex is also required for H2B ubiquitination in yeast and humans, and 

deletion of any of the complex subunits results in loss of H2BK123ub1 in yeast [Ng et al, 2003; 

Xiao et al, 2005]. It is suggested that the intact PAF1 complex is required to bridge the E3 and 

E2 enzymes together [Zhu et al, 2005]. Other factors, such as kinases responsible for 

phosphorylation of RNA polymerase II for instance, are required for efficient ubiquitination of 

nucleosomal H2B at gene loci. Deletion of Kin28 (CDK7 in humans) in S. cerevisiae abolishes 
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phosphorylation of serine 5 at the RNA polymerase II CTD (C-terminal heptapeptide repeat 

sequences), and also the global level of H2BK123ub1 is seriously diminished [Xiao et al, 2005]. 

It suggests that Kin28 plays a role in facilitating H2B ubiquitination but the mechanism is not 

known (Figure 1.21b). It is not clear whether the phosphorylation on RNA polymerase II is 

essential for subsequent steps of the ubiquitination pathway or if Kin28 works on the pathway 

directly by stimulating or recruiting the H2B ubiquitination machinery. The Bur kinases 

responsible for phosphorylation of serine 2 at the RNA polymerase II CTD during transcription 

elongation are also required for H2B ubiquitination in yeast. It was shown that the Bur kinases 

are able to phosphorylate not only the RNA polymerse II but also the E2 conjugating enzyme of 

H2B ubiquitination Rad6 such that the conjugase activity is augmented (Figure 1.21b) [Laribee 

et al, 2005; Wood et al, 2005]. The conjugase activity of the human Rad6 ortholog HR6A is also 

augmented by CDK2 phosphorylation, suggesting conservation of this regulatory pathway 

[Sarcevic et al, 2002]. Another protein factor, Lge1 (large 1), one of the cell size control factors 

identified together Bre1 in yeast, was recently shown to be required for the recruitment of Bre1 

to actively transcribed genes [Hwang et al, 2003; Song & Ahn, 2010]. The involvement of more 

auxiliary protein factors in the H2B ubiquitination pathway compared with the conventional 

protein ubiquitination suggests that H2B ubiquitination is tightly regulated by different means in 

order to achieve different functions in the genome. 
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Figure 1.21 Sequential events on chromatin leading to H2B ubiquitination-coupled 
transcription upon gene activation in yeast. Adapted from Weake and Workman, 2010. 

 

1.2.3.2.2 Relationship between H2B ubiquitination and transcription 

H2B ubiquitination and gene transcription are interdependent. Ubiquitinated H2B is enriched at 

the gene bodies in the yeast genome and at both the gene bodies and promoter in the human 

genome (Figure 1.22), suggesting a link between gene transcription and H2B ubiquitination 

[Minsky et al, 2008; Schulze et al, 2009]. The necessity of transcription for efficient H2B 

ubiquitination is supported by findings that an addition of NTPs for proper transcription is 

required to detect H2BK120ub1 and conversely, blocking transcription with drug inhibitors leads 

to a global loss of H2B ubiquitination [Kim et al, 2009; Minsky et al, 2008; Pavri et al, 2006]. A 

recent study found that the binding of RNF20 to chromatin is via the elongating form of RNA 

polymerase II, explaining the requirement of transcription for H2B ubiquitination at gene loci 

[Zhang & Yu, 2011]. Conversely, proper transcription also depends on H2B ubiquitination. 
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Knockdown of RNF20 represses the HOX and p53 gene expression in humans and deletion of 

Rad6 or Bre1 in yeast results in increased sensitivity to 5-fluorouracil, a drug inhibitor of 

transcription elongation [Shema et al, 2009; Xiao et al, 2005; Zhu et al, 2005].  

 

a          b 

Figure 1.22 Occupancy of ubiquitinated H2B in the yeast (a) and human genomes (b). 
Adapted from Minsky et al, 2008 and Schulze et al, 2009.  

 

The role of H2B ubiquitination in transcription is suggested to be chromatin structure regulation, 

possibly through the regulation of the FACT (facilitates chromatin transcription) activity. FACT 

is a histone chaperone binding to H2A-H2B dimer so it plays a crucial role in both 

destabilisation of chromatin structure for transcription and chromatin structure restoration 

following the passage of RNA polymerase II [Orphanides et al, 1999]. The FACT activity 

stimulated by H2BK120ub1 helps destabilising chromatin structure to overcome the 

nucleosomal barrier to the passage of RNA polymerase II [Belotserkovskaya et al, 2003; Pavri et 

al, 2006]. Following the wake of elongating RNA polymerase II, histone redeposition is required 

to restore the chromatin structure for binding of transcription factors for next round of 

transcription. The accumulation of Spt16, the largest subunit of FACT, at the GAL1 gene is found 

to require ubiquitinated H2B in yeast, suggesting a chromatin stabilisation role of H2B 

ubiquitination during transcription [Fleming et al, 2008]. Although these studies suggest a 

requirement of H2B ubiquitination in transcription elongation, an in vitro transcription assay 

using H2BK120R, H2B mutant that cannot be ubiquitinated, argues against the hypothesis. It 
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was showed that the transcription activity on H2B- or H2BK120R-containing nucleosomes is 

more or less the same [Kim et al, 2009]. However, the transcription assay was performed with 

recombinant chromatin template, effects of genomic contexts and other histone modifications on 

gene transcription are completely ignored. Moreover, as H2B ubiquitination could be required 

for transcription in a gene-specific manner according to an observation that RNF20 knockdown 

does not lead to a global gene repression [Shema et al, 2009], the generalisation of using 

recombinant chromatin template to represent the chromatin in vivo for the transcription assay 

may not reflect the real scenario at the specific gene loci in the genome.  

 

Although H2B ubiquitination is required for transcription in certain scenarios, the level of 

ubiquitinated H2B is not and cannot be persistently maintained high during transcription. Yeast 

Ubp8 (USP22 in human), a component of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex 

facilitating the assembly of PIC, is able to deubiquitinate H2BK123ub1 and such activity is 

needed for efficient transcription (Figure 1.21d) [Bhaumik & Green, 2001; Henry et al, 2003; 

Zhang et al, 2008; Zhao et al, 2008]. Deletion of ubp8 results in an elevated global level of 

H2BK123ub1 and repression of SAGA-regulated genes [Daniel et al, 2004; Henry et al, 2003]. 

A time course experiment on the induced GAL1 gene in yeast demonstrated that H2BK123ub1 

increases with increasing GAL1 mRNA at the early stages upon induction but the level of 

H2BK123ub1 decreases and finally reaches the background level again following the 

accumulation of mRNA, [Henry et al, 2003]. This result suggests that H2B ubiquitination is 

required for transcription activation and probably also for the early stage of elongation but 

deubiquitination is also required. Deubiquitination of H2B is shown to be essential for the 

binding of the Ctk1 phosphorylase that is responsible for the transition of the RNA polymerase II 

from the activated form to the elongating form [Wyce et al, 2007].  
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1.2.3.2.3 Other roles of H2B ubiquitination in the genome 

H2B ubiquitination has been found to be a master regulator of H3K4 and H3K79 methylation but 

such regulation is not linked to transcription. It was shown that deletion of rad6 or bre1 in yeast 

results in lowered levels of di- and tri-methylation of H3K4 and K79 [Briggs et al, 2002; Dover 

et al, 2002; Shahbazian et al, 2005; Sun & Allis, 2002; Wood et al, 2003]. The crosstalk between 

H2B ubiquitination and this H3 methylation is conserved in mammals [Zhu et al, 2005; Kim et 

al, 2005; Kim et al, 2009]. However, the link is unidirectional because abolishment of this H3 

methylation by deletion of KMT genes dot1 and set1 does not alter the global level of 

H2BK123ub1 in yeast [Ng et al, 2002; Sun & Allis, 2002]. The crosstalk mechanism will be 

discussed in detail in Section 1.2.4. Despite the active role of ubiquitinated H2B in transcription 

and that H3K4 methylation is a mark of active transcription; H2B ubiquitination does not appear 

to facilitate transcription via H3K4 methylation. By comparing the gene expression profiles of 

fission yeast mutants exhibiting defects in H3K4 methylation and H2B ubiquitination, it showed 

that changes of expression profiles in the two mutants do not overlap [Tanny et al, 2007]. 

Furthermore, while H2BK123ub1 spans the entire gene bodies in yeast, H3K4me3 only peaks at 

gene promoters and declines along the coding regions [Pokholok et al, 2005; Schulze et al, 2009]. 

The results suggest that the functions of these two histone modifications in transcription are 

different and H2B ubiquitination-mediated H3K4 methylation seems to have another role in the 

genome. Moreover, the effect of mutation H3K4A, which cannot be methylated, on the inducible 

GAL gene expression differs from that of H2BK123R, which cannot be ubiquitinated, further 

implying non-overlapping roles of H3K4 and H2BK123 modifications in transcription [Fleming 

et al, 2008]. 

 

Another role for H2B ubiquitination in chromatin is that of counteracting heterochromatin 

silencing in yeast. Expression of the URA3 gene located near the telomere of chromosome VII is 

silenced in yeast strains without ubiquitinated H2B [Sun & Allis, 2002]. Ubp10 is another yeast 

deubiquitination enzyme, and its deletion of Ubp10 results in a global increase in H2BK123ub1 
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[Gardner et al, 2005]. Ubp10 appears not to be associated with the transcriptional machinery; it 

is more likely to be associated with heterochromatin silencing. Several studies in yeast have 

found that Ubp10 is preferentially localised at silent domains and telomeres [Gardner et al, 2005; 

Emre et al, 2005]. While H3K79 methylation is mediated by H2B ubiquitination and is 

unfavourable for the Sir protein binding that is required for heterochromatin formation, Upb10 is 

suggested to actively deubiquitinate H2B at silent loci to facilitate heterochromatin silencing 

[Emre et al, 2005]. The physical interaction between Ubp10 and Sir proteins further indicates 

that deubiquitination is essential for heterochromatin formation [Kahana & Gottschling, 1999]. 

H2B ubiquitination seems to be required for anti-silencing in Drosophila and Arabidopsis. 

Knockdown of Drosophila USP22 (homolog of yeast Ubp8) results in an increase in H2B 

ubiquitination as expected but represses PEV induced transgene silencing [Zhao et al, 2008]. 

Similarly, mutation of SUP32/UBP26, which deubiquitinates H2B in Arabidopsis, results in an 

increase in H2B ubiquitination and the release of heterochromatic silencing of transgenes, 

accompanied by lower levels of H3K9me2 and DNA methylation [Sridar et al, 2007]. However, 

a similar scenario of antagonising heterochromatin formation by H2BK120ub1 has not been 

observed in vertebrates. It still remains unclear whether vertebrates adopt the same mechanism to 

maintain the chromatin organisation. 

 

1.2.4 Crosstalk between histone modifications 

Histone modifications are deciphered by specific “reader modules” that are present in histone 

modifiers, transcription factors or chromatin binding proteins (Table 1.9). They may be 

responsible for directing chromatin binding proteins/complexes to target sites or providing a 

platform for the anchoring. These reader modules sometimes work in conjunction with others in 

the same protein or in a multi-protein complex such that high specificity or affinity is achieved. 

Accumulating evidence emerges that this multivalent property could facilitate a more dynamic 

control of the binding of various proteins/complexes. By altering one histone modification, the 

binding affinity of the current resident protein is modified, in turn allows or inhibits competition 
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for other protein complexes [Ruthenburg et al, 2007].  

 

Table 1.9 Table showing histone modifications recognised by reader modules. Modified from 
Taverna et al, 2007. 

 

As shown in many earlier mentioned histone modification examples, an addition or a removal of 

histone mark can influence others, these phenomena collectively known as histone crosstalk. 

Crosstalk of histone modifications can be in a cis or trans manner, depending on whether the two 

interacting or counteracting histone modifications are on the same histone (cis) or different 

histones (trans) (Figure 1.23). 

  

Reader module Histone mark 
Bromodomain Acetylated histone tails 

 
 
Chromodomain or 

chromodomain-like 

Chromodomain H3K9me2/3, H3K27me2/3 
Double chromodomain H3K4me1/2/3 

Chromo barrel H3K36me2/3 
Double/tandem tudor H3K4me3, H4K20me1/2/3 

MBT (malignant brain 
tumour) repeats 

H4K20me1/2, H1K26me1/2  
H3K4me1, H3K9me1/2 

PHD (plant homeodomain) finger H3K4me3, unmethylated H3K4 
H3K9me3, H3K36me3 

WD40 repeat Unmodified H3R2, H3K4me2 
14-3-3 H3S10ph, H3S28ph 

BRCT (breast cancer carboxyl-terminal) H2A.XS139ph 
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a        d 

 

 

 

 

b 

 

c 

Figure 1.23 Examples of histone crosstalk pathways. a. Crosstalk between H3K9, H3S10 and 
H3K14. b. Crosstalk between H3 methylation and H3/H4 acetylation. c. Crosstalk between 
major H4 histone modifications. d. Trans- and cis-histone crosstalk between H2A/H2B and 
H3/H4. “#” indicates it is only an observation in Drosophila to date. Adapted from Latham and 
Dent, 2007.  

 

While it might not be surprising that the modifications of histone residues in close proximity can 

influence each other, histone crosstalk can also occur in a trans manner. The crosstalk between 

H2B ubiquitination and H3K4/K79 methylation is the best studied example. The linkage 

between H3K4 methylation and H2B ubiquitination is mediated by the COMPASS (Complex 

proteins associated with Set1) complex in yeast [Lee et al, 2007]. In the absence of H2B 

ubiquitination, the H3K4-specific KMT Set1 can bind to target sites and is able to mono, but not 

di- or tri-methylate H3K4 [Lee et al, 2007]. The crystal structure of yeast Set1 catalytic domain 

showed that Set1 is indeed similar to monomethyltransferases that harbour a tyrosine within the 

catalytic pocket, while this residue is usually substituted as phenylalanine in di- and 
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tri-methyltransferases [Takahashi et al, 2009]. While Set1 is a component of the COMPASS 

complex that consists of other non-catalytic subunits (Figure 1.24), interaction of Set1 with these 

subunits is found to act as the phenylalanine/tyrosine switch to regulate the di- and 

tri-methylation activity of Set1. It was found that binding of Cps40, Cps60 and Cps35 is required 

to switch on the di- and tri-methylation activity of Set1. Their binding is suggested to modify the 

catalytic pocket for the accommodation of trimethylated lysine [Lee et al, 2007; Schneider et al, 

2005; Takahashi et al, 2009]. Of these three COMPASS subunits, only the binding of Cps35 

requires prior H2B ubiquitination, demonstrating the crosstalk mechanism between H3K4 

di-/tri-methylation and H2B ubiquitination [Lee et al, 2007]. The sequence orthologs of Cps35 in 

humans are WDR82 and WDR5, but note that WDR5 is also suggested to be the human ortholog 

of yeast Cps30 [Shilatifard, 2008]. WDR82 has also been shown to be recruited to SET1 

complexes in an H2BK120ub1-dependent manner, and is able to stimulate the SET1 KMT 

activity to result in higher methylation states [Lee et al, 2008; Vitaliano-Prunier et al, 2008; Wu 

et al, 2008]. The SET1 protein in the human MLL complexes (COMPASS-like complexes) also 

consists of tyrosine within the active site and SET1 alone is only able to monomethylate H3K4 

in vitro [Southall et al, 2009]. Although the binding of the MLL complex subunits RbBP5, Ash2 

and WDR5 can stimulate the KMT activity of MLL1 in vitro, it is not known whether higher 

methylation states of H3K4 result and whether the binding of these subunits is 

H2BK120ub1-dependent [Dou et al, 2006; Southall et al, 2009].  
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Figure 1.24 Complex components of the yeast and human COMPASS and COMPASS-like 
complexes. The components of the human SET1 and MLL (COMPASS-like) complexes similar 
to yeast counterparts are shown in red. Adapted from Shilatifard, 2008.  

 

Compared with the crosstalk mechanism between H2B ubiquitination and H3K4 methylation, 

the mechanism of H2B ubiquitination facilitating H3K79 methylation is less defined. 

Nevertheless, it was shown that the recruitment of Cps35 to chromatin is also able to augment 

the di- and tri-methylation activity of H3K79 KMT DOT1 to nucleosomes although DOT1 is not 

present in the yeast COMPASS and human SET1 complexes, but how the DOT1 activity is 

stimulated by Cps35 is not known [Lee et al, 2007]. It is also suggested that ubiquitinated H2B 

itself can directly activate DOT1 as shown in an in vitro system using reconstituted nucleosomes 

[McGinty et al, 2008]. However, how and whether the in vitro stimulation of DOT1 by 

ubiquitinated H2B is occurred on native nucleosomes in vivo is undetermined.  

 

More evidence of the trans-histone crosstalk is emerging, such as crosstalk between H3 

methylation and histone acetylation (Figure 1.23b). It was found that chromodomains 

recognising methylated H3K4 are present in many KAT complexes such as TIP60 and SAGA 

[Doyon et al, 2004; Peña et al, 2006; Pray-Grant et al, 2005], which are responsible for both H3 

and H4 acetylation. The methylated H3K36 recognising protein Eaf3 in the Rpd3 complex with 

HDAC activity links H3K36 methylation and histone deacetylation together [Li et al, 2007]. 
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Collectively, histone modifications not only act a signal for protein binding, rather, they work in 

a cooperative manner possibly to regulate the chromatin states precisely.  

 

1.2.5 Histone modifications at gene regulatory elements 

Promoters and enhancers are generally enriched in active histone modification but their histone 

modification profiles are not same. Another distinct feature of promoters is their specialised 

histone modification profile. As mentioned earlier, promoters are generally enriched in 

H3K4me3 with the highest levels at transcriptionally active promoters (Figure 1.25) [Barski et al, 

2007; Guether et al, 2007; Wang et al, 2007]. Histone acetylation, especially H3K9 and K14 

acetylation, is essential for the TFIID binding to initiate transcription [Agalioti et al, 2002]. H3 

acetylation is enriched at nearly 70% of gene promoters, not all of which are active [Guenther et 

al, 2007]. The most highly active promoters are enriched in H3K4me3, H3K9ac and H3K14ac 

together with other histone acetylation on H4, H2A and H2B (Figure 1.25) [Barski et al, 2007; 

Wang et al, 2007]. Early studies using DNaseI or micrococcal nuclease digestion found that 

transcription start sites (TSS) are more prone to be digested compared with other chromatin 

regions [Keene & Elgin, 1981; Wu, 1980], implicating a high accessible chromatin structure for 

binding of transcription factors and coactivators. This nucleosome depleted signature appears to 

correlate with gene expression that it is absent in silent gene promoters in human [Heintzman et 

al, 2007]. It is thought that the highly accessible structure is due to nucleosome depletion. 

However, recent findings of studying nucleosome stability found that TSSs consist of unstable 

nucleosomes containing histone variants H3.3 and H2A.Z [Jin & Felsenfeld, 2007; Jin et al, 

2009]. Therefore, instead of complete depletion of nucleosomes, TSS nucleosomes are more 

likely to be turned over very rapidly. In human, two prominent peaks of H2A.Z flanking TSS (at 

-2 and +1 nucleosomes) are detected (Figure 1.10) [Barski et al, 2007; Jin et al, 2009; Schones et 

al, 2008]. They are referred to highly positioned nucleosomes. These well positioned 

nucleosomes especially the +1 nucleosome, which is conserved in many eukaryotes, are 

suggested to be important to pause RNA polymerase II for preparation of the transition from 
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initiation to elongation or to prevent anti-sense initiation [Cairns, 2009; Mavrich et al, 2008]. 

However, such well positioned nucleosomes are barriers to the RNA polymerase II passage, 

chromatin remodelling complexes are needed to overcome this barrier for proper transcription. 

 

Figure 1.25 Overview of histone modifications at promoters. The expression levels of the 
categories genes are depicted as colours in the key of each graph. Modified from Barski et al, 
2007 and Wang et al, 2007.  

 

Enhancers and promoters also share similar histone modification patterns; although 

genome-wide studies also demonstrated that there are some distinct differences between the two 

classes of regulatory elements [Heintzman et al, 2007; Wang et al, 2007]. Three H3K4 

methylation states are detected at enhancers but H3K4me1 is particularly enriched [Heintzman et 

al, 2007; Heintzman et al, 2009; Wang et al, 2007]. Histone acetylation and H2A.Z are detected 

at enhancers, but their levels of enrichment are relative to the expression levels of their target 

genes [Barski et al, 2007; Wang et al, 2007]. Enhancers are also DNase hypersensitive; almost 

all of them consist of at least one hypersensitive site [Wang et al, 2007]. 
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1.3 Chromosomal Organisation of Gene Expression 

While chromatin states determine gene expression, actively transcribed genes are required to be 

resided in chromatin domains that are permissive for protein access and so for transcription. 

Chromatin with permissive chromatin structure is called euchromatin. The chromatin structure of 

chromatin domains comprised of silent genes and genome structural components, such as 

telomeres and centromeres is usually more repressive, these regions are known as 

heterochromatin regions.  

 

1.3.1 Chromosomal domains 

Studies of the β-globin loci in vertebrates revealed that transcriptionally active and inactive 

chromatin domains differ not only in protein accessibility, but also histone modification patterns 

[Bresnick et al, 2006]. There are extensive studies on the mammalian and chicken β-globin loci 

revealing how chromatin domains are established and regulated by alteration of histone 

modifications and binding of chromatin remodelling complexes. The chromatin domain features 

and their establishment within the chicken β-globin locus will be discussed in depth in Section 

1.5.  

 

Endonuclease enzymes cleave the phosphodiester bond within DNA; compact chromatin 

structures with inaccessible DNA are more resistant to digestion. In contrast, chromatin regions 

with more open chromatin structures are more sensitive to digestion; the digestion patterns 

therefore reflect the chromatin structure. By using endonuclease digestion, such as DNaseI and 

micrococcal nuclease, it was found that transcriptionally active chromatin domains possess more 

open chromatin structure. Regulatory elements such as promoters and enhancers are the most 

hypersensitive to digestion. Binding of transcription factors and coactivators appear to maintain 

the open chromatin structures [Kukreti et al, 2010].  
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As discussed earlier (Section 1.2), active histone marks such as H3K4me3 and histone 

acetylation are usually enriched in active chromatin domains with high transcription activity 

[Barski et al, 2007; Wang et al, 2008]. Mapping of histone modifications across the human 

β-globin locus revealed that the correlation of active histone mark density and transcription 

activity also exists within local chromatin domains. It was found that H3K4me3 and H3ac are 

enriched at the actively transcribed Gγ and Aγ in fetal stages [Hsu et al, 2009; Kim et al, 2007]. 

In contrast, inactive chromatin domains, including silent gene loci, telomeres and centromeres 

are usually enriched in repressive histone marks such H3K9, H3K27 and H4K20 methylation 

and lack active histone marks [Barski et al, 2007; Rice et al, 2003; Schotta et al, 2004; Zhou et 

al, 2010].  

 

1.3.2 Heterochromatin domains 

Heterochromatin regions are typically gene poor and generally transcriptionally inactive. The 

levels of transcription from genes within heterochromatin are low and many studies 

demonstrated that integration of a transgene into heterochromatin regions result in silencing, 

suggesting that the chromatin environment of heterochromatin is unfavourable for transcription 

[Grewal & Elgin, 2002; Huisinga et al, 2006; Wallrath, 2002].  

 

1.3.2.1 Significance of heterochromatin 

Heterochromatin is enriched in repressive histone marks, H3K27me3, H4K20me3 and 

H3K9me3 in particular, and lacks active histone marks such as H3K4me2, H3K4me3 and 

acetylation [Barski et al, 2007; Rice et al, 2003; Schotta et al, 2004; Zhou et al, 2010]. 

Heterochromatin also contains SUV39H1/2 and SUV4-20H1/2, which are the KMTs responsible 

for the establishment of H3K9 and H4K20 methylation and repressive protein complexes 

containing HP1, which binds H3K9me3 [Kwon & Workman, 2008; Lachner et al, 2001; 

Nakayama et al, 2001; O’ Carroll et al, 2000; Rea et al, 2000; Schotta et al, 2004].  
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The relatively stable heterochromatin structure of is crucial for maintaining the genome stability. 

Repetitive DNA sequences are potential sites for homologous recombination, and repressive 

heterochromatin appears to inhibit this event [Ellermeier et al, 2010; Peng & Karpen, 2008]. 

Expression of potentially harmful transposable elements is also suppressed by heterochromatin 

[Lippman & Martienssen, 2004; Peng & Karpen, 2008; Slotkin & Martienssen, 2007]. The rigid 

structures of constitutive heterochromatin, such as centromeres, not only act as docking sites for 

cohesin binding to facilitate sister-chromatin cohesion but also needs to be strong enough to 

withstand the forces exerted by mitotic spindles during chromosome segregation [Bernard, 2001; 

Nonaka et al, 2001; Oliveira et al, 2005]. In contrast to constitutive heterochromatin, facultative 

heterochromatin is regulated and varies between cell types. A well studied example of facultative 

heterochromatic silencing is X chromosome inactivation in female mammals. Female mammals 

have two X chromosomes whereas there is only one in males. In order to balance X-linked gene 

expression between sexes, one of the two X chromosomes has to be silenced. 

Heterochromatinization to inactivate one X chromosome is one of the means for dosage 

compensation [Plath et al, 2002]. 

 

1.3.2.2 Heterochromatin establishment 

The molecular mechanism of heterochromatin formation is best studied in S. pombe. Given the 

transcriptionally repressive nature of heterochromatin, it has come as some surprise that 

transcription is required for heterochromatin establishment. It has been shown that RNA 

polymerase II is associated with heterochromatin machinery and transcribes non-coding RNA 

transcripts of centromeric-like sequences of the S. pombe MAT locus [Djupedal et al, 2005; Kato 

et al, 2005]. The single-stranded RNA (ssRNA) is reverse transcribed by RNA-dependent RNA 

polymerase (RdRP) to synthesise double-stranded RNA (dsRNA) [Motamedi et al, 2004; 

Sugiyama et al, 2005]. The dsRNA is cleaved by a RNA endonuclease Dicer to form small 

interfering RNA (siRNA) [Hannon, 2002; Kanellopoulou et al, 2005; Kawamura et al, 2008], 

which in turn is loaded onto the small RNA binding protein Argonaute (Ago) [Hutvagner & 
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Simard, 2008]. The Ago protein present in the RNA-induced transcription gene-silencing (RITS) 

complex “slices” the siRNA to become single-stranded by its endogenous ribonuclease activity 

and directs the entire complex to the heterochromatin site where the sequence is complementary 

to the siRNA [Irvine et al, 2006; Verdel et al, 2004] (Figure 1.26). Such process is essential for 

heterochromatin formation that deletion of the RNAi machinery factors Dicer or Ago results in 

reduced H3K9 methylation, a histone mark associated with heterochromatin, at pericentric 

regions and represses anti-silencing effects on reporter genes integrated into centrometric repeats 

[Buker et al, 2007; Volpe et al, 2002]. 

 

Figure 1.26 Schematic representation of heterochromatin formation. This is a pathway 
representing the process occurred in yeast so proteins denoted are yeast homologs. Note that 
RdRC responsible for reverse transcription to generate dsRNA has not been identified in 
mammals. Red lollipops represent methylated H3K9 whereas green flags represent histone 
acetylation. Modified from Zhang et al, 2008. 

 

The link between RNAi and heterochromatin histone modification establishment was recently 

suggested to be mediated by a LIM domain protein, Stc1, which is present in the CLRC 

(Clr4-Rik1-Cul4) complex that has H3K9 lysine methyltransferase activity [Bayne et al, 2010; 

Nakayama et al, 2001]. Stc1 also associates with RITS via Ago1 and this interaction is proposed 

to be responsible for bringing Clr4 to sites of RITS binding to promote H3K9 methylation. 

Methylation of H3K9 therefore not only facilitates the spreading of heterochromatin (Section 

1.3.2.3), but also appears to start the heterochromatin propagation (Figure 1.26). 
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Although no RdRP has yet been identified in Drosophila and mammals, the 

heterochromatinestablishment pathway does still seem to be conserved from S. pombe to higher 

eukaryotes. Both forward and reverse strands of heterochromatin transcripts and protein 

components required for the further processing of dsRNA have been identified in both yeast and 

vertebrates [Irvine et al, 2006; Kanellopoulou et al, 2005]. dsRNA in mammals might be 

generated by other mechanisms such as bidirectional transcription of the repeated 

heterochromatin sequences or self-pairing of the ssRNA. Similar to yeast, heterochromatin 

formation is defective in Drosophila and vertebrates if the RNAi machinery is abolished by 

depletion of DICER or AGO proteins [Deshpande et al, 2005; Fagegaltier et al, 2008; Fukagawa 

et al, 2004; Giles et al, 2010]. The RNAi machinery might be envisioned to nucleate 

heterochromatin formation; however, its alone does not seem to be able to initiate de novo 

heterochromatin formation because H3K9 methylation is required for the binding of RITS 

[Sadaie et al, 2004]. Deletion of Dicer leads to accumulation of heterochromatin transcripts but 

cannot completely abolish heterochromatin in murine ES cells [Murchison et al, 2005]. These 

implicate that siRNA is required for heterochromatin formation but its alone is not sufficient to 

initiate the process, how it is initiated in the first place remains enigmatic. 

 

1.3.2.3 Heterochromatin spreading 

H3K9 methylation plays the central role in heterochromatin spreading. The SUV39 family of 

H3K9 KMTs (SUV39H1 and SUV39H2 in humans) possess a SET domain for the KMT activity, 

and also a chromodomain that recognises methylated H3K9 [Kouzarides, 2002; Zhang et al, 

2008]. These “read” and “write” abilities are believed to self-reinforce H3K9 KMTs binding, and 

thus propagate the heterochromatin-associated histone mark H3K9me3 along the chromatin. As 

prior H3K9 deacetylation is required for the methylation on the same residue, the interaction 

between H3K9 KMT and HDAC appears not only to ensure the histone H3 being methylated is 

deacetylated, but also to prepare the adjacent nucleosomes to be ready for H3K9 methylation 

such that heterochromatin propagation could be carried out more efficiently [Czermin et al, 
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2001].  

 

Heterochromatin propagation is also facilitated by binding of HP1 in mammals (yeast homolog 

of Swi6) [Grewal & Jia, 2007]. HP1 consists of a chromodomain that is also specific 

H3K9me2/3 [Bannister et al, 2001; Lachner et al, 2001]. Loss of HP1 binding at 

heterochromatin is observed as a result of deletion of H3K9 KMTs Clr4 or Suv39h in yeast or 

mouse, respectively [Nakayama et al, 2001; Lachner et al, 2001]. The binding of HP1 to 

H3K9me2/3 in turn recruits more H3K9 KMTs due to the multifunctional chromoshadow 

domain (CSD) of HP1. The CSD is able to interact with SU(VAR)3-9, the Drosophila homolog 

of SUV39H, and this interaction is suggested to help H3K9 methylation propagation along the 

chromatin [Bannister et al, 2001; Schotta et al, 2002]. CSD of HP1 also allows HP1 

self-dimerisation, which in turn may help chromatin compaction [Brasher et al, 2000; Cowieson 

et al, 2000]. Furthermore, similar to SUV39H, HP1 also associates with HDACs, possibly 

deacetylating the neighbouring histone proteins for H3K9 KMTs to act on [Kim et al, 2004; 

Yamada et al, 2005]. Besides promoting repressive marks in histone level, HP1 also facilitates 

DNA methylation by recruiting DNMTs [Fuks et al, 2003; Lehnertz et al, 2003; Smallwood et al, 

2007]. DNA methylation is a repressive mark commonly found in heterochromatin or silenced 

region. The recruitment of DNMTs by HP1 and the interaction between MBDs and H3K9 KMTs 

helps H3K9me3 spreading by self-reinforcing themselves [Delpus et al, 2002; Fuks, 2005; 

Lande-Diner et al, 2007; Rountree et al, 2000].  

 

1.3.2.4 Position effects on gene expression 

While chromatin environment can determine gene expression, positions of gene integration can 

lead to activation or repression. There are two position effects leading to altered gene expression, 

known as position effect variegation (PEV) and chromosomal position effect (CPE) 

[Recillas-Targa et al, 2004]. It was shown in Drosophila that a transgene can be activated and 

repressed depending on the site of integration; such phenomena are collectively known as 
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chromosomal position effects (CPE). Repression of the transgene is observed if it is integrated 

into heterochromatin. Transgene activation would result if it is integrated into active chromatin 

regions with nearby enhancers [Roseman et al, 1993].  

 

PEV is defined as variegated gene expression from cell to cell when a gene is translocated into 

the proximity of heterochromatin. PEV caused by heterochromatin was first described in 

Drosophila. It has been found that a transgene integrated into the genome near heterochromatin 

has varied expression levels among a population of cells. The level of repression is inversely 

proportional to the distance from the transgene to heterochromatin, implicating an occurrence of 

heterochromatin spreading [Girton & Johansen, 2008]. Similar observations were also widely 

reported in yeast and vertebrates [Bühler et al, 2007; Hiragami-Hamada et al, 2009]. The 

repression can be rescued by the deletion of proteins involved in the formation of 

heterochromatin, further confirming that the reduced transgene expression observed is due to 

heterochromatin spreading [Bühler et al, 2007; Volpe et al, 2002].  

 

 

  



Chapter 1 

57 | P a g e  
 

1.4 Insulators protect genes from aberrant expression 

The organisation of chromosomal domains and the restriction of promiscuous enhancers require 

the setting of boundaries. As genes could be non-specifically activated by nearby enhancers or 

silenced by heterochromatin encroachment, the genome appears to have evolved some DNA 

elements to counteract these effects, these elements are collectively known as insulators.  

 

1.4.1 Insulator activities: barrier and enhancer-blocking activities 

An insulator is defined as a DNA sequence element that has the ability to shield a gene from its 

chromosomal environment. There are two insulator activities heterochromatin barrier and 

enhancer-blocking activities. Two reporter assays have been used to identify insulators.  

 

Heterochromatin barrier activity is commonly defined by analysing the ability of putative 

insulator barriers to shield a reporter transgene from chromosomal position effect silencing 

[Gaszner & Felsenfeld, 2006]. Transgenes without insulator protection would exhibit variable 

expression when randomly integrated into a genome. The expression level of a transgene 

depends on its chromosomal location; one integrated into or close to heterochromatin is silenced 

while one located in euchromatin remains expressed. However, due to the abundance of 

self-propagation property of heterochromatin, most transgene integrants succumb to silencing in 

long-term culture (Figure 1.27b). Contrastingly, if the reporter construct is flanked by insulators 

with heterochromatin barrier activity, expression of the transgene can persist for a long time 

(Figure 1.27a).  

  



Chapter 1 

58 | P a g e  
 

a         b 

Figure 1.27 Schematic representation of insulator barrier assays. a. The reporter gene 
construct including the promoter and enhancer is flanked by putative insulators at both the 5’ and 
3’ ends. Functional insulator barriers are able to maintain the transgene expression along the time 
course. b. In the absence of insulators, expression of the transgene decreases with time.  

 

A second activity that defines an insulator is enhancer blocking, where the insulator activity 

interrupts the communication between a linked promoter and enhancer specifically when 

positioned between the two. In contrast to silencing events, an enhancer blocker does not 

interfere with the interaction between the promoter and enhancer when located at either side of 

the promoter-enhancer pair (Figure 1.28).  

 

Figure 1.28 Schematic diagram of enhancer blocking assay design. The interaction between 
an enhancer and a promoter is blocked by an insulator (red sign) if the insulator is positioned 
between the two, no transcription is then allowed. The insulator cannot impose any effects on the 
communication between the promoter and enhancer (green sign) if it is located at either side of 
the promoter-enhancer pair.  
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1.4.2 The discovery of insulators 

Insulator elements have been identified of genomes from yeast to human. Insulators were firstly 

identified in Drosophila. Two insulator elements, scs (specialised chromosome structures) and 

scs’, were identified at the borders of the open chromatin domain of the heat short protein 70 

(hsp70) locus [Kellum & Schedl, 1991; Kellum & Schedl, 1992]. Heterochromatin barriers are 

also found in yeast. Many tRNA genes located near heterochromatic centromeres and telomeres 

in yeast have been identified to be insulator barriers that restrict spreading of silenced 

heterochromatin [Haldar & Kamakaka, 2006]. It has been found in S. cerevisiae that the tRNAThr 

gene located adjacent to the silenced HMR (hidden MAT right) locus can halt spreading of 

heterochromatin silencing [Donze et al, 1999; Donze & Kamakaka, 2001]. More recently, 

multiple tRNA genes have been found within centromeres, separating the inner repeats with more 

open chromatin structure from the heterochromatic outer repeats in S. pombe. These genes act as 

barriers to delimit the spread of heterochromatin from the outer repeats to the inner repeats. 

Deletion of the tRNAAla gene results in repression of the reporter gene ura4+ inserted into the 

inner repeats, and the repression is accompanied by a gain of H3K9me2, suggesting that tRNAAla 

has barrier activity [Scott et al, 2006]. In vertebrates, the chicken HS4 element is a well studied 

insulator. It lies within the chicken β-globin locus separating the globin gene clusters from the 

nearby condensed heterochromatin region. Its barrier activity has been characterised by using 

insulator barrier assays. It was found that a transgene flanked with HS4 at both sides can remain 

expressed after long-term culture [Dickson et al, 2010; Pikaart et al, 1998; Recillas-Targa et al, 

2002; Rincón-Arano et al, 2007]. The HS4 insulator element will be discussed in detail in 

Section 1.5.2. 

