
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Mira da Silva, Miguel Leitão Bignolas (1996) Models of higher-order,
type-safe, distributed computation over autonomous persistent object
stores. PhD thesis.

http://theses.gla.ac.uk/2689/

Copyright and moral rights for this thesis are retained by the Author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/2689/

Models of Higher-order, Type-safe,
Distributed Computation over

Autonomous Persistent Object Stores

Miguel Leitdo Bignolas Mira da Silva

A thesis submitted to the Faculty of Science, University of Glasgow
for the degree of Doctor of Philosophy

December 1996

TV1J

Abstract

A remote procedure call (RPC) mechanism permits the calling of procedures in another
address space. RPC is a simple but highly effective mechanism for interprocess communica-
tion and enjoys nowadays a great popularity as a tool for building distributed applications.
This popularity is partly a result of their overall simplicity but also partly a consequence
of more than 20 years of research in transpaxent distribution that have failed to deliver
systems that meet the expectations of real-world application programmers.

During the same 20 years, persistent systems have proved their suitability for building
complex database applications by seamlessly integrating features traditionally found in
database management systems into the programming language itself. Some research. effort
has been invested on distributed persistent systems, but the outcomes commonly suffer
from the same problems found with transparent distribution.

In this thesis I claim that a higher-order persistent RPC is useful for building distributed
persistent applications. The proposed mechanism is: realistic in the sense that it uses
current technology and tolerates partial failures; understandable by application program-
mers; and general to support the development of many classes of distributed persistent
applications.

In order to demonstrate the validity of these claims, I propose and have implemented three
models for distributed higher-order computation over autonomous persistent stores. Each
model has successively exposed new problems which have then been overcome by the next
model. Together, the three models provide a general yet simple higher-order persistent
RPC that is able to operate in realistic environments with partial failures.

The real strength of this thesis is the demonstration of realism and simplicity. A higher-
order persistent RPC was not only implemented but also used by programmers without
experience of programming distributed applications. Furthermore, a distributed persistent
application has been built using these models which would not have been feasible with a
traditional (non-persistent) programming language.

1
"I

ii

Acknowledgement s

First of all I'd like to thank Malcolm Atkinson, my supervisor, for all his support, advice
and criticism. I am specially indebted for the many discussions and text revisions of my
reports and papers, and particularly the dissertation. Malcolm is an example of hard work
and has provided an excellent research environment in Glasgow. I am also grateful for his
support of my research trips which gave me the opportunity to meet so many interesting
people.

My research colleagues in Glasgow also deserve my thanks. Although it's impossible to
acknowledge them all, I'd like to mention Peter Dickman, who played the difficult role
of second supervisor. Other colleagues that I'd like to thank include Paul Philbrow, Huw
Evans, Susan Spence, Laurent Daynbs, Darryn Lavery, Jodo Lopes, Tony Printezis, Stewart
Macneill, Quintin Cutts and Peter Larsson.

Thanks are also due to past and present members of the Persistent Programming Research
Group in St. Andrews, who have built a robust implementation of Napier88. Of my research
friends around the world, I'd particularly like to thank Andrew Black and Bernd Mathiske,
with whom I discussed many of the topics in this thesis, and Dag Sjoberg for all the advice
and support.

But life is not only work, and these last three years would not have been possible without
the support of all my friends. I'd like to thank Jorge Pedroso, Ana Vasconcelos, Cristina
Comes, Pedro Caxvalho, Ana Fonseca, Manuella Coelho, Margaxida Dias and so many
others in Portugal; Eva, Paula, Ana Roque and Teresa in Glasgow; Monica in the States;
and Patricia in Germany.

Last but not the least, I'd like to thank my family for the support, understanding, and
friendship that made this journey possible.

This thesis is based on research work partially supported by JNICT, the Portuguese Council
for Scientific and Technological Research.

iii

iv

Table of Contents

Abstract i

Acknowledgements iii

Table of Contents

List of Figures ix

List of Examples xi

List of Tables xiii

1 Introduction I
1.1 Research Context I

1.1.1 Persistent Systems 1
1.1.2 Distributed Systems 3
1.1.3 Interprocess Communication (IPC) 5
1.1.4 Limitations of Current IPC Technology 6

1.2 Thesis Statement, *.,,,, *,., *, *, *,,, *7 1.3 Models for Distributed Computation 7
1.3.1 Persistent Type-safe RPC 8
1.3.2 Migration by Substitution 8
1.3.3 Persistent Spaces

.....................
9

1.4 Dissertation Structure
...................... 10

2 Survey of Inter-process Communication 11
2.1 Distributed Applications

...................... 11
2.1.1 Advantages

......................... 11
2.1.2 Disadvantages

........................ 12
2.1.3 Relationship with Parallel Systems

............ 13
2.1.4 Classes of Distributed Application

............. 14
2.2 Models of Distribution 15

2.2.1 One-world Distribution Model 16
2.2.2 Federated Distribution Model 18
2.2.3 Motivation for Inter-process Communication 20

2.3 IPC Design Issues 20
2.3.1 Understandability 21
2.3.2 Type-safety 22
2.3.3 Type-completeness 23
2.3.4 Synchronisation 24

V

vi TABLE OF CONTENTS

2.3.5 Efficiency, Performance and Scalability 25
2.3.6 Replication and Caching 26
2.3.7 Heterogeneity 29
2.3.8 Fault-tolerance 30

2.4 Summary 32

3 Overview of Persistence and IRPC 33
3.1 Orthogonal Persistence 33

3.1.1 Benefits of Persistence 34
3.1.2 Implementation Strategies 35

3.2 Napier88 36
3.2.1 Features 36
3.2.2 Type System 38
3.2.3 Implementation

.................... 39
3.2.4 Programming Environment

.............
40

3.2.5 Limitations and Challenges
41

3.2.6 Comparison
......................

42
3.3 Remote Procedure Call

44
3.3.1 Introduction

......................
44

3.3.2 Application Programming Interface
46

3.3.3 Server Binding 46
3.3.4 Type-checking 47
3.3.5 Call Semantics 48
3.3.6 Parameter Semantics 48
3.3.7 Transport Protocol 51
3.3.8 Data Representation 52
3.3.9 Failure Model 53
3.3.10 Asynchronous RPC 54
3.3.11 Heterogeneity 54
3.3.12 Performance 55
3.3-13 Transactional RPC 55
3.3.14 Object Orientation 56
3.3-15 Extensibility 56
3.3-16 Conclusion

....................... 56
3.4 Combining Persistence and RPC 57

3.4.1 Opportunities
..................... 57

3.4.2 Challenges
....................... 59

3.4.3 Need for Compromises
................ 61

3.5 Summary 62

4 Type-safe Persistent RPC 63
4.1 Type-safety 63

4.1.1 Example of The Problem 63
4.1.2 Type-checking 64
4.1.3 Server and Procedure Binding 65

4.2 Binding and Type-checking 66
4.2.1 Type Sessions 66
4.2.2 Capabilities 67
4.2.3 Binding Service 67
4.2.4 Server Evolution 69

TABLE OF CONTENTS vii

4.2.5 Summary 70
4.3 Application Programmer Interface

.............. 71
4.3.1 Generating the Stubs 71
4.3.2 Using the Stubs

.................... 76
4.4 Parameter Semantics 77

4.4.1 Passing Arguments by Value 78
4.4.2 Types Supported as Arguments

........... 79
4.4.3 Packing Complex Types

............... 79
4.5 Transport Protocol

...................... 83
4.5.1 Outgoing Calls

.................... 83
4.5.2 Incoming Calls

....................
84

4.6 Summary
........................... 84

5 Extending Object Migration 87
5.1 Migration by Reference 87

5.1.1 Examples
....................... 88

5.1.2 Implementation
.................... 89

5.1.3 Advantages
...................... 90

5.1.4 Problems
....................... 91

5.1.5 Summary
....................... 93

5.2 Migration by Copy
...................... 93

5.2.1 Examples 94
5.2.2 Implementation

.................... 94
5.2.3 Advantages

...................... 95
5.2.4 Problems

....................... 96
5.2.5 Summary

....................... 98
5.3 The Need for a Compromise

................. 98
5.3.1 Existing Compromises

................ 99
5.3.2 Making Distribution Visible

............. 100
5.4 Migration by Substitution

.................. 101
5.4.1 Design 101
5.4.2 Implementation

.................... 105
5.4.3 Related Work

..................... 108
5.5 Higher-order Migration 110

5.5.1 Example of Migrating a Procedure 111
5.5.2 Applicability of Substitution 114

5.6 Summary
........................... 115

6 Persistent Spaces 117
6.1 Motivation 117

6.1.1 Target Applications
................. 118

6.1.2 The Case for a New IPC Model
.......... 119

6.2 Model of Persistent Spaces
................. 121

6.2.1 Overview 122
6.2.2 Failure Handling 124
6.2.3 Server API 124
6.2.4 Client API 125
6.2.5 Summary 126

6.3 Interactions with Other Mechanisms 127
6.3.1 Local Mechanisms 127

viii TABLE OF CONTENTS

6.3.2 Migration by Substitution 128
6.3.3 Multiple Spaces per Store 129
6.3.4 Clients as Servers 130

6.4 Application Programming Interface 130
6.4.1 The Publish Operation 131
6.4.2 The Subscribe Operation

............. 131
6.4.3 The Put Operation 132
6.4.4 The Fetch Operation

............... 135
6.4.5 The Build Operation 136
6.4.6 The Get Operation

................ 137
6.4.7 Conclusion 138

6.5 Implementation 138
6.5.1 Marshalling

.................... 140
6.5.2 Transmission

................... 143
6.5.3 Unmarshalling

................... 144
6.6 Related Work 146

6.6.1 Message Passing
................. 148

6.6.2 Tuple Spaces
................... 148

6.6.3 Replication Protocols 149
6.7 Summary

......................... 150

7 Evaluation 153
7.1 Example Application

................... 153
7.1.1 Client/Server Explorer 154
7.1.2 Distributed Explorer 155

7.2 Performance Measurements ,, *, *,,.,,,,, ,,, *,,, *,,, 158
7.2.1 Remote Procedure Call 159
7.2.2 Migration by Substitution 164
7.2.3 Persistent Spaces

................. 165
7.3 Summary

......................... 168

8 Conclusion 169
8.1 Summary of the Dissertation 169

8.1.1 Models Proposed 169
8.1.2 Usage Experience 173

8.2 Future Work
.......................... 175

8.2.1 Mobile Object Systems 175
8.2.2 Implementation Issues 177
8.2.3 Example Applications

................ 178
8.2.4 Heterogeneity and Inter-operability

......... 179
8.2.5 Further Speculation

.................. 179
8.3 Goals Achieved 180

8.3.1 Thesis Statement Revisited 181

Bibliograpby 183

Index 201

List of Figures

2.1 The one-world model of distribution 16
2.2 The federated model of distribution 18
2.3 Taxonomy of IPC design issues

21

3.1 Remote procedure call mechanism
45

4.1 The binding service in action
68

4.2 Type-safe evolution of a remote procedure
71

5.1 Migration by reference
88

5.2 Migration by reference -the object moves
91

5.3 Migration by reference-the thread moves
92

5.4 Migration by copy
94

5.5 Loss of object shaxing
97

5.6 Migration by substitution
103

5.7 Step 1: registration
106

5.8 Step 2: confirmation 107
5.9 Step 3: cutting 107
5.10 Step 4: transmission 108
5.11 Step 5: re-binding 109
5.12 Hyper-program of error 112

6.1 Overview of persistent spaces 123
6.2 Overview of the operations in a persistent space 125
6.3 Map of export buffers 141
6.4 An example of a simple object graph 145
6.5 The pending list during an unmarshalling operation 146

7.1 Architecture of the original Library Explorer 154
7.2 The client/server Library Explorer 155
7.3 The Distributed Library Explorer 156
7.4 Scalability of persistent spaces 166

ix

LIST OF FIGURES

List of Examples

4.1 Export and import
68

4.2 Generating client stubs
73

4.3 Client stub generated
74

4.4 Generating server stubs
75

4.5 Server stub generated
76

4.6 Using server stubs
77

4.7 Using client stubs
78

4.8 Type TypeRep
80

4.9 Type Signature
80

4.10 Type Signature flattened
81

4.11 Procedure packType--Signature
82

4.12 Procedure unpackType-Signature
83

5.1 Source code of error
111

5.2 Migrating error by copy 113
5.3 Migrating error using substitution

114

6.1 Publishing a persistent space 131
6.2 Subscribing to a persistent space 132
6.3 Putting an object into a space 132
6.4 Fetching a persistent space from a publisher 135
6.5 Building a copy of the remote object locally 137
6.6 Getting a reference to an object in a space 137
6.7 Pseudo-code of durapObject

142
6.8 Pseudo-code of outputObjectHeader 143
6.9 Pseudo-code of outputObject 143
6.10 Pseudo-code of dumpNestedObjects 143

7.1 Remote procedures in the Client/server Explorer
155

7.2 Creating a Map instance 156
7.3 Publishing the explorer index 157
7.4 Subscribing to the explorer index

157

xi

xii
LIST OF FIGURES

List of Tables

3.1 Scorecard for Napier88 and related systems 43

7.1 Performance of Napier/RPC
................. 160

7.2 Time to transmit 108 bytes in Napier88 160
7.3 Performance of Sun/RPC

.................. 161
7.4 Comparison of ratios for local/remote calls 162
7.5 Performance of the Client/server Explorer 163
7.6 Performance of migration by substitution 164
7.7 Incrementality of persistent spaces 165
7.8 Performance of the Distributed Explorer 167

xiii

xiv LIST OF TABLES

Chapter I

Introduction

This thesis is concerned with identifying an architecture that improves on existing models
of inter-process communication to facilitate the construction and maintenance of geograph-
ically distributed applications that manipulate large amounts of complex data.

Two existing research areas deal directly with different aspects of this problem.

Persistent systems store and manipulate complex data irrespective of their life time,
typically based on a programming language.

Distributed systems provide models, algorithms and mechanisms that permit ge-
ographically distributed programs to collaborate in order to behave like a single
application.

This introductory chapter describes the main features of persistence and distribution, and
why the problems posed by the combination of these have not been solved by the technology
currently available. We then present the thesis statement and give an overall picture of
the three models proposed in this thesis.

1.1 Research Context

In order to understand the problems posed by the integration of persistence and distribu-
tion, we first give an introduction to each of these research areas.

1.1.1 Persistent Systems

There are many ways to implement a persistent system, but in this dissertation we will
concentrate on those based in programming languages.

1

CHAPTER 1. INTRODUCTION

An orthogonal persistent programming language makes no distinction between short-term
and long-term data; all data of all types is kept by the system as long as it is useful for
the application [ABC+83, AM95].

Persistence is usually defined by reachability from one or more persistent roots [Bro88,
BR90, Mun93]. Objects not reachable, directly or indirectly, from a persistent root are
candidates for garbage collection. Internally, the system needs to save long-lived objects
on disk or other non-volatile media, but this is completely transparent to application
programmers.

Main Features of Persistent Systems

Orthogonal persistence has a number of interesting consequences. Most of these were in-
troduced to benefit application programmers and - ideally, at least - should be preserved
in a distributed environment. However, as we will see during this dissertation, they also
introduce new problems for system implementors.

Orthogonal persistence- This means persistence is orthogonal to other characteris-
tics of the object, such as its type. Thus any object of any type has the right to
become persistent, including simple types, constructed types (records, unions, ar-
rays) and data structures of any complexity (e. g., pieces of source code and their
relationships in a CASE tool).

Type-safety- It is good language design to enforce type-safety in order to prevent ap-
plication programmers from making type errors. Type-safety is even more important
in a persistent language to maintain the integrity of the persistent store. Together,
orthogonal persistence and type-safety enforce long-term referential integrity. This
means that C-like "dangling pointers" never occur in a persistent language and this
guarantee extends to long-lived data.

Higher-order- Procedures are a useful abstraction in any programming language,
but there axe many advantages in promoting them to full citizenship [AM85]. This
means that procedures can be created at run-time, passed as arguments or returned
as results in other procedures, and for an orthogonal persistent language it also means
that procedures can become persistent like any other data object.

The Persistent Language Napier88

We use the persistent programming language Napier88 [MBCD89, MBC+94] for the re-
search reported in this dissertation. Napier88 will be described extensively in chapter 3;
for the time being, it only matters that Napier88 supports all the characteristics mentioned
above.

1.1. RESEARCH CONTEXT

Distributed Systems

3

A distributed system supports the execution of programs in separate address spaces -
especially in different computers -while at the same time attempting to give the illusion
that together they behave as a single (distributed) application. There are, however, many
kinds of distributed system; this dissertation is specially concerned with the level of illusion
that each system attempts to give to the application programmer using it.

For example, the World-wide Web is a huge, distributed application: while an end-user on
a PC only starts a program (the browser), that program will talk to other programs (Web
servers) all over the world to present the HTML pages [Wor96] requested by the user. In
theory at least, the end-user does not need to know whether the information is coming
from the local hard disk or from an IBM mainframe on the other side of the World.

In reality, however, users of a distributed application develop some conceptual model of
the distribution. For example, most European users of the WWW are well aware that they
get much better response when they use American sites in the morning, before American
users start imposing their load. But many are unaware of various forms of caching (in
Web proxies) that make some of that data more locally available, and probably most are
unaware of the computers (gateways) that act as intermediaries when their requests are
being answered.

From the Web example, we can infer that end-users will readily comprehend a rational and
simple model of distribution. But they certainly do not wish to consider many of the details
that application programmers must face when building and maintaining the distributed
application. These application programmers must strive to present the rational and simple
model to end-users.

It is a goal of this thesis to help application programmers in that task by developing models
for distributed persistent applications that provide an appropriate abstraction of the real
distributed system.

Main Features of Distributed Systems

The main characteristics of distributed systems that we would like to maintain in a per-
sistent environment are autonomy and collaboration. Here we give only a first motivation
for these; a more detailed analysis will appeax in chapter 2.

The Web is an extreme example of autonomy. Each Web site -a Web server and its HTML
pages -is free to add, change and remove pages, create new CGI scripts to generate HTML
on-demand, and even choose a particular implementation of the Web server. The Web
illustrates that autonomy is necessary for local management and evolution. Autonomy is
also appropriate for a large number of sites because there is no need for centralized control.

However, when the Web is stressed to its limits, autonomy segregates providers and con-

4 CHAPTER 1. INTRODUCTION

sumers of information into categories and makes the distributed application behave more
like a collection of sub-applications. For example, even though the Web is supposed to sup-
port standard HTML, many sites these days have specific versions for different classes of
readers (HTML 2 or 3, with or without pictures, frames, applets and so on). Autonomy also
creates problems with referential integrity between (even within) sites -the well-known
"broken linV problem. Finally, autonomy permits different assumptions about data types,
network bandwidth, user-interface, and so on to proliferate.

On the other hand, autonomy is only possible because the HTTP protocol used for com-
munication between browsers and servers is a de facto standard. Thus, at the same time
it suggests the need for autonomy, the Web also suggests the need for less autonomy and
more collaboration.

In a real distributed application, a trade-off between autonomy and collaboration is needed.

One of the most challenging design issues is that the trade-off is application dependent.
Sometimes the distributed application needs stronger collaboration between sites. At other
times, more autonomy is needed. (Some examples will be given in chapters 2 and 3.)
Probably even more often, both autonomy and collaboration are required.

One solution to this problem -that we choose to explore in this dissertation -is providing
enough support to enable application programmers to select the right compromise. In order
to achieve this goal, the support needs to be easy to understand and use, otherwise only
programmers with distribution expertise would be able to use it.

Models of Distribution

In order to address this trade-off between autonomy and collaboration that exists in all
distributed applications, research in distributed systems has been typically divided into
sub-areas. Each sub-area is based on one of two models of distribution.

Federated model-In this model autonomy is preserved because programs are for
the most part independent and only talk to each other by means of an inter-process
communication (IPC) mechanism. Application programmers need to understand the
distributed semantics and use the IPC themselves to build the distributed application.
One-world model-In this model (also called transparent distribution) the idea is
to compromise on local autonomy to achieve overall simplicity. The system takes
the responsibility for dealing with all (or at least most) aspects of distribution and
attempts to hide some or all aspects of distribution from application programmers.

In this dissertation we consider large distributed persistent applications, rather than the
typical client/server applications running on local area networks. A typical example is a
hospital information system. In a hospital, computing resources are typically distributed

1.1. RESEARCH CONTEXT 5

across a variety of autonomous computer systems, each managing a quasi-independent part
of the hospital (accounting, patients, pharmacy, catering, operating theatres and so on).

These long-lived, large-scale applications are characterised by a number of technological
issues (see sections 2.1 and 2.2): autonomy for evolution, protection, management, and
performance; fault-tolerance for dealing with a high rate of failures, some of which may
never recover; and heterogeneity to support legacy data and applications.

These characteristics make them unsuitable for the one-world model of distribution. This
is the reason why the dissertation concentrates on the federated model and its IPC support.

1.1.3 Interprocess Communication (IPC)

One solution for building large distributed persistent applications that preserves autonomy,
deals with partial failures and is suitable for heterogeneous environments is the federated
model of distribution based on IPC. An IPC mechanism supports communication between
independent programs and is a simple yet effective way of building this kind of application.

We have described earlier in this chapter the main features of persistence and distribution.
Distributed persistent applications require a combination of these research areas, but we
cannot afford to lose the main existing features of each area in our implementation of IPC.

1. Type-safe-Since locally a persistent language like Napier88 is strongly type-safe,
it is highly desirable to maintain this guarantee when the computation extends to
another program.

2. Higher-order- First-class procedures have already proven to be useful in traditional
(non-persistent) programming languages. It has been shown that first-class proce-
dures are even more useful in a persistent environment [AM85]. They will probably
also be useful for building distributed persistent applications.

3. Persistent-It is important to take advantage of orthogonal persistence, persistence
independence and persistence by reachability, but also to take into account the new
problems introduced by this technology. The canonical example is the difficulty posed
by laxge objects that reside in the database, as it may be difficult to copy their values
as arguments in a remote procedure.

4. Autonomy and collaboration - They will both have to be implemented by application
programmers with a balance dependent on the distributed application.

An IPC that preserves these fundamental chaxacteristics is well positioned to take full
advantage of persistence and distribution when building distributed persistent applications.

6 CHAPTER 1. INTRODUCTION

1.1.4 Limitations of Current IPC Technology

The current technology for building federated distributed application systems is the Remote
Procedure CAU (RPC) [BN84]. Examples of RPC systems include Sun/RPC [Sun93b]
and a number of implementations of CORBA [OMG95]. Although some authors would
claim CORBA offers a model of distributed objects, the technology behind all CORBA
implementations is the same as RPC.

Most implementations of RPC have a number of well-known characteristics that can be
compared with our list above of required features for a persistent IPC.

1. Restricted data types as arguments -Most RPC systems do not support interesting
types such as procedures as arguments in remote calls. This weakness is perfectly
acceptable if these types are not supported by the programming language from which
the RPC system is used. However, it becomes a major limitation if the language does
support first-class procedures and other rich types because application programmers
axe prevented from using the same abstractions for local and distributed computation.

2. Not type-safe- The same kind of reasoning applies to type-safety: since many RPC
systems are built for unsafe languages like C, these systems do not give full guar-
antees concerning the type of their arguments. However, invalid arguments cannot
be acceptable for large distributed applications in which many programs are written
and then evolve autonomously.

3. No support for persistence -Most popular RPC systems were designed for traditional
programming languages and so only take volatile data into account. In contrast,
most real-world distributed applications make some use of persistent data, and many
access large and complex databases. This means application programmers have to
deal with three systems offering three different programming models: the database,
the language and the IPC mechanism.

4. Flexibility- One of the advantages of RPC is that it is sufficiently flexible to per-
mit application programmers to achieve the right balance between autonomy and
collaboration as required for the particular distributed application being built.

There are also new problems introduced by persistence. The transitive closure of a per-
sistent object is typically large (see section 5.2.4). However, most RPC systems pass
arguments by copy and as a consequence large amounts of data will be transmitted in
every remote call. This is both inefficient and unnecessary because some of this data will
already exist remotely and some will simply not be accessed at all. Passing arguments by
copy also creates multiple copies of the same objects in the remote environment, destroying
sharing semantics.

Persistent programmers are used to a type-safe persistent programming environment with
a rich type system that can include first-class procedures. After getting used to these
features, programmers will not easily accept restrictions on the data types permitted as

1.2. THESIS STATEMENT 7

arguments to remote procedures. They limit the kind of distributed applications that
can be built, and, in particular, the extension of existing persistent applications towards
distribution.

After consideration of the weaknesses of the traditional RPC systems with respect to
persistence, we conclude it is not suitable for building distributed persistent applications.

Some of these limitations are finally being recognized. For example, an implementation
of RPC for Java [AG96], called RMI [WRW96, RWW961, is both type-safe and is said
to support any Java data type as an argument in a remote call (provided a serialisation
method has been defined). In practice, objects belonging to the class Thread and all other
objects that are implemented by the run-time system, like AWT objects, cannot (currently)
be used. Another mechanism -based on special classes called apple ts -is needed to send
code between Java programs. Finally, although there is some support for persistence in
Java, applets cannot survive a program execution.

1.2 Thesis Statement

I claim that it is possible to design and build a simple, general, and realistic IPC that
can be used by typical application programmers to construct and maintain distributed
persistent applications without compromising too much on store autonomy.

9 Simple- To be understandable by typical application programmers.

* General- To be useful for a variety of application categories.

9 Realistic- To be feasible so it can be used for constructing real applications.

In order to demonstrate this claim I will propose, design, implement, employ and test
three models that together address the main issues for higher-order, type-safe, distributed
computation over autonomous persistent stores.

1.3 Models for Distributed Computation

The three models proposed in this dissertation are all extensions to the basic RPC model.
RPC was chosen as the starting model because it provides a simple but flexible distributed
programming model. In addition, RPC is a well-known paradigm, widely used for building
distributed applications based on the federated model.

In this section we present an introduction to each of these models: persistent, type-safe
RPQ migration by substitution; and persistent spaces. Each model solves a particular
problem and reveals a number of others, that are in turn solved by the next model. (The

problems revealed by persistent spaces are research issues for future work.)

8 CHAPTER 1. INTRODUCTION

1.3.1 Persistent Type-safe RPC

The first model described in this dissertation - also called Napier/RPC release 1.0 - is
a basic RPC mechanism that takes advantage of orthogonal persistence and is type-safe.
This model is described in chapter 4.

Here we give one example of how we have used persistence. In contrast to most RPC
implementations -that require an external "interface language" to define the remote pro-
cedure signature- Napier/RPC is based on internal stub generation. This permits new
stubs to be created at run-time (a feature used later by persistent spaces).

Type-safety is implemented with capabilities and a binding service. Traditional type-
checking at compilation-time does not apply because in general it is not possible to have
access to all programs in a distributed application simultaneously.

Napier/RPC 1.0 was first described in a paper presented to the RIDE'95 Workshop on
Distributed Object Management [MdS95a]. Since then, a failure model has been incorpo-
rated and its name has been changed to Napier/RPC 2.2 [MdS95b]. Later, Napier/RPC
2.2 became part of Glasgow Libraries [CAL+94]. Chapter 4 presents the original type-safe
persistent RPC and an implementation (not described in the RIDE'95 paper).

1.3.2 Migration by Substitution

This second model was developed after we realized that the semantics for migrating the
arguments is perhaps the most important design issue in a higher-order persistent RPC. (In
this dissertation, the word migration will be used as a general term that comprises move-
ment, copying, and replication of objects between programs.) The main reason is that
procedures -especially those that live in the persistent store-have large transitive clo-
sures (see section 5.2.4). This characteristic extends to all objects that include procedures
in their transitive closures.

Passing large objects by copying them to the remote procedure is not only unacceptably
inefficient but also makes for poor usage of store space. In addition, it also spoils sub-
structure sharing semantics over multiple arguments or multiple calls.

Many schemes to solve this problem have been proposed in the literature (see sections 3.3.6
and 5.3.1). They can all be classified into two basic models according to the "amount of
information" that is carried when a remote procedure is called.

1. Migrating by reference-Only a reference to the local argument object (such as
a globally unique object identifier) is passed to the remote procedure. Subsequent
accesses to this object will then require migrating the thread of execution to where the
object resides. Alternatively, a total or partial copy of the object can be performed
on accesses to the object.

1.3. MODELS FOR DISTRIBUTED COMPUTATION 9

2. Migrating by copy- The value of the argument object is duplicated in the remote
program when the procedure is called. When the application must cope with partial
failures and recovery (as most commercial products have to) the system normally uses
migration by copy because no further communication is required between calling the
procedure and returning the result.

We aim to build realistic systems. This is the reason why migration by copy was chosen as
the basic model for passing parameters. Adjustments to the basic semantics of copying can
be made if strictly necessary, but only after evaluating very carefully how much autonomy
is being lost.

In chapter 5 we propose a compromise between migrating by reference and by copy called
migration by substitution. This novel parameter passing model lets application program-
mers define which local objects are to be substituted by equivalent remote objects. These
objects will not be copied to the remote store, so we avoid the problem of maintaining the
copies consistent with the original objects. As we will explain in chapter 5, there is also
no need to maintain remote references to the original objects.

Migration by reference, by copy and by substitution were originally presented at the
ICDCS'96 Conference on Distributed Computing Systems [MdSAB96]. In this dissertation
we further discuss these models and the need for a compromise.

1.3.3 Persistent Spaces

The third model proposed in this thesis, described in detail in chapter 6, provides a simple
and efficient mechanism for caching complex objects in distributed persistent applications.

The motivation for persistent spaces is that most objects in a certain class of distributed

persistent application are stable for long periods of time. In this environment, a remote
procedure call for every access to objects in another store is clearly inappropriate. Instead,

programmers can use a persistent space to cache some popular objects locally and only
make a remote call when the original object is updated to fetch the new value. The basic
RPC mechanism can still be used to access large, rapidly changing or infrequently accessed
objects.

The main contribution of persistent spaces is a two-phase mechanism to control the data
flow between a publisher and its subscribers. A publisher store determines when a new
version of an object becomes visible by putting that object into a persistent space. Any

number of subscriber stores then choose when to request the new version.

Another contribution is a technique for refreshing local replicas on subscribers of very
complex objects without requiring the entire object to be copied again; only those parts
of the object that have changed are sent. This mechanism also saves disk space, especially
for large persistent objects. (The argument that disk space is cheap these days does not
hold because objects will just grow to fill up any free disk space.)

10 CHAPTER 1. INTRODUCTION

Persistent spaces were originally presented at the Seventh Workshop on Persistent Object
Systems [MdSA96b]. This dissertation further motivates their use, presents an example
application and describes an implementation in a persistent programming language.

1.4 Dissertation Structure

This dissertation is structured into eight chapters. The main contributions outlined in
section 1.3 comprise chapters 4 to 6.

1. Introduction -This chapter.

2. Survey of inter-process communication -Distributed applications. Models of distri-
bution. IPC design issues.

3. Overview of persistence and RPC- Orthogonal persistence. The Napier88 persistent
programming language. Overview of RPC.

4. Type-safe persistent RPC- Design and implementation of a type-safe RPC mecha-
nism that takes advantage of orthogonal persistence (see section 1.3.1 above).

5. Extending object migration -A survey on existing models for migrating objects
between programs. Design and implementation of a new model called migration by
substitution (see section 1.3.2 above).

6. Persistent spaces- Motivation, design, interface and implementation of a new model
for sharing complex persistent objects between autonomous persistent programs (see
section 1.3.3 above).

7. Evaluation -An example of a real distributed persistent application that makes use
of all three models proposed. Performance measurements and discussion.

8. Conclusion -Summary and future work.

Chapter 2

Survey of Inter-process
Communication

This chapter presents the context in which IPC works by first introducing distributed
applications and then identifying the model of distribution to which this thesis contributes.
This is followed by a section on high-level IPC design issues. The chapter will be used as
a basis for describing more specific issues on persistent RPC design in chapter 3 and our
research work in chapters 4 to 6.

2.1 Distributed Applications

A distributed application is composed of a number of components -sub-applications or
programs -that interact with each other to achieve a common goal. Typically each com-
ponent is represented by an operating system process executing in a computer; however,
several components may share an address space, possibly for performance reasons.

Advantages

Research on distributed systems and applications is justified for a number of reasons. In
this dissertation we are interested in both distribution and persistence, so Cheng's list of
potential advantages of a distributed object-oriented database [Che93] is relevant in our
context.

Autonomy- Users can enforce local policies such as database design, schema change,
tuning, protection, back-up, and so on. Parts of the system can continue in operation
despite network and other non-local failures.

11

12 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

2. Performance- Data and code can be placed where they are used, thus reducing
communication costs. Each machine does its own processing instead of overloading
a centralized server. Data replication can further increase performance.

3. Availability- When the network or a machine fails the application as a whole can
usually continue operating, although eventually in a degraded manner. Replication
can increase availability by maintaining local copies of data.

4. Expandability- Also called scalability, means that the system can grow incremen-
tally by adding new programs, processing power and storage space. This is crucial
as most applications are already built and companies cannot afford to re-build and
replace them in a single step. Distribution is a necessary but not sufficient condition
to overcome this problem.

5. Shareability-It is necessary to support sharing of data between applications in
a computing environment that would be distributed anyway. This happens either
because the organisation is geographically dispersed (and departments and groups
axe autonomous and develop their own solutions) or simply for historical reasons
[Bir88, AE90].

6. Economy-It may be cheaper to buy a number of smaller machines than a single
high-performance server. (But it may also be more expensive to maintain a larger
number of smaller machines, see section 2.1.2.)

Perhaps the most important reason is the habits and wishes of people -they like to use
data and programs they control. In consequence, more data now resides on the desktop
than in central repositories. But these people have to cooperate and so their systems must
support this cooperation. Consequently, from the list above, we emphasize both autonomy
and shareability.

Autonomy also permits heterogeneity, fundamental for integrating different computing
systems and accessing existing code and databases. (Difficulties anticipated for the in-
tegration of existing information systems have been given as one reason for not merging
large companies.) Distributed information systems may help to make organisations more
flexible.

2.1.2 Disadvantages

While they are not so often cited, distribution also has a number of disadvantages that
slow or limit its adoption.

1. Complexity- Distributed systems are often more complex than centralized ones due
to the requirement to cope with heterogeneity, partial failures and scale. Security,
recovery, and management, all become harder and thus more expensive (see last item)
as a result of distribution.

2.1. DISTRIBUTED APPLICATIONS 13

2. Lack of Experience- Distribution is still a new approach in many real-world ap-
plication domains. Sometimes products are untried and application programmers
inexperienced. This lack of experience of how to build and operate distributed sys-
tems becomes even more problematic because of their inherent complexity.

3. Cbsts-Usually neglected, CPU and communication costs are often an important
part of distribution, especially in laxge, geographically distributed systems. While
these may be ignored for research purposes or during initial evaluations, they are
fundamental in an operational environment. Another source of operating costs is the
system administrator's time needed for integration, management, upgrades, security,
backup and recovery of the distributed system, which are all much simpler in a
mainframe environment.

There is, at present, a notable lack of methodologies, abstractions and architectures to
help programmers who are building distributed applications. It is one of the goals of this
work to develop understanding of what forms these may take.

2.1.3 Relationship with Parallel Systems

At this stage we need to discriminate between distributed and parallel systems, as both
research areas deal with communicating processes. Research on distribution and parallelism
should be separated because they make different assumptions and have different goals.

Parallel systems-Assume a single machine. When a parallel system runs on a
set of machines, it is not designed to cope with partial failures, and in particular
network failures. The main goals for a parallel system are normally performance and
scalability.

Distributed systems-Assume inter-connected but independent processes. One of
the goals of a distributed system is to continue its local service despite remote fail-
ures. Compared with parallel systems, components in a distributed system should
be prepared for network unavailability and delays, other components not responding,
machines crashing, and all other kinds of partial failures.

For example, GUM [THM+96] is a parallel implementation of the functional programming
language Haskell. GUM is available for a symmetric multiprocessor SPARCserver but also
for networks of SPARCs and DEC Alphas. GUM uses an asynchronous message passing
mechanism for communication, packs and un-packs data like an RPC, but failures are never
mentioned in the paper cited above. In fact, one of the authors has confirmed [TH95] that
the system has been designed for performance in an environment without partial failures,
that is, all partial failures are promoted to global failures. Despite this major drawback,
performance remains the main issue for their future work.

Performance can be achieved by a parallel system up to a certain point. Very large applica-
tions, even if not geographically distributed, largely exceed the ability of super-computers.

14 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

An example is "warehousing" -where frequent business transactions use one computer,
and data is backed up to a warehouse computer for processor-intensive database queries
and data mining -partly because the same computer cannot cope with both tasks simul-
taneously.

In some cases there are other motives why a distributed system may be necessary, even if a
parallel system could fulfill the job. For example, another reason for warehousing is that it
matches the authority and responsibility assignments within the organisation. Accountants
are responsible for an auditable and correct operational record, delivered promptly. They
prefer not to have the managers directly use their data, which can also be translated into
another format to better suit the managers (e. g., from COBOL files to a relational database
on which general SQL queries can be performed).

2.1.4 Classes of Distributed Application

Many real-world distributed applications deal with mission critical data and communica-
tions to access that data. These applications attempt to achieve high-performance and
availability despite network latency and failures.

However, it has been recognized that some put more emphasis than others in specific as-
pects of distribution. Birman [Bir93b], for example, classifies distribution into two different
classes.

1. Communication and Control-A class of distributed applications that operate so-
mething, e. g., an air-traffic control or electricity distribution control system. These
applications give importance to correct behaviour under continuous availability and
to achieve that they typically replicate most needed data. This class of application
usually monitors an underlying communication system, and when a failure occurs
it immediately reconfigures and resumes operating. For example, Isis [Bir93a] was
designed to support this class of application.

2. Database Management -In these applications there is a large amount of data main-
tained by servers that are shared by a number of clients, e. g., a banking or a hospital
information system. A database style distributed application gives much more impor-
tance to the data that it is responsible for maintaining than to availability. Although
continuous access to the data may also be of great interest, it is the data itself and
its consistency that are the central issue. When a failure occurs, a high priority is to
ensure that data does not become permanently inconsistent.

This dissertation is concerned with database-style distributed applications. However, the
classification above can be considered to be over-simplified. For the purposes of this dis-
sertation, distributed applications are re-classified in four classes.

