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Abstract 
 

Previous research has hinted at changes in the migratory patterns of seabirds nesting in 

Scotland, including a decreasing number of Northern Gannets Morus bassanus wintering in 

the North Sea, and an increase in numbers of Northern Gannets and Great Skuas Stercorarius 

skua spending the winter off north-western Africa (NWA). Both species show increasing 

numbers of colonies in northern areas, including Norway and Russia. These seabird species 

move through the North Sea during autumn migration, and from there search for favourable 

wintering grounds mainly around Iberia, including the Atlantic coast of Portugal, the Bay of 

Biscay and the Gulf of Cadiz. 

 By means of historic ring recovery data, provided by the British Trust for Ornithology, 

it was possible to establish that the number of records of adults of both species are increasing 

in recent years from NWA coasts, despite having to attend their nests in the colonies and, as a 

result, having limited time to migrate south. Differences were observed in ring recovery 

locations between years and months. The number of ring recoveries by month coincides with 

records from observation points along the coast of Western Europe. However, ring recovery 

data are limited and potentially biased. Using data loggers, it was possible to establish that 

both species are diurnal in habits during the entire winter period, showing noticeable 

differences in the times spent flying during the migration months (September-October) and 

during the wintering and breeding months (January and March respectively), and to confirm 

the increasing tendency to winter off NWA in recent years.  

 Analyses of fishing landings, discard rates, and sea surface temperature data, show that 

food available to Northern Gannets and Great Skuas is increasing in NWA coasts where 

oceanographic conditions are stable; in contrast in the North Sea fisheries are decreasing and 

the sea surface is warming. Both species are apparently changing their migratory behaviour in 

order to face the constant changes in the abundance of food. Given the long life-span of 

Northern Gannets and Great Skuas, genetic changes can be ruled out of an explanation for the 

changes in migration behaviour, and the fact that the changes in winter distribution appear to 

be occurring within one generation of the birds. The winter distribution of Northern Gannets 

and Great Skuas may be due to an ideal free distribution over a wide range, in response to 

changes in the distribution of fish and the availability of discards. 
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General Introduction 

 2 

Northern Gannet and Great Skua ecology 
 

Several seabird species breed in Scotland, feeding mainly on pelagic fish species Sandeels 

Ammodytes marinus, as well as fisheries discards and offal, mainly from Haddock 

Melanogrammus aeglefinus and Whiting Merlangius merlangus. Among these seabird species 

are the Great Skua (Stercorarius skua, formerly Catharacta skua; see AOU, 2000) and the 

Northern Gannet Morus bassanus, whose populations migrate southwards during the winter. 

 

The largest numbers of Scottish Great Skuas nest in the Shetland Islands (Furness and 

Ratcliffe, 2004). Many of the individuals breeding in the North-eastern Atlantic and in the 

North Sea were ringed at Foula (Furness, 2002). Skua numbers increased in the order of 84% 

between two censuses (1969-70 and 1985-88) in the Shetland Islands. However, the rate of 

increase was only 26% for the following years until 2002 (Furness and Ratcliffe, 2004). 

Smaller southern populations showed higher growth rates than Shetland, in the order of 148% 

and 26% for the same periods respectively (Furness and Ratcliffe, 2004). In both cases, 

growth rates were lower in recent years, maybe because these populations are close to carrying 

capacity (perhaps having already reached at in high density areas) in Scotland (Furness and 

Ratcliffe, 2004).  

 

The increasing number of skuas in smaller populations, such as on Fair Isle (Shaw, 2007) as 

well of recent trends in growth rates, suggests that this seabird is experiencing ideal free 

distribution so dispersal movements could change owing to the search for new breeding areas. 

An example of this is the expansion of its geographical range as well the colonization of new 

areas, limited only by temperature (Furness and Ratcliffe, 2004). New colonies have been 

formed in Norway and Russia by individuals ringed at Shetland in recent years (Furness, 

2002a) showing changes in migration patterns over several years.  

 

Movements of Great Skuas from Orkney and Shetland into the North Sea, before migration 

southward to the Atlantic coast of Europe, could maybe drive differences in migration timing, 

as well in wintering area (Furness, 2002a). These changes in migration and emigration could 

be responsible for the changes in breeding numbers of Great Skuas at Foula during the mid-

1980s (Ratcliffe et al. 2002, Furness and Ratcliffe, 2004). 
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From ringing recoveries, it is known that Great Skuas ringed in Shetland tend to be mainly 

recovered from Shetland during the summer, and Iberia and the North Sea during migrations 

and winter (Klomp and Furness, 1992). Whilst the majority of Great Skuas leave their 

breeding colonies during August, numbers of individuals begin to fall faster when feeding 

conditions are poor, even during July (Furness and Ratcliffe, 2004). Because there was a lack 

of records about adult Great Skuas wintering in Western Africa until 2006 (Furness et al. 

2006), it is possible that Great Skuas are now moving to this region to feed on the pelagic fish 

in the area, or to take advantage of the fisheries developed there. It is important to stress that 

one of the most important factors affecting Great Skua populations is the change in food 

availability derived by fisheries (Furness and Ratcliffe, 2004). 

 

On the other hand, the Northern Gannet breeds mainly in Britain and Ireland. The Bass Rock 

(in East Scotland) presents one of the biggest gannetries in the world, with about 39 000 AOS 

(apparently occupied sites) in 2001 (Nelson, 2002). Like the Great Skua, this species has 

formed new colonies in Norway since the 1940s (Brun, 1972), as well as in Russia (Wanless, 

2002).  

 

Northern Gannets have increased in numbers during the breeding season, but numbers 

wintering in the North Sea area have decreased during the last 20 years (ICES, 2007). 

Recently, at least 50% of the Northern Gannets in summer are moving out of the North Sea to 

winter in areas from the Celtic Sea to the Western coast of Africa (ICES, 2007). Ringing 

recoveries showed that 2-year old Northern Gannets migrate southward as far as Morocco, 

Senegal, and even Guinea-Bissau (Nelson, 2002). Additionally, many thousands of Gannets 

migrate into the Mediterranean Sea (Nelson, 2002). These changes may be related to food 

availability and the reductions in fish discards in the North Sea (ICES, 2007). 

 

Scavenging seabirds tend to feed more on discards during winter, and more on natural foods 

during breeding (Furness, 2003). Because of this, changes of fisheries during the winter period 

could drive changes in the abundance and distribution of both migrating Gannets and Skuas. 

Analysis of fishing discards is very important due their impact on the ecology of seabirds. It is 

important to continue monitoring Great Skua diet, as well as breeding success, because of 

likely changes in the availability of discards in future years (Furness, 2003). In the case of 

gannets, the number of breeding pairs increased during the period between 1990 and 1999, in 
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part as a result of feeding on fish discards (ICES, 2001). Nevertheless, the role of fishing 

discards as complementary food affecting the survival of gannets during the period between 

fledging and recruiting to breeding is unclear (Wanless, 2002). 

 

There is a gap in our knowledge of seabirds on land compared with that at sea, mainly because 

it is difficult to follow and observe them quantitatively at sea. Because of this, information 

about numbers, distribution and movements in relation to food is limited, but is necessary if 

the population trends in these birds are to be understood (Nelson, 2002). Data about migration 

patterns and wintering areas provide a baseline for future studies, especially those related to 

changes in the marine environment caused by global warming (Wanless, 2002) and changes in 

fishing activities. 

 

New technologies provide an important source of information about seabird migration. As an 

example, the use of satellite tracking on the Short-tailed Albatross Diomedea albatrus 

determined post breeding distribution, and the relation between seabird movements and 

commercial fisheries in Alaska (Suryan et al. 2007). Satellite tracking devices and data 

loggers provide most of the information obout seabird migration nowadays (Weimerskirch et 

al. 1994, Furness et al. 2006, Shaffer et al. 2006, Suryan et al. 2007), allowing it to be related 

to oceanographic variables (Weimerskirch et al. 1995). These kinds of devices are used on 

both Northern Gannets (Hamer et al. 2001; Garthe et al. 2007) and Great Skuas (Furness et al. 

2006).  

 
The Northeast Atlantic 
 
The Northeast Atlantic Ocean consists primarily of deep ocean basins, with the exception of 

the Celtic Sea and the continental shelf from the Iberian Peninsula north to the west of the 

British Isles. Its boundaries are between 36º N and 62º N parallels to the south and to the north 

respectively, 42º W longitude to the west, and the Atlantic coast of Europe up to the English 

Channel and further along the west coast of England and Scotland to the east (Johnsen et al. 

2003).  

 

The climate of the North Atlantic Ocean is strongly influenced by the Gulf Stream, or North 

Atlantic Drift (Frankignoul et al. 2001), with sea surface temperatures between 7-15º C 
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(Johnsen et al. 2003). The flow of oceanic water is mainly from west to east directed by the 

branches of the North Atlantic Drift (Johnsen et al. 2003), importing warm water from the 

South Atlantic (Schmitz and McCartney, 1993, Olsen and Schmith, 2007), with movements in 

the opposite direction for deep cool water (Schmitz and McCartney, 1993). The heat transport 

from equatorial waters to high latitudes is interrupted at the Iceland Basin, stopping the 

thermohaline circulation, and the surface layer flows to the Faeroese waters entering into the 

Norwegian Sea (Schmitz and McCartney, 1993) carrying warm water in a general north-

eastward direction (van Aken, 1995). In the opposite direction, cold waters from the Nordic 

Sea sink to the bottom of the Iceland Basin as Iceland-Scotland Overflow Water across the 

sills in the Faeroe Bank Channel and on the Iceland-Faeroe Ridge (Schmitz and McCartney, 

1993; van Aken, 1995).  

 

The main currents in the area are the Gulf Stream-North Atlantic Drift, which carries water 

from the western edge of the ocean to northern Europe, and the North Equatorial Current that 

moves water in the opposite direction from Northern Africa to the Caribbean. Three main 

branches from the North Atlantic Drift flow into the Arctic, the Arctic Current, the Rennel 

Current and the Portugal Current. The Canaries Current drives water from Iberia to the 

Northwestern coasts off Africa (Fig. 1-1). 
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Figure 1-1. Main sea currents in the North Atlantic. 

 

The Atlantic inflow of warm and saline Atlantic water, across the Greenland-Scotland Ridge 

into the Nordic Seas and the Arctic Ocean (fig. 1-2), is very important for the regional climate 

and for the global thermohaline circulation as well. This heat transport keeps the north of the 

Ridge free of ice (Hansen et al. 2003). This flux of Atlantic water presents three branches, 

Faroe-Shetland Current west of the Shetland Islands, the Faroe Current north of the Faeroes, 

and the North Icelandic Irminger Current around north Iceland (Steingrímur and 

Valdimarsson, 2005). The Greenland-Scotland Ridge separates the North Atlantic from the 

Nordic Seas and Arctic Ocean (Olsen and Schmith, 2007). The Iceland-Faroe Ridge connects 

directly the Iceland Basin with the Norwegian Sea, whilst the Faroe-Shetland Channel 

connects the Norwegian Sea with the Iceland Basin through the Faroe Bank Channel (van 

Aken and Eisma, 1987) being the deepest channel of the entire Greenland-Scotland Ridge 

(Duncan et al. 2003; Hansen and Østerhus, 2007).  

 

Nutrients in the Northeast Atlantic Ocean are carried from the West Atlantic, just like heat. 

About 45% of the nitrogen and 70% of the phosphorus at the Atlantic coasts of America, 

Europe, and Northwest Africa, were discharged by large rivers in the western Atlantic (Nixon 
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et al. 1996). These nutrients are important to the survival of planktonic life. In the Northeast 

Atlantic Ocean and European seas, mapping of plankton associations have been possible 

because of the Continuous Plankton Recorder (Johnsen et al. 2003). 
 

 
Figure 1-2. Sea currents in the Greenland-Scotland Ridge (from Hansen et al. 2003; Blindheim and Rey, 
2004). 
 

The OSPAR Convention (2000) divides the Northeast Atlantic into the following five 

divisions: I the Arctic Waters, II the greater North Sea, III the Celtic Seas, IV the Bay of 

Biscay and Iberian Seas, and V the wider Atlantic (fig. 1-3). 

 

 
Figure 1-3. The Northeast Atlantic divisions (from OSPAR, 2000). 
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Nearly 1100 fish species are known from the North Atlantic Ocean, 600 of them being pelagic 

forms. The most important species supporting fisheries include Anchovy Engraulis 

encrasicholus, Blue Whiting Micromesistus poutassou, Whiting M. merlangius, Megrim 

Lepidorhombus boscii and L. whiffiagonis, Plaice Pleuronectes platessa, Anglerfish Lophius 

piscatorius, Cod Gadus morhua, Haddock M. aeglefinus Hake Merluccius merluccius, Herring 

Clupea harengus Horse Mackerel Trachurus trachurus Mackerel Scomber scombrus, Saithe 

Pollachius virens, Sardine Clupea pilchardus, Sole Solea solea and elasmobranchs (Jonhsen et 

al. 2003). Other important commercial species at regional levels are Lesser Sandeel A. 

marinus (Frederiksen et al. 2007), Sprat Sprattus sprattus (Heath, 2005), Gurnard Eutrigla 

gurnadus (Floeter, 2005), Red Mullet Mullus surmulletus (Beare, 2005), and the crustacean 

Norway Lobster Nephrops norvegicus (Catchpole et al. 2006). 

 

Breeding seabirds in the Northeast Atlantic show the highest numbers of species (26 species) 

around the British Isles, with large abundances at several offshore islands (OSPAR, 2000). 

Iceland and Norway also have internationally important colonies of seabird species. According 

to the OSPAR Commission (2000), the seabird species in the region can be divided into 

northern species (Northern Fulmar Fulmarus glacialis, Lesser Black-backed Gull Larus 

fuscus, Great Black-backed Gull L. marinus, Iceland Gull L. glaucoides, Black-legged 

Kittiwake Rissa tridactyla, Little Auk Alle alle, Razorbill Alca torda, Common Guillemot 

Uria aalge, Black Guillemot Cepphus grille, and Puffin Fratercula arctica, among others); 

central species (Manx Shearwater Puffinus puffinus, British Storm Petrel Hydrobates 

pelagicus, Leach’s Storm Petrel Oceanodroma leucorhoa, Northern Gannet, and Herring Gull 

L. argentatus, among others); and southern species (Cory’s Shearwater Calonectris diomedea, 

Madeiran Storm Petrel Oceanodroma castro, Little Shearwater P. assimilis, Yellow-legged 

Gull L. michahellis, Red-billed Tropicbird Phaeton aethereus, and Roseate Tern Sterna 

dougallii, among others). On the other hand, several species are migrants into the North-east 

Atlantic (Red Phalarope Phalaropus lobatus, Pomarine Skua Stercorarius pomarinus, Great 

Skua, Arctic Skua S. parasiticus, Long-tailed Skua S. longicaudatus, Common Tern S. 

hirundo, Arctic Tern S. paradisaea, Great Shearwater P. gravis, and Sooty Shearwater P. 

griseus among others). In the North Atlantic, seabirds can also be classified as generalist 

species (like Northern Fulmar, Great Skua or Herring Gull) or specialists (Shag 

Phalacrocorax aristotelis, Black-legged Kittiwake, Common Guillemot, Razorbill and 

Atlantic Puffin) according to their diet (Hilton et al. 2000).  
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The number of cetacean species observed in the North Atlantic Ocean is 32 (OSPAR, 2000), 

many of them rare, and there are also several species of pinnipeds.  

 

All this species richness is at risk as a result of human activities. Marine habitats and 

biodiversity in the Northeast Atlantic are threatened because of the absence of an adequate 

sustainable regulation of fisheries, pollution due to chemicals and waste products and as a 

result of oilspills (Johnsen et al. 2003). This part of the Atlantic Ocean is protected by the 

Convention for the Protection of the Marine Environment (known as the OSPAR Convention), 

which is primarily focused on coastal areas (Johnsen et al. 2003). 

 

The highly variable climate in the North Atlantic has oscillated between warm and cool 

periods at decadal, centennial and millennial scales since the last Weichelian glaciation. 

Variations in the oceanic conditions of the North Atlantic and the overlying atmosphere 

control the climate of Western Europe, generally keeping its climate much milder than at 

similar latitudes elsewhere in the world (OSPAR, 2000). On the other hand, climate-induced 

increases in sea surface temperature have been recorded in the Northeast Atlantic (Hurrell and 

van Loon, 1997). This fact could impact on physiological processes on sea life, and affect 

several aspects of the biology of fishes, like reproduction, larval survival and reproduction. An 

example of this may be the unprecedented high numbers of juvenile Snake Pipefish Entelurus 

aequoreus in the Northeast Atlantic in several years following 2002, apparently related to the 

rise of sea temperature (Kirby et al. 2006). 

 

The North Atlantic Oscillation and climate 

Several ecological processes, like temporal and spatial distribution patterns of populations, 

and species abundance, are strongly influenced by climate. In addition, marine life is 

influenced by physical processes (Ottersen et al. 2004) such as winds and oceanic currents. An 

example of this is the dependence of the drift of larval Cod by the North Icelandic Irminger 

Current from the spawning grounds south of Iceland to the nursery grounds on the North 

Icelandic Shelf (Steingrímur and Valdimarsson, 2005). 

 

Climate change affects marine ecosystems in both direct and indirect ways. Direct effects of 

temperature are the influences on metabolism and growth, while temperature indirectly affects 

species by changes in food availability, competitors or predators (Ådlandsvik, 2008). Climate 
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warming has a direct effect on plankton, and thereby affects indirectly the rest of the marine 

food web. Changes in sea surface temperature drive changes in the structure of the community 

of several groups in the sea. Ecosystems of the northeast North Atlantic have changed toward 

a warmer dynamical equilibrium, and these changes have been far faster and more profound 

than those seen in terrestrial ecosystems (Beaugrand et al. 2002a). 

 

Another climatic event that affects the marine organisms is the North Atlantic Oscillation 

(NAO), and its effects have been receiving increasing attention in recent years (Arnott and 

Ruxton, 2002). The NAO is the dominant mode of climatic variability in the North Atlantic 

region (Alheit et al. 2005), and its variability influences regional temperatures, precipitation, 

wind speed and direction (Hurrell, 1995; Arnott and Ruxton, 2002). The NAO has 

consequences for regional climate in both Europe and Africa (Hurrell, 1995) and it is 

characterized by a north-south difference in pressure. A low-pressure region is located near 

Stykkisholmur (Iceland) and a high-pressure region in the Azores (Portugal). This contrast in 

the pressures drives the surface winds and winter storms across the North Atlantic to the east. 

When the pressure is lower than normal near Iceland, it tends to be higher than normal near 

the subtropics and vice versa; this relation defines the NAO index (Uppenbrink, 1999). This 

index is determined by subtracting the pressure results for Iceland from the Lisbon dataset 

(Reid et al. 2001). It is high when pressure is low over Iceland and high over the Azores, and 

is low when this difference is reduced or may even be reversed in sign (OSPAR, 2000).  

 

The NAO is associated with changes in the surface westerlies across the Atlantic onto Europe 

and trade winds in Africa (fig. 1-4). Although it is evident throughout the year, it is more 

pronounced during winter (Hurrell and van Loon, 1997). High NAO index winters are 

associated with increased strength and frequency of westerly winds across the Atlantic, whilst 

low or negative NAO index winters are associated with storms tracks turning south-east across 

the Atlantic (Hurrell and van Loon, 1997; Frankignoul et al. 2001; Forchhammer et al. 2002). 

Positive winter indices (averaged over December to March) are correlated with strong winter 

storms crossing the Atlantic Ocean along northerly tracks. These storms result in warmer, 

windier and wetter winters in northeast Atlantic. Colder and drier winters are associated with 

negative indices (Hurrell, 1995). 
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Strong fluctuations in the NAO index have been recorded over long periods of time (even 

thousands of years), showing periods with high or low values (Hurrell and van Loon, 1997; 

Hurrell and Dickson, 2004; Olsen and Schmith, 2007). In the recent decades, extreme high 

positive values have persisted (Hurrell and van Loon, 1997; Hurrell et al. 2001; Hurrell and 

Dickson, 2004). Coincidently, the formation of Greenland Sea Deep Water slowed down 

considerably during the 1980s. Such a decrease could have significant impact on the properties 

of the waters flowing over the Scotland-Iceland-Greenland ridge system into the deep Atlantic 

(Schlosser et al. 1991), potentially resulting in severe changes of the sea life in the Northeast 

Atlantic. 

 

The NAO impacts the atmosphere-ocean heat flux exchange, which controls the temperature 

of the upper mixed layer, affecting marine ecosystems (Alheit et al. 2005), especially 

plankton. Variations in the NAO have a wide range of effects on marine and terrestrial 

ecosystems, including the large-scale distribution and population size of fish and shellfish, and 

the production of zooplankton (Hurrell et al. 2001).  

 

 
 
Figure 1-4. North Atlantic Oscillation conditions during a) the positive phase and the b) negative phase. 
The size of arrows and letters of pressures indicate the strength. 
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The effects of climate change and NAO on sea communities 

Marine ecosystems change rapidly in response to perturbations that could be due to whaling, 

fishing, climate change, or a combination of these. Ecosystems are exposed to gradual changes 

in climate, because stochastic weather conditions are never constant. However, sudden shifts 

could interrupt the gentle changes, switching into a contrasting state (Scheffer et al. 2001). 

The term ‘regime shift’ has been used to describe large, usually decadal-sale switches in the 

abundance and composition of plankton and fish (Reid et al. 2001). This term means a 

catastrophic shift or abrupt shift from one dynamic regime to another (Beaugrand, 2004), 

involving fundamental changes in ecosystems (Caddy and Garibaldi, 2000), and resulting in 

an alternating state (Cury and Shannon, 2004). 

 

Time series of abundances in biological communities show notorious leaps between stable 

conditions. These abrupt events of regime shifts are considered to be triggered mainly by 

physical events (Scheffer et al. 2001). More drastic changes between alternative stable states 

are driven by the coupled ocean-climate system (Rahmstorf, 1995). Changes in freshwater 

input are capable of triggering convective instability, inducing transitions between equilibrium 

states, and leading to substantial changes in regional climate (Rahmstorf, 1996). 

 

Climate strongly influences changes in fish at individual, population and community level. 

The consequence of this is the fact that fish communities are affected by climate change. 

Temperature influences young fish directly by changing their rate of development (Henserson, 

2007), or drives changes in fish distribution. An example of this is the shift in the spatial 

distribution of Cod in the North Sea, which may be caused by the warming of the sea 

(Beaugrand, 2003). 

 

In addition, combined effects of the NAO and global warming could drive substantial changes 

in the biogeography and community structure of the plankton in the entire North Atlantic 

(Beaugrand et al. 2002b; Smayda et al. 2004). The use of the Continuous Plankton Recorder 

(CPR) has demonstrated that major shifts for all species assemblages have taken place since 

the early 1980s to the south-west of the British Isles (Johnsen et al. 2003).  

 

Changes in physical conditions, caused by climatic variables such as the NAO, drive cascade-

effects in the ocean, causing changes in phytoplankton productivity, which alters the 



General Introduction 

 13 

zooplankton community and, as a result, affects the abundance of fish species (Beaugrand and 

Reid, 2003; Beaugrand et al. 2003). This idea is supported by observations of the goby Alphia 

minuta, a planktonic fish species that responds strongly to changes in NAO conditions 

(Henderson, 2007). 

 

But climatic fluctuations could be linked with changes in zooplankton distribution as well. 

Copepod species in the Northeast Atlantic have shifted northwards over the last 40 years, in 

relation to warming sea temperatures and changes in the NAO index (Beare et al. 2002; Heath, 

2005). During periods of positive NAO index, the Calanus finmarchicus copepod stock is 

small in the North Sea, and large C. finmarchicus copepod stocks are associated with periods 

of negative NAO index (OSPAR, 2000; Hurrell and Dickson, 2004). Planktonic larvae of the 

benthic echinoderm Echinocardium cordatum are influenced by temperature. Although in 

recent years the larvae have been dominating the North Sea in summer (Lindley and Batten, 

2002); reduced larval abundance in the summer of 1996 was driven by the previous winter 

being colder than usual as a result of a negative NAO index (Kirby et al. 2007). 

 

In the late 1980s the sea around the British Isles was characterized by high temperatures and 

salinities, related to a high positive NAO index. This, with the increased inflow of warm 

Atlantic water into the North Sea (possibly via the Shelf Edge Current), caused an extremely 

warm oceanic climate during the late 1980s and early 1990’s (Edwards et al. 2002). From 

1988 onwards, the NAO index increased to the highest positive level observed in the century, 

and this has been interpreted as driving the migration of the Horse Mackerel (Reid et al. 2001) 

into northern latitudes.  

 

The onset of a continued warm period in the North Atlantic Ocean has been related to fish 

species newly found in Iceland in the last decade. Among these fish Astthorsson and Palsson 

(2006) reported the Atlantic Bonito Sarda sarda and Blue Shark Prionace glauca. Other 

species previously rarely recorded are more frequent nowadays, like the Mackerel S. scombrus 

and Sea Lamprey Petromyson marinus, and others have extended their range from southern 

into northern Icelandic waters, like Snake Pipefish E. aequoreus. The fish species recorded for 

the first time at the southern coast of the UK, such as Sailfin Dory Zenopsis conchifer, Big-

eyed Tunny Thunnus obesus and Barracuda Sphyraena barracuda have increased sharply 

since 1980 and this has been correlated with North Atlantic temperature data (Stebbing et al. 
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2002; Beare et al. 2005). These observed biogeographical shifts may have serious 

consequences for exploited resources in the North Sea, especially fisheries, leading maybe to 

substantial modifications in the abundance of native fish such as cod, which is already 

overfished (Beaugrand et al. 2002b). 

 

Changes in community dynamics are related to competition and predation. It is therefore likely 

that fisheries can affect the entire food web, causing shifts in species abundance on various 

trophic levels (Reid et al. 2000). Also, those biotic interactions may affect sensitivity of a 

single keystone species, causing major shifts in community composition (Scheffer et al. 2001).  

 

On the other hand, because fish appear to respond to warming by the northerly advance of the 

distributions of southern species, they may provide a useful index of the effects of warming in 

the North Atlantic (Stebbing et al. 2002). 

 

The North Sea 
 

Oceanography 

The greater North Sea is a shallow basin (Corten, 2002) situated on the continental shelf of 

north-west Europe. It is partially open to the North Atlantic (Hutchance, 1997; Corten, 2002) 

with an extensive boundary to the north, and to a minor extent to the southwest via the English 

Channel (Hutchance, 1997; OSPAR, 2000), and it is connected to the Baltic Sea to the east 

although transfer of water between these two areas is restricted (OSPAR, 2000). The North 

Sea is divided into the shallow southern part, the central and the northern areas, the Norwegian 

Trench and the Skagerrak (OSPAR, 2000). 

 

The North Sea is a remarkably heterogeneous sea with large regional variations in depth, 

temperature, salinity, topography of the coastline and type of sea bed (Daan et al. 1990). 

The Norwegian Trench is a conspicuous topographic feature that follows the coast of Norway, 

from the Norwegian Sea into the Skagerrak (Furnes et al. 1986). The greater North Sea has a 

surface area of about 750 000 km2 (OSPAR, 2000), and it is surrounded by several countries 

(the UK, France, Germany, Belgium, Holland, Denmark and Norway).  
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North Sea currents are dominated by the Atlantic inflow, flowing into the North Sea by three 

main branches: the Fair Isle Current in the west, the Atlantic water entering to the east of 

Shetland, and the Norwegian Trench Current (fig. 1-5). To lesser extent, Channel water flows 

into the North Sea from the southwest. The overall pattern of sea currents in the North Sea is 

from west to east, from north to south along the east coast of Scotland and England, with some 

outflow northwards along the Danish and Norwegian coast. 

 

The Norwegian Trench is the major link between the shallow North Sea and the deep Atlantic 

Ocean. The transition zone between the shelf and the deep sea is also a boundary of North Sea 

circulation (Klein et al. 1994). Because of the great open boundary with the North Atlantic 

Ocean, the North Sea is strongly affected by the inflowing Atlantic water (Corten, 2002). This 

water originates from a large current system flowing into the Norwegian Sea between the 

Faeroes and the Shetland Islands. Atlantic water also follows the western slope of the 

Norwegian Trench southward. This inflow (called the Shelf Edge Current) is the main source 

of Atlantic water into the North Sea (Furnes et al. 1986). Practically all the water entering the 

North Sea is directed into the trench and eventually flows out of the North Sea along the 

Norwegian coast (Furnes et al. 1986). As a result, the Norwegian Trench has a strong 

influence on the current system of the North Sea, followed by the Fair Isle Current and a third 

inflow offshore from Fair Isle (Turrell et al. 1992). 
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Figure 1-5. North Sea circulation patterns (from OSPAR, 2000). 

 

A large portion of water is retroflected to the Atlantic from the Norwegian Trench, via 

topographic guidance, returning northwards along the Norwegian side without entering the 

main body of the North Sea (Furnes et al. 1986). 

 

The temperature pattern shows colder conditions in the southern North Sea during the winter, 

with an inversed relation for the rest of the year. This seasonal variation is due to the cold 

climate of continental Europe in winter, the warm climate of the continent in summer, and the 

shallow nature of the southern North Sea. In contrast, the North Sea shows much less seasonal 

variation in temperature in the northwest, where climate is less warm in summer, less cold in 

winter, and the inflow of Atlantic water in all seasons buffers water temperature. For the North 

Sea the inflow of Atlantic water is thus an important climate variable. There is a strong warm 

Atlantic inflow to the Norwegian Sea west of the Faeroe Islands, and low warming or cooling 

on the south side (Ådlandsvik, 2008). The shift in the Atlantic inflow is drive by a major 

change in the wind stress pattern, with decreased wind stress from north in the area 

(Ådlandsvik, 2008). 
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The North Sea is a varying mixture of North Atlantic water and freshwater run-off. The 

salinity and temperature in different areas are strongly influenced by heat exchange with the 

atmosphere and discharged freshwater. The deeper waters consist of relatively pure water of 

Atlantic origin, whereas shallow areas, especially in the southern North Sea, show a strong 

influence of seasonal inflows of freshwater from major rivers (OSPAR, 2000). The North Sea 

salinity presents values close to that of the ocean (Huthnance, 1997), and its variations follow 

those from the North Atlantic (Jones and Howarth, 1995). 

 

The river inflows affect the salinity even in the central North Sea slightly. During 1988-1989, 

values were anomalously low, maybe as a result of lower rainfall and less than normal river 

flows (Jones et al. 1995). However, the Baltic Sea provides most of the fresh water input to 

the North Sea (Huthnance, 1997; Beare et al. 2002), forming a transition zone between the 

high saline North Sea and the low saline Baltic Sea (OSPAR, 2000; Lund-Hansen and Vang, 

2003). The Atlantic Ocean, the rivers, the atmosphere and discharges from the coast, ships, 

platforms and dredged materials are all sources of nutrients into the North Sea (Brockmann, et 

al. 1990). The increase of nutrients in the North Sea, over recent decades, resulting from 

anthropogenic sources (Brion et al. 2004) has caused eutrophication, particularly in the 

shallow southeastern North Sea off Belgium, the Netherlands and Germany.  

 

Marine Biology 
The plankton in the North Sea increases surface concentrations of organic substances during 

spring blooms, and 40% of the biomass formed by primary production in summer directly 

goes to the food web (Brockmann et al. 1990). In autumn, a second bloom takes place. During 

winter, the highest concentration of nutrients is found at the northern boundary (Brockmann et 

al. 1990), due to the warm Atlantic inflow. Estimates of primary production in the North Sea 

areas range between 50 and 1350 kcal/m-2yr-1extremes, with higher values around Shetland as 

some upwelling and considerable mixing of currents occurs there (Furness, 1978). 

 

Fishes of the North Sea include 224 species. Demersal species include gadoids, like Cod, 

Haddock, Whiting and Saithe; among the truly pelagic species are Herring and Mackerel; 

small and short-live species are Sandeel, Norway Pout and Sprat; and the two most important 

flatfish species are Sole and Plaice (Daan et al. 1990). 
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The fish fauna in the North Sea shows different ecological characteristics (Daan et al. 1990). 

For example, Cod occur at selected locations throughout the continental shelf, spatially 

controlled by environmental properties (O’Brien et al. 2000), whilst Haddock occupy a less 

extensive area, mainly occurring in northern and central regions (Hedger et al. 2004), and 

Saithe distribution is a result of active migration (Furness et al. 1986).  

 

Because of the summer invasion of the North Sea by Scad, or Horse Mackerel, from the north 

via the shelf edge, and the south through the English Channel, and the presence of the western 

stock of Mackerel, the total biomass of fish in the North Sea is much higher in summer than in 

winter (Daan et al. 1990). 

 

The Lesser Sandeel is one of the most abundant fish in the North Sea, showing highly variable 

recruitment dynamics (Pedersen et al. 1999; Arnott and Ruxton, 2002). Since the overfishing 

of Herring and Mackerel in the 1970s, sandeels have been until very recently the dominant 

mid-trophic pelagics in the North Sea (Frederiksen et al. 2007).  

 

Most fish species in the North Sea are carnivores, rather generalists than specialists; Herring 

remains largely planktivorous even during the adult phase; and gadoids are opportunistic 

feeders (Daan et al. 1990). The ecology of fish in the North Sea has been influenced by 

exploitation by man, especially since 1945. The decline of the stocks of Herring and Mackerel 

was primarily the result of over-exploitation, and their reduction is thought to have driven 

changes in the entire ecosystem (Daan et al. 1990). Fish ecology is influenced by the climate 

as well. The North Sea is not an isolated area, and some fish move into the sea to feed or to 

spawn whereas others migrate to adjacent areas (Daan et al. 1990). 

 

Fisheries 
The North Sea is one of the most heavily fished regional seas in the world (Heath, 2005; 

Frederiksen et al. 2007), is one of the most biologically productive ecosystems in the world 

(Kirby et al. 2007), and is one of the most studied shelf seas (Heath, 2005).  

 

The Lesser Sandeel is the most important prey fish to most breeding seabirds (Wanless et al. 

1998; Furness, 2002b) like Fulmar, Gannet, Shag, Kittiwake, Puffin, Razorbill and Guillemot 

(Tasker and Furness, 1996). Also, sandeels are the prey of Herring (Last, 1989) and other 
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commercial fish species like Cod, Haddock, Whiting, Saithe and Mackerel (Tasker and 

Furness, 1996), and seals, dolphins, porpoises and whales (Pedersen et al. 1999) as well. The 

Lesser Sandeel is found from the mid-tide level down to around 30 m in inshore waters, with 

clean sandy bottoms where it can burrow. This fish feeds mainly on planktonic stages of fish, 

crustaceans, and other small invertebrates. As a result of this, changes in plankton drive 

changes in the sandeel populations. The sandeel population at Shetland was high in the 1970s, 

but it declined in the early 1980s (Corten, 2002). The decrease of herring during the 1970s in 

the North Sea affected positively the sandeel populations, with a massive boom of these 

species just like of the Sprat. This stock also depends for its recruitment on larvae that are 

retained in the area (Corten, 2002). 

 

Grey Gurnard is a widely distributed demersal species in the North Sea, rated among the 10 

dominant species. Since the late 1980s, Grey Gurnard catch rates showed a pronounced 

increase and it was included as an important predator in the North Sea, having a significant 

top-down effect on Whiting and potentially also on Cod recruitment (Floeter et al. 2005). 

 

Overfishing in some areas of the North Sea, followed by a collapse in this activity, could drive 

rapid decrease of fish populations, or changes in species composition that affects seabirds. 