 

Enhancer blockers are common in Drosophila. The gypsy element is a well characterised 

insulator with both heterochromatin barrier and enhancer blocker activity [Gdula et al, 1996]. 

gypsy is a retrotransposon element that contains binding sites for a zinc finger nuclear factor 

Su(Hw) (suppressor of Hairy-wing). Insertion of this element can block all effects from distal 
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enhancers while communication between the promoter and proximal enhancers is unaffected 

[Geyer & Corces, 1992]. In vertebrates, it was recently found that CTCF (CCCTC-binding factor) 

functions cooperatively with Cohesin proteins for enhancer-blocking activity. Cohesin is first 

found to be required for proper cohesion of sister chromatids following replication in S phase. 

The interaction of cohesin complexes with chromatin is in a CTCF-dependent manner [Ohlsson 

et al, 2010]. Genome wide mapping of CTCF and Cohesin binding sites found that they 

colocalise in the human genome [Wendt et al, 2008]. In addition to the essential role in cell 

division, the CTCF-cohesin complex is also required for insulator enhancer-blocker activity. An 

imprinting control region (ICR) located within the Igf2/H19 locus is a well known 

CTCF-dependent insulator present in humans and mice (Figure 1.29) [Bell & Felsenfeld, 2000; 

Hark et al, 2000]. The ICR element is responsible for the monoallelically expression of the Igf2 

(insulin-like growth factor 2) and H19 genes. These two genes are imprinted genes in Igf2 is only 

expressed from the paternal allele and H19 only from the maternal one [Bartolomei et al, 1991; 

DeChiara et al, 1991]. They are located on the same chromosome and potentially activated by 

the same sets of enhancers. The ICR positioned between the two genes is a key factor to 

accomplish the monoallelic expression through mediating the CTCF binding. Recently, it was 

found that the Cohesin complex is also required for the enhancer blocking activity of ICR. The 

altered expression profiles of IGF2 and H19 in CTCF and Cohesin depleted cells are similar 

[Wendt et al, 2008]. CTCF is also required for the enhancer blocking activity of the chicken HS4 

insulator element. Although several insulator proteins bind to HS4, only the CTCF binding site is 

indispensable for enhancer blocking activity [Bell et al, 1999]. There are at least 30 CTCF 

binding sites in the human genome [Takai et al, 2001]; however, it is unclear if they are enhancer 

blockers in their endogenous context.  
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Figure 1.29 Schematic representation of the IGF2/H19 locus. CTCF is only able to bind to 
ICR of the maternal allele. DNA methylation (red dots) of the ICR on the paternal allele 
abolishes the CTCF binding. While DNA methylation inhibits the binding of CTCF, the 
methylated paternal copy of ICR allows the expression of IGF2 [Holmgren et al, 2001; Kanduri 
et al, 2000; Szabo et al, 2000]. Adapted from Wendt et al, 2008. 

 

1.4.3 Proposed mechanisms of barrier activity 

Experimental evidence indicates that barrier elements employ a variety of mechanisms to 

counter propagation of heterochromatin (Figure 1.30) [West & Fraser, 2005]. As heterochromatin 

propagation is a processive process that induces continuous histone modifications and binding of 

repressive protein complexes, blocking access to nucleosome substrates is the common feature of 

all these mechanisms.  

 

Figure 1.30 Proposed mechanisms of barrier activity. A. 
Nuclear structure tethering. Barriers (purple) tethered to 
nuclear structural component (black) may block the spread 
of histone modifications (blue dots) and heterochromatin 
factors (blue) from heterochromatin to euchromatin such 
that a flanked gene can maintain its transcription permissive 
structure. B. Nucleosome gap. A nucleosome gap can be 
formed by inhibition of nucleosome placement by 
barrier-binding proteins. Nucleosomes thereby are not 
available for binding of heterochromatin factors. C. 
Nucleosome masking. Barrier-binding proteins interacting 
with histones directly may mask binding sites for 
heterochromatin factors. D. Histone code manipulation. 
Recruitment of histone modification enzymes (green) at 
barriers establishes active histone modifications (green dots), 
which can compete with the propagation of heterochromatin 
factor binding. Adapted from West & Fraser, 2005. 
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1.4.3.1 Nuclear structure tethering 

Tethering to a fixed nuclear structure may hinder the nucleosome access for heterochromatin 

formation complexes by stereo topological hindrance (Figure 1.30A). It has been shown in S. 

cerevisiae that artificial tethering of the HML locus to the nuclear pore complex (NPC) can form 

a barrier to silencing of the locus [Ishii et al, 2002]. While yeast active genes are found to be 

clustered at nuclear pores [Casolari et al, 2004], such tethering may direct the silenced locus to a 

transcriptionally active compartment for gene reactivation instead of simply protect the locus 

from heterochromatin silencing. This tethering model also does not explain why the barrier 

activity is position dependent and why the reporter gene is required to be flanked by barriers on 

both sides. Although the HML locus can be prevented from silencing by artificial tethering, the 

same tethering approach cannot block silencing at the HMR locus [Oki et al, 2004]. It suggests 

that the nuclear structure tethering strategy could be applied on certain gene loci but does not act 

as a universal approach to form a barrier to silencing. Nuclear structure tethering is observed on 

Drosophila and vertebrate barriers [Capelson & Corces, 2005; Yusufzai et al, 2004]. The 

Drosophila gypsy insulator element has been found to be preferentially located at the nuclear 

periphery [Gerasimova et al, 2000]. Although the Su(Hw) protein is essential for the gypsy 

barrier activity [Roseman et al, 1993], the Su(Hw) binding site alone is not able to direct the 

flanked transgene to the nuclear periphery [Xu et al, 2004], suggesting that Su(Hw) contributes 

the barrier activity by mechanism other than nuclear structure tethering. The well characterised 

vertebrate insulator element HS4 has been also shown to be tethering to nuclear matrix. The 

binding of CTCF was found to be essential for the tethering probably due to the interaction of 

CTCF and nucleophosmin [Yusufzai et al, 2004]. Given that the binding of CTCF is neither 

sufficient nor required for the HS4 barrier activity, HS4 does not seem to employ nuclear 

structure tethering as a mechanism for its barrier activity [Recillas-Targa et al, 2002]. 
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1.4.3.2 Nucleosome gap 

A more extreme approach to interrupt heterochromatin spreading is generation of a nucleosome 

gap (Figure 1.30B). DNA sequences unfavourable for nucleosome formation have been shown to 

form boundaries against silent chromatin [Bi et al, 2004]. Moreover, several chromatin barriers 

have been found to be hypersensitive to DNase I digestion [Chung et al, 1997; Cuvier et al, 1998; 

Li et al, 2002]. A genomic tethering experiment in yeast has shown that tethering a subunit 

(Snf6p) of the chromatin remodelling complex SWI/SNF to the silenced HMR locus generates a 

putative chromatin barrier that is able to protect the integrated reporter gene from 

heterochromatin silencing accompanied by a localised elevation of chromatin accessibility [Oki 

et al, 2004]. It suggests that generation of nucleosome gap by chromatin remodelling complexes 

may be able to halt heterochromatin silencing. However, tethering of other subunits of the 

SWI/SNF complex does not result in the same effect. Integration of the chicken HS4 insulator 

element into the human ε-globin locus also results in a localised elevation of chromatin 

accessibility [Zhao et al, 2006]. However, the nucleosome gap formation is dependent on the 

HS4 barrier activity dispensable factor CTCF so the necessity of nucleosome gap for barrier 

activity has not been proved. Given that chromatin is usually folded in a high-order structure 

(Section 1.1.1), nucleosome gap with a few nucleosome depletion may not be sufficient to 

counteract heterochromatin spreading.  

 

1.4.3.3 Nucleosome masking 

Instead of removing nucleosomes completely, nucleosomes at chromatin barriers can be masked 

by barrier-binding proteins (Figure 1.30C). For example, the transcription factor CTF1 binds 

directly to the histone H3 tail and is proposed to prevent the binding of repressive Sir proteins in 

S. cerevisiae [Ferrari et al, 2004]. Mammalian CTF1 can protect transgenes from silencing by 

adjacent telomeric chromatin but it remains elusive as to whether the mechanism in yeast is 

conserved in mammals [Esnault et al, 2009]. However, it is often not easy to distinguish whether 

the barrier activity conferred by insulator proteins is due to a simple nucleosome masking or 
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recruitment of other protein factors to achieve other barrier activity mechanisms [Huang et al, 

2007; West et al, 2004; Zlatanova & Caiafa, 2009].  

 

1.4.3.4 Histone code manipulation 

A more active approach to set up a barrier to heterochromatin propagation is by manipulating 

histone modifications. In this model, histone modifying enzymes are recruited to establish 

chromatin states unfavourable for heterochromatin propagation (Figure 1.30D) [Donze & 

Kamakaka, 2002; West & Fraser, 2005]. Histone acetylation can act as a chain terminator to 

heterochromatin spreading as histone deacetylation is a critical step in heterochromatin 

formation. It was demonstrated that artificial tethering of KATs to sites next to heterochromatin 

can protect a reporter gene from silencing in S. cerevisiae and the anti-silencing activity is 

positively correlated with the number of the artificial KAT tethering sites [Chiu et al, 2003]. 

Moreover, the hyperacetylated domain resulted from the KAT tethering is sizable that a 

significant level of histone acetylation encompasses 2 kb from the tethering site. It suggests that 

a relatively small chromatin barrier (< 100 bp) with histone acetylation is sufficient to protect a 

substantial chromatin region from heterochromatin silencing. The anti-silencing effect from 

histone acetylation may be explained by the fact that the binding of Sir proteins to histones can 

be abolished by histone acetylation. Higher the degree of acetylation, lower the Sir protein 

binding affinity is [Carmen et al, 2002]. In the vertebrate genome, active histone modifications 

including histone acetylation have been observed at constitutive peaks at chromatin boundaries 

with a sharp transition from heterochromatin associated histone marks and DNA methylation 

[Brinkman et al, 2007; Huang et al, 2005; Litt et al, 2001a; Litt et al, 2001b; Morshead et al, 

2003]. It agrees to the yeast model that a small region with active histone modifications is 

sufficient to act as a barrier to heterochromatin propagation. Although the role of SIR proteins in 

heterochromatin spreading in vertebrates is not as clearly shown as in yeast, binding of 

repressive complexes associated with heterochromatin spreading may be also blocked by active 

histone modifications. The role of histone modifications has been studied most intensively at the 
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chicken β-globin HS4 insulator, and is discussed in detail in Section 1.6. Although this model 

seems to explain how an insulator barrier is established, the passive mechanisms of insulator 

barriers discussed above can still not be ruled out. The barrier activity mechanisms are not 

mutually exclusive, and could be found on a single insulator element. The binding of insulator 

proteins could mask or compete for nucleosomes to prevent binding of heterochromatin factors, 

and could also recruit histone modifying enzymes to maintain the open chromatin structure.  
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1.5 The chicken β-globin gene cluster 

The chicken β-globin locus is a well characterised model for studying developmentally regulated 

gene expression. The locus consists of four β-globin genes ρ, βH, βA and ε   (Figure 1.31) that are 

expressed in erythroid cells in a developmental stage-specific manner [Felsenfeld, 1993]. 

Following fertilisation, the embryonic ρ and ε globin genes are expressed in the primitive lineage 

cells until day 4 – 5. Upon day 4 – 5, the adult globin genes βA and βH are expressed in the 

definitive lineage cells. Using DNase I mapping analysis, it was found that there are 12 

hypersensitive sites and most of them are tissue- or developmental stage-specific. Of the 12 

hypersensitive sites, hypersensitive sites 1 – 4 (HS1 – 4) and the βA/ε enhancer located at a 

hypersensitive site are present in all developmental stages of erythroid cells [Reitman & 

Felsenfeld, 1990]. HS1 – 3 in addition to the βA/ε enhancer are responsible for the regulation of 

β-globin gene expression [Mason et al, 1995]. 16 kb upstream of the β-globin locus is the 

FOLR1 gene (Figure 1.31), which encodes a folate receptor that is only expressed in erythroid 

progenitors prior to the expression of the globin genes [Prioleau et al, 1999]. HSA is thought to 

regulate FOLR1 expression, and is DNase I hypersensitive in erythroid progenitors that express 

FOLR1, but is absent in terminally differentiated adult erythrocytes. In between the β-globin 

gene clusters and FOLR1, there is a chromatin region that is fully DNA methylated and resistant 

to DNaseI digestion throughout all developmental stages. There are three DNaseI hypersensitive 

sites upstream of the 16 kb condensed region, including HSA.  
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Figure 1.31 Schematic diagram of the chicken β-globin locus. Green boxes on the locus 
depict the position of the globin genes. DNaseI hypersensitive sites are indicated by arrows. The 
FOLR1 gene is shown as a gray box. Following the hypersensitive site 3’ HS, there are clusters 
of olfactory genes (COR). There are two identified insulators within the locus. One is the HS4 
element and the other one is near the 3’ end of the locus, 3’ HS. HS4 consists of both 
enhancer-blocking and barrier activities but the CTCF bound 3’ HS element only has 
enhancer-blocking activity. 

 

1.5.1 Histone modifications at the chicken FOLR1 and β-globin gene loci 

The high resolution maps of histone modifications across gene loci during vertebrate 

development were completed at the chicken β-globin locus [Litt et al, 2001a; Litt et al, 2001b]. 

It was shown that on Day 10 and 15, a developmental stage when only βA and βH are expressed, 

the entire β-globin domain is enriched in H3K4me2, H3ac and H2A.Zac [Bruce et al, 2005; Litt 

et al, 2001a; Litt et al, 2001b] (Figure 1.32c & Figure 1.33a). DNase I mapping also showed that 

the whole β-globin domain is accessible in these cells, contrasting with the constitutively 

condensed, inaccessible 16 kb region. It is unlike other mammalian gene loci that usually show a 

sharp transition of active histone marks, the active histone modification patterns suggest an open 

chromatin structure of the β-globin domain. Contrastingly, H3K4me2, H3ac and H2A.Zac are 

not enriched at the β-globin domain in cells that do not express any of the globin genes (Figure 

1.32a, Figure 1.32b, Figure 1.33b & Figure 1.33c). Similar to the β-globin gene locus, the active 
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histone modification patterns of the FOLR1 locus is also correlated with the gene expression 

state. Active modifications H3K4me2, H3ac and H2A.Zac are found at the chicken FOLR1 locus 

in erythroid progenitor cells that express FOLR1.  

 

Figure 1.32 H3 histone modification profiles across the chicken FOLR1 and β-globin locus in 
chicken cells with different expression levels of the FOLR1 and β-globin genes. ChIP analyses of 
H3K4me2 and H3K9ac14ac in chicken 10-day red blood cells (RBC) (a), chicken 6C2 
erythroleukaemia cells (b) and chicken B cells DT40 (c). Adapted from Litt et al, 2001a and Litt 
et al, 2001b. All these cells have different expression profiles of the FOLR1 and β-globin genes 
that 10-day RBC express the β-globin genes but not FOLR1, 6C2 cells express FOLR1 only 
whereas none of these genes are expressed in DT40. 

 

In contrast, the 16 kb condensed chromatin region is depleted of active histone marks in all 

developmental stages (Figure 1.32 & Figure 1.33). Rather, it is uniformly enriched in the 

repressive histone mark H3K9me2 and the DNA remains inaccessible [Prioleau et al, 1999; Litt 

et al, 2001a; Litt et al, 2001b] (Figure 1.34). Across the FOLR1 and β-globin loci, H3K9me2 is 

c 

a 

b 
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also widely distributed except the two hypersensitive sites HSA and HS4, suggesting a protective 

mechanism at these sites against repressive histone mark propagation (Figure 1.34). Interestingly, 

these two sites are enriched in H3K4me2, H3ac and H2A.Zac although the enrichment at HSA is 

relatively correlated with the FOLR1 expression state, probably associated with its regulatory 

role on the FOLR1 expression [Prioleau et al, 1999]. However, the enrichment of active histone 

modifications at HS4 is not affected by the expression states of the neighbouring FOLR1 and 

globin genes, and DNase I mapping showed that HS4 remains hypersensitive in various cell 

types and all the developmental stages of erythroid cells [Bruce et al, 2005; Litt et al, 2001a; Litt 

et al, 2001b; Reitman & Felsenfeld, 1990] (Figure 1.32 & Figure 1.33). These results suggest the 

chromatin structure of HS4 is persistently active.  

 

Figure 1.33 Profiles of H2A.Z and H2A.Zac across the chicken FOLR1 and β-globin locus in 
15-day chicken erythrocytes (15DCE), 10-day chicken brain tissue and HD37 chicken 
erythroblasts with different expression levels of the FOLR1 and β-globin genes. Adapted from 
Bruce et al, 2005. 
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Figure 1.34 Profile of H3K9me2 across the chicken FOLR1 and β-globin locus in HD24 
chicken erythroleukemia cells arrested at the erythroid burst-forming unit stage (BFU-E), 6C2 
cells, 10-day RBC and brain tissues. Adapted from Litt et al, 2001a. 

 

1.5.2 The chicken β-globin insulator 

HS4 is the only constitutive DNaseI hypersensitive sites of the locus [Reitman & Felsenfeld, 

1990]. The 275 bp core HS4 element has been identified to be a boundary separating the 16 kb 

condensed chromatin region and the β-globin gene domain. It is enriched in active histone 

modifications H3K4me2 and H3ac in different developmental stages of erythroid cells and in 

other brain cells that do not express β-globin genes and FOLR1 [Prioleau et al, 1999; Litt et al, 

2001a; Litt et al, 2001b]. Although HS4 is CpG rich and possesses promoter-like chromatin state, 

it does not function as a promoter. No mRNA transcript and promoter activity of HS4 can be 

detected, in addition to the undetectable binding of RNA polymerase II [Chung et al, 1997; Giles 

et al, 2010; Huang et al, 2007].  

 

By using DNaseI digestion mapping, it was found that there are five footprints on HS4 and they 

were subsequently identified to be binding sites for CTCF, USF1/2 and VEZF1 [Bell et al, 1999; 

Chung et al, 1997; Dickson et al, 2010; West et al, 2004]. These binding proteins are responsible 

for the HS4 insulator activity. CTCF binding to footprint II (FII) is indispensible for the 
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enhancer-blocking activity while the USF1/2 binding sites (FIV) and VEZF1 binding sites (FI, 

FIII and FV) are all required for the barrier activity (Figure 1.35) [Bell et al, 1999; Dickson et al, 

2010; Recillas-Targa et al, 2002; West et al, 2004]. Although HS4 possesses two insulator 

activities, the two activities do not rely on each other and are separable. The CTCF binding site 

required for the enhancer-blocking activity can be removed without compromising the barrier 

activity [Recillas-Targa et al, 2002; Yao et al, 2003]. 

 

Figure 1.35 Schematic representation of factor binding at the HS4 element. 

 

1.5.3 CTCF-mediated enhancer-blocking activity of the HS4 insulator 

It was originally demonstrated that HS4 possesses enhancer-blocking activity using gene reporter 

assays in erythroid cell lines [Bell et al, 1999; Chung et al, 1993; Chung et al, 1997]. HS4 can be 

distinguished from a conventional silencer because it blocks enhancer action only when 

positioned between a promoter and an enhancer [Recillas-Targa et al, 1999]. A 90 bp HS4 

fragment containing the CTCF (FII) and one of the VEZF1 (FIII) binding sites was found to be 

required and sufficient for performing enhancer blocking activity in erythroid cells. By studying 

the enhancer blocking activity with HS4 footprint deletion mutants, only the CTCF-binding site 

was shown to be indispensible for the enhancer blocking activity of HS4 [Recillas-Targa et al, 

1999].  

 

One possible role of CTCF in the enhancer-blocking activity of HS4 is to tether the insulator 

element to nucleolar surface. It was shown that transgenic HS4 in human cells is located at 

mostly nucleolar periphery or nucleolar boundaries. Mutation of the CTCF site disrupts this 
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localisation. The self assembly property of CTCF and its interaction with nuclear structural 

proteins, lamin proteins and nucleophosmin, appear to be responsible for the tethering [Yusufzai 

et al, 2004a; Yusufzai et al, 2004b]. The CTCF mediated tethering is proposed to form chromatin 

loop such that interaction between an enhancer and a promoter is prevented [Yusufzai et al, 

2004b]. It remains to be determined whether the endogenous HS4 insulator forms loops or 

mediates tethering in chicken cells.  

 

1.5.4 USF1/2 and VEZF1 mediate the barrier activity of the HS4 insulator 

The HS4 barrier activity was identified using barrier assays. A reporter transgene integrated into 

the genome of erythroid cells showed that HS4 can prevent silencing of the transgene by 

chromosomal position effect after long-term culture [Dickson et al, 2010; Pikaart et al, 1998; 

Recillas-Targa et al, 2002; Rincón-Arano et al, 2007]. HS4 can act as a barrier regardless of the 

genomic environment. It was shown that flanking the ankyrin gene locus, whose barrier element 

had been previously removed, with the chicken HS4 in transgenic mice can restore the 

expression of the ankyrin gene [Gallagher et al, 2010]. The barrier activity of HS4 is also of 

practical use, and has benefitted experiments involving transgene integration [Frazar et al, 2003; 

Guglielmi et al, 2003]. Similar to the enhancer activity, the barrier activity of HS4 does not 

require the entire insulator element. A HS4 mutant without the CTCF binding site is still able to 

protect a transgene from silencing in barrier assays. However, all the USF and VEZF1 binding 

sites are required for the barrier activity [Recillas-Targa et al, 2002].  

 

1.5.5 The HS4 element protects flanked regions from DNA methylation 

An important role for vertebrate barriers appears to be protection from silencing mediated by 

DNA methylation. HS4 has been shown to protect a transgene and itself from DNA methylation 

[Dickson et al, 2010; Mutskov et al, 2002]. It was suggested histone acetylation can prevent 

DNA methylation. Studies of DNA methylation on a HS4 flanked transgene reveal that the 

transgene and HS4 remain unmethylated while the noninsulated transgene is silenced and 
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accompanied by DNA methylation [Mutskov et al, 2002]. Comparison of histone acetylation on 

the noninsulated transgene before and after gene silencing reveals that silencing is accompanied 

by the loss of histone acetylation and a gain of DNA methylation across the entire transgene 

[Mutskov et al, 2002; Mutskov et al, 2004]. Moreover, the silenced transgene is bound by 

MBD3, a methyl DNA binding protein, and Mi2, a repressive complex containing HDAC 

activity. However, the possibility that histone acetylation and DNA hypomethylation at the 

transgene are simply a result of active transcription cannot be ruled out. In the study of Mutskov 

et al (2002), it was shown that deletion of the transgene enhancer leads to a loss of histone 

acetylation and expression of the transgene, and results in a hypermethylated promoter even 

though the transgene is insulated by HS4. It might not be surprising that transcription can help 

establishment of histone acetylation as many KATs bind to enhancers to activate transcription 

and that they are brought along by RNA polymerase II during transcription [Travers, 1999]. 

Moreover, transcription associated complexes may compete the binding of gene promoters with 

DNMTs [Bird, 2002]. The mechanism of histone acetylation in preventing DNA methylation is 

yet to be defined. Another possible approach of HS4 to block DNA methylation may be through 

H2A.Z incorporation as HS4 is enriched in H2A.Z and, which seems to be able to exclude DNA 

methylation [Bruce et al, 2005; Conerly et al, 2010; Zemach et al, 2010; Zilberman et al, 2008]. 

However, there is no such evidence thus far.  

 

Recently, our lab has found that VEZF1 plays a role in protecting a transgene from de novo DNA 

methylation. It has been shown that deletion of VEZF1 binding sites at HS4 results in DNA 

methylation across the transgene promoter after long-term culture. This report also clearly 

demonstrated that the increase in DNA methylation is not simply a consequence of reduced 

transcription activity because the transgene flanked by the HS4 mutant without USF binding 

sites is silenced but the DNA remains unmethylated (Figure 1.36) [Dickson et al, 2010]. In 

addition to HS4, VEZF1 appears to be capable of protecting endogenous CpG islands from de 

novo methylation. A CpG island containing APRT gene promoter has been found to be protected 
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from DNA methylation by VEZF1 [Dickson et al, 2010]. These results suggest that VEZF1 can 

protect transgene from DNA methylation. However, the mechanisms and factors involved are not 

understood.  

 

Figure 1.36 Deletion of VEZF1 binding 
sites of HS4 leads to DNA methylation on the 
reporter gene promoter. A. Schematic 
representation of the IL2R reporter transgene 
construct. The gray bar underlines the 
distribution of CpG dinucleotides where DNA 
methylation states were examined by bisulfite 
sequencing. B. CpG methylation was studied 
after 30 and 90 days of culture. Histograms 
represent percentage of DNA methylation on 
each CpG sites across the examined region, 
the overall percentage of DNA methylation is 
indicated besides each histogram. C. 
Expression of IL2R in each footprint deleted 
construct. The percentage of cells expressing 
the IL2R reporter gene is indicated. Adapted 
from Dickson et al, 2010. 
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1.6 A link between active histone modifications and the barrier activity of the HS4 insulator 

element 

1.6.1 The HS4 insulator element is enriched in active histone modifications 

HS4 is an example of explaining how an insulator manipulates histone modifications to achieve 

insulator barrier activity. As mentioned earlier, it is persistently enriched in active histone 

modifications, demarcating a sharp transition from the neighbouring silencing histone patterns to 

an active one. ChIP analyses on the chicken β-globin locus showed that HS4 is rich in H3K4me2, 

acetylation of histones H3, H4 and H2A.Z as well as asymmetric dimethylation of H4R3 

(H4R3me2as) [Bruce et al, 2005; Huang et al, 2005; Litt et al, 2001a; Litt et al, 2001b] (Figure 

1.37).  

 

Figure 1.37 Summary of histone modifications at HS4. The HS4 element is constitutively 
enriched in H2A.Z acetylation (H2A.ZK4acK7acK11ac), H3K4me2, H3 acetylation 
(H3K9acK14ac), H4 acetylation (H4K5acK8acK12acK16ac) and asymmetric H4R3 
dimethylation (H4R3me2as). Heterochromatin-associated histone marks H3K9me2/3 and 
H3K27me3 are depleted at HS4. 

 

Mapping of histone modifications on HS4 deletion mutants has identified FIV, the USF binding 

site, is as being responsible for the recruitment of active histone marks [West et al, 2004]. 

Several histone modification enzymes have been shown to interact with USF1, including the 

H3K4-specific KMTs SET1 and SET7/9, H3-specific KAT PCAF as well as H4R3-specific KMT 

PRMT1 [Huang et al, 2005; West et al, 2004]. siRNA mediated knockdown of USF1 results in a 
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loss of all these histone marks with a concomitant increase in heterochromatin-associated 

H3K9me2 [Huang et al, 2007; West et al, 2004]. Expression of a dominant negative USF1 

mutant that has no DNA binding ability but is still capable of forming heterodimers with USF2 

abolishes the HS4 barrier activity [Huang et al, 2007]. These results suggest that active 

modifications at HS4 are directed by the binding of USF proteins, and that these marks are 

crucial for the anti-silencing effect of HS4.  

 

Interestingly, H4R3me2as seems to promote H3 and H4 acetylation. PRMT1, which is 

responsible for asymmetric dimethylation of H4R3, binds at HS4. siRNA mediated knockdown 

of PRMT1 causes a loss of H3 and H4 acetylation [Huang et al, 2005], implicating a histone 

cascade occurring at HS4. The role of H2A.Zac at HS4 is not known. Although it is relatively 

clear in yeast barrier elements that H2A.Z can counteract the binding of the Sir silencing proteins 

[Babiarz et al, 2006; Meneghini et al, 2003; Venkatasubrahmanyam et al, 2007], it is not 

understood whether it plays the same role at HS4. More importantly, how these active marks are 

regulated and counteract heterochromatin spreading are yet to be studied. It is thought that the 

recruitment of several active marks to HS4 prevents the propagation of repressive marks and 

associated heterochromatin proteins. However, the precise details of these mechanisms are yet to 

be shown.  

 

1.6.2 A potential role for histone ubiquitination at the HS4 insulator element  

It has been found that the HS4 insulator barrier is enriched in H3K4me2 and that is essential for 

the barrier activity [West et al, 2004]. Histone methylation was considered as a stable mark that 

can persist for a very long time. However, the discovery of histone demethylases suggests a 

dynamic nature of histone methylation (Section 1.2.1.3). Demethylation of H3K4me2 is no 

exception. There are several H3K4-specific demethylases and some of them are associated with 

heterochromatin propagation complexes [Christensen et al, 2007; Iwase et al, 2007; Klose et al, 

2007; Lee et al, 2005; Rudolph et al, 2007]. Although active promoters are generally enriched in 
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H3K4me2 and even H3K4me3 (Section 1.2.5), active transgenes integrated into heterochromatin 

have been reported to be shut down in long term culture [Pikaart et al, 1998; Recillas-Targa et al, 

2004]. It suggests that demethylation is actively occurred at many gene loci and it could lead to 

chromosomal silencing. To maintain the high level of H3K4me2 for the barrier activity, HS4 

needs to counteract the binding of demethylase complexes and/or employ a pathway to 

persistently methylate H3K4. Inspired by previous studies in yeast and mammals that H3K4 di- 

and tri-methylation is triggered by H2B ubiquitination (Section 1.2.3.2.3 & 1.2.4), it might be 

possible that HS4 recruits the H2B ubiquitination-H3K4 methylation trans-histone pathway to 

drive constant H3K4 dimethylation for the barrier activity.  

 

1.6.3 Preliminary evidence for histone ubiquitination at the HS4 insulator element 

Due to the lack of anti-ubiquitinated H2B antibody at the beginning of the study, the distribution 

of ubiquitinated histones across the chicken β-globin locus was mapped by using native 

chromatin immunoprecipitation (ChIP) with anti-ubiquitin antibody. The native ChIP approach 

could prevent the detection of ubiquitinated non-histone proteins. Preliminary data showed that 

ubiquitinated histones are enriched at HS4, the peak overlays with that of H3K4me2 (compare 

Figure 1.38 & Figure 1.32). Similar to H3K4 dimethylation, the significant level of 

ubiquitination histones at HS4 does not appear to be correlated with the FOLR1 and β-globin 

gene expression. 
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a 

b 

c 

Figure 1.38 HS4 is enriched in ubiquitinated histones. The level of ubiquitinated histones 
across the chicken β-globin locus was analysed with native ChIP. Chromatin was prepared from 
10-day RBC (a) and 10-day brain (b) separately for ChIP with ubiquitin-specific antibodies [Ma 
et al, 2011]. The globin genes are expressed in chicken 10-Day RBC but not in 10-Day brain. 
FOLR1 is not expressed in both 10-Day RBC and brain. c. Primer sets used in the quantitative 
analyses. 

 

H3K4me2 at HS4 is dependent upon the binding site for USF proteins that deletion of the USF 

binding site from HS4 or knockdown of USF1 results in a dramatic loss of H3K4me2 as well as 

other active histone marks [Huang et al, 2007; West et al, 2004]. To determine whether USF was 
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also required for the histone ubiquitination at HS4, Dr. Carol Heath performed native ChIP in 

6C2 cells harbouring transgenic HS4 elements. It was found that only deletion of the USF 

binding site, footprint IV, results in a loss of histone ubiquitination. HS4 elements missing either 

CTCF or VEZF1 binding sites retain the levels of histone ubiquitination (Figure 1.39). However, 

these results could not prove whether the ubiquitinated histone at HS4 is H2B and whether the 

ubiquitination is required for the establishment of H3K4me2 at HS4, perhaps other active histone 

modifications, and for the barrier activity.  

 

a 

b 

Figure 1.39 Native ChIP analyses of ubiquitinated histones at the transgenic HS4 elements. a. 
The ChIP assay was carried out in 6C2 cells carrying transgenic HS4 elements (tHS4) with 
deletion of different protein binding sites. The levels of ubiquitinated histones at the transgenic 
elements were compared with the cell lines’ corresponding endogenous HS4 elements (end HS4). 
Apart from the USF binding site (∆IV) deletion mutant, CTCF (∆II) and VEZF1 (∆III) binding 
site deletion mutants were also examined [Ma et al, 2011]. b. Schematic diagram of the 
transgenic constructs. 
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CHAPTER 2 

Methods and Materials 

 

2.1 Materials 

Antibody Company Catalogue number 
H3K4me2 Millipore 07-030 
H3K4me3 Millipore 05-745R 
H3K9me2 Abcam ab1220 
H3K9me3 Millipore 07-523 

H3K27me3 Millipore 07-449 
H3K79me2 Abcam ab3594 
H3K79me3 Abcam ab2621 

H3 Millipore 07-690 
H3ac Millipore 06-599 
H4ac Millipore 06-598 

H4K20me3 A kind gift from Prof. Judd Rice [Sims et al, 2006] 
H2Aub Millipore 05-678 
H2A.Z Millipore 07-594 

H2A.Zac Abcam ab18262 
H2BK120ub1 A kind gift from Prof. Moshe Oren [Minsky et la, 2008] 

Médimabs                MM-0029 
CD25-PE Dako/ 

Miltenyi Biotec 
R0811/ 

130-091-024 
ARP6 Sigma-Aldrich A1857 

BAF53A Abcam Ab3882 
CTCF Millipore 06-917 
PAF1 Abcam ab20662 

PONTIN52 Santa Cruz sc-15259 
RbBP5 Bethyl Lab A300-109A 

REPTIN52 Abcam ab36569 
RNF20 Bethyl Lab A300-715A 

TBP Abcam ab51841 
TIP60 Santa Cruz sc-5725 
VEZF1 In-house raised [Gowher et al, 2008] 

Ubiquitin Santa Cruz sc-8017 
Ubiquitinated conjugates Enzo Life Sciences BML-PW8810-0500 

USF1 Abnova H00007391-A01 
Anti-goat IgG-HRP Dako P0160 
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Anti-mouse IgG-HRP Pierce 1858413 
Anti-rabbit IgG-HRP Pierce 1858415 
Anti-sheep IgG-HRP Santa Cruz sc-2473 

Normal goat IgG Santa Cruz Sc-2028 
Normal mouse IgG Santa Cruz Sc-2025 
Normal rabbit IgG Santa Cruz Sc-2025 

Table 2.1 List of antibodies used. 
 

Enzyme Company Catalogue number 
Micrococcal nuclease 

(MNase) 
Sigma-Aldrich N-5386 

Protease K Sigma-Aldrich P5568 
RNase H Promega M428A 

SuperScript® III  
Reverse Transcriptase 

Invitrogen 18080-044 

Table 2.2 List of enzymes used. 
 

Chemical Company Catalogue 
4-(2-aminoethyl) 

benzenesulfonyl fluoride 
hydrochloride (AEBSF) 

 
Sigma-Aldrich 

 
A8456 

1-bromo-3-chloropropane 
(BCP) 

Sigma-Aldrich B9673 

37% Formaldehyde Amresco 0493 
Bovine serum albumin 

(BSA) 
Fisher BPE1605-100 

Doxycycline Sigma-Aldrich D9891 
Glycogen Roche 10 901 393 001 

Hank’s buffered saline Sigma-Aldrich H6648 
Leupeptin Sigma-Aldrich L2884 

Nickel acetate Sigma-Aldrich 244066 
N-ethylmaleimide Sigma-Aldrich E3876 

Phenol/Chloroform:isoamyl 
alcohol 25:24:1 

Sigma-Aldrich P3803 

Pepstatin Sigma-Aldrich P5318 
Sodium azide Sigma-Aldrich S8032 

Sodium butyrate Sigma-Aldrich B5887 
TRI Reagent® Sigma-Aldrich T9424 

Table 2.3 List of chemicals used. 
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Tissue culture reagent Company Catalogue number 
Chicken serum SLI S-606-HI 

Dimethyl sulfoxide 
(DMSO) 

Sigma P8418 

Foetal bovine serum Autogen Bioclear 7.01 
Foetal bovine serum 
(tetracycline-free) 

Autogen Bioclear 7.01T 

HEPES buffer solution Gibco® 15630-056 
Geneticin (G418) Invitrogen 11811031 

Minimum essential medium 
α (α-MEM) 

Gibco®/Lonza 32571-028/BE02-002F 

Penicillin/Streptomycin 
mixture 

Lonza DE17-602E 

RPMI 1640 medium Lonza BE12-702F/U1 
2-mercaptoethanol Gibco® 31350-100 

Table 2.4 List of tissue culture reagents used. 
 