1. Real-time- Includes part of the communication and control class above, plus all

2.2. MODELS OF DISTRIBUTION 15

other database applications with constraints based on "hard real-time" (never miss
a deadline) or "soft real-time" (deadline can be missed, but preferably not).

2. Data-based- Basically the database class above. It includes remote access to databases
(the typical client-server application) but it also includes all applications that main-
tain large amounts of data and need to use this data all over the application.

3. Event-driven -Applications that are waiting for external events, such as a fire alarm
or a door closing. When an event occurs, a sequence of operations is called to respond
to that event.

4. Process-driven -In this class of applications the events are generated internally; that
is, there is a well-defined sequence of actions to follow during the life-cycle of some
entity (typically a document).

In practice, most distributed applications have elements from more than one of these
classes. For example, a real-time control system is both an event-driven and process-
driven application, and will also have real-time constraints. Workflow applications, in
which a document goes through a number of pre-defined steps across the organization,
can be considered process-driven applications. But, at the same time, workflow can also
be considered an event-driven application, as some events may occur from outside the
application (e. g., document creation and deletion).

We can now restate the research areas that concern this dissertation. Since real-time
systems are excluded, the dissertation is concerned with data-based, event-driven and
process-driven classes of distributed applications. Together, these are of wider relevance
than suggested by the initial classes proposed by Birman.

2.2 Models of Distribution

The previous section introduced distribution, its advantages and disadvantages, the re-
lationship with parallel systems and the database style of distribution with which this
dissertation is concerned. This section presents the two extreme models for building this
style of distributed application.

One-world Model -Section 2.2.1 introduces distributed systems that manage many
aspects of distribution and help programmers enormously to build distributed appli-
cations.

2. Federated Model-Section 2.2.2 presents an alternative view of how to build dis-
tributed applications that use a communication mechanism to permit independent
components of an application (or applications themselves) to exchange data.

16 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

2.2.1 One-world Distribution Model

The one-world model attempts to hide the underlying distribution thus giving the program-
mer the illusion of a non-distributed system (see figure 2.1). Using this model, programmers
interact with a single conceptual system which fully manages distribution.

Distributed System / r IPC
Program l< -- ------- Program

Figure 2.1: The one-world model of distribution

The one-world model of distribution may seem similar to a parallel system. However, a par-
allel system hides the multi-component nature of the system to achieve global performance.
The objective of a distributed system, on the other hand, is to implement algorithms that
enable the components to cooperate and to continue operating locally despite network
and other partial failures. Performance is not the main objective in a distributed system,
although it is an important one.

The one-world model is said to support distribution transparently. The ANSA reference
manual [APM89] states that transparency exists when an undesirable characteristic of the
distributed system is made invisible to the implementor of the application: "Transparency
is the hiding of some aspect of the provision of a service from a user of that service". Con-

veniently, ANSA says that each aspect can either be hidden -when it is an "unnecessary
or irritating complexity" -or exposed -when designers wish to exploit some service.

Seven transparencies are identified, each one hiding some aspect of a distributed service
from the user.

Access- Hides the difference between local and remote provision of a service.

2. Location -Hides the location of the provider of a service.

3. Migration -Hides the effects of the provider of a service moving from one location
to another.

2.2. MODELS OF DISTRIBUTION 17

4. Identity- Hides from the provider of a service the identity of the user invoking the
operation.

5. Replication - Hides the difference between a replicated and a non-replicated provider
of a service.

6. Concurrency- Hides the existence of concurrent users of a service.

7. Fault -Hides the effects of failures.

The tremendous advantage of this model is its simple conceptual framework that normally
translates to a simple programming environment. The programmer does not need to under-
stand the complexity necessary to manage distribution, deal with partial failures, optimise
the placement of objects, or locate computations. In the one-world model all of these are
performed automatically - and transparently - by the support system.

The one-world model is supported by distributed programming systems which can then
be used to build distributed applications. These include distributed languages like Hermes
[SBG+911 and distributed object-based languages like Emerald [BHJ+87], Argus [LS83,
Lis84, Lis88] and Thor [LDS92, LAC+96]. The interested reader is referred to a survey
including other research systems [CC91].

Attempts to build industrial distributed systems-as opposed to research prototypes-
offering this model have to deal with all partial failures, network bandwidth and latency,
communication costs, heterogeneity, performance and scalability, and still offer some de-
gree of autonomy and availability. Because the one-world model tries to solve too many
problems under the same umbrella, the result is a difficult compromise with a number of
limitations.

Scalability- In order to support the illusion of being just a single world, many
dependencies need to be created between nodes. These dependencies (e. g., remote
references) are acceptable up to a certain scale, but they may prevent expansion
of the system to a level where autonomy is needed for reasons of performance or
physical, management and human organisation issues.

2. Availability- Also as a consequence of numerous dependencies between nodes, pro-
grams can progress only if the network, computers and programs are highly reliable
because these programs then need many items of remote data to complete their com-
putations. Such reliability is very expensive and difficult to achieve in any extensive
environment.

3. Autonomy- Both reliability and dependencies between programs decrease autonomy
for modifying the application. This includes changing parts of an existing application,
adding completely new parts, and integrating the application with other applications.

Despite all these difficulties, distributed programming systems with support for databases

offering the one-world model are now commercially available, e. g., ObjectStore [LLOW911.

18 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

Often they axe based on the special case of a single server and multiple clients connected by
a local area network. These will not scale easily to applications where multiple servers are
required, or where the distribution of tasks does not map well to the client-server model.

The one-world model has its niche supporting highly specialised applications in local area
networks connecting powerful workstations. Some engineering applications, such as CAD
and CASE, fall into this category. However, the one-world model is inappropriate for
large distributed applications as it assumes levels of reliability difficult to achieve with a
reasonable cost in the real-world.

In the rest of the thesis we deliberately ignore distributed systems based on the one-world
model of distribution. Namely, we will not discuss distributed shared memory, operating
systems, file systems or relational database systems, which are the subject of general books
on distributed systems [Mu193, CDK94]. Modern distributed systems based on the one-
world model can also be found in surveys on distributed object-based programming systems
[CC91] and distributed object-oriented database systems [Loo93, Che93].

2.2.2 Federated Distribution Model

Instead of attempting to hide distribution from programmers, the federated model of dis-
tribution offers to the programmer convenient tools - inter-process communication (IPC)

mechanisms-to exchange data between programs (see figure 2.2).

Program

Distributed System

Figure 2.2: The federated model of distribution

IPC gram

The case for the federated model with an IPC mechanism is based on three assumptions.

1. As the scale of the application grows it becomes less feasible to hide the distribution

and it may even be undesirable to hide it. For example, not only programmers but

end-users themselves may be interested in the location of a failure.

2.2. MODELS OF DISTRIBUTION 19

2. Many applications will be built which use programs and data executing on different
machines, although not all application programmers will have specialised knowledge
of distribution. Using the federated model, large parts of the distributed application
can be built as if they were local and then inter-connected by an IPC mechanism.
Some applications already exist and need to be integrated with others (e. g., an ac-
counting information system is already implemented in most hospitals.)

3. It is possible to assist application programmers in the task of writing such federated
applications by providing better, yet simple and realistic IPC mechanisms. Given
this assistance, application programmers are expected to be capable of building and
maintaining sophisticated applications and of using the exposed properties of distri-
bution.

As an extreme alternative to the one-world model one could envisage a distributed model
that offers little help to application programmers, e. g., by exchanging byte streams using
socket connections [Sun93c]. It is generally agreed that these leave application program-
mers facing too many difficulties. Instead, there are a range of positions which federated
systems may take, and the federated models being built today are a compromise between
these two extremes. One of the objectives of this dissertation is to identify a compromise
between automation and referral to application programs.

The federated model has a number of significant advantages over the one-world model.

1. When the number of inter-dependencies between processes (programs being executed)
can be restricted, the model is appropriate for integrating autonomous systems and
thus access to legacy applications.

2. By supporting autonomy, the federated model provides better support for scalability
and allows for local incremental change.

3. Federated models may also support heterogeneity by arranging that dependencies
between programs are at a higher semantic level.

However, the federated model requires application programmers to deal with more aspects
of distribution explicitly and thus requires them to master a more complex computational
model. For example, they may now be responsible for managing the access to objects
shared by several programs. In order to support reliable and highly available sharing, they
may decide to replicate these objects across several stores which may create potentially in-
consistent versions. Protocols for maintaining strict consistency between all replicas simply
re-introduce the one-world model and are undesirable. But an application programmer may
be able to exploit knowledge of the application to achieve consistency more economically
just when it is needed. Compromises have to be found.

20 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

2.2.3 Motivation for Inter-process Communication

In general, the one-world model is worthwhile for distributed collections of programs up to
the limit of current feasibility, a LAN for example. Where a part of the application which
evolves as a unit and is managed as a unit can fit within that limit, it may be sensible
to program it using the one-world model and tolerate it behaving as a single failure unit.
This would depend on the relative cost of programming and service interruptions, and on
the mean time between failures for the composite system.

Nevertheless, continuance of operation during partial failures, autonomy of evolution and
management, and geographic distribution are always required by some larger applications.
In these circumstances, the federated model with an IPC mechanism directly accessible to
application programmers comes into its own, whether it inter-connects individual programs
or entire applications built with the one-world model.

However, IPC cannot be restricted to its traditional role of just transferring data between
parts of the application. Application programmers will expect to use the same set of rich
features found in higher-order orthogonal persistent programming languages (see section
3.2.1) to help them build distributed persistent applications. This means IPC must also
help programmers with some kind of system-wide naming scheme to maintain global ref-
erential integrity and consistency of object replicas. This IPC should also support modern
concepts of information hiding, network agents, dynamic binding, and tolerance of hetero-
geneous environments.

2.3 IPC Design Issues

This section describes general IPC issues, for which a taxonomy is depicted in figure 2.3.
The figure shows that from a set of high-level goals for any IPC mechanism, a number of
basic design issues will arise. These design issues are also influenced by the restrictions
at the implementation level. The figure also shows that two categories can be identified:
an upper-level one concerned with semantics that is the subject of this thesis (above the
dashed line in the figure) and a lower-level one concerned with more operational issues
(below the dashed line).

The figure only gives an indication of the diversity of levels and issues involved, and it
is not intended to be complete. For example, type-safety requires some kind of type-
checking which is not represented in the figure. The four goals enumerated could be easily
extended, e. g., with performance. IPC requires many other implementation details that are
not described here. The levels themselves cannot be clearly separated: should performance
be classified as a goal by itself, a design issue or an implementation detail ? Probably it is
present in all three levels.

The IPC design issues that will be analysed in this section are in bold in figure 2.3. More
specific design and implementation issues, such as the choice of a representation format for

2.3. IPC DESIGN ISSUES

Goals

General

simpHC

Autono,

Realisn

Implemented by

Figure 2.3: Taxonomy of IPC design issues

data transmission, will be described later in the context of RPC (see chapter 3).

2.3.1 Understandability

21

Distributed applications built using the federated model tend to be complex, a consequence
of heterogeneity and partial failures that exist naturally in distributed systems. One of
the single most important design issues for an IPC is for it to be sufficiently simple that
application programmers can understand it and exploit its functionality in the intended
way.

Simplicity was one of the primary motivations for RPC- extending the simple semantic
model of the procedure call to a distributed environment. However, most well-known RPC
mechanisms [BN84, OSF91, Sun93b] and even modern ones based on CORBA [OMG95]

rely on an "interface description language" (IDL) to describe the remote procedures and
their arguments, e. g., Java IDL [Sun9Gb]. (Sun has another RPC version for Java which
does not use IDL [Sun96a].) This is useful -it separates the interface from the implemen-

Design Issues Impkmentation

Understandability Programmer Interface
Easy of Use

. Pr Fai ure Model
F Type Sa ety

Bytes

Type Completeness Dase I YPUS
Constructor Types

Synchronization Procedures
ADTs
Threads

Efficiency
.

.. Performance Low Latency
Scalability

-. 71 High Throughput
Replication
Caching Programming Languages

Operating Systems
Machine Architecture

Heterogeneity
- ------------

Fault Tolerance >- Transactions

Requires

22 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

tation -but forces programmers to learn an additional language, use a separate compiler
to generate the RPC stubs, compile the stubs and link the compiled code to the main
application.

As a result, some RPC systems have been designed with overall simplicity in mind.
For example, Network Objects [BNOW93] concentrates on those "valuable features" of
RPC -marshalling, type-checking, and efficient streams-and omits those considered
"advanced" -transactions, heterogeneity, and intra-machine performance optimisation.
The implementation is organised around a small number of simple interfaces and is com-
patible with high performance provided no failures occur.

2.3.2 Type-safety

A type system gives programmers a way to organise values in a programming language
as sets belonging to types. Each type has a representation for its values and a set of
operations permitted to manipulate the values of that type. For example, integers can be
added and strings can be concatenated, but not vice-versa. A type-safe language prevents
the application of any invalid operation for a type on values belonging to that type.

It is desirable to detect operations that infringe the type rules as early as possible (compile,
binding or run-time) for three reasons [CW85, Con9l].

1. Safety- If certain invalid operations will never occur at run-time, then programmers
need not worry about type failures. This means no valuable programmer time has
to be spent writing code to deal with type failures, and, more significantly, hunting
for bugs caused by these failures.

2. Protection -Type-safety can also be used to protect the data in the store against
accidental or deliberate abuse by using information hiding and viewing mechanisms
[MBC+90].

3. Efficiency-If all invalid operations are detected at compile-time, then no type-
checking is needed during execution.

In a local environment, "as early as possible" usually means at compilation time. How-
ever, compilation often depends on information provided by the programmer and this may
become inconsistent: either programmers may not remember all changes and may make
mistakes, or more commonly because the application is being developed by a team of
programmers.

Dynamic (run-time) binding is the last opportunity to check for type violations before the
program starts using the value. This has been recognized for many years in the persistent
world because there are many cases in which static binding is not suitable [AM86, ABM881.
Persistent languages like Napier88 (see section 3.2) and modern languages like Java [AG961

support type-safe dynamic binding for this reason.

2.3. IPC DESIGN ISSUES 23

On the other hand, in a distributed environment each program or application sub-part
may be independently written, compiled, linked and executed during construction or au-
tonomous evolution. Without additional mechanisms, programs that communicate with
other programs cannot be type-checked even at execution time. This means the efficiency,
protection and safety provided by type-checking is potentially lost in operations involving
IPC.

However, this loss of type-safety is especially important in a distributed environment be-
cause-as programs are now maintained not only by different programmers but also by
different teams of programmers -the probability that invalid types will occur increases.

The importance of type-safety in the context of RPC has been recognized before. For
example, type-safety is the first design issue mentioned by Hamilton for the Mayflower
RPC [Ham84]. The compiler of the interfaces for the remote procedures generates a 62 bit
value (UID) for every remote procedure that is guaranteed to be unique. Every remote call
then sends this UID alongside the arguments to the remote procedure, and if the UID is
not found locally the remote call fails with a "hard error" exception. Only client and server
stubs generated by the same compilation can be used together and so they are guaranteed
to be compatible.

Type-safety is even more important in a persistent environment [Con9l]. While a type error
in a conventional (non-persistent) program may corrupt the process address space -and
the program can always be aborted and restarted -in a persistent programming language
the "address space" is the entire store - and an error can therefore destroy long-lived,
valuable data. The reader is referred to section 3.3.4 for a more detailed discussion of type-
safety in the context of a persistent RPC. An example of the problems and the solutions
adopted for our own type-safe persistent RPC are presented in chapter 4.

2.3.3 Type-completeness

Ideally, application programmers would like to use IPC with any data type supported
by the programming language. Forcing application programmers to transmit bytes at
the application-level - like MQseries [IBM94, IBM95] requires - is clearly not a desirable
solution.

1. It loses the description and abstraction provided by types. It is helpful for program-
mers if the IPC can retain the same conceptual model across the interface.

2. It is complex and tiresome for programmers, who have to write procedures to pack
and un-pack arguments and results themselves.

3. It is not safe, as all programmers will eventually make a mistake.

This is the reason why modern IPC mechanisms support at least most base types (e. g.,
integer, real and string) and a few simple constructors over these types (e. g., record and
array) -

24 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

Many languages, however, support a much richer set of data types. Between different
languages, only the common set of types can be supported. But between programs writ-
ten in the same language, programmers would like to exploit transmission of high-level
values with more sophisticated types. Many distributed applications are built from pro-
grams written in a small number of programming languages (typically one, maybe two) so
communication between them will often involve the same language at both ends.

If the IPC mechanism only supports a small sub-set of these, building a distributed ap-
plication will require changes to existing local programming techniques. Worse, it forces
programmers to convert local values to values suitable for transmission by the IPC mech-

. m, and then back at the target program. Even if the programming system helps
with this-such as the pickling facilities in Modula-3 [BNOW931 and other languages
[HL82, BJW87, Cra93, WRW96] -the programmer still has to be aware of, design for and
make the conversion.

Another problem arises with a ladc of type-completeness. As programmers get used to
modern programming styles-such as using first-class procedures [AM851, objects and
abstract data types (see next paragraph) - they will consider and use these types as they
would use strings and structures in poorer programming languages. Also, as more and
more languages support these richer data types, there is a case for augmenting the set of
common data types supported by heterogeneous IPC systems.

For example, in Napier88 (MBCD89, MBC+94] procedures and threads are both first-
class citizens. Both can be assigned to variables, passed as arguments to procedures and
returned as results, or made persistent. A Napier88 programmer should be able to pass
these advanced data types to other programs using an IPC mechanism. Some failure model
will be required to deal with cases when the target program does not support these types.

Rich type systems are not restricted to persistent languages. In Java [AG96] and Modula-3
[Har92] objects are first-class values and contain both values and methods. It is natural
for programmers to use these objects for IPC in the same way as they do within a process.
This is the motivation behind Java's RMI [WRW96, RWW96] that can migrate an object
of any type between processes (except objects bound to the underlying virtual machine,
like threads [Eva961).

2.3.4 Synchronisation

A concurrent programming language can execute several threads -also called light-weight

processes -in parallel in the same address space. In order to maintain the integrity or
consistency of the address space, some synchronisation mechanism is needed. Synchroni-

sation is a fundamental issue also in distributed applications because there are necessarily
several processes being executed concurrently.

A traditional answer to synchronisation is semaphores and monitors. Dijkstra [Dij68] first

proposed semaphores as a synchronisation mechanism for Algol-60. Two operations, wait

2.3. IPC DESIGN ISSUES 25

and signal, control the access to some shared resource (e. g., represented by a variable).
Requests for semaphores may lead to deadlocks. Also, when they are called is dependent
on programmers and so their appropriate use cannot be enforced (thus mistakes can and
do occur).

Monitors were first outlined by Dijkstra himself, then proposed by Brinch Hansen [Han731

and later refined by Hoare [Hoa741 to address the specific needs of concurrent applications.
A monitor protects a resource and only one process can use the resource at any time. Java
[AG96] bases its synchronisation on monitors.

An IPC mechanism can be presented as a shared queue that two (or more) programs
concurrently try to access and manipulate. When one program wants to send a message
to another program, it puts the message into the queue. Later, another program can pick
up the message. This is called asynchronous communication because the source and target
do not need to synchronise to access the queue.

Most IPC models, on the other hand, offer SYnchronous communication. When the source
tries to send a message to the target, it will block and wait if the target is not waiting for
a message. An IPC can be even more restrictive and support waiting for a certain message
type only, e. g. Ada rendez-vous [Coh9G].

While synchronous communication provides a simpler IPC semantics that is closer to con-
ventional (i. e., sequential) programming, asynchronous communication has the advantage
that it can exploit the inherent parallelism of distributed processes. (See section 3.3.10 for
further discussion on asynchronous RPC.)

2.3.5 Efficiency, Performance and Scalability

These concepts are closely related and, as a result, sometimes confused. For the purposes
of this thesis we define performance as the absolute wall-clock time required to execute
an action. Poor performance then indicates that the IPC mechanism takes too much time
when compared with the expectations of application programmers or related mechanisms.

Efficiency is defined as the inverse proportion of the amount of work performed to execute
an action; if the system is inefficient then it needs more work to achieve the same result.
An IPC mechanism can be efficient and not yield high performance, but it cannot have

arbitrarily high performance without being efficient (assuming limited resources).

Scalability means the ability to retain acceptable performance as the complexity of the

action to be executed increases. It is usually agreed that a system scales well when its

performance decreases no worse than linearly in relation to the complexity of the action.
An IPC system with excellent performance does not necessarily scale well if it relies on
assumptions related to the number or small size of some components.

Efficiency, performance and scalability are usually measured in terms of clients per server,
transfers per second, or amount of transferred data. The major approaches for improving

26 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

IPC performance and sometimes to achieve significant scalability can be exemplified as
follows.

1. Asynchronous IPC- In many cases there is no need for an immediate response, not
even a confirmation that the message has arrived. Message passing mechanisms and
asynchronous RPC can achieve very high throughput and scalability by buffering IPC
calls and sending messages in batches. For example, commercial systems -such as
IBM's MQSeries [IBM94, IBM95] -support thousands of clients sending messages
to a server by using a transactional queue. Other asynchronous systems tuned for
control and communication such as Isis [Bir93a] also guarantee message delivery
(provided there are no permanent failures).

2. Same-machine Optimisation- Only a small number of IPC transfers are truly re-
mote, typically less than 10% [BALL89]. When IPC is used in the same machine,
there are a number of optimisations which can be made. An improvement by a factor
of 20 has been recently demonstrated by carefully designing the micro-kernel itself
for IPC [Lie93].

3. Operating System Optimisation - Operating systems like Unix do not scale for thou-
sands of processes operating on tens of thousands of files. Some IPC systems bypass
the operating system and re-implement many of the operating system facilities them-
selves [Atk92b]. For example, relational database systems and transaction monitors
support hundreds of (a limited class of short-term) transactions per second by buffer-
ing commit requests and processing them in batches.

Many IPC systems are designed for performance and scalability, and some examples were
given above. But as we said already, performance and scalability do not necessarily co-
exist. For example, Lotus Notes [Lot96] supports thousands of clients accessing the same
document database by replicating documents to the clients space, but its asynchronous
mail-based data updates can hardly be thought of as offering high performance. Scalability
in Notes is achieved by relaxing the consistency of documents, thus avoiding frequent (and
costly) remote updates.

2.3.6 Replication and Caching

Data redundancy or replication exists when there is more than one copy of the same data.
Replication is based on the assumption that for many objects the number of reads is much
larger than the number of updates. By maintaining local copies of remote data likely to
be read, replication improves performance and increases autonomy and availability. In a
distributed object-oriented system this means two or more values for the same object, with
different (local) identities.

Replication is used in the Andrew File System (AFS) for disconnected operation and
scalability [HKM+88]. AFS claims it can support thousands of workstations using the
same distributed file system. Client/server object databases cache pages at the client for

2.3. IPC DESIGN ISSUES 27

performance, e. g., ObjectStore [LLOW91]. More recently, elaborate models of caching
based on objects have been used in Thor, a research-based distributed object database
[AGLM95, LAC+96].

Many commercial systems also make use of replication. For example, high-end relational
database management systems such as Oracle 7 also include basic support for replication
(typically used for implementing data warehousing, see section 2.1.3). Groupware prod-
ucts such as Lotus Notes use replication for availability (e. g., disconnected operation) and
for performance (reading and writing documents on the local disk instead of accessing a
centralized document database across the network).

Replication can be even more explicit. For example, stashing [Bir88, ABC90] does not
try to automatically keep the latest accessed data, nor does it try to maintain consistency
between the original data and the local copies. Instead, it is the application programmer
who is responsible for explicitly choosing the data to be stashed locally and for restoring
consistency between the original and the local copy. Stashing only provides primitives to
help organise and perform these operations.

Coherency Protocols

Replication is different from simply duplicating data because replication assumes a replica
coherency protocol which guarantees that every copy has the same value as the original.
A popular algorithm to achieve replica coherency is based on the idea of a primary copy.
Using this scheme, one replica is chosen as the main replica; all updates to any other replica
must first change the value of the primary replica.

The hope is that most updates will be made to the primary replica itself. However, some
other mechanism has to guarantee that all other replicas have the same value as the primary
copy. A trade-off has to be made between 1) updating all copies when the primary copy
is updated and 2) checking the primary copy every time any other replica is used. In
any case the primary copy scheme introduces dependencies between stores, latency times
and communication costs for using replicas that can easily outweigh the advantages of
replication.

Fortunately, some applications tolerate inconsistencies between copies up to a certain level.
Also, for many objects the end-user or application programmer have enough semantic
knowledge to decide which replica can, or is likely to, be changed.

In order to reduce the dependencies and costs associated with a strict consistency protocol,
some replication systems relax the absolute guarantee for coherency stated above and
instead only attempt to constrain inconsistency above a certain minimum. This minimum
guarantee can be formally specified, e. g., a maximum period of inconsistency and that a
local copy never makes a backward transition.

The big advantage of non-strict coherency is that it creates the potential for batch synchro-
nisation, i. e., propagating together changes made to many replicas. This reduces latency,

28 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

communication and CPU costs, and permits these costs to shift to a time when they are
less inconvenient.

For example, the distributed information system Hyper-C tries to maintain consistency
cheaply by propagating changes using a probabilistic flood algorithm [Kap, 95]. Lotus Notes

can synchronise a notebook to the centralized document database by e-mail. Data ware-
houses are typically loaded in the very early hours of the morning, when the operational
database is not being heavily used.

But a non-strict consistency replication scheme has a major drawback: more than one
replica can be changed between synchronisations. If this happens, at synchronisation time
some reconr-Wation must occur to choose between the new values. Reconciliation is difficult
because it often requires sophisticated semantic knowledge, e. g., human intervention. This
is the reason why many replication systems prefer not to solve the problem at all; for

example, Lotus Notes simply adds a version number to the filename if more than one replica
has changed. Version numbers are useful if conflicts are rare, but become intractable if
they become frequent.

Caching

Many distributed systems cache data to avoid a remote fetch if a local copy is available.
Caching is a particular kind of replication based on the primary copy approach for replica
coherency. Replication in general usually makes replicas visible, e. g., it is the system ad-
ministrator who chooses which files to replicate in AFS (see section 2.3.6) and it is the
end-user who decides when to synchronise the replicated documents in Lotus Notes. Al-
though there is no clear border between caching and replication, caching typically attempts
to provide transparent replication.

Commercial Web browsers automatically cache documents to avoid downloading the page
again if it has already been fetched. For example, users of Netscape Navigator [Net961

can set-up the size of the memory cache (that restarts every time Navigator is called) and
the disk cache (that survives Navigator executions). They can also choose whether the

original documents are verified against the local copy "once per session", "every time" or
"never". This example and Notes suggest even end-users can understand the complexities
of distribution if provided with simple, well-defined primitives.

Change Propagation

A basis for all replication and caching protocols is how to detect, read, transfer, and
write the differences between replicas, and especially the level of granularity to which the
differences apply. For example, Lotus Notes checks if entire documents have changed and,
if the replicas differ, the entire document is transferred.

Transferring entire documents when they usually only differ slightly can slow down the

2.3. IPC DESIGN ISSUES 29

reconciliation phase, especially if documents axe large or the network has low bandwidth.
On the other hand, detecting changes in small objects-e. g., parts of a document, even
individual lines-may require CPU time that eliminates the advantage of reduced com-
munication costs.

Another design issue for a replication protocol is how to detect changes to an object. For
example, the log which keeps all updates to a relational database is an ideal source of
changes because it is both small (compared with the size of the database) and is usually
stored in a format that permits sequential scanning. Relational databases that support
replication can simply send the log - or a relevant extract from the log - to update other
databases.

Fingerprinting is another technique to detect changes. A fingerprint is a bit sequence that
encodes a value probabilistically. In a distributed make, for example, fingerprinting can be
used to detect whether some source code has changed since the last compilation [JV95].
Even though fingerprinting only gives a probabilistic answer, the risk of error can be made
small enough for many applications. Similar mechanisms can be applied to replicated data.

Finally, another interesting issue is where changes are detected. Changes can be detected at
the mutation site like in the relational databases and groupware products. These systems
identify what has changed and propagate or push these changes to places where copies
reside. In contrast, some systems like Web browsers delegate that responsibility to the
read site. For example, the user can set-up Navigator to check if the original document is
out-of-date (see Caching above).

Summary

This section 2.3.6 has introduced replication, caching and other variants. These are all
based on protocols for maintaining the replicas consistency and techniques to detect which
replicas have changed. This background will be used in chapter 6 to present our model of
persistent spaces, in which a simple model of replication is used to permit some limited
object sharing between persistent stores.

2.3.7 Heterogeneity

A heterogeneous system consists of diverse components. In a distributed system, however,
heterogeneity can be revealed in many dimensions; not only is the system built from many
sub-systems, but each sub-system itself may have different machine architectures, operating
systems, programming languages, network technologies and protocols, and database sys-
tems. Each of these components can potentially use a different convention for representing
data values.

Support for heterogeneity - also called "openness" in marketing parlance - is especially
important in these days of client-server, company mergers and acquisitions, and connectiv-

30 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

ity between existing information systems. For example, the commercial message passing
mechanism MQSeries [IBM94, IBM95] runs on 11 operating systems and can be used from
4 languages, all with a similar API. The relational database Oracle runs in more than 60
combinations of operating systems and machine architectures, while supporting virtually
the same SQL interface. This extensive support for heterogeneity is considered to be one
of their major selling points.

Despite different programming languages, operating systems and machine architectures,
ultimately all data is transmitted between programs as bit streams. Using the same agreed
data format and transport protocol, any two programs can communicate with each other.
(See section 3.3.7 for a discussion of transport protocols and sections 3.3.8 and 3.3.11 for
more on data formats).

However, being able to exchange data structures is a limited form of heterogeneity: different
programming languages may support different data types or even have different semantics
for the same types. There are two traditional solutions to this problem.

1. Restrict the data types supported- Often the available protocols operate only to
preserve low-level types, and fail to help programmers interchange data at the con-
ceptual level at which they are working. Examples include most RPC systems (see
section 3.3).

2. Restrict the range of applications -Another approach has been the development of
agreed type systems with which to interchange well-defined, application specific data.
Examples of such specific high-level protocols are EDI [Pre961, HTML [Wor96] and
OLE DB [Bla96b, Bla96a].

It is the combination of these issues described above that make heterogeneity so difficult:
1) rich, high-level types; 2) not specific to any application and 3) language independent.
In this thesis we will ignore language independence in order to concentrate on support for
general purpose mechanisms for high-level types such as procedures.

2.3.8 Fault-tolerance

A system which is tolerant to failures should have been designed and implemented accepting
that these are an unavoidable consequence of operating in the real-world. These systems
have a failure model that explains what happens when a failure occurs. Typically, the
simplest failures are dealt with automatically, whereas unrecoverable failures force the
system to slow down and eventually to stop with the minimum of undesirable consequences
(such as destroying long-term valuable data). Fault-tolerant systems also help applications
to restart -also called "recovery" -after the failure has been repaired.

Many fault-tolerant systems are based on transactions. A transaction is an atomic action
that either succeeds (so the changes made during the transaction cannot be undone later)

2.3. IPC DESIGN ISSUES 31

or it aborts (so it is as if the transaction never occurred). Transactions axe useful for im-
plementing fault-tolerance because they maintain data integrity in the event of failures and
help recovery later. They also present a simple semantics for the application programmer
(and eventually to the end-user).

In addition to failures, distributed systems also have to deal with partial failures in which
only part of the system fails. Partial failures are characterised by three properties that
distinguish them from global, "stop the world" failures [WWWK94].

1. Partial failures are orthogonal to program execution.

2. No single part of the system is able to determine which component has failed.

3. No global state exists for recovery.

These properties create much additional complexity because they introduce "indetermi-
nacy", that is, there is no easy way to discover if a remote computation was completed
successfully, paitially completed or not even initiated. Reducing the number of partial
failures is always feasible-for example, using replicated communication channels, more
reliable computers, tested software -but it becomes increasingly expensive in capital and
operational costs.

One approach to solving the "indeterminacy" problem is to provide in a distributed system
the simple semantics of transactions: all or nothing, and recovery to a stable state. For
example, the two-phase commit algorithm [CDK94] guarantees that for changes made on
many databases either all commit or none commit. Distributed transactions have a role in
any distributed system, but do not provide all the coordination if there are processes that
depend on data outside a participating database (e. g., in the file system). Moreover, these
algorithms may not scale or support heterogeneity.

This is the reason why, instead of global distributed transactions, some IPC mechanisms
offer transactions as a feature of the communication itself. For example, products that
implement transactional queueing, such as IBM's MQSeries [IBM94, IBM95] and Encina
RQS [Tra93b], guarantee that a set of messages put in the queue by a client will either all
arrive at the server or none will. This is potentially much easier (and cheaper) to achieve
than global transactions, and still of great help to application programmers writing debit-

credit operations, for example against a banking computing system.

A related use of transactions in the context of IPC can be exemplified by a transaction
monitor, such as Transarc Encina [Tra93a], which acts as a back-end to the IPC mechanism
at the server. Although not part of the communication itself, a transaction monitor can
help to improve communication performance by accepting messages at a very high rate from

a transactional IPC mechanism. These messages are processed only after communication
has ended, probably also against a transactional database.

Although the research described in this thesis does not attempt to deal with failures directly

apart from providing a simple failure model, the techniques presented in chapters 5 and

32 CHAPTER 2. SURVEY OF INTER-PROCESS COMMUNICATION

6 can be used to achieve similar fault-tolerant behaviour for the distributed application.
These techniques include a separation between local and remote computation, replicated
values, no hidden dependencies between stores, and communication time reduced to a

.. mum. The application programmer can then compose these primitives in a variety
of ways to achieve a good compromise for tolerating partial failures in the distributed
application.

2.4 Summary

This chapter has presented a motivation for federated distributed applications and how
IPC can help to build these. We have discussed why the one-world model of distribution
may be suitable for applications which behave like a unit, but it will not scale for the
kind of large, long-lived distributed applications which we wish to support. A number of
IPC design issues were then described: understandability; type-safety; type completeness;
synchronisation; efficiency, performance and scalability; replication and caching; hetero-
geneity; and fault-tolerance.

The examples given in this section show that many IPC mechanisms have been designed
and built for supporting specialised abstractions, e. g., the guaranteed delivery of messages
based on a transactional model. Not much attention has been dedicated to migrating
instances of any type, especially richer types like procedures and instances of abstract data
types. The special needs of persistence have not traditionally been dealt with either. We
conclude that it is still necessary to look for other solutions to facilitate building a certain
class of large distributed persistent applications.

Chapter 3

Overview of Persistence and RPC

The research presented in this thesis attempts to combine RPC and persistent program-
ming. In this chapter we first introduce persistent systems and Napier88, the persistent
programming language we have chosen for our experiments. We then continue by describ-
ing the RPC design issues that are generally considered fundamental and present some
existing solutions to these. We finally review the most important features of persistent
systems and the new issues that axise from combining persistence with RPC.

3.1 Orthogonal Persistence

The persistence of a data object is the period of time for which the object exists and is
usable [ABC+831. A persistent system is a computational system that manipulates all of
its data equitably irrespective of their life time.

For example, one can conceive a persistent computer that uses a combination of hard disks
and RAM backed up by batteries to give the illusion of a single high-capacity permanent
storage mechanism with very fast access. Another possible form of supporting persistence
is by means of a persistent operating system that gives the same illusion using a conven-
tional computer architecture. However, a particularly useful-and thus popular-form
of persistent system is that offered at the programming language level.

A persistent programming language ensures that values remain available as long as they
are required for computation, thus eliminating the need for files or databases. By contrast,
a conventional programming language manipulates directly only values which are resident
in memory. If these values are to be used later by the same or another program, then
the data has to be explicitly transferred from (volatile) program data structures to some
sort of permanent (non-volatile) storage utilising different manipulations, representations,
naming schemes, and so on.

A commercial object-oriented database system like ObjectStore [LLOW911 supports some

33

34 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

level of persistence by extending an existing object-oriented language, typically C++.
However, extending C++ to support persistence is a non-trivial task, especially if the goal is
persistence that is orthogonal to the use of data. Orthogonal persistence [ABC+83, AM95]
is only achieved by applying three principles.

9 Persistence independence -The form of the program is independent of the longevity
of the data that it manipulates, i. e., programs look the same whether they manipulate
short or long term data.

Data type orthogonality- All objects should be allowed the full range of persistence
irrespective of their type, i. e., there are no special cases for certain types [ACC82].

Persistence identification -The choice of how to identify and provide persistent ob-
jects is orthogonal to the universe of discourse of the system, i. e., persistence is not
restricted to a subset of types.

Many so-called persistent systems do not support orthogonal persistence. ObjectStore, for
example, stores methods in operating system files while data are stored in a database. By
separating the data from their operations, a persistent system like ObjectStore allows a
programmer to delete methods of a class for which objects may still exist in the persistent
store, although there is no problem to delete methods of a class with no persistent objects.
Thus methods for persistent objects behave differently from methods for non-persistent
objects, even though all methods are written in the same programming language.

The only way to achieve orthogonal persistence is to store the code in the database together
with the data it manipulates.

Benefits of Persistence

The benefits of persistent systems, described extensively in the literature, have been sum-
marised in a recent survey [AM95]. These are reproduced below.

Increased programmer productivity- Orthogonal persistence frees application pro-
grammers from writing and maintaining code to move data between the programming
language (e. g., C++) and the database system (e. g., Oracle). Perhaps even more im-
portantly, programmers need not write code to translate the data between different
representations (e. g., object-oriented and relational data models) because all data
remains in a single system for as long as it exists and is usable.

Better data protection -All data in a persistent system are constrained to the op-
erations permitted by the type system, thus no invalid access to any data can occur.
This means type-safety extends to long-term data [Con. 91]. Also, because data can
only be accessed from the persistent language, access control and software constraints
(e. g., procedural encapsulation) can be imposed on all data.

3.1. ORTHOGONAL PERSISTENCE 35

9 Referential integrity- An object is made persistent if it is reachable, directly or in-
directly, from one or more persistent roots. This way of identifying persistent objects
guarantees referential integrity because all objects referred by any other persistent
object will also be made persistent.

Incremental software construction -Large persistent systems can be built incremen-
tally by adding new parts to the schema, inserting new data and installing new
programs.

In short, orthogonal persistent systems are expected to provide better support for the
design, development, operation and maintenance of complex database applications than the
traditional solution based on a programming language using a separate database system.