There is a decline for some seabird species in some places in the North Sea since the 1980s 

(Dunnet et al. 1990). In addition to the effects of overfishing, recruitment of some North Sea 

fish species was negatively affected by higher temperatures associated with the NAO since the 

late 1980s (Alheit et al. 2005).  

 

Seabirds 
Seabirds are abundant around the entire North Sea, with large colonies being present. Northern 

Britain is the most important area for seabirds in terms of both numbers and diversity of 

seabirds within the North Sea (Dunnet et al. 1990) and supports several breeding colonies 

(especially in the Shetland and Orkney Islands). Some breeding seabird populations around 

the North Sea mostly remain in the North Sea during the non-breeding period (Red-throated 

Diver Gavia stellata, Fulmar, Great Cormorant Phalacrocorax carbo, Shag, Black-headed 

Gull Larus ribidindus, Common Gull Larus cannus, Herring Gull, Great Black-backed Gull, 

Black-legged Kittiwake, Guillemot, Razorbill, Black Guillemot and Puffin), whereas others 

migrate to Iberia and the Bay of Biscay (Great Skua and Lesser Black-backed Gull), or to 
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Africa (Storm Petrel, Arctic Skua, Little Tern Sterna albifrons, Common Tern S. hirundo, 

Roseate Tern S. dougallii, and Sandwich Tern S. sandivicensis), or even moving so far as 

South America (Manx Shearwater), or the Arctic Tern, moving to the Southern Ocean (Dunnet 

et al. 1990). Numbers of seabirds breeding around the North Sea have increased during the 

20th century, and this may be due to an increase in the stocks of small fish (Furness, 1982; 

Dunnet et al. 1990), caused by fishing activities (Furness, 1982). 

 

Seabirds in the North Sea feed mainly on small fish, the Lesser Sandeel being their most 

important prey (Wanless et al. 1998; Furness, 2002a). Many seabirds feed in flocks on shoals 

of fish, because of the apparent reluctance of fish shoals to split or disintegrate when attacked 

by predators. This is particularly a feature of the behaviour of sandeels. Around Shetland, 

shoals of Sandeels at the sea surface attract flocks of Fulmars, Great Black-backed Gulls, 

Great Skuas and Gannets, with small numbers of Herring Gulls and Lesser Black-backed 

Gulls (Dunnet et al. 1990). 

 

Other human impacts to seabirds in the North Sea are pollution (oil or chemicals), plastics, 

entanglement in discarded nets (Dunnet et al. 1990), shooting or disturbance. 

 

Regime shift in the North Sea 

A key challenge in marine biology research is to understand and predict the responses of 

marine ecosystems to climate warming (Beaugrand, 2003). Changes in wind intensity due to 

the NAO and oceanic inflow have been regarded as important factors in the ecology of the 

North Sea (Edwards et al. 1999; Reid et al. 2003; Beaugrand, 2004). A regime shift involves 

changes in ecosystems (Caddy and Garibaldi, 2000), being considered a sudden shift in the 

function and structure of a marine ecosystem resulting in an alternate state (Cury and 

Shannon, 2004). 

 

Important inflows to the North Sea occurred in the region of the Fair Isle passage, between the 

Orkney and Shetland Isles in late 1980s and early 1990s (Stephens et al. 1998; Lindley and 

Batten, 2002). In the same way, sea surface temperatures showed an increase after 1987 in the 

North Sea, particularly in winter months (Edwards et al. 1999; Reid et al. 2001). Such rises in 

sea temperatures were correlated with biogeographical changes of plankton and fish. 
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Generally, warm-water species have increased, while colder-water species have decreased in 

the North Sea (Beaugrand, 2004). 

 

A prolonged period with mild winters may have caused serious disturbances in the ecosystem 

(Beukema, 1992), including large changes in the macrobenthos community of the southern 

North Sea (Beukema, 1992; Edwards et al. 2002). Hypothetically, three main features linked 

to each other could be responsible for regime shifts in the North Sea:  

1. A change in local hydro-meteorological forcing (Beaugrand, 2003). Winter flows in the 

northern North Sea are very dependent on westerly winds (Stephens et al. 1998). So, changes 

in winds could be responsible for changes in water flow. 

2. A displacement of oceanographic biogeographical boundaries to the west of the European 

continental shelf (Beaugrand, 2003). 

3. An increase in oceanic inflow to the North Sea (Reid et al. 2001). 

 

The regime shift that occurred in the North Sea ecosystem in the late 1980s was linked with a 

positive NAO index, related with an increased inflow of warm oceanic water from the Atlantic 

Ocean (Reid et al. 2001; Alheit et al. 2005). 

 

Temperature possibly was the key physical variable impacting phytoplankton, zooplankton, 

and fish species in the North Sea in late 1980s. Indirect effects appear to be triggered by 

increasing air and sea temperatures (Alheit et al. 2005). Anomalous conditions in ocean 

climate could be the cause of conspicuous ecosystem shifts rather than trends in atmospheric 

circulations or anthropogenic perturbations (Edwards et al. 2002). 

 

Ecological changes in the North Sea include a number of new fish and invertebrate species 

reported. These changes appeared after several years of stability, and impact the feeding of top 

predators. As a result, prey species can be shown to have changed historically among high 

level carnivores. Using stable isotopes from skeletons of stranded Harbour Porpoises, during 

the period 1848-2002, temporal change in the diet were detected (Christensen and Richardson, 

2008). 
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Plankton  
There is strong evidence in the literature that ecosystem change is occurring in the North Sea. 

Patterns of primary production and species composition of phytoplankton are changing and 

this change permeates the entire food chain (Reid et al. 1998). Plankton from the central North 

Sea has changed from being numerically dominated by holoplanktonic calanoid copepod 

species, from 1958 to the late 1970s, to a dominance of the pluteus larvae of echinoid and 

ophiuroid echinoderms in the 1980s and early 1990s. There are many possible and 

hypothesised causes for such change. For example, changes in the benthos could influence the 

composition of the plankton, and may be related to the damage of benthos by beam trawling 

(Lindley et al. 1995). 

 

Increased inflow of oceanic water from the North Atlantic is related to warming of oceanic 

conditions in the North Sea, and decreased inflows are related to colder conditions. Cold 

events carry boreal plankton from the Norwegian Sea, whilst warm events are consistent with 

higher oceanic inflows from the Slope Current that bring in water from Portuguese waters 

(Reid et al. 2003). The community structure of the plankton changed after 1987 with an 

increase in the abundance of the copepod of the genus Corycaeus (Reid et al. 2001). 

 

The period in the late 1970s and early 1980s was anomalous in the North Sea, with reduced 

salinities and temperatures. During the late 1970s, there was an initial reduction in inflow of 

Atlantic water (Corten , 1990). This reduction may have been initiated by a decrease in flow 

by the North Atlantic Current, thus, allowing an opening for colder waters from the north to 

penetrate farther southward (Edwards et al. 2002). 

 

From 1987, resident and cold water holoplanktonic species have declined in abundance in the 

North Sea, and meroplankton from warmer oceanic and mixed waters have increased, with an 

increase in species richness in the northern areas (Lindley and Batten, 2002). Evidence that 

changes in the circulation in the north-east Atlantic are bringing more southerly water into the 

north-east Atlantic derives from the presence of the copepod species Euchaeta hebes and 

Rhincalanus nasutus. In 1997, doliolids (identified as Doliolum nationalis) were first found in 

the North Sea in September (Edwards et al. 1999), and colonies of the ciliate Zoothamnium 

pelagicum, which is normally associated with oceanic water in the Bay of Biscay, were found 
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for the first time in the central North Sea. In January 1998, the oceanic tintinnid, Dadayiella 

ganymedes was also found for the first time in the southern North Sea (Edwards et al. 1999).  

 

Copepods  
Along the European continental shelf, severe biogeographical shifts in all copepod 

assemblages have occurred in recent years, with a northward extension of warm-water 

species’ ranges and a decrease in the number of colder-water species (Beaugrand, 2004). The 

copepod C. finmarchicus is believed to have dominated copepod assemblages since the 1930s 

(Reid et al. 2003). Their abundance declined between 1958 and 1998 (Beare et al. 2002) and 

from 1968 to 1970 C. helgolandicus was more abundant than expected. At the same time C. 

typicus was close to the expected levels, and none of the environmental variables showed 

deviations that could explain this (Lindley and Reid, 2002).  

 

In the last years the interannual abundance of the copepods Centropages typicus and C. 

helgolandicus in the North Sea are positively correlated with sea surface temperature (Lindley 

and Reid, 2002). With the increasing of warm conditions, C. helgolandicus has almost entirely 

replaced its boreal congener, C. finmarchicus, in the northern North Sea (Reid et al. 2003). 

 

Other copepod species invading the North Sea, the mesozooplanktonic forms Metridia lucens 

and Candacia armata, are usually associated with inflow from the north, entering the North 

Sea via the Fair Isle Current and the East Shetland Atlantic inflow. These species are typical 

of Atlantic waters to the west of Scotland (Edwards et al. 1999). 

 

Major fish stocks in the North Sea are affected by climate-mediated changes in copepod 

abundances described above (Alheit et al. 2005). The progressive substitution of C. 

finmarchicus by C. helgolandicus resulted in mismatch situations between larval cod and its 

Calanus prey as C. helgolandicus appears later in the year (Beaugrand et al. 2003; Alheit et al. 

2005). Nevertheless, some aspects of the natural history of C. helgolandicus may make it a 

more suitable food for Anchovy and Sardine than C. finmarchicus (Beare et al. 2004). 

 

Fish 
A large ecosystem can respond in both a continuous and discrete manner to climate change. 

Discrete changes include the relative abundance of the permanent members of the community, 
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and the sudden alteration in the set of visiting species. These kinds of changes have been 

observed in the Bristol Channel, with a continuous increase in fish species richness related to 

increase in average sea temperature (Henderson, 2007). The fish records correlate significantly 

with temperature data from the North Atlantic (Stebbing et al. 2002). 

 

In the same way, there is an increasing prevalence of unusual southern species (e.g. Sailfin 

Dory, Gig-eye Tunny, Saddled Seabream, Short-beaked Garfish, Blue-runner, and Barracuda) 

in the English Channel (Stebbing et al. 2002; Beare et al. 2004). 

 

A noticeable warming of the northern North Atlantic Ocean took place during the 1920s and 

1930s, with enhancing of Atlantic inflow in northern regions through to the 1950s and 1960s 

(Drinkwater, 2006). Further changes included mortality of Sole S. vulgaris in the winter of 

1963-64, causing drastic declines in the level of spawning (Ottersen et al. 2004).  

 

An increasing inflow after 1980 could be responsible for changes in fish stocks in the North 

Sea (Corten, 1990; Stephens et al. 1998), including an increasing abundance of southern 

species, such as Anchovy, Sardine, and Red Mullet (Heessen, 1996; Beare et al. 2005) in the 

southern North Sea. These changes are associated with the increasing of plankton production 

and are related to bottom-up processes (Drinkwater, 2006). 

 

On the other hand, the reduction in the inflow of Atlantic water into the north western North 

Sea disrupts the transport of fish larvae from the hatching grounds in the northern North Sea to 

the nursery areas in the German Bight (Corten, 1990). The retention of water within the Fair 

Isle current may affect the survival and subsequent development of fish larvae, delaying the 

arrival of larvae tono the nursery grounds, and increasing predation (Turrell and Henderson, 

1990). Recovery of recruitment in recent years has been a gradual process (Corten, 1990). 

 

The climate, in combination with fishing activities, alters the functioning of the fish food web 

in the North Sea. Depletion of benthos-consuming fish, has shifted the structure of the 

secondary production demand towards zooplankton, and released the benthos from predation 

(Heath, 2005). Most of the information obtained on fish abundances is based on fisheries. 

However, it is important to notice, in using commercial fisheries-catch data to describe 

changes in ecosystems, that such data are influenced by the market economy and human 
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behaviour. As a result, changes in fish catches may not reflect real changes in ecosystem 

structure. Another problem is that records of commercial fish catch have only been maintained 

for a relatively short time period (Christensen and Richardson, 2008). 

 

Small pelagic fish 

Small pelagic fish (such as Sardine, Anchovy, Herring, Sprat and others) respond dramatically 

and immediately to changes in ocean conditions. They have short plankton-based food chains, 

including even phytoplankton (Ottersen et al. 2004). For example, the main components of the 

diet of Herring are the calanoid copepods (Last, 1989).  

 

In the upper levels of the food chain, small pelagic fish provided food for larger fish, seabirds 

and marine mammals, and changes in their abundance may be accompanied by changes in 

ecosystem structure (Ottersen et al. 2004). 

 

The landings records show that the fishery for small pelagic fish in the North Sea has 

remained relatively constant over time, because of the effect of competitive exclusion. As the 

landings of some species declined, others expanded to take their place. Sprat landings 

increased as Herring collapsed in the late 1970s, and declined again as the Herring fishery 

recovered. In the same way, Horse Mackerel partially replaced Mackerel in the pelagic 

piscivore guild during the 1990s (Heath, 2005). 

 

But independently of the fishing activities, changes of species composition could be a 

response of population changes. During the first half of the 1980s, a northward shift of 

mackerel was noticed along the west coast of Scotland and into the North Sea, preceded by an 

earlier shift in the opposite direction during the 1960s (Corten, 1990). 

 

The delicate balance between populations may be altered by changes in oceanic conditions, or 

the water mass dynamics. Herring grows in the eastern North Sea, and recruits move to the 

northern and north-western North Sea to spawn. In the case of the Sprat, the larvae are 

transported to recruit probably in the eastern North Sea and thereby are lost from their parent 

population in the western area. A strong inflow from the Atlantic will transport both Herring 

and Sprat larvae to the eastern North Sea, which is advantageous for the Herring but not for 
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the Sprat. Conversely, a reduced inflow will reduce the number of Herring larvae reaching 

their nursery area, but increase the recruitment of the Sprat population (Corten, 2002). 

 

One important component of the ecosystem, related to the distribution of pelagic fish, is the 

oceanic inflow, mainly because these species prefer warm conditions and the movement of 

their larvae is due to the sea drift. The increase of sea temperatures could indicate increased 

Atlantic inflow from the west, transporting eggs and larvae of Anchovy (Ré, 1996) and 

Sardine into the North Sea (Beare et al. 2004). During the mid-1990s, a sudden increase of 

Anchovies and Sardines was recorded off east Scotland, related to a penetration of relatively 

warm Atlantic water into the northern North Sea (Beare et al. 2004). A similar situation has 

been observed in Shetland waters, where Sardines and Anchovies began to appear in 

noticeable numbers in 1998 and increasing since then in along with rising sea temperatures 

(Beare, 2006). Finally, the invasion of the north-western North Sea by Anchovy and Sardine is 

a component of the marked ecological changes due to rising temperature and climate change 

(Beare et al. 2004). 

 

The southward extension of Herring spawning in the northwestern North Sea since 1983 could 

be explained by an increased Atlantic inflow in this area, and in the same way, variations in 

Atlantic inflow could drive changes in the Mackerel stock in the North Sea because this 

species is closely associated with Atlantic water (Corten, 2002). 

 

Cod 
Though the relevant changes in Cod stocks in each regions in the east North Atlantic Ocean 

(from Greenland to the Barents Sea), can be related to changes in the large-scale Atlantic trade 

winds, responses could operate through changes in the interstock exchange of larvae by ocean 

currents (Dickinson and Brander, 1993). 

 

Recoveries of depleted Cod stocks depend upon reducing fishing effort in the short term, but 

in the longer term climate change may have even greater effects on stock status (Kell et al. 

2005). With climate change, Cod may respond in an unforeseen manner, moving their 

northern distribution northwards or changing their feeding ecology in the North Sea (Kell et 

al. 2005). In the North Sea this species is close to the southern limit of their distribution, 

which is likely to move northward with rising temperatures (Stebbing et al. 2002), maybe then 
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reaching the coasts of Greenland and Labrador, the Barents Sea, and may even extend onto 

some of the continental shelves of the Arctic Ocean (Drinkwater, 2005). 

 

Modelled scenarios of climate change show increasing air temperatures, mainly in Arctic and 

Subarctic waters. Cod stocks in the Celtic and Irish Seas are expected to disappear, while 

those in the southern North Sea and Georges Bank will decline (Drinkwater, 2005). 

 

Pipefish 
Pipefish were not recorded around Scotland prior to the late 1990s. Between 1990 and 2002 

the species was recorded consistently in the North Sea, increasing massively in numbers in the 

following years around Britain (Kirby et al. 2006; Harris et al. 2007). Norwegian surveys 

found considerable numbers of Pipefish in the northern North Sea in both 2004 and 2005 

(Harris et al. 2007). Number of Snake Pipefish appeared suddenly in the deeper waters of the 

North Sea (van Damme, and Couperus, 2008) and this appeared to represent a very marked 

expansion of range into the central Norwegian Sea, further north to Bear Island and 

Spitzbergen and east into the Barents Sea basin from 2005 (Harris et al. 2007). In 2004-2005 

pipefish were reported from seabird colonies over a broad geographic area including Great 

Britain, Norway, Iceland and the Faeroe islands, involving a wide range of seabird species 

(Harris et al. 2007), and they were also found in stomachs of fish and sea mammals (van 

Damme, and Couperus, 2008). 

 

The cause of the population explosion of Snake Pipefish is unclear. The increasing sea surface 

temperature in the northern hemisphere, linked to global warming, was a possible cause of the 

increase in numbers of larval and juvenile Snake Pipefish west of the British Isles (Kirby et al. 

2006; Harris et al. 2007). Another possible explanation is the fall in predation pressure 

associated with decreasing numbers of Mackerel and Short-beaked Common Dolphins (van 

Damme, and Couperus, 2008). 

 

Because of the decrease in Sandeel numbers, novel fish species have become part of the 

seabirds’ diet. The occurrence of pipefish (particularly Snake Pipefish) in seabird chick diet in 

2004 and 2005 was unprecedented. In the same way, Great Shearwater, Northern Gannet, 

Northern Fulmar, Black-legged Kittiwake, Black-headed Gull, and Lesser black-Backed Gull, 

were seen feeding on large pipefish in the open ocean (Harris et al. 2007). 
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Because of the rigid bony structure of pipefish, they are extremely difficult to swallow, with a 

high risk of death by choking for seabirds preying on and feeding their chicks with this fish 

(Harris et al. 2006; 2007; van Damme, and Couperus, 2008). 

 

Other fish species 

The Red Mullet is a warm-water species common in the western coasts of the British Isles, the 

English Channel and also the southern North Sea. However there are some reports of red 

mullets caught around Scotland in recent years, coincidently with the increasing of the sea 

surface temperature (Beare et al. 2005). All the Red Mullet recorded in Scotland since 1990 

were caught exclusively during winter months (January, February and March). During winter, 

the North Sea is warmer in the north than it is in the south due to the influence of the North 

Atlantic Current, and this could be the explanation why Red Mullet migrate into the northern 

North Sea from the southern North Sea (Beare et al. 2005). 

 

Similar to the Red Mullet, Bluemouth (Helicolenus dactylopterus) abundance has increased 

over the last decade both in the west of Scotland and in the North Sea. Once it entered the 

North Sea the Bluemouth population survival depends on benign environmental conditions, 

such as stable sea temperature, and the relative absence of large predators such as Cod (Mamie 

et al. 2007). 

 

There was an exceptional Atlantic inflow into the North Sea in 1991. This large water mass 

moving into the North Sea served as a highway to small individuals of the Bluemouth. After 

this influx Bluemouth were recorded all around the northern North Sea, but numbers have 

declined since 1997 and their distribution in the region has been constricted into some small 

areas (Mamie et al. 2007). 

 

The demersal piscivore guild is more vulnerable to fishing than that of the planktivores, due to 

the apparent lack of capacity for species substitution (Heath, 2005). As a result, the biomass of 

the high-trophic level fish species in the North Atlantic is decreasing rapidly (Christensen et 

al. 2003). Unlike the bottom-up controls mediated by the pelagic side of the fish foodweb, the 

demersal component is apparently controlled by top-down processes, especially predation 

(Heath, 2005). 
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The Celtic Sea 
 

The Celtic Sea is a shallow marine area (less than 200 m depth) in the south margin of Ireland 

(OSPAR, 2000). It is a connection area between the Bay of Biscay and the North-eastern 

Atlantic in the west, with the English Channel in the eastern boundary (fig. 1-6). The boundary 

between the Celtic Sea and the Bay of Biscay is formed by the margins of two shelves, the 

Celtic shelf and the Armorican shelf, a continuous formation from the oceanic waters in the 

south of Ireland to the coast off western France (Pingree and Le Cann, 1989). The dominant 

circulation pattern is from south to north, from the Armorican shelf northward across of the 

Channel, and a counter flow in the west, on the outer Celtic shelf (Pingree and Le Cann, 

1989). Average sea surface temperatures to the west and south of Ireland oscillate from 8–10 

°C in February-March to 14–17 °C in August (OSPAR, 2000). The Celtic Sea, as the Irish 

Sea, presents a seasonal thermal front with high levels of physical and biological activities, 

resulting in high concentrations of chlorophyll a (Savidge and Foster, 1978). 

 

The biology of the Celtic Sea is interesting because this is a transition zone between cold 

waters from the north and warmer ones from the south, resulting in a transition zone for 

several species. Copepods are the most abundant group in the zooplankton, with C. 

finmarchicus and C. helgolandicus dominating the planktonic community, the first being a 

species from colder areas than the second (OSPAR, 2000). In the same way, clupeid fish from 

different environments coexist in this area. The Herring from arctic-boreal areas is more 

abundant in the Celtic Sea during colder years, whereas the Pilchard is more abundant during 

warmer years (Southward et al. 1988). The abundance of these fish species, just like 

abundance of copepods, varies between years. The Celtic Sea and English Channel are the 

southern limits of Cod, and present Sardines and Anchovies with northward penetration of 

warm waters (OSPAR, 2000). 

 

Marine mammals are abundant in the Celtic and Irish Seas, mainly as visitors. Bottlenose 

Dolphin and Harbour Porpoise are common species, frequently found stranded on beaches. 

Seabirds and waterfowl are abundant with some species, like Shags, Guillemots and Arctic 

Terns increasing in numbers (by more than 100% between the end of the 1960’s and mid 

1980’s), whereas numbers of several gulls and terns species are declining (OSPAR, 2000). 
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 Figure 1-6. Marine areas in Western Europe. 

 
The English Channel connects the Celtic Sea and Bay of Biscay with the North Sea. It is a 

transition area representing the boundary for many marine species. The fish species 

composition from the eastern English Channel is similar to the species assemblage in the 

southern North Sea, with many fish species migrating between the Channel and North Sea 

(Arnold and Metcalfe, 1996; Defra, 2005). 

 

The Bay of Biscay and Iberia 
 

The Iberian Peninsula is a projection in the west of the European continent, surrounded by the 

Bay of Biscay in the north, the North-eastern Atlantic in the west, and the Mediterranean Sea 

in the south. Western Iberia is part of the Eastern Boundary Current System of Western 

Europe and North Africa (Sanchez et al. 2007). The Bay of Biscay (fig. 1-6) is an open-ocean 

bay (Lazure et al. 2008) between the west of France and north of Spain. The continental shelf 

is wide in the northern area, and very narrow in the southern region, off the coast of Cantabria 

in Spain (OSPAR, 2000). The run-off of continental water from the southern area of France 

promotes a gradient in the density and salinity in the bay (Gil, 2008) with important 

implications for marine biodiversity. 
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Currents from the Azores govern the oceanographic and meteorological conditions off Iberia 

(Gil, 2008). Displacement of the Azores current to the south leaves Iberia under the influence 

from the strong south-westerly winds during winter, changing in the spring to soft winds in the 

opposite direction (Gil, 2008; Lazure et al. 2008). 

 

Temperature gradient presents low sea surface temperatures in the Western Bay of Biscay 

(about 13 ºC), increasing to the east and south (to 15-16 ºC). The Western coast of Iberia, off 

Portugal, shows dramatically changing temperatures (from 15 ºC to 18 ºC). The South-west of 

Iberia, in the Gulf of Cadiz, has warm waters increasing up to 21 ºC in North-Western Africa 

(fig 1-7). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-7. Mean sea surface temperature around 
Iberia and the North-Western Africa. Data from 1982-
1998 (from Sanchez et al. 2007). 

 
Transport of early fish life history stages, like eggs and larvae, is influenced by upwelling and 

offshore displacements due to Ekman transport, resulting in the concentration of fish in the 

narrow band of continental shelf in the Bay of Biscay (Gil, 2008) and their recruitment. 

Upwelling of water from North-central Atlantic and even North-eastern Atlantic is common 

around Iberia, especially in summer, resulting in an extraordinary primary production in the 

inner waters up to ten times that of offshore waters (OSPAR, 2000). 

 

Copepods are the most important group in the plankton, and are present all year. Two species, 

Centropages chierchiae and Temora stylifera were seldom collected before 1998 in the Bay of 

Biscay and the Celtic Sea, but were found frequently from 2000, negatively correlated with the 
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NAO (Lindley and Daykin, 2005). A similar situation has been observed in the fish 

community, with changes in the species composition due to climate change and the NAO 

(Poulard and Blanchard, 2005). Shifts in the environmental regime, in association with 

upwellings and the NAO, have also driven changes in the age maturity of the Hake 

(Dominguez-Petit et al. 2008). 

 

The most diverse fish group in the Bay of Biscay is demersal. In terms of importance, the most 

remarkable fish species are Cod, Dab, Echiodon drummondi, Greater Sandeel, Haddock, 

Pipefish, Norway Pout, Boops boops, Sarpa salpa, seabass, Spanish Mackerel, Sea Bream, 

Boar Fish, Bib, Hake, Dogfish, Anglerfish, Whiting, Gurnard, Megrim, Mackerel, Horse 

Mackerel, Pilchard, Sprat and Anchovy. Important fisheries in the Bay of Biscay are related to 

pelagic species like Blue-fin Tuna, Anchovy, Mackerel and Albacore (OSPAR, 2000). In 

Portuguese waters, the main fish species are Snipefish Macroramphosus scolopax, Boarfish 

Capros aper, Blue Whiting, Horse Mackerel, Mackerel, Axillary Seabream Pagellus acarne, 

Hake, Jack Mackerel T. picturatus, Chub Mackerel S. japonicus and Dogfish (OSPAR, 2000). 

 

Cetaceans are common in the region, mainly Sperm Whale Physeter catodon, the dolphins 

Delphinus delphis and Tursiops truncatus, and Harbour Porpoise Phocoena phocoena. Among 

whales Balaenoptera physalus is a common migrant. Right Whale Eubalena glacialis was 

very common before an extensive whaling fishery that began in the middle ages (OSPAR, 

2000; RAM, 2007a). 

 

The Bay of Biscay is a very important area for seabird species, many of them migrants. The 

community is dominated by the Yellow-legged Gull L. cachinnans. Seabirds are divided into 

pelagic species like Mediterranean Shearwater (P. yelkouan), Leach’s Petrel O. leucorhoa, 

Northern Gannet and Razorbill, coastal species like Shag, Terns, Common Scoter Melanitta 

nigra and gulls (OSPAR 2000). The most common species by season are: during spring M. 

bassanus, P. mauretanicus, L. ribidundus and C. diomedea (RAM, 2007b); during summer the 

same species plus S. sandvicensis (RAM, 2007c); during autumn L. ribidundus, C. diomedea 

and S. sandvicensis (RAM, 2007a); and during winter M. bassanus, P. mauretanicus, L. 

ribidundus, C. diomedea, Alca torda and M. nigra (RAM, 2007d). 
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Oil spills are fairly common in the Bay of Biscay, due to the passage of oil tankers from the 

North-western African oil fields to Northern European countries. All the oil industries of 

Netherlands, Belgium, Germany, Norway, Sweden and part of France and the UK are 

dependent on ship passage through Biscay-Celtic Sea-Channel. The “Erika” oil spill at the end 

of 1999 caused a redistribution of seabird species in the Bay of Biscay, including the Northern 

Gannet and the Great Skua (Castege et al. 2004). The “Prestige” oil spill in 2002 affected 

severely the coast off Galicia, in the South-western Bay of Biscay. Seabird species most 

affected were juvenile Razorbills (winter visitors), adult Atlantic Puffins (winter visitors), 

adult European Shags (residents), adult Northern Gannets (passage migrants), and juvenile 

Common Guillemots (winter visitors) (Camphuysen, 2002). 

 

North-western Africa 
 

The coast of North-western Africa (NWA) is the portion of the central-eastern Atlantic Ocean 

from Gibraltar (at about 35º N) to the Gulf of Guinea (at about 5º N), including Morocco, 

Western Sahara, Mauritania, Senegal, the Gambia, Guinea-Bissau, Guinea, Sierra Leone and 

Liberia in the mainland, and the islands grouped in the volcanic archipelagos of Madeira, 

Canary Islands and Cape Verde. The study area of the present project includes all these 

countries except Sierra Leone and Liberia (fig. 1-8). 

 



General Introduction 

 34 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-8. Study area of the North-
Western Africa, including political 
divisions. 

 

The continental shelves off the coast of NWA extend about 50-150 km, being especially wide 

in the Guinea-Bissau area (Amorim et al. 2004) and the continental slope extends to 100 km 

approximately (Hagen, 2001). In the case of the archipelagos, all of them have very narrow 

continental shelves. The archipelago of Madeira and associated islands (about 32°N) is about 

500 km from the African coast, in front of Morocco (Rusu et al. 2002), and belongs to 

Portugal. The two major islands are Madeira and Porto Santo.  

 

The Canary Islands are located south of Madeira (at 28° N), in front of the coasts of southern 

Morocco and northern Western Sahara (Arístegui et al. 2004). The nearest island is located 

110 km west of the continent (Juan et al. 2000). These Spanish islands include, among others, 

Tenerife, Gran Canaria, Isla de la Palma, Lanzarote and Fuerteventura. 

 

The archipelago of the Republic of Cape Verde (about 15°N) is located approximately 500 km 

off the coast of Senegal (D’ Olvera-Fonseca, 2000). It consists of ten main islands (D’ Olvera-

Fonseca, 2000; Évora and Amorim, 2002; Stobberup et al. 2002), the most important in terms 

of size and human population being Sal, Santa Luzia, Maio, and Boavista. 
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The most remarkable geographic areas in the continental coast of NWA are the Strait of 

Gibraltar, with its connection to the Mediterranean Sea; the wide and shallow Banc d' Arguin 

in Mauritania; the Senegal River, in the Senegal-Mauritania border region; the Gambia River 

in the Gambia; and the extensive fluvial area, in the coast of Guinea-Bissau, including the 

Bijagós Islands. One of the most studied areas of the coast is the Banc d'Arguin. It comprises a 

very wide area of shallow water and tidal flats, covered with dense seagrass beds and circular 

ponds, in the west of the Sahara (Wolff and Smit, 1990; Wolff et al. 1993; Schaffmeister et al. 

2006), with a high diversity of marine environments (Sevrin-Reyssac, 1993), and abundant 

aquatic birds (Wolff et al. 1993). 

 

The most noticeable aspect of the oceanic conditions in the entire area is the presence of a well 

known upwelling system, which has been studied intensively (Cury and Fontana, 1988; 

Kostianoy and Zatsepin, 1996; Stevens and Johnson, 2003; Pastor et al. 2008). The description 

and characteristics of this upwelling are outlined below. 

 

The climate in the NWA area is related to the tropical North Atlantic, and is controlled by 

trade winds, the Intertropical Convergence Zone, and the influence of high sea surface 

temperatures (Black et al. 1990). There is a gradient of vegetation, with dense areas in the 

southern part of the area, and dry areas with deserts in the north. As a result the Intertropical 

Convergence Zone is a climate boundary separating an arid area in the north, the Sahelian 

zone, with a humid area in the south, the Guinean to Congolian zone (Barusseau et al. 1988). 

The average annual temperatures are relatively high for the entire NWA, 18-23°C in the Banc 

d' Arguin (Wolff and Smit, 1990), and 24°C in Cape Verde (D’ Olvera-Fonseca, 2000).  

 

Trade winds are stable and strong in northern Mauritania (Sevrin-Reyssac, 1993). These winds 

flowing westwards are well developed in January in the southern NWA, between 10°N and 

25°N, blowing offshore from the Sahara (Van Camp et al. 1991; Ratmeyer et al. 1999). These 

winds, called the Harmattan, carry dust from the desert to the ocean covering a belt of about 

1500 km (Hagen, 2001). The resulting Saharan dust plume (fig. 1-9) is oriented in a south-

eastern direction from Mauritania to the Gulf of Guinea, during winter, and parallel to the 

equator during summer (Longhurst, 1993). This dust influx to the ocean is a major source of 

nutrients and is one of the reasons for the lack of coral reefs on the western side of Africa 

(Barusseau et al. 1988). 
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Figure 1-9. Saharan dust plume over the Atlantic Ocean, showing the seasonal changes related to changes 
in trade winds (from Longhurst, 1993). 
 

The Canary archipelago is a wind and currents barrier, disrupting the currents from the Azores 

and Portugal areas, resulting in a centre of atmospheric and oceanic flow perturbation (Pelegrí 

et al. 2005). Finally, it is important to note that the NWA sub-continent and their seas, present 

very particular and dramatic characteristics, influenced mainly by the ocean currents, the trade 

wind, the presence of volcanic archipelagos, and the coastal shape, resulting in one of the most 

productive ecosystems in the world (Ould-Dedah et al. 1999). 

  

Oceanography 

Sea surface temperature is heterogeneous along the coast off NWA (fig. 1-7). Waters in the 

northern part of NWA are at fairly uniform temperature in winter, but show patchy 

temperature variation in time during spring depending on local upwelling and local currents 

(Mitrelstaedt, 1991). Temperatures oscillate between cold and warm in the coasts between Cap 

Blanc (Western Sahara) and Cape Verga (Guinea) during the year, again as a result of variable 

upwelling and prevailing currents (Sevrin-Reyssac, 1993).The Moroccan coast and around the 

Canary Islands, as well as in equatorial waters off Senegal, present generally warmer 

conditions than in the coasts off Western Sahara and Mauritania with less upwelling (Navarro-

Pérez and Barton, 2001; Camphuysen and van der Meer, 2005). The shelf of Mauritania is a 

transition zone, and is a region of confluence between temperate and tropical regimes (Ould-

Dedah et al. 1999).  
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The Azores Current flows eastward in the North Atlantic Ocean, and splits into several 

branches flowing southward. The easternmost branch moves towards the Canary Islands, 

forming the Canary Current (Pelegrí et al. 2005). This Canary Current system flows 

southwards 100–450 km from the coast, forming eddies connected with the continental coast 

(Brochier et al. 2008). The water is colder than expected for this latitude, and the fauna in the 

zone is quite similar to that off Iberia (Sevrin-Reyssac, 1993). In addition, the Canary Current 

is influenced by the Portugal Current (fig. 1-10). The sea surface circulation pattern in NWA 

presents four systems flowing independently: (1) the coastal currents over the shelf; (2) the 

Canary Current flowing in the north of the area; (3) the presence of a cyclonic gyre, between 

15°N and 22°N; and (4) the current flowing in the south area of NWA (Mitrelstaedt, 1991). 

 

 

Figure 1-10. General current pattern in the NWA. Light arrows show the summer current and dark 
arrows show the undercurrents (from Aristegui et al. 2004). 
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Undercurrents move below the currents described, in the opposite direction. Only the North 

Equatorial and their undercurrent are moving in the same direction (Arístegui et al. 2004), 

influenced by the Guinea Current. The Cape Verde islands are influenced by the Canary 

Current System, but there are changes between seasons. During July to November, the main 

currents in the area are southwestern, causing warmer conditions (Évora and Amorim, 2002). 