Reagent Company Catalogue number 
Anti-FLAG® M2  

affinity gel 
Sigma A2220 

Bio-Gel® P-6DG Gel Bio-Rad 150-0738 
FastStart SYBR green 

Master (ROX) 
Roche 04 673 514 001 

Prestained protein ladder Fermentas SM0671 
Protein A agarose Millipore 16-125 
Protein G agarose Millipore 16-266 

Quant-iT™ PicoGreen® 
dsDNA reagent 

Invitrogen P7589 

Quick Start Bradford 1X 
Dye reagent 

Bio-Rad 500-0205 

SafeView stain NBS NBS-SV1 
SuperSignal West Dura 

extended duration substrate
Thermo Scientific 34076 

TaqMan® Universal PCR 
master mix, No AmpErase® 

UNG 

 
Applied Biosystems 

 
4324018 

100 bp DNA ladder NEB N3231L 
1kb bp DNA ladder Invitrogen 15615-024 

Table 2.5 List of other molecular biology reagents used. 
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2.2 Cell lines 

2.2.1 6C2 cells and derivatives 

6C2 is a chicken erythroid cell line arrested at the colony forming unit erythrocyte (CFU-E) 

stage [Beug et al, 1982]. 6C2 cells and their derivatives including transgenic HS4 footprint 

deletion mutants (8103 WT, 10401 ∆I, 10506 ∆II, 10615 ∆III, 10901 ∆IV and 8d5 ∆V) 

[Recillas-Targa et al, 2002; West et al, 2004] were grown in the same formula of media (α-MEM 

supplemented with 10% Foetal bovine serum, 2% heat inactivated chicken serum, 1 mM HEPES, 

25 μM 2-mercaptoethanol, 1% Penicillin/Streptomycin) and maintained in a similar way. Cells 

thawed from a frozen stock were added into 5 ml of 6C2 growth medium and then spun down at 

1,000 g for 5 minutes to remove DMSO. Cell pellet was resuspended in 10 ml of medium and 

grown in a T25 flask at 37 oC with 5% of CO2. They were split typically twice a week when 

reaching ~80% confluence by adding 1/10 of cells into fresh medium. Cell lines incorporated 

with the transgenic HS4 footprint deletion mutants and lentiviral RNF20 knockdown cells were 

also split twice a week but in a ratio 1 to 5. Frozen stocks were made as freezing 1x107 of cells in 

1 ml of freezing medium (foetal bovine serum supplemented with 10% DMSO) per stock at 

-80oC, stored in liquid nitrogen for long term storage. Lentiviral RNF20 knockdown cells were 

maintained similarly except that serum used in the growth and freezing media was 

tetracycline-free. RNF20 knockdown was induced by adding DOX to the growth medium to a 

final concentration 1 μg/ml.  

 

2.2.2 K562 cells and derivatives 

K562 is a well established immortalised myelogenous leukaemia line derived from human 

leukemia cells [Klein et al, 1976; Lozzio & Lozzio, 1975]. Wild type K562 cells, and cell lines 

containing the stably integrated HS4 flanked VEZF1-CaM-FLAG construct (D3/6 line) as well 

as an empty vector control line integrated with the HS4 flanked CaM-FLAG coding sequence 

(S3F1 line) were grown with the same procedures. Cells were grown in K562 growth medium 

(RPMI 1640 medium supplemented with 10% foetal bovine serum, 1% Penicillin/Streptomycin) 
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at 37 oC with 5% CO2. DMSO was removed from newly thawed cells by spinning down and then 

resuspending in fresh medium. They were split twice a week in a ratio one volume of cells to 10 

volumes of medium. For D3/6 and S3F1 lines, 75 μg/ml of geneticin was added in the medium. 

Lentiviral VEZF1 knockdown cells were also maintained in a similar way except 

tetracycline-free serum was used in all steps to minimise knockdown leakage. VEZF1 

knockdown was induced by adding DOX to the growth medium to a final concentration 1 μg/ml. 

Frozen stocks were prepared by freezing 107 cells in foetal bovine serum supplemented with 

10% DMSO.  
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2.3 Protein immunoprecipitation and western blotting analysis 

2.3.1 Preparation of protein nuclear extracts 

All buffers were supplemented with protease inhibitors 25 μg/ml AEBSF, 0.5 μg/ml Leupeptin 

and 0.7 μg/ml Pepstatin prior to use. Two 140 mm dishes of cells were harvested by 

centrifugation at 1,000 g for 5 minutes. The cell pellet was washed with PBS (10 mM Na2HPO4, 

pH 7.4, 1.76 mM KH2PO4, 2.7 mM KCl, 137 mM NaCl) twice and then lysed with 2 ml of 

hypotonic buffer (20 mM HEPES, pH 8, 0.2% NP-40, 0.1 mM EDTA). Nuclei were collected by 

centrifugation at 2,500 g for 5 minutes at 4 oC. Cell nucleic were solubilised in 300 μl of high 

salt buffer (20 mM HEPES, pH 8, 0.2% NP-40, 0.4 M NaCl, 13.3% glycerol) at 4 oC for at least 

30 minutes. Insoluble cell debris was removed by spinning at 16,000 g for 5 minutes. Protein 

concentrations of nuclear proteins were measured with Bradford assay. The extraction was 

proportionally scaled up for immunoprecipitation against FLAG tagged VEZF1.  

 

2.3.2 Bradford assay 

Bradford assay was performed with a 96-well microplate. 5 μl of protein sample was added into 

250 μl of Bradford assay solution and gently mixed. Absorbance at 595 nm was then measured. 

A standard curve of bovine serum albumin (BSA) concentrations 1 mg/ml to 0.0625 mg/ml were 

established (Figure 2.1). Protein concentration of samples was calculated from the equation 

(y=mx+c) of the standard curve.  

 
Figure 2.1 An example of BSA standard 
curve. BSA was diluted by water for the 
standard curve establishment. Absorbance 
readings at 595 nm of BSA samples were 
subtracted to that of a blank control consisting 
Bradford assay solution only. A straight trend 
line was drawn by Microsoft Excel and an 
equation was obtained from the line for 
calculation of sample protein concentration.  
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2.3.3 Immunoprecipitation of FLAG tagged proteins 

Calcium chloride was added into nuclear proteins samples with final concentration 1 mM for 

micrococcal nuclease (MNase) digestion to reduce nuclear aggregates which could lead to 

non-specific binding during immunoprecipitation. 1.5 mg of nuclear proteins were incubated 

with 2 units of MNase at 4 oC for 1 hour. The digestion was quenched with 5 mM EGTA. 

Insoluble nuclear debris was removed by spinning at 16,000 g for 10 minutes. The protein 

samples were then diluted in no salt FLAG binding buffer (10 mM Tris, pH 8, 0.1% Triton 

X-100, 10% glycerol) to achieve a final NaCl concentration of 120 mM. EGTA was then 

supplemented to a final concentration of 5 mM. For 1.5 mg of nuclear proteins, 100 μl (50% 

slurry in FLAG binding buffer) of anti-FLAG M2 affinity agarose was used. Binding was carried 

out at 4oC overnight with gentle rotation. Unbound proteins were washed away by 5 times of 

rotational mixing in 1 ml of FLAG binding buffer (no salt FLAG binding buffer supplemented 

with 100 mM NaCl) for 2 minutes followed by centrifugation at 3000 g for 1 minute. After the 

last wash, 50 μl of 2X SDS loading dye (100 mM Tris, pH 6.8, 4% SDS, 0.2% w/v bromophenol 

blue, 200 mM dithiothreitol (DTT), 20% v/v glycerol) was added and then boiled at 100 oC for 

10 minutes to elute bound proteins. The presence of target proteins was detected using western 

blotting analysis.  

 

2.3.4 Detection of target proteins using western blotting analysis 

In general, 25 μg of nuclear protein, 20 μl of immunoprecipitated protein or 7 μg of nucleosomes 

was loaded. Different percentages of Tris-glycine separating gels were set according to the sizes 

of target proteins (Table 2.6). Stacking gel (Table 2.7) was set on top of the separating gel and 

wells were made by insertion of comb. Electrophoresis was carried out under constant current 30 

mA per gel with SDS electrophoresis buffer (25 mM Tris, 250 mM glycine, 0.1% SDS).  
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Separation of protein sizes 12 – 45 kDa 10 – 70 kDa 15 – 100 kDa 25 – 200 kDa

Percentage of separating gel 15% 12.5% 10% 8% 

40% acrylamide (ml) 2.25 1.875 1.5 1.185 

4X separation buffer (ml) 

(1.5 M Tris, pH 8.8, 0.4% SDS) 

1.5 1.5 1.5 1.5 

Distilled water (ml) 2.175 2.55 2.925 3.24 

10% APS (μl) 75 75 75 75 

TEMED (μl) 3 3 3 3 

Table 2.6 Recipes of separating gels with various percentages. 

 

40% acrylamide (ml) 0.328 

4X stacking buffer (ml) 

(0.5 M Tris, pH 6.8, 0.4% SDS) 

0.656 

Distilled water (ml) 1.6 

10% APS (μl) 37.5 

TEMED (μl) 3 

Table 2.7 Recipe of stacking gel preparation. 

 

Proteins separated by electrophoresis were transferred to a methanol activated PVDF membrane 

under constant voltage 35 V for 1.5 hours in transfer buffer (25 mM Tris, 192 mM Glycine, 10% 

methanol v/v, 0.01% SDS). Membrane with transferred proteins was blocked by TBST (25 mM 

Tris, pH 8, 150 mM NaCl, 2.7 mM KCl, 0.2% Tween-20) with 5% milk or BSA, depending on 

the protein of interest (Table 2.8). Binding of primary antibody in blocking agent (TBST with 

milk or BSA) was performed at 4 oC overnight in a Kapak pouch with gentle shaking. Excess 

primary antibody was washed away by shaking with TBST for 3 times with 10 minutes each. 

The washed membrane was then incubated with secondary antibody diluted in TBST in the 

presence of 5% milk or BSA for 2 hours at room temperature. Dilutions of primary and 

secondary antibodies were used according to manufactures’ suggestions (Table 2.8). Excess 

secondary antibody was removed by shaking with TBST for 3 times with 10 minutes each. 

Bands were visualised by a CCD camera (Fujifilm) with SuperSignal West Dura extended 

duration substrate.  
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Protein of interest Blocking 
reagent 

Primary antibody 
dilution 

Secondary antibody & 
dilution 

H3K4me2 BSA 1:1000 Anti-rabbit IgG-HRP 1:15000

H3K4me3 BSA 1:1000 Anti-rabbit IgG-HRP 1:15000

H3K9me2 BSA 1:1000 Anti-mouse IgG-HRP 1:10000 

H3K9me3 BSA 1:1000 Anti-rabbit IgG-HRP 1:15000

H3K27me3 BSA 1:1000 Anti-rabbit IgG-HRP 1:15000

H3K79me2 BSA 1:1000 Anti-rabbit IgG-HRP 1:15000

H3K79me3 BSA 1:1000 Anti-rabbit IgG HRP 1:15000

H3 BSA 1:10000 Anti-rabbit IgG-HRP 1:15000

H3ac BSA 1:1000 Anti-rabbit IgG-HRP 1:15000

H4ac BSA 1:1000 Anti-rabbit IgG-HRP 1:15000

H4K20me3 BSA 1:15000 Anti-rabbit IgG-HRP 1:15000

H2Aub BSA 1:2000 Anti-mouse IgG-HRP 1:10000 

H2A.Z BSA 1:1000 Anti-rabbit IgG-HRP 1:15000

H2A.Zac BSA 1:1000 Anti-sheep IgG-HRP 1:7500 

H2BK120ub1 BSA 1:2000 Anti-mouse IgG-HRP 1:10000 

ARP6 Milk 1:1000 Anti-rabbit IgG HRP 1:15000 

BAF53A Milk 1:1000 Anti-rabbit IgG HRP 1:15000

CTCF Milk 1:1000 Anti-rabbit IgG-HRP 1:15000

PAF1 Milk 1:500 Anti-rabbit IgG-HRP 1:15000 

PONTIN52 Milk 1:500 Anti-goat IgG-HRP 1:10000 

RbBP5 Milk 1:1000 Anti-rabbit IgG-HRP 1:15000

REPTIN52 Milk 1:500 Anti-rabbit IgG-HRP 1:15000

RNF20 Milk 1:1000 Anti-rabbit IgG-HRP 1:15000

TBP Milk 1:2000 Anti-mouse IgG-HRP 1:10000 

TIP60 Milk 1:500 Anti-goat IgG-HRP 1:10000 

VEZF1 Milk 1:2000 Anti-rabbit IgG-HRP 1:15000

USF1 Milk 1:1000 Anti-mouse IgG-HRP 1:10000 

Table 2.8 Table showing binding conditions of primary and secondary antibodies for western 
blotting analyses.  
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2.4 Crosslinking chromatin immunoprecipitation 

2.4.1 Crosslinked chromatin preparation 

All buffers were supplemented with protease inhibitors prior to use as in Section 2.3.1. 10 mM of 

N-ethylmaleimide was added to inhibit deubiquitination if histone ubiquitination was 

investigated. Crosslinking chromatin immunoprecipitation was performed as described 

previously [Litt et al, 2001b]. Crosslinked chromatin was usually prepared in a large scale for 

cells up to 2 x 108. Chromatin prepared was proceeded to immunoprecipitation immediately or 

stored at -80 oC for future use.  

 

Briefly, 6C2 or K562 cells were resuspended in fresh growth medium to achieve cell 

concentration 2 x 107 cells per ml. Crosslinking buffer (7% formaldehyde, 0.1 M NaCl, 1 mM 

EDTA, 0.5 mM EGTA, 50 mM HEPES, pH 8) was added to bring the formaldehyde final 

concentration to 1%. Incubation at room temperature for 2 – 30 minutes followed, depending on 

which protein was studied (Table 2.9). Crosslinking reactions were quenched for 5 minutes with 

glycine in a final concentration of 125 mM. The crosslinked cells were pelleted at 1000 g for 5 

minutes and then lysed with 15 ml of cell lysis buffer 1 (0.25% Triton X-100, 10 mM EDTA, 0.5 

mM EGTA, 10 mM Tris, pH 8). Cell nuclei were obtained by centrifugation at 800 g for 5 

minutes at 4 oC. The pellet was washed with 15 ml of cell lysis buffer 2 (0.2 M NaCl, 1 mM 

EDTA, 0.5 mM EGTA, 10 mM Tris, pH 8). Nuclei were solubilised in nuclear lysis buffer (50 

mM Tris, pH 8, 10 mM EDTA, 0.5% SDS) on ice for 30 minutes. The chromatin volume was 

brought to 2 ml with X-ChIP buffer (1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris, pH 8, 

167 mM NaCl, 0.01% SDS) for sonication. Chromatin was fragmented by sonication (Misonix) 

for a total time of 10 minutes in regular 10 second pulses, separated by resting for 30 seconds to 

obtain 500 bp fragments. Insoluble materials were removed by centrifugation at 15,000 g for 10 

minutes at 4 oC. Chromatin from this point was either used for immunoprecipitation or stored at 

-80 oC.  
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Cells X-linking duration Antibodies Amount of 
antibodies 

 
 

 
6C2 

10 minutes Anti-CTCF 10 μl 
20 minutes Anti-RbBP5 10 μg 
20 minutes Anti-RNF20 10 μg 
20 minutes Anti-PAF1 10 μg 
10 minutes Anti-VEZF1 15 μg 
10 minutes Anti-USF1 10 μl 
2 minutes Anti-H2BK120ub1 5 μg 
4 minutes Anti-H3K4me2 20 μl 
4 minutes Anti-H3K4me3 15 μg 

 
 
 

K562 

30 minutes Anti-ARP6 10 μl 
30 minutes Anti-BAF53A 5 μg 
30 minutes Anti-PONTIN52 10 μg 
30 minutes Anti-REPTIN52 10 μg 
30 minutes Anti-SRCAP 10 μg 
30 minutes Anti-TIP60 10 μg 
30 minutes Anti-TRRAP 5 μg 
10 minutes Anti-VEZF1 15 μg 

Table 2.9 Table showing crosslinking conditions and antibodies used in crosslinking ChIP 
analyses. 

 

2.4.2 Chromatin immunoprecipitation 

Sonicated chromatin was diluted with X-ChIP buffer to obtain cell chromatin from 1 x 107 per 

ml. 100 μl of chromatin was saved as input material for quantitative PCR. 1 ml of chromatin for 

immunoprecipitation was pre-cleared using 5 μg of non-immunised normal IgG and 100 μl (50% 

slurry in X-ChIP buffer) of protein A/G agarose at 4 oC for 2 hours. Specific antibodies (Table 

2.9) were added and then incubated at 4 oC overnight with rotation. Addition of 100 μl (50% 

slurry in X-ChIP buffer) of protein A/G agarose was then followed. Binding was carried out at 4 

oC for 3 hours with rotation. The agarose was washed extensively with washing buffers 1(0.1% 

SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris, pH 8, 150 mM NaCl), 2 (0.1% SDS, 1% 

Triton X-100, 2 mM EDTA, 20 mM Tris, pH 8, 500 mM NaCl) and 3 (0.25 M LiCl, 1% NP-40, 

0.5% sodium deoxycholate, 1 mM EDTA, 10 mM Tris, pH 8), and twice with TE washing buffer 

(10 mM Tris, pH 8, 1 mM EDTA) by rotational mixing in 1 ml of washing buffer for 2 minutes 
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each. Bound chromatin was eluted twice with 350 μl of elution buffer (1% SDS, 0.1 M NaHCO3) 

for quantitative PCR analysis or boiled with 50 μl of 2X SDS loading dye for 20 minutes for 

western blotting analysis. Eluates intended for quantitative PCR analysis were prepared reversal 

of crosslinks by incubation at 65 oC overnight in the presence of 225 mM NaCl. Proteins were 

subsequently digested using 20 μg of proteinase K at 45 oC for two hours. DNA released was 

purified using conventional phenol/chloroform method for quantitative PCR.  

 

2.4.3 DNA extraction 

700 μl of phenol/chloroform isoamyl mixture was added into 700 μl of ChIP eluates. The 

two-phase mixture was vortexed for 1 minute following centrifugation at 10,000 g for 5 minutes. 

The upper aqueous layer was transferred in another microfuge tube. 700 μl of chloroform was 

added and vortexed for 1 minute. Separation was again carried out by centrifugation at 10,000 g 

for 5 minutes. DNA in the upper aqueous layer was precipitated following the addition of 1.3 ml 

of 100% ethanol and 10 μg of glycogen and incubation at room temperature for 30 minutes. 

DNA was pelleted by centrifugation at 16,000 g for 25 minutes and washed twice with 300 μl of 

70% ethanol with centrifugation at 16,000 g for 5 minutes. The pellet was dried briefly at 50 oC 

for about 5 minutes and then resuspended in 120 μl of 10 mM Tris. DNA from input material 

was extracted alongside and sizes of chromatin fragments were analysed with 1.25% TBE (89 

mM Tris, 89 mM Boric acid, 2 mM EDTA) agarose gel.  
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2.5 Native chromatin immunoprecipitation 

2.5.1 Low salt native chromatin preparation 

All buffers for nucleosome preparation and immunoprecipitation were supplemented with 

protease inhibitors (Section 2.3.1), 10 mM of sodium butyrate and 10 mM of N-ethylmaleimide 

was added if histone ubiquitination was investigated. 10 x 140 mm dishes of cells were harvested 

by centrifugation at 1,000 g for 5 minutes and cell pellets were washed with PBS followed by 

centrifugation twice. Cells were lysed following resuspension in 6 ml of lysis buffer (10 mM Tris, 

pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.4% NP-40). Cell nuclei were pelleted by centrifugation at 

2,500 g for 5 minutes and then resuspended in 2 ml of Calcium plus lysis buffer (lysis buffer plus 

1 mM CaCl2). 1 μl of cell nuclei suspension was added into 199 μl of urea/NaCl buffer (5 M 

Urea, 2 M NaCl) for DNA concentration measurement with optical absorbance at 260 nm (DNA 

concentration in μg/ml = absorbance x 50 x dilution factor). Nuclei were pelleted again and 

resuspended in Calcium plus lysis buffer as necessary, in order to bring the DNA concentration 

to 5 mg/ml. The cell nuclei suspension was separated into three equal aliquots for digestion with 

serially diluted micrococcal nuclease (MNase) with MNase digestion buffer (20 mM Tris, pH 8, 

0.25 μM CaCl2, 20% glycerol). The concentration of MNase (X) for digestion was determined 

by prior small scale digestions to identify the MNase concentration that yielded the most amount 

of di- and tri-nucleosomes. “X” determined for 6C2 cells was 2 units of MNase per 1 mg of 

chromatin, and 1.5 units for K562 cells. The pre-warmed three aliquots of cell nuclei were 

digested with 0.5X, X and 2X of MNase separately. Digestion was carried out at 37 oC for 17 

minutes. Digestion reactions were quenched with 10 mM EDTA and soluble chromatin 

supernatant (S1) was collected following centrifugation at 2,500 g for 5 minutes. Three digests 

were combined (S1). The remaining pellet was resuspended with EDTA plus lysis buffer (lysis 

buffer plus 0.25 mM EDTA) and then left on ice for 15 minutes. Chromatin was released by 

passing through 20 then 25 gauge needles for 4 times each. Cell debris was removed by 

centrifugation at 10,000 g for 10 minutes at 4 oC and the soluble fraction (S2) was saved and 

pooled together with S1. Nucleosomes were separated according to sizes with sucrose density 
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gradient centrifugation or saved for western blotting analyses of total chromatin. 

 

2.5.2 Sucrose density gradient centrifugation 

Linear 5 to 25% sucrose gradients were generated with buffered sucrose (sucrose (5% or 25% 

w/v), 10 mM Tris, pH 7.5, 10 mM NaCl, 3 mM EDTA) by using a Gradient Master 107 gradient 

forming instrument (Biocomp). Program settings for generation of 5 – 25% linear sucrose 

gradient were 81.5o inclination, 15 rpm and duration 1 minute and 52 seconds. 1.5 mg or 500 μl 

of S1S2 chromatin was placed on top of a 14 ml gradient and then separated by 

ultracentrifugation with SW 40 Ti rotor at 31,000 rpm (equivalent to 170614 g at maximum 

radius) for 14 hours at 4 oC. 1 ml fractions were collected from top of the gradient. 10 μl of each 

fraction was digested with 1 μg of Protease K at 37 oC for 30 minutes in the presence of 0.03% 

of SDS. Chromatin sizes were analysed with 1.5% of SafeView stained TBE agarose gel. 

Fractions containing di- and tri-nucleosomes were pooled for 0.1% formaldehyde crosslinking in 

order to fix unstable nucleosomes. Crosslinking was carried out at room temperature for 13 

minutes and then quenched with 125 mM glycine for 5 minutes. Excess crosslinkers, glycine and 

sucrose exchanged with N-ChIP buffer (10 mM Tris, pH 7.5, 50 mM NaCl, 5 mM EDTA) using 

an equilibrated 10 ml Bio-gel desalting column (Biorad). The column was packed with P-6DG 

gel (Biorad) prepared by swelling P-6DG gel powder with N-ChIP buffer overnight at 4 oC. The 

concentrations of chromatin preparations were measured with Bradford assay (Section 2.3.2). 

 

2.5.3 Immunoprecipitation of native chromatin 

50 μg of nucleosomes were pre-cleared using 100 μl (50% of slurry in N-ChIP buffer) of protein 

A or G agarose for one immunoprecipitation reaction. The agarose suspension was mixed at 4 oC 

for 2 hours with gentle rotation and the agarose was removed by centrifugation at 3000 g for 1 

minute. Specific antibody was added to the pre-cleared chromatin (Table 2.10). Nucleosomes 

were incubated with antibody at 4 oC for overnight with gentle rotation. 100 μl (50% of slurry in 

N-ChIP buffer) of protein A or G agarose was added and incubated at 4 oC for 2 hours. Unbound 
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proteins were washed away with 1 ml of wash buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 0.2 

mM EDTA, 0.1% Tween-20) followed by centrifugation at 3000 g for 1 minute for 5 times. 

Immunoprecipitated chromatin was eluted with 350 μl of 1.5% SDS elution buffer (N-ChIP 

buffer supplemented with 1.5% SDS)  and then 0.5% SDS (N-ChIP buffer supplemented with 

0.5% SDS) elution buffer at room temperature for 15 minutes each. The elution from the two 

elution steps was pooled and subjected to DNA extraction (Section 2.4.3). 

 
Antibodies Amount 
H3K4me2 10 μl 
H3K4me3 10 μl 
H3K9me2 10 μg 
H3K9me3 10 μl 
H3K27me3 10 μl 

H3ac 10 μl 
H4ac 10 μl 

H2A.Z 10 μl 
H2A.Zac 10 μg 

H2BK120ub1 10 μl 
Ubiquitin 20 μg 

Table 2.10 Antibodies used in native ChIP analyses for histone modification detection 

 

2.5.4 DNA quantification using PicoGreen® reagent 

The procedures were generally followed as the manufacture’s recommendation (Invitrogen). All 

reagents except DNA samples were provided from the kit. Briefly, standard DNA was prepared 

in two-fold serial dilution with 1X TE buffer for standard curve establishment. The range of 

standard was from 3.125 ng/μl to 0.00305 ng/μl. DNA from each ChIP experiment was diluted 

10-fold while input DNA was diluted 100-fold for measurement. PicoGreen® working solution 

was prepared by diluting the PicoGreen® stock 400-fold with 1X TE buffer. 10 μl of diluted 

samples or standard DNA was added into 190 μl of working PicoGreen® solution in duplicates 

for each samples. Fluorescent signal was measured using a “plate read” function of real-time 

PCR machine (Stratagene Mx3000P) with excitation at 480 nm and emission intensity collected 

at 520 nm. Emission readings from the standard DNA were plotted versus DNA concentrations 
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(Figure 2.2) and an equation (y=mx+c) obtained from the straight line was used for calculation 

of the sample DNA concentration. 

 

Figure 2.2 An example of PicoGreen® standard curve. The standard curve was established 
using the lamda standard DNA provided from the invitrogen PicoGreen® kit. Readings of 
emission at 520 nm of standard samples were subtracted to that of blank and plotted against 
DNA concentrations.  
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2.6 Reverse Transcriptase PCR 

2.6.1 RNA extraction 

5 x 106 of 6C2 cells were harvested and lysed in 1 ml of TRI Reagent® (Sigma). 100 μl of 

1-bromo-3-chloropropane (BCP) was added and then mixed vigorously. Samples were left at 

room temperature for 5 minutes. The aqueous upper layer containing extracted RNA was 

collected following centrifugation at 12,000 g for 15 minutes at 4 oC. RNA was precipitated with 

500 μl of isopropanol incubation at -20 oC for 20 minutes. RNA was pelleted by centrifugation at 

12,000 g at 4 oC for 15 minutes. The RNA pellet was washed with 500 μl of 70% ethanol 

followed with centrifugation at 12, 000 at 4 oC for 5 minutes twice and then air-dried at room 

temperature. RNA was resuspended in 50 μl of RNAase-free water. 

 

2.6.2 cDNA synthesis 

RNA was quantified by measurement of absorbance at 260 nm with a NanoDrop® ND1000 

spectrophotometer (Thermo). 400 ng of RNA was mixed with 0.5 μl of 10 μM of dNTP (mixture 

of dATP, dCTP, dGTP and dTTP), 1 μl of random hexamer (50 ng/μl) and the final volume was 

brought to 6.5 μl with RNase-free water. The mixture was denatured at 65 oC for 5 minutes, and 

then left on ice for 1 minute. 2 μl of 5X first strand synthesis buffer, 0.5 μl of RNase OUT, 0.5 μl 

of 0.1 M DTT and 0.5 μl of SuperScript III reverse transcriptase (Invitrogen) were added to the 

mixture. cDNA was synthesised by incubation on a thermocycler at 25 oC for 10 minutes, 50 oC 

for 50 minutes, 85 oC for 5 minutes. A reaction without reverse transcriptase was prepared in 

parallel to act as a control of genomic DNA contamination in subsequent PCR assays. RNA 

template was removed by RNAase (2 units) digestion at 37 oC for 20 minutes. cDNA was diluted 

10 folds with RNase- and DNase-free water for quantitative PCR analysis. 
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2.7 Real-time quantitative PCR analysis 

2.7.1 Real-time PCR reaction setup 

2.7.1.1 TaqMan assay 

TaqMan chemistry makes use of the principle of fluorescence resonance energy transfer (FRET) 

to confer a high specificity in quantitative PCR. In addition to conventional forward and reverse 

primers flanking the target site, a TaqMan probe is also designed which is specific to the target 

sequence. A TaqMan probe is conjugated with a fluorophore and a quencher at the 5’ and 3’ ends, 

respectively. Emission energy of fluorophore followed by excitation is absorbed by the quencher 

if the two are in close proximity so that the fluorescent signal cannot be detected. While 

extension of the forward primer occurs and reaches the TaqMan probe that has primed on the 

same DNA template, degradation of the probe occurs due to the 5’ to 3’ exonuclease activity of 

Taq polymerase. Therefore, the fluorophore and quencher are no longer in proximity; the 

fluorescent signal can be detected and is proportional to the amount of specific PCR products 

(Figure 2.3) [Knemeyer & Marmé, 2007]. Non-specific PCR products without priming of either 

the forward or TaqMan probe are not detected.  

 

 

 

 

Figure 2.3 Overview of Taqman probe-based assay 
chemistry. “R” and “Q” indicate the fluorescent reporter 
dye and quencher, respectively. Modified from the website 
of Applied Biosystems (www.appliedbiosystems.com).  
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As the PCR primers and TaqMan probes that are specific to the chicken β-globin locus had been 

widely used in the lab, the TaqMan chemistry was employed in all quantitative PCR analyses 

following ChIP assays for studying the locus. TaqMan assays were also used for some 

quantitative PCR analyses for studying human putative insulator elements or other regulatory 

elements, depending on the availability of TaqMan probes (Appendix I). 

 

DNA of input samples and from native ChIP was usually diluted to 0.2 ng/μl for real-time PCR 

while no dilution was made for DNA from crosslinking ChIP. Reaction was set up as following: 

2X TaqMan PCR reaction mix         10 μl 

Forward and reverse primer mix (4.5 nM of each primer)    4 μl 

TaqMan probe (working concentration differed between probes)   2μl 

DNA template             4 μl 

Total volume             20 μl  

 

PCR reactions were performed on a thermal cycler (Roche, LC480) with thermal profiles: 

denaturing at 95 oC for 10 minutes, followed by 50 cycles of denaturation at 95 oC for 10 

seconds and annealing/extension at 60 oC for 45 seconds. Values of cycle threshold (Ct) were 

obtained using the software LightCycler® 480 platform as shown in Figure 3.5.  

 

2.7.1.2 SYBR® Green 

The SYBR® Green chemistry is a relatively cost-effective quantitative PCR assay because the 

costly TaqMan probe is not involved. This assay is developed based on a fluorescent property of 

the SYBR Green I dye following the binding to double-stranded DNA [Arya et al, 2005]. 

Therefore, fluorescent signal increases after every amplification cycle with the amount of PCR 

products (Figure 2.4).  
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Figure 2.4 Overview of SYBR® Green chemistry. 
Modified from the website of Applied Biosystems 
(http://www.appliedbiosystems.com).  

 

 

 

 

 

Quantitative analyses of RT-PCR and ChIP assays of human regulatory elements without 

available TaqMan probes were performed with SYBR® Green assays (Appendix I). 

Concentration of DNA template for SYBR® Green was the same as that was used for TaqMan 

assay. PCR reaction was set up as followings 

2X SYBR® Green mix           4 μl 

Forward and reverse primer mix (4.5 nM of each primer)    4 μl 

DNA template             4 μl 

Water              2 μl 

Total volume             20 μl 

 

PCR reactions were carried out on a thermal cycler from Stratagene (Mx3000P) with thermal 

profiles: denaturating at 95 oC for 10 minutes, followed by 40 cycles of denaturation at 95 oC for 

15 seconds and annealing/extension at 60 oC for 30 seconds. Dissociation temperature of PCR 

products was measured with increasing temperature from 55 oC to 95 oC. Ct values were 

obtained from the software MxPro v.4.01 for data analysis as shown in Figure 3.5.  
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2.7.2 Data analysis 

The relative enrichment of specific sequences in ChIP assays was determined using the 

comparative Ct method, also known as the 2-∆∆Ct method [Litt et al, 2001a; Livak et al, 2001; 

Schmittgen & Livak, 2008]. The method firstly determined the amount of target DNA present in 

immunoprecipitates relative to that in the input material, that was ∆Ct (∆Ct = Ctinput - CtChIP). It 

was then normalised to the enrichment of a negative or positive control region in order to obtain 

∆∆Ct (∆∆Ct = ∆Ctinterest - ∆Ctcontrol).  

 

The relative enrichment of target DNA from ChIP versus control sequence is expressed as 2∆Ct. 

This assumes maximal primer efficiencies, where the amount of PCR products doubles after each 

cycle of amplification. In practice, however, discrepancies between primer efficiencies can skew 

data analyses as discussed in Section 3.2.1.3. Fold enrichment calculations therefore 

incorporated the values of primer efficiencies (E) obtained from the slope of primer standard 

curve (E = 10-1/slope), Ct values resulting from the PCR of a series of genomic DNA of standards 

for each primer. The relative enrichments of a target site normalised to a control site were 

calculated from the primer efficiencies of each site, Et and Ec, respectively. The formula for 

calculating the fold enrichment of a target site after normalisation to the enrichment of a control 

site is Et
∆Ct/Ec

∆Ct.  

 

Relative mRNA expression levels in RT-PCR analyses were also calculated using the 

comparative Ct method. The expression of target gene was firstly normalised to a loading control, 

normally a housekeeping gene, to obtain ∆Ct (∆Ct = Cttarget – Ctloading control). Change of 

expression was then compared with an untreated control or wild type to obtain ∆∆Ct (∆∆Ct = 

∆Cttreated - ∆Ctuntreated or wild type).  

 

Two sample equal variance Student’s t-tests using a two-tailed distribution were applied to obtain 

p-values from ChIP enrichment values with the t-test function in Microsoft Excel to access the 
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significance of fold enrichments over controls, or changes of histone modifications upon RNF20 

knockdown.  
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2.8 Flow cytometry analysis 

2.8.1 Sample preparation 

106 6C2 cells were harvested by centrifugation at 1,000 g for 5 minutes. Cells were washed twice 

with 1 ml of HBSS+ (Hank’s buffered saline solution supplemented with 0.1% BSA, 0.1% 

Sodium azide) following centrifugation. Cells were resuspended in 100 μl of HBSS+ and then 10 

μl of anti-IL2R-PE antibody was added. Antibody binding occurred at 4 oC for 30 minutes in the 

dark. Excess antibody was removed by washing twice of HBSS+ in 1ml each following 

centrifugation. Cells obtained from the last wash were resuspended in 500 μl of HBSS+ for flow 

cytometry analysis. 

 

2.8.2 Data collection and analysis 

Flow cytometry analysis was carried out with a FACSCalibur flow cytometer (BD Biosciences) 

and data was collected using the software CELLQuest. Parameters for data collection were 

optimised for detection of chicken 6C2 cells, for PE as well as GFP fluorescent signals. 

Fluorochromes were excited by laser at 488 nm. Emission was collected with the FL1 detector at 

530 nm for GFP and the FL2 detector at 585 nm for PE. Voltages were set at 460 V for detectors 

FL1 and 465 V for FL2. Colour compensation was made correct for the emission of GFP in FL2 

(20% FL1) and PE in FL1 (1% FL2). While viewing a forward scatter (FSC, for cell sizes) 

versus side scatter (SSC, for cellular granularity) plot, viable single cells were gated for analysis. 

Data from 10,000 viable or GFP expressing cells (knockdown cells) were collected for analysis. 

Mean or median of fluorescence intensity was an indicator of GFP or IL2R expression. The 

relative expression level of IL2R in knockdown cells was compared to that of wild type or 

untreated cells by setting expression of control cells to one using FlowJo software (Tree Star, 

Inc). 
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CHAPTER 3 

Identification of H2B ubiquitination at chromatin boundary elements  

 

3.1 Objectives 

In this chapter, the hypothesis that chromatin boundary elements, such as the HS4 insulator, may 

recruit H2B ubiquitination as part of their chromatin barrier activity will be addressed in the 

following three objectives. 

 

Objective 1. Confirm that boundary elements are enriched with ubiquitinated histones 

a) Establishment and optimisation of native ChIP assays, including 

i. Check the representation of histone modifications and genomic DNA sequences in 

native chromatin fractions 

ii. Check the immunoprecipitation of H3K4me2/3 from native chromatin 

iii. Determine the efficiency of PCR primer sets in quantitative real-time PCR 

iv. Perform the native ChIP assay for H3K4me2/3 

v. Examine the performance of native chromatin fractions prepared in low salt 

conditions 

b) Native ChIP analysis of histone ubiquitination and H2BK120ub1 across the FOLR1 and 

β-globin gene loci in erythroid cells 

i. Check the immunoprecipitation of histone ubiquitination and H2BK120ub1 from 

native chromatin 

ii. Perform the native ChIP assay for histone ubiquitination and H2BK120ub1 
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Objective 2. Determine whether the H2B-specific ubiquitination ligase RNF20 is recruited 

to chromatin boundary elements 

a) Identify the sequence of the candidate H2B-specific E3 ligase RNF20 in chicken 

b) Analyse the specificity of anti-RNF20 antibodies 

c) Determine whether RNF20 is bound at chromatin boundary elements 

 

Objective 3. Establish clonal cell lines that permit prolonged knockdown of RNF20 

expression 

a) Design short hairpin RNA sequences that target chicken RNF20 

b) Design of the lentiviral shRNA expression vector system 

c) Establishment of clonal cell lines with inducible knockdown of RNF20 

d) Western blotting analysis of RNF20 and H2BK120ub1 in knockdown lines 
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3.2 Confirm that boundary elements are enriched with ubiquitinated histones 

3.2.1 Establishment and optimisation of native ChIP assays 

The first objective is to confirm that boundary elements are enriched with ubiquitinated histones, 

H2B monoubiquitination in particular, using ChIP assays. Anti-H2Bub1 antibodies had not been 

developed when this project began. The only strategy for the ChIP analysis of H2B 

ubiquitination included tagging the H2B and ubiquitin genes in budding yeast with the FLAG 

and HA epitope tags, and two-step crosslinking ChIP with anti-FLAG followed by FLAG 

peptide elution then ChIP with anti-HA antibodies [Henry et al, 2003; Kao et al, 2004]. This 

approach was considered to be too problematic for use in this study due to the technical 

challenge of genetically modifying chicken erythroid cells. Moreover, this two-step ChIP 

approach may result in false positive results given that a wide variety of non-histone chromatin 

binding proteins are subject to ubiquitination and that tagged H2B is present in almost all 

nucleosomes. This approach is likely to yield all ubiquitinated nucleosomes, whether the 

modification occurs on H2B, other histones or non-histone proteins. 