3.1.2 Implementation Strategies

Persistence seamlessly integrates a database system into the programming language itself,
so at least a mechanism to execute programs and another to store data are required to
implement a persistent system. This combination has been achieved in a number of ways,
described below, by increasing commitment to the persistence philosophy [AM951.

1. Providing a library of persistent facilities in a standard language-The simplest
method to support persistence. Examples include libraries to store data on file sys-
tems and access relational databases, e. g., Java's own version of ODBC [Sun96c].

2. Extend an existing system with facilities for the other system - This approach starts
with an existing system, either a database or a programming language.

" Extend an existing database system with a more complete type system and
computational facilities- Examples include Postgres [SR86, RS87] and SQU
extensions to SQL supported by commercial relational database systems [Me196].

" Extend an existing programming language with database facilities- Examples
include database programming languages such as Pascal/R [Sch771, the first

version of PS-algol [ABC+83], and the current generation of object-oriented
database systems [LLOW91, Deu91].

3. Design and implement a new persistent system from scratch-Until now only a
research approach, even though some of the resulting persistent systems have been

used by industry on a limited scale.

Persistent hardware architecture- The computer itself provides persistence, so
everything running on the computer is persistent. For example, the MONADS
architecture [Ros9O].

Persistent operating system-The operating system implements a persistent
system on top of a conventional architecture. Examples include Grasshopper
[DdBF+941 and EOS [Gru92, DG92].

36 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

9 Persistent programming language-The programming language seamlessly in-
tegrates databases features. Fibonacci [ABG095], Tycoon [MMM93, MMS94]
and Napier88 (see next section) are typical examples.

Only those in the third category (designing a new system from scratch) have the potential
to deliver the full benefits of orthogonal persistence [ABC+83, Atk92b, AM95]. Persis-
tent programming languages are popular because they can run on conventional operating
systems.

3.2 Napier88

Napier88 [MBCD89, MBC+94] is a procedural, orthogonal persistent programming lan-
guage that also incorporates a number of other interesting features that are described in
this section.

3.2.1 Features

The relevant features of Napier88 - especially those directly related to this thesis - are
described below.

Orthogonal Persistence

Persistence in Napier88 is orthogonal to the type of the object and defined by reachability
from a single persistent root. The persistent root, returned by a procedure called PS 0,
is by convention an environment (see dynamic binding below) which contains names that
bind to objects, including other environments. The named parts of a store can thus be
organised in a way similar to a hierarchical file system. Since persistent recursive types are
supported, the store contains an arbitrary graph of data.

Rich Type System

The Napier88 type system is described by a set of scalar types and a set of constructors,
and the recursive composition of these [Con9l]. Procedures are just a normal data type in
Napier88 so they can be created at run-time (see Reflection below) and put in the store.
The language also supports abstract data types [Cut93) and parametric types, including
parametric procedures. The type of an object can be obtained at run-time, and type
equivalence is structural.

3.2. NAPIER88

First-class Procedures

37

Procedures in Napier88 can not only be declared, passed as parameters, and executed, but
can also be assignable, the result of expressions or other procedures, elements of structures
and vectors, and they can be made persistent. First-class procedures can be used to
implement abstract data types, modules, separate compilation, views and data protection
[AM85].

Dynamic Binding

While static binding and type-checking are desirable features in a programming language,
dynamic binding is also needed in a persistent language where some types or even some
object names are not known at compile-time [ABM881.

Dynamic binding in Napier88 is implemented with collections of bindings called environ-
ments [AM90, Dea89]. A binding is a tuple containing a name, a type, a value and infor-
mation indicating whether the value is constant (i. e., constancy is not a property of the
type). Because procedures are first-class values in the language, dynamic binding supports
the incremental construction of programs.

Type-safe Linguistic Reflection

Reflection permits a program to modify or extend its own behaviour at run-time. In
Napier88 this is achieved by allowing running programs access to the compiler, which is a
standard procedure in the store; programs may alter themselves by creating new program
fragments or even new types at run-time, which are compiled and integrated into the
current execution [Kir93]. Type-safe reflection means that all reflective operations are
type-checked.

Concurrency and Concurrency Control

Concurrency in Napier88 is achieved by threads of execution and critical regions [Mun93].
Threads are offered to the programmer as an abstract data type with operations to create
a new thread, suspend a thread, kill a thread and so on. Critical regions are implemented

with semaphores, first proposed by Dijkstra [Dij68].

Conclusion

Perhaps most important in Napier88 are not these features per se but the synergy that
is created when they are used in conjunction. For example, type enquiry together with
reflection, persistence and dynamic binding enables the programmer to create custornised

38 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

programs at run-time and put these in the store to be re-used later (see chapter 4). The
persistent workbench (see section 3.2.4) makes extensive use of many advanced Napier88
features, as well as many of the tools incorporated into the workbench itself.

3.2.2 Type System

Persistent systems, and Napier88 in particular, attempt to provide a rich data model for
both data modelling and protection [MBC+90, Con9l]. The Napier88 type system consists
of a set of base and constructor types that will be important for explaining the three IPC
models proposed in chapters 4 to 6.

Base Types

Values of a scalar type are immutable. When a value of one of these types is passed as
an argument to a procedure, a local copy is made; updating this copy has no effect on the
original value passed as an argument. Napier88 supports the following scalar types.

" Integer -The set of all integers.

" Real-The set of all reals.

Boolean-With two values, true or false.

Null-With one value, nil.

String-A sequence of characters of arbitrary length.

0 Graphic types-Pixel (to be used as elements of images, see below) and pictures
(consisting of transformable line drawings in 2D real space).

Constructor Types

Values of constructor types are defined by the use of type constructors, and the recursive
composition of these. When a value of one of these types is passed as an argument to a
procedure, only a reference to the original value is copied; updating the values reachable
from this reference changes the original values. Napier88 supports the following constructor
types.

Vector- One dimensional array (N-dimensional arrays can be formed by the recur-
sive use of this constructor).

* Structure- Record of named and typed fields.

3.2. NAPIER88 39

o Variant - Discriminated labelled union.

9 hnage - Rectangular array of pixels.

9 Procedure - Function with or without result.
Abstract data type-This is a structure for which the type is abstracted over [MP85,
CDMB90]. Because the type is abstract, the fields of the structure are usually pro-
cedures to manipulate the abstract value.

9 Environment - Variable set of bindings (see Dynamic Binding in section 3.2.1 above).

There is also the type any, the infinite union of all types.

In addition, the following constructors can be parameterised with type variables which
must be consistently substituted in order to produce a usable type: vector, structure,
variant, procedure, and abstract data type. This means a type can be defined generically
and only instantiated to a concrete type when it is used.

Parametric procedures are a special case as they can be used even in an abstract form. For
example, an identity procedure that returns its only argument does not need to know the
axgument's type. In order to emphasise this difference, parametric procedures in Napier88
are called polymorphic procedures.

3.2.3 Implementation

Napier88 was originally designed to be the successor of PS-algol [ABC+83] as part of the
PISA project [AMP87]. The language was first implemented in 1987-1989 at the University

of St. Andrews by Ron Morrison and his team, and has been evolving ever since.

The implementation of the most recent Napier88 Release 2.2 (1995) is usually described in
terms of four main modules.

1. Programming language- As defined in the reference manual [MBC+94].

2. Source code compiler- That generates byte code. (The current version of the com-
piler is implemented in Napier88 itself [Cut93].)

3. Abstract machine- Needed to interpret the byte code [CBC+90al. (There is also a
new implementation called PamCase [CCM951 that will be in normal use very soon.)

4. Stable store-To reliably maintain data and programs [Mun93]. (The stable store
can also be considered as part of the abstract machine.)

Napier88 is currently available for Sun SPARCs running SunOS 4.1 and DEC Alphas with
OSF/1. (It also runs on Sun with Solaris 2 as a SunOS application.) At the University of
Glasgow, Napier88 has been used for seven years in a large number of student and research
projects. Napier88 is now being used extensively in about 50 locations around the world.

40 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

3.2.4 Programming Environment

Napier88 includes not only a programming language but also a complete programming
environment- libraries, methodologies and tools-that complement the language and
help programmers to build Napier88 applications. Key examples are given below.

Standard Librar -Described in the Standard Library Reference Manual [KBC+94], Y
contains necessary procedures such as those for 1/0, failure management, communi-
cations, graphical programming and in general an interface to the outside world.

" Glasgow Libraries-These complement the Standard Library with bulk types (lists,
maps, and so on) [ABC+93], additions to WIN (see item below), the RPC described in
this thesis, and other useful procedures and data. The libraries are well documented,
including code examples [WWP+95].

" WIN (Windows In NapierM) -A graphical user interface (GUI) toolkit for providing
graphical interfaces within Napier88 applications [CDKM89, Kir93].

0 Hyper-programming environment- Based on WIN, the hyper-programming envi-
ronment comprises a set of tools to locate data items in the persistent store and to
display and edit hyper-programs [Kir93]. A hyper-program represents a Napier88
program in the store and is composed of source code and bindings from that source
code to the objects needed by the program.
Programming methodology- Persistent programmers can use a methodology for
building, changing and extending programs in Napier88 [Sjo93]. These guidelines
include the division of the application into modules-defined by the programmer
and dependent on the application -and the development of each module as separate
programs for initialising, loading and deleting procedures and data structures. There
is a prototype to support this methodology [SWA+95].

Programming workbench -The workbench is a programming development environ-
ment to build persistent applications [AKP+94, WPA+95, SWA+96]. The workbench
includes tools to display, edit, group, compile and execute programs; to visualise the
contents of the persistent store [Lav95b]; to create and maintain software libraries;
and to find components of these libraries [Bro93].

In addition, many other general purpose tools have been developed over the years to help
with Napier88 programming, in particular a persistent extensible command interpreter
called hcs [WPA+951. Because these commands are executed against a warm persistent
cache, hcs supports efficient compilation and execution of Napier88 programs via a textual
interface.

3.2. NAPIER88

3.2.5 Limitations and Challenges

41

Orthogonal persistence is a simplifying concept that has a number of important benefits as
described in section 3.1. However, these benefits cannot be allowed to obscure its current
limitations, especially those shown by the particular implementation of Napier88 we have
used for the experiments described in this thesis. These limitations are described here for
completeness.

Orthogonal Persistence

The implementation of orthogonal persistent systems presents difficult challenges because
they live within, and need to interact with, a non-persistent world. For example, the
Napier88 f ile type is supposed to be persistent. However, real UNIX files that Napier88
opens cannot be totally controlled by the persistent system. This means that operating
with objects of type f ile in Napier88 is different from operating with all other persistent
objects. The programmer has to be aware of these differences. For example, sometimes
the programmer has to use UNIX semantics such as file error codes.

Binding Complexity

The large number of binding mechanisms that are now available in Napier88 can be difficult
for application programmers to understand. The degrees of freedom supported by a flexible
binding mechanism -constancy or variability, L or R values, and four different binding
times (composition, compilation, linking and execution) -potentially generate 16 different
kinds of binding [AM88, ABM88, Kir93]. The case here is not whether they are useful or
not, as they are, but how to explain these binding mechanisms so that programmers know
when to use each of them.

Performance

The performance of the current Napier88 implementation -based on byte-code interpreta-
tion - is 1 to 3 orders of magnitude slower than C. (Performance measurements of Napier88
and their comparison with C will be presented later in chapter 7.) Even though persistence
systems augment traditional programming languages with several features, there seems to
be nothing fundamental precluding an efficient implementation of a persistent program-
ming language.

Some of the problems may be due to historical reasons; others are due to the fact that
Napier88 is a research language. Optimisations would impede some of the research exper-
iments by making the compiler more complex to change. A forthcoming implementation
called PamCase [CCM95] promises to ameliorate this problem, partly because the store
size is significantly reduced.

42 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

Threads and Multi-user Support

Concurrency in Napier88 is supported by user-level, pre-emptive threads implemented by a
"round-robin, fixed time-slice by the number of instructions" [Mun. 93]. The entire process
stops when a thread blocks for 1/0. Concurrency control is based on semaphores, which
are now considered too difficult to use and error-prone due to their potential for deadlocks.
Although threads and multiple "sessione' (a top-level window in a workstation) give some
limited multi-user support, Napier88 does not support nested transactions.

Heterogeneity

Napier88 has limited support for interacting with other languages and systems. A chal-
lenge that has been recently discussed is to open Napier88 to the outside world in order to
facilitate the test and eventual acceptance of persistence by other communities. A prelim-
inary experiment integrating Napier88 with Tcl/Tk [Lar96] suggests this is both feasible
and does not violate the persistence abstraction.

3.2.6 Comparison

Table 3.1 compares Napier88 with C++, Java [AG96] and a typical object-oriented database
system (OODBMS) such as ObjectStore [LLOW91] from a programming language point
of view (not its current implementation). We choose C++ because at the time of writ-
ing it still represents the industry standard object-oriented language and is a well-known
language. Java is a potential, future, object-oriented language standard, as Java or a sim-
flar type-safe, well-defined language will eventually replace C++. Finally, the OODBMS
represents persistence as it is manifested commercially today.

We now define some of the terms used in the table. By "Ease of use" we mean the learning
curve for the language as well as its use by an average application programmer. "Product"
means an implementation of the language is available commercially. The fact that Napier88
is the only one in the table which is not a product may explain some characteristics of
Napier88 not listed here, such as its relatively poor performance.

A language is "object based" if it supports classes or abstract data types that encapsulate
an object's state and support a method interface. "First-class procedures" are supported
in the language if it treats procedures like any other data type. By "dynamic binding"
we mean the ability to add new programs to the current execution in a type-safe manner
(thus excluding C++ and the OODBMS). A language is "neutral/portable" if the source
code is independent of the particular language implementation and the environment where
the program is compiled or executed.

A simple classification based on "-/Yes" was chosen for clarity purposes, although most
features would require a more elaborate classification and detailed explanation if Napier88

3.2. NAPIER88

Programming Programming Language
Language Conventional Persistent
Feature C++ Java OODBS Nap-jer88
Persistent Yes Yes
Ease of Use Yes Yes
7), pe-safe Yes Yes
Product Yes Yes Yes
Object-based Yes Yes Yes Yes
Inheritance Yes Yes Yes
First-class Procs_ - - Yes
Garbage Collection - Yes - Yes
Dynamic Binding - Yes - Yes
Neutral/Portable - Yes - Yes
Threads - Yes - Yes
Exceptions - Yes -

Table 3.1: Scorecard for Napier88 and related systems

43

was the main subject of this thesis. We now discuss the major disadvantages of Napier88
when compared with these related languages and systems.

Lack of Exceptions

Although the Standard Library promotes a model to deal with failures by replicating each
environment with an "error environment" that simulates exceptions, the experience with
Glasgow Libraries suggests this model is seldom used elsewhere. Instead, a more traditional
approach based on procedure results that may also represent an error code is typically used,
such as variant return types.

Lack of Inheritance

The lack of inheritance in the current implementation of Napier88 can be considered a
potential disadvantage. Although inclusion polymorphism has been proposed for Napier88
[Con9l], the integration between sub-typing inheritance and mutable values presented some
problems [CMM91]; these are currently being investigated [CBM96].

Not a Product

Although the provision of orthogonal persistence for well-known languages is being dis-
cussed [C094], under development [AJDS96, ADJ+96], and already exists in some cases
[ODI96], Napier88 at present has no commercial implementation. This could mean limited
technical support and not so many third party libraries and tools for Napier88. However,

44 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

both the University of St. Andrews and the University of Glasgow provide a support en-
vironment, extensive libraries and programming tools. On the other hand, not being a
product gives freedom to evolve the language and thus provide its users with the latest
available research technology at any one time.

3.3 Remote Procedure Call

In this section we will introduce RPC and describe the most important RPC design issues
that are related to the research described in this thesis. There axe some natural overlaps
between the issues described here and those presented earlier in section 2.3 for IPC in
general. However, in this chapter we concentrate on specific, lower-level design issues
particular to RPC.

3.3.1 Introduction

A remote procedure call (RPC) is a paradigm for providing high-level communication
between programs. Using an RPC mechanism, a procedure in one program of a distributed
application may call a procedure in another (remote) program. (By "remote" we mean in
a different address space, potentially on a different machine.)

It was Birrell and Nelson [BN84] who first made RPC popular and the PhD thesis of
Nelson [Nel8l] is considered to be the first work in the field. However, Staunstrup (Sta82]
cites at least two earlier RPC mechanisms: the typical synchronous, blocking RPC found
in distributed processes [Han72]; and an asynchronous RPC mechanism embedded in the
programming language Concurrent Pascal [Han75].

Using RPC has a number of advantages over more traditional (lower level) communication
paxadigms like sockets [Sun93c].

Clean and simple semantics-RPC is based on procedure calls, a well-known mech-
anism for transfer of control and data in programming languages.

2. Susceptible to type-cliecking-Type-checking is not only possible but also natural
because RPC offers an interface at the programming level.

3. Potential efficiency- Because data conversion performed by the RPC would have to
be made by the programmer if other lower-level mechanisms were used.

An RPC mechanism is usually described in terms of two main modules: a client, the caller
program; and a server, the callee program (see figure 3.1). The client normally executes
on one machine and the server on another, but nothing in the mechanism prevents the
client and the server from being executed on the same machine (even in the same address

3.3. REMOTE PROCEDURE CALL 45

space) nor the client from being a server to another client. For each side there is a further
partition into three main layers: user program, where user procedures are implemented;
stub procedures, for packing and un-packing values into and out of messages (see below);
and transport protocol, for exchanging these messages across the network.

Client Server
Parameters

Caller Proc ----------------------- Collee Proc

Client Stub --------
Kejýa

.
Sfj

-------- Server Stub

Transport

BIte Stream

Transport
Protocol

I
Pro'

Network
I

Figure 3.1: Remote procedure call mechanism

When a client program makes a remote call to a procedure in a server program, it actually
executes a perfectly normal local call to a stub procedure mirroring the remote procedure at
the server side. This client stub procedure is usually generated by the RPC mechanism from
information about the remote procedure name and types of its arguments and result. The
client stub packs the arguments into a message (byte array with some known interpretation)
and calls the transport protocol.

The transport protocol then reliably sends the message to the server, using an unreli-
able but very efficient lower-level protocol based on packets-an uninterpreted byte ar-
ray. (However, there are transport protocols that are deliberately not reliable to increase
throughput; see section 3.3.7 for a discussion.) Then the client stub "blocks" waiting for
the result message.

On the server side, the transport protocol level is listening to the network, waiting for
incoming packets. When one arrives, it builds a message and calls the appropriate server
stub passing the message as an argument. The server stub un-packs the arguments from
the received message, calls the intended procedure, packs the result into a new message
and passes it to the transport protocol, that sends it back to the client.

On the client side, the transport protocol is waiting for the result packet. When it arrives,
a message is built and passed to the client stub, which un-packs the result value and finally

returns it to the client program.

Although the client and server have been separated for presentation purposes, nothing in
this design prevents clients from being servers at the same time. Indeed, this is the case
when distributed object systems like Emerald [BHJ+87] need to support remote method
calls in a transparent way from potentially any program in the system to any other program.

46 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

3.3.2 Application Programming Interface

There are at least two instances when the programmer interacts with the RPC mechanism:
when stubs are generated (client and server side) and when they are used (only at the client,
as a "dispatcher" linked to the transport protocol on the server calls the stub based on the
message content).

A stub generator is a program that generates the stubs for the client and the server, and
for this it must have access to the names of the remote procedures and the types of their
respective parameters and results. This information is also known as the signature of the
procedure and is usually defined in an interface description language (IDL) [BN84, W1387,
OSF91, Sun93b, 0MG951 (see also section 2.3.1). The stubs are generated in the same
languages as those used to implement the client and the server programs so that they can
then be compiled and linked in the usual way. The client stubs can then be called as any
other local procedure.

One of the design goals of earlier RPCs was that the syntax and semantics of remote
procedure calls should be as close as possible to those of local calls [BN841. However, local
and remote calls are fundamentally different, for example network delays or partial failures
may occur (see section 3.3.9) and parameter semantics may be restricted (see section 3.3.6).

This is the reason why Hamilton [Ham84] decided to add extra information to remote calls
for RPC control. Even if the semantics were the same, the fact that remote calls take 3
to 5 orders of magnitude longer than local calls-due to extra CPU costs and network
latency-is a valid reason for alerting application programmers to the difference.

Recently it was recognized that if the signatures of the remote procedures are available
in the program itself when the client stub is called, then there is no need to define these
signatures in a separate IDL. Aiming for simplicity, Network Objects [BNOW93] is an
RPC mechanism - very well integrated with Modula-3 [Har92] - that generates the stubs
as part of the compilation process. The programmer still has to specify which procedures
are (potentially) remote, but the separate language and its compilation and linking are no
longer required.

Finally, it should be noted that the decision to generate the stubs is purely an engineering
optimisation. The functionality provided by all stubs could be provided instead by a
generic stub that would pack and un-pack a value of any type [HL82, BJW87, Cra931. In
a language where the type can be extracted from values at run-time and which supports
dynamic binding, the stubs themselves can also be generated, compiled and linked to the
application "on demand" when they are used for the first time.

3.3.3 Server Binding

Before a client is able to call a remote procedure it must know the network address (lo-
cation) of the server, a process commonly known as server binding. Some very important

3.3. REMOTE PROCEDURE CALL 47

servers may have their location publicised as "well-known addresses", but the vast majority
of the addresses will have to be found at run-time. This is also necessary so that services
can be relocated or closed. For the client to be able to discover the addresses of the servers
implementing a certain procedure, this information must be stored somewhere.

Typically the process works as follows. When a server starts running it exports its remote
procedures to a binding service [Ham84, W1387] - also called a naming service. The client
must then contact this entity to find the addresses of servers implementing some procedure,
and then import it.

It could happen that more than one server is able to execute a procedure. The binding
service can then choose the "best" server for the client or allow the client to choose one
itself (e. g., the closest server, the server with the lowest process load, the most reliable
server, or the cheapest).

The binding service is a potential bottleneck in the system if it does not scale well or if
it, or access to it, is unreliable. Replication can be used for increasing both the reliability,
availability and scalability of the binding service. But replication also introduces a replica
coherency protocol (see section 2.3.6) that makes the RPC mechanism more complex to
implement and introduces dependencies between stores.

3.3.4 Type-checking

For the server to make sure that the incoming procedure call is valid, some form of type-
checking against the parameters must be executed by the server. Usually, compilers and
linkers do this type-checking for normal procedure calls, but in a distributed environ-
ment - where client and server are built and run independently - type-checking can only
be enforced at run-time by the RPC mechanism itself [Ham84].

A possible solution to run-time type-checking is for the external data representation to be

self-describing (see section 3.3.8). In this case, the byte array sent to the server representing
the arguments to the remote procedure also contains the necessary information to rebuild
its own values in a type-safe manner. However, for complex types this kind of representation
is expensive in both the amount of data transmitted and in the time required to pack and
un-pack the parameters and results.

A more efficient alternative is to send a remote procedure identifier describing the interface,
e. g., a fingerprint of the procedure interface as in Network Objects [BNOW931. If the
fingerprint is generated by both stub generators at the client and server side, then the
server may check for each incoming message if it corresponds to a valid remote procedure.
Although fingerprints are not guaranteed to be unique, the probability of error can always
be made smaller by simply using a larger number of bits.

48 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

3.3.5 Call Semantics

Remote procedure calls have failures due to network problems that one does not expect
to happen in local calls, thus the call semantics for local and remote procedure calls are
necessarily different. The designer of an RPC mechanism must decide which error recovery
procedure must be executed when a fault is detected in the network.

There are three basic approaches for remote procedure call semantics [TA90].

1. At-least-once- The call is attempted, and if the response is not received in a certain
period of time, the message is transmitted again. This period can be configured
for a server, for a service on that server, for a remote procedure or for a particular
procedure call.

2. At-most-once-The call is attempted, and if the response is not received in a certain
period of time, the client is notified of the error.

3. Exactly-once -The call is attempted, and if the response is not received in a certain
period of time, the message is transmitted again. In this case, however, the server
must keep a record of the received messages and execute the call as a transaction
to achieve the "all-or-nothine' effect. (The "exactly once" semantics in [Ham841 is
actually at-most-once semantics.)

The at-least-once approach may execute the remote procedure several times. If some degree
of semantic transparency is to be achieved, all remote procedures must be idempotent, a
result usually hard to accomplish (especially when remote procedures update a database).
This is the reason why most RPC systems offer one of the other two sorts of semantics.

Exactly-once is the one which offers the highest level of protection against failures, but
this would not be the best approach if the client is interested in the errors. It also requires
an expensive protocol to guarantee the call is made only once, a price not all applications
may be willing to pay. Finally, the client may wait indefinitely if the server fails and does

not recover.

Although at-most-once does not give strong call guarantees, it offers a potentially higher

performance. Knowledge of the errors may be useful for the client to try other alternatives;
for example, experimenting with another server or abandoning the call. Also, the client
may implement other forms of fault recovery, such as local transactions. Finally, client
and server may be connected within a regime offering a higher-level of fault recovery, e. g.,
distributed transactions (see section 3.3.13).

3.3.6 Parameter Semantics

The semantics for parameter passing is one of the major issues of this thesis because of the
richness of data types supported by modern persistent languages like Napier88 (see section

3.3. REMOTE PROCEDURE CALL 49

3.2.2). In this section we just give a brief overview to the topic, which is described further
in chapter 5.

Parameter semantics can be broadly divided into two main topics: how to pass the pa-
rameters (by reference or by copy) and what to pass (simple types, constructed types,
procedures, abstract data types, and so on).

Call-by-reference or Call by copy

Passing parameters by reference to remote procedures requires local (normal) references
to be already remote (global) references or be transformed into remote references before
the call is made. This has at least two advantages: large structures are not moved unless
they are needed; and mutable values are not replicated so they can be shared by local and
remote values alike.

Passing parameters by reference is possible only when both client and server are written in
the same language because it is implemented at a very low-level by changing the compiler
(or the abstract machine). For example, Wai [Wai88] implemented a distributed version of
PS-algol [ABC+83] that supports call by copy for scalars but call-by-reference for pointers.

However, ultimately data and code have to be in the same address space for computation
to proceed. When the argument is accessed, either the value is copied to the server or a
call back from the server to the client is used. In the latter case where the value is not
copied, potentially many messages are exchanged with accumulation of latency. It also
makes the remote computation more dependent on the availability of the client program,
as it may be needed at any time during the entire remote computation. Finally, it requires
the need to manage references between machines, e. g., for garbage collection.

These are the reasons why most RPC mechanisms do not support complex data types and
pass parameters by value, that is, all parameters are deep copied from the client to the
server [BN84, Ham84, Lis88, Sun93b, OSF91, JSS94, Sun96a]. But migration by copy also
has its problems. The transitive closure may be large, even though probably not all of the
objects copied will be used in the server. Migration by copy duplicates many objects that
already exist in the server, e. g., when they were copied in a previous call. This can result
in the destruction of sharing semantics in the presence of multiple copies of the shared
values. (Section 3.4.2 elaborates on these problems.)

Many intermediate models between these extremes also exist. For example, only the top
value can be copied and all referenced objects are transformed into remote references to
the local objects. Or the argument can be copied by following the transitive closure to a
certain depth [KOMM93, KKM94] or until a maximum buffer size is reached [THM+96].
The distinction between what is copied and what is passed by reference can also be stated
at compile-time [BNOW93, Lop96]. However, all these intermediary schemes suffer from
the problems introduced both by call-by-reference and call by copy. We suspect that appli-
cation programmers may have difficulty comprehending the resultant complex semantics.

50 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

(We discuss call-by-reference in section 5.1 and call by copy in section 5.2, and in sections
5.3 and 5.4 we motivate and present a proposal for a new compromise between these two
models of parameter passing.)

Restrictions on Argument Types

To be as useful as possible, the RPC mechanism should be capable of transmitting the full
range of data types and values in the programming language. This is restricted in practice
by several constraints.

1. References to the outside world that are meaningless in other programs and comput-
ers cannot be transmitted, e. g., socket descriptors.

2. I)rpes that do not exist in the programming language in which the remote program is
written, e. g., graphic types in Napier88 (see section 3.2.2) when the call is to another
language.

3. I)rpes that exist in the remote language but for which the semantics differ, e. g.,
type-safe variant in Napier88 and type-unsafe union in C.

4. rlýypes that exist in the remote language but for which there is no common repre-
sentation, e. g., Napier88 procedures cannot be passed to programs written in other
languages.

5. Values that create difficult implementation problems, e. g., deep transitive closures
which require copying large parts of the store in Napier88 (see section 3.4.2).

6. Values of generic types - such as pointers in C or the type any in Napier88 - cannot
be passed as parameters in remote procedures because the type of the actual param-
eter may be one of the non-supported types.

As a consequence, most RPC mechanisms only support a sub-set of the type system of the
target programming languages. For example, Sun/RPC [Sun93b] is an RPC for C that
only supports the passing of scalars and simple constructor types (records and unions) as
arguments. Even a modern RPC like CORBA [OMC95] restricts the types of arguments
in object methods to basically the same sub-set as Sun/RPC (although it adds support to
pass arrays and global object identifiers).

The RPC may attempt to support rich data types. For example, one of Hamilton's goals
[Ham841 was to permit the widest possible range of types while still maintaining type-
safety. However, the following restrictions still apply: no support for procedure variables,
no support for references to objects outside the language scope, and no support to the any
data type (the union of all types). A method for transferring abstract types is proposed
but not implemented. A violation of these restrictions is detected only at run-time.

3.3. REMOTE PROCEDURE CALL 51

More recently, a number of authors have proposed RPC mechanisms with richer parameter
semantics, including the possibility of passing procedures and other code representations
as arguments in remote calls.

A typical approach is to pass procedures by reference as proposed by Kato et al with
Distributed ML [OK93] and Distributed C [KOMM93, KKM94] or Cardelli with his
new script language called Obliq [Car95a]. When one of these procedures is called,
the RPC mechanism makes a remote callback and executes the procedure in the
original address space. This approach is not appropriate for large distributed systems
because it increases dependencies between machines, generates network traffic, and
has no support for partial failures (see section 5.1.4).

Another approach is to copy the procedure value itself. Examples of RPC and other
distributed mechanisms based on this approach include remote evaluation [SC901,
remote execution [DRV91], Facile [Kna95], Tycoon/RPC [MMS96, MMS95, Mat96]
and Java applets [AG96]. This solution raises another set of problems-large tran-
sitive closures, loss of coherence between original and copies, and so on-described
in section 5.2.4.

Migration by substitution, proposed in section 5.4, is a compromise between these two
extremes of parameter passing semantics that can be used to help migrate procedures and
other complex types between autonomous stores. An example application and performance
measurements are presented in chapter 7.

3.3.7 M-ansport Protocol

The client and server stubs use a transport protocol for exchanging messages -byte arrays
containing packed arguments and results - between programs. The transport protocol
typically offers one of the following two modes of operation.

Connection-oriented mode-Data is transmitted along a virtual circuit in a reliable,
sequenced manner. Because setting-up a connection is an expensive operation but
data transmission is then cheaper, connection-oriented communication is appropriate
for bulk data transfer. However, this mode commits resources which may then be
under utilised.

Connection-less mode- Offers message-oriented, non-reliable transfer of data with
lower latency when compared with the connection-oriented mode. However, the
overhead per message is greater than the connection-oriented mode because the target
address has to be transmitted in each message.

TCP is a connection-oriented protocol that automatically gives at-most-once semantics to
the higher levels of the RPC, while the connection-less UDP protocol is not reliable and

52 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

gives only at-least-once (see section 3.3.5). Thus, in choosing what protocol to use for the
RPC implementation, either reliability is not an issue for the application or it has to be
built at a higher-level within the RPC implementation. Alternatively, the RPC may just
offer an unreliable variant of remote call which forces application programmers who need
reliability to implement it at the application level.

Sun/RPC [Sun93b] is implemented on top of a transport protocol called Transport Level
Interface (TLI) [Sun93c] that offers both modes of service: a reliable interface based on
TCP and an unreliable transport protocol on top of UDP. Many other RPC systems offer
both connection-oriented and connection-less modes [TA90].

In addition to the mode of operation, the transport protocol may also support other func-
tionalities such as dividing a message into smaller messages or buffering several messages
to be sent as a single message. The decisions can be made at compile-time or dynamically,
for efficiency or other reasons.

3.3.8 Data Representation

The values in a program are data structures, but to send these values across the network
they need to be converted to a byte stream. For example, integers can be represented by
4 bytes, and strings by their length followed by the characters. Some sort of external data
representation - to which both the client and server agree - must be defined, and algo-
rithms to convert into and from that representation designed and implemented (eventually
for a number of languages).

But just a raw data representation is not enough. There are many reasons why the data
format from a source may differ from the data format at a target, e. g., to accommodate
inter-working with other languages and different machine architectures (see section 2.3.7).
There are two main approaches to communication between a client and a server in hetero-
geneous environments described below: common data format and source data format.

Common Data Format

With the common data format all transport protocols use the same data format for commu-
nication independently of the native format of each program. This approach is simple and
suitable for general heterogeneous environments, where there can be a large and extensible
number of programs, each with its own data format.

XDR [Sun93a] is an example of the common data format proposed by Sun that has become
a de facto standard. It has been used extensively as part of several operating systems, as
well as in a number of RPC mechanisms [BCL+87, Gib87, Sun93b]. XDR works as a lingua
franca and makes them all compatible with each other, provided they restrict themselves
to the types supported by XDR and use the same control messages.

3.3. REMOTE PROCEDURE CALL 53

ASNA is an ISO standard and another example of a common data format that, unlike
XDR, supports a notation for defining the type alongside each item in the byte stream.
It should be noted that if client and server agree beforehand on the type of the message,
then this type information is still sent even if redundant.

Source Data Format

With the source data format all transport protocols pack values in their own format to-

gether with a format identifier, and every transport protocol knows about all other data
formats in order to un-pack any incoming message. This approach has the advantage of
potentially better performance because in many situations the source and target use the

same data format, so no redundant information about types is needed. It is, however,

much less flexible and does not scale well to support a large number of formats.

In contrast to the common data format of Sun/RPC and others, DCE/RPC [OSF91] has
opted instead for the source data format. DCE/RPC allows distributed applications to run
over heterogeneous environments by transferring messages tagged with a description of the
basic data representations of the calling machine. DCE/RPC claims that great efficiency
gains can be achieved in this way if both the client and the server axe written in the same
language and execute over the same machine architecture.

If it is intended for the RPC to run on many architectures and support a large number of
target languages, then the source data format of DCE/RPC has a two-dimensional prob-
lem: for L languages and M machine architectures, (L x M)2 conversion procedures must
be written. Even using a common data representation this number of different imple-
mentations is still LxM. A configurable stub generator based on languages and machine
specifications has been proposed to solve this problem [Gib87].

3.3.9 Failure Model

While it can be argued that the syntax and semantics of a remote procedure call do not
need to be different from a local one under normal executing conditions, problems arise
when the client, the server or the network are subject to failure. A failure model specifies
how to detect these failures, group them in some meaningful categories and report them to
the calling program in an understandable and useful manner. Exceptions at the language
level are particularly well suited for dealing with failures during remote calls, because they

separate failure treatment from normal application execution.

It may be useful to distinguish between errors in the network, in the remote machine or
in the remote application. For example, a deadlock in the remote server can trigger a
timeout in the client which can be easily confused with network congestion. However,
it is a well-known problem in distributed systems that this information cannot be easily
obtained.

54 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

This is one of the reasons for the popularity of RPC systems with support for transactions,
such as the one provided by Encina RQS [ESS9 1, Tra93b]. A transactional RPC coordinates
the remote call, data migration and remote operation as a single atomic action that either
succeeds or fails completely (see sections 2.3.8 and 3.3.13). Thus if a failure occurs when
a remote call is being executed, the distributed system will not be left in an undefined or
inconsistent state.

3.3.10 Asynchronous RPC

An asynchronous RPC mechanism -sometimes called message passing-calls a remote
procedure without blocking to wait for the result. This permits a client to call several
remote procedures concurrently and has been argued as a basis for exploiting the natural
paxallelism found in distributed systems [ATK92a]. Asynchronous RPC can also be used so
that the client performs other (local) operations while the server is computing the remote
procedure.

Asynchronous RPC can be implemented with a normal blocking RPC mechanism and
threads. For each asynchronous call, a thread is created and a synchronous RPC performed.
However, this solution does not scale well for a large number of parallel remote calls and
is otherwise a complex solution for an operation with such simple semantics [ATK92a].

Instead, native asynchronous RPC has been proposed together with language support.
Athena/RPC [SM861 provides a non-blocking asynchronous mode that was developed for
improving performance when no result is returned from the procedure. Stream in the MIT
Mercury system [LBG+881 combines synchronous and asynchronous bulk data transfer in

a clean and uniform way. Streams have been also integrated into Argus [Lis88] as a new
data type called promises [LS881. Ritures [WFN90] are very similar to promises, but were
designed instead for low latency (not bulk data transfer).

3.3.11 Heterogeneity

RPC is more flexible if the client and server programs can be written in any of a number of
programming languages and execute in machine architectures with different data formats.
This has been discussed already in section 3.3.7 in the context of the transport proto-
col. However, heterogeneity has implications that exceed those handled by the transport

protocol.

Application programmer interface -The API for users of the RPC system has to be
independent of a particular programming language.

Data types supported as arguments to remote procedures- Because each language

supports a particular set of base and constructor types, a compromise is required
between support for heterogeneity and type-completeness (see section 3.3.6).

3.3. REMOTE PROCEDURE CALL 55

A number of RPC mechanisms have been designed and built with heterogeneity in mind, in-
cluding Athena/RPC [SM861, multi-language RPC [Gib871, heterogeneous RPC [BCL+87,
BLL+88], DCE/RPC [OSF91] and Sun/RPC [Sun93b]. Some of these use a common data
format (see section 3.3.8) that can be used to achieve inter-operability between RPC sys-
tems them Ives. Heterogeneity is also one of the main motivations for CORBA [OMG95].

3.3.12 Performance

RPC performance is critical because remote calls are typically 4 to 5 orders of magnitude
slower than local calls [WWWK94]. On the other hand, experiments have suggested that
the large majority of remote calls for some kinds of application are intra-machine calls,
i. e., are made between programs executing on the same machine [BALL89]. As a result, a
number of optimisations can be made for this common case, e. g., no data translation to a
common data format is necessary and communication using shared memory can be used
instead of sockets.

