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Abstract

A means of conducting continuous payload exchanges between the Earth

and Moon would allow materials to be transported between them on a

regular basis and could be used to supply vital resources to a permanent

lunar colony. In addition to this, it could provide a means of returning

materials, extracted from the mineral rich lunar surface, back to Earth.

The use of symmetrically laden motorised momentum exchange tethers

would allow these transfers to be conducted free of any conventional

propulsion, purely by the exchange of momentum between the payloads,

and without the subsequent loss of orbital altitude experienced by asym-

metrical tether configurations. Although this is an exciting prospect it

is not without its challenges, for example, if the Moon orbited a spher-

ical Earth adhering to Kepler’s laws, the transport of materials would

be conducted with clockwork precision and the colonisation of the Moon

would already have taken place. However, Kepler’s laws are idealised to

the two body motion of perfectly spherical bodies and are applicable only

in the most simplified of circumstances. The Moon’s motion is in reality

complex and the establishment of such a system is made even more so

by the oblateness effects of a non-spherical Earth acting on the tether

system in Earth orbit. Adding to this complexity is the less significant

but noticeable effect of the Moon’s oblateness acting on a tether in lu-

nar orbit. Other challenges include the design of a device to capture the

payloads at the tether’s tips at orbital velocity in addition to effecting

their release at the correct instant; and the tether system’s reaction to

mechanical shocks which are a real possibility if velocity mismatches be-

tween the tether tips and payloads are significant. Restricting the scope

of this investigation, the aim of the following is: to determine whether

such a system can be realistically established when taking into account

the complex nature of the Moon and resulting opportunities for payload

exchanges; to establish the logistical design of the system required to

conduct these regular two-way exchanges; to determine suitable config-
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urations of the Earth and Moon orbiting tethers for conducting these

exchanges when planetary oblateness effects are taken into account in

addition to the complex motion of the Moon about Earth; to configure

the trajectory design of the payloads between these tethers such that the

logistical requirements are satisfied; and finally to investigate an anomaly

observed whilst conducting simulations of the motion of a symmetrically

laden tether in orbit about Earth which relates to the theory behind the

concept of gravity gradient stabilisation.
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1. Introduction

The concept of tethering satellites together in space using long wires with

the aim of utilising the exchange of momentum between one satellite or

another or to take advantage of a planet’s magnetic field for power gen-

eration or thrust has been around for a considerable amount of time,

innumerable practical applications for these systems have been proposed

in addition to alternative proposals for their use too extensive to list. The

application which is the main focus of this thesis is the use of symmetri-

cally laden motorised momentum exchange tethers to conduct continuous

payload exchanges between the Earth and Moon for each rotation of the

Moon about Earth.

The concept of momentum exchange utilises the propensity of two

bodies to orbit a planet at the distance and angular velocity of their

common centre of mass, naturally aligned along the local gravity gradi-

ent. This results in the satellite at the tether end furthest from Earth

having a greater linear velocity and subsequently linear momentum than

the satellite at the tether body closest to Earth with the lower satellite

having effectively transferred part of its momentum to the upper satellite.

If the two satellites are disconnected from the tether, the upper satellite

has a velocity too large to stay on its current orbit and it traverses a

trajectory to a distance further from Earth; the lower satellite has too

little velocity to stay on its current orbit and traverses a trajectory closer

to Earth. The upper satellite’s orbit has been effectively raised and the

lower satellite has in fact been de-orbited.

To enhance this raising and lowering of the satellites, librating and

spinning tether configurations have been conceived and with a motor

driven torque applied to spinning tether systems; analysis has shown

that the gain in upper satellite’s distance renders it capable of reach-

ing the Moon or leaving Earth orbit altogether. Many concepts use an

asymmetrical tether system consisting of a satellite tethered to a large

central motor driven hub, for example Puig-Suari et al [1] and Cartmell
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and Zeigler [2], with the aim of raising the orbit of these satellites but

it was found that the de-orbit experienced, even if the hub’s mass was

considerably larger than that of the satellite, was still of an unacceptable

magnitude. The solution to this, in terms of a re-usable system which

maintained its orbital altitude after payload release, was found by Cart-

mell and Zeigler [2] to be a symmetrically laden motorised momentum

exchange tether. By simultaneously releasing the upper and lower satel-

lites, or alternatively payloads, from the free ends of tethers attached

symmetrically to a centrally located motorised hub; any gain in momen-

tum by the upper payload was offset by the loss of momentum by the

lower payload. Furthermore, it was found that this motorised system

could impart sufficient velocity for payload transfers to the Moon and

in conjunction with it retaining its orbital altitude throughout; a system

for continuous transportation to the Moon was conceived [2].

It was proposed that a continuous Earth-Moon payload exchange

method could be established by utilising two of these symmetrically laden

momentum exchange tethers, one orbiting Earth and the other the Moon,

by passing payloads between one another at opportune moments in the

Moon’s motion about Earth. The great advantage of this would be that

once the system was established, the exchange of payloads would be-

come effectively free with no or very little chemical propulsion required

and conducted simply through the exchange of momentum between the

payloads. There are a great many reasons why such a system would

be advantageous: the Moon has a wealth of untapped mineral resources

which could be mined and transported back to Earth using this sys-

tem but this would require that people actually resided on the Moon to

conduct these activities however, all necessary food; water and oxygen

(initially); shelter; and fuel could all be transported to the Moon on a

regular basis using this system. In addition to this, the idea of setting

up an interplanetary launch facility in orbit about the Moon is becoming

an ever more popular and this would be aided by the establishment of

such a system.

The engineering challenges associated with establishing this system

are numerous, firstly the Moon’s motion about Earth is extremely com-
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plex and a system that exchanges these payloads must account for vari-

ations in the Moon’s orbit which are a direct result of the perturbing

accelerations of the Sun and other planets within the Solar System. This

results in the required system having a flexible logistical design in ad-

dition to the trajectories between the Earth and Moon tether systems

also being flexible enough to accommodate these variations. Secondly,

the capture of payloads is conducted at extremely high velocities and a

reliable system must be established which can achieve this and in the

event of any failed captures a payload recovery procedure must be in

place. Thirdly, however well the transfer trajectories have been designed

the possibility of mechanical shock occurring as a result of velocity mis-

matches between the payload being captured and the tether tip are a

very real possibility and the tether system must be designed robustly

enough to handle this. Finally, the tether systems themselves will be

subjected to perturbing accelerations mostly as a result of the oblateness

effects of their respective central bodies therefore, a method to account

for variations in the tether orbits must also be established. The following

does not attempt to solve all of these issues but focuses on the logistical

and trajectory designs necessary to account for the complex motion of

the Moon in addition to the motion of the tether systems as a result of

Earth’s oblateness.

1.1 Space Tethers Concept

In 1895 Tsiolkovskii [3], conceived the first ever tethered space system

with his concept of creating artificial gravity on a spacecraft attached to a

counterweight using a 0.5 km chain and rotating about the centre of mass

of the system. According to Beletsky and Levin [4], F.Tsander conceived

a tapered tether extending from the surface of the Moon to the near

vicinity of Earth in 1910 but the concept was subsequently overlooked in

his ciphered diaries until it was deciphered and published in 1978. In the

mean time, Tsander’s concept was re-invented by Artsutanov in 1960;

Isaaks et al in 1966; and Pearson in 1979. Modern day tethers consist

of high strength wires or cables connecting satellites in orbit and fall
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into two major categories; momentum exchange tethers which utilise the

orbital dynamics of the common centre of mass of the tether system to

impart or detract energy and altitude from the satellites; and electrody-

namic tethers which utilise the Lorentz Force induced by a high velocity

conductive tether moving through Earth’s magnetic field in low Earth

orbit to produce a thrust on the system or to generate electrical power.

A large amount of activity has occurred in tether research in the last 40

years and new concepts and applications are continually being conceived.

1.1.1 Gravity Gradient Stabilisation

The concept of pseudo-gravity arising between tethered spacecraft was

first investigated by Chobotov in 1963 [5] and consisted of rotating two

tethered satellites about the centre of mass of the system at a rate greater

than orbital velocity, this effect was practically demonstrated by tether-

ing the GEMINI-11 spacecraft to the AGENA rocket stage in 1966 [6]

with a tether rotation rate 13.5 times greater than orbital velocity. Grav-

ity gradient stabilisation is one of the most fundamental applications of

tether systems in orbit and allows two tethered satellites aligned along

the local gravity gradient, with a rotational rate about the systems centre

of mass equal to the orbital rate, to remain in this vertical position for ex-

tended time periods. The concept of gravity gradient stabilisation utilises

the increments in gravitational and centrifugal forces arising due to the

proximity of the tether system to Earth in addition to the rotational ve-

locity and physical extension of the body. For two masses attached at

either end of a vertically aligned tether, the gravitational force at the

mass closest to Earth is greater than the centrifugal force arising due to

its separation from the systems centre of mass, furthermore, the centrifu-

gal force at the tip furthest from Earth is greater than the gravitational

force acting on the system. The result of these net forces acting at either

tip is a stable vertical configuration for the system with a restoring force

arising when any displacement from this vertical position occurs. Ac-

cording to Cosmo and Lorenzini [7], these gravitational and centrifugal

forces are balanced only at a single location corresponding to the centre

of mass of the tethered system and this constrains the system to orbit
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Earth at the same angular velocity as the centre of mass. Furthermore,

the resulting forces acting as a result of these increments in gravitational

and centrifugal forces result in the tension along the tether and the ar-

tificial gravity force being equal to the gravity gradient force along the

tether. This gravity gradient stabilisation was practically demonstrated

in 1966 when the GEMINI-12 spacecraft was tethered to the AGENA

rocket stage [6].

There are many applications for artificial gravity in orbit such as

creating more natural conditions for humans in space and biological pro-

cesses in orbit in addition to facilitating refueling between orbiting space-

craft as there are technical problems associated with performing this in

zero gravity conditions [8]. The tether lengths required to provide suffi-

cient micro-gravity conditions to overcome the surface tension of varying

fuel types was investigated by Kroll [9] and found to vary between 30 and

1200 m depending upon the fuel used. In addition to this, concepts such

as an interferometer in orbit [10], consisting of two receivers separated

by a 5 km tether, and a solar power station consisting of a gravity gradi-

ent stabilised tether bearing solar power collectors have been conceived.

Furthermore, gravity gradient forces can be utilised in the stabilisation

of tethered constellations which could be used for low gravity of micro-

gravity labs [7].

1.1.2 Electrodynamic Tethers

According to Cosmo and Lorenzini [7], an electrodynamic tether is a long

conductive wire extended from a spacecraft which utilises the magnetic

field of Earth to induce an electromotive force along the wire’s length.

As a result of this, a difference in electric potential occurs along the

wire with the upper end becoming positive relative to the lower end.

By utilising the highly ionised particles, or plasma, resulting from mo-

tion within Earth’s ionosphere, the wire becomes part of a current loop

which incorporates the wire and the ionosphere itself. Plasma contac-

tors are attached to each end to allow the collection of electrons at the

positively charged upper tip and the emission of electrons at the lower

tip which results in regions of net positive and negative charges at the
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upper and lower tips, respectively. The current path from the upper tip

within the ionosphere is therefore along the magnetic field lines to the

lower ionosphere and the migration of electrons between these field lines

occurs when the free charges collide with neutral particles in the lower

ionosphere allowing the circuit to be completed. In addition to this, the

tether current density at each tip should not exceed the external iono-

spheric current density and the plasma contactors are used to spread the

tether current over large areas to reduce the current densities. Three con-

figurations using different types of plasma contactor have been suggested

(1) a passive large area conductor at each end of the tether (2) a passive

large area conductor at one end and an electron gun at the other (3) a

plasma generating hollow cathode at both ends. The first configuration

utilises the upper conductor to collect electrons whilst the lower collec-

tor is utilised to collect ions; the second configuration achieves higher

currents by ejecting the electrons at high energy using an electron gun

at the lower end however, the electron gun requires a power supply; the

third configuration is, according to Cosmo and Lorenzini [7], the most

promising configuration as the system does not rely on passive means

and utilises the hollow cathodes to generate clouds of highly conductive

plasma. The hollow cathodes also require power supplies in addition to

a gas supply to operate but require less power than electron guns with

the gas supply not adding significant weight to the system. However,

Beletsky and Levin [4] advise against relying upon current optimistic

estimates when considering the use of hollow cathode contactors.

There are many applications of electrodynamic tethers and according

to Bekey [11], by configuring a vertically aligned gravity gradient sta-

bilised insulated conductive tether with a passive collector at the upper

tip and an electron gun at the lower tip orbiting at a low inclination

about Earth, the tether can be utilised as an electric generator as a re-

sult of the Lorentz force converting kinetic energy to electrical energy.

The tether will generate 200 V/km with estimates that 10-100 kW of

power could easily be produced with a tether length between 20-100 km

and an energy conversion efficiency between kinetic and electrical energy

of around 70%: as this electrical energy is being gained at the expense
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of the system’s kinetic energy it corresponds to a loss in altitude which

can only be rectified by means of corrective maneouvres. However, in the

event that some altitude loss could be tolerated it could function as an

emergency power supply for a space station. This particular application

is the focus of research by the US company Tethers Unlimited Inc
TM

, they

aim to use their Terminator Tether
TM

which utilises passive electrody-

namic tether drag, arising in conjunction with the generation of electric

power, to rapidly de-orbit spacecraft from low Earth orbit [12]. Numer-

ical analysis of this system suggests that a 5-10km long tether weighing

2-3% of the satellite’s mass can de-orbit a satellite within months, and

a further system has been developed called Terminator Tape
TM

specially

aimed at microsatellite systems weighing less than 500kg.

According to Drell, Foley and Rudderman [13], under the circum-

stances that a tether could drive a solar array generated current along

the wire in conjunction with reversing the passive collector/electron gun

configuration; this operation could be reversed and the Lorentz force act-

ing on the tether would produce orbit altitude gain without the use of

propellants. Furthermore, a study conducted by Vas et al [14] on the

possibility of re-boosting the decaying orbit of the international space

station estimated savings of over $1 billion as a direct result of the re-

duction in flights to deliver fuel and there were also suggestions that the

tether would improve the micro-gravity environment of the station.

Another application of electrodynamic tethers are as high powered

ultra/extremely/very low frequency (ULF/ELF/VLF) antennas, accord-

ing to Grossi [15], and utilise a side effect of the induced current along

the tether; that as the electrons are emitted from the contactor into the

plasma, electromagnetic waves are produced in the ionosphere. The cur-

rent flow generating the waves can be provided by a transmitter such that

the tether becomes part of the antenna and these waves are modulated

by turning the electron gun or hollow cathode on or off at the desired fre-

quency. It is believed that the ionosphere acts as a wave guide extending

the area for effective signal reception and may allow instant worldwide

communication. There are many other applications of electrodynamic

tethers but as these are not the focus of this thesis our attention will
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move away from them.

1.1.3 Momentum Exchange Tethers

The fundamental concept which led to the research presented in this

thesis is the concept of momentum exchange between two tethered bodies

in orbit. The concept is as follows; two tethered bodies will orbit a central

gravitational force at their common centre of mass at the angular velocity

of this centre of mass and due to gravity gradient stabilisation forces the

bodies will align themselves along the local vertical with the payload at

the upper end of the tether having the same angular velocity as the centre

of mass but a greater linear velocity and the lower body also having the

same angular velocity but a lower linear velocity. As a result of the non-

uniform gravitational field, the velocity along the tangent to the orbit

required for the lower payload to remain on the same orbit if released

at this point is greater than the current linear velocity furthermore, the

velocity along the tangent velocity required for the upper payload to

remain on the same orbit after release is smaller than its current velocity.

The upper body has gained linear momentum, mv, as a result of it having

the same angular velocity as the centre of mass and it being a greater

distance from Earth, meanwhile the lower body has lost a corresponding

amount of linear momentum as a result of this angular velocity and

closer proximity to Earth; the lower body has effectively transferred part

of its momentum to the upper body. If both payloads were released at

this point, the upper payload would have sufficient velocity to traverse

an elliptic path from its point of release at the perigee of its acquired

orbit to a point further from Earth at the apogee of this orbit. The

upper payload has effectively used the momentum gained from the lower

payload to raise the altitude of its orbit relative to Earth. At the same

instant, the lower payload also traverses an elliptical path but in this

case the loss of momentum results in the point of release occurring at

the apogee of the payload’s acquired orbit and this results in the payload

traveling to the perigee of its orbit closer to Earth, so the lower payload

has been effectively de-orbited due to this momentum exchange. The

addition of a spin or swing in the direction of orbital motion will increase
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the velocity of the upper payload and decrease the velocity of the lower

payload and result in a greater exchange in momentum with the result

that the upper payload’s apogee distance will be even greater after release

in addition to the lower payload’s perigee being diminished even further.

A spin or swing in the direction opposite to the direction of orbital motion

will result in a less efficient exchange of momentum between the upper

and lower payloads.

Bekey and Penzo [16] considered payload release from a hanging

tether in a circular orbit about Earth and found that the apogee distance

of the payload released from the upper tether position was greater than

its perigee position by approximately 7 times the tether length. They

considered utilising this method for raising a large observatory from low

Earth orbit to geostationary Earth orbit using a shuttle in an elliptical

orbit but practical problems such as the unacceptable altitude loss of the

shuttle at the lower tip upon release and the required tether length of

5000km being unable to support its own mass without even considering

the mass of the observatory rendered this particular practical applica-

tion obsolete, however the idea remained with a reusable spinning two

stage tether system being considered for transferring masses up to 4000

kg from low Earth orbit to geostationary Earth orbit by Lorenzini et al

[17] with results that indicated that the system was lighter than a single

stage tether system and more competitive on a mass basis than a chemi-

cal upper stage after two transfers. It was estimated by Bekey and Penzo

[16] and additionally Carrol [18] that a payload released from a swinging

tether could have an apogee distance 14 times the tether length greater

than the perigee distance and according to Cosmo and Lorenzini [7] a

spinning tether will provide a gain even greater than 14 times the tether

sub-span length. The velocity gain that a spinning momentum exchange

tether could impart when the system’s centre of mass was in an elliptical

orbit about Earth was investigated by Crellin and Janssens [19] in 1996

and they found a maximum change in velocity of 102.8 m/s for a 100

km tether which highlighted the need for a torque driven tether system

if significant changes in orbital parameters were to be achieved.

The rotovator concept was conceived by Artsutanov in 1967 and rein-
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vented by Moravec [20] in 1977 and is a method of obtaining low tether

tip velocities as a result of a rapidly spinning tether. By arranging this

system in orbit about a planet with little or no atmosphere, to negate

drag effects, such that it touches the surface at the periapse of its orbit

with zero relative velocity; payloads can be easily picked up or placed

onto the surface without loss of momentum. A prime example for its ap-

plication would be about Earth’s Moon and in this instance the system

is termed a Lunavator.

The concept of the addition of a torque to spin the tether was first

published by Puig-Suari et al [1] in 1995 when it was suggested that

orbital velocity for interplanetary exploration could be achieved by the

continuous application of a solar power generated continuous torque to a

tether sling and cites the lack of propulsive manoeuvre and virtually in-

exhaustible capacity as advantageous in the launch of deep space probes.

To ensure that the tether is capable of supporting its own mass and that

of the probes, a tapered tether configuration was endorsed. In this case

however, chemical propulsion was found to provide a better mass ratio

for high energy transfers. Two further issues arose concerning this con-

figuration, the connection between the hub and tether is not located at

the centre of mass resulting in a precession of the spin axis and addi-

tionally extremely high spin rates for the hub resulting from the torque

required to spin up the tether would become unacceptably large. To

rectify the precession of the hub, it was suggested that a second iden-

tical tether was attached symmetrically to the hub and furthermore, to

reduce the spin rate a massive hub could be employed. Independently of

this, Cartmell and Zeigler [2] proposed a symmetrically laden motorised

momentum exchange tether for application to an interplanetary two-way

exchange concept. This system consisted of a hub (or central facility)

containing the motor and power supply, two symmetrically configured

propulsion tethers with the payloads at their free ends and two outrigger

tethers with masses at their free ends to provide the reaction force for the

motor torque. By using a motor to drive the tether in conjunction with

employing a staged tether system, as conceived by Hoyt and Forward

[21] in 1997, for payload transport from sub-Earth orbit to the point of
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orbital injection, the velocity for injection into interplanetary trajectories

could be achieved at the upper tip and in addition to this, by ensuring

that the upper and lower payloads were released simultaneously the or-

bital altitude of the hub could be retained. Attention focused on the

Earth-Moon two-way exchange and it was proposed that a modified Lu-

navator tether would capture the payload from Earth and simultaneously

pick up a payload from the Moon’s surface to preserve the mass balance

across the system. At a later time the Lunavator would send the payload

from the Moon back to Earth whilst simultaneously placing the payload,

previously from Earth, on to the Moon’s surface.

The performance and efficiency of this symmetrically laden motorised

momentum exchange tether was explored in 1998 and publsihed by Zei-

gler and Cartmell [22] in 2001 and was found to improve on the perfor-

mance and efficiency of a librating tether by two orders of magnitude,

which itself improved on the hanging tether by a factor of two. A se-

ries of terrestrial scale model tests of the motorised momentum exchange

propulsion tether was conducted by Cartmell and Zeigler [23] in 2001 with

the aims of investigating: the start up of the system and impulses along

the tethers due to payload release; the use of outrigger tethers to limit

the reaction motions of the drive motor stator; the potential for interfer-

ence between the drive and outrigger tethers; the de-spin of the motor

and payloads; and payload release in double ended systems. Some im-

portant observations and conclusions drawn from this were: that a small

impulse was experienced by the tethers at the instant of payload release

but they quickly returned to their required configuration; and payload

release asymmetry was extremely significant and induced large overall

system displacements. The development of this concept has continued

with the work of McKenzie and Cartmell [24] in 2004 with Performance

of a Motorised Tether using a Ballistic Launch Method which gives an

example of a mission designed to transfer a payload from low Earth orbit

to capture at the Moon; the work of Chen and Cartmell [25] in 2007 with

Multi-Objective Optimisation on Motorised Momentum Exchange Tether

for Payload Orbital Transfer which focuses on the multi-objective opti-

misation methods of genetic algorithms to improve tether performance;
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and finally, the work of Murray and Cartmell [26] in 2008 with A Con-

tinuous Earth-Moon Payload Exchange Using Symmetrically Laden Mo-

torised Momentum Exchange Tethers which focused on the logistical and

trajectory designs required for a continuous two-way exchange between

the Earth and Moon.

1.1.4 Interplanetary Tether Transfer

A Cislunar Tether Transport System consisting of a 89km long rotat-

ing momentum exchange tether in an elliptical, equatorial orbit about

Earth exchanging payloads with a second 200km long momentum ex-

change tether in a low lunar orbit was shown to be theoretically possible

by Forward [27] using little or no propellant. However, this used many

simplifying assumptions and this system was re-investigated in 1999 by

Hoyt and Uphoff [28], removing these assumptions and developing an

architecture for the system. The basic operational procedure for this is

as follows: the tether at Earth captures a payload from low Earth orbit

(LEO), imparts its momentum and releases the payload on a trajectory to

the Moon. At arrival at the Moon, the payload is captured by the Luna-

vator [20] which detracts energy from the payload and places it onto the

Moon’s surface with zero relative velocity. Furthermore, by also picking

up payloads from the Moon’s surface the Lunavator can return payloads

back to Earth, by imparting some of its momentum, where they will be

captured by the tether at Earth and released down into LEO. The orbital

configuration used was a combination of a tether in an elliptical, equato-

rial Earth orbit and the Lunavator in a circular polar Lunar orbit with

payloads transferred when the Moon crosses its ascending node. Sev-

eral tether boost configurations were considered for raising the payload

at Earth from LEO in order to make the orbital dynamics as manage-

able as possible. The most effective configuration to impart the desired

velocity to the payload occurs when capture and launch operations are

conducted by the tether at the perigee of an elliptical orbit about Earth

however, as a result of the Earth tether’s equatorial inclination, there is

a precession of the line of apsides of this orbit due to Earth’s oblateness

which it is suggested can be overcome by arranging its orbital param-
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eters such that its precessional period is in resonance with the Moon’s

orbit, alternatively, tether reeling manoeuvres are suggested to exchange

momentum between the orbit and rotation of the system. It was found

that upon capture at the Moon that to place a payload on to the surface

with zero relative velocity that the tip would need a velocity relative to

the tether’s centre of mass equal to the orbital velocity of this centre

of mass relative to the Moon. To achieve this an extremely high energy

hyperbolic trajectory for the payload would be required which would add

additional requirements and strains to the tether at Earth. This however

could be remedied by configuring the Lunavator such that its central fa-

cility could alter its position relative to the payload and a counter mass

at the other end to increase the angular rate of the system without mod-

ifying its momentum. Using this system the velocity changes required

were estimated at 25m/s for small corrections with electrodynamic re-

boost of the tether systems envisaged to account for altitude drops as a

result of them imparting momentum to the payloads.

Further work on a continuous Earth-Moon payload exchange concept

was undertaken by Cartmell, McInnes and McKenzie [29] in 2004 and

proposed a preliminary design architecture for the system. Utilising a

staged tether system in orbit, first proposed by Hoyt and Forward [21]

in 1997, to impart the payloads with the necessary velocity for lunar

transfers; payloads are boosted to sub-Earth orbit (SEO) and captured

by the lower tip of a MMET in low-Earth orbit (LEO) which simultane-

ously receives a payload from the lower tip of a MMET in an extremely

elliptical orbit (EEO) to conserve mass balance across the system. This

coincides with the release of a payload from the EEO tether’s upper tip

onto a Moon bound trajectory. Upon arrival at the Moon, the payload

is captured by a double ended Moravec Lunavator and placed onto the

Moon’s surface; at a later time the payload previously picked up from

the Moon’s surface is released onto a trajectory back to Earth where it

will rendezvous with the upper tip of the EEO tether. The staging of the

tethers about Earth is of interest and introduces the concept of the two

tethers with orbital periods which are harmonic to allow the passage of

payloads between them when they arrive at the perigee of their respective
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orbits about Earth. The transfer method used between the EEO tether

and the Moravec Lunavator was the weak stability boundary transfer

which gives a payload just enough energy to pass through the Lagrange

point L1 and enter the Moon’s gravitational influence leading to a mini-

mum energy transfer. It was found that the velocity required to perform

this minimum energy transfer was 2.5% lower than that theoretically ob-

tainable for this staged configuration. Other concepts for interplanetary

exploration or transport included a tether sling as proposed by Puig-Suari

et al [1] in 1995 in addition to rotating tether configurations similar to

those employed for the Cislunar Transport System which were considered

by Forward and Nordley [30] in 1999 for transporting payloads to Mars

in as little as 90 days.

1.2 Past Tether Missions

It has been almost 45 years since the first tether mission was conducted by

NASA during the GEMINI-11 mission of 1966 in which a 30m long tether

connected the GEMINI-11 to the AGENA rocket stage which resulted in

the first demonstration of artificial gravity occurring as a result of the

spacecraft rotation about their common centre of mass [6]. A second

experiment was conducted on the GEMINI 12 spacecraft, again tethered

to the AGENA rocket stage using a 30m long tether and in this case the

first demonstration of gravity gradient stabilisation was made [6].

The OEDIPUS-A mission was launched from a site in Norway in 1989

and was a collaboration between the Canadian National Research Coun-

cil, NASA, and various other organisations. OEDIPUS is an acronym

for Observations of Electric-field Distribution in the Ionospheric Plasma

- a Unique Strategy, with the aim of making passive observations of the

auroral ionosphere; to measure the response of a large probe in the iono-

spheric plasma; and to seek new insights into plane- and sheath-wave

radio frequency propagation in plasma [7]. The tether system consisted

of two spinning payloads with a mass of 84 and 131 kg, each being self-

contained experiment and telemetry systems and these were connected

by a 958 m long conductive tether. The mission objectives were success-
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fully completed however, the payloads experienced rapid and unexpected

increase in their coning angle due to the dynamic interaction of the tether

with the payloads. OEDIPUS-C was launched in 1995 with similar mis-

sion objectives to its predecessor but to a higher altitude with a tether

length of 1174m and as a result of this it had a greater range in plasma

density and provided a better perspective on plane and sheath waves and

their interaction with the plasma [7].

According to Cosmo and Lorenzini [7], the purpose of the Tethered

Satellite System (TSS) missions was to demonstrate the capability of de-

ploying a satellite on a long, gravity-gradient stabilised tether from the

Space Shuttle where it would provide a research facility for investiga-

tions in space physics and plasma-electrodynamics. TSS-1 was launched

in July 1992 and deployed a 268 m long tether directly above the Orbiter

in low Earth orbit, which provided over 20 hours of stable deployment.

This mission was a technology demonstrator for the gravity gradient sta-

bilisation technique allowing the TSS-1R mission to be focused on science

objectives. The TSS-1R mission was launched in February 1996 and de-

ployed a conducting tether to a length of 19.7km. According to Cosmo

and Lorenzini [7], high voltages were generated across the tether and

large currents were extracted from the ionosphere, which, as a result of

this, created several plasma phenomena. The deployment of the tether

lasted more than five hours and significant results were that currents were

observed three times greater than numerical predictions at the time; ener-

getic electrons were detected which possibly resulted from wave-particle

interactions; and observations implied that an enhancement in plasma

density occurred as a result of ionisation of neutral gases emitted by the

satellite thrusters.

The SEDS missions, Small Expendable Deployer Systems, flew as

secondary payloads on Delta II launches of GPS satellites, and after

the third stage separation the end-mass was deployed from the second

stage. SEDS-1 was launched in March 1993 and its objectives were to

demonstrate that the SEDS hardware could be used to deploy a payload

using a 20km tether, when fully deployed the tether was cut proving that

the the system was capable of de-orbiting a 25kg payload and allowing
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its re-entry to be studied [7]. SEDS-2 was launched in March 1994 and

its objectives were to demonstrate the use of a closed loop control law to

deploy a tethered payload along the local vertical, the system was placed

in a 350km circular orbit but, according to Cosmo and Lorenzini [7], the

tether was allegedly cut by a micro-meteoroid or debris after five days.

The Plasma Motor-Generator(PMG) experiment was launched in 1993

by NASA as a secondary payload on a Delta II rocket and placed into an

orbit with a 25.7 ◦ inclination with the objective of testing the ability of

a hollow cathode assembly to make the electrical connection between the

spacecraft and the ionosphere. The 500m long tether was deployed using

a modified SEDS system used with the aim of demonstrating that such

a configuration could function either as a orbit-boosting motor or as a

generator converting orbital energy into electricity, according to Cosmo

and Lorezini [7]. During the mission the current was shown to be fully

reversible allowing operation either as a generator system with electron

current flow down the tether or as a motor with electron current driven

up the tether.

The Tether Physics and Survivability (TiPS) mission was launched

in 1996 as a joint veture between the Naval Center for Space Technology

(NCST) and the National Reconnaissance Office (NRO), and the aim of

the experiment was to study the long term dynamics and survivability of

tethered space systems. It consists of two end bodies connected by a 4 km

non-conducting tether [7]. The motion of the end-bodies was observed

by a ground based Satellite Laser Ranging (SLR) network and by ground

based visual observations and the system survived for 15 months.

The Advanced Tether Experiment (ATEx) was a follow up to the

TiPS mission launched on-board the Space Technology Experiment (STEX)

spacecraft on October 1998 into a 751km circular orbit. The tether sys-

tem consisted of upper and lower end bodies attached to a 6.05km tether

housed within the STEX spacecraft, and its objectives were to demon-

strate tether system stability and end-body attitude determination and

control, however no mission objectives were achieved as the system was

jettisoned by the STEX spacecraft as a safety precaution due to a devi-

ation in its departure angle.
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The Multi-Application Survivable Tether (MAST) experiment was

launched into low Earth orbit with the objective of investigating the

dynamics of tethered formations of spacecraft and the survivability of

tethers in the space environment. The system consisted of three pico-

satellites stacked together which were to separate deploying a 1 km tether,

however the system failed to deploy [31]

The most recent tether mission was launched in August 2010 by

JAXA, the Japanese Space Agency, called the Tether Technologies Rocket

Experiment (TREX) which deployed a 300m long electrodynamic tether

with the aim of conducting experiments of the interaction of the tether

with the ionosphere and to control the attitude of a robot using a tether

under the micro-gravity environment during a 10 minute sub-orbital flight

of a sounding rocket to its maximum altitude of 300km. The tether was

successfully deployed and the high-speed ignition function of the hollow

cathode was verified [32].

1.3 Alternative Concepts

The Hypersonic Airplane Space Tether Orbital Launch (HASTOL) con-

cept is an Earth to orbital launch system which consists of a re-usable air

breathing sub-sonic to hyper-sonic dual-fuel aeroplane which is used to

transport a payload from the ground to a point in the upper atmosphere,

at this point a spinning tether system in orbit captures the payload and

takes it into orbit. The advantages of this system are that it minimises

the use of rockets for injection of payloads into orbit. It is envisaged

that a Boeing designed DF-9 hypersonic plane will be utilised which can

carry a payload up to 14 tonnes and deliver the payload to an altitude of

100km, and this will be used in conjunction with rotavator tethers com-

posed of presently available fibres and lengths between 400 and 1600km.

The system has several issues such as: tether survivability due to colli-

sions with space debris and micrometeorites, overcoming the engineering

challenges of operating at hypersonic speeds in the upper atmosphere in

addition to safety and reliability issues [33]

The LEO-GTO Tether Boost Facility is a combination of momentum
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exchange tether techniques with electrodynamic tether propulsion and

its aim is to provide a reusable system to repeatedly boost payloads up

to 2500kg from low Earth orbit to geostationary transfer orbit without

the use of propellant by imparting a velocity change up to 2.4km/s and is

envisaged to be capable of injecting 1000kg payloads into lunar transfer

orbits. Electrodynamic propulsion will be used to re-boost the tether

system on each occasion after it has imparted part of its momentum in

raising the payload’s orbit [34]. A follow on to this idea is the MXER

Tether Boost Station which has refined the combination of momentum

exchange techniques and electrodynamic tethers to raise payloads from

LEO-GTO.

A possible future application of electrodynamic tethers is as power

generators for future missions to the Jovian system where solar arrays

rapidly degraded as a result of high radiation levels and the radioactive

thermal generators previously used having safety issues relating to a risk

of releasing plutonium into Earth’s environment [35]. Preliminary anal-

ysis estimates that a 10km tether could generate approximately 1Mw of

power and experience over 50N of thrust.

Applications of tethers currently in development include the work

of the company Tethers Unlimited Inc
TM

with the Terminator
TM

Tether

and Tape, which was referred to earlier, and utilised for satellite de-orbit

applications in addition to a deployable net system GRASP
TM

which

can be used to capture space debris [36]. This company is also work-

ing on a Micro-satellite Propellantless Electrodynamic Tether Propulsion

System named µPET
TM

which used electrodynamic tethers to provide

propellantless propulsion for micro-satellites [37]. A further application

in development by Tether’s Unlimited Inc
TM

for the HiVOLT
TM

system

[38] which will use conductive tethers deployed in the Van Allen Belts to

scatter the energetic particles causing them to leave the Van Allen Belts.

A further research project currently under way is BETS which is the

Bare Electrodynamic Tethers Project funded by the European Commis-

sion FP7 with the aim of developing a de-orbiting system for satellites

in LEO using electrodynamic tethers [39].
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1.4 Aims and Objectives

The main focus of this thesis is the application of symmetrically laden

motorised momentum exchange tethers to a continuous Earth-Moon pay-

load exchange. Solving all of the engineering challenges presented by this

system would demand greater time than permissible for this work, there-

fore the following will focus on:

i. The basic logistical requirements necessary to establish a continu-

ous payload exchange, and the analysis of their application.

ii. Assessment of possible configurations for the Earth tether’s orbit

suitable for conducting payload exchanges with the Moon whilst

taking into account the complexity of the Moon’s motion in addi-

tion to the oblateness effects acting on the Earth tether’s orbit.

iii. The basic kinematic equations for the Earth tether and payloads

attached at its tip will be derived with the aim of incorporating the

velocity and accelerations resulting from the variation in its orbital

elements as a result of Earth’s oblateness.

iv. The tension acting along the Earth tether will be derived as a

result of the tether’s orbital and rotational motion incorporating

these oblateness effects with the aim of determining the limitations

of the system using current materials.

v. An investigation into the limiting factors for suitable Earth tether

configurations in addition to estimates of the performance and ef-

ficiency will be obtained by numerical analysis of the system.

vi. Trajectory design for the payload exchange will be undertaken tak-

ing into account the logistical requirements outlined previously.

vii. The basic kinematic equations and limitations of the Moon orbiting

tether will be undertaken with particular attention being paid to

the effects of the Moon’s less significant oblateness on its orbit. In

addition to this, expressions for the tension acting along the Moon

tether will be derived accounting for inertial forces arising from the

oblateness effects of the Moon on the tether.
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viii. Numerical analysis and simulations of the circumlunar trajectory

design which conform to the required logistics will be undertaken.

ix. Alterations to the currently accepted theory of gravity gradient

stabilisation as a result of observations of data anomalies of sym-

metrical tethers in orbit about Earth will be undertaken.
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2. Logistical Requirements

To set up a continuous Earth-Moon payload exchange with motorised

momentum exchange tethers (MMETs) being utilised to impart the ve-

locity impulse required to transfer payloads between Earth and the Moon,

the most fundamental criteria that must be satisfied are the logistical re-

quirements of the system which allow the MMET’s to perform these

exchanges, in addition to the return of the entire system to its original

configuration in a time period that is synchronous with the Moon’s or-

bital period about Earth in preparation for a repeat of this operational

procedure. To gain a clear understanding of the logistical requirements,

we begin by defining this operational procedure and it is from this that

we establish the logistical requirements. The standard logistical opera-

tion of the system will then be described in detail and the chapter will

conclude with a discussion of the conditions under which modifications

to the logistical operations of the system may be necessary and how these

can be implemented.

2.1 System Operations Definition

The aim of the system is to exchange payloads at regular intervals be-

tween two MMETs, one orbiting Earth and the second orbiting the Moon,

using the principle of momentum exchange. At the beginning of each op-

erational phase, the MMET in a prograde orbit about Earth (EMMET) is

fully laden with payloads attached symmetrically to its upper and lower

tips which are spinning in the same direction as the orbital motion. At the

same instant the MMET in a retrograde orbit about the Moon, termed

the Lunavator, is completely unladen with its tether sub-spans spinning

in the same direction as its orbital motion. Payloads are released from

the upper and lower tips of the EMMET at the same instant. This occurs

at the perigee, closest point of approach to Earth, of the EMMET’s orbit

with its tether sub-spans aligned along the local gravity gradient. As a
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result of the direct addition of the rotational to the orbital velocity this is

the best performing configuration for payload raising. Furthermore, this

symmetrical launch is important for maintaining the orbital altitude of

the tether system’s central facility after payload release, with significant

effects of an asymmetrical release noted by Cartmell and Zeigler [23] in

their terrestrial tests of 2001. The payload released from the upper tip of

the EMMET has the same orbital angular velocity as the central facility

at perigee, which is coincident with the systems centre of mass, and this

is greater than the orbital angular velocity required to stay on the same

trajectory after release. In addition to this, as the direction of rotation

of the tether sub-spans are in the same prograde direction as the orbital

motion it gains an additional velocity increment when it is at the upper

tip position relative to the central facility. These orbital and rotational

velocities add to give a larger velocity than required at this position

and after release the payload embarks upon a large prograde trajectory

bound for the Moon with its position at the upper tip coinciding with

the perigee of its outbound orbit. The payload released from the lower

tip of the EMMET also has the same orbital angular velocity as the cen-

tral facility, which is lower than the orbital angular velocity required to

stay on the same trajectory, and again as the direction of rotation of the

tether sub-spans is in the same prograde direction as the orbital motion

it loses the same magnitude of velocity, and subsequently linear momen-

tum, that the upper tip has gained. After release, this payload embarks

upon a prograde trajectory to a position closer to Earth with its position

at the lower tip coinciding with the apogee, furthest point from Earth,

of its trajectory. At the perigee of its orbit, the payload released from

the lower tip is captured by a space-plane and returned to Earth possibly

using a system similar the reverse operation of the HASTOL system [33].

When the system is initially set up and begins its first phase of opera-

tion, a dummy payload would be attached to the EMMET’s lower tip

to preserve the mass symmetry of the system and this would be allowed

to burn up upon entry into Earth’s atmosphere. An elliptical trajec-

tory is the lowest energy orbit for the payload released from the upper

tip to reach the Moon and this is undertaken until the payload reaches
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LSIupper payload’s trajectory

lower payload’s trajectory

Moon’s orbit

Figure 2.1: Earth-Moon elliptic transfer phase

the boundary between the dominating influence of Earth’s gravity and

the Moon’s gravity. This boundary is denoted the lunar sphere of influ-

ence which is abbreviated to LSI. Upon entry into the LSI, the payload’s

velocity relative to the Moon results in it undertaking a retrograde hy-

perbolic trajectory to its closest point of approach to the Moon, denoted

the perilune of the orbit and located on the far side of the Moon from

Earth, at which point it is captured by the upper tip of the Lunavator,

also at the perilune of its orbit. The Lunavator is designed such that its

orbit about the Moon is elliptical, and when it is at the perilune of its

orbit and the tether sub-spans are aligned along the gravity gradient the

lower tip touches the Moon’s surface and this is the systems similarity

to Moravec’s concept [20] and hence the label Lunavator. At the instant

of capture, the incoming payload from Earth is captured at the upper

Lunavator’s orbit

LSI entry point

LSI

inbound
trajectory

Figure 2.2: Earth-Moon hyperbolic transfer phase
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Lunavator’s orbit

LSI exit point

LSI

outbound
trajectory

Figure 2.3: Moon-Earth hyperbolic transfer phase

tip whilst the lower tip picks up a payload from the Moon’s surface to

preserve mass balance across the system and maintain the central facil-

ity’s orbital altitude. A waiting period between the Lunavator’s capture

and launch operations ensues which is designed to allow the Lunavator’s

upper and lower tips to exchange positions and allow payload launch to

take place. After the waiting period, the payload previously picked up

from the surface is released from the upper tip position on a retrograde

hyperbolic LSI escape trajectory whilst the lower payload previously from

Earth is placed onto the Moon’s surface. When the outbound payload

reaches the boundary of the LSI, it has a lower velocity relative to Earth

and follows a prograde elliptical trajectory back to perigee. At perigee,

the payload is captured by the upper tip of the EMMET which is at

the perigee of its orbit with the tether sub-spans aligned along the local

LSIupper payload’s trajectory

lower payload’s trajectory

Moon’s orbit

Figure 2.4: Moon-Earth elliptic transfer phase
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gravity gradient. At the instant of capture at the upper tip, the lower tip

also captures a payload to preserve the mass balance and central facility

altitude. At this point the lower payload is at the apogee of its orbit,

having previously been brought up from Earth’s surface and released at

the perigee of its orbit a half orbital period prior to capture, in this case

an identical system to HASTOL may be useful. When the Moon again

returns to the same initial position relative to the Earth the procedure

is repeated.

2.2 System Logistics

Having defined the operational procedure to be undertaken by the system

each time the Moon reaches a specified starting point in its orbit about

Earth, the theoretical design of the system can begin in earnest. The lo-

gistical design will specify the most fundamental criteria that the system

must adhere to for any functionality to be achieved and which satisfy

the top level objective: to design an efficient system which is capable of

transferring payloads between the Earth and Moon at regular intervals

using symmetrically laden motorised momentum exchange tethers. Ig-

noring, for the moment, any of the more complex problems of actually

satisfying the logistical requirements by trajectory design, utilisation of

gravitational perturbations or orbital manoeuvers we shall focus solely

on the requirements themselves. The most basic logistical requirements

which must be satisfied can be stated as follows:

i. The EMMET must attain the same configuration relative to Earth

and the Moon periodically with the Moon’s orbit about Earth to

allow payload capture and launch operations to take place.

ii. The Lunavator must attain the same configuration relative to Earth,

the Moon and the EMMET periodically with the Moon’s orbit

about Earth again, to allow payload capture and launch operations

to take place.

iii. The EMMET and Lunavator should be at the perigee and perilune

of their respective orbits when these configurations occur to ensure
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the system has maximum orbital velocity at these points.

iv. The EMMET and Lunavator tether sub-spans should be aligned

along their local gravity gradients when these configurations oc-

cur to ensure maximum rotational increment to orbital velocity is

achieved.

v. The EMMET and Lunavator systems should be capable of trans-

porting payloads along the length of their system from upper to

lower tips and vice-versa to allow propulsion-less transport of pay-

loads between the lower and upper tip positions.

vi. The passage of payloads between the EMMET and Lunavator should

take place within a time period compatible with these configura-

tions.

vii. The entire time period between payload launch from the EMMET’s

upper tip and the arrival of a return payload from the Lunavator

should also take place within a time period compatible with these

configurations.

viii. The Lunavator must be capable of placing and collecting a payload

from the Moon’s surface.