 

ChIP assays using anti-ubiquitin antibodies and native chromatin preparations offers a more 

specific approach to studying histone ubiquitination without the need for genetic modification of 

the tissues under study. My supervisor Dr. Adam West first used this approach to study histone 

ubiquitination in 10 day chick embryo red blood cells (Section 1.6.3). The native ChIP procedure 

involves the isolation of nucleosomal fragments following the digestion of nuclei with 

micrococcal nuclease (MNase) (Figure 3.1). Digested chromatin is then subject to sucrose 

density gradient fractionation, with mono-, di- and tri-nucleosomes being retained for ChIP 

assays. Chromatin fragments are immunoprecipitated with specific antibodies and the 

precipitated genomic DNA is then purified by phenol/chloroform extraction for quantitative PCR 

analysis of specific sequence enrichments. 
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Figure 3.1 Schematic diagram showing the native ChIP procedures.  

 

The necessity of sucrose density fractionation and the inability to store native chromatin for long 

periods, make this approach more time consuming than conventional crosslinking ChIP analysis. 

However, there are key advantages of native ChIP over crosslinking ChIP for the analysis of 

histone modifications [Das et al, 2004]. The crosslinking of histone-binding proteins and 

compact chromatin structures can mask the epitopes recognised by specific anti-histone 

antibodies, thus lowering ChIP efficiency and potentially skewing ChIP enrichment values for 

specific sequences. Furthermore, native chromatin preparations can be free of non-histone 

proteins (Figure 3.2), allowing the study of histone ubiquitination with anti-ubiquitin antibodies. 

 

 

Figure 3.2 Protein content of di-/tri- nucleosomes prepared from 
10 day RBC for use in native ChIP assays analysed by Coomassie 
blue stained polyacrylamide gel [Ma et al, 2011]. 
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3.2.1.1 The preparation of native chromatin fractions for high resolution ChIP analyses of 

active and repressive histone modifications across the FOLR1 and β-globin gene loci 

Small chromatin fragments are preferred in ChIP assays to allow maximal resolution and 

potential enrichment. Mononucleosome fractions offer the highest resolution but the potential for 

nucleosome sliding and instability in native preparations can present a problem [Meersseman et 

al, 1992]. Another problem is that positioned mononucleosomes may be missed in quantitative 

PCR as the amplicon sizes in this study range from 60 – 130 bp. Fractions containing di- and 

tri-nucleosomes are therefore selected in a balance between resolution and chromatin stability. A 

further concern is the genomic representation of native chromatin preparations, as nuclease 

accessibility differs across the genome. It was shown by the Felsenfeld group that the 

combination of three digests with a range of MNase concentrations allows the preparation of di- 

and tri-nucleosomes from both relaxed and compact structures [Litt et al, 2001b]. 

 

Native chromatin was prepared from the chicken early erythroid CFU-E stage cell line 6C2, 

which express the FOLR1 gene, but are yet to express the β-globin genes. Following the 

Felsenfeld native ChIP approach, nuclei were digested with 0.5X, 1X and 2X concentrations of 

MNase where “X” was the single concentration that gives the greatest yield of di- and 

tri-nucleosomes. Digested chromatin was fractionated on 5-25% sucrose density gradients. DNA 

was extracted from an aliquot of each fraction to determine the nucleosome sizes by agarose gel 

electrophoresis (Figure 3.3a). Fractions were pooled according to their nucleosome sizes, 

resulting in five pooled categories, overdigested nucleosomes, mononucleosomes, 

di-/tri-nucleosomes, polynucleosomes and high molecular weight nucleosomes. These chromatin 

pools were analysed by western blotting and quantitative PCR assays to determine the 

representation of active and repressive histone modifications and genomic DNA sequences in 

each fraction. 
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a         b 

 

 

 

 

 

 

 

 

 

 

c 

d 

Figure 3.3 Relaxed and condensed chromatin regions are represented in di-/tri-nucleosome 
fractions. a. Upper panel: Agarose gel electrophoresis analysis of the sizes of chromatin in 
different sucrose fractions. Lower panel: chromatin fractions were pooled according to their sizes 
and analysed again by agarose gel electrophoresis. b. Histone modifications in each chromatin 
fraction were examined by western blotting. c. DNA isolated from each chromatin fractions were 
determined by quantitative PCR. The relative level was calculated from the differences of Ct 
values (dCt), dCt = Cttotal chromatin - Ctexamined chromatin fraction, where Ct values were obtained as 
shown in Section 2.7.2. d. Primer sets used in this experiment. 

 

‐6

‐4

‐2

0

2

4

overdigested mono di/tri poly v.high MW

re
la
ti
ve

 le
ve
l

(r
el
at
iv
e 
to
 

to
ta
l c
hr
om

at
in
)

FOLR1 pro
16 kb cond
HS4
βH pro



Chapter 3 

109 | P a g e  
 

Chromatin with high nuclease accessibility present in the mononucleosome fraction was found to 

have higher levels of H3ac, H3K4me2 and H3K4me3, compared with chromatin with low 

accessibility in the polynucleosomes and very high molecular weight fractions (Figure 3.3b). 

H4ac and H3K9me3 levels were equally distributed between chromatin fractions of different 

sizes. In contrast, the levels of the heterochromatin-associated mark H3K27me3 were highest in 

fractions with the largest chromatin fragments. H3K9me3, unlike H3K27me3, was not enriched 

in any particular chromatin fractions. The bulk of H2BK120ub1 is found in less accessible 

polynucleosome fractions. The di-/tri-nucleosome fraction contained a mixture of each 

chromatin mark. 

 

Quantitative PCR was used to determine the presence of genomic sequences known to reside in 

open and condensed chromatin structures in each nucleosomal fraction. The FOLR1 promoter 

and HS4 insulator are both DNaseI hypersensitive sites in 6C2 cells [Prioleau et al, 1999] and 

are enriched in both the mononucleosome and di-/tri-nucleosome fractions (Figure 3.3c). 

Conversely, the transcriptionally inactive 16 kb condensed region and βΗ-globin promoter, were 

depleted from mononucleosomes and present in di-/tri-nucleosomes up to higher molecular 

weight nucleosomes. Therefore, the di-/tri-nucleosome fraction contains a mixture of open and 

condensed chromatin sequences.  

 

By balancing considerations of nucleosome stability, ChIP resolution and the representation of a 

variety of histone modifications and genomic regions, the fractions that contain 

di-/tri-nucleosomes were selected in subsequent ChIP experiments. These fractions contain 

predominantly core histone proteins, with minimal non-histone protein carryover (Figure 3.2 & 

Figure 3.3b). 
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3.2.1.2 Analysis of immunoprecipitates from native chromatin 

To validate the performance of native ChIP from fractionated 6C2 chromatin, 

immunoprecipitations were carried out with anti-H3K4me2 and anti-H3K4me3 antibodies as a 

trial run. These modifications are particularly well studied in crosslinking ChIP and native ChIP 

for H3K4me2 in 6C2 cells has been reported previously [Litt et al, 2001a]. The two antibodies 

could immunoprecipitate the corresponding H3K4 methylation from total chromatin prepared 

following MNase digestion (Figure 3.4a) as well as from di-/tri-nucleosomes purified using 

sucrose gradients (Figure 3.4b). The method of nucleosome preparation and the buffer conditions 

for immunoprecipitation are therefore suitable for the detection of these modifications using 

native ChIP assays. 

 

a         b 

Input: total chromatin     Input: di-/tri-nucleosomes 

Figure 3.4 Immunoprecipitation of methylated H3K4 from 6C2 cell native chromatin. 
Chromatin was prepared from 6C2 cells with MNase digestion in native condition. 
Immunoprecipitation with anti-H3K4me2 and anti-H3K4me3 antibodies was performed on total 
chromatin resulting from MNase digestion (a) and di- and tri-nucleosomes resulting from 
sucrose gradient fractionation (b). The presence of H3K4me2/3 in immunoprecipitates was 
examined with the same antibodies used in immunoprecipitation. 

 

3.2.1.3 Determining the efficiency of PCR primer sets for use in quantitative real-time PCR 

Genomic DNA sequence enrichments following chromatin immunoprecipitation are quantified 

by real-time PCR in this study. Real-time PCR machine software is used to determine cycle 

threshold (Ct) values for each reaction as a direct measure of DNA quantity (Figure 3.5). The 

enrichments of genomic sequences of interest following ChIP are calculated using the 

comparative Ct method (2-∆∆Ct) as discussed in Section 2.7.2. This calculates the fold enrichment 
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of a sequence in immunoprecipitates compared to input DNA (starting chromatin). In order to 

make comparisons between ChIP experiments, normalisation to a negative or positive control 

sequence is required (2-∆∆Ct).  

 

a 

b 

Figure 3.5 Determination of cycle threshold (Ct) values in real-time PCR. Log [fluorescent 
intensity] is plotted against number of cycles in the log amplification plot. a. A baseline (red line) 
is aimed to remove background noise which is shown in the initial PCR cycles with little change 
in fluorescent intensities. b. A cycle threshold (red line), which is always higher than the baseline, 
was set at the level where all examined samples are within the linear phase of the log 
amplification plot. The Ct value is the point where the amplification curve crosses the threshold. 
“IP” indicates the amplification curves of immunoprecipitated DNA and “input” represents that 
of DNA from starting chromatin. PCR reactions were performed in triplicate for each DNA 
sample and the Ct values averaged for the calculation of fold enrichment. Averaged Ct values of 
IP and input samples in this example were 29.73 and 30.86, respectively. PCR with DNA from 
input material and immunoprecipitation was always performed on the same PCR plate to 
maintain the consistency of dCt = Ctinput – CtIP.  
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The comparative Ct equation holds true if the amplification efficiencies of the both the 

experimental and control primer sets are maximal. Ideally, primer sets have an efficiency (E) 

equal to two as the amount of DNA doubles after every amplification cycle during the early 

logarithmic phase of the PCR reaction.  However, this is not always possible due to the 

different annealing temperature of primers, different melting temperatures of substrates, and 

primer dimer formation, which lower the amplification efficiency. Primer efficiencies not only 

affect comparison between different primers in the same sample but also potentially affect the 

quantification of different samples with the same primers. With respect to the 2-∆∆Ct method, 

when efficiencies of the two primers are not equal to 2, the calculated fold enrichment at a target 

site relative to a control site is only accurate if the two primers have similar efficiencies. 

Overestimation would occur if the efficiency of target primer is larger than that of control primer 

and underestimation would occur in the opposite situation (Table 3.1).  

 

Situation Target primer Control primer Fold 
enrichment Et ∆Ct Ec ∆Ct 

Ideal (Et = Ec) 2 -6 
-6 
-6 

2 -2 
-2 
-2 

8 
Et > Ec 1.8 1.5 15.11 
Et < Ec 1.5 1.8 3.52 

Table 3.1 Examples fold enrichment calculation with different primer efficiencies. “Et” refers to 
the efficiency of target primer, “Ec” for efficiency of control primer while ∆Ct is a Ct difference 
of ChIP DNA and input sample (∆Ct = Ctinput - CtChIP).  

 

The efficiency of each primer set used in this study was therefore determined for incorporation in 

comparative Ct calculations. Primer efficiency is determined from the observed Ct over a range 

of genomic DNA standards. The primer efficiency (E) is calculated from the slope of the 

standard curve, where E = 10-1/slope (Figure 3.6).  
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Figure 3.6 Determination of primer efficiency. An example of standard curve establishment 
for the HS4 insulator sequence primer set 21.726. Native di-/tri-nucleosomes from chicken 6C2 
cells were prepared as previously described in Section 3.2.1.1. DNA was purified and diluted in a 
2-fold serial dilution such that the amount of DNA template added to each quantitative PCR 
reaction ranged from 0.2 ng to 3.5 ng. Triplicates of PCR reactions were set up for each DNA 
template amount. The average Ct values are entered into a scatter plot and a linear trendline was 
added. The equation representing the line was used to determine the DNA amount of DNA from 
ChIP. The primer efficiency in this case was 1.93. 

 

3.2.1.4 Native ChIP analysis of H3K4 methylation across the FOLR1 and β-globin gene loci 

Native ChIP has previously been used to map H3K4me2 across the FOLR1 and β-globin gene 

loci in 6C2 cells [Litt et al, 2001a]. A pilot native ChIP assay with anti-H3K4me2 antibodies was 

completed  to validate the native ChIP assay system. Enrichments were normalised to a site 

within the condensed chromatin region located between the FOLR1 and β-globin gene loci at the 

globin locus as this site was adopted as a negative control site in previous studies [Litt et al, 

2001a; West et al, 2004].  

 

In agreement with the previous results, H3K4me2 was detected at the HS4 insulator and the 

FOLR1 promoter (Figure 3.7), suggesting that the experimental conditions for the native ChIP 

assay are suitable for the quantitative analysis of histone modifications. As there is emerging 

evidence showing that H3K4me3 is a pivotal mark for regulation and binding of histone 

modifiers and chromatin modelling enzymes [Flanagan et al, 2005; Pray-Grant et al, 2005; Shi et 

al, 2006; Smith et al, 2004], H3K4me3 at the HS4 insulator is also of interest. Similar to 
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H3K4me2, H3K4me3 was also enriched at HS4 and the FOLR1 promoter (Figure 3.7). It was 

not surprising that H3K4me3 was found at the transcriptionally active FOLR1 promoter as this 

histone mark is commonly found at promoters especially those of active genes [Barski et al, 

2007; Guether et al, 2007; Wang et al, 2007]. Given the colocalisation of H2BK120ub1, 

H3K4me2 and H3K4me3 at HS4, H2BK120ub1 might be a master regulator of these two states 

of H3K4 methylation. 

 

a 

b 

Figure 3.7 The FOLR1 regulatory elements and the HS4 insulator are enriched in methylated 
H3K4. a. Cell chromatin from 6C2 cells was prepared in native condition by MNase digestion. 
Di- and tri-nucleosomes fractionated after sucrose gradient separation were pooled and desalted 
for immunoprecipitation. Enrichment of H3K4me2 and H3K4me3 was examined by quantitative 
PCR and normalised to the condensed chromatin region (15.850) as background. Student t-tests 
were applied to examine whether the enrichments of H3K4me2/3 are statistically significant 
when compared with no antibody control. All H3K4me2 and H3K4me3 enrichments are 
significant with p-values smaller than 0.001. b. Primer used for quantitative PCR.  
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3.2.1.5 The performance of native chromatin fractions prepared in low salt conditions 

It has been reported that nucleosomes containing both the histone variants H2A.Z and H3.3 are 

unstable so they are easily disrupted by moderate salt concentration in vitro [Jin & Felsenfeld, 

2007]. Such unstable nucleosomes are commonly found at gene regulatory elements such as 

promoters [Jin et al, 2009]. Although HS4 does not function as a promoter, it does share a very 

similar histone modification signature with promoters. Indeed, the HS4 nucleosomes have been 

shown to be enriched in H2A.Z [Bruce et al, 2005], it might not be surprising if H3.3 is also 

present according to the similarity of nucleosomes between the HS4 insulator and promoters. 

The conventional native ChIP method, includes a step where salt concentration is elevated to 

remove H1 and its binding proteins. It is possible that this step might destabilise the preparation 

of nucleosomes at elements such as the HS4 insulator in addition to promoters. 

 

A “low salt” ChIP method was employed according to the reference protocol from Gary 

Felsenfeld’s group [Jin & Felsenfeld, 2007]. This method is the same as the standard native ChIP 

assay except that the salt elevation step to remove H1 is omitted, and prepared nucleosomes are 

crosslinked with formaldehyde to fix any unstable nucleosomes (Figure 3.8c). The analysis of 

H3K4me2 in 6C2 chromatin was repeated using low salt native ChIP. Three concentrations of 

formaldehyde were tested (0.1%, 0.25% and 0.5%), aiming at avoiding epitope masking by the 

formaldehyde crosslinking. The crosslinked nucleosomes were passed through a desalting 

column to remove residual crosslinkers and glycine, the latter was used to stop the crosslinking 

reaction. It was found that 0.1% formaldehyde was sufficient to fix nucleosomes and gave the 

lowest background in the non-immune IgG control (Figure 3.8a). Notably, the low salt ChIP 

appeared to be more sensitive than the conventional “high salt” ChIP. The relative enrichment of 

H3K4me2 at HS4 detected with “high salt” ChIP was 12-fold (maximum ~20-fold routinely) 

while that with low-salt ChIP dramatically increased to 50-fold (Figure 3.8b). The optimised low 

salt ChIP procedures for the subsequent ChIP analyses summarised in Figure 3.8c were adopted 

for all histone modification studies in this thesis.  
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a                            b 

c 

Figure 3.8 Low salt ChIP optimisation. a. 
Crosslinking was introduced after pooling the 
di-/tri-nucleosomes. The pooled nucleosomes 
were crosslinked with final concentrations of 
0.1%, 0.25% or 0.5% of formaldehyde at room 
temperature for 15 minutes. ChIP for H3K4me2 
followed. b. Comparison of fold enrichment of 
H3K4me2 at HS4 (21.726) relative to the 
condensed chromatin region (15.850) between 
chromatin preparation from high salt (50 mM of 
NaCl) and low salt (10 mM of NaCl). Significant 
differences in fold enrichments between rabbit 
IgG control and H3K4me2 IP, and between 
H3K4me2 ChIP in high and low salt conditions 
are indicated with “*”, “**”, and “***” for 
p-values smaller than 0.05, 0.01 and 0.005, 
respectively. c. Flow chart of the optimised low 
salt ChIP procedure.  
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3.2.2 ChIP analysis of histone ubiquitination across the FOLR1 and β-globin gene loci 

3.2.2.1 Analysis of histone ubiquitination and H2BK120ub1 immunoprecipitates from 

native chromatin 

To ensure the antibody could recognise chicken ubiquitinated histones on native chromatin prior 

to ChIP assays, immunoprecipitation followed by western blotting analysis with H2B- and 

ubiquitin-specific antibodies were carried out. Results showed that the ubiquitin-specific 

antibody was able to pull down ubiquitinated H2B from native chromatin. The presence of 

ubiquitinated H2B in the immunoprecipitates was confirmed by H2B-specific antibody and the 

later developed H2BK120ub1-specific antibody with expected size ~25 kDa (Figure 3.9).  

 

Figure 3.9 Immunoprecipitation with H2BK120ub1- and ubiquitin-specific antibodies on 
chicken chromatin. Native chromatin from chicken 6C2 cells was prepared with MNase 
digestion for immunoprecipitation with H2BK120ub1- and ubiquitin-specific antibodies. The 
presence of H2BK120ub1 in the immunoprecipitates was confirmed with western blotting 
analyses with H2B- (left panel) and the same H2BK120ub1-specific (right panel) antibodies. The 
expected size of monoubiquitinated H2B is ~25 kDa.  

 

3.2.2.2 Chromatin boundaries at the FOLR1 and β-globin gene loci are marked by histone 

ubiquitination 

To determine whether the HS4 insulator and other regulatory elements at the FOLR1 and 

β-globin gene loci are sites of histone ubiquitination, native ChIP of 6C2 cell chromatin was 

performed using anti-ubiquitin antibodies, which recognised full-length ubiquitin (Figure 3.10a) 

and ubiquitinated conjugates but not free form of ubiquitin (Figure 3.10b). It was found that the 

HS4 insulator was significantly enriched in histone ubiquitination using either antibody 

(p-value=1.6E-04 in Figure 3.10a & p-value=6.1E-07 in Figure 3.10b). Interestingly, the HSA 

and HSB regulatory elements located between the FOLR1 gene and the condensed region are 
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also enriched in histone ubiquitination, but this is only observed using the anti-ubiquitinated 

conjugate antibody (Figure 3.10b), suggesting that the avoidance of epitope masking is not 

entirely guaranteed even with the native ChIP approach. HSA/HSB are located at the 5’ 

boundary of the H3K9me2-enriched condensed region [Prioleau et al, 1999; Litt et al, 2001a]. 

The HSA/HSB elements may harbour chromatin boundary/insulator activity given their 

boundary location, their ability to drive position-independent expression of a transgene [Prioleau 

et al, 1999] and the similarity of their histone modifications with the HS4 element. 

 

While the enrichment of histone ubiquitination observed at the HSA/HSB and HS4 chromatin 

boundary elements is consistent with the proposed role for H2B monoubiquitination, the ChIP 

enrichments may reflect the ubiquitination of other core histones [West & Bonner, 1980a; West 

& Bonner, 1980b]. H2BK120ub1-specific antibodies became available during this study [Minsky 

et al, 2008]. The antibody had been shown to be able to recognise human and yeast ubiquitinated 

H2B but had not been tested in chickens. Native chromatin from chicken 6C2 cells was prepared 

for immunoprecipitation followed by western blotting to examine if the antibody could recognise 

H2BK120ub1 in chickens. Results showed that the H2BK120ub1-specific antibody could detect 

H2BK120ub1 in both native form in immunoprecipitation and denatured form in western 

blotting as the ubiquitin-specific antibody did (Figure 3.9). The H2BK120ub1 profile across the 

β-globin and FOLR1 loci was very similar to that of ubiquitinated conjugates. The HS4 insulator 

and HSA/HSB are also enriched in H2BK120ub1 (Figure 3.11). The result provides direct 

evidence to confirm the presence of monoubiquitinated H2B at the boundary elements at the 

β-globin and FOLR1 foci. Moreover, significant enrichment of H2BK120ub1 was also detected 

at the FOLR1 promoter and gene body, in agreement to the linkage between H2B ubiquitination 

and transcription activity [Shema et al, 2009; Xiao et al, 2005; Zhu et al, 2005].  
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a 

b 

c 

Figure 3.10 Profiles of ubiquitinated histones with different anti-ubiquitin antibodies across 
the chicken β-globin and FOLR1 loci. Low-salt native ChIP was performed with ubiquitin- (a) 
and ubiquitinated-conjugates-specific (b) antibodies in chicken 6C2 cells. Fold enrichments of 
ubiquitinated histones at examined sited were relative to the condensed chromatin region (15.850) 
and their levels higher than two and p values smaller than 0.0001 are asterisked. c. Primers used 
for quantitative PCR. 
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a 

b 

Figure 3.11 Profile of H2BK120ub1 across the chicken β-globin and FOLR1 loci. a. Native 
ChIP with low salt preparation was performed in 6C2 cells with the H2BK120ub1-specific 
antibody. Fold enrichments of ubiquitinated histones at examined sited were relative to the 
condensed chromatin region (15.850) and their levels higher than two and p values smaller than 
0.0001 are asterisked. b. Primers used for quantitative PCR.  
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3.3 Determining whether the candidate H2B-specific ubiquitination ligase RNF20 is 

recruited to chromatin boundary elements 

The second objective of this chapter is to determine whether RNF20, whose paralogs are known 

to direct H2B ubiquitination in mammals (Section 1.2.3.2.1), is recruited to chromatin boundary 

elements in chicken cells. Crosslinking ChIP analysis was used to investigate whether this factor 

is recruited to the HSA/HSB and HS4 chromatin boundary elements. Crosslinking ChIP involves 

the fixation of cells with formaldehyde to preserve the interactions of trans factors on chromatin. 

Crosslinked chromatin fragments with sizes averaging ~500 bp are prepared following shearing 

by sonication. The chromatin fragments bound by the protein of interest are immunoprecipitated 

with a specific antibody to that protein. DNA from the immunoprecipitated complexes is then 

released by the reversal crosslinks and purified for quantitative PCR analysis (Figure 3.12). 

 

Figure 3.12 Schematic representation of the crosslinking ChIP procedure. 

 

3.3.1 Identification of the sequence for chicken RNF20 

The first assembly of the chicken genome was published in 2002 [Boardman et al, 2002], but the 

build remains incomplete and it lacks the annotation of other model organism genomes. There 

were no annotated genes for chicken RNF20 or RNF40 at the time of this study. To identify 
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whether RNF20 and RNF40 are present in the chicken genome, a protein BLAST search was 

carried out with the sequences of the human orthologs as baits and the chicken RNF20 homolog 

was found. The human and chicken RNF20 proteins share 89% identity in overall protein 

sequences and 100% identity in the catalytic RING domain (Figure 3.13). Although RNF40 is 

also essential for the H2B ubiquitination in mammals, no RNF40 homolog could be found by 

BLAST searching the chicken protein database. A BLAST search of human RNF40 against the 

BBSRC chicken EST (expressed sequence tag) database, revealed a putative chicken RNF40 

homolog that is 85% identical and 92% of similar to human RNF40 (not shown). 

 

Figure 3.13 Alignment of human and chicken RNF20 protein sequences. Human protein 
sequence (NP_062538) was aligned with that of chicken (NP_001026605) using web software 
MultAlin (http://multalin.toulouse.inra.fr/multalin/) [Corpet, 1988]. High consensus amino acids 
(> 90%) between the two are shown in red, low consensus (< 50%) in blue and intermediate 
(50 – 90%) in black. Similar residues are indicated with the symbols “!” or “#”. A missing 
corresponding amino acid is indicated by “.” in the consensus sequence. The catalytic RING 
domain is shaded by a gray box. The epitope of the RNF20 antibody used in the study is boxed.  

 

The next objective is to determine whether RNF20 is recruited to chromatin boundary elements 

by crosslinking ChIP analysis of 6C2 cell chromatin using commercially available antibodies. 

The available α-RNF20 antibody (Bethyl lab) has not been validated for use in chicken, so it is 
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important to analyse its specificity and its ability to immunoprecipitate native proteins from 

chicken cell extracts. The α-RNF20 antibody was raised against a human RNF20 peptide 

mapped to a region between residue 125 and 175 and has been shown to be specific to the human 

RNF20 protein [Wu et al, 2009]. This region shares 92% identity (47 out of 51 amino acids are 

identical) with the chicken RNF20 homolog, and chicken RNF20 is the only protein having this 

amino acid sequence in the chicken protein database (Figure 3.13). The predicted size (estimated 

by the Compute pI/Mw tool of expasy.org) of chicken RNF20 is 115 kDa. Western blotting 

analysis showed that the anti-RNF20 antibody predominantly recognised ~120 kDa polypeptide 

(Figure 3.14). There was also some much weaker recognition of ~60 kDa and ~80 kDa 

polypeptides. Only the ~120 kDa polypeptide was detected following immunoprecipitation, 

consistent with a specificity towards native chicken RNF20. Furthermore, only this ~120 kDa 

polypeptide was depleted following the knockdown of chicken RNF20 by RNA interference with 

two different short RNA sequences (data follows in Section 3.4.3). It is therefore reasonable to 

conclude that the commercially available anti-RNF20 antibody specifically recognises full length 

chicken RNF20 and can immunoprecipitate this protein from cell extracts. The validation that the 

~120 kDa band is RNF20 by independent RNA interference experiments negates the need to 

further identify the ~120 kDa polypeptide by mass spectrometry. This antibody is therefore used 

in subsequent studies. 

 

Figure 3.14 Immunoprecipitation of RNF20 from 
6C2 nuclear extracts. Western blotting analysis of 
α-RNF20 recognition of peptides present in 6C2 
nuclear extract (input) and immunoprecipitates (IP). 
The bound and unbound fractions from 
immunoprecipitations with no antibody or α-RNF20 
are shown. The ~120kDa polypeptide that matches 
the predicted size of chicken RNF20 is indicated by 
an arrow. Non-specific detection is asterisked. 

 

 



Chapter 3 

124 | P a g e  
 

3.3.2 RNF20 is recruited to chromatin boundary elements  

The α-RNF20 antibody described above was used in crosslinking ChIP assays to determine 

whether RNF20 interacts with chromatin boundary elements in 6C2 cells. The chromatin 

fragments following the sonication of crosslinked 6C2 cell chromatin were determined to 

average 400 bp in size (Figure 3.15). ChIP analysis showed statistically significant enrichment of 

both the FOLR1 HSA the β-globin HS4 chromatin boundary element sequences in the RNF20 

chromatin immunoprecipitates (Figure 3.16). This result is consistent with the earlier finding that 

these elements are also sites of H2B monoubiquitination (Section 3.2.2) and that mammalian 

RNF20 is only able to monoubiquitinate H2B and not other histones [Kim et al, 2005].  

 

 

Figure 3.15 Agarose gel electrophoresis analysis of DNA fragments 
isolated from crosslinked 6C2 cell chromatin after sonication. Chicken 6C2 
cells were crosslinked by 1% formaldehyde at room temperature for 20 
minutes. Chromatin was sonicated in order to obtain ~ 300 – 500 bp 
fragments. The sizes of chromatin fragments were analysed by 1.25% TBE 
agarose gel. 
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a             

b 

Figure 3.16  RNF20 interacts with chromatin boundary elements in 6C2 cells. (a) ChIP 
analysis with α-RNF20 antibodies. Quantitative PCR was performed with primers flanking the 
core HS4 and other regions of the chicken β-globin locus. Fold enrichments were obtained from 
2-∆Ct, which is relative to input. P-values were employed to examine whether differences of fold 
enrichments between the ChIPs with α-RNF20 and non-immune rabbit IgG antibodies were 
statistically significant. Significant differences with p-values smaller than 0.05, 0.01 and 0.001 
are indicated with one, two and three asterisks, respectively. (b) Schematic diagram of locations 
of quantitative PCR primers used. HS4 and the periphery regions are expanded to show details of 
the primers priming around HS4. 
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3.4 Establishment of clonal cell lines that permit long term knockdown of RNF20 

3.4.1 Design of short hairpin RNA sequences that target chicken RNF20 

It has been demonstrated that the HSA/HSB and HS4 chromatin boundary elements are sites of 

H2B ubiquitination and are bound by the candidate H2B ubiquitin ligase RNF20. In order to 

determine whether RNF20 is responsible for H2B monoubiquitination in chicken and to study 

the effects of depleting this mark on chromatin boundary integrity, RNF20 expression was 

knocked down by using RNA interference. It has been shown that while mammalian RNF20 and 

RNF40 function as a heterodimer to mediate H2B ubiquitination in mammals, they do not 

function redundantly as the depletion of RNF20 alone results in a dramatic reduction of 

H2BK120ub1 [Zhu et al, 2005]. 

 

To design effective short interfering RNA (siRNA) triggers for RNF20 knockdown, potential 

target sequences with 19 nucleotides matching chicken RNF20 were designed using the RNAi 

central webtool (http://katahdin.cshl.org:9331/RNAi_web/scripts/main2.pl) and then filtered by 

several criteria known to improve shRNA efficiency [Mittal, 2004]. As only the antisense strand 

of the siRNA can direct the RNA-induced silencing complex (RISC) to cleave the sense target 

mRNA, the incorporation of the antisense strand into the RISC needs to be facilitated. It has 

been found that the 5’ end of the antisense strand has less stable pairing with its complementary, 

i.e. A-U pairing, is incorporated in the RISC more efficiently. Therefore, potential sequences 

with A or U at the 5’ end of the antisense strand and G or C at the 5’ end of the sense strand are 

chosen. Following the incorporation of the antisense strand into the RISC and pairing to the 

target mRNA, RISC possessing endonuclease activity cleaves at the central site of the 

siRNA-mRNA pair. A less stable paring (A-U) at the central site promotes the cleavage so 

potential siRNA sequences with a U at position 10 were picked. Other criteria such as absence of 

internal repeats or palindromes and having 30 – 50% of GC content were also considered in 

order to yield a higher concentration of functional hairpins and to facilitate interaction with the 

RISC and unwinding. To avoid predictable off-target effects, potential chicken RNF20 siRNA 
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sequences that fulfilled the above criteria were BLAST searched against the chicken genome 

(www.ensembl.org). Two RNF20-specific siRNA triggers were obtained (Figure 3.17).  

 

R1380 5’ – GACTCTTGCTGCCAATGAA – 3’  

R2628 5’ – CAGAGTAACTAGAGAGAAA – 3’  

Figure 3.17 Potential siRNA sequences against chicken RNF20. The sequences correspond to 
the sense strands of the chicken RNF20 mRNA sequences where U is substituted by T.  

 

3.4.2 Design of the lentiviral shRNA expression vector system 

The primary aim of the next chapter is to determine the role of H2B monoubiquitination in 

chromatin boundary integrity. It has previously been shown that the chromosomal silencing of 

transgenes in chicken 6C2 cells can be a gradual process where silencing occurs over 20-40 days 

of cell culture [Mutskov & Felsenfeld, 2004; Pikaart et al, 1998]. If the depletion of H2B 

monoubiquitination disrupts the function of the HSA/HSB or HS4 chromatin boundaries, it is 

unknown whether the heterochromatin could spread from the condensed region into the FOLR1 

or β-globin gene loci or at what speed. It is therefore desirable to employ an RNAi system that 

allows stable RNF20 knockdown for long culture periods. Ideally, the RNAi would also be 

inducible so we could resolve the initial effects of RNF20 knockdown from longer term 

adaptations and consequences. 

   

In order to establish a stable and inducible knockdown system, the pSLIK lentiviral expression 

vector system was chosen [Hacke et al, 2009; Shin et al, 2006]. In this system, the RNF20 

sequences are expressed as a short hairpin RNA (shRNA) that is incorporated into a natural 

micro RNA (miR) sequence for optimal incorporation into the cellular RNAi machinery. The 

miR-shRNA is located within the 3’UTR of a transgene encoding green fluorescent protein 

(GFP), which is under the control of a tetracycline response element (TRE) (Figure 3.18). A 

second transgene constitutively expresses a reverse tetracycline (Tet) transactivator (rtTA3) and a 

selection marker (the CD4 cell surface marker). The addition of the tetracycline analog 
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doxycycline (DOX) enables rtTA3 to switch on the expression of GFP and the linked RNF20 

shRNA. The inducible expression of GFP can therefore be used as a marker for co-expression of 

RNF20 shRNA using a fluorescent microscope or flow cytometer. 

 

Figure 3.18 Schematic diagram of the recombinant pSLIK plasmid. miRNA expression 
accompanied with GFP was under the control of TRE that was activated by addition of DOX 
through inducing the expression of rtTA3. CD4 was supposed to be expressed constitutively. The 
figure is reproduced and modified from Shin et al (2006).  

 

3.4.3 Establishment of clonal cell lines with inducible knockdown of RNF20 

The preparation of the lentiviral vector that designed to mediate RNF20 knockdown was 

completed by Dr. Alan Hair (a colleague in Dr. West’s group). The two RNF20 target sequences 

were firstly cloned into an entry vector containing the GFP transgene and linked miR sequence. 

The transgene was recombined into the pSLIK-CD4 destination vector (Figure 3.18) by Gateway 

cloning. Lentiviral particles were produced by co-transfection of the recombinant destination 

vector with third-generation lentivirus packaging (pMDLg/pRRE and pRSV-Rev) and 

pseudotyping (pCMV-VSV-G) vectors into the human 293T kidney cell line and collection of 

media supernatants [Dull et al, 1998]. Chicken 6C2 cells were then transduced with the 

pSLIK-RNF20 lentiviruses. The CD4 transgene was not expressed as expected for some 

unknown reason, so this could not be used to select for viral transduced cells. Clonal cell lines 

were generated by dilution. Lines which expressed GFP after DOX induction were selected for 

the analysis of RNF20 knockdown. 6C2 cell lines that are transduced with pSLIK lentiviruses 

that express shRNA targeting the luciferase gene were also generated for use as negative controls. 

However, these lines were discarded as the expression of this luciferase shRNA was 
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unexpectedly toxic to 6C2 cells, resulting in considerable cell death. 

 

RNAi results in the degradation of mRNA that is homologous to siRNA. To examine whether the 

RNF20 mRNA levels decreased following DOX induced expression of RNF20-shRNA, RT-PCR 

was performed after 4-days of DOX administration (1 μg/ml). The expression of RNF20 in 

non-transduced wild type 6C2 cells was unaffected by DOX administration (wild type in Figure 

3.19). However, RNF20 mRNA levels were reduced by up to 70% upon DOX administration in 

cell lines transduced with lentiviruses expressing the R2628 target sequence (Figure 3.19).  

 

Figure 3.19 mRNA levels of RNF20 following DOX induced RNF20 knockdown for four 
days. RNA was extracted after DOX addition at the final concentration 1 μg/ml for four days for 
RT-PCR. The expression of RNF20 of DOX treated cell lines was compared with their respective 
no DOX controls. GAPDH served as a normaliser. P-values calculated from PCR triplicates with 
two-tailed student t-test assuming equal variance were introduced to test if differences of RNF20 
mRNA levels between no DOX controls and induced knockdown cells were statistically 
significant. P-values that are smaller than 0.01 and 0.001 are indicated with two and three 
asterisks, respectively. 
 

RNAi can also inhibit the translation of target mRNAs, resulting in further knockdown of target 

protein levels. Conversely, proteins with a long half life may reside for some time following 

mRNA degradation by RNAi. The levels of RNF20 protein in the nuclear extracts of 51 6C2 cell 

clones that inducibly express GFP were analysed before and after 4 days of DOX administration. 