A remarkable characteristic of this area is the Cape Verde frontal zone, an unstable boundary 

between the waters from the North Atlantic and those from the South Atlantic Ocean 

(Vangriesheim et al. 2003). As a result, the oceanographic characteristic of the Cape Verde 

archipelago are determined by waters flowing from the north, the Canary Current, and from 

the south-east, the North Equatorial Current (fig. 1-11). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-11. Detailed oceanic flow in the NWA, 
including the Cape Verde archipelagos (from 
Ratmeyer et al. 1999). 

 

The presence of extreme climatic events, like those producing rainfall anomalies in the Sahel, 

is interconnected with the Southern Oscillation (Wolter, 1989). As a result, these are a central 

part of the ongoing oceanographic research in the area. 
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Upwelling 

The strong and stable trade winds in the north of Mauritania move the superficial water mass 

northwards. The sub-superficial cold water from the Canary Current flows upwards, bringing 

to the sea surface water from a depth between 60 and 200 m (Sevrin-Reyssac, 1993; Pelegrí et 

al. 2005). Due to an inflexion in the coastline of northern NWA, the presence of the 

upwelling, and the gyre of Mauritania (Van Camp et al. 1991) a water filament is formed. This 

quasi-permanent surface structure extends offshore, and is called the Ghir filament, named 

after Cape Ghir in Morocco (Pelegrí et al. 2005). Another quasi-permanent filament is formed 

off Cape Blanc (Brochier et al. 2008). Filaments are related to upwelling, and are therefore 

more frequent during the maximum upwelling season in summer. According to the changes in 

the upwelling conditions it is possible to classify three upwelling areas (fig. 1-12). Coastal 

upwelling occurs between Gibraltar and Cape Blanc all year long (Pastor et al. 2008). During 

the summer months the upwelling is strong in the north of the Canary Islands, north of the 

25°N latitude, reaching the Iberian Peninsula (Pastor et al. 2008), but becoming weak in 

winter (Stanford et al. 2001). A second upwelling area is observed in the coast off Mauritania 

between 20°N and 25°N (Stanford et al. 2001). Here, the upwelling is permanent (Cury and 

Fontana, 1988). 

 

The presence of canyons or submarine mountains affects the vertical transport of water, 

moving deep water from the oceanic currents upwards. In the Cape Timiris canyon, in 

Mauritania, the upwelling of deep water produces variations in the oceanographic parameters 

at the surface (Schulz et al. 1989). In the south side of NWA, in Cape Verde (Senegal), the 

North Equatorial Current and the North Equatorial Counter Current form another upwelling 

cell, moving cold water to the west. This upwelling is present mainly between November and 

February (Ratmeyer et al. 1999), with maximum effect on the continental shelf off Senegal 

during March and April (Mendy, 2004). As a result, the upwelling condition is permanent to 

the north of 20ºN latitude (Mauritania), whilst it is temporary to the south (Cury and Fontana, 

1988). The influence of upwelling areas in NWA is very strong during winter and early spring, 

increasing the primary production (Évora and Amorim, 2002) due to the movement of cold 

water, rich in nutrients, to the surface. As a result of this, the sea in these areas is rich in fish 

and a cascade effect takes place, with the increase of commercial fish species, seabirds and 

marine mammals (Veen et al. 2003). Good examples of this are the rich fishing grounds of the 

Moroccan coast (Stanford et al. 2001), and the great amount of commercial demersal and 
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pelagic fish, associated with the productivity in Mauritanian waters resulting from the seasonal 

upwelling there (Stobberup et al. 2005a). The most productive area in the entire NWA is 

around Cape Blanc (Brown, 1979). However, the upwelling in the area is not the same every 

year. The North Atlantic Oscillation (NAO) causes variations in the upwelling index, at 

interannual and interdecadal levels (Pastor et al. 2008). 

 

In the NWA coast, trade winds are cold and upwellings appear along the Iberian and 

Moroccan coasts during periods of positive NAO index. During periods of negative NAO 

index the western coast of Africa is warm with reduced upwelling (OSPAR, 2000; Hurrell and 

Dickson, 2004).  

 

Figure 1-12. Upwelling areas in the NWA. The Northern area is from Gibraltar to Cape Blanc, Western 
Sahara. The middle upwelling area includes the coasts off southern Western Sahara and northern 
Mauritania. The Southern area is from Cape Timiris, Mauritania to Senegal. 
 

Marine biology 
The sea life in the entire NWA coasts and the associated Eastern Atlantic Ocean is diverse and 

abundant. The oceanic conditions, including currents and upwellings, allow the existence of 

temperate species in tropical latitudes. Thus, the entire area is a transition zone where marine 

species from different regions converge. An example of this is observed in the coast of 

Mauritania. Water temperature and salinity can reach extreme values in the Banc d'Arguin, 

due to the lack of fresh water from the continent. In addition, the northern subtropical 
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hydrodynamic front produces large fluctuations in local oceanic conditions two times during 

the year. These extreme and changing conditions are reflected by variations in the abundance, 

composition, and migration of fish stocks; resulting in a fish fauna composed of temperate, 

sub tropical and tropical species (Jager, 1993). An example of that is the Horse Mackerel, 

forming a continuous chain of local stocks from the Celtic and North Seas to Cape Verde 

(Kompowski, 1975). 

 

From Cape Blanc, north of the Banc d'Arguin, drastic faunistic changes are observed, like 

those in Cape Frio, Namibia, related with biogeographic barriers and thermal fronts. Between 

these capes lies a zone with tropical conditions (Le Loeuff and von Cosel, 1998). Indeed, the 

heterogeneity in habitats produces changes in the species composition between relatively close 

areas. An example of this is the difference in terms of ecosystem productivity and functioning 

between the Cape Verde archipelago and Guinea-Bissau. Productivity is relatively low in the 

Cape Verde ecosystem, linked to the open ocean, whilst the Guinea-Bissau coast is highly 

productive, because it is an area with an extensive continental shelf influenced by upwelling 

and river runoff (Stobberup et al. 2005a). In general, the marine animals in the islands are 

mostly pelagic, whilst those in the mainland are coastal species. On the other hand, the use of 

these different marine habitats could be different for several species according to their stage in 

the life cycle. Examples of that are the marine turtles Chelonia mydas and Lepidochelys 

olivacea, widely spread in the NWA, but with their nurseries in the Guinea-Bissau area, the 

Bissagós Archipelago in particular (Amorim et al. 2004). 

 

Plankton 

In the entire tropical Eastern Atlantic Ocean, pelagic algal blooms are mainly observed in 

three different areas, affecting the West African coast (fig. 1-13): over much of the Atlantic, 

from Angola to Brazil; in the North Equatorial Counter-current, from West Senegal to 

Demerara, Guyana; and in a coastal upwelling area in the northern Gulf of Guinea, off Ghana 

and Ivory Coast (Longhurst, 1993). 
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Figure 1-13. Main algal blooms areas in western Africa. 
Darker areas show the highest algal concentrations 
(from Longhurst, 1999). 

 

The massive bloom in the NWA, near the coast off Senegal, is affected by the Canary and 

Azores currents, carrying cold water from the north. As a result, the phytoplankton 

composition presents characteristics more temperate than tropical, including cosmopolitan 

species (Margalef, 1961) in the Mauritanian and Senegalese waters. These very large 

phytoplankton stocks are partly wasted (Le Borgne, 1978), because of their great extension 

and failure of zooplankton to graze the phytoplankton down. Usually zooplankton increase is 

coupled with the maximum biomass of phytoplankton, but in NWA the increase in 

zooplankton growth and composition is mainly observed when the water mass is transported 

offshore (Pelegrí et al. 2005). The copepod C. carinatus is the most common species during 

the upwelling season, grazing the high diatom densities over the African shelf. Maximum 

abundance of C. carinatus is found near the centre of the upwelling, an area with high values 

of primary production. As the water masses are transported offshore this copepod species 

moves to deeper waters, and euphausiids migrate vertically and are observed offshore. 

Euphausia khronii is abundant north of Cape Blanc and the salp Thalia democratica forms 

high-density swarms over the slope waters (Pelegrí et al. 2005). 

 

Zooplankton biomass varies with latitude and season, in relation to the wind intensity in the 

upwelling area, showing the highest annual values near Cape Blanc. Maximum values of 

zooplankton biomass are observed in northern NWA in summer and the minimum in winter, 

the opposite of the situation occurring south of Cape Blanc (Pelegrí et al. 2005). As a result of 
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this switch in the spatial and temporal peak of biomass values, zooplankton abundances are 

high through the entire year, when all NWA is considered as a single unit. In Mauritania, the 

high zooplankton biomass is explained either because of a lack of competition with other 

grazers (fish), or weak predation (Le Borgne, 1978). For this reason, the Banc d’ Arguin is a 

very important area for wintering waders, and for zooplankton-feeding seabirds. 

 

In the south side of NWA, the coast off Gambia should be anticipated to be an important area 

for plankton because of the influence of the nutrients discharged by the Gambia River and the 

upwelling in the Gulf of Guinea, but there is a lack of information, especially about 

zooplankton (Mendy, 2004). 

 

Benthos 
Benthic biota is different between localities, mainly because of the presence of different kinds 

of substrates. The islands have a volcanic origin, and present rocky formations, whilst almost 

the entire coast of the mainland consists of sandy beaches. In the Banc d’ Arguin, the presence 

of submerged vegetation promotes the existence of several micro-habitats suitable for a very 

high diversity of benthic forms and micro-invertebrates including annelids, molluscs and 

arthropods. On the other hand, the lack of coral reefs is a remarkable characteristic in NWA, 

and there is a very low diversity of corals for a marine region at this latitude. Most of the 

information about benthic organisms in NWA is restricted to commercial species, especially 

the cephalopod species Octopus vulgaris and Sepia officinalis, and Penaeus notialis shrimps 

in The Gambia (Mendy, 2004), and the Palinuridea lobsters in the Cape Verde Islands 

(Lindley et al. 2004). 

 

Fish 

As a result of the presence of both cold and tropical waters, the list of fish species in NWA is 

large and diverse. In northern NWA and around the archipelagos, fish species are mainly 

pelagic, influenced by the upwelling system. In southern NWA, fish assemblages are 

associated with, and enhanced by, the flow of nutrient from rivers. The clearest example of 

this is the Gambia waters, very rich in terms of fish abundance and diversity due to the effect 

of the Gambia River, which forms a large and productive estuary (Mendy, 2004). 
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Surveys, mainly from Morocco, show that this group includes demersal species like Sergeant 

Major Abudelduf scratalis; Damselfish Charis charis; the Gobies Aphia minuta, Gobius 

paganellus and G. niger; Cardinal Fish Apogon imberbis; the Wrasses Symphodus 

mediterraneus, S. melops and Ctenolabrus rupestris; Big-scale Sand Smelt Atherina boyeri; 

Scaldfish Arnoglossus laterna; Snipefish Macrorhamphosus scolopax; Rockfish Scorpaena 

loppei and S. maderensis; Bogue Dentex maroccanus; sea breams Diplodus vulgaris, D. 

sargus, D. cervinus, D. bellotti and Oblada melanura; Pandoras Pagellus acarne, P. 

erythrinus, and P. bellottii; Gurnards Lepidotrigla dieuzeidei and Chelidonichthys obscurus; 

Scorpionfish Scorpaena notata; Narrow-head Grey Mullet Mugil capurrii; Parrot Seaperch 

Callanthias rubber; Brill Scophthalmus rhombus; Common Guitarfish Rhinobatos rhinobatos; 

Forkbeard Phycis phycis; Red Bandfish Cepola macrophthalma, Canary Drum Umbrina 

canariensis, Grey Gurnard Chelidonichthys gurnardus, False Scad Caranx rhonchus, Hakes 

Merluccius senegalensis and M. merluccius, Common Dentex Dentex dentex and D. 

macrophthalmus, Brown Meagre Sciaena umbra, Splendid Alfonsino Beryx splendens, 

Seabreams Pagellus bogaraveo, Sparus aurata and Agrus caeruleostictus, John Dory Eus 

faber Red Porgy Agrus pagrus European Seabass Icentrarchus labrax Longneck Croaker 

Seudotolithus typus Greater Forkbeard Phycis phycis, Bluefish Pomatomus saltatrix, Groupers 

Epinephelus marginatus and Epinephelus costae, Silver Scabbardfish Lepidopus caudatus, 

Meagre Argyrosomus regius, Largehead Hairtail Trichiurus lepturus, Greater Amberjack 

Seriola dumerili, European Eel Anguilla anguilla, Orange Roughy Hoplostethus atlanticus, 

Blue Ling Molva dypterygia, Oilfish Ruvettus pretiosus, Smalltooth Sawfish Pristis pectinata 

and Mediterranean Moray Muraena helena (Stanford et al. 2001). 

 

Demersal fish assemblages on the Cape Verde and Mauritanian shelves are dominated by 

subtropical species, especially sparids, whereas tropical species are more dominant in Guinean 

waters, specifically sciaenids (Stobberup et al. 2005b). Other species recorded in Cape Verde 

archipelago are tuna Katsuwonus pelamis and Thunnus albacares, the Wahoo Acanthocybium 

solandri, and the small pelagic species Spicara melanurus, Selar crumenophthalmus and 

Decapterus macarellus (Stobberup and Erzini, 2006). 

 

Large deep-water benthic fish in NWA include the Alfonsino Beryx decadactylus, Wreckfish 

Polyprion americanus, European Conger Eel Conger conger, Anglerfish from the family 

Lophiidae, and the Anglers Lophius budegassa and L. piscatorius (Stanford et al. 2001). 
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Sharks are diverse and abundant off the Gambia, mainly Carcharinidae (Mendy, 2004). 

Another miscellaneous group of fish species is the groupers of the genus Epinephelus, mullids 

like Pseudopeneus prayensis, flatfishes, and species from the families Sciaenidae, 

Pomadasysidae, Sparidae and Scorpaenidae (Mendy, 2004). 

 

The non-commercial species reported in the area are, among others, the Wrasses Coris julis, 

Labrus bergylta, Symphodus tinca and Labrus bimaculatus, Broadnosed Pipefish Syngnathus 

typhle, Dragonet Callionymus lyeara, Painted Comber Serranus scriba, Poor Cod Trisopterus 

minutus, Fourspotted Megrim Lepidorhombus boscii, European Flounder Platichthys flesus, 

Lesser African Threadfin Galeoides decadactylus, Blotched Picarel Spicara maena, the 

Grenadiers Nezumia aequalis and Caelorinchus caelorhincus; Slender Rockfish Scorpaena 

elongate; and the Weevers Trachinus vipera and  T. draco (Stanford et al. 2001). 

 

Pelagic fish includes the Derbio Trachinotus ovatus, Pilotfish Naucrates doctor, African 

Threadfish Alectis alexandrinus, Atlantic Saury Scomberesox saurus, Mediterranean 

Flyingfish Cheilopogon heterurus, Cornish Blackfish Schedophilus medusophagus, Slender 

Sunfish Ranzania laevis, Driftfish Cubiceps gracilis, mackerels T. trachurus, T. 

mediterraneus, S. colias, S. scombrus, S. japonicus and Scomberomorus tritor, Crevalle Jack 

Caranx hippos, shads Alosa alosa and A. fallax, Spotted Seabass D. punctatus, Agujon 

Needlefish Tylosurus acus acus, Leerfish Lichia amia, Common Dolphinfish Coryphaena 

hippurus, European Sprat S. sprattus, the Sardine or European Pilchard S. pilchardus, the 

Sardinella S. aurita and S. maderensis, and the European Anchovy E. encrasicolus (Stanford 

et al. 2001). 

 

But the most studied, and commercially important species are the small pelagics, mainly 

sardines and sardinellas. The Round Sardinella S. aurita is a species very common along the 

NWA coasts from West Sahara to Angola (Krzeptowski, 1981). The Canary Current System, 

in northern NWA, sustains a large number of sardines, S. pilchardus and Sardinella spp, and 

the Anchovy E. encrasicolus (Brochier et al. 2008). S. pilchardus is dominant in the Canary 

Current system, from northern Iberia to Morocco, in contrast to the dominance of Anchovies 

in most upwelling systems (Humboldt, Benguela, California). Further south, in the coast off 

Mauritania and Senegal, S. aurita and S. maderensis dominate (Cury and Fontana, 1988, 

Brochier et al. 2008). 
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A large stock of S. aurita along the Mauritania and Senegal coasts, follows movements north-

south between the Canary Current and Guinea (fig. 1-14a), forming different small local 

stocks (Brainerd, 1991). Another stock, off the Sahara and Morocco, is confined within the 

Canary Current upwelling area (Kompowski, 1975). Migration starts off Senegal in May, 

reaching Mauritanian waters in August and until December. In early winter, movements to 

south take place (ter Hofstede et al. 2007). The amplitude of these migrations is different 

between years (fig. 1-14b) as a function of the thermal regime (Samb and Pauly, 2000). This 

species enters Mauritanian and Moroccan waters from the south during spring, and returns 

south after the summer (Tjoe-Awie et al. 2006; ter Hofstede et al. 2007), delaying the return to 

Senegal during summer and autumn depending on the sea surface temperature. A shift in 

ocean climate during 1995 marked sudden Sardinella abundance off Mauritania (Tjoe-Awie et 

al. 2006). These environmental changes could cause changes in the distribution and abundance 

of colder water species such as Sardines S. pilchardus. 

 

         

Figure 1-14. Migration and Distribution of Sardinella spp stocks showing (a) spawning areas along the 
NWA and (b) differences between years (from Samb and Pauly (2000) and ter Hofstede et al. (2007)). 
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Movements of sardinellas are also from the coast to offshore waters, mainly because of 

changes in salinity. An example of that is the displacement of sardinellas from the coast to 

offshore, as a result of the low salinities caused by the discharge of the rivers in Sierra Leone 

(Ettahiri et al. 2003). 

 

In the northern range of NWA, important spawning areas for both Anchovy and Sardine 

during winter are Cape Draa and Cape Juby in Morocco (Brochier et al. 2008). In the case of 

the Sardine, main spawning areas in the Western Sahara are Cap Bojador and off Villa 

Cisneros during three periods: March-April, August-September, and November-December 

(Krzeptowski, 1983). In the case of sardines, winter is the maximum spawning season (Ettahiri 

et al. 2003). 

 

The sardinellas use the same food during their growth (Medina-Gaertner, 1988), with a diet 

composed mainly of zooplankton and phytoplankton (Mendy, 2004). The calanoid copepods 

have been recognized as the main prey for S. maderensis and S. aurita in Senegal (Medina-

Gaertner, 1988). Finally, other small pelagic fish in NWA are the carangids Trachurus 

trachurus, T. trecae and Caranx rhonchus (Mendy, 2004). 

 

Marine mammals 

The cetaceans observed in the NWA area are the Sei Whale B. borealis, Fin Whale B. 

physalus, Bryde's Whale B. edeni, Minke Whales B. acutorostrata, and Humpback Whale 

Megaptera novaeangliae (Stanford et al. 2001). According to reports from Morocco and 

Guinea-Bissau, the odontocetes include the Sperm Whale P. macrocephalus, Short-finned 

Pilot Whale Globicephala macrorhynchus, Common Dolphin D. delphis, the Spinning 

Dolphin Stenella coeruleoalba and S. frontalis, Cuvier's Beaked Whale Ziphius cavirostris, 

Risso's Dolphin Grampus griseus, Bottlenose Dolphin T. truncatus, Harbour Porpoise P. 

phocoena, False Killer Whale Pseudorca crassidens, Killer Whale Orcinus orca, and the 

Atlantic Hump-back Dolphin Sousa teutzii (Stanford et al. 2001; Amorim et al. 2004). The 

Manatee Trichechus senegalensis is the only sirenian species in the zone (Amorim et al. 

2004). 
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Seabirds 

It is difficult to establish the total diversity of seabird species in NWA because either there is 

little information available about them, or they are only found in a specific area for a very 

short time each year (Stanford et al. 2001). The central-eastern Atlantic Ocean in NWA has 

received little attention from ornithologists, especially in comparison with other tropical areas 

like the central-eastern Pacific Ocean. Maybe the most studied location is the Banc d’ Arguin, 

where bird density is high (Wolff et al. 1993) with especially large numbers of waders. One 

feature of the NWA region is a scarcity of breeding seabirds due to shortage of predator-free 

nesting habitat. The lack of breeding seabirds contrasts with the high abundance of suitable 

food due to the upwelling and high primary production of many of these areas. 

 

According to some published reports, the seabirds observed in Morocco, Senegal, Mauritania, 

Cape Verde, Guinea-Bissau, and Gulf of Guinea are: the shearwaters (P. gravis, P. assimilis, 

P. griseus, P. mauretanicus, P. puffinus, C. diomedea and C. borealis), petrels (O. leucorhoa, 

O. castro, Bulweria bulwerii, H. pelagicus and Oceanites oceanicus), Northern Gannet, 

Brown Booby Sula leucogaster, Great Cormorant, Shag, Pink-backed Pelican Pelecanus 

rufescens, skuas (S. pomarinus, S. parasiticus, S. longicaudus, and  S. skua), Terns (Sterna 

hirundo, S. dougallii, S. paradisaea, S. sandvicensis, S. maxima, S. caspia, S. fuscata, S. 

anaethetus, S. maxima, Sterna bergii, S. balaenarum, Anous stolidus, Gelochelidon nilotica, 

and Chlidonias niger), gulls (Larus minutus, L. argentatus, L. sabini, L. audouinii, L. 

ridibundus, L. fuscus, L. michahellis, L. cirrocephalus, and  L. genei), the main waders include 

Calidris ferruginea, Bar-tailed Godwit Limosa lapponica, Common Sandpiper Actitis 

hypoleucos, Grey Plover Pluvialis squatarola, Whimbrel Numenius phaeopus, Grey 

Phalarope, P. fulicaria and Greater Flamingo Phoenicopterus ruber (Wallace, 1973; Brown, 

1979; Marr et al. 1988; Leopold, 1993; Stanford et al. 2001; Burton and Camphuysen, 2003; 

Amorim et al. 2004; Camphuysen and van der Meer, 2005). 

 

The main breeding areas for seabirds in the NWA are Mauritania, Senegal, the Gambia, and 

Cape Verde archipelago (Burton and Camphuysen, 2003). The breeding colonies there show 

strong differences between years, as a result of differences in the food supply (Veen et al. 

2003). The most remarkable breeding seabirds are some tern species, moving for winter to 

Guinea-Bissau, Bonaire and Sierra Leone (Brenninkmeijer et al. 2002). Although breeding 

seabirds are scarce in NWA, this area is very important for migrating seabirds (Leopold, 
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1993), for example being one of the most important wintering areas for the Pomarine Skua in 

the world (Furness, 1987). In the Mauritanian coast, around the Banc d’ Arguin, a high 

number of migrating seabirds have been reported (Leopold, 1993; Wolff et al. 1993; Burton 

and Camphuysen, 2003). 

 

The Mauritanian shelf slope area has been reported as an important area for seabirds in NWA. 

This area supports local breeders and migrating seabirds (e.g. skuas, terns and Sabine’s Gull), 

including immature and sub-adults individuals like Gannet (Burton and Camphuysen, 2003). 

This area has been increasingly targeted by commercial fisheries and is of prime importance 

for seabirds (Camphuysen and van der Meer, 2005). 

 

Pelagic fish, mainly scombrids and other medium-sized fish are available to large seabirds like 

Northern Gannet, and possibly also to the Skuas. These seabird species can feed either fishing 

for themselves, by scavenging or by piracy (Brown, 1979). 

 

Morus bassanus in North-western Africa 
It is well known that large numbers of Northern Gannets utilize NWA waters during the non-

breeding season although it has been thought that most of these birds are juveniles and 

immatures (Nelson, 2002; Wanless, 2002), and some two-year old individuals are known to 

spend the summer in the region (Nelson, 1978). In fact, some individuals have been observed 

during August in Senegal (Baillon and Dubois, 1991). This species is nowadays widespread 

throughout NWA at low densities, apparently more abundant near the coast (Burton and 

Camphuysen, 2003). 

 

Northern Gannets have been observed in association with fishing vessels and pods of 

cetaceans (Burton and Camphuysen, 2003). During daytime, 40% of the all seabirds observed 

in Mauritanian shelf break waters were associated with fishing vessels, with more than 88% of 

Gannets in association with fishing boats (Camphuysen and van der Meer, 2005). 

 

The age class proportion of Northern Gannets observed in Mauritania changes according with 

the month. The proportion of adults was about 50% during January 2000, and less than 20% 

during March 2003. In the opposite direction, proportion of first year individuals was about 

30% during January 2000 and about 50% during March 2003 (Camphuysen, 2003; Burton and 
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Camphuysen, 2003). Most of the individuals observed in Senegal during April were 

immatures (Gaston, 1970). Observed differences could be due to the fact that adults should 

migrate to breeding areas northward towards the end of the winter, or perhaps to an increase in 

the numbers of young birds in recent years (Burton and Camphuysen, 2003). 

 

Stercorarius skua in North-western Africa 
The Great Skua has been reported in NWA waters during the winter months, regularly 

observed near fishing vessels (Leopold, 1993), with a few records during autumn (Baillon and 

Dubois, 1991). In spite of this species presenting lower abundances than Northern Gannet off 

African coasts, it has been observed from Mauritania (Camphuysen and van der Meer, 2005) 

and Senegal (Marr et al 1988) to Nigeria (Wallace, 1973). 

 

Age determination by plumage is difficult in Great Skuas, but both adults and immatures have 

been reported migrating near the Banc d’ Arguin (Leopold, 1993). In Mauritania, during 

January, Gannets were most abundant in the north, with colder waters, whilst skuas were most 

abundant in southern areas (Camphuysen and van der Meer, 2005).  
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Abstract 
 
By means of ring recovery data from the BTO migration of the Great Skua was observed 

between age classes. Analyses were made considering the entire year, the non-breeding period 

and only wintering months. Mean finding latitudes were high between the 1970s and 1990s 

decades, decreasing in recent years, with the southernmost recoveries observed prior to the 

1970s. Typical annual trend is observed with individuals spending the spring and part of the 

summer in northern latitudes, moving to the south during autumn and staying in southern 

latitudes during the winter months. Adult skuas tend to stay close the breeding areas, being the 

young birds the individuals migrating far south. However, the number of records from young 

individuals migrating to North Western Africa decreased in the last 17 years. Despite the 

overall increment in the number of skuas wintering in Africa in the last years, records from 

this area could present bias because the lack in the ring recovery culture. 

 
Introduction 
 

Migration of Great Skuas is well documented, and represents travel from the colonies in 

Scotland, Iceland, the Faeroes, Greenland, and recently Russia and Norway (Furness and 

Ratcliffe, 2004), to southern latitudes off Iberia and north western coasts of Africa (Furness, 

2002a). Adult Great Skuas migrate to winter off the coasts of southern Europe (especially 

Iberia), and return in spring to their colonies, usually to the same breeding territory. Because 

of their philopatry, the offspring normally try to establish a territory within a few hundred 

meters of their birthplace (Klomp and Furness, 1992).  

 

Radar has been used to track migrating birds, especially by night, but new technologies, like 

satellite tracking devices and data loggers, provide much more detailed information related to 

seabird migration nowadays (Weimerskirch et al. 1994, Furness et al. 2006, Shaffer et al. 

2006, Suryan et al. 2007). Recorded movements can thus be related to oceanographic 

variables (Weimerskirch et al. 1995). The use of remote sensing enables researchers to obtain 

information about movements and location automatically at any time (Marchant, 2002). As an 

example, the use of satellite tracking on Short-tailed Albatross determined post breeding 

distribution, and the relation between seabird movements and commercial fisheries in Alaska 

(Suryan et al. 2007). Unfortunately, satellite tracking devices are expensive, heavy, and the 
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risk of losing of them is high (especially when individuals die at remote places, or when the 

apparatus is not deployed correctly). On the other hand, data loggers must be recovered to 

obtain the information recorded, and this requires the capture of the bird two times. 

 

The use of rings provides useful information related to migration, because the marking of 

known individuals permits their movements between sites to be recorded (Marchant, 2002). 

Ringed animals can be followed for the entire life of their rings, unlike the use of electronic 

devices (satellite tracking or data loggers) which is limited by the duration of batteries. But 

effectiveness of ringing depends on systematic surveys to ring and recover individuals. The 

BTO (British Trust for Ornithology) ringing scheme represents an important effort to organize 

and co-ordinate a great number of trained and licensed volunteers throughout the United 

Kingdom.  

 

Ring recoveries are reports of ringed birds found dead, and include reports from volunteer and 

professional ornithologists, and members of the public. The BTO ring recovery data include 

information of recoveries from many parts of the world (Clark et al. 2007; 2009). 

 

Ringing of birds is a powerful tool used in several ecological studies. Using data from BTO 

ringed birds, migratory movements of several species at risk can be followed; for example the 

White-fronted Goose Anser albifrons (Coiffait et al. 2008). Also, ringing recoveries has been 

used in order to establish the effects of the winter weather on shorebird mortality (Clark, 

2004).  

 

The largest numbers of Great Skuas in Europe nest in Shetland with the densest colony on 

Foula (Furness and Ratcliffe, 2004). As a result of this, most ringing of Great Skuas has been 

undertaken with chicks at Foula (Furness, 2002a), although there has been ringing at many 

other Scottish colonies, and to a lesser extent in Iceland, Faeroes and Norway. 

 

The ringing scheme from the BTO provides important information needed to understand 

changes in Great Skua populations, by monitoring their survival rates, productivity and 

dispersal. From ring recoveries it is possible to determine individual movements, related to 

age class, year and month. 
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Many recoveries are reported simply as “found dead” but Great Skuas deliberately or 

accidentally killed by humans, including those drowned in fishing nets or caught on baited 

lines, are a major cause of ring recoveries. Because reports from dead individuals are 

infrequent in some countries, a picture of Great Skua distribution may be biased (Furness, 

2002a). In spite of this, bird movements have been tracked through analyses of ring 

recoveries, as described in the “Atlas of Bird Migration for Birds of Britain and Ireland” 

(Wernham et al. 2002). The existing ring recovery data arte thus useful in detailed analyses 

related to long-term changes in Great Skua migration patterns.  

 

Ring recovery data include information related to the date of ringing, age and status. The age 

of the bird at ringing is known in the case of those individuals ringed as chicks. Furthermore, 

the date of recovery and number of days between ringing and recovering helps to determine 

the age of such animals when they died. 

 

According to the BTO, from each 50 ringed birds that died only one is recovered on average. 

In spite of the low recovery rate, the total number of recoveries is very large, as a result of the 

sustained effort to ring individuals of this species, especially during the breeding season in the 

nesting colonies, mainly in Great Britain (including Orkney, Shetland and the Western Isles) 

and Iceland as well. 

 

In this chapter I have analysed the BTO Great Skua ring recovery database to assess whether 

these data provide any useful information on changes in the wintering latitudes of Great Skuas 

over recent years or decades. 

 

Materials and Methods 
 

Data were obtained from the BTO ringing and recovery scheme. Each record consists of 

individualized detailed information from every single individual ringed and recovered. These 

records include dates, places and geographical locations from ringing and recovery. In 

addition, information related to the distance and time between ringing and recovery is 

included.  
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The main breeding colonies, where most of Great Skuas were ringed are located in the United 

Kingdom. In order to establish a relationship between breeding colonies and finding zones, the 

UK was divided into several areas: Shetland Islands (including Foula), Orkney Islands, Fair 

Isle (all these at northern Scotland), Western Isles (in the Hebrides), and UK (rest of the Great 

Britain). Additionally, Iceland was added as a BTO breeding-ringing area. 

 

In some cases, the ring was found several days after the death of the animal, or the ringing was 

reported long after. Because of that, the BTO ring recovery scheme included information 

about the accuracy of the recovery date. The minimal period of time used during the data 

analyses was one month; as a result of this, finding and ringing inaccuracies greater than 30 

days were excluded. 

 

Similarly, an estimation of the age is provided when the individual was not ringed as a chick. 

Fortunatelly, almost all ringing has been on chicks (Furness, 2002a). In the case of individuals 

not ringed as chicks, the age of recovery was estimated according to the age codes from the 

BTO. 

 

Using the BTO ring recovery database between 1938 and 2007, several analyses were made. 

In all analyses where data were examined by calendar year, individual years were included 

only when there were more than three records, because years with fewer records tend to 

produce wide standard deviations. In analyses of months and mapping of recoveries related to 

main colonies, all data were considered.  

 

Finding latitudes are expressed in minutes, and all positive values correspond to North 

latitude. In the case of latitude in the southern hemisphere, the value appears as a negative 

number. As a reference, Foula is located at 3608 min. Differences in latitudes were calculated 

(ringing - finding latitudes). 

 

Individuals ringed in southern latitudes (with negative values) were excluded because these 

records correspond to South Polar Skuas (C. maccormicki) ringed by British Antarctic Survey 

using BTO rings. The number of ringed skuas by year, and their survival to the first year, were 

calculated as well as the recovery areas of individuals from the main colonies. 
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Data were analyzed in three groups: all year (including data from the 12 months of the year), 

the non-breeding period (including the months from September to May; Furness, 2002a), and 

winter (including the months from December to March). All-year months analyses represent 

the annual trend and the following groups (non-breeding and winter) were considered in order 

to accurate the analyses during the migration period. Analysis included comparisons of finding 

latitudes between years, months and age classes, using graphs to look for trends.  

 

Ages of individuals were grouped in three age classes: age class 1 (fledged up to one year old), 

age class 2 (individuals between 1 and 3 years old), and age class 3 (individuals more than 3 

years old). Age class 3 includes immature (three to eight years old) and adults (Furness, 

2002a), and age class 1 includes juveniles in their first migration journey. 

 

In order to test for differences, ANOVA analyses were made. In cases of non-normal 

distributions of residuals, in spite of transformations of data, Kruskal-Wallis test were 

employed. 

 

Results 
 
The number of ringed birds (including only those ringed as chicks), and those recovered 

during their first year are presented in table 2-I. The ringing numbers show a clear difference 

in the numbers between years, with the highest values during the 1970’s (fig. 2-1). The 

number of records by year for all year, and for the three age classes for non-breeding or 

wintering months as well, is presented in Table 2-II. 

 

Between 1985 and 2003 years, the percentage recovered more than one year after ringing 

showed marked periods with high values, followed by lesser values. But percentages are 

decreasing in the more recent years, 2000-2003 (fig. 2-2). 

 

The numbers of ring recoveries by country, and by ringing area, are presented in the Table 2-

III, with detailed description of finding areas in maps (fig 2-3a-f). 
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Figure 2-1. Number of Great Skua recoveries of chicks ringed by year. 

 
 

 
Figure 2-2. Percentage of Great Skua chick recoveries that were after the first year in each year during the 
period 1958-2003. 
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Table 2-I. Number of ringed birds and chicks by year, number of birds recovered the same year and 
survival. 
 