Having stated these basic requirements we will now proceed with a de-

scription of how they can be satisfied:

To ensure that the EMMET periodically attains the same configura-

tion relative to Earth and the Moon, the Moon’s orbital period about

Earth must be an integer multiple of the EMMET’s orbital period about

Earth. This ensures that each time the Moon reaches a pre-determined

true anomaly of its orbit the EMMET arrives at a pre-determined true

anomaly of its orbit. We describe the orbital periods of the EMMET

and the Moon as being integer harmonic to one another and relate the

orbital period of the Moon’s orbit to the orbital period of the EMMET’s

orbit by defining the integer variable, m, and the following relation:

TEM =

(
Tmoon
m

)
mεN (2.1)
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where TEM is the EMMET’s orbital period about Earth and m is a posi-

tive integer which will be denoted as the orbital variable m as it is defined

as the ratio of two orbital periods. This requirement is similar to, though

not based upon, Hoyt and Uphoff’s concept of orbital resonance between

the apsidal rate of the Earth orbiting tether in the Cislunar Tether Trans-

port System [28] and the arrival of the Moon at the ascending node of its

orbit. For the Lunavator to periodically attain the same configuration

relative to Earth, the Moon and the EMMET; the EMMET’s orbital

period about Earth, must be an integer multiple of the Lunavator’s or-

bital period about the Moon and this corresponds to the Lunavator’s

orbital period about the Moon being integer harmonic with the EM-

MET’s orbital period about Earth and subsequently the Moon’s orbital

period about Earth. This ensures that each time the Moon reaches a

pre-determined true anomaly of its orbit the Lunavator arrives at a pre-

determined true anomaly of its orbit and this is achieved by defining

integer variable, n, and the Lunavator’s orbital period by the following

relation:

TLV =

(
TEM
n

)
=

(
Tmoon
m.n

)
m,nεN (2.2)

where n is a positive integer and will be denoted as the orbital variable

n as this is also defined as the ratio of two orbital periods. By arranging

the orbits of the EMMET and Lunavator such that they arrive at their

respective periapses, the points of closest approach to the central body,

when the Moon arrives at a pre-determined true anomaly of its orbit and

by maintaining the relations defined in equations (2.1) and (2.2), the

EMMET and Lunavator will arrive at the periapses of their orbits with

the arrival of the Moon at its pre-determined true anomaly. To ensure

that the tether sub-spans are aligned along the local gravity gradients

when the EMMET and Lunavator arrive at the periapses of their orbits,

the rotational periods of the sub-spans must be integer harmonic with

the orbital periods of their respective tether systems. In addition to this,

to allow the propulsion-less passage of payloads between the upper and

lower payload positions, the integer harmonic in this case must take only

odd integer values, with an additional half rotation of the tether sub-

spans to allow alternate tips to occupy the upper and lower tip positions
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at successive periapse arrivals. The rotational rates for the EMMET and

Lunavator can be defined as follows:

TEM−ROT =

(
TEM

pr + 0.5

)
prεN (2.3)

and

TLV−ROT =

(
TLV

qr + 0.5

)
qrεN (2.4)

where pr and qr are odd positive integers and are denoted by the rota-

tional variables pr and qr as they are defined as the ratio of the rotational

to orbital periods for the tether systems. To allow more flexibility in

the payload’s transfer trajectory design, equations (2.3) and (2.4) can be

adjusted to add additional quarter or three-quarter rotations instead of

the additional half rotation, with the addition of constraints to satisfy

the systems operational procedure and this will be discussed later in this

chapter. To ensure that the passage of payloads between the EMMET

and Lunavator takes place within a time period compatible with these

configurations and to ensure that this is also the case for the entire trans-

fer time between EMMET capture and launch operations; transfer times

between the EMMET and Lunavator must be integer multiples of the

EMMET’s orbital period, as must any waiting time between Lunavator

capture and launch operations. This is satisfied by the transfer times

between the EMMET and Lunavator satisfying the following relations

for transfer variables c1 and c2:

TEM−LV = c1TEM c1εN (2.5)

and

TLV−EM = c2TEM c2εN (2.6)

The wait time constraints between payload capture and launch opera-

tions by the Lunavator can be satisfied by:

Tw = dwTLV dwεN (2.7)

The application of these requirements result in the logistical design of

the system and this will be the focus of the following section.
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2.3 Logistical Requirements

Having defined the logistical requirements that must be satisfied for the

system operations to take place, the logistical operations of the system

will be given in detail for the standard operation of a system where

both tethers have integer harmonic rotational rates plus additional half

rotations. Once this has been described, the operations of the system

will be given when the rotations differ from this additional half rotation.

The chapter will conclude with a description of the logistical adjustments

required when combinations of rotations are used; or when no waiting

time between Lunavator capture and launch operations is possible; or

when additional adjustments may be required when orbital perturbations

are taken into account.

2.3.1 Standard Operational Requirements

The logistical requirements for a continuous payload exchange when the

rotational variables of both MMETs are some positive integers plus addi-

tional half rotations and satisfying equations (2.3) and (2.4), respectively,

can be stated as follows:

i. The orbital variable, m, between the orbital periods of the EMMET

and the Moon must take only even values such that the EMMET

and Lunavator return to their initial configuration at the same true

anomaly of the Moon’s orbit.

ii. The rotational variable, pr, between the EMMET and the tether

sub-spans must only take odd values to ensure that alternating tips

occupy alternating positions at each succeeding occurrence of the

EMMET at the perigee of its orbit.

iii. The rotational variable, qr, between the Lunavator and the tether

sub-spans must only take odd values to ensure that alternating tips

occupy alternating positions at each succceding occurrence of the

Lunavator at the perilune of its orbit.

iv. The orbital variable, n, between the Lunavator and the EMMET
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must only take odd values to ensure that when both the Lunavator

and EMMET arrive simultaneously at their respective periapses,

that alternating Lunavator tips occupy alternating positions at each

succeeding occurrence. This is important in allowing the entire

logistics of the system to be achieved easily as a function of the

EMMET’s orbital variable

v. The wait time variable, dw, between Lunavator capture and launch

operations must only take odd values to ensure that the upper and

lower Lunavator’s tips have exchanged positions to allow the release

of a payload back to Earth from the upper tip.

vi. Transfer time variables, c1 and c2, between EMMET launch and

Lunavator capture operations, and vice versa, should only take even

values to ensure that the same tips perform the same operation in

each operational phase.

To illustrate these requirements, a numerical example with diagrams

showing each phase of the logistical operation will now be given:

Let orbital variable m be equal to 130, orbital variable n be equal to 9,

rotational variables pr and qr equal to 7 and 15, respectively, transfer

time variables c1 and c2 both equal 8 and wait time variable dw be equal

to 27. These numerical values are arbitrary and can be altered as long

as the requirements described in this section are adhered to. At the

instant prior to payload launch from the EMMET, both the EMMET

and Lunavator are at the periapses of their orbits with their tether sub-

spans aligned along the local gravity gradient. The EMMET is fully

laden with the payload bound for the Moon (blue) at the upper tip

Earth
Moon

ε1 ε2 υ2 υ1

EMMET’s orbit

Lunavator’s orbit

Figure 2.5: EMMET launch configuration
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position ε1 and the payload to be returned to Earth (green) at the lower

tip position ε2. At this point, the Lunavator is fully unladen with the

lower tip position denoted υ2 and the upper tip position denoted by υ1,

the system configuration at this instant is shown in Figure (2.5). At the

instant of payload capture by the Lunavator, the payload from Earth has

traversed a path between the EMMET’s upper tip and the Lunavator’s

upper tip in a time period equal to 8 times the EMMET’s orbital period.

In addition to this, the Lunavator has arrived at perilune after completing

72 revolutions of the Moon and its tether sub-spans have completed 1116

rotations with the tip denoted by υ2 remaining at the lower tip position

and tip υ1 remaining at the upper tip position. The upper tip, υ1, has

captured the incoming payload (blue) from Earth and the lower tip, υ2,

has picked up the payload (red) from the Moon’s surface. The EMMET

is now fully unladen and at the perigee of its orbit having traversed

about Earth 8 times, the EMMET’s sub-spans have rotated 60 times

and ε1 remains at the upper tip position whilst ε2 remains at the lower

tip position, the system configuration at this instant is shown in Figure

(2.6). After a waiting time between capture and launch operations, the

Lunavator has returned to perilune after orbiting the Moon 27 times, its

tether sub-spans have rotated a further 418.5 times since payload capture

from Earth and pick up from the Moon. Its upper and lower tips have

exchanged positions with υ1 now at the lower tip position which allows it

to place the payload (blue) initially from Earth on to the Moon’s surface,

the payload (red) previously picked up from the surface is now launched

from tip υ2 on to an Earth bound trajectory. At the same instant, the

still unladen EMMET is again at the perigee of its orbit having orbited

Earth
Moon

ε1 ε2 υ2 υ1

EMMET’s orbit

Lunavator’s orbit

Figure 2.6: Lunavator capture configuration
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Figure 2.7: Lunavator launch configuration

Earth a further 3 times. Its tips have rotated a further 22.5 times and

have alternated positions, with ε2 now at the upper position and ε1 at

the lower position, the system configuration at this instant is shown in

Figure (2.7). After a payload transfer time between the Lunavator’s

upper tip and the EMMET’s upper tip of 8 times the orbital period of

the EMMET, the EMMET has orbited Earth a further 8 times and its

tether sub-spans have rotated a further 60 times. The inbound payload

(red) from the Moon is therefore captured by the tip denoted by ε2 at

the upper tip position and the payload (cyan) from Earth is captured

by ε1 at the lower tip position. The Lunavator is again fully unladen

and has traversed a further 72 orbits with its sub-spans having rotated

a further 1116 times with the tip denoted by υ2 remaining at the upper

tip position and the tip denoted υ1 remaining at the lower tip position,

the system configuration at this instant is shown in Figure (2.8). After a

further 111 EMMET orbital periods the Moon and system have returned

to their original configuration, the EMMET has traversed Earth a further

111 times and is again at the perigee of its orbit. The EMMET’s sub-

spans have rotated a further 832.5 times with the tip denoted by ε1 at the

Earth
Moon

ε2 ε1 υ1 υ2

EMMET’s orbit

Lunavator’s orbit

Figure 2.8: EMMET capture configuration
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Figure 2.9: EMMET re-launch configuration

upper tip position and the tip denoted by ε2 at the lower tip position. The

payload (cyan) brought up from Earth at the previous capture operation

is at the upper tip position and can be launched to the Moon whilst the

payload from the Moon is at the lower position and can be released down

to Earth. At the same instant, the Lunavator remaining fully unladen has

traversed a further 999 orbits and at perigee with its sub-spans having

rotated a further 15484.5 times with υ2 at the lower tip position and υ1

at the upper tip position. The entire system has returned to its original

configuration in synchronisation with the Moon’s orbital period about

Earth and is prepared to launch a new payload towards the Moon in a

second phase of operations, as shown in Figure (2.9).

2.4 Logistical Adjustments

When taking into account variations in the orbital elements of the Moon’s

orbit about Earth, resulting from the perturbations arising from the grav-

itational forces of the other planets in the Solar system and the Sun, in

addition to the perturbations acting on the EMMET as a result of a non-

spherical Earth and to a lesser extent those acting on the Lunavator as a

result of the Moon’s own oblateness; some flexibility must be introduced

into the logistical design of the payload exchange mechanism to allow

operational procedures to be undertaken under a variety of configura-

tions and conditions. Another factor which requires a flexible logistical

design is the launch velocity of the payloads from the tether tips when

designing the trajectories between the Earth and Moon. Only under a

very limited set of circumstances will the velocity at which the payload is
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released from the EMMET’s upper tip be the ideal velocity to allow the

payload to traverse the optimum trajectory to the Lunavator’s upper tip

and vice-versa. Under all other conditions the EMMET and Lunavator

supply the payloads with the majority of the velocity that they require

to undertake the optimum trajectory with the remainder being supplied

by an on-board chemical propulsion system. The amount of energy sup-

plied by this chemical system can be minimised by matching as closely

as possible the upper tip velocity of the EMMET and Lunavator to the

required velocity for the transfer trajectory.

When the orbital perturbations acting on the Moon are introduced

into the system, some modifications to the logistical design must be intro-

duced, for example, when arranging an Earth orbiting system to arrive

at the perigee of its orbit each time a secularly regressing Moon arrives at

the ascending node of its orbit. To accomplish this, the orbital variable

m of the EMMET’s orbit should be modified to be integer harmonic with

the orbital period of the Moon minus the time period between the true

anomalies of successive ascending node positions. Obviously this would

affect the other logistical requirements but as these are fundamentally

based upon the EMMET’s orbital period no further modifications would

be necessary. This could also be applied to ensure that the EMMET

arrives at its perigee each time the Moon arrives at the perigee of its

orbit, with the Moon’s argument of perigee regressing as a result of or-

bital perturbations, and this would be achieved by the modification of

orbital variable m of the EMMET orbit to be integer harmonic with the

Moon’s orbital period about Earth minus the time period between suc-

cessive perigee passages. However, the Moon’s motion is not as simple

as this and the modification utilised and applicable, importantly in this

case, is when a particular feature of the Moon’s orbit oscillates about a

mean value relative to Earth, for example the Moon’s ascending node.

When attempting to arrange the payload exchange system to carry out

its operational procedure each time the Moon arrives at the ascending

node of its orbit, and in the case where the Moon’s ascending node is

at a larger true anomaly than that for which the logistical system was

originally setup; the whole operational procedure is delayed by a time
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period which is an even integer harmonic of the Moon’s orbital period

about Earth whilst conserving the other logistical requirements. This,

however, will result in a timing discrepancy between the optimum trans-

fer trajectory for the system’s current configuration and the one that will

be undertaken as a result of the variation in the Moon’s ascending node.

This discrepancy cannot be resolved and the logistical requirements must

be maintained, therefore the payload is launched at the EMMET’s ar-

rival at perigee closest to the time of the optimum configurations launch

from perigee whilst maintaining the flight time of the payload to LSI.

As a result of the timing discrepancy, the payload will arrive at a dif-

ferent point of the LSI to that of the optimum configuration and will

therefore undertake a different trajectory about the Moon: this results

in a variation in the payload’s perilune parameters, and therefore ad-

justments to the Lunavator’s orbital elements to accommodate this are a

necessity. Later in this thesis it will become obvious that adjustments to

the Lunavator’s parameters are necessary to accommodate the varying

distance of the Moon at its ascending node due to variations in its true

anomaly and reduce the magnitude of the velocity adjustments necessary

for the payload exchanges which are more easily accommodated by the

Lunavator due to the lesser gravitational attraction of the Moon than

making adjustments to the EMMET. The same is possible for operations

to be undertaken earlier than the original setup of the system and when

the ascending node is at a lesser true anomaly of the Moon’s orbit, the

whole operation is brought forward by a time period an even integer mul-

tiple of the EMMET’s orbital period, and again an unresolvable timing

discrepancy is expected which is accommodated in a similar way.

To match the upper tip velocity of the EMMET and Lunavator more

closely to the required payload velocity for an optimum trajectory, some

alterations can be made to the rotational rates of the EMMET and Lu-

navator in order to reduce any velocity discrepancy. To allow alternate

tips to occupy alternate tether tip positions at different points in the

operational procedure, the rotational rates must take integer values plus

additional of either half, quarter or three-quarter rotations. The logis-

tical operation for the additional half rotation case has already been
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outlined and the remainder of this chapter will consist of a description of

the logistical requirements for the other two cases, and combinations of

rotational rates in addition to the logistical requirements for a payload

exchange procedure consisting of no waiting time at perilune which may

be a necessity for certain transfer configurations.

2.4.1 Non-Standard Operational Requirements

Under the circumstances that a more favourable transfer configuration

and velocity match between the payload’s required transfer velocity and

the tether sub-span’s tip velocity can be had by adjustments to the rota-

tional rates of the tether sub-spans, there are certain additional rotation

rates that are applicable with some minor modifications to the logistical

design. The operational procedure outlined previously can still be ob-

tained by retaining tether sub-span rotation rates which are integer har-

monic with their respective tether systems but with additional quarter or

three-quarter rotations, however, certain adjustments must be made to

the overall logistical design to accommodate this. The requirement still

remains of alternate tips occupying alternate positions at certain points

in the logistical arrangement to allow capture and launch operations to

be conducted at different points in the operational procedure and this

requires that these additional half rotations still occur. When using addi-

tional quarter or three-quarter rotations, additional half rotations occur

when time periods between one configuration and another are odd inte-

ger multiples of twice the rotational period. Additionally, full rotations

occur when the time periods between two configurations are even integer

multiples of twice the rotational period. The modified logistical require-

ments for the quarter or three quarter rates are the same in both cases

and can be stated as follows:

i. The orbital variable, m, is an even integer whilst remaining integer

harmonic with the Moon’s orbital period about Earth.

ii. The rotational variable, pr, between the EMMET and its tether

sub-spans must only take odd values to ensure that alternating

tips can occupy alternating positions at successive occurrences of
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the EMMET at the perigee of its orbit.

iii. The rotational variable, qr, between the Lunavator and its tether

sub-spans must only take odd values to ensure that alternating

tips can occupy alternating positions at successive occurrences of

the Lunavator at the perilune of its orbit.

iv. The orbital variable, n, remains odd integer harmonic with the

EMMET’s orbital period.

v. The wait time variable, dw, between Lunavator capture and launch

operations must only take odd integer multiples of twice the rota-

tional period of the Lunavator’s sub-spans to ensure that alternate

Lunavator tips occupy alternate tip positions between capture and

launch configurations thus satisfying the logistical design.

vi. Transfer time variables, c1 and c2, between EMMET launch and

Lunavator capture operations and vice versa should only take even

integer multiples of twice the EMMET’s orbital period to ensure

that the payloads arrive at the correct upper tips and allow the

same tips perform the same operation in each operational time

period.

The operation of the system using additional quarter rotations can again

be most easily demonstrated with an illustrative example as follows:

Setting the orbital variable m equal to 100, n equal to 9, rotational

variables pr and qr equal to 7 and 15, respectively, transfer time variables

c1 and c2 both equal to 16 and wait time variable dw equal to 54 we

achieve the configurations shown in Figure (2.10). At the initial launch

of the payloads from the upper and lower tips of the EMMET, denoted

by t = 0, the Lunavator and EMMET are both at periapse and aligned

along the local gravity gradients. At launch, the payload (blue) released

from the upper tip is launched on to a lunar trajectory and the payload

(green) released from the lower tip is on a return trajectory to Earth.

After a transfer time equal to 16 times the EMMET’s orbital period,

the EMMET and Lunavator are again at periapse. The EMMET has

traversed Earth 16 times and its tether sub-spans have completed 116
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Figure 2.10: Additional one-quarter rotation logistical arrangement
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rotations about the central facility, the Lunavator has orbited about the

Moon 144 times and its sub-spans have rotated about the central facility

2196 times. The payload (blue) from Earth is then captured by tip υ1

at the upper tip position and a payload (red) is picked up from the

Moon’s surface by tip υ2 at the lower tip position. After 54 Lunavator

orbits of the Moon, equal to 6 times the EMMET’s orbit, the EMMET

and Lunavator are again at the periapse of their respective orbits. The

EMMET sub-spans have rotated 43.5 times in this period and the upper

and lower tips have exchanged positions with tip ε1 at the lower tip

position and ε2 at the upper tip position. The Lunavator tips have also

exchanged position with the payload (red) previously from the Moon

launched on an Earth bound trajectory from tip υ2 now at the upper

tip position and the payload (blue) previously from Earth placed on to

the Moon’s surface by tip υ1 now at the lower tip position. After a

time period equal to a further 16 times the EMMET’s orbital period,

the EMMET and Lunavator are again at the periapse of their respective

orbits. The payload (red) from the Moon arrives at the upper tip position

of the EMMET and is captured by tip ε2 with the sub-spans having

rotated a further 116 times, at the same instant, the lower tip captures the

payload (cyan) brought up from Earth. The fully unladen Lunavator has

orbited the Moon 144 times and the sub-spans have completed a further

2196 rotations. After 100 EMMET rotations, the system has returned

to its original configuration with the payload (cyan) at the upper tip of

the EMMET ready for transfer to the Moon, and the payload (red) at

the lower tip will be returned to Earth at the same instant.

2.4.2 Combined Rates and Further Modifications

Having defined the logistics for the operational procedure where both

the EMMET and Lunavator have the same fractional addition to their

respective rotational variables; there may be cases where combinations

of these fractional additions become necessary to ensure that the most

efficient transfer trajectory between the tether tips can be had. The

logistics for a system where the EMMET has an additional half rotation

and the Lunavator an additional quarter or three-quarter rotation are
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almost identical to the case for both tethers having additional quarter or

three-quarter rotations with a single modification: the payload’s Moon-

Earth transfer trajectory must occur in a time period an odd integer

multiple of the EMMET’s orbital period, which allows the EMMET’s

tips to alternate their position and maintain the logistical requirements.

This can be very simply accommodated into the system by extending

the transfer time between the Lunavator’s and EMMET’s upper tips by

a time period equal to a single EMMET orbital period. In the case that

the Lunavator has an additional half rotation and the EMMET has an

additional quarter or three-quarter rotation, two modifications must be

made to the logistical design used when both tethers have additional

quarter or three-quarter rotations: the first modification is that the wait

time between Lunavator capture and launch operations must be extended

by a single EMMET orbital period to ensure that there is an odd integer

multiple of the EMMET’s orbital period between capture and launch

operations to allow alternate tips to exchange positions and the second

is that the transfer time between the Lunavator and EMMET’s upper tips

are reduced or extended by a single EMMET orbital period to maintain

the logistical design.

No-Wait Time Operations

A further modification and one which alters the operational procedure it-

self was suggested by Cartmell [40] and concerned the necessity for either

of the MMETs ever becoming fully unladen. Under the circumstances

that the trajectory design requires that no waiting time is possible to

allow the Lunavator’s tips to exchange positions, the operational proce-

dure and logistical requirements can be modified to accommodate this.

By configuring the Lunavator’s upper tip such that when the payload is

released onto an Earth-bound trajectory it is instantly replaced by the in-

coming payload from Earth and configuring its lower tip such that at the

instant of release a payload is picked from the Moon’s surface the mass

balance and momentum across the system can be maintained. However,

certain modifications to the logistical design of the system must be made

to accommodate this. The modification necessary is to adjust succes-
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sively the Lunavator to EMMET transfer time such that it is an odd

integer harmonic whilst the EMMET to Lunavator remains even integer

harmonic and on the next transfer procedure to adjust the EMMET to

Lunavator transfer time such that it is odd integer harmonic whilst the

Lunavator to EMMET transfer time returns to being even integer har-

monic. A final illustrative example will be used to convey this process

over three successive payload transfer procedures. Using an EMMET

orbital variable m of 130, a Lunavator orbital variable n of 3, rotational

variables pr and qr both equal to 7 and both with additional half rota-

tions; we set the transfer variable between the EMMET and Lunavator

upper tips, c1, to 16 and the transfer variable between the Lunavator

and EMMET upper tips, c2, to 17:

At the instant of launch in Figure (2.11), the payload (blue) bound for the

Moon is launched from the EMMET’s tip denoted by ε1 at the upper tip

position and at the same instant a payload (green) is released to Earth

from the tip denoted by ε2 at the lower tip position. The Lunavator

is fully laden at this point with a payload (green) attached to tip υ2

at the lower tip position and a payload (yellow) attached to the tip υ1

at the upper tip position. After a flight time equal to 16 times the

EMMET’s orbital period, the payload (blue) from Earth arrives at the

Lunavator’s tip υ1 at the upper tip position and is captured at the instant

of release of the return payload (yellow) to Earth. At this same instant,

a payload (green) is placed onto the Moon’s surface by υ2 at the lower

EarthEMMET Moon Lunavator

ε1 ε2 υ2 υ1

t=0

ε1 ε2

υ2 υ1

t=16TEM

ε2 ε1 υ1 υ2

t=33TEM

Figure 2.11: No wait time (phase 1)
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tip position and instantly afterwards another payload (red) is picked up

from the surface to preserve the mass balance across the system, and

so the EMMET is fully unladen at this point. After a flight time equal

to 17 times the EMMET’s orbital period, the EMMET and Lunavator

tips have exchanged positions and the payload (yellow) released from

the Lunavator’s upper tip arrives back at the EMMET’s upper tip and is

captured by the tip denoted by ε2 and at the same instant the tip denoted

ε1 at the lower position captures a payload (cyan) brought up from Earth,

resulting in the Lunavator remaining fully laden at this point.

After a revolution of the Moon about the Earth, as shown in in Fig-

ure (2.12), the EMMET and Lunavator have returned to their original

configurations with the payload (yellow) from the Moon attached to the

EMMET’s ε2 tip at the lower position and the payload (cyan) previously

brought up from Earth attached to the ε1 tip at the upper position,

therefore the Lunavator remains fully laden at this point. Again, the

payload at the EMMET’s upper tip is launched to the Moon and the

payload at the lower tip is released to Earth. After a flight time equal

to 17 times the EMMET’s orbital period, the EMMET and Lunavator

tips have exchanged positions and the payload (cyan) from Earth arrives

at the Lunavator’s tip υ2 at the upper tip position and is captured at

the instant of release of the return payload (red) to Earth which was

picked up from the Moon’s surface on the Moon’s previous orbit about

Earth. At this same instant, the payload (blue), previously from Earth,

EarthEMMET Moon Lunavator
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ε2 ε1
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Figure 2.12: No wait time (phase 2)
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Figure 2.13: No wait time (phase 3)

is placed onto the Moon’s surface by υ1 at the lower tip position and

instantly afterwards another payload (green) is picked up from the sur-

face to preserve the mass balance across the system, and the EMMET

is fully unladen at this point. After a flight time equal to 16 times the

EMMET’s orbital period, the Lunavator and EMMET tips remain in

the same positions and the payload (red) released from the Lunavator’s

upper tip arrives back at the EMMET’s upper tip and is captured by

the tip denoted ε2 and at the same instant the tip denoted by ε1 at the

lower position captures a payload (yellow) brought up from Earth, the

Lunavator remaining fully laden at this point.

After a second revolution of the Moon about the Earth, shown in in

Figure (2.13), the EMMET and Lunavator have again returned to their

original configurations with the payload (red) from the Moon attached

to the EMMET’s ε2 tip at the lower position and the payload (yellow)

previously brought up from Earth attached to the ε1 tip at the upper

position, the Lunavator remains fully laden at this point. Again, the

payload at the EMMET’s upper tip is launched to the Moon and the

payload at the lower tip is released to Earth. After a flight time equal to

16 times the EMMET’s orbital period, the EMMET and Lunavator tips

remain in the same positions and the payload (yellow) from Earth arrives

at the Lunavator’s tip υ1 at the upper tip position and is captured at

the instant of release of the return payload (green) to Earth which was

picked up from the Moon’s surface on the Moon’s previous orbit about

Earth. At this same instant, the payload (cyan), previously from Earth,
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is placed onto the Moon’s surface by υ2 at the lower tip position and in-

stantly afterwards another payload (blue) is picked up from the surface

to preserve the mass balance across the system, so that the EMMET is

fully unladen at this point. After a flight time equal to 17 times the

EMMET’s orbital period, both the EMMET and Lunavator tips have

exchanged positions and the payload (green) released from the Lunava-

tor’s upper tip arrives back at the EMMET’s upper tip and is captured

by the tip denoted by ε2 and at the same instant the tip denoted by ε1

at the lower position captures a payload (red) brought up from Earth,

noting that the Lunavator remains fully laden at this point.

By alternating the transfer times of the trans-Luna and trans-Earth

transfer trajectories such they are each successively even then odd, the lo-

gistical requirements of the overall system configuration can be arranged

when no waiting time at perilune is the more suitable configuration. A

drawback of this which becomes evident is that it takes a whole revo-

lution of the Moon about Earth to allow a payload picked up from the

Moon’s surface to be launched onto a trans-Earth trajectory, further-

more it takes the same time period to allow the payload captured at the

Lunavator’s upper tip to be placed onto the Moon’s surface. It is there-

fore obvious that this is not the most suitable logistical configuration for

this purpose, however the necessity for the use of this configuration will

become evident when the transfer configuration is established and data

accumulated on the required logistical configurations become accessible.

2.5 Conclusions

The parameters which allow the establishment of a continuous Earth-

Moon payload exchange have been identified and these must be satisfied

for a continuous system to exist. These are dependent upon the or-

bital periods of the EMMET, Lunavator and Moon and employ integer

harmonic relationships to ensure the occurrence of a given configuration

relative to Earth for each orbit of the Moon about Earth. Additionally,

the rotation rates of the tethers themselves have also been found to be

essential to this system. These are crucial in allowing the passage of pay-
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loads along the tether systems and in allowing the systems to perform

alternative catch and throw operations thus allowing alternate payloads

to be launched at successive transfer opportunities. Furthermore, these

can be adjusted to more closely to match the tether’s upper tip velocities

to those required for the most efficient transfers between the two MMETs

in orbit. To ensure that the payloads arrive at the tether tips at the cor-

rect instant; transfer times between the MMETs must also be integer

harmonic with the orbital periods of the MMETs and subsequently the

Moon. Modifications to the system are also possible and various con-

figurations are capable of accommodating the oscillatory motion of the

Moon’s ascending node whilst maintaining the overall logistics. This is

achieved by conducting transfers earlier or later than originally intended

and are accommodated by varying payload transfer times between the

MMETs accordingly.

Having defined the logistics of the system and possible modifications,

these logistical requirements will serve as a guideline for the entire design

of the payload exchange system with all trajectory design having to fit

within this framework. Attention now turns to determining how a system

can be setup which will track a specific point in the Moon’s orbit to allow

payloads to be transferred each time the Moon reaches this point when

taking into consideration orbital perturbations and the complex nature

of the Moon’s orbit about Earth.
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3. Moon Tracking Orbit

To provide an EMMET system which allows payload transfers between

the Earth and Moon over an extended time period; a suitable trans-

fer configuration must be established which can be repeated periodically

with the Moon’s orbit about Earth. To accomplish this, a point in the

Moon’s orbit must be chosen which allows transfers to be conducted suc-

cessively over any given time period. Obvious choices for such a position

would be the apogee or perigee of the Moon’s orbit or alternatively its

ascending or descending node relative to an Earth centred equatorial or

ecliptic frame of reference. As a result of the third body perturbations of

the Sun and other planets within the Solar system, the orbit of the Moon

is extremely complex and cannot be treated using the precessing inclined

ellipse model [41]. This results in variations in the argument of perigee

and the right ascension of the ascending node of the lunar orbit which

affects all possible transfer positions. To conduct successive transfers to

the perigee or apogee of the Moon’s orbit under these conditions would

be extremely difficult as its latitude would vary in addition to its posi-

tion in the fundamental plane of the reference frame. Similarly to the

method used by Hoyt and Uphoff [28], by conducting transfers to either

the ascending or descending node of the Moon’s orbit; only variations in

position in the fundamental plane of the reference frame would have to

be accounted for.

To account for variations in the lunar orbit’s node position; the EM-

MET’s orbit must be configured such that it returns to the required

transfer configuration relative to Earth and the Moon, periodically with

the Moon’s own motion about Earth, whilst altering its orbital elements

in such a manner that it accounts for these changes in node position.

Several possible configurations which satisfy these requirements present

themselves, however each requires alterations to its orbital elements by

means of orbital manoeuvres and would therefore require either fuel to

be brought up from Earth, via the payloads bound for the Moon, and
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fed down fuel lines located through the centre of the tether sub-spans;

or by solar cells located on the central facility; or by using an electro-

dynamic tether and utilising the magnetic field of Earth [4] to produce

thrust, however for this to occur the system would have to orbit in a

low Earth orbit which means that atmospheric drag effects would have

to be accounted for. By supplying additional fuel to the EMMET to

conduct orbital alterations, questions relating to fuel efficiency and the

timing of the orbital manoeuvers are raised. The answers however, are

straightforward: the most efficient times to perform these manoeuvers

will be when the velocity of the EMMET is at its lowest and, due to

present specifications, when it is fully unladen and its mass is at a min-

imum, occurring when payloads are on their way to, or returning from,

the Moon. A caveat to be heeded, however, is that no orbital adjust-

ment should be undertaken by an unladen EMMET between payload

release and capture operations, which disadvantages the return payload.

The implications of these answers with regards to fuel efficiency will be

examined on individual merit at the key stages of this chapter.

This chapter can be dissected as follows; an outline of single manoeu-

vre moon-tracking orbit designs will be given, followed by a description

of the dual manoeuvre methods devised to track the Moon’s ascending

node: these tracking designs are also all applicable to the Moon’s de-

scending node. The remainder of the chapter will then be dedicated to

the derivation of the formulas required to calculate the necessary adjust-

ments to the EMMET’s ascending node and argument of perigee which

are required to maintain these moon tracking orbits.

3.1 Outline of Moon Tracking Method

To begin a description of the methods designed to track the ascending or

descending node of the Moon’s orbit, a short description of the Moon’s

motion is warranted, and this will perhaps highlight the challenges as-

sociated with designing such a method for practical applications. The

motion of the Moon relative to both the geocentric equatorial and ecliptic

frames of reference can be summarised from Roncoli [41] as follows:
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i. The principal perturbation acting on the Moon is due to the third

body gravitational attraction of the Sun, the result of this is that

the Moon’s motion cannot be described by the precessing inclined

ellipse model.

ii. The Moon’s orbit has a nearly constant inclination with respect to

an Earth centred ecliptic frame but a varying inclination relative

to Earth’s equatorial frame.

iii. Relative to the ecliptic frame, the longitude of the ascending node

has a secular rate with a period of 18.6 years. However, relative to

the equatorial frame it has no secular rate and oscillates about a

right ascension of 0◦ with an 18.6 year period.

iv. The Moon’s argument of perigee precesses with a period of 8.85

years relative to both the ecliptic and equatorial reference frames.

As a result of this complex motion, no configuration which utilises only

the perturbing effects of an oblate Earth is sufficient to allow the EM-

MET to be correctly located to transfer and receive payloads with the

Moon on a regular (per lunar orbit) basis. The concepts of single and

dual orbital manoeuvre methods to adjust the argument of perigee and

ascending node of the EMMET’s orbit with each having their own merits

and disadvantages will now be discussed.

3.1.1 Single Manoeuvre Moon Tracking

One method of conceivably tracking the Moon’s ascending node is to ar-

range the EMMET’s orbit in a polar inclination relative to Earth’s equa-

torial frame to ensure that no precession of its ascending node occurs. In

addition to this, by making small adjustments to the orbit’s ascending

node angle via orbital manoeuvres, the oscillation of the Moon’s own

ascending node about an ascending node angle of 0◦ can be accounted

for allowing a continuous alignment of their apse lines to be maintained.

Furthermore, by ensuring that their ascending node angles are 180◦ out

of phase, payloads are exchanged between the EMMET and Moon when

the EMMET’s freely precessing argument of perigee becomes re-aligned
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Figure 3.1: Polar Inclination Moon-Tracking Configuration

with the equatorial plane as the Moon crosses its ascending or descending

node. By maximising the rate of the argument of perigee’s regression,

by adjustments to the eccentricity and semi-major axis, a minimum re-

alignment time for the argument of perigee can be obtained. The con-

figuration of this method is shown in Figure (3.1) with I, J, K denoting

the axes of Earth’s equatorial frame, N denoting a unit vector directed

towards the ascending node of the Moon’s orbit about Earth and Ω de-

noting the angle of the Moon’s ascending node. A possible drawback to

this method is its realignment period with the equatorial plane and data

on this will be presented in Chapter 5.

A second method of tracking the Moon’s ascending node relative to

Earth’s equatorial frame consists of configuring the EMMET’s orbit with

a critical inclination, denoted ic, of either 63.4◦ or 116.6◦ which renders

its argument of perigee stationary. This is set to 0◦ and ensures that the

ascending node and perigee of the EMMET’s orbit coincide. Under these

circumstances, the angle of ascending node of the EMMET’s orbit will

have a secular rate, however, this can be minimised by careful selection

of its semi-major axis and eccentricity and in addition to this, orbital ad-

justments are performed to arrange the EMMET’s ascending node such

that it regresses to the correct position with its apse line aligning itself

with the node line of the Moon’s orbit as it crosses the ascending node

of its orbit, at this instant payload catch and throw operations are con-

ducted. The configuration of this method is shown in Figure (3.2) with
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P, Q denoting axes of the EMMET’s perifocal, or orbit-centred, frame

of reference. Possible drawbacks of this method are the magnitude of the

velocity changes required to adjust the ascending node angle, however

this method is the more promising of the equatorial configurations and

data on the magnitude of these adjustments will also be presented in

Chapter 5.

An alternative single manoeuvre moon-tracking method utilises the

secular rate of the ascending node of the Moon relative to the eclip-

tic frame. By arranging the EMMET orbit’s inclination, semi-major

axes and eccentricity such that its own ascending node relative to the

ecliptic frame regresses at the same rate as the Moon’s then their apse

lines can remain in continual alignment. In addition to this, these ar-

rangements could also minimise the rate of precession of the argument

of perigee with orbital manoevres performed to adjust this such that it

would regress/precess into alignment with the ecliptic plane at the cor-

rect instant to pass or receive payloads from the Moon which, at this

point, is also aligned with the ecliptic plane and at its ascending or de-

scending node. The main drawback of this method, however, is that any

arrangement to the inclination of the EMMET’s orbit to ensure that its

ascending node regresses at the same rate as the Moon’s ascending node,

has to be configured relative to the equatorial frame, and as the ascend-

ing node regresses about the equatorial z-axis the divergence between the

ecliptic frame and equatorial frames grows and recedes which introduces

a varying inclination of the EMMET’s orbit relative to the ecliptic frame
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causing variations in the orbital inclination of incoming and outgoing

payloads.

3.1.2 Dual Manoeuvre Moon Tracking

Tracking the Moon’s ascending node relative to Earth’s equatorial frame

using the dual tracking manoeuvre can be achieved firstly by arranging

the right ascension of the EMMET’s orbit to remain at a constant angle,

achieved using a polar orbit of 90◦ inclination, and secondly by allowing

the EMMET’s argument of perigee to regress, due to additional pertur-

bations resulting from a non-spherical Earth, at a known rate which is

dependent upon the orbit’s inclination, semi-major axis and eccentric-

ity. Payload transfers are conducted to the Moon when the apse line of

the EMMET’s orbit is aligned with the node line of the lunar orbit. To

conduct payload catch and throw operations; the ascending node of the

EMMET’s orbit must be diametrically opposite to the Moon’s ascending

node at the instant of payload release which is satisfied by them being

180◦ out of phase. In addition to this, its argument of perigee must lie

within the Earth’s equatorial plane which is satisfied by the coincidence

of the EMMET’s ascending node and perigee positions and occurs when

the argument of perigee is 0◦. In reality, the argument of perigee will con-

tinue to regress whilst the EMMET is completely unladen and the catch

and throw operations will be performed at arguments of perigee which

are symmetrical about the 0◦ point, for greater or lesser time periods be-

tween these operations the argument of perigee adjustment manoeuvre

can itself be adjusted without affecting the overall design.

Variations in the Moon’s ascending node and the EMMET’s argument

of perigee can be accounted for by means of two orbital manoeuvers: the

first manoeuvre alters the ascending node of the EMMET’s orbit to align

it with the predicted lunar orbit node line at the succeeding payload

transfer opportunity whilst the second manoeuvre alters the argument of

perigee of the EMMET’s orbit to the required position such that it will

regress into alignment with the equatorial plane at the correct instant

for transfers to occur. By performing these adjustment manoeuvres for

every orbit of the Moon about Earth; payload transfers can be conducted
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on every occasion that the Moon crosses the ascending node of its orbit

about Earth. The modification to the logistical requirements of the sys-

tem and the timing of the systems operational procedure as result of the

oscillation of the Moon’s ascending node about a mean right ascension of

0◦ can be incorporated into the overall system design by performing the

operational procedure time periods an even integer harmonic of the EM-

MET’s orbital period earlier or later in the Moon’s orbit about Earth in

order to accommodate the regression of the ascending node as described

in Section 2.4.

Having described several methods by which the Moon’s ascending

node can be tracked over an extended time period, the focus of this

chapter will turn to the derivation of the positions in the EMMET’s

trajectory at which these orbital manoeuvers should be conducted for

the adjustment of their respective orbital parameters, and in addition to

this the changes in velocity required to perform these manoeuvres.

3.2 Ascending Node Adjustment

According to Vallado [42], the right ascension of the ascending node of

a circular orbit or an elliptical polar orbit can be modified by a single

impulse manoeuvre occurring at one of two common points of intersec-

tion between the initial and final orbits. Impulses occurring at points

other than these points of intersection will cause alterations to both the

orbital inclination and the ascending node. For the purpose of tracking

the ascending node of the Moon’s orbit; the impulsive change in velocity

must occur at a point of intersection between the EMMET’s initial and fi-

nal orbits to retain orbital inclination. For moon-tracking configurations

that allow precession of the ascending node, the final orbit must have

an ascending node which takes into account the predicted regression of

the EMMET’s ascending node during the time interval between payload

launch and capture as well as the time interval between payload trans-

fer opportunities. In addition to this, the change in the ascending node

angle of the Moon’s orbit must be incorporated into the adjustment to

ensure correct alignment at the next transfer opportunity. For critically
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inclined moon-tracking orbits, the ascending node of the final orbit will

be positioned such that its apse line will precess into alignment with the

Moon’s node line in the time period between the adjustment manoeu-

vre and the succeeding payload transfer opportunity. For polar inclined

moon-tracking orbits the manoeuvre required is simply the alignment of

the EMMET’s apse line with the predicted position of the Moon’s node

line at the next transfer opportunity. The change in velocity required to

perform the manoeuvre can be calculated by first, determining the points

of intersection of the initial and final orbits, obtained by finding the true

anomaly of the trajectories at these points, and secondly, by obtaining

the velocities of the orbits at the intersection. The change in velocity

required is then simply the difference between the velocity vectors of the

initial and final orbits at their point of intersection.

A method to calculate the true anomaly at which two orbits intersect

when they are identical in every respect other than an increment in the

angle of their ascending nodes will now be outlined; we begin by defining

the ascending node in the final orbit, Ωf , in terms of the ascending node

in the initial orbit, Ωi, plus some increment, ∆Ω, which we define as:

Ωf = Ωi + ∆Ω (3.1)

The location of the EMMET’s central facility in each orbit about Earth

can now be determined in its perifocal frame, in this case the satellite’s

orbital plane [42] is the fundamental plane. The axes in this frame are

denoted (P, Q, W ) and its origin coincides with the centre of Earth. The

P axis points towards the perigee of the satellite’s orbit with the Q axis

perpendicular to this in the direction of motion, the W axis points normal

to the (P, Q) axes, out of the orbital plane. We begin by designating the

perifocal position vectors of the initial, ~ri, and final, ~rf , trajectories as:

~ri =
[
xi yi 0

]T
(3.2)

~rf =
[
xf yf 0

]T
(3.3)

These perifocal positions are converted into the geocentric equatorial

frame, the coordinate frame in which the adjustments to the ascending

node are to be made. The equatorial frame also originates at the centre
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of Earth with the equator as its fundamental plane [42]. The axes in this

frame are denoted (I, J, K ) with the I axis pointing towards the vernal

equinox, defined as the ascending node of the Sun as viewed from Earth

[42], the J axis lies perpendicular to this, in an anti-clockwise direction,

and the K axis points towards the North Pole. The conversion from

perifocal position, ~rper, to geocentric equatorial position, ~req, is achieved

by the application of the perifocal to equatorial transformation matrix,

RG, to the perifocal position:

~req = RG.~rper (3.4)

Where the perifocal to equatorial transformation matrix is defined as

[42]:

RG =
cos Ωcosω − sinΩsinωcosi −cosΩsinω − sinΩcosωcosi sinΩsini

sinΩcosω + cosΩsinωcosi −sinΩsinω + cosΩcosωcosi −cosΩsini

sinωsini cosωsini cosi


(3.5)

The transformation matrix relates the equatorial frame to the perifocal

frame by a series of three rotations, as shown in Figure (3.3); the first

rotation is about the K axis through an angle equal to the angle of

ascending node of the orbit, denoted by Ω, the second is about an axis

which was initially coincident with the I axis through an angle equal to

the orbital inclination, denoted by i, and finally about an axis which was

initially coincident with the new K axis through an angle equal to the

argument of perigee, denoted by ω.

For the initial and final orbits to intersect, their equatorial position

vectors must be equal, as must be their vector components at these

points. From the conversion of the position vectors at the point of in-

tersection we have three scalar equations, one for each component in the

equatorial frame. Here the (x, y) coordinates of intersection in the peri-

focal frames of the initial, (xi, yi), and final orbits, (xf , yf ), are the four

unknowns. In this case, the change in ascending node is between two

orbits which differ only in their angle of ascending node whilst their in-

clination and argument of perigee remain identical. Equating the I axis
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components of the initial and final orbits in the equatorial frame yields:

(cosΩicosω − sinΩisinωcosi)xi − (cosΩisinω + sinΩicosωcosi)yi =

(cosΩfcosω − sinΩfsinωcosi)xf − (cosΩfsinω + sinΩfcosωcosi)yf

(3.6)

Equating the J axis components of the initial and final orbits yields:

(sinΩicosω + cosΩisinωcosi)xi − (sinΩisinω − cosΩicosωcosi)yi =

(sinΩfcosω + cosΩfsinωcosi)xf − (sinΩfsinω − cosΩfcosωcosi)yf

(3.7)

Equating the K axis components of the initial and final orbits yields:

(sinωsini)xi + (cosωsini)yi = (sinωsini)xf + (cosωsini)yf (3.8)

The (x, y) components of the orbits in their perifocal frames can be re-

written in plane polar coordinates in terms of radial distance, r, and true

anomaly, θ:

x = rcosθ (3.9)

y = rsinθ (3.10)

Applying equations (3.9) and (3.10), in addition to the fact that the

radial distance from the centre of Earth to the point of intersection is
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the same for both the initial and final orbits irrespective of the coordinate

frame, equation (3.8) becomes:

sinωsinicosθi + cosωsinisinθi = sinωsinicosθf + cosωsinisinθf (3.11)

The only unknowns are now the true anomalies at the points of inter-

section in the initial, θi, and final, θf , orbits. Canceling the common

inclination terms and using trigonometric sum and difference formulas

[43] yields:

sin(θi + ω) = sin(θf + ω) (3.12)

Canceling the sine and argument of perigee terms results in:

θi = θf (3.13)

The initial and final trajectories unsurprisingly intersect at the same true

anomaly in both orbital paths. The true anomaly at which the orbits

intersect can be found in the following way; firstly, by replacing the (x, y)

coordinates in the perifocal frame by their polar form in either equation

(3.6) or (3.7), in this case equation (3.6) is used; secondly, by canceling

out the common radial distance terms; and finally, substituting in the

true anomaly of the final orbit for that of the initial orbit, yielding:

(cosΩicosω − sinΩisinωcosi)cosθf − (cosΩisinω + sinΩicosωcosi)sinθf =

(cosΩfcosω − sinΩfsinωcosi)cosθf − (cosΩfsinω + sinΩfcosωcosi)sinθf

(3.14)

Multiplying out and collecting like terms gives:

(cosΩi − cosΩf )cosωcosθf − (sinΩi − sinΩf )sinωcosicosθf =

(cosΩi − cosΩf )sinωsinθf + (sinΩi − sinΩf )cosωcosisinθf (3.15)

This is further simplified using trigonometric sum and difference formulas

[43]:

(cosΩi − cosΩf )cos(θf + ω) = (sinΩi − sinΩf )cosisin(θf + ω) (3.16)

Further rearrangement and the application of the sum to product rule

for trigonometric functions [43] yields the equation for the true anomaly

of intersection:

tan(θf + ω) = −tan
(

Ωi + Ωf

2

)
seci = −tan

(
Ωi +

∆Ω

2

)
seci (3.17)
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At this point the quadrants of the two points of intersection can be

determined in the standard manner and their true anomalies are found

by subtracting the argument of perigee, ω, from the angles obtained.

For moon-tracking orbits which have polar inclinations relative to the

equatorial frame, equation (3.17) will tend to infinity as a result of the

seci term. A method of establishing the true anomaly at which two

polar orbits intersect can be obtained by again utilising equations (3.9)

and (3.10), in addition to the radial distance at the point of intersection

being the same for both the initial and final orbits. Having established

that the true anomaly at the point of intersection will be the same in

both orbits, we replace the true anomaly of both the initial and final

orbits by θ and then, by collecting like trigonometric terms, equation

(3.7) becomes:

(cosΩi − cosΩf )cosωcosθ − (sinΩi − sinΩf )sinωcosicosθ =

(cosΩi − cosΩf )sinωsinθ + (sinΩi − sinΩf )cosωcosisinθ (3.18)

Application of the trigonometric sum and difference formulas [43] and

rearrangement of equation (3.18) yields:

cos(θ + ω) = sin(θ + ω)

(
sinΩi − sinΩf

cosΩi − cosΩf

)
cosi (3.19)

For polar inclinations; cos i = 0, therefore:

θ + ω = 90◦ or 270◦ (3.20)

Depending upon our choice for the argument of perigee for the EMMET’s

orbit, the true anomaly at the first point of intersection of the initial and

final orbits will occur at:

θ = 90◦ − ω or 270◦ − ω (3.21)

Having determined the true anomaly at which the orbital manoeuvre

should take place, the velocity at this point in each orbit can be de-

termined and ultimately the change in velocity required to perform the

manoeuvre. This will be the focus of the following section.