Following the optimisation of western blotting, only one predominant band of the predicted size 
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of full length RNF20 was observed in these assays. This band decreased in intensity relative to a 

loading control upon RNF20 knockdown in pSLIK-RNF20 cell lines that have reduced RNF20 

mRNA levels following DOX administration (e.g. Figure 3.20).  

 

 
 
Figure 3.20 An example showing full blots of western 
images for RNF20 detection following the DOX induced 
RNF20 knockdown. TBP was a loading control. The two 
images were from the same blot that TBP was detected after 
stripping away the RNF20 antibodies. 
 

 

In agreement with the RT-PCR analysis described above, the levels of RNF20 protein remain 

unchanged by DOX administration in non-transduced wild type 6C2 cells (Figure 3.21, top left). 

Out of the 51 lines, eight display substantial decreases in RNF20 protein levels following DOX 

administration. Seven of them were resulted from the target sequence R2628 while only one was 

from R1380 (Figure 3.21). The lentiviral system is prone to leaky expression, perhaps due to the 

preference for viral integration into open chromatin, which is typically transcriptionally active 

[Kafri et al, 2000]. Close inspection of RNF20 protein levels in the extracts of pSLIK-RNF20 

cell lines in the absence of DOX relative to those of wild type 6C2 cells, indicates that some of 

the lines, R2628 G6 and R1380 H4 for instance, have leaky RNF20 shRNA expression (Figure 

3.22). 

 

R2628 E4, E5 and E7 are clones showing significant RNF20 knockdown with corresponding 

decrease in H2BK120ub1 (Figure 3.23), they are potentially for use in studying effects of 

H2BK120ub1 depletion. As the RNF20 protein level in R2628 D5 was not substantially 

following DOX induction, it was not included for further studies. FACS analysis found that 

R2628 E7 comprised of mixed populations of cells with different expression levels of 

RNF20-specific miRNA upon DOX induction, indicated by a wide range of GFP expression 
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level. The various knockdown levels would mask the real results in further investigations. 

Therefore, only R2628 E4 and E5 were chosen for subsequent analyses.  

 

Figure 3.21 Western blotting analyses of RNF20 levels after DOX induction. Nuclear extracts 
from 51 potential clones were collected after addition of DOX (1 μg/ml) for four days. Cells 
growing alongside without DOX were served as controls to represent the basal RNF20 
expression levels. The eight clones demonstrating dramatic decreases in RNF20 are shown here. 
TBP was a loading control. 

 

Figure 3.22 Examples of leaky RNF20 knockdown. 
Nuclear extracts were prepared from wild type and 
knockdown lines that were grown in DOX free medium 
to examine their basal levels of RNF20. Two examples of 
leaky lines R2628 G6 and R1380 H4 are shown.   

 

3.4.4 H2B ubiquitination is RNF20 dependent in chicken 

If RNF20 is a bona fide H2B-specific ubiquitination ligase in chicken, the knockdown of RNF20 

should result in the decrease of H2BK120ub1. Native chromatin was prepared for global histone 

modification analysis using MNase digestion as described in the native ChIP method, but 

without size selection on sucrose density gradients. The levels of H2BK120ub1 in total 

chromatin from the 6C2 cell lines that displayed significant RNF20 knockdown were analysed. 

The pSLIK-RNF20 cell lines R2628 D5, E4, E5 and E7 displayed reliable RNF20 knockdown 

following DOX administration. It was found that H2BK120ub1 levels in total chromatin 

decreased upon RNF20 knockdown in these four independent cell lines (Figure 3.23). The level 
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of H2BK120ub1 did not alter in non-transduced wild type 6C2 cells upon DOX administration. 

These findings are consistent with RNF20 acting as an H2B-specific ubiquitin ligase like its 

mammalian counterparts. 

 

Figure 3.23 H2BK120ub1 levels decrease following RNF20 knockdown. Cells grown in the 
presence or absence of DOX for four days were harvested; chromatin and nuclear extracts were 
prepared for H2BK120ub1 and RNF20 detection, respectively. Chromatin and nuclear extract 
loading was monitored by H3 (Pan) and TBP respectively. The RNF20/TBP and 
H2BK120ub1/H3 ratios were calculated from band intensities measured with ImageJ and relative 
to their respective no DOX controls. 
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3.5 Discussion 

The studies presented in this chapter addressed three objectives. Firstly, it was shown that the 

HSA/HSB and HS4 elements that flank a region of condensed heterochromatin are sites of H2B 

monoubiquitination. Secondly, it was found that the chicken paralog of mammalian 

RNF20/BRE1A is recruited to both of these elements. Thirdly, it was established that chicken 

RNF20 is required for H2B monoubiquitination. These findings are consistent with a role for 

RNF20-dependent H2B monoubiquitination at chromatin boundary elements. This hypothesis 

can be investigated in the next chapter following the establishment of the native ChIP assays and 

inducible RNF20 knockdown cell lines. 

 

Chromatin boundaries are marked by H2B ubiquitination 

Our starting hypothesis was that H2B ubiquitination may be required for H3K4 tri-methylation at 

the HS4 insulator element. The studies in this chapter have demonstrated that the HS4 insulator 

is marked by both H3K4me3 and H2BK120ub1. A chicken paralog of the yeast Bre1 and 

mammalian RNF20/BRE1A ubiquitin ligases was identified and found to interact with the HS4 

element. These findings are consistent with the original hypothesis. RNAi inference was used to 

confirm that RNF20 is required for H2BK120ub1 in chicken. The development of inducible 

RNF20 knockdown cell lines will allow detailed analysis of the function of this modification at 

the HS4 chromatin boundary. 

 

Unexpectedly, these studies revealed that the HSA and HSB regulatory elements of the FOLR1 

gene locus are also marked by H2BK120ub1. RNF20 has been also found to bind to bind to HSA, 

suggesting H2B ubiquitination at HSA may also be directed by RNF20. The HSA/HSB elements 

are not yet fully characterised, but are known to lie at the 5’ boundary of the condensed 

heterochromatin domain that separates the FOLR1 and β-globin gene loci. These elements may 

harbour chromatin barrier properties much like the HS4 insulator located at the 3’ boundary of 

the same heterochromatin domain. 
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CHAPTER 4 

Investigation of the interplay between H2B ubiquitination and other histone modifications 

at chromatin boundaries 

 

4.1 Objectives 

In the last chapter, it was determined that the boundaries of a heterochromatin domain between 

the FOLR1 and β-globin gene loci are sites of H2B ubiquitination. Given the previous 

demonstrations that the bulk of H3K4 methylation requires prior H2B ubiquitination in yeast and 

mammals (Section 1.2.5), and that H3K4 methylation is required for the barrier activity of the 

HS4 insulator element [West et al, 2004], this chapter will describe the study of the role of H2B 

ubiquitination at chromatin boundary elements.  

 

The HSA/HSB and HS4 chromatin boundaries are marked by several active histone 

modifications in addition to H3K4me (Section 1.5.1). This active chromatin signature includes 

the acetylation of H3 and H4, and the incorporation of H2A.Z, each of which have been linked to 

chromatin barrier activity in budding yeast (Sections 1.1.3.2 & 1.4.3.4). There is accumulating 

evidence that H3K4 methylation, H3K4me3 in particular, acts as a pivotal mark for active 

chromatin signature establishment by recruiting histone modifiers and chromatin remodelling 

enzymes (Sections 1.2.1.1 & 1.2.5). These observations lead to the hypothesis that H2B 

ubiquitination may be involved in the establishment of the active chromatin states of chromatin 

boundary elements by facilitating H3K4 methylation and subsequent chromatin modification and 

remodelling events. This hypothesis will be addressed in the following objectives. 

 

Objective 1. Determine whether the trans-histone crosstalk pathway between H2B 

ubiquitination and H3K4 methylation is conserved in chicken 

 Analysis of histone modifications in total chromatin following RNF20 knockdown 
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Objective 2. Determine whether H2B ubiquitination is required for the active chromatin 

state at chromatin boundary elements 

a) Native ChIP analysis of the following active histone marks across the FOLR1 and 

β-globin loci before and after four days of RNF20 knockdown 

i. ubiquitinated histones and H2BK120ub1 

ii. H3K4 methylation 

iii. H3 and H4 acetylation 

iv. H2A.Z deposition and acetylation 

b) Crosslinking ChIP analysis of insulator protein binding at chromatin boundaries 

following RNF20 knockdown 

 

Objective 3. Determine whether H2B ubiquitination is required for chromatin boundary 

integrity 

a) Native ChIP analysis of the following heterochromatin-associated histone marks across 

the FOLR1 and β-globin loci before and after four days of RNF20 knockdown 

i. H3K9 di- and tri-methylation 

ii. H3K27me3 

iii. H4K20me3 

b) Analysis of histone modifications in total chromatin following prolonged RNF20 

knockdown 

c) Native ChIP analysis of the following histone marks across the FOLR1 and β-globin 

loci before and after prolonged RNF20 knockdown 

i. H3K4 di- and tri-methylation 

ii. H3K9me3 

iii. H4K20me3 

d) Analysis of FOLR1 gene expression following prolonged RNF20 knockdown 
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Objective 4. Determine whether H2B ubiquitination is required for the barrier activity of 

the HS4 insulator 

Stable transgene assay for the barrier activity of HS4 in wild type and RNF20 knockdown 

cells 

 

Objective 5. Investigate whether the presence of H2BK120ub1 is universal to chromatin 

boundary elements 

 Native ChIP analysis of H2BK120ub1 at human putative chromatin boundary elements 
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4.2 The trans-histone crosstalk pathway between H2B ubiquitination and H3K4 

methylation is conserved in chicken 

The first objective of this chapter is to determine whether the trans-histone crosstalk pathway 

between H2B ubiquitination and H3K4 methylation is conserved in chicken. To achieve this 

objective, western blotting analyses were performed on total chromatin collected from RNF20 

knockdown cells. Histone modifications were profiled after four days of doxycycline-induced 

knockdown in the R2628 E5 and E4 cell lines, where RNF20 levels are reduced by 81% and 

77%, respectively (Figure 4.1). The global levels of H2BK120ub1 were depleted by 74 and 58% 

in these lines, but H2AK119ub1 levels were unaffected. Chicken RNF20, like its yeast and 

mammalian RNF20/BRE1 orthologs, is specifically mediates the ubiquitination of histone H2B. 

It was notable that the depletion of H2BK120ub1 is greater in the E5 line compared with E4. 

This may reflect a greater level of knockdown in the E5 line than the Western analysis indicates 

or an increased susceptibility to RNF20 depletion in the E5 line. 

 

The total levels of H3K4me3 in bulk chromatin were depleted by 71% and 41% in the E5 and E4 

lines, respectively (Figure 4.1). This close correlation between H2BK120ub1 and H3K4me3 

levels is consistent with a direct crosstalk between these modifications in chicken, as reported in 

other species [Briggs et al, 2002; Kim et al, 2005]. The levels of H3K79me2 also closely 

correlated with H2BK120ub1, with depletions of 33% and 22% in the E5 and E4 lines, 

respectively (Figure 4.1). However, the levels of H3K4me2 do not exhibit a linear correlation 

with H2B ubiquitination as H3K4me3 does. H3K4me2 levels were only depleted in the E5 line, 

which had the greatest depletion of H2BK120ub1 (Figure 4.1b). This suggests that H3K3me2 

levels may be indirectly linked to prior H2BK120ub1 via a mechanism that is distinct from that 

which mediates crosstalk to H3K4me3 [Vitaliano-Prunier et al, 2008; Wu et al, 2008]. Other 

active or repressive histone modifications did not show any substantial changes in either RNF20 

knockdown lines (Figure 4.1). 
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a 

R2628 E5 

b 

R2628 E4 

Figure 4.1 Western blotting analyses of histone modifications of R2628 E5 (a) and R2628 
E4 (b) after four-day induction of RNF20-specific miRNA expression. RNF20 knockdown was 
induced by addition of DOX (+) for 4 days and then chromatin was extracted with MNase 
digestion for western blotting analyses. The same knockdown lines were also grown in DOX free 
condition to serve as controls (-). TBP and histone H3 (Pan) served as a loading controls for 
nuclear extract and total chromatin, respectively. Band intensities were measured and normalised 
to the loading controls with the RNF20/TBP and histone modification/H3 ratios set to one in no 
DOX controls.  
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4.3 Determine whether H2B ubiquitination is required for the active chromatin state at 

chromatin boundary elements 

The second objective of this thesis is to determine whether the active chromatin state of 

chromatin boundary elements is established by H2B ubiquitination. Native ChIP was performed 

to study changes of active histone modifications, ubiquitinated histones, H3K4 methylation, H3 

and H4 acetylation as well as H2A.Z deposition and acetylation, altogether indicating the active 

chromatin state, in knockdown lines R2628 E5 and R2628 E4 following short time course of 

RNF20 knockdown. Cells were induced to knock down RNF20 by DOX treatment (+DOX) for 

four days and the same lines grown in DOX free medium (-DOX) served as control to examine 

immediate effects of RNF20 depletion on the chromatin state of the chromatin boundaries at the 

chicken β-globin locus. Most ChIP experiments were performed with the same batch of cells for 

which global histone modifications were examined in Section 4.2. For repeated ChIP assays or 

those performed on other batches of chromatin, decreased levels of RNF20 and H2BK120ub1 of 

the cells were confirmed with western blotting following DOX induction to ensure significant 

and reproducible knockdown resulted.  

 

The relative enrichments of genomic sequences following ChIP for each histone modification 

were normalised to the ρ-globin 3’ (34.715) sequence using the ∆∆Ct method described in 

Section 3.2.1.3. Normalisation was used to allow comparison between the different lines and 

immunoprecipitations. This region lacks any significant enrichment or depletion of the histone 

modifications studied here in 6C2 cells [Litt et al, 2001a; Litt et al, 2001b]. The choice of this 

region as a negative control minimises the chance that RNF20 knockdown may affect the 

normalisation. Student’s t-tests were applied to all of the ChIP data to determine whether any 

changes in ChIP enrichments between control and knockdown cells were statistically significant. 
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4.3.1 RNF20 knockdown leads to a loss of ubiquitinated histones at chromatin boundaries 

To determine whether the histone ubiquitination detected at the HSA/HSB and HS4 chromatin 

boundary elements is mediated by RNF20, native ChIP with anti-ubiquitin antibodies was 

performed after RNF20 knockdown. The histone ubiquitination at the HS4 element returned to 

background levels in both the E5 and E4 lines upon RNF20 knockdown (Figure 4.2). The histone 

ubiquitination at the HSA and HSB elements was also abolished upon RNF20 knockdown in the 

E5 cell line (Figure 4.2a). These findings are consistent with RNF20-mediated H2B 

ubiquitination at the HSA/HSB and HS4 chromatin boundary elements. However, the histone 

ubiquitination at the HSA was only reduced by ~30% and the modification of the HSB was 

unaffected following RNF20 knockdown in the E4 cell line (Figure 4.2b). Furthermore, histone 

ubiquitination at the FOLR1 gene was observed to be entirely RNF20-dependent in the E5 line, 

but there is only a partial reduction in the E4 cell line. The differences between the two cell lines 

correlates with the more considerable depletion of H2BK120ub1 observed in the E5 line (section 

4.2). It is possible that RNF20 binding to the HSA/HSB elements is more resistant to partial 

knockdown than the HS4 element. Crosslinking ChIP assays would be needed to confirm this 

explanation. 

 

The availability of anti-H2BK120ub1 antibodies allowed the confirmation of whether the 

RNF20-dependent histone ubiquitination at the chromatin boundaries was H2BK120ub1. 

Depletions of H2BK120ub1 to close to background levels were observed at the HSA, HSB and 

HS4 elements (Figure 4.3).  
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a 

b 

c 

Figure 4.2 Native ChIP analyses of ubiquitinated histones across the chicken β-globin locus 
upon RNF20 knockdown. R2628 E5 (a) or R2628 E4 (b) cells were grown in the presence (+) or 
absence (-) of DOX for four days. Quantitative PCR was performed with primer sets indicated 
(c). ρ-globin 3’ (34.715) was set as a normalisation region. Significant changes following RNF20 
knockdown with p-values smaller than 0.05, 0.01 and 0.005 are indicated with “*”, “**” and 
“***”, respectively.  
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a 

 
b 

Figure 4.3 Native ChIP analysis of H2BK120ub1 in R2628 E5 after knocking down RNF20 
for four days. Fold enrichments of H2BK120ub1 at examined sites were relative to ρ-globin 3’ 
(34.715). Primer used for quantitative PCR is shown in (b). Significant changes of the 
H2BK120ub1 levels following RNF20 knockdown are indicated with “*”, “**” and “***” for 
p-values smaller than 0.05, 0.01 and 0.005, respectively.  

 

4.3.2 H3K4 methylation at chromatin boundaries require prior H2B ubiquitination 

The findings that the HSA/HSB and HS4 elements are sites of RNF20-dependent H2B 

ubiquitination and that this modification is required for global H3K4 methylation lead to a 

hypothesis that chromatin boundaries employ the H2B ubiquitination pathway to establish their 

active chromatin states. It is anticipated that the di-and tri-methylation of H3K4 at the chromatin 

boundaries would be diminished following the depletion of H2BK120ub1. Native ChIP was 

carried out in both the R2628 E5 and E4 cell clones to investigate changes of H3K4 methylation 

across the FOLR1 and β-globin loci after just four days of induced RNF20 knockdown.  
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Substantial reductions in H3K4 tri-methylation at the chromatin boundaries was observed 

following RNF20 knockdown. H3K4me3 was depleted by ~70% and ~60% at the HS4 and HSB 

elements in the E5 cell line (Figure 4.4b, p-values of 0.0033 and 0.0017, respectively). 

H3K4me3 at the chromatin boundaries was also depleted following knockdown in the E4 cell 

line, albeit to a lesser degree (Figure 4.4d). These findings are consistent with trans-histone 

crosstalk, where the tri-methylation of H3K4 requires prior H2B ubiquitination. Statistically 

significant reductions in H3K4 di-methylation are also observed at the chromatin boundaries 

following RNF20 depletion, but these are more subtle. H3K4me2 was depleted by ~40% and 

~30% at the HS4 and HSA elements in the E5 line, respectively (Figure 4.4a, p-values of 

3.09E-06 and 6.28E-06, respectively). These findings are consistent with previous reports that 

H3K4me2 is not as tightly linked to prior H2B ubiquitination as H3K4me3 [Vitaliano-Prunier et 

al, 2008; Wu et al, 2008]. Collectively, these findings point to different molecular mechanisms 

governing the di- and tri-methylation of H3K4. 

 

In contrast with the chromatin boundaries, H3K4 methylation of the FOLR1 gene promoter was 

generally resistant to RNF20 knockdown. No changes in H3K4me2 or H3K4me3 were observed 

at the promoter in E5 line (Figure 4.4a & b). This is despite the depletion of H2BK120ub1 at the 

promoter in the same cell line (Figure 4.2 & Figure 4.3). These findings indicate that an 

H2BK120ub1-independent pathway contributes to H3K4 methylation of the FOLR1 gene 

promoter. 
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a         b 

 

c         d 

e 

Figure 4.4 Native ChIP examinations of H3K4 di- and tri-methylation across the chicken 
β-globin locus in the RNF20 knockdown lines R2628 E5 (a and b) and E4 (c and d). e. Primers 
used for quantitative PCR. Normalisation of the quantitative PCR was carried out by using 
ρ-globin 3’ (34.7) as a control region. P-values smaller than 0.05, 0.01 and 0.005 are indicated 
with “*”, “**” and “***”, respectively.  
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4.3.3 H2B ubiquitination may be required for acetylation of histones H3 and H4 at 

chromatin boundaries 

In addition to H3K4me2 and H3K4me3, it has been shown that HS4 is enriched in 

hyperacetylated H3, H4 and H2A.Z [Bruce et al, 2005; Huang et al, 2005; Litt et al, 2001b; West 

et al, 2004]. It is known that hyperacetylated chromatin is generally accessible to proteins 

[Eberharter & Becker, 2002]. The multiple histone acetylation at HS4, therefore, may be crucial 

for maintaining the integrity of the HS4’s permissive chromatin structure. If H2B ubiquitination 

is a master controller of HS4’s active histone modifications, the levels of histone acetylation 

might be expected to decrease specifically at HS4 following RNF20 knockdown even though 

they do not change globally. Native ChIP was performed following RNF20 knockdown to study 

if histone acetylation at HS4 requires prior H2B ubiquitination.  

 

Multiple acetylation of H3 and H4 was substantially depleted at the HSA/HSB and HS4 

chromatin boundaries following the knockdown of RNF20 expression. H3ac was reduced by 

~50% and ~60%, respectively, and H4ac was reduced by ~60% at the HSA/HSB and HS4 

chromatin boundaries in the E5 line (Figure 4.5a & b; p-values for changes of H3ac at HSA, 

HSB and HS4 are 5.18E-05, 9.65E-05 and 0.0023, and those of H4ac at HSA, HSB and HS4 are 

0.0075, 0.0056 and 0.0003, respectively). However, H3ac and H4ac were only substantially 

depleted at the HSB element in the E4 line (Figure 4.5c & d; reduced by ~60% with p-value 

0.0075 and ~70% with p-value 0.032, respectively). Collectively, these observations indicate that 

H3ac and H4ac at the chromatin boundaries are greatly favoured by prior H2BK120ub1 and 

H3K4me2/3, but that the relationship between these modifications is indirect. 
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a         b 

c         d 

e 

Figure 4.5 Examinations of H3 and H4 acetylation across the chicken β-globin locus 
following short time course of RNF20 knockdown in both R2628 E5 (a and b) and E4 (c and d). 
Quantitative PCR of ChIP was carried with primers indicated (e), normalised to ρ-globin 3’ 
(34.7). P-values obtained from a two-tail student t-test smaller than 0.05, 0.01 and 0.005 are 
indicated with “*”, “**” and “***”, respectively. 
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The discrepancy between the effects of RNF20 knockdown on histone acetylation in the E4 and 

E5 lines might be due to toxic or off-target effects of shRNA expression. The identity of the 

KATs that function at the FOLR1 and β-globin loci have not been determined, so it is not 

possible to check whether off-site targeting of KAT expression, particularly in the E5 line, might 

be occurring following RNF20 knockdown. However, this appears to be unlikely as the E4 and 

E5 lines express the same shRNA sequence and the expression of the linked GFP gene is 

equivalent between the two lines (not shown). Moreover, the global levels of H3 and H4 

acetylation in the two lines were not affected by RNF20 knockdown, so KAT expression does 

not seem to be susceptible to off-target effects. Rather, the discrepancy between the histone 

acetylation changes in the E4 and E5 lines might be explained by the fact that H2BK120ub1 is 

depleted to a greater extent in the E5 line than the E4 line (Figure 4.1). Partial depletion of 

H2BK120ub1 and methylated H3K4 might not be sufficient to disrupt KAT recruitment and 

function. If more knockdown lines with different degrees of RNF20 and H2BK120ub1 depletion 

were studied, the relationship between histone acetylation and prior H2BK120ub1 might become 

clearer. 

 

4.3.4 Chromatin boundaries require H2BK120ub1 for H2A.Z acetylation 

H2A.Z acetylation is of interest not only because it was shown to be enriched at the HSA/HSB 

and HS4 elements [Bruce et al, 2005], but also it is essential for the barrier activity of yeast 

chromatin boundaries [Babiarz et al, 2006]. Loss of H2A.Zac at the chromatin boundaries in 

cells lacking H2BK120ub1 could indicate the loss of their barrier activity. Native ChIP analyses 

were used to confirm that the HSA/HSB and HS4 elements are highly enriched in acetylated 

H2A.Z (Figure 4.6). In line with H3 and H4 acetylation, H2A.Z acetylation at the boundary 

elements requires prior H2BK120ub1 (Figure 4.6b & c). Depletions in H2A.Zac, by as much as 

85%, are observed at the boundary elements following RNF20 knockdown in both the E4 and E5 

cell lines. 
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a          

 

b          c 

 

d 

Figure 4.6 Native ChIP assays of H2A.Z and H2A.Zac across the chicken β-globin locus 
upon RNF20 knockdown in knockdown lines R2628 E5 (a for H2A.Z and b for H2A.Zac) and 
R2628 E4 (c H2A.Zac only) cells treated with DOX for four days. d. Primers used in 
quantitative PCR analyses in which ρ-globin 3’ (34.715) was set as a normalisation region. 
P-values obtained from a two-tail student t-test smaller than 0.05, 0.01 and 0.005 are indicated 
with “*”, “**” and “***”, respectively. 
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The reduction of H2A.Zac could be because of reduced H2A.Z incorporation. The histone 

variant H2A.Z, unlike its canonical counterpart H2A, is not deposited into chromatin during 

replication [Hardy & Robert, 2010], but is selectively incorporated by specific chromatin 

remodelling complexes [Mizuguchi et al, 2004; Wong et al, 2007]. Although it is still not clear 

what the role of H2A.Z in vertebrate insulator barriers is, genome mapping of H2A.Z 

distribution found that DNaseI hypersensitive sites, and CTCF-bound elements in particular, are 

sites of H2A.Z incorporation [Barski et al, 2007; Jin et al, 2009]. Despite the depletion of 

H2BK120ub1 and multiple histone acetylation, H2A.Z incorporation remains at the HSA/HSB 

and HS4 chromatin boundaries, although there are ~50% reductions in H2A.Z levels at the HSA 

element and one of the HS4 nucleosomes (Figure 4.6a). There appears to be some requirement 

for prior H2B ubiquitination for H2A.Z incorporation, but this alone does not explain the very 

substantial depletions in H2A.Z acetylation following RNF20 knockdown. It is likely that the 

KATs which acetylate H2A.Z are in some way dependent upon prior H2BK120ub1-H3K4me3 

modification. 

 

4.3.5 Crosslinking ChIP analysis of insulator protein binding at chromatin boundaries 

following RNF20 knockdown 

The proteins USF1, USF2 and VEZF1 bind to sites within the HS4 element and mediate its 

barrier activity (Figure 1.35) [Dickson et al, 2010; Huang et al, 2007; Recillas-Targa et al, 2002; 

West et al, 2004]. The single binding site for USF proteins has been found to be responsible for 

the recruitment of H3ac, H4ac, H3K4me2 and histone ubiquitination [West et al, 2004, Section 

1.6.3]. Consistent with this, USF1 has been found to interact with H3K4-specific KMTs, SET1 

and SET7/9, and a H3-specific KAT, PCAF, that mediate H3K4 methylation, H3 acetylation, 

respectively [Huang et al, 2007; West et al, 2004]. It is possible that the dramatic reductions of 

H2BK120ub1, H3K4me2/3, H3ac, H4ac and H2A.Zac at the HS4 element, and the HSA/HSB 

elements perhaps, could be due to reduced expression or binding of USF1 or the other 

insulator-binding proteins. 
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Western blotting analysis found that the expression levels of the HS4 binding proteins USF1, 

VEZF1 and CTCF were unchanged following RNF20 knockdown, ruling out off-target effects of 

the shRNA or RNF20-dependent expression of the insulator protein genes (Figure 4.7a). It is 

conceivable that the depletion of H2BK120ub1 might affect insulator protein binding to the HS4 

element, perhaps as a result of altered nucleosome positioning, which in turn may affect the 

recruitment of histone modifying enzymes. Crosslinking ChIP analysis showed that the binding 

of USF1, VEZF1 and CTCF at HS4 was unaffected following RNF20 knockdown (Figure 

4.7b-d). The loss of insulator protein binding and their potential to recruit histone modifying 

enzymes is therefore not responsible for the loss of active histone marks at the HS4 boundary 

element. 

 

Crosslinking ChIP analysis was extended to the FOLR1 regulatory elements, which revealed 

striking parallels with the HS4 element. USF1 was found to interact with the HSA, HSB and 

FOLR1 promoter elements (Figure 4.7d). USF1 has been described to recognise the consensus 

sequence CAcgTG, although recognises the divergent site CACGGG at the HS4 element 

[Rada-Iglesias et al, 2005; West et al, 2004]. The HSA, HSB and FOLR1 promoter elements 

contain the putative USF1 recognition motifs CACGaG, CcCGTG, and CAgGTG, respectively. 

It is possible that USF1 may be responsible for the recruitment of histone modifying enzymes to 

the FOLR1 elements in a similar manner to the HS4 element. In another parallel with the HS4 

element, VEZF1 binding was also observed at the FOLR1 HSA and HSB elements, which 

contain the putative recognition motifs GGGGGGGGGGGG and CCCCatCtCCCCCC, 

respectively (Figure 4.7c). The binding of USF1 and VEZF1 to the HSA/HSB elements was 

unaffected by RNF20 knockdown (Figure 4.7c & d). The enhancer blocking protein CTCF did 

not bind to the FOLR1 elements (Figure 4.7b). 
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a                      b 

c          d 

e        f 

Figure 4.7 Western blotting (a) and crosslinking ChIP analyses (b – e) of HS4 binding 
proteins following RNF20 knockdown in R2628 E5. Fold enrichments of CTCF (b) of target 
sites were normalised to HSA (6.241) whereas those of VEZF1 (b), USF1 (c) and RbBP5 (e) 
were relative to the condensed region (15.850). Significant changes with p-values smaller than 
0.05, 0.01 and 0.005 are indicated with “*”, “**” and “***”, respectively. f. Primer sets used.  
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Several models have been proposed to explain the trans-histone crosstalk between H2B 

ubiquitination and H3K4 methylation, and recent results indicate that H2BK120ub1 mediates the 

binding of histone methyltransferase (KMT) complex factors to chromatin (discussed in section 

1.2.4). There are several KMTs that mediate H3K4 methylation in mammals, including SET1A 

and B, as well as MLL 1 – 4, in vertebrates. Which of these KMTs functions at the HSA/HSB 

and HS4 boundary elements is yet to be determined, but USF1 has been shown to interact with 

the SET1 complex [Huang et al, 2007]. The proteins RbBP5, ASH2L and WDR5 are essential 

components of all the mammalian H3K4-specific SET1 and MLL HMT complexes, where 

RbBP5 is required for methyltransferase activity [Dou et al, 2006; Lee et al, 2007; Popovic et al, 

2005; Steward et al, 2006]. Crosslinking ChIP was used to analyse the binding of RbBP5 across 

the FOLR1 and β-globin loci. RbBP5 binding was detected at the FOLR1 promoter, HSA, HSB 

elements and the HS4 element, consistent with each being sites of H3K4me2/3. 

 

The total level of RbBP5 protein was found to be reduced by ~20% following RNF20 

knockdown (Figure 4.7a). Despite this, the binding of RbBP5 was unaffected at the HSB and 

HS4 boundary elements (Figure 4.7e). The depletion of H3K4 methylation at the HSB and HS4 

elements following RNF20 knockdown therefore cannot be explained by a loss of KMT complex 

binding. However, the scenario differed at the FOLR1 promoter and HSA elements, where 

RbBP5 binding is reduced by ~50% following RNF20 knockdown (Figure 4.7e). It is unclear 

whether this reflects H2BK120ub1-dependent KMT recruitment or increased sensitivity to 

RbBP5 levels at these elements. The discrepancy between RNF20-independent USF1 binding 

and the partially RNF20-dependent binding of RbBP5, suggests that factors in addition to USF1 

might recruit KMT complexes to the FOLR1 promoter and HSA elements. 
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4.4 Determine whether H2B ubiquitination is required for chromatin boundary integrity 

The HS4 barrier function in the chicken β-globin locus is speculated to protect the downstream 

β-globin domain from encroachment of the upstream repressive chromatin [Prioleau et al, 1999; 

West et al, 2004]. HSA/HSB is situated between the repressive chromatin and the FOLR1 gene, 

and may protect the FOLR1 gene from heterochromatin silencing. In order to study whether 

chromatin boundary integrity is abolished by H2BK120ub1 depletion, native ChIP was 

performed to study heterochromatin-associated histone marks H3K9me2, H3K9me3, H3K27me3 

and H4K20me3 across the β-globin and FOLR1 loci following RNF20 knockdown. The R2628 

E5 line was employed for these experiments as it sustained high levels of RNF20 knockdown 

during long term culture, as described below.    

 

4.4.1 The HS4 chromatin boundary is rapidly breached by H3K9me2 in the absence of 

H2BK120ub1 

Chromosomal silencing has previously been shown to be a gradual process, as exemplified by 

the position effect silencing or reporter transgenes, which can take at least 30 days to occur 

[Recillas-Targa et al, 2002]. The severe disruption of the active signature at the HSA/HSB and 

HS4 elements following RNF20 knockdown might allow the intervening heterochromatin to 

breach these boundaries over a short period. To investigate this, native ChIP was performed to 

study heterochromatin associated histone modifications following four days of RNF20 

knockdown. Fold enrichments were normalised to those at 3’ of the ρ globin gene, which is 

neither enriched nor depleted in H3K9 methylation [Litt et al, 2001a]. Even at this early 

timepoint, spreading of one heterochromatin-associated mark into both the FOLR1 and β-globin 

loci was observed. Statistically significant increased in H3K9me2 levels were observed from the 

HS4 element to almost as far as the ρ globin gene promoter following RNF20 knockdown 

(Figure 4.8a). Significant increases in H3K9me2 were also observed at the promoter and gene 

body of the FOLR1 gene following RNF20 knockdown. However, unlike HS4, there was no 

significant elevation of H3K9me2 at HSB after RNF20 knockdown. We show that FOLR1 does 
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not require RNF20 for its transcription later in the chapter, so the increase in H3K9me2 at 

FOLR1 is not a consequence of its repression (Section 4.4.4).    

 

a         b 

c 

Figure 4.8 Examination of H3K9 methylation spreading by ChIP following short time course 
of RNF20 knockdown. Low salt ChIP was performed in R2628 E5 cells following four days of 
RNF20 knockdown to investigate the spreading of H3K9me2 (a) and H3K9me3 (b). Significant 
changes with p values smaller than 0.05, 0.01 and 0.005 are indicated with “*”, “**” and “***”, 
respectively. All normalisation of the examined regions (d) was performed by using ρ-globin 3’ 
(34.715) as a control region.  

 

The HS4 barrier seemed not to be completely abolished at this stage that the spreading of 

H3K9me3 was still prohibited (Figure 4.8b). The levels of H3K9me3 across the FOLR1 and 

β-globin gene bodies generally unchanged after 4-day of RNF20 knockdown. However, there 

was considerable consolidation of this mark at the flanks of the condensed chromatin region. 
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Native ChIP was also used to investigate the levels of another heterochromatin-associated mark, 

H4K20me3. H4K20me3 is often found with H3K9me3 at silenced genes and regions of 

constitutive heterochromatin [Nishioka et al, 2002; Schotta et al, 2004]. Fold enrichments across 

the locus were normalised to a site within the condensed chromatin region (10.350) as the ρ 3’ 

used in the previous ChIP analyses exhibited an extremely low level of H4K20me3. This avoids 

exaggeration of enrichments and errors due to minor differences in ChIP efficiencies and PCR 

quantification of low abundance normaliser sequence. H4K20me3 is generally enriched at the 

condensed chromatin region and the gene body of FOLR1 but it did not propagate beyond its 

normal limits following a short period of RNF20 knockdown (Figure 4.9). These results suggest 

that if heterochromatin does spread from the condensed region, H3K9me2 is the first mark in 

this process. 

 

a 

b 

Figure 4.9 Examination of H4K20me3 across the chicken β-globin locus after RNF20 
knockdown for four days in R2628 E5 (a). Primers used for quantitative PCR (b). Significant 
changes with p-values smaller than 0.05, 0.01 and 0.005 are indicated with “*”, “**” and “***”, 
respectively.  
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H3K27me3 is also associated with facultative heterochromatin-like gene silencing mediated by 

polycomb repressor complexes [Peters et al, 2003]. The enrichment of H3K27me3 across the 

condensed and β-globin loci was very low, with depletion evident at the FOLR1 region (refer to 

the scale of the fold enrichment axis). There were no substantial increases in H3K27me3 

enrichment across these loci after four days of RNF20 knockdown (Figure 4.10). It appears that 

the condensed region has the characteristics of constitutive heterochromatin marked by 

H3K9me3 and H4K20me3 and that H3K27me3 does not play as significant a role at this locus. 

 

a 

b 

Figure 4.10 Examination of H3K27me3 across the β-globin locus after knocking down of 
RNF20 for four days in R2628 E5 (a). Primer sets used for quantitative PCR (b). Significant 
changes with p values smaller than 0.05, 0.01 and 0.005 are indicated with “*”, “**” and “***”, 
respectively. 
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after 30 days of RNF20 knockdown. This presented a technical challenge as FACS analysis 

showed that the fraction of E5 cells that express GFP-RNF20-shRNA following DOX treatment 

steadily decreased with time in culture (not shown). The E5 line is not maintained with drug 

selection, so the lentiviral construct may be subject to progressive chromosomal position effect 

silencing. GFP expressing E5 cells were therefore re-cloned by serial dilution.  

 

However, the resulting sub-clones were found to have leaky RNF20 shRNA expression in the 

absence of DOX treatment. RT-PCR analysis determined that RNF20 mRNA levels were 

reduced by ~20% in E5 sub-clones compared to wild type 6C2 cells (Figure 4.11). The addition 

of DOX reduced RNF20 mRNA levels by 65-75%. The apparent leaky RNF20 knockdown 

affects active histone marks in total chromatin. H2BK120ub1, H3K4me2 and H3K4me3 levels 

were all reduced in E5 sub-clones in the absence of DOX when compared with wild type 6C2 

cells (Figure 4.11a). Therefore, the ChIP analysis of histone modification profiles following long 

term RNF20 knockdown in E5 sub-clones were compared to those in wild type 6C2 cells as 

untreated E5 cells were not a suitable negative control. Interestingly, prolonged RNF20 

knockdown appeared to alter global histone modifications other than H3K4 methylation and 

H2B ubiquitination. There was a global increase in H2A.Z, H3K9me3 and H4K20me3 after long 

term RNF20 knockdown (Figure 4.11). 