Lightweight RPC [BALL89] is an RPC mechanism that optimises intra-machine calls on
a shared memory multi-processor. A number of optimisations are employed to achieve a
higher call throughput and lower latency yielding a factor of 3 in maximum performance
improvement when compared with other well-known RPC systems. Schroeder and Burrows
[SB89] and more recently Liedtke [Lie93] have shown that impressive performance improve-
ments can be achieved if the operating system itself is designed for high-performance IPC.

3.3.13 Transactional RPC

An RPC system can be used to update a remote database or perform any other destructive
operation for which its success (or failure) is crucial for the application. Unless all remote
operations are idempotent, this is always the case.

If the communication is reliable, then the simple act of returning a result to the client
will confirm the operation. However, operations can be performed and the result lost, e. g.,
the server may crash immediately after processing the remote call and before sending the

result back. Thus the client can never be sure whether the call has succeeded or failed,

completely or partially.

A transactional RIPC attempts to solve this problem by executing the remote call as a
transaction that can be coordinated with another transaction executing locally at the

server. For example, Argus [LS83, Lis84, Lis88] integrates both transactional servers and
reliable RPC so that remote operations either entirely succeed or it is as if the remote call
never happened. This behaviour can be generalised to several calls in a sequence.

More recently, transactional RPCs have been offered as (or integrated into) commercial
products. For example, Encina [Ra93a] provides a transactional RPC [ESS91] to support
reliable remote updates. It should be noted that a transactional RPC is a particular case

56 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

of the distributed transaction model with only two participants. (A transaction monitor
like Encina is to be used in the general case, e. g., if process A calls procedure p in process
B, then procedure p calls procedure q in process C.)

3.3.14 Object Orientation

In an object-oriented language there are objects with hidden data and visible methods,
instead of inter-connected (but mostly independent) data and procedures. In a distributed
object-oriented language all programs in the distributed application can use objects in any
other program by (remotely) calling its methods.

A method operating on a remote object works like a remote procedure where the first
parameter is the object identifier. The system is responsible for keeping the location of the
object and for generating the necessary stubs.

Emerald [BHJ+87] is a distributed object system that also supports object migration be-
tween servers. In Emerald, programmers write distributed applications without worrying
about object location; objects move between servers for availability or performance. (How-
ever, programmers can control object migration if they want, see section 5.1.2.) Network
Objects [BNOW93] also supports methods that can be called transparently between pro-
grams. CORBA [OMG951 is also based on an object model for remote invocation.

3.3.15 Extensibility

There appears to be a wide range of possible semantics associated with remote procedure
call: support for object migration, replication, distributed transactions, persistence or
performance. Not only are many of these semantics incompatible between each other (e. g.,
high-performance with distributed transactions) but there are also many ways to implement
them. This may suggest a remote procedure call mechanism should be designed to support
an open set of extensions to incrementally accommodate more features as necessary.

Subcontract [HPM93] is an RPC system that eases the task of integrating several RPC
features and the incremental addition of new mechanisms in a compatible way. Extensions
are possible due to an "operations vector" that is used by the stubs when executing a
remote object call. In this way, the application programmer gains control over the basic
mechanisms for calling a remote procedure without changing the basic RPC architecture.

3.3.16 Conclusion

This section has presented the RPC design issues most relevant to this thesis. There was
no intention of describing RPC completely and even less to give a tutorial on RPC. Namely,
the following highly advanced or not directly relevant RPC issues have not been addressed

3.4. COMBINING PERSISTENCE AND RPC 57

in this section: multi-cast and broadcast, orphan treatment, security and authentication,
naming and binding, and server management in general. (Though naming and binding are
discussed in chapter 4 in the context of our type-safe RPC.)

More information on RPC can be found in the publications cited above or in the following
general references: a taxonomy of RPC [Spe82]; RPC design issues [WB87]; a survey of
RPC [TA90]; and general books on distributed systems [Mu193, CDK94].

3.4 Combining Persistence and RPC

In the previous two sections we have presented persistence and RPC. We now analyse how
the high-level approach to programming provided by persistence introduces new possibili-
ties and expectations- but also important difficulties-to RPC design and implementa-
tion. (Chapters 4 to 6 will revisit these issues in detail and propose some solutions to the
challenges presented below.)

3.4.1 Opportunities

The benefits of persistence for application development in general also apply to RPC con-
struction. For example, chapter 4 explains how a type-safe persistent RPC was developed
in 3 months by the author alone. This RPC has since then been continuously evolving)
which also gives an idea of the support for incremental construction of persistent applica-
tions.

Here we repeat the most important features of Napier88 described in section 3.2.1 to explore
how they may help with RPC design and implementation.

Orthogonal Persistence

Orthogonal persistence simplifies programming whenever long-lived data is required by
the application. An RPC implementation requires data: general auxiliary data such as
import and export tables, client and server stubs (with first-class procedures, see below),
and run-time information such as partial results and cached data that survive program
execution.

It may also help if the programmer developing the RPC has access to the language im-
plementation. Persistence needs procedures that write data to, and load data from, the
store. These procedures can be modified to write to, and read from, a socket connection
(see, for example, [Mun931). However, these procedures are language and implementation
dependent and cannot be used for communication between persistent programs written in
different languages.

58 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

nichTypeSystem
The rich type system offered by advanced persistent languages like Napier88 creates the
opportunity for the RPC to transfer more interesting data structures because communi-
cation now is not restricted to scalar types and simple constructed types. For example,
procedures and abstract data types can now be exchanged between client and server. (The
rich type system is also where the major challenges reside; see section 3.4.2.)

Great benefits from working with a rich and reflexive type system can also be achieved
at the application programmer interface, as type enquiries obviate the need for a separate
"interface definition language".

Strong type-checking in a persistent language can be based on structural equivalence. In
Napier88, for example, each type is represented by a value that can be transferred and
compared with other type values in a remote store (assuming they are running the same
version of Napier88). This facilitates type-checking in a distributed persistent environment.

Dynamic Binding

Napier88 permits new objects, including procedures, to be created and dynamically bound
to the current execution in a type-safe manner. This permits client and server stubs to
be created and changed at run-time without the need to interrupt the program for linking
with a separate library. Thus persistent programming languages and persistent RPC are
suitable for distributed environments where continuous operation is required.

First-class Procedures

Both client and server stubs are implemented as procedures. Because in Napier88 proce-
dures are first-class citizens, stubs do not need to be written to a file, then compiled and
linked separately. In conjunction with reflection (see below) stubs can instead be dynami-
cally generated and added to the store. Persistence allows the stub generation cost to be
conveniently amortised over many program executions.

Language Reflection

Reflection is the capability to augment the program with new code at run-time [Kir93].
Reflection in an RPC can be used, for example, to support the creation of new stubs at
run-time (in conjunction with dynamic binding and first-class procedures).

3.4. COMBINING PERSISTENCE AND RPC

Concurrency

59

Servers can take advantage of Napier88 threads to accept a number of remote calls concur-
rently and service them in parallel. Coneurrency can also be used to simulate asynchronous
RPC by creating a thread for each asynchronous call that makes a normal blocking RPC
while the client continues executing.

3.4.2 Challenges

We now briefly present the main challenges introduced by combining persistence and RPC.

nichTypeSystem
The RPC should permit objects of any type as parameters and results in remote calls.
Passing scalar types and simple constructor types, including any shared and cyclic data
structures, is now well-understood [HL82, BJW87, Cra93]. But in addition to these types,
Napier88 also supports first-class procedures, abstract data types and infinite unions. Al-
though techniques for passing values of these advanced types now exist [Kna95, MMS95,
BC95b], they are still very restricted in their scope and not well integrated with other
mechanisms for distributed computation.

Type-safety

Strongly type-checked languages axe helpful in achieving correctness. System facilities such
as RPC have to sustain the type-safety for application programmers that use these systems.
In a distributed application, however, many parts of the application are built and changed
independently, creating more opportunities for inconsistent types between programs.

Another problem arises with the RPC implementation itself Although most of the RPC

code can be written in the type-safe language, access to non-safe language constructs is

necessary to write an RPC system (see below). For example, in a version of Napier88-

available only to its implementors and for this research work -there are special low-level

procedures to manipulate object pointers directly in an unsafe manner. These unsafe
procedures are used by the RPC, for example, to build cyclic data structures. The RPC
implementor has to guarantee that, despite the store passing through temporarily invalid

conditions, it is correct when control is returned to the application program.

In addition to these problems, low-level (unsafe) procedures are likely to vary substantially
between persistent languages, between different implementations of the same language,
and even between versions of the same implementation (e. g., the traditional abstract ma-
chine (PAM) [CBC+90a] and the new PamCase [CCM95]). This complicates the task of
implementing the RPC mechanism compared with an unsafe programming language such

60 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

as C which provides these operations as standard at the language level. An interesting
research issue is to identify an API to give access to these features while minimising the
possibility for errors and variations across different implementations.

Large Týansitive Closures

Objects in a persistent system tend to be highly inter-connected, a consequence of orthog-
onal persistence and a rich type system. For example, the transitive closure for persistent
procedures in Napier88 is typically the entire store. (This problem has been solved in the
new PamCase implementation [CCM95].) Many objects with complex data types have the
same problem; for example, those that use procedures such as the map implementation in
the Glasgow Libraries [CAL194J. (This is in contrast with traditional, non-persistent lan-
guages in which transitive closures are always limited by the address space of the currently
executing process.)

Large transitive closures create problems for passing parameters. Typically, the parameter
passing semantics for conventional (i. e., non-persistent) RPC is based on call by copy, but
this is difficult or even infeasible in a persistent RPC because large parts of the store would
have to be copied. (See the next two challenges for more problems exacerbated by large
transitive closures.)

On the other hand, passing parameters by reference or partial copy -where part of the
reachable data is copied and the rest is passed by reference -creates dependencies between
stores. We will return to this discussion in chapter 5.

Preserving Sharing Semantics

We have described above why passing parameters by copy in a persistent RPC may copy
large parts of the store to the target. But even when only a small part of the store is copied,
passing parameters by copy creates duplicates that will then eventually diverge creating
inconsistent copies of the same object. Worse, identity checks will fail where a programmer
might reasonably expect them to succeed because each copy has its own (local) identity.
The duplicates not only destroy object sharing but with a persistent RPC the duplicates
accumulate across program executions. On the other hand, a strict replication protocol
only re-introduces the kind of problems created by remote references. All these problems
are amplified by large transitive closures.

Sharing Objects Between Stores

In order to retain the simplicity of a single store in a distributed environment, the RPC
would ideally support object sharing between stores based on one of two main approaches
[DC93, DPS+94, Dan951:

3.4. COMBINING PERSISTENCE AND RPC 61

1. One shared copy- If one shared copy is chosen, then all stores (except the store
maintaining the object) have to use a remote reference to access the shared object.
The problems are similar to passing an argument by reference in a remote call (see
section 5.1.4). Namely, the time to access the object is several orders of magnitude
more than that of a local access as a result of network latency and other communi-
cation costs. More importantly, dependencies axe created between stores. Because
the remote store where the shared object resides or the network connection may fail,
referential integrity can no longer be guaranteed for persistent shared objects. This
violates one of the fundamental features of orthogonal persistence.

2. Many replicated copies -The only option that minimally disrupts persistence is to
replicate the object to the stores where it is used. However, replication requires a
coherency protocol (to propagate updates before values in replicas are used) that in
turn introduces remote references. Depending on the access pattern to the object (the
number of reads compared with the number of writes) the benefits of replication may
be easily outweighed by the network traffic and latency introduced by the coherency
protocol.

Partial Failures

In a distributed environment the computation no longer depends on a single system: remote
programs may crash, computers may stop and the network may be slow or disconnected.
This is in contrast with the failure semantics offered by a local persistent store, where it is
either working normally or has completely stopped.

Partial failures due to distribution have to be introduced into the local computation model
in a way that can be understood and dealt with by application programmers. Finding
a good model for detecting, reporting and explaining these -previously non-existent-
partial failures to the persistent application programmer is a difficult research issue.

3.4.3 Need for Compromises

In a distributed context it is very difficult, or even impossible, to maintain the abstraction
of a uniform store sought for orthogonal persistence while still being realistic. For example,
we cannot ignore partial failures and still attempt to support object sharing with referential
integrity between stores. Objects cannot be shared amongst many stores efficiently and
reliably, but we also cannot replicate them if they have large transitive closures. Attempts
to solve one problem only make another more visible.

Compromises are needed, but any relaxation in the uniformity of orthogonal persistence
must be carefully considered. The new semantics should be close to the local persistent
semantics for two reasons: to be easily recognized, understood and accepted by existing
persistent programmers; and to accommodate any techniques and tools designed for local

62 CHAPTER 3. OVERVIEW OF PERSISTENCE AND RPC

programming that should still work locally and be adaptable for distributed environments.
Finding these compromises is a goal of this research.

3.5 Summary

This chapter introduced orthogonal persistence and Napier88, a research persistent lan-
guage used for the experiments described in this dissertation. We then presented those
RPC design issues that are relevant to RPC in general and in particular to RPC in a per-
sistent environment. We were then in a position to analyse what happens when persistence
and RPC are combined.

We conclude that RPC is a simple yet powerful communication model that may be used
by persistent application programmers not familiar with distribution in order to build
distributed persistent applications. We suspect persistence and RPC are an interesting
combination, although it also creates new and difficult problems. Both the possibilities
and the problems will be explored in this thesis.

Chapter 4

Type-safe Persistent RPC

This chapter describes an RPC mechanism built in Napier88 that automatically guaran-
tees strong type-safety between a client and a server. The chapter starts by explaining
why type-safety is important and introducing techniques to enforce it. The design and
implementation of the RPC is then presented, together with a description of the interface
to the programmer and a complete example.

4.1 Type-safety

When calling a remote procedure one cannot assume that the types of the arguments at
the client will always match those of the actual remote procedure at the server. This is
an inevitable consequence of autonomy in distributed systems which allows components to
change independently.

Type-checking must be enforced in order to prevent programmers from making errors,
particularly those which might endanger the integrity of the whole system. Integrity is
especially relevant in the context of persistent systems; a server crash may corrupt the
database and the error may become manifest much later (possibly months after the call
has terminated).

4.1.1 Example of The Problem

The traditional RPC is not type-safe, as a simple experiment using Sun/RPC [Sun93b]
demonstrates.

A procedure for remotely printing an error message is initially declared as pe Unt) and
later changed to pe (string), e. g., to change from an error code to an error string. If
the programmer at the server updates the procedure argument type but the client is not

63

64 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

changed accordingly, next time the client calls the procedure the server simply crashes.
The crash is a consequence of the server trying to use as a string a value that is in fact an
integer.

This type mismatch and consequent server crash are easy to produce because Sun/RPC
only assumes that both the client and the server use stubs generated from the same pro-
cedure signature, without actually enforcing that assumption.

In order to deal with evolving remote procedures, Sun/RPC offers "protocol versions" so
that servers have the opportunity to change the specification by adding a new signature
version. The client would continue to use the old version as long as required, then use the
updated specification to generate stubs for the new version. This framework may help, but
as we have demonstrated with the experiment above safety is not guaranteed.

4.1.2 Type-checking

The safety problem has been recognized before. For example, Network Objects [BNOW931
is a modern RPC well integrated into Modula-3 [Har92] that permits object methods to
be called remotely across the network. Great care was taken with respect to type-safety;
because the native "type codes" generated by the Modula-3 compiler are valid only within
the local program, the compiler had to be changed in order to compute a fingerprint
for every object type. Two types have the same fingerprint only if they are structurally
equivalent.

In a type system based on structural type equivalence, two values have equivalent types
if the types have isomorphic structures [ADG+89]. Structural type equivalence contrasts
with name type equivalence, in which two values have the same type if the types share the
same type declaration. Only structural equivalence offers a concept for type equivalence
independent of a particular type declaration in one program, that is, for separately compiled
programs [BHJ+87, ABM88, CBC+90b, Con9l].

Thus Network Objects prevents method calls on objects with incompatible types even
between independent programs. (Strictly speaking, there is a low probability that two
different types will have the same fingerprint. However, this probability can be made
sufficiently small that it can be treated as negligible.) Previous RPC mechanisms that
enforced type-safety were more restrictive because they depended on name equivalence,
thus requiring that equivalent types be the result of the same compilation, e. g., Hamilton's
RPC [Ham84].

Our type-safe Napier/RPC uses structural type equivalence for detecting compatibility
between types declared in the client and the server. This is possible because the Napier88
compiler arranges for information about types to be recorded with the values (types any
and env) or knows the type of each value at compile-time (all other types) [Cut93].

Using this type information, Napier/RPC is then able to:

4.1. TYPE-SAFETY 65

1. enquire about the type of a value at run-time (using an existing Napier88 procedure
called getType available in the Standard Library [KBC+94]);

2. exchange this type between programs (type representations are first-class values in
Napier88); and

3. compare their values for equivalence (using a procedure called EqualType).

Fingerprints could also have been used in Napier/RPC as accelerators or reasonable approx-
imations. However, they would have to be computed, whereas Napier88 already provides
mechanisms to manipulate types and compare them for equivalence.

4.1.3 Server and Procedure Binding

Before a client can -call a remote procedure it must know which server supports the desired
procedure (server binding) and within that server which procedure it should call (procedure
binding). Information to identify the server can be provided at compile-time by giving
a network address alongside the procedure signature or delayed until later at run-time
before calling the remote procedure. A similar mechanism is needed to identify the remote
procedure at a server.

Many RPC mechanisms shift the responsibility for both server and procedure binding to
application programmers, who must agree on names or numbers to identify the remote
procedure and provide server addresses. This is sometimes called manual binding. For
example, Sun/RPC [Sun93b] uses numbers for procedures and machine names for servers.
Hamilton [Ham841 extended the syntax for calling remote procedures to accept a server
address, whereas procedure binding uses "remoteproc identifiers" (64 bit unique numbers)
generated by the compiler.

Having this information embedded within the signature of the procedure or in the client
code may reduce the scope for future change, e. g., to move a remote procedure from
one server to another. Also, low-level approaches to procedure identification (such as
numbers) force client and server programmers-who should be able to build and change
local programs independently- to agree and synchronise with respect to these numbers.
Agreements like this are difficult in a large-scale application in which there are many
programmers involved. It is also not type-safe because there is only an agreement between
programmers which may not be respected.

On the other hand, Network Objects [BNOW93] provides automatic binding because the
system knows where to direct the call (the remote reference to an object includes its
location). Some other mechanism such as a binding service (see below) will have to be

used to bootstrap the system, i. e., to get the first remote reference.

A binding service is a special server that stores the signatures of remote procedures and
knows which servers support which procedures. A binding service not only supports both

66 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

server and procedure binding but may also be used to enforce type-safety if it also controls
the right to call them.

For example, Birrell and Nelson [BN84] use a distributed database to store server addresses
and the names of their supported remote procedures, but they do not attempt to check
argument types. The ANSA architecture provided a "trading service" [DH93] responsible
for passing information from servers to clients that includes a "type conformance service".
CORBA [OMG95] provides a similar service.

A binding service was also chosen for our type-safe RPC as it offers a good compromise
between the security of enforced type-safety and the flexibility provided by dynamic server
and procedure binding. The design and implementation of the binding service are described
in the next section.

4.2 Binding and Type-checking

Static or dynamic type-checking at the language level may be used to ensure that both
a client and a server are type-safe locally (that is, within each of them). However, as
any client and any server in a distributed environment should be allowed to be built and
changed independently, one cannot easily guarantee that type mismatches will not occur
between them.

In this section we describe a solution to the safety problem between a client and a server
that also supports both server and procedure binding. (The interface to the mechanism
will be presented later in section 4.3.)

4.2.1 Type Sessions

A type session describes the relationship between a client and a server as far as the signature
of a remote procedure is concerned. A signature for a remote procedure is agreed at the
start of a session and maintained until the end of that session. The remote procedure
can then be called multiple times within that session, so the cost of signature matching is
incurred only once per session, not per procedure call. Programmers may choose session
lengths, as clients or servers can terminate a session at any time.

Sessions are intended to be long-lived. They are made persistent and thus become unrelated
to the execution time of either clients or servers. Information about sessions just persists
across program invocations automatically by virtue of orthogonal persistence. (Although
both client and server need to be executing for a remote call to succeed.)

Each client can have multiple sessions running in parallel. There is one session for each
remote procedure the client has successfully called and the session remains active until it
is explicitly terminated. The maximum length of time for a session is the period between

4.2. BINDING AND TYPE-CHECKING 67

the server starting and stopping support for the remote procedure.

There is no problem if a session ends during a procedure call because the signature has
already been validated. The next remote call will just start a new session or fail if the
procedure has been removed by the server in the meantime.

4.2.2 Capabilities

Type sessions are implemented with capabilities: before calling a remote procedure the
client should own a capability for it. The capability is valid as long as the server supports
that procedure and the client keeps the capability.

Capabilities are well known in the distributed system community, for example, they are a
basic concept in the Am6eba operating system [MT86). A capability is the concatenation
of a service identifier, a rights field, and a password (to prevent users from predicting or
forging capabilities). Capabilities are only created by a trusted entity, then given to other
untrusted entities in the system that may pass them to other entities.

in our RPC the binding service is considered to be the only trusted entity in the system,
and both clients and servers are untrusted. The binding service creates a capability, for
each remote procedure, that is used both for identifying (procedure binding) and validating
(type-checking) remote calls. The rights field is not used at present as the only operation
that can be performed on a remote procedure is "call", and the right to request an operation
can be made implicit by owning the capability.

4.2.3 Binding Service

The cost of session set-up can be reduced and its flexibility increased by maintaining
the relevant information about remote procedures in a binding service. In our RPC, the
binding service stores all server locations and all signatures of the remote procedures that
the servers support.

The binding service works as depicted in figure 4.1.

Before a server starts supporting calls for a remote procedure it exports the signature
of the remote procedure together with the server's identity to the binding service.

2. A client, before calling a remote procedure in a server, imports the right to call it from
the binding service by providing a procedure signature. If the signature is supported
by a server, the binding service returns the address of that server (server binding)
and the capability. The capability represents both the identification of the procedure
in the server (procedure binding) and an authorisation to call it (type-safety).

68 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

3. The client can then call the remote procedure using the capability as many times
as needed, without ever requiring to contact the binding service again. (Thus the
capability, stored by the client stub, implements the session.)

The above protocol makes it impossible for a client to call a remote procedure without
proving before that it knows the procedure's name and the correct number, order and types
of its arguments and its result. (As happens with all other schemes based on capabilities,
a client could also ask another client for the capability and avoid talking to the binding
service. This possibility, that does not break the safety provided by the session mechanism,
will not be explored in this dissertation.)

Client Binding Service Server

Figure 4.1: The binding service in action

The binding service is implemented as an RPC server that supports two special remote
procedures: export and import (see example 4.1). These procedures are special in the
sense that they have well-known capabilities, otherwise the RPC could not bootstrap.

type Capability is int
type Store is structure(machine: string; path: string)
type Signature is structure(str: string; rep: TypeRep)
type ServerStubName is structure(host: Store; cap: Capability

export: proc(server: Store; sig: Signature -> Capability)

import: proc(sig: Signature -> ServerStubName)

Example 4.1: Export and import

As outlined in example 4.1, export receives as arguments a server address and a procedure
signature, and creates and returns a new capability. The binding service maintains a local
database to associate capabilities with their corresponding servers and procedures. If the
binding service receives a signature from a server which was already previously exported by

another server, it removes the previous reference and returns a new capability. (It could,
of course, be programmed to remember all servers offering the presumed equivalent service
and then choose between those servers when the service was requested.)

4.2. BINDING AND TYPE-CHECKING 69

On the client side, before calling the remote procedure, each client stub checks if it already
has the capability. If not, the stub itself calls import with its own signature, receiving the
capability and the address of a server supporting the procedure, and only then calls the
remote procedure. Later, the stub would discover it already has the capability, so it is
unn ary to import the procedure again.

When a client receives a capability to call a remote procedure at a server, it effectively
starts a new session. This session will last as long as the server supports the procedure.
When the server stops supporting the procedure, the client will note this because its next
call will fail. The client can also terminate a session by throwing the capability away and
freeing its resources, but this will not free any resources in the server because other clients
may have started sessions on the same remote procedure.

4.2.4 Server Evolution

Each capability permits a remote procedure to be called with a specific signature at a spe-
cific server. This allows a server to change a procedure's implementation without forcing
clients to start new sessions as long as the signature itself does not change. The RPC
mechanism simply replaces the old server stub with a new one that calls the new imple-
mentation of the remote procedure. The client does not notice the change because the
capability remains valid.

The RPC mechanism hides this kind of change from clients by default so that server
programmers can decide whether an internal change in a remote procedure maintaining
the signature is actually noticed by the clients.

The server can always force the clients to notice the change by stop accepting the capability
for that procedure. This is made in three steps:

1. revoking support for an existing procedure;

2. requiring the binding service to delete any reference to it; and

3. starting support of a new remote procedure with exactly the same signature as before.

The client will notice that the procedure implementation has changed when a call made
with the old capability fails but, when the client asks for the same procedure, the binding
service returns a new capability. (Revoking support for an existing procedure is not imple-
mented but it would be trivial with an additional remote procedure at the binding service
called remove that accepts a Signature as an argument.)

Another typical change occurs when a server starts supporting a new implementation of
the remote procedure with a different signature. The server should not stop supporting the
old version immediately as this would force all clients using this procedure to stop calling
it immediately. Instead, the server should support both the old and the new versions for

70 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

some time, allowing each client to migrate from the old version to the new one should they
want to (some clients may not want to move from the old version to the new one).

Even more interesting is to integrate these two kinds of incremental change described
above: new implementation maintaining the same interface and new interface with new
implementation. Figure 4.2 illustrates the following example.

1. In step 1 the server creates and exports a print error procedure with a signature
pe (int). Only after importing the capability cap I will the client be able to call the
remote procedure.

2. In step 2 the server creates a new version of print error with signature pe (string).
Initially, all clients still own capl so they will continue to use pe(int). But as
pe (string) is now also supported at the server, each client decides when it is ready
to start a new session in order to change over to the new signature.

3. The server administrator may then realize that many clients are still using pe Unt)
and have no intention of changing to pe (string). So in step 3 the server changes
the implementation of pe Unt) to incorporate (part of) the functionality of the new
procedure pe (string) - for example, writing the message to a log file - without the
clients noticing the change. This way all clients will now use the most recent proce-
dure implementation, even though some are still accessing it via the old signature.

4.2.5 Summary

This section has presented the design of an automatic type-safe RPC.

The RPC is type-safe since calling a remote procedure is only possible after the client
has demonstrated it knows the correct types and order of the arguments and result
of the remote procedure.

The type equivalence test is strong because the mechanism checks the actual type
structure, in contrast with user-defined names or numbers that can lead to errors if
used across progams built independently.

Type-safety is automatic because it is achieved with type sessions managed by the
RPC, without requiring any user intervention in excess of that already needed for
calling a normal procedure in a type-safe language like Napier88.

The next three sections describe an implementation and how it can be used by the appli-
cation programmers. In order to concentrate on the fundamentals of type-safe RPC, we
omit error handling and also made no effort to optimise the use of RPC in the example
applications.

4.3. APPLICATION PROGRAMMER INTERFACE

Cient Binding Service Server

-arc
export(pe(int)

capl

import(pe(int)
dg capl

call(capl, nb)
,. oo

..
export(pe(string)

cap2

import(pc(suing)

ge-
cap2

call(cap2, msg

ge
.. ..

export(pe(int))
capl

call(capl, nb)

Step I

int

e"'Oo

Step 2

Tw

.......... I
Step 3

pe(m

Figure 4.2: Type-safe evolution of a remote procedure

4.3 Application Programmer Interface

71

The interface characterises how the programmer actually interacts with the mechanism.
This includes both generating the stubs-how to pass information about the signatures of
the remote procedures to the stub generator - and using the stubs - how the programmer
uses the client stub from within the language and implicitly uses the corresponding server
stub.

4.3.1 Generating the Stubs

Programmers must provide the stub generator with procedure signatures- names of the
remote procedures and types of their arguments and results-in order to generate the
stubs. This is usually achieved by writing the signatures in an "interface description
language" (IDL) used as input to an external stub generator (see section 3.3.2). Birrell
and Nelson [BN84] described this approach and it is still used by modern RPC systems,
including Sun/RPC [Sun93b], CORBA [OMG951 and Java IDL [Sun96b].

In contrast, our stub generator is internal and uses signatures of procedures written in
Napier88 itself. This is because Napier88 has the relevant facilities (see list below) to gen-

72 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

erate and compile stubs dynamically and link these to the current execution. An internal
stub generator has the advantage of avoiding increased complexity of the programming
environment; application programmers no longer need to learn a new language and are
relieved from maintaining consistency between types in procedure declarations and the
corresponding IDL statements.

Four facilities of Napier88 enable internal stub generation (see section 3.2.1).

1.7ype system - This permits type information to be extracted from certain constructs
from which stubs can be generated at run-time (see section 4.1.2).

2. Callable compiler-This allows compilation of these generated stubs in a type-safe
manner during execution.

3. Higher-order procedures-As procedures are first-class values in Napier88, a map
indexing capabilities to server stubs can be constructed so that remote procedures
can later be called by the transport protocol (see section 4.5.2).

4. Orthogonal persistence- Orthogonal persistence enables this map to be preserved
between executions of the server. These two last facilities avoid the need for a separate
linking process before starting the client and server.

Examples are shown below of the creation of client and server stubs and their use. This is
all achieved within the language during the normal execution of Napier88 statements.

Generating Client Stubs

Example 4.2 shows how a client creates stubs for interacting with an example message
server. The purpose of the message server is to store messages in a database, each indexed
by an integer generated by the server. In the server, putMsg stores a new message returning
its identifier and getMsg accepts an identifier and returns a previously stored message.

The client stub generator is a procedure called makeClientStubs that works as follows.

1. Accepts a value of type env (see section 3.2.1) that contains a set of procedure
bindings. These bindings contain their names, their types, their values and their
constancy-all the information required to generate the stubs.

2. Obtains their signatures, then generates and compiles the respective client stubs.

3. Replaces the dummy procedures with the compiled client stubs.

Writing the dummies requires roughly the same amount of work compared with writing IDL
interfaces. However, in our RPC the application programmer is using the same language,

and inconsistencies are avoided.

4.3. APPLICATION PROCRAMMER, INTERFACE 73

1 create a new empty environment
let ClientProcEnv := environmentO

I insert the signature for putMsg
in ClientProcEnv let putMsg I this procedure value will

proc(s: string -> int)I be overwritten by the
uninitialised[intl("putMsg") I client stub generator

I insert the signature for getMsg
in ClientProcEnv let getMsg I this procedure value will

proc(i: int -> string)I be overwritten by the
uninitialised[string](IlgetMsg") I client stub generator

! construct the client stubs for all signatures
makeClientStubs(ClientProcEnv)

Example 4.2: Generating client stubs

After calling makeClientStubs the programmer may immediately utilise the environment
ClientProcEnv that now contains the client stubs or place it in the store for later use.

By default, all client stubs are created with a well known invalid capability (e. g., with
value 0). When a client stub is called, it first checks if its capability is invalid. If it is,
it imports a capability and a server address from the binding service (see section 4.2.3).
The capability is then made persistent so that further calls do not require contacting the
binding service again.

Client Stub Generated

Example 4.3 shows the client stub generated for calling putMsg remotely. Because both

string and integer are primitive data types in Napier88, the stub generator does not need to
generate the packing and un-packing procedures for the types appearing in the procedure
signature; it just uses pre-defined procedures for packing and un-packing scalar types.

The procedure getServerStubName accepts a value of type Signature representing the
name and type of the procedure and returns a ServerStubName containing a field host
(the server address) and a field cap (the capability to call this procedure at that server).
The first time it is used, getServerStubName calls the remote procedure import at the
binding service and caches the capability locally to avoid a further remote call (see sec-
tion 4.2.3). The binding service address is returned by getBinderName. The procedure
clientStubMngr implements the transport protocol at the client as described in section
4.5.1.

74 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

putMsg := proc(argl: string -> int
begin

I check if capability has been imported, and import if not
let sig Signature("putMsg", getType(any(putMsg))
let son getServerStubName(getBinderNameo, sig)

I create the message to be sent to the server
let andmog := Message(I'll, I)I initialise the message
packInt(sndmsg, ssn(cap) I pack the capability
packString(sndmsg, argi I pack the argument

I call remote procedure and wait for result
let rcvmsg := clientStubMngr(ssn(host), sndmsg

I un-pack and return the result
let res := unpackInt(rcvmsg)
res

end

Example 4.3: Client stub generated

Generating Server Stubs

At the server side the application programmer interface is similar to the client side, although
the implementation has three important differences.

1. The server stub generator now uses the values of the procedures in the environment
passed as an argument.

2. The server stubs are stored by the stub generator automatically instead of being
returned to the server program.

3. The programmer now calls a procedure that waits for incoming requests from the
clients instead of calling the server stubs directly.

Example 4.4 shows how to create the message server. To generate the server stubs the
programmer calls makeServerStubs with an environment containing implemented proce-
dures. These procedures are not dummy procedures as in the client because these are the
actual remote procedures that will be called by the server.

Although these implemented procedures need to be persistent in order to be called later by
the server stubs, the environment with the implemented procedures need not be persistent

4.3. APPLICATION PROGRAMMER INTERFACE 75

I create a map to store the messages
let mapOfMsgs := m-empty[int, string](eqInt, itInt)

I create a variable for the number of stored messages
let nxtMsgId :=0

I create a new empty environment
let ServerProcEnv := environmento

I implement and insert putMsg into the environment
in ServerProcEnv
let putMsg := proc(msg: string -> int

begin
nxtMsgId := nxtMsgId +I
m-isu-insert[int, string](mapOfMsgs, nxtMsgId, msg)
nxtMsgId
end

I implement and insert getMsg into the environment
in ServerProcEnv
let getMsg := proc(i: int -> string

m_find[int, string](mapOfMsgs, i) assuming no errors

I construct the server stubs for all procedures
makeServerStubs(ServerProcEnv)

Example 4.4: Generating server stubs

itself as the process of generating the stubs will store these procedures by reachability from
the server stubs (which in turn are made persistent by the stub generator).

Procedures beginning with "m2' create and manipulate maps [ABC+93, WWP+95] that
provide a representation of mappings between any two types. A map is used, called
mapof Msgs, to associate a number (integer) with each message (string). Because mapOf Msgs
is used by these procedures and these are persistent by reachability from the persistent
stubs, the map itself persists.

There is another difference between generating client and server stubs. When a server stub
is generated, the signature of the remote procedure and the server address are immediately
exported to the binding service (see section 4.2.3). This is in contrast to the client stub,
which waits for the first remote invocation to contact the binding service. This approach
permits client stubs to be declared before their corresponding server stubs, the only obvious
requirement being that these must exist for the remote procedure to succeed.

76 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

Server Stub Generated

The server stub for putMsg is somewhat trivial as shown in example 4.5. All server stubs
are similar - even when the arguments have complex types - because the un-packing pro-
cedures for the arguments (and packing for the return value) either already exist or are
previously generated and are just used by the stub. (The generation of packing and un-
packing procedures is presented in section 4.4.3.)

A major difference between a server and a client stub is that instead of being called by the
server program, the server stub is called by the transport protocol at the server side when
a message for it arrives from a client (see section 4.5.2).

putMsgServerStub := proc(rcvmsg: Message -> Message
begin

I un-pack the argument
let argI := unpackString(rcvmsg)

! call the intended procedure
let res := putMsg(argI)

I pack and return the result
let sndmsg := Message("", I)
packInt(sndmsg, res
sndmsg

end

Example 4.5: Server stub generated

4.3.2 Using the Stubs

After generating the stubs, the programmer then needs to use these stubs to perform a
remote procedure call. Hamilton [Ham84] decided to extend the programming language
with special syntax for calling the remote procedures, arguing that a language extension
adds extra information for RPC control (such as server binding and error handling) and
also emphasizes the semantic distinction between calls to local and remote procedures. Wai
[Wai88] also extended the language in a manner similar to Hamilton for server binding,
but without attempting to deal with errors at the language level because the objective was
to support transparent distribution. Birrell and Nelson [BN841 provide such information
in the form of extra arguments, a technique also used by Sun/RPC [Sun93b].

We chose not to extend Napier88 with extra syntax for calling remote procedures mainly
for two reasons.

4.4. PARAMETER SEMANTICS 77

1. Extending the language would force programmers to learn a new syntax to use the
mechanism, which can be a major drawback for its acceptance.

2. A language extension causes changes to the compiler that would introduce difficulties
for porting the mechanism into future language releases. (For Napier88, an evolving
research language, this is of paramount significance.)

However, if the syntax for calling remote procedures is identical to that used for local ones
then the RPC mechanism lacks the semantic distinction argued as important by Hamilton.
With identical syntax programmers should take great care when calling remote procedures,
especially those problems related to the semantics of the arguments as described in section
4.4.1. (Subsequent versions of the RPC, described in chapters 5 and 6, use a different
interface in order to return failures to the calling program and also to draw a programmer's
attention to the different nature of remote calls.)

Using a Server Stub

After creating the server stubs the programmer simply calls serverStubMngr to start
accepting incoming call requests from clients (see example 4.6).

1 start accepting all call requests
serverStubMngro

Example 4.6: Using server stubs

As described below in section 4.5.2, serverStubMngr represents the interface to the trans-
port protocol at the server side. It is responsible for receiving incoming messages from the
clients and calling the appropriate server stub based on the (capability embedded in the)
received message.

Using a Client Stub

After calling makeClientStubs to create the client stubs as shown in example 4.2, the pro-
grammer can then use these stubs in a normal sequence of Napier88 statements. Example
4.7 shows how the client stubs generated can be used to test the message server. After
this sequence of statements the server will now hold "test msg" indexed by the number
1 (meaning it is the first message to be stored in the database).

4.4 Parameter Semantics

With a syntax for calling remote procedures identical to that used for calling local proce-
dures, one would expect the argument semantics of calls to local and remote procedures

78 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

I obtain the client stubs from the environment
use ClientProcEnv with

putMsg: proc(string -> int);
getMsg: proc(int -> string) in
begin

I store a message in the server
let nbr := putMsg(Iltest msg")

I retrieve that message from the server
lot msg :- getMsg(nbr)

end

Example 4.7: Using client stubs

to be the same. Unfortunately this is not true, as the physical separation of the applica-
tion in different address spaces between the client and server programs imposes restricted
semantics on argument passing and the range of transmittable types.