3.2.1 Velocity Requirements

The next step is to determine the velocity vectors of the two orbits at

their point of intersection and the change in velocity required to perform
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the manoeuvre between them. To change the angle of ascending node

of an orbit relative to Earth’s equatorial frame without affecting the

other orbital parameters, it is evident from the manoeuvre occurring at

the same true anomaly on both orbits that the manoeuvre required is

simply the rotation of the velocity vector of the initial orbit at its point

of intersection, about the equatorial K axis, through an angle ∆Ω equal

to the required change in right ascension. This can be accomplished by

means of the Rodriguez Formula [44][45] which is the kinematic form of

the rotation matrix and expresses the matrix required to transform the

initial velocity vector to the final velocity vector in terms of the angle of

rotation and a unit vector along the axis of rotation. In this case, the

rotation matrix, RK , can be written [44][45]:

RK(∆Ω) = [I + Ssin∆Ω + S2(1− cos∆Ω)] (3.22)
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Where I is the 3x3 identity matrix and S, in this case, is a particularly

simple skew symmetric matrix:

S =


0 −1 0

1 0 0

0 0 0

 (3.23)

The velocity of the final orbit, ~vf , relative to the equatorial frame can be

found by applying equation (3.22) to the velocity of the initial orbit, ~vi,

at the point of intersection:

~vf = RK(∆Ω)~vi (3.24)

The velocity of the body in the initial orbit at the point of intersec-

tion relative to the equatorial frame can be calculated from its velocity

relative to the perifocal frame. Standard practice assumes that the peri-

focal frame is fixed in space relative to the equatorial frame, but in the

moon-tracking configurations described the orbit is being treated as a

precessing inclined ellipse with a time-varying argument of perigee or as-

cending node, or both; it must therefore be treated as a rotating frame

of reference. Dependent upon the moon-tracking method used, the ro-

tational rate of the perifocal frame will consist of a rotation about the

perifocal W axis at a rate identical to the rate of change of the argument

of perigee, ω̇, and a rate identical to the rate of change of the ascending

node, Ω̇, about the K axis of the equatorial frame. The velocity of the

body in the perifocal frame, ~vper, is subsequently transformed into the

equatorial frame, ~veq, using the basic kinematic equation [42]:

~veq = ~vper + ~̇Ωeq × ~rper + ~vo (3.25)

All the terms in equation (3.25) have components measured relative to

the equatorial frame. The first term in equation (3.25) is simply the or-

bital velocity of the EMMET in the perifocal frame with its components

transformed into the equatorial frame, ~vper. As a result of the moon-

tracking method used; the angular velocity vector of the perifocal frame,

~̇Ωper, potentially has components in same direction as the W axis of the

perifocal frame measured relative to the equatorial frame, potentially

components in the K direction of the equatorial frame or a precessional
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rate consisting of both. The velocity of the origin of the perifocal frame,

~vo, the final term in equation (3.25), is zero as its origin remains coin-

cident with that of the equatorial frame at the centre of Earth. The

change in velocity required to perform the orbital manoeuvre, ∆~v, can

be written, using equation (3.24), solely in terms of the velocity of the

initial orbit relative to the equatorial frame and the required change in

the angle of ascending node as:

∆~v = ~vf − ~vi = RK(∆Ω)~vi − ~vi = (RK(∆Ω)− I)~vi (3.26)

Equation (3.26) will be used in Chapter 5 to calculate the change in

velocity required to perform this orbital adjustment for different config-

urations of the EMMET’s orbit. It has been shown that this manoeuvre

must be conducted at a true anomaly where the two orbits intersect which

is not necessarily at a point where the orbital velocity is at a minimum,

it would therefore be most efficient for this manoeuvre to be conducted

between payload launch and capture operations as long as the change in

ascending node was small enough not to significantly affect overall tra-

jectory design and disadvantage the return payload. Data accumulated

on the magnitude of the required change will clarify matters.

3.3 Argument of Perigee Adjustment

According to Curtis [47], the opportunity to transfer between intersect-

ing orbits which have a common focus but have apse lines which are not

collinear, via a single impulse manoeuvre, occurs at points where the

two orbits intersect. To make the required adjustment to the argument

of perigee, the impulsive manoeuvre must occur where the EMMET’s

initial and final orbits intersect. Furthermore, for moon-tracking config-

urations that allow precession of the argument of perigee and perform

manoeuvres to correctly align it, the final orbit must have an argument

of perigee which takes into account the predicted regression of the ar-

gument of perigee during the time interval between payload launch and

capture as well as the time interval between payload transfer opportuni-

ties. The argument of perigee of the final orbit will be positioned is such

a manner that it will regress into its required launch position in the time

60



period between the adjustment manoeuvre and the succeeding payload

transfer opportunity. The total adjustment required can be most simply

expressed as being equal to the angle through which the EMMET’s ar-

gument of perigee will regress in the time taken for the Moon to orbit

the Earth, as this will account for all variations to this parameter in the

intervening time period between adjustment manoeuvers. The velocity

change required to perform the manoeuvre can be calculated in a sim-

ilar way to that required for the ascending node adjustment. Firstly,

the points of intersection of the initial and final orbits are determined

by obtaining the true anomaly of the respective orbits at these points of

intersection, and secondly, the velocities of the orbits at these intersec-

tions are then determined. The velocity change required is simply the

difference in the velocity vectors of the initial and final orbits.

3.3.1 Position Requirements

As in the ascending node case the initial, ωi, and final, ωf , orbits are

identical except for a positive increment in the argument of perigee, ∆ω,

of the final orbit from the initial orbit which we can define as:

ωf = ωi + ∆ω (3.27)

For orbits which have regressing arguments of perigee, a positive incre-

ment in the argument of perigee is required and satisfied by equation

(3.27). For those with precessing arguments of perigee, equation (3.27)

should be redefined as ωi = ωf + ∆ω. For two co-planar elliptical orbits

with an increment in the argument of perigee of one relative to another

but otherwise identical; the orbits will intersect at two points. The ra-

dial distance from the centre of Earth to these points of intersection are

identical for both orbits and we begin by equating the radial distance

of these points of intersection and re-writing the equations in terms of

the components of the initial and final orbits relative to their respective

perifocal frames:

ri =
√
x2
i + y2

i =
√
x2
f + y2

f = rf (3.28)

Simplifying equation (3.28) and re-arranging yields:

(x2
i − x2

f ) = −(y2
i − y2

f ) (3.29)
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Re-writing the perifocal components in their polar form using equations

(3.9) and (3.10) and canceling out common radial distance terms we

obtain:

(cos2θi − cos2θf ) = −(sin2θi − sin2θf ) (3.30)

Again, by equating the radial distance of the points of intersection in each

orbit, but in this instance substituting in the equation for an elliptical

orbit, we obtain [47]:

ri =
h2
i

µ(1 + eicosθi)
=

h2
f

µ(1 + efcosθf )
= rf (3.31)

where h and e are the specific angular momentum and eccentricity of the

EMMETs orbit, which will be defined in Chapters 4 and 5, respectively;

and µ is Earth’s gravitational parameter. The only difference between

the orbits is in the argument of perigee, therefore equation (3.31) reduces

to:

cosθi = cosθf (3.32)

Substituting equation 3.32 into equation 3.30 we obtain:

sinθi = ±sinθf (3.33)

A positive (anti-clockwise) rotation of the argument of perigee, as well

the initial and final orbits, are shown in Figure (3.5). For the points of

intersection between the initial and final orbits; the point of intersection

in the final orbit will lag a quadrant behind the point of intersection in

the initial orbit relative to their respective perifocal frames. Further-

more, this intersection will occur in the region between their respective

x axes and is denoted by ∆ω. For a negative rotation of the argument of

perigee, the point of intersection in the initial orbit will lag a quadrant

behind the point of intersection in the final orbit. Having located the

EMMET’s central facility relative to the perifocal frame, its position is

again converted into the equatorial frame, using equation (3.5). Once

again, by equating the position vectors of the initial and final orbits, we

obtain three scalar equations. However, on this occasion, the difference

is the argument of perigee of the initial and final orbits. Equating the I

axis components of the initial and final orbits relative to the equatorial
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frame yields:

(cosΩcosωi − sinΩcosisinωi)xi − (cosΩsinωi + sinΩcosicosωi)yi =

(cosΩcosωf − sinΩcosisinωf )xf − (cosΩsinωf + sinΩcosicosωf )yf

(3.34)

Substituting in equations (3.9) and (3.10); equation (3.34) becomes:

(cosΩcosωi − sinΩcosisinωi)cosθi − (cosΩsinωi + sinΩcosicosωi)sinθi =

(cosΩcosωf − sinΩcosisinωf )cosθf − (cosΩsinωf + sinΩcosicosωf )sinθf

(3.35)

Treating each side of equation (3.35) as a linear combination of sine and

cosine functions [43] and assuming that Ω and i are positive yields:

sin(θi + ωi + π + ξ) = sin(θf + ωf + π + ξ) (3.36)

where:

ξ = arcsin

(
cosΩ√

1− sin2Ωsin2i

)
Canceling out the sine and the other common terms we obtain:

θi + ωi = θf + ωf (3.37)

Re-arranging equation 3.37 and substituting in equation (3.27) yields:

θi = θf + ∆ω (3.38)
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We can now calculate the true anomaly of both orbits at the point of

intersection in the first quadrant of the initial orbit and from Figure (3.5)

we see that this will occur in the fourth quadrant of the final orbit. In

this case, the cosines of the true anomalies in both orbits will be positive

but the sine of the true anomaly in the final orbit will be the negative

of the sine of the true anomaly in the initial orbit. Replacing the (x, y)

coordinates in equation (3.34) with their polar form and substituting the

true anomalies in the final orbit with their equivalents in the initial orbit,

we cancel out common radius terms to obtain:

(cosΩcosωi − sinΩcosisinωi)cosθi − (cosΩsinωi + sinΩcosicosωi)sinθi =

(cosΩcosωf − sinΩcosisinωf )cosθi + (cosΩsinωf + sinΩcosicosωf )sinθi

(3.39)

Collecting like terms yields:

(cosωi − cosωf )cosΩcosθi − (sinωi − sinωf )sinΩcosicosθi =

(sinωi + sinωf )cosΩsinθi + (cosωi + cosωf )sinΩcosisinθi (3.40)

Utilising the trigonometric sum-to-product formulas [43] and canceling

like terms we obtain:

cosθisin

(
∆ω

2

)
= sinθicos

(
∆ω

2

)
(3.41)

Equation 3.41 simplifies to:

θi =
∆ω

2
(3.42)

From equation 3.38, the true anomaly at the point of intersection in the

final orbit becomes:

θf = −∆ω

2
(3.43)

Alterations to orbital parameters are most efficient when conducted close

to the apogee of an orbit as the velocities are minimised. For the adjust-

ment to the argument of perigee to occur close to the apogee of the initial

orbit; this corresponds to the third quadrant of the initial orbit and the

second quadrant of the final orbit. In this case, the cosines of the true

anomalies will both be negative, but the sine of the true anomaly of the

initial orbit will be negative whilst the sine of the true anomaly of the
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final orbit will be positive. Following the method used previously the

true anomaly at the point of intersection in the initial orbit is found to

be:

θi = π +
∆ω

2
(3.44)

This is as expected and yields the true anomaly in the final orbit as:

θf = π − ∆ω

2
(3.45)

Having determined the true anomaly at which the adjustment to the

argument of perigee should occur, the velocity at this point in both the

initial and final orbits will be determined allowing the required change

in velocity to be calculated, and this will be the focus of the final section

of this chapter.

3.3.2 Velocity Requirements

The final step is to determine the velocity vectors of the two orbits at

their intersection and the change in velocity required to perform the

manoeuvre between them. We can define the velocity at the point of

intersection in each orbit by its perifocal velocity vector as:

~vper =
(µ
h

) [
−sinθ e+ cosθ 0

]T
(3.46)

From equation (3.33) and Figure (3.5) we can see that at the points of

intersection close to perigee and apogee, the cosines of the true anomaly

in both orbits are identical whilst their sine functions differ only in di-

rection. Therefore, the manoeuvre required is simply the rotation of the

velocity vector of the initial orbit at its point of intersection about the

W axis of its perifocal frame through an angle ∆ω, equal to the required

change in the argument of perigee. The Rodriguez Formula [44][45] can

again be utilised and is written as:

RK(∆ω) = [I + Ssin∆ω + S2(1− cos∆ω)] (3.47)

In this case, the skew symmetric matrix, S, can be written in terms of

the unit vector along the axis of rotation relative to the equatorial frame.

The unit vector of the perifocal frame W axis relative to the equatorial
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frame, denoted ~iW , is:

~iW =


sinΩsini

−cosΩsini

cosi

 (3.48)

The skew symmetric matrix, S, can therefore be written:

S =


0 −cosi cosΩsini

cosi 0 −sinΩsini

−cosΩsini sinΩsini 0

 (3.49)

The velocity of the final orbit relative to the equatorial frame can be

found by applying equation (3.47) to the velocity of the initial orbit at

the point of intersection:

~vf = RK(∆ω)~vi (3.50)

Again the initial velocity at the point of intersection relative to the per-

ifocal frame is converted into the equatorial frame using the basic kine-

matic equation, equation (3.25). As in the previous case, the argument

of perigee is time varying, and the angular velocity term is the result of

this variation and will be identical to that for the ascending node case.

The change in velocity required to perform the orbital manoeuvre can be

written:

∆~v = ~vf − ~vi = (RK(∆ω)− I)~vi (3.51)

We have now obtained an expression in equation (3.51) which allows us

to calculate the magnitude of the change in velocity required to adjust

the argument of perigee from its value in the initial orbit to the spec-

ified configuration required for a successive orbital transfer manoeuvre

to be undertaken relative to the equatorial frame which will be utilised

in Chapter 5. It has been shown that this manoeuvre can be conducted

close to the apogee of the EMMET’s orbit where its velocity is at a mini-

mum. However, depending upon the rate of regression of the argument of

perigee it remains to be seen whether this manoeuvre can be performed

between payload launch and capture operations, when the EMMET’s

mass is at a minimum, without significantly compromising the perigee

position of the return payload. This will become clearer in Chapter 5

when numerical data can be obtained.
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3.4 Conclusions

Several configurations which allow the EMMET’s orbit to track the as-

cending or descending node of the Moon’s orbit relative to both the geo-

centric equatorial and ecliptic frames of reference have been described.

As a result of the variation in the orbital inclination of an EMMET con-

figured relative to the ecliptic frame and resulting from the increased

attraction to Earth’s equator when in orbit, configurations relative to

this frame have been disregarded. It was found that the most promising

configurations for moon-tracking were for EMMET’s in either polar or

critically inclined orbits. For critically inclined orbits, a single adjust-

ment to the angle of the ascending once per-lunar-orbit would allow the

EMMET’s apse line to become aligned with the Moon’s ascending node

when a known regression of this apse line was accounted for. For po-

lar orbits, either single manoeuvre or dual manoeuvre configurations are

available, however the single manoeuvre case is dependent upon the fre-

quency of re-alignment of the EMMET’s apse line with the fundamental

plane of the equatorial frame. It is unlikely that the frequency of this re-

alignment will be sufficient and it is predicted that the dual manoeuvre

configuration will prove more favourable for transfer opportunities using

a polar orbit configuration.

Having described means by which the EMMET can track the Moon’s

nodes, equations were derived for both polar and non-polar inclination

orbits which allowed the points of intersection between two almost identi-

cal orbits, with the exception being in differing angles of ascending node,

to be calculated. For polar orbits this intersection was found to occur

at a true anomaly of 90◦, for non-polar orbits this true anomaly occurs

at the same point in each orbit and is dependent upon the orbital in-

clination. Additionally, the Rodriguez formula was utilised to formulate

expressions for the velocity change required to translate from one orbit

to another solely in terms of the velocity in the initial orbit at the point

of intersection. This was found to consist of a rotation of the velocity

vector about the K axis of the equatorial frame. Equations were also

derived which allowed the points of intersection for two non-critically in-
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clined orbits to be calculated when they differed only in their arguments

of perigee. This intersection was found to occur at a true anomaly equal

to half the required alteration to the argument of perigee. Furthermore,

the Rodriguez formula was again utilised to express the velocity change

required to translate from one orbit to another solely in terms of the ve-

locity in the initial orbit at this calculated point of intersection. In this

case, the rotation of the velocity vector was about an axis parallel with

the angular velocity vector of the orbit relative to the equatorial frame.

Having described several possible configurations which will allow the EM-

MET to be configured to conduct payload exchanges when the Moon

crosses the ascending or descending node of its orbit, our attention now

turns to the derivation of the EMMET’s dynamics which will allow us to

determine the position, velocity and acceleration acting on the EMMET

and payloads at any point in their orbit about Earth, in addition to al-

lowing us to determine the velocity of the payloads at their instant of

release from their tether tips. Furthermore, the accelerations acting on

the system can be used to determine the maximum tension acting on the

tether sub-spans as a result of the EMMET’s motion about Earth in ad-

dition to the attachment of their payload masses to the tips. This is the

focus of the following chapter with the aim that, in conjunction with the

current focus, data can be generated in later chapters which will allow

the magnitude of the adjustments required to track the Moon’s orbit to

be obtained and, in conjunction with later trajectory designs, the most

efficient transfer configuration can be identified.
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4. EMMET Dynamics

The equations used to describe the position, velocity and acceleration of

the central facility; upper and lower payloads; as well as any point along

the tether sub-spans will now be developed for the EMMET relative to

the geocentric equatorial frame of reference. This model can be developed

most simply by considering the two-body problem, and only the most

significant gravitational perturbations resulting from Earth’s oblateness.

To simplify matters further; these equations will be developed for pay-

loads treated as point masses in addition to initially inextensible tether

sub-spans, and the resulting acceleration terms will be utilised to formu-

late expressions for the tension occurring within these sub-spans. The

maximum angular velocity that the tether sub-spans can withstand as a

result of their rotation about the central facility will then be developed

with the aim of determining the maximum increment to velocity that a

given EMMET configuration can impart to a payload mass. This will

be used, in Chapter 5, to determine the maximum launch velocity of the

payload from the upper EMMET tip, which occurs at the instant that

the central facility is at the perigee of its orbit, where orbital velocity

is greatest, and when the tether sub-spans are aligned along the local

gravity gradient, giving the largest upper tip velocity relative to Earth

as a result of tether rotation. Ultimately, this allows us to determine

whether a specified EMMET configuration is suitable for imparting suf-

ficient velocities to payloads released from the upper tether tip for them

to reach the Moon.

4.1 Position, Velocity and Acceleration

The position, velocity and acceleration of the components of the EM-

MET are initially defined relative to a body fixed frame coincident with

the EMMET’s central facility. These components are transformed into

the perifocal frame and finally into the geocentric equatorial frame, the
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Figure 4.1: Body frame and EMMET configuration

frame in which the Earth-Moon trajectories will be designed. The deriva-

tion of these equations will focus on the upper payload at present but

can be adjusted for the central facility, by setting the tether sub-span

length equal to zero; for the lower payload, by adjusting the tether ro-

tation angle relative to the body frame by 180◦, or any point along the

tether sub-span, by defining its distance along the length and whether

it is along the instantaneous upper or lower sub-span. As the payloads

are treated as point masses, the payload’s position is coincident with

the tether tip and their velocity and acceleration are identical. We will

therefore derive the position, velocity and acceleration of the upper tip

in the following subsections and references to upper payload or upper tip

can be considered as being one and the same.

Body Frame Components

We begin by defining the position vector of the upper tip relative to a

body fixed frame. The body frame has its origin located at the central

facility and its fundamental plane is co-planar with the EMMET’s orbital

plane. The i axis points along the local gravity gradient with its positive

direction away from Earth, its j axis is perpendicular to this in an anti-

clockwise direction and its k axis is perpendicular to this fundamental

plane. The upper tip’s position is defined by two coordinates, L is the

tether sub-span length and ψ is the angle that the tip makes with the

body frame i axis, shown in Figure (4.1). The velocity and acceleration as

functions of time are found by successive differentiation of the position

vector. The position, velocity and acceleration vectors relative to the
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body frame are defined as:

~ru =
[
Lcosψ Lsinψ 0

]T
(4.1)

~vu =
[
−ψ̇Lsinψ ψ̇Lcosψ 0

]T
(4.2)

~au =
[
−L

(
ψ̈sinψ + ψ̇2cosψ

)
L
(
ψ̈cosψ − ψ̇2sinψ

)
0
]T

(4.3)

The following subsection will show how these components are trans-

formed into the perifocal frame and will derive their components relative

to this frame.

Perifocal Frame Components

The position of the upper tip relative to the body frame, ~ru, can be

transformed into the upper tip position relative to the perifocal frame,

~ru−per, using the following equation:

~ru−per = ~ro +RW (θ)~ru (4.4)

Where the origin of the body frame, ~ro, relative to the perifocal frame is

simply the position of the central facility relative to the perifocal frame,

shown in Figure (4.1) and is found in terms of its radial distance, r and

true anomaly, θ, by equations (3.9) and (3.10). The position of the upper

payload relative to the body fixed frame is transformed into the perifocal

frame using the true anomaly of the central facility and the following

elementary rotation matrix about the W axis of the perifocal frame:

RW (θ) =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (4.5)

The velocity of the payload relative to the perifocal frame, ~vu−per, is

found by differentiation of equation (4.4) with respect to time:

~vu−per = ~vo +RW (θ)~vu + ṘW (θ)~ru (4.6)

The velocity of the EMMET’s central facility relative to the perifocal

frame, ~vo, is identical to that of the origin of the body frame relative to

the perifocal frame and is found using [47]:

~vo =

√
µ

p

[
−sinθ e+ cosθ 0

]T
(4.7)
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In equation (4.7), the orbital parameter is denoted by p and e denotes

the orbital eccentricity. The orbital parameter can be obtained from the

specific angular momentum, h, of the EMMET’s orbit via [47]:

p =
h2

µ
(4.8)

The specific angular momentum is obtained from the semi-major axis, a,

and eccentricity [47]:

h =
√
µa (1− e2) (4.9)

The partial derivative with respect to time of equation (4.5), found in

equation (4.6), is [43]:

ṘW (θ) =
∂RW (θ)

∂t
= θ̇


−sinθ −cosθ 0

cosθ −sinθ 0

0 0 0

 (4.10)

The rate of change of the true anomaly, denoted by θ̇ in equation (4.10),

is equal to the magnitude of the orbital angular velocity of the EMMET’s

central facility, and is obtained from the specific angular momentum and

the radial distance of the EMMET’s central facility via the following [47]:

θ̇ =
h

r2
o

(4.11)

The acceleration of the upper payload relative to the perifocal frame,

~au−per, is found by direct differentiation of equation (4.6) with respect to

time:

~au−per = ~ao +RW (θ)~au + 2ṘW (θ)~vu + R̈W (θ)~ru (4.12)

The acceleration of the origin of the body frame relative to the perifocal

frame, ~ao, is simply the gravitational acceleration acting on the central

facility and is given by [44]:

~ao = −GME

r3
o

~ro (4.13)

where G is the universal gravitation constant and ME is the mass of

Earth. The partial derivative with respect to time of equation (4.10),

found in equation (4.12), is [43]:

R̈W (θ) = θ̈


−sinθ −cosθ 0

cosθ −sinθ 0

0 0 0

+ θ̇2


−cosθ sinθ 0

−sinθ −cosθ 0

0 0 0

 (4.14)
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Equation (4.14) is simplified by the fact that the angular acceleration

acting on the body, θ̈, is zero as a result of the gravitational force be-

ing entirely radial. The position, velocity and acceleration of the upper

payload relative to the perifocal frame can be written:

~ru−per =


rocosθ + Lcos(θ + ψ)

rosinθ + Lsin(θ + ψ)

0

 (4.15)

~vu−per =


−
√

µ
p
sinθ − L(θ̇ + ψ̇)sin(θ + ψ)√

µ
p
(e+ cosθ) + L(θ̇ + ψ̇)cos(θ + ψ)

0

 (4.16)

~au−per =


−ψ̈Lsin(θ + ψ)− (θ̇ + ψ̇)2Lcos(θ + ψ)

ψ̈Lcos(θ + ψ)− (θ̇ + ψ̇)2Lsin(θ + ψ)

0

− GME

r3
o

~ro (4.17)

The following subsection will show how these components are trans-

formed into the equatorial frame and will derive their components relative

to this frame.

Equatorial Frame Components

The position of the upper tip relative to the equatorial frame, ~ru−eq, is

equal to the transformation of the position in the perifocal frame by

application of equation (3.4), this simple relation is a result of the origin

of the perifocal frame coinciding with the origin of the equatorial frame:

~ru−eq = RG.~ru−per (4.18)

The velocity of the upper payload relative to the equatorial frame, ~vu−eq,

is found by differentiating equation (4.18) with respect to time:

~vu−eq = RG.~vu−per + ṘG.~ru−per (4.19)

The partial derivative, with respect to time, of equation (3.5), the peri-

focal to equatorial transformation matrix, is more easily obtained when

factors are taken into account which simplify the matrix prior to differen-

tiation. The acceleration of the upper payload relative to the equatorial

frame, ~au−eq, is found by differentiating equation (4.19) with respect to
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time:

~au−eq = RG.~au−per + 2ṘG.~vu−per + R̈G.~ru−per (4.20)

The equatorial position, velocity and acceleration equations derived will

now be applied to the moon-tracking orbit configurations described in

Chapter 3

4.1.1 Moon Tracking Components

The equatorial position, velocity and acceleration derived in the pre-

ceding section will now be utilised to obtain the position, velocity and

acceleration of the EMMET when configured to orbit Earth in each of

the moon-tracking orbit configurations described in Chapter 3. In addi-

tion to this, their components at the perigee of their orbits will be also

obtained for each case.

Moon-Tracking with Polar Inclinations

For moon-tracking orbits relative to the equatorial frame of reference

which utilise polar inclinations to render the EMMET’s angle of ascend-

ing node stationary, be it a single or dual manoeuvre configuration, the

perifocal to equatorial transformation matrix, equation (3.5), becomes:

RG =


cos Ωcosω −cosΩsinω sinΩ

sinΩcosω −sinΩsinω −cosΩ

sinω cosω 0

 (4.21)

The derivative of equation (4.21) is simplified by the fact that its preces-

sion is due solely to the change in argument of perigee of the EMMET’s

orbit and this is obtained as [43]:

ṘG = ω̇


− cos Ωsinω −cosΩcosω 0

−sinΩsinω −sinΩcosω 0

cosω −sinω 0

 (4.22)

The angular rate in equation (4.22) is equal to the rate of change of

the argument of perigee, ω̇, of the EMMET’s orbit due to the oblateness

effects of a non-spherical Earth and the rate of this change will be defined

in Chapter 5. The derivative of equation (4.22) is again simplified by the
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fact that its change is due solely to the change in argument of perigee of

the EMMET orbit [43]:

R̈G =

ω̈


− cos Ωsinω −cosΩcosω 0

−sinΩsinω −sinΩcosω 0

cosω −sinω 0

+ ω̇2


− cos Ωcosω cosΩsinω 0

−sinΩcosω sinΩsinω 0

−sinω −cosω 0


(4.23)

Equation (4.23) is simplified further by the assumption that the angular

rate of the argument of perigee is constant and un-accelerated. Using

an argument of perigee aligned with the Moon’s node line, i.e. ω = 0,

as described in Chapter 3, allows us to obtain more simply the position,

velocity and acceleration of the upper tip relative to the equatorial frame.

Equatorial position, equation (4.18), becomes:

~ru−eq =


cosΩ(rocosθ + Lcos(θ + ψ))

sinΩ(rocosθ + Lcos(θ + ψ))

rosinθ + Lsin(θ + ψ)

 (4.24)

Equatorial velocity, equation (4.19), becomes:

~vu−eq =
−cosΩ

((√
µ
p

+ ω̇ro

)
sinθ + L(θ̇ + ψ̇ + ω̇)sin(θ + ψ)

)
−sinΩ

((√
µ
p

+ ω̇ro

)
sinθ + L(θ̇ + ψ̇ + ω̇)sin(θ + ψ)

)
(√

µ
p

(
1 + e

cosθ

)
+ ω̇ro

)
cosθ + L(θ̇ + ψ̇ + ω̇)cos(θ + ψ)

 (4.25)

Equatorial acceleration, equation (4.20), becomes:

~au−eq =
−cosΩ(ψ̈Lsin(θ + ψ) + L(θ̇ + ψ̇ + ω̇)2cos(θ + ψ) + αcosθ)

−sinΩ(ψ̈Lsin(θ + ψ) + L(θ̇ + ψ̇ + ω̇)2cos(θ + ψ) + αcosθ)

ψ̈Lcos(θ + ψ)− L(θ̇ + ψ̇ + ω̇)2sin(θ + ψ)− βsinθ

 (4.26)

With α, β denoting:

α =
GME

r2
o

+ 2ω̇

√
µ

p

(
1 +

e

cosθ

)
+ ω̇2ro

β =
GME

r2
o

+ 2ω̇

√
µ

p
+ ω̇2ro
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The largest velocity that can be imparted by the EMMET at the instant

of payload launch occurs when it is at the perigee of its orbit, where its

orbital velocity is highest, and the rotating tether sub-spans are aligned

along the local gravity gradient, allowing rotational velocity to be added

directly to orbital velocity. At this instant, angles θ and ψ are zero and

the equatorial position, velocity and acceleration simplify to:

~ru−eq =


cosΩ(ro + L)

sinΩ(ro + L)

0

 (4.27)

~vu−eq =


0

0√
µ
p
(1 + e) + ω̇ro + L(θ̇ + ψ̇ + ω̇)

 (4.28)

~au−eq =


−cosΩ((θ̇ + ψ̇ + ω̇)2L+ α)

−sinΩ((θ̇ + ψ̇ + ω̇)2L+ α)

ψ̈L

 (4.29)

Our focus now turns to deriving the EMMET’s components when it has

a moon-tracking configuration which includes a critically inclined orbit

and again these will derived for an arbitrary true anomaly and also when

the EMMET is at the perigee of its orbit when configured for payload

capture and launch operations.

Moon-Tracking with Critical Inclination

For moon-tracking orbits relative to the equatorial frame of reference

which utilise the critical inclination of 63.4◦, denoted i c, to render the

EMMET’s argument of perigee stationary, the perifocal to equatorial

transformation matrix, equation (3.5), for an argument of perigee equal

to zero is:

RG =


cosΩ −sinΩcosic sinΩsinic

sinΩ cosΩcosic −cosΩsinic
0 sinic cosic

 (4.30)

The derivative of equation (4.30), in this case is simplified by the fact

that its precession is due solely to the change in angle of ascending node

76



of the EMMET’s orbit, and this is obtained as [43]:

ṘG = Ω̇


−sinΩ −cosΩcosic cosΩsinic

cosΩ −sinΩcosic sinΩsinic

0 0 0

 (4.31)

The angular rate in equation (4.31) is equal to the rate of change of the

ascending node, Ω̇, of the EMMET’s orbit due to the oblateness effects

of a non-spherical Earth, and the rate of this change will be defined in

Chapter 5. The derivative of equation (4.31) is again simplified by the

fact that its change is due solely to the change in ascending node of the

EMMET’s orbit [43]:

R̈G = Ω̈


−sinΩ −cosΩcosic cosΩsinic

cosΩ −sinΩcosic sinΩsinic

0 0 0



+ Ω̇2


−cosΩ sinΩcosic −sinΩsinic

−sinΩ −cosΩcosic cosΩsinic

0 0 0

 (4.32)

Equation (4.32) is simplified further by the assumption that the angular

rate of the ascending node is constant and un-accelerated. We now obtain

the position, velocity and acceleration of the upper tip relative to the

equatorial frame and for simplicity we set the angle of ascending node

to zero. Therefore, the equatorial position given by equation (4.18),

becomes:

~ru−eq =


rocosθ + Lcos(θ + ψ)

(rosinθ + Lsin(θ + ψ))cosic

(rosinθ + Lsin(θ + ψ))sinic

 (4.33)

Equatorial velocity, equation (4.19), becomes:

~vu−eq =
−
(√

µ
p

+ Ω̇rocosic

)
sinθ − L(θ̇ + ψ̇ + Ω̇cosic)sin(θ + ψ)

e
√

µ
p
cosic +

(√
µ
p
cosic + Ω̇ro

)
cosθ + L((θ̇ + ψ̇)cosic + Ω̇)cos(θ + ψ)(√

µ
p
(e+ cosθ) + L(θ̇ + ψ̇)cos(θ + ψ)

)
sinic


(4.34)
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Equatorial acceleration, equation (4.20), becomes:

~au−eq =
[
α1 α2 α3

]T
(4.35)

With α1, α2 and α3 denoting:

α1 =− ψ̈Lsin(θ + ψ)−
(

2Ω̇

√
µ

p
cosic + Ω̇2ro

)
cosθ

− L[(θ̇ + ψ̇)2 + 2Ω̇(θ̇ + ψ̇)cosic + Ω̇2]cos(θ + ψ)

− GME

r2
o

cosθ − 2Ω̇e

√
µ

p
cosic (4.36)

α2 =ψ̈Lcos(θ + ψ)cosic −
(

2Ω̇

√
µ

p
+ Ω̇2rocosic

)
sinθ

− L[(θ̇ + ψ̇)2cosic + 2Ω̇(θ̇ + ψ̇) + Ω̇2cosic]sin(θ + ψ)

− GME

r2
o

sinθcosic (4.37)

α3 =ψ̈Lcos(θ + ψ)sinic − L(θ̇ + ψ̇)2sin(θ + ψ)sinic

− GME

r2
o

sinθsinic (4.38)

The equatorial position, velocity and acceleration of the EMMET at the

perigee of its orbit can be stated, and in this case each simplifies to:

~ru−eq =
[
ro + L 0 0

]T
(4.39)

~vu−eq =


0(√

µ
p
(1 + e) + L(θ̇ + ψ̇)

)
cosic + Ω̇(ro + L)(√

µ
p
(1 + e) + L(θ̇ + ψ̇)

)
sinic

 (4.40)

~au−eq =

−


GME

r2
o

+ (θ̇ + ψ̇)2L+ 2Ω̇
[
(θ̇ + ψ̇)L+

√
µ
p
(1 + e)

]
cosic + Ω̇2(ro + L)

−ψ̈Lcosic
−ψ̈Lsinic


(4.41)

Having obtained the components of the EMMET when different moon-

tracking configurations are used, the velocities obtained in equations

(4.28) (4.40) will be utilised in Chapter 5 to establish whether the veloc-

ity imparted to a payload launched from the upper tip of the EMMET

orbiting in a given configuration is sufficient for it to reach the Moon’s

gravitational influence. In addition to this, by utilising the acceleration
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terms obtained for a polar inclination configuration in equations (4.29)

and (4.41), the tension acting at the point of connection between the

central facility and tether sub-span as a result of the payload and tether

sub-spans, will be obtained in the following section.

4.2 Tether Tension

We will now begin the derivation of the tether tension resulting from

the accelerations acting upon the payload and tether sub-spans. By

adhering to the standard orbital mechanical assumption that a satellite

and an attracting body can be treated as particles [42] with all their

mass concentrated at their centre of mass and furthermore, by assuming

that the centre of mass of the EMMET coincides with the central facility

which orbits Earth in an ellipse with no further perturbations acting

upon it than those resulting from the oblateness of Earth; the EMMET

can therefore be treated as a particle orbiting the Earth at the distance

of the central facility with a gravitational force acting on it which is

proportional to its orbital radius. The largest tension occurring within

the tether sub-spans will be at their point of connection to the central

facility and result from the difference in the forces acting on the tether

sub-spans and payload masses to those acting on the centre of mass of the

system. This tension will consist of terms resulting from a combination

of a variation in gravitational acceleration, as radial distance from Earth

varies, and inertial acceleration terms arising from the motion of the

non-inertial body-fixed and perifocal frames relative to the geocentric

equatorial frame. The tension occurring at the connection point can

be written as the sum of the tether sub-span tension, and the tension

due to the payload. We will begin by developing the tension acting on

the upper tether sub-span’s upper tip as a result of the acceleration of

the upper payload’s mass. This tension is considered to be instantly

transmitted along the tether and contributes to the tension at the point

of connection to the central facility. We will then calculate the tension

resulting from the upper tether sub-span at the connection point and

obtain the total tension acting at that point. A similar procedure will be
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followed for the tension resulting from the lower sub-span and payload at

the lower central facility connection point, and we will again obtain the

total tension acting at the connection point. The chapter will conclude

with a comparison between the tensions acting at the upper and lower

connection points to determine whether the tensions are equal, and if

not to determine the point at which the greatest tension occurs. From

this maximum tension we will derive the maximum angular velocity that

the tether sub-spans can endure dependent upon the properties of the

material they are composed of. The description of the derivation of the

maximum tension and angular velocity for the EMMET will be given

in detail for the EMMET in a polar orbit with the expression for the

maximum angular velocity when the EMMET has a critically inclined

orbit being stated once the corresponding equation for the polar case

has been obtained. The maximum angular velocity when the EMMET is

freely inclined can be obtained from the corresponding equation for the

Lunavator which is also applicable, and this case is derived in detail in

Chapter 7.

4.2.1 Upper Tether Tension

The tension acting at the connection point between the tether and central

facility will now be derived for the upper tether sub-span and payload

of an EMMET in a polar orbit with the aim of determining the point at

which the greatest tension acting on the EMMET is located.

Upper Payload Tension

The net force, ~Fnet, acting on the upper payload can be written in terms

of the gravitational force, ~Fg, and the tension acting on it. This is equal

to the product of the payload’s mass and its acceleration relative to

Earth’s equatorial frame of reference. For the payload attached to the

upper tether tip, this can be written as:

~Fnet = mp~au−eq = ~Fg + ~Tu−p (4.42)

Payload mass is denoted by mp, tension is denoted by ~Tu−p and the force

of gravity acting on the payload relative to the equatorial frame is defined
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as:

~Fg = −GmpME

r3
u−eq

~ru−eq (4.43)

The tension can be written in terms of the acceleration relative to the

equatorial frame and the force of gravity at that point:

~Tu−p = mp~au−eq − ~Fg (4.44)

The equatorial acceleration term can be re-written, by extracting the

gravitational term from the first term in equation (4.20), as:

~au−eq+
GME

r3
o

~ro−eq =

(
RG.~au−per +

GME

r3
o

~ro−eq

)
+2ṘG.~vu−per+R̈G.~ru−per

(4.45)

where the gravitational term is simply the acceleration of the body frame

origin, equation (4.13), transformed into the equatorial frame, in both

coordinates frames the radial distance remains the same:

RG.~ao = −GME

r3
o

~ro−eq (4.46)

The tension can therefore be written in terms of the change in gravita-

tional force acting on the payload’s mass as a result of its displacement

from the origin of the body frame and inertial acceleration terms, result-

ing from the payload’s rotation about the EMMET’s central facility in

conjunction with the orbital motion of the entire tether system about

Earth:

~Tu−p = mp (~au−eq −RG.~ao) +GmpME

(
~ru−eq
r3
u−eq
− ~ro−eq

r3
o

)
(4.47)

The maximum tension resulting from the acceleration of the payload will

occur when the EMMET is at the perigee of its orbit, where its orbital

velocity and its acceleration due to gravity are greatest, and when it is

aligned along the local gravity gradient, where its centrifugal acceleration

due to tether rotation is largest. Utilising equation (4.29) and assuming

that no angular acceleration of the payload is taking place in the form

of motor torque, the inertial acceleration of the upper payload in the

equatorial frame can be written as:

~au−eq −RG.~ao =


−cosΩ((θ̇ + ψ̇ + ω̇)2L+ 2ω̇

√
µ
p

(1 + e) + ω̇2ro)

−sinΩ((θ̇ + ψ̇ + ω̇)2L+ 2ω̇
√

µ
p

(1 + e) + ω̇2ro)

0


(4.48)
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The resulting tension acting on the payload is found from equation (4.37):

~Tu−p = −mp


cosΩ

(
(θ̇ + ψ̇ + ω̇)2L+ 2ω̇

√
µ
p

(1 + e) + ω̇2ro − γ (GME)
)

sinΩ
(

(θ̇ + ψ̇ + ω̇)2L+ 2ω̇
√

µ
p

(1 + e) + ω̇2ro − γ (GME)
)

0


(4.49)

With γ defined as:

γ =

(
1

(ro + L)2
− 1

r2
0

)
A binomial series expansion can be used to approximate the gravitational

terms of equation (4.49) as follows [48]:

γ =
1

r2
o

((
1 +

L

ro

)−2

− 1

)
= − 1

r2
o

(
2

(
L

ro

)
− 3

(
L

ro

)2

+ 4

(
L

ro

)3

− ...

)
(4.50)

This expansion is valid for | L
ro
| < 1. By retaining only up to squared

terms of the series, as L�ro, the tension acting on the payload can be

written as:

~Tu−p = −mp


cosΩ

(
(θ̇ + ψ̇ + ω̇)2L+ 2ω̇

√
µ
p

(1 + e) + ω̇2ro +
(
GME

r2
0

)
Γ
)

sinΩ
(

(θ̇ + ψ̇ + ω̇)2L+ 2ω̇
√

µ
p

(1 + e) + ω̇2ro +
(
GME

r2
0

)
Γ
)

0


(4.51)

With Γ defined as:

Γ =

(
2

(
L

ro

)
− 3

(
L

ro

)2
)

Having now defined the tension acting on the payload as a result of the

acceleration acting on it, we can define the tension acting on the upper

tether tip and subsequently the connection point to the central facility

by the application of Newton’s third law . The tension acting at the

central facility connection point, ~Tu, as a result of the acceleration of the

payload is equal in magnitude but opposite in direction to the tension

acting on the payload and can be defined as follows:

~Tu = mp


cosΩ

(
(θ̇ + ψ̇ + ω̇)2L+ 2ω̇

√
µ
p

(1 + e) + ω̇2ro +
(
GME

r2
0

)
Γ
)

sinΩ
(

(θ̇ + ψ̇ + ω̇)2L+ 2ω̇
√

µ
p

(1 + e) + ω̇2ro +
(
GME

r2
0

)
Γ
)

0


(4.52)

82



Having obtained an expression for the tension at the central facility con-

nection point resulting from the acceleration acting on the payload mass,

we will now derive an expression for the tension resulting from the accel-

eration of the tether sub-span.

Upper Tether Sub-span Tension

We can calculate the tension resulting from the acceleration of the en-

tire tether sub-span at the point of connection to the central facility by

firstly obtaining an expression for the tension resulting from an infinites-

imal point an arbitrary distance along the sub-span and then secondly,

integrating this expression over the entire sub-span. We begin by dis-

cretising the sub-span into infinitesimal intervals of length, δs, each of

mass δm. We can then define the net force acting on an arbitrary in-

terval at some distance, s, along the tether sub-span in a similar way

to that used for the payload. Beginning with equation (4.42) we follow

an identical procedure as before and arrive at equation (4.52) for the

tension acting on the central facility connection point as a result of the

length interval δs, in this case tether sub-span length, L, is replaced by

the distance along the sub-span, s :

~Tu−s = δm


cosΩ

(
(θ̇ + ψ̇ + ω̇)2s+ 2ω̇

√
µ
p

(1 + e) + ω̇2ro +
(
GME

r2
0

)
Γs

)
sinΩ

(
(θ̇ + ψ̇ + ω̇)2s+ 2ω̇

√
µ
p

(1 + e) + ω̇2ro +
(
GME

r2
0

)
Γs

)
0


(4.53)

with Γs defined as:

Γs =

(
2

(
s

ro

)
− 3

(
s

ro

)2
)

The tension can be re-defined in terms of the differential mass, the mag-

nitude of the acceleration acting on it at point s along the sub-span, and

a unit vector directed along the sub-span, as:

~Tu−s = δm

(
(θ̇ + ψ̇ + ω̇)2s+ 2ω̇

√
µ

p
(1 + e) + ω̇2ro +

(
GME

r2
0

)
Γs

)
~is

(4.54)

where the unit vector directed along the sub-span, ~is, is defined as:

~is =
[
cosΩ sinΩ 0

]T
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From equation (4.54), the magnitude of the acceleration acting at point

s can be defined as:

a(s) = (θ̇ + ψ̇ + ω̇)2s+ 2ω̇

√
µ

p
(1 + e) + ω̇2ro +

(
GME

r2
0

)
Γs (4.55)

Writing the differential mass in terms of the tether’s material density, ρ,

cross sectional area, A, and differential length δs as:

δm = ρAδs (4.56)

The tension resulting from this infinitesimal tether element can therefore

be expressed as:

~Tu−s = (ρAa(s)δs)~is (4.57)

The net tension resulting from all of the differential elements which com-

pose the tether sub-span can now be found by integrating equation (4.57)

over the entire length:

~TU =

[ ∫ L

0

ρAa(s)δs

]
~is (4.58)

As a result of ~is being independent of the length variable s, the integral

along the entire sub-span simplifies to an integral of the magnitude of

the acceleration over the entire sub-span as:

TU =

∫ L

0

ρAa(s)δs (4.59)

Performing the integration yields a tension resulting from the entire sub-

span of:

~TU = mT

(
1

2
(θ̇ + ψ̇ + ω̇)2L+ 2ω̇

√
µ

p
(1 + e) + ω̇2ro +

(
GME

r2
0

)
ΓU

)
~is

(4.60)

where the total mass of the tether mT = ρAL and ΓU is defined as:

ΓU =

((
L

ro

)
−
(
L

ro

)2
)

An expression for the total tension resulting from the tether sub-spans

and payload tension will now be obtained.

Upper Connection Point Tension

The tension acting at the connection point between the tether sub-span

and the central facility is the resultant of the payload and tether sub-span
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tensions acting at that point. By similarly defining the payload tension to

that of the sub-span tension in terms of mass, magnitude of acceleration,

and a unit vector defined along the tethers sub-span, equation (4.60), the

total tension acting at the connection point can be defined as:

~Tnet = (Tnet)~is (4.61)

with the magnitude of the tension acting at the connection point defined

as:

Tnet−upper = (θ̇ + ψ̇ + ω̇)2L

(
mp +

1

2
mT

)
(4.62)

+

(
2ω̇

√
µ

p
(1 + e) + ω̇2ro

)
(mp +mT )

+

(
GME

r2
0

)(
(2mp +mT )

(
L

r0

)
− (3mp +mT )

(
L

r0

)2
)

Having obtained the magnitude of the tension acting at this point, we

will now derive the tension acting at the lower connection point.

4.2.2 Lower Tether Tension

The tension acting at the connection point between the tether and central

facility will now be derived for the lower tether sub-span and payload and

the net tension acting at this point will be compared to that acting on

the upper tether with the aim of determining the location of greatest

tension.