 

Native ChIP analyses of active histone marks following long term RNF20 knockdown were 

completed using sequences 3’ of the ρ globin gene as a neutral site for normalisation as described 

above (Section 4.3). In agreement with the effects of a short period of RNF20 knockdown, the 

levels of H3K4me2 and H3K4me3 at the FOLR1 and HS4 elements were depleted following 

long term RNF20 knockdown (Figure 4.12). 
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a          b 

Figure 4.11  RT-PCR analysis of RNF20 expression levels and western blotting of histone 
modifications after prolonged RNF20 knockdown. Sub-clones showing RNF20 knockdown after 
long time course were selected and grown in larger scales. R2628 E5/A8 and R2628 E5/D2 were 
sub-clones screened from two separate experiments while cells were harvested on Day 39 for 
R2628 E5/A8 (a) and on Day 75 for R2682 E5/D2 (b). Untreated R2628 E5 and wild type cells 
were grown alongside. mRNA expression of RNF20 of no DOX controls and DOX induced 
RNF20 knockdown cells was relative to wild type and significant differences compared with 
wild type are indicated with “*” and “***” for p-values small than 0.05 and 0.001, respectively. 
Relative histone modification levels in wild type (WT), untreated R2628 E5 (E5 –DOX) and 
DOX treated R2628 E5/A8 or E5/D2 cells were calculated by their corresponding band 
intensities in western blotting and then normalised to the H3 loading control. Some of the lanes 
obtained from the same western image were rearranged for representation. All wild type levels 
were set to one.  
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a         b 

c 

Figure 4.12 ChIP analyses of H3K4 methylation across the chicken β-globin and FOLR1 loci 
after a long time course knockdown of RNF20. Wild type 8103 (6C2 harbouring transgenic HS4) 
and DOX treated R2628 E5/A8 were harvested on Day 39, chromatin was extracted for low salt 
ChIP analyses of H3K4 di- (a) and tri-methylation (b). Fold enrichments at examined regions (c) 
were normalised to that at ρ 3’ (34.715). Significant changes with p-values smaller than 0.05 and 
0.005 are indicated with “*” and “***”, respectively.  

 

4.4.3 Prolonged RNF20 knockdown allows spreading of repressive histone marks across 

the entire chicken β-globin locus  

Native ChIP analyses of active histone marks following long term RNF20 knockdown were 

completed using sequences within the condensed region for normalisation as a positive control, 

as described above (Section 4.4.1). A striking propagation of H3K9me3 was observed following 

39 days of RNF20 knockdown. Statistically significant increases in H3K9me3 were observed at 

the FOLR1 gene and from the HS4 element to most of the sites across the β-globin locus (Figure 

4.13a). There is also a dramatic spread of H4K20me3, with significant increases in this mark at 

the FOLR1 gene and from the HS4 element to sites as far as the ρ gene promoter (Figure 4.13b). 
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Collectively, these results show that i) the heterochromatin within the condensed region is 

capable of spreading into neighbouring gene loci, ii) the HSA/HSB and HS4 boundary elements 

function to provide limits to this heterochromatin and iii) the boundary elements require active 

histone modifications that are dependent on H2B ubiquitination. 
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a 

b 

c 

Figure 4.13 ChIP analyses of H3K9me3 and H4K20me3 on the chicken β-globin locus 
following long-term knockdown of RNF20. Cells of the subclone R2628 E5/A8 cells were 
treated by DOX for 39 days for H3K9me3 ChIP analysis (a) while cells of the subclone R2628 
E5/D2 were treated for 75 days for H4K20me3 ChIP analysis (b). Untreated R2628 E5 and wild 
type cells were grown alongside to serve as control. c. Primers used in quantitative PCR. Fold 
enrichments were normalised to a condensed chromatin region 15.850 and 10.350 for H3K9me3 
and H4K20me3, respectively. 
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4.4.4 Prolonged RNF20 knockdown leads to silencing of the FOLR1 gene 

The encroachment of heterochromatin-associated marks over the FOLR1 and β-globin genes 

following RNF20 depletion may result in the silencing of their transcription. While the β-globin 

locus is becoming primed for expression at the CFU-E progenitor stage represented by 6C2 cells, 

the β-globin genes themselves are not expressed until terminal differentiation [Groudine & 

Weintraub, 1981; Prioleau et al, 1999]. 6C2 cells cannot be induced to terminally differentiate, 

so we are unable to study the impact of heterochromatin spreading on the activation of β-globin 

gene transcription in this system. The FOLR1 gene is active in 6C2 cells, however.  

 

RT-PCR analysis was performed to monitor FOLR1 expression following a time course of 

RNF20 knockdown. FOLR1 mRNA levels were normalised to either the GAPDH or ACTB 

housekeeping genes as loading controls. It has previously been found that the transcription of 

GAPDH in human cells does not rely on H2B ubiquitination [Shema et al, 2008]. Despite the 

spreading of H3K9me2, FOLR1 expression was not silenced following four days of RNF20 

knockdown (Figure 4.14). In fact, FOLR1 expression appears to increase following RNF20 

knockdown, but a Student’s t-test found that this increase was not statistically significant 

compared with wild type. This result indicates that the expression of FOLR1 does not dependent 

upon H2B ubiquitination and that the early onset of heterochromatin spreading marked by 

H3K9me2 is not capable of causing FOLR1 gene silencing. 

 

However, FOLR1 expression is progressively silenced following prolonged periods of RNF20 

knockdown (Figure 4.14). FOLR1 mRNA levels are reduced by 60% and 95% following 30 and 

75 days of RNF20 knockdown, respectively. The progressive silencing of FOLR1 is consistent 

with the spread of the heterochromatin-associated marks H3K9me3 and H4K20me3 across the 

gene. These results support the hypothesis that the active histone modifications at the HSA/HSB 

chromatin boundary elements act to insulate the FOLR1 gene from repressive heterochromatin 

located a few kilobases upstream of the gene.  
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a          b 

Figure 4.14 mRNA levels of FOLR1 after 4, 30 and 75 days of RNF20 knockdown. RNF20 
knockdown was induced by addition of DOX to R2628 E5 cells. RT-PCR was performed on 
RNA of subclones of R2628 E5 on Day 30 and 75 which had at least 90% of green cells 
indicating the expression of the RNF20-shRNA-GFP cassette. The relative expression was 
normalised to that of GAPDH (a) or ACTB (b). The FOLR1 expression in control cells was set to 
one. Significant differences of expression between wild type and knockdown cells are indicated 
with “**” and “***” if their p values from a two-tailed student t-test are less than 0.01 and 0.001, 
respectively.  
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4.5 Determine whether H2B ubiquitination is required for the barrier activity of the HS4 

insulator 

The fourth object of this chapter is to test the direct effect of RNF20 knockdown on the HS4 

barrier activity. We made use of the well established reporter assay system [Pikaart et al, 1998], 

which has been employed in several studies to examine the HS4 barrier activity [Huang et al, 

2007; Pikaart et al, 1998; Recillas-Targa et al, 2002]. The reporter gene, interleukin 2 receptor 

(IL2R, also known as CD25), its expression driven by the chicken βA-globin promoter and strong 

β/ε enhancer, was flanked by two copies of HS4 at each side (Figure 4.15). The entire cassette 

was integrated into the genome of 6C2 cells and individual clones were isolated. IL2R is 

expressed on the cell membrane and acts as a surface antigen that can be detected by 

fluorescence-activated cell sorter (FACS) analysis following immunostaining. The whole 

cassette was flanked by HS4, therefore unlike non-insulated transgenes, the IL2R expression 

would not be silenced by the genomic environment even when the cell line was cultured for a 

long period of time (more than 90 days) [Pikaart et al, 1998]. One of the previously characterised 

lines, 8103, was used in this study [Recillas-Targa et al, 2002]. 

 

Figure 4.15 Schematic diagram of the IL2R reporter construct.  
 

The parent of the E4 and E5 cell lines expressing R2628 RNF20 shRNA described above is 8103 

6C2 cells. These characterised lines can therefore be used to monitor the effect of RNF20 

knockdown on the barrier activity of the HS4 insulator element using the IL2R reporter transgene 

assay. IL2R expression was monitored by flow cytometry following the staining of cells with an 

anti-IL2R antibody conjugated to the red fluorescent dye Phycoerythrin (PE). During FACS 

analysis, only viable cells were gated for further analyses. As the RNF20-shRNA was expressed 

as a conjugate with GFP (Figure 3.18), RNF20 knockdown cells were gated as GFP expressing 
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cells for examination of their IL2R expression (Figure 4.16). The mean and median of red 

fluorescent intensity of this RNF20 knockdown population reflected the expression levels of 

IL2R. The expression level of IL-2R in RNF20 knockdown cells was relative to that of 8103 wild 

type or no DOX control of the knockdown lines. In order to ensure results were statistically 

reliable, 104 green cells indicating RNF20 knockdown were collected for IL2R expression 

measurement. For the case of 8103 wild type or no DOX controls, 104 viable cells were collected. 

To determine with the anti-IL-2R antibody was specific, 6C2 cells without integration of the 

IL2R reporter cassette were stained with the antibody and no significant fluorescent signal was 

detected (Figure 4.17a). 

 

Figure 4.16 Schematic diagram showing FACS analysis of IL2R expression in RNF20 
knockdown cells.  

 

RNF20 knockdown was maintained for up to 80 days, to allow occurrence of gene silencing. 

Experiments with two clones, R2628 E4 and E5, were carried out in parallel to observe changes 

of IL-2R expression at different time points. The GFP signals of wild type and no DOX treated 
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RNF20 knockdown cells were measured along the time course to monitor the background noise 

and leakage of RNF20-specific miRNA in the non-induced conditions (refer to Appendix II for 

GFP intensities). Due to the unexpected reduction of H3K4me2 and H3K4me3 in untreated 

R2628 E5 cells following long-term RNF20 knockdown (Figure 4.11), the IL-2R expression 

level in knockdown cells were compared with wild type 8103 cells. The IL-2R expression in the 

induced knockdown R2628 E4 clone was compared with that in the uninduced R2628 E4 cells.  

 

a 
6C2 – negative control 

b           c 
R2628 E5          R2628 E4 

Figure 4.17 FACS analyses of IL2R expression in RNF20 knockdown cells. RNF20 
knockdown in R2628 E5 and E4 cells was induced by DOX and cells were collected at different 
time points for IL2R expression assessment. Collected cells were stained by IL2R-PE antibody 
and then subjected to FACS analyses. 6C2 and 8103 wild type cells were grown in parallel as 
controls. The antibody specificity was examined by 6C2 cells that have no expression of IL2R on 
the cell membrane (a). Only green cells from knockdown cell clones were gated for IL2R 
expression examination so graphs (b and c) of DOX treated cells showing IL2R expression came 
from 104 green cells. 
 

No silencing of the IL-2R transgene was observed during the early stages of RNF20 knockdown 

(Figure 4.17 & Figure 4.18). The transcription of the IL-2R transgene is therefore not dependent 
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upon RNF20 and H2B ubiquitination. However, IL-2R expression in both the E4 and E5 cell 

lines was progressively repressed with prolonged RNF20 knockdown. IL-2R repression only 

becomes evident after 30 days of RNF20 knockdown. This is consistent with a previous study, 

which found that the chromosomal position effect silencing of IL-2R expression from 

non-insulated transgenes only occurs after 20-40 days of culture in this system [Recillas-Targa et 

al, 2002]. These results are consistent with a disruption of HS4’s barrier function following the 

knockdown of RNF20. The level of IL-2R expression following 80 days of knockdown reached 

~65% at the most (Figure 4.18). This level is less than the near total silencing of IL-2R 

transgenes that are flanked by HS4 elements that carry a deletion of the USF binding site 

[Recillas-Targa et al, 2002]. However, the partial repression of insulated IL-2R transgenes 

observed following RNF20 knockdown compares well with that observed in cells transfected 

with AUSF, a truncated form of USF1 that dominantly inhibits USF1 function [Huang et al, 

2007]. It can be concluded that constant H2B ubiquitination is required for HS4 to act as a stable 

barrier to chromosomal silencing. 



Chapter 4 

168 | P a g e  
 

a 

b 

Figure 4.18 Bar chart representations of barrier assay results. Bar charts show the relative 
expression of IL2R in R2628 E5 (a) and in R2628 E4 (b) where E5 was relative to 8103 wild 
type and E4 relative to its DOX untreated control. The relative expression was calculated by the 
mean (left panels) or median (right panels) of the PE fluorescent intensity. The raw fluorescent 
intensities are shown in Appendix II.  

 

Unexpectedly, the expression IL2R in R2628 E5 knockdown cells decreased from Day 33 and to 

the lowest level on Day 50 but it increased afterwards and reached the level similar to that of 

wild type on Day 80 (Figure 4.17b & Figure 4.18a). These knockdown cells might have 

developed an adaption towards the lowered levels of H2BK120ub1 or H3K4me2/3 so that IL2R 

could be fully expressed again. 
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4.6 The presence of H2BK120ub1 may be universal to chromatin boundary elements 

The binding sites of the HS4-binding proteins CTCF, USF1, USF2 and VEZF1 were mapped 

across the human genome in a previous study in the West laboratory. The identified binding sites 

are different regulatory elements including promoters, enhancers and putative boundary elements 

(R. Strogantsev, unpublished data). The positions of insulator protein binding and histone 

modification profiling were used to identify novel regulatory elements that may function as 

chromatin boundary elements. These elements contain very similar active chromatin hallmarks to 

the chicken HS4 boundary element and are located close to the boundaries of 

heterochromatin-like regions (Table 4.1). These elements have recently been demonstrated to 

harbour chromatin barrier activity using the IL-2R reporter assay described above (G. Barkess, 

unpublished data). 
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Putative Boundary Elements Coordinates Descriptions 
FLNA (filamin A, alpha) 
inverted repeat 

Chr X: 153222742 – 153224663 
Chr X: 153270597 – 153272488 

- CpG islands flanking the 
FLNA-EMD locus  

- Enriched in H3K4me1/2/3 
- CTCF bound 

GMPPA-ACCNA  
(GDP-mannose 
pyrophosphorylase A – 
amiloride-sensitive cation 
channel 4) locus DHS 

Chr 2: 220081805 – 220084838 - 3 kb long DHS separating two 
differentially expressed genes 
GMPPA and ACCN4 

- Enriched in H3K4me1/2/3 and 
H4ac 

- CTCF bound 
CKMT (creatine kinase) 5’ 
DHS 

Chr 15: 41668992 – 41669954 
Chr 15: 41768824 – 41769786 

- CpG islands located upstream 
of the CKMT gene 

- Enriched in H3K4me1/2/3, 
H3ac and H4ac 

- CTCF and USF bound 
IGF2 (insulin-like growth 
factor 2) 5’ DHS 

Chr 11: 2129014 – 2130307 - DHS separating IGF2 and INS 
- Enriched in H3K4me1/2 
- CTCF bound 

NRXN2 (neurexin 2) 
intragenic DHS 

Chr 11: 64176954 – 64178673 - DHS located in the NRXN2 
gene 

- Enriched in H4ac 
- CTCF and USF bound 

EHD1 (EH-domain 
containing 1) 5’ DHS C66/16 

Chr: 11: 64411899 – 64412736 - DHS separating EHD1 and 
ATG2A 

- Enriched in H3K4me1/2/3 
- CTCF bound 

SPA1 DHS Chr 11: 63972553 – 63973655 - CpG island located in a gene 
poor region identified by 
ChIP-chip with SPA-tagged 
VEZF1 

- Enriched in H3K4me1/2/3 
- CTCF and USF bound 

Table 4.1 Descriptions of VEZF1 bound putative boundary elements. Histone modification 
profiles of these elements aroused from the ENCODE (Encyclopaedia of DNA Elements) project 
and Dr David Vetrie’s group (unpublished data). 

 

Native ChIP analysis of H2BK120ub1 at these putative chromatin boundary elements was 

performed in transgenic human K562 erythroleukemia cells. The K562 cells were stably 

transfected with a transgene that contained the HS4 insulator, which can be used as a positive 

control reference. Other known enhancer and promoter elements were also studied for 

comparison. It was found that all of the putative barrier elements were enriched with 

H2BK120ub1 (Figure 4.19). The enrichments were lower than expected from experiments in 

6C2 cells, especially at the transgenic HS4 element, indicating this was not a particularly 

efficient ChIP. The enhancer and promoter of the SCL gene, which is actively expressed in K562 

cells, are substantially enriched with H2BK120ub1. The promoter and enhancer of the IL-3 gene, 
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which is poised for expression in K562 cells, were also enriched with H2BK120ub1. Sites at the 

MeCP2, KDR and CKDN1A genes, which are not expressed in K562 cells, served as negative 

controls. These findings suggest that the chromatin boundary elements in human cells may 

employ H2B ubiquitination in their heterochromatin barrier activity in a manner similar to that of 

the HS4 element in chicken.  

 

Figure 4.19 Native ChIP analysis with H2BK120ub1-specific antibody in human erythroid 
K562 cells. The quantitative PCR results were normalised to the promoter of the inactive EDN1 
gene for fold enrichment calculations. Significant differences in fold enrichments between no 
antibody control and H2BK120ub1 IP with p-values smaller than 0.05, 0.01 and 0.005 are 
indicated with “*”, “**” and “***”.  
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4.7 Discussion 

4.7.1 Trans-histone crosstalk between H2B ubiquitination and H3K4 methylation occurs 

at chicken chromatin boundary elements 

It has previously been shown that the barrier activity of the HS4 insulator requires active histone 

modifications, including H3K4 methylation [West et al, 2004]. Based on the observations that 

prior H2B ubiquitination is required for H3K4me2/3 from yeast to mammals, we hypothesised 

that H2B ubiquitination could be a key component of barrier activity. This study demonstrated 

that the FOLR1 HSA/HSB and β-globin HS4 elements, located at the boundaries of a region of 

heterochromatin, are sites of H2B ubiquitination. H2B ubiquitination at these chromatin 

boundaries was found to be dependent upon the ubiquitin ligase RNF20. Consistent with 

conserved trans-histone crosstalk, H3K4me2 and H3K4me3 were found to decrease globally and 

locally at the chromatin boundaries upon the knockdown of RNF20. 

 

To examine whether the recruitment of H3K4-specific KMTs to the chromatin boundary 

elements is lost following H2B ubiquitination depletion, the binding of RbBP5, a shared subunit 

of the SET1 and MLL complexes, was investigated. Perhaps counter-intuitively, the recruitment 

of KMT complexes responsible for H3K4 methylation remains intact despite the depletion of 

H3K4me2/3 in the absence of H2B ubiquitination. This finding is consistent with recent studies 

of the Set1 complex in budding yeast. It has been shown that H2B ubiquitination facilitates the 

binding and ubiquitination of Cps35 (also known as Swd2), a subunit of the COMPASS, which 

augments the processive methyltransferase activity of Set1 to mediate di- and tri-methylation of 

H3K4 in vivo [Lee et al, 2007; Vitaliano-Prunier et al, 2008]. The Swd2 homolog WDR82 

mediates the H2BK120ub1 augmentation of the SET1 complex’s activity in humans [Wu et al, 

2008]. It appears likely that chickens also adopt the same mechanism of H2BK120ub1-mediated 

H3K4 methylation. Nevertheless, the binding of H3K4 KMTs might depend on H2B 

ubiquitination at some regulatory elements such as the FOLR1 HSA and promoter elements, 

where the binding of RbBP5 reduces following H2BK120ub1 depletion. It also implies the 



Chapter 4 

173 | P a g e  
 

existence of two or more mechanisms by which H2B ubiquitination can regulate H3K4 

methylation. One of them is the identified pathway where H2BK120ub1 stimulates the di- and 

tri-methylation activity of chromatin bound H3K4 KMTs, whereas the other one may be an 

unidentified pathway in which H2BK120ub1 is a prerequisite for the binding of some H3K4 

KMTs.  

 

4.7.2 H2B ubiquitination may mediate histone acetylation via H3K4 methylation to 

establish the active chromatin signature of chromatin boundaries 

This study unexpectedly found that the establishment of multiple histone acetylation marks at 

chromatin boundaries was also dependent upon prior H2B ubiquitination. The FOLR1 HSA/HSB 

elements are highly acetylated and are particularly sensitive even to moderate depletion of 

RNF20. Whereas the HS4 element requires more substantial RNF20 depletion to result in the 

loss of its histone acetylation, there are no reports showing H2B ubiquitination is directly linked 

to histone acetylation and our global histone modification analysis also suggests there is no 

direct linkage because no significant change of histone acetylation was observed following 

RNF20 knockdown. A number of KAT complexes have been shown to recognise methylated 

H3K4, particularly H3K4me3, so the loss of acetylation at chromatin boundary elements may be 

a consequence of H3K4me3 depletion upon RNF20 knockdown (Section 1.2.5). However, the 

lack of an effect of RNF20 knockdown on global histone acetylation suggests that other means 

of histone crosstalk may exist at specific elements such as chromatin boundaries.  

 

Although the loss of H4ac at HS4 following RNF20 knockdown was only observed in the R2628 

E5 line but not the R2628 E4 line, the effect does not seem to be due to off target effects of the 

shRNA. Except the RNF20-dependent marks H2BK120ub1, H3K4 and H3K79 methylation, 

there were no significant changes of H4 acetylation and other histone modifications in total 

chromatin (Section 4.2). The protein expression of the insulator proteins that direct H4 

acetylation at the chromatin boundaries also unchanged (Section 4.3.5) Ideally, more lines with 
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different degrees of knockdown and from different potential triggers should be employed in the 

study so that a more solid conclusion could be drawn. Unfortunately, the other potential trigger 

R1380 only resulted in one potential clone and it was found to be leaky. Many leaky lines were 

also resulted from the R2628 trigger so only two lines from this trigger were selected for further 

study (Section 3.4.3). 

 

H3K9me3 plays a central role in heterochromatin propagation. HP1 acts as an adapter protein 

that helps H3K9me3 spreading by binding to methylated H3K9 and recruiting H3K9 KMTs. The 

interaction between HP1 and DNMTs facilitates DNA methylation, which in turn reinforce the 

H3K9 spreading as the MBDs that bind to methylated DNA associate with H3K9 KMTs and 

HP1. Moreover, the chromodomain of the SUV39 family of H3K9 KMTs recognising H3K9me3 

is another self-reinforcing mechanism (Section 1.3.2.3). H4K20me3 is also associated with 

heterochromatin and its appearance seems to require prior H3K9me3 as SUV4-20H responsible 

for H4K20 trimethylation is directed to chromatin regions by HP1, which appears to bridge 

H3K9 and H4K20 methylation together for heterochromatin spreading [Hines et al, 2009; 

Schotta et al, 2004].  

 

To efficiently halt heterochromatin spreading, chromatin barriers need to block H3K9 

methylation. As prior deacetylation of H3K9 is required for H3K9 methylation, chromatin 

barriers could utilise H3K9 acetylation to interrupt the formation of heterochromatin. Consistent 

with this, it has been shown that USF1 interacts with the H3K9-specific KAT PCAF, which is 

recruited to the HS4 insulator [West et al, 2004]. The methylation of H3K4 also facilitates the 

acetylation of H3K9 and other histone residues as chromodomain containing proteins present in 

the SAGA, TAC and TIP60 KAT complexes specifically interact with H3K4me3 (Section 1.2.4). 

Alternatively, the binding of co-repressor complexes that modify H3K9 can be inhibited by 

H3K4 methylation. The NuRD and SUV39H1 complexes, which deacetylate and methylate 

H3H9 respectively, both bind to the N-terminus of H3 that is unmethylated at K4 [Lachner & 
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Jenuwein, 2002]. In addition, the acetylation of H3, H4 and H2A.Z found at the HSA/HSB and 

HS4 chromatin boundaries can favour H3K9 acetylation as several KATs that target H3K9 

contain bromodomains that bind to acetyl-lysines on other histone tails (Section 1.2.2). The 

study of the binding of histone modifying enzymes and adaptor proteins such as HP1 following 

RNF20 knockdown would provide insight into the specific mechanisms adopted by chromatin 

barriers to prevent H3K9 methylation.  

 

4.7.3 Heterochromatin spreading appears to be initiated promptly following the collapse 

of chromatin boundaries but takes time to complete 

Heterochromatin-associated histone marks were found to propagate in large continuous domains 

across the FOLR1 and β-globin gene loci following RNF20 knockdown. H3K9me2, H3K9me3 

and H4K20me3 were found to propagate in a sequential manner, and the pattern of their 

propagation is consistent with their spread from the condensed chromatin region flanked by the 

HSA/HSB and HS4 elements. H3K9me2 was found to rapidly propagate across the β-globin and 

FOLR1 loci following RNF20 knockdown. This propagation did not affect the expression of the 

FOLR1 gene. Given this finding and the fact that the IL-2R reporter transgene only becomes 

repressed after more than 30 days of RNF20 knockdown, suggests that H3K9me2 is not a 

repressive mark at these loci. Whole genome maps of H3K9me2 show that this mark is more 

widely distributed than H3K9me3 and is found at euchromatic and heterochromatic loci [Barski 

et al, 2008; Rice et al, 2003]. H3K9me3 and H4K20me3 were only found to have spread across 

the β-globin and FOLR1 loci after 40 days of RNF20 knockdown. H4K20me3 did not spread as 

far across the β-globin locus as H3K9me3 by this stage. The spreading of these marks was 

coincident with the silencing of FOLR1 gene expression. This timing also coincides with the 

repression of the IL-2R reporter transgene in the same cells. 

 

The sequential nature of repressive histone mark spreading implies that different KMT 

complexes mediate each mark, and that the modifications may be pre-requisites for each other. 



Chapter 4 

176 | P a g e  
 

The identity of the KMT complexes that mediate heterochromatin spreading at the β-globin and 

FOLR1 loci remains to be determined. H3K9me2-specific KMTs such as G9a and G9a-like 

protein (GLP) may be recruited immediately upon RNF20 knockdown, leading to H3K9me2 

spreading over the entire FOLR1 gene and ~14 kb into the β-globin gene locus. As the binding 

affinity of HP1 and SUV39H1 to unmethylated H3K9 is low [Stewart et al, 2005; Zhang et al, 

2008], H3K9 trimethylation might not be initiated immediately after the deacetylation of H3K9 

at the disrupted HS4 and HSA/HSB barriers. Nevertheless, H3K9me3 is consolidated at the 

flanks of the condensed chromatin region at this stage. The elevated H3K9me2 at the FOLR1 and 

β-globin loci may switch on the self-reinforcing H3K9 spreading and then heterochromatin 

propagation from the condensed chromatin region later on, resulting in the spreading of 

H3K9me3 to almost the entire ~50 kb FOLR1 and β-globin region after about 40 days of RNF20 

knockdown. The spreading of another repressive histone mark, H4K20me3, appears to be the 

slowest process as it only encompasses the FOLR1 gene body and ~20 kb β-globin region even 

after 75 days of RNF20 knockdown. It agrees to the previous finding that prior H3K9me3 is 

required for H4K20 trimethylation [Schotta et al, 2004]. The binding of HP1 via H3K9me3 to 

the FOLR1 and β-globin loci may recruit SUV4-20H for H4K20 trimethylation [Hines et al, 

2009]. The trimethylated state of H4K20 may eventually facilitate chromatin folding leading to 

the formation of heterochromatin [Lu et al, 2008]. Interestingly, the global levels of H3K9me3 

and H4K20me3 increase following prolonged RNF20 knockdown. It suggests that not only the 

chromatin boundaries at the β-globin and FOLR1 loci, but those distributed in the genome rely 

on H2B ubiquitination to maintain their barrier structures. Collapse of these boundaries resulting 

from the lowered level of H2BK120ub1 could lead to comprehensive propagation of 

heterochromatin within the genome.  

 

4.7.4 H2B ubiquitination marks potential chromatin boundary elements 

Two other DNase hypersensitive sites HSA and HSB shared similar histone modification profiles 

with HS4; they are enriched in all active histone modifications examined including 
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H2BK120ub1. Similar to HS4, many of the active histone modifications of HSA/HSB cannot be 

maintained in the H2BK120ub1 depleted condition, suggesting the necessity of H2B 

ubiquitination for the establishment of the active chromatin structure of HAS/HSB. Moreover, 

USF1, VEZF1 and H3K4-specific KMT (RbBP5) binding to HS4 also appear to be recruited to 

these two sites. Therefore, it is possible that HSA and HSB function as insulator barriers, maybe 

for the protection of the upstream FOLR1 gene from the nearby condensed chromatin region. 

However, in this study, we could not distinguish whether HSA and HSB cooperate together to 

form one insulator barrier or they are two separate regulatory elements. HSA is suggested to be a 

regulatory element of the FOLR1 gene because unlike HS4, HSA is not constitutively 

hypersensitive in different cells types and is linked to the FOLR1 expression, only being 

permissive in erythroid progenitors that express FOLR1 [Prioleau et al, 1999].  

 

The similarity of histone modification and binding protein profiles between HSA/HSB and HS4 

suggests there is a possibility that, HSA/HSB interacts with HS4 physically to loop out the 16 kb 

condensed chromatin region between them. HSA/HSB and HS4 flank the condensed chromatin 

region and their interaction could reinforce the blocking of heterochromatin. While chromosomal 

looping is currently linked to the separable enhancer blocking activity of insulators, it might also 

occur for insulator barriers. It was shown in yeast that artificial tethering to nuclear pore 

complexes can support heterochromatin barrier activity [Ishii et al, 2002]. The condensed 

chromatin region separating the FOLR1 and β-globin loci is present in all developmental stages 

of erythroid cells while HSA is absent in terminally differentiated erythroid cells that do not 

express FOLR1 [Prioleau et al, 1999]. It suggests that this silent chromatin region may act as a 

source of silencing and ensure the two loci can be regulated independently. If it is the case, the 

looping model seems to be unlikely as the condensed chromatin region could not afford to be 

looped out. As HS4 is constitutively hypersensitive, silencing of the β-globin genes may not be 

dependent on the condensed chromatin region and more importantly, HS4 cannot rely on HSA to 

maintain its permissive chromatin structure during different developmental stages. If HSA/HSB 
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does not form a loop with HS4, HSA/HSB and HS4 might function separately by forming two 

independent barriers. Examination of the HSA and HSB barrier activity with barrier assay would 

unravel their functioning mechanism and determine whether they can independently function as 

a heterochromatin barrier.  

 

Native ChIP analysis also demonstrated that all examined putative chromatin boundaries are 

enriched in H2BK120ub1, this scenario is not observed in other regulatory elements, suggesting 

that H2B ubiquitination is not unique to HS4; other chromatin boundaries may also require H2B 

ubiquitination. The similar histone modification profiles between HSA/HSB and HS4 suggest 

that histone modification profiling would help identify new chromatin barrier. 
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CHAPTER 5 

Deposition and acetylation of H2A.Z at insulator elements by VEZF1 

5.1 Objectives 

It was demonstrated in the last chapter that the HSA/HSB and HS4 chromatin boundaries are 

both sites of H2A.Z incorporation (Section 4.3.4). A role for the htz1 paralog in chromatin 

barrier activity has been demonstrated in budding yeast (Section 1.1.2.2), but the role of H2A.Z 

at vertebrate chromatin barriers is undetermined. We have found that while the acetylation of 

H2A.Z is linked to the histone modification pathways that are dependent on RNF20, its 

deposition does not appear to be strictly dependent upon these processes (Section 4.3.4). It is 

therefore of interest to determine how H2A.Z is deposited at chromatin boundaries and whether 

it plays a critical role in boundary formation and stability. 

 

The barrier activity of the HS4 insulator element requires both the binding sites for VEZF1 and 

USF proteins. While USF proteins direct histone modification, VEZF1 is associated with the 

control of DNA methylation (Section 1.5.4). To better understand the role of VEZF1 in barrier 

activity, Dr. Dan Li in the group of Dr. Adam West has identified VEZF1 binding proteins using 

mass spectrometry analysis of purified complexes. No factors with an obvious role in DNA 

demethylation were identified, but VEZF1 was found to interact with many histone modifying 

enzymes and chromatin remodelling complexes. Of which, several components of complexes 

involved in the deposition and acetylation of histone variant H2A.Z were identified (Figure 5.1) 

(D. Li, unpublished observations).  
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Figure 5.1 Mammalian protein complexes involved in H2A variant deposition. The INO80 
(Inostitol-requiring protein 80) complex is required for H2A.X incorporation and yeast H2A.Z 
deposition while TIP60 (Tat interacting protein 60 kDa) and the SRCAP (Snf-2-related 
CREB-binding protein activator protein) complexes are responsible for H2A.Z deposition [Jin et 
al, 2005; Papamichos-Chronakis et al, 2011; Ruhl et al, 2006]. TIP60 can acetylate H2A.Z, H2A 
and H4. The protein subunits shown in red are identified as VEZF1 interacting partners using 
mass spectrometry (D. Li, unpublished data). These three protein complexes are ATP-dependent 
chromatin remodelling complexes and share the subunits PONTIN52, REPTIN52 (also known as 
RUVBL1 and RUVBL2 respectively), BAF53A (BRG1/brm-associated factor (BAF) complex 
53 kDa subunit) and ACTIN.  

 

It has been previously found that there is an inverse correlation between DNA methylation and 

H2A.Z occupancy in plants and vertebrates (Section 1.1.2.2). Collectively, these observations 

lead to the hypothesis that VEZF1 may contribute barrier activity at chromatin boundaries by 

facilitating deposition of H2A.Z. This chapter addresses this hypothesis in the following 

objectives.  

 

Objective 1. Determination whether VEZF1 recruits H2A.Z deposition complexes to the 

HS4 insulator 

a) Analysis of proteins immunoprecipitated with FLAG tagged VEZF1 

b) Analysis of SRCAP/TIP60 subunit binding to the transgenic HS4 element in human 

K562 cells 

c) Analysis of H2A.Z deposition and acetylation at HS4 mutants with protein site 

deletions 
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Objective 2. Determine whether H2A.Z deposition/acetylation is a common feature at 

human chromatin boundary elements 

a) Analysis of H2A.Zac at human chromatin boundary elements bound by VEZF1 

b) Analysis of the SRCAP/TIP60 subunit at human chromatin boundary elements 

 

Objective 3. Determine whether VEZF1 is required for H2A.Z incorporation at human 

chromatin boundaries 

a) Development of clonal human cell lines that carry inducible and stable VEZF1 

knockdown vectors 

i. Analysis of VEZF1 protein levels 

ii. Analysis of VEZF1 binding to characterised target sites 

iii. Analysis of global histone modification levels following VEZF1 depletion 

b) Analysis of the following histone modifications at human chromatin boundary 

elements before and after VEZF1 knockdown 

i. H2A.Z deposition and acetylation 

ii. H3 acetylation and H3K4 dimethylation 
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5.2 Determine whether VEZF1 recruits H2A.Z deposition complexes to the HS4 insulator 

5.2.1 Analysis of proteins immunoprecipitated with FLAG tagged VEZF1 

Peptides from H2A.Z and the proteins of the SRCAP/TIP60 complexes, PONTIN52, REPTIN52, 

BAF53A, TRRAP and DMAP1, were identified in VEZF1 protein complexes (D. Li, 

unpublished data). To further validate the interaction between VEZF1 and the SRCAP/TIP60 

complexes, co-immunoprecipitation (Co-IP) experiments were performed and the presence of 

complex subunits was assessed by western blotting analyses. Co-IP experiments were performed 

in human cells as the antibodies used in western blotting analyses were all raised against human 

protein peptides and a stable cell line expressing tagged VEZF1 had been available.  

 

A stable cell line D3/6, originated from human myelogenous leukaemia line K562 carrying a 

SPA (sequential purification affinity) tagged version of VEZF1, had been generated and routinely 

maintained in the lab. The SPA tag consisting of CBP (calmodulin-binding peptide) and FLAG 

tags was conjugated at the C-terminal of VEZF1 to allow sequential purification steps (Figure 

5.2). VEZF1-SPA in the cell line was expressed at the level around 50% of the endogenous one. 

Such double tag system is a widely used approach for purification of protein complexes because 

of the higher purity compared with the single individual purification [Rigaut et al, 1999]. 

Another cell line, S3F1, was a vector control line that only expressed the SPA tag. Nuclear 

extracts prepared from these two lines were subject to FLAG affinity immunoprecipitation to test 

whether the SRCAP and TIP60 complex factors interact with VEZF1 in vivo.  

 

Figure 5.2 SPA tagged VEZF1 protein expressed in the D3/6 line. The two tags, CBP and 3X 
FLAG, were expressed at the C-terminal of VEZF1. A TEV cleavage site located in between the 
tags allowed FLAG tag removal by TEV protease.  