Year of 
ringing 

Number of 
ringed birds 

recovered 
Number of ringed 
chicks recovered 

Number of ringed chicks 
recovered the same year 

Percent recovered 
after 1st year 

1939 15 15 13 13.3 
1958 4 4 2 50.0 
1959 10 10 6 40.0 
1960 10 10 3 70.0 
1961 23 23 9 60.9 
1962 31 31 8 74.2 
1963 53 53 26 50.9 
1964 31 31 5 83.9 
1965 61 60 10 83.3 
1966 86 86 10 88.4 
1967 53 53 8 84.9 
1968 51 51 3 94.1 
1969 141 140 23 83.6 
1970 85 85 10 88.2 
1971 77 77 8 89.6 
1972 117 116 18 84.5 
1973 69 69 6 91.3 
1974 124 120 17 85.8 
1975 83 83 8 90.4 
1976 122 122 17 86.1 
1977 140 140 29 79.3 
1978 58 58 8 86.2 
1979 78 78 21 73.1 
1980 62 62 13 79.0 
1981 54 54 15 72.2 
1982 48 48 10 79.2 
1983 74 74 19 74.3 
1984 66 66 14 78.8 
1985 36 36 8 77.8 
1986 42 42 11 73.8 
1987 25 25 10 60.0 
1988 32 26 2 92.3 
1989 34 28 7 75.0 
1990 34 28 5 82.1 
1991 49 49 9 81.6 
1992 31 28 9 67.9 
1993 31 31 3 90.3 
1994 39 38 6 84.2 
1995 38 37 7 81.1 
1996 38 34 11 67.6 
1997 37 36 13 63.9 
1998 19 19 5 73.7 
1999 21 20 3 85.0 
2000 19 17 4 76.5 
2001 19 18 8 55.6 
2002 21 20 14 30.0 
2003 9 9 6 33.3 
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Table 2-II. Number of records by year, for years with all months included, by age class.  
 

  Age Class 1 Age Class 2 Age Class 3 
Year All year Winter Non-breeding Winter Non-breeding Winter Non-breeding 
1939 13*  13     
1959 5 2 4     
1960 4  2 1 2   
1961 8 3 7     
1962 11 2 9 1 1   
1963 35 5 26 1 4   
1964 10 1 6 1 1   
1965 23 3 7 3 6 2 4 
1966 17 3 11  2  1 
1967 23 5 12  4  2 
1968 20 1 3 1 4  3 
1969 35 4 21 2 3 2 4 
1970 37 13 21 2 3 1 5 
1971 39 5 12 4 7 1 6 
1972 55 5 18 1 3 1 9 
1973 44 3 7  4 3 8 
1974 63 7 18 2 6 8 18 
1975 53 4 9 2 7 3 11 
1976 98 6 15 2 5 3 29 
1977 88 9 29 5 8 3 17 
1978 63 5 11 2 10 6 20 
1979 86 2 12 3 8 5 29 
1980 89 4 8  2 2 32 
1981 66 6 12 2 4 8 20 
1982 43 3 8 1 4 6 19 
1983 85 2 16 2 7 5 22 
1984 73 3 14  2 5 26 
1985 75 2 9  3 3 25 
1986 68 2 8 2 3 6 19 
1987 59 2 6  1 2 18 
1988 51  1  1 4 22 
1989 34 1 6 2 5 7 12 
1990 52 3 6 2 8 11 25 
1991 35  3 2 3 3 10 
1992 32 1 10 1 2  8 
1993 26 2 5 1 2  10 
1994 30 1 4 1 3 5 9 
1995 39 2 10 1 2 7 15 
1996 39 3 7  2 3 14 
1997 52 2 14 1 3 5 17 
1998 51 4 8 5 6 5 13 
1999 24 1 3 1 1 8 16 
2000 48 4 7 2 3 13 22 
2001 37  9   6 15 
2002 48 3 11 2 3 7 16 
2003 41  2 1 1 4 13 
2004 35 1 1   2 16 
2005 21    1 2 8 
2006 27  4   2 12 
2007 12 2 2   1 2 
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For the period between 1959 and 2007 one trend graph of the annual mean finding latitude 

was made, including all data recorded (fig. 2-4). Great Skua individuals tended to be 

recovered in higher latitudes during the period between 1970’s and 1990’s. In previous years 

ring recoveries were made at low latitudes, with the lowest values for the entire period 

analyzed during the 1960’s. In recent years, there is a tendency to recoveries at low latitudes. 
 
 
 
Table 2-III. Number of ring recoveries by country for each breeding area, including all the data for the 
entire period. 

 Breeding colonies 
Finding country Shetland Great Britain Orkney Fair Isle Western Isles Iceland 

Algeria 10 2 1 1 1  
Azores 2      
Austria 1      

Belgium 13 3 1    
Brazil  4     

Canada 2 1     
Cape Verde  2     
Caribbean 1      

Ceuta 1      
Channel Islands 2      

Denmark 41 33 4 4   
Faeroe Islands 38 25 2 1   

Fair Isle 20 3 1 61 1  
France 189 93 11 9 1  

Germany 57 28 15 4   
Gibraltar 1      

Great Britain 109 299 27 7 17 16 
Greenland 17 17  1   

Iceland 8 4     
Ireland 5 11  2   
Italy 4 2  1   

Ivory Coast  1     
Madeira  2     
Malta 4 3     

Mauritania  1     
Morocco 27 18 1  1  
Norway 36 20 2 1   
Orkney 35 1 64 6  1 
Poland 1 1 1    

Portugal 25 35     
Russia 2      
Senegal 2 1     
Shetland 486 20 4 5  1 

Sierra Leone     1  
South America  3     

Spain 62 47 9 3   
Sweden 12 2 1 1   

Switzerland 1 1     
The Netherlands 98 36 8 1 1  

Tunisia 2 4 1    
United States 2 1     
Western Isles 14   1  1 

Western Sahara 1 2     
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Figure 2-3a. Number of rings recovered of Great Skua individuals, ringed at Shetland Islands, in different 
areas of the Atlantic Ocean. White numbers correspond to areas with the biggest numbers. 
 
 
Most of the recoveries from individuals ringed at Shetland were at the same Shetland Islands, 

followed by recoveries from elsewhere in Great Britain and from France (fig. 2-3a). Great 

Skuas were recovered in an extremely wide area across the Atlantic Ocean (from the North 

Sea to Greenland and North Canada, and from the Western coast of Africa to the Caribbean) 

and the Mediterranean Sea (fig. 2-3a). 
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Figure 2-3b. Number of rings recovered of Great Skua individuals, ringed in the rest of the United 
Kingdom, in different areas of the Atlantic Ocean. White numbers correspond to areas with the biggest 
numbers. 
 

 

Great Skua individuals ringed in the United Kingdom were recovered at the same breeding 

areas, and France as well (fig. 2-3b). Just like birds ringed at Shetland, they were recovered 

over a wide area of the Atlantic Ocean, including remote areas in South America, Cape Verde 

and Ivory Coast (fig. 2-3b).  
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Figure 2-3c. Number of rings recovered of Great Skua individuals, ringed at Orkney, in different areas of 
the Atlantic Ocean. White numbers correspond to areas with the biggest numbers. 
 

 

Individuals ringed at Orkney were mainly recovered at the same Orkney Islands and in France, 

as well as showing dispersal from the Faeroes Islands to Northern Africa (fig. 2-3c). 

 

 

 

 

1 

1 
15 

4 

9 

2 

11 

27 

1 
64 

 4 

1 

8 

2 

 1 

 1 

 1 

Ringed at Orkney                
153 records 

* 



Great Skua ring recovery 

 64 

 
Figure 2-3d. Number of rings recovered of Great Skua individuals, ringed at Fair Isle, in different areas of 
the Atlantic Ocean. White numbers correspond to areas with the biggest numbers. 
 

 

Like individuals ringed at Orkney, those ringed at Fair Isle were recovered at the same Island 

(fig. 2-3d), showing similar dispersal from the Faeroes Islands to Northern Africa (fig. 2-3d). 
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Figure 2-3e. Number of rings recovered of Great Skua individuals, ringed in the Western Isles, in different 
areas of the Atlantic Ocean. White numbers correspond to areas with the biggest numbers. 
 

 

Great Skuas ringed at the Western Isles showed a limited dispersion, with a few extreme 

records in the North and Western Africa, including one in Mauritania (fig. 2-3e). 
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Figure 2-3f. Number of rings recovered of Great Skua individuals, ringed at Iceland, in different areas of 
the Atlantic Ocean (presenting data held by the BTO ringing scheme and not all Icelandic data). White 
numbers correspond to areas with the biggest numbers. 
 

 

Individuals ringed at Iceland showed a very limited dispersion pattern, with most of the 

recoveries at the Great Britain, but this represents a biased sample as it only includes data held 

by the BTO (fig. 2-3f).  
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Figure 2-4. Time series analysis and quadratic trend curve, for the mean finding latitude by year, for all 
recoveries of Great Skuas ringed in UK colonies. 
 

 

All year analyses 
Analyses comparing differences between ringing and finding latitudes, among years and 

months showed marked differences between months (Kruskal-Wallis; H = 950.82, DF = 11, p 

< 0.001) and years (Kruskal-Wallis; H = 159.81, DF = 49, p < 0.001). 

 

In case of the months, three groups are clearly noticeable (fig. 2-5); one of them with the 

higher differences through the period between January and April, a second one, with the 

lowest differences, during the period May-August. The last group corresponds to the autumn 

migration months (September through December). 

 

In the case of years, mean differences showed a pattern that tends to be smaller in recent years 

(fig. 2-6). Nevertheless during the second half of the 1990’s decade, mean differences in 

latitudes between ringing and recovery were higher than those in the previous and following 

years although less than in 1960’s (fig. 2-6). 
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Figure 2-5. Mean differences between ringing and finding latitudes for the all months of the year. 
 

 

Differences in latitudes are related directly to the age class (Kruskal-Wallis; H = 200.45, DF = 

2, p < 0.001), with major differences in the age class 1 followed by age class 2 and finally age 

class 3 (fig. 2-7). Age was calculated from the ring recovery database, and represents the time 

recorded between the ringing date (for birds ringed as chicks) and the finding date.  

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2-6. Mean differences between ringing and finding latitudes for the years through the period 1959-
2007. 
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Figure 2-7. Mean differences between ringing and finding latitudes among age classes for the all months of 
the year. 
 
 

Non-breeding period (September to May)  

At the extreme months of the period (September and May) finding latitudes were higher. This 

is due to the movements to the north during the breeding period. On the other hand, winter 

months presented lower latitudes, showing the migration to the south to winter. These 

differences between months are statistically significant (Kruskal-Wallis; H = 451.14, DF = 8, 

p < 0.001; fig. 2-8).  

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2-8. Monthly mean finding latitudes through the non-breeding period. 
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During the period between 1959 and 2007, a noticeable variation in finding latitudes was 

found (fig. 2-9). During the second part of the 1980’s, as well as in the last years, finding 

latitudes were higher. For the rest of the period, especially during the 1960’s and 1970’s and 

between 1995 and 2000 as well, the graph shows a marked tendency for birds to migrate to 

southernmost areas. Observed differences are statistically significant (Kruskal-Wallis; H = 

131.82, DF = 49, p < 0.001). These differences could be due to changes in migration 

behaviour or to changes in proportions of birds of different age classes in the ringed 

population. So the following analyses were made on different age classes. 

 

During this non-breeding period of time marked differences in finding latitudes by age class 

were observed. Juveniles and immature individuals were found at lower latitudes (fig. 2-10), 

maybe because they do not breed and do not have to attend nests. Differences in finding 

latitudes between age classes are statistically significant (Kruskal-Wallis; H = 84.88, DF = 2, p 

< 0.001). 

 

 
 

 

 

 

 

 

 

 

 
Figure 2-9. Mean finding latitudes by year. Data within years include only the non-breeding months. 
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Figure 2-10. Mean finding latitude by age class, through the non-breeding period. 
 

 

In case of age class 1 (fledged up to one year old), months with lowest latitudes were January, 

February and March, and months with higher latitudes were September and October (fig. 2-

11). These tendencies among months showed marked differences (Kruskal-Wallis; H = 

111.04, DF = 8, p < 0.001). In spite of this tendency being similar for all individuals (fig. 2-8), 

in age class 1 the highest mean values were observed during September and October, whereas 

May showed the highest value for all individuals. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2-11. Mean finding latitude between non-breeding months for age class 1 individuals. 
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Variation in the mean finding latitudes through the non-breeding period among years, between 

all individuals and those of the class 1, were similar. Age class 1 Great Skuas migrated 

furthest south during some years in the 1970’s decade, whilst shorter migrations were found at 

the beginning of the 1990’s (fig. 2-12). These tendencies among years showed marked 

differences (Kruskal-Wallis; H = 76.97, DF = 41, p = 0.001). Nevertheless, in recent years 

large standard deviations were observed; maybe due to some individuals of this age class 

migrating to low latitudes, and to small sample sizes. 

 

 

 
 

 

 

 

 

 

 

 
Figure 2-12. Annual mean finding latitude during non-breeding months for age class 1 individuals. Some 
years were not included because they presented no more than 3 recoveries. 
 

 

In the case of age class 2 individuals (between 1 and 3 years old), tendencies among months 

were similar to those observed with individuals of age class 1 (fig. 2-13), with marked 

differences between months (Kruskal-Wallis; H = 38.18, DF = 8, p < 0.001). 

 

Variations between years in the finding latitude for age class 2 individuals, in the non-

breeding period were not marked (Kruskal-Wallis; H = 24.85, DF = 24, p = 0.098; fig. 2-14). 

One reason for the non-significance in the differences between years is the high values of 

standard deviations from several years (especially during the first half of the 1970’s decade). 
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Figure 2-13. Mean finding latitude between non-breeding months for age class 2 individuals. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-14. Annual mean finding latitude between non-breeding months for age class 2 individuals. Some 
years were not included because they presented no more than 3 recoveries. 
 

 

Age class 3 individuals (more than 3 years old) showed marked differences in finding latitudes 

among the non-breeding months (Kruskal-Wallis; H = 286.34, DF = 8, p < 0.001). These 

differences consist of high finding latitudes during May, maybe because the age class includes 

reproductive adults attending their nests which do not migrate until their chicks fledge. On the 

other hand, lower latitudes were reported in February (fig. 2-15). 
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Figure 2-15. Mean finding latitude between non-breeding months for age class 3 individuals (birds more 
than 3 years old). 
 

 

In the case of analyses between years for age class 3 birds, variations were not large but were 

statistically significant (Kruskal-Wallis; H = 72.45, DF = 40, p = 0.001). In contrast with age 

classes 1 and 2 cases, here the standard deviations were small (fig. 2-16). 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-16. Annual mean finding latitude during non-breeding months for age class 3 individuals. Some 
years were not included because they presented no more than 3 recoveries. 
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Wintering period (December to March)  

Differences between months for all individuals during the winter period (fig. 2-17) showed 

lowest values during February. Observed differences are statistically significant (Kruskal-

Wallis; H = 15.88, DF = 3, p = 0.001). But there were no marked differences between age 

classes during the winter period (Kruskal-Wallis; H = 3.13, DF = 2, p = 0.209; fig. 2-18). 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-17. Monthly mean finding latitudes through the wintering period, including all age classes. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-18. Mean finding latitudes in different age classes through the wintering period. 
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Differences between years were statistically significant (Kruskal-Wallis; H = 163.19, DF = 39, 

p > 0.001) for all individuals in the winter months. Lowest latitudes were reached during the 

1960’s period (fig. 2-19). Some years (from 1959 to 1961) presented high standard deviations. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-19. Mean finding latitudes by year considering the winter months for all individuals. 
 

 

Age class 1 individuals moved to southernmost areas between February and March, during the 

winter months (fig. 2-20). Observed differences are statistically significant (Kruskal-Wallis; H 

= 9.01, DF = 3, p < 0.029). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2-20. Mean finding latitudes by month, during the winter period, for age class 1 individuals. 
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During the 1970’s period, age class 1 individuals migrated to lowest latitudes during the 

winter months (fig. 2-21). Because differences in latitude between years are not statistically 

significant (Kruskal-Wallis; H = 14.83, DF = 28, p = 0.390) there is no clear pattern or 

tendency, maybe due to the high standard deviation for some years. 

 

Age class 2 individuals do not show marked differences between finding latitudes during 

winter months by month (Kruskal-Wallis; H = 0.96, DF = 3, p = 0.811; fig. 2-22) or by year 

(Kruskal-Wallis; H = 4.82, DF = 10, p = 0.186). Actually, only four years presented more than 

three data (fig. 2-23), so the power of this analysis is extremely low. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-21. Mean finding latitudes by year, considering only the winter months, for age class 1 
individuals. Some years were not included because they presented no more than 3 recoveries. 
 

 

 

 

 

 

 

 

 

 

 
Figure 2-22. Mean finding latitudes by month, during the winter period, in age class 2 individuals. 
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Figure 2-23. Mean finding latitudes by year, considering only the winter months, for age class 2 
individuals. 
 

Age class 3 individuals (adults) showed differences between finding latitudes during winter 

months by month (Kruskal-Wallis; H = 9.71, DF = 3, p = 0.021). February appeared as the 

month with the lowest finding latitudes (fig. 2-24).  

 

In the case of the mean latitudes by year, there is a clear pattern showing periods of high mean 

latitudes reported, followed by a similar period with low mean latitudes (ANOVA; F = 2.16, 

DF = 30, p = 0.004; fig. 2-25). However the sample sizes are low and in some cases variances 

are very high. 

 

 

 

 

 

 

 

 

 
 

 
Figure 2-24. Mean finding latitudes by month, during the winter period, for age class 3 individuals. 
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Figure 2-25. Mean finding latitudes by year, considering only the winter months, for age class 3 
individuals. 
 

 

Records from Africa 
In order to establish the number of records, by time and age class as well, final analyses 

correspond to data from ring recoveries south of Gibraltar (2155 min N). 79 cases were found 

between 1963 and 2007. 

 

The southernmost records correspond to individuals from age class 1, followed by those from 

age class 3 (fig. 2-26). During the period between 1963-1980, the number of age class 1 

records were more abundant; but in recent years age class 3 occurred in increasing numbers 

(fig. 2-27). However, this analysis also induces samples with very small numbers of 

individuals. 
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Figure 2-26. Mean finding latitudes from African records, during the period 1963-2007, for all age classes.  
 
 

           
Figure 2-27. Number of ring recoveries from African latitudes by age class, during different periods of 
time. 
 
 
Discussion 
 

The breeding area with the most recoveries was Shetland (Table 2-III). These results accord 

with the literature. The largest numbers of Great Skuas nest in the Shetland Islands (Furness 

and Ratcliffe, 2004). In fact, most of the ringed individuals breeding in the North-eastern 

Atlantic and in the North Sea were ringed at Foula (Furness, 2002a). 

 



Great Skua ring recovery 

 81 

Great Skuas ringed in bigger breeding colonies showed the highest recovery number in the 

same colonies (unlike the Western Isles), supporting the idea of high philopatric behaviour in 

this species (Klomp and Furness, 1992). 

 

In general, monthly migration patterns obtained accord with literature. It is well known that 

immature Great Skuas migrate before adults, having left the breeding areas by late July 

(Klomp and Furness, 1992). Because of that, age class 3 presents the highest finding latitudes 

during May (fig. 2-13), indicating that those individuals remain in the breeding areas, 

defending their territories even if they lose their eggs (Furness, 2002a). Contrasting with this, 

the individuals of age class 1 (fig. 2-9) and age class 2 (fig. 2-11) showed lower mean latitudes 

for this month. Most adults move south in August but a few may stay at the colony even later 

to October (Furness, 2002a). Because of that, they tend not to reach the lower latitudes until 

November (fig. 2-13). 

 

Age class 1 individuals showed very large standard deviations during the period between 

February and March (fig. 2-9), in comparison with the rest of the non-breeding years. This 

could be due to the tendency of youngest immature classes to disperse widely during winter 

months, from South America to the high Arctic (Furness, 2002a). High standard deviations in 

mean latitudes by month, for the age class 3 (fig. 2-22), possibly are a result of the small 

number of records, especially during the winter months (Table 2-I). 

 

Large standard deviations could be result of high variability in migration patterns among 

individuals (for example age class 2 individuals for winter period; figs. 2-22 and 2-23). This 

means that a number of individuals migrated to low latitudes; meanwhile several other 

individuals migrated to high latitudes, or stayed close to the breeding areas, at the same time. 

 

The number of recoveries reported in Africa could be reduced for three main reasons: 1) lack 

of incentive to report ring information among local people; 2) deaths in the open ocean 

(individuals could be scavenging at fishing vessels and dying far from the coast), and 3) a 

possible high survival rate in this region (especially in adults). 

 

However, the numbers of records of seabirds in western Africa are increasing in recent years 

in Great Skuas (Furness, 2002a) as well as in Common Terns (Clark et al. 2007). One possible 
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reason for this is the increasing of wintering seabird numbers migrating to this area, maybe 

searching for food.  

 

Ring recovery results could be biased because of an unknown lack in the number of 

individuals reported in low latitudes, especially in Africa. As a result, the tendency showing 

higher values of mean recovery latitudes to Great Skua individuals in recent years (fig. 2-4) 

could be related to the lack of finding animals in tropical latitudes. In addition, the decreasing 

number of young Great Skuas reported in Africa, especially during the period 1971-1990 (fig. 

2-27), could be related to the increasing number of individuals in higher latitudes. 

 

On the other hand, there is an increasing proportion of adults among Great Skuas found in 

Africa (fig. 2-27), showing that, despite young individuals tending to travel to lower latitudes 

more than adults; there is some evidence of an increasing number of age class 3 individuals 

migrating further south. But this interpretation must be tentative, and is limited by the low 

numbers of adults recovered each year. 

 

Records of Great Skua sightings off Western Africa already exist, especially during the winter 

months. The southernmost record of this species was one single individual sighted at Lagos, 

Nigeria, in January 1971 (Wallace, 1973). During February and March 1976 off coasts from 

Senegal and The Gambia, several Great Skua individuals were sighted and reported at 

densities of 0.06 to 0.01 individuals per 10 minutes, being one the commonest seabird species 

in the area up to the beginning of March (Brown, 1979). In May 1988 two adults and 10 

immature Great Skuas were sighted at Mauritanian waters (Leopold, 1993). One individual 

was recorded off Senegal coast in autumn, four individuals on summer and three in April 1993 

(Marr et al. 1998). In January 2000, 59 Great Skua individuals were observed off the coast of 

Western Sahara, and 165 off the coast of Mauritania (Camphuysen and van der Meer, 2005), 

showing that this species is a common winter migrant in the North-western coast of Africa. 

These observations support the idea that ring recoveries may be underreported there. 

 

There are two opposite hypothesis explaining changes in migration patterns among Great 

Skuas. First, this cold-adapted species (Furness and Ratcliffe, 2004) tends to remains at high 

latitudes (mainly adults) especially in recent years, because global warming is promoting 
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suitable conditions for wintering in high latitudes. This idea is be supported by the increase in 

the trend of mean finding latitude during recent years (fig. 2-4). 

 

The second hypothesis is related to the search for food in tropical latitudes because of the 

collapse of fisheries in the North Sea (Votier et al. 2004a). As a result, the proportion of Great 

Skua adults migrating to lower latitudes could be increasing (fig. 2-27) and visiting fishing 

areas in the Western coast of Africa, but ring recoveries do not clearly reflect these numbers 

due to absence of ring reports. 

 

The use of data loggers, and satellite tracking devices could help to determine whether this 

species is migrating to tropical latitudes or whether they tend to remain close to breeding areas 

in the North Sea. 

 



Chapter 3 

 

 

 

 

Northern Gannet ring recovery 

 

 

 

 

 

 

 

 

 

 

 

 

 



Northern Gannet ring recovery 

 85 

Abstract 
 
Data from the BTO ring recovery scheme was used to evaluate changes in the Northern 

Gannet migration pattern between age classes. Analyses were made considering the entire 

year, the non-breeding period and only wintering months. Mean finding latitudes were high 

during the 1970s and 1980s decades, showing the lowest finding latitudes during the 1950s 

decade. A noticeable decrement in the finding latitudes is observed during the 1980s and 

1990s decades. The typical annual trend shows individuals spending the spring and part of the 

summer in northern latitudes, moving to the south during autumn and staying in southern 

latitudes during the winter months. Adult gannets tend to stay closer to the breeding areas than 

young individuals. Nonetheless, adult recoveries from Africa increased during the 1960-2000 

period, decreasing in the last decade. Data from the winter months showed adult gannets 

moving far south in the last years. 

 

Introduction 
 

By August or September Northern Gannet colonies become deserted as the immatures have 

begun their migration. First year Gannets disperse widely to the south as far as the Equator 

and into the Mediterranean Sea (Dorst, 1962), but no staying far from the Continental Shelf 

(Flegg, 2004). In some cases juveniles head to the north and east or west around Britain, or to 

the coasts of the North Sea, before to the migration to the south (Nelson, 2002). However, it 

has been suggested that Gannets at the Bass Rock colony are laying later in recent years, with 

fledging dates up to October (Hunt and Nelson, 2008), which obviously affects the timing of 

migration.  

 

The most commonly used technique to track migratory movements is ring recovery. The 

permanent rings allow known individuals to be tracked in time and space (Marchant, 2002). 

Ringed animals can be followed for the entire life after rings (Clark et al. 2009), unlike 

electronic devices which are limited by the duration of batteries. But effectiveness of ringing 

depends on systematic surveys to ring and recover individuals along the entire distribution 

area (including the breeding and wintering zones). The BTO (British Trust of Ornithology) 

ringing scheme provides valuable information on Northern Gannet movements indicated by 

means of ring recovery, providing data related to the ringing and finding dates and latitude of 
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each record. With this information it is possible to calculate the age of individuals ringed as 

chicks, and thus assign an age class. Most Gannets are ringed as chicks. 

 

These recoveries are reports of all ringed birds found dead, from volunteer and professional 

ornithologists, and members of the public as well. The BTO ring recovery data include 

information of recoveries from different parts of the world (Clark et al. 2007). In the case of 

Northern Gannets, many of the recovered individuals correspond to accidental captures on 

baited fishing lines, as well as in nets (Wanless, 2002).  

 

The ringing of Northern Gannets began in the Bass Rock in 1904, and shows an increased 

number of recoveries through time. The average recovery rate is 5.9%, which is higher than 

that from Canadian populations or from other species of Gannets (Nelson, 2002). Due to the 

tendency to return to breed in the same area where they were hatched (Nelson, 1966); it is 

possible to determine the number of individuals dying during the migration period. 

Movements of Northern Gannet are continuous through the year, but there is a general 

migratory pattern from northern colonies in Scotland and Ireland to Iberia and western Africa 

(Nelson, 2002), with some individuals moving towards the Mediterranean (Mead, 1983; 

Nelson, 2002). Gannets are abundant winter migrants in the waters off Western Sahara and 

Mauritania, especially near the shelf edge (Camphuysen and van der Meer, 2005). 

 
Materials and Methods 
 

Using the BTO ring recovery database between 1913 and 2007, several analyses were made. 

In all cases years included in the analyses were those with more than three records, because 

years with few records tend to produce wide standard deviations.  

 

In order to detect differences in finding latitudes between months, years and age classes, 

ANOVA analyses were made. In the case of non-normal distributions of the residuals, in spite 

of transformations of data, the non-parametric Kruskal-Wallis analysis was employed. 

Latitudes are expressed in minutes, and negative values correspond to recoveries south of the 

equator. Ages of individuals were grouped in three age classes: age class 1 (fledged up to one 

year old), age class 2 (individuals between 1 and 5 years old), and age class 3 (individuals 6 
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years old and older). Age class 3 includes adults and age class 1 includes juveniles in their first 

migration journey. 

 

The recovery data are difficult to interpret because the Gannet has a prolonged breeding 

season. Adults could attend colonies from December-January to November, with chicks 

fledging between August and October (Wanless, 2002). Because of that, the analyses related 

to ring recovery were made for all months of the year, and then again separately for non-

breeding months (September to May; Wanless, 2002) and winter months (December to 

March). 

 

Results 
 

The number of ringed birds, indicating the number of those ringed as chicks, and the number 

of chicks recovered the same year of ringing, are presented in Table 3-I. Numbers of records 

by year for the whole year, and for the three age classes for non-breeding or wintering months 

as well, are presented in Table 3-II. 
 

 

 

Table 3-I. Number of ringed birds and chicks by year, number of birds recovered the same year and 
survival. 

Year 

Number of 
ringed birds 

recovered 
Number of ringed 
chicks recovered 

Number of ringed chicks 
recovered the same year 

Percent recovered 
after 1 year of age 

1913 7 4 4 0 
1914 5 5 4 20 
1921 1 1 0 100 
1923 5 5 3 40 
1924 9 9 5 44.4 
1926 7 7 3 57.1 
1927 4 4 3 25 
1931 1 1 1 0 
1933 10 6 2 66.6 
1934 93 85 40 52.9 
1935 31 30 16 46.6 
1936 12 9 5 44.4 
1937 30 30 17 43.3 
1938 82 77 59 23.3 
1939 44 40 23 42.5 
1940 3 0 0 0 
1945 13 7 3 57.1 
1946 45 32 15 53.1 
1947 44 29 6 79.3 
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1948 23 23 12 47.8 
1949 32 31 22 29 
1950 15 14 8 42.8 
1951 22 22 13 40.9 
1952 19 12 5 58.3 
1953 18 17 6 64.7 
1954 51 50 28 44 
1955 59 52 25 51.9 
1956 40 36 13 63.8 
1957 89 85 27 68.2 
1958 43 33 14 57.5 
1959 63 51 23 54.9 
1960 57 48 8 83.3 
1961 172 167 89 46.7 
1962 161 152 36 76.3 
1963 223 222 89 59.9 
1964 63 61 11 81.9 
1965 118 114 33 71 
1966 206 195 60 69.2 
1967 29 28 6 78.5 
1968 165 165 36 78.1 
1969 85 81 24 70.3 
1970 109 98 26 73.4 
1971 74 69 9 86.9 
1972 47 44 17 61.3 
1973 37 36 13 63.8 
1974 70 70 27 61.4 
1975 68 64 15 76.5 
1976 41 41 10 75.6 
1977 40 37 6 83.7 
1978 25 25 5 80 
1979 45 42 7 83.3 
1980 26 25 7 72 
1981 53 50 8 84 
1982 43 41 5 87.8 
1983 35 35 6 82.8 
1984 77 75 13 82.6 
1985 124 120 34 71.6 
1986 137 124 20 83.8 
1987 133 125 25 80 
1988 113 104 27 74 
1989 48 46 8 82.6 
1990 77 70 13 81.4 
1991 72 71 14 80.2 
1992 48 48 11 77 
1993 46 46 14 69.5 
1994 29 24 1 95.8 
1995 53 53 10 81.1 
1996 32 32 11 65.6 
1997 47 45 9 80 
1998 18 16 5 68.7 
1999 35 32 9 71.8 
2000 35 35 15 57.1 
2001 26 26 11 57.6 
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2002 29 29 8 72.4 
2003 17 16 6 62.5 
2004 6 4 3 25 
2005 19 18 14 22.2 

 

 
Table 3-II. Annual ring recoveries by age class, for each year with all months included, and for non-
breeding or winter months only. 

  

 
All year 

Age Classes 
September-May 

Age Classes 
Winter 

Age Classes 
Year 1 2 3 1 2 3 1 2 3 
1913 4 1  4      
1914 4   4   1   
1916  1 1   1   1 
1917   1   1   1 
1923 3   3      
1924 6 1  6 1     
1925  3   3   1  
1926 3 1  3      
1927 3 3  3 2   1  
1928  2   1   1  
1929  1        
1931 1   1      
1932   1   1    
1933 2   1      
1934 40 4  30 3  1 1  
1935 26 22  25 18  10 4  
1936 7 14 2 7 10 2 3 9 2 
1937 18 8 2 15 6 2 2 6 1 
1938 59 14  54 11  8 6  
1939 29 17  22 11  1 5  
1940 3 5 1 3 3 1 3 3  
1941  5   3   1  
1942  3   2   2  
1943  5 2  2 1  2  
1944  1 2   2    
1945 3 2 1 3 2 1    
1946 15 1 2 14 1 2   1 
1947 6 7 3 5 5 2 1 3 1 
1948 16 23 3 16 13 2 5 3 2 
1949 23 15 1 21 10 1 2  1 
1950 11 10 3 6 7 3 1 4 3 
1951 13 8 3 13 6 3 2 4 2 
1952 6 8 4 6 7 4 1 3 2 
1953 7 5 3 5 3 1  1 1 
1954 28 12 1 28 8  3 3  
1955 24 11 3 18 9 2 2 3 2 
1956 16 11 2 14 7 2 5 3 1 
1957 24 13 1 18 12 1 3 3 1 
1958 16 17 3 12 13 3 1 6 2 
1959 23 23 2 17 16 1 5 7 1 
1960 7 15 1 7 10 1  4  
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1961 77 22 5 72 13 3 9 2 2 
1962 39 15 5 35 13 2 7 6 1 
1963 87 30 5 82 22 3 10 7  
1964 16 20  15 15  5 6  
1965 30 27 7 28 19 7 5 4 6 
1966 51 31 6 45 22 4 3 11 1 
1967 12 30 15 12 24 11 3 8 5 
1968 29 24 18 22 18 12 1 12 5 
1969 23 28 23 20 23 19 1 7 8 
1970 24 31 18 20 21 12  3 2 
1971 11 24 17 10 15 12 2 6 5 
1972 16 16 15 16 14 15 1 6 7 
1973 14 22 15 11 20 10 1 9 4 
1974 25 19 14 20 11 8 1 3 3 
1975 17 8 25 13 4 20 1 2 11 
1976 8 14 19 5 8 13 1 7 8 
1977 4 10 30 4 5 19 1 2 10 
1978 6 13 33 4 10 24 3 5 7 
1979 6 7 29 1 5 24  3 12 
1980 9 12 35 8 9 29 2 4 12 
1981 8 13 35 6 9 30  3 16 
1982 7 7 24 6 5 20 2 1 12 
1983 7 7 20 3 4 20 1 1 9 
1984 11 8 29 8 5 19 2 2 12 
1985 32 18 36 27 8 26 1 1 10 
1986 24 29 24 19 17 17 3 5 10 
1987 23 32 21 20 14 14 2 2 8 
1988 26 23 18 22 14 11 2 3 6 
1989 8 39 18 6 26 13 2 5 7 
1990 15 31 35 10 21 31 4 7 16 
1991 17 36 30 14 25 20 1 9 5 
1992 11 24 21 9 17 15 2 2 6 
1993 16 26 32 14 19 22 2 6 10 
1994 4 18 37 3 6 29 1 2 15 
1995 11 17 31 6 14 21  10 9 
1996 12 20 33 8 13 17  3 5 
1997 10 11 42 6 8 30  3 12 
1998 6 24 28 5 19 26 1 6 13 
1999 11 15 25 8 7 16 1 3 3 
2000 15 16 32 9 12 23 1 4 10 
2001 14 11 35 8 10 24 2 4 8 
2002 10 22 28 9 14 22 2 4 14 
2003 9 14 24 5 10 18 1 4 11 
2004 5 16 20 5 11 18 2 2 3 
2005 14 4 22 8 2 15   6 
2006 2 12 25 2 9 19  2 4 
2007  1 12  1 10   6 

 

 

The periods of time with the highest numbers of ringed chicks recovered were between 1960 

and 1970, and between 1985 and 1990 (fig. 3-1). From 1980 to 1997 the percentages 
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recovered after the first year of life were high, with a large decrease in the following years 

(fig. 3-2). 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 3-1. Number of recovered Northern Gannet chicks ringed by year. 
 

 

 
Figure 3-2. Percentage of Northern Gannet chicks recovered after their first year during the period 1913-
2005. 
 

 

Most of the recoveries of individuals were made in British, French and Spanish waters, and 

originate mainly from the Bass Rock (Lothian), and Ailsa Craig (Strathclyde) breeding areas 

(Table 3-III). The numbers of ring recoveries by country, and by ringing area, are presented in 

Table 3-III, with detailed description of finding locations in maps (fig. 3-3a-d). 
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Table 3-III. Number of ring recoveries by country for each breeding colony, including all the data for the 
entire period. 