Lower Payload Tension

The tension acting on the lower payload can be found by again using

equation (4.42) but in this case the acceleration term denotes that of the

lower payload. This is obtained by adding 180◦ to the tether rotation

angle ψ in equation (4.26). As is the case for the upper tension, the

greatest tension occurring in the lower connection point will occur when

the EMMET is at perigee and aligned along the local gravity gradient.

The acceleration acting on the lower payload is found to be:

~al−eq =


cosΩ

(
(θ̇ + ψ̇ + ω̇)2L− GME

r2
o
− 2ω̇

√
µ
p
(1 + e)− ω̇2ro

)
sinΩ

(
(θ̇ + ψ̇ + ω̇)2L− GME

r2
o
− 2ω̇

√
µ
p
(1 + e)− ω̇2ro

)
−ψ̈L

 (4.63)
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Following a similar procedure to that used for the upper payload we

arrive at an equation similar to equation (4.49) for the lower payload:

~Tl−p = mp


cosΩ

(
(θ̇ + ψ̇ + ω̇)2L− 2ω̇

√
µ
p

(1 + e)− ω̇2ro + λ (GME)
)

sinΩ
(

(θ̇ + ψ̇ + ω̇)2L− 2ω̇
√

µ
p

(1 + e)− ω̇2ro + λ (GME)
)

0


(4.64)

with λ defined as:

λ =

(
1

(ro − L)2
− 1

r2
0

)
Utilising the binomial series expansion [48], valid for | L

ro
| < 1, to approx-

imate λ yields:

λ =
1

r2
o

((
1 +

(
−L
ro

))−2

− 1

)

=
1

r2
o

(
2

(
L

ro

)
+ 3

(
L

ro

)2

+ 4

(
L

ro

)3

+ ...

)
(4.65)

Retaining only up to squared terms, equation (4.64) becomes:

~Tl−p = mp


cosΩ

(
(θ̇ + ψ̇ + ω̇)2L− 2ω̇

√
µ
p

(1 + e)− ω̇2ro + Λ (GME)
)

sinΩ
(

(θ̇ + ψ̇ + ω̇)2L− 2ω̇
√

µ
p

(1 + e)− ω̇2ro + Λ (GME)
)

0


(4.66)

with Λ defined as:

Λ =
1

r2
o

(
2

(
L

ro

)
+ 3

(
L

ro

)2
)

Having defined the tension acting on the payload as a result of the addi-

tional acceleration terms occurring as a result of the payload’s displace-

ment from the centre of mass, the tension acting on the connection point

to the central facility can be found from Newton’s third law as:

~Tl = −mp


cosΩ

(
(θ̇ + ψ̇ + ω̇)2L− 2ω̇

√
µ
p

(1 + e)− ω̇2ro + Λ (GME)
)

sinΩ
(

(θ̇ + ψ̇ + ω̇)2L− 2ω̇
√

µ
p

(1 + e)− ω̇2ro + Λ (GME)
)

0


(4.67)

Having obtained an expression for the tension at the central facility con-

nection point resulting from the acceleration acting on the lower payload

mass, we will now derive an expression for the tension resulting from the

acceleration of the lower tether sub-span.
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Lower Tether Sub-span Tension

By similarly discretising the lower tether sub-span with the method used

for the upper tether sub-span, the tension acting along the lower tether

sub-span can be found by means of an integral identical to equation

(4.58), in this case the acceleration term, as, can be defined as:

as =

(
(θ̇ + ψ̇ + ω̇)2s− 2ω̇

√
µ

p
(1 + e)− ω̇2ro +

(
GME

r2
0

)
Λs

)
(4.68)

Where Λs is defined as:

Λs =

(
2

(
s

ro

)
+ 3

(
s

ro

)2
)

The resulting tension acting at the point of connection can be found by

integrating over the entire sub-span and applying Newton’s third law as:

~TL = −mT

(
1

2
(θ̇ + ψ̇ + ω̇)2L− 2ω̇

√
µ

p
(1 + e)− ω̇2ro +

(
GME

r2
0

)
ΛL

)
~is

(4.69)

where ΛL is defined as:

ΛL =

((
L

ro

)
+

(
L

ro

)2
)

An expression for the total tension resulting from the tether sub-spans

and payload tension will now be obtained.

Lower Connection Point Tension

The net tension acting on the lower connection point can again be defined

by equation (4.61). In this case, the unit vector~is has a direction opposite

to that for the upper tension case, the magnitude of the tension can

therefore be defined as:

Tnet−lower = (θ̇ + ψ̇ + ω̇)2L

(
mp +

1

2
mT

)
(4.70)

−
(

2ω̇

√
µ

p
(1 + e) + ω̇2ro

)
(mp +mT )

+

(
GME

r2
0

)(
(2mp +mT )

(
L

r0

)
+ (3mp +mT )

(
L

r0

)2
)

Having obtained the magnitude of the tension acting at the upper and

lower connection points they will now be compared to establish the point

of maximum tension, and an expression for the maximum rotational ve-

locity that the tether can withstand due to this tension will be obtained.
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4.2.3 Maximum Tension and Rotational Velocity

Having obtained expressions for the tensions acting at the upper and

lower connection points we can now determine if these two tensions are

equal and if not the magnitude of the maximum tension can be identified.

As a result of the assumption that the central facility orbits Earth with

no other perturbations acting on it other than those arising from Earth’s

oblateness, the tensions acting on the central facility due to the the upper

payload and sub-span and lower payload and sub-span should be opposite

and equal according to Newton’s third law. This can be established by:

~Tnet−lower + ~Tnet−upper = ~0 (4.71)

However, implementing the magnitudes of net tensions results in:(
2ω̇

√
µ

p
(1 + e) + ω̇2ro

)
(mp +mT )−(

GME

r2
0

)(
(3mp +mT )

(
L

r0

)2
)
6= 0 (4.72)

The two tensions are therefore unequal, and as the ascending node’s rate

of regression is negative, due to the polar inclination, the central facility

experiences a net negative force as a result of equation (4.72). This

means that the tension on the lower connection point is greater. This

however raises a interesting situation with regards to our assumption

that there are no other perturbations acting on the EMMET’s centre

of mass other than those resulting from an oblate Earth. A hypothesis

will be postulated in Chapter 9 which attempts to explain this mismatch

between upper and lower tether tension which, additionally, is observed

in the case of the Lunavator in Chapter 7. However, for the moment we

will remain within the confines of standard orbital dynamic assumptions

and concern ourselves with establishing the maximum rotational velocity

that the sub-spans can endure, in addition to the development of the

minimum requirements that must be satisfied for a continuous Earth-

Moon payload exchange to be established.

Maximum Rotational Velocity

Having determined that the maximum tension occurring in the EMMET

system will occur at the connection point between the lower tether sub-
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span and central facility, we will now derive an expression for the max-

imum angular velocity which the sub-spans can rotate at which is de-

pendent upon tether length, payload mass and the characteristics of the

material that the tether sub-spans are composed of. To begin with, the

tension in the tether can be re-written in terms of the tensile stress of the

material, denoted by σ, and cross sectional area of the tether sub-span

[4] as:

T = σA (4.73)

The maximum tension that the tether sub-span can endure can be written

in terms of cross sectional area of the tether and the maximum tensile

stress, σmax, that the tether material can endure, and a factor of safety,

SF, has been included:

Tmax =
(σmax
SF

)
A (4.74)

Re-arranging equation (4.70) and replacing tension with equation (4.74),

the maximum rotational velocity, ψ̇max, that the tether can endure for a

moon tracking orbit which has a polar inclination relative to the equa-

torial frame can be expressed as:

ψ̇max =

√
1

L
(
mp + 1

2
mT

) ((σmax
SF

)
A+ ν

)
− (θ̇ + ω̇) (4.75)

where ν can be defined as:

ν =

(
2ω̇

√
µ

p
(1 + e) + ω̇2ro

)
(mp +mT )

−
(
GME

r2
0

)(
(2mp +mT )

(
L

r0

)
+ (3mp +mT )

(
L

r0

)2
)

Comparing this with the expression derived by Zeigler [49] for the max-

imum angular velocity that a tether can endure:

ψ̇max =

√
σA

L
(
mp + 1

2
ρA
) (4.76)

It can be seen that equation (4.75) contains all of the terms in equation

(4.76), where mT = ρAL, but also includes terms which account for ten-

sions arising in the tether as a result of gravity gradient, in addition to

tensions arising from precession of the EMMET’s argument of perigee.

The maximum angular velocity that the EMMET can withstand when
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configured to orbit Earth in a critically inclined moon-tracking configu-

ration is derived in a manner identical to that of the polar case and is

obtained as:

ψ̇max =

√√√√( 1

L
(
mp + 1

2
mT

) [(σmax
SF

)
A+ ν

]
− Ω̇2

)
− (θ̇ + Ω̇cosic)

(4.77)

Where ν can be defined, in this case, as:

ν =

(
2Ω̇

√
µ

p
(1 + e) cosic + Ω̇2ro

)
(mp +mT )

−
(
GME

r2
0

)(
(2mp +mT )

(
L

r0

)
+ (3mp +mT )

(
L

r0

)2
)

It can be seen that equation (4.77) differs from equation (4.75) due to

the terms resulting from the rate of the ascending node of the EMMET’s

orbit and no terms due to the precession of the argument of perigee as

this is stationary in this case.

4.3 Conclusions

A means by which to transform dynamic components from the body

fixed frame of reference to Earth’s equatorial frame have been obtained.

These have been applied to the configurations for the polar and critically

inclined moon-tracking orbits and furthermore these have been utilised

to obtain the position, velocity and acceleration of the EMMET and its

tips at the perigee of its orbit in each of these configurations. Utilising

the expressions for the upper and lower tip’s acceleration relative to the

equatorial frame and obtaining these when the accelerations are greatest,

occurring at the perigee of the EMMET’s orbit; expressions for the max-

imum tension along the tether sub-spans have been derived. A surprising

result was obtained which showed that the tension occurring along the

lower sub-span and payload was greater than that of the upper. This

contradicts the assumption that the forces are balanced at the centre

of mass of the system which is coincident with the central facility. A

hypothesis to explain this phenomenon has been proposed in Chapter

9. Having obtained the maximum tension acting, this tension was ex-

pressed in terms of the material properties of the tether sub-spans and
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expressions were obtained for the maximum rotational rates which these

sub-spans are capable of withstanding when taking into account payload

and tether sub-span masses.

The expressions obtained in this chapter will now be used to deter-

mine whether a given EMMET configuration is capable of providing the

velocity required to inject a payload onto a trans-Luna trajectory from

a given upper tip position whilst remaining within the constraints im-

posed by the maximum angular velocity that the tether sub-spans can

safely operate at. In addition to this, by utilising the velocities derived

for each configuration in conjunction with expressions derived in the pre-

vious chapter for the magnitude of the velocity required to adjust the

EMMET’s parameters, the most efficient moon-tracking configuration

can be established.
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5. EMMET Parameters

Several configurations have now been described which will allow us to

track the ascending or descending node of the Moon’s orbit relative to

the equatorial frame. In addition to this, expressions have been derived

for the maximum velocity increment that the EMMET’s sub-spans are

capable of imparting to the payloads as a result of the properties of the

material which they are composed of, and the maximum tension that

the sub-spans can be subjected to. The velocity at which payloads are

released onto trans-Luna trajectories from the EMMET’s upper tip can

now be calculated for EMMET configurations which satisfy the require-

ments of each of the moon-tracking orbits. Suitable input parameters for

each moon-tracking configuration can then be determined and any limi-

tations of the configurations assessed, the culmination of this will be a set

of design parameters which satisfy the requirements of the Earth orbiting

tether for a continuous payload exchange. Having defined suitable input

parameters, the moon-tracking configuration which is most suitable for

this purpose in terms of transfer opportunities and manoeuvre efficiency

will be preliminarily determined; with the most suitable configuration

being capable of exchanging payloads each time the Moon crosses its as-

cending or descending node in addition to the adjustment manoeuvres

having the lowest required velocity changes. The simulations and data

presented in this chapter were produced using the mathematical software

programme MATHEMATICA
TM

but the formulation is not restricted ex-

clusively to this package. This chapter will begin with the determination

of the orbital parameters most suitable for providing both the single and

dual configuration moon-tracking orbits when using the EMMET in a

polar inclination, and by determining the launch velocity of the payloads

from the EMMET’s upper tip under these conditions the range of input

parameters suitable for these configurations can be obtained. Having ob-

tained the input parameters for these configurations, the magnitude of

the velocity changes required to configure the EMMET correctly to track
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the Moon’s ascending or descending node, when using the polar moon-

tracking configuration can be determined. The next step will repeat this

process, but in this case the focus will turn to the EMMET orbiting with

a critical inclination about Earth. Having obtained the changes in veloc-

ity required to maintain the moon-tracking configurations, and in some

cases, the time period between transfer opportunities, the most suitable

moon-tracking configuration can be preliminarily determined.

5.1 Polar Inclinations Parameters

For both the single and dual manoeuvre moon-tracking orbits which

utilise the EMMET in a polar orbit about Earth to render its angle of

ascending node stationary, it is necessary that the rate at which the EM-

MET’s argument of perigee precesses relative to Earth is pre-determined.

In the single manoeuvre case, this allows the time period to be determined

for the precession of the argument of perigee through one complete rev-

olution resulting in the re-alignment of the EMMET’s apse line with the

equatorial plane, and this indicates the frequency at which payload ex-

changes can be conducted for a given orbital configuration. In the dual

manoeuvre case, this precessional rate allows the change in argument of

perigee between successive payload exchanges to be determined and al-

lows the required adjustment manoeuvre to be calculated such that the

argument of perigee precesses into the required position for exchanges

to occur at the required instant. The rate at which the EMMET’s ar-

gument of perigee varies, ω̇, is dependent upon the semi-major axis and

eccentricity of the orbit in addition to its orbital inclination and can be

found by means of the following equation [47]:

ω̇ = −
[

3

2

√
µJ2RE

2

(1− e2)2 a7/2

](
5

2
sin2i− 2

)
(5.1)

where Earth’s gravitational parameter is denoted by µ; J2 is Earth’s

second zonal harmonic; RE is Earth’s equatorial radius; e is orbital ec-

centricity; a is the semi-major axis; and orbital inclination is denoted i.

For polar orbits this simplifies to:

ω̇ = −
[

3

4

√
µJ2RE

2

(1− e2)2 a7/2

]
(5.2)
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The two remaining variables in this equation are the semi-major axis and

eccentricity. The semi-major axis [47] of the orbit can be calculated as a

function of the orbital period, T, as follows:

a = −
(
T
√
µ

2π

)2/3

(5.3)

To satisfy the logistical requirements stated in Chapter 2, the EMMET

must arrive at the perigee of its orbit periodically with the arrival of the

Moon at the ascending node of its orbit and this is achieved by arranging

the orbital period of the Moon to be an even integer multiple of the

EMMET’s orbital period which is satisfied by equation (2.1), where m is

the orbital variable. The semi-major axis can therefore be defined as:

a = −
(
Tmoon

√
µ

2πm

)2/3

(5.4)

The eccentricity [47] can be found as a function of the semi-major axis

and the EMMET orbit’s perigee distance as follows:

e = 1− rperigee
a

(5.5)

The rate of change of the argument of perigee can therefore be rep-

resented most simply as a function of the orbital variable m and the

perigee position of the orbit.

To negate any effects of atmospheric drag on the EMMET’s orbit, it

must orbit in the Exosphere region of Earth’s atmosphere, where these

drag effects are considered to be negligible. This region is commonly con-

sidered to begin at an altitude of 600 km but varies due to solar activity

and has been estimated up to an altitude of 1000 km [50]. Considering

this as the most suitable region for the EMMET to orbit and using this

in conjunction with a maximum tether sub-span length of 100 km we

obtain an initial estimate for the EMMET’s central facility perigee al-

titude of 1100 km or a distance of 7478 km from Earth’s centre. Using

this perigee altitude, the rate of regression of the argument of perigee

of the EMMET’s orbit was plotted as a function of the orbital variable

m and this is shown in Figure (5.1). From this it can be seen that this

rate of regression increases with an increasing integer variable and results

from a reduction in the EMMET’s apogee distance which correlates to
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Figure 5.1: Argument of perigee variation with m

an increasing effect of the J2 zonal harmonic on the EMMET’s orbit. To

minimise the time period for the revolution of the argument of perigee

and maximise the frequency of alignment of the EMMET’s apse line with

the equatorial plane to allow more opportunities for payload exchanges

for the single manoeuvre moon-tracking orbit with a polar inclination,

the orbital variable m should be maximised. For the dual manoeuvre

polar inclination case, we require the change in the argument of perigee

to be minimised, and therefore the velocity change for this manoeuvre

is also minimised and this is achieved by minimising the orbital variable

m.

Maintaining our focus on the single manoeuvre configuration in the region

where the orbital variable m is large, the time period taken to re-align

the EMMET’s apse line with Earth’s equatorial plane was plotted as a

function of the Moon’s orbital period about Earth and this is shown in

Figure (5.2). Optimally there would be a one-to-one correspondence for

the period of revolution of the argument of perigee to the orbital period

of the Moon, and this would allow transfers to the Moon’s ascending

node to occur once for every orbital period of the Moon about Earth.

This one-to-one correspondence occurs for a value of the integer variable

of approximately 610 and this corresponds to the EMMET undertaking

610 revolutions of Earth in the time period for the Moon to orbit Earth.

A circular orbit (minimum energy and minimum period path) at the

perigee radius of the EMMET’s central facility has an orbital period

corresponding to an integer variable value of 366 and this corresponds

to the maximum practical value that the orbital variable can take and
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represents the lowest orbital period that the EMMET orbit can have

without traversing a path which enters into the lower atmospheric layers.

It is obvious from these results that this configuration is incapable of

providing a transfer opportunity for every orbit of the Moon about Earth

and at best can provide a transfer opportunity every 5 lunar months

when the EMMET undertakes a circular orbit about Earth. The single

manoeuvre polar moon-tracking orbit will therefore be considered an

inappropriate configuration hereafter.

Having determined the rate at which the EMMET’s argument of

perigee will regress as a function of the Moon’s orbital period when the

EMMET has the dual manoeuvre moon-tracking configuration, the next

issue to consider is the velocity of the EMMET’s upper tip relative to

Earth at the instant of release as this parameter determines the perigee

velocity of the payload as it begins its trans-Luna trajectory. Payload

release is designed to occur when the EMMET’s central facility is at

perigee and the tether is aligned along the local gravity gradient; the

condition under which the orbital and rotational velocities add to impart

the greatest launch velocity to the payload. The maximum achievable

velocity upon release at this instant can be determined as the magnitude

of equation (4.28) when the tether rotation rate is at a maximum:

vu−eq =

√
µ

p
(1 + e) + ω̇ro + L(θ̇ + ψ̇ + ω̇) (5.6)

Any configuration of the EMMET orbit, as the orbital variable is ad-

justed, which does not impart a sufficient velocity for the payload to

reach the boundary of the Lunar Sphere of Influence (LSI), the concep-

Figure 5.2: Argument of perigee re-alignment period
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Figure 5.3: Payload semi-major axis upon release

tual boundary between Earth and the Moon’s dominating gravitational

influences, upon release from the upper tether tip is an inadequate config-

uration and is disregarded. The semi-major axis of the payload’s trajec-

tory upon release from the EMMET’s upper tip can be used to determine

whether or not a sufficient velocity has been imparted and this can be

formulated in terms of the minimum energy, Emin, that the payload must

possess and is found by the following relation:

Emin =
µ

amin
(5.7)

This minimum semi-major axis, amin, can also be found in terms of the

required initial and final distances, r1 and r2, respectively, of the payload

and the magnitude of the chord length, c, connecting these two positions

[44]:

amin =
1

4
(r1 + r2 + c) (5.8)

For this purpose; the minimum suitable configuration equates to a tra-

jectory from perigee at the upper tip distance, to the closest boundary

Figure 5.4: Minimum semi-major axis upon release
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point of the LSI using a maximum true anomaly of 180◦. Any trajectory

which does not have a semi-major axis greater than this is unsuitable.

At this maximum true anomaly of 180◦; the chord length is equal to the

addition of the initial (perigee) and final (apogee) distances of the trajec-

tory [44]. Taking the worst case scenario to ensure that the payload can

reach the Moon at any point throughout its orbital profile, we subtract

the distance of the LSI in the direction of Earth, approximately 52142.75

km [44], from the apogee distance of the Moon, approximately 406731

km [51], to obtain a minimum final distance from Earth of 354588.25 km.

Using this in conjunction with an initial distance of 7578 km (EMMET

perigee distance plus tether sub-span length), the minimum semi-major

axis required is found to be 181083.125 km from equation (5.8). Having

determined the minimum semi-major axis of the payload that is required,

we obtain the semi-major axis of the payload’s trans-Luna transfer tra-

jectory, apayload, from the ’vis-viva’ equation [47] using the distance and

speed of the EMMET’s upper tip at the payload’s point of release:

apayload =
µ

v2 − 2µ
r

(5.9)

The range of obtainable semi-major axes for payloads released from the

upper tip of a tether sub-span composed of Spectra 2000 material and ro-

tating at maximum angular velocity relative to the central facility, found

in equation (4.75), was plotted for EMMET orbits varying as functions

of the orbital variable and this is shown in Figure (5.3). The data was

generated using a payload mass of 500 kg, a uniform tether cross sec-

tional area of 65 mm2, tether sub-span density of 970 kg/m3, maximum

tensile stress of 3.25x109 Pa and a factor of safety of 2. The vertical line

occurring at an orbital variable of 190 in Figure (5.3) and negative semi-

major axis values below this are the result of the payload undertaking

parabolic and hyperbolic trajectories, respectively, at these values and

by reducing tether sub-span rotational rates adequate transfer velocities

can be obtained. The orbital variable at which the minimum semi-major

axis occurs is more easily identified by examining Figure (5.4) and this

can be seen to occur at an orbital variable value of approximately 196.

Any EMMET configuration which has an integer variable greater than

196, when utilising this moon-tracking configuration, is disregarded.

98



5.1.1 Ascending Node Velocity Change

Now that we have determined the orbital variable value above which

the payload released from the upper EMMET tip is no longer able to

reach the boundary of the LSI, we can now determine the change in

velocity required to align the EMMET’s apse line with the predicted

node line of the Moon’s orbit for orbital variables which are sufficient

for lunar transfers. This will give an indication of the magnitude of

the velocity change required to perform the manoeuvre and the orbital

variables which minimise this velocity change. Assuming that the orbital

manoeuvre takes place at the first opportunity within the orbit, occurring

at a true anomaly of 90◦, we obtain the velocity of the EMMET at the

point of manoeuvre within its initial orbit, ~vi1 , by setting the sub-span

length equal to zero in equation (4.25), this equation can be further

simplified by assuming that the ascending node angle is 0◦ from which

we obtain:

~vi1 =
[
−
√

µ
p

+ ω̇ri1 0
√

µ
p
e
]T

(5.10)

At this true anomaly, orbital distance, ri1 , is found to be equal to the

orbital parameter and is obtained from equations (3.31) and (4.8) as:

~ri1 =
[
0 0 h2

µ

]T
(5.11)

The rotation matrix from equation (3.22) which transforms the EM-

MET’s velocity vector from the initial to the final orbit is determined

as:

RK(∆Ω) =


cos(∆Ω) −sin(∆Ω) 0

sin(∆Ω) cos(∆Ω) 0

0 0 1

 (5.12)

According to Roncoli [41], the ascending node of the Moon’s orbit oscil-

lates about an ascending node angle of 0◦ with an amplitude of approxi-

mately 13.5◦ with an 18.6 year period, this results in a maximum angular

variation in the ascending node of 0.22◦(0.00384 radians) for an orbit of

the Moon about Earth with equation (5.12) becoming:

RK(0.00384) =


1 −0.00384 0

0.00384 1 0

0 0 1

 (5.13)
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Figure 5.5: EMMET ascending node adjustment

The equation giving the change in the velocity required for the manoeu-

vre, equation (3.26), can now be written as:

∆~v1 =
[
0 −0.00384

(√
µ
p
− ω̇h2

µ

)
0
]T

(5.14)

As the orbital parameter and specific angular momentum are dependent

upon the semi-major axis and orbital eccentricity which are themselves

dependent upon the orbital variable, the required velocity change of the

EMMET to perform the manoeuvre can be found in terms of the orbital

variable and this is plotted in Figure (5.5). From this the magnitude

of the change in velocity required to realign the ascending node of the

EMMET’s orbit with the the Moon’s predicted ascending node can be

found for a specific value of the orbital variable. It can be noted at

this point that it requires a greater change in velocity to accomplish the

manoeuvre at higher values of the orbital variable, this is a result of the

manoeuvre being performed closer to Earth when the orbital variable is

larger, in addition to orbits with smaller semi-major axes having larger (x,

y) velocity components at a true anomaly of 90◦ than those with larger

semi-major axes which still have a greater proportion of their velocity

vector directed along the equatorial K axis.

5.1.2 Argument of Perigee Velocity Change

The next step is to determine the velocity change required to adjust

the argument of perigee of the EMMET’s orbit, and to begin with the

true anomaly at which the orbital manoeuvre should take place will be

obtained. As noted previously, a more efficient transfer can be had by
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Figure 5.6: EMMET argument of perigee adjustment

performing the manoeuvre close to the apogee of the orbit. At this point

of intersection, the true anomaly of the initial orbit is found from equation

(3.44). The velocity of the EMMET’s central facility at this point can be

found from equation (4.25) and continuing with the assumption that the

initial ascending node angle was zero, and also that the ascending node

manoeuvre precedes the argument of perigee adjustment, the ascending

node angle is now 0.22◦(0.00384 radians). The small angle approximation

is applicable here and in addition to this, there is no loss in the simplifying

assumption that the argument of perigee of the initial orbit is zero degrees

at the instant of manoeuvre because the magnitude of the adjustment

will be the same irrespective of the argument of perigee of the initial

orbit. The velocity of the EMMET’s central facility at the true anomaly

of the manoeuvre, ~vi2 is obtained as:

~vi2 =


(√

µ
p

+ ω̇ri2

)
sin
(

∆ω
2

)
0(√

µ
p
e−

(√
µ
p

+ ω̇ri2

)
cos
(

∆ω
2

))
 (5.15)

The distance of the EMMET’s central facility at the point of manoeuvre

is denoted by ri2 and is obtained from equations (3.31) and (4.24) as:

~ri2 =
h2/µ

1− ecos
(

∆ω
2

) [−cos(∆ω
2

)
0 −sin

(
∆ω
2

)]T
(5.16)

The adjustment to the argument of perigee of the EMMET’s orbit is

defined as the angle through which the argument of perigee of the EM-

MET’s orbit regresses in the time period for an orbit of the Moon about

Earth. By accounting for this regression we can align the argument of
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perigee such that it allows the EMMET to perform catch and throw ma-

noeuvres for every orbit of the Moon about Earth. The required angle

of adjustment can be obtained by multiplying the regression rate of the

EMMET’s central facility, equation (5.2), by the orbital period of the

Moon. We will now obtain the rotation matrix required for the manoeu-

vre. For a polar orbit with small angle assumptions applied, the skew

symmetric matrix of equation (3.49) becomes:

S =


0 0 1

0 0 0

−1 0 0

 (5.17)

This yields the following rotation matrix from equation 3.47:

RK(∆ω) =


cos(∆ω) 0 sin(∆ω)

0 1 0

−sin(∆ω) 0 cos(∆ω)


(5.18)

The change in velocity can be found from equation (3.51) as:

∆~v2 =


−2
(√

µ
p

+ ω̇ri2

)
sin(∆ω

2
) +

√
µ
p
esin(∆ω)

0

−
√

µ
p
e (1− cos(∆ω))

 (5.19)

The velocity change required to perform the manoeuvre, equation (5.19),

varies as a function of the orbital variable and this is plotted in Figure

(5.6). It is clear that a smaller velocity change is required for manoeuvres

which occur close to the apogee of orbits with lower orbital variable values

and thus larger semi-major axes. This is a result of their having smaller

velocities closer to apogee than orbits with smaller semi-major axes, and

this is in addition to the lessened effect of Earth’s oblateness on larger

orbits and a smaller rate of regression of the argument of perigee which

results in a smaller change in the argument of perigee between transfer

opportunities.

Having obtained the magnitude of the velocity changes required to

adjust both the ascending node and argument of perigee of the EMMET’s

orbit when configured in a polar moon-tracking orbit, the total velocity

102



Figure 5.7: Total velocity change for polar configuration

change required to align the EMMET correctly can be obtained as the

sum of these two velocity adjustments. The total velocity change required

can therefore be presented as a function of the orbital variable of the

EMMET’s orbit and this is shown in Figure (5.7). It is evident from this

that the majority of the velocity change required is to align correctly the

freely precessing argument of perigee in this configuration.

5.2 Critical Inclination Parameters

Having obtained the magnitude of the velocity changes required to per-

form the manoeuvres required to configure the EMMET in the dual ma-

noeuvre polar inclination case, our attention now turns to the moon-

tracking configuration which utilises the EMMET with a critical inclina-

tion to render the argument of perigee stationary. At the critical inclina-

tion, the angle of ascending node of the EMMET’s orbit will precess as a

result of the oblateness effects of Earth’s orbit, and a manoeuvre will have

to be undertaken between payload exchange opportunities which takes

into account this precession in addition to accounting for the oscillation

of the Moon’s ascending node about a mean angle of 0◦ to ensure that

the EMMET’s apse line precesses into alignment with the Moon’s node

line at the correct instant to perform payload exchanges. To obtain the

magnitude of the velocity changes required to adjust correctly the EM-

MET’s angle of ascending node first we must obtain the rate at which

the ascending node precesses. As was the case with the precessional rate
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Figure 5.8: Ascending node variation with m

of the EMMET’s argument of perigee, the angle of ascending node’s pre-

cessional rate is dependent upon the semi-major axis and eccentricity

of the orbit, in addition to its orbital inclination, and is therefore ulti-

mately a function of the orbital variable m, assuming that the EMMET’s

perigee altitude remains the same. The rate at which the ascending node

precesses, Ω̇, can be found by the following equation [47]:

Ω̇ = −
[

3

2

√
µJ2RE

2

(1− e2)2 a7/2

]
cosi (5.20)

The orbital inclination in this case is set to a critical inclination of 63.4◦

as we require a prograde orbit for the EMMET. The variation of the

rate of precession of the ascending node was plotted against the varia-

tion in the orbital variable and this is shown in Figure (5.8) and from

this it is evident that this rate is of a comparable magnitude to that

of the freely precessing argument of perigee, shown in Figure (5.8), for

the polar configuration. In addition to this, it is also obvious that the

rate of precession increases with increasing orbital variable and results

from an increasing proximity to Earth as the orbit’s geometry decreases.

Having obtained the precessional rate as the orbital variable is adjusted,

the range of orbital variables which provide sufficient semi-major axis

for the payloads launched from the upper tips can be determined. By

maintaining a minimum semi-major axis of 181083.125 km and a pay-

load perigee distance of 7578 km, the semi-major axis of the payloads at

launch can be determined from equation (5.9) where the magnitude of
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Figure 5.9: Semi-major axis upon release

the upper tip velocity in this case is determined from equation (4.40) as:

v2
u−eq =

(√
µ

p
(1 + e) + L(θ̇ + ψ̇) + Ω̇(ro + L)

)2

(5.21)

− 2Ω̇(ro + L)

(√
µ

p
(1 + e) + L(θ̇ + ψ̇)

)
(1− cosic)

Where ic is defined as the critical inclination of the EMMET’s orbit.

The range of obtainable semi-major axes for payloads released from the

upper tip of a tether sub-span composed of Spectra 2000 material with

the material characteristics stated in section 5.1 and rotating at maxi-

mum angular velocity relative to the central facility, found in equation

(4.77), was plotted for EMMET orbits varying as functions of the orbital

variable, and this is shown in Figure (5.9). As expected, a plot identical

to Figure (5.3) was produced and the orbital variable at which the mini-

mum semi-major axis for payload transfers to the Moon was again found

to occur at m equal to 196.

Using this moon-tracking configuration, the only orbital adjustment

necessary to configure the EMMET is the adjustment of the EMMET’s

ascending node such that it regresses into alignment with the Moon’s

node line at the instant of launch. As the Moon’s ascending node po-

sition varies by 0.22◦(0.00384 radians) relative to the equatorial frame

for every revolution about Earth, as calculated in sub-section 5.1.2, the

maximum change in ascending node angle of the EMMET’s orbit can

be expected when this variation in the Moon’s ascending node is oppo-

site in direction to the precession of the EMMET’s ascending node. The

worst case ascending node angle change will be the sum of the Moon’s

own ascending node variation and the variation in the EMMET’s angle
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of ascending node in the time period of a single orbit of the Moon about

Earth. To calculate the change in velocity required to configure the EM-

MET’s orbit we must first determine the true anomaly in its current

orbit at which the manoeuvre must be undertaken. Assuming an initial

EMMET ascending node angle of 0◦, for simplicity, and an argument

of perigee set to 0◦, the true anomaly of intersection is obtained from

equation (3.17) as:

θi = tan−1

(
−tan

(
∆Ω

2

)
secic

)
(5.22)

The velocity of the EMMET’s central facility at this true anomaly can be

obtained by setting the tether sub-span length equal to zero in equation

(4.34) and is obtained as:

~vi =


−
(√

µ
p

+ Ω̇ricosic

)
sinθi√

µ
p
(e+ cosθi)cosic + Ω̇ricosθi√

µ
p
(e+ cosθi)sinic

 (5.23)

Where the central facility distance, ri, is obtained from the equation of

an elliptical orbit:

ri =
h2

µ(1 + ecosθi)
(5.24)

The change in velocity required to adjust the ascending node of the EM-

MET’s orbit can be expressed solely in terms of the velocity of the initial

orbit and the rotation matrix as shown in equation (3.26). As the rotation

axis for the adjustments to the ascending node angle of the EMMET’s

orbit coincides with Earth’s polar axis, the required rotation matrix for

the application of the Rodriguez formula can be expressed identically to

that obtained in equation (5.12). The change in velocity required to per-

form the ascending node adjustment when the EMMET is in a critically

inclined orbit is therefore:

∆~v =


α

β

0

 (5.25)
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Figure 5.10: Velocity change for critical configuration

with

α = −
(√

µ

p
+ Ω̇ricosic

)
sinθi(cos(∆Ω)− 1)

−
(√

µ

p
(e+ cosθi)cosic + Ω̇ricosθi

)
sin(∆Ω)

β = −
(√

µ

p
+ Ω̇ricosic

)
sinθisin(∆Ω)

+

(√
µ

p
(e+ cosθi)cosic + Ω̇ricosθi

)
(cos(∆Ω)− 1)

Having obtained an expression for the change in velocity required to

adjust the ascending node of the EMMET’s orbit when it has a critical

inclination, this change in velocity was plotted as a function of the orbital

variable and this is shown in Figure (5.10). Again the velocity increases as

the orbital variable increases and results from the EMMET’s increasing

proximity to Earth as its orbital geometry decreases. In this case, the

change in velocity required is smaller than the freely precessing argument

of perigee in the polar inclination case and results from the ascending

node rate being smaller in this case than the rate of the argument of

perigee in the polar inclination case.

5.3 Tether Efficiency and Performance

Having defined the EMMET’s parameters relative to Earth it is useful

to determine the most efficient configuration to conduct payload trans-

fers and this is dependent upon the semi-major axis of the EMMET’s

orbit, tether sub-span length and the rotational rate of the sub-spans
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themselves. By determining the dependency of the payload’s launch

configuration on each of these variables, the most efficient configuration

that provides the payload with the minimum semi-major axis required to

reach the Moon’s LSI at all times in its orbital profile can be determined.

Previous studies have been conducted on the performance and effiency

of symmetrically laden hanging, librating and motorised tethers by Zei-

gler and Cartmell [22], [49] which were based upon the altitude gained

and lost by payloads released from the upper and lower tip positions of

a motorised tether system with varying tether sub-span lengths orbiting

Earth in circular orbits only. As the designs presented here require the

EMMET to orbit Earth in elliptical orbits so that the payload released

from the upper tip has sufficient velocity to reach the Moon, the per-

formance and efficiency indexes presented by Zeigler and Cartmell [22],

[49] have been modified to account for the launch velocity’s dependency

upon the perigee velocity of the central facility’s orbit in addition to the

tether sub-span length and rotational rates. To accomplish this the fo-

cus has switched from payload altitude gain and loss half an orbit after

release from the upper and lower tips, respectively, of an Earth orbiting

MMET to a more general gain or loss of specific orbital energy, which is

a constant of the payload’s subsequent trajectory, and this gives a more

satisfactory measure of the performance and efficiency when variations

in the EMMET’s semi-major axis, tether sub-span length and rotational

rates are taken into account. Similarly to Zeigler and Cartmell’s own

formulation [22], [49]; the oblateness effects of Earth are ignored for the

moment; the tether’s sub-spans are assumed to lie within the orbital

plane; the tether sub-spans are assumed to be of uniform cross sectional

area and density; and the tethers are rigid and of a fixed length. How-

ever, in this case, the analysis will only be conducted for a tether at the

perigee of its orbit about Earth with the sub-spans aligned along the local

gravity gradient, and this is consistent with the optimum configuration

for a trans-luna payload’s launch position. We will begin with an assess-

ment of the payload’s gain or loss of specific energy when the semi-major

axis or the tether sub-span lengths are adjusted for the hanging tether

case, with the aim of finding the nature of the relationship between the
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change in energy and the adjustment of the variables, and from this the

EMMET’s performance and efficiency in terms of this energy change will

be obtained. The performance and efficiency of a motorised tether will

then be obtained and we will conclude the current chapter with a com-

parison of the performance and efficiency of the hanging and motorised

cases to those obtained in previous literature.

5.3.1 Hanging Tether Parameters

To generalise the performance and efficiency of an MMET in an elliptical

orbit about Earth with payloads of equal mass attached symmetrically to

the upper and lower tips such that variations in tether sub-span length

and semi-major axis can be accounted for, the resultant configuration

of the payloads at their instant of release must be expressed in terms

of their resultant gain or loss of their energy per unit mass (or specific

energy) relative to Earth. In the preceding literature with the central

facility in a circular orbit [49], the resultant gain or loss in altitude was

sufficient to determine performance and efficiency. However, when the

central facility orbits Earth with an elliptical geometry, variation in its

semi-major axis must also be accounted for. Firstly, to establish the

nature of the relationship between the gain and loss of specific energy as

the tether sub-span length is varied, the semi-major axis of the EMMET

is defined as identical to that of equation (5.9) and is set to a constant

value by setting the orbital variable m to a constant. The specific energy

of the EMMET’s orbit, EEM is found by the following equation:

EEM = − µE
aEM

(5.26)

where µE is Earth’s gravitational parameter and aEM is the EMMET’s

semi-major axis. The specific energy of the payloads released from the

EMMET’s upper and lower tips, denoted by Eu and El, respectively, are

found from an equation of identical form to equation (5.26), with the

semi-major axis in each case obtained from equation (5.9). At perigee,

the radial distance in equation (5.9) is simply the addition of the tether

sub-span length to the EMMET’s perigee distance for the upper payload

case and for the lower payload case it is simply the subtraction of the
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sub-span length from the perigee distance. Ignoring Earth’s oblateness

effects for the moment, the velocity of the upper payload at the instant

of release, vu, in equation (5.9) is the magnitude of equation (4.16) with

the true anomaly set to zero which results in:

vu =

√
µ

p
(1 + e) + L(θ̇ + ψ̇) (5.27)

The lower payload’s velocity at the point of release, vl, is obtained as:

vl =

√
µ

p
(1 + e)− L(θ̇ + ψ̇) (5.28)

For a hanging tether the sub-span’s angular rate ψ̇ is zero. The energy

gain of the payload, ∆Eu, as a result of its release from the EMMET’s

upper tip can be simply expressed as:

∆Eu = Eu − EEM (5.29)

The loss of specific energy, ∆El, for a payload released from the EM-

MET’s lower tip can be expressed as:

∆El = El − EEM (5.30)

A plot was produced of the gain and loss of the specific energy of the

payloads as a result of release from the tips of the EMMET using an

EMMET perigee distance of 7478 km, an orbital variable of 150, corre-

sponding to a semi-major axis of 13573.1 km, and varying the sub-span

length between 0 and 200 km, which are shown in Figures (5.11) and

(5.12), respectively. It is clear that the specific energy of the payloads

varies linearly with the tether sub-span length, and the gain in energy

of a payload at some arbitrary sub-span length above the central facility

corresponds to a payload with an identical loss in specific energy at the

same sub-span length below the central facility. It can be concluded from

this that whatever the energy that is gained by the upper payload is also

lost by the lower one, resulting in the energy of the entire EMMET sys-

tem remaining constant. The performance of a MMET was previously

defined as the gain or loss of distance experienced by the payload half an

orbit after release from the MMET [22], [49], as specific energy is con-

stant at all points in the payload’s orbit; we can define performance as
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Figure 5.11: Upper payload energy gain with length

Figure 5.12: Lower payload energy loss with length

the gain or loss in energy of the payload at the instant of release. Using

this definition, it can be seen that there is a larger gain in energy of the

upper payload when larger tether sub-spans are used, additionally, there

is a larger loss in energy in this case too. It can be concluded from this

that longer tether sub-spans have better performance characteristics for

the respective gain and loss of energy. Putting this into terms of pay-

load raising and lowering; the greater the energy the payload has upon

release from the upper tip results in it having a larger semi-major, axis

and consequently a larger apogee distance. It is therefore performing

better at payload raising; the greater the energy loss of the payload at

release from the lower tip, the lower its semi-major axis will be resulting

in increasingly closer perigee distances to Earth and therefore performs

better at payload lowering.

Tether efficiency was defined by Zeigler and Cartmell [22], [49] as the

ratio of the altitude gain or loss to the tether’s sub-span length. Here

we will define the efficiency in terms of the ratio of the specific energy of
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Figure 5.13: Upper payload efficiency with length

Figure 5.14: Lower payload efficiency with length

the payload after release to the energy of the EMMET’s orbit, and this

can be interpreted as the ratio of the output energy to the input energy.

The efficiency is derived from equation (5.29) or (5.30) and is defined as:

efficiency = 1 +
∆E

EEM
(5.31)

Plotting the efficiency for the energy imparted and detracted from the

upper and lower payloads as the tether sub-span is varied allows us to

establish the dependency of this energy change on sub-span length, and

these are shown for the upper and lower payloads in Figures (5.13) and

(5.14), respectively. In the field of orbital mechanics, the energy of a

body in orbit about a central mass is negative which corresponds to the

negative potential well model applied in these cases. The potential en-

ergy of the mass is taken to increase in energy from -∞ to its current

location with the total required energy to reach the boundary of the

body’s gravitational influence equal to zero, and actually to escape the

gravity field the energy must exceed this and become positive. Applying
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this model to the specific energy of the payloads upon release, the EM-

MET’s efficiency actually increases as the ratio of the output energy to

the input energy decreases because this corresponds to the payload upon

release increasing in the positive direction towards zero from the initial

negative energy of the EMMET in its orbit about Earth. We will there-

fore define a more efficient system for increasing payload energy as one

which gives increasingly smaller efficiency ratios, as defined in equation

(5.31). Furthermore, we will define a more efficient system for decreasing

payload energy as one which gives increasingly larger efficiency ratios.

Using this definition, it can be seen that the efficiency of the upper pay-

load’s energy gain increases with increasing tether sub-span length for

the upper payload, correspondingly, efficiency increases with increasing

sub-span length for the lower payload. It is obvious from this that the

most efficient configuration for payload altitude gain or loss is when the

tether sub-span length is maximised. Physically, this can be interpreted

as the upper payload gaining an increasingly larger velocity relative to the

velocity required to remain on the same trajectory after release and sim-

ilarly for the lower payload; this loses an increasingly larger proportion

of the velocity required to remain on the same trajectory after release.

In both cases, the energy input is simply the energy required to place the

EMMET’s central facility in the correct orbit with the resultant energy

gain and loss of the upper and lower payloads a result of their position

relative to Earth and the central facility, in addition to the kinetic energy

of the central facility.

To establish the relationship between the variation in the semi-major

axis of the EMMET’s orbit and the corresponding change in specific en-

ergy, an identical method used for the variation in the sub-span length

was utilised but in this case the sub-span length was set to 100 km and

the orbital variable was varied between 100 and 366, the orbital harmonic

corresponding to a circular orbit, in order to adjust the semi-major axis

of the orbit. Plots of the upper and lower payloads energy gain and loss

are shown in Figures (5.15) and (5.16), respectively. In this case, there is

an almost linear relationship between the change in the orbital variable

m, corresponding to a change in the semi-major axis of the EMMET,
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Figure 5.15: Upper payload energy gain with semi-major axis

Figure 5.16: Lower payload energy loss with semi-major axis

Figure 5.17: Upper payload efficiency with semi-major axis

and the change in specific energy of the payloads upon release. The spe-

cific energy of the upper payload is found to decrease as the semi-major

axis of the EMMET’s orbit decreases with increasing orbital variable m.

This can be interpreted very simply as the energy of the upper payload

decreasing as the input energy of the EMMET’s orbit decreases as a di-

rect result of a decrease in the semi-major axis of the EMMET’s orbit.
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Figure 5.18: Lower payload efficiency with semi-major axis

Similarly, the energy of the lower payload increases with a decreasing

semi-major axis and increasing orbital variable m and corresponds to

less energy being detracted from the lower payload as the semi-major axis

and thus the orbital energy supplied by the EMMET are decreased. As

was the case with variation in tether sub-span length, the specific energy

gained by the upper payload at a certain sub-span length corresponds to

the energy lost by the lower payload at this length. Defining the perfor-

mance in a similar manner to that of the tether sub-span variation case,

the performance of the EMMET in imparting or detracting energy from

the upper and lower payloads decreases with decreasing semi major axis

and corresponds to an increasing orbital variable m and a decrease in the

energy input from the EMMET’s orbit. It can therefore be concluded

that decreasing the semi-major axis results in poorer performance of the

EMMET when considering payload energy gain or loss, or correspond-

ingly payload raising or lowering. Tether efficiency was obtained for the

energy imparted and detracted from the upper and lower payloads as the

EMMET’s semi-major axis was varied with the tether sub-span lengths

remaining constant, and these are shown for the upper and lower pay-

loads in Figures (5.17) and (5.18), respectively. By again defining a more

efficient EMMET for imparting energy as one which produces the small-

est ratio between input and output energy, corresponding to a positive

increase in energy towards zero, it can be seen that the system becomes

less efficient at imparting energy to the upper payload with increasing

orbital variable which corresponds to a decreasing semi-major axis, cor-
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Figure 5.19: Upper energy gain with semi-major axis and length

Figure 5.20: Lower energy loss with semi-major axis and length

Figure 5.21: Upper efficiency with semi-major axis and length

respondingly the system becomes less efficient at extracting energy from

the lower payload with decreasing semi-major axis for the lower payload.