4.4.1 Passing Arguments by Value

A remote procedure is, by definition, executed in a different address space from where it
is called. As suggested in section 3.3.6 and discussed in more detail in section 5.1, passing
parameters by reference creates dependencies between stores that generally prevent the
system from scaling to a wide-area or global network. This problem is exacerbated by
persistence because these dependencies accumulate.

This is the reason why we chose to pass arguments by value, not only for scalars but also
for complex values. Passing arguments by value means that the arguments are copied
between the client and server programs. As these arguments may have references to other
values, these must also be copied, and so on, until the whole transitive closure from the
original arguments have been copied [HL82, Ham84, BJW87, Cra93].

When traversing the transitive closure of an argument, a value already copied may be found.
This occurs for example when an argument A refers to two values B and C which share
some other value D. The algorithm for deep-copying arguments preserves the semantics
of this sharing for arguments to a remote procedure because sharing is the basis of many
important data structures, e. g., doubly linked lists.

However, sharing is not preserved between arguments or between successive remote calls.
For example, using the same example, if A is passed as an argument in two successive
remote calls, then two distinct copies of A, B, C and D will be created in the server. Even
if A is passed in different arguments in the same call multiple copies of A, B, C and D will

4.4. PARAMETER SEMANTICS 79

be created remotely. The same behaviour can be observed in many other RPC mechanisms.
(We have implemented a partial solution to this duplication, described in chapter 6.)

4.4.2 Types Supported as Arguments

An RPC designer must attempt to support as many - and as rich a set of - argument
types as possible. However, the remote procedure is executing in a different address space
from the invoking procedure. This fact restricts the range of types supported by an RPC
mechanism. Each restriction may result from some inherent difficulty or simply because
its implementation and/or execution are too expensive.

We decided to support only a limited number of scalar types and constructors in Napier/RPC
1.0 and instead investigate other research issues, e. g., efficient type-checking using long-
lived type sessions. (The next chapter describes Napier/RPC 2.2 which extends the range
of supported types with richer constructor types such as procedures.)

Procedures for packing and un-packing scalar types are part of the RPC mechanism and
they are used as appropriate within the stubs. We have implemented procedures for packing
and un-packing the following scalar types: int (the set of all integers), real (the floating
number data type), bool (with two possible values, true and false), string (all possible
sequences of characters of any length), and null (with only one possible value called nil).
The remaining graphical scalar types in Napier88 were not implemented.

The RPC generates a pack or an un-pack procedure on demand for each constructor type
found in a procedure signature when creating the client or the server stubs. These pro-
cedures are compiled and put in the store indexed by type representation, in case one
of these types appears again as an argument in another signature. This is possible only
because Napier88 supports higher-order procedures and orthogonal persistence, and also
because type representations are first-class values. The constructor types supported are:
structure (labelled record type), variant (tagged discriminated union), vector (one
dimensional array), and the recursive composition of these.

4.4.3 Packing Complex Types

It is not trivial to pack values of complex types because they may form a graph of references
and sharing must be preserved.

Flattening Complex Types

In order to make the generation of packing procedures for complex types more tractable,
the RPC first flattens any complex type into simpler type representations. The flattening

process has two characteristics.

80 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

1. The new (flattened) type representation and the original type are structurally equiv-
alent.

2. The new type representation has only one top-level type name and one constructor
for each one of its sub-types (if any). This structure simplifies the manipulation of
complex types and in particular the generation of pacIdng and un-pacIdng procedures.

For example, the result of the flattening process for the type Signature presented in
examples 4.8 and 4.9 can be seen in example 4.10. (The type Signature itself is not
important since it is used for exemplification purposes only. In addition, its use here
should not be confused with its role as argument to procedures that implement the binding
service.)

rec type TypeRep is structure record
label: int;
misc: int;
name: string;
others: var;
random: int

& var is variant 1 similar to union in C
none: null;
one: TypeRep;
many: *TypeRep; 1 '*' means vector
unique: TypeRep)

Example 4.8: Type TypeRep

type Signature is structure
str: string;
rep: TypeRep

Example 4.9: Type Signature

This flattening process generates new type names, but as type equivalence in Napier88 is
structural, both Signature in example 4.9 and Type-Signature in example 4.10 actually
define the same type. The advantage is that we have a new type Type-Signature which
can be manipulated independently of the original type (see below). In addition, there is
no double constructor (like many in example 4.8) to complicate the type representation.

After being generated, the new flattened type representations are compiled using the types
compiler available at run-time [KBC+94]. The result of the compilation is then stored in a
special data structure called declaration set that is mainly used to group type definitions
in the store. Later, a packing or un-packing procedure using this type can be compiled
against the declaration set without the need to replicate its definition.

4.4. PARAMETER SEMANTICS 81

rec type Type_-Signature is structure
rep: Type--Signature--Str-rep;
str: string)

Type--Signature--Str-rep is structure
label: int;
misc: int;
name: string;
others: Type--Signature--Str-rep--Str-others;
random: int)

8: Type__S ignature--Str-rep--Str- others is variant
many: Type--Signature--Str-rep--Str-others--Var-many;
none: - null;
one: Type--Signature--Str-rep;
unique: Type--Signature--Str-rep

& Type--Signature--Str-rep--Str-others--Var-many is
Type--Signature--Str-rep

Example 4.10: Type Signature flattened

Generating Packing Procedures

The next step is to generate code to pack and un-pack these flattened complex types. We
present in example 4.11 the generated code for packType-Signature that packs the top
level Type-Signature. After being generated, this procedure is compiled and stored for
later use. As can be observed in the source code, this procedure in turn calls lower-level
packing procedures to pack the other generated types; these are not presented because
they all obey the same basic structure.

The packing procedure generates a new oid for every value it packs, and stores the value
together with its oid in the set packedOfType-Signature. (The oid is guaranteed not
to repeat for 2 32 packing operations.) Should the same value appear again in the same
argument of the same remote call and the procedure just sends the number, it does not
pack the same value twice. This is not only needed to preserve the sharing semantics
(as described above in section 4.4.1) but also increases the packing efficiency and reduces
transmission time.

In example 4.11 it can be observed that oid, even though it is represented by a number,
is packed as a string. In fact, we decided to use strings as the basic data format for
transmission over the network, instead of a binary data format such as those used by XDR
or ASN. 1 (see section 3.3.8). The reason for this decision was simplicity; this permitted
concentration on other aspects of RPC like type-safety. (Later versions of Napier/RPC,
described in the next two chapters, use the low-level Napier88 binaxy format.)

82 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

let packType--Signature := proc(sndmsg: Message;
value: Type--Signature

begin

I find if "value" is in packedOfType--Signature
lot pos :=...

I if it is, then it was packed already
if pos is found then

I value exists: pack only its oid
packString(sndmsg, "0" ++ iformat(poslfound(oid)))

else

1 new value to be packed
begin

I create a new object id
let oid := newoidO

! remembers "oid" and "value" as being packed already
packedOfType--Signature :=...

1 first packs "oid" then the value
packString(sndmsg, "#" ++ iformat(oid)
packType--Signature--Str-rep(sndmsg, value(rep)
packString(sndmsg, value(str))

end

end

Example 4.11: Procedure packType--Signature

Generating Un-packing Procedures

For every packing procedure on one side there is a corresponding un-packing procedure
at the other side. For example, the procedure to un-pack a Type-Signature is called
unpackType--Signature (see example 4.12). This procedure checks if the value has already
being sent (signalled by the flag 0) in which case it just looks for its value in a map called
unpacked0f Type --S i gnature. Otherwise the value is un-packed and stored in the map of
values already received.

4.5. TRANSPORT PROTOCOL 83

let unpackType--Signature := proc(rcvmsg: Message -> Type_-Signature
begin

I get the number that identifies the value
lot str unpackString(rcvmsg)
let nbr unpackInt(Message(str(21length(str)-I), I))

I checks if value was sent before
if str(III) = 11011 then

begin
let value get "value" from set with "nbr"

value
end

else

begin
let rep unpackType--Signature--Str-rep(rcvmsg)
let str unpackString(rcvmsg)
let t_-Signature := Type--Signature(rep, str
... I put "t--Signaturell in the map indexed by "nbr"
t_-Signature;
end

end

Example 4.12: Procedure unpackType--Signature

4.5 'h-ansport Protocol

The transport Protocol is responsible for exchanging packets -byte arrays containing mes-
sages which in turn represent packed axguments and results -between the client and the
server acrosp, the network. The transport protocol is built on top of sockets. Sockets
[Su7a93c) provide a convenient file-like interface to TCP/IP (see section 3.3-7) and are
offered in Napier88 as a set of procedures found in the Standard Library [KBC1941-

4.5.1 Outgoing Calls

As we described in section 4.3.1, after packing the arguments into a message using the
Packing prolýedures, a client stub calls the client stub manager (clientStubMngr) in order to Eiend the message to the server. The client stub manager implements the transport
protocol at the client side and works as follows.

84 CHAPTER 4. TYPE-SAFE PERSISTENT RPC

1. Accepts the server address and a message that contains the capability and the packed
arguments for the remote procedure.

2. Uses the socket interface to send the message to that server address as a packet.

3. Blocks and waits for the result packet to arrive from the server.

4. When the result packet arrives, it just forwards it as a message to the calling stub.

Napier/RPC 1.0 creates a new socket connection for each remote call, as early experiments
demonstrated that even this straightforward solution had acceptable overall performance.
(The transport protocol has since then been optimised, see chapter 5.)

4.5.2 Incoming Calls

The server stub manager (serverftubftgr) is called once by the programmer to deal with
all incoming packets, a process sometimes called dispatching. It works as follows.

1. Blocks waiting for a packet to arrive from a client.

2. When a packet axrives, it extracts the capability from it and identifies the procedure
to be called.

3. It then transforms the rest of the packet into a message and calls the correct server
stub using the message as its sole argument.

4. When the server stub returns, it transforms the result message into a packet and
sends it to the client.

4.6 Summary

This chapter has described the design and implementation of an automatic type-safe persis-
tent RPC mechanism built entirely in Napier88, a type-safe reflexive language. Type-safety
is important since it guarantees that the signature of the remote procedure and that of
the client stub are equivalent, thus eliminating a serious source of errors. Type-safety is
especially relevant in persistent systems because the server may be used over long periods,
comparable with the time over which software evolves. (An error may persist and become
manifest at an arbitrary point in the future.) Type-safety is automatically guaranteed
since no action from the application programmer is needed beyond standard declarations
to make any procedures available via RPC.

The implementation follows that of Sun/RPC and generates client and server stubs which
use packing and un-packing procedures. These are provided for base types and automat-
ically generated on demand for complex types. The types supported are: integer, real,

4.6. SUMMARY 85

string, bool and null; the constructor types structure, variant, vector; and the recursive
composition of these. This is all achieved by code written in a high-level type-safe language
without circumventing the type system at any point.

The implementation used many interesting features of Napier88 such as the type system,
the callable compiler, higher-order procedures, and orthogonal persistence. These eliminate
the need for an IDL, a separate language in which to write the signatures of the remote
procedures. Instead, this RPC provides an internal stub generator that accepts signatures
from within the language, generates new stubs, compiles and links them to the program,
all at run-time.

This version of Napier/RPC was first described in a technical report [MdS95b] that includes
its failure model. Later, it became part of Glasgow Libraries [CAL+941 and has since then
been used by a number of application and system programmers. The applications built
range from demonstrations (such as a card game) to persistent programming tools (such
as the client/server Library Explorer described in chapter 7).

86 CHAPTER 4. TYPEmSAFE PERSISTENT RPC

Chapter 5

Extending Object Migration

This chapter describes the two extreme models for migrating objects between stores -by
reference and by copy -presenting their advantages but also the challenges they introduce.
(In this thesis the word migration is an umbrella for all models of passing, transferring or
transmitting data and code between address spaces. It does not mean movement with
deletion of the original.)

We conclude that in a higher-order RPC, and especially in a persistent environment like
ours, there is a clear need for compromises. Existing compromises are illustrated by giving
examples of approaches that have been proposed to solve this problem.

We then present our model of migration by substitution. An object migrating by substi-
tution does not actually migrate to the target store. Instead, the object is substituted by
a surrogate. On arrival at the target, the surrogate is replaced by a local value equivalent
to the original object.

The presentation includes the prototype implementation, an example of how to use sub-
stitution to migrate a procedure, and the applicability of substitution in persistent appli-
cations.

5.1 Migration by Reference

When an object migrates by reference from a source store to a target store, only a proxy for
the object is sent to the target (see figure 5.1). That proxy may be an object identifier that
already exists or it may be created for the purpose, but in either case it has to uniquely
identify the object throughout the entire distributed application.

87

88 CHAPTER 5. EXTENDING OBJECT MIGRATION

object
remote reference

thread

source store

..................... -,

migration by reference
target store

Figure 5.1: Migration by reference

Examples

Emerald [BHJ+87, JLHB88] is an object-based language and system for building dis-
tributed applications. Emerald can be said to offer transparent distribution since the
application programmer does not need to deal directly with too many aspects of distri-
bution. One of the main goals of Emerald is fine-grained object mobility, but it was not
designed to support large-scale, persistent applications.

Emerald migrates objects by reference in all method invocations, local or remote, and the
semantics are the same in both cases. However, there are two situations for which it is

possible in Emerald to move the parameter objects to the remote program in order to
increase performance.

1. The compiler may decide at compile-time to move an object at call time, for example
small immutable objects such as integers or strings are (invisibly) copied.

2. An application programmer may decide to suggest copying an object to the remote
program, based on knowledge about the application. This is achieved by using prim-
itives in the language (see section 5.1.2 below).

Emerald is not persistent. In contrast, DPS-algol [Wai88] is a distributed version of the
persistent programming language PS-algol [ABC+831. DPS-algol also offers transparent
distribution, but unlike Emerald it offers an RPC mechanism that gives programmers
some control over the placement of computations.

If the object has a scalar type, the value of the object is copied to the program where the
computation is executing (scalar types are immutable). Objects that are not scalar types

are never duplicated in order to consistently support distribution transparency, including

sharing semantics, Computations instead move from program to program collecting the

values they need until scalar types are reached.

5.1. MIGRATION BY REFERENCE 89

It was in DPS-algol that an accumulation of inter-store references was first observed to be
a consequence of persistence. This is because computations visiting one store create new
objects there which will never be able to leave that store. When DPS-algol was later used
as a platform for building distributed applications, a failure in one store could prevent
the entire application from working due to this inter-dependency between stores. These
remote references also generated many small messages, delaying execution, saturating the
network, and ultimately preventing the system from scaling (see section 2.2.1).

More recentlyl the research work by Kato and others on HiRPC [KOMM93, KKM94]
has demonstrated that efficiency can be achieved in an RPC system based on call-by-
reference. HiRPC adds a new language construct to C so that application programmers can
choose between call-by-reference or call-by-move as in Emerald. Unlike Emerald, HiRPC
also maintains a cache for frequently accessed remote data (coherency is automatically
maintained). HiRPC also supports call by variable-depth-copy [KKM94] that can be fine-
tuned to a certain level of the transitive closure.

Obliq [Car95a] is a distributed, higher-order, object-oriented language built on top of Net-
work Objects [BNOW93]. Obliq is similax to Emerald in that only object references are
transmitted in remote method invocations, but unlike Emerald objects are never automat-
ically moved to another program as a parameter or result in a remote call. Like Emerald
and DPS-algol, scalar values and other immutable values are simply (deep) copied. For ex-
ample, procedure values (but not objects that represent mutable procedures) can migrate
between programs.

These systems, especially HiRPC with its automatically maintained cache coherency, also
introduce inter-store dependencies. However, since neither HiRPC nor Obliq handle persis-
tence, these dependencies are typically not long-lived enough to be noticeable. Distributed

persistent systems like DPS-algol are fundamentally different because they accumulate
these problems and eventually stop working (see section 5.1.4).

5.1.2 Implementation

For computation to proceed, data and instructions have to be brought together in the
same address space. This means that when the remote program needs to access the object,
either:

the value of the object (or relevant parts of it) is then obtained; or

2. the thread of computation migrates from the target to the source program where the
value resides.

In order to migrate the thread of computation, it is usually necessary to transfer objects
which may include references to other objects. Hence the underlying support system
must honour all exported references that may still be reached by all active programs.
It also requires that inter-store references can be found as they form roots for garbage

90 CHAPTER 5. EXTENDING OBJECT MIGRATION

collection and thus introduce the complexities of distributed garbage collection [PS95]. in
a distributed persistent application a remote access may occur an arbitrarily long time
after the original object migration. In short, migrating objects by reference creates the
need for the network and the programs exporting these references to be running at all
times (or at least to be able to be run).

Optimisation Strategies

Although migrating by reference is what should be ultimately perceived by the application
programmer if RPC is to have a semantics close to that for local procedure calls, there are
several implementation strategies that can be employed at the system level to approximate
the same semantics.

Since data transfer is eventually necessary when migrating an object by reference, the
implementation could instead duplicate the value of the object. If the object is mutable,
then some coherence protocol is required to maintain the illusion that the object migrated
by reference, e. g., [KSD+90]. The implementation of identity tests for duplicates and
distributed garbage collection also becomes more complex [PS95].

Another alternative to implement the semantics of migrating objects by reference is to
move the object to the server. This way, both object identity and shared access to the
object are preserved because there is still only one copy of the object in the distributed
application. But when moving the object the source program no longer has local access
to the object. If it requests an operation on it, the object will "ping-pong" back and
forth between these programs. Furthermore, all the references in the moved object become
remote and when de-referenced will trigger further copying.

We have given examples of object movement in section 5.1.1 above. In Emerald there
are language primitives that enable the programmer to give an indication as to how the
system should execute the remote call. A hint, call-by-move, moves the object to the target
program when the remote procedure is called (in the same network message as the call).
A similar technique exists in HiRPC.

There is another primitive in Emerald, call-by-visit, a variation on call-by-move in which
the parameter object moves to the target but returns to the source when the procedure
finishes and returns the result. Note that neither mechanism replicates the object, so
they are both still offering call- by-referen ce semantics without the need for a replication
protocol.

5.1.3 Advantages

The main advantage of passing objects by reference is its simplicity because it offers the
well-known local object semantics in a distributed environment. Passing by reference
guarantees:

5.1. MIGRATION BY REFERENCE 91

1. Object sharing- Its state is correctly shared by all its users at any one time; and

2. Update semantics- A distributed object has a well defined (in fact, unique) value.

5.1.4 Problems

Passing by reference gives the illusion that only a small amount of data (the object iden-
tifier) is shipped between the two address spaces. It may be the case that the remote
reference is unused or passed back. However, sooner or later the computation may need to
access the object.

There are basically two approaches that allow computations to proceed by collecting both
computation and the objects referenced in the same address space.

the object is later migrated by copy and all local references to that object now become
remote references (see figure 5.2); or

2. the computation, and a sufficient part of its context, moves (see figure 5.3).

object
remote reference

---- -------------------

--- thread object moves
.... local

reference

duplicate

Figure 5.2: Migration by reference -the object moves

Migrating a small value (like an integer) across the network is typically 4 to 5 orders
of magnitude slower than a local procedure call, thus migrating by reference can have a
dramatic negative effect on the performance of the application [CKW96].

Passing by reference may or may not create more migrations across the network than
sending the value right away, but less network traffic cannot be used as a justification for
passing parameters by reference without stronger evidence. Furthermore, the resultant
network traffic is decoupled from the call and this raises extra difficulty for maintaining
semantics and failure handling (see below).

92

object

CHAPTER 5. EXTENDING OBJECT MIGRATION

remote reference

local
reference

thread

duead moves
....... II.....................

Figure 5.3: Migration by reference -the thread moves

The most important difficulty with passing parameters by reference is not network traffic,
but that in the long-term these remote references create many dependencies between stores.
Once shipped to another store, a reference may be assigned to local variables or potentially
persistent object components, and dispatched to other stores. It is very likely that the
objects that form a distributed application will become strongly inter-connected across the
network, thus increasing the dependency between stores.

Dependencies can be acceptable in tightly-coupled distributed applications running on
reliable local-area networks, but they prevent scaling of the application to levels where
autonomy between stores is required. Autonomy is needed for many reasons, not least to

cope with partial failures, and persistence implies that the application will eventually run
long enough for partial failures to be significant.

The distributed system could try to hide all partial failures from the application. However,
this is unrealistic because:

1. some failures may persist indefinitely (i. e., for any time longer than the people who
will use the application are prepared to wait);

2. distributed garbage collection in an environment with partial failures presents well-
known difficulties [PS951;

I it is impossible to foresee all kinds of failures in advance; and

4. ultimately, the application will have to deal with unexpected conditions that can be

modelled as failures.

Alternatively, the distributed system could recognize that remote references may break

and provide exception mechanisms to deal with failures when accessing remote objects,
i. e., passing failures to the application when it is unable to deal with them at the system

rox

ad

5.2. MIGRATION BY COPY 93

level. This also deals with failures where the user should be informed of the cause of delay
or of (temporary) loss of data.

Although in some cases application programmers are better prepared to deal with failures
than the distributed system due to their knowledge of the application, they should not be
asked to deal with low-level failures as it unnecessarily complicates their work (e. g., network
congestion). Further complications may arise because many of these remote references are
created automatically by the system, and it is unfair to ask application programmers to
deal with failures outside their domain.

5.1.5 Summary

Migrating by reference preserves object sharing, including update semantics, and thus
provides to the programmer a simple distributed model. However, this simplicity brings a
number of problems.

1. Potential increase in network traffic with unpredictable consequences on the applica-
tion's performance.

2. Dependencies between stores that generate network traffic but also decrease avail-
ability and prevent the application from scaling to levels where autonomy between
stores is required.

3. Partial failures are amplified creating difficulties for distributed algorithms (e. g.,
garbage collection) but they should not be passed up to application programmers.

4. Semantics for orthogonal persistence, such as referential integrity, are no longer guar-
anteed in a distributed environment with partial failures.

5.2 Migration by Copy

When an object migrates by copy, a replica of the object is created at the source and then
shipped to the target store. Migrating by copy makes stores more autonomous because

each store has now a local copy of the object and does not depend on the network or any
other store to access its value.

However, the consequences of migrating by copy forces application programmers to keep the
data being copied to a minimum by carefully designing the distributed application. They

are also required to manage all the consistency and identity issues arising from multiple
copies of the same object in the distributed application.

94 CHAPTER 5. EXTENDING OBJECT MIGRATION

migration by copy
.............................

thread

Figure 5.4: Migration by copy

5.2.1 Examples

Most RPC systems migrate parameter objects by copy, including the first RPC mecha-
nism proposed by Birrell and Nelson [BN84], Hamilton's RPC designed for partial failures
[Ham, 84], Argus [Lis88], the RPC products from OSF [OSF911 and Sun [Sun93b], Erlang
RPC [Wik941, XEROX's heterogeneous ILU [JSS94] and Java's RMI [WRW96, RWW961.
(See section 5.1.1 for examples of RPC systems based on migration by reference.)

Parameter objects also migrate by copy in the first release of Napier/RPC, the type-safe
persistent RPC mechanism described in chapter 4. Tycoon/RPC [MMS96, MMS95, Mat96]
is a type-complete persistent RPC built for another persistent language called Tycoon
[MMM93, MMS94]. While the first release of Napier/RPC generates its own marshalling
stubs like most RPC systems, Tycoon/RPC uses an existing pair of procedures in Tycoon
that marshal an object of any type to a byte array. Later releases of Napier/RPC use a
similar approach.

5.2.2 Implementation

When an object is copied to a different program in a non-type-safe language like C++,

pointers in the replica that refer to local objects become either:

e dangling- meaning that now they point to meaningless addresses; or

* swizzled -meaning that they are transformed into remote references.

In a modern type-safe language with referential integrity like Napier88, references are
guaranteed to point to values of the correct type so dangling pointers are not permitted.
On the other hand, sivizzling creates remote references that are not guaranteed across an

5.2. MIGRATION BY COPY 95

unreliable network. Remote references suffer from a variety of problems as described in
section 5.1.4.

The only realistic solution that maintains referential integrity and reasonable performance
is to copy all parameter objects, and all objects reachable from these by transitive closure,
preserving any shared and cyclic data structures [HL82, BN84].

These transitive closures can be quite large, but they are always limited by the address
space of the source program. In a persistent language, however, the transitive closure Of
the parameters may include objects in the persistent store. Procedures that are first-class
citizens may have very large closures -potentially as large as the entire store-because
the "address space" in a persistent system is the persistent store.

Partial Copy

There are a number of implementation techniques that can ameliorate the problem of copy-
ing large transitive closures. For example, with call-by-need [TD94] the values are copied
only as they are needed, not eagerly when the remote procedure is called. (Sometimes
call-by-need is also referred to as lazy-copy or fetcli-on-demand.)

Call-by-need tries to copy across the network only those values that are really necessary,
but it may create many small network messages to fetch parts of the transitive closure. A

variation of call-by-need is call by pre-fetching, in which more values than those that are
actually necessary in the target program are copied in advance to accommodate eventual
future needs. (This leads to the need for consistency and other problems, see section 5.2.4).

5.2.3 Advantages

If the value of the parameter object is copied to the target store, the source store is free
to proceed autonomously until the target finishes its computation and is ready to send the
result back. This is appropriate in large applications where: there is little control on the
diverse stores that form the application; the source and the target axe not guaranteed to
be available all the time; the network can be slow and unreliable; and the computation
runs for a long duration to balance these disadvantages.

More importantly than the physical characteristics of the distributed system are perhaps
the semantic benefits of migrating by copy. With a local replica of the full transitive

closure of an object, the computation in the target on this object is identical to the same
computation on the original object in the source store. This semantic consistency includes
failure modes.

96 CHAPTER 5. EXTENDING OBJECT MIGRATION

5.2.4 Problems

The fundamental difficulties with migrating an object by copy are: the transitive closure
that has to be copied across the network; and there is a potential for loss of consistency if
a replica is created in the target store.

Mransitive, Closure

The transitive closure of an object creates three major problems: it may include large
objects, objects that cannot be migrated or objects that already exist in the target store.

First, the time needed to pack, transmit and un-pack a transitive closure that includes one
or more large objects may be significant. Even if the top-level object being copied is small,
it is the size of its entire transitive closure that will restrict migration.

Second, a more fundamental problem occurs if the transitive closure of an object being
migrated includes objects that cannot migrate. For example, when objects are fixed to
a store for semantic reasons (e. g., there can be only one persistent root in each store) or
implementation reasons (e. g., it may simply take too long to migrate the persistent root
that includes the entire contents of the store). Other examples are: objects that only make
sense locally (e. g., file descriptors to opened files, window handlers, and so on) and objects
belonging to types for which there is not yet a migration implementation (e. g., threads in
Napier/RPC, see section 8.3).

Finally, objects may already exist in the target store either because they are standard (e. g.,
a procedure to write a string on the screen) or because they have already been copied. Many
objects can also be "standard" in a sub-set of stores by agreement between application
programmers, for example in all stores that cooperate to form a distributed application.
In any case these objects are sent again, not only decreasing migration performance but
also using much needed store space.

Loss of Coherence

Loss of coherence happens because, when a mutable object is passed as a parameter to a
remote procedure, the new copy of the object that is created remotely is a different object
for all practical purposes. If either the copy or the original object is updated, inconsistent
replicas will exist of what is still conceptually a single object.

Moreover, in a persistent system there may exist different programs written by different
application programmers that cause repeated copies. If the same object migrates between
the same stores again, in either direction, different copies of the same object will co-exist
in the same store.

As an object may be copied repeatedly between stores, it may arrive at a store by several

5.2. MIGRATION BY COPY

migration by copy
.........................

diread

two rqlicas -1
wo possible values

Figure 5.5: Loss of object sharing

97

different routes. This further increases the complexity and the cost of verifying identity
and achieving coherent updates.

Problems that may be manifest with the top-level object may also occur for any object
in the transitive closure of objects reachable from that object. Persistence amplifies these
problems because transitive closures are potentially very large in a persistent store.

It may be simply too complicated for application programmers to deal with these incon-
sistencies, especially in a persistent environment. It may also be too expensive to attempt
to eliminate these inconsistencies. The distributed system may help by providing certain
primitives so that, for example, consistency can be requested explicitly by the application
and this request will force an atomic refresh.

The system may also attempt to maintain total and permanent consistency between replicas
offering to the application the illusion of only one object with one identity, e. g., by write-
through cache with a primary copy [KSD+90]. This presents difficulties in large-scale
applications since failures preventing the write-through may result in indefinite delays.
Strict consistency creates dependencies between stores and has many of the same problems
as migrating by reference (see 5.1.4 above).

Yet another possible answer to this problem could be creating remote copies as immutable
values. Even though this changes the semantics of the copied objects, they will always
reflect the value of the original objects at the time of copying because an immutable value
cannot change. However, if the original object is updated, the copy now represents an old
version of the object and its state is again inconsistent.

Finally, immutable values do not solve the loss of sharing when the object is copied back
to the client. For example, when read-only parts of a document in a groupware application
are collected in one store and distributed again by all contributors, a particular contributor
will end up with many (possibly inconsistent) copies of the same part. Immutable values
also introduce variations in the language's semantics dependent on the origin of a value

98 CHAPTER 5. EXTENDING OBJECT MIGRATION

which contradicts the design philosophy guiding persistence - according to which there are
no differences at the language level between local and external objects.

5.2.5 Summary

Migrating by copy creates duplicates and so permits each store to proceed independently
from other stores. However, it also introduces a number of problems.

1. Loss of object sharing because many replicas representing the same object are (po-
tentially) created in the taxget store, even if initially with the same value.

2. Not only the object but its transitive closure has to be copied to the target store,
decreasing migration performance and extending the loss of sharing to the objects in
the transitive closure.

3. Protocols to deal with multiple copies of the same object simply re-introduce many
of the same problems found with migrating by reference.

4. Persistence exacerbates all these problems not only because transitive closures in a
persistent system are typically large or very large (even the entire store) but also
because the longer duration allows more replicas to accumulate.

5.3 The Need for a Compromise

Migrating objects by reference seems ideal because remote references are invisible - except
for failures and performance -and maintain the existing (local) programming semantics,
techniques and tools. However, migration by reference creates dependencies between stores
that accumulate over time, especially in a persistent environment.

operations on these inter-dependencies may increase network traffic and eventually sat-
urate the network with small messages. They also amplify the effects of partial failures,

which in turn destroy referential integrity. Furthermore, the complexity of garbage collec-
tion is one of the unsolved costs [PS95]. In short, remote references create difficulties for

scaling the application beyond a few stores in a local-area network.

On the other hand, migrating objects by copy increases autonomy by duplicating their
values in the target store. However, objects may have large transitive closures that have
to be copied across the network, whereas only part of this closure will probably be used
remotely. In the usual case where objects have up-datable parts, copying destroys the
semantics of object sharing (common sub-structures are no longer common) and copies
may diverge, creating inconsistencies.

For each technique it is probably worthwhile to extend the resilience to failures and hence
to reduce the occasions on which an application programmer will need to be aware that the

5.3. THE NEED FOR A COMPROMISE 99

distributed semantics differ from local semantics. However, reducing the number of failures
and their longevity is possible only up to a certain point; after that point it becomes so
expensive that other approaches would be preferred (such as limited inconsistency).

It is also recognized that each mechanism can be made less susceptible to its drawbacks by
applying clever implementation techniques, such as cache coherence protocols in the case
of copies and distributed reference management in the case of remote references. However,
these techniques simply re-introduce the same or similar problems under another name. For
example, cache coherence protocols need remote references and require a reliable network.
These optimisations also make the implementation more complicated and thus dealing with
partial failures even more difficult.

5.3.1 Existing Compromises

A number of compromises have been proposed between the extreme models of migrating
objects by remote reference and deep copy. These compromises are typically based on
passing objects by copy as a default, then passing some well-defined objects by reference
in order to avoid copying too many objects across the network.

There are many examples of objects for which remote access may be better than copying
their value to the target store.

Large objects for which only a small part of their value will be accessed in the target
store, including databases. However, other large objects that are probably going to be
accessed entirely should be copied, such as pictures. (How much of the object will be
accessed depends on the application semantics and sometimes may vary dynamically.)

2. Rapidly changing objects with values that are updated frequently, such as a stock
maxket value.

3. Site-specific objects such as specialised objects or objects that largely depend on
their originating context. Examples include stores that take advantage of specialised
hardware, large stores in mainframes, private or sensitive data or code, and so on.

Specified by the Application Programmer

Having decided that some objects will not be copied but instead accessed remotely, the
next design issue is how the system decides which objects should not be copied. This
decision is usually made by the application programmer at compile-time.

The decision may be based on the type of the object, where some types are always
passed by reference and all the remaining types are passed by copy. Examples include
providing different object abstractions as in Argus [LS83, Lis84, Lis88], by inheritance

100 CHAPTER 5. EXTENDING OBJECT MIGRATION

as in Network Objects [BNOW93] and implementations of CORBA (OMG95] such
as Java/IDL [Sun96b].

0 On the other hand, the distinction can be fine-tuned to the remote call itself. Exam-
ples include the hints (to move or visit, while still maintaining reference semantics)
provided by Emerald [BHJ+87, JLHB88], the control over object location as found
in Distributed Smalltalk [Ben87, Ben90], changing the marshalling code itself, as in
Subcontract [HPM93], or annotating the methods in the schema with directives on
how to pass parameter objects [Lop95, Lop96]

Done Automatically by the System

Instead of asking the application programmer to decide which types or objects should or
should not be copied in a remote call, the system may attempt itself to provide this facility
behind the scenes.

The system may copy the first top-level, or a certain depth of the transitive closure,
and provide remote references to those objects which are not copied [KOMM93,
KKM94]. Only when an object which was not copied already is required, is it copied
to the remote store. The system may remember how much of the transitive clo-
sure is typically accessed to optimise further migrations (although this has not been
implemented to our knowledge).

Instead of using the transitive closure, the system may attempt to copy automatically
as needed but taking advantage of the characteristics of the underlying communica-
tion system by using a fixed size for the network message [TD94, THM+96].

Note that for these incremental or mixed-mode techniques, the implementation has to
manage both inter-store references and detection of attempts to use remotely referenced
objects.

5.3.2 Making Distribution Visible

All these techniques described above ameliorate the problem of copying too much of the
transitive closure by achieving a trade-off between copying and remote references. However,
all of them try to hide distribution when the application is executing and thus fail to cope
with partial failures and different semantics (loss of object sharing, concurrency control,
and so on).

We argue the techniques introduced above will not scale for large applications composed
of a number of stores communicating over a relatively slow or unreliable network. For this
kind of distributed application, the programmer must eventually be aware of distribution.

5.4. MIGRATION BY SUBSTITUTION 101

When a store or a collection of stores fall permanently, then the application program-
mer is the only person who will know of a strategy for recovery or of an appropriate
way of informing end-users.

There are times when an application programmer will need reasonable intuitions
about the cost and potential for failure of various operations.

As federations are built, each application builder will need to have assurances about
what data is copied where.

Finally, some distributed applications will be so large or so geographically dispersed
that automatic distributed identity, object management and coherency maintenance
will be infeasible because of the combined effects of failures and communication costs.

Treating distributed computation in a manner different from local computation has been
argued as necessary by others [WWWK94]. In the next section we present a new model of
migrating objects that makes visible to the application programmer which objects migrate
by copy and which do not migrate. Furthermore, we preclude the creation of remote
references automatically at migration time; instead, the application programmer should
use RPC (explicit remote calls) to access remote objects.

5.4 Migration by Substitution

In this section we propose a substitution model for migrating objects between autonomous
stores. The model tries to achieve a compromise by incorporating the benefits, and avoiding
the problems, of both migrating by reference and by copy.

5.4.1 Design

This new model of migation by substitution is based on a few assumptions.

Only application programmers have enough knowledge about the application and its
potential users to make the best decisions concerning object migration. Thus we
preclude automatic engineering optimisations done behind the scenes.

2. Even low-level primitives can be used by application programmers if they present a
simple interface and are understandable without extensive knowledge about distribu-
tion (this is the case, for example, with CORBA). It is also important not to change
the semantics between local and distributed objects without that change being ex-
plicit and clear to the programmers.

3. Pairwise arrangements between stores, as opposed to global protocols, are acceptable
because many inter-relationships can be composed from these and failures inhibit

102 CHAPTER 5. EXTENDING OBJECT MIGRATION

progress only when one of the stores in a pairwise agreement is unusable. ("Server"
stores will have agreements with many other "client" stores, but these servers will
form a minority within the entire store population.)

The primitives enable application programmers to work at the same level as remote calls,
thus providing a consistent interface at the language level itself. This is in contrast to
CORBA [OMG95] where a distinct "interface language" is used to identify which objects

. grate by reference or by copy. The pairwise consistency arrangements are of limited
duration based on identity sessions, analogous to the type sessions described in section
4.2.1.

The fundamental combined requirements for our new model of migrating by substitution
may be surnmarised as follows.

1. Prevent remote references across the network that decrease store autonomy, create
message traffic, amplify partial failures and have unpredictable consequences on per-
formance.

2. Avoid duplicating objects if possible, for example those that already exist in the
destination store.

3. Provide a well-defined semantics for substitution that has a simple interface and is
easy to understand and use by the application programmer.

This composite requirement is not met by the basic parameter passing schemes that were
surnmarised in sections 5.1 and 5.2, or to our knowledge by any of the variations that have
been proposed by others described in section 5.3.1.

The Substitution Model

We propose a novel semantics for migrating objects between autonomous stores in a dis-
tributed application called migration by substitution. An object migrating by substitution
does not really migrate itself, but instead only a surrogate identifying the object is sent to
the target store. On arrival at the target the surrogate has to be replaced by an equivalent
object with the same type-though not necessarily with the same value-as the original
object.

Because the equivalent objects at the source and the target have different (local) identities

and eventually different values (depending on the application semantics) the equivalence
in our implementation is achieved by a logical name agreed between the source and the
target stores. As usual we verify that the original and final objects have equivalent types.

We have described earlier in this chapter a variety of semantics for migrating objects. As
figure 5.6 indicates, our model of migrating by substitution lies somewhere between pure
deep copy and passing only a remote reference that points to the original object.