 Breeding colonies 
Finding country Channel 

Islands 
Ireland Bass Rock 

Lothian Region 
Rest of 
Great 

Britain 

Ailsa Craig 
Strathclyde 

Region 
Algeria  6 9 5 5 
Azores   1   

Belgium   17 4 1 
Ceuta     2 

Channel Islands   7 2 1 
Denmark  5 59  7 

Faeroe Islands  2 2 3 2 
Finland  1  1  
France  119 211 136 110 

Germany  20 44 4 6 
Gibraltar   1   

Great Britain 88 91 481 390 120 
Guinea Bissau     1 

Iceland   3   
Ireland 5 142 24 37 52 
Israel  2  1  
Italy  3 5 3 4 

Ivory Coast  1    
Libya    1  

Lothian Region  1 171 3 3 
Malta   1 1  

Mauritania  4 19 10 13 
Morocco  36 62 27 50 

North Atlantic   4 17 4 
Norway  1 31 10 5 

Orkney-Shetland  3 17  6 
Portugal  41 93 32 51 
Russia   1   
Senegal  17 14 10 9 
Spain  78 124 121 72 

Strathclyde Region  5 8 1 221 
Sweden  1 9  3 

The Netherlands  11 107 14 11 
Tunisia     2 
Turkey   1   

Western Mediterranean   1 1 1 
Western Sahara  18 17 13 15 
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Figure 3-3a. Number of rings recovered of Northern Gannet individuals, ringed in Ireland, in different 
areas of the Atlantic Ocean. White numbers correspond to areas with the biggest numbers. 
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Figure 3-3b. Number of rings recovered of Northern Gannet individuals, ringed at the Bass Rock, Lothian 
Region, in different areas of the Atlantic Ocean. White numbers correspond to areas with the biggest 
numbers. 
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Figure 3-3c. Number of rings recovered of Northern Gannet individuals, ringed in other areas of Great 
Britain, in different areas in the Atlantic Ocean. White numbers correspond to areas with the biggest 
numbers. 
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Figure 3-3d. Number of rings recovered of Northern Gannet individuals, ringed at Ailsa Craig, 
Strathclyde Region, in different areas of the Atlantic Ocean. White numbers correspond to areas with the 
biggest numbers. 
 

 

For the period between 1934 and 2007 one graph of time series analysis and the trend, related 

to the mean finding latitude, was made. During the years between 1930 and 1970, values 

oscillated between high and low values (from 2600 min to 3200 min), while higher values 

appeared between 1975 and 1985 (fig. 3-4). Trends in recent years maintain fairly consistent 

values just under 2900 min of finding latitude with occasional higher peaks (fig. 3-4). 
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Figure 3-4. Time series analysis and trend line, for the mean finding latitude by year. 
 

 

All year analyses 
Major differences between ringing and finding latitudes are found in November and 

December, followed by January and February (fig. 3-5). This means that during these months 

the Gannets are wintering furthest south. On the other hand, from April to August individuals 

tend to stay close to their breeding areas in northern latitudes. These trends accord with the 

nest attendance by adults, and are statistically significant differences (Kruskal-Wallis; H = 

617.13, DF = 11, p < 0.0001). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-5. Mean differences between ringing and finding latitudes for the all months of the year. 
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Differences in latitudes between years are fairly similar for the whole period of time (1913-

2007), but with higher values between 1955 and 1965 (fig. 3-6). In the last 20 years there is a 

slight trend to lower differences, maybe due to a high proportion of ring recoveries near the 

breeding colonies (Kruskal-Wallis; H = 234.34, DF = 79, p =<0.0001). 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-6. Mean differences between ringing and finding latitudes for the years 1913-2007. 
 

 

 

 

 

 

 

 

 

 
 

 

Figure 3-7. Mean differences between ringing and finding latitudes among age classes for all months of the 
year. 
 

Higher differences between ringing and finding latitudes were found in age class 1 individuals 

(fig. 3-7), compared with differences observed among age class 3 individuals (Kruskal-Wallis; 

H = 363.04, DF = 2, p < 0.001). 
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Monthly mean finding latitudes in Age class 1 individuals show three different periods. They 

tend to stay at high latitudes (near the colonies) in June-October. During the periods from 

March to May, and November to December, movements to mid latitudes (around 2300 min N) 

take place. Differences in latitudes are statistically significant (Kruskal-Wallis; H = 307.16, 

DF = 11, p =<0.0001). Southernmost movements are observed in January and February (fig. 

3-8). 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 3-8. Mean finding latitudes for age class 1 Gannets, through the year. 
 

 

Finding latitudes from age class 1 individuals are similar between years, with lower latitudes 

reached in recent years (Kruskal-Wallis; H = 213.46, DF = 61, p < 0.001; fig. 3-9). In the last 

30 years higher standard deviations are noted, maybe due to an increasing number of 

individuals migrating to far south latitudes, and far north as well. 
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Figure 3-9. Annual mean finding latitudes for age class 1 Gannets. 
 

 

The age class 2 individuals stay at high latitudes between April and October, and spend the 

rest of the year moving to low latitudes (fig. 3-10). The differences in latitudes among months 

is clear and statistically significant (Kruskal-Wallis; H = 181.41, DF = 11, p < 0.0001). 

Differences between years are not statistically significant (Kruskal-Wallis; H = 77.71, DF = 

68, p = 0.197; fig. 3-11). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-10. Mean finding latitudes for age class 2 Gannets. 
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Figure 3-11. Annual mean finding latitudes for age class 2 individuals. 
 

 

In the case of age class 3 Gannets, monthly mean finding latitudes shows three clear groups 

(fig. 3-12). From April to September, values are high (around 3200 min N), from February to 

March values are intermediate, whilst lower latitude values appear from October to January. 

The differences are clear and statistically significant (Kruskal-Wallis; H = 197.29, DF = 11, p 

<0.0001). 

 

 

 

 

 
 

 
 

 

 

 

 
Figure 3-12. Mean finding latitudes for age class 3 individuals. 
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Age class 3 individuals show similar mean finding latitudes by year, but with a slight tendency 

to reach lower latitudes in recent years (Kruskal-Wallis; H = 77.8, DF = 45, p = 0.002; fig. 3-

13). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3-13. Annual mean finding latitudes for age class 3. 
 

 

Non-breeding period (September to May)  
Monthly mean finding latitudes, including all the individuals, shows months November, 

December and January having the lower latitude recoveries (fig. 3-14). April and May are the 

months with higher latitudes. In accordance with this, Northern Gannets tend to migrate 

furthest southern during the winter months. The movements to wintering areas occur from 

September to October, and the return movements are in February and March (fig. 3-14). 

Differences between non-breeding months are statistically significant (Kruskal-Wallis; H = 

273.8, DF = 8, p < 0.001). 
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Figure 3-14. Monthly mean finding latitudes during the non-breeding period. 
 
 
Annual mean finding latitudes were low during several years in the period between 1930 and 

1965, and high between 1975 and 1985, and between 1950 and 1955 (fig. 3-15). Despite the 

high standard deviations in some years, differences are marked and significant (Kruskal-

Wallis; H = 208.4, DF = 74, P < 0.001). 

 

 

 

 

 

 
 

 

 
 

 

 

 
Figure 3-15. Mean finding latitudes by year. Data within years include only the non-breeding months. 
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The mean finding latitudes between age classes show statistically significant differences 

(ANOVA, F = 166.96, DF = 2, p = 0.001), with age class 1 individuals migrating to 

southernmost areas, followed by age class 2 individuals (fig. 3-16). 

 

 

 

 

 
 

 

 
 

 

 
Figure 3-16. Mean finding latitudes by age class during the non-breeding months. 
 
 
In the case of the individuals from age class 1, far south movements appeared in November to 

February (fig. 3-17). Monthly differences in mean latitudes are significant (Kruskal-Wallis; H 

= 211.88, DF = 8, p < 0.001).  

 
 

 

 

 

 

 

 

 

 

 

 
Figure 3-17. Monthly mean finding latitudes for individuals from age class 1. 
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In the same way, finding latitudes between years showed marked differences for age class 1 

individuals, in the case of non-breeding months (Kruskal-Wallis; H = 195.99, DF = 66, P < 

0.001; fig. 3-18). 
 

 

 

 

 
 

 

 

 

 

 
Figure 3-18. Mean finding latitudes for individuals from age class 1. 

 

Age class 2 individuals migrated to similar high latitudes before autumn migration 

(September-October), and in spring (April-May), moving to low latitudes (below 2800 min) 

from November to March (fig. 3-19). Finding latitudes from the non-breeding months, showed 

statistically significant differences (ANOVA; F = 9.92, DF = 8, p < 0.001). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-19. Monthly mean finding latitudes for individuals from age class 2 in the non-breeding period. 
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In case of the finding latitudes in the non-breeding months between years, from age class 2 

individuals, there is no clear tendency (fig. 3-20), and differences were not evident (ANOVA; 

F = 1.11, DF = 63, p = 0.264). 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-20. Mean finding latitudes for individuals from age class 2. 
 

 

Age class 3 individuals reach lowest latitudes in their migration pattern after October (fig. 3-

21). Adults remain at lower latitudes until January, and stay at high latitudes in September, 

April and May (fig. 3-21). Mean finding latitudes show significant differences between the 

non-breeding months (Kruskal-Wallis; H = 138.98, DF = 8, P < 0.001). 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3-21. Monthly mean finding latitudes for individuals from age class 3 in the non-breeding period. 
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There is a tendency among adult Northern Gannets to migrate to lower latitudes in the non-

breeding period (fig. 3-22). Despite large standard deviations, mean finding latitudes show 

significance differences between years (Kruskal-Wallis; H = 69.37, DF = 42, P < 0.005). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-22. Mean finding latitudes for individuals from age class 3. 

 

 

Wintering period (December to March)  
In a graph including all individuals, monthly variation is great (ANOVA; F = 12.58, DF = 3, P 

< 0.0001), showing that ring recoveries at lower latitudes appear in December and January 

(fig. 3-23). From January to March it is evident that individuals are returning towards breeding 

colonies. 

 

Lower mean finding latitudes were recorded in the period from 1940 to 1965 (fig. 3-24). For 

the rest of the time analysed, there is no clear trend in finding latitudes. Nevertheless, 

differences between years are significant (ANOVA; F = 2.68, DF = 64, p < 0.001). 
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Figure 3-23. Monthly mean finding latitudes in the winter months. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3-24. Mean finding latitudes by year. Data within years include only the winter months. 

 

 

In the winter months, age class 1 individuals of Northern Gannet were at lower latitudes, 

meanwhile adults (age class 3) tended to stay at high latitudes (3000 min). Differences in 

mean finding latitudes between age classes were substantial and significant (ANOVA; F = 

160.62, DF = 2, p < 0.001; fig. 3-25). 
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Figure 3-25. Mean finding latitudes by age class in the winter months. 

 

During the winter months age class 1 individuals were reported in the southernmost latitudes 

during January (fig. 3-26), and their mean latitudes oscillated over years (fig. 3-27). But 

neither variations between months (Kruskal-Wallis; H = 3.79, DF = 3, p = 0.285) nor years 

(Kruskal-Wallis; H = 13.38, DF = 10, P = 0.261) showed statistical significance. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-26. Monthly mean finding latitudes for individuals from age class 1 in the winter period. 
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Figure 3-27. Annual mean finding latitudes for individuals from age class 1 in the winter period. 
 

 

In the same way, variations across months (fig. 3-28) and years (fig 3-29) were not great for 

individuals from age class 2 (months ANOVA; F = 0.91, DF = 3, p = 0.435; years ANOVA; F 

= 0.85, DF = 34, p = 0.705). 

 

 

 

 

 

 

 

 
 

 
 

 
Figure 3-28. Monthly mean finding latitudes for individuals from age class 2 in the winter period. 
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Figure 3-29. Annual mean finding latitudes for individuals from age class 2 in the winter period. 
 

 

Age class 3 Northern Gannets reached their lowest mean latitudes in January, during the 

winter months (fig. 3-30), and the differences between months are noticeable (Kruskal-Wallis; 

H = 25.56, DF = 3, p < 0.001). But differences between years (fig. 3-31) were not statistically 

significance (Kruskal-Wallis; H = 48.36, DF = 36, p = 0.082). 

 

 

 

 

 

 

 

 

 

 
 
Figure 3-30. Monthly mean finding latitudes for individuals from age class 3 in the winter period. 
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Figure 3-31. Annual mean finding latitudes for individuals from age class 3 in the winter period. 
 

 

Records from Africa 

During the period between 1934 and 2006, 304 ringed Northern Gannets were reported in 

West Africa, from Gibraltar (2155 min N) southwards. In all these cases, finding latitudes 

were similar between age classes, around 1600 min N (fig. 3-32).  

 

 

 

 

 

 

 

 

 

 

 
Figure 3-32. Mean finding latitudes by age class, from all ring recoveries of Northern Gannets in Africa. 
 

From all records of Gannets recovered in Africa, age class 1 represents the majority of the 

cases, reaching the highest values in the period 1961-1970, but there is a noticeable tendency 

of decreasing numbers in recent decades (fig. 3-33). 
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On the other hand, the number of records from age class 3 individuals showed a tendency to 

increase, with a peak during the 1991-2000 period. Whilst there were no records before 1960, 

the number of ring recoveries is now higher. The ring recoveries for the three age classes 

decreased in the last period of time (2001-2007). 

 

 
Figure 3-33. Number of records over the time period of Northern Gannets in Africa, by age class. 

 

 

Discussion 
 

The use of ring recoveries to track migratory movements in gannets has been applied to 

individuals ringed in northern locations (Wanless, 2002) and particularly in the Bass Rock 

(Nelson, 2002), in the Channel Islands (Veron and Lawlor, 2009), and in the Faeroe Islands 

(Danielsen and Jensen, 2004).  

 

Mean finding latitude has tended to increase over the years. This means that individuals tend 

to remain close to the North Sea in recent years, while in the past they tended to move farther 

south. These results could be biased because an unknown lack in the number of individuals 

reported at low latitudes, especially off the coast of Africa, or the possibly low death rate at 

these latitudes, and could be biased by changing proportions of recoveries of juneniles and 

adults (age classes 1 and 3 in this analysis). 

 



Northern Gannet ring recovery 

 114 

Another possible explanation of this is related to climate change. Considering the warming of 

the environment, a logical response from birds should be to winter at higher latitudes than in 

previous years, or to spend more time at the breeding areas (Newton, 2008). Migratory 

tendencies have changed over time for several species, with shorter migratory movements as a 

result of global warming because northern regions became more suitable for wintering birds 

(Siriwardena and Wernham, 2002). Based on artificial selection experiment, the current 

climate warming is favouring the Blackcaps (Sylvia atricapilla) to winter closer to the 

breeding grounds (Pulido and Berthold, 2010). 

 

Human activities, and especially fisheries, are affecting seabird populations. Depletion of 

commercial fish resulting in the lack of fishery boats providing food for scavenging seabirds, 

reduces the amount of food for these seabirds in the North Sea. In the same way, the 

developing trawl fisheries on the continental shelf off West Africa increases the amount of 

food available to seabirds there. Changes in the number of bird migrants could be related to 

such changes in the conditions in the breeding or wintering areas, or both (Newton, 2004). 

 

The marked differences in ringing and finding latitudes between age classes (fig. 3-7) suggest 

that migration movements are related to age. Whether post-breeding adults stay close to 

breeding areas or disperse to remote ones is not well known, but young birds travel to distant 

areas especially during their first year of independence (Nelson, 1980). In all cases (all year, 

non-breeding or winter months), age class 1 individuals migrated farther south than immatures 

and adults. This reflects the strong migration among first-years, with many birds from the east 

Atlantic reaching Senegal and some crossing the equator in the Gulf of Guinea (Wanless, 

2002). Gannets experience true migration in their first year, with limited movements thereafter 

(Nelson, 1980). 

 

But the decreasing number of age class 1 individuals recovered from Africa, and the 

increasing number of age class 3 individuals, show the increment in the proportion of age class 

3 individuals moving far south in recent years. 

 

The evident differences in finding latitudes between years, shows a slight tendency of age 

class 1 individuals to migrate to southernmost latitudes during non-breeding months in recent 
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years (fig. 3-18). A similar pattern was shown by age class 3 individuals (fig. 3-22). These 

observations could be a result of the better conditions for feeding in low latitudes.  

 

Unlike movements from all individuals during the non-breeding months, (April and May were 

the months with higher finding latitudes, fig. 3-14), age class 1 Gannets remain close to 

breeding areas during September and October (fig. 17). This could be because they are still 

fledging, because typically the fledging period is between August and October (Wanless, 

2002). They may then move to North African waters as soon as they fledge (Nelson, 1986), 

but many may die in these early months of independent life. 

 

Age class 3 individuals tend to remain close to breeding areas, but they form an increasing 

proportion of migrants into African waters. The high standard deviations presented in age 

class 3 individuals recovered from Africa (fig. 3-32), could be related to a number of 

individuals migrating to both high and low latitudes. Adults migrating far south are maybe 

inexperienced individuals, trying to feed where fish is abundant, or birds that failed to breed. 
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Abstract 
 
In order to establish the time spent flying for the Great Skua during the migration period, five 

Global Location Sensing data loggers were deployed on outstanding chick-rearing adults in 

Foula, in summer 2003, and analyzed information recorded until March 2004. Information 

recorded for data loggers were temperature, to determine time flying or swimming, and 

intensity of light to establish the location of the bird. Individuals spent more time flying during 

daylight hours, independently of the wintering area, and no noticeable differences were 

observed in time flying by month, with highest values during winter months. 

 
Introduction 
 
There is a gap in our knowledge of seabirds at sea, mainly because it is difficult to follow and 

observe their behaviour quantitatively there (Cairns et al. 1987; Nelson, 2002). In addition, 

studies outside the breeding season are scarce, meaning that seabird activities for a long 

period, up to 80% of the year in the case of the Great Cormorant P. carbo (Gremillet and 

Wilson, 1999), are unknown.  

 

Despite the possibility that use of radio transmitters could affect seabird behaviour, because of 

the extra weight of the device in terms of changes in foraging trips and reduction in the 

amount of food delivered to chicks e. g. Common Guillemot Uria aalge and Razorbill Alca 

torda (Wanless et al. 1988), the use of this tracking equipment has been beneficial in studies 

about dispersal and feeding ecology of seabirds (Igual et al. 2005). The use of data loggers 

could reduce the burden effect because of their lighter weight, especially when used with 

medium or big seabirds, like the Great Skua. In fact, Gannets carrying data loggers showed no 

negative effects in their activities (Garthe et al. 1999). Miniaturization of these electronic 

devices (less than 20 g) has led to the development of new ways for studying migratory 

movements of small birds (Bächler et al. 2010) considered unable to carry the rather bulky 

satellite transmitters.  

 

Global Location Sensing (GLS) data loggers are often used to record environmental variables 

such as temperature, and light intensity. Geolocation is possible because changes in ambient 

light levels can be used to estimate sunrise, sunset, day length times, and hence, longitude and 



Time budgets for wintering Great Skuas 

 118 

latitude (Burger and Shaffer, 2008). Latitude is derived from the daylength, and longitude 

from local time for midday and midnight. 

 

Temperature recorded by data loggers is generally fairly high when the bird is flying, of the 

order of 25°C, because the legs carrying the device are covered by the feathers. When the bird 

is resting in the sea surface or fishing, it extends its feet into water and temperature recorded 

decreases (Wilson et al. 2002). Because the Great Skua is a diurnal species that does not visit 

land during the winter period, it is established that the temperature recorded overnight reflects 

the sea surface conditions (except for species like Frigatebird Fregata sp that spend the night 

on the air). This is because it’s assumed that birds spend the night resting at the water. 

However, it is important to note that night-hours recordings should be stable for several 

minutes to determine that these are related to sea temperature, because the temperature sensor 

of the logger needs some time to stabilize.  

 

One possible problem of the use of data loggers is the need for the double capture of one 

single bird. Birds are equipped with data loggers in the breeding colony and recaptured after 

returning from their wintering area, and only when the logger has been recovered is it possible 

to download stored data (temperature or other data). As a result, the deploying and recovering 

of the loggers should be done during the breeding season, usually in the vicinity of the nest, 

involving successful-breeding adults. This is possible because of the philopatric behaviour of 

the Great Skua breeding at Foula (Klomp and Furness, 1992). Despite this, new colonies 

formed from individuals ringed at Foula could indicate a non-strong philopatry for all 

individuals. A major problem impossible to solve is the malfunction of the device, because 

such faults are realized only after the data downloading. 

 

Breeding colonies provide an opportunity to investigate different aspects of the biology of 

seabirds, and studies at colonies are relatively easy to conduct. Observations over a great 

number of individuals are possible, due to the restricted movements of adult seabirds attending 

nests and feeding their chicks. Because of that, several studies related to the daily activity 

patterns, or time budgets on a considerable number of seabird species, have been carried out 

during the breeding season. These studies showed that variations in nestling food demand 

(brood size), are related to differences in time budgets of Pigeon Guillemot Cepphus columba 

(Litzow and Piatt, 2003) and Great Skua Stercorarius skua (Ratcliffe and Furness, 1999). On 
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the other hand, in Common Guillemot Uria aalge more than 80% of time at sea was on or 

under water during the incubation period and chick rearing (Cairns et al. 1987; Cairns et al. 

1990), and Crozet Shag Phalacrocorax melanogenis spend only 2% of their daily time budget 

flying during the breeding season (Tremblay et al. 2005). Otherwise variations in time budgets 

are related to different characteristics of the species. Whilst some species spend more time 

flying during the breeding season, other species spend more time on the sea. Gray-headed 

Albatrosses Diomedea chrysostoma spent about 15% of the daylight time, and 50% during 

darkness, at the sea surface. In fact, 26% of the total time recorded with this species was spent 

sitting on the sea, whilst 74% was spent flying (Prince and Francis, 1984). 

 

Because practically all the studies related to time budgets in seabirds are limited to the 

breeding season, there has been little discussion about non-breeding activities, including 

research on time budgets. The lack of this kind of information mean that are a poorly 

understood part of the ecology of seabirds and their activities at sea (Gremillet and Wilson, 

1999; Tremblay et al. 2005). This is especially true in the case of migratory species wintering 

in tropical latitudes. 

 

Wintering seabirds may be exposed to difficult condition throughout the year e. g. severe 

weather in northern latitudes in winter, and shortage food in lower latitudes, resulting in a 

different allocation of time for different activities at different times of the year. For such 

reason, it is important to store great amount of energy at the beginning of the migratory 

movement. Unfortunately, studies related to migrant seabird activities during the winter period 

are scarce.  

 

One important aspect to consider is the reduction in the daylight period during winter in 

northern latitudes, reducing the time available to search for food in diurnal species. For 

example, in the case of geese, they are unable to increase the amount of food consumed during 

night hours to compensate the reduction of intake rate from depleted pastures (Owen et al. 

1992). In response to short daylengths at high latitudes in winter, several seabird species could 

migrate to lower latitudes, where the daylight period approaches half of the day more closely 

in winter. However, such a migration means that it is necessary to switch prey species and 

fishing tactics, changing the time spent in the search for food. One such wintering seabird is 

the Great Skua. This species breeds at colonies from 58oN to about 70oN (west Scotland to 
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Svalbard and Jan Mayen), and particularly large breeding populations exist in Shetland 

(Furness and Ratcliffe, 2004). Non-breeding for Great Skuas involves the period between 

September and May and the migration starts with immature birds (3-8 years old mainly) from 

June to July, followed by the juveniles in August, and adults from late July (most of them 

migrating during late August), with a peak number seen on autumn migration in September at 

the North Sea (Furness, 2002a). On the other hand spring migration to the north takes place 

during March and April (Furness, 2002a). 

 

While breeding, time spent searching for food differs according to the kind of prey. 

Reproductive adult Great Skuas feed on fish, fishing discards, and other seabird species. 

Individuals that specialize on bird prey spend less time foraging than those individuals feeding 

mainly on fish at Shetland (Votier et al. 2004a) maybe because it is quicker to kill a bird on 

land than heading out to sea in search of fish. Activities and time budgets of Great Skua in the 

migration period and winter are unknown. However this species is particularly suitable for a 

study of activity at sea outside the breeding period because it is believed that Great Skuas do 

not come onto land at any time after leaving the breeding colony until they return to the 

breeding colony next spring (Furness, 1987). Therefore, activities involve either flying, or 

sitting on the sea, and do not involve periods spend ashore. 

 

Materials and Methods 
 

Five data loggers (Earth & Ocean Technologies, Kiel) deployed on chick-rearing adult Great 

Skuas in Foula, Shetland, in summer 2003 were recovered by recapturing individuals the next 

breeding season at the same nest site. These loggers were intended to record data from July 

2003 to June 2004, but one of the loggers failed at some stage during deployment due to 

battery problems (moisture discharged from the battery causing corrosion within the 

electronics). As a result, each logger gave data for a particular period from deployment. 

Analyses were carried out with data between September 2003 and March 2004 (sea surface 

temperature estimated by means of temperature recorded by loggers at night hours indicated 

the end of March as the time when birds returned to the colony). 

 

When Great Skuas migrate they remain at sea and so there are two basic activities that can be 

inferred from logger data. When loggers record consistent low temperature the bird can be 
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classified as sitting on the sea surface. When loggers record higher and more variable 

temperature the bird can be inferred as flying since loggers will be tucked into the body 

plumage and so will record a much higher temperature than ambient. So temperature recorded 

every 3 minutes and stored in memory was used to determine the activity displayed by each 

bird. Activities were divided into two categories: Flying (with high temperature records) and 

Swimming (with low temperature records that match the expected sea surface temperature, 

SST). From all the period recorded for each logger, data for each five-day period were 

analysed. For each one of these days, all data were grouped into 12 periods of two hours each 

(00:00-01:59, 02:00–03:59, and so on until 22:00–23:59), and mean percentage spent flying 

was calculated for all the individuals according with the number of days analysed. A graph 

including mean time flying by individual was made, including a Kruskal-Wallis analysis to 

detect differences between individuals. In addition, monthly percentage by activity was 

estimated for all individuals.  

 

Time spent flying for a day was divided into bouts. Each bout consists of a period of 

continuous flying. The number of bouts of flying by day was used to estimate the monthly 

mean bouts flying by day. 

 

Information from the two data loggers with more months covered (T26 logger with 7 months 

and T30 logger with 6 months) was used in more detailed analyses. These analyses were the 

comparison between mean time flying, in terms of percentage, by months and by time of the 

day by means of GLM analyses. Additional analyses were the comparison of mean time in 

percentage flying between daylight hours (08:00-20:00) and night hours (20:00-08:00) and 

between migrating months (September-October) and wintering months (December-February) 

by means of GLM analyses. Finally, mean time flying by month was divided into the monthly 

mean number of bouts flying to obtain the mean time flying per bout. 

 

Results 
 

Data per individual for between 1 and 7 months were obtained. One data logger only recorded 

3 days, two data loggers worked up to November, and two loggers recorded data up to the end 

of winter (Table 4-I).  
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Table 4-I. Data obtained per individual indicating the number of days analysed, bouts and months 
covered. 

Individual Period Days analysed Bouts flying per day 
T17 09/2003 – 11/2003 14 32.7 
T25 09/2003 3 76 
T26 09/2003 – 03/2004 41 38.1 
T29 09/2003 – 11/2003 17 33 
T30 09/2003 – 02/2004 32 37.3 

 

 

All individuals spent more time flying between 08:00 and 20:00 (fig. 4-1). Observed 

differences in time spent flying between individuals were not significant (Kruskal-Wallis H = 

5.67, DF = 4, p = 0.225; fig. 4-2). The mean number of flying bouts by day showed similar 

values for all individuals and months (Table 4-II), with the exception of the very high value in 

September for the T25 individual. However, this number was obtained from only 3 days of 

records. 

 

 
Table 4-II. Monthly mean number of flying bouts by day for all individuals. 
Individual September October November December January February March 

T17 33 33 31     
T25 76       
T26 32 35 47 38 41 38 37 
T29 38 28 35     
T30 37 34 33 41 44 33  

 
 
 

 
Figure 4-1. Time spent flying (in terms of percentage) for all days analyzed by individual. 
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Figure 4-2. Time spent flying (in terms of percentage) by time of day for all individuals. Observed 
differences are significant (Kruskal-Wallis H = 5.67, DF = 4, p < 0.01). 
 

 

In the case of the individual T26 mean time flying was similar for all months recorded, 

showing more time flying during the period between 08:00 and 22:00 (fig. 4-3). Individual 

T30 showed more time flying during the period between 08:00 and 20:00 (fig. 4-4). 

 

 
Figure 4-3. Time spent flying (in terms of percentage) by time of day for each month for the individual 
T26. 
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Figure 4-4. Time spent flying (in terms of percentage) by time of day for each month for the individual 
T30. 
 

 

Time spent flying by individual T26 was significantly different between months (GLM; F = 

4.63, DF= 6, p < 0.001; fig. 4-5), with highest values during December and March, and also 

between times of the day (GLM; F = 44.45, DF= 11, p < 0.001; fig. 4-6), with highest values 

between 10:00 and 20:00. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-5. Percentage of time spent flying by month for the individual T26. 
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Figure 4-6. Percentage of time spent flying by time of day, including all months recorded for the individual 
T26. 
 

 

Time spent flying by individual T30 was not significantly different between months (GLM: F 

= 2.22, DF= 4, p = 0.067; fig. 4-7), with highest values during December and January, but was 

significantly different by time of the day (GLM: F = 38.25, DF= 11, p < 0.001; fig. 4-8), with 

highest values between 08:00 and 18:00. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-7. Time spent flying by month for the individual T30. 
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Figure 4-8. Time spent flying by time of day, including all months recorded for the individual T30. 

 

In the case of the mean time flying by bout, values were higher during September, December 

and January (more than 1% of the time per bout) in the case of the T26 individual (Fig. 4-9). 

Values were higher in October and February (less than 1% of the time per bout) in the case of 

the T30 individual (Fig. 4-10). 

 

 

 
Figure 4-9.  Mean time flying per bout for the individual T26. Data represents the percentage of the entire 
day (24 hr) spent flying by bout. 
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Figure 4-10.  Mean time flying per bout for the individual T30. Data represents the percentage of the 
entire day (24 hr) spent flying by bout. 
 

Individual T26 was flying about 21.13% of the night hours and 53.92% of daylight hours 

during winter, and 16.75% of the night hours and 57.09% of daylight hours during migration. 

Differences in time flying between night and daylight hours were significant (GLM: F = 

39.06, DF = 1, p < 0.001). Despite apparent differences between wintering and migrating 

periods, they were not significant (GLM: F = 0.01, DF = 1, p = 0.958). Individual T30 was 

flying about 13.98% of the night hours and 50.30% of daylight hours during winter, and 

12.66% of the night hours and 48.34% of daylight hours during migration. Differences in time 

flying between night and daylight hours were significant (GLM: F = 15.13, DF = 1, p < 

0.001). Despite apparent differences between wintering and migrating periods, they were not 

significant (GLM: F = 0.31, DF = 1, p = 0.588). 

 

Discussion 
 

In spite of the fact that Great Skua could feed on seabirds at night at St. Kilda during the 

breeding season (Votier et al. 2006), this is normally a diurnal species when breeding, usually 

carrying out their feeding activities during daylight hours (Furness 1987). Results from the 

data loggers for the migration and winter periods show less time spent flying during the night, 

because is they were assumed to be resting on the sea surface inactive at night, and so showing 

the same diurnal behaviour as normally seen at breeding colonies. 
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Two individuals (T17 and T19) recorded data up to November, which includes the important 

migration period. In the case of the individuals with records until February (T30) and March 

(T26) it is possible to observe time budgets during migration south and during wintering. 

 

In a quick view of time spent flying by time for all individuals, it is possible to establish that 

Great Skua maintain diurnal behaviour observed in the breeding colony, flying mostly during 

daylight hours (between 08:00 and 20:00). No statistical differences between individuals 

indicate that diurnal habits are similar independently of the wintering area (assuming that 

individuals wintered in different locations). Mean number of bouts per day goes in the same 

direction because values are similar (with the exception of individual T25 with only 3 days 

analyzed). 

 

The mean number of flying bouts by day showed some months with noticeable high values, 

coinciding with the months with lowest percentages flying for the T26 individual, and the 

opposite relation for the T30 individual (lowest percentage flying coincided with the month 

with the lowest number of bouts). As a result of this, additional analyses were made, to obtain 

the mean time flying per bout by month. Results are different for the two individuals 

indicating that maybe these individuals wintered in different areas or simply that they showed 

individual differences in their behaviour patterns. However, the first suggestion is supported 

by results of time flying. Time flying for individual T26 was higher between 10:00 and 20:00 

and for T30 it was between 8:00 and 18:00, maybe because they migrated to different places 

(T29 in an area to the west of the area for T30). 

 

Mean time flying per bout for individual T26 clearly decreased in November. This decreasing 

trend could indicate that this individual spent more time flying during migration to the south, 

and less time flying when it had reached the wintering location. The opposite trend is observed 

from January through March, increasing the time spent per bout with the migration north. 

However, this individual flew for longer per bout in December. This could be explained by 

some hypothesis: a) wintering location was not ideal forcing this individual to spend more 

time flying in the search for food, b) wintering location was not ideal forcing this individual to 

search for another location to winter, c) this individual was a scavenger in the wintering 

ground flying more time following fishing boats, or d) there were no fishing boats in the 

wintering ground forcing to the bird to spend more time searching for possibly scarce natural 
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food. In the case of the individual T30 the situation was different. This bird spent less time 

flying by bout during the entire wintering period (November-January), indicating that it 

reached a possibly ideal wintering area where the search for food involved less time.  

Nevertheless, it is important to observe that time spent flying was not significantly different 

between months, so any conclusion must be made carefully being only indicative. However, it 

is possible to see a clear trend. These results could support the long held view that seabirds 

probably expend less energy during winter than they do while breeding (Furness and 

Monaghan 1987). 

 

Despite the fact that this study presents information from only five individuals, and only one 

of them related to the entire winter period, results showed a marked tendency in the time 

budgets of the Great Skua during the winter period. These results could be a baseline for 

future research, especially related to distribution and movements of this species. Information 

about these issues in relation to food is necessary (Nelson, 2002). Results also suggest that 

Great Skuas spend much time, even during daylight more than 50%, sitting on the sea surface. 
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Abstract 
 
To evaluate time spent for the Northern Gannet flying during the non-breeding and wintering 

period, 30 GLS data loggers were deployed on outstanding chick-rearing adults at the Bass 

Rock, in August 2008, and 21 were retrieved in April 2009. Information recorded for data 

loggers were temperature, to determine time flying or swimming, and intensity of light to 

establish the location of the bird. Individuals spent more time flying during daylight hours and 

those wintering in NWA and Portugal flew more time, with no differences between 

individuals. All individuals spent more time flying in October. Differences in wintering areas 

by sex were noticeable with almost all females wintering in the NWA area, whilst males 

wintered mainly in areas north to NWA. Females could migrate far south because males have 

to stay close to breeding areas in order to search and defend territories. 

 
Introduction 
 

Time allocation to different activities in seabirds need to be adjusted to optimize survival 

through the nonbreeding period and to maximize life-time reproductive success by optimizing 

reproductive effort during the breeding season. Often this involves minimising energetic costs 

in winter. The breeding season usually coincides with the period when food is abundant, in 

terms of available fish in the surrounding sea, and migration to lower latitudes occurs when 

food is scarce in autumn-winter. During migration time allocation changes in response to the 

increased flying times for travel, and the search for food in an unpredictable environment to 

which the bird is not so familiar. 