Having obtained data for the variation in the performance and efficiency

when only the tether sub-spans or semi-major axis of the central facility

was varied, plots were obtained for the performance and efficiency when

both of these were changed. Performance is shown for the upper and

lower payloads in Figures (5.19) and (5.20), respectively, and efficiency

is shown in Figures (5.21) and (5.22). From the plots on performance

for the upper and lower payloads, Figures (5.19) and (5.20), respectively,
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Figure 5.22: Lower efficiency with semi-major axis and length

the best performing configuration for imparting energy to the payload

is one which has the largest semi-major axis and tether sub-span length

additionally, this also corresponds to the best performing configuration

for detracting energy from the lower payload. It can therefore be con-

cluded that energy gain and loss is a direct result of the orbital energy

imparted to the EMMET, and the separation between the payloads and

central facility at the instant of release. Furthermore, by examining the

plots for the energy efficiency when both the semi-major axis and tether

sub-span lengths are varied, Figures (5.21) and (5.22), it is obvious that

the EMMET is most efficient for both payload raising and lowering at the

configuration at which the best performance is obtained for energy gain

and loss, therefore no distinction can be made between the measurement

of performance and efficiency and either one or the other can be utilised.

Comparing the change in energy for both the upper and lower pay-

loads when both the tether sub-span length and semi-major axis are var-

ied seems to suggest that the adjustment to tether sub-span length has a

much greater influence on the addition or subtraction of payload energy

than any variations to the semi-major axis which are made. To compare

this correctly, we calculate the change in payload specific energy between

a sub-span length of 50 km and 100 km as 0.9 km2s−2 from Figure (5.11)

and we also calculate the change between an initial semi-major axis of

136233.1 km and 13573.1 km and orbital variable values of 149.063 and

150 for which we obtain 0.062 km2s−2. The change in energy as a func-

tion of tether sub-span length is a factor of 10 greater than the energy

change resulting from the corresponding change in semi-major axis.
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5.3.2 Motorised Tether Parameters

Having defined the performance and efficiency of a hanging tether when

variations in tether sub-span length and semi-major axis are made, we

will now obtain data on the performance and efficiency of the EMMET

for imparting and subtracting energy when the EMMET is motorised and

the sub-spans are rotating relative to the central facility. Once again the

energy of the payloads at their instant of release are determined using

an equation identical to equation (5.26), with the upper tip position at

perigee again denoted as the EMMET’s perigee distance plus sub-span

length L and the lower position as the EMMET’s perigee position minus

sub-span length L. The velocity of the upper and lower tips are again

obtained using equations (5.27) and (5.28) and in this case the angular

rate ψ̇ is non-zero and its maximum value is dependent upon sub-span

length and is obtained from equation (4.75), by setting the secular rates

equal to zero, as:

ψ̇max =√√√√√
((

σmax

SF

)
A− GME

r2
0

(
(2mp +mT )

(
L
r0

)
+
(
L
r0

)2

(3mp +mT )

))
L
(
mp + 1

2
mT

) − θ̇

(5.32)

Defining the specific kinetic energy, KEspecific, of rotation of the sub-

spans as:

KEspecific =
1

2
L2ψ̇2 (5.33)

The change in kinetic energy of either payload as a result of the rotation

of the sub-spans was plotted as a function of tether sub-span length for

the maximum rotational rate and using a semi-major axis of 13573.1 km,

the results are shown in Figure (5.23). It can be seen that the maximum

gain in kinetic energy as a function of tether sub-span length and resulting

from the tether rotating at the maximum rate which it can comfortably

withstand at this length occurs for a tether sub-span length of 100km

and for values close to this. Having determined that the payload gains

most kinetic energy when rotating at maximum angular velocity with a

sub-span of 100 km and that the effect of altering the semi-major axis
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Figure 5.23: Change in payload kinetic energy

of the EMMET’s orbit is at least a factor of 10 smaller than altering the

sub-span length, our focus will turn the performance and efficiency of

the tether when taking into account the variation in sub-span rotational

rate. To achieve this, modifications to our definitions of performance and

efficiency must be made to account for the energy put into the system to

rotate the sub-spans. We therefore re-define performance of the upper

and lower sub-spans to account for this additional kinetic energy, as:

∆E = E −
(
EEM +

1

2
ψ̇2L2

)
(5.34)

The performance of the EMMET can be similarly re-defined as:

efficiency = 1 +
∆E(

EEM + 1
2
ψ̇2L2

) (5.35)

The energy gain and loss of the upper and lower payloads was plotted

for variations in the rotational rate of the tether sub-spans from zero to

their maximum rates using a sub-span length of 100 km and a semi-major

axis of 13573.1 km, and the performance of the EMMET is shown for

the upper and lower payloads in Figures (5.24) and (5.25), respectively.

Comparing the performance with that of the hanging tether at the same

tether length and semi-major axis, it can be seen that the motorised

tether gives the upper payload an energy increase of 10 times that of the

hanging tether with the same sub-span length and semi-major axis when

rotating at maximum rate, and the lower payload receives a correspond-

ing energy loss in comparison with the hanging tether case. The efficiency

of the motorised EMMET was also obtained. By retaining our definition

of efficiency for upper payload energy gain, the system’s efficiency is in-
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Figure 5.24: Upper payload energy gain with rotation rate

Figure 5.25: Lower payload energy loss with rotation rate

Figure 5.26: Upper payload energy efficiency with rotation rate

Figure 5.27: Lower payload energy efficiency with rotation rate
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creasing with increasing angular rate, furthermore, the point at which

the data plot crosses the x-axis corresponds to the payload having zero

energy and being able to reach the boundary of Earth’s gravitational

influence. The data also shows that this configuration is also capable of

providing enough energy to escape Earth’s gravity, and corresponds to

negative efficiency in the plot. Continuing with the definition of efficiency

for detracting energy from the lower payload, the efficiency of the system

also increases with increasing angular rate. Therefore, the performance

and efficiency also correspond for the motorised tether case.

5.4 Conclusions

Using the equations for the rate of change of the argument of perigee

it was found that a single manoeuvre polar moon-tracking configura-

tion would give insufficient re-alignment frequency with the fundamental

plane of the equatorial frame. This configuration was subsequently dis-

regarded as a viable solution. Additionally, by utilising the maximum

angular speeds which the tether sub-spans can withstand in this configu-

ration, derived in Chapter 4, in conjunction with the minimum payload

semi-major axis upon release which is required to reach the Moon: it

was found that the maximum orbital harmonic between the EMMET

and Moon sufficient for lunar transfers occurred at m equal to 196. The

maximum angle through which the EMMET orbit’s velocity vector must

be rotated to adjust the apse line of the EMMET’s polar orbit was de-

termined by calculating the rate at which the Moon’s ascending node

oscillates about the equatorial frame’s x axis. The velocity change re-

quired to perform this manoeuvre as a function of harmonic m was then

determined. These adjustments were found to increase with increasing

orbital harmonic and resulted from an increased proximity of the EM-

MET to the Earth resulting in increased precessional rate. Furthermore,

the magnitude of the velocity change required to adjust the freely pre-

cessing argument of perigee of the EMMET into alignment with the

fundamental plane of the equatorial frame was obtained as a function of

harmonic m thus allowing the optimum configuration to perform these
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velocity changes to be determined. It was noted that the adjustments

to the freely precessing argument of perigee was much more significant

than those required to re-align the EMMET’s apse line with the Moon’s

node line.

Again, the semi-major axes of the payloads upon release for EM-

MET’s in critically inclined orbits was determined thus allowing the max-

imum value of harmonic m to be determined. This was again found to

occur at m equal to 196. By determining the rate at which the freely

precessing angle of ascending node varies for critically inclined orbits the

change in velocity required to transfer from one orbit to another was de-

termined and from this the optimum configuration could be obtained. It

was found that the change in velocity required to adjust the freely pre-

cessing angle of ascending node in this case also increased with increasing

orbital harmonic again as a result of increasing proximity to Earth, re-

sulting in increased precessional rate in this case. However, this velocity

change was found to be smaller in comparison to that required to adjust

the freely precessing argument of perigee.

Performance and efficiency indexes have been derived for both the

hanging and motorised tether cases which are based upon the gain or loss

of the specific energy of a payload at the instant of release. It was found

that an increase in tether sub-span length improved both the performance

and efficiency of the system for upper payload energy gain and lower

payload energy loss in comparison with alterations to the semi-major

axis of the system. An increase in the semi-major axis of the system

was also found to improve the performance of the tether for both energy

loss or gain as a result of this coinciding with an increase in orbital

energy for the system. A significant result was found when numerical

analysis of the motorised tether system was undertaken which showed

that the maximum increase in the kinetic energy of a payload at the

tip of sub-span rotating at maximum angular velocity occurred on a

small plateau centred at a sub-span length of 100 km. The motorised

tether system performed ten times better than the hanging tether case

in imparting energy to the upper payload and detracting energy from the

lower payload.
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6. Circumlunar Design

The following chapter will begin with an outline of the procedure used

to configure a circumlunar trajectory with the outbound payload from

Earth launched from the upper tip of the EMMET and captured by the

upper tip of the Lunavator; the return payload, after a logistical delay,

is launched on a trajectory to Earth from the upper tip of the Lunavator

and is captured at Earth by the upper tip of the EMMET. This proce-

dure was very much influenced by the procedure outlined by Battin [44]

and though dissimilar in many ways it could not exist without it. The

main differences between this method, Battin’s or any other method is

that this procedure is designed to allow a circumlunar trajectory to be

arranged which is consistent with the logistical framework required for

a continuous payload exchange defined in Chapter 2. Unlike previous

methods, the point of in and outbound payload perigee positions can-

not be freely chosen nor can the perilune positions of the payloads at

the Moon be freely chosen. Furthermore, times of flight between these

positions are restricted by the system’s logistics. Having given our out-

line, a description of the mechanisation of the procedure is given as well

as a detailed account of how the trajectories between the MMETs were

constructed with the aim of satisfying the logistical requirements of the

system’s design.

6.1 Design Outline

To establish a circumlunar trajectory in order to conduct payload ex-

changes between the EMMET and Lunavator when the Moon is at the

ascending or descending node of its orbit about Earth; the initial step

in the procedure is to establish a patched conic approximation for the

motions of the payloads relative to Earth and the Moon. In this chapter

focus will remain with the ascending node case. The patched conic ap-

proximation does not give a precise reference orbit [44] but allows us to
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explore the initial and final conditions of the payload’s motion about the

Earth and Moon when variations to the trajectories between the MMETs

are made. According to Battin [44], when a precise orbit is obtained

based on the patched conic approximation, certain quantities such as the

time of flight, as well as the launch and return perigees, are invariant.

The method utilised here consists of configuring three conics, the first is

the hyperbolic trajectory about the Moon of the payload, or in this case

payloads, beginning at the payload’s entry point to the Moon’s gravita-

tional influence, termed Lunar Sphere of Influence (LSI), and terminating

at the exit point of the hyperbola from the LSI. The second and third

conics to be configured are the elliptical orbits about the Earth which

connect the LSI entry and exit points to the launch and return perigee

positions, respectively; it is useful in reducing any velocity mismatches if

these elliptical transfer arcs are symmetrical portions of the same ellip-

tical trajectory resulting in coincident perigee positions. Although the

ellipses about Earth and the hyperbola coincide at the entry and exit

points to the LSI their velocities at these points relative to the Moon

or Earth do not necessarily coincide, however by making small adjust-

ments to these trajectories the velocities at the junction points can be

matched and subsequently a circumlunar trajectory can be established.

To achieve our overall aims, we treat the payload travelling to the Moon,

which we term trans-Luna, and the payload traveling to Earth, termed

trans-Earth, as a single payload and establish a patched conic approxima-

tion for the circumlunar trajectory which incorporates a short delay when

the payload reaches perilune corresponding to the waiting time logistical

requirement outlined in Chapter 2, and the transfer times for these mo-

tions must also satisfy the logistical requirements also described in that

chapter. Furthermore, by configuring the EMMET’s and Lunavator’s

upper tips to coincide with the payload’s perigee position and velocity

and perilune position and velocity, respectively; the required configura-

tions for the MMETs to perform payload launch and capture operations

can be established whilst minimising any velocity mismatches at these

points. Once a circumlunar trajectory has been established, the magni-

tude of the change in velocity required to correct for any irreconcilable
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mismatches over the course of the trajectory design can be established.

Having described the general method for a patched conic approximation,

we will now outline the method used to establish the circumlunar tra-

jectory which will be utilised for a continuous payload exchange between

the EMMET and Lunavator.

6.1.1 Payload Exchange Trajectory Design

Firstly, a time period for transfer operations to begin is chosen and we

obtain the configuration of the Moon at this instant, from this the Moon’s

orbital elements are obtained and the time to its next occurrence at its

ascending node is established. In addition to this, we configure the EM-

MET’s ascending node to be 180◦ out of phase with the Moon’s ascend-

ing node at this time. Now we begin the construction of the circumlunar

trajectory for the payload exchange method and establish an initial ap-

proximation for the single hyperbola about the Moon corresponding to

the motion of both the trans-Earth and trans-Luna payloads within the

LSI. A single hyperbola is constructed between the LSI entry and exit

positions and this allows the same upper tip position and velocity of the

Lunavator to be matched to the perilune position and velocity of both

payloads thereby reducing any velocity mismatches at this point. The

time of flight for the hyperbola is simply the time taken for a single pay-

load to travel between the LSI entry and exit points with the logistical

waiting time ignored for the moment. By adjusting the LSI entry and

exit points, relative to the Moon, a sufficient perilune position can be

obtained which is generally within 200-300km of the Moon’s surface. At

this point, the upper and lower tip velocities of the Lunavator can be

calculated and this determines whether a satisfactory perilune position

and velocity has been obtained. By maintaining the time of flight of this

hyperbola but now including the waiting time; the orbital elements of

the trajectory at LSI entry and exit relative to Earth are obtained, and

the payload’s inclinations are matched to one another and the inclination

of the EMMET’s orbit by making small adjustments to the entry time

to LSI and adjustments to the exit time through variation of the wait-

ing time at perilune. Particular attention is also paid to the argument
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of perigee of the payloads relative to Earth and these should match as

closely as possible the argument of perigee of the EMMET to reduce any

mismatches between the velocities of the elliptical trajectories between

the EMMET and LSI, at the instant of LSI contact, and the payload

velocities at LSI entry and exit required for the configured hyperbola.

Attention is also paid to the eccentricity of these payloads relative to

Earth to ensure that they are actually undertaking elliptical trajecto-

ries before and after undertaking the hyperbola about the Moon, and do

not have sufficient velocities to undertake hyperbolic trajectories about

Earth.

Having obtained a sufficient hyperbola about the Moon, the elliptical

trajectories between the EMMET’s perigee position and the LSI entry

point, in addition to the LSI exit point and EMMET perigee position,

are then established. By setting an initial time of flight between these

points, the orbital inclination, ascending node angle and argument of

perigee of the trajectories can be determined. By adjusting the times of

entry and exit to the LSI, the inclination and angle of ascending node of

these trajectories can be varied. Although this affects the inclination of

the required hyperbola relative to Earth this is more dependent upon the

actual entry and exit positions than the elliptical arcs are. By matching

the inclinations of the trans-Luna and trans-Earth elliptic arcs to one

another, in addition to matching these to the EMMET’s inclination,

velocity changes at payload capture and launch resulting from differences

in orbital inclination are negated. At this point the LSI entry and exit

position and time are adjusted by small amounts until the inclinations

of the inbound and outbound trajectories from LSI relative to Earth

match those of the elliptic arcs. Furthermore, by matching the angle

of ascending node of the elliptical transfer arcs to that of the EMMET,

the apse lines of the transfer arcs and the EMMET’s orbit coincide and

negate any velocity differences occurring as a result of a divergence in

ascending node angle. Once again, LSI entry and exit positions and

times are adjusted until the inclination of the LSI motion relative to

Earth matches that of the elliptic arcs, and in addition to the alignment

of their ascending nodes with that of the EMMET’s orbit this results in
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any velocity differences, arising between the LSI entry and exit velocity

and the elliptical arcs at LSI contact due to inclination or ascending node

discrepancies, being minimised. Finally, by adjusting the time of flight

between LSI and perigee, and vice-versa, the argument of perigee of the

elliptical transfer arcs can be reduced to as close to zero as possible whilst

obeying the logistical requirements imposed on the time of flight, and

this minimises any velocity change required as a result of a discrepancy

between the argument of perigee of the transfer arcs and that of the

EMMET. Small variations in the time of flight for both the elliptic arcs

and payload’s hyperbola about the Moon allows the argument of perigee

of the trajectories to be matched at LSI contact, however when obeying

such strict logistical requirements this is not always possible and some

velocity change is expected at these points. The final step is to arrange

the rotational rate of the EMMET’s tether sub-spans such that its upper

tip closely matches the perigee velocity of the trans-Luna and trans-Earth

transfer arcs.

An identical procedure is carried out for the configuration of the Moon

at its next arrival at the ascending node of its orbit with the adjustments

to the Lunavator’s argument of perilune, orbital inclination and ascend-

ing node being made to accommodate the transfer procedure. In the

Lunavator’s case the only invariants are the perilune altitude of the cen-

tral facility and the tether sub-span lengths.

6.2 Mechanisation of the Design Procedure

Having outlined the general procedure utilised to configure the circum-

lunar trajectories of the transferred payloads such that the logistical re-

quirements of the system are adhered to and the velocity changes required

to perform the payload exchanges are minimised, our attention now turns

to the means by which we calculate and configure these trajectories.

6.2.1 Input Variables and Time

The first step in the mechanisation procedure is the input of the gravita-

tional parameters of Earth and the Moon, µe and µm; the magnitude of
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their oblateness parameters, J2 and J2m; their physical radii, RE and RM ;

and their mass, ME and MM ; in addition to this the orbital period of the

Moon, Tmoon, is also obtained. To allow the configuration of the Moon

to be determined, an arbitrary date and time is selected for the opera-

tional procedures to be undertaken, and these are implemented into the

on-line solar system data and ephemeris calculator Horizon [52] which

is provided by NASA’s Jet Propulsion Laboratory (JPL). As we assume

that both the EMMET and Lunavator are both composed of SPECTRA

2000 material of uniform density and cross sectional area, we implement

in the material properties (A, σ, ρ) for the tether sub-spans in addition to

a factor of safety (SF ). Having obtained these constants we now describe

the means by which we determine the configuration of the Moon at the

time period of operations.

6.2.2 Moon Configuration at Input Time

The configuration of the Moon at its next arrival at its ascending node af-

ter some arbitrary time selected to conduct operations can be determined

using a combination of methods, firstly, the JPL Horizon [52] system is

used to obtain the Moon’s velocity and position vector at the system

input time. This system is the most accurate available and numerically

integrates the equations of motion of the Moon forward in time to our

selected time. Taking these position and velocity vectors, the orbital el-

ements of the Moon at this instant are determined using the state vector

of the system [47]. This state vector is a vector of the six classical orbital

elements (h, i, Ω, e, ω, θ) which describe the configuration of an orbiting

body from its position and velocity relative to the attracting body at

that instant. The state vector is derived from the position and velocity

vectors using the following method as described by Curtis [47]. Firstly,

the magnitude of the velocity vector directed radially is determined as:

vr =
~r.~v

r
(6.1)

The vector of specific angular momentum (the angular momentum per

unit mass of the body) of the orbit is directed perpendicularly to the

orbital plane and is determined as the vector cross product between the
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position and velocity vectors of the Moon at the system’s input time:

~h = ~r × ~v (6.2)

The magnitude of the specific angular momentum vector which forms

part of the state vector is determined from the dot product of the spe-

cific angular momentum vector. The orbital inclination of the Moon

about Earth is defined as the angle between the Moon’s specific angular

momentum vector and the unit vector K directed along Earth’s equa-

torial z-axis and is obtained from the dot product of these two vectors

as:

i = cos−1

(
hz
h

)
(6.3)

where hz is the magnitude of the specific angular momentum vector pro-

jected along the equatorial z-axis. The vector from the centre of Earth

to the point at which the Moon’s orbit crosses Earth’s equatorial plane is

termed the node line and this is determined as the vector cross product

between the unit vector K directed along Earth’s equatorial z-axis and

the Moon’s specific angular momentum vector as:

~N = ~K × ~h (6.4)

The angle of ascending node of the Moon’s orbit is then defined as the

angle between the unit vector I directed along the x-axis of the Earth’s

equatorial frame and the Moon’s node line vector and is obtained by

application of the vector dot product as:

Ω = cos−1

(
Nx

N

)
(6.5)

where Nx is the magnitude of the node line projected on to the equatorial

x-axis. A quadrant ambiguity arising from this equation can be remedied

by taking equation (6.5) exactly when the component Ny is positive and

360◦ minus equation (6.5) when Ny is negative. The eccentricity of the

Moon’s orbit about Earth is a measure of the deviation of its orbital

geometry from that of a true circle and so the Moon’s eccentricity vector

can be determined from:

~e =

(
1

µe

)((
v2 − µe

r

)
~r − rvr~v

)
(6.6)
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The magnitude of the eccentricity vector which forms part of the state

vector is determined from the dot product of the eccentricity vector. The

argument of perigee of the Moon’s orbit is defined as the angle between

the Moon’s node line vector and its eccentricity vector which is directed

towards the perigee of the Moon’s orbit and is determined by calculating

this angle in terms of the vector dot product between these two vectors

as:

ω = cos−1

(
~N.~e

Ne

)
(6.7)

Any quadrant ambiguity is resolved by examining the sign of the equato-

rial z-component of the eccentricity vector; if the z-component is positive,

the perigee of the orbit occurs in the upper hemisphere of the Earth and

indicates that the argument of perigee is identically equation (6.7), a

negative component indicates that the perigee occurs in the lower hemi-

sphere of Earth and indicates that its argument of perigee is 360◦ minus

equation (6.7). The last orbital element to form part of the state vector

is the true anomaly of the Moon in its orbit about Earth at this point

and this is defined as the angle between the Moon’s eccentricity vector,

directed towards the perilune of its orbit, and its current position vector

as:

θ = cos−1

(
~e.~r

er

)
(6.8)

Any quadrant ambiguity is resolved by examining the sign of the radial

velocity defined in equation (6.1); if the radial velocity is positive the

Moon is moving away from the Earth and its true anomaly is identical

to equation (6.8), if its radial velocity is negative the Moon is moving

towards Earth and its true anomaly is 360◦ minus equation (6.8). Having

determined the state vector of the Moon at the arbitrary input time, the

true anomaly within the Moon’s orbit about Earth at which its ascending

node occurs is determined from:

θAN = 360◦ − ω (6.9)

Furthermore, the time elapsed since the last perigee passage is obtained

in terms of the eccentric anomaly of the Moon’s orbit, which will be

defined in subsection 6.2.3, and the Moon’s orbital period in the following
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equation [47] which will be utilised later:

tp =

(
Tm
π

)
.

(
(1− esin)tan−1

[√
1− e
1 + e

tan

(
θ

2

)])
(6.10)

The configuration of the Moon at the selected time period for operations

has been determined, it is assumed that any variation between the Moon’s

configuration and its next arrival at its ascending node about Earth is

negligible and can be ignored. It should be noted however, that some

error has been introduced into the Moon’s motion by the use of the state

vector to obtain its position and velocity as this assumes that the Moon

orbits Earth in a perfectly closed orbit which does not occur as a result

of the additional gravitational attractions acting on the Moon from the

other bodies which occupy the Solar System. We now have the ability

to calculate the position and velocity vectors of the Moon at later times

in its orbit which allows us to determine its configuration at the instant

of arrival and departure of payloads at the boundary to its gravitational

influence.

6.2.3 LSI Configuration at Payload Contact

Having determined the orbital configuration of the Moon at the system’s

input time, the position of the Moon at a later instant in its orbit about

Earth can be determined, and this is utilised to determine the position

and velocity of the Moon relative to Earth when it is close to the as-

cending node of its orbit, and the chosen time for payload arrival and

departure. From this we can determine the position at which the pay-

load transferred from the EMMET’s upper tip crosses into the region of

the Moon’s dominating gravitational influence relative to both the Earth

and Moon, and furthermore the position at which the payload transferred

from the upper tip of the Lunavator crosses from the Moon to Earth’s

dominating gravitational relative to both the Earth and Moon. These

changes from one gravitational influence to another allow us to piece to-

gether the hyperbolic trajectory about the Moon with the elliptic transfer

phases about Earth, in addition to determining any changes in velocity

required at these points.
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LSI Configuration at Payload Arrival

The time and true anomaly of the Moon at the instant of arrival of

the payload at the LSI is dependent upon the transfer time variable ηLSI

defined as the trans-Luna payload’s time of arrival at LSI after the system

input time. Due to the Moon’s orbit about Earth having an elliptical

geometry, the true anomaly of the Moon at the instant of arrival of the

payload at the LSI must first be obtained in terms of the mean anomaly

of the Moon in its orbit about Earth. This mean anomaly is defined as

the azimuth position of a fictitious body moving around the ellipse at a

constant angular speed and is defined as [47]:

Me =

(
2π

Tm

)
(tp + ηL) (6.11)

The addition of the time since perigee passage at the system’s input time

and the LSI arrival time after system input time, ηL, in equation (6.11)

gives the mean anomaly that the Moon has passed through since its last

instance at perigee. At this point an auxiliary angle called the eccentric

anomaly, E, is introduced which is a geometric means of obtaining the

area swept out between perigee and the current position, and allows the

current time to be calculated from Kepler’s second law [42]. We obtain an

initial estimate for the eccentric anomaly in terms of the mean anomaly

and orbital eccentricity as [47]:

E0 = Me −
e

2
(6.12)

Once the initial estimate of the eccentric anomaly has been obtained, we

form the function [47]:

f(E) = E − esinE −Me (6.13)

We calculate the derivative of equation (6.13) with respect to this eccen-

tric anomaly as:

f ′(E) = 1− ecosE (6.14)

We apply Newton’s method to equations (6.12), (6.13) and (6.14) to

obtain a value for the eccentric anomaly to within five significant figures.

We can then simply obtain the true anomaly at the instant in question
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in terms of the eccentric anomaly as [47]:

tan

(
θ

2

)
=

√
1 + e

1− e
tan

(
E

2

)
(6.15)

Having obtained the true anomaly of the Moon at the instant of payload

arrival at the LSI we calculate its position and velocity in its perifocal

frame by first obtaining its distance from Earth at this true anomaly as:

r =
a(1− e2)

1 + ecosθ
(6.16)

With its semi-major axis, a, and eccentricity, e, defined by equations

(5.3) and (5.5), respectively. The position of the Moon in its perifocal

frame of its orbit about Earth can then be determined as:

~rperifocal = r
[
cosθ sinθ 0

]T
(6.17)

The Moon’s perifocal velocity at this true anomaly can be determined

using equation (3.46) and its position and velocity relative to Earth’s

equatorial frame can be obtained by the application of the basic dynamic

equations and a perifocal to equatorial conversion matrix for the Moon.

The perifocal position of the Moon can be transformed into Earth’s equa-

torial frame using the following equation [42]:

~rmoon = RG.~rperifocal (6.18)

Where the transformation matrix, RG, is simply equation (3.5) with the

inclination, ascending node and argument of perigee replaced with those

elements calculated for the Moon in section (6.2.2). The velocity of the

Moon relative to the equatorial frame at this point is obtained as:

~vmoon = RG.~vperifocal + ṘG.~rperifocal (6.19)

As a result of the oscillation of the Moon’s ascending node relative to the

equatorial frame and to reduce the risk of introducing mistakes into our

calculations through extensive derivations of transformation matrices,

we will only treat the secular rate of the Moon’s argument of perigee as

a variable when deriving the first derivative of the Moon’s perifocal to

equatorial transformation matrix and this becomes:

ṘG = ω̇


− cos Ωsinω − sinΩcosωcosi −cosΩcosω + sinΩsinωcosi 0

−sinΩsinω + cosΩcosωcosi −sinΩcosω − cosΩsinωcosi 0

cosωsini −sinωsini 0


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(6.20)

Having determined the position and velocity of the Moon at the instant

of payload arrival, we now turn our attention to locating the payload’s

entry point into the LSI in terms of its position relative to the Moon.

Within the LSI (Lunar Sphere of Influence), the Moon’s gravity is the

dominating force and the Moon’s centre becomes the origin of the ma-

jority of coordinate systems used to determine a satellite’s motion within

this region. Outwith this sphere of influence, Earth’s gravity is the dom-

inating force. The choice of the correct coordinate system to use, and

which is the dominating force, is determined as the ratio of the disturbing

force and the central force when a body, m3, is in the presence of two

bodies, m1 and m2. The smallest disturbing force to central force ratio is

the correct coordinate system to use [44]. Furthermore, due to the prox-

imity of the Moon to Earth, this region of Lunar gravitational influence

cannot be treated simply as a sphere but the magnitude of its boundary

at an arbitrary angle to the Earth-Moon line can be approximated as

[44]:

rL =((
MM(MM +mp)

ME(ME +mp)

)− 1
5

(1 + 3cos2α)
1
10 +

(
2

5

)
cosα

(
1 + 6cos2α

1 + 3cos2α

))−1

(6.21)

The mass of Earth is denoted by ME, the mass of the Moon is denoted by

MM and the mass of the payload is denoted by mp. Angle α between the

Earth-Moon line and the point on the boundary of the LSI can be defined

as the angle between the negative Im axis of the selenocentric frame of

reference and the vector from the centre of the Moon to the point on the

boundary of the LSI, and is obtained as the angle from the vector dot

product between the two unit vectors. At this point it is necessary to

define the selenocentric frame of reference; it is a Moon centred, body

fixed frame of reference [41] with the unit vector Km directed along the

instantaneous orbit normal of the Moon about Earth, the unit vector

Im is in the same direction as the Moon from Earth and rotates at a

rate equal to the Moon about Earth, the unit vector Jm lies within the
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orbital plane in the direction of motion and completes the coordinate

frame axes. The selenocentric frame is the coordinate frame in which all

motion within the LSI will be referenced. The unit vector in the direction

of the point on the LSI can be defined relative to the selenocentric frame

as:

~iL =


cos(π + φL)cosδL

sin(π + φL)cosδL

sinδL

 =


−cosφLcosδL
−sinφLcosδL

sinδL

 (6.22)

where φL is the angle between the negative Im axis of the selenocentric

frame and the projection of the unit vector onto the selenocentric (Im,

Jm) plane and δL is the angle between the selenocentric (Im, Jm) plane,

and the unit vector in the direction of the LSI point. In addition to

this, angles φL and δL are variables of the overall transfer design and

allow the entry point of the payload into the LSI to be determined and

varied, and these are utilised when constructing the hyperbolic trajectory

taken by the payloads about the Moon. Angle α is then obtained by the

application of the vector dot product as:

α = cos−1(cosφLcosδL) (6.23)

The position of the payload’s point of entry into the LSI can then be

determined relative to the selenocentric frame as:

~rL = rL~iL (6.24)

Having obtained the payload’s entry point into the LSI relative to the

Moon, it is useful to determine this entry point relative to Earth and

this will be utilised later. To convert the selenocentric coordinates into

the geocentric equatorial frame we first convert its selenocentric position

into the perifocal frame of the Moon’s orbit and add to this the perifocal

position vector of the Moon at this instant, and so to achieve this we first

apply the selenocentric to perifocal conversion matrix to the LSI entry

point position vector as:

Rsp =


cosθa −sinθa 0

sinθa cosθa 0

0 0 1

 (6.25)
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where θa is the true anomaly of the Moon at the instant of payload arrival

and ra is its distance from Earth. The perifocal position of the payload’s

entry point relative to Earth is then:

~rap =


racosθa − rL−acos(θa + φa)cosδa

rasinθa − rL−asin(θa + φa)cosδa

rL−asinδa

 (6.26)

The position vector of the payload’s entry point into the LSI is obtained

relative to the equatorial frame by direct application of the perifocal to

equatorial rotation matrix defined in equation (3.5) with its inclination,

argument of perigee and ascending node angles replaced with those of

the Moon’s configuration at the time period of payload arrival

LSI Configuration at Payload Departure

The configuration of the Moon at the instant of payload departure is

determined using a method identical to that used previously, however,

in this case, the time at which the payload departs the LSI is an integer

multiple of the Lunavator’s orbital period after the arrival of the payload

from Earth. The mean anomaly of the Moon at the payload’s departure

from the LSI is therefore defined as:

Me =

(
2π

Tm

)
(tp + ηL + ΘTLV ) (6.27)

with ΘTLV defined as the time between payload entry and exit from

the LSI and includes payload transfer times to and from perilune and a

waiting time between Lunavator capture and Launch operations. Here,

Θ is the integer multiple of the Lunavator’s orbital period TLV but some

flexibility can be accommodated with variations in the time spent within

LSI so long as the overall system logistics are satisfied. By obtaining the

eccentric anomaly at the point of departure from the LSI, the Moon’s true

anomaly at this point, θd, can be obtained by the application of Newton’s

method which subsequently enables the Moon’s position vector, ~rd, to be

calculated at this point. The LSI departure point relative to the Moon is

again determined by utilising equations (6.21) and (6.23) with variables

φd and δd at our chosen departure point from the LSI in the direction of
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unit vector ~id. The position of this departure point is then determined

relative to the Moon’s perifocal frame as:

~rdp =


rdcosθd − rL−dcos(θd + φd)cosδd

rdsinθd − rL−dsin(θd + φd)cosδd

rL−dsinδd

 (6.28)

This is the transformed into Earth’s equatorial frame using equation

(3.5) with its inclination, argument of perigee and ascending node angles

replaced with those of the Moon’s configuration at the time period of

payload departure.

Having specified the entry and exit points of the payload from the LSI,

a hyperbolic trajectory about the Moon can be constructed by specifying

a transfer time between these points which excludes any waiting time at

perilune, and this will be the subject of the following subsection.

6.2.4 EMMET’s Orbit about Earth

Having obtained the configuration of the Moon at system input time, the

EMMET’s orbit relative to Earth is configured using the orbital harmonic

of the Moon’s orbital period to that of the EMMET’s orbital period, de-

fined as m, in addition to the rotational harmonic of its rotational period

to its orbital period, defined as p, and this allows the position and velocity

of the central facility and tips to be determined. The orbital inclination

of the EMMET is dependent upon the moon-tracking configuration being

used and as the optimum argument of perigee is 0◦, the only remaining

component of its orbit required to determine its position is its angle of

ascending node relative to the equatorial frame. The ascending node of

the EMMET’s orbit is required to be arranged such that it is diametri-

cally opposite to the ascending node of the Moon’s orbit about Earth to

allow symmetrical transfers to and from the EMMET when the Moon is

close to its ascending node. The ascending node of the EMMET’s orbit

can therefore be expressed in terms of the ascending node of the Moon’s

orbit as:

ΩEM = π + Ωm (6.29)

where Ωm is the ascending node of the Moon’s orbit at system input

time and determined using equation (6.5). Now that the ascending node
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of the EMMET’s orbit has been obtained, the position and velocity of

its central facility can be obtained using equations (4.27) and (4.28), re-

spectively, and by setting the tether sub-span length equal to zero. The

upper tip’s position and velocity are obtained by using equations (4.27)

and (4.28) in their exact form, and these determine the perigee position

and velocity at which the payloads are released onto their trans-Luna

orbits and their perigee position and velocity at which they end their

trans-Earth trajectories from the Moon. Finally, the lower tip’s position

and velocity are obtained by adjusting the tether rotation angle by π ra-

dians in equations (4.27) and (4.28) respectively. Having determined the

configuration of the EMMET at payload release relative to the equato-

rial frame, our attention now turns to the configuration of the payload’s

hyperbolic trajectory about the Moon.

6.2.5 Hyperbolic Trajectory about the Moon

Having defined the entry and exit points of the payload into and from

the LSI, our attention now turns to constructing a hyperbola about the

Moon, relative to the selenocentric frame of reference, which satisfies our

timing requirements from LSI entry to perilune and from perilune to LSI

exit, in addition to providing a suitable perilune position and velocity.

By ensuring that the inbound and outbound payloads undertake differ-

ent portions of the same hyperbolic trajectory about the Moon we ensure

that they have the same perilune velocity and therefore only a single up-

per tip velocity for the Lunavator is required to match this. Furthermore,

by configuring the same hyperbola to be undertaken by both payloads we

also ensure that the orbital elements for both trajectories will be identi-

cal, thus allowing a single Lunavator configuration to be suitable for both

phases. To ensure that the inbound and outbound payloads undertake

the same hyperbola, we construct a single hyperbola between the LSI

entry and exit points occurring in a time period suitable for our LSI to

perilune and perilune to LSI transfer phases and for the moment ignore

any waiting time at the Lunavator which, in itself, has no effect on the

transfer hyperbola and is solely a logistical necessity. This subsection

will firstly, describe the means by which we construct the hyperbola be-
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tween the LSI entry and exit points initially by obtaining the change in

true anomaly between these two points by means of Lambert’s Theorem,

and then by utilising the Lagrange Coefficients to obtain the velocity of

the payloads at these entry and exit points. The second step will be

to transform the trans-Earth and trans-Luna payloads’ velocities rela-

tive to Earth’s equatorial frame which will be utilised later to patch the

payload’s hyperbolic velocity to their corresponding elliptical velocities

about Earth and allow us to determine whether any velocity adjustments

are required at our entry and exit points to the LSI. In the final part of

this subsection, the perilune position and velocity of the payloads will

be determined for the single hyperbola about the Moon which allows the

Lunavator’s orbit to be configured.

Trajectory between LSI Boundary Points

To construct this single hyperbola about the Moon we employ the method

given by Curtis [47] which will be outlined here, firstly we employ Lam-

bert’s Theorem which states that the orbital transfer time depends only

upon the semi-major axis, the sum of the distances of the initial and final

points of the arc from the centre of force, and the length of the chord join-

ing these points [44]. Having already defined the two points on the arc

as the LSI entry and exit points, we set the transfer time between these

points to obtain the true anomaly through which the payload passes as

it traverses this path. The first step is determine the quadrant of the

Moon’s selenocentric frame through which the payload passes and this is

determined by whether the trajectory is prograde or retrograde in addi-

tion to the Z-axis component of the cross-product of the LSI entry point

position vector, which we will denote here as ~r1, and exit point position

vector, which we will denote here as ~r2, as:

(~r1 × ~r2)Z = r1r2sin∆θcosi (6.30)

The payload’s trajectory about the Moon is required to be retrograde

therefore, when equation (6.30)is negative the change in true anomaly

for the trajectory is determined as:

cos∆θ =
~r1.~r2

r1r2

(6.31)
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For a positive value of equation (6.30), the change in true anomaly is 360◦

minus equation (6.31). Having obtained the change in true anomaly

between the entry and exit points, the next step is to determine the

trajectory between these points and this can be found in terms of the

Lagrange Coefficients. These coefficients are derived from the premise

that if the position and velocity of a body are known at one instant they

can be found at a later instant in terms of these initial components [47].

The Lagrange coefficients are obtained by first expressing them in terms

of the universal anomaly, χ, which is a generalised anomaly [44], similar

to the eccentric anomaly for elliptical orbits or the hyperbolic anomaly

for hyperbolic orbits, but is valid for all orbit types as:

f =1− χ2

r1

C(z) (6.32)

g =∆t− 1
√
µ
χ3S(z) (6.33)

ḟ =

√
µ

r1r2

χ(zS(z)− 1) (6.34)

ġ =1− χ2

r2

C(z) (6.35)

where µ is the gravitational parameter of the central body, variable

z=αχ2 with α defined as the reciprocal of the semi-major axis of the

hyperbola, ∆t is flight time between the entry and exit points, excluding

waiting time, and defined as γ × TLV with γ being an orbital harmonic,

and finally, C(z) and S(z) are infinite series known as Stumpff functions

and are related to the circular and hyperbolic trigonometric functions.

For hyperbolic trajectories, S(z) and C(z) can be defined as [47]:

S(z) =
sinh
√
−z −

√
−z

(
√
−z)3

(6.36)

C(z) =
cosh
√
−z − 1

−z
(6.37)

This allows χ to be defined as:

χ =

√
y(z)

C(z)
(6.38)

where

y(z) = r1 + r2 + A
zS(z)− 1√

C(z)
(6.39)

and

A = sin∆θ

√
r1r2

1− cos∆θ
(6.40)
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The only unknown is now function z and we utilise Newton’s approxima-

tion by forming the following equation:

zi+1 = zi −
F (zi)

F ′(zi)
(6.41)

where the function F(z) and its derivative are defined as:

F (z) =

(
y(z)

C(z)

) 3
2

S(z) + A
√
y(z)−√µ∆t (6.42)

F ′(z) =



(
y(z)
C(z)

) 3
2
(

1
2z

(
C(z)− 3

2
S(z)
C(z)

)
+ 3

4
S(z)2

C(z)

)
+A

8

(
3 S(z)
C(z)

√
y(z) + A

√
C(z)
y(z)

)
(z 6= 0)

√
2

40
y(0)

3
2 + A

8

[√
y(0) + A

√
1

2y(o)

]
(z = 0)

(6.43)

Taking our initial estimate as z=0, with C (0)=1
2

and S (0)=1
6

we apply

Newton’s method to obtain a solution for z to five significant figures, we

then obtain a final value for y(z) and calculate the Lagrange coefficients

as:

f =1− y(z)

r1

(6.44)

g =A

√
y(z)

µ
(6.45)

ḟ =

√
µ

r1r2

√
y(z)

C(z)
(zS(z)− 1) (6.46)

ġ =1− y(z)

r2

(6.47)

The velocities of the payload at LSI entry, ~v1, and exit, ~v2, are then

obtained as:

~v1 =
1

g
(~r2 − f~r1) (6.48)

~v2 =
1

g
(ġ~r2 − ~r1) (6.49)

Having obtained the velocities of the payload at the entry and exit points

to LSI, the orbital elements of the hyperbolic motion of the payloads

about the Moon are obtained by a means identical to that utilised to

obtain the state vector of the Moon in subsection (6.2.2).
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Entry and Exit Velocities at LSI Boundary

Having obtained the velocities of the payloads at their entry and exit

from the LSI relative to the selenocentric frame, it is useful at this point

to transform these velocities into Earth’s equatorial frame of reference.

By obtaining these velocities relative to the equatorial frame we can de-

termine the elliptical velocity at LSI contact required to undertake the

correct hyperbolic trajectory to perilune in the case of LSI entry, or the

elliptical trajectory which will be undertaken about Earth at LSI exit of

the payload. Furthermore, these velocities can be used to match the el-

liptical to hyperbolic velocities and if an incompatible velocity mismatch

occurs which compromises the overall trajectory design, the magnitude of

the velocity change required to correct for any mismatch can be obtained.

Having described a means to obtain the position vectors of the LSI en-

try and exit points relative to the equatorial frame in subsection (6.2.3),

the velocities of these payloads relative to Earth’s equatorial frame can

be obtained firstly by transforming the selenocentric velocities at con-

tact in equations (6.48) and (6.49) into the perifocal frame of the Moon’s

orbit. The payload’s velocity at LSI entry is transformed into the peri-

focal frame of the Moon’s orbit by utilising equation (6.25) and its first

derivative with respect to time and implementing these into the following

equation:

~v1p = ~vmpa +Rsp~v1 + Ṙsp~r1 (6.50)

where ~vmpa is defined as the perifocal velocity of the Moon at LSI entry.

The payload’s velocity at LSI exit is transformed into the perifocal frame

of the Moon’s orbit by replacing the true anomaly terms in equation

(6.25) with those of the Moon at payload departure, and so we obtain

the perifocal velocity of the payload at LSI exit as:

~v2p = ~vmpd +Rsp~v2 + Ṙsp~r2 (6.51)

where ~vmpd is defined as the perifocal velocity of the Moon and Rsp is

equation (6.25)at LSI exit. The perifocal velocities of the payloads at

LSI entry and exit are transformed into the equatorial frame by means

of the following equation:

~veq = RG~vp + ṘG~rp (6.52)
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where ~veq is the equatorial velocity of the payload at either LSI entry

or exit, RG and ṘG are the perifocal to Earth equatorial transformation

matrix for the Moon at the system input time, and its first derivative, and

these are defined in equations (3.5) and (6.20), respectively. Furthermore,

~vp and ~rp are the perifocal velocity and position of the payload at either

LSI entry or exit.

Having obtained a means by which we transform the velocities of the

payloads at LSI entry and exit into Earth’s equatorial frame, we obtain

the state vectors of the payload’s motion at LSI entry and exit relative

to Earth using the method described in subsection 6.2.2, allowing us to

determine the inclination, argument of perigee and ascending node of

this motion which is used to match the LSI entry and exit parameters to

those of the elliptic arcs about Earth. Attention now turns to the perilune

parameters of the payload’s hyperbolic trajectory about the Moon which

determine the configuration of the Lunavator’s orbit and this will form

the remainder of this subsection.

Payload Perilune Parameters

Having obtained the state vector of the hyperbolic trajectory about the

Moon, the exact time of flight of the payload to the perilune of its orbit

can be determined firstly by obtaining the true anomaly of the trans-Luna

payload within its hyperbolic trajectory at entry into the LSI, determined

by means of the eccentricity of its hyperbola and the position vector

of this payload at LSI entry. From this true anomaly the hyperbolic

anomaly, defined as an auxiliary equilateral hyperbola with eccentricity

equal to
√

2, and the hyperbolic equivalent of the eccentric anomaly, can

be determined as [42]:

H = 2tan−1

(√
eh − 1

eh + 1
tan

(
θin
2

))
(6.53)

where eh is the eccentricity of the payload’s hyperbola and θin is the

payload’s true anomaly at LSI entry. We obtain the mean anomaly at

this point in terms of the hyperbolic anomaly as [42]:

Mh = ehsinH −H (6.54)
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Finally, the time to perilune from LSI entry can be obtained in terms of

this mean anomaly as [42]:

tperilune =

√
−ah3

µm
Mh (6.55)

where the negative sign in front of the semi-major axis, ah, is necessary

to prevent a number with a complex component as the semi-major axis

for hyperbolic orbits is negative. From the transfer time to perilune from

LSI entry, the exact time at which the trans-Earth payload exits the LSI

can be obtained by subtracting the time to perilune from the transfer

time of the hyperbola, ∆t, between LSI entry and exit points.