5.4. MIGRATION BY SUBSTITUTION 103

deep copy Substitution remote references
< shallow copy E: 1 -----------------------

Figure 5.6: Migration by substitution

In this section we present the model and give an example of how to use it. The imple-
mentation will be described next in section 5.4.2. Related work will then be presented in
section 5.4.3.

Partitioned Object Space

We need to introduce a few concepts in order to explain substitution. Local computation
proceeds in a object space 0. We then use a partitioning of the object space to establish
the semantics regarding migration. The partition is currently into three disjoint sets, which
are defined as follows.

1. The Immutable Set-Values of immutable objects are simply copied to the target
store as the semantics of computation is unperturbed by their replication. We denote
this set by the symbol I. This set includes all objects with scalar data types (integer,
real, boolean, string, null and pixel) and constant objects with composite data types
(see below).

2. The Substituted Set-Values of these objects are not copied; instead, they are sub-
stituted by a surrogate which is replaced by an equivalent object in the target store,
For example, they may be members of the standard library for a persistent system
[KBC+94]. This set, denoted by S, is explicitly defined by application programmers.

3. The Copied Set -The values of these objects are deep copied on transmission. They
are denoted by C and are identified by set difference, that is, objects that are not in
I or in S must be in C.

The partition above requires further clarification. An identifier in Napier88 is bound to
a typed object denoting a value. The programmer specifies if the object is variable (the
default) or constant. A constant object is similar to a variable object but it cannot be
updated. (The Napier88 implementation detects any attempt to assign a new value to a
constant object.)

In addition, an object can have either a scalar type or a composite type. Two scalar objects
with the same type and same value are always identical, thus all scalar objects are constant
and belong to the I set. In contrast, two composite objects with the same type and same
value may have different identities. Thus composite objects belong to the C set if variable
or the I set if constant.

104 CHAPTER 5. EXTENDING OBJECT MIGRATION

The procedures and other objects which form the Standard Library [KBC+94] seem good
candidates for an initial S partition. The implementation keeps a database maintaining
an enumeration of this set S of substitutable objects (see section 5.4.2).

There is an interface that allows application programmers to add and remove items from
this set. Although this set may be the same initially between all pairs of stores, we treat
it as a pairwise agreement so that S may be changed between a sub-set of stores without
global collaboration. Consistency between the two substitution tables in the source and
target stores is not enforced, but migration will fail (an error code is returned back to the
program) if a substitution has ocurred for a value that was not registered at the target.

Substitution is to be used as a primitive from which higher-level distributed protocols can
be built, e. g., a set of mutually consistent substitution tables in a set of stores. A default
store in Glasgow will be shipped with its substitution tables already set-up to include
all values from both the Standard Library and the Glasgow Libraries. Then, application
specific values can be added to the substitution tables by running a distributed set-up
program based on RPC.

Algorithm for Substitution

Application programmers in the source and target stores need to agree and specify the
substituted set by registering its objects by name in a pair of tables (see section 5.4.2). An
initial set may be composed of all standard objects, that is, those guaranteed to exist in
any store. For example, in Napier88 these standard objects are enumerated in the Napier88
Standard Library Reference Manual [KBC+94].

However, what is "standard" may depend on many factors. In Glasgow, for example,
a typical application programmer may understand as "standard" all those objects that
belong to the local Glasgow Libraries [WWP-1951. In addition, some programmers may
agree between themselves what is "standard" for an application. This is the reason why,
unlike other schemes presented in section 5.4.3, our model of substitution permits objects
to be added dynamically (but safely) to the source and the target stores.

After the tables have been set-up with substitutable objects in both the source and target,
the algorithm for passing a parameter by substitution works as follows.

1. If the parameter object has a scalar type, then it belongs to the immutable set and
its value is copied to the target store.

2. If the parameter objects belongs to the substitutable set, then only its name is sent
to the target store. (The name is guaranteed to be unique in both the source and
target stores.) When the name is received in the target, it is used as a key to the
local substitution table and the link to it replaced by a link to the equivalent local
object.

3. If the object being migrated does not belong to either the immutable or substitutable

5.4. MIGRATION BY SUBSTITUTION 105

sets, then the entire transitive closure of its value is copied to the target store.

The algorithm is applied recursively to each reference to other objects embedded in an
object being copied until a scalar type or a substitutable object is found.

5.4.2 Implementation

Migration by substitution was implemented by modifying a previous version of Napier/RPC
described in chapter 4. Two modifications were necessary in order to support migration
by substitution.

Firstly, the stubs that were automatically generated by the RPC system were replaced by
general purpose procedures developed for supporting distribution in the Napier88 Standard
Library (see section 3.4.1). This new version-which we usually identify as Napier/RPC
2, see section 1.3.1 -could now pass objects of any type as parameters or results. (The

previous version, called Napier/RPC 1 and described in chapter 4, restricted the types
permitted in remote calls.)

Without substitution, the challenges presented in section 5.2.4 invalidate migrating many
objects with a complicated type, including many procedure values and instances of abstract
data types. (This is especially true in the current implementation of Napier88 [CBC+90a];
however, some values of complex types in a strongly type-safe persistent language will
always have large transitive closures.) The same problems plague the distribution support
provided by the Napier88 Standard Library [Mun93, KBC+94] and restrict its usefulness.
overcoming this limitation was the main incentive for developing migration by substitution
as described in this section.

The second change to the implementation is described below. In order to help the descrip-
tion, we give an example of a very simple procedure called error that migrates by copy to
a target store. error makes use of another two procedures that migrate by substitution:
writeString and abort. (A complete example describing how to use substitution from

within the language will be presented in section 5.5.)

Step 1: Registration

As will be demonstrated in the next section 5.4.3 on related work, the fact that the set of
substitutable objects is defined at run-time is a significant advantage of our substitution
model when compared with similar approaches proposed by others. However, this flexibility
has a drawback. How to make sure that names registered at different times at different

stores refer to values of the same type ?

The substitutable objects writeString and abort are first registered by name in a sub-
stitution table (described below) at both the source and target stores. Their values and
types are extracted by the mechanism and stored in the table alongside their names.

106

I a. Registration
-------------- -

*/System/abort"
/lo/wrha'Inei "Aw has

writeStrins abort

------ ------

CHAPTER 5. EXTENDING OBJECT MIGRATION

lb. Registration

G6

Figure 5.7: Step 1: registration

The substitution tables are just repositories for the names, values and types of substitutable
objects. The only requirement for these is that they provide fast access. The extensive
collection of Napier88 libraries include several implementations of efficient data structures.
In particular, we have used the maps pack-age [ABC+93, WWP'951 for implementing the
tables at the target where access is by name.

However, there is a difficulty at the source that prevents an efficient implementation of
substitution. Lookup in the substitution table is by value (not by name) and values can
have any type (not always string). Although comparing two values for equality is simple and
very efficient in Napier88 (essentially by pointer comparison), there is no simple method for
ordering two values with arbitrary types. This means that a map from value to surrogate
cannot be used. The hash table is another data structure providing fast access, but it is
not trivial to generate a good hash algorithm for a value of any type. (We will come back
to this problem in section 6.5.)

Step 2: Confirmation

The types of all substitutable objects registered in the target are automatically checked all
at once against the source store as part of the first migration and they remain valid for all
future migrations. (Alternatively, the application programmer at the source may request
an explicit confirmation to check whether the names are valid prior to any migration.)

A vaxiant of type sessions as described in section 4.2.1 was used in order to make our model
of substitution strongly type-safe. Instead of checking signatures of remote procedures,
type sessions now check the types of the substitutable values between the source and
target stores. Type sessions are especially appropriate since types are agreed just once and
the cost of type-checking is amortised in subsequent remote calls (migrations in this case).

It is up to application programmers in both stores to register the required objects for

substitution. Because the substitution tables are persistent, separate (initialisation) pro-

5.4. MIGRATION BY SUBSTITUTION

Figure 5.8: Step 2: confirmation

107

grams can set-up these tables before other (application) programs execute, thus removing
the registration load from normal operation. (Indeed, standard utilities supply the entries
for the Napier88 Standard Library [KBC+941 and Glasgow Libraries [WWP+951 in our
experiments.)

Step 3: Cutting

When error is about to migrate, the transitive closure is traversed and the references to
writeString and abort are cut and then replaced by references to their names. A flag is
set-up in the implementation of the string to inform the target this is not a normal string
but a surrogate for a substitutable object. (Special privileges are needed to implement this
substitution, as the original type is temporarily replaced by a value of type string.) The

migration algorithm does not look beyond the cut point since a string does not refer to
any other objects.

n/SystonVabort"

. /10 OL/% ritestring*

writcStting abort

"ISystmVabort"
* 11WItestrins V,,: "Cvwri

---------------- \11
3. Cutting

,.,

("/Systwn/abon"--ý,

("/10/writeStiring"

c

Figure 5.9: Step 3: cutting

108 CHAPTER 5. EXTENDING OBJECT MIGRATION

Step 4: Transmission

The value of error is then marshalled into a byte array and this byte array simply trans-
mitted to the target. On arrival at the target, the value is unmarshalled from the byte
array into an equivalent data structure.

"ISyMnVabore "/SysuvAbott"

vlo/writestring"J L-/iQ*fl%, sti-s-

4. Transmission abort'

"/Systcro/abort" "/SyM ab
V, 710twolelstring" N: jzýstftg"

I

Figure 5.10: Step 4: transmission

Although cutting and transmission are presented as separate operations, in the actual
implementation they are optimised by performing cutting while marshalling the object.
The same goes for unmarshalling and re-binding. As a consequence, transmission now
becomes just sending the byte array from one store to the other store. Since the byte array
is just a sequence of bytes, the transmission can be made by any medium. In particular,
we use "Napier88 sockets" (see section 3.4.1) for efficient migration, but there is no reason
why it could not be written to a file and then be sent by e-mail, ftp, or floppy disk. (More

on this in the next chapter.)

Step 5: Re-binding

The value is analysed recursively to check for the existence of surrogates. If one is found,

a lookup by name is made in the substitution table and the reference to the surrogate
replaced by a reference to the local, equivalent value of abort. Again, privileges are
needed to circumvent the type-checking.

5.4.3 Related Work

In the previous section we presented a substitution model for migrating objects between

stores. However, substitution in itself is not a new idea; other researchers (see below) have

exploited this opportunity to avoid migrating standard objects that should exist -or are
supposed to exist -in all stores that compose the distributed application.

5.4. MIGRATION BY SUBSTITUTION

writeStrins abort I bore wrhastrMs.
I

error mm

5. Rebinding

Figure 5.11: Step 5: re-binding

Ubiquitous Resources

109

Knabe proposes ubiquitous resources [Kna94, Kna95] that are identified at compile-time
by the programmer using a keyword. In Tycoon/RPC ubiquitous values [MMS96] can also
be defined at compile-time. These provide a restricted form of substitution where values
originating from the same compilation can be substituted.

Other programming languages are even more restrictive. Java [AG96] supports applets
(classes compiled to byte code) that can migrate between programs on the Internet. Applets
dynamically bind to local versions of the Java class library, but attempts to bind to other
classes would fail.

Migratory applications [Car95b, BC95a, BC95b] in Obliq [Car95a] are more interesting
because they are represented by closures and thus may contain live data. (Java applets
cannot, creating difficulties for the use of Java for distributed computing based on mo-
bile agents [MdSA96a, ADJ+96].) Obliq agents were designed for graphical environments
and for interacting with end-users; Obliq (like Java) uses the local (standard) library for
interfacing with the user.

Configurable RPC

Modern RPC systems introduce greater flexibility for specialising migration. For example,
Sun's Spring [HPM931 lets programmers customise marshalling and unmarshalling to suit
their own requirements. It is possible to implement something similar to our substitution
mechanism by replacing these operations with custom-built marshalling code, but this task
may require extensive knowledge from the programmer about distribution and how RPC

systems work.

Network Objects [BNOW93] also allows programmers to specify custom procedures for

pickling particular data types (which could, in principle, be used to implement the substi-

110 CHAPTER 5. EXTENDING OBJECT MIGRATION

tution mechanism we describe) but details of how this can be achieved are not presented
in the paper.

A technique designed explicitly for manipulating bindings in a type-safe persistent environ-
ment is Octopus [FD93, FD94]. Octopus allows type-unsafe operations only in meta-space,
but type-safety must be obtained before objects are dropped into the value space again.
Although it was originally designed with distribution in mind, it does not explicitly support
distribution abstractions. Both the meta-space concept and lack of distribution support
may make it unsuitable for direct use by application programmers. We are unsure of its
present implementation status.

Comparison with Substitution

The novelty of our model of substitution lies in the combination of the following charac-
teristics.

Simplicity- Because substitutable objects are defined by name, the model is more
easily understood and used by typical application programmers. Names for substi-
tutable objects can be matched against names in the application, such as paths from
the persistent root for library procedures. Error messages are meaningful in case of
migration failure.

Flexibility- Registration is made at run-time so it can be delayed until just before
migrating an object. This permits the programmer to extend or reduce the set of
substitutable objects dynamically if required by the application. For example, an ap-
plication for remote installation of libraries may define as "standard" the components
which have just been installed.

Type-safety- Simplicity and flexibility are not achieved by relaxing the safety nets
provided by persistent systems because we use type sessions to confirm that equivalent
objects in the source and target stores have the same type.

Similar substitution models have been proposed before, but they all fail to support the
combined characteristics of simplicity, flexibility and type-safety supported by our model
of substitution.

5.5 Higher-order Migration

Migrating procedures between stores is especially challenging in the current implementation
of Napier88 because most procedure values include the entire store in their transitive
closure. In this section we describe why plain migration by copy does not solve the problem
with large transitive closures and how substitution can be used to provide at least a partial
solution.

5.5. HIGHER-ORDER MIGRATION

5.5.1 Example of Migrating a Procedure

ill

Example 5.1 presents the source code of a procedure called error that an imaginary ap-
plication needs to migrate to another store. The procedure simply prints a message of
type string on the screen and aborts the current execution. As with many procedures in
Napier88, error binds dynamically to other procedures to make use of existing code. In
this example, both procedures writeString and abort belong to the Napier88 Standard
Library [KBC+94].

use theStoreo with Library: env in
use Library with ID, System: env in
use 10 with writeString: proc(string) in
use System with abort: proco in

begin

let error := proc(msg: string
begin
writeString("ERROR: ++ msg ++ 11]In"
aborto
end

end

Example 5.1: Source code of error

There are two major issues in migrating error to another store: the data format for
transmission and the migration semantics. These issues will be discussed below.

Data Format for M-ansmission

In Napier/RPC, procedure values are transmitted in their hyper-program format [Kir93].
Hyper-programming is a novel format for storing programs made possible by persistence
because only in a persistent system the source code can be compiled and put into the
store together with the data and other procedures that are bound to the program. An
hyper-progTarn represents a Napier88 program in the store and is composed of source code
and bindings from that source code to the objects needed by the program.

It is important to note that there is nothing in hyper-programs specific to Napier88. Hyper-
programs are just an intermediate format of source code representation between text and
byte code. The same techniques of substitution are applicable to byte code in Napier88
and other languages, and in particular there is no need to change the compiler.

Figure 5.12 shows the hyper-program of error presented in example 5.1. (The picture
was taken using the hyper-programming environment based on the Napier88 proprietary
window manager, see section 3.2.4.) Rom this alternative representation of the procedure

112 CHAPTER 5. EXTENDING OBJECT MIGRATION

source code, we can perceive how error is bound to the two other procedures writeString
and abort. (The L, abbreviation for location, means there is a dynamic binding from the
boxed procedure names to their values.)

, -14)1

J-m HyperProgram
let error :- proc(msg: string +

begin
IL: writeS *Error: * ++ -msg ++ "'n"

HM -iH
en4

(-Copy--,) (-P-ast-e-ý

Rename (Evaluate) (Source SetD

(Declare

FigUre 5.12: Hyper-program of error

We chose hyper-programming because it facilitates program manipulation (see below).
However, passing procedure values between stores in hyper-program. format has two major
drawbacks.

Performance- Procedure values have a reference to their hyper-programs in Napier88
so access to them in the source store is efficient. On the other hand, the inverse
process (from hyper-program to the procedure value in the target store) requires a
compilation which is potentially much mor

'e
CPU intensive than re-building the value

directly. (Preliminary performance measurements are presented in section 7.2.2.)

Lack of protection - Hyper-programs contain textual representations of the original
code and as such represent a potential security hole during transmission. (But not
locally, since they are compiled before being returned to the client program.)

There are other possible formats for transmitting procedure values between stores apart
from hyper-program, namely as byte code like Java applets [AG961. For the current version
of Napier/RPC we opted for hyper-prograrn instead of byte code for the following reasons.

Simplicity- Hyper-programs are easier to manipulate than byte code because they
are represented by first-class values in Napier88.

Safety- It is dangerous to manipulate byte code directly because it works below the
safety net provided by the Napier88 type system.

Portability-Hyper-programs are more easily portable between machine architec-
tures and implementations of Napier88, e. g., the current abstract machine [CBC'90al

and the new PamCase [CCM95].

5.5. HIGHER-ORDER MIGRATION

Migrate by Copy

113

A first attempt to migrate error by copy to the target store is presented in example 5.2.
(The procedure migrate accepts an any, the infinite union of all types, to permit a value
with an arbitrary type to be transmitted.)

I try to copy error, writeString and abort to the target
migrate(target, any(error))

Example 5.2: Migrating error by copy

This migration attempt by copy will recursively copy error, then writeString, then
everything needed by writeString, then abort, then everything needed by abort. This
solution is not recommended for three reasons.

Difficult-Both writeString and abort are complicated procedures, partially im-
plemented within the abstract machine. Even though it is conceptually possible,
there is no easy way to copy these procedures since parts of their values are "hard-
wired" into the system itself.

Not needed-There are already local copies of writeString and abort in the target
store since they both belong to the Napier88 Standard Library [KBC+941.

Not efficient- Migration by copy duplicates these standard procedures in the target
store every time a procedure (or any other value) referring to them migrates. As
a result, CPU time, network bandwidth and store space will be wasted (especially
since this duplication is not needed).

Migrate by Copy with Substitution

The recommended solution is to migrate error by copy but both writeString and abort
by substitution.

Example 5.3 shows how the application programmer can register at run-time the names
for writeString and abort at the source store. The registration makes these procedures
ready to migrate by substitution to the store called target. (A similar registration process
has to occur at that store.)

The migration algorithm starts by copying the value of error. Since error is a procedure,
the reference to its value is substituted by its hyper-program representation. (A different
flag from normal substitution is set-up to signal the original value was substituted by an
hyper-program, not a surrogate.)

The hyper-program is then copied recursively to the target. When the algorithm encounters
a link to the value of writeString, it checks to see if the procedure has been declared as

114 CHAPTER 5. EXTENDING OBJECT MIGRATION

I declare these procedures as substitutable
1 the values will be accessed by following the path
substitute(target, "/IO/writeString"
substitute(target, "/System/abort")

I send the value to the target store
migrate(target, any(error))

Example 5.3: Migrating error using substitution

substitutable. If it is, then the value is replaced by the surrogate "/IO/writeString" and
the marshalling process continues.

During the respective unmarshalling process at the target, the two surrogates are replaced
by the local equivalent values of writeString and abort and the hyper-program of error
is built. (The migration fails if these standard procedures have not been declared substi-
tutable in the target, see section 5.4.2.) Finally, the hyper-program is compiled to produce
the procedure value of error.

5.5.2 Applicability of Substitution

In order to understand the usefulness and practical worth of substitution, we have analysed
the Munros application. Munros is the name of a persistent application written in Napier88
to manage information about Scottish mountains higher than 3,000 feet -called Munros -
including when they have been climbed and by whom.

Dag Sjoberg measured the Munros application with his set of tools for analysing persistent
applications based on a thesaurus [SJ093, SCWA941. There are in total 381 values declared
by dynamically binding a variable name to a location in a environment (see section 3.2.1).
Of these, only 26-or 6.8%-are values created by the Munros application itself [Sjo961.
The remaining 355 values - or 93.2% - are either part of the Napier88 Standard Library
or Glasgow Libraries.

Although these figures might be considered to support evidence that the Munros applica-
tion makes extensive use of libraries, the numbers by themselves do not necessarily prove
this [Phi961.

Munros could have been written in a single module to avoid dynamic binding or for
any other reason.
This is not the case. The Munros application was developed following the method-
ology proposed in [Sj093]- As a result, the entire application is composed of 20 files
and the average number of lines per file is 80.

2. Munros could have been written in a way to reduce dynamic binding between compo-

5.6. SUMMARY 115

nents of the application. For example, grouping related procedures in structures or
abstract data types is a well-known higher-order programming technique to replace
a number of individual values by a single top-level one.
This is also not the case. The 26 declarations actually refer to 11 values: 5 procedures,
2 variants, 2 structures, 1 vector, and 1 picture. The variants and vector contain sets
of data. The picture is a map of Scotland. One structure contains 12 procedures, but
the Munros application only makes use of 1 of these. The other is an instance of the
WIN window manager, but the Munros application only makes use of 4 procedures.
On the other hand, many of the values in the Standard Library also represent sets
of procedures (e. g, an instance of WIN, the window manager).

The Munros application is an example of an end-user persistent application. The mea-
surements presented above suggest that, in general, end-user persistent applications make
extensive use of libraries. This in turn means that substitution has potentially wide appli-
cability, provided libraries and applications are both designed to take advantage of software
re-use.

5.6 Summary

This chapter has described two extreme models of parameter passing-by reference and
by copy-including examples of distributed systems based on them, their design issues,
advantages and challenges. We concluded that neither of these models is ideal for build-
ing large, distributed, persistent applications: migrating an object by reference creates
unpredictable network traffic and depends on the availability of the network and other
stores, whereas migrating by copy duplicates values generating semantic and performance
problems. These problems are amplified in a persistent environment where links between
objects axe long-lived and transitive closures typically large.

We then argued for a compromise between these two models in an attempt to combine
their strengths and reduce their problems. Existing compromises are presented, but all
of them are either based on application programmers making decisions at compile-time
or just engineering optimisations at run-time. Furthermore, they also reduce copying by

creating remote references, an approach suitable for small-scale reliable environments, but

not desirable in larger applications.

We then proposed a new model of migrating objects which does not create remote refer-
ences. In our model, called migration by substitution, programmers can decide at run-time
which objects should be copied and which objects should not. Objects that are not copied
are substituted by a surrogate which is sent to the target store. At the target the surrogate
is replaced by a local equivalent version of the object. This technology does not depend

on changes to the compiler and thus applies to other higher-order persistent languages.

116 CHAPTER 5. EXTENDING OBJECT MIGRATION

Chapter 6

Persistent Spaces

In this chapter we propose a new IPC model called persistent spaces. A new model is
justified because sharing objects between autonomous persistent stores is not conveniently
supported for a certain class of applications by any of the existing IPC models (see section
6-1). Persistent spaces extend migration by copy and they do not require migration of
objects by reference or substitution; they are proposed in addition to-and thus can be
used in conjunction with -these existing IPC models.

The chapter includes the motivation for persistent spaces, the design and semantics of the
operations supported by them, the application programmer interface, an implementation
in a persistent language and a comparison with related work. (An example application
and performance measurements of persistent spaces are presented in the next chapter, and
future work in chapter 8.)

6.1 Motivation

Persistent spaces are useful for sharing the values of complex persistent objects between

a number of autonomous stores. The main difficulties with existing models arise because
of- partial failures on computers, programs and the network; and the transitive closures of
objects that can reach significant parts of the store.

Large transitive closures are a consequence of the complexity of the objects we choose to
represent, and orthogonal persistence. For example, procedures have typically very large
transitive closures because they are bound to other procedures in the store, and these to
other procedures, and so on. As a consequence, large graphs can be found in Napier88, as
in any other persistent language with an equivalent, higher-order type system.

117

118

6.1.1 Target Applications

CHAPTER 6. PERSISTENT SPACES

This chapter concentrates on sharing persistent objects for a sub-set of all distributed
persistent applications. We suspect this sub-set, based on the assumptions below, includes
many practical applications for which the existing IPC models are not appropriate.

1. The number of object servers is much smaller than the number of clients of these
objects. Servers usually have far more computing resources (disk space, process-
ing power, access to broadband networks) and human resources (for building and
maintaining code) than clients.

2. The number of objects that migrate from one server to a particular client is relatively
small compared with the total number of objects in the distributed application-
although not necessarily small in absolute terms. This is because it is more cost
effective to access remotely (at the server) very large objects or objects that are
seldom used by clients.

3. Objects made available by servers to be consumed by clients have often reached some
kind of "stable" state (for example, they are the result of other computations). In
addition, clients may not always require the most up-to-date version of all objects.
However, they do need a facility to check if objects have changed and to access the
latest version if required.

4. Network use may be slow, unreliable and expensive compared with computation and
data movement within computers. This is especially true when considering the net-
work available for the client (e. g., a notebook connected via wireless modem). There
is no indication these differentials will be substantially reduced in the foreseeable
future.

Examples of this sub-set of distributed persistent application include: a diary shared by
a research group; document databases (e. g., for technical or sales support); development
of large applications in a team; and distribution of software. Currently these applications
represent only a small niche in the software market, but they will grow in number and
importance with the rise of the Internet and so-called intranets (private networks built
with Internet technology).

On the other hand, we recognize these assumptions will not hold for many applications -
for example, those targeted by distributed object-oriented databases [Che93]. For these
applications, some other distribution model that may be more expensive or more difficult
to use than our proposed model is required.

For example, the basic RPC mechanism can always be used to fetch the most up-to-date
version of an important and rapidly changing, relatively simple, object-the canonical
example being a stock market value. Remote references can be used when remote access
is required only sporadically or the object cannot be copied for semantic or implementa-
tion reasons. More likely, a combination of IPC models will be used in most distributed

persistent applications.

6.1. MOTIVATION

6.1.2 The Case for a New IPC Model

119

This section motivates the need for a new IPC model. The argument will be based on:

the various costs of achieving the desired behaviour in terms of programmer time
(learning and using the model to build the application) and system costs (CPU
usage, network load, and store space) to access the values of large objects from
multiple stores; and

the adequacy of each IPC model in realistic conditions, with particular reference to
the response to partial failures by the application program.

Remote References

A remote reference to the only copy of an object is the obvious solution to sharing the value
of an object between a number of stores. However, in section 5.1.4 we have described how
remote references may degrade performance and introduce uncertainty in the application
due to partial failures.

Performance is limited by communication costs every time the local application reads or
writes the value of a remote object. The methods described in section 5.3.1 can optimise
performance, but only up to a certain scale.

The main difficulty with remote references is that they introduce uncertainty. since remote
references have an interface similar to local references, network load and partial failures
are referred to the application program out of context. Application programmers cannot
make use of their knowledge to try alternative procedures, cache values, or at least present
the end-user with a reason why computation is not proceeding.

Local Copies

Another solution to the problem of sharing an object is by duplicating the value of the
remote object in the local store. Access to the object only requires a single remote connec-
tion (to copy the value) and autonomy between stores is guaranteed after that operation.
However, local copies also have a number of problems.

Firstly, assuming consistency is required, the local and remote stores Cannot operate on
the object for long because the copies will eventually become inconsistent. (On the other
hand, if consistency is not required-or at least not required all the time-then copies
may be the solution, for example, if the object is immutable.)

Secondly, if only a small part of the object value is updated, then only that part needs to be
transmitted. However, most IPC mechanisms will just (re-)transmit the entire transitive

120 CHAPTER 6. PERSISTENT SPACES

closure of the object. This can be acceptable when objects are relatively small, but becomes
very inefficient for large transitive closures as happens in a persistent environment.

There is no straightforward solution to avoid re-transmitting the entire transitive closure
of the object every time part of its value is updated. For example, using an "open RPC"
like Subcontract [HPM93] is not an approach that most application programmers will be
eager to use since it requires understanding of low-level RPC issues. Instead, programmers
will probably try to reduce the functionality of the application to limit the complexity (and
so the size) of the objects being shared.

A third problem is that many copies of an object will accumulate in the same store, and
in a persistent environment these copies survive program executions. Apart from being a
poor use of store space, there is a semantic problem because updating one copy will not
update the others. A knowledgeable programmer can always write code so that a new copy
will replace an existing copy, but this effort distracts programmers from their applications.

Migration by substitution

Substitution, as proposed in the previous chapter, can also be used to share an object
between a number of stores. Substitution has two advantages compared with the models
described above: it does not require remote references between stores and it does not create
multiple copies of the same object in the local store (of course, only for those objects that
are substitutable).

One limitation of substitution is that it only works if the object being shared has a name
associated with its value. (This is a design decision; objects without a name axe also
potentially substitutable but they are not easily recognized by the average persistent pro-
grammer.) Many of the objects being shared can be protected by mechanisms in the
language, e. g., procedures that hide a shared data structure. Substitution would require
programmers to expose these objects and destroy their protection.

The other limitation is that the value of the object needs to be highly stable because

substitution only supports sharing if both objects (in the source and target stores) have
the same value. If one object changes, then programmers have to transmit its new value
to the other store using some other mechanism (with all the problems found with local

copies, see above) and update the substitution tables to refer to this new value. Although

substitution provides a partial solution to sharing, it still requires another mechanism and
some programming effort to coordinate them.

Replicated Objects

Replication is another method to share a remote object by duplicating the value of the

object locally (that is, a replica in each store where the object is used) and maintaining the

value of the replica consistent with the original. This guarantee of consistency avoids some

6.2. MODEL OF PERSISTENT SPACES 121

of the problems found with basic duplication. It can be used together with substitution to
provide a complete solution to the problem of sharing objects between stores. There are,
however, two main problems with replication.

Firstly, replication protocols that maintain strict consistency between replicas are based
on remote references and suffer from the same fundamental problems-or even worse,
depending on the number of replicas, the update pattern, and the replication protocol
itself. Furthermore, strict consistency protocols can also be very expensive in CPU time
and network load.

The second problem is that strict consistency is not useful for applications in which some
stores are simply not interested in accessing the latest value of the object most of the time.
Many applications either have this requirement already or can be designed in a manner to
cope with certain levels of inconsistency for semantic, performance, management, or any
other reason (see section 6.1). They are not ready to pay the price for something they do
not need.

Conclusion

This section motivated the need for a new IPC model that supports sharing of large per-
sistent objects between autonomous stores. We are particularly interested in a class of
applications for which some large, complex, persistent objects must be shared but consis-
tency is not required everytime and everywhere. These applications axe not prepared to
pay the price for strict consistency if application programmers can decide when consistency
should be achieved.

There are a number of other issues. Control over remote operations is important, in par-
ticular to write programs that are aware and can respond to network and server failures.
Just duplicating objects cannot be the answer because copies would quickly become in-
consistent. On the other hand, if programmers are to control sharing of persistent objects
effectively, then the new IPC model still has to be simple to understand and use.

6.2 Model of Persistent Spaces

Persistent spaces are based on a very simple, one-to-many, weakly-consistent replication
protocol. We call them persistent for two reasons: they were designed to build distributed

persistent applications and an implementation for them is more natural in a persistent
language.

Persistent spaces can be distinguished from existing IPC models in one crucial aspect:
while most of the functionality required for building the class of applications described
in section 6.1.1 is maintained by the persistent space, all remote operations are explicitly
invoked and controlled by the application programmer.

122 CHAPTER 6. PERSISTENT SPACES

This separation permits the programmer to build the application in such a way that more
decisions about network costs andpartial failures can be taken depending on the application
semantics. This is in contrast with actions being taken automatically by the distributed
system based on an "average" application. On the other hand, persistent spaces still present
an interface simple enough that most application programmers can use the mechanism.

6.2.1 Overview

A persistent space is a repository of objects that is published by a server and subscribed
to by any number of clients.

1. Objects are put into a persistent space by an application program executing at the
server.

2. Any client that has subscribed to the persistent space can, at any time, fetch all
objects put into the space-the only remote operation. (In contrast with strict
replication protocols, the model does not give any automatic guarantee of consis-
tency.)

3. Later on, the client can build the objects locally, thus independently of network and
server availability.

An example with one server and three clients is depicted in figure 6.1. The server publishes
the persistent space, which is subscribed by all clients. Subscribers 2 and 3 have fetched
the contents of the space, but client 3 is the only one that has re-built the objects locally.

A space is built incrementally, transmitted incrementally, and guaranteed to rebuild its
objects incrementally at any subscribing client. The price to pay is that all subscribers
receive all objects put into a space when they fetch that space (although after the first
fetch they only receive object updates or new objects, see below).

On the other hand, marshalling at the server is done only oncefor each object and the
cost will be amortized over all clients. F'urthermore, transmission and unmarshalling at
clients is only required for new objects or objects that have changed their value since the
previous fetch. (At the implementation level, when a client issues a fetch it tells the server
when it last received a copy of the space; the server then sends only what has changed since
then.) This decision makes persistent spaces potentially more scalable than traditional IPC
models, although actual performance will depend on their usage in real-world applications.

We expect that programmers will use this one-to-many semantics to their advantage, group-
ing related objects in a number of spaces published by each server; clients will then sub-
scribe and fetch only the spaces in which they are interested. If a different semantics is
required, then another mechanism should be used. For example, the Distributed Library
Explorer described in section 7.1.2 uses a persistent space to propagate a relatively small

6 2. MODEL OF PERSISTENT SPACES

put

Publisher

---------------- fetch

fetch

Subscriber 3

Figure 6.1: Overview of persistent spaces

123

data structure (500 KB) to all clients, but also makes use of RPC to access a much larger
database (10 MB) that would be duplicated on all clients (see section 6.3.2).

The objects re-built locally in the client are read-only copies, otherwise a full replication
protocol would be needed to maintain all copies of the space consistent. (The current
implementation of persistent spaces does not enforce that local copies are immutable. We
recognize this situation can lead to problems if the application programmer cannot logically
separate objects belonging to a persistent space from other normal objects in the store.
However, there seems to be no major difficulty with incorporating this functionality in the
future, which will also not change the basic semantics of the model.)

In addition, objects put into the persistent space by the server will not be propagated to
the clients automatically by the mechanism. The fetch operation should be called explicitly
by each client to refresh its own copy of the space. Again, another IPC mechanism should
be used if clients are required to update remote objects or access always the up-to-date
version of the object. (This could be confusing, but the experience with the Library
Explorer suggests that application programmers clearly separate each IPC mechanism and
use them according to their semantics, see section 7.1.)

A server can put (top-level) objects into a space at any time. There is only one explicit
put operation for each top-level object put into a space, but the entire graph of objects
reachable from that top-level object will be put into the space as well. Fetch does not
imply any put; it will simply bring copies of the objects currently in a space to the client
that made the request.

Subscriber 1

124 CHAPTER 6 PERSISTENT SPACES

It is likely that for many applications a small number of spaces with a few top-level ob-
jects - but potentially many nested objects - will be published by each server. (The right
number of spaces and objects obviously depends on the application being built, see section
6.2.5).

Finally, persistent spaces were not designed to prevent an application programmer from
putting objects with extremely large transitive closures into a space, like the persistent root.
We hope application programmers will use their own experience and other techniques, such
as substitution, to avoid putting large parts of the store into a persistent space. (Although
we do propose an operation to test the size of the transitive closure before deciding to put
an object into the space, see end of section 6.4.3.) On the other hand, persistent spaces are
adequate for relatively large transitive closures because they maintain sharing semantics
and transmit objects incrementally.

6.2.2 Failure Handling

A failure code is returned immediately to the client application program if the mechanism
cannot perform fetch in some "reasonable time" defined by the application programmer.
No other operation on a persistent space involves the network or another store, with two
main advantages.

Failures are returned to the application program when fetch is called, not arbitrarily
when access to the object is eventually required by the application.

The client program can respond to failures based on knowledge of the application,
not in some "average" way that usually means no more than retrying the operation
for a few times and aborting if it continues to fail. For example, the application can
maintain a list of alternative or mirror sites to point if the main site does not answer.

In summary, a single and explicit remote operation means that partial failures and network
load correlate with the constructs in the application. This means programmers know when
the application will pay the price for a remote access and where it can fail so that programs
are written to catch them and react accordingly.

6.2.3 Server API

The interface to persistent spaces at the server is based on the following operations (see
figure 6.2). These operations are all local, that is, they are performed by the server alone
without the involvement of any other store. (Operations publish and put will be better
described in section 6.4.)

Publish the space and give it a name. This operation creates the data structures
needed by the persistent space.

6.2. MODEL OF PERSISTENT SPACES 125

Put a pair <name, object> into the persistent space, even when the space is in use.
This operation maxshals the entire transitive closure of the object and stores the
result (a byte array) inside the space. The object name will be used by clients to
have access to this object in their stores (assuming that objects, like spaces, will
have "well-known" names). Put occurs incrementally by adding only new objects,
or objects that have been updated since the last put, into the persistent space-
including a objects in the transitive closure of the top-level object being put into
the space. If an object with the same name was previously put into the space, then
the new value replaces the old value. Put also maintains sub-structures, preserving
sharing semantics between put operations. For example, if objects A and B refer
to C, then if A and B are both put into a space, C is only put (marshalled) once.
(Sharing semantics are not preserved across persistent spaces, see section 6.3.3.)

" Drop an object from a persistent space by name. The object becomes unreachable
from the persistent space and will not be available next time the space is fetched.
(Since only top-level objects have names, drop does not apply to nested objects; these
will remain in the space if they are reachable from other top-level objects.)

" Unpublish the space so that a subsequent fetch from a client will fail. The contents
of the space -marshalled objects and auxiliary data structures-can be garbage
collected.

Server

publish

Put

progrwn

Client I

persisterd
space

r

subscTibe

data

requýst
mushalling

fetch

reques

S! 11- bytes

build

un-marshalling -='b get

geSere me

Ito

eo ject

un-marshallm'g

I II

Client 2

subscribe

fetch

build

get

referencr, -
to die object

Figure 6.2: Overview of the operations in a persistent space

6.2.4 Client API

All operations at the client, except fetch, are also local. (Operations subscribe, fetch, build

and get will be better described in section 6.4.)

Subscribe to the persistent space by giving its name and the address of the server
that published this space. (This information is either "well-knowe' already or can

126 CHAPTER 6. PERSISTENT SPACES

be obtained on demand from a binding server using Napier/RPC, see section 4.2.3.)
The operation does not check if the space has in fact been published to avoid a
second remote operation; an impatient client can always fetch the space right after
subscription to check if the space has been published.