 



Chapter 5 

183 | P a g e  
 

The SRCAP, TIP60 and INO80 shared protein subunits, PONTIN52, REPTIN52 and BAF53A, 

were detected in the FLAG-VEZF1 immunoprecipitates. H2A.Z was also pulled down with 

VEZF1 (Figure 5.3). However, H2A.Z and PONTIN52 were detected in the negative control 

SPA immunoprecipitates but the levels were much lower. Another SRCAP subunit, ARP6 

(Actin-related protein 6) [Altaf et al, 2009], was enriched in the immunoprecipitates of 

FLAG-VEZF1 so VEZF1 may recruit the SRCAP complex to its binding sites (Figure 5.3), 

although the recruitment may not be necessarily to be via ARP6. To minimise non-specific 

binding detected in the control immunoprecipitates, optimisation of Co-IP conditions for 

PONTIN52, H2A.Z and ARP6 is required. Although VEZF1 appears to interact with the H2A.Z 

deposition complexes, the interaction between VEZF1 and SRCAP could not be detected in this 

study (Figure 5.3). There were technical difficulties in western blotting detection of SRCAP due 

to its large molecular weight. The expected SRCAP molecular weight is 344 kDa, such large 

molecular weight protein is not easy to be transferred to a membrane from a SDS-PAGE in 

western blotting assay. Moreover, the putative SRCAP band detected in the input materials was 

larger than expected; it migrated slower than the 460 kDa protein marker. It might be due to 

post-translational modifications that increase the actual size of SRCAP or the band might not be 

bona fide SRCAP.  

 

Figure 5.3 Interaction between VEZF1 and 
SRCAP/TIP60 complexes’ subunits. Nuclear 
extracts of VEZF1-SPA (D3/6 line) and SPA 
alone expressing (S3F1 line) K562 cells were 
prepared for immunoprecipitation using FLAG 
affinity agarose. After extensive washing, bound 
proteins were eluted by boiling with 2X SDS 
loading buffer for 10 minutes. The presence of 
target proteins was examined by western 
blotting with protein-specific antibodies. All 
blots for detection of the same protein were run 
on the same gel and bands were visualised 
under the same exposure conditions. Some lanes 
were rearranged for presentation.  
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Despite the high H2A.Zac level at the HS4 insulator element (see no DOX controls in Figure 

4.6b & c), no TIP60-VEZF1 interaction was identified in the previous mass spectrometry 

analysis (D. Li, unpublished data) and in this Co-IP experiment (Figure 5.3). TIP60 is the 

catalytic subunit of the TIP60 complex, capable of acetylating H2A, H4 and H2A.Z [Ikura et al, 

2000]. The failure of detecting TIP60 in VEZF1-SPA immunoprecipitate might be because less 

input material was used (see input of SPA control and VEZF1-SPA lines for TIP60 detection in 

Figure 5.3) or because the interaction is transient that it is easy to be disrupted during cell lysis. 

The tagged version of VEZF1 might induce improper folding of the VEZF1 protein or block the 

binding to some interacting proteins such that the interaction between TIP60 or other 

undetectable protein subunits are interrupted. Performing immunoprecipitation with anti-VEZF1 

or anti-complex subunit antibodies may help resolve these potential problems. Nevertheless, the 

interaction of VEZF1 with several SRACP subunits and H2A.Z suggests that VEZF1 is at least 

involved in H2A.Z deposition.  

 

5.2.2 The shared subunits of TIP60 and SRCAP complexes are detected at HS4 

To study whether H2A.Z deposition and acetylation at HS4 were mediated by the TIP60 and 

SRCAP complexes, crosslinking ChIP was performed. Ideally, the assay performed in chicken 

6C2 cells would reflect the real scenario at HS4 in the genomic contexts. Unfortunately, no 

antibodies had been confirmed to be specific to the chicken orthologs. To minimise non-specific 

binding of antibodies to chicken proteins leading to false positive or negative results, 

crosslinking ChIP was then performed in human K562 cells carrying transgenic HS4, which had 

been shown to be enriched in H2A.Zac (Figure 5.6).  

 



Chapter 5 

185 | P a g e  
 

Figure 5.4 Detection of the protein subunits of TIP60 and SRCAP complexes at HS4 using 
crosslinking ChIP. K562 cells carrying the transgenic HS4 element (S3F1 cell line) were 
crosslinked with 1% formaldehyde at room temperature for 30 minutes. Chromatin was 
sonicated and immunoprecipitation with specific antibodies followed. Fold enrichments of HS4 
sequences immunoprecipitated from ChIP were normalised to that of IL3 (interleukin-3) 
promoter where H2A.Zac was at a low level (Figure 5.6). Significant enrichments, compared 
with the non-immunised antibody controls, with p-values smaller 0.01 and 0.005, are indicated 
with “*” and “**”, respectively.  

 

The shared subunits of TIP60 and SRCAP complexes, REPTIN52, BAF53A and PONTIN52, 

were found at HS4 (Figure 5.4). TIP60 and ARP6 were also detected although the level was low 

but still statistically significant. It suggests that H2A.Z deposition and acetylation at HS4 are 

mediated by the TIP60/SRCAP complexes. However, SRCAP and TRRAP were undetectable at 

HS4 in this assay (Figure 5.4 right panel). The crosslinking condition might not be optimal for 

their detection or the antibodies did not perform well in immunoprecipitation. SRCAP and 

TRRAP in particular, they are large proteins so there were always some difficulties in western 

blotting analyses (see SRCAP in input lanes Figure 5.3). Therefore, it is still not clear whether 

they can detect the specific proteins in human nuclear extracts. Further optimisation of 

crosslinking ChIP assays is needed to confirm these two structural subunits of the TIP60 and 

SRCAP complexes are recruited to HS4 because REPTIN52, PONTIN52 and BAF53A are not 

only present in the TIP60, SRCAP and INO80 complexes. These protein subunits are associated 

with many other chromatin protein complexes involved in different chromatin accessing abilities 

such as transcription and DNA repair [Jha & Dutta, 2009].  

  

0

1

2

3

4

5

6

7

8

fo
ld
 e
nr
ic
hm

en
t 

(r
el
at
iv
e 
to
 IL
3 
pr
o)

0

1

2

3

4

5

6

fo
ld
 e
nr
ic
hm

en
t 

(r
el
at
iv
e 
to
 IL
3 
pr
o)

**  *  **  **  ** 



Chapter 5 

186 | P a g e  
 

5.2.3 The VEZF1 and USF binding sites are required for the H2A.Z deposition of HS4 

It has been shown that HS4 and HSA/HSB are enriched in H2A.Zac in a H2B 

ubiquitination-dependent manner [Bruce et al, 2005] (Figure 4.6). However, H2A.Zac is not 

enriched at the CTCF bound 3’ HS enhancer blocker, suggesting that H2A.Z and H2A.Zac does 

not simply flank DNase I hypersensitive sites. CTCF bound enhancer blockers may not rely on 

H2A.Z incorporation for the enhancer blocking activity although there is a genome-wide 

correlation of the CTCF and H2A.Z occupancies [Barski et al, 2007; Fu et al, 2008]. H2A.Z, 

rather, may be more closely associated active histone modifications.  

 

VEZF1 is not required for H2B ubiquitination at HS4 as it has been shown that deletion of one 

of the VEZF1 binding sites does not result in a loss of histone ubiquitination (Figure 1.39). 

Nevertheless, the H2A.Z deposition and acetylation at HS4 may be recruited by VEZF1 when 

signalled by H2B ubiquitination. In order to examine whether the VEZF1 binding sites are 

required for the H2A.Z deposition and acetylation, native ChIP was performed in 6C2 cell lines 

integrated with the transgenic HS4 elements carrying footprint deletions. The constructs were 

similar to those for the reporter assay carried out in Section 4.5. The entire transgenic cassette 

was flanked by two copies of HS4 at each side while a footprint was deleted at each copy of HS4 

(Figure 5.5c). Fold enrichments of H2A.Z and H2A.Zac at examined sites were relative to the 

FOLR1 promoter, which is enriched in both H2A.Z and H2A.Zac [Bruce et al, 2005] (see no 

DOX in Figure 4.6). The endogenous HS4 element served as an internal control to indicate 

whether there was dramatic difference in ChIP efficiency between cell lines. 

 

H2A.Z deposition appears to require both VEZF1 and USF binding but not that of CTCF. 

VEZF1 binding sites (FI, FIII and FV) were crucial for the H2A.Z deposition of HS4, although 

the effect of footprint III deletion was relatively mild (Figure 5.5a). Deletion of one of the 

VEZF1 binding sites could not abolish the H2A.Z incorporation at the transgenic HS4 element 

completely; it may be due to the residual VEZF1 binding from the other two binding sites. 
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Contrastingly, the USF binding site, the one essential for H3K4 dimethylation at HS4, was of 

particular importance to H2A.Z deposition. Deletion of the USF site led to an almost complete 

loss of H2A.Z at both the 5’ and 3’ transgenic HS4 elements (Figure 5.5a). The result also 

suggests that H2A.Z deposition might interplay with other active histone modifications. Deletion 

of footprint II, the CTCF binding site, only caused a mild loss of H2A.Z at the 5’ transgenic HS4 

while the H2A.Z level at the 3’ transgenic HS4 remained unchanged (Figure 5.5a). Taken 

together with the absence of H2A.Z at 3’ HS, another CTCF binding site at the β-globin locus, it 

suggests that CTCF may not be responsible for the H2A.Z deposition although the binding sites 

of CTCF show overlapping with the H2A.Z sites in genome-wide studies [Barski et al, 2007; Fu 

et al, 2008].  

 

Given a general positive correlation between transcription activity and H2A.Z occupancy, 

deletion of any footprint binding sites except the CTCF binding site resulted in a loss of H2A.Z 

at the IL2R coding region is in agreement with the silencing effects of footprint deletions on the 

IL2R expression [Barski et al, 2007; Recillas-Targa et al, 2002].  

  

Unexpectedly, the patterns of H2A.Z acetylation at HS4 mutants did not correlate with the 

H2A.Z deposition. Although all HS4 mutants located at the 5’ end of the cassette had lower 

levels of H2A.Z compared with wild type, there were only moderate reductions in H2A.Zac at 

the HS4 mutants missing either the VEZF1 (FV) or USF (FIV) binding sites. H2A.Zac of HS4 

mutants without one of the VEZF1 binding sites, FI and FIII, even retained at similar levels 

compared with wild type (Figure 5.5b). The discrepancy between the H2A.Zac and H2A.Z may 

be because ChIP of H2A.Zac did not perform equally well in all cell lines, suggested by an 

observation that H2A.Zac at the internal control, the endogenous HS4 elements, varied between 

the lines (Figure 5.5b). Nevertheless, the H2A.Zac level across the transgenic cassette did not 

decrease if there was no CTCF binding site at the HS4 mutant, consistent with the pattern of 

H2A.Z deposition.  
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a 

b 

c 

Figure 5.5 Native ChIP analyses of H2A.Z (a) and H2A.Zac (b) at the footprint deleted HS4 
elements. Fold enrichments were relative to the FOLR1 promoter (5.851). Significant differences 
in fold enrichments between wild type and footprint deleted HS4 with p-values smaller than 0.05, 
0.01 and 0.005 are indicated with “*”, “**” and “***”, respectively. c. Schematic diagram of the 
footprint deletion constructs. Primers used for studying the transgenic reporter cassette (upper 
panel) and the chicken β-globin locus (lower panel).  
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5.3 Determine whether H2A.Z deposition is a common feature at human chromatin 

boundary elements 

5.3.1 Analysis of H2A.Zac at human chromatin boundary elements bound by VEZF1 

The results of the Co-IP assay and native ChIP study at the footprint deletion HS4 elements 

suggest that VEZF1 plays a role in H2A.Z deposition. It was shown that H2A.Zac is of particular 

importance for chromatin barriers to block heterochromatin spreading in yeast [Babiarz et al, 

2006] but whether H2A.Zac is essential for vertebrate chromatin boundaries remains unclear. 

Native ChIP with H2A.Zac-specific antibody was carried out to study whether H2A.Zac is 

enriched at the VEZF1 bound chromatin barriers (refer to Table 4.1 for description of the 

barriers). Result showed that H2A.Zac was enriched at some but not all VEZF1 bound putative 

barriers (Figure 5.6). Only the FLNA inverted repeat, GMPPA-ACCNA locus DHS, CKMT 5’ 

DHS, EHD1 5’ DHS and SPA1 DHS had higher or similar levels of H2A.Zac compared with 

HS4. Like HS4, all of these five elements are able to protect a transgene from silencing in long 

term culture (G. Barkess, unpublished data). However, acetylation of H2A.Z did not appear to be 

a universal signature for the VEZF1 binding sites that the function of VEZF1 could be 

site-specific. Two of the examined putative insulators, the IGF2 5’ DHS and the NRXN2 

intragenic DHS, the β-globin HS2 and the IL3 enhancers, were not enriched in H2A.Zac. The 

IGF2 5’ DHS was not able to protect a transgene from chromatin silencing in the barrier assay, 

suggesting that it may not be a genuine chromatin barrier (G. Barkess, unpublished data). The 

full length NRNX2 intragenic DHS element encompassing > 1000 bp can maintain expression of 

a transgene in a reporter assay (G. Barkess, unpublished data) despite of that H2A.Zac was not 

detected. It is possible that the short PCR amplicon (~170 bp) might have missed the site 

enriched in H2A.Zac. Alternatively, this putative barrier may not require H2A.Zac for its barrier 

activity. More sites of the NRNX2 intragenic DHS element need to be studied to determine which 

scenario is more likely.  
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Consistent with the previous genome-wide study in yeast showing that transcription activity is 

positively correlated with H2A.Zac [Millar et al, 2006], the actively expressing SCL (stem cell 

leukemia) gene in K562 [Rath et al, 1997] was also enriched in H2A.Zac at its promoter and 

enhancer. MeCP2 (methyl CpG binding protein 2), IL3 and β-globin silent in K562 cells [Chen et 

al, 1994; Fordis et al, 1984; Weber-benarous et al, 1988; biogps.gnf.org] had low levels of 

H2A.Zac at their promoters or enhancers. However, the low levels of H2A.Zac at these sites do 

not seem to be because of reduced VEZF1 binding as the MeCP2 promoter is still bound by 

VEZF1 at a high level in K562 cells (see no DOX in Figure 5.9). These results suggest that 

VEZF1 play different roles at different binding sites, not only restricted to facilitate H2A.Z 

deposition and acetylation. 

 

 

 

Figure 5.6 ChIP analysis of H2A.Zac at transgenic HS4 and the VEZF1 bound elements. 
Low salt ChIP was performed in K562 cells incorporated with transgenic HS4. Fold enrichments 
of H2A.Zac were calculated by normalising to the EDN1 (endothelin 1) promoter, which is 
supposed to be inactive due to the low expression of EDN1 in K562 cells. VEZF1 does not bind 
to the EDN1, IL3 and KDR (kinase insert domain receptor) promoters in K562 cells. Significant 
enrichments (p<0.001) are asterisked.  
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5.3.2 Analysis of the SRCAP/TIP60 subunit at human chromatin boundary elements 

To determine if VEZF1 directs H2A.Z acetylation at the putative boundary elements by 

recruiting the SRCAP and TIP60 complexes, crosslinking ChIP was performed. The binding of 

PONTIN52, REPTIN52 and BAF53A were examined at the VEZF1 bound putative boundaries 

as an indicator of the recruitment of the SRCAP or TIP60 complexes because crosslinking ChIP 

with these three antibodies seemed to perform better than the others (Figure 5.4).  

 

Similar to HS4, H2A.Z deposition and acetylation at the VEZF1 bound putative chromatin 

boundaries seems to be mediated by the SRCAP or TIP60 complexes. In general, sites enriched 

in H2A.Zac had significant high levels of REPTIN52 and PONTIN52, and some but not all of 

them were also bound by BAF53A. REPTIN52 and PONTIN52 were recruited to the FLNA 

inverted repeat, GMPPA-ACCN4 locus DHS, CKMT 5’ DHS and the SCL enhancer and promoter, 

mirroring the substantial enrichments of H2A.Zac (Figure 5.7a & b for PONTIN52 and 

REPTIN52, Figure 5.6 for H2A.Zac). Contrastingly, the NRXN2 intragenic DHS and the KDR 

promoter showing low H2A.Zac levels did not recruit these remodelling proteins. However, the 

recruitment of BAF53A did not follow the H2A.Zac pattern. BAF53A bound to the FLNA 

inverted repeat and slightly to the GMPPA-ACCN4 locus DHS and SCL promoter, while the 

CKMT 5’ DHS and SCL enhancer did not have detectable BAF53A despite of their recruitment 

of REPTIN52 and PONTIN52 as well as high levels of H2A.Zac (Figure 5.7c). This suggests 

that BAF53A might not be essential for the H2A.Z deposition or acetylation although it is always 

present in the complexes responsible for that. Alternatively, REPTIN52 and PONTIN52 might 

work at those elements with other complexes that BAF53A is not involved. It might be also 

because BAF53A was not be accessed by the antibody equally at all sites due to the presence of 

other complex subunits. Optimisation of ChIP condition may help the detection as the ChIP 

efficiency was not indeed very high, suggested by the low enrichments at the sites with 

detectable BAF53A.   
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a 

b 

c 

Figure 5.7 Crosslinking ChIP analyses of recruitment of PONTIN52 (a), REPTIN52 (b) and 
BAF53A (c) at VEZF1 bound elements. Normalisation of quantitative PCR data was performed 
by choosing the IL3 promoter as a control region where H2A.Zac was not enriched as shown 
inFigure 5.6. Significant enrichments are represented with asterisks (*=p<0.05,**= p<0.01 and 
***=p<0.005).  
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5.4 Determine whether VEZF1 is required for H2A.Z incorporation at human chromatin 

boundaries 

5.4.1 Development of clonal human cell lines that carry inducible and stable VEZF1 

knockdown vectors 

Our results have demonstrated that the VEZF1 bound insulator elements are generally enriched 

in H2A.Zac. To study if VEZF1 plays a major role in the H2A.Z deposition and acetylation, 

inducible VEZF1 knockdown K562 cell lines had been established by Dr. Alan Hair and Dr. 

Ruslan Strogantsev. The design of VEZF1 shRNA triggers for VEZF1 knockdown was based on 

the same criteria used for the RNF20 shRNA design (Section 3.4.1) (R. Strogantsev, unpublished 

data). The potential shRNA triggers were cloned into the lentiviral shRNA expression vector 

system (Figure 3.18) and lentiviral particles containing the vector cassette were used to transduce 

human K562 cells. The expression of VEZF1-specific miRNA was induced by DOX addition 

and indicated by GFP expression. Potential clones were screened by Dr. Ruslan Strogantsev 

using RT-PCR and western blotting analyses. 

 

5.4.1.1 Analysis of VEZF1 protein levels 

To further confirm the selected clone was effective in VEZF1 knockdown and the expression of 

VEZF1 could be recovered after DOX removal, western blotting analysis of VEZF1 was 

performed. VEZF1 knockdown was induced by DOX addition for two days and a portion of cells 

was transferred to DOX free medium and then kept growing for seven days to allow recovery of 

the expression of VEZF1 while the rest of the cells continued to be grown in the presence of 

DOX. Nuclear extracts prepared from cells harvested on Day 2 and 9 were subject to western 

analysis. Result of western blotting showed that VEZF1 knockdown was significant upon DOX 

induction, VEZF1 was knocked down by 80% following two-day induction (Figure 5.8). 

Moreover, the VEZF1 knockdown was reversible although the recovery was not complete that 

only 60% of VEZF1 was expressed in recovered cells compared with uninduced cells (-DOX) 

(Figure 5.8).  
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a         b 

Figure 5.8 Western blotting analysis of VEZF1 expression following DOX induced 
knockdown. The expression of VEZF1-specific miRNA was induced by DOX (+ DOX) for two 
days and then half of the knockdown cells were grown in DOX free medium for seven days to 
rescue the VEZF1 expression (+/- DOX). Cells without DOX treatment (- DOX) were grown in 
parallel as a control. Cells were harvested on Day 2 and Day 9 for nuclear extraction to examine 
their VEZF1 protein level by western blotting (a). TBP served as a loading control for 
normalisation. Relative protein expression was calculated from band intensities (b).  

 

5.4.1.2 Analysis of VEZF1 binding to characterised target sites 

Although the protein level of VEZF1 was significantly reduced following knockdown, the 

remaining VEZF1 in cells might still give rise to substantial binding to the target sites, 

potentially diluting the knockdown effects in further studies. To examine whether the binding of 

VEZF1 at its target sites was significantly reduced following knockdown, crosslinking ChIP was 

carried out with anti-VEZF1 antibody after nine days of VEZF1 knockdown. Consistent with the 

VEZF1 protein level, VEZF1 binding to all examined binding sites were reduced in knockdown 

cells and it increased after recovery (Figure 5.9). The VEZF1 binding, however, could not be 

fully rescued in the recovered cells, possibly due to the incomplete recovery of the VEZF1 

expression (Figure 5.8). 
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Figure 5.9 ChIP analysis of VEZF1 binding following VEZF1 knockdown and expression 
recovery. DOX was administrated to induced VEZF1 knockdown for nine days (-DOX) while 
recovery cells (+/- DOX) were firstly treated with DOX for two days and then DOX was 
removed for seven days to allow expression recovery. All cells including the untreated control 
were harvested and crosslinked on Day 9 for ChIP analysis. The relative enrichment was 
normalised to the EDN1 promoter where had no VEZF1 binding in K562 cells. Significant 
changes of VEZF1 binding following knockdown and expression recovery are indicated with 
asterisks (*=p<0.05, **=p<0.01 and ***=p<0.005).  

 

5.4.1.3 Analysis of global modification levels following VEZF1 depletion 

There is emerging evidence that proteins physically interact are sometimes correlated genetically. 

They could be involved in the regulation of gene expression of their interacting partners 

[Walhout & Vidal, 2001]. While VEZF1 is a transcription factor, VEZF1 physically interacts 

with H2A.Z and complexes responsible for H2A.Z deposition and acetylation, and might also 

directly regulate the expression of H2A.Z and the complex components. To study whether the 

global levels of H2A.Z and H2A.Zac were altered following VEZF1 knockdown, western 

blotting analysis of total chromatin was performed. There was downregulation of H2A.Z 

following VEZF1 knockdown and the level could be restored after VEZF1 expression recovery 

(Figure 5.10). Even though the global level of H2A.Z was downregulated, the H2A.Zac level 

was upregulated following VEZF1 knockdown and again, the effect was reversible after 

re-expression of VEZF1 (Figure 5.10). Given that H2A.Z, H2A.Zac, H3ac and H3K4me2 are all 

associated with euchromatin, the elevated H2A.Z acetylation might counteract effects of the 
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reduction of H2A.Z, H3ac and H3K4me2 on chromatin following VEZF1 knockdown. The 

global level of H3ac decreased after VEZF1 knockdown but it could not come back to the 

normal level even the expression of VEZF1 was rescued (Figure 5.10), suggesting that there 

might be some irreversible changes at some chromatin regions caused by VEZF1 depletion.  

 

Figure 5.10 Global histone modification analyses following VEZF1 knockdown. VEZF1 
knockdown was induced by DOX for nine days (+DOX) and two-day DOX treatment followed 
by seven-day removal was carried out in recovery cells (+/- DOX). Cells including untreated 
control were collected on Day 9 for histone modification examination. Total chromatin was 
extracted for western blotting analyses to examine the global levels of H2A.Z, H2A.Zac, H3ac 
and H3K4me2 (left panel) and the relative levels are presented with a histogram (right panel). 
The relative levels were measured from the band intensities of the western blotting analyses and 
normalised to that of histone H3. The levels in no DOX cells were set to one.  

 

5.4.2 Analysis of histone modifications at human chromatin boundary elements before 

and after VEZF1 knockdown 

The global changes of histone modifications following VEZF1 knockdown suggest histone 

modifications at VEZF1 binding sites might be altered. To study changes of histone modification 

at putative chromatin boundaries, native ChIP was performed following VEZF1 knockdown and 

expression recovery. Fold enrichments of examined histone modifications at target sites were 

relative to those at the promoter of EDN1, which is a silent promoter with no VEZF1 binding in 

K562 cells. Due to its promoter nature, histone modifications examined, H2A.Z, H2A.Zac, 

H3K4me2 and H3ac may not be depleted but the levels should remain unchanged following 
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VEZF1 knockdown.  

 

5.4.2.1 H2A.Z deposition and acetylation 

To study whether VEZF1 is responsible for the H2A.Z deposition and acetylation, native ChIP 

was performed following VEZF1 knockdown and expression recovery. H2A.Z is commonly 

found at promoters of active and inactive genes [Albert et al, 2007; Barski et al, 2007; Mavrich 

et al, 2008; Raisner et al, 2005]. Consistent with this, the silent EDN1 gene employed as a 

normaliser also appeared to have a substantial enrichment of H2A.Z suggested by the ∆Ct 

relative to input (not shown). Therefore, fold enrichments of H2A.Z below one at examined 

chromatin boundaries did not represent undetectable H2A.Z. It is notably that the EDN1 

promoter is not bound by VEZF1 in K562 cells (Figure 5.9) which histone modifications should 

not be affected by VEZF1 knockdown. Although VEZF1 interacts with several subunits involved 

in H2A.Z deposition as shown in Section 5.2.1 and there was a global reduction of H2A.Z 

following VEZF1 knockdown (Figure 5.10), the H2A.Z deposition at many VEZF1 binding sites 

was not affected by VEZF1 depletion. Only three of the examined sites GMPPA-ACCN4 locus 

DHS, SPA1 DHS and SCL enhancer exhibited a slight decrease in H2A.Z following VEZF1 

knockdown and the H2A.Z deposition was back to normal when VEZF1 was expressed again 

(Figure 5.11a). Two of the putative chromatin boundaries, IGF2 5’ DHS and EHD1 5’ DHS, 

were unexpectedly had higher levels of H2A.Z after VEZF1 knockdown while the increased 

level retained despite of the restored VEZF1 expression, suggesting that VEZF1 at these two 

sites are not responsible for H2A.Z deposition. The elevated H2A.Z might be compensation of 

chromatin state alteration after VEZF1 knockdown while the alteration might be quite stable that 

even the re-expression of VEZF1 could not restore it.  

 

Acetylation of H2A.Z was reduced at some, but not all, at the VEZF1 binding sites upon VEZF1 

knockdown and the reduction could be relieved when DOX was removed. The FLNA inverted 

repeat, GMPPA-ACCN4 locus DHS and SCL enhancer exhibited lowered levels of H2A.Zac in 
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knockdown cells but the re-expression of VEZF1 could rescue them (Figure 5.11b). Notably, 

VEZF1 knockdown did not result in a complete loss of H2A.Z acetylation at these sites; rather, 

they still exhibited significant enrichments. This might be because the residual VEZF1 binding 

was still able to recruit the responsible enzymes. Alternatively, other transcription factors such as 

USF or CTCF binding on these elements might share the role of directing histone modifications 

with VEZF1. Reduced H2A.Zac was also observed at some VEZF1 binding sites including the 

HBB β-globin enhancer HS2, and the promoters of SCL and MeCP2 following VEZF1 

knockdown. However, the H2A.Zac levels could not be replenished significantly after recovery 

of the VEZF1 expression (Figure 5.11b). There might be irreversible chromatin state alteration at 

these sites induced by VEZF1 depletion. Collectively, VEZF1 appeared to regulate the H2A.Z 

acetylation and/or deposition at the boundary elements FLNA inverted repeat and GMPP-ACCN4 

locus DHS.  
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a 

 

b 

 

 

Figure 5.11 Native ChIP analyses of H2A.Z (a) and H2A.Zac (b) at VEZF1 binding sites 
upon VEZF1 knockdown. VEZF1 knockdown was induced by DOX for nine days (+DOX) and 
two days followed by seven-day removal in recovery cells (+/- DOX). Fold enrichments were 
relative to the EDN1 promoter. Significant changes following VEZF1 knockdown and expression 
recovery are represented with asterisks (*=p<0.05, **=p<0.01 and ***=p<0.005).  
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5.4.2.2 H3 acetylation and H3K4 dimethylation 

H3K4 methylation and histone acetylation were also studied because they were enriched at the 

insulator paradigm chicken HS4 element and HSA/HSB boundary, and appear to be essential for 

anti-silencing in yeast [Ladurner et al, 2003; Santos-Rosa et al, 2004; Venkatasubrahmanyam et 

al, 2007]. Like H2A.Z, the distribution of H3K4me2 is broad that it is not only restricted to 

active promoters [Barski et al, 2007] so the fold enrichments relative to the EDN1 promoter 

below one did not mean there were no H3K4me2. Similar to H2A.Z acetylation, H3 acetylation 

and H3K4 dimethylation displayed a slightly but reversible reduction at some of the binding sites 

upon VEZF1 knockdown and again, changes were mostly observed at the FLNA inverted repeat, 

the GMPPA-ACCN4 locus DHS and the SCL enhancer (Figure 5.12). Such changes were not 

seen at all VEZF1 binding sites and not dependent on the VEZF1 binding affinity, suggesting 

diverse functions of VEZF1. All histone modifications examined at the SCL promoter that has 

the highest VEZF1 binding affinity (see no DOX in Figure 5.9) did not exhibit a significant 

change of histone modification examined upon knockdown and recovery, suggesting that VEZF1 

regulates the SCL promoter through a mechanism independent on the active histone 

modifications. 

 

Taken together, VEZF1 appears to have different functions at the putative chromatin boundaries. 

Of which, VEZF1 plays a partial role in directing histone modifications, H2A.Z deposition and 

acetylation, H3 acetylation and H3K4 dimethylation, at the chromatin boundaries FLNA inverted 

repeat and GMPPA-ACCN4 locus DHS. But notably, VEZF1 alone may not be sufficient for the 

active histone mark establishment as the levels of these marks at the FLNA inverted repeat and 

GMPPA-ACCN4 locus DHS decreased but still substantially high although the VEZF1 binding 

was significantly reduced after knockdown.  
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a 

 

b 

 

 

Figure 5.12 Native ChIP analyses of H3ac (a) and H3K4me2 (b) at VEZF1 binding sites upon 
VEZF1 knockdown. VEZF1 knockdown was induced by DOX for nine days (+DOX) and two 
days followed by seven-day of DOX removal in recovery cells (+/- DOX). Fold enrichments 
were relative to the EDN1 promoter. Significant changes following VEZF1 knockdown and 
expression recovery are represented by asterisks (*=p<0.05, **=p<0.01 and ***=p<0.005). 
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5.5 Discussion 

Nucleosome-free regions including transcription start sites (TSS) and boundaries elements are 

commonly decorated by H2A.Z that promotes transcription and counteracts heterochromatin 

propagation, respectively [Jin et al, 2009; Meneghini et al, 2003; Zhang et al, 2004]. However, it 

remains unclear that how the H2A.Z deposition is regulated and what is the function of H2A.Z at 

boundaries.  

 

5.5.1 H2A.Z deposition and acetylation may be a signature of vertebrate insulators 

Chromatin barriers in vertebrates may be like in yeast that H2A.Z, particularly its 

hyperacetylated form, is required for the barrier activity. H2A.Zac is substantially enriched at the 

chromatin boundaries at the chicken β-globin and FOLR1 loci and the human putative chromatin 

barriers, the FLNA inverted repeat, GMPPA-ACCN4 locus DHS and CKMT 5’ DHS, possessing 

barrier activity. H2A.Z deposition at these sites is further confirmed by the recruitment of 

PONTIN52, REPTIN52 and BAF53A that constitute the shared module of the SRCAP, TIP60 

and INO80 complexes but they are not recruited to the NRXN2 intragenic DHS with a low level 

of H2A.Zac. SRCAP and TIP60 are responsible for H2A.Z deposition and acetylation in human 

while yeast INO80 was also recently found to be involved in the global H2A.Z localisation [Jin 

et al, 2005; Papamichos-Chronakis et al, 2011]. The other two putative barriers, the IGF 5’ DHS 

and the SPA1 DHS, exhibiting relatively lower levels of H2A.Zac are unable to protect a 

transgene from chromosomal silencing (G. Barkness, unpublished data).  

 

In this study, all tested putative chromatin boundary elements are DNase hypersensitive sites 

where nucleosomes are usually depleted. H2A.Z indeed always decorates nucleosome-free 

regions together with the histone variant H3.3 in the human genome [Jin et al, 2009]. 

Nucleosomes at the boundary elements may be unstable although the presence of H3.3 is yet to 

be confirmed. The unstable nature of nucleosomes may contribute the barrier activity by 

inhibiting the binding of repressive complexes responsible for heterochromatin propagation as in 
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yeast [Babiarz et al, 2006; Meneghini et al, 2003; Venkatasubrahmanyam et al, 2007; Zhang et 

al, 2004] and/or by preventing nucleosome oligomerisation for the formation of heterochromatin 

[Fan et al, 2002]. Moreover, the refractory profiles of H2A.Z and DNA methylation [Zilberman 

et al, 2008] raises the possibility that H2A.Z is deposited into these barrier elements to prevent 

DNA methylation, which is one of the events commonly associated with chromatin silencing 

[Fuks, 2005; Newell-Price et al, 2000]. It is supported by the capability of the H2A.Z enriched 

insulator paradigm HS4 element protecting the flanking transgene from DNA methylation 

[Dickson et al, 2010; Mutskov et al, 2002].  

 

5.5.2 VEZF1 is necessary but not sufficient for H2A.Z deposition 

Although the Co-IP experiment demonstrated that VEZF1 interacts with several subunits of the 

SRCAP and TIP60 complexes, VEZF1 alone is not sufficient for H2A.Z deposition. In the ChIP 

analyses on footprint deleted transgenic HS4, H2A.Z reduced dramatically not only if VEZF1 

binding sites (footprint I, III and V) were deleted, but also in the case with USF binding site 

deletion. The results indicate that both VEZF1 and USF are needed for H2A.Z deposition while 

their roles may be different. VEZF1, as we suggested, it may be involved in recruiting H2A.Z 

deposition responsible protein complexes. USF at HS4 may mediate H2A.Z deposition through 

regulation of histone modifications, in which histone acetylation in particular, that are essential 

for H2A.Z incorporation. It has been shown in yeast that H4K16 acetylation is a prerequisite of 

H2A.Z incorporation [Shia et al, 2006]. USF is essential for H4 acetylation at HS4 and the 

process may be RNF20 dependent [Huang et al, 2007] (Section 4.3.3). The active histone 

modifications at HS4 may interplay with H2A.Z to eventually maintain the active state of HS4 to 

counteract the repressive histone marks and DNA methylation associated with heterochromatin 

propagation.  

 

In the case of the putative boundary elements of our interest, all of them display a much higher 

level of H2BK120ub1 compared with other regulatory elements, suggesting that H2A.Z 
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deposition at these elements may require H2B ubiquitination. However, the ENCODE data 

shows that not all of these putative insulators are USF bound. The requirement of USF binding is 

thus not universal that other transcription factors such as CTF1 might recruit histone 

modification enzymes to generate the active chromatin environment for H2A.Z deposition 

[Esnault et al, 2009]. Histone modification profiling showed colocalisation of H3K4 methylation, 

the trimethylated state in particular, with H2A.Z, [Barski et al, 2007], implying that H2A.Z 

deposition is linked to or even signalled by active histone modifications. Of these putative 

insulator barriers, the NRXN2 intragenic DHS lacks H3K4me3 (ENCODE project) as well as 

H3K4me2 (see no DOX control of Figure 5.12d), this might explain why this site does not 

favour H2A.Z deposition, disproving its barrier element identity.  

 

Although the genomic CTCF distribution correlates with that of H2A.Z [Barski et al, 2007; Fu et 

al, 2008], loss of the CTCF binding site does not result in depletion of H2A.Z at HS4. Therefore, 

the relationship between CTCF and H2A.Z occupancies seems not to be absolute, at least this 

does not apply to HS4 and the 3’ HS enhancer blocker at the chicken β-globin locus. The H2A.Z 

and CTCF occupancy could be simply a consequence that both of them are commonly found at 

nucleosome-free regions [Barski et al, 2007; Kim et al, 2007; Jin et al, 2009] while insulators, 

perhaps not as previously thought, they may be regulated by more than CTCF.  

 

5.5.3 The dual role of VEZF1 in de novo DNA methylation 

The previous bisulfite sequencing result demonstrated the necessity of all the three VEZF1 

binding sites for HS4 to protect the flanked transgene from de novo DNA methylation mediated 

silencing (Section 1.5.5). The interaction between VEZF1 and the chromatin remodelling 

complexes responsible for H2A.Z deposition suggests the possibility that VEZF1 directs the 

H2A.Z deposition at HS4 to inhibit the DNA methylation. Consistent with the DNA bisulfite 

sequencing that the transgene is heavily methylated in the absence any of the VEZF1 binding 

sites (FI, FIII and FV) [Dickson et al, 2010], deletion of any of the binding sites leads to a 
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reduction in H2A.Z at the IL2R transgene and HS4 elements. However, more Co-IP and 

crosslinking assays are required to determine whether VEZF1 mediates the H2A.Z deposition by 

recruiting the TIP60 and SRCAP complexes as PONTIN52 and REPTIN52 are not specific for 

H2A.Z deposition [Jin et al, 2005].  

 

The hypothesis that VEZF1 is required for H2A.Z deposition, however, is challenged by the 

histone modification profiling on the putative barrier elements performed in VEZF1 knockdown 

cells. VEZF1 knockdown leads to a loss of H2A.Z acetylation at the FLNA inverted repeat and 

the GMPPA-ACCN4 locus DHS whilst the deposition is not affected. VEZF1 might facilitate 

H2A.Z acetylation by recruiting the TIP60 complex containing PONTIN52, REPTIN52 and 

BAF53A. The putative barriers, other than the FLNA inverted repeat and the GMPPA-ACCN4 

locus DHS, do not show any changes in H2A.Z incorporation and acetylation although VEZF1 is 

substantially depleted, suggesting that other binding proteins may share the role of H2A.Z 

deposition/acetylation. It supports by an observation that the HS4 mutant missing the USF 

binding site is depleted in H2A.Z. However, the FLNA inverted repeat and the GMPPA-ACCN4 

locus DHS are not bound by USF so other proteins may be involved instead (ENCODE Project).  