 

A central question about the migratory behaviour of seabirds breeding in high latitudes is why 

some individuals migrate far south while others, from the same colony, may stay in winter 

rather close to the breeding site. An individual migrating south has an additional energetic cost 

due to the travel, and an increased risk of mortality during migration as well. As a result, it is 

believed that for migration behaviour to evolve, costs need to be small in comparison with the 

benefits of moving to a more favourable region during winter. For an individual remaining in 

the breeding colony during winter, costs are associated with a number of factors, but 

especially with reduced food availability and the adverse climatic conditions (Newton, 2008). 
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During breeding, adult gannets fly most of the time at sea searching for food for themselves 

and their chicks. Searching time tends to increase for individuals breeding in the largest 

colonies (Lewis et al. 2001). Time budgets for breeding gannets have been studied before, and 

results indicate that they spent 39-40% of their time in the colony, 22-30% flying and 22-34% 

swimming (Garthe et al. 1999). This species does not fly during night hours, constraining the 

time spent flying to daylight hours. Some studies have detected differences between the daily 

activities during breeding, depending on the time of day. The activity patterns of gannets 

equipped with data loggers showed that they are more active during the daylight period, flying 

mostly in the early morning and in the evening (Garthe et al. 1999). A closely related species, 

the Cape Gannet Morus capensis, spends about 60-70% of the time resting at the sea surface 

between 10:00 and 14:00 hours, and individuals spend the night at sea showed longer flight 

periods (Ropert-Coudert et al. 2004).  

 

Although Northern Gannets spend a lot of time at sea outside the breeding season, their 

activities at this time are not well known (Nelson, 1989). Logically seabirds at sea are fishing, 

resting, moving between locations or food patches, and possibly defending themselves against 

predators or competing with other seabirds, but there is a lack of information related to the 

time dedicated to those activities at sea for wintering individuals. In addition, the timing of 

flying or fishing could be different between latitudes along the migration route, with latitude-

related differences in the diurnal behaviour of this species because daylength in winter is a 

function of latitude. 

 

Migratory behaviour of birds has been studied intensively over many decades; with a variety 

of tools employed such as calibrated visual observations (e.g. Heinemann, 1981; Mateos et al. 

2010), ring recoveries (e.g. Wernham et al. 2002), systematic catches within standardized 

programmes (e.g. Hüppop and Hüppop, 2003), physiological measurements in the field (e.g. 

Atkinson et al. 2007) and radar studies (e.g. Lack and Varley, 1945; Gauthreaux and Belser, 

2003). Direct observations of migrating birds from land is very challenging, even using radar 

technology, being more difficult in the case of seabirds, which in many species are usually out 

of sight from the shore. Thus, seabird migration studies are mainly based on ring recoveries or 

on systematic seawatches along the coast (this last kind of study restricted to days with good 

weather, and ignoring individuals moving on the open ocean beyond the range of 

identification). In addition, study is complicated for Gannets in wintering areas because they 
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remain at the sea at all times, making it difficult to observe individuals from survey points on 

land. This makes it difficult to follow a particular individual to record its activities. When 

feeding, gannets tend to disperse, avoiding the presence of the others, spacing out the 

distribution of individuals at sea, making it possible to observe gannets in large numbers only 

when feeding on a particular shoal of fish, or scavenging from fishing vessels during 

discarding. 

 

Since the 1950s, bird migration has been tracked by means of radar, especially when it is 

difficult to observe individuals during night or at a distance (Cooper et al. 1991). Radar target 

detection has undergone important changes in recent years, thanks to the introduction of High 

Definition Digital technology. One problem with radar, especially marine radar, is the need to 

move the system over a wide area to detect seabirds. This is particularly difficult at sea, where 

mobile platforms are needed to track seabirds. Another problem is the difficulty of identifying 

the species being tracked by radar, especially when individuals could move either alone or in 

mixed species flocks.  

 

Recent studies using satellite telemetry are providing new information in relation to foraging 

trips, feeding grounds and routes (Hamer et al. 2000), but duration of information obtained is 

restricted due to the limited capacity of the batteries. In addition, satellite transmitters (or 

PTTs) are expensive, restricting studies to few individuals, and sometimes equipment 

represents a burden to the bird (Afanasyev, 2004). The use of data loggers on seabirds has a 

widespread use nowadays (Burger and Shaffer, 2008), making possible to evaluate the activity 

by means of records of different kind of data, such as temperature, during several months 

(Afanasyev, 2004; Burger and Shaffer, 2008). In gannets, data loggers allow the recording of 

the amount of time spent flying for a particular individual, by day or time of the day, even 

during the entire winter period (Kubetzki et al. 2009) because of the lightweight and the long-

lasting battery capacity (and low power requirements) of these devices. All the information 

recorded is stored in a memory and retrieved into a computer. To do this it is important to 

catch the bird two times, once to deploy the data logger and other time to recover it. 

Fortunately Northern Gannets tend to breed not only in the same colony every year but also at 

the same nest site within the colony, making possible the recapture for any particular 

individual in a high rate.  
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Knowledge of bird migration has been advanced enormously by use of satellite telemetry and 

data loggers in studies with Geese (e.g. Green et al. 2002), Swans (e.g. Pennycuick et al. 

1999), raptors (e.g. Ueta et al. 2000), Shearwaters (e.g. Shaffer et al. 2006) and very recently 

even small songbirds (Stutchbury et al. 2009; Bächler et al. 2010). 

 

Data loggers such as geolocators (Global location sensing or GLS), commonly deployed on 

the legs of seabirds are used to monitor environmental variables such as sea temperature and 

providing important information on bird migration and activity (Igual et al. 2005). Light-level 

geolocators measure the intensity of the ambient sunlight (Bächler et al. 2010) and geolocation 

is possible because changes in ambient light levels can be used to estimate sunrise, sunset, day 

length times, and hence, longitude and latitude (Burger and Shaffer, 2008). Latitude is derived 

from the daylength, and longitude from local time for midday and midnight. Two records per 

day are taken, one indicating the position of the bird at midday the other at midnight. Between 

10 and 20 days on either side of the equinox is not possible to estimate latitude accurately 

(Wilson et al. 2002) but this is estimated most precisely at solstice. Position estimates could be 

affected by clouds, but this problem is solved by increasing the luxmeter resolution. The 

spatial resolution using GLS presents an error in the order of 185– 200 km. Temperature 

measures can also be compared with the sea surface temperatures from the estimated location 

in order to more accurately estimate the daily position of the bird to a 1–2° error reduction 

(Burger and Shaffer, 2008). Data loggers have been used in long-range movement studies of 

seabirds outside the breeding period, revealing noticeable movements across the ocean 

(Burger and Shaffer, 2008) mainly to winter areas.  

 

Although recent tracking technologies have increased the information on seabird migration 

routes and distribution (Daunt et al. 2006; Shaffer et al. 2006; Phillips et al. 2007a, 2007b, 

Guilford et al. 2009), many aspects of seabird ecology during their migration and wintering, 

such as at-sea activity patterns, are still poorly understood (Mackley et al. 2010). 

 

The Northern Gannet is a seabird that migrates to a wide variety of wintering areas, from close 

to their breeding sites (e.g. in the North Sea) to many hundreds of kilometers (about 3200 to 

4700 km) south, some going as far as northwest Africa (NWA) (Nelson, 2002). A high 

proportion of breeding adult birds equipped with geolocation data loggers on the Bass Rock, 
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employ an intermediate strategy, and winter in the Bay of Biscay (Kubetzki et al. 2009). So, 

individual gannets from the Bass Rock present different migration strategies. 

 

Deployment of data loggers on gannets permits the measurement of the amounts of time spent 

flying each day, and the temperature of the water in which birds are resting (over night stable 

temperatures recorded). These data may shed light on costs and benefits of wintering in 

different regions. For Gannets wintering in NWA there are several hypotheses to be 

considered: 

- Do gannets wintering in NWA fly more during migration than Gannets wintering near to the 

breeding areas? 

- Do gannets need to exploit hours of darkness during migration for flying or for foraging? 

- Do gannets have reduced flight activity in their wintering area because of potentially better 

food availability? 

- Do gannets wintering at lower latitudes have more temporal flexibility because of longer 

daylight? 

- Do gannets wintering off NWA avoid the need for foraging at night? 

- Do gannets wintering off NWA have lower thermostatic costs due to roosting on warmer 

water? 

Gannets wintering further south may return later in spring to the breeding area. 

 

Material and Methods 
 

Estimating the returning dates 

One important clue for a successful logger recovery is to establish the returning dates, from 

the wintering areas to the breeding colonies. With temperature records from previous 4 data 

loggers recovered in 2003 and 5 recovered in 2004 it was possible to establish the arriving 

date to the Bass Rock colony. Daily temperature records between 23:00 and 03:59 (150 

records per night) were analyzed to obtain a single modal value by date. Night hours were 

chosen to have temperature values from the sea, assuming that this species does not fly by 

night. This modal value was related to date by means of a scatterplot graph, with the obtained 

records connected by a line. In order to show differences in the temperature values, this 

variable was transformed to log2 values. A theoretical graph should show three distinctive 

parts. In the first part higher temperature values appear, indicating the sea surface temperature 
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at lower latitudes. The second part corresponds to a decreasing slope, indicating the movement 

of individuals along the migration route to the north. Finally, a part with the lowest values 

corresponds to the sea surface temperatures at higher latitudes, specifically at the breeding 

colony in the North Sea (fig. 5-1). This third part of the graph can then be used to establish the 

date when gannets return to the Bass Rock colony area. Once birds start to spend the night at 

their nest site on the rock, the temperature of the logger at night should be very much higher as 

the logger will then measure temperature when the bird is sitting on the ground and heating the 

logger with body heat, whereas at sea the temperature indicates sea surface water temperature. 

 

 

 
Figure 5-1. Typical graphic trend of logger night-time temperature records by calendar date, showing high 
values at lower latitudes, followed by a decreasing slope obtained during northern migration and lowest 
values al high latitudes. 
 

 

Data loggers 

In August 2008, at the end of the breeding season in the Bass Rock, Firth of Forth, east 

Scotland (56.078°N, 2.639°W), 30 data loggers were deployed on the legs of chick-rearing 

adult Northern Gannets, attached to a custom-built leg band (photo 1). Twenty-one data 

loggers were retrieved in April of 2009 and the data recorded for each one were analyzed. 

Two more recovered data loggers failed, showing no information stored. Recoveries were 

made during April because previous analysis indicated that February-March is the returning 

period for gannets breeding in the Bass Rock, and we used the opportunity to recover loggers 

before birds began to lay eggs or even to construct nests. This made it easier to see which 
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birds carried loggers (since incubating birds have the logger hidden beneath them) and also 

avoided the problem of disturbance caused by catching birds possibly resulting in losses of 

eggs or nesting material. 

 

GLS data loggers (GeoLT; Earth & Ocean Technologies, Kiel, Germany) included light and 

temperature sensors, and were protected in a pressure-tight seawater-resistant casing. The 

main sensor of the device was a luxmeter recording intensity of light. Temperature sensor 

recorded ambient temperatures every 120 s throughout deployment, the sensor measuring in 

the 0-32°C range. Light measurements allow geographic position to be calculated by means of 

day length and time of local midday and midnight, using MultiTrace Geolocation from Jensen 

Software Systems, Germany (For more details see Kubetzki et al. 2009). Temperature records 

were used to establish the activity displayed by the bird. For all birds recaptured sex was 

determined from DNA extracted from feather bases, using standard molecular methods 

(Griffiths et al. 1998). 

 

 
Photo 5-1. Data logger deployed on a leg of a Northern Gannet. 

 

Data analyses 

Information from four months was analyzed, in order to compare activities during different 

periods of the year and along the migratory route: from the 1st to the 10th of September at the 

beginning of the autumn migration, from the 20th to the 30th of October during migration, from 
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the 1st to the 10th of January during wintering, from the 1st to the 10th of March during colony 

attendance early in the pre-laying period.  

 

The activity of the bird at sea was deduced from records of thermal fluctuations (following 

Garthe et al. 1999; Wilson et al. 2002). In general, when temperature remained constant and 

relatively low, the bird was considered to be swimming (fishing or resting on the water 

surface) with the logger submerged and indicating sea surface temperature (SST). On the other 

hand, when temperature record varied slightly within a higher range and within the range 

recorded for air temperature at that latitude, the bird was considered to be flying. During 

March, it was possible to establish an intermediate band of constant temperatures recorded, 

assuming that the bird was on land. In a more detailed description, the activity of each bird 

was divided into the three categories (flying, swimming and nesting), and deduced according 

with the following criteria: 

- Estimated sea surface temperature in the area was used as a reference. 

o Variation during the day was considered, assuming that sea surface temperature 

is slightly warmer during midday. 

- According with the sea surface temperature, a threshold was determined in order to 

establish records from the bird possibly in the water (values around the sea temperature 

record).  

o Threshold was determined specifically for each individual and each month, by 

means of a previous revision of the data. 

o Broadly, this threshold was around 12-13º C during September, 10º C during 

April, 15-16 º C during January for individuals wintering in Africa, and 7-8 º C 

for individuals wintering in The English Channel or the Bay of Biscay. 

- When the temperature records remained constant and low (around the established 

threshold), the bird was considered swimming. 

o In some cases there was a slight variation in the temperature record, but below 

the threshold, possibly because of slight changes in the sea temperature (for 

example effect of the waves, upwelling, or currents). 

o In some cases temperature records dropped for a few seconds, possibly because 

the bird was diving. 

- When temperature records were high (more than 19-20º C) and showed a noticeable 

variation, the bird was considered flying. 
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- When temperature records were slightly high (above the threshold), showing less 

variation, the bird was considered to be “nesting” which means standing or sitting in 

the colony (mainly in March). 

o In cases with temperature remaining constant, but slightly high, the bird was 

considered nesting assuming that it stayed quiet. 

o In cases with temperature showing variation, but below the 20-21 degrees, the 

bird was considered “nesting”, assuming that it was moving or standing (and 

variation was considered to be produced by the action of the wind).  

- Change in the activity was determined when changes in temperature were noticeable 

(more than 1º C). 

o When changes were slight over a long period of time (about 20 minutes), 

changes between activities were determined according the switch in the trend 

of the temperature records. 

 

In most cases it was possible to classify activity with confidence based on these temperature 

data, the main difficulty being to distinguish between birds flying and birds standing in the 

colony “nesting”. This last problem only applied to the March data, since we know that 

gannets do not normally go ashore during winter or migration. Analyses were centred on the 

flying data as a measure of the time spent migrating and searching for food. For each day data 

were grouped into 12 periods of two hours each (00:00-01:59, 02:00–03:59, and so on until 

22:00–23:59). All flying times were transformed into percentages because this made analysis 

simpler. Finally the percentages were grouped representing the time spent flying for each 

period of time. Data from the 10 days of each month were grouped to obtain the monthly mean 

time flying by period of time.  

 

General Linear Models (t-test, one-way ANOVA and balanced ANOVA) were used in order 

to compare differences in mean times spent flying by month and by sex. Tukey post analysis 

was used to determine the significance of observed differences. When residuals showed non-

normal distribution in the ANOVA, even after a numeric transformation of data, a non-

parametric Kruskall-Wallis test was applied. Additional comparisons between times spent 

flying, by wintering area and between daylight and night hours, were made using Generalised 

Linear Mixed Models (GLMMs) and considering the months of October, January and March. 
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Differences between the numbers of males/females wintering in NWA or no-NWA were made 

by means of FFisher test. Analyses were carried out using Minitab software, version 16. 
 

Results 

 

According to the examination of the returning dates during 2003 and 2004, the shapes of the 

trends were quite similar to those expected (fig. 5-1). In terms of returning date, individuals 

tended to return to the breeding colony during the month of February (fig. 5-2), with one 

exception of one individual from Iberia. In all cases, individuals were around the colony in the 

North Sea during the second half of March (more detailed data in Table 5-1).  

 
 
Table 5-I. Estimated return dates to the North Sea colony by individual. 
Data logger number Wintering area Returning dates 

3 Iberia Between 16/02/04 and 01/03/04 
20 Iberia Between 05/02/03 and 15/02/03 
26 North Sea Between 01/02/03 and 15/02/03* 
28 Africa Between 21/02/03 and 01/03/03 
29 Africa Between 25/02/03 and 15/03/03 
35 Africa Between 11/02/04 and 21/02/04 
48 Iberia Between 01/03/04 and 11/03/04 
50 Africa Between 15/02/04 and 21/02/04 
51 Iberia Between 01/02/04 and 11/02/04 

* It is believed that this individual spent the winter at high latitudes. 
 
 

a 

 

 
b 

Figure 5-2. Graphs showing the trend in the modal temperature for an individual wintering in a) Iberia 
and b) Africa. 
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Surprisingly, most of the individuals recovered in 2009 wintered in NWA (11), followed by 

the Bay of Biscay (3), and none wintered in the North Sea (Table 5-II). In spite of the fact that 

females spent more time flying than males, differences were not significant (ANOVA; F = 

2.64, DF = 1, p = 0.108). On the other hand, all females wintered in NWA except one off 

Portugal. In the case of the males, they tended to winter at different locations. So, the 

distribution of gannets wintering in the NWA or in areas further north (non-NWA) by sex 

showed significant differences (FFisher = 8.96, p = 0.0043).  

 
 

Table 5-II. Number of individuals by wintering area and sex. 

Wintering area Males Females Total 
North Western Africa 4 7 11 

Gibraltar 2 0 2 
Portugal 1 1 2 

Bay of Biscay 3 0 3 
English Channel 2 0 2 

Celtic Sea 1 0 1 
Total non North Western Africa  9 1 10 

 

 

Individuals wintering in NWA and Portugal spent more time flying during the entire period 

analyzed (4 months), and the individual that flew least was one that wintered in the Celtic Sea. 

Mean percentage of time flying showed non-significant differences between individuals 

(Kruskal-Wallis; H = 26.33, DF = 20, p = 0.154). Actually, all the individuals showed 

differences in the time spent flying between days. Mean time flying including all individuals 

showed the highest values during October and the lowest values in January. Observed 

differences between months were significant (ANOVA; F = 6.57, DF = 3, p < 0.001; fig. 5-3). 

Differences observed between months were significant for individuals (GLM; F = 9.19, DF = 

3, p < 0.001) but not wintering areas (GLM; F = 0.70, DF = 1, p = 0.405).  
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Figure 5-3. Mean time flying by month for all individuals. 

 

Gannets migrating to NWA flew significantly more (19.2 ± 1.6 % of the 24-h day) than birds 

staying in areas from the English Channel to the Bay of Biscay (12.1 ± 1.8 % of the 24-h day. 

GLMM; χ² = 6.738, p = 0.009). Individuals wintering in NWA in January flew 9.4 ± 1.6 % of 

the 24-h-day while those wintering from the English Channel to the Bay of Biscay  flew 4.6 ± 

1.3 % of the 24-h-day at the same month; this observed difference was significant (GLMM; χ² 

= 6.533, p = 0.011). 

 

In the case of the time of the day, all individuals spent more time flying during daylight hours 

for the four months analysed. Gannets wintering in NWA flew on average 17.7 ± 2.5 % of  the 

daylight time during January, whilst gannets wintering further north flew 9.6 ± 3.1 % of  the 

daylight time, the observed difference being significant (GLMM; χ² = 5.716, p = 0.017). 

 

Discussion 
 

Observed differences in time flying by day for all individuals could be due to changes in 

climatic conditions or fish distribution. It has been reported for anhingas that these often 

forage less frequently during cool, cloudy periods, compensating the heavy foraging effort 

when weather is warmer (Hennemann, 1985). Because of this, differences in the time spent 

flying by day in Gannets could be related to the administration of the periods of flight and 
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fishing, in order to fly more time when conditions are good and less time when weather 

conditions are adverse. 

 

No significant relationship between sex and time flying was detected, but the tendency of 

females to migrate further south than males is clear and significant. On the other hand, 

experienced males are the first to return to breeding colonies (Nelson, 2002) so females are 

able to stay in the wintering grounds for a little longer. Females may be more suited to feeding 

conditions in the tropics (e.g. the depths at which fish occur) or they be better suited to the 

warmer climate. Further study is needed on the preference for particular wintering locations by 

sex. 

 

Individuals wintering in NWA and Portugal spent more time flying during the entire period 

analyzed than those wintering in northern latitudes partly because they travelled much longer 

distances. This observation, in addition to the highest time spent flying being during the month 

of October, confirms the hypothesis that Northern Gannets spent more time flying during 

migration to reach southernmost wintering areas. In the winters of 2002-2003 and 2003-2004, 

Gannets migrating to NWA flew for about 48% longer than birds remaining in the North Sea 

(Garthe et al. unpub. data). Gannets spent less time flying during January maybe because of 

the abundance of food in the wintering grounds or as strategy to save energy before the return 

journey to breeding colonies. 

 

Finally, time spent flying was higher during daylight hours, confirming the diurnal behaviour 

of this species. However, time of the day considered (2-hours period) is not independent. 

Because of this, it is important to observe carefully the differences in time flying/swimming 

by period of time. Fishing by night, even on small pelagic fish (mainly caught by the 

commercial fishing fleet during the night hours) is difficult to observe because gannets are 

visual hunters (Garthe et al. 2003; Hamer et al. 2000). Gannets wintering in NWA spent more 

time flying during daylight hours in January than individuals wintering in the north, maybe 

due to a) the abundant fish, b) the need to acquire energy for the returning journey, c) the need 

to recover the energetic cost of the southerly migration, or d) competition for food with other 

seabirds and man. An alternative explanation could be that birds fly more in NWA during 

winter because of the lack of food. In all cases, it is important to note that gannets spent less 
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time flying during winter than during the rest of the year, implying that the energy expenditure 

in winter is likely to be rather less than during the breeding season. 

 

During breeding, the Northern Gannet can spend up to 44% of its time flying (Garthe et al. 

2003), because the search for food is a very demanding process when chick rearing. 
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Abstract 
 
Using information provided from academic and non academic literature, observational point 

reports, and birdwatching groups, it was possible to map the migration movements of both 

Northern Gannets and Great Skuas. For both species it was possible to detect the timing of the 

route from de Scottish colonies through the North Sea and English Channel to reach in winter 

months the Bay of Biscay and the coast of NWA. Distribution in waters off Africa is wider in 

the case of the Northern Gannet, being gannets and skuas fairly common distributed in the 

area. 

 
Introduction 
 
Migration 

Seasonal changes in weather conditions, resulting in the scarcity of particular resources such 

as food, cause some animals to migrate seasonally to distant regions where resources are 

abundant (Cohen, 1967). In most cases, these movements are between breeding areas (with 

better conditions for reproduction), and wintering areas (with better conditions for survival 

during the winter months). The main reason to migrate is the search for a favourable area from 

another less favourable one (Newton, 1980).  

 

Seasonal migration involves return movements at regular periods of time (migration periods), 

often to well-defined destinations (Marchant, 2002; Newton, 2008). The migration from 

breeding areas at higher latitudes in the northern hemisphere, to wintering areas at lower 

latitudes, takes place in autumn, with the return travel to high latitudes in spring (Newton, 

1998). This periodic movement is related to changes in weather, daylength, and food shortage 

(Cohen, 1967), and the non-random direction and distance of migratory travel seem to be 

innate (Nelson, 1980). Research on small birds has shown that migratory distance and 

direction are usually genetically determined (Berthold and Helbig, 1992; Bearhop et al. 2005) 

and this is thought to be true of migratory birds in general (Newton 2008).  

 

The capacity for flight permits birds to move to distant areas in a short period of time, and 

their migration is more broadly and strongly developed than in other migrating animals, like 

mammals, turtles and fish (Newton, 2008). Migration is a normal winter response of many 
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species of seabirds, especially those species breeding at high latitudes (Gaston, 2004), and the 

most remarkable features of this migration are related to 1) the navigation, to find remote 

nesting areas for example, 2) the timing of return to breeding areas at similar date, and 3) the 

gain of energy in form of body mass during the wintering period (Newton, 2008). As a result, 

migration is mainly an adaptation to take advantage of resources during some seasonal periods 

of abundance, avoiding the lack of these resources during other periods (Alerstam et al. 2003). 

 

With weather conditions changing, birds follow routes as a result of natural selection (Bairlein 

et al. 2002). Long distance migrants, including some seabirds and shorebirds, do not breed 

until they are several years old, and the young may migrate further than their parents, reaching 

better wintering zones usually in tropical regions. During their first year, the movements of 

some seabirds (kittiwakes, shags, fulmars, puffins, boobies, frigatebirds and many gulls, for 

example) are more extensive than in following years (Nelson, 1980). Some of these young 

birds overwinter in low latitudes and return to breeding areas, or return partially, two springs 

after (Bairlein et al. 2002). Migratory tendencies have changed over time for several species 

(Sandwich Tern and Lesser Black-backed Gulls are two well known examples), with shorter 

migratory movements, as a result of global warming because northern regions became more 

suitable for wintering birds (Siriwardena and Wernham, 2002). 

 

Direct observations are one way to study bird migration, recording numbers of individuals, 

their distribution and seasonal changes, and watching the direction of their flight movements 

(Marchant, 2002). In these cases, it is usually possible to observe these birds both in their 

breeding and wintering areas, and at some points along their migration route e. g. at bird 

observatories which are often located at hot spots (Knudsen et al. 2007). Birdwatching clubs 

and societies have been organizing periodic surveys to record the presence and abundance of 

seabirds in some places, and several checklists are available. The catch and release of ringed 

birds at bird observatories has also been used to evaluate individual bird movements along the 

migration route (Blomqvist et al. 2002) and to investigate migration phenology (Knudsen et 

al. 2007). 
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Observation points 

In addition to ringing/banding at bird observatories, daily censuses by means of standardized 

counts are often conducted in order to provide a daily estimate of the number of birds passing 

through an observation point. In the case of seabird censuses from coastal points, reliable 

estimates of abundance and distance from the point of observation are required (Mateos et al. 

2010). Bird observatories are located around Europe in locations considered hot-spots for such 

observations (Flegg, 2004), with observers including local people, both scientists and 

volunteers. Some information is available from the web pages from different kinds of 

organizations (like the British Trust for Ornithology, the Royal Society for the Protection of 

Birds, the Scottish Ornithologists’ Club, la Red de Observacion de Aves Marinas, or the 

African Bird Club). At a bird observatory a census area may be established for keeping 

records of all observations (Mead, 1983). Along migratory pathways between foraging and 

breeding areas, surveys from observation points are valuable as seabird wintering populations 

could decline even more than residents, due to alterations of habitats used on migration 

(Newton, 2004). 

 

The importance of a bird observatory goes beyond the simple recording of data. With the 

information obtained it has been possible to justify the declaration of conservation areas, or to 

facilitate the making of development decisions. One important example of this was the support 

of the Point Reyes Bird Observatory, in California, in solving the controversy in relation to the 

kill of birds by the gill-net fishery in Monterey Bay (Salzman, 1989). 

 

Materials and Methods 
 

Despite the lack of detailed studies about seabird migration in North-western Africa (NWA), 

some reports have been made, and there are some important counts published. Most of the 

early reports in the area were based on sea or land surveys, with information restricted to some 

notes (for example Winterbottom, 1936 and Moreau, 1938; both reported in Brown, 1979). 

Based on a literature survey, an historic record of sightings of both gannets and skuas was 

obtained to provide some background information about the presence of these species 

wintering along the coasts off Western Africa. 
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Information from birdwatching organizations 

Birdwatching organizations around the world can be a primary source of information, since 

they survey specific areas, mainly for tourism. In one particular case seawatching in Senegal is 

considered important and some touristic reports are very eloquent: “Seawatching in Senegal – 

a dreamlike scenario” (Holmström, 2004), “Seawatching (in Senegal) that will beat the world” 

(Nilsson, 2008) or “Is the Cape Verde Peninsula the Mecca of seawatching?” (Dubois et al. 

2009).  Despite many of these groups being by non-academic bodies, and their records often 

being made without standardized methods, data obtained can at least provide a guide to a more 

detailed research. The African Bird Club provides detailed checklists 

(http://www.africanbirdclub.org/countries/checklists/index.html) from different areas in 

NWA, mainly based on specialized sources of information. By means of these checklists, the 

status of the Northern Gannet and the Great Skua were surveyed for countries and islands 

along the NWA area. In order to map the distribution of these seabird species in the sub-

continent, checklists were used as simple presence/absence records. 

 

Information from observation points 
Numbers of gannets and skuas were obtained from different point counts in Europe and 

Northern Africa from the Trektellen organization (http://www.trektellen.nl/default.asp?). Data 

were obtained from different sources, including the Red de Observacion de Aves Marinas 

(RAM) de España y Portugal, SOVON Vogelonderzoek Nederland, Natuurpunt Studie & 

Aves-Natagora. Selected points were those with more information provided, and located along 

the gannet’s and skua’s migration route; these are Winterton (Norfolk) in the UK, Maasmond 

(Maasvlakte) in the Netherlands, Westerland (Sylt) in Germany, Gateville (Normandie) in 

France, Cabo Ajo (Bay of Biscay) in Spain, and both Melilla and Ceuta in Africa (fig. 6-1). 
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Figure 6-1. Location of the observation points 
with gannets and skuas counts 

 

Information provided was available for 1 to 5 years, depending on the observation point, and 

mostly included the twelve months of the year. Seabird numbers were standardized according 

to the time spent observing every day, obtaining the mean number of birds observed for 

minute by month by location.  

 

Analyses were conducted according to the amount of information obtained at each observation 

point, in order to obtain the most detailed results in relation to migration of the Northern 

Gannet and the Great Skua. Basically, analyses included graphs to observe the variation of the 

seabird numbers recorded, and some comparisons were there made between winters. Data 

from Iberia provided by the RAM were analysed in more detail, and the region was divided 

into three areas (fig. 6-2): the south of the Bay of Biscay, Portugal and the Atlantic coast, and 

the Southern Iberia including the Gulf of Cadiz, Maderia and two points in Africa (Melilla and 

Ceuta). Each area provided information from several observation points, up to 11, and data 

was transformed into mean number of gannets or skuas by month for minute of observation. In 

the case of the south of the Bay of Biscay, data obtained were divided into two years, 

according to the presence of seabirds during the autumn migration in the area, from November 

of 2005 to October 2006 and from November 2006 to October 2007. In order to detect 
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differences between years, a paired t-test was applied. A one way ANOVA was employed to 

detect differences between the three areas. 

 

The RAM provided information about three age classes of Northern Gannet according to the 

plumage colour: Age Class 1 (Juveniles) including individuals during their first year, Age 

Class 2 (Immatures or Sub-adults) from the second up to the fourth year, and Age Class 3 

(Adults) including all the individuals with body, tail and covert plumage totally white. With 

this information it was possible to compare the mean number of seabirds by month and per 

minute by age class, using ANOVA. 

 
 

 
Figure 6-2. The three divisions considered from the Iberia Peninsula. 

 

Results 

 

Information obtained from previous reports is summarized in the Table 6-I. A detailed 

description is presented by species. 
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Table 6-I. Historic reports from Northern Gannet and Great Skua in NWA, with relative abundances. 
 

 Northern Gannet   

Date Location Rel. abundance Reference 
Nov 1935 NWA south to Northern Mauritania e Winterbottom, 1936* 

Apr-May 1937 Southern Western Sahara and Northern 
Mauritania 

b Bird, 1937 

Feb 1942 Southern Western Sahara d Mayo 1948 
Jan 1967 Senegal d Lambert, 1971* 

April 1968 Senegal a Gaston, 1970 
Feb-Mar 1976 Senegal a Brown, 1979 
Winter 1982 NWA south to Guinea-Bissau b Brown et al. 1983** 
May 1988 Mauritania b Leopold, 1993 

Autumn 1990 Senegal d Baillon and Dubois, 1991 
Oct 1994 Senegal d Allport, 1995 

Apr-May 2003 Mauritania b, c Wynn and Knefelkamp, 2004 
Oct 2003 Senegal d Holmstrom, 2004 
Jan 2000 Western Sahara and Mauritania a Camphuysen and van der Meer, 

2005 
Oct 2007 Senegal c Nilsson, 2008 
Oct 1995 Senegal d Dubois et al. 2009 
Oct 1996 Senegal c Dubois et al. 2009 
Oct 1997 Senegal c Dubois et al. 2009 
Oct 2001 Senegal d Dubois et al. 2009 
Oct 2003 Senegal d Dubois et al. 2009 
Oct 2005 Senegal d Dubois et al. 2009 
Oct 2007 Senegal c Dubois et al. 2009 
Oct 2008 Senegal d Dubois et al. 2009 

 Great Skua   

Date Location Rel. abundance Reference 
Feb 1942 Gibraltar d Mayo, 1948 
Feb 1942 Southeastern Cape Verde Islands d Mayo, 1948 
Jan 1971 Nigeria d Wallace, 1973 

Feb-Mar 1976 Senegal d Brown, 1979 
Dic 1977 Madeira d Furness, 1987 
May 1988 Mauritania c Leopold, 1993 

Aug-Dec 1991 Senegal d Baillon and Dubois, 1991 
Apr 1992 Senegal d Marr et al. 1998 
Oct 1993 Senegal d Allport, 1995 

Apr-May 2003 Mauritania d Wynn and Knefelkamp, 2004 
Relative abundance: a) Very abundant (>100 ind), b) Abundant (50-100), c) Not abundant (10-49), d) Rare (<10) and e) Abundance not 
established.  
* Reported from Brown, 1979 
** Reported from Camphuysen and van der Meer, 2005 

 

 

Historic records for Northern Gannet from NWA  
During April and May 1937 a large number of almost exclusively young Gannets (only one 

adult) were observed in the southern Western Sahara and northern Mauritania, possibly 

remaining there more than one winter on account of the abundant fish (Bird, 1937). During the 

winter of 1947-1948 a group of about 50 individuals, mostly juveniles, was sighted in 
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Mauritania, but the reference grouped gannets and boobies as sulids (Benson, 1948). In 

January 1967 one juvenile and two adults were observed in the coast off Senegal (Lambert, 

1971). A large number of juvenile and immature gannets (436), identified by their brown 

coloration, were observed in Senegal in April 1968, and only 18 adults with white plumage 

(Gaston, 1968). From 750 gannets observed in 1976 mainly in the coast off Senegal, 25% 

were adults in February and 8% during March (Brown, 1979). In May 1988, 67 gannets, 

mainly immatures, were observed over the shelf break in the Cape de Arguin area, Mauritania 

(Leopold, 1993).  

 

In the best systematic survey existing from NWA, the Northern Gannet was the most abundant 

species with 5648 individuals observed off the coast of Western Sahara and Mauritania during 

six days in January 2000. About 89% of these gannets were feeding behind fishing boats, 

concentrated on the shelf close to the shelf break (Camphuysen and van der Meer, 2005).  

 

In addition to sea or land surveys, the recovery of dead individuals ringed in the northern 

colonies provide more detailed data. Based on ring recoveries, Nelson (2002) reported 17 

gannet recoveries from Senegal, 62 from Western Sahara and 103 from Morocco between 

1972 and 1975. Only 21 individuals ringed in the Bass Rock were found to the south of 

Britain, with no reports from lower latitudes than 20º N (Nelson, 1978). Only 3 recoveries 

from 639 (0.5%) adult gannets recovered between 1909 and 1997 were from latitudes south of 

20º N (Wanless, 2002). Since 1931, 909 Northern Gannets have been ringed in the Faroe 

Islands. From these, 30 rings have been recovered, 9 from Morocco, 7 from Mauritania and 8 

from Senegal (Danielsen and Jensen, 2004).  A recent report showed that 45% of 18 adult 

gannets from the Bass Rock, equipped with data loggers in summer 2002, wintered in NWA, 

50% of them males and 50% females (Kubetzki et al. 2009). 