9 Fetch the contents of the space. After the first fetch the operation is performed
incrementally since only the differences (deltas) to the previous fetch from that client
axe actually transferred. If it has not succeeded after a period of time defined by
the client program, fetch returns an error code and a textual message (e. g., "server
alderney not responding").

0 Build constructs local (but read-only, see section 6.2.1) copies of all objects put into
the space by the publisher. It does not return any reference to the objects built to
separate unmarshalling from actual use (see below). Based on the incremental put
and fetch, this operation also works incrementally because it unmarshals only the
differences transferred from the server. Common sub-structures are maintained; in
the example for the put operation above, A and B will still share C in all clients. If
an object was built before, then the new value replaces the old value.

Exists accepts an object name and returns true if an object with that name has
been put at the server, fetched and rebuilt by the client. (The server address is not
needed because the object is a local copyof the original (remote) object put into the
space.) Exists can be used before get (see next operation) when the client is not sure
if an object belongs to a space.

Get accepts an object name and returns a local reference to a read-only copy of the
original (remote) object put into the space. This is a very fast operation because the
value has been unmarshalled already during build and there is an index - maintained
by the persistent space - from object names to object values. (Only top-level objects
have a name.)

Un-subscribe discards the persistent space at the client and all its contents. (The

server uses un-publish to discard its own, master copy of the persistent space.) Subse-

quent operations on this space become invalid. Objects in the space referred by other
objects in the client program are not removed because of referential integrity, but

objects not reachable from the persistent root are candidates for garbage collection.

In addition to this basic set of operations, others can be later added to the model, for
example, to get the names of all spaces published by a server, to check if a space with some
name is currently published, or to check if an object has been put or updated since the last
fetch. However, these and other extensions will be added only if application programmers
show a real need for them and they maintain our original requirement for simplicity.

6.2.5 Summary

Persistent spaces are designed to work well with:

6.3. INTERACTIONS WITH OTHER MECHANISMS 127

many inter-dependent objects per space because shared structures are preserved
within spaces;

large number of clients because an important part of the cost is amortized by the
number of clients; and

geographically distributed applications linked by poor network connections because
only the differences are transmitted at well-defined times.

On the other hand, the limitations of persistent spaces should also be taken into account:

* all clients receive (incrementally) a copy of the entire space;

only a relatively few spaces per server can be used because shared structures are not
preserved across spaces; and

9 objects rebuilt in the client cannot be updated.

A formal analysis of the CPU, bandwidth and space costs of persistent spaces is not
included in this thesis. Instead, we have built a (real) distributed persistent application
using persistent spaces and measured both the mechanism and the application (see sections
7.1.2 and 7.2-3).

6.3 Interactions with Other Mechanisms

Even though persistent spaces are a complete IPC model, they are not to be seen as the
only solution to the problem of sharing objects in a distributed persistent environment.
Instead, persistent spaces are just another library available to programmers and should
be used in combination with other mechanisms -local and distributed -depending on
the desired behaviour for the application, system characteristics, failure rate, and various
costs.

6.3.1 Local Mechanisms

Persistent spaces are built on top of the language and as a result both the compiler and
run-time system for the language remain unchanged. This means that existing features in
the language, such as garbage collection, will not interfere with persistent spaces more than
with any other local program (and vice-versa). For example, when a persistent space is

un-subscribed from by a client, all objects in that space and other support data structures
become candidates for garbage collection (except those objects that axe now reachable from
the persistent root)-

128 CHAPTER 6. PERSISTENT SPACES

Other programs running concurrently with persistent spaces can interfere. For example,
since the put operation is not atomic (see transactions below) there is a potential for chang-
ing sub-objects while these are being marshalled. The integration between concurrency and
distribution is already difficult, and its problems are further amplified when persistence
and partial failures are taken into account (see, for example, the work by Munro [Mun93]).
Application programmers should themselves take care to avoid this situation by using the
normal mechanisms for concurrency control available in the language.

Although at present transactions are not included in the model, both local and distributed
transactions can be useful in the context of persistent spaces. Some integration can be
achieved already by the application programmer. For example, the use of a local transaction
at the server can support a number of put operations as an atomic action.

There are mainly two reasons for not incorporating transactions into the model: it is
not clear whether the advantages provided by transactions always compensate the price
for using them (e. g., a decrease in performance and a more complicated interface); and
many persistent applications run (or can be changed to run) within a transaction already.
Simplicity was also the main reason to omit transactions from Digital's Network Objects
[BNOW93].

Distributed transactions are also of interest to persistent spaces, especially as a support
mechanism to transmit a space atomically between the the server and its clients. For
example, a message passing mechanism -in which simple byte arrays are sent efficiently
and reliably between two programs, see section 2.3.8 - could be used as the transport
protocol.

6.3.2 Migration by Substitution

Substitution is orthogonal to persistent spaces; they complement each other and can (even
should) be used together. Substitution is useful when an object needs to be put into a
persistent space but it includes in its transitive closure one or more objects that cannot
migrate -for example, an object that only make sense locally, such as a file descriptor (see
section 5.2.4 for more examples).

As an example of the interaction between substitution and persistent spaces, the Dis-
tributed Library Explorer presented in section 7.1 makes use of the three mechanisms
proposed in this thesis. The application is separated into a client program and a server
program. The client is installed by some conventional mechanism and is responsible mainly
for the user-interface. The use of all three mechanisms is exemplified below.

1. The server maintains a large database, but ships to the clients an index in a persistent
space to speed-up most accesses to that database. The index is a medium-size data

structure, much smaller than the database itselL

2. Two procedures that are used by the index migrate by substitution since these proce-
dures are installed together with the client and will never change. Substitution also

6.3. INTERACTIONS WITH OTHER MECHANISMS 129

avoids transmitting the procedures, a relatively expensive operation when compared
with other (simpler) data types.

3. Access to the database itself -a much less frequent operation than using the index-
uses a reinote procedure call so that clients do not need to copy and maintain the
(large) database.

The interested reader is referred to section 7.1 where a more detailed explanation is pre-
sented, including diagrams and measurements.

6.3.3 Multiple Spaces per Store

This section discusses the interaction between two or more spaces published by the same
server. The most important point is that-in contrast to a single persistent space that
maintains shared sub-structures between successive migrations -two persistent spaces do

not maintain these relationships between them.

As an example, imagine two objects A and B, with A referring to B. The programmer
would like to put A and B into separate spaces, respectively called green and blue, with an
intention to publish them independently. If object A is put into the persistent space green
first, then the entire transitive closure of A (including B) is marshalled into that space.

This is not the desired behaviour, so the programmer tries instead to put B first into the
persistent space blue, then A in green. The hope is that A will use the copy of B in blue.
However, if A could be marshalled into a persistent space without part of its closure, then
build would depend on the relationship between persistent spaces and the order in which
objects were put into those spaces. For example, an error would occur when building green
if blue had not been fetched and built before. Dependencies like this can be acceptable
for two spaces and one client, but do not scale for many inter-related objects and a large

number of stores and spaces.

What really happens when B is put first into blue, then A into green, is that B is duplicated
in both spaces. It was decided to prevent sharing between persistent spaces in order
to keep the model simple to understand and use. Otherwise, complicated dependencies
between persistent spaces could easily be created that would not be understood by average
client application programmers -especially because these dependencies would be created
by another programmer in the (server) store. On the other hand, this separation between

persistent spaces also gives clients freedom to subscribe to any sub-set of all persistent
spaces published by a server, depending on their particular requirements.

If only one version of B is to be published by the server, then only one space should be

used. Alternatively, two spaces can be used but care should be taken so that B is put into
both spaces simultaneously (ideally within a server transaction) and clients also fetch and
build these spaces simultaneously (ideally within a client transaction).

Considering the highly inter-connected nature of persistent objects, many objects in the

130 CHAPTER 6. PERSISTENT SPACES

store can potentially be duplicated in more than one persistent space. However, the Library
Explorer example application presented in section 7.1 suggests that application program-
mers are able to isolate objects intended to be published. Substitution can help as well by
cutting links to other objects that already exist in all stores. Finally, better visualisation
tools for understanding the relationships between persistent objects [Lav95a, Lav95b] can
also help to organize which objects should go into which persistent spaces.

Higher-level operations could have been incorporated into the model to give some guaran-
tees between spaces, for example, to return a warning if an object being put into a space
is already published in another space. However, it was decided to maintain the simplicity
of the model because it is not clear whether this extended semantics is required by many
persistent applications.

6.3.4 Clients as Servers

Persistent spaces only connect one server to many clients. On top of this, application
programmers can themselves provide another extension to the model: one persistent space
is fetched by a client store and then (some of) its objects put again into another persistent
space. This store is acting as a client in one case and as a server in the second case.

The objects put into the second space are copies of the original objects put into the first

space. Thus a fetch operation applied to the first space will not change the values of
the objects in the second space. This permits stores to behave as intermediaries of data,
filtering or doing any other processing to collections of objects (bulk types). Explicit

copying between spaces is appropriate for mostly disconnected stores, the intended target

of persistent spaces. If the application needs more tightly-coupled stores, then probably
another distribution mechanism should be used.

6.4 Application Programming Interface

This section describes in detail the fundamental operations available for persistent spaces -
publish, subscribe, put, fetch, build and get-which present a number of common design

principles.

In order to emphasize the semantic differences between persistent spaces and other
IPC models, namely RPC, the model presents a new interface to the application
programmer. It would be dangerous if programmers confused persistent spaces and
RPC since they have different semantics. This sepaxation is especially important
in applications that take advantage of preserving sub-structures and incremental

migration as provided by persistent spaces.

Another objective of this API is to help programmers build distributed applications
that react to partial failures by using their specific knowledge about the application

6.4. APPLICATION PROGRAMMING INTERFACE 131

semantics. Fetch, the only remote operation, is explicitly initiated by the programmer
to provide a single point of failure.

9 Finally, persistent spaces were designed to present a small set of well-defined, very
simple operations that can be understood and used by normal application program-
mers. The intention is to support the development of distributed persistent applica-
tions without extensive knowledge of distribution.

The example used to illustrate the API is the Distributed Library Explorer taken from
section 7.1. The Explorer is a distributed persistent application that maintains a database
of information about software libraries and an index to access that database. The database
and the primary copy of the index reside in a server at Aocal/f ide/users /mms /server on
a machine called alderney. In order to reduce response time on typical queries, the index
is published by the server in a persistent space called "Explorer" that can be subscribed
by any number of client stores.

6.4.1 The Publish Operation

First, the server needs to create a new persistent space before putting any objects into it
(see example 6-1). The variable pubexplorer will be used later by the server to refer to
this space.

I creates a new persistent space at the server
let pubexplorer = publishSpace("Explorer")

Example 6.1: Publishing a persistent space

Persistent spaces have application-level names, such as "Explorer", for simplicity. If the
subscriber is being developed by other application programmers, then some other mean
(such as e-mail) should be used to communicate the name of each persistent space. (Al-
ternatively, a name server at a well-known location could be used, similar to that included
as part of Napier/RPC 1.0 [MdS95a].) In order to use a persistent space, clients only need
to know its name and the server address. (Authorization issues and security in general are
not discussed in this thesis.)

6.4.2 The Subscribe Operation

A client needs to subscribe to a persistent space before using any objects put into that space
(see example 6.2). The publisher variable identifies a remote persistent store anywhere in
the local network - or on the Internet, if the domain is added to the machine name - and
is created by applying the type constructor RemoteStore that groups a machine name and
a store path.

132 CHAPTER 6. PERSISTENT SPACES

I does nothing (type constructor used for convenience)
let publisher = RemoteStore("alderney", 1 machine name

II/local/fide/users/mms/server'I)! store path

I creates a handle for the space
let subexplorer = subscribeSpace(publisher, "Explorer"

Example 6.2: Subscribing to a persistent space

Subscribe does not check if the publisher store exists or if a persistent space called "Ex-
plorer" was published by that store. This check would require a remote call to the server
and it is not needed since the first fetch will return this information anyway. The operation
is necessary to define the variable that the client will use in all subsequent operations to
refer to this space. (Internally, the data structures that will maintain the local copy of the
space are also created.)

If the client program requires immediate confirmation of subscription, then the client can
always attempt to fetch the space -a relatively inexpensive operation since the marshalling
has already been performed-right after subscribing to it. (However, transferring the
bytes may be still expensive depending on the space size. We suspect most applications
will subscribe to the space just before the first fetch, so they will have a confirmation.)

6.4.3 The Put Operation

After publish, the initial set-up operation at the server, a number of objects can then be
put into the space (see example G. 3). The variable pubexplorer was created previously
when calling publishSpace in example 6.1.

I puts an object into the space
putObject(pubexplorer, "exploreridx", any(index)

Example 6.3: Putting an object into a space

Put inserts (a reference to) the object in a map indexed by its name, marshals the value
of the object and its transitive closure to a byte array, and stores the byte array in a data
structure inside the persistent space ready to be sent to subscribers. Thus objects put into
persistent spaces are just normal language objects because only copies of their transitive
closures are actually stored in linear form within the persistent space. Marshalling at put
time avoids repeating the marshalling every time a subscriber fetches the space, amortizing
this cost over all potential clients.

Shared data structures are preserved between successive. put operations- even between

program executions by virtue of orthogonal persistence. For example, if two objects A

and B are put into a persistent space, and both refer to a third object C, then C will

6.4. APPLICATION PROGRAMMING INTERFACE 133

be marshalled only once. Application programmers can thus arrange to preserve sharing
by placing all of a graph of objects in the same persistent space. The fetch and rebuild
operations then honour this sharing.

Put also contributes to incremental migration. For example, if an object with the same
name already exists in the persistent space, then the existing value is replaced by the new
value. But if an object is put twice in the same space with exactly the same value, then
nothing is stored in the space. (At the implementation level, some indication does need to
be stored to keep track of put operations themselves.) In general the object has changed
partially and only the differences to the previous ralue are stored in the persistent space.
If many small objects are expected in the same persistent space, then-for semantic as
well as for engineering reasons -a single bulk type can be used instead by the application
programmer.

Marshalling is an expensive (thus long) operation, especially if the object is large or com-
plicated-both likely in a persistent environment with a rich type system. Put attempts
to reduce this difficulty with three characteristics that make it different from traditional
marshalling.

1. Put executes locally in the publisher store without alive connection to any subscriber.
This decision makes marshalling time limited only by local performance and reduces
the dependency of the server on external factors (such as network load).

The price to pay for this advantage is that persistent spaces are useful for only a
certain class of distributed persistent applications in which many clients need to
share the same set of objects made available by the same server.

2. The marshalling cost is amortised over all subscribers. The persistent space is pre-
pared incrementally for each put operation and is simply copied when a client issues
a fetch. This separation between marshalling and transmission also permits mar-
shalling large objects when the system is lightly loaded, e. g. during the night.
The price to pay is that all clients will receive the same set of objects. This is
acceptable for the class of applications described in section 6.1.1, although in general
other mechanisms will be needed to complement persistent spaces.

3. Objects put into the space are guaranteed to be rebuilt in all clients since put marshals
the entire transitive closure of the objects.
The price to pay is that potentially many objects not needed by any client will
be marshalled, transmitted and rebuilt in all clients. (The problem can partly be
countered by using more spaces, although this solution can only be used with objects
relatively separated from other objects; on the other hand, the Library Explorer
example in section 7.1 suggests this separation between objects may occur in some
applications.)

The implementation of put (see section 6.5.1) is based on existing marshalling algorithms
used in traditional RPC mechanisms. It may be argued that an application programmer

134 CHAPTER 6. PERSISTENT SPACES

could build a mechanism equivalent to persistent spaces by constructing a list of objects
to be transferred, marshalling the list, holding it on the server in its serialized form and
sending it to any client that requests the list. The clients then unmarshal and use this list.

In fact, persistent spaces include the functionality just described above. However, we
believe persistent spaces are a better approach for the class of applications described in
section 6.1.1 because:

1. common sub-structures are maintained between migrations (though not between
spaces) which is not supported by traditional picIding and serialization mechanisms
[HL82, BJW87, BNOW93, Cra93, WRW96]; and

2. they support incremental migration by transmitting only the differences to the pre-
vious values put into the space (see section 6.5 for the implementation).

These features are crucial to support sharing of large, complex persistent objects between
autonomous stores.

Limitations and Future Work

There is a potential problem with put and persistent spaces in general. Given the long-
term requirement of persistence, the size of the data structures that implement a persistent
space will monotonically increase with time. (In a non-persistent environment these data
structures would be reset every time the program starts, but then application programmers
could not take advantage of persistence.)

The operation drop-to withdraw an object from a space-is a partial solution to this
problem. However, drop by itself cannot reduce significantly the amount of data in a
persistent space since the byte arrays containing the marshalled objects cannot be deleted
(incremental migration requires the previous versions of a persistent space in order to send
only the differences). An effective way to remove excessive data accumulated over time
from a persistent space is still a research issue.

On the other hand, more functionality not currently part of the model can be easily added
later as part of future work.

The put operation could return the space requirements (in bytes) for the marshalled
object. This number would give a useful indication of the costs needed to fetch the
space. (Although this number is calculated already in the implementation, it is not
returned to the application program.)

2. The put operation could be made tentative-in the sense that subscribers could
not fetch these pending objects immediately-and be complemented by an unput
operation to abort the last put. Then, a new operation called commit would execute

6.4. APPLICATION PROGRAMMING INTERFACE 135

all pending puts within a transaction. These operations would give application pro-
grammers some "all or nothing" support without the cost and complexity associated
with complete ACID transactions (see sections 2.3.8 and 3.3.13.

Finally, there are many reasons why put can fail. We have already listed some of these
reasons (see sections 5.2.4 and 5.5.2) and how substitution can help in certain cases (see
section 6.3.2). However, the general problem remains: how to detect and explain at run-
time to the application program why an object could not be put into a persistent space.

6.4.4 The Fetch Operation

There is a need to fetch a persistent space only when a subscriber wants to access the latest
versions of the objects put into that space (see example 6.4). The variable subexplorer
was returned previously by subscribeSpace and timeout is the number of seconds after
which the operation should be aborted if the space has not been completely fetched. If it
fails, fetch returns an error code explaining why it failed (see below).

! copies the space to the local store
let result = fetchSpace(subexplorer, timeout

Example 6.4: Fetching a persistent space from a publisher

Fetch transfers a set of byte arrays representing the objects put into the space since the last
fetch was performed by this particular client. The operation works incrementally because
only the additions since the last fetch are transferred, not its entire contents. For example,
if no objects have been put into the space since the last fetch, then only a small indication
explaining the space remains the same is sent to the client. In addition, for objects already
in the space, only the differences between their old and new values are transferred.

The connection time between client and server is minimized because marshalling and un-
marshalling - the expensive parts of migration - are either performed before (as part of
the put operation) or after (as part of the build operation) transmission. It could be fur-
ther reduced by compression. For example, the time required to transmit the index in
the Distributed Library Explorer (see section 7.1.2) is only a small fraction of the time
required to marshal and unmarshal that data structure. This is an important advantage of
persistent spaces compared with more traditional RPC, in which all these operations are
performed for each object transmitted.

Failure Handling

Fetch is the only truly remote operation and it returns a value that indicates if the trans-
mission has succeeded or failed. The variable result in example 6.4 is a data struc-

136 CHAPTER 6. PERSISTENT SPACES

ture-containing an error code and a textual message-based on our earlier research
work [MdS95b]. The following are examples of error codes:

" Connect Ignored -if the server does not respond;

" NotListening-if the server is executing but not listening to clients;

" Timeout-if transmission has not finished successfully after a certain period of time
defined by the client program; and

" HessageCorrupted-if the network message received is invalid.

In addition, there are error codes specific to persistent spaces, for example:

SpaceNotPublished-if the space has not been published by the server yet or has
been unpublished already.

The textual message describes these codes in plain English and adds relevant information
if appropriate, e. g., the name of the persistent space, the server network address and store
path, number of seconds for the timeout, and so on. For example, a typical message
is "Server /iocal/f ide/us ers/mms /server on alderney not responding". The client
program then uses the error code to take some action (if it has been programmed for that)
or shows the end-user the textual message.

Future Work

The persistent space is transmitted as a set of byte arrays (excluding those the client has

received before). There is one of these byte arrays for each put operation (see section 6.5.1
and 6.5.2). Although not currently implemented, these byte arrays could be written to a file

and sent to subscribers by other means instead of direct program-to-program connection.
For example, e-mail or ftp could be used, and even a physical medium such as floppy disks

or tapes.

This alternative to fetch could be useful for disconnected or mobile users, who generally
have limited bandwidth, expensive network links and/or unreliable connections. It could
also be useful for security, performance, historical, management, or any other reason when
a live connection is not appropriate.

6.4.5 The Build Operation

After fetching a persistent space, a subscriber unmarshals its contents using the build

operation (see example 6.5). Copies of all objects put in the space before it was fetched
by this client are built locally (except those that have been built before).

6.4. APPLICATION PROGRAMMING INTERFACE 137

I unmarshals the space in the local store
buildSpace(subexplorer)

Exaanple 6.5: Building a copy of the remote object locally

Build tin arsha all objects put into the space. The more flexible alternative of unmar-
shalling only a sub-set of the objects was excluded to maintain the simplicity of the model,
and in particular to guarantee that a space can always be built after a successful fetch
(see section 6-2). This is the reason why buildSpace does not need to return any value to
confirm it succeeded. (In the current implementation, it was decided that severe errors just
abort the program execution-for example, if the byte array is corrupted. This decision
is typical of research prototypes and can be found in the Napier88 implementation itself.)

If the objects to be built refer to any objects unmarshalled in previous build operations,
then shared sub-structures are maintained. The opposite is also true: if a shared sub-
structure is re-built with a different value, then all objects that refer to this sub-structure
will also share the new value.

The preservation of sharing together with incremental migration is the only realistic option
if persistent spaces are to scale up to large numbers of complex, persistent objects. The
measurements presented in section 7.2 show how the semantics chosen for persistent spaces
significantly reduce the amount of data being transferred between stores when compared
with transferring all objects put into the space for each fetch operation. (Unfortunately,
the time for marshalling and unmarshalling remains a problem because in the current
implementation the algorithms still have to traverse the entire transitive closures, even if

no marshalling is actually performed.)

6.4.6 The Get Operation

The build operation creates local copies at the client of the objects put into the space at
the server. However, the objects are hidden inside the space until the client program uses
get to select a particular object from all those resident in the local version of the space.
Get uses a data structure maintained internally by the persistent space to return a local

reference to the object being requested (see example 6-6).

makes an object visible to the target program
let index = getObject(subexplorer, "exploreridx"

Example 6-6: Getting a reference to an object in a space

After the operation, the variable index now holds a reference to the object that implements
the Explorer index. The current execution is simply aborted if no object with that name
was put into the space, fetched and built. The client program can always use another

138 CHAPTER 6. PERSISTENT SPACES

operation called exists (see section 6.2) to confirm if an object with that name is currently
available locally in that space.

The value returned by getObj ect has type any, the infinite union of all types (see section
3.2.2). The client program then has to project the variable into a usable type. This
semantic indirection between the persistent space and the application program -selection
by name plus type projection -is useful to make the programmer aware that index is only
a read-only, local representative of the actual index (primary copy) in the server.

6.4.7 Conclusion

In this section, the main operations available for persistent spaces were described and their
semantics discussed. When appropriate, limitations of the existing model and suggestions
for future work were also given.

The next section presents an implementation for persistent spaces in a persistent program-
ming language. A practical example application will be described in chapter 7, together
with performance measurements for both persistent spaces and the example application.
Future work is presented in the context of the entire thesis in chapter 8.

6.5 Implementation

A prototype of persistent spaces was built to validate the proposed IPC model and the
semantics chosen for the operations available to the application programmer. We are
especially interested in the implementation for a number of specific reasons: to confirm the
feasibility of the model; to provide a platform for performing measurements; to build and
test example applications; and to develop the initial design through our own experience
and feedback from other application programmers.

The prototype was built in Napier88, a persistent programming language described in
section 3.2. It modifies and extends an existing mechanism to copy objects of any type
between two Napier88 stores [Mun93, KBC+94]. It should be clear that Napier88 is used
only as an example; persistent spaces can be implemented in any equivalent programming
language. In particular, the implementation language should support the following fea-
tures: orthogonal persistence, dynamic binding, and support for communication between
autonomous stores.

Persistence is a requirement because the data structures used in the implementation need
to survive program executions. It could be possible to implement persistent spaces in a
non-persistent programming language, but persistence simplifies the implementation enor-
mously as these data structures persist automatically by reachability from the persistent
root. On the other hand, a non-persistent implementation would not be very useful since
persistent spaces were designed for a persistent environment.

6.5. IMPLEMENTATION 139

This first implementation of persistent spaces was not optimised in terms of reducing costs
and increasing efficiency. The reason is that persistent spaces will evolve with time and
the implementation will change to reflect the new semantics. It is not a good use of limited
research time to optimise an implementation that will be short-lived and used only in a
small number of example applications. Nevertheless, measurements presented in section
7.2 show that acceptable performance can be achieved if we take into consideration the
relative speed of Napier88-

Overview

The section is divided into three parts that correspond to the three most important oper-
ations on persistent spaces.

1. Put- Marshals the value of an object into a byte array in the server store.

2. Fetch - Transmits a set of byte arrays (one for each top-level object put into the
space) from the server to the client store.

3. Build - Unmarshals the byte arrays received from the server to construct local copies
(in the client) of the objects put into the space.

These operations include the traditional steps that are needed to migrate an object by copy
between programs executing in separate address spaces [HL82, BN84]. (Similar algorithms
for marshalling and unmarshalling cyclic and shared data structures were independently
developed at the same time to support persistence, cf. PS-algol [ABC+831.) The imple-

mentation of persistent spaces extends these algorithms and uses orthogonal persistence to
achieve the properties described in sections 6.2 and 6.4.

Objects with type at the language level (Napier88) are implemented by a number of un-
typed, run-time system objects that contain the object's value plus control data such as
constancy and type information [CBC+90a]. The implementation of persistent spaces uses
a special version of Napier88 (the npb compiler) that gives access to these lower-level, run-
time system objects. (Language-level objects cannot be used directly because persistent
spaces need to have access to lower-level information about the objects being published
and also because it is much more difficult to work at the system level above the type-safety
net provided by the normal Napier88 compiler.)

These objects in general form a cyclic and shared data structure. Marshalling is the process
of writing this data structure to an array of bytes so it can be copied to another store. The
put operation accepts a language-level object and marshals its run-time system objects.
At the client, the build operation unmarshals the byte array to construct the graph and
then rebuilds a typed, language-level object again.

140 CHAPTER 6 PERSISTENT SPACES

6.5.1 Marshalling

The marshalling algorithm traverses the graph of objects in a recursive depth-first order,
dumping all objects it visits (see below). The algorithm starts by calling dump to the
top-level object and iterates through three phases for all objects in its transitive closure:

1. dump-if the object has not been visited yet, marks this object as dumped, outputs
the object (see below) and dumps all objects it refers to (its nested objects);

2. output-exports information about this object's nested objects (graph structure)
and exports its data; and

3. export -the bytes received as an argument are appended to an export buffer, which
is the byte array that will be copied to client stores.

Data Structures

There are four main data structures needed to implement each persistent space: putNumber,
obj ectNumber, remembered and mapOf ExportBuf f ers. These are described below.

putNumber is an integer incremented every time the operation put is called for this persis-
tent space.

objectNumber is an integer incremented every time an object is visited. It is used to
identify objects in their linearized form. The first object marshalled is identified by the
number 1, the second by 2, and so on, across put operations and program executions (that
is, objectNumber is persistent and is never reset). When a client fetches a space, it sends
the number of the last object received by that client and for that space. The server then
sends back to the client only new objects put into the space and updates to existing objects
that this particular client has not received yet.

remembered is a bulk type that stores the following properties for each object visited by
the marshalling algorithm.

objnb- An integer that identifies the object in the export buffer. This is the value of
objectNumber at the time the marshalling algorithm first knows about its existence,
either because it is about to be dumped or it is referred to by another object (see
below for details).

o pntrold- A reference to the latest marshalled value of the object. When an object
is visited and has been dumped in a previous put operation, its current (actual) value
is compared with the value pointed to by pntrold to check if the object was updated
in the meantime.

lastvisit-An integer that was set to the value of putNumber when the last visit
occurred. An object is defined as visited if the value of putNumber is equal to the value

6.5. IMPLEMENTATION 141

of lastvis it and this means the algorithm has already passed by this (remembered)
object during this put operation.

9 dumped-A flag that tells if the object has been dumped already. lastvisit and
dumped are not redundant because objects may have been dumped in a previous
put operation but not visited yet by the current put operation, and they may have
changed value in the meantime.

The remembered data structure is implemented as a list because in a persistent language
it is not trivial to index a map by references to objects. The difficulty resides in the
combination between persistence, type-safety, and garbage collection. A reference in this
environment cannot be manipulated at the language level (like in C++) for safety reasons.
(Persistent object identifiers are a possible solution, see section 8.2).

For a first implementation of persistent spaces we decided to search remembered linearly.
The measurements presented in section 7.2 show that performance is acceptable, although
it will not scale for a large number of objects. Another problem with the prototype is the
space requirements of remembered, especially the need to store a copy of the object value
when it was put into the space. This is the price to pay for incremental migration, although
it can be reduced in future implementations by using version numbers, compression, or
hashing schemes.

Finally, mapOf ExportBuf f ers is a map indexed by object number to store export buffers
(see figure 6.3). An export buffer contains a vector of bytes and its length, and represents
the objects marshalled for one put operation. An object number is the number of the
first object marshalled in each export buffer. (There is no index to access the object
directly by its number because the marshalling algorithm never needs to get the object
value given its number, only the unmarshalling algorithm.) When a client fetches the
space, the implementation uses the last object number received by the client to transmit
only the export buffers not received by that client yet.

Export Buffers
Map of

Export Buffers first put operation

135 second put

218 ----
207 010011001001019911010

7
third

425

623
198 101000Hý0ý0110000 ..

first object
174 101011

for or number
t
for

each put number of
\, bytes representing

the marshalled objects
operation bytes in for this put operation

this buffer

Figure 6.3: Map of export buffers

142

Main Procedures

CHAPTER 6. PERSISTENT SPACES

The top-level procedure called by put, after getting the implementation object for the
language-level object passed as an argument, is dumpObject (see example 6.7). The pro-
cedure distinguishes between: new objects that are output and its nested objects dumped;
and remembered objects that have been dumped in a previous put operation. Furthermore,
a remembered object can still have the same value or changed value since it was dumped.

If a remembered object has not been visited by this put operation, then all its nested ob-
jects are dumped as well since an object may have not been changed but its nested objects
may have. (This means the full transitive closure of a top--level object is always traversed,
although only objects in the transitive closure that are new or have changed value are actu-
ally written to the export buffer.) In addition, dunipObject outputs a remembered object
again if it has changed value since the last visit (including objects that are remembered
but have never been dumped, see below).

If the object is not in remembered, then ! never seen before

insert the object in remembered

set dumped to true

call outputObjectHeader(objectNumber

add 1 to objectNumber

call outputObject ! exports the object's value

call dumpNestedObjects ! visits its sub-objects

else ! dumped already

if it has not been visited already, then

set lastvisit to putNumber
if it has not been dumped already, then

if the object has changed value, then
set dumped to true
duplicate the object value to pntrold
call outputObjectHeader(this object's number
call outputObject

call dumpNestedObjects

Example 6.7: Pseudo-code of dumpObject

output Obj e ctHe ader appends to the export buffer the minimum information needed to
build a skeleton of the object remotely (see example 6.8) while the sub-objects and data

of the object are actually exported by outputObject. The procedure exportBytes just

appends the data received as an argument to the current export buffer (implementation

not described).

6.5. IMPLEMENTATION 143

call exportBytes(object number received as a parameter

call exportBytes(number of nested objects

call exportBytes(size of the object)

Example 6.8: Pseudo-code of output Obj e ctHe ader

outputObject exports the references to the nested objects as numbers (their identification
in the export buffer) and its own data (see example 6.9). (outputObject cannot simply
dump the nested objects as well because they may have to be dumped independently of
their parent object, see dumpObject). Nested objects that have been dumped already (in
this or in a previous put operation) have a number already; all others receive a new number
and are remembered (but not as being visited).

For each reference to a nested object

If the object is not in remembered, then

insert the object in remembered
add 1 to objectNumber
call exportBytes(objectNumber

else

call exportBytes(this object's number)

call exportBytes(this object's data)

Example 6.9: Pseudo-code of outputObject

dumpNestedObjects is called by dumpObject and just dumps all nested objects of a parent
object (see example 6.10).

For each nested object

call dumpObject

Example 6.10: Pseudo-code of dumpNestedObjects

6.5.2 'IYansmission

A persistent space is transmitted to clients as part of the fetch operation. Fetch is imple-

mented as a remote procedure call (RPQ at the server that accepts as an argument the
last object number received by that particular client and returns the set of export buffers

not yet received by the client.

144 CHAPTER 6. PERSISTENT SPACES

For example, imagine the persistent space depicted in figure 6.3 for which five put opera-
tions have been performed. Now consider that a client fetches this space and that the last
number received by that client is 424. In this case, fetch transmits only the last two export
buffers (indexed by 425 and 623) because the object number 424 received from the client
says that the other three export buffers (indexed by 1,135 and 218) have been received
already by that client. It will transmit a different set of export buffers to other clients,
depending on their last object number received.

6.5.3 Unmarshalling

Unmarshalling is implemented as part of the build operation. It is the opposite to mar-
shalling: rebuilding (in the client) copies of the objects put into the space from the byte

arrays sent by the server. Since marshalling and unmarshalling are so similar, only the
three main differences between them will be described.

1. While for marshalling the remembered data structure contains the objects visited, a
similar data structure now contains the objects already unmarshalled. But while for
marshalling there is a linear search by object reference, for unmarshalling the data
structure is a map indexed by object number. (In general, in a type-safe persistent
language it is not possible to index objects by reference, see sections 7.2.3 and 8.2.2
for details.) This makes unmarshalling potentially more scalable than marshalling -
although the measurements presented in section 7.2.3 do not show any significant
difference in performance (perhaps due to the implementation of map)-

2. During unmarshalling there is no need to keep the previous value of the object (the

pntrold field in remembered) because each build operation simply replaces the up-
dated objects with their new values. There is also no need to keep the lastvisit
and the dumped fields for similar reasons.

3. Because marshalling proceeds recursively with export on first visit, unmarshalling
has to create objects for which their sub-objects are not created yet. (Since these are
cyclic data structures, it is impossible to start at the "bottom" of the graph.) This
requires special privileges because it violates type-safety and referential integrity.
However, when unmarshalling finishes all references have been established again, so
that persistent spaces remain type-safe from the application programmer point of
view.

The last item is the only one that deserves a better discussion. The code to achieve
this - based on pending lists - is described below.

Pending Lists

As an example, imagine that an object was put into the space and that as a result the
graph of objects depicted in figure 6.4 was marshalled. Using the algorithm presented in

6.5. IMPLEMENTATION 145

section 6.5.1, the marshalling order for this graph is A, B, D, C. At the client, there is a
difficulty because when object A is to be built there is no object B or C to refer to yet (the

same happens with B and C referring to D).

Figure 6.4: An example of a simple object graph

Even if the graph had been marshalled recursively with export on return (that is, D, B,
C, A) the problem would remain because, in general, the object graph has cycles. For

exaanple, imagine B and C pointed to each other; objects would still have to be built

pointing to objects that are not built yet.

One solution to this problem is to create a pending list for each object that is needed but
is not yet built. When that object is built, its pending list is used to update all objects
that were waiting for this one. All future references to this object can then be assigned
directly because the object now exists.

Figure 6.5 illustrates the status of the pending lists after objects A, B and D have been
built. Object A was created first so, at the time, two pending lists were created for B

and C (the objects referred to by A). These lists contain offsets in object A where the

reference to objects B and C will have to be written later when these objects are built.
The pending lists of B and D have already been removed because objects B and D have
been built already (dashed lines). The pending list for object C shows that object A is

still waiting for this object to be built (full lines). The pending list for A is empty because

no other object refers to A.

These pending lists may grow considerably in size, depending on the complexity of the

object graph. However, when the last object is built-and all other objects that point
to it have been updated-all pending lists should be empty. Referential integrity and
type-safety is restored and these temporary pending lists can be garbage collected.

146

object list pending lists

AH

CHAPTER 6. PERSISTENT SPACES

This means that object B is
referred by object A at offsetl.

ficil i 0, iA offset2

"D" -------- ---------- 314 C offset4 ý-
----------i

Figure 6.5: The pending list during an unmarshalling operation

6.6 Related Work

This section compares persistent spaces with related IPC models: message passing, for
exchanging values explicitly between programs; tuple spaces, in which tuples can be put
into, and retrived from, by any program in the distributed application; and replication
protocols that maintain consistency between several copies of an object. (Systems that
support "transparent distribution" like Emerald [BHJ+87] are not included in this survey
because they are based on remote references instead of copying.)

Summary of Persistent Spaces

The main advantages, limitations and problems of persistent spaces are first summarized
in order to better understand the similarities and differences between them and other IPC
models.

The advantages of persistent spaces have been extensively described throughout the section.
(All features that belong to future work- are excluded from this list.)

Simple model based on publish and subscribe-One server puts objects into a space
and they are then available to any number of clients to fetch.

Marshalling cost is amortized over all subscribers- Marshalling is performed only
once when the object is put into the space. Fetch just transmits the byte arrays
representing the marshalled objects.

Explicit refresh from clients- Network load and partial failures only occur when fetch
is called and cease after it finishes, so network activity is correlated with program
constructs.

Minimum connection time- Marshalling and unmarshalling are respectively per-
formed before and after transmission by other (explicit and local) operations, while

6.6. RELATED WORK 147

only the differences from the previous state of the space are transferred (incremental
migration).

Sub-structures are maintained- Objects belonging to the same space do not dupli-
cate shared objects within the space and local sharing semantics at the server are
rebuilt in the clients.
Autonomy between client and server-Autonomy is fundamental to reduce network
load and failures caused by dependencies between stores and to permit local evolu-
tion, management, and so on. Furthermore, autonomy is especially important in a
persistent environment because dependencies survive program executions and accu-
mulate over time.

Composable with other mechanisms- Persistent spaces can be used together with
existing features of the persistent language (such as transactions) and other IPC
models (such as RPC and substitution).

The main limitations of persistent spaces are now summarized.