 

Although the previous finding implies a negative correlation between VEZF1 binding and DNA 

methylation [Dickson et al, 2010], VEZF1 was found to regulate the genome-wide DNA 

methylation positively in mouse ES cells [Gowher et al, 2008]. Knockout of VEZF1 causes a 

loss of genomic DNA methylation as a result of substantial decreased expression of a de novo 

DNA methyltransferase Dnmt3b. The reduced expression is probably resulted from alternative 

splicing leading to reduced production of the catalytically active form of Dnmt3b. Even so, it 

does not mean that our working hypothesis is contradicted. VEZF1 could play a dual role in 

DNA methylation in a site specific manner and/or via cooperation with other binding proteins.  
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5.5.4 VEZF1 plays a role in active histone modification recruitment at its binding sites 

VEZF1 also appears to regulate histone modifications at some binding sites. VEZF1 knockdown 

leads to depletion of several active histone modifications including acetylation of H2A.Z and H3, 

as well as H3K4me2. However, the loss of these marks is not complete and universal at all the 

binding sites, suggesting that the functions of VEZF1 are diverse that regulation of histone 

modification is apparently not the only role. Identification of VEZF1 binding proteins may give 

us a clue. VEZF1 has been found to interact with proteins responsible for histone modifications, 

chromatin remodelling and DNA replication (D. Li, unpublished). Although no direct interaction 

has been detected between VEZF1 and H3K4 KMTs and H3 KATs, VEZF1 might promote these 

modifications by providing an active open chromatin environment through rapidly exchanging 

nucleosomes. Several subunits of the BAF (Brahma-related gene/Brahma-associated factor) and 

NURF (nucleosome remodelling factor) complexes mediating chromatin remodelling have been 

found to interact with VEZF1. The loss of H3K4me2 and H3ac at some binding sites in VEZF1 

lacking condition, thus, might be because of the more compact chromatin structure that is 

unfavourable for active histone modification enzymes.  

 

The variety of VEZF1 binding proteins could also explain the diversity of binding sites. Like the 

SCL promoter and enhancer, VEZF1 tightly binds to these sites in K562 cells, however, in the 

absence of VEZF1, loss of active histone modifications is only observed at the enhancer but not 

the promoter. It suggests that VEZF1 may function differently at enhancers and promoters by 

recruiting different binding proteins to the binding sites, such process could be achieved by 

cooperation with other proteins or even the transcription machinery. Notably, two of the putative 

insulators, the FLNA inverted repeat and the GMPPA-ACCN4 locus DHS, exhibit lower levels of 

H3K4me2 and H3ac in the VEZF1 depleted condition, suggesting a potential histone 

modification regulatory role of VEZF1. These active histone modifications may in turn act as a 

signal for H2A.Z deposition/acetylation, which might be essential for prohibiting de novo DNA 

methylation. Moreover, the loss of H3K4 methylation at these two sites may reflect the gain of 
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DNA methylation. It has been shown that a de novo methyltransferase DNMT3L has a higher 

affinity to K4 unmethylated histone H3 [Ooi et al, 2007]. If this is the case, VEZF1 may protect 

insulators and insulated regions from DNA methylation by facilitating H2A.Z incorporation as 

well as H3K4 methylation. In contrast, other putative insulator elements such as the CKMT 5’ 

DHS and the EDH1 5’ DHS do not appear to require VEZF1 to maintain or establish the active 

histone modification patterns. The role of VEZF1 in the barrier activity of these elements, thus, 

remains enigmatic. Characterising the barrier activity, DNA methylation and full histone 

modification patterns of these elements in VEZF1 knockdown cells would gain an insight into it.  
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CHAPTER 6 

Conclusions and Future Perspectives 

 

In this study, the regulation of histone modifications at the HS4 insulator element has been 

studied in depth. HS4 lies between a condensed chromatin region and the β-globin gene locus. I 

postulated that HS4 protects the β-globin genes from chromatin silencing that may spread from 

the condensed region [Prioleau et al, 1999]. The open chromatin structure of HS4 was previously 

linked to its barrier activity against heterochromatin propagation. Active histone modifications 

including H3K4 methylation and multiple histone acetylation are crucial to maintain such 

permissive chromatin structure [Huang et al, 2005; Huang et al, 2007; West et al, 2004], but 

little was known about how these marks are established. In this study, it has been found that H2B 

ubiquitination is a master regulator of an active histone modification cascade required for the 

barrier activity of HS4. Knockdown of the H2B-specific ubiquitination E3 ligase RNF20 leads to 

depletion of H2BK120ub1 and abolishes a series of active histone marks at HS4. This resulted in 

a breach of the HS4 barrier by heterochromatin-associated histone marks, which eventually 

spread across the entire β-globin domain. H2BK120ub1-dependent barrier activity may happen 

at other insulators such as the HSA/HSB barrier at the FOLR1 locus. Several human putative 

chromatin barriers are also found to be enriched in H2BK120ub1. Collectively, a novel histone 

crosstalk regulated by H2B ubiquitination may be required for barrier activity.  

 

Besides active histone modifications, HS4 is particularly enriched in the histone variant H2A.Z. 

H2A.Z has been found to be essential for yeast boundary elements to delimit the spread of 

heterochromatin [Babiarz et al, 2006; Meneghini et al, 2003; Venkatasubrahmanyam et al, 2007]. 

However, the function of this histone variant at vertebrate chromatin boundaries is not clearly 

understood although genome wide mapping has shown an enrichment of H2A.Z at CTCF 

elements [Barski et al, 2007; Jin et al, 2009]. However, our results found that the CTCF binding 

site is dispensable for H2A.Z deposition at HS4. Rather, the USF and VEZF1 binding sites are 
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essential for the deposition, possibly due to the recruitment of the active histone modification 

regulator H2B ubiquitination and H2A.Z deposition responsible chromatin remodelling 

complexes, respectively. Although some VEZF1 binding sites in the genome are enriched in 

these chromatin remodelling protein factors, H2A.Z deposition does not seem to be the only 

functional mechanism of VEZF1 as there is no universal decrease in H2A.Z and H2A.Zac at the 

binding sites following VEZF1 knockdown. Changes in other histone modifications at some but 

not all of the binding sites upon VEZF1 depletion suggest diverse functions of VEZF1.  

 

6.1 Overview of histone modifications at insulator elements 

In this study, histone modifications at the paradigm insulator element HS4, newly identified 

HSA/HSB boundary and some putative chromatin barriers in human have been profiled in 

Chapter 4 and 5 (Sections 4.3 & 5.4.2). HS4 and HSA/HSB, consistent with other previous 

studies, it is enriched in active histone modifications including H3K4me2, H3K4me3 and 

multiple acetylations of H3, H4 and H2A.Z. Moreover, native ChIP with anti-ubiquitin and 

anti-H2BK120ub1 antibodies found that HS4 and HSA/HSB are also sites of H2B ubiquitination. 

It is the first report showing H2B ubiquitination is linked to chromatin boundary elements.  

 

Several putative insulators identified by profiling of genomic binding sites of HS4 binding 

proteins (R. Strogantsev, unpublished data) have been characterised in Chapter 5. All these 

putative insulators are bound by VEZF1; some of them are also binding sites for CTCF and USF 

proteins. All of the putative chromatin barriers, the FLNA inverted repeat, GMPPA-ACCN4 locus 

DHS, CKMT 5’ DHS and EHD1 5’ DHS C66/16, are enriched in H2A.Zac, H2A.Z, H3ac, 

H3K4me2 and H2BK120ub1 (Sections 4.6 & 5.4.2). This histone modification pattern is similar 

to that of HS4 and HSA/HSB. Therefore, histone modification profiling may be one of the 

approaches to identify novel insulator barriers. DNase hypersensitive sites that demarcate 

boundaries between euchromatin and heterochromatin that are enriched in active histone 

modifications may be potential insulator barriers.  
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6.2 The histone modification cascade switched on by H2B ubiquitination at HS4 may occur 

at other insulator barriers 

H2B ubiquitination found at HS4 appears to be a master switch of active histone modifications to 

counteract encroachment of repressive ones. RNF20 knockdown results in a loss of several 

active histone modifications at HS4 promptly. In agreement with other studies [Briggs et al, 

2002; Kim et al, 2005], the loss of H2B ubiquitination at HS4 causes a local depletion of H3K4 

methylation. However, despite the H2BK120ub1 depletion, the binding of a shared structural 

subunit of several SET1 and MLL KMTs to HS4 remains unchanged, suggesting that the activity 

rather than the recruitment of H3K4 KMTs is regulated by H2B ubiquitination.  

 

Besides H3K4 methylation, histone acetylation at HS4 may be dependent on prior H2B 

ubiquitination. Multiple acetylations of H3, H4 and H2A.Z are specifically reduced at HS4 

following H2BK120ub1 depletion. This is the first report showing that there is a crosstalk 

between H2B ubiquitination and histone acetylation. This crosstalk seems to be indirect or 

site-specific as the global levels of histone acetylation in H2BK120ub1 depleted cells are largely 

unaffected. The presence of chromodomain recognises H3K4me3 in HAT complexes suggests 

that H3K4me3 may be the mediator linking H2B ubiquitination and histone acetylation together. 

Interestingly, a similar loss of active histone modifications at HSA/HSB is also observed after 

RNF20 knockdown (Section 4.3). Moreover, H2BK120ub1 is detected at all the examined 

human chromatin boundary elements (Section 4.6). These results indicate that the histone 

crosstalk regulated by H2B ubiquitination may be adopted by a subset of vertebrate chromatin 

boundary elements to establish an active chromatin state.  

 

In the absence of H2B ubiquitination, spreading of repressive H3K9me2 is rapidly initiated at the 

β-globin and FOLR1 loci (Section 4.4.1). H3K9me2 is widely distributed but more likely to be 

found at silencing chromatin [Rice et al, 2003]. However, constitutive heterochromatin histone 

marks H3K9me3 and H4K20me3, can only breach the HS4 and HSA/HSB boundaries and 
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propagate along the chromatin after prolonged depletion of H2B ubiquitination (Sections 4.4.3 & 

4.4.4). The spreading of H3K9me3 seems to precede that of H4K20me3 as the propagation of 

H4K20me3 is slower than H3K9me3 following RNF20 knockdown. Consistent with the slow 

spreading of H3K9me3 and H4K20me3, significant silencing of the FOLR1 gene and repression 

of the HS4 flanked transgene is only observed after knockdown RNF20 for more than 30 days 

(Section 4.4.4 & 4.5). Collectively, H2B ubiquitination is a master regulator H3K4 methylation 

at HS4 and HSA/HSB. It may in turn switch on multiple acetylation. These active histone marks 

are essential for the barrier activity against heterochromatin spreading (Figure 6.1). The presence 

of H2BK120ub1 at the human putative chromatin barriers suggest that such histone crosstalk 

may be employed by other chromatin boundary elements.  
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Figure 6.1 Schematic diagram of effects on the HS4 barrier and the entire chicken β-globin 
locus upon RNF20 knockdown caused H2B ubiquitination depletion. 
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6.3 Binding of transcription factors is crucial for the activity of insulator barriers 

It has been found that at least three transcription factors bind to the chicken HS4 element; they 

are CTCF, USF and VEZF1 [Bell et al, 1999; West et al, 2004; Dickson et al, 2010]. They are 

responsible for the two separable insulator activities, enhancer-blocking and barrier activity. 

CTCF is a best known transcription factor associated with insulators [Wallace & Felsenfeld, 

2007]. However, its binding to HS4 is only essential for the enhancer-blocking activity but not 

the barrier activity [Bell et al, 1999; Recillas-Targa et al, 2002]. ChIP analyses on HS4 binding 

site deletion mutants reveal that the CTCF site is dispensable for HS4’s H2B ubiquitination [Ma 

et al, 2011] and its binding to HS4 is not H2B ubiquitination dependent (Section 4.3.5). Thus, it 

was not investigated deeply in this study. Contrastingly, the binding sites for USF proteins and 

VEZF1 are crucial for the HS4’s barrier activity [Recillas-Targa et al, 2002; Huang et al, 2005; 

Huang et al, 2007; West et al, 2004]. These two proteins are also found to bind to the chicken 

HSA/HSB element and several human putative insulators, suggesting a conserved mechanism 

for barrier activity for at least a subset of insulator barriers. 

 

6.3.1 Role of USF proteins 

USF1/2 proteins interact with histone modification enzymes such as KMTs and KATs so that 

knockdown of USF1 leads to a loss of multiple active histone modifications at HS4, allowing the 

spreading of H3K9me2 and H3K27me3 beyond the HS4 boundary [Huang et al, 2007; West et al, 

2004]. ChIP data on HS4 mutants showing that the level of ubiquitinated histones is reduced 

only if the USF binding site is deleted, further confirming the crucial role of USF at HS4 [Ma et 

al, 2011]. Besides H2B ubiquitination, H2A.Z deposition at HS4 is also dependent on the USF 

binding site. The H2A.Z deposition/acetylation seems to be in a RNF20-dependent manner. It 

might be postulated that the USF proteins recruit the H2B ubiquitination machinery to HS4 in 

the first place so the H2BK120ub1 enriched environment may favour the activity or recruitment 

of other histone modifiers (Figure 6.2). However, the precise interactions between USF and H2B 

ubiquitination essential factors remain to be identified. 
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6.3.2 Role of VEZF1 

This study reveals that VEZF1 is responsible for the recruitment of the SRCAP and TIP60 

complexes for H2A.Z deposition and acetylation at HS4 and some of the human putative 

chromatin barriers. VEZF1 interacts with the shared module of the two complexes and also 

H2A.Z (Section 5.2.1). ChIP analyses on HS4 footprint deletion mutants also further confirms 

the indispensible role of VEZF1 in H2A.Z incorporation although USF is also required (Section 

5.2.3) (Figure 6.2). Deletion of the VEZF1 binding sites results in a loss of H2A.Z at HS4 itself 

and the HS4 flanked transgene, consistent with the appearance of DNA methylation [Dickson et 

al, 2010]. Given that H2A.Z and DNA methylation is mutually exclusive [Conerly et al, 2010; 

Zemach et al, 2010; Zilberman et al, 2008], VEZF1 may contribute the HS4 barrier activity by 

recruiting H2A.Z to prohibit DNA methylation. However, VEZF1 appears to have diverse 

functions at its binding sites that H2A.Z deposition/acetylation might not be its only role. 

Knockdown of VEZF1 only results in a mild reduction in H2A.Zac locally at the FLNA inverted 

repeat and GMPPA-ACCN4 locus DHS (Section 5.4.2.1), suggesting the involvement of other 

factors to mediate the H2A.Z deposition and modification. Intriguingly, VEZF1 appears to 

regulate histone modifications, H3K4 dimethylation and H3 acetylation, at its binding sites. 

Taken together, functions of VEZF1 appear to be site specific that it may exert different effects at 

different binding sites, maybe via interaction with various protein factors.  
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Figure 6.2 Schematic diagram showing the roles of USF and VEZF1 proteins at the HS4 
insulator element. USF recruits the H2B ubiquitination machinery to promote H2B 
ubiquitination, which may in turn augment the di- and tri-methylation activity of H3K4- specific 
KMTs to HS4 (green nucleosomes). The methylated H3K4 histone tails may be a recognition 
mark for KATs. The recruitment of H3K4-specific KMTs and KATs also depends on USF 
proteins. H2BK120ub1 itself or its triggered active histone modification may also favour H2A.Z 
deposition and acetylation. Even so, VEZF1 is needed for the incorporation of this histone 
variant as the SRCAP and TIP60 complexes appear to be recruited to HS4 by VEZF1. H2A.Z 
incorporation may eventually prevent the HS4’s DNA from methylation. These events are 
collectively considered to be required to maintain the open chromatin barrier to heterochromatin 
spreading.  
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6.4 Potential roles of H2A.Z at heterochromatin barrier elements 

It has been found that deposition of histone variant H2A.Z can alter nucleosome stability. 

Nucleosomes with two histone variants H2A.Z and H3.3 are very labile so these nucleosomes 

dissociate easily in modest ionic conditions in vitro [Jin et al, 2007]. Unstable nucleosomes 

would disrupt higher-order of chromatin structure, suggesting why insulator barriers are 

commonly decorated by H2A.Z [Barski et al, 2007; Jin et al, 2009]. Perhaps not surprisingly, 

HS4, HSA/HSB and several putative human barriers are enriched in H2A.Z and H2A.Zac 

(Section 4.3.4 & 5.4.2.1).  

 

Our ultimate goal is to determine whether H2A.Z contributes barrier activity by preventing DNA 

methylation. However, it is still not known whether knockdown of H2A.Z expression would lead 

to DNA methylation at insulator elements. More studies are required before drawing a 

conclusion that HS4 and other insulator elements recruit H2A.Z to interfere with DNA 

methylation although most of them are enriched in this histone variant.  
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6.5 Future Perspectives 

6.5.1 Is H2B ubiquitination is a common feature of insulator elements? 

The ChIP result showing that H2BK120ub1 is enriched in several insulator barriers inspired us to 

ask whether this histone modification is a universal regulator of insulator barriers. Knockdown 

of RNF20 could be carried out in human cells and the whole genome histone modification 

profiling for H2BK120ub1, active and repressive histone marks could be followed. Results 

would reveal if RNF20-dependent histone modifications are required for barrier activity. 

 

6.5.2 Is VEZF1 required for H2A.Z recruitment? 

Although it has been found that VEZF1 interacts with H2A.Z and the SRCAP/TIP60 complex 

subunits, it is still not clear whether VEZF1 recruits these complexes for H2A.Z deposition and 

acetylation to its binding sites. We hypothesised that VEZF1 counteracts DNA methylation via 

recruitment of these complexes. Inducible VEZF1 knockdown lines have been established and 

characterised that the VEZF1 protein level and its binding to target sites are substantially reduced 

following DOX induction. Therefore, these lines would be a potential model to study whether the 

recruitment of the SRCAP and TIP60 complexes to the putative insulator barriers is abolished in 

the absence of VEZF1. To further confirm the role of VEZF1 in preventing DNA methylation, 

MeDIP (methylated DNA immunoprecipitation) would be carried out to study changes in DNA 

methylation at its bound chromatin barriers before and after VEZF1 knockdown. Techniques 

involved would be similar to ChIP that enrichment of methylated DNA after 

immunoprecipitation with methylated DNA-specific antibodies would be measured with 

real-time PCR. The only difference is that immunoprecipitation would be performed on DNA but 

not on chromatin. If VEZF1 facilitates H2A.Z deposition to block DNA methylation, a loss of 

the SRCAP and TIP60 complex recruitment in VEZF1 knockdown cells would in turn allow 

DNA methylation to occur at insulator barriers and their surrounding regions.  
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6.5.3 What is the role of H2A.Z at insulator elements? 

Insulators especially barrier elements are commonly incorporated with H2A.Z. However, the role 

of H2A.Z in barrier activity, especially in vertebrate barriers, is still not clearly understood. 

H2A.Z induced nucleosome instability may facilitate nucleosome exchange to achieve and 

maintain the open chromatin structure, or H2A.Z may prevent DNA from methylation. 

Knockdown of H2A.Z or the SRCAP complex subunits may be able to give us a clue. The 

chromatin structure of barrier elements following knockdown could be studied by DNase 

digestion. Also, MeDIP would be performed in cells lacking H2A.Z deposition. Both 

well-known and putative insulator elements, as well as their surrounding regions would be 

examined to figure out whether H2A.Z incorporated at insulator barriers is a means to prevent 

DNA methylation. Moreover, in order to study whether H2A.Z is necessary for barrier activity, 

barrier assays could be also performed in H2A.Z knockdown cells. Our colleague, Dr Grainne 

Barkess, has been recently developing the barrier assay by integrating a transgene cassette 

flanked by putative barrier elements into a genome systematically. These stable lines with the 

transgenic reporter cassette would allow us to investigate whether barrier elements can function 

properly in the absence of H2A.Z.  
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APPENDIX I 
Primer sequences 

 
Abbreviations: “F” and “R” represent forward and reverse primers, respectively. “T” indicates 
Taqman probe.  
 
I. 1 Primers for the chicken β-globin locus 
2.747 FOLR1 3’  F 5’ – CCTGGCAGGAGAGGATCTCTT – 3’ 

    R 5’ – CCAACTCCTACAAATACACCACAGAA – 3’ 

    T 5’ – FAM-TCAAACCACATCTGGATCAGGCGC-TAMRA – 3’ 

 

3.951 FOLR1  F 5’ – CAGCAAAGAGTCCTTTCCCTTCT – 3’ 

    R 5’ – TTCAACACCATCTTGCTGCAAT – 3’ 

    T 5’ – FAM-CAAAACACCCGAGGGCTGCCTG-TAMRA – 3’ 

 

5.613 FOLR1 pro  F 5’ – AACATTACCTGCCTAGAGACTATCCA – 3’ 

    R 5’ – CTGTGTCAGAAGGCTTTCCTGTTA – 3’ 

    T 5’ – FAM-CCACAACAACACTCAGAACAGCAGCCTC-TAMRA – 3’ 

 

5.851 FOLR1 pro  F 5’ – GAAGGGCTGGGCTCTTATCTG – 3’ 

    R 5’ – TGCCTGGTGGGAAGCAAA – 3’ 

    T 5’ – FAM-ATGGCCACACACACAAAGCCCTTCTC-TAMRA – 3’ 

 

6.241 HSA   F 5’ – GGGTCCGACCAGGAAGGA – 3’ 

    R 5’ – TCAGTGCCAGGATTGAAGCA – 3’ 

    T 5’ – FAM-ACAGACCAGCAGATCTTCCTATTGGCACA-TAMRA – 3’ 

 

7.342 HSB   F 5’ – CACAGCACTGCAGCAGCATT – 3’ 

    R 5’ – ATCCAAAAACAAACCCGATATCA – 3’ 

    T 5’ – FAM-CTCTGTTTTCTGTTCCTCGCCGAGGA-TAMRA – 3’ 

 

8.989 cond   F 5’ – GGGCCCAATGAACCAGAAA – 3’ 

    R 5’ – TGTTCCCCAGCAACGCA – 3’ 

    T 5’ – FAM-AAATGGCAAACTGTTGATGGGAACGC-TAMRA – 3’ 

 

10.350 cond  F 5’ – GGAACAAGTTGGCAAGGTCCTAT – 3’ 

    R 5’ – TCTTCTGCCCTGCCCGTAT – 3’ 

    T 5’ – FAM-TGCAGTTCCCTGTTCATGTGCTTTTCG-TAMRA – 3’ 
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13.192 cond  F 5’ – GAATGTGTCCATCTGCCCTCAT – 3’ 

    R 5’ – GGGAAGCCATCCCTGCA – 3’ 

    T 5’ – FAM-TGCTGAGCATGTGGCTGCCTCC-TAMRA – 3’ 

 

15.850 cond  F 5’ – CAGCAGACGCTGTGGTGAA – 3’ 

    R 5’ – CTTGCAGGATGCAGACTGGA – 3’ 

    T 5’ – FAM-ATCCCATCGGTGCCACCCTGAG-TAMRA – 3’ 

 

17.763 cond  F 5’ – TGTTATCGCACACACACACACTTT – 3’ 

    R 5’ – GACAGGGATGTTCTTCCTCTGAA – 3’ 

    T 5’ – FAM-TCGTCTGATGCAGACAATTTCTCTGTGATCTC-TAMRA – 3’ 

 

20.360 cond  F 5’ – GCTCTGCGAGGGCTCTCTTT – 3’ 

    R 5’ – CCTCTCCTCACCCACCTGTTT – 3’ 

    T 5’ – FAM-TTCCCGCTCTCTGTTAATATTGGATTTCCTTTTT-TAMRA – 3’ 

 

21.365 5’ of HS4  F 5’ – CTCTGTGCTCAGCATCCTTCAAT – 3’ 

    R 5’ – CCTTTCGGCACTTTCTTCCTTT – 3’ 

    T 5’ – FAM-CTCCGCTGCACCTCCTCTGCAAA-TAMRA – 3’ 

 

21.540 HS4   F 5’ – TCCTGGAAGGTCCTGGAAG – 3’ 

    R 5’ – CGGGGGAGGGACGTAAT – 3’ 

    T 5’ – FAM-CCCAAAGCCCCCAGGGATGT-TAMRA – 3’ 

 

21.726 HS4   F 5’ – CGGGATCGCTTTCCTCTGA – 3’ 

    R 5’ – CCGTATCCCCCCAGGTGTCT – 3’ 

    T 5’ – FAM-CGCTTCTCGCTGCTCTTTGAGCCTG-TAMRA – 3’ 

 

22.189 3’ of HS4  F 5’ – CAGGACAGCATGGACGTGG – 3’ 

    R 5’ – TTCTGAACGCTGTGACTTGGA – 3’ 

    T 5’ – FAM-CATGCAGGTGTTGAGGCTCTGGACA-TAMRA – 3’ 

 

25.743 HS3   F 5’ – GCCCGTGCTGTTTGCAC – 3’ 

    R 5’ – TGAGTCACGGTTGTGTGTGGT – 3’ 

    T 5’ – FAM-AGCCGTGTTATCGCCCCATGGC-TAMPA – 3’ 

 

31.977 ρ pro  F 5’ – CAGAGGAGCCAACATTTGGG – 3’ 

    R 5’ – CCCCTCTGGGTGATGCATT – 3’ 

    T 5’ – FAM-CGCTGCAGGCGTGAAGCCATT-TAMPA – 3’ 
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34.715 ρ 3’   F 5’ – CGTGTTCTGGAGGAGAGAGAAGA – 3’ 

    R 5’ – CTTATCAGCAAGACTGGCAGATGT – 3’ 

T 5’ – FAM-TGACTGGCTGTGGTCCAGAGGCTG-TAMRA – 3’ 
 
36.882 βH pro  F 5’ – TGACACTGGAAACCTATGGCC – 3’ 

    R 5’ – AGCCCCGAGTGCAGGTG – 3’ 

    T 5’ – FAM-TGGAGGAGCCATGCAGGCAGC-TAMRA – 3’ 

 

39.807 βA pro  F 5’ – CTGTGGTCTCCTGCCTCACA – 3’ 

    R 5’ – AGGCTGGGTGCCCCTC – 3’ 

    T 5’ – FAM-CAATGCAGAGTGCTGTGGTTTGGAACTG-TAMRA – 3’ 

 

42.112 βA 3’  F 5’ – CCTTGTTTATGCACTTCTTCACCC – 3’ 

    R 5’ – AACCCCCTCTCTTCCCTCAC – 3’ 

    T 5’ – FAM-CGCTGCCCATTCTGCTGCTCTG-TAMRA – 3’ 

 

50.861 3’ HS  F 5’ – TTCACAAAACACCAGTTATGCTCC – 3’ 

    R 5’ – ACCTGCTGCTTCAGAGGCA – 3’ 

    T 5’ – FAM-TCTGCTGGTGAGATGGCGTCTGCT-TAMRA – 3’ 

Figure I.1 Primer used for studying the chicken β-globin locus.  

 

Transgenic HS4 5’ F 5’ – CACAGGAAACAGCTATGACATGATT – 3’ 

    R 5’ – TCTGCCTTCTCCCTGATAACG – 3’ 

    T 5’ – FAM-AATTCCTGCCCACACCCTCCTGC-TAMRA – 3’ 

 

IL2R    F 5’ – GGGACTCTCACGTTCATCA – 3’ 

    R 5’ – AATGTGGCGTGTGGGATCTC – 3’ 

    T 5’ – FAM-AGAGCTCTGTGACGATGACCCGCC-TAMRA – 3’ 

 

Transgenic HS4 3’  F 5’ – GCTTGTCTCCCTATAGTGAGTCGTATT – 3’ 

    R 5’ – TGTGAGCGGATAACAATTTCACA – 3’ 

    T 5’ – FAM-TTGGCGTAATCATGGTCATAGCTGTTTCCT-TAMRA – 3’ 

Figure I.2 Primers used for studying the transgenic IL2R reporter construct.  
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I. 2 Primers for ChIP assays in human K562 cells 
I. 2.1 TaqMan based primers 
CKMT 5’ DHS   F 5’ – CCCTCCTCGGTACTCTCCTC – 3’ 

     R 5’ – GGGCCTTAGTGTCAGCGTAG – 3’ 

     T 5’ – FAM-CTCGCATCCCGACTCCACTAGCCTT-TAMRA – 3’ 

 

EDN1 promoter   F 5’ – TGCCCCCGAATTGTCAGA – 3’ 

     R 5’ – CAGGCCCGAAAGGAAATCA – 3’ 

     T 5’ – FAM-CGGGCGTCTGCCTCTGAAGTTAGCA-TAMRA – 3’ 

 

FLNA inverted repeat  F 5’ – CCTTGTGTTTTGGGTGTGG – 3’ 

     R 5’ – CACGACCTCTGGACGTTTCT – 3’ 

     T 5’ – FAM-TGCGCTTCTCTAAGCGTTCCATTCC-TAMRA – 3’ 

 

GMPPA-ACCN4 locus DHS F 5’ – TGTCTTGCCCTCAACCTTCT – 3’ 

     R 5’ – AGCTGCTGGGAGCAGATAAG – 3’ 

     T 5’ – FAM-CTCTAATCCCTCCTGCTGCTGTGCC-TAMRA – 3’ 

 

IL3 enhancer   F 5’ – ACAGCAGTCAGGAACCCCTTT – 3’ 

     R 5’ – CCCCACAACAACACCATTATAGG – 3’ 

     T 5’–FAM-CCACCCACTGCAGAAAGGATGGCTAA-TAMRA– 3’ 

 

IL3 promoter   F 5’ – GGTTGTGGGCACCTTGCT – 3’ 

     R 5’ – TCTGTCTTGTTCTGGTCCTTCGT – 3’ 

     T 5’ – FAM-ACATATAAGGCGGGAGGTTGTTGCCAA-TAMRA – 3’ 

 

KDR promoter   F 5’ – GGCTAGGCAGGTCACTTCAA – 3’ 

     R 5’ – AGTGCGTTTTCTGATTAAGAGCA – 3’ 

     T 5’ – AAATAGCGGGAATGTTGGCGAACTGG – 3’ 

 

SCL enhancer   F 5’ – TTACAGCCCTTCACCCTCAC – 3’ 

     R 5’ – TGGGAATGAGCGATAAGGAT – 3’ 

     T 5’ – FAM-ATGTTCCTGCCCTGATCCAGAGGG-TAMRA – 3’ 

 

SCL promoter   F 5’ – AGGAAAGGCTCCAAACACCT – 3’ 

     R 5’ – ATGGCTGGGAATTACCTCCT – 3’ 

     T 5’ – FAM – CGATTCCCTGGACTGGTTGGTCG –TAMRA – 3’ 

 

I. 2.2 SYBR® Green based primers 
CKDN1A 3’    F 5’ – CCAGGGCTGCGATTAGGAA – 3’ 

     R 5’ – GTGTCCCTCATGGGTGTGAAT – 3’ 
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CKDN1A promoter  F 5’ – AGCAGGCTGTGGCTCTGATT – 3’ 

     R 5’ – CAAAATAGCCACCAGCCTCTTCT – 3’ 

 

EHD1’ DHS C66/16  F 5’ – AGCCAGTGAGTGGGGTAATG – 3’ 

     R 5’ – CCCCTCTCAGAACTCCTCAA – 3’ 

 

HBB β-globin HS2  F 5’ – ATCTGGGCACACACCCTAAG – 3’ 

     R 5’ – AAGCAAACCTTCTGGCTCAA – 3’ 

 

IGF 5’ DHS   F 5’ – TCCACCTGTAAAGCGGAGAT – 3’ 

     R 5’ – TGGGTCATGGCAATATGGAT – 3’ 

 

NRXN2 intragenic DHS F 5’ – TAGGACCACAGGTGCTACCC – 3’ 

     R 5’ – AAATGAAGCAGAGCCAAGGA – 3’ 

 

SPA1 DHS    F 5’ – GGAGGGGGTGAATGTCACTA – 3’ 

     R 5’ – TTCCAAGGAAAGGGGTAAGG – 3’ 

 

MeCP2 promoter   F 5’ – CAATTGGCGAGATTTCCTGT – 3’ 

     R 5’ – TCAAATTCCGCCCACTAAAC – 3’ 

 

KRT35 promoter   F 5’ – GAGGAGGCTTGGACTGTTTC – 3’ 

     R 5’ – AGCACCTTTCTATCCACGA – 3’ 

 

NPY5R 3’     F 5’ – AAGCACCAGTCAAAGCTGTTT – 3’ 

     R 5’ – TCATATTCCCAGTCAATGGC – 3’ 
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I. 3 Primers for RT-PCR in chicken 6C2 cells 
ACTB  F 5’ – TGCTGCGCTCGTTGTTGA – 3’ 

   R 5’ – CATCGTCCCCGGCGA – 3’  

 

GPADH  F 5’ – ATGGGCACGCCATCACTATC – 3’ 

   R 5’ – AACATACTCAGCACCTGCATCTG – 3’ 

 

FOLR1   F 5’ – GATTCTGCATGTGCCACTGT – 3’ 

   R 5’ – AAGACCTGGGTGAAGGGTCT – 3’ 

 

RNF20  F 5’ – ATGCGTCATCTCATCAGCAG – 3’ 

   R 5’ – TTGGGAAGAAGGGTCATCAG – 3’ 

 

As primers specific to RNF20 and FOLR1 were newly designed for RT-PCR with SYBR® 
Green chemistry that gives fluorescent signal for both specific and non-specific PCR products, 
the end PCR products were analysed with 2% TBE gel to ensure a single band with predicted 
size resulted. The expected sizes of PCR products are 65 bp for GAPDH, 162 bp for FOLR1, 93 
bp for ACTB and 212 bp for RNF20 (Figure I.3). Although primer dimers were formed in the 
PCR reactions, they did not contribute fluorescent signals in real-time PCR assays as shown in 
negative controls without cDNA templates.  
 

 
 
 
 
Figure I.3 Sizes of RT-PCR products. 20 μl of PCR reaction was 
analysed with 2% TBE gel after 40 cycles of PCR amplification. 
Primer dimers are asterisked.  
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APPENDIX II 
Raw FACS data 

 
 

Clone 
 

DOX 
(-/+) 

 
Day 

 
% of green 

cells 

Mean of GFP 
fluorescence 

intensity 

Median of GFP 
fluorescence 

intensity 
 

8103 
- 0 --- 1.84 1.55 
- 40 --- 3.31 3.15 
- 60 --- 3.17 3.00 
- 80 --- 2.90 2.76 

 
 
 
 
 
 

R2628 E5 

- 0 --- 1.85 1.54 
- 4 --- 4.30 3.03 
- 33 --- 2.74 2.59 
- 40 --- 2.41 2.24 
- 50 --- 2.80 2.58 
- 60 --- 3.02 2.89 
- 80 --- 2.30 2.12 
+ 4 95.4% 824 824 
+ 33 22.6% 766 719 
+ 40 45.5% 577 542 
+ 50 66.6% 633 601 
+ 60 75.0% 616 585 
+ 80 53.9% 811 780 

 
 
 
 

 
 
R2628 E4 

 

- 0 --- 1.66 1.34 
- 4 --- 3.20 2.99 
- 36 --- 3.18 2.94 
- 40 --- 3.30 3.06 
- 50 --- 3.02 2.85 
- 60 --- 2.81 2.66 
- 80 --- 2.30 2.15 
+ 4 89.5% 623 628 
+ 36 4.23% 864 812 
+ 40 4.56% 789 735 
+ 50 6.03% 824 786 
+ 60 7.96% 818 799 
+ 80 5.22% 834 815 

Table II.1 Table showing percentages and GFP fluorescence intensities of green cells of 
RNF20 knockdown clones R2628 E5 and R2628 E4. 8103 and no DOX treated R2628 E5 and 
E4 cells were served as controls to determine the background green signals. All mean/median of 
fluorescence intensities was only calculated from green cell population.  
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Clones 

 
DOX 
(+/-) 

 
Day 

Mean of PE 
fluorescent 

intensity 

Median of PE 
fluorescent 

intensity 
 

6C2 
- 33 1.6 1.5 
- 40 1.8 1.7 
- 67 2.5 1.6 

 
 
 

8103 

- 33 41.8 36.5 
- 36 52.8 45.5 
- 40 65.7 53.9 
- 50 59.1 49.9 
- 60 58.7 50.7 
- 67 72.8 60.9 
- 80 97.0 80.2 

 
 

R2628 E5 

+ 33 49.2 44.4 
+ 40 37.9 33.3 
+ 50 34.6 30.4 
+ 60 39.8 37.3 
+ 80 96.2 81.9 

 
 
 
 

R2628 E4 
 

- 36 73.9 64.8 
- 40 104.0 77.0 
- 50 84.3 68.3 
- 60 69.9 54.6 
- 80 103.0 81.8 
+ 36 69.1 50.4 
+ 40 56.2 48.2 
+ 50 37.5 32.1 
+ 60 64.4 53.8 
+ 80 65.3 57.7 

Table II.2 Table showing fluorescent intensities of PE of the time course barrier assay 
experiment by examining the transgene IL2R expression. Only PE signals from green cell 
populations of DOX treated cells were taken for the IL2R expression examination. 6C2 served as 
a control to determine the antibody specificity, given no IL2R expression in this cell line.  
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