 

Historic records for Great Skua from NWA  

This species has been reported as common anywhere north of the Azores Islands in winter, 

and occasional further south. Ring recoveries from Africa, during the period 1963-1990, 

represented only 5.5% of the total, being 64 individuals mainly older than one year (Klomp 

and Furness, 1992). 
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No individuals were reported in Cape Verde during the surveys in September 1912 (Murphy, 

1924), and July and August 1951 (Bourne, 1955). In some reports, authors were unable to 

establish the species, recording a great numbers of individuals grouped just like Catharacta 

skuas, possibly Great Skuas, South Polar Skuas, Brown Skuas (Marr et al. 1998; Holmstrom, 

2004; Nilsson, 2008; Dubois et al. 2009), or only Skuas (Bird, 1937; Gaston, 1968).  

 

Information from birdwatching organizations 

The Northern Gannet and Great Skua status by African country or island is summarized in 

Table 6-II. With this information, it is possible to observe the wider distribution of the gannets 

in the area than skuas (fig. 6-3). Additional checklists refer to Northern Gannets ranging at sea 

along the Atlantic coast to NWA and casually in the Cape Verde Islands, and the Great Skua 

to the Tropic of Cancer and rarely in the Canary Islands (American Ornithologists’ Union, 

1998). 

 

 
Table 6-II. Status of the Northern Gannet and the Great Skua by African country or island according to 
the species checklist of the African Bird Club (data obtained from a wide sources of information, mainly: 
Birds of Africa vol. 1-7, 1982-2004, edited by one or more of C. H. Fry, E. K. Urban, G. S. Keith, L. Brown and 
K. Newman, Academic Press). 
 
Country or Island Morus bassanus Stercorarius skua 

Azores Islands* Winter Migrant No report 
Canary Islands Winter Migrant No report 
Madeira Island Winter Migrant Migrant** 
Morocco Winter Migrant Winter Migrant 
Mauritania Wintering population*** Wintering population*** 
Senegal Wintering population*** No report 
The Gambia Wintering population*** No report 
Guinea-Bissau Palaearctic**** No report 
Cape Verde Palaearctic**** Palaearctic**** 
Guinea* No report No report 
Sierra Leone* Palaearctic**** No report 
Ascension Island* No report No report 
* These locations are not part of the study area, but were included to compare the limits of the distribution for the gannets and skuas. 
**Checklist does not specify the period (possibly overwinter). 
***Winters commonly in the area, possibly the same population. 
**** Species is a Palaearctic breeder, possible considered rare in the zone. 
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Information from observation points 

According to data from the observation points in Europe, the Northern Gannet remains in the 

North Sea between February and September, moving through the Channel between August 

and October to reach the Bay of Biscay in November and December. Individuals moving 

south are observed in NWA and the Western Mediterranean between October and March (fig. 

6-4). Similarly, Great Skua individuals are in the North Sea between February and September, 

moving through the Channel between September and October to reach the Bay of Biscay in 

November. Individuals moving south are observed in NWA and the Western Mediterranean 

between January and March (fig. 6-5). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-3.  Northern Gannet and Great Skua 
distribution in North-western Africa, according to the 
checklists from the African Birding Club. 
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Figure 6-4. Northern Gannet migration timing 
showing the higheest monthly abundances in 
the different areas, by observation points. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-5. Great Skua migration timing 
showing the highest monthly abundances in the 
different areas by observation points. 
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The Northern Gannet showed highest numbers during September and October in Gateville, 

France. A graph comparing for several years the mean gannet number during these months, 

standardized by minutes of observation, shows the highest values during the years 2006, 2007 

and 2008, particularly 2007. In the case of the Great Skua, numbers were similar between 

years (fig. 6-6). In Cabo Ajo, Spain, numbers were higher during the winter months for both 

gannets and skuas. In this location, data from five winters were analyzed (from 2005 to 2010), 

showing the highest numbers in the 2005-2006 winter for gannets and in the 2008-2009 winter 

for skuas (fig. 6-7). Similarly, lowest values were observed for both gannets and skuas in the 

2006-2007 winter. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-6. Seabird numbers by species per minute for the months of September and October in Gateville, 
France, showing range and median. 
 

 



Northern Gannet and Great Skua migration records 

 158 

 
Figure 6-7. Seabird numbers by species per minute for winter in Cabo Ajo, Spain, showing range and 
median. 
 

 

Data from three winters were analyzed from Melilla and Ceuta (from 2007 to 2010), showing 

the highest numbers in the 2008-2009 winter for Gannets in both locations (fig. 6-8) and in the 

2008-2009 winter in Melilla and 2009-2010 winter in Ceuta for Skuas (fig. 6-9).  

 

 
Figure 6-8. Gannet numbers per minute in two North African locations, Melilla and Ceuta, for three 
winters, showing range and median. 
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Figure 6-9. Skua numbers per minute in two North African locations, Melilla and Ceuta, for three winters, 
showing range and median. 
 

 

Northern Gannet in the three areas around Iberia 
Data from locations in the Southern Bay of Biscay showed higher numbers during winter 

months, with peaks in February, with higher numbers during the 2006-2007 winter than during 

the 2005-2006 winter (fig. 6-10). Differences in the monthly mean seabird numbers by minute 

between 2005-2006 and 2006-2007 were significant (t = -2.59, p = 0.025). Detailed analyses 

by age class showed a higher numbers in the Age Class 3 (adults) for both winters, with more 

gannets migrating to this area during the 2006-2007 winter (fig. 6-11). During the 2007 spring, 

numbers of Age Classes 1 and 2 were higher due to immature birds remaining after adults had 

moved north towards colonies. Mean numbers by age class showed a significant difference 

(ANOVA; F = 5.80, DF = 2, p = 0.005). 
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Figure 6-10. Mean number of Gannets in 
the Southern Bay of Biscay during two 
winters. 

 

 
Figure 6-11. Mean numbers of Gannets in the Southern Bay of Biscay by age class. 

 

In Portugal and the Atlantic coast off Iberia the numbers of Gannets were higher, especially 

from the Age Class 3 (adults), during the winter period 2006-2007 (fig. 6-12). Surprisingly, 

some adults remained during March and April. Observed differences between age classes were 

marginally significant (ANOVA; F = 3.44, DF = 2, p = 0.052). 
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Figure 6-12. Mean number of Gannets in 
Portugal and Atlantic coast, by age class, 
during one year. 

 

 

The numbers of Gannets in the Gulf of Cadiz, Madeira and Western Mediterranean were 

higher, mainly Age Class 3, during the winter months with peak in March (fig. 6-13). 

Observed differences between age classes were not significant (ANOVA; F=2.71, DF = 2, p = 

0.089). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-13. Mean numbers of Gannets in 
the Gulf of Cadiz, Madeira and Western 
Mediterranean by age class. 

 

From the three areas around Iberia, numbers of gannets were higher in Portugal and the 

Atlantic coast (fig. 6-14), with the observed differences marginally significant (ANOVA; F = 

3.29, DF = 2, p = 0.05). 
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Figure 6-14. Mean numbers of Gannets in 
the three areas around Iberia. 

 

 

Great Skua in the three areas around Iberia 

Great Skua showed higher numbers during the winter months, and during the 2006-2007 

winter in comparison with the 2005-2006 winter in southern Bay of Biscay (fig. 6-15). 

Similarly with gannets, Great Skua presented the highest numbers in Portugal and the coast off 

the Atlantic during November and December (fig. 6-16), showing statistically significant 

differences (ANOVA; F = 4.71, DF = 2, p = 0.016) between locations. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-15. Mean number of Skuas in the 
Southern Bay of Biscay during two 
winters. 
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Figure 6-16. Mean monthly abundance 
of Skuas in the three areas around 
Iberia. 

 

 

Discussion 
 

According to the birdwatching checklists, the Northern Gannet has a wider winter distribution 

area in NWA than the Great Skua. Besides the Great Skua there are other skua species 

wintering in the area, the Long-tailed Skua Stercorarius longicaudus, the Arctic Skua S. 

parasiticus and the Pomarine Skua S. pomarinus (Furness 1987). In some cases individuals 

from these species could be misidentified, because there are plumage similarities between 

species especially with immature birds and juveniles. In fact it has been reported that some 

individuals identified as Great Skua could be South Polar Skua Catharacta maccormicki in 

Senegal (Marr et al. 1998). 

 

Surprisingly, checklists from Azores and Canary Islands do not include the Great Skua. Both 

archipelagos have been well studied and are located in areas with a high amount of food 

available in terms of pelagic fish, fishery discards and local seabirds. It is difficult to believe, 

especially in the Canary Islands, that information about Skuas is scarce in these locations 

given the number of visiting ornithologists and birders. On the contrary, this species is 

included in the checklists from Madeira and Cape Verde. It the case of Madeira, Great Skua 

has been observed (Dorst, 1962) with a ring recovered (Furness, 1987). It is difficult to 

interpret why the Great Skua has been reported in Madeira and not from in the near islands, 

and some hypothesis could be suggested: a) Madeira is located in the migration route of the 

Great Skua, b) Azores and Canary Islands are more dense populated areas and c) there are 

errors in at least one of the checklists. 
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There are no reports from Ascension Island because this location is far south and away from 

the continent. A location without any report is Guinea (fig. 3) but this could be due to a lower 

birdwatching effort in the country, or because this area is at the southern limit of both 

Northern Gannet (Nelson, 2002) and Great Skua (Cramp et al. 1983), with only one report in 

Lagos, Nigeria (Wallace, 1973). Political problems and poverty may cause the lack of interest 

in ecological research in some NWA countries. 

 

Based on previous reports of Northern Gannet and Great Skua near the coast off NWA it is 

possible to establish that these species are fairly common in the area, mainly during winter. 

Nonetheless, variations in recorded abundances are great maybe due the constant movement of 

individuals in their search for food, or the lack of systematic surveys. In last two decades the 

number of reports of wintering seabirds in NWA is increasing, and this could support the idea 

that seabird numbers wintering in NWA are increasing in recent years or extending their 

range. 

 

During winter, gannets are numerous on the shelf waters in southern latitudes south to Guinea-

Bissau (up to 10º N), mainly associated with fish shoals or fishing boats (Brown et al. 1983; 

reported in Camphuysen and van der Meer, 2005).  

 

Some surveys from NWA do not report gannets or skuas in the area (Moreau, 1938; Bierman 

and Voous, 1950; both reported in Brown, 1979), maybe due to a low observation effort or the 

season. In the particular case of the Cape Verde Islands, the lack of gannets and skuas in 1912 

and 1951 could be explained because those surveys took place in September, during the 

migration period. However, there are recent reports of gannets and skuas in Cape Verde 

maybe due a more recent spread of these birds there. 

 

During the survey in Mauritania in December 1984, no gannets or skuas were observed, 

maybe because the surveyed area only included the coast (Hazevoe, 1984). On the other hand, 

the very wide variation in gannet numbers from Senegal (Dubois et al. 2009) indicates that 

those wintering in NWA could be moving over a large area maybe according to the fishing 

activities. Because this is an area with low human development, fishing activities could 

change between years by chance alone. Nevertheless, large fishing fleet activities are centred 

in the shelf break of Mauritania and Western Sahara, in the upwelling area, showing a more 
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uniform distribution than seabirds (Camphuysen and van der Meer, 2005). Finally, seabirds 

could choose their wintering ground according to the food availability rather than migrating to 

a specific area, especially because natural food (i. e. not from fishing boats) is sparse. 

 

Migration timing maps show clearly the southern movement of the bulk of seabirds. Returning 

maps are difficult to draw because returning dates are quite different between individuals, 

showing no clear pattern of individuals flying northwards, and some young could overwinter 

in the south. More detailed analyses could include the direction of the birds passing by the 

observation point, but this information is not always recorded. 

 

There is no detectable trend over years in the numbers of gannets wintering in Biscay, 

according to records from Cabo Ajo, but skua numbers show a tendency to increase in recent 

years. The 2006-2007 winter shows the lowest numbers of both species, maybe because that 

was a “bad year” in terms of weather or food available. On the other hand, the two following 

winters were “good” with highest numbers of skuas (2008-2009) and the previous winter for 

gannets (2005-2006). The period 2008-2009 was good with higher numbers of gannets in 

Melilla and Ceuta, and 2008 autumn in Gateville, France. Overall, the 2008 autumn and 

following winter was the period with the highest records of gannets and skuas wintering 

around Iberia. Despite the lower values during the 2006-2007, numbers of both gannets and 

skuas were higher than previous winter (figs. 6-11 and 6-16) in the southern Bay of Biscay 

area. This could indicate that these seabird species are increasing in numbers wintering there 

in recent years. 

 

Age Class 3 (adult) gannets were more abundant than younger individuals during winter 

months. This is an unexpected result because adults are considered to tend to remain closer to 

the breeding areas, in comparison with juveniles. 

 

The coast off Portugal was the area with highest numbers of both gannets and skuas. This 

could indicate the tendency of these species to move further south in recent years. The 

increasing trend in the number of migrants in NWA is not possible to detect here because the 

area Cadiz-Madeira-Mediterranean is not representative for the NWA. But it is important to 

mention that both gannets and skuas could be wintering in the Mediterranean Sea or Madeira 

rather than the Bay of Biscay, a traditional wintering ground. 
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Abstract 
 
Fishing activity has changed along the entire distributional area of the Northern Gannet and 

the Great Skua, from the colonies in northern waters to the tropical latitudes in the NWA. 

These changes were studied by means of international fishing reports from FAO, and related 

with changes in the climate (sea surface temperature and NAO Index). Demersal and pelagic 

fish species are the main fisheries in the entire North-eastern Atlantic. Overall, fisheries 

present a decreasing trend in the European countries and a slight increasing trend in NWA 

countries, observed in the discard volumes. With exception of the Archipelagos areas, the 

coast of NWA presents non-noticeable increase of sea surface temperature. Fisheries are 

positively related to the winter NAO Index, indicating more fishing captures when oceanic 

conditions are cold with strong upwelling, suggesting a relationship between the climatic 

conditions with the abundance of fish. 

 
Introduction 
 

Fishing is the most widespread activity of man in the marine environment (Jennings and 

Kaiser, 1998) and generates the main source of protein for several millions of people. The 

growth of the human population and the improvement of technology have driven a fast 

expansion of fishing activities in the last 50 years (Jennings et al. 2005). As a result, the global 

fish catch is declining as demand is increasing, with the consequent dramatic collapse of some 

fish stocks, such as the Peruvian Anchovy and the Atlantic Cod which have been the focus of 

fisheries scientists (Myers et al. 1996; Jennings and Kaiser, 1998). In addition, unwanted 

species are taken as bycatch (Alverson et al., 1994; Hall, 1996).  

 

Marine ecosystems are under a range of exploitation rates, showing a mosaic of fish stocks 

declining, collapsed and stable (Worm et al. 2009). Overfishing represents a great problem 

nowadays, and the collapse of fish stocks has been documented around the world. About 25% 

of fisheries collapsed during 1950-2000, with no apparent improvement in sustainability in 

recent years (Mullon et al. 2005). Overfishing is a real environmental problem in the oceans 

with serious consequences in the reduction of biodiversity and ecosystem functioning (Worm 

et al. 2009). In addition, the average trophic level represented by fisheries landings has 
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declined in recent decades at global scale, without a substantial increase in the volume landed. 

This trend will lead to further widespread fisheries collapse (Pauly et al. 1998). 

 

In addition to the overfishing, the decline of fish species like Atlantic Cod is related too with a 

decline in the abundance of the planktonic prey in the North Sea, with a considerable negative 

effect on ecosystem function in this area (Edwards and Richardson, 2004). Impacts on the 

plankton and on fish as well, are related to changes in the oceanographic conditions, the most 

noticeable being the warming of the sea. Distributions of fish, including both exploited and 

non-exploited species in the North Sea, have responded to increases in the sea temperature, 

and future distribution shifts could be pronounced as sea temperatures are predicted to 

increase further in the North Sea (Perry et al. 2005). Despite dramatic shifts in fish biomass 

being driven more by environmental change rather than fishing (Jennings and Kaiser, 1998), 

exploitation by fisheries could have a higher impact than sea warming on the abundance and 

distribution of fish species (Dulvy et al. 2008). However, the combined effect of overfishing 

and climate change should be considered. Overexploitation and climate warming are the cause 

of negative switches in the marine ecosystem, such as variability in fish recruitment and shifts 

in species dominance (Cury et al. 2008). Examples of this are the risk of collapse of cod 

fishery in the North Sea (O’brien et al. 2000), the succession of low recruitments and collapse 

of the Anchovy stock in 2005 in the Bay of Biscay (Borja et al. 2008) and the recruitment 

failure of sardines in Morocco during 1996-1998 (Macu et al. 2000). 

 

Changes in the ecology of fish have been recorded, and some descriptions of the ecological 

changes have been proposed, explaining mainly the re-distribution of the species along a 

gradient. Understanding is difficult when fish response to climate warming differs between 

areas, as in demersal species for example. Demersal fish assemblages have shown a move to 

deeper water in response to a temperature increment at the sea surface in semi-enclosed seas 

(like the North Sea, the Mediterranean or Baltic Sea), whilst latitudinal movements of fish are 

observed in shelf areas like Iberia or the Bay of Biscay (Dulvy et al. 2008). 

 

On the other hand, changes driven by environmental factors in fish ecology are not expected to 

be uniform over the North Atlantic, and not all species are impacted equally (Rose, 2005). For 

example the Anchovy (Engraulis encrasicholus) is abundant in African waters in front of 
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Mauritania and Senegal, but at present is restricted in the North Sea to areas receiving warm 

water from the North Atlantic Current and the Gulf Stream (Reid Jr. 1967). 

 

Commercial fishing in the North Sea is among the most intense (Frederiksen et al. 2006), and 

is based mainly on few species, 11 of these support 70-80% of the total captures (Daan et al. 

1990). North Sea fisheries harvest mainly sandeel and Sprat (Tasker and Furness, 1996), 

catching up to more than one million tonnes of sandeel at the end of the 1990’s (Tasker et al. 

2000). In fact, the sandeel catches alone comprised about 40% of the total North Sea fishery 

yield in the early 1990s (Tasker and Furness, 1996). Sandeel population around Shetland 

experienced a dramatic decline at the end of the 1980’s, with a second drop after a small 

recovery period (Furness, 2007; fig. 7-1). 

 

Most fisheries in the North Sea have been directed in the past at large predatory fish such as 

Atlantic Cod, Haddock or whiting (Dunnet et al. 1990). After several decades of stability in 

Atlantic Cod catches, and even with sustained increments, the captures decreased since the 

beginning of the 1980s. On the contrary, Herring landings dropped in the late 1970s and the 

fishery was closed in most areas in the North Sea, and there was a similar situation with the 

Sprat (Daan et al. 1990). Another important species is Saithe. In all cases, stocks have been 

declining in the last 40 years (Votier et al. 2004b). Overall, exploited fish species are showing 

dramatic changes, like high temporal abundance variation, compared to unexploited species 

(Hsieh et al. 2006; Cury et al. 2008).The Norway Lobster Nephrops norvegicus is the non-fish 

species more intensively fished in the North Sea (Catchpole et al. 2006).  

 

Mixed fisheries are common in the Celtic Sea, and some species caught as by-catch may be 

landed. The highest volumes landed are from small pelagics (mackerels), followed by 

roundfish (OSPAR, 2000). Large benthic invertebrates, like scallops and crabs, are 

commercially important as well (OSPAR, 2000). 

 

 



Fisheries status and climate in the distributional area of Northern Gannet and Great Skua 

 170 

 
Figure 7-1. Estimated biomass of sandeels for the Shetland stock (from Furness, 2007). 

 
 

In the Bay of Biscay, over a hundred of species are targeted by a wide variety of fishing 

vessels, mainly from France and Spain. Main fisheries in the Bay of Biscay are related to 

pelagic and demersal groups. Main species targeted are the Atlantic Mackerel, Horse 

Mackerel, Blue Whiting, Hake, and two species of anglerfish, megrims, lobsters and 

cephalopods (Lema et al. 2006). French catches exceeded 90 000 tonnes in 1997, representing 

more than half of the pelagic catch the Anchovy (Engraulis encrasicolus) and Pilchard 

(Sardina pilchardus). Hake (Merluccius merluccius), Sole (Solea solea) and anglerfish species 

(gen. Lophius) dominated the demersal catch. Hake is the principal species for Spanish 

fisheries in the Eastern Bay of Biscay, with annual catch nearly 16 000 tonnes (OSPAR, 

2000), but annual volumes are declining in recent years (fig. 7-2). 

 

 
Figure 7-2. Hake landings in the Bay of Biscay (from OSPAR, 2000). 
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Sardine (Sardina pilchardus) is the main pelagic fish resource in the Portuguese coast and has 

been decreasing in the last 20 years, with an oscillating trend along the entire 20th Century in 

relation to the industrialization of the fishing gear and changes in climate (Mendes and 

Borges, 2006). Similar situation is observed in the Anchovy from the Bay of Biscay (Uriarte et 

al. 1996). 

 

Unlike the North Sea and the Bay of Biscay cases, some fisheries in North-western Africa 

(NWA) have been increasing in recent years, especially those related to small pelagic species 

(FAO, 2006, 2008). The increase in those fisheries could be related to fishing fleet moving 

from Europe to African waters, new fishing policies in the African countries, or the abundance 

of fish in the area. The richest fishing grounds in the Central-eastern Atlantic are located in the 

Sub-Saharan portion, in North-western Africa, along the coasts from the Western Sahara to 

Guinea, including coastal areas of sparsely-populated and poor countries, unable to exploit 

those resources (Kaczynski, 1989).  

 

The continental shelf of NWA, from the Strait of Gibraltar to Senegal, has the potential to 

become one of the most important fishery areas of the world, due to a permanent or, in some 

areas, seasonal upwelling resulting in an enhanced primary production (Duineveld et al. 

1993). Upwelling in the Canary Current carries nutrient-rich water to the surface. As a result, 

high levels of phytoplankton, zooplankton and fish are observed over a wide area. These kinds 

of systems are very important to fisheries. Indeed, five upwelling areas in the world represent 

around 25% of total global marine fish catches (California, Peru, Canary, Benguela, and 

Somali) occupying only 5% of the ocean area (Jennings et al. 2005). 

 

Because of the environmental heterogeneity in the North-western coasts of Africa, fishing 

resources are different between countries and, as a result, target species and volume of catches 

are different as well. The areas of Cape Verde archipelago, Guinea and Mauritania differ in 

terms of resource exploitation and ecosystem productivity, representing three different tropical 

fishing scenarios with different impacts as well (Stobberup et al. 2005a). 

 

Traditionally, local artisanal communities develop fisheries restricted to the coast, and 

relatively new industrialized fisheries are important in the entire oceanic zone, but mainly on 

the shelf area. Fishing effort from African countries has undergone a reduction in recent years, 
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transferring this effort to European countries (FAO, 2006), mainly under the licensed and 

chartered fishing regimes (Kaczynski, 1989). Industrial fisheries are carried out by large fleets 

mainly from Spain, Portugal, Germany, Holland, France, Russia and Korea (Leopold, 1993; 

Stanford et al. 2001). The beginning of industrial fishing in NWA was traced to 1910 (Ribeiro, 

2002), generally fishing on small pelagic species that inhabit the near surface layers (like 

sardinellas and sardines), and mackerel from deeper waters (ter Hofstede and Dickey-Collas, 

2006). Statistics show that the region supports important fisheries on Carangidae, Clupeidae 

and Scombridae species (Leopold, 1993; FAO, 2006). 

 

The oceanic waters of Morocco, Mauritania and Senegal support a large fishery on small 

pelagic fish (fig. 7-3), based mainly on Dutch Super-trawlers (ter Hofstede and Dickey-Collas, 

2006). The sardine and sardinella species are commercially important in Morocco from Cape 

Blanc to Cape Spartel where three stocks are recognized (Ettahiri et al. 2003). Cape Blanc was 

the main traditional fishing ground in the NWA, but recently the Portuguese fleet has 

concentrated on fishing grounds further offshore or in international waters, with target species 

such as Scabbardfish, Hake, Tuna (Ribeiro, 2002), and shrimp. 

 

Figure 7-3. Small pelagics catches (1990-2005) in the sub-region between Morocco and Senegal (from FAO, 
2006). 
 

 

The Round Sardinella S. aurita is a pelagic fish species that is substantially exploited by both 

industrial and artisanal fisheries in Mauritania (ter Hofstede et al. 2007). This species is 

dominant during summer and the Sardine S. pilchardus is dominant during winter (ter 

Hofstede and Dickey-Collas, 2006). Trawlers in Mauritania operate persistently along the 
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shelf (Leopold, 1993). The Round Sardinella catches in Mauritania were about 48 000 t during 

the first half of the 90’s by year, and increased to an over-exploited level of 170 000 t per year 

ten years later (ter Hofstede et al. 2007). In the period 1999–2003 the CPUE of S. aurita 

gradually diminished, and catches of Sardines S. pilchardus and S. japonicus increased (ter 

Hofstede and Dickey-Collas, 2006). The sub-region from Morocco through Senegal represents 

the most widely studied area from the entire NWA, especially in relation to small pelagic 

fisheries. S. pilchardus is the most important prey species for the sub-region, showing slight 

decreasing volumes of capture in recent years. Other species, like S. aurita, present an 

increasing trend in the recent years. 

 

Senegal is a great NWA fishing nation fishing almost 90%of the total captures in the area. 

Small pelagics represent more than 75% of the artisanal catches and 55% of total marine 

catches (Dei-Ouadi, 2005). Target species are mainly pelagic fish (sardines, sardinellas and 

mackerels), demersal fish, crustaceans and cephalopods (Diallo, 2000). Industrial fisheries in 

The Gambia are related to demersal and pelagic fish, mainly over the estuarine clupeid 

Ethmalosa fimbriata (Mendy, 2004), but pelagic captures have decreased in the last 30 years, 

and with reduced stocks the fishery closed. On the other hand, the pelagic fishery has been 

reporting a sustained increment in recent years (Mendy, 2002). 

 

The industrial fishery in Guinea-Bissau is undertaken exclusively by foreign vessels on a 

seasonal basis, dominated by fishing for sciaenid fish like Arius sp. Galeoides decadactylus, 

Polydactylus quadrifilis, Argyrosoma regius, Pseudotolithus sp. and Pomadasys sp., followed 

by small pelagics like Sardinella sp., Ethmalosa fimbriata and Decapterus sp., and to a lesser 

extent by cephalopods and shrimps. Tuna fishery is also important in the country (Amorim et 

al. 2004). After a civil war in Guinea-Bissau, a gradual increase in fishing effort has been 

observed, and simulations shows a strong impact of the artisanal fisheries, especially on 

shallow water species such as mullets (Amorim et al. 2002). In addition, abundances of 

commercial and non-commercial demersal fish have been decreasing (Stobberup et al. 2005a). 

Estimates of industrial trawl catches in Guinea Bissau have ranged between 20 000 t and 45 

000 t during the last two decades, with main increment between 1990 and 1992 (Stobberup et 

al. 2005a). 
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Fishery landings in Cape Verde are dominated by pelagic and migratory species such as tuna 

and various small carangid species (Évora and Amorim, 2002). Some fish species in Cape 

Verde are under-exploited, about 25% of the estimated sustainable yield of small pelagics like 

Horse Mackerel, Scad and Chicharro-Bigeye Scad being caught (D’ Olvera-Fonseca, 2000). 

Horse Mackerel is the most important species, representing almost 40% of total catches at the 

peak of the fishery in 1997 and 1998 (Stobberup and Erzini, 2006). Mackerel-scad catches are 

taken with seine gears both in the industrial and artisanal fisheries (Stobberup et al. 2006). A 

decreasing trend in demersal fish abundance in Cape Verde may be a warning signal of over-

exploitation. CPUE of tunas have decreased, and increased for small pelagics (Stobberup et al. 

2005a). On the other hand the composition of species fished has changed in last years, with an 

increasing importance of small pelagic species such as Spicara melanurus and Selar 

crumenophthalmus (Stobberup and Erzini, 2006). 

 

The assessment of fishery resources in the NWA countries is particularly difficult due to data 

limitation and a lack of consistent time series. Trawl surveys have been undertaken only 

sporadically, especially in countries with less developed fisheries like Cape Verde and Guinea 

Bissau (Stobberup et al. 2005a). In addition, surveys in the Cape Verde archipelago are 

difficult due to the very narrow shelves and difficult bottom conditions (Stobberup et al. 

2005a). 

 

However, important information already exists about the amount of volume fished in the 

NWA, and some trends can be observed. The biomass of large fish has declined in the last 40 

years along the NWA coasts. Fishing intensity has increased such that the resources in the area 

are now overfished (Christensen et al. 2004). In the same way fishing pressure on small 

pelagic and demersal fish has increased in recent years, in all the countries in NWA. 

 

Discards are the part of the catch that is not kept by the fishery, and discarding is unavoidable 

due to damage to the fish, the wrong kind of species being caught, minimum length 

constraints. Because there is a lack of information about the fishing activities in NWA, data 

about discards in the zone are scarce, and it is necessary to estimate discards values using 

indirect data. Discard values have been estimated based upon the limited sampling of 

discarding rate for the fishing area (Crane, 2005). Having only some indications on fishing 

discards, values should be assigned carefully (Amorim et al. 2004). Discard densities of 
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demersal fish calculated for the NWA are 0.053-0.167 t per square km, with the exception of 

the northern Mauritania and Western Sahara, here the values are 0.167-0.31 t per square km 

(Crane, 2005). For the percentage discards, available data are restricted to a few areas. 

Discards in Mauritania includes all sizes of fish, and shows seasonality in S. pilchardus. The 

estimated amount of discards in proportion to the total catch is around 10%, supporting the 

idea that pelagic fisheries have a low level of discarding (ter Hofstede and Dickey-Collas, 

2006). Industrial fisheries operating off The Gambian coast generate up to 20 % discards, 

though this is probably higher for the shrimp fisheries (Mendy, 2004). In case of the 

Portuguese fleet, discards have been estimated to be approximately 40% in the historical trawl 

fishery (Ribeiro et al. 2002). 

 

Changes in fishing activities could drive changes in migratory movements of seabird species, 

especially those with scavenging habits like gannets and skuas, which may associate with 

fishing vessels to feed on discards (undersized fish, unwanted species and offal). Fishing 

discards are an important source of food for scavenging seabirds, although how accessible 

these are to seabirds depends on local fishing practices such as net mesh size, and on-board 

processing systems (Furness et al. 2007). This huge amount of food has been estimated in the 

order of 909 109 tonnes for the North Sea, 269 205 tonnes for the Canary System, 100 893 for 

the Celtic-Biscay Shelf, 37 168 for the Celtic-Biscay Basin and 5 840 for the Norway Shelf 

(Kelleher, 2005). Because of this, analyses of the relationship between fisheries and seabirds 

can employ discard values as an indirect source of food for scavenging seabirds. 

 

On the other hand, migratory seabirds are vulnerable to the impacts of climatic change 

because they depend on separate breeding and wintering areas, making it very difficult to 

predict range shifts accurately. It has been demonstrated that some migratory birds alter their 

distributions in response climate warming, affecting both wintering and breeding areas, and 

the migratory distance between them (Robinson et al. 2005). 

 

Materials and Methods 
 
Fisheries 
Data on landed volumes of marine fish and invertebrates were obtained by country involved in 

fisheries at the Northern Gannet and Great Skua all-year distribution area in the North-eastern 
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Atlantic (including Iceland, Ireland, Faroe Islands, Great Britain, Netherlands, Belgium, 

Denmark, Germany, Norway, Spain, France and Portugal), Central-eastern Atlantic, and in the 

North-western coast of Africa (Morocco, Mauritania, Senegal, the Gambia, Guinea-Bissau and 

Cape Verde). Only data from Western Sahara were not available. 

 

Data by country were grouped into three main distributional areas for gannets and skuas, the 

North Sea (UK, Denmark, Belgium, the Netherlands, Germany and Norway), Iberia-Celtic Sea 

(Ireland, France, Portugal and Spain, and landings from Isle of Man and Channel Islands), and 

North-western Africa (fig. 7-4). 

 

 
Figure 7-4. Map of the all-year distribution area of the Northern Gannet and the Great Skua, showing the 
fisheries areas included in the analyses. 
 

Central-eastern Atlantic present two subdivisions: African countries (Morocco, Mauritania, 

Senegal, The Gambia, Guinea-Bissau and Cape Verde, and landings from Gibraltar), and 

foreign countries fishing in North-western African waters (from America, Asia and Europe). 
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Spanish and Portuguese landings around the Canary Islands and Madeira are reported as 

foreign countries fishing in Africa. 

 

Data were obtained from the FishStat Plus (Fisheries Data Analyses Software, FAO) and 

FIGIS Database (FAO) for the period 1950-2008, presented as volume landed (in tonnes) by 

year. Fisheries landings were grouped into the following FAOSTAT fishing groups: Demersal 

fish (cods, haddocks, soles, rays, seabasses, mullets, among others), Pelagic fish (sardines, 

anchovies, herrings, tunas), “Other” Marine fish (miscellaneous, usually coastal species), and 

Invertebrates (prawns, shrimps, krill, crabs, molluscs). In the case of molluscs, only 

cephalopods were included. Data were grouped according to the information obtained by 

fishery, and condensed in graphs by area. 

 

Landing areas by fishing groups were divided into the North-eastern Atlantic reported by 

European countries, African countries, and foreign countries fishing in Africa. Total landings 

from 1989 to 2008, for the four fishing groups, were analysed for the African landings 

(reported from African and non-African countries) by means of bar graphs. Similar 

comparisons were made between the two main wintering areas for seabirds, Iberia (including 

Bay of Biscay, Celtic Sea and Iberia) and NWA. Paired t-test analyses for annual catches 

between Iberian-Biscayan and NWA were applied by fishing group. 

Discards 

More detailed analyses were made of discard volumes, estimated from reported landings by 

country and type of fishery. To establish the percentage rate of discards by type of fishery is 

very difficult because the fishery of a single species often involves different kinds of fishing 

devices (nets, traps, lines), or technical implements (kind of ship, or boat). On the other hand, 

different discard rates can be related to the policies adopted by a country (such as net mesh 

regulations and market factors affecting the choice of target species) resulting in a wide range 

of discard percentages. Estimation of discards was made according to the reported rates of 

discarding by country and/or fishery (Kelleher, 2005), small pelagics from Mauritania (ter 

Hofstede and Dickey-Collas, 2006) and for Portuguese shrimp fishery (Monteiro et al. 2001). 

In cases where discard rate is not presented for a particular fishery, the overall discard 

percentage by country was applied (Kelleher, 2005).  
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Total discard mass by country was estimated from the percentages of discards by fishery and 

by country (Table 7-I) for fisheries recorded in the FishStat Plus database and FIGIS 

Database. In some cases discard percentage by fishery is reported as an interval, in these cases 

the bigger value was used as there has often been a tendency to under-report discarding 

(Kelleher, 2005). For Belgium, Denmark, Faroe Islands and Germany, discard percentage 

applied was the overall mean value for the EU (Kelleher, 2005). Results were grouped by 

fishing area: North-eastern Atlantic (including the North Sea), the Bay of Biscay (including 

the Celtic Sea and Iberia), and Eastern-central Atlantic (African countries). With the annual 

value of volume discarded, for the period between 1950 and 2007, trend graphs were made for 

each fishing area, applying time series analyses. Single linear or polynomial regression 

analyses were applied in order to detect statistical significance of observed trends. 

 
Table 7-I. Percentage of discards by fishery and by country (after Monteiro et al. 2001; Kelleher, 2005; ter 
Hofstede and Dickey-Collas, 2006) for the three main distribution areas of gannets and skuas. 
 