One space for all clients -Clients cannot choose which objects to fetch: they all get
all the objects put into a persistent space. This design option is the basis for the
simplicity of the model and most of its other advantages, but many clients will fetch
objects they will never use.

Clients have access to read-only copies- Another IPC mechanism has to be used if
the application requires a client to update the original (remote) object in the server
store. For example, a second persistent space in the opposite direction could be used.
Again, this decision simplifies the model but only applies if the application (or at
least part of it) belongs to those described in section 6.1.1.

4P Distribution becomes visible-Some extra programming effort is required to fetch
the space compared with "transparent distribution". However, this visibility can be
considered both a limitation and an advantage, since programmers need to know
about and use distribution if the application is to react to partial failures (caused by
that same distribution).

In addition to these limitations in the model, there are a number of problems with the
current implementation that need to be investigated (see section 8.2.2).

Space required in the server and client stores-The prototype requires relatively
large auxiliary data structures, in particular the copies of the objects maintained by
the persistent space at the server (pointed by pntrold, see section 6.5.1) to check
whether objects have changed since they were exported last time. (There is a large
scope for improvement here, for example by using fingerprinting, see section 2.3.6.)

Poor "absolute" performance- Performance can still be greatly improved in absolute
terms, although it is relatively acceptable when compared with its working environ-
ment (see sections 7.2.3 and 8.2.2).

148 CHAPTER 6. PERSISTENT SPACES

These limitations could have been significantly reduced by improving the algorithms and
using a more careful choice of data structures. We opted instead to concentrate on the
model itself and leave enough space in the implementation for future experiments. On the
other hand, a radical improvement is always possible by re-implementing persistent spaces
within the run-time system without compromising type-safety (see section 8.2).

6.6.1 Message Passing

Message passing is a very simple IPC model in which values are exchanged explicitly
between programs. The basic model is asynchronous (see section 3.3.10) but message
passing can also be synchronous: one program sends a message to another program that
is listening to the network waiting for incoming messages.

Persistent spaces are very similar to asynchronous message passing because the aim is also
to migrate groups of objects explicitly between autonomous programs. However, persistent
spaces are designed for complex, persistent objects: they help the application programmer
organize the transmission; provide incremental migration; and maintain sharing semantics
between migrations (even between program executions).

Message passing products such as IBM's MQSeries [IBM94, IBM95] only support simple
data structures (like records of primitive data types) or even shift the marshalling up to
the application. Sharing semantics are not maintained and migration is not incremental.
Instead, MQSeries delivers high performance achieved by a combination of asynchronous
but guaranteed message delivery. (It could, for example, be used as a transport protocol by
an implementation of persistent spaces.) MQSeries is a well-known commercial product,
widely used in industry for many years.

The application programmer interface provided by persistent spaces is simpler than MQSeries.
In order to illustrate this point, an example application was downloaded from the MQSeries
home page at IBM Hursley [IBM96a] (which in turn was taken from [BHL95) where the
example is fully described). The example transfers the contents of a file (bytes, the simplest
data type) between a sender and a receiver running on different machines.

Even without any marshalling involved, the sender program needs to call 5 procedures and
uses 170 lines of C code (excluding comments). In contrast, the Library Explorer example
using persistent spaces described in section 7.1.2 needs to call 3 procedures and uses 12 lines
of Napier88 code (including substitution and comments). This is partly due to persistence,
but also a consequence of persistent spaces and their API that were deliberately kept very
simple.

6.6.2 Tuple Spaces

A tuple space is a repository of tuples that can be shared between two or more programs in a
distributed application. A tuple has a key and a value, which can be an arbitrarily complex

6.6. RELATED WORK 149

graph. Conceptually, a tuple space behaves like a distributed object database: a program
puts a tuple into a tuple space and any other program in the distributed application can
then get the tuple from that space using the same key.

Tuple spaces were first proposed in the context of Linda, a set of additions to any existing
programming language for supporting distributed computation. The Linda model of dis-
tribution has since then been implemented for C by the Linda Group at Yale [Fre96] and
more recently for Java with GTE's WWWinda [GNSP94], the Jada research experiment
[Ros96] and Sun's JavaSpaces [Wa196].

MiPle spaces have an intrinsic persistent connotation because tuples remain in the tuple
space until they are explicitly removed from that space. However, actual implementations
of tuple spaces are usually not persistent. For example, WWWinda is based on distributed
shared memory and Jada uses a single, non-persistent, Java server (put and get are just
remote procedure calls). JavaSpaces were designed as a support mechanism for both distri-
bution and persistence, but at the time of writing we still have no access to implementation
details.

Tuple spaces offer an IPC model very similar to persistent spaces: both permit the sharing
of objects between programs by means of explicit put and get operations on a shared repos-
itory. One difference is that, while persistent spaces expose distribution to the application,
tuple spaces behave more like a transparent distributed system.

Transparent distribution means that tuple spaces provide extreme simplicity at the cost of
network delays and partial failures, against which there is little the application program-
mer can do. In particular, an implementation of tuple spaces based on distributed shared
memory will not scale beyond the local area network. In contrast, persistent spaces amor-
tize marshalling costs over any number of clients, keep the amount of data transmitted
to a minimum, and only update the remote copies when explicitly asked by each client
prograin.

Finally, even though current implementations of tuple spaces do not take persistence into
account, tuple spaces seem highly suitable for a persistent environment. There is no fun-
damental reason why incremental migration and other features of persistent spaces cannot
be added to the Linda model of tuple spaces. Or perhaps the opposite approach should be
attempted: to integrate the best features of tuple spaces, such as extreme simplicity and
flexibility, into the IPC model of persistent spaces.

6.6.3 Replication Protocols

A replication protocol maintains several copies of an object, possibly in a number of pro-
grams, all with the same value (see section 2-3.6). This is called strict consistency when
the protocol makes an application program believe there is only a single copy of the ob-
ject in the entire distributed application. There are also replication protocols based on
loose (or partial) consistencr, only these are comparable with persistent spaces because

150 CHAPTER 6. PERSISTENT SPACES

the application programs are aware of replication and have to control consistency.

Replication protocols based on loose consistency form an extensive research area, so in this
section only one typical example will be used. Lotus Notes [Lot96] is a well-known com-
mercial product for developing distributed (collaborative) applications based on replicated
documents. Notes stores documents in a server database that are copied to any number of
client databases. A document can then be updated in the server or in any of the clients.
From time to time, clients connect to the server to synchronize (or refresh) their replicas.

Documents are very high-level objects, intended to be manipulated directly by end-users
for simple replication schemes. In addition, a programming language is available for build-
.g general distributed applications based on these replicated documents. Notes can also
be considered persistent, although all objects stored in the database belong to the type
document. Like persistent spaces, Notes also supports incremental migration because it
only transmits the updates made since the last synchronization. Notes supports refresh in
both directions as opposed to only one in persistent spaces (from server to clients).

Notes is a stand-alone product with its own language and application development envi-
ronment. Persistent spaces were designed and implemented as an add-on library to an
existing persistent language, providing a simple interface to be used by normal application
programmers. Even though it can also download code to clients, Notes is specialised on
replicated documents. Persistent spaces are designed for a higher-order persistent language
with a rich type system and can be used together with other mechanisms available in the
language.

Finally, Notes permits each client to replicate a different set of documents. This is flexible,
but it forces Notes to detect changes and marshall them in each refresh for each client.
Persistent spaces can perform this marshalling locally without any information from clients,
amortizing marshalling costs and reducing communication time. It could be argued that
persistent spaces require the server program to explicitly tell the persistent space about all
updates to the object. However, the objective is exactly the opposite: not all updates will
be published to clients, only when the object reaches a stable state should the new value
of the object be put into the persistent space.

6.7 Summary

This chapter proposed persistent spaces, a new IPC model for sharing complex, persistent
objects between autonomous stores. Persistent spaces are based on a simple programming
interface that lets publishers put objects into a space which can then be fetched by any
number of subscribers.

The chapter includes a motivation for persistent spaces, the proposed design, interactions
with other mechanisms, a detailed description of the interface to the programmer, an
implementation in a persistent programming language, and a comparison with related
work. The next chapter will present an example application developed to validate persistent

6.7. SUMMARY

spaces and performance measurements.

151

We conclude that persistent spaces provide an effective IPC model for a certain class of
distributed persistent applications, in which a server publishes objects to be used by a
large number of clients. Other IPC mechanisms, such as RPC or substitution, can then
be used to cover a wider spectrum of applications. This is in contrast with related work,
which is either not appropriate for persistent objects (and their large transitive closures)
or may not scale to many clients. When persistence is taken into account, the related work
limits the complexity of the objects being shared to simple records or a single data type
(e. g., documents).

152 CHAPTER 6. PERSISTENT SPACES

Chapter 7

Evaluation

In the previous three chapters several models for building distributed persistent applica-
tions were proposed. One is a type-safe persistent RPC that passes arguments by copy.
The other two, called migration by substitution and persistent spaces, are compromises
that reduce the problems of passing parameters only by copy or only by reference.

This chapter describes how a real distributed persistent application was built using these
three mechanisms. First, we present the code written in the application to use the mech-
anisms. Then we provide performance measures for both the application and other exper-
iments we made to understand their behaviour.

7.1 Example Application

This section describes an example application that was built using the models proposed
in this dissertation. The objective is twofold: to show that these models can be used by
typical application programmers; and that they are worth using.

The mechanisms were utilised to build two extensions of a persistent application called the
Library Explorer [Bro93, SWA+961. The Explorer is a tool for retrieving information from
the Glasgow Libraries [WWP+95]. It maintains two major data structures: documentation
about the Glasgow Libraries (approx. 11 MB of data); and an index to speed up access to
that documentation (approx. 500 KB).

In addition, two procedures that make use of these data structures have first to be explained
(see figure 7.1).

searchResult -This procedure accepts free-text queries specifying software com-
ponents required by the user and (using information retrieval techniques) returns
a list of matches that represent software components offering approximately that
functionality.

153

154 CHAPTER 7. EVALUATION

retrieveDoc -This procedure accepts the name of a procedure selected by the user
and returns the documentation for that particular software component (typically a
long string).

Library Explorer

index

documentaflon

Figure 7.1: Architecture of the original Library Explorer

User interaction usually follows a well-defined pattern. First, the user writes a free-text
query that is passed as an argument to searchResult, which returns a vector of name/score
pairs ordered by score value. Usually, the first query is either too general (and returns too
many matches) or insufficiently general (and returns no match). This is a typical problem
in information retrieval.

After several interactions -adding or removing information from the query until a rel-
atively small number of matches is returned - the user eventually selects the name of a
software component. The procedure retrieveDoc is then used to obtain the documenta-
tion about that component. As a result, documentation requests are much less frequent
than free-text requests.

Client/Server Explorer

In the original Explorer, the index and the documentation need to be replicated in each
user)s store in addition to all the Explorer code. This is a tremendous waste of store space
and, as a consequence, may degrade performance. Replication also requires human and
CPU time to synchronise all copies in every store with a centralized version maintained by
the local Napier88 administrator.

The new client/server version of the Library Explorer permits the sharing by any number
of Client Explorers of the code, index and documentation maintained in a single Library
Server (see figure 7.2). The number of clients is limited in practice -depending on the
Explorer usage, amongst other factors -but we hope it is large enough to take advantage
of the new architecture.

This extension to the Library Explorer is implemented in a typical client/server fash-
ion by converting searchResult and retrieveDoc into remote procedures. The Library

Zl. EXAMPLE APPLICATION

Figure 7.2: The client/server Library Explorer

155

Server maintains the documentation and its index about Glasgow Libraries. A light-weight
Client Explorer running in the user store accesses the centralized Library Server using
Napier/RPC to retrieve the information.

Example 7.1 shows the signatures of these procedures to give an idea of their relative
simplicity, in the sense that the types of the arguments and results are either primitive
types or simple data structures. (The "*" in the example represents a vector in Napier88.)

type resultEntry is structure(name: string; score: real)

searchResult: proc(string -> *resultEntry)

retrieveDoc: proc(string -> string)

Example 7.1: Remote procedures in the Client/server Explorer

Generating client and server stubs for these procedures is easy by using the programmer
interface to Napier/RPC presented in examples 4.2 and 4.4 respectively,

7.1.2 Distributed Explorer

The client/server version of the Library Explorer permits the sharing of a single copy of
the Explorer code and data in a server by a number of clients. However, it introduces a
(slow) remote access for every user request. This separation between client and server not
only slows down the Explorer (see table 7.5) but also makes the client Explorer dependent
on a (remote) server, probably managed by another person. Finally, it does not scale well
for many clients because there is always a single server that has to answer all requests.

The distributed version of the Library Explorer is the second extension to the original
Explorer, now taking advantage of both migration by substitution and persistent spaces
to overcome the limitations of the client/server version.

Client Explorer Library Server

156 CHAPTER 7. EVALUATION

In the Distributed Explorer, the index is first published by the Library Server into a per-
sistent space. Then it can be fetched by any number of client stores -a Remote Explorer
in our terminology (see figure 7.3). ftequent queries to the index will now be always local
to the Remote Explorer, while all accesses to the documentation for a particular software
component-a less common operation-still use a remote procedure call. This is even
more convenient because the documentation is also a much larger data structure than
the index. The Remote Explorer is still dependent on the Library Server but only if the
software component exists, was found and its documentation is requested by the user.

Remote Explorer

searchResult

stub
(index

j.

c- -

Library Server

remote call

fetching
----------- , (]ýD

documentation

Figure 7.3: The Distributed Library Explorer

We now describe how to publish and fetch the index. The index is implemented as a map,
a Napier88 bulk data type included in the Glasgow Libraries [ABC+93, WWP+95]. In
order to create this map, the programmer needs to provide two boolean procedures over
strings, stringEqualTo and stringLessThan, to permit fast access to documentation in
the index (see example 7.2).

I define a new data type (not important in this example)
type IndexEntry is structure(count: int; weight: real; refs: *string

I create two procedures for testing string equality and order
let stringEqualTo proc(sI, s2: string bool sl = s2
let stringLessThan proc(sl, s2: string bool sl < s2

I create an index (which is bound to these procedures)
let index := m-empty[string, IndexEntry](stringEqualTo, stringLessThan)

Example 7.2: Creating a Map instance

Objects put into a persistent space bring their entire transitive closures with them. In
this case, the index would bring the two procedures stringEqualTo and stringLessThan.
This is unnecessary because these procedures are well-known and unlikely to change in
the future. (If they do change, then some other mechanism, such as traditional library
installation, has to be used every time they change.) If these procedures were part of
Glasgow Libraries, for example, then the Distributed Explorer could migrate them by

7.1. EXAMPLE APPLICATION 157

substitution when the index is published. The code to achieve the behaviour just described
is presented in example 7.3.

I creates a new persistent space
let explorer = publishSpace("Explorer"

I declare the procedures as substitutable
I the values will be accessed by following the path
substitute(explorer, "/stringEqualTo"
substitute(explorer, "/stringLessThan"

I puts the index in the space but not the procedures
putObject(explorer, "exploreridx", any(index))

Example 7.3: Publishing the explorer index

After publishing the persistent space and putting the index into that space, any client
store running the Remote Explorer can then subscribe to the space and fetch the index
(see example 7.4).

I creates a handle for the persistent space
! the name space for "Explorer" is the server
let explorer = subscribeSpace(server, "Explorer"

I declare the procedures to replace the surrogates
I the values will be accessed by following the path
replace(explorer, "/stringEqualTo"
replace(explorer, "/stringLessThan"

I copies the space to the local store
1 synchronization between replicas occurs here
fetchSpace(explorer)

I unmarshals the space in the local store
buildSpace(explorer)

I makes the index visible to the target program
let index = getObject(explorer, "exploreridx"

Example 7.4: Subscribing to the explorer index

Two of the main advantages of using a persistent space in the Distributed Explorer are
flexibility and autonomy. The subscribers decide when to fetch new versions of the index,

allowing them to choose between using a slightly out-of-date index and the very latest

version. In addition, each subscriber has its own version of the index independently of

158 CHAPTER 7. EVALUATION

other subscribers or the publisher. Similarly, the publisher can be constructing a new
version autonomously and then choose when to publish it and make it available.

The Distributed Explorer may pay off depending on the time for the remote requests, the
time to migrate the index, and the number of accesses to the index before it is replaced
with a more up-to-date version (see section 7.2). It could be argued, however, that this
library example is particularly well-suited to this mechanism.

One of the goals of substitution and persistent spaces is that these models should be easily
understood and used by application programmers. The relatively few lines of Napier88
presented in examples 7.3 and 7.4 show the ease with which they can be used to introduce
distribution into an existing persistent application that has more than 11,000 lines. The
amount of extra code and its complexity is relatively small compared with the source code
for the entire application. Only localized changes are required to introduce distribution
and these do not disturb the rest of the application.

7.2 Performance Measurements

In this section we present, analyse and draw conclusions from preliminary performance
measurements using the mechanisms proposed. We have conducted these experiments
using both the extensions to the Library Explorer described in the previous section and
programs written specifically to understand particular aspects of the implementation.

The goal of this section is to show that the implementation provides acceptable performance
when compared with Napier88, the original Library Explorer and similar mechanisms in
other programming languages.

Methodology

We aim to measure the behaviour of systems and applications under typical working con-
ditions. For this reason, all measurements in this section are taken "warm", i. e., after all
set-ups have been made, indexes built, and caches primed.

The measurements do not include hand-crafted optimisations based on knowledge of the
implementation of Napier88 or the distribution mechanisms themselves. For example, in
the Explorer's case the measurements use code written by one of the implementors of the
Explorer, Stewart Macneill.

There are also other factors-such as threads and garbage collection-that introduce
variability and thus some inconsistency in the results. Even though we could control these
factors to some extent, we do not want to do it because they are part of the Napier88
system and to make such changes would result in atypical (or artificial) comparisons.

7.2. PERFORMANCE MEASUREMENTS 159

" Threads - Napier88 threads are used in Napier/RPC for building the time-out mech-
anism when the server does not respond. Threads are implemented by the run-time
system itself and the scheduler is based on "a fixed time-slice by the number of
instructions" [Mun93]. Performance of one thread in Napier88 is thus inversely pro-
portional to the number of threads running in the (single processor) system and this
significantly affects any performance measurement.

" Garbage collection-The Napier88 run-time system has both a memory and a disk
garbage collector [Bro88, BR90, Mun93]. The memory garbage collector may start
at any time and is based on the "stop the world" principle. It is therefore likely to
affect long measurements.

The two machines used for the experiments are the same DEC Alphas with OSF/2 (also
called Digital UNIX) that are normally used to run Napier88, connected via the depart-
mental 10 Mb/s Ethernet. These machines have enough main memory (more than 64 MB)
to work with our store sizes, which are also typical of small Napier88 stores (between 50 and
100 MB). These experiments were run after the normal working hours but the network and
the machines still had a small number of users that also interfered with the measurements.

For all these reasons, the numbers presented in this section can only be considered very
crude measurements of the mechanisms proposed and their implementation. Nevertheless,
they portray some useful information.

7.2.1 Remote Procedure Call

The performance of the basic RPC mechanism is presented in this section. We start
with measurements of the absolute performance for a minimal remote procedure call using
Napier/RPC, followed by a detailed analysis to check where the time is being spent. We
also present measurements for the client/server version of the Library Explorer described
in section 7.1.1 above.

Absolute Performance of a Minimal RPC

Table 7.1 shows an experiment with minimal procedure calls -that is, with the simplest
types (i. e., integer) as arguments and result -intended to measure the absolute perfor-
mance of remote calls using Napier/RPC. The numbers in the table are reported by the
operating system in "hardware-dependent clock ticks" and are the average for at least 100
repetitions. User CPU means the time spent executing the operation in the user address
space, 01S CPU is the time spent in the operating system, and Elapsed Time the wall-clock
time. Only the three most significant digits are presented.

Rom table 7.1 it is clear that the absolute performance of Napier/RPC - 2.5 seconds for
a remote call -is clearly problematic. (The numbers in each row do not add-up because
of other processes running on the same machine and the time spent in the network and

160 CHAPTER 7. EVALUATION

Procedure 11 User CPU I OIS CPU I Elapsed time
Local (microseconds) 38.8 2.47 58.6
Remote (seconds) 1.61 0.198 2.50
Ratio 41,500 80,000 43,000

Table 7.1: Performance of Napier/RPC

with remote execution at the server.) The table also shows that Napier/RPC is 5 orders
of magnitude slower than a local procedure call in Napier88.

The bottleneck resides in one of the following areas: 1) packing and un-packing caused by
this particular implementation of Napier88 or the fact that Napier/RPC itself has not been
optimised; or 2) data transmission as a result of Napier88, Napier/RPC or the underlying
system (01S and network costs).

However, there are two reasons to believe that data transmission is not the limiting factor:
the marshalled argument plus control information (for type-checking and so on) only re-
quires 108 bytes to be sent to the server program; and the table shows that the time spent
at the operating system is not significant. It is interesting to go further and measure the
time spent just on data transmission.

Time Spent on Data Mransmission

We will now check if data transmission represents a significant cost for minimal calls by
measuring the time spent transmitting data as raw bytes between stores.

In the current Napier/RPC implementation, byte arrays of 4 bytes each are transmitted
until the 108 bytes representing the minimal remote call (see above) are sent. Table 7.2
shows how the time needed to transmit the 108 bytes varies depending on whether 4 or 108
bytes are used in each byte array - that is, 27 transmissions if 4 bytes are used or a single
transmission if 108 bytes are used. The ratio between the two options is also presented.
(The numbers in the table are an average for at least 100 repetitions.)

Time
Array size User CPU r O/S CPU Elapsed time
4 bytes (seconds) 0.00330 0.00160 0.00587
108 bytes (seconds) 0.000451 0.000113 0.000664
Ratio 7.32 14.2 8.84

Table 7.2: Time to transmit 108 bytes in Napier88

The table shows that using byte arrays with 4 bytes is approximately 9 times slower than
the alternative of sending a single byte array with 108 bytes. In any case, the time spent
transmitting the data is a negligible part of the total elapsed time for a minimal remote
call-compare the 0.00587 seconds in table 7.2 with the 2.5 seconds in table 7.1. We

7.2. PERFORMANCE MEASUREMENTS 161

conclude that packing and un-packing is the dominant activity in a minimal remote call
for Napier/RPC. (It is also dominant with large arguments, see table 7.8.)

Relative Performance of Remote and Local Calls

Napier/RPC is 5 orders of magnitude slower than a local procedure call in Napier88 and
limited by paeldng/un-packing. Both results may well be a consequence of Napier88, the
language in which Napier/RPC is implemented. In order to abstract from the particular im-
plementation of the language, we now compare the relative performance of Napier/RPC -
the ratio between remote and local calls -with another RPC system.

This comparison uses only the relative performance and thus should indicate whether it
is the Napier/RPC implementation that is particularly inefficient or Napier88 itself. The
test is important for a number of reasons: 1) application programmers, having made a
decision to use a particular language, then have expectations mainly in the context of that
programming environment; 2) Napier88 could be implemented with performance similar
to other languages; and 3) the mechanisms under investigation could be built below the
language level or for languages other than Napier88.

Table 7.3 below presents measurements for minimal remote calls using Sun/RPC [Sun93b]
and equivalent local calls in C. The idea is to compare these numbers with those presented
in table 7.1 for Napier/RPC and Napier88 respectively.

Time
Procedure User CPU I O/S CPU I Elapsed time
Local (nanoseconds) 143 zero 143
Remote (milliseconds) 0.0623 0.20 1.76
Ratio 436 - 12,300

Table 7.3: Performance of Sun/RPC

The table shows that aC program can make more than 12 thousand minimal local calls in
the time taken to do one minimal remote call using Sun/RPC, whereas table 7.1 shows that
Napier88 could make 43 thousand when compared with Napier/RPC. (The "zero" in the
table for the time spent with O/S CPU during a local procedure call actually represents
a number so small that it may be considered negligible.) If we normalise for language
speed, than NapierlRPC is only 3.5 times slower than Sun/RPC. The difference may be
the cost of type-checking in Napier/RPC, the investment in optimisation in Sun/RPC or
transmission costs.

Table 7.3 also shows that the time spent with OIS CPU dominates a minimal remote call
in Sun/RPC. This is a good indication that Sun/RPC is limited by transmission costs since
marshalling does not consume OIS CPU. In Napier/RPC the bottleneck is the time spent
in the user space, mostly packing and un-packing (there is nothing else CPU intensive
going on at call time).

162 CHAPTER 7. EVALUATION

Another interesting comparison is the ratio between the time spent in User CPU for remote
and local procedure calls in Napier/RPC (41,500) and Sun/RPC (436). These numbers
mean that the Napier/RPC implementation is a very inefficient consumer of CPU com-
pared with Sun/RPC, although part of the problem is caused indirectly by the Napier88
implementation.

Comparison with Another Persistent RPC

There is a major difference between C and Napier88: while C is compiled directly into
machine code, Napier88 is compiled into byte code and interpreted. Thus we believe it is
useful to compare Napier/RPC with another RPC for an interpreted language, especially
another persistent language.

For this experiment we chose Tycoon/RPC (see below) because it is the only persistent
RPC system for which we know of recently published performance measurements.

Table 7.4 below shows the time needed to perform local and remote procedure calls for
three different RPC systems in three programming languages. The numbers for Sun/RPC
and Napier/RPC are taken from tables presented earlier in this section. The numbers for
Tycoon/RPC are taken from [Mat96) and are meant to represent only approximate values
since they are based on similar but different conditions (Tycoon on PCs, also connected by
an Ethernet LAN, but running Linux). For this reason, in this table we are only interested
in comparing the ratios between remote and local calls for each RPC system, not their
absolute performance and even less that of their host languages.

Elapsed Time
Procedure Sun/RPC I Tycoon/RPC I Napier/RPC
Local (microseconds) 0.143 2 58
Remote (milliseconds) 1.7 130 2,500
Ratio 12,000 65,000 43,000

Table 7.4: Comparison of ratios for local/remote calls

Table 7.4 shows that all three RPC systems present the same order of magnitude when
the relative performance of remote calls is compared with local calls (that is, tens of
thousands). If we assume that Tycoon/RPC does not use exorbitant amounts of data
being transmitted in a minimal remote call, then it can be concluded that packing and
un-packing becomes the limiting factor for RPC performance in a persistent language.
On the other hand, for simple compiled languages like C the network is the bottleneck. It
remains a challenge to find out why this happens and achieve the same result in a type-safe
persistent programming language.

7.2. PERFORMANCE MEASUREMENTS

Library Explorer

163

We now present measurements for the basic Napier/RPC performing under the client/server
version of the Library Explorer described in section 7.1.1.

Table 7.5 shows the time spent during three different user requests for software. The
number of matches is limited to the first 10 ordered by score to limit the amount of data
sent back from the server (the total number of matches is shown in parenthesis). Each
request was repeated 10 times for each of the local and remote versions of the Explorer. The
elapsed time is reported as the minimum and maximum times achieved. The granularity
is one second.

Task Requested Eiapsed time (seconds)
FYee-text Query I Matches 11 Original Explorer 11 Client/Server
"View slides" 1 (1) 1-1 3-8
"Display an image" 10 (55) 1-2 5-10
"Write a string" 10 (279) 2-3 6-11

Table 7.5: Performance of the Client/server Explorer

The numbers reported for the client/server Explorer can be interpreted as being the sum
of the component times required for every remote procedure call.

1. A constant time for a minimal remote call (2.5 seconds, see table 7.1).

2. The time to pack and un-pack the string representing the query minus the time to
pack and un-pack a minimal argument (a short time in this case, since the argument
is just a few characters).

3. The time to transmit the packed argument (negligible).

4. The processing time of the remote procedure itself (1 to 3 seconds).

5. The time to pack and un-pack the matches minus the time to pack and un-pack a
minimal result. This time increases quickly with the volume of data representing the
result value (see section 7.2.3) and may be responsible for most of the time difference
between the original and the client/server versions of the Explorer.

6. The time to transmit the packed result (negligible).

Performance can sometimes divert application programmers from an important semantic
difference between the original Explorer and its client/server version. This difference con-
cerns the fact that copies are passed as arguments and results in a remote call, as opposed
by passing these by reference locally in the original Explorer. In the Library Explorer this
difference does not create any problems because the result value is just displayed for a very
short period of time (compared with the rate of updates in the index itself).

164

7.2.2 Migration by Substitution

CHAPTER 7. EVALUATION

Performance measurements for migration by substitution are now presented in this section.
However, the reader should always remember that the major contribution of substitution
is semantic-it allows objects that refer to non-migratable parts of the store to migrate
(see section 5.4). The question here is whether substitution can perform this work well
enough to be useful in real applications.

Simple Experiment with Substitution

Table 7.6 shows an experiment conducted to compare the transfer times of a small data
structure with and without substitution. The data structure transferred is an empty
Map Eint, string], a standard Glasgow Libraries map with integer equalTo and les sThan
tests (similar to the Explorer index, see section 7.1.2). The numbers in the table represent
an average over 10 migrations.

Pr ? cedures Data transferred Elapsed tim
being... Objects I Bytes (seconds)

transferred - 11 -16-1404

substituted 11 81 300

Table 7.6: Performance of migration by substitution

The numbers show that the amount of data transmitted to migrate these two procedures
is small. In addition, the absolute time taken to transfer an empty data structure with two
procedures (13 seconds) does not seem exaggerated when compared with the time needed
to perform a minimal remote call (2.5 seconds).

Despite that, a substantial gain in performance is achieved by substituting the two proce-
dures. This gain is mainly for two reasons.

1. Not transmitting these procedures substantially reduces the time for packing and
un-packing their values because the surrogates that represent the procedures for
substitution are very small.

2. In the current implementation of Napier/RPC, the procedures are transmitted as
hyper-programs (see section 3.2.4). Avoiding compilation of the hyper-programs at
the target probably reduces the transmission time much further since compilation is
an extremely expensive operation (see section 5.5). (On the other hand, in a system
that transmits byte code, such as Java, the saving will be proportionally less.)

Other researchers have presented numbers within the same order of magnitude for trans-
mitting code between programs. Examples include the 5-45 seconds for migrating small
to medium size applications in Obliq [BC95b] and up to a few seconds for procedures in
Facile [Kna95]. Downloading Java applets [AG96] can also take several seconds even when
bandwidth is available, e. g., the example application in the MarketPage Web site [Bu196].

7.2. PERFORMANCE MEASUREMENTS

7.2.3 Persistent Spaces

165

A number of performance experiments with persistent spaces are now presented. We
measured both purpose-built programs to check their incremental and scalable behaviours
and the Distributed Explorer presented in section 7.1.2.

Incrementality of Persistent Spaces

Table 7.7 presents six experiments that put (pack) the updated value of a Map [int,
string] (similar to the one presented in the previous section) into a persistent space
and build (un-pack) the map in a client program. The granularity is one second. The time
taken to fetch the map to the client is not presented to concentrate on the dominant activ-
ity of persistent spaces. The two procedures that belong to the map (for integer equality
and comparison) now always migrate by substitution.

Exp Value 1 Data t ransferred Time (seconds)
Nb

I
transmitted

[ttes
I Objects Packing Un-packingd

11 Map with 10 entries 3,144-- 93 2 3
2 Exactly the same map 164 4 1 2
3 Another 10 entries 1,400

_37
2 3

4 Another 20 entries 2,372 67 3 4
5 Another 40 entries 4,468 127 7 6
6 Another 100 entries 10,240 307 16 12

Table 7.7: Incrementality of persistent spaces

Measurement 1 (first row) shows the initial cost to migrate the map with 10 entries. Mea-
surement 2 migrates exactly the same value to check the performance of a "null update".

The numbers show how persistent spaces use incremental migration to reduce the amount of
data being transferred if large parts of common data structures remain unchanged between
migrations. In this case the number of objects come down from 93 to only 4 objects.
(It could be possible to reduce this number further by optimising the marshalling and
unmarshalling algorithms.)

Interpretation of measurements numbered 3 to 6 requires understanding of an aspect of
the map implementation. A map contains organisational data, which varies only slowly as
entries are added. In this case the organisational data was about 2,000 bytes for a small
map. It then has data representing the entries, in this case about 100-130 bytes per entry.
Taking this into account, the amount of bytes transferred is proportional to the volume of
new data published eacli time (plus any eventual changes to the organisational data).

The time to pack and un-pack the data structure seems proportional to the numbers of
objects being transferred. However, a map with 100 entries cannot be considered a large
data structure, so below we check if this is the case for a larger number of objects.

166

Scalability of Persistent Spaces

CHAPTER 7. EVALUATION

We now analyse how the time for packing and un-packing large data structures grows
compared with the number of objects being transmitted. According to our earlier definition
of scalability (see section 2.3.5) we expect the time to grow linearly with the number of
objects if the algorithms are scalable.

Figure 7.4 is a graphical representation of the time needed to pack and un-pack the same
map above by increasing the number of objects. We start with 200 entries that translate
into 671 objects. The largest map transferred in this experiment contains 2,000 entries or
6,115 objects. (In order to have a clearer representation of the overall trend and be able
to generalize for even larger data structures,
and constant for this particular experiment.
fault-tolerance.)

400

3SO

300

250

200

iso

100

so

we kept the number of running threads small
We also switched off the time-out facility for

Unpack time
quadratic
Pack time
quadratic

1000 2000 3000 4000 SWO 6000
Number of objects transfered

Figure 7.4: Scalability of persistent spaces

The figure shows that pack-ing is faster than un-packing for large data structures. A possible
explanation for this behaviour is the space that has to be allocated in the store to build
the objects during unmarshalling.

The figure also shows that the time needed for both packing and un-packing increases very
close to N', where N is the number of objects transmitted. This is a natural consequence of
the algorithm that requires a sequential scan unless there is a unique (hashable or sortable)
object identifier that is stable during (un-) marshalling. If a compacting garbage collector
is running, it is difficult to have access to such an identifier at the language level.

A time proportional to N log(N) can be achieved by re-implementating persistent spaces

7.2. PERFORMANCE MEASUREMENTS 167

with low-level access to the run-time system. There are two approaches to implement this
unique, stable identifier: 1) every object has a persistent identifier that remains constant
for the duration of the space; or 2) use memory addresses and re-hash all auxiliary data
structures after a garbage collection. (Tycoon/RPC [Mat96] is based on the first approach.)

Distributed Library Explorer

We now measure the Distributed Library Explorer presented in section 7.1.2. The index
of the Libraxy Server used for this experiment has 3,389 entries and corresponds approxi-
mately to 500 KB of data.

Table 7.8 shows measurements for creating, packing, transmitting and un-packing the
index. The operation Create Index (part of the original Explorer) and Put Index (into the
persistent space) are local to the Library Server. The Build Index operation is local to the
Client Explorer. Only the Fetch Space operation actually needs a remote connection but
just transmits bytes.

Task Data transferred Elapsed I Place of
Requested Objects Bytes time Operation
Create Index 38 minutes On Library ýý

Put Index 10,486 - 18 minutes On Library Server
Fetch Space - 600 KB 4 seconds Remote Operation
Build Index 10,486 - 37 minutes On Client Explorer
Typical Query 1 1- - 1 1-3 seconds On Client Explorer

Table 7.8: Performance of the Distributed Explorer

The numbers in this table are consistent with those presented above in figure 7.4 since for
large data structures the time to un-pack (build) exceeds the time to pack (put).

The advantage of caching the index at the Client Explorer outweighs the cost of transmit-
ting it only if the index remains stable for a period greater than a few hundred queries.
Unfortunately, our limited experience with the Distributed Explorer is not sufficient to
know if this assumption is realistic. In any case, end-users can always compromise on the
consistency of the index to avoid paying the price of a remote fetch every time the index
is updated. Moreover, as a result of incrementality, only the new parts of the index since
the last migration are actually fetched and un-packed.

Finally, the 4 seconds of connection time in the table are specially interesting because they
reduce dependency between publisher and subscriber to a minimum. This minimum-
which we call the minimal connection time- makes packing and un-packing local to avoid
dependencies on another store for long periods of time. It may also prove useful in mobile
computing and other environments where bandwidth is limited, unreliable or expensive.

168

7.3 Summary

CHAPTER 7. EVALUATION

This chapter described an example application for the mechanisms we proposed. The
example is based on extensions to an existing persistent application called the Library
Explorer.

First, a client/server version of the Explorer was presented that makes use of the basic
RPC mechanism. Then we presented the Distributed Explorer, a second extension that
caches the index in the client to perform most of the queries locally. As our mechanisms
were useful for building these extensions to the Library Explorer, then they may also be
useful for building other distributed persistent applications.

We then presented and analysed performance measurements for both purpose-built exper-
iments and in the context of the extensions to the Library Explorer.

The performance of the current implementation of Napier/RPC is disappointing. For ex-
ample, a minimal remote call takes 2.5 seconds while Sun/RPC is almost 1,000 times faster.
However, Napier/RPC has approximately the same relative performance as Sun/RPC (see
table 7.4) if we take into account the performance of Napier88 and C respectively, in
which applications using these mechanisms are built. A factor of 3.5 in relative perfor-
mance (43,000 divided by 12,000) remains to be explained, but this may be the cost of
type-checking, lack of optimisation or transmission costs.

We also measured substitution and persistent spaces. A preliminary experiment with mi-
gration by substitution suggests it may substantially improve performance by not migrating
procedures but by substituting them. Finally, measurements made with persistent spaces
indicate that our packing and un-packing algorithms axe proportional to N2, where N is
the number of objects transmitted. The cause of this was identified and a sketch was given
of ways to reduce this time to an acceptable N log(N) behaviour (see also section 8.2.2).

On the other hand, a major feature of persistent spaces is their support for minimal
connection time based on the separation between the long time required for packing and
un-packing and the (relatively) short time needed for data transmission. Incremental
migration has also presented promising performance.

We conclude that the models proposed in this thesis are: simple to understand and use,
useful for building certain distributed persistent applications; and may have eventually an
acceptable performance compared with Napier88 and other RPC systems-since there is
nothing fundamental preventing an efficient implementation of these models at the run-
time system level (see section 8.2.2).

Chapter 8

Conclusion

In this dissertation three models for higher-order, type-safe, distributed computation over
autonomous persistent object stores have been proposed and implemented. We have also
presented in chapter 7 how we used and measured them to validate their effectiveness in
building real distributed persistent applications (at least as a "proof of concept").

This chapter presents a summary of the thesis, lists some possible research issues for
future work, and compares the goals achieved with the initial IPC design issues described
in chapter 2. Throughout