Having obtained the exact transfer times for the payloads to and from

perilune, the position and velocity of the payloads at perilune will now

be obtained. Firstly, we can obtain the perilune distance and speed of

the hyperbola as [42]:

rperilune = ah(1− eh) (6.56)

and

vperilune =

√
2µ

rperilune
− µ

ah
(6.57)

The perifocal position and velocity at perilune are simply:

~rperilune =
[
ah(1− eh) 0 0

]T
(6.58)

and

~vperilune =
[
0 µ(1+eh)

hh
0
]T

(6.59)

with the magnitude of the velocity obtained by expressing equation (6.57)

solely in terms of the semi-major axis of the orbit and then substituting

the specific angular momentum, hh, of payload’s hyperbola into the re-

sulting expression. The position and velocity of the payload’s hyperbola

at perilune is transformed into the selenocentric frame of reference by

means of the following transformation matrix:

RS =


α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

 (6.60)
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where

α1 = cos Ωhcosωh − sinΩhsinωhcosih

α2 =− cosΩhsinωh − sinΩhcosωhcosih

α3 =sinΩhsinih

β1 =sinΩhcosωh + cosΩhsinωhcosih

β2 =− sinΩhsinωh + cosΩhcosωhcosih

β3 =− cosΩhsinih

γ1 =sinωhsinih

γ2 =cosωhsinih

γ3 =cosih

where the angle of ascending node, argument of perilune (the Moon cen-

tred equivalent to the argument of perigee) and the orbital inclination

are those of the payload’s hyperbola about the Moon. These are denoted

by the subscript h and were calculated using the state vector for the hy-

perbola using the method described to calculate the state vector of the

Moon in subsection (6.2.2). Here we consider, for simplicity, a hyperbolic

trajectory to be a singular trajectory and by this it is meant that since

the body, in this case the payload, that is undertaking the hyperbola

about the Moon is only under the influence of the Moon’s gravity for a

short period of time, and this is the case for all hyperbolic trajectories as

by their very nature they allow escape from the region of gravitational

influence, in conjunction with the magnitude of the Moon’s oblateness

being limited; we consider the hyperbola to be a fixed orbit relative to

the Moon during the body’s period of motion and free from any preces-

sional effects. Using this assumption gives a very simple transformation

equation between the position and velocity of the hyperbola at perilune

in the perifocal frame and the selenocentric frame. The position of the

payload at perilune can be obtained in the selenocentric frame as:

~rps = RS.~rperilune = ah(1−eh)


cos Ωhcosωh − sinΩhsinωhcosih

sinΩhcosωh + cosΩhsinωhcosih

sinωhsinih

 (6.61)

As there is no secular rate of the argument of perilune or angle of as-
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cending node and the inclination is assumed to be constant, the first

derivative of RS with respect to time is zero and the velocity of the

payload at perilune relative to the selenocentric frame is obtained as:

~vps =
µ(1 + eh)

hh


−cosΩhsinωh − sinΩhcosωhcosih

−sinΩhsinωh + cosΩhcosωhcosih

cosωhsinih

 (6.62)

Having obtained the perilune position and velocity of the payload’s hy-

perbola about the Moon, we can now configure the Lunavator’s orbit

about the Moon. As the configuration required for this is considerable,

it will be described in detail in the following chapter, Chapter 7, dedi-

cated to the Lunavator’s dynamics, design and configuration. However,

by defining the upper tip velocity of the Lunavator relative to the se-

lenocentric frame of reference as ~vLsu we can obtain an expression for

the velocity adjustment to be performed by the payload at its instant of

arrival or departure at the Lunavator’s upper tip to ensure that no veloc-

ity mismatch between the upper tip and payload occurs, in addition to

ensuring that the payload undertakes the correct hyperbolic trajectory

about the Moon as:

∆~vps = ~vLsu − ~vps (6.63)

For the moment, we will turn our attention to describing the method used

to configure the trajectory of the trans-Earth and trans-Luna payloads’

elliptical trajectories between the LSI and the EMMET’s upper tip.

6.2.6 Elliptical Trajectories about Earth

Having configured the hyperbolic trajectories of the payloads about the

Moon, the complete circumlunar trajectory can be completed, firstly by

the configuration of an elliptical arc between the position of the trans-

Earth payload at its point of exit from the LSI and its perigee posi-

tion at Earth which is coincident with the EMMET’s upper tip position

at perilune with its sub-spans aligned along the local gravity gradient,

and finally by the configuration of an elliptical arc between an identical

perigee position and the position of the trans-Luna payload at its entry

point to the LSI. Once again, the trajectories between these points will
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be obtained by the application of Lambert’s Theorem and the Lagrange

Coefficients, collectively termed Lambert’s Problem, with the time peri-

ods between the beginning and end of these elliptic arcs being consistent

with the logistical requirements described in Chapter 2.

LSI to Earth Trajectory

To calculate the elliptic arc that the payload will traverse between its

exit point from the LSI and its perigee position at Earth we again em-

ploy Lambert’s Theorem to calculate the change in true anomaly between

the LSI exit point and perigee. To calculate this, we first evaluate the

cross-product between the initial and final position vectors, which in this

case are the LSI exit point of the payload, obtained by the application

of the perifocal to equatorial transformation matrix to equation (6.28),

and from this point on we will define this as ~rexit, and the EMMET’s up-

per tip position at perigee with sub-spans aligned along the local gravity

gradient, defined in equation (4.27) as ~ru−eq. As we require a prograde

trajectory for the return elliptical arc to Earth, for positive Z-axis compo-

nents of the cross product between the initial and final position vectors

the change in true anomaly will identically be equation (6.31) and for

negative values of this component the change in true anomaly will be

360◦ minus equation (6.31), which is opposite to the case for retrograde

trajectories. Having obtained the change in true anomaly, the next step

in the configuration of the elliptical trajectory to Earth is to specify the

transfer time for this trajectory. To identify easily the shortest time pe-

riod that this transfer can be undertaken in, we calculate the parabolic

flight time for a trajectory between these two positions and this sets the

lower limit for our transfer time. This parabolic flight time is calculated

as [47]:

tparabolic−r =

(
rexit + 2ru−eq

3

)√
2(rexit − ru−eq)

µe
(6.64)

Where rexit and ru−eq are the respective LSI exit and perigee distances

from Earth. Having calculated this parabolic flight time, the shortest

time period that the transfer can occur in is a time period equal to

an even integer multiple of the EMMET’s orbital period closest to this

parabolic flight time without exceeding it. Accounting for the boundary
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set by the parabolic flight time, the transfer transfer time between LSI

exit and perigee is defined as:

∆tr = nrTEM for ∆tr < tparabolic−r (6.65)

Where TEM is the orbital period of the EMMET’s orbit and nr is an even

orbital harmonic for the flight time between LSI and perigee. Having ob-

tained the change in true anomaly and specified a time of flight between

the initial and final position vectors, the Lagrange Coefficients are again

obtained using a method similar to that utilised for the hyperbolic tra-

jectory about the Moon. We begin by expressing the universal variable,

χ, in terms of variable z and Stumpff functions C (z) and S (z) but in this

case these are related to the circular trigonometric functions by:

S(z) =

√
z − sin

√
z

(
√
z)3

(6.66)

C(z) =
1− cos

√
z

z
(6.67)

Utilising equation (6.41) and setting our initial estimate for variable z

as zero, we apply Newton’s method to obtain a value for variable z to

five significant figures, and from this we again calculate our Lagrange

Coefficients as defined in equations (6.44) to (6.47) and obtain the pay-

load’s velocity at LSI exit and perigee from equations (6.48) and (6.49),

respectively. Having obtained the velocities at these points, the state

vector of the payload’s trajectory to perigee can be obtained beginning

from the position and velocity at either LSI exit or perigee, and this

is useful for matching the orbital parameters of the payload’s outbound

trajectory from LSI to the parameters for the current elliptic trajectory

back to Earth. Furthermore, by comparing the payload’s velocity at the

beginning of this elliptic arc when the payload is at the boundary of the

LSI, denoted by ~vexit, to the the hyperbolic velocity at LSI exit relative

to the equatorial frame, obtained from equation (6.52) and defined as

~v2eq, the velocity adjustment required at the payload’s exit from the LSI

can be expressed as:

∆~vexit = ~vexit − ~v2eq (6.68)

In addition to this, by comparing the velocity at the end of the elliptic

arc when it is at perigee, denoted by ~vperigee−r, to the upper tip velocity
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of the EMMET when it is at perigee and its sub-spans are aligned along

the local gravity gradient, denoted by ~vu−eq, the magnitude of the veloc-

ity required at the payload’s arrival at the EMMET’s upper tip can be

expressed as:

∆~vperigee−r = ~vu−eq − ~vperigee−r (6.69)

Having configured the elliptical arc back to perigee our attention now

turns to configuring the outbound elliptic arc from perigee to the LSI

entry point for the trans-Luna payload.

Earth to LSI Trajectory

The elliptic arc between the EMMET’s upper tip, coincident with the

perigee position of the trans-Luna payload’s trajectory, and the LSI en-

try point is again calculated as a solution to Lambert’s Problem using a

method identical to the LSI to Earth case. The orbital motion is again

prograde and between the payload’s perigee position, ~ru−eq, and the LSI

entry point, obtained by the application of the Moon’s perifocal to equa-

torial transformation matrix to equation (6.26) and from this point on

we will define this as ~rentry. The change in true anomaly between these

points is obtained by equation (6.31) and the limiting parabolic flight

time in this case is defined as [47]:

tparabolic−l =

(
ru−eq + 2rentry

3

)√
2(ru−eq − rentry)

µe
(6.70)

Adhering to the logistical requirements of the system, the time of flight

between these two positions can be expressed as:

∆tl = nlTEM for ∆tl < tparabolic−l (6.71)

Where TEM is again the orbital period of the EMMET’s orbit and nl is

an even orbital harmonic for the flight time between perigee and LSI.

We again obtain the Lagrange Coefficients for the motion by applying

Newton’s method to evaluate variable z and finally obtain the velocities

at perigee, denoted as ~vperigee−l, and LSI entry,denoted as ~ventry, from

equations (6.48) and (6.49), respectively. Having obtained these veloc-

ities, the state vector for the motion is again obtained and the change

in velocity required to ensure that the payload undertakes the correct
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elliptical trajectory to LSI which is performed at the instant of payload

release from the EMMET’s upper tip can be expressed as:

∆~vperigee−l = ~vperigee−l − ~vu−eq (6.72)

In addition to this, the state vector allows a comparison of the inbound

LSI motion to that of the trans-Luna elliptic arc and the change in ve-

locity performed at the instant of arrival of the payload at the LSI entry

point can be expressed as the difference between the payload’s velocity

at this point in its elliptic arc and the velocity required to undertake the

correct hyperbolic trajectory to perilune, obtained using equation (6.52)

and defined as ~v1eq. This velocity change can be expressed as:

∆~ventry = ~v1eq − ~ventry (6.73)

Having described the means by which the elliptic trajectories to and from

LSI can be configured, our attention now turns to satisfying the overall

logistical requirements of the system.

6.2.7 Logistical Parameters and Velocity Changes

The final step in the procedure is simply a check of the overall system

to ensure that the logistics are being satisfied in each transfer phase and

collectively. In addition to this a comparison is made between the state

vectors of the hyperbolic trajectories undertaken by the trans-Luna and

trans-Earth payloads to ensure that these match and in addition to this,

a comparison is made between the trans-Luna and trans-Earth elliptic

arcs to ensure that their state vectors are almost identical to one another

however, a little deviation between them can be accommodated. Finally,

the sum of the changes in velocity required for the entire transfer are

calculated.

Our attention now turns to the description of the dynamics and design

of the Lunavator’s orbit about the Moon, in addition to the derivation

of the central facility and tip’s position and velocity relative to the se-

lenocentric frame of reference which will be the subject of the following

chapter.
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6.3 Conclusions

A patched conic method for configuring the trajectories between the EM-

MET and Lunavator tethers’ upper tips has been established whilst re-

maining consistent with the logistical design of the system. The method

utilises payloads undertaking elliptical trajectories between the EMMET’s

upper tip and the LSI boundary and undertaking hyperbolic trajectories

between LSI and perilune. It was found that by means of an iterative

procedure that the elliptical and hyperbolic trajectories could be patched

together at the intersection points coinciding with their points of con-

tact with the LSI and velocity differences minimised by means of this

iterative procedure. Trajectories were configured to satisfy the timing

requirements of the transfers by calculating the transfers about Earth

and the Moon as solutions to Lambert’s problem with the required ve-

locity at the beginning and end points of the trajectory calculated by

utilising Lagrange coefficients. By alterations to the times of entry and

exit to LSI, the orbital elements of these transfers about Earth could be

closely matched to those of the EMMET in either of the moon-tracking

configurations. Furthermore, by adjustment to the transfer time of the

hyperbolic trajectory about the Moon and to the positions of entry and

exit themselves; a sufficient perilune distance could be had whilst match-

ing the orbital elements of the trajectories at the boundary relative to

Earth closely to those of the EMMET and payload’s elliptical trajectory

about Earth.

Having determined a method of calculating the required transfer tra-

jectories which satisfy the system’s logistical requirements, these will be

used in conjunction with the EMMET configured in a chosen moon-

tracking configuration and the configuration of the Lunavator about the

Moon to allow the motion of each component of the system to be iden-

tified at any point during operations. These will be implemented into

simulations and the magnitude of the velocity changes required to imple-

ment this system will be determined.
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7. Lunavator Design

Having defined a means of configuring the transferred payload’s hyper-

bolic trajectory about the Moon, the Lunavator’s orbit must be arranged

such that its upper tip coincides with the payload’s perilune position

when it is itself at the perilune of its orbit with its tether sub-spans

aligned along the local gravity gradient, at the same instant its lower tip

must almost touch the Moon’s surface. To reduce any velocity mismatch

between the upper tip and payload, and reduce the risk of mechanical

shock along the tether sub-spans at the instant of payload capture, the

Lunavator’s orbital and rotational angular velocities must combine at

the upper tip to match to the payload’s perilune velocity as closely as

possible, and additionally, this allows both the inbound and outbound

payloads to undertake sequential portions of the same hyperbolic trajec-

tory about the Moon, with chemical propulsion being utilised to correct

for any irreconcilable velocity mismatches. An additional criterion that

must be accommodated into the payload’s hyperbolic trajectory design

is the payload having a large enough perilune velocity. Therefore, by

matching the velocity of the Lunavator’s upper tip to this the relative

velocity of the Lunavator’s lower tip is as close to zero as possible and

this allows the payload attached to the lower tip to be placed onto the

Moon’s surface.

To allow the inbound payload and Lunavator’s upper tip to meet at

their respective perilunes, as well as facilitating the outbound payload’s

launch from the same position, the Lunavator’s orbital inclination must

match that of the inbound hyperbola, and in addition to this the apse

lines of the payload’s hyperbolic trajectory and the Lunavator’s orbit

about the Moon must be coincident. This is achieved by matching the

Lunavator’s ascending node and argument of perilune to that of the pay-

load’s hyperbolic trajectory about the Moon. As was the case with the

effects of Earth’s oblateness on the EMMET’s orbit about Earth, effects

of similar magnitude will be evident and result from the Lunavator’s close
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proximity to the Moon, with secular rates for the argument of perilune

and angle of ascending node. As a result of the magnitude of these vari-

ations, adjustments to the ascending node or argument of perilune on

every occasion that the Lunavator becomes unladen are again necessary.

In addition to this, as variations in the inclination of the payload’s hy-

perbola about the Moon occur due to the fact that no single circumlunar

configuration for the payload’s motion can be configured as a result of

the complex motion of the Moon, alterations to the orbital inclination of

the Lunavator’s orbit are also necessary.

This chapter begins similarly to Chapter 4 with the derivation of

the Lunavator’s upper tip position, velocity and acceleration, relative

firstly, to a body fixed frame attached to the Lunavator’s central facility,

secondly to the Lunavator’s perifocal frame, and finally to the Moon cen-

tred, body fixed Selenocentric frame of reference [46]. Again, as with the

EMMET, the equations derived for the upper tip can be easily adjusted

to obtain the dynamic equations for the central facility, by setting the

tether sub-span length equal to zero, and for the lower tip, by adding π

radians to the tether rotation angle at this point. The maximum tension

acting on the fully laden Lunavator will then be derived, and an expres-

sion for the maximum angular velocity that the Lunavator can withstand

will be obtained. The orbital adjustments required to configure correctly

the Lunavator’s orbit will then be defined and the chapter will conclude

with a set of simulations which will allow us firstly to determine the rate

at which the orbital elements of the Lunavator’s orbit are varying; and

then determine the upper and lower tip velocities for a range of Lunava-

tor configurations, allowing it to be determined whether a zero velocity

touchdown velocity at the lower tip is a realistic goal; and finally, allow

the magnitude of the velocity changes required to perform these adjust-

ments to be obtained.

7.1 Lunavator Dynamics

To satisfy the requirements of the overall logistical design, defined in

Chapter 2, and the dynamic requirements of the payload’s hyperbolic
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trajectory about the Moon, defined in Chapter 6, the Lunavator must

obtain sufficient upper tip velocity through orbital and rotational rates

to match the hyperbolic velocity of the payload at perilune whilst ensur-

ing that its orbital period remains at an odd integer harmonic with the

EMMET’s orbital period and its rotational rate remains at an odd inte-

ger harmonic plus an additional rotational fraction with the Lunavator’s

orbital period. To allow the incoming payload from Earth to be captured

at the Lunavator’s upper tip position, whilst simultaneously picking up

a payload from the Moon’s surface, the Lunavator’s central facility must

be located mid-way between the hyperbolic trajectory’s perilune distance

and the minimum Lunavator touchdown position defined previously, at

this point the Lunavator’s sub-span lengths can be defined as:

LL =
rperilune − rm

2
(7.1)

where rm is the minimum lower tip position defined previously and equal

to 1741.476km. This results in the perilune distance of the central facility

being defined as:

rL = rm + LL (7.2)

Having defined these two parameters, the central facility’s orbital pe-

riod can be defined using equation (2.2) and an arbitrary value of orbital

variable n. From this, the Lunavator’s semi-major axis, aL, and orbital

eccentricity, eL, can be defined using equations (5.3) and (5.5), respec-

tively. The perilune velocity of the central facility can then be obtained

by the re-arrangement of equation (5.9) as:

vL =

√
2µm
rL
− µm
aL

(7.3)

where µm is the gravitational parameter of the Moon. A body frame is

attached to the Lunavator’s central facility which allows us to define the

upper tip’s position, velocity and acceleration relative to this frame and in

addition to the central facility’s perilune distance and speed this provides

a means of converting these components into the perifocal frame and

ultimately the selenocentric frame. Again, as was the case in section 4.1

the focus will remain on the upper tip’s components, but the equations

obtained can be easily adjusted for the central facility or the lower tip.
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Body frame Components

We begin by denoting the position vector of the upper tip relative to a

body fixed frame and define this frame similarly to that in section 4.1;

the im axis is directed along the local gravity gradient with its positive

direction directed away from the Moon, the jm axis is orientated perpen-

dicular to this and its km axis is perpendicular to the plane of the im

and jm components. We again define the upper tip’s components rela-

tive to the body frame using the tether sub-span length, LL, and tether

rotation angle, ψL, and its derivatives as the sub-span length is assumed

to be a fixed length. The upper tip position, velocity and acceleration

are defined relative to the body frame as:

~rLu =


LLcosψL

LLsinψL

0

 (7.4)

~vLu =


−ψ̇LLLsinψL
ψ̇LLLcosψL

0

 (7.5)

~aLu =


−LL

(
ψ̈LsinψL + ψ̇L

2
cosψL

)
LL

(
ψ̈LcosψL − ψ̇L

2
sinψL

)
0

 (7.6)

Having obtained these components relative to the body fixed frame, they

will now be transformed into the perifocal frame of the Lunavator’s orbit

by the application of an elementary rotation matrix and the addition of

the perifocal components of the origin of the body frame coincident with

the Lunavator’s central facility.

Perifocal Components

The components of the upper tip can now be determined in the perifocal

frame of the Lunavator’s orbit about the Moon. The perifocal frame,

as described in section 3.2, is a satellite based coordinate frame centred

at the Moon, with its Pm axis directed towards the perilune of the Lu-

navator’s orbit, its Qm axis is perpendicular to this in the direction of

orbital motion and its W m axis is perpendicular to the orbital plane.
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The dynamic components of the Lunavator’s upper tip relative to the

perifocal frame, can be determined by transforming the upper tip’s body

frame components into the perifocal frame and adding to this the peri-

focal components of the Lunavator’s central facility. The position of the

upper tip relative to the perifocal frame is determined as follows:

~rLpu = ~rLp +RWL
(θL).~rLu (7.7)

where the perifocal position of the central facility at true anomaly θL in

its orbit is defined as:

~rLp = rL


cosθL

sinθL

0

 (7.8)

The transformation matrix between the body fixed and perifocal frames

is defined as:

RWL
(θL) =


cosθL −sinθL 0

sinθL cosθL 0

0 0 1

 (7.9)

Implementing equations 7.8 and 7.9 into equation 7.7 yields an upper tip

position of:

~rLp =


rLcosθL + LLcos(θL + ψL)

rLsinθL + LLsin(θL + ψL)

0

 (7.10)

The velocity of the upper tip relative to the perifocal frame can be de-

termined by the derivation of equation 7.7 with respect to time, and this

is obtained as:

~vLpu = ~vLp +RWL
(θL).~vLu + ṘWL

(θL).~rLu (7.11)

In this case, the velocity of the central facility relative to the perifocal

frame can be defined as:

~vLp =

√
µm
pL

[
−sinθL eL + cosθL 0

]T
(7.12)

where pL is determined from the specific angular momentum of the Lu-

navator’s orbit as defined in equation (4.8). In equation (7.11), the first

derivative of equation (7.9) with respect to time is defined as ṘWL
, and
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together with equation (7.12) yields a perifocal velocity of:

~vLpu =


−
√

µm
pL
sinθL − LL(θ̇L + ψ̇L)sin(θL + ψL)√

µm
pL

(e+ cosθL) + LL(θ̇L + ψ̇L)cos(θL + ψL)

0

 (7.13)

The perifocal acceleration of the upper tip is simply the second derivative

of equation 7.9 from which we obtain:

~aLpu = ~aLp +RWL
(θL).~aLu + 2ṘWL

(θL).~vLu + R̈WL
(θL).~rLu (7.14)

In this case, R̈WL
(θL) is the second derivative of equation 7.9 with respect

to time and is simplified by the fact that the angular acceleration acting

on the body is zero as a result of the gravitational force being entirely

radial in nature. The acceleration of the origin of the body frame is

simply the gravitational acceleration acting on the central facility and is

defined as:

~aLp = −GMM

r3
L

~rLp (7.15)

Where G is the universal gravitational constant and MM is the mass of

the Moon. The acceleration of the upper tip relative to the perifocal

frame is obtained as:

~aLpu =


−GMM

r2
L
cosθL − LL(ψ̈Lsin(θL + ψL)− (θ̇L + ψ̇L)2cos(θL + ψL))

−GMM

r2
L
sinθL + LL(ψ̈Lcos(θL + ψL)− (θ̇L + ψ̇L)2sin(θL + ψL))

0


(7.16)

Having obtained the perifocal components of the upper tip we can obtain

its components relative to the selenocentric frame by the application of

the perifocal to selenocentric rotation matrix and the basic kinematic

equations.

Selenocentric Components

The selenocentric frame of reference is defined as a Moon centred, body

fixed frame of reference [41] with the unit vector Km with a direction

along the instantaneous orbit normal of the Moon about Earth, the unit

vector Im is in the same direction as the Moon from Earth and rotates

at a rate equal to the Moon about Earth, the unit vector Jm lies within
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the orbital plane in the direction of motion and completes the coordinate

frame axes. As a result of the necessity for the Lunavator’s orbital pa-

rameters to be dependent upon those of the payload’s hyperbola about

the Moon, no precautions can be taken to stop any variations in the ar-

gument of perilune and angle of ascending node of the Lunavator’s orbit

relative to the selenocentric frame as a result of the Moon’s oblateness:

the perifocal frame of the Lunavator’s orbit therefore has components

varying relative to the selenocentric frame which must be accounted for

where transforming from one coordinate frame to another. The position

of the Lunavator’s upper tip relative to the selenocentric frame is ob-

tained by the application of the perifocal to selenocentric transformation

matrix to the upper tip’s perifocal position vector:

~rLsu = RLV .~rLpu (7.17)

The transformation matrix between the Lunavator’s perifocal frame and

its selenocentric frame is denoted by RLV in equation (7.17) and is com-

posed entirely of components obtained from the payload’s hyperbola

about the Moon. This transformation matrix is identical to that for

the payload’s hyperbola about the Moon when the Lunavator is at the

optimum position for payload capture and launch operations but deviates

from this when oblateness effects have caused a precession of the Luna-

vator’s orbital elements, and prior to any manoeuvre required to correct

for variations in the hyperbola’s inclination relative to the Moon. The

Lunavator’s perifocal to selenocentric transformation matrix is defined

as follows:

RLV =


a11 a12 a13

a21 a22 a23

a31 a32 33

 (7.18)
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where

a11 = cosΩhcosωh − sinΩhsinωhcosih

a12 = −cosΩhsinωh − sinΩhcosωhcosih

a13 = sinΩhsinih

a21 = sinΩhcosωh + cosΩhsinωhcosih

a22 = −sinΩhsinωh + cosΩhcosωhcosih

a23 = −cosΩhsinih

a31 = sinωhsinih

a32 = cosωhsinih

a33 = cosih

with the subscript h notation denoting orbital parameters obtained from

the payload’s hyperbolic trajectory about the Moon. Implementing equa-

tions (7.10) and (7.18) into (7.17) yields a selenocentric upper tip position

of:

~rLsu =
[
b1 b2 b3

]T
(7.19)

where

b1 =LLsin(θL + ωh + ψL)− sinΩhcosih(rLsin(θL + ωh))

+ cosΩh(rLcos(θL + ωh) + LLcos(θL + ωh + ψL))

b2 =LLsin(θL + ωh + ψL) + cosΩhcosih(rLsin(θL + ωh))

+ sinΩh(rLcos(θL + ωh) + LLcos(θL + ωh + ψL))

b3 =sinih(rLsin(θL + ωh) + LLsin(θL + ωh + ψL))

The velocity of the upper tip relative to the selenocentric frame can be

obtained by deriving the selenocentric position vector, from equation

(7.17), with respect to time and is obtained as:

~vLsu = RLV .~vLpu + ṘLV .~rLpu (7.20)

where ṘLV is defined as the first derivative of equation (7.18) and is

obtained as:

ṘLV = Ω̇h


a11 a12 a13

a21 a22 a23

a31 a32 a33

+ ω̇h


b11 b12 b13

b21 b22 b23

b31 b32 b33

 (7.21)
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where

a11 = −sinΩhcosωh − cosΩhsinωhcosih

a12 = sinΩhsinωh − cosΩhcosωhcosih

a13 = cosΩhsinih

a21 = cosΩhcosωh − sinΩhsinωhcosih

a22 = −cosΩhsinωh − sinΩhcosωhcosih

a23 = −sinΩhsinih

a31 = 0

a32 = 0

a33 = 0

b11 = −cosΩhsinωh − sinΩhcosωhcosih

b12 = −cosΩhcosωh + sinΩhsinωhcosih

b13 = 0

b21 = −sinΩhsinωh + cosΩhcosωhcosih

b22 = −sinΩhcosωh − cosΩhsinωhcosih

b23 = 0

b31 = cosωhsinih

b32 = −sinωhsinih

b33 = 0

By implementing equations (7.10), (7.11), (7.18) and (7.21) into equation

(7.20) we obtain the selenocentric velocity of the upper tip as:

~vLsu =


−αLcosΩh − βLsinΩhcosih

−αLsinΩh + βLcosΩhcosih

γLsinih

 (7.22)

with αL, βL and γL are defined as:

αL =

√
µm
pL

(eLsinωh + sin(θL + ωh)) + (Ω̇hcosih + ω̇h)(rLsin(θL + ωh)

+ LLsin(θL + ωh + ψL)) + LL(θ̇L + ψ̇L)sin(θL + ωh + ψL) (7.23)
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βL =

√
µm
pL

(eLcosωh + cos(θL + ωh)) +

(
Ω̇h

cosih
+ ω̇h

)
(rLcos(θL + ωh)

+ LLcos(θL + ωh + ψL)) + LL(θ̇L + ψ̇L)cos(θL + ωh + ψL) (7.24)

γL =

√
µm
pL

(eLcosωh + cos(θL + ωh)) + ω̇h(rLcos(θL + ωh)

+ LLcos(θL + ωh + ψL)) + L(θ̇L + ψ̇L)cos(θL + ωh + ψL) (7.25)

At this point some clarification may be required: in the above equations

the rates of change of the argument of perilune and angle of ascending

node are the rates occurring within the Lunavator’s orbit as a result

of matching the Lunavator’s orbital elements to those of the payload’s

hyperbola about the Moon rather than any rate occurring within the

hyperbola itself which is considered fixed relative to the Moon at that

instant in time. The acceleration of the upper tip relative to the se-

lenocentric frame can be obtained by deriving the selenocentric velocity

vector, equation (7.20) with respect to time and is obtained as:

~aLsu = RLV .~aLpu + 2ṘLV .~vLpu + R̈LV .~rLpu (7.26)

Assuming that the rates of the argument of perilune and angle of as-

cending node are constant and unaccelerated, the second derivative with

respect to time of the perifocal to selenocentric transformation matrix is

obtained as:

R̈LV =


−ξa11 ξa12 −Ω̇2

ha13

−ξa21 ξa22 −Ω̇2
ha23

−ω̇2
ha31 −ω̇2

ha32 a33

+ 2Ω̇hω̇h


b11 b12 b13

b21 b22 b23

b31 b32 b33

 (7.27)
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where

a11 = cosΩhcosωh − sinΩhsinωhcosih

a12 = cosΩhsinωh + sinΩhcosωhcosih

a13 = sinΩhsinih

a21 = sinΩhcosωh + cosΩhsinωhcosih

a22 = (sinΩhsinωh − cosΩhcosωhcosih)

a23 = cosΩhsinih

a31 = sinωhsinih

a32 = cosωhsinih

a33 = 0

b11 = sinΩhsinωh − cosΩhcosωhcosih

b12 = sinΩhcosωh + cosΩhsinωhcosih

b13 = 0

b21 = −cosΩhsinωh − sinΩhcosωhcosih

b22 = −cosΩhcosωh + sinΩhsinωhcosih

b23 = 0

b31 = 0

b32 = 0

b33 = 0

with ξ defined as (Ω̇2
h + ω̇2

h). Implementing this into equation (7.26) we

obtain:

~aLsu =


−χ1cosΩh + (χ2 + Ω̇2

hηL)sinΩhcosih + χ3sinΩh − χ4cosΩhcosih

−χ1sinΩh − (χ2 + Ω̇2
hηL)cosΩhcosih − χ3cosΩh − χ4sinΩhcosih

χ2sinih


(7.28)

with the χn terms in equation (7.28) defined as:

χ1 =δL + 2ω̇hβL + (Ω̇2
h + ω̇2

h)ζL (7.29)

χ2 =εL + 2ω̇h(αL + ω̇hηL) (7.30)

χ3 =2Ω̇h(αL + ω̇hηL) (7.31)

χ4 =2Ω̇h(βL + ω̇hζL) (7.32)
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where δL, εL, ζL and ηL are defined as follows:

δL = ψ̈LLLsin(θL + ωh + ψL) +
GMM

r2
L

cos(θL + ωh) (7.33)

+ (θ̇L + ψ̇L)2LLcos(θL + ωh + ψL)

εL = −ψ̈LLLcos(θL + ωh + ψL) +
GMM

r2
L

sin(θL + ωh) (7.34)

+ (θ̇L + ψ̇L)2LLsin(θL + ωh + ψL)

ζL = rLcos(θL + ωh) + LLcos(θL + ωh + ψL) (7.35)

ηL = rLsin(θL + ωh) + LLsin(θL + ωh + ψL) (7.36)

As stated previously, by replacing the orbital elements in equations (7.19),

(7.22) and (7.28) with those of an arbitrarily inclined EMMET orbiting

Earth; its the position, velocity and acceleration of the components at

any point in its orbit can be obtained. Now that the selenocentric com-

ponents of the Lunavator have been derived, an expression for the max-

imum tension occurring within the tether as a result of its orbital and

rotational motion will be obtained with the aim of deriving an expression

for the maximum angular velocity that the Lunavator is capable of being

subjected to on an operational basis.

7.1.1 Maximum Tension and Rotational Velocity

Similarly to the derivation in section 4.2, the point of maximum tension

along the Lunavator’s sub-span occurs at the connection point between

the central facility and the lower tether sub-span, as a result of increased

gravitational attraction of the Moon on the lower payload and sub-span,

and occurs when the Lunavator is at the perilune of its orbit with its sub-

spans aligned along the local gravity gradient. At this point accelerations

resulting from the centrifugal force are largest. To derive this tension we

first obtain the tension acting on the payload and tether sub-span which

results from the increment in gravitational attraction as the payload and

sub-span are displaced from the Lunavator’s centre of mass, in addition

to the inertial acceleration terms arising from the Lunavator’s orbital and

rotational motion. Once we have obtained these expressions, we obtain

the tension acting at the lower sub-span’s point of connection to the

central facility by the application of Newton’s third law. To simplify the
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derivation some assumptions will be made a priori : firstly, it is assumed

that the tether sub-spans are at the required rotational velocity and that

there is no motor torque acting on the system; secondly, we assume that

the the tether sub-spans are aligned along the local gravity gradient with

the Lunavator at the perilune of its orbit about the Moon; thirdly, to

simplify the derivation and without loss of generality, we assume that

the argument of perilune of the Lunavator is zero. We begin by deriving

an expression for the tension acting on the lower payload of the Lunavator

at its instant of arrival at perilune.

Lower Payload Tension

The tension acting on the lower payload can be found in terms of the net

and gravitational forces acting on the payload. The net force results from

the Lunavator’s motion and is obtained as the product of the payload’s

mass and its net acceleration. The payload is assumed to be coincident

with the Lunavator’s lower tip, therefore the net acceleration acting on

the payload is identical to that defined for the lower tip by modifying

equation 7.28. The tension acting on the payload is defined as:

~TLp = mp~aLsl − ~Fg (7.37)

where ~Fg is the gravitational force of the Moon acting on the payload

and defined as:

~Fg = −GMM

r3
Lsl

~rLsl = − GMM

(rL − LL)2

[
cosΩh sinΩh 0

]T
(7.38)

The acceleration of the lower payload, ~aLsl, is obtained from equation

(7.28) by the addition of π radians to the tether rotation angle, ψL, and

is obtained as:

~aLsl = −aLsl.
[
cosΩh sinΩh 0

]T
(7.39)

where the magnitude of the payload’s acceleration, aLsl, is defined as

aLsl =

(
3(Ω̇2

h + ω̇2
h) + 4Ω̇hω̇hcosih +

2Ω̇hω̇h
cosih

)
(rL − LL)

− ((θ̇L + ψ̇L)2 + 2(Ω̇hcosih + ω̇h)(θ̇L + ψ̇L))LL

+ 2

√
µm
pL

(1 + eL)(Ω̇hcosih + ω̇h) +
GMM

r2
L

(7.40)
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Extracting the gravitational term from the lower tip acceleration, equa-

tion (7.39) can be re-written as:

~aLsl +
GMM

r3
L

~rL = −
(
aLsl −

GMM

r2
L

)
.
[
cosΩh sinΩh 0

]T
(7.41)

The tension acting on the payload can now be written in terms of the

force arising from the inertial and angular acceleration in addition to the

increment in gravitational force between the central facility and lower

payload:

~TLp = mp

(
~aLsl +

GMM

r3
L

~rL

)
−
(
~Fg +

GMMmp

r3
L

~rL

)
(7.42)

with the increment in gravitational force simplifying to:

(
~Fg +

GMMmp

r3
L

~rL

)
= −GMMmp

(
1

(rL − LL)2
− 1

r2
L

)
cosΩh

sinΩh

0

 (7.43)

Extracting the radial terms in equation (7.43) and applying a binomial

series expansion for
(
LL

rL

)
< 1 yields:

1

(rL − LL)2
− 1

r2
L

=
1

r2
L

(
2

(
LL
rL

)
+ 3

(
L2
L

r2
L

)
+ 4

(
L3
L

r3
L

)
+ ...

)
(7.44)

Retaining up to squared terms only we obtain:

υP =
1

r2
L

(
2

(
LL
rL

)
+ 3

(
L2
L

r2
L

))
(7.45)

We now define the magnitude of the inertial and rotational accelerations

which comprise the second part of the first term in equation (7.42) as:

λP =

(
3(Ω̇2

h + ω̇2
h) + 4Ω̇hω̇hcosih +

2Ω̇hω̇h
cosih

)
(rL − LL)

− ((θ̇L + ψ̇L)2 + 2(Ω̇hcosih + ω̇h)(θ̇L + ψ̇L))LL

+ 2

√
µm
pL

(1 + eL)(Ω̇hcosih + ω̇h) (7.46)

The tension acting on the lower payload can now be defined as:

~TLp = mp (λP +GMMυP )
[
cosΩh sinΩh 0

]T
(7.47)

Applying Newton’s third law, we obtain the tension acting as a result of

the central facility, at the connection point to the central facility as:

~TLP = −mp (λP +GMMυP )
[
cosΩh sinΩh 0

]T
(7.48)

We now now derive an expression for the tension acting at the connection

point which results from the lower tether sub-span.
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Lower Lunavator Sub-span Tension

To calculate the total tension acting along the tether sub-span we use

a method identical to that outlined in section 4.2, by obtaining an ex-

pression for the tension acting on an infinitesimal mass element of the

sub-span an arbitrary distance along the sub-span’s length and we can

integrate this expression over the entire length to obtain the total ten-

sion along the sub-span. We begin by defining the tension acting on the

infinitesimal mass element an arbitrary distance s along the sub-span as:

~TLs = δm (λs +GMMυs)
[
cosΩh sinΩh 0

]T
(7.49)

with λs and υs defined as:

λs =

(
3(Ω̇2

h + ω̇2
h) + 4Ω̇hω̇hcosih +

2Ω̇hω̇h
cosih

)
(rL − sL)

− ((θ̇L + ψ̇L)2 + 2(Ω̇hcosih + ω̇h)(θ̇L + ψ̇L))sL

+ 2

√
µm
pL

(1 + eL)(Ω̇hcosih + ω̇h) (7.50)

υs =
1

r2
L

(
2

(
sL
rL

)
+ 3

(
s2
L

r2
L

))
(7.51)

The tension acting on the infinitesimal element can be re-defined in terms

of a magnitude of force directed along the sub-span’s length as:

~TLs = δm (λs +GMMmpυs)~is (7.52)

Where the unit vector along the sub-spans length, ~is, is defined as:

~is =
[
cosΩh sinΩh 0

]T
(7.53)

Writing the element’s mass in terms of the sub-span’s material density,

cross sectional area and infinitesimal length δs, the tension acting on the

element can be expressed as:

~TLs = (ρA (λs +GMMmpυs) δs)~is (7.54)

The total tension acting over the entire tether sub-span is obtained by

integrating equation (7.54) over the entire sub-span length and from this

we obtain:

~TLt = mTL (λL +GMMmpυL)~is (7.55)
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where the total mass of the tether is mT = ρALL, with λL and υL defined

as:

λL =

(
3(Ω̇2

h + ω̇2
h) + 4Ω̇hω̇hcosih +

2Ω̇hω̇h
cosih

)(
rL
LL
2

)
− ((θ̇L + ψ̇L)2 + 2(Ω̇hcosih + ω̇h)(θ̇L + ψ̇L))

(
LL
2

)
+ 2

√
µm
pL

(1 + eL)(Ω̇hcosih + ω̇h) (7.56)

υL =
1

r2
L

((
LL
rL

)
+

(
LL
rL

)2
)

(7.57)

Applying Newton’s third law, we obtain the tension acting at the con-

nection to the central facility resulting from the entire sub-span as:

~TLT = −mTL (λL +GMMmpυL)~is (7.58)

Now that we have obtained expressions for the tensions acting at the con-

nection point due to the payload and sub-span separately, an expression

for the total tension acting at this point will now be obtained.

Maximum Tension and Angular Velocity

The maximum tension acting at the connection point between the central

facility and lower tether sub-span can now be found as the vector sum of

the tension acting at the connection point as a result of the payload and

the tether sub-span and is defined as:

~Tnet = ~TLP + ~TLT = Tnet~is

= − (mTL (λL +GMMυL) +mp (λP +GMMυP ))~is (7.59)

The magnitude of the tension acting on the connection point is defined

as:

Tnet = −

(
3(Ω̇2

h + ω̇2
h) + 4Ω̇hω̇hcosih +

2Ω̇hω̇h
cosih

)
(mp +mTL)rL

−

(
3(Ω̇2

h + ω̇2
h) + 4Ω̇hω̇hcosih +

2Ω̇hω̇h
cosih

)(
mp +

mTL

2

)
LL

+
(

((θ̇L + ψ̇L)2 + 2(Ω̇hcosih + ω̇h)(θ̇L + ψ̇L))LL

)(
mp +

mTL

2

)
− GMM

r2
L

(
(2mp +mTL)

(
LL
rL

)
+ (3mp +mTL)

(
LL
rL

)2
)

−
(

2

√
µm
pL

(1 + eL)(Ω̇hcosih + ω̇h)

)
(mp +mTL) (7.60)
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Having defined the maximum tension acting at the lower sub-span’s point

of connection to the central facility, we substitute in an expression for

the tension in terms of the maximum tensile stress that the material can

endure, tether cross sectional area and factor of safety, defined in equation

(4.62), into equation (7.60) and re-arrange the resulting equation to make

the maximum angular rotational velocity, ψ̇L, of the tether sub-spans the

subject of the equation. The maximum angular velocity of the Lunavator

sub-spans is therefore obtained as:

ψ̇L =√
1(

mp + mTL

2

)
LL

((σmax
SF

)
A+ νL

)
+ (Ω̇hcosih + ω̇h)2

− (θ̇L + Ω̇hcosih + ω̇h) (7.61)

with νL defined as:

νL =

(
3(Ω̇2

h + ω̇2
h) + 4Ω̇hω̇hcosih +

2Ω̇hω̇h
cosih

)
(mp +mTL)rL

+

(
3(Ω̇2

h + ω̇2
h) + 4Ω̇hω̇hcosih +

2Ω̇hω̇h
cosih

)(
mp +

mTL

2

)
LL

+
GMM

r2
L

(
(2mp +mTL)

(
LL
rL

)
+ (3mp +mTL)

(
LL
rL

)2
)

+

(
2

√
µm
pL

(1 + eL)(Ω̇hcosih + ω̇h)

)
(mp +mTL) (7.62)

This takes a similar form to those for the EMMET’s maximum angu-

lar velocity in both cases and contains terms for both precessional rates.

By replacing the elements in equation (7.61) by those of an arbitrarily

inclined EMMET in orbit about Earth, the maximum angular velocity

that the EMMET’s sub-spans can withstand can be obtained. Having

obtained an expression for the maximum angular velocity that the Lu-

navator sub-spans can safely rotate at, we will turn our attention to

obtaining expressions for the velocity changes required for the orbital

adjustments which will keep the Lunavator correctly positioned relative

to the Moon to ensure that it has the correct position to perform payload

capture and launch operations.
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7.2 Orbital Adjustments

Due to the necessity for the Lunavator’s orbit to be arranged such that

its upper tip velocity matches that of the payload’s hyperbola at per-

ilune, no arrangements can be made to negate the effects of oblateness

on the Lunavator’s orbital elements, and subsequently both the angle of

the ascending node and the argument of perilune will have secular rates

which result in a deviation of the Lunavator from the optimum position

to perform payload catch and throw operations. Adjustments to these

orbital elements are therefore necessary to ensure that the Lunavator is

correctly aligned for operations, and allocations must be made to include

the change in these elements between the time of the manoeuvre and

the instants of payload capture and launch. In addition to this adjust-

ments to the orbital inclination of the Lunavator will also be undertaken

to match its inclination with that of the payload’s current hyperbola

about the Moon which varies as a result of the circumlunar trajectory

design and the complex motion of the Moon; the change in the secular

rates of the argument of perilune, and the ascending node angle due to

this change in inclination must also be accounted for. Three separate

manoeuvres will be undertaken which will firstly adjust the angle of as-

cending node, secondly, adjust its argument of perigee and finally, adjust

the orbital inclination of the Lunavator’s orbit which, when these are

complete, will result in the correct alignment of that orbit. Furthermore,

by separating these orbital adjustments into individual procedures we

ensure that the initial and final orbits in each case actually intersect as

this is not necessarily the case when taking into account the deviations in

the ascending node, argument of perilune and orbital inclination between

the initial and final orbits. To find the change in velocity necessary to

perform these orbital adjustments, we must first obtain the true anomaly

in each orbit at which the manoeuvre must be performed and secondly,

obtain the velocity vector of the Lunavator in each orbit at these true

anomalies. The required velocity change is then, simply, the vector re-

quired to rotate the Lunavator’s velocity vector at the true anomaly of

manoeuvre.
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7.2.1 Ascending Node Adjustment

According to Vallado [42], the ascending node of an elliptical orbit can

be modified by a single impulse manoeuvre occurring at one of two com-

mon points of intersection between the current and required orbit. To

alter the Lunavator’s orbit about the Moon from the initial orbit to the

final orbit necessary for operations, three manoeuvres are necessary. The

first manoeuvre alters the Lunavator’s angle of ascending node to the re-

quired angle without modification to its argument of perilune or orbital

inclination. This ensures that the alteration to the argument of perilune

and inclination consist simply of rotations of the Lunavator’s velocity

vector at the true anomaly of intersection and node point, respectively.

To obtain the velocity required to perform the adjustment we first obtain

the true anomalies of the two points in each orbit at which intersection

occurs. To obtain the true anomaly of intersection a method similar to

section 3.2 is utilised; firstly, the selenocentric components at the point

of intersection of the two orbits are equated and we substitute in the

polar form for the perifocal (x,y) components, in this case only the angle

of ascending node differs in both orbits. Again, we find an expression

relating the true anomaly in the first orbit to that of the second orbit

using the equated Km components of the selenocentric frame and from

this find that the intersection occurs at the same true anomaly in both

orbits. We then substitute in the same true anomaly into the equated

Im components and obtain the expressions for the true anomaly of inter-

section in the first and second orbits in terms of the angle of ascending

node, argument of perigee and orbital inclination. The true anomaly of

the first point of intersection in the first orbit can be obtained as:

θ1 = tan−1

(
−tan

(
Ω1 +

∆ΩL

2

)
sec(i1)

)
− ω1 (7.63)

with the subscript (1) denoting components of the Lunavator’s first or-

bital configuration and ∆ΩL denoting the change in the Lunavator’s angle

of ascending node. The second point of intersection in the first orbit is

displaced by π radians from this first point of intersection. Likewise, the

true anomaly at the first point of intersection in the second orbit can be
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obtained as:

θ2 = tan−1

(
−tan

(
Ω2 −

∆ΩL

2

)
sec(i1)

)
− ω1 (7.64)

With the subscript (2) denoting components of the Lunavator’s second

orbit. Again, the second point of intersection is displaced π radians from

this point in the second orbit. The change in velocity required to alter

the Lunavator’s angle of ascending node from the first to the second

orbit is most simply obtained as the rotation of the Lunavator’s velocity

vector at the point of intersection in the first orbit through an angle

equal to the change in argument of perigee about the Moon’s polar axis.