North-western Atlantic Fishery Percentage of discards 
Iceland All fisheries* 2.3 

Faroe Islands All fisheries** 40 
United Kingdom 

 
All fisheries* 
Invertebrates 

37.9 
83 

 Pelagics 3 
Belgium All fisheries** 40 
Denmark All fisheries** 40 

Netherlands All fisheries* 11.8 
 Invertebrates 83 
 Pelagics 3 

Germany All fisheries* 40 
 Invertebrates 83 
 Pelagics 3 

Norway All fisheries* 3.9 
 Invertebrates 83 
 Pelagics 3 

Celtic and Iberia Fishery Percentage of discards 
Ireland All fisheries* 12.1 

Isle of Man and Channel Islands All fisheries* 
Invertebrates 

37.9 
83 

 Pelagics 3 
 Pelagics 3 

Spain All fisheries* 3.9 
 Pelagics 3 

France All fisheries** 21 
 Demersal 28.1 
 Pelagics 37.7 

Portugal All fisheries** 85 
 Shrimp 90 

North-western Africa Fishery Percentage of discards 
Morocco All fisheries** 19.4 

 Cephalopods 30 
 Demersal 30 
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Mauritania All fisheries** 0.5 
 Small pelagics 10 

Senegal All fisheries** 6.3 
The Gambia All fisheries** 11.6 

Guinea-Bissau All fisheries** 27 
Cape Verde All fisheries** 0.5 

Foreign countries fishing in Africa  Percentage of discards 
 All fisheries 12 
 Demersal 30 
 Invertebrates 85 
 Shrimp 62 
 Pelagics 3 

*Excluding pelagics, **Including invertebrates 

 

 

Sea surface temperature 

Data related to climate change, in terms of sea surface temperature, were obtained from 

different points from the North-eastern Atlantic from the University of Columbia 

(http://iridl.ldeo.columbia.edu/SOURCES/.Indices/ensomonitor.html). Points are from the 

northern North Sea locations near the Bass Rock (55.5 N, 2.5 W) and Shetland (59.5 N, 20.5 

W), from the southern Bay of Biscay near Bakio (43.5 N, 2.5 W), from western of Portugal 

near Porto (41.5 N, 8.5 W), and from North-western Africa in locations near Gibraltar (35.5 N, 

5.5 W), Madeira (32.5 N, 16.5 W), Canaries (28.5 N, 14.5 W), Casablanca (33.5 N, 7.5 W in 

Morocco), Dahkla (23.5 N, 16.5 W in Western Sahara), Cape d’ Arguin (20.5 N, 16.5 W in 

Mauritania), Dakar (14.5 N, 17.5 W in Senegal), the Bijagos Archipelagos (11.5 N, 16.5 W off 

the coast of Guinea-Bissau), and Praia (14.5 N, 23.5 W in Cape Verde). 

 

Regression analyses of winter mean sea surface temperature (from December to March) 

against year were made for the period 1982-2008, for every selected point.  

 

Finally, information and data related to the NAO (North Atlantic Oscillation) index (NAOI) 

were obtained from National Oceanographic and Atmospheric Agency, NOAA 

(ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/tele_index.nh) for the period 1990-2009 and 

trend graphs were made from mean annual NAOI and mean winter NAOI values. 

Regression analyses were made of the relationship of the relationship between the annual 

fishing landings and winter NAOI (December-March) by fishing group and region. 
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Results 
 
Fisheries 

The main fisheries in the North-eastern Atlantic are for demersal and pelagic fish groups, with 

an increase of invertebrate fishery landings in the North Sea and crabs in the Isle of Man in 

recent years. Crabs fishery have most important fishery in the Channel Islands, but this has 

been replaced by a fishery targeting demersal fish in recent years. Pelagic and demersal 

landings have been steady along the entire period, except “other marine fish” declining to 

2004 and recovering in recent years (fig. 7-5). The same situation is observed in the North Sea 

fishing landings, with a noticeable decrease in recent years for “other marine fish” (fig 7-6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-5. Landings by fishing group 
for all European countries in the 
North-eastern Atlantic by year. 

 

 

 

 

 

 

 

 

 

 

Figure 7-6. Landings by fishing group 
for the North Sea countries by year. 
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Fisheries around Iberia are showing a decreasing trend for demersal and pelagic groups in 

recent years, with a slight recovery for “other marine fish” after a collapse during 2003-2004 

(fig. 7-7).  
 

Fisheries in the North-western African countries were scarce during the decade of the 1950s, 

with some reports of “other marine fish”. Fisheries become more diverse from the 1970s and 

are dominated by pelagics and demersal fish nowadays. Foreign fleet fishing in the Central-

eastern Atlantic (from Spain, Russia, Netherlands, China, among others) are operating in the 

area at an industrial level. Fishing boats from American countries are fishing on pelagics since 

1963; Asian countries have been fishing cephalopods since 1950 but with pelagic and 

demersal species the most important current fisheries. European countries have been fishing 

along the coasts of Africa since 1950 in a more diverse way, with pelagics and demersal 

dominating recent landings. Landings are decreasing in Central-eastern Atlantic for all fishing 

groups, except pelagics where landings have increased considerably (fig. 7-8), with similar 

pattern shown in landings from non-African countries only (fig. 7-9).  

 

North-western African countries are landing an increasing volume for all fishing groups (fig. 

7-10), but non-African countries dominate historic fisheries along the Central-eastern Atlantic 

(fig. 7-11). Historic total landings in the Central-eastern Atlantic are higher than landings 

around Iberia, with the exception of demersal (fig.7-12), but landings reported from Iberia 

exceed landings from African countries for all fishing groups (fig. 7-13). Total landings 

reported in the last 20 years are higher from the Central-eastern Atlantic (50,373,007 tonnes) 

than landings from Iberia (23,064,604 tonnes) for the same period. 
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Figure 7-7. Landings by fishing 
group for the Iberia reports by 
year. 

 

 

 

 

 

 

 

 

 

Figure 7-8. Landings by fishing 
group in the Central-eastern 
Atlantic by year. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-9. Landings by fishing 
group in the coasts off NWA, 
reported for non-African 
countries. 
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Figure 7-10. Landings by fishing 
group from NWA countries by 
year. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-11. Total landings in the 
Central-eastern Atlantic, by fishing 
group, between NWA and non-
African countries.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-12. Total landings by fishing 
group between the Central-eastern 
Atlantic and Iberia. 
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Figure 7-13. Total landings by fishing 
group from NWA countries and 
Iberia. 

 

Differences in captures between Iberia-Biscay and NWA are significant in the case of 

demersal fish (t = -24.46, p < 0.001), marine fish (t = -36.59, p < 0.001) and invertebrates (t = 

-2.09, p = 0.041), but not in the case of pelagics (t = -1.23, p = 0.223). 

 

Discards 
Discards from the North-eastern Atlantic show an increasing trend from 1950 to 1976. Since 

then, discards have been decreasing until 2008 except for a high period during 1980-1988 (fig. 

7-14). The trend between 1950 and 1976 represents a positive significant relationship (F = 

273.49, p < 0.001, r2 = 91.3; fig. 14), and the trend during 1976-2008 has a negative 

significant relationship (F = 49.70, p < 0.001, r2 = 60.3; fig. 7-15). 

 

  
 
 
 
 
 
 
 
 
 
 
 
Figure 7-14. Time series plot from 
total discards recorded from the 
North-eastern Atlantic. 
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Figure 7-15. Linear regression for 
North-eastern Atlantic discards 
during 1950-1976 (open circles) and 
during 1976-2008 (solid squares). 

 

 

The discards time series graph for the North Sea fisheries shows an increasing discard mass 

from 1950, with a peak in 1982-1983. Since then, the tendency has been a decreasing trend 

(fig. 7-16). Regression analyses indicate a significant positive trend during the period from 

1950 to 1983 (F = 327.61, p < 0.001, r2 = 90.8; fig. 7-17), and a significant negative trend 

during the period from 1983 to 2008 (F = 56.56, p < 0.001, r2 = 69.0; fig 7-17), these trends 

being even stronger than in the North-eastern Atlantic area, though closely similar 

qualitatively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-16. Total discards estimated 
from the North Sea by year.  
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Figure 7-17. Linear regression for 
the North Sea discards during 1950-
1983 (open circles) and during 1983-
2008 (solid squares). 

 

 

In the Iberia-Biscay-Celtic Sea area total discards showed a rapid increase from 1950 with a 

peak in 1965. Since then there has been a decreasing trend though with fluctuations (fig. 7-18). 

Regression analyses indicate a very positive trend during the period from 1950 to 1965 (F = 

212.52, p < 0.001, r2 = 93.4; fig. 7-19), and a negative one during the period from 1965 to 

2008 (F = 81.99, p < 0.001, r2 = 65.3; fig 7-19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-18. Total discards estimated 
from the Iberia, Biscay and Celtic 
area by year.  
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Figure 7-19. Linear regression for 
the Iberia, Biscay and Celtic discards 
during 1950-1965 (open circles) and 
during 1965-2008 (solid squares). 

 

 

Total discards from the Central-eastern Atlantic present a slight increasing trend during 1950-

1964. A more rapid increasing trend continues up to 1974. Since then, a decreasing trend is 

observed (fig. 7-20). Regression analyses show a very positive, but nonlinear, trend during the 

period 1950-1974 (F = 201.46, p < 0.001, r2 = 94.4; fig. 7-21), followed by a negative trend 

(again non-linear) during the period from 1974 to 2008 (F = 104.20, p < 0.001, r2 = 77.1; fig 

7-21). 

 

A closely similar pattern is observed in fisheries from the foreigner fleet landings from 

Central-eastern Atlantic (fig 7-22), with a positive non-linear relationship during the period 

1950-1974 (F = 182.29, p < 0.001, r2 = 93.8; fig. 7-23), and a negative non-linear relationship 

during the period from 1974 to 2008 (F = 114.87, p < 0.001, r2 = 87.0; fig 7-23). 
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Figure 7-20. Total discards estimated 
from the Central-eastern Atlantic, by 
year.  
 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 7-21. Polynomial (quadratic) 
regression for the Central-eastern 
Atlantic discards during 1950-1974 
(open circles) and during 1974-2008 
(solid squares). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-22. Total discards estimated 
from the foreigner fleet in the 
Central-eastern Atlantic, by year.  
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Figure 7-23. Polynomial (quadratic) 
regression for the foreigner fleet 
discards in the Central-eastern 
Atlantic during 1950-1974 (open 
circles) and during 1974-2008 (solid 
squares). 

 

In contrast to all of the previous results, it is clear that discards from African countries have 

increased since 1950 (fig. 7-24), with a very positive relationship during the entire period 

1950-2008 (F = 432.26, p < 0.001, r2 = 95.7; fig. 7-25). 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-24. Total discards estimated 
from NW Africa by year. 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-25. Polynomial (quadratic) 
regression for NW Africa discards 
during 1950-2008.  
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Despite the strongly divergent trends in NWA (Figs 7-24 and 7-25) and Iberia-Biscay-Celtic 

Sea (Figs 7-18 and 7-19), the discard mass in the latter has remained much higher than in 

NWA (fig. 7-26). 

 

 
Figure 7-26. Trends in total discards between NWA and Iberia fisheries by period of time. 
 
 

Winter sea surface temperature 
A summary of the regression analyses of the temporal trend of mean winter sea surface 

temperature by location is presented in the Table 7-II. In general, sea surface temperatures 

from December to March have been increasing significantly in the last 28 years in the North 

Sea (fig. 7-27), with no significant change in the Iberia-Biscay area (fig. 7-28). 

 

Figure 7-27. Regression analyses for the North Sea locations, a) The Bass Rock and b) Shetland). 

 

 

 

 

 

 

                                                    

 
a            

 

 

 

 

 
 

 
b 
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Table 7-II. Results from the regression analyses of temperature of year by location. 

Location F value P value r2 value 
The Bass Rock 16.31 <0.001* 37.1 

Shetland 15.13 0.001* 35.2 
Bay of Biscay 3.28 0.082 8.1 

Bakio 4.04 0.055 10.5 
Portugal 0.86 0.361 0 

Porto 1.46 0.239 1.7 
Gibraltar 1.06 0.313 0.2 

Casablanca 0.33 0.570 0 
Madeira 7.66 0.010* 20.4 
Canaries 5.25 0.031* 14 
Dakhla 0.38 0.546 0 

Cape de Arguin 3.61 0.690 9.1 
Dakar 6.59 0.017* 17.7 

Guinea-Bissau 20.16 <0.001* 42.4 
Praia 12 0.002 29.7 

*Significant value 

 

 

 

 

 

 
 

 

 

 
a) 

 

 

 

 

 
 

 

 

 
b) 

Figure 7-28. Regression analyses for the Iberia, a), Bakio b), Porto. 

 

On the other hand, temperatures have been increasing around the Canary Islands (fig. 7-29) 

and off Senegal-Guinea-Bissau, with no change in the coast from Morocco to Mauritania (fig. 

7-30). 
 

 

 

 

 

 

 

 
a) 

 

 

 

 

 

 
 

b) 

Figure 7-29. Regression analyses for the Canarias Islands, a) Madeira and b) Canarias. 
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Figure 7-30. Regression analyses for NWA, a) 
Gibraltar, b) Casablanca, c) Dahkla, d) Cape de 
Arguin, e) Dakar, f) Guinea-Bissau and g) Praia. 
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Mean winter temperatures were particularly low during 1994 in the North Sea and around the 

Canary Islands, and almost all localities showed abnormal high temperatures during 1998. 
 

The North Atlantic Oscillation Index has a typical oscillating shape, from positive values to 

negative ones. Annual mean NAOI shows the lowest values, or highest negatives, in 1998 

followed by 2008. The graph has a trend to zero (fig. 7-31). 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-31. Annual mean North Atlantic 
Oscillation index. 

 

 

The winter NAOI is dominated by positive periods, with negative values observed in 1996, 

2001, 2005-06 and 2009. Like the annual NAOI, the trend is decreasing for the entire period 

(fig. 7-32). 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-32. Winter mean North Atlantic 
Oscillation index by year. 

 
 
In the North Sea, the winter NAOI has a negative relationship with demersal catches (F = 

9.90, r2 = 13.3, p = 0.003), a positive relationships with invertebrate catches (F = 14.88, r2 = 
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19.3, p < 0.001) and other marine fish (F = 4.40, r2 = 5.5, p = 0.040), and no relationship with 

pelagic captures (F = 0.71, r2 = 0.2, p = 0.402; fig. 7-33). 
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Figure 7-33. Regression analysis between the winter NAO Index and the landings of a) demersal fish and 
invertebrates and b) marine fish and pelagics, in the North Sea. 
 

In Iberia and the Bay of Biscay, the NAOI has a positive relationship with demersal catches (F 

= 14.20, r2 = 18.5, p < 0.001) and invertebrate catches (F = 5.94, r2 = 7.8, p = 0.018), and no 

relationship with either pelagic (F = 1.71, r2 = 1.2, p = 0.196) or other marine fish captures (F 

= 0.26, r2 = 0.1, p = 0.613; fig. 7-34). 
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Figure 7-34. Regression analysis between the winter NAO Index and the landings of a) demersal fish and 
invertebrates and b) marine fish and pelagics, in Iberia and the Bay of Biscay. 
 
In NWA, the NAOI has a positive relationship with demersal catches (F = 10.87, r2 = 14.5, p < 

0.002), invertebrate catches (F = 20.06, r2 = 24.7, p < 0.001), pelagic (F = 25.39, r2 = 29.6, p < 

0.001) and other marine fish captures (F = 9.84, r2 = 13.2, p = 0.003; fig. 7-35). 
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Figure 7-35. Regression analysis between the winter NAO Index and the landings of a) demersal fish and 
invertebrates and b) marine fish and pelagic fish in NWA. 
 
 

Discussion 
 
Fish landings are far higher from catches around Iberia than off Africa especially from 

demersal fisheries, except for pelagics. For this reason, theoretically there is more food for 

scavenging seabirds in the Bay of Biscay and Celtic Sea, suggesting that these may be more 

suitable areas for wintering gannets and skuas. However, several fish stocks like hake and 

anchovy have been depleted in the Bay of Biscay (Gil, 2008) and the fisheries in North-

western African countries are increasing in the last years, resulting in a large and increasing 

amount of fish discards. Increased fishing in African waters in recent years could be attracting 

scavenging migrant seabirds. On the other hand, increases in pelagic catches in NW Africa 

(FAO, 2006; 2008) probably relate to increases in stocks of these small pelagic fish due to 

reduced predation by large demersal fish which have been reduced in abundance. Larger 

stocks of pelagics may also attract seabirds such as Skuas and Gannets. 

 

Seabirds in the North-eastern Atlantic have benefited from the enormous amount of fish 

discarded, three times the volume from North-western Africa for the period 1992-2001 

(Kelleher, 2005). It is possible that discards from the European waters attract such a huge 

number of seabirds, competition resulting in a low income of fish for seabirds wintering in the 

North Sea, Bay of Biscay and surrounded areas. If competition for food in the Bay of Biscay is 

great, due to the enormous fishing activities there, the increase of African fisheries and 

discards could attract an increasing number of birds. As a result, seabirds may be 

redistributing according to ideal free distribution. This means equally-competitive individuals 
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distribute between patches of food, such that the proportion of these resources equals the 

proportion of individuals by patch (Jackson et al. 2004) and all individuals obtain equal 

amount of food. Scavenging seabirds may be attracted in large numbers to fishing boats in the 

Bay of Biscay and Celtic Sea areas closest to the breeding areas, reducing their chances of 

obtain food as the number of birds is high. Thus, individuals migrating to Iberia early in the 

year could monopolize discards from fishing boats because they arrived first. As a result 

wintering Gannets and Skuas could gain from moving further south to waters off Africa in 

order to avoid competition for food around Iberia. 

 

Fisheries from African countries have been increasing, but total fisheries landings from the 

entire Central-eastern Atlantic have been stable in recent years, unlike invertebrates and “other 

marine fish” landings, which have shown a decreasing trend. A similar situation is seen with 

discards; those from African countries are increasing, but not those from international fleets 

operating in other regions where decreased discarding has been evident after peaks in the 

1970s.  

 

Because of the lack of modern technology, the African fleet fishes near the coast, in waters on 

the continental shelf. These artisanal fisheries have increased significantly in Mauritania, 

Senegal, Guinea and Ghana, with a noticeable rise in the number of vessels and the level of 

motorization (Lenselink, 2002). A similar situation is observed in the Moroccan sardine fleet, 

which operates close to the ports in shallow waters not exceeding 100 m depth (FAO, 2006). 

So, wintering seabirds may be taking advantage of these coastal artisanal and semi-industrial 

fisheries developed by African countries, as well as extensive fisheries from the international 

fleet in the open ocean. 

 

The increment in fishing landings and discards in North-western Africa is coupled with more 

stable climatic conditions, observed in the non-significant trend in the sea surface temperature 

during recent years in the coast off Africa from Morocco to Mauritania (fig. 7-33). Across the 

shelf off Mauritania, upwelling water is cold and this supports high concentrations of plankton 

reflected in high chlorophyll levels, with large numbers of seabirds congregated around 

fishing vessels (Brown, 1979; Leopold, 1993; Wynn and Knefelkamp, 2004). Fishing 

activities clearly influence the distribution of seabirds in the coast of Mauritania. However, 

seabird density inshore could be more related to the concentration of natural food, such as the 
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large stock of S. aurita, rather than the discards available (Wynn and Knefelkamp, 2004). It 

has been suggested that trawlers could affect the distribution of seabirds in the area, masking 

the effects of the oceanic conditions Leopold (1993).  

 

Sardinella spp. do not spawn in the southern part of their distribution (see fig. 1-14) in the 

warm waters off Senegal, and spawn in the central and northern part of their distribution, in 

the coasts of Mauritania, Western Sahara and Morocco. They could be the key species 

attracting seabirds both as scavengers and natural feeders. 

 

Observed sea surface temperature trends are in accord with previous observations, with 

slightly warmer temperatures around Canary Islands as well as in equatorial waters off 

Senegal, than the coastal waters of Western Sahara and Mauritania (Camphuysen and van der 

Meer, 2005). This means that gannets and skuas can find an increasing amount of food, being 

strongly attracted to trawlers (Wynn and Knefelkamp, 2004), in an environment with no 

noticeable effect of warming. Changes in climatic conditions, like sea surface temperature, 

may not affect seabirds directly, but the effects of sea warming on fish may be the key factor 

affecting seabird distribution. The upwelling area along the coast of Senegal supports a low 

density of seabirds, in comparison with other upwelling sites in the world, and higher densities 

of seabirds, mainly migrants, are found close to shore (Brown, 1979; Hunt and Scheider, 

1987). In the case of the Northern Gannet this could be due to the behaviour of this species, 

because gannets seldom range far out to sea (Nelson, 2002). 

 

Despite the Bay of Biscay showed no noticeable increase in temperatures during the period 

analyzed, an increasing trend was observed in previous analysis of the period 1972-1993 

(Koutsikopoulos et al. 1998). If observed trends (summarized in the fig. 7-36) persist far in the 

future, the Eastern-central Atlantic will probably become the most important wintering area 

for gannets and skuas breeding in the northern North Sea. 
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Figure 7-36. Eastern Atlantic Ocean showing the tendencies in fisheries landings, discards and 
temperature by area. 
 

 

Oceanographic conditions along the northern coast off NWA are more stable, at least the sea 

surface temperature. At the same time, artisanal fisheries are increasing in the sub-area. This 

labour-intensive type of fishery involves a large number of vessels, with a limited volume of 

fish landed. Despite the fact that about 85% of fishing vessels in the world are artisanal, these 

account for only 20% of the total volume of catch (Lenselink, 2002). These particular 

conditions should be part of the answer as to why there are an increasing number of gannets 

and skuas wintering in African waters, because there are a large number of boats discarding 

food, and the stable temperatures are beneficial for local fish populations (mainly sardines). 

Some actions have been taken to stop overfishing in the North Sea, the Celtic Sea and Bay of 

Biscay, including the reduction of catch quotas, causing a north-south redistribution of 

fisheries (Worm et al. 2009). The logical response of scavenging seabirds is the movement to 

winter in southernmost waters. But the future is not clear because North-western African 

countries are likely to face severe overexploitation of their fishing resources (Kaczynski and 

Fluharty, 2002). 
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The all year NAOI lowest value was observed during 1998, unlike the winter NAOI, and mean 

winter temperatures were extremely high along the Eastern Atlantic in 1998 as well. A 

possible explanation of this is that winter temperatures could be related to atmospheric 

dynamics through the entire year, instead of only winter atmospheric dynamics. As a result, 

extreme high winter temperature in the Eastern Atlantic in 1998 was influenced by a negative 

NAOI, resulting in weak westerlies (Hurrell and van Loon, 1997), during the previous months. 

During negative NAOI the Western coast of Africa is warm with reduced upwelling (OSPAR, 

2000; Hurrell and Dickson, 2004). Stable sea temperatures observed in this area could be 

related then to positive winter NAOI observed in the majority of the recent years. 

 

Fisheries are positively related to the winter NAOI in the NWA, suggesting that higher fishing 

volumes are related to higher values in the index, when oceanic conditions are cold with 

strong upwelling. Local changes in the coast off NWA are strongly associated with wind 

trades and current direction, this association being less important in the Iberia-Bay of Biscay 

and North Sea areas, possibly because the coast of NWA is an open area whilst the Bay of 

Biscay and the North Sea are semi-closed seas. The winter NAOI is related also with demersal 

(negative) and invertebrate (positive) catches in the North Sea, and demersal (positive) around 

Iberia, suggesting that demersal and invertebrate species abundances are influenced by the 

North Atlantic Oscillation along the entire North-eastern Atlantic. Demersal and invertebrate 

species are associated with the bottom and possibly unable to respond to changes in the 

environment. Other marine fish captures are related to the NAOI in the North Sea and 

invertebrate captures are related to the NAOI in Iberia, but with a low values in the correlation 

coefficient showing a weak relationship. 
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Great Skuas from Shetland move to the North Sea before the autumn migration to the south 

(Furness, 2002a), possibly driving changes in wintering patterns and distribution. This 

movement to the North Sea could be related to the search of food and, in case of finding fish 

in high abundance, avoiding having to travel far south. When the number of birds in the North 

Sea is high, the competition for food could promote movement along the Atlantic coast of 

Europe. A similar situation could happen with the Northern Gannet, when individuals leave 

the breeding colony in the Bass Rock (or others in Scotland) to disperse around the North Sea, 

and even to the north. 

 

New colonies have been formed in northern latitudes for both Northern Gannets (Wanless, 

2002) and Great Skuas (Furness and Ratcliffe, 2004), indicating important changes in the 

distribution of these species. This colonization of new areas, resulting from an overflow of 

birds breeding in traditional colonies, clearly indicates that changed migration patterns are not 

related to failures in breeding success. Actually, the gannet colony from the Bass Rock has 

remained stable in recent years (Hamer et al. 2007). In this case, new colonies could be related 

to the northern movement of fish species, as a result of climate warming. 

 

Recent numbers of Northern Gannets wintering in the North Sea are declining (ICES, 2007), 

which could be a convergence of negative effects of the warming of the sea on the fish food of 

seabirds during winter, although changes in fishery practices and in amounts of discards may 

be as, or more, important than influences of climate. The Bay of Biscay and the sea around 

Iberia has been a common wintering area for gannets and skuas, having a huge amount of food 

available as discards. Despite the fact that natural food is the primary target for breeding 

seabirds, scavengers like gannets and skuas tend to feed more on discards during winter 

(Furness, 2003). As a result, the number of fishing boats operating during the winter months in 

the wintering areas is an important aspect, just like the amount of discards. 

 

Nonetheless, there are an increasing number of reports of Northern Gannets and Great Skuas 

wintering in NWA in recent years. The lack of ring recovery records of these seabirds along 

the coasts off Northwestern Africa before 2006 (Furness et al. 2006), could be related to the 

poor effort in the search for wintering seabirds in the area or the high survival rate. If this last 

assumption is true, the high survival rate could be related to good conditions for wintering, in 

terms of food abundance. 
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But the important question remains: why Northern Gannets and Great Skuas are forming new 

colonies in the far north while there is a tendency to migrate further south in winter? New 

colonies at high latitudes could be explained by climate warming, but not the migration to 

lower latitudes. Actually, the climate warming explanation is contradicting in this case 

because it is difficult to interpret the movement of cold-adapted species to tropical areas when 

temperatures are rising. 

 

On the other hand, it is important to stress that climate change could affect the seabirds 

indirectly. The negative effect of the increase in sea temperature on seabirds could be related 

to the effect of climate on fish, the food source for seabirds; and even more fundamentally, the 

effect of climate on plankton. This cascade-effect could be observed in the switch in the 

copepod species in the North Sea (Lindley et al. 1995), and reflected in a regime shift (Reid et 

al. 2001; Beaugrand, 2004). Changes in fish stocks in the area are associated mainly with 

fishing pressure which is intense and overexploiting most stocks at present, but there is a clear 

effect of the climate as well (Hilborn et al. 2003) In addition, the effect of the NAO is 

observed in changes of current and wind patterns (Edwards et al. 1999; Reid et al. 2003; 

Beaugrand, 2004). As a result, the oceanographic conditions in the North Sea are changing 

and the migration behaviour of both Northern Gannets and Great Skuas is apparently changing 

in recent years. The adaptation of seabirds to the new conditions depends on the ability to find 

new sources of food during winter, and the ability to reach distant wintering areas with enough 

fish available to survive. 

 

Despite the increasing reports of wintering gannets and skuas in NWA, fisheries and fisheries 

discards in the Iberia-Bay of Biscay areas are still higher. Thus the advantage of wintering in 

NWA could possibly be explained by the following hypotheses: 

 

- Less competition in NWA in comparison with Iberia-Biscay. Most of Northern Gannets 

and Great Skuas winter in the North Sea and the Bay of Biscay and Iberia coasts (Furness, 

1987; Nelson, 2002; Kubetzki et al. 2009; Veron and Lawlor, 2010), with almost all ring 

recoveries of adult Great Skuas from Iberia (Furness et al. 2006). The increase of these seabird 

species wintering in NWA has been a surprise (Furness et al. 2006; Veron and Lawlor, 2010), 

and could be related to the lack of competition for food there. The first individuals arriving in 

Iberia find a huge amount of fishing boats discarding food, and as the number of migrant 
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seabirds is increased the discards begin to be difficult to obtain due to scramble competition 

behind fishing boats. When most of the migrants have reached the Iberian coasts, the amount 

of food per bird could be small, and competition strong. Under these circumstances moving 

southward appears an excellent alternative in the search of food. The theory of ideal free 

distribution could thus explain this idea. 

 

- Wider wintering area in the NWA because it is an open sea. Gannets and skuas migrate 

close to the coast, but occasionally can move to pelagic waters (Camphuysen and van der 

Meer [2005] reported Northern Gannets and Great Skuas in deep ocean and shelf edge waters 

off Western Sahara and Mauritania). Because of this, it is important to consider the extension 

of the coastline and surrounding marine area to evaluate the available area for wintering. The 

wintering area off NWA is noticeably bigger than the coast around Iberia, and could attract an 

increasing number of migrant seabirds. 

 

- The high abundance of natural food in NWA. Along the continental coast of NWA 

discards have been increasing in recent years, but the pelagic fish available is abundant as 

well. Sardinella species is the most notable fish in the area, being suitable for seabirds. 

Sandeels Gymnammodytes cicerelus are common in this area (Froese and Pauly, 2010) and are 

the kind of fish usually targeted by Northern Gannets and Great Skuas during breeding. The 

abundance of fish in the area is high; actually the Saharan Bank, from the South of Morocco to 

the North of Mauritania (including the entire coast off Western Sahara) is one of the richest 

fishing grounds in the world (Balguerias et al. 2000). Although pelagic fish are harvested, the 

pelagic fishery does not discard much if any of the catch so it does not make pelagic fish 

available as discards. But it is believed that the depletion of predatory demersal fish in this 

region may be causing an increase in abundance of the small pelagic fish and so may 

contribute to increased availability of this natural food for seabirds.  

 

- Major number of boats fishing in NWA. Fisheries in NWA are driven mostly by small and 

artisanal vessels. In addition, limited surveillance leads to illegal fishing (and maybe 

overfishing) conducted by an unrestricted number of boats. In the same way, the lack of 

controls could promote the discarding of a huge amount of undersized, untargeted and bycatch 

fish, and offal. Fishermen could be using illegal type of fishing gear, usually associated with 

the fishing of undesired species. In fact there is no regular government in Western Sahara. In 
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addition, some countries are unable to regulate the number of foreign boats. As a result, the 

increasing numbers of unrecorded fishing boats may be an important source of food for 

scavenging seabirds. 

 

- More predictable and stable conditions in NWA. Results of this research show a strong 

positive relationship between the NWA fisheries and the winter NAO Index. Whether seabirds 

are able to asses the abundance of fish using changes in the NAO conditions is something to 

be proved, but it is possible that sea surface temperature or wind direction during the autumn 

migration could indicate the conditions prevailing in African waters. The data on this thesis 

show that waters around Canary Islands, Cape Verde Archipelago and the coast of Senegal, 

have undergone a noticeable increase in sea surface temperature. These results coincide with 

previous reports from Camphuysen and van der Meer (2005), which found that subtropical 

waters off the Moroccan coast and around Canary Islands, as well as in equatorial waters off 

Senegal, are slightly warmer than the coastal waters of Western Sahara and Mauritania. With 

this information it is possible to establish the importance of the coast off Western Sahara and 

Mauritania as wintering area for Northern Gannets and Great Skuas. Unfortunately, there are 

no fishing data from Western Sahara. 

 

- The abundance of fish in NWA has been learnt and taught by increasing number of 

individual birds. Living in colonies offers the opportunity to transmit information between 

individuals. Successful migrants could be followed by an increasing number of individuals on 

the lookout for food in following migrations. As a result, an increasing number of migrant 

seabirds in NWA may be related to birds following others newly discovered wintering 

grounds in southern latitudes in recent years. Results showed that age class 2 individuals, in 

both Great Skuas and Northern Gannets, showed no statistical differences in the finding 

latitudes of the rings between years (especially during non-breeding and winter months), 

indicating that major changes in migration patterns are observed in both age class 1 and age 

class 3. First fledglings in Great Skua and failed breeders migrate south at the same time 

(Furness, 1987) the failed breeders potentially being a source of information about new 

wintering grounds for juveniles. Late chicks could learn the route to NWA from successful 

breeders. If the idea of the free ideal distribution is correct, those late chicks and successful-

breeding adults could be wintering in NWA because they are the last migrants, and this may 
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be explained by observed changes between years in the finding latitudes from age classes 1 

and 3.  

 

According to results obtained in this thesis, it is possible that climate warming is affecting the 

breeding distribution of seabirds in the north. Fisheries could have affected the breeding 

performance of seabirds; an example of that is the reduction in breeding numbers in Shetland 

associated with the depletion of sandeels (Furness, 2007). Changes in fisheries are apparently 

driving changes in the migratory patterns of seabirds. The depletion of fisheries in the North 

Sea has reduced the amount of fish discarded during winter (the main food supply for 

scavenging seabirds), forcing the migration to southern areas for an increasing number of 

seabirds. Results showed no Northern Gannets with data loggers wintering in the North Sea 

during the 2008-2009 winter, and around half of the individuals analyzed wintered in NWA. A 

similar situation occurred with Great Skuas carrying satellite transmitters (Furness et al. 

2006). On the other hand, depletion of sandeels in the North Sea could affect other fish species 

as sandeel-predators. In this situation, larger fish species like Hake or cod will suffer as a 

result of the lack of food and, as a result, discards from these species will affect the 

scavenging seabirds. 

 

It is important to note that Northern Gannets and Great Skuas are increasing in numbers. So, 

the search for new wintering areas in the south could be a consequence of the need to find 

food for a longer number of birds, whilst the formation of new colonies in the north is the 

solution to finding new food and space during breeding. 

 

The Northern Gannet and Great Skua are species that live for a long period, and during their 

entire life span they learn and apply new strategies in their survivorship. This plasticity is 

observed when individuals ringed in Scottish colonies are found breeding in newly formed 

colonies in Russia, Norway, Bear Island, Svalbard and Jan Mayen. Sudden changes in the 

numbers of individuals wintering in the North Sea or Iberia or NWA, between a few years, is 

another example of this ability to change strategies. Such switches in the migratory strategy 

are unlikely to be related to a genetically imposed behaviour. Newly-adopted strategies to 

survive include not only changes in migratory patterns, as with the increasing number of 

Northern Gannets or Great Skuas wintering in NWA in recent years, but also changes in time 
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budgets such as Northern Gannets flying more during autumn migration when they spend 

winter in NWA. 

 

This scenario of more individuals wintering in Africa could give rise to problems. Fisheries in 

Africa have a pessimistic future because the race for fish is in full swing (Hilborn et al. 2003). 

Fortunately, the Archipelagos of Madeira, Canary Islands and Cape Verde, and some points 

along the coast of NWA like Cape de Arguin (Mauritania), are under some kind of protection 

and considered priority areas for conservation by BirdLife International. Hopefully, 

conservation efforts will benefit the wintering grounds for Palaearctic-breeding seabird 

species, including Northern Gannets and Great Skuas. In the same way, new policies in the 

European countries, imposed to allow the recovery of fish stocks, should increase the food 

available in the North Sea. Future application of programmes to stop climate warming would 

promote the recovery of the natural populations along the entire North-eastern Atlantic. 

 

This research has indicated that the Northern Gannet and the Great Skua are changing their 

migratory patterns, with increasing numbers wintering in the coast off NWA and adapting 

their time budgets to cope with this change in migration. In the same way, human fishing 

activities have been strongly implicated in causing these migratory changes. More surveys are 

needed in African waters, in order to establish the main source of food for Northern Gannets 

and Great Skuas, detecting their main wintering grounds precisely, and investigate for the 

adoption of new strategies that has allowed them to survive during winter in tropical latitudes. 
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