This rotation matrix is again obtained using the Rodriguez formula [44],

[45] and is obtained as a modified version of equation (3.22), with skew-

symmetric matrix San identical to the skew-symmetric matrix defined in

equation (3.23), and obtained as:

RKm(∆ΩL) = [I + Sansin∆ΩL + S2
an(1− cos∆ΩL)] (7.65)

The velocity of the Lunavator in the second orbit is obtained by the ap-

plication of the rotation matrix defined in equation (7.65) to the velocity

vector in the first orbit, defined in equation (7.22). From this we obtain

an equation analogous to equation (3.26) thus obtaining the change in

velocity required to perform the manoeuvre in terms of the velocity of

the first orbit and the rotation matrix. The change in velocity is obtained

and simplified using a linear combination of trigonometric terms [43] as:

∆~vLV−AN =
[
γ δ 0

]T
(7.66)

with

γ =− (α1cosΩ1 + β1sinΩcosi1)(cos(∆ΩL)− 1)

+ (α1sinΩ1 − β1cosΩcosi1)sin(∆ΩL)

δ =− (α1cosΩ1 + β1sinΩcosi1)sin(∆Ω)

− (α1sinΩ1 − β1cosΩcosi1)(cos(∆Ω)− 1)

with α1 and β1 defined as:

α1 =

√
µm
pL

(eLsinω1+sin(θ1 + ω))+(Ω̇1cosi1+ω̇1)r1sin(θ1 + ω1) (7.67)
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β1 =

√
µm
pL

(eLcosω1 + cos(θ1 + ω)) +

(
Ω̇1

cosi1
+ ω̇1

)
r1cos(θ1 + ω1)

(7.68)

with Ω̇1 and ω̇1 denoting the secular rates of the ascending node and

argument of perilune, respectively, at the current inclination of the first

orbit and subscript L denoting invariant elements which are constants

of the Lunavator’s orbit. Now that we have obtained an expression for

the change in velocity required to adjust the angle of ascending node

of the Lunavator’s orbit we will now obtain a similar expression for the

change in velocity required to perform the adjustment to the Lunavator’s

argument of perilune.

7.2.2 Argument of Perilune Adjustment

Having performed the adjustment to align the ascending node of the Lu-

navator’s orbit correctly, the adjustment to the argument of perilune is

achieved by rotating the argument of perilune of the Lunavator’s second

orbital configuration within the orbital plane to the correct alignment

with the third orbital configuration in preparation for the Lunavator to

perform catch and throw operations. We obtain the true anomaly of in-

tersection by utilising the method of subsection 3.3.1 and by equating the

selenocentric components of the second and third orbital configurations

we obtain:

θ2 = θ3 + ∆ωL (7.69)

This makes physical sense as a positive rotation of the argument of per-

ilune from the second to third orbits will reduce the true anomaly of

intersection in the third orbit. By rewriting the equated Im components

in terms of a single true anomaly, an equation for the true anomaly at

the first point of intersection can be obtained for each orbit. The true

anomaly of intersection in the second orbit is obtained as:

θ2 =
∆ωL

2
(7.70)

With the true anomaly at the point of intersection in the third orbit

obtained as:

θ3 = −∆ωL
2

(7.71)
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where ∆ωL is defined as the change in argument of perilune of the Luna-

vator’s orbit. As was the case with the ascending node adjustment, the

second of point of intersection in both orbits is displaced π radians from

the first point. By examining the velocity vectors of the orbits at their

points of intersection, as was done in subsection 3.3.1, we find that the

only difference in their respective velocity vectors is in the direction of

the Im velocity components. Therefore, the manoeuvre to be performed

at the point of intersection between the second and third orbits consists,

simply, of a rotation of the second velocity vector at the point of inter-

section about the Wm direction of the Lunavator’s perifocal frame. To

obtain the required rotation matrix, we once again employ the Rodriguez

formula which requires that we obtain the direction of the rotation axis

relative to the selenocentric frame of reference; this can be obtained easily

by transforming the unit vector directed along the Wm direction of the

Lunavator’s perifocal frame into the selenocentric frame, and is obtained

as:

iWm =


sinΩhsini1

−cosΩhsini1

cosi1

 (7.72)

where the subscript h denotes the Lunavator’s orbital elements that are

matched to the elements of the payload’s hyperbola about the Moon,

which at this configuration is only the ascending node angle. The skew-

symmetric matrix, Sap, required for the application of the Rodriguez

formula can be obtained as:

Sap =


0 −cosi1 −cosΩhsini1

cosi1 0 −sinΩhsini1

cosΩhsini1 sinΩhsini1 0

 (7.73)

The rotation matrix can therefore be defined as:

RWm(∆ωL) = [I + Sapsin∆ωL + S2
ap(1− cos∆ωL)] (7.74)

Utilising equation (7.74), the velocity of the Lunavator at the point of

intersection in the third orbit can be written in terms of the rotation

matrix and the velocity of the Lunavator in the second orbit. The change

in velocity required to perform the adjustment can therefore be written
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solely in terms of the rotation matrix and the velocity of the Lunavator

in the second orbit as:

∆~vLV−AP = (RWm − I)~v2 (7.75)

where ~v2 is defined as:

~v2 =


−α2cosΩh − β2sinΩhcosi1

−α2sinΩh + β2cosΩhcosi1

γ2sini1

 (7.76)

with α2, β2 and γ2 are defined as:

α2 =

√
µm
pL

(
eLsinω1 + sin

(
ω1 +

∆ωL
2

))
(7.77)

+ (Ω̇1cosi1 + ω̇1)r2sin

(
ω1 +

∆ωL
2

)
β2 =

√
µm
pL

(
eLcosω1 + cos

(
ω1 +

∆ωL
2

))
(7.78)

+

(
Ω̇1

cosi1
+ ω̇1

)
r2cos

(
ω1 +

∆ωL
2

)
γ2 =

√
µm
pL

(
eLcosω1 + cos

(
ω1 +

∆ωL
2

))
(7.79)

+ r2ω̇1cos

(
ω1 +

∆ωL
2

)
Having obtained expressions for the changes in velocity required to al-

ter the Lunavator’s argument of perilune to that required to obtain the

optimum position for catch and throw operations we will now derive the

velocity required to alter the inclination of the Lunavator’s orbit to the

correct value.

7.2.3 Inclination Adjustment

The third and final adjustment to be performed which completes the

alignment of the Lunavator with the optimum position for catch and

throw operations is the alteration to the Lunavator’s orbital inclination.

According to Vallado [42], alterations to the inclination of an orbit, with-

out affecting the angle of ascending node, must be conducted at either

the ascending and descending node of the orbit at the instant that it

crosses the orbital plane. By definition, the true anomaly at which an
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orbit crosses its ascending node is:

θAN = 2π − ω (7.80)

As the inbound hyperbola is configured such that it enters the LSI above

and in front of the Moon and exits behind and below it, the perilunes

of the Lunavator and inbound hyperbola occur close to the descending

node of their orbits. Therefore, to reduce the magnitude of the veloc-

ity changes required to alter the Lunavator’s inclination the manoeuvre

should be undertaken close to the apolune (furthest point in the orbit

from the Moon) of the Lunavator’s orbit at its ascending node. The

change in velocity required to alter the Lunavator’s inclination from the

third orbital configuration to the final configuration is most simply ob-

tained using the Rodriguez formula [44], [45] and consists of the rota-

tion of the Lunavator’s velocity vector at the ascending node of its orbit

through an angle equal to the change in inclination and about an axis

directed along the Lunavator’s line of node which has a unit vector rel-

ative to the selenocentric frame. Initially defining the unit vector of the

ascending node at its true anomaly in the perifocal frame, with its true

anomaly is obtained by equation (7.80), as:

~iAN−P =
[
cosωh −sinωh 0

]T
(7.81)

Applying the Lunavator’s perifocal to selenocentric transformation ma-

trix but in this case with the inclination terms replaced by those of the

Lunavator’s inclination prior to the adjustment manoeuvre, we obtain

the unit vector relative to the selenocentric frame about which the Lu-

navator’s vector must be rotated to obtain our required inclination as:

~iAN =
[
cosΩh sinΩh 0

]T
(7.82)

This results in the skew-symmetric matrix required for the Rodriguez

formula as:

Si =


0 0 sinΩh

0 0 −cosΩh

−sinΩh cosΩh 0

 (7.83)

The rotation matrix for the adjustment to the Lunavator’s inclination

can be expressed as:

R(∆i) = [I + Sisin∆i+ S2
i (1− cos∆i)] (7.84)
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Once again, the change in velocity required to perform the adjustment

can be written solely in terms of the rotation matrix and the velocity of

the Lunavator in the final orbital configuration as:

∆~vLV−i = (R(∆i)− I)~v3 (7.85)

where ~v3 is the Lunavator’s velocity vector at its ascending node and is

defined as:

~v3 =


−α3cosΩh − β3sinΩhcosi1

−α3sinΩh + β3cosΩhcosi1

γ3sini1

 (7.86)

with α3, β3 and γ3 are defined as:

α3 =

√
µm
pL

(eLsinωh) (7.87)

β3 =

√
µm
pL

(1 + eLcosωh) +

(
Ω̇1

cosi1
+ ω̇1

)
r2 (7.88)

γ3 =

√
µm
pL

(1 + eLcosωh) + r2ω̇h (7.89)

Having obtained expressions for the velocity changes required to alter the

Lunavator’s orbital elements, our attention will now turn to obtaining

data by means of simulations of the magnitude of these velocity changes

in addition to determining whether a zero relative velocity of the Luna-

vator’s lower tip relative to the Moon’s surface is a realistic objective.

7.3 Lunavator Simulations and Data

Now that expressions for the Lunavator’s maximum angular velocity have

been obtained, its upper and lower tip velocities, in addition to the

changes in velocity required to adjust the central facilities’ orbit; sim-

ulations will now be carried out to establish, firstly, the magnitude of

the rate of precession of the Lunavator’s orbital elements, secondly, the

magnitude of the adjustments required to correctly align the Lunavator,

and finally, whether the maximum angular velocity that the Lunavator’s

sub-spans can be subjected to is sufficient to allow us to obtain a zero rel-

ative velocity between the Lunavator’s lower tip and the Moon’s surface

and if obtainable what are the constraints upon this velocity match.
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7.3.1 Secular Rates for Orbital Elements

Although the effects of the Moon’s oblateness are small compared to those

of the Earth’s, the Moon’s second zonal harmonic is approximately a fifth

of that of Earths, the proximity of the Lunavator’s orbit to the Moon

results in a magnification of this phenomenon and results in its effects

being of a comparable magnitude to those experienced by the EMMET

in orbit about Earth. The secular rate of the Lunavator’s argument

of perilune which results from these oblateness effects can be obtained

using equation 5.1 and is the same equation as that for the effects of

Earth’s oblateness on the argument of perigee of the EMMET’s orbit. In

this case, the inclination of the Lunavator’s orbit is matched to that of

the payload’s hyperbola about the Moon, the gravitational parameter of

the Moon, µm, is 4902 km3s−2 [47] and the Moon radius, RM , is 1738

km [41]. The semi-major axis and eccentricity of the Lunavator’s orbit

are obtained by the application of equations (5.3) and (5.5) respectively

with the orbital period of the Lunavator’s orbit satisfying the logistical

requirement defined in equation (2.2). In addition to the secular rate for

the Lunavator’s argument of perilune, the angle of ascending node also

has a secular rate which can be obtained via the following equation:

Ω̇ = −

[
3

2

√
µmJ2RM

2

(1− e2
L)

2
a

7/2
L

]
cosi (7.90)

The rate at which the Lunavator’s argument of perilune precesses as

a result of a variation in its orbital inclination was simulated using a

tether sub-span length of 29.262 km, a central facility perilune distance

of 1770.738 km, an orbital harmonic, m, between the Moon and EMMET

of 130 and an orbital harmonic, n, between the EMMET and Lunavator

of 3. The Lunavator’s sub-spans were again assumed to be composed

of Spectra 2000 material with the same material properties that were

specified in Chapter 5. In this instance the data was generated using code

written in MATHEMATICA
TM

and a plot of precessional rate against

orbital inclination was obtained and is shown in Figure 7.1. As expected,

the rate of change of the Lunavator’s argument of perilune decreases

with increasing inclination and changes from a positive precession to a

negative regression as it crosses the critical inclination of 1.157 radians
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Figure 7.1: Rate of argument of perilune against inclination

Figure 7.2: Rate of argument of perilune against orbital harmonic mn

(66.3◦). The rate of variation of the argument of perilune is smaller than

that about Earth but of a similar magnitude. Similarly, the argument

of perilune’s rate varies as the eccentricity and semi-major axis vary as

a result of adjustments to the Lunavator’s orbital harmonic, mn, with

the Moon. Maintaining the Lunavator’s perilune distance and sub-span

length whilst setting the orbital inclination to 0.5 radians (28.65◦) we

again obtain a plot of the Lunavator’s rate of argument of perilune and

this is shown in Figure 7.2. From this it can be easily seen that the

Lunavator’s rate of argument of perilune increases with increasing orbital

harmonic with the Moon and this correlates to the Lunavator’s orbit

being brought increasingly closer to the Moon as its semi major axis

decreases and these effects are evident in the increased rate of variation

of the argument of perilune of the Lunavator’s orbit.

The rates at which the angle of ascending node of the Lunavator’s or-

bit varies as a result of this oblateness can also be determined when vari-

ations in the orbital inclination, semi-major axis and orbital eccentricity

are considered. Maintaining a Lunavator sub-span length of 29.262 km,
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Figure 7.3: Rate of ascending node against inclination

Figure 7.4: Rate of ascending node against orbital harmonic mn

a central facility perilune distance of 1770.738km, an orbital harmonic,

m, of 130 and an orbital harmonic, n, of 3; the rate at which the preces-

sion of the angle of the ascending node occurred was determined when

the inclination was varied between 0 and 90◦ and the results of this are

shown in Figure 7.3. As expected, the maximum rate of regression of

the ascending node occurs when the Lunavator is in an almost equato-

rial Moon orbit when the attractive influence of the Moon’s equator is

most strongly felt. This attractive influence decreases as the inclination

increases and becomes zero when the Lunavator’s inclination equals that

of a polar orbit. The angle of ascending node also varies as the eccentric-

ity and semi-major axis vary as a result of adjustments to the Lunavator’s

orbital harmonic, mn with the Moon. Maintaining perilune distance and

sub-span length and setting the orbital inclination to 0.5 radians (28.65◦)

we obtain a plot of the Lunavator’s rate of angle of ascending node and

the plot obtained is shown in figure 7.4. These results show an increase

in the rate of the angle of ascending node as the semi-major axis and

orbital eccentricity of the Lunavator’s orbit decrease and corresponds to

an increase in the attractive influence of the Moon’s equator as the Lu-
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navator becomes increasingly closer to the Moon throughout its orbit as

the geometry of its orbit decreases.

It has been shown that the oblateness effects of the Moon, although

small in comparison to those of the Earth, have effects of comparable

magnitude due to the Lunavator’s proximity to the Moon. Therefore, as

stated earlier, adjustments to the Lunavator’s orbital parameters must be

carried out with a similar frequency to those performed for the EMMET

to minimise the velocity required to perform these adjustments.

7.3.2 Upper and Lower Tip Velocities

Having obtained data for the rate at which the angle of ascending node

and argument of perilune vary as a result of variations in orbital inclina-

tion and the Lunavator’s orbital harmonic with the Moon, the upper and

lower tip velocities that the Lunavator is capable of producing when its

inclination, orbital harmonic with the Moon, perilune distance and tether

sub-span length are varied will now be obtained. Plots of the gathered

data will be produced with the aim of determining whether a zero rela-

tive velocity between the Lunavator’s lower tip and the Moon’s surface

is a realistic objective and if so, what is the required upper tip velocity

and whether a practical hyperbolic trajectory of the payload about the

Moon be configured in this event.

Noting that the rates of the angle of ascending node and argument of

perilune are small in magnitude in comparison to the orbital velocity, the

main proportion of the tip velocities of the Lunavator are a result of the

orbital and sub-span rotational velocities and are not due to these oblate-

ness effects, we therefore will focus our attention on variations in the

Lunavator’s orbital parameters through variation in perilune distance.

This is achieved by means of adjustment to the Lunavator’s orbital har-

monic with the Moon, and through rotational parameters by means of

variation in the perilune distance of the payload’s hyperbolic trajectory

about the Moon, so this subsequently determines Lunavator’s sub-span

length and central facility distance, we will therefore set the inclination

of the Lunavator’s orbit to 0.5 radians for the remainder of this chapter.

Plotting the lower tip velocity of the Lunavator, using a modified form
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Figure 7.5: Lunavator’s lower tip velocity at perilune

of equation (7.22), against variations in both orbital harmonic with the

Moon, mn, between a range of 130 and 500 and varying the payload’s hy-

perbolic perilune position between 1761.476 and 2000km, corresponding

to a Lunavator sub-span range between 10 and 129.262km, we obtain a

3-dimensional plot of the variation in the Lunavator’s lower tip, and this

is shown in Figure 7.5. From this it is indeed evident that the Lunavator

is in fact capable of producing a zero relative velocity at its lower tip

for a range of sub-span lengths, and this zero relative velocity can be

identified as the border between the light and darker blue regions of the

plot. Furthermore, the light blue region indicates the regions where the

lower tip has a positive velocity in the same direction as the Lunavator’s

orbital motion and the darker region indicates that the sub-span’s rota-

tional rate in combination with its length, is of sufficient magnitude to

negate orbital velocity in addition to producing a net lower tip velocity

in the direction opposite to orbital motion. A plot of the Lunavator’s

upper tip velocity was obtained over this same data range by utilising

equation (7.22) and this is shown in Figure 7.6. This produces a range of

upper tip velocities between 2.6 and 3.7 kms−1 with a decrease in veloc-

ity, correlating with an increase in the Lunavator’s orbital harmonic with

the Moon. This is unsurprising given that the Lunavator’s orbital geom-

etry and perilune velocity decrease with increasing orbital harmonic. An

increase in the upper tip velocity is found to correspond to an increase

in tether sub-span length, with the maximum velocity occurring when

the orbital harmonic is at a minimum and sub-span length is at a max-

imum. Our attention now turns to determining the magnitude of the
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Figure 7.6: Lunavator’s upper tip velocity at perilune

orbital adjustments required to position the Lunavator correctly for pay-

load capture and throw operations, with the aim of obtaining an estimate

of the required changes in velocity for this to occur. However, it remains

to be determined whether a practical hyperbolic perilune velocity for the

payload is obtainable at the Lunavator’s upper tip which will produce

a zero relative velocity at the lower tip and this will be examined in

Chapter 8.

7.3.3 Orbital Adjustment Velocity Requirements

The magnitude of the velocity changes necessary to perform the orbital

adjustments required to align correctly the Lunavator will now be deter-

mined when the orbital harmonic between the Lunavator and Moon is

varied. For simplicity and without loss, we set the angle of the ascending

node and argument of perilune of the Lunavator’s orbit equal to zero

in equation (7.66) which yields a required change in velocity for some

arbitrary increment in the Lunavator’s angle of ascending node as:

∆~vLV−AN = −


α1(cos(∆ΩL)− 1) + β1cosi1sin(∆ΩL)

α1sin(∆ΩL)− β1cosi1(cos(∆ΩL)− 1)

0

 (7.91)

with α1 and β1 defined as:

α1 =

(√
µm
pL

+ (Ω̇1cosi1 + ω̇1)r1

)
sin(θ1) (7.92)

βi =

√
µm
pL
eL +

(√
µm
pL

+

(
Ω̇1

cosi1
+ ω̇1

)
r1

)
cos(θ1) (7.93)
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Figure 7.7: Velocity change for ascending node adjustment

The true anomaly at the point of intersection in the first orbital configu-

ration for some arbitrary increment in the Lunavator’s angle of ascending

node is defined as:

θ1 = tan−1

(
−tan

(
∆ΩL

2

)
sec(i1)

)
(7.94)

The rate at which the angle of the ascending node of the Lunavator’s

orbit precesses is greatest at low inclinations, however for equatorial or-

bits, zero orbital inclination, the angle of ascending node and argument of

perilune become undefined because there is no equatorial crossing point

and any precessional effects are combined and termed precession of the

longitude of perilune. We therefore take the worst case scenarios for the

rate of ascending node when the Lunavator is at low inclinations and

in our simulation of the change in velocity required to perform the ad-

justment to the angle of ascending node we take our orbital inclination

as 0.1 radians (5.73◦). In addition to this, we take a Lunavator central

facility perilune altitude of 1770.738 km resulting in a sub-span length of

29.262km, and finally assuming the manoeuvre to occur at the first point

of intersection between the first and second orbital configurations, data

of the change in velocity required to perform the manoeuvre each time

the Lunavator becomes unladen, which correlates to the adjustment in

ascending node required to correct for the deviation in optimum position

occurring in the time period for the orbit of the Moon about Earth, was

obtained when the Lunavator’s orbital harmonic was varied, this plot is

shown in Figure 7.7. It is evident from this data that a one-to-one corre-

lation between the orbital period of the EMMET and Lunavator may be
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the preferred choice to minimise the change in velocity required for the

adjustment to the Lunavator’s ascending node. The maximum velocity

change correlates to a change in ascending node angle of π radians.

Our attention now turns to the required change in velocity required to

adjust the Lunavator’s argument of perilune which will also be designed

to occur when the Lunavator is fully unladen and at the point of in-

tersection between the second and third orbital configurations occurring

closest to apolune. We again assume, for the purposes of simplification,

that the argument of perilune and angle of ascending node are both zero

in the second orbit, and from equations (7.75) and (7.76) we obtain the

required change in velocity as:

∆~vLV−AP = (RWm − I)


−α2

β2cosi1

γ2sini1

 (7.95)

Defining the true anomaly in the second orbit at the point of intersection

closest to apogee as:

θ2 = π +
∆ωL

2
(7.96)

The components α2, β2 and γ2 of equation 7.85 are defined as:

α2 =−
√
µm
pL
sin

(
∆ω

2

)
− (Ω̇1cosi1 + ω̇1)r2sin

(
∆ω

2

)
(7.97)

β2 =

√
µm
pL

(
eL − cos

(
∆ω

2

))
−

(
Ω̇1

cosi1
+ ω̇1

)
r2cos

(
∆ω

2

)
(7.98)

γ2 =

√
µm
pL

(
eL − cos

(
∆ω

2

))
− r2ω̇1cos

(
∆ω

2

)
(7.99)

The matrix, (RWm − I), to be directly applied to the second orbit’s

velocity becomes: 
a11 a12 a13

a21 a22 a23

a31 a32 a33


(7.100)
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Figure 7.8: Velocity change for argument of perilune adjustment

where

a11 = −cos2i1 + cos2i1cos∆ω

a12 = −cosi1sin∆ω

a13 = 0

a21 = cosi1sin∆ω

a22 = −cos2i1 + cos2i1cos∆ω

a23 = 0

a31 = 0

a32 = 0

a33 = 0

Utilising the parameters used for the ascending node case, the change in

velocity required to adjust the argument of perilune between the second

and third orbital configurations was plotted against the variation in the

Lunavator’s orbital harmonic with the Moon, this plot is shown in Figure

(7.8). This again supports the case for a one-to-one correlation between

the Lunavator and EMMET’s orbital periods.

Our attention now turns to the change in velocity required to adjust

the Lunavator’s inclination which is designed to occur when the Luna-

vator is at the ascending node of its orbit and close to, or at, apolune.

Without loss of generality we can assume that the ascending node of the

Lunavator’s orbit is π radians and this results in the change in velocity

between the third and final orbital configurations obtained from equation
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Figure 7.9: Velocity change required for Lunavator’s inclination adjustment

against mn

(7.86) as:

∆~vLV−i =


0

−β3cosi(1− cos∆i) + γ3sinisin∆i

−β3cosisin∆i− γ3sini(1− cos∆i)

 (7.101)

Initially, the change in velocity required to perform some arbitrary change

in inclination is obtained from equation (7.101) as a function of the

change in argument of perilune of the Lunavator’s orbit in addition to

the change in orbital harmonic. To arrange the perilune the Lunavator’s

orbit to occur close to its descending node, the argument of perilune

must be close to π radians in addition to the ascending node also be-

ing π radians. Setting the initial inclination of the Lunavator’s orbit to

45.84◦ with a central facility perilune altitude of 1770.503km, the veloc-

ity change required to alter the inclination of the Lunavator’s orbit by

1◦ when variations in the orbital harmonic and argument of perilune are

made is shown in Figure (7.9). From Figure (7.9) it can be seen that

the velocity change required increases with increasing orbital harmonic

and this is a result of the Lunavator’s ascending node velocity increasing

as the orbital geometry decreases. In addition to this, the velocity ad-

justment is minimised when the argument of perilune of the Lunavator’s

orbit is exactly π radians and this is a result of the Lunavator’s ascend-

ing node coinciding exactly with the Lunavator’s apolune and results in

the manoeuvre being undertaken when the Lunavator’s velocity is low-
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est. Data was also accumulated on the required velocity change when

variation and direction of the inclination change was performed, taking

the initial inclination of the orbit to be 45◦, the magnitude of the velocity

adjustment required to change the inclination to 0◦ and 90◦ was plotted

as the argument of perilune of the Lunavator’s orbit was varied and using

a orbital harmonic mn of 130 and this is shown in Figure (7.10). It can

be seen from Figure (7.10) that the magnitude of the velocity change

increases with increasing inclination change angle and again it can be

seen that the velocity required to perform the manoeuvre is minimised

when the argument of perilune is zero.

To verify the previous discussion concerning the logistical require-

ments of the system, moon-tracking orbits, and EMMET and Lunavator

designs; simulations will now be undertaken to obtain data on the oper-

ations of the system when the ascending node of the Moon’s orbit occurs

at points closes to perigee and apogee within the Moon’s orbit which

will yield maximum and minimum configurations for the system. The

data gathered from these simulations will be discussed in the following

chapter.

Figure 7.10: Velocity change required for Lunavator’s inclination adjustment

against inclination
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7.4 Conclusions

Having determined the manoevres required to arrange the Lunavator

such that its upper tip is in the required position on each occasion that a

payload arrives from Earth or when a payload is required to be launched

back to Earth, it was found that these were every bit as complex as

configuring the EMMET for moon-tracking but for altogether different

reasons. The Lunavator’s argument of perilune, ascending node and or-

bital inclination all require alterations to ensure a correct configuration

for payload capture or release. This is a result of the Moon reaching its

ascending node earlier or later in each orbit. This requires an adjustment

to the payload flight time which in turn affects the hyperbola about the

Moon which is accommodated by altering the Lunavator’s orbital ele-

ments. In comparison to the EMMET, which requires alteration to its

orbital elements for moon-tracking, it was expected that any adjustments

to the Lunavator’s elements would be more easily achieved in terms of fuel

consumption as a result of the lower gravitational attraction of the Moon

and reduced oblateness. Similarly to the velocity adjustments required

for the EMMET’s orbit, the Rodriguez formula was utilised to formulate

these adjustments in terms of a rotation matrix and the velocity at the

point of orbital intersection in the initial orbit. In the Lunavator’s case, a

further rotation occurring at the ascending node of its orbit was required

to also adjust the orbital inclination.

Conducting analysis of the velocity changes required to perform these

adjustments revealed that these rates were of a comparable magnitude to

those occurring within the EMMET’s orbit and were a result of the Lu-

navator’s close proximity to the Moon even though its actual oblateness

is very much less significant. Again the magnitude of the adjustments

required to configure the Lunavator’s freely precessing argument of per-

ilune and angle of ascending node were found to increase with increasing

orbital harmonic with the Moon’s orbit and were of a comparable mag-

nitude in both cases. Furthermore, analysis revealed that the Lunavator

was in fact capable of completely removing orbital velocity from a pay-

load at its upper tip and producing zero relative velocity with the Moon’s
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surface at its lower tip. However, numerical simulations in Chapter 8 will

reveal whether this is a realistic goal whilst satisfying the logistical re-

quirements during the trajectory design phase.

The EMMET and Lunavator configurations in addition to the cir-

cumlunar transfer configuration described will now be used to simulate

the operational phases for the payload exchange mechanism using differ-

ent moon-tracking configurations and occurring at different times. The

results of this are presented in Chapter 8
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8. Simulations and Data

Having established the theoretical basis for the continuous payload ex-

change system, the EMMET and Lunavator configurations were imple-

mented with code written in MATHEMATICA
TM

in addition to the

means for calculating the payload’s trajectories between them, with the

aim of determining whether such a system could be realistically estab-

lished when these logistical requirements were adhered to, and if possible,

the economy of the system in comparison with a conventional chemical

propulsion system. Data for four different transfer configurations are

shown each to illustrate a different aspect of the system’s design, the

cases are as follows:

i. Polar inclined EMMET exchanging with a Lunavator using the

no-wait time logistical configuration. The system input-time is

08:40:00 on June 11th 2022 with the Moon’s ascending node oc-

curring at a true anomaly of approximately 90◦.

ii. Polar inclined EMMET exchanging with a Lunavator using stan-

dard logistical configuration. The system input-time is 12:40:00 on

June 16th 2020 with the Moon’s ascending node occurring close to

apogee at a true anomaly of approximately 180◦.

iii. Critically inclined EMMET exchanging with a Lunavator using

standard logistical configuration. The system input-time is 08:40:00

on June 11th 2022 with the Moon’s ascending node occurring at a

true anomaly of approximately 90◦.

iv. Critically inclined EMMET exchanging with a Lunavator using

standard logistical configuration. The system input-time is 20:40:00

on May 10th 2024 with the Moon’s ascending node occurring close

to perigee at a true anomaly of approximately 0◦.

The first two cases are used to show the operation of the system using a

polar moon-tracking orbit, the first case is used to show the system’s con-
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figuration when a no-wait time logistical configuration is used in compar-

ison with the standard logistical configurations of the other cases. Case 2

is used to show the system configuration when transfers are conducted to

an ascending node coinciding with the apogee of the Moon’s orbit. The

last two cases show the transfer configuration when critically inclined

EMMET inclinations are used with Case 3 allowing a comparison with

Case 1 to be made as they transfer to the same ascending node position.

Case 4 is used to show the configuration of the system when transfers are

conducted to an ascending node coinciding to the perigee of the Moon’s

orbit. The simulations all use the same basic input parameters and these

are shown in Table (8.1) and in each of the following tables of data, any

value followed in the next column by (-) indicates a repeated value.

Table 8.1: Simulation Input Parameters

Parameter Input Value

Earth’s Gravitational Parameter, km3s−2 398600

Moon’s Gravitational Parameter, km3s−2 4902.8

Mass of Earth,kg 5.9742×1024

Mass of Moon,kg 7.3483×1022

Payload Mass, kg 500

Earth’s J2 Effect 0.0011

Radius of Earth, km 6378.14

Orbital Period of Moon, days 27.3207

Radius of Moon, km 1738

Moon’s J2 Effect 0.0002

8.1 Moon Configuration Data

The position and velocity vectors of the Moon at the input time of the

system were obtained using the Horizon system from JPL [52] in addition

to its state vector at that instant. The orbital configuration at the input

time in each case is shown in Table (8.2). In this table tp denotes time

since perigee passage for the Moon’s orbit; p denotes the Moon’s orbital
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parameter; and θω denotes the true anomaly of the Moon’s ascending

node. It can be noted that the Moon’s position and velocity over the

course of its orbit is quite consistent and this benefits our trajectory de-

signs. Furthermore, variations in the Moon’s energy occur as a result of

third body perturbations acting on the Moon and coincides with varia-

tions in eccentricity and semi-major, axis in addition to the other orbital

elements.

Table 8.2: Moon configuration at input time

Case 1. 2. 3. 4.

r, km 368855 403294 368855 379255

v, kms−1 1.066 0.972 1.066 1.038

ω̇, 10−6rads−1 1.289 - - -

h, km2s−1 392333 392118 392333 393050

v radial, kms−1 -0.065 -0.02 -0.065 0.064

i, deg 26.956 24.094 26.956 28.4827

Ω, deg 9.12 13.022 9.12 2.776

e 0.0718 0.058 0.0718 0.063

ω, deg 269.974 180.126 269.974 2.2

θ, deg 298.431 199.078 298.431 81.3344

E, km2s2 -0.513 -0.516 -0.513 -0.512

a, km 388609 386617 388609 389325

p, km 386603 385300 386603 387768

tp, days -4.137 -12.04 -4.137 5.633

θω, deg 90.026 179.874 90.026 357.799

8.2 System Transfer Variable Data

The transfer variables for each of the exchange configurations are shown

in Table (8.3) and it can be noted that the points of payload entry and

exit into the LSI are very similar in each case. The wait time dw of zero in

Case 1 denotes that the Lunavator system remains fully laden throughout

the course of the exchange, and by utilising an even Earth-Moon transfer

192



time, c1, and an odd Moon-Earth transfer time, c2, and reversing this

order during the next transfer phase; the logistical requirements for this

arrangement are satisfied. It may be noted that the flight time within

LSI, γ, is not integer harmonic with the EMMET and Lunavator’s orbital

periods however, this is accommodated into the logistical design such that

the addition of the flight time between Earth and LSI, plus the flight time

between LSI and perilune, are integer harmonic with the EMMET and

Lunavator’s orbital periods, the same is the case for the Lunavator to

EMMET flight time.

Table 8.3: Transfer Variables

Case 1. 2. 3. 4.

φLSIL, deg 123.85 129.58 127.288 133.017

δLSIL, deg 18.621 16.919 11.173 11.1727

c1 28 30 30 28

ν, days 9.845 -2.19 9.72 -6.2965

dw 0 -1 1 -1

γ 6.81 8.5 7.347 7.831

φLSIR, deg 236.15 230.42 232.712 226.983

δLSIR, deg -16.043 -15.069 -9.311 -9.31056

c2 27 30 30 28

8.3 EMMET Perigee Data

The EMMET is composed of SPECTRA 2000 material and its charac-

teristics are shown, along with a factor of safety, in Table (8.4). Each

case uses almost identical EMMET configurations with the only differ-

ences being in their angles of ascending node; the inclinations used in the

first two cases in comparison with those used in the last two cases; and in

the angular and linear velocities resulting from the increased rotational

harmonic of the last two cases to that of the first two.
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Table 8.4: EMMET Perigee Parameters

Case 1. 2. 3. 4.

S.F. 2 - - -

A, 10−12km2 65 - - -

ρ, 1011kgkm3 9.7 - - -

σmax, 1012Pa 325 - - -

rET−P , km 7478 - - -

LET , km 100 - - -

ωET , deg 0 - - -

m 180 - - -

pr 29 - 31 -

θET , deg 0 - - -

iET , deg 90 - 63.4 -

ΩET , deg 189.12 193.022 189.12 182.776

T, hours 3.643 - - -

a, km 12019.4 - - -

e 0.378 - - -

vcf , kms
−1 8.57 - - -

h, km2s−1 64085.6 - - -

p, km 10303.5 - - -

Trot, min 7.409 - 6.939 -

ψ̇max, rads−1 0.016 - - -

ψ̇, rads−1 0.014 - 0.015 -

θ̇, rads−1 0.001 - - -

vl, kms
−1 7.042 - 6.946 -

vu, kms
−1 10.098 - 10.194 -

8.4 LSI Contact Data

The configuration of the Moon and the distance of the LSI entry and exit

points relative to both Earth and the Moon are shown at the instant of

payload arrival and departure from the the LSI in Table (8.5). The true

anomaly of LSI entry and exit, in each case, can be seen to be almost
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symmetrical about the true anomaly of the Moon’s ascending node and

this allows the inbound and outbound transfer trajectories to have similar

inclinations and perigee positions relative to Earth.

Table 8.5: LSI Arrival and Departure Data

Case 1. 2. 3. 4.

θm−arr, deg 83.33 173.314 81.644 -9.94

rm−arr, km 383403 409005 382608 365029

θ̇m−arr, ×10−4degs−1 1.529 1.343 1.536 1.69

rLSI−arr−s, km 65375.1 69470.4 65032.9 61834.2

rLSI−arr−eq, km 353285 370771 347910 326888

θm−dep, deg 97.048 186.686 98.464 5.59409

rm−dep, km 390041 409005 390735 364806

θ̇m−dep, ×10−4degs−1 1.478 1.343 1.472 1.692

rLSI−dep−s, km 66483 69452.2 66403.3 61785.9

rLSI−dep−eq, km 358872 370345 355049 326423

8.5 Payload Hyperbola Data

The hyperbolic trajectories undertaken by the payloads within the LSI

in each of the cases are shown in table (8.6). Differences in the orbital

elements of the payload’s hyperbola between the polar inclined Cases 1

and 2, and also evident in the critically inclined cases 3 and 4, can be

accommodated into the system by the adjustment manoeuvres discussed

in Chapter (7). Each case has a perilune altitude within 300km of the

Moon’s surface and it can be noted that the critically inclined Cases, 3

and 4, have hyperbolas with greater inclinations than those of the polar

inclination cases: it is not clear whether this is a result of the moon-

tracking orbit used or simply a coincidence of the transfer configuration.

It should also be noted that Case 1 has the highest LSI boundary ve-

locities, corresponding to larger eccentricity, which results in a higher

velocity perilune: although Case 3 has the highest velocity if its perilune

distance was increased to match that of Case 1 it would have a lower
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velocity as a result of its inbound velocity and a decreased acceleration

due to the Moon’s gravitational attraction. Another point which should

be noted with regards to the differences in perilune distance for each

case: under the conditions that the perilune distances of succeeding pay-

load exchanges could not be matched a solution to this would be for the

Lunavator to undertake a Hoffman manoeuvre [47] to alter the perilune

altitude of the Lunavator’s orbit in addition to adjustment to the tether

sub-span lengths this however, would require the further use of fuel.

Table 8.6: LSI Payload Hyperbola Data

Case 1. 2. 3. 4.

vin, kms−1 1.381 1.143 1.261 1.086

vout, kms
−1 1.38 1.143 1.26 1.086

h, km2s−1 5188.53 5118.72 4859.56 4638.32

v radial, kms−1 -1.38 -1.141 -1.259 -1.084

i, deg 159.264 159.544 167.11 166.05

Ω, deg 186.725 184.218 186.953 185.683

e 1.723 1.507 1.554 1.384

p, km 5490.92 5344.14 4816.7 4388.1

ω, deg 186.519 184.159 186.869 185.671

θentry, deg 237.883 232.221 233.429 227.819

E, km2s2 0.879 0.583 0.72 0.511

a, km -2789.33 -4206.88 -3403.77 -4799.6

rp, km 2016.53 2131.89 1885.9 1840.98

vp, kms−1 2.573 2.401 2.577 2.52

8.6 LSI Motion Earth Data

To ensure that the elliptical transfers about Earth are as closely matched

to the hyperbolic trajectories about the Moon at the LSI boundary

points, and vice versa; it is useful to compare the orbital elements of

their hyperbolic trajectories relative to Earth. The orbital elements of

the payload’s trajectory from LSI entry to perilune are obtained relative

196



to Earth in Table (8.7) whilst those of the perilune to LSI hyperbolic

trajectory relative to Earth are shown in Table (8.8). The inclination of

the payloads of Case 1 have been intentionally matched to that of the

elliptical trajectories to and from Earth whilst this has not been done

in the other cases and is being used to determine the dependency of the

change in velocity required at the transition point between the elliptical

and hyperbolic trajectories as a result of the inclinations of the orbits

relative to Earth. In both the entry and exit data sets, for each of the

cases there are small discrepancies in the angle of ascending node of the

payloads trajectories relative to Earth but more significantly there are

large discrepancies in the argument of perigee of the payloads relative to

Earth in comparison to that of the EMMET’s orbit, optimally 0◦. The

sign of the radial velocity terms in each case are consistent with pre-

apogee payload contact with LSI upon entry and post apogee payload

contact upon exit and this is important in ensuring that the payload

has not already entered or left LSI prior to the stated contact which is

unrecognisable to the simulation.

Table 8.7: LSI Entry Data Relative to Earth

Case 1. 2. 3. 4.

vin, kms−1 0.824 0.699 0.77 0.702

h, km2s−1 162625 113176 88058.2 79333.5

v radial, kms−1 0.684 0.628 0.728 0.659

i, deg 89.04 68.038 88.521 22.406

Ω, deg 189.155 194.398 188.238 186.395

e 0.86 0.931 0.958 0.961

p, km 66349.1 32134.3 19453.7 15789.8

ω, deg 15.176 7.362 7.8065 2.91

θentry, deg 161.037 168.948 170.337 172.157

E, km2s2 -0.788 -0.831 -0.849 -0.973
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Table 8.8: LSI Exit Data Relative to Earth

Case 1. 2. 3. 4.

vout, kms
−1 0.733 0.724 0.643 0.714

h,km2s−1 175840 130939 93681 84122.1

v radial, kms−1 -0.546 -0.631 -0.586 -0.666

i, deg 89.256 69.511 88.736 26.878

Ω, deg 189.079 191.91 189.863 180.461

e 0.82 0.908 0.948 0.956

p, km 77570.8 43013.2 22017.4 17753.4

ω, deg 346.225 350.051 353.195 355.016

θexit, deg 197.067 193.204 188.355 188.459

E, km2s2 -0.842 -0.815 -0.916 -0.966

8.7 Lunavator Data

The Lunavator parameters for each of the configurations are shown in

Table (8.9), the tether sub-spans in this case are again composed of

SPECTRA 2000 material. It is evident from this that the lower tip of

the Lunavator is not sufficiently removing the orbital velocity from the

payloads such that the lower payload can be placed with zero relative

velocity on to the Moon’s surface with the lowest tip velocity occurring

for Case 1 at 1.22kms−1.

8.8 Payload Elliptical Data

The orbital parameters of the LSI to Earth elliptical trajectory are shown

in Table (8.10) with that of the Earth to LSI trajectory shown in Table

(8.11). It can be seen that in both cases their orbital elements are closely

matched to those of the EMMET’s orbit with the aim of reducing any

velocity change upon capture and launch; the two trajectories are in fact

symmetrical about the Moon’s ascending node and the perigee position of

the EMMET. Some discrepancy exists between the arguments of perigee

of the trajectories and that of the EMMET’s orbit however, these are
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Table 8.9: Lunavator Perilune Parameters

Case 1. 2. 3. 4.

S.F. 2 - - -

A, 10−12km2 65 - - -

ρ, 1011kgkm3 9.7 - - -

σmax, 1012Pa 325 - - -

n 1 - - -

qr 7 3 15 19

θLT , deg 0 - - -

LLT , km 139.267 196.945 73.95 51.4897

rcf , km 1877.27 1934.95 1811.95 1789.49

T, hours 3.643 - - -

a, km 2774.49 - - -

e 0.323 0.303 0.347 0.355

vcf , kms−1 1.859 1.817 1.909 1.927

h, km2s−1 3490.02 3515.29 3459.13 3447.94

p, km 2484.34 2520.45 2440.56 2424.8

i, deg 159.264 159.544 167.11 166.05

Ω, deg 186.725 184.218 186.953 185.683

ω, deg 186.519 184.159 186.869 185.671

Trot, min 29.142 62.447 13.877 11.209

ω̇, ×10−7rads−1 1.21 1.178 1.39 1.393

Ω̇, ×10−8rads−1 6.689 6.511 7.225 7.287

ψ̇max, rads−1 0.012 0.008 0.021 0.03

ψ̇, rads−1 0.004 0.002 0.008 0.009

θ̇, ×10−4rads−1 9.903 9.389 10.54 10.767

rl, km 1738 - - -

vl, kms−1 1.221 1.302 1.273 1.39

ru, km 2016.53 2131.89 1885.9 1840.98

vu, kms−1 2.497 2.332 2.545 2.463

small in comparison to those of the hyperbolic trajectories relative to

the Earth in Tables (8.7) and (8.8). Some velocity discrepancy exists
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between that of the payloads at perigee and that of the EMMET’s upper

tip but exist as a result of adhering to the logistical requirements of the

system.

Table 8.10: LSI to Earth Transfer Data

Case 1. 2. 3. 4.

vLSI−exit, kms−1 0.367 0.315 0.253 0.252

vp, kms−1 10.1544 10.156 10.15 10.14

h, km2s−1 76950.2 76962.4 76914.8 76840

vexit radial, kms−1 -0.297 -0.237 -0.13 -0.091

i, deg 89.972 89.472 63.371 63.417

Ω, deg 189.12 193.022 189.12 182.776

e 0.964 0.96 0.959 0.955

ω, deg 359.866 0.323 0.23 0.707

θexit, deg 183.426 182.723 181.5 181.049

E, km2s2 -1.044 -1.027 -1.091 -1.189

Table 8.11: Earth to LSI Transfer Data

Case 1. 2. 3. 4.

vp, kms−1 10.151 10.156 10.147 10.14

vLSI−entry, kms−1 0.303 0.316 0.24 0.253

h, km2s−1 76915.9 76962.7 76892.7 76839.9

ventry radial, kms−1 0.118 0.059 0.086 0.088

i, deg 89.563 89.909 63.391 63.354

Ω, deg 189.12 193.022 189.12 182.776

e 0.959 0.961 0.958 0.955

ω, deg 358.637 359.325 359.004 358.977

θentry, deg 177.577 177.253 178.92 178.921

E, km2s2 -1.0825 -1.025 -1.117 -1.187
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8.9 Velocity Change Data

The total velocity changes required to exchange payloads for each of

the configuration cases are shown in Table (8.11) which consist of the

velocity adjustments required to configure the Lunavator and EMMET

tethers for each of the moon-tracking methods in addition to the velocity

changes required for the transfer trajectories themselves. This allows the

efficiency of the system to be established when a comparison is made

with the velocity requirements for a minimum energy trajectory from

the Earth to the Moon’s surface and back [53] which are shown in Table

(8.13).

Table 8.12: Configuration Delta-V Requirements

Case 1. 2. 3. 4.

∆vLT−Capture, kms−1 0.0755 0.069 0.032 0.056

∆vLT−Launch, kms−1 0.0755 0.069 0.032 0.056

∆vLSI−Exit, kms−1 0.454 0.562 0.61 0.768

∆vET−Capture, kms−1 0.59 0.114 0.048 0.081

∆vET−Launch, kms−1 0.151 0.085 0.098 0.103

∆vLSI−Entry, kms−1 0.683 0.566 0.785 0.755

∆vE−Mtotal, kms−1 0.909 0.72 0.914 0.915

∆vM−Etotal, kms−1 0.589 0.745 0.685 0.905

∆vE−M−E, kms−1 1.498 1.465 1.599 1.819

∆vAdjustments, kms−1 1.63 1.63 0.85 0.85

∆vTotal, kms−1 3.128 3.095 2.449 2.669

8.10 Conclusions

It has been shown by means of numerical simulations of the entire pro-

cedure that a continuous payload exchange system can be established by

obeying the logistical and trajectory requirements of the system. These

exchanges can be undertaken with significant velocity change savings in

comparison to conventional chemical propulsion. However, there are sev-
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Table 8.13: Conventional Propulsion Delta-V Requirements

Phase Velocity change, kms−1

Trans-Luna Injection 3.2

Mid-course correction 0.03

Lunar orbit insertion 0.89

De-orbit 0.02

Landing 1.85

Lift-off 1.83

Lunar orbit injection 0.02

Trans-Earth Injection 0.85

Mid-course correction 0.03

Earth-Moon-Earth Total 8.72

eral important issues which must be taken into account in future research

of this area:

i. At every tip in every instance velocity mismatches were present be-

tween the tether tip and the incoming and outgoing payloads. This

can be dealt with in two ways firstly, by ensuring that the system

is robust enough to withstand this shock no further action need

be taken or alternatively, the payload should undertake propulsive

burns to adjust the velocity at launch and capture to the required

velocity as was the case incorporated into the simulations.

ii. Significant velocity mismatches occurred at the entry and exit points

to LSI between the elliptical and hyperbolic trajectories at these

points. Case 1 showed that these were as significant in the case

where the elliptical and hyperbolic inclinations were matched and

result from the differences in their arguments of perigee at these

points of conjunction and less significantly on small differences in

the angle of ascending nodes. Attempts were made to remedy this

but resulted in unwanted variations in the other orbital elements

of the trajectories.

iii. In all cases the lower tip velocity of the Lunavator remained unac-
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ceptably large and could not be reconciled. The solution to this is

for the Lunavator to be placed into a circular orbit about the Moon

but this also introduces further constraints into the overall system

design.

It is clear that these are not optimised trajectory calculations and the

velocity mismatches between the tips and payloads in addition to those

existing between the hyperbolic and elliptical trajectories at conjunction

could be further reduced. The extent to which this may occur remains

unclear at this point. The data presented here should be considered a first

step in the design of a concise circumlunar trajectory with a more detailed

trajectory calculation being implemented. This would incorporate third

body perturbations and would implement techniques such as linearisation

of the state transition matrix to give the payload’s precise circumlunar

trajectories whilst retaining perigee and perilune position in addition to

the times of flight between them.
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9. Centre of Energy

The research conducted in this chapter was motivated by the occurrence

of an anomaly in the predicted altitude of a symmetrically laden momen-

tum exchange tether’s central facility when beginning work on the use

of reeling of the tether sub-span’s lengths to effect orbital changes. This

phenomenon was again evident in the mis-balance between the upper

and lower tether tensions acting on the EMMET and Lunavator central

facilities in Chapters 4 and 7. It was discovered that the system appeared

not to orbit Earth at the altitude of its central facility coincident with

the system’s centre of mass as a result of a net force, due to variations in

gravitational and centrifugal forces, acting on the system at this point.

Neither did it appear to orbit at the system’s centre of gravity which is

not coincident with its centre of mass in a non-uniform gravitational field

and additionally the point at which these forces balance. It was discov-

ered that the system orbits about Earth at a distance coincident with

the point of mean specific potential energy of the entire system and this

was termed the centre of energy. This centre of energy is located exactly

midway between its centre of mass and centre of gravity and satisfies the

’vis-viva’ equation and the law of conservation of energy for the system.

9.1 Lagrangian formulation

To begin the research on tether reeling manoeuvres, a symmetrically

laden tether system was conceived which connected two uniform payloads

of equal mass to the central facility using rigid, massless tether sub-spans

of equal length, with the aim of allowing changes caused by these reeling

manoeuvres to be clearly observed. The central facility was given an

initial angular velocity equal to that of a circular orbit about a perfectly

spherical Earth at the central facility’s orbital altitude which coincided

with the centre of mass of the system. The position vectors of the central

facility and upper and lower tips were obtained relative to an Earth
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centered perifocal frame as implicit functions of time using a method

similar to that employed in Chapter 4 as:

Rcf = R[t]
[
cosθ[t] sinθ[t] 0

]T
(9.1)

Rupper = Rcf + L
[
cos(θ[t] + ψ[t]) sin(θ[t] + ψ[t]) 0

]T
(9.2)

Rlower = Rcf − L
[
cos(θ[t] + ψ[t]) sin(θ[t] + ψ[t]) 0

]T
(9.3)

The generalised coordinates used here are the radius of the central facility,

R; the true anomaly of the central facility within its orbit, θ; and the

tether rotation angle, ψ: the tether sub-span length was initially set at a

constant length to ensure that the equations for the tether system were

being correctly set up. The velocity of the central facility, in addition to

the velocities of the upper and lower tips were defined as the derivatives of

the respective position vectors and by assuming that the central facility in

addition to the upper and lower payloads could be adequately modeled

as point masses, each of mass M, for the initial set up of the system.

Therefore, the total potential energy of the system was defined as:

U = −µM
(

1

rcf
+

1

rupper
+

1

rlower

)
(9.4)

Additionally, the total kinetic energy of the system was defined as:

KE =
1

2
M
(
v2
cf + v2

upper + v2
lower

)
(9.5)

These were used to form the Lagrangian of the system, KE -U, and fol-

lowing the standard procedure, the variational equations for each of the

generalised coordinates were obtained by implementing the Lagrangian

of the system into the variational equation of the form [54]:

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 (9.6)

with q defining each of the generalised coordinates of the system and q̇

defining its first derivative with respect to time. To obtain the equations

of motion of the system and to accumulate data of how the system’s pa-

rameters varied with time, these variational equations were numerically

integrated using code written inMathematica
TM

.

Using an initial radial distance for the central facility of 7378 km and

a radial velocity of zero, corresponding to the central facility being at ei-

ther the apogee or perigee of its orbit; an initial true anomaly of 0◦ with
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Figure 9.1: Oscillation of tether’s centre of mass in a circular orbit

Figure 9.2: Increased oscillation of system’s centre of mass

an orbital angular velocity of 0.0009955 rad/s which is equal to that of

a circular orbit at this altitude; and an initial tether rotation angle of 0◦

with a spin angular velocity of 0.025 rad/s, data on the evolution of the

system over a time interval of 100,000 seconds was accumulated using a

tether sub-span length of 100 km and mass, M, equal to 1000kg. This

showed a surprising result: that the oscillation of the system’s centre

of mass beginning at the initial altitude of the central facility, corre-

sponding to the oscillation’s peak, and with a peak to peak amplitude

of approximately 1.22 km and a period marginally larger than 6000 sec-

onds and this is shown in Figure (9.1). This anomaly was also present

in similar data presented by Zeigler [49] in 2003 but was not analysed

in any detail. This oscillation becomes even more pronounced when the

mass of each of the system’s components is increased to 5000 kg and

the tether sub-span lengths are increased to 500km with the oscillation

again beginning at its peak corresponding to the radius of the central

facility with a peak to peak amplitude of 31 km in this case and this

is shown in Figure (9.2). This oscillation was present for all values of
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Figure 9.3: No oscillation of system’s centre of mass for circular orbit

Figure 9.4: Oscillation of hanging centre of mass in a circular orbit

tether length but disappeared when the tether sub-span lengths were set

to zero which corresponds to a single particle orbiting in a circular orbit

at the radial distance of the central facility and this is shown in Figure

(9.3). The oscillation was also found to be evident and in fact even more

pronounced in the hanging tether case, and this is shown for masses, M,

equal to 1000 kg and tether sub-span lengths of 100 km in Figure (9.4).

A peak to peak amplitude of 5.4 km for the hanging case was observed,

comparing this to a 1.22 km peak to peak for the spinning case , and a

time period again marginally larger than 6000 seconds which indicates

that this phenomena is not a result of the rotation of the tether sub-span

and may be somewhat alleviated by spinning. Having described the ob-

served phenomenon, a hypothesis for its cause was proposed and this is

the focus of the following section.
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9.2 Centre of Gravity Hypothesis

A fundamental laws in physics states [55]: When a body or collection of

particles is acted on by external forces, the centre of mass moves as though

all the mass were concentrated at that point and it were acted on by a

force equal to the sum of the external forces on the system. Furthermore,

according to Cosmo and Lorezini [7], for a gravity gradient stabilised

tether system consisting of two satellites tethered in orbit: The gravita-

tional and centrifugal forces are equal and balanced at only one place: the

system’s center of gravity. The center of gravity (or mass), located at the

midpoint of the tether when the end masses are equal, is in free fall as it

orbits the Earth, but the two end masses are not. They are constrained by

the tether to orbit with the same angular velocity as the center of gravity.

Additionally, these forces can be equated as follows:

µm

r2
= mθ2r (9.7)

where the total mass of the system is denoted by m; the radius of the

centre of mass is denoted by r ; and the angular velocity of this centre of

mass is denoted by θ. Our observations of the motion of the centre of mass

of the symmetrically laden system contradict both of these statements.

As the only forces acting on the system as a result of this simplified model

are the gravitational force of Earth and the inertial centrifugal force

arising as a result of the orbital motion of the tether system about Earth,

the cause of the deviations cannot be explained by the effects of precession

or nutation, as no out-of-plane forces are acting on the system and these

oscillations must therefore be gravitational and inertial in origin. Cosmo

and Lorenzini take the centre of mass and centre of gravity of the tethered

system to be coincident, this however is not the case for a body which

experiences a varying force of gravitational attraction, which is the case

for an extended tether system in a non-uniform gravitational field [55].

At this point it could be hypothesised that these oscillations in the ra-

dius of the system’s centre of mass are possibly a result of an additional

torque acting due to the centre of mass and centre of gravity not be-

ing coincident for an extended body in a non-uniform gravitational field

however, if this was the case these deviations would vanish for a gravity
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gradient stabilised hanging tether system, but as Figure (9.4) shows, the

oscillation is even more pronounced and this hypothesis must therefore

be discounted. The only remaining possibility is that the central facility

of the tether system, and consequently its centre of mass, is subject to a

net force which arises due to a tension in the tether system as a result of

the extension of the body, and consequently equation (9.7) is not valid in

this case therefore the centre of mass of the system cannot be thought of

as the point at which the mass can be considered to translate in a non-

uniform gravitational field. If the gravitational and centrifugal forces are

not balanced at this point it seems reasonable that the actual point at

which translation can be considered to occur is at a point where these

forces do balance and a reasonable guess would be that this occurs at the

centre of gravity of the system. To establish the location of this balance

of forces, a simple model of a symmetrical tether system was established

which consisted of two identical masses connected by a tether aligned

along the local gravity gradient and its configuration is shown in Fig-

ure (9.5). By defining the net forces acting on the system as a result of

variation in gravitational and centrifugal forces, the point at which these

forces are in equilibrium can be determined. The net force acting on the

mass located at the lower end of the gravity gradient stabilised tether is

determined as the sum of the gravitational and centrifugal forces acting

at that point as:

∆F1 = −µm
R2

+mθ2R (9.8)

Where R is the radial distance of the lower payload from Earth; the mass

of the payloads are denoted by m; the angular velocity of the system is

denoted by θ; and in the following equation the entire tether length will

be denoted by L. The net force acting on the payload at the upper tip

R

L
x∆~F1 ∆~F2

Figure 9.5: Forces acting on symmetrical tether system in orbit
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can be determined as:

∆F2 = − µm

(R + L)2
+mθ2(R + L) (9.9)

By obtaining an expression for the net force acting at some arbitrary

point x along the tether sub-span as:

∆Fx = − µm

(R + x)2
+mθ2(R + x) (9.10)

then the point of equilibrium of the centrifugal and gravitational forces

can be determined for the system by examining the equilibrium condi-

tions for arbitrary point x along the sub-span. This equilibrium condition

is defined as:

∆F1 −∆Fx = ∆Fx −∆F2 (9.11)

Implementing equations (9.8), (9.9) and (9.10) into equation (9.11) re-

sults in:

−µm
R2
− µm

(R + L)2
+mθ2L = −2

µm

(R + x)2
+ 2mθ2x (9.12)

Canceling out the common mass terms; applying the binomial theorem

to the first term on the right hand side; assuming that x is very small in

comparison with R; and omitting squared terms we obtain:(
2µ

R3
+ θ2

)
x =

1

2

(
µ

R2
− µ

(R + L)2
+ θ2L

)
(9.13)

As a short numerical example: using a lower sub-span radius of 7278km;

a tether length of 200km; and an angular velocity of a circular orbit at

the centre of mass of the system at 7378 km equal to 0.000955 rad/s;

we obtain a value of x equal to 97.2411 km. This corresponds to the

forces balancing at a radius of 7375.2411 km and 2.7589 km below the

centre of mass of the system. This hypothesis seems to fit the data

and the oscillations observed are not, as first interpreted, fluctuations

about the initial position of the system’s centre of mass but are in fact

the radial profile of a tether system undertaking an elliptical trajectory

about Earth. This is at a point other than its centre of mass, with the

observed oscillations occurring as a result of the system having too great

or too little angular velocity at the system’s point of orbit about Earth to

undertake a circular orbit. This is due to this angular velocity being that
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of a circular orbit at the radial distance of the central facility coinciding

with the centre of mass.

If the system in orbit in a non-uniform gravitational field does not

orbit as if all of its mass is concentrated at its centre of mass then is there

a physical significance to the point of equilibrium at a distance x along

the sub-span? The obvious point of translation would be at the centre

of gravity itself which would obviously occur closer to Earth than the

centre of mass in a non-uniform gravitational field and which is defined

similarly to the centre of mass as the average location of the force of

gravity acting on a body, we will define this here as:

~Rcg =
−
∑n

i=1(Mir
−2
i )~Ri∑n

i=1(Mir
−2
i )

(9.14)

Calculating the position of the centre of gravity for the system utilised

to establish the point of equilibrium of force we find that this centre

of gravity occurs at a distance of 7375.29 km from Earth. Comparing

this with the point of equilibrium of forces of 7375.2411 km it can be

reasonably stated that by taking into the approximations made in the

calculation of the equilibrium point that the point of force equilibrium

and the centre of gravity are coincident.

Plotting the motion of the centre of gravity of the hanging system

described in section 9.1 using a sub-span length of 100 km and mass of the

payloads and central facility of 1000 kg; an initial central facility radius

of 7378km and the angular velocity of a circular orbit at the distance of

the centre of gravity, now calculated at 7376.2 km due to the addition of

the central facility to the system, it can be determined that if the entire

system undertakes a circular orbit about Earth then this is evidence

that the system is orbiting Earth in an identical manner to that of a

particle at the distance of the system’s centre of gravity from Earth

at the angular velocity of a circular orbit at this point. Data on the

radius of the system’s centre of gravity and centre of mass was plotted

and this is shown in Figure (9.6). The motion of the centre of mass

is shown in blue and that of the centre of gravity is purple, it is very

clear that the system is undertaking an elliptical orbit about Earth with

its perigee position coinciding with its initial conditions. Both centres

subsequently traverse a trajectory to their respective apogees, furthest
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from Earth and this indicates that the system has an initial angular

velocity too large to remain on a circular orbit about Earth and that the

system is not translating with a motion identical to that of a particle at

a point coincident with the systems centre of gravity. Furthermore, by

examining Figure (9.4) it can be seen that the system in this case has

an initial angular velocity which is too low to remain on a circular orbit

and the central facility subsequently traverses a path from apogee to the

perigee of its orbit. Taking into account these two data plots allows us to

conclude that for this system to undertake a circular orbit about Earth,

it must have an angular velocity greater than that required for a circular

orbit at its centre of mass distance but smaller than that at the distance,

of its centre of gravity. Therefore, if the system can be simplified such

that its motion is identical to that of a particle at a particular point along

the body this must lie somewhere between its centre of mass and centre

of gravity.

9.3 Centre of Energy Hypothesis

Having established that the system does not orbit Earth as a particle

with all mass concentrated at its centre of mass, or as a particle with

all force concentrated at the centre of gravity, we will move away from

force considerations and focus upon the total energy of the system. The

specific energy of a particle in orbit is composed of potential and kinetic

components and is given by the vis viva equation which is further related

to the semi-major axis of the particles motion. Defining the total orbital

Figure 9.6: Orbit of hanging system’s centre of mass and gravity about Earth

212



potential energy of the system as the total energy stored as a result of

the position of each of the system’s components within the non-uniform

gravitational field: it would seem that the system’s motion, if it could

at all be treated as a particle, would follow the motion of a particle

located at the point of specific potential energy of the entire system

with a subsequent motion defined by the specific kinetic energy of that

location. This hypothesis can be checked in the following way: firstly,

by examining the motion of the centre of mass and centre of gravity

in Figure (9.6), the centre of mass is shown in blue and the centre of

gravity is shown in purple, we can write their respective semi-major axes

in terms of their perigee and apogee positions and an offset distance from

the point of actual motion and from this we can calculate the magnitude

of this offset. Additionally, by calculating the point of mean specific

potential energy of the system at perigee and then comparing this to the

perigee distance of the offset point we can determine whether or not these

coincide and if so, then we have a working hypothesis. To further cement

this, if the entire system undergoes a circular orbit when the angular

velocity of the entire system is that of a circular orbit at the point of

specific potential energy then this is proposed as further proof.

Firstly, we define the semi major axis of the system’s centre of mass,

acom, in terms of its the observed apogee, ra−com, and perigee, rp−com,

positions and relate this to the semi-major axis of the offset, as; its

apogee and perigee distances, ra and rp, respectively; and the offset from

the centre of mass, s1, as follows:

acom =
1

2
(rp−com + ra−com) =

1

2
((rp + s1) + (ra + s1)) = as + s1 (9.15)

Similarly, this is done for the centre of gravity of the system using an

offset distance s2 in this case:

acg = as − s2 (9.16)

By utilising simultaneous equations we find that s1 = s2 and re-define

this as s. The offset of the system is then obtained as:

s =
1

2
(acom − acg) (9.17)

By obtaining the perigee and apogee data of the centre of mass and

gravity shown in Figure (9.6), the semi major axis of the centre of mass
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is found to be 7380.7km and that of the centre of gravity is found to be

7378.9km resulting in an offset of 0.9km. Using either equation (9.15) or

(9.16), the semi major axis of the offset point is found to be 7379.8km.

Utilising this, we calculate the perigee distance of the offset point by

subtracting the offset from the perigee distance of the centre of mass and

find this to be 7377.1km. We now calculate the radius of the point of

mean specific potential energy for the system by firstly calculating the

mean specific potential energy of the system using the following equation:

Umean =
µ

3

(
1

R− L
+

1

R
+

1

R + L

)
(9.18)

For a central facility radius of 7378km and sub-span length of 100km this

is obtained as 53.9507km2s−2. Implementing this into the equation for

orbital potential energy we obtain this as occur

We have established that the trajectory undertaken by a extended

system in orbit cannot be simplified to a particle of equal mass located at

the centre of mass or at the centre of gravity however, it can be simplified

to that of a particle at the mean point of specific potential energy for the

system which raises the question: is this point located at a yet undefined

physical centre for the system? The answer to this is, that the system

orbits Earth as a particle located at the mean point of specific potential

energy of the system coincident with the physical centre which we will

denote its centre of energy and define it as the mean position of the sum

particles of the system weighted by the specific potential energy of each

Figure 9.7: Hanging system’s centre of mass and gravity at point of mean

potential
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Figure 9.8: Circular orbit of hanging system’s centre of energy

Figure 9.9: Elliptical orbit of hanging system’s centre of energy

particle, this can be written as:

~Rcp =
−
∑n

i=1(Mir
−1
i )~Ri∑n

i=1(Mir
−1
i )

(9.19)

By incorporating equation (9.19) into the data plots shown in Figure

(9.7), where the centre of mass is represented by the blue line and the

centre of gravity is shown in purple, it becomes evident that the centre

of potential lies exactly midway between the system’s centre of mass and

gravity. In Figures (9.8) and (9.9), the radius of the system’s centre

of mass is depicted by a blue line; its centre of gravity is depicted by

a purple line; and its centre of potential is depicted by a golden line.

For the case that the system has an orbital angular velocity equal to a

circular orbit at the radius of this centre of potential, Figure (9.8), the

entire system undertakes a circular orbit about Earth. For the case that

an elliptical trajectory is undertaken when the entire system is given

the orbital angular velocity of the system’s centre of mass, Figure (9.9),

the system undertakes the motion of a particle situated at the centre of

potential with the orbital angular velocity of the centre of mass.
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9.4 Conclusions

The observation of an anomaly occurring in a circular orbit of a tether

system about Earth led to research into the point of balance of forces of

this system. By calculating the tension acting at the centre of mass of the

system, it was found that there was a mis-balance with the lower tension

being greater than the upper tension at this point. It was noted that

this was a result of the centrifugal and gravitational forces being unbal-

anced at this point for an extended body in a non-uniform gravitational

field and it was found that these forces actually balance at the system’s

centre of gravity which is displaced from its centre of mass in this non-

gravitational field. However, further work showed that the body cannot

be treated as a particle acting at this point. It was discovered that the

body actually orbits Earth identically to that of a particle located at the

distance of mean specific potential energy of the system with an orbital

geometry identical to that of a particle at this point and an angular ve-

locity identical to that of the tether system. This point was termed the

centre of energy of the system and the entire tether system undertook

a circular orbit when given an angular velocity corresponding to that of

a circular orbit at the distance of this physical centre. This certainly

has many implications if verification of its existence can be obtained.

This concept would redefine how the motion of extended bodies in orbit

are calculated and may partly account for the presence of gravitational

anomalies in many space missions.
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10. Conclusions

10.1 Discussion

An examination of the logistical requirements necessary to establish a

continuous Earth-Moon payload revealed that an extremely flexible sys-

tem could be configured by ensuring that the orbital periods of the EM-

MET and Lunavator were integer harmonic with the orbital period of

the Moon about Earth and this ensured that the system would return

to its initial configuration each time the Moon arrived at the same point

in its orbit relative to Earth. Furthermore, by establishing the rota-

tional periods of the tether sub-spans such that they themselves were

integer harmonic with the orbital period of their respective tethers plus

some additional half rotation; quarter rotation; three-quarter rotation;

or any combination of these; alternative tether tips could perform alter-

nate catch and throw operations. It was found that to ensure that the

payloads arrived at the tips of these tether systems at the correct instant,

the payload exchanges conducted between the tethers occurred in time

periods which were themselves integer harmonic with the orbital periods

of these systems. The logistical design of the system was found to have

an inherent flexibility, and by simple alterations to the rotational rates

of the tips most circumstances could be accounted for. Furthermore, it

was found that the system could accommodate variations in the Moon’s

orbital elements by altering the time at which operations were initiated

without altering the operational procedure itself, however this resulted in

small time mismatches between the optimum trajectories at one instant

and those at another instant. It was found that these could not be ac-

counted for, or remedied, and it was therefore found to be necessary for

the logistical requirements to be rigorously adhered to and any adjust-

ments in this case being made to the payloads’ trajectories to and from

Earth, and subsequently by the Lunavator in orbit about the Moon.
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Several methods were conceived for tracking a significant location in

the Moon’s orbit with the aim of conducting payload exchanges upon the

arrival of the Moon at these points. It was determined that this could be

most easily achieved when the Moon crossed the ascending or descending

node of its orbit relative to Earth’s equatorial frame. Several methods

for this were proposed with the most promising of these being:

i. Critically inclined EMMET orbit with adjustments to the freely

precessing angle of ascending node being made via orbital manoeu-

vres

ii. Polar inclined EMMET orbit with adjustment manoeuvres utilised

to align its apse line with that of the Moon’s predicted node line at

its next occurrence at its ascending node in addition to adjustment

manoeuvres to the EMMET’s freely precessing argument of perigee.

For each of these methods, the point at which the manoeuvres should take

place within the EMMET’s orbit were obtained in terms of the required

change in orbital elements and for changes in angle of the ascending

node between polar orbits this was found to occur at a true anomaly of

90◦, for orbits with non-polar inclinations it was found that the point

of manoeuvre occurred at the same true anomaly in both orbits and

could be expressed in terms of the initial ascending node angle plus half

the magnitude of the required change to this angle, in addition to the

orbital inclination of the EMMET’s orbit. The magnitude of the velocity

change required to perform these adjustments was obtained using the

Rodriguez formula and consisted of a rotation of the velocity vector of the

EMMET’s orbit about the equatorial frames’ north pole. Similarly, the

same was found to be the case for adjustments to the Lunavator’s angle

of ascending node with the change in velocity consisting of a rotation of

the Lunavator’s velocity vector at its point of manoeuvre in its initial

orbit about the Moon’s pole. For changes to the argument of perigee

of the EMMET’s orbit, in addition to the argument of perilune of the

Lunavator’s orbit it was found that the true anomaly of manoeuvre in

each orbit occurred at a true anomaly equal to half the required alteration

to this argument of perigee or perilune, furthermore it was found that the
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change in velocity required to conduct this manoeuvre could be obtained

in terms of the rotation of the velocity vector in the initial orbit about

an axis coincident with the orbits’ angular momentum vector relative to

the equatorial or selenocentric frames.

The position, velocity and acceleration of the EMMET’s and Luna-

vator’s central facility and tips were derived relative to Earth’s equato-

rial and the Moon’s selenocentric frames, respectively. By taking into

account the orbital elements required for both the polar and critically

inclined EMMET inclination moon-tracking configurations the position,

velocity and acceleration of the EMMET’s orbit could be obtained for

any point within the orbit also by incorporating the oblateness effects of

the planetary bodies into these equations, for any instant of time after-

wards. These equations were applied to the EMMET orbit at perigee in

both configurations which would allow the velocity of payload release in

each configuration to be assessed. These components were also derived

for a Lunavator with freely precessing argument of perilune and angle of

ascending node and this allowed one to obtain its position, velocity and

acceleration at any point in its orbit when taking into account oblateness

effects. Again an expression for these components at the perilune of its

orbit were obtained with the aim of determining the velocities for pay-

loads released at the upper and lower tips at this point. In both cases the

accelerations of the system were utilised at their respective periapse to

obtain expressions for the net forces acting on the payloads at these points

in terms of the gravitational and inertial forces present which resulted

in expressions for the tension acting on each of the payloads. Further-

more, the same methodology was applied to the tether sub-spans, and

expressions for the tension occurring in each of these was obtained. By

application of Newton’s third law, the maximum tension within each of

the tether systems, which occurred at the tether’s point of connection to

the central facility, was found to be equal and opposite to the sum of the

tensions acting on the respective payloads and tether sub-spans. Util-

ising this point of maximum tension, expressions were obtained for the

maximum angular velocity and which the tether sub-spans could rotate

at which were based upon the material properties of tether sub-spans.
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These improved upon previous maximum rotational rate expressions by

their incorporation of velocity terms arising as a result of the motion

of the tether system’s frame of reference relative to either Earth or the

Moon.

Numerical analysis of the EMMET’s parameters relative to Earth was

undertaken with data of the precessional rates of the argument of perigee

and angle of ascending node being obtained for each configuration and

this resulted in the single manoeuvre polar moon-tracking method being

discounted due to the large amount of time taken to re-align the EM-

MET’s argument of perigee with Earth’s equatorial plane as required to

conduct payload exchanges. By defining the minimum semi-major axis

sufficient to allow payloads launched from the EMMET’s upper tip to

reach the Moon at all points in its orbit when the EMMET sub-spans

rotated at their maximum angular velocity it was found that a maximum

orbital harmonic between the EMMET and Moon of 196 could be used

which corresponds to an EMMET semi-major axis of 52224.5 km. Data

of the velocity changes required to configure the EMMET’s orbit in a

polar inclination were obtained as a function of the EMMET’s orbital

harmonic with the Moon and it was found that the velocity required for

these changes increased with increasing orbital harmonic resulting from

an increased proximity of the EMMET to the Earth resulting in increased

precessional rate in addition to this, it was noted that the adjustment

to freely precessing argument of perigee was much more significant than

those required to re-align the EMMET’s apse line with the Moon’s node

line. Data was also obtained for the velocity changes required to config-

ure the EMMET’s orbit with a critical inclination, and it was found that

the change in velocity required to adjust the freely precessing angle of as-

cending node in this case also increased with increasing orbital harmonic

again as a result of increasing proximity to Earth, resulting in increased

precessional rate in this case. However this velocity change was found to

be smaller in comparison to that required to adjust the freely precessing

argument of perigee.

Numerical analysis of the precessional rates of the argument of per-

ilune and angle of ascending node of the Lunavator’s orbit was undertaken
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and it was observed that these rates were of a comparable magnitude to

those occurring within the EMMET’s orbit and were a result of the Lu-

navator’s close proximity to the Moon even though its actual oblateness

is very much less significant. The velocity adjustments required to con-

figure the Lunavator’s freely precessing argument of perilune and angle

of ascending node were similarly found to increase with increasing orbital

harmonic with the Moon’s orbit and were of a comparable magnitude on

both cases. Furthermore, it was investigated whether the Lunavator was

indeed capable of completely removing orbital velocity from a payload at

its upper tip and producing zero relative velocity with the Moon’s surface

at its lower tip, and this was indeed found to be the case and dependent

upon the orbital harmonic of the Lunavator and the perilune radius of

its central facility.

Numerical analysis of the performance of the tether systems was con-

ducted in terms of the gain and loss of specific energy of the system for

both the hanging and motorised cases. It was found that an increase

in tether sub-span length improved both the performance and efficiency

of the system for upper payload energy gain and lower payload energy

loss in comparison with alterations to the semi-major axis of the system

and was a direct result of the payloads experiencing increasing velocity

discrepancies between current velocity and the velocity required to stay

on the same orbit after release. An increase in the semi-major axis of

the system was also found to improve the performance of the tether for

both energy loss or gain as a result of this coinciding with an increase

in orbital energy for the system. A significant result was found when

numerical analysis of the motorised tether system was undertaken which

showed that the maximum increase in the kinetic energy of a payload at

the tip of sub-span rotating at maximum angular velocity occurred on

a small plateau centred at a sub-span length of 100km. The motorised

tether system performed ten times better than the hanging tether case in

imparting energy to the upper payload and detracting energy from the

lower payload.

A methodology for the configuration of the circumlunar trajecto-

ries between the EMMET and Lunavator’s upper tips, when adhering
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to the logistical requirements previously established, has been devised

which utilises payloads undertaking elliptical trajectories between the

EMMET’s upper tip and the LSI boundary in addition to undertaking

hyperbolic trajectories between LSI and perilune. It was found that by

means of an iterative procedure that the elliptical and hyperbolic trajec-

tories could be patched together at their points of intersection coinciding

with their points of contact with the LSI and velocity differences min-

imised by means of this iteration. These trajectories were configured to

satisfy the timing requirements of the transfers by calculating the trans-

fers about Earth and the Moon as solutions to Lambert’s problem with

the required velocity at the beginning and end points of the trajectory

calculated by utilising Lagrange coefficients. By alterations to the times

of entry and exit to LSI, the orbital elements of these transfers about

Earth could be closely matched to those of the EMMET in either of the

moon-tracking configurations, additionally by adjustment to the transfer

time of the hyperbolic trajectory about the Moon and to the positions

of entry and exit themselves; a sufficient perilune distance could be had

whilst matching the orbital elements of the trajectories at the boundary

relative to Earth closely to those of the EMMET and payload’s elliptical

trajectory about Earth.

Numerical simulations of the entire circumlunar procedure were un-

dertaken and several cases were presented which allowed the system under

different logistical and moon-tracking configurations to be examined at

ascending nodes occurring at different points in the Moon’s orbit. By

iteration of the procedure it was shown that the system could be set up

according to the logistical requirements and the methodology previously

endorsed with savings on the velocity requirements for the circumlunar

transfer when comparing this to conventional chemical propulsion. How-

ever, several points of note arose as a result of this analysis and were

present within every configuration case presented, These are as follows:

i. At every tip in every instance velocity mismatches were present be-

tween the tether tip and the incoming and outgoing payloads. This

can be dealt with in two ways firstly, by ensuring that the system

is robust enough to withstand this shock no further action need
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be taken or alternatively, the payload should undertake propulsive

burns to adjust the velocity at launch and capture to the required

velocity as was the case incorporated into the simulations.

ii. Significant velocity mismatches occurred at the entry and exit points

to LSI between the elliptical and hyperbolic trajectories at these

points. Case 1 showed that these were as significant in the case

where the elliptical and hyperbolic inclinations were matched and

result from the differences in their arguments of perigee at these

points of conjunction and less significantly on small differences in

the angle of ascending nodes. Attempts were made to remedy this

but resulted in unwanted variations in the other orbital elements

of the trajectories.

iii. In all cases the lower tip velocity of the Lunavator remained unac-

ceptably large and could not be reconciled. The solution to this is

for the Lunavator to be placed into a circular orbit about the Moon

but this also introduces further constraints into the overall system

design and this will be discussed further in the next section.

Although an iterative procedure was undertaken for each of the transfer

configuration cases, it is abundantly clear that these are not optimised

trajectory calculations and the velocity mismatches between the tips and

payloads in addition to those existing between the hyperbolic and ellip-

tical trajectories at conjunction could be further reduced. The extent to

which this may occur remains unclear at this point.

Having observed an anomaly occurring within the orbit of a sym-

metrical tether system about Earth it was noted that this was a result

of the body undertaking an elliptical orbit about Earth even though it

had the required orbital angular velocity for a circular orbit at its cen-

tre of mass. It was noted that this was a result of the centrifugal and

gravitational forces being unbalanced at this point for an extended body

in a non-uniform gravitational field and further examination found that

these forces actually balance at the system’s centre of gravity which is

displaced from its centre of mass in this non-gravitational field. How-

ever, further work showed that neither was this the location at which the
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system orbited Earth with a motion identical to a particle with the same

angular velocity as the body. It was discovered that the body actually

orbits Earth identically to that of a particle located at the distance of

mean specific potential energy of the system with an orbital geometry

identical to that of a particle at this point and an angular velocity iden-

tical to that of the tether system. This point was termed the centre of

potential of the system and the entire tether system undertook a circular

orbit when given an angular velocity corresponding to that of a circular

orbit at the distance of this physical centre.

10.2 Further Work

Several issues have been raised regarding to the establishment of a con-

tinuous payload exchange system utilising momentum exchange tethers

however, all of the problems can be overcome by careful design and op-

timisation and there are several areas which our focus should turn to.

Although the system has been shown to be a realistic possibility the

mission architecture at its current state does not yet present a viable

alternative to chemical propulsion, when taking into account the devel-

opment and system setup in the near term however, it is the author’s firm

belief that all of the velocity changes required, with the exception of those

required to configure the EMMET and Lunavator, can be eradicated by

optimisation of the trajectories between the EMMET and Lunavator tips.

Furthermore, by taking into account trajectories which would minimise

the required changes to the Lunavator’s configuration; the optimum con-

figuration for conducting these exchanges over the next several decades

can be found and only then can a valid comparison of the efficiency of the

system in comparison to current means of propulsion can be made. The

next step for this research will therefore be the establishment of an opti-

misation process to determine the most efficient configurations for these

exchanges which would utilise an EMMET in an elliptical orbit and a

Lunavator in a circular orbit about the Moon with slight adjustments in

the logistical arrangements to accommodate this.

Regarding the high velocity at the Lunavator’s lower tip; although
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this can be remedied to some extent by utilising a circular orbit about

the Moon the fact remains that the Lunavator’s orbit must adhere to the

logistical requirements of the system which result in the circular orbit

taking only those radial distances about the Moon which have orbital

periods which are harmonic with the orbital period of the Moon about

Earth. Furthermore, to ensure that the tip of the lower sub-span remains

close to the Moon’s surface without touching it when orbiting in this

circular orbit; the lower tip must be at such an altitude to be within

reach of the surface but far enough from it that no contact is made due

to changes in surface geography. If this circular orbit cannot completely

remove this velocity then a mobile mechanism located on the Moon’s

surface should be designed to do so and in addition to this, it would

provide the boost to the payload to ensure that its velocity matched that

of the lower payload in preparation for lower tip capture.

For the orbital mechanics described in this thesis it has been as-

sumed that the tether sub-spans themselves are rigid and inextensible

and although this is adequate for preliminary investigations of the or-

bital motion of these systems it is important that these motions can be

realistically predicted. It is therefore recommended that a finite element

model of a flexible and extensible tether system is constructed with an

accurate model of the perturbing effects of the Earth’s oblateness being

implemented as a series expansion of the gravitational potential using

Legendre polynomials as explained by Boas [48] . This is in addition

to the perturbing effects of the Moon and the other bodies in the Solar

system being treated as disturbing accelerations as explained by Battin

[44]. The time evolution of the system would be obtained by numeri-

cal integration of the systems equations of motion and time was spent

during the period of this Ph.D. research considering this problem but it

was concluded that this would be a major period of research in itself and

therefore it was unable to be undertaken.

An extremely important aspect of the system which has not been

investigated in great detail is the mechanism for performing the capture

and launch of the payloads at the tether tips and this is an area which

requires immediate attention however, concepts have been proposed and
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it possible that the grapple assembly designed by Tethers Unlimited
TM

for

the MXER system [57] could be ideal for this application. Finally, work

should be undertaken to thoroughly investigate the centre of potential of

the system to understand more fully the extent of this phenomena and

the implications this has for the motion of extended bodies in orbit.

226



Bibliography

[1] Puig-Suari, J., Longuski, J.M., and Tragesser, S.G., A Tether Sling

for Lunar and Interplanetary Exploration, Acta Astronautica, Vol.

36, No. 6, 291-295, (1995).

[2] Cartmell, M.P., and Zeigler, S.W., Symmetrically Laden Motorised

Momentum Exchange Tethers For Continuous Two-Way Interplan-

etary Exchange, 35th AIAA/ASME/SAE/ASEE Joint Propulsion

Conference and Exhibit, AIAA Paper 99-2840, Los Angeles, CA,

USA, (1999).

[3] Tsiolkovskii, K.E., A Way to Stars, Izdatelstvo AN SSSR, Moscow,

(1961).

[4] Beletsky, V.V.,and Levin, E.M., Dynamics of Space Tether Systems,

Advances in Astronautical Sciences: Volume 83, American Astronau-

tical Society, San Diego, CA, U.S.A., 1993.

[5] Chobotov, V.A., Gravity Gradient Excitation of a Rotating Cable

Counterweight Space Station in Orbit, Journal of Applied Mechanics,

30 (1963), 547-554.

[6] Lang, D.D., and Nolting, R.R., Operations with Tethered Space Ve-

hicles, Gemini Summary Conference, February 1-2, 1967, Houston,

Texas, NASA SP-138, 55-66.

[7] Cosmo, M.L., and Lorenzini, E.C., Tethers in Space Handbook, Third

edition, Smithsonian Astrophysical Observatory, Cambridge, MA,

U.S.A, 1997.

[8] Napolitano, L.G., and Bevilacqua, F., Tethered Constellations, Their

Utilisation as Microgravity Platforms and Relevant Features, 35th In-

ternational Astronautical Congress, Lausanne, Switzerland, October

7-13, 1984, Paper No 84-439.

227



[9] Kroll, K.R., Tethered Propellant Resupply Technique for Space Sta-

tions, Acta Astronautica, 12 (1985), 987-994.

[10] Bainum, P.M., Harkness, R.E., and Stuiver, W., Attitude Stability

and Damping of a Tethered Orbiting Interferometer Satellite System,

Journal of the Astronautical Sciences, 19 (1972), 364-389.

[11] Bekey, I., Tethers Open New Space Options, Astronautics and Aero-

nautics, Vol. 21, No. 4, 32-40, (1983).

[12] Forward, R.L., Hoyt, R.P., and Uphoff, C., The Terminator Tether:

A Low-Mass System for End-of-Life Deorbit of LEO Spacecraft,

Tether Technical Interchange Meeting, Huntsville, AL, September 10,

1997.

[13] Drell, S.D., Foley, H.M., and Rudderman, M.A., Drag and Propul-

sion of Large Satellites in the Ionosphere: An Alfven Propulsion En-

gine in Space, Journal of Geophysical Research, Vol.70, No. 13, 3131-

3145, July, (1965).

[14] Vas, I.E., Kelly, T.J., and Scarl. E.A., Space Station Reboost with

Electrodynamic tethers, Journal of Spacecraft and Rockets, Vol. 37,

No. 2, 154-164.

[15] Grossi, M.D., Spaceborne Long Vertical Wire as a Self-Powered

ULF/ELF Radiator, Journal of Oceanic Engineering , Vol. 9, No.

3, p. 211-213, July 1984.

[16] Bekey, I., and Penzo, P.A., Tether Propulsion, Aerospace America,

Vol. 24, No. 7, 40-43, (1986).

[17] Lorenzini, E.C., Cosmo, M.L., Kaiser, M., Bangham, M.E., Vonder-

well,D.J., and Johnson, L., Mission Analysis of Spinning Systems for

Transfers from Low Orbits to Geostationary, Journal of Spacecraft

and Rockets, Vol. 37, No. 2, 165-172, (2000).

[18] Carroll, J.A., Tether Applications in Space Transportation, Acta As-

tronautica, Vol. 13,No. 4 , 165-174, (1986).

228



[19] Crellin, E.B., and Janssens, F.L., Some Properties of the In-plane

Motion of a Dumbbell in an Elliptical Orbit, ESTEC Working Paper,

No, 1888, European Space Agency, Noordwijk, Netherlands, (1996).

[20] Moravec, H., A Non-Synchronous Orbital Skyhook, Journal of As-

tronautical Sciences, Vol. 15, No. 4, 307-322, (1977).

[21] Hoyt, R., and Forward, R.L., Tether Transport from Sub-Earth-Orbit

to the Lunar Surface and Back!, International Space Development

Conference, Orlando, Florida, May, (1997).

[22] Zeigler, S.W., and Cartmell, M.P., Using Motorised Tethers for Pay-

load Orbital Transfer, Journal of Spacecraft and Rockets, Vol. 38, No.

6, (2001).

[23] Cartmell, M.P., and Zeigler, S.W., Experimental Scale Model Test-

ing of a Motorised Momentum Exchange Propulsion Tether, 37th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,

AIAA Paper 2001-3914, Salt Lake City, UT, USA, (2001).

[24] McKenzie, D.J., and Cartmell, M.P., On the Performance of a Mo-

torised Tether using a Ballistic Launch Method, 55th International

Astronautical Congress, Vancouver, Canada, IAC-04-IAA-3.8.2.10,

(2004).

[25] Chen, Y., and Cartmell, M.P., Multi-Objective Optimisation on Mo-

torised Momentum Exchange Tether for Payload Orbital Transfer,

2007 IEEE Congress on Evolutionary Computation, Singapore, 2007

[26] Murray, C., and Cartmell, M.P., Continuous Earth-Moon Pay-

load Exchange Using Symmetrically Laden Motorised Momentum Ex-

change Tethers, 59th International Astronautical Congress, Glasgow,

UK, IAC-06-D4.3.03, (2008).

[27] Forward, R.L., Tether Transport from LEO to the Lunar Surface,

27th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Ex-

hibit, AIAA Paper 91-2322, Sacramento, CA, USA, (1991).

229



[28] Hoyt, R., and Uphoff, C., Cislunar Tether Transport System, 35th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,

AIAA Paper 9-2690, Los Angeles, CA, USA, (1999).

[29] Cartmell, M.P., McInnes, C.R., McKenzie, D.J., Proposals for an

Earth-Moon Mission Design based on Motorised Momentum Ex-

change Tethers, Plenary session paper, Proc. XXXII Summer School

on Advanced Problems in Mechanics, Russian Academy of Sciences,

St. Petersburg, Russia, June 2004.

[30] Forward, R., and Nordley, G., Mars-Earth Rapid In-

terplanetary Tether Transport (MERITT) System, 35th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,

AIAA Paper 9-2151, Los Angeles, CA, USA, (1999).

[31] Hoyt, R., Slostad, J., and Twiggs, R., the Multi-Application Sur-

vivable Tether (MAST) Experiment, 39th AIAA/ASME/SAE/ASEE

Joint Propulsion Conference and Exhibit, AIAA Paper 2003-5219,

Huntsville, AL, USA, (2003).

[32] [online] SpaceRef.com, Accessed 20-2-2011, Available at:

http://www.spaceref.com/news/viewsr.rss.spacewire.html?pid=34856.

[33] Bogar, T.J., Bangham, M.E., Forward, R.L., and Lewis, M.J., Hy-

personic Airplane Space Tether Orbital Launch (HASTOL) System:

Interim Study Results, 9th International Space Planes and Hyper-

sonic Systems and Technologies Conference, AIAA Paper 99-4802,

Norfolk, VA, USA, (1999).

[34] Hoyt, R., Design and Simulation of a Tether Boost Facility For

LEO-¿GEO Transport, 36th AIAA/ASME/SAE/ASEE Joint Propul-

sion Conference and Exhibit, AIAA Paper 2000-3866, Huntsville, AL,

USA, (2000).

[35] Santangelo, A., Johnson, L., Future Applications of Electrodynamic

Tethers for Propulsion, 36th AIAA/ASME/SAE/ASEE Joint Propul-

sion Conference and Exhibit, AIAA Paper 2000-3870, Huntsville, AL,

USA, (2000).

230



[36] [online] Tethers Unlimited Inc, Accessed 22-2-2011, Available at:

http://www.tethers.com/GRASP.html.

[37] [online] Tethers Unlimited Inc, Accessed 22-2-2011, Available at:

http://www.tethers.com/microPET.html.

[38] [online] Tethers Unlimited Inc, Accessed 22-2-2011, Available at:

http://www.tethers.com/HiVOLT.html.

[39] [online] BETS passive electric propulsion, Accessed 22-2-2011, Avail-

able at: http://www.thebetsproject.com/.

[40] Cartmell, M.P., Private communication, University of Glasgow, UK,

(2008).

[41] Roncoli, R.B., Lunar Constants and Models Document, JPL D-

32296, Jet Propulsion Laboratory, Pasadena, CA, U.S.A., (2005).

[42] Vallado, D.A.,Fundamentals of Astrodynamics and Applica-

tions,Microcosm Press, Hawthorne, CA, U.S.A. and Springer, New

York, NY, U.S.A., (2007).

[43] Woan, G., The Cambridge Handbook of Physics Formulas, Cam-

bridge University Press, Cambridge, UK, (2003).

[44] Battin, R.H, An introduction to the Mathematics and Methods of As-

trodynamics, Revised Edition. AIAA Education Series, Reston, VA,

U.S.A, (1999).

[45] Shabana, A.A., Dynamics of Multibody Systems, Second Edition,

Cambridge University Press, Cambridge, UK, (1998).

[46] Chobotov, V.A., Orbital Mechanics, Third Edition, AIAA Educa-

tion Series, Reston, VA, U.S.A., (2002).

[47] Curtis, H.D., Orbital Mechanics for Engineering Students, Elsevier

Aerospace Engineering Series, Butterworth-Heinemann, Oxford, UK,

(2004).

[48] Boas, M.L, Mathematical Methods In The Physical Sciences, Second

Edition. John Wiley and Sons, U.S.A, (1983).

231



[49] Zeigler,S.W., The Rigid Body Dynamics Of Tethers In Space, Ph.D.

Dissertation, Department of Mechanical Engineering, University of

Glasgow, Glasgow, UK, 2003.

[50] [online] Wikipedia, Accessed 5-9-2010, Available at:

http://en.wikipedia.org/wiki/Exosphere.

[51] [online] Moon Fact Sheet, Downloaded 17-12-2007, Available at:

http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html.

[52] [online] Jet Propulsion Laboratory HORIZONS System, Accessed ex-

tensively, Available at: http://ssd.jpl.nasa.gov/horizons.cgi.

[53] Langan, M.P., First Lunar Outpost (FLO)Conceptual Flight Profile,

Engineering Directorate, Systems Engineering Division; NASA JSC,

(1992).

[54] Fowles, G.R., and Cassiday, G.L., Analytical Mechanics, Fifth Edi-

tion, Saunders College Pub, Fort Worth, Tx, (1993).

[55] Young, H.D., and Freedman, R.A., University Physics with Modern

Physics, Tenth Edition, Pearson Education, Addison-Wesley, (2000).

[56] [online] NASA, Accessed 14-6-2010, Available at:

http://www.grc.nasa.gov/WWW/K-12/airplane/cg.html.

[57] [online] Tethers Unlimited Inc., Acessed 1-3-2011, Available at:

http://www.tethers.com/Movies/CaptureToss.mov.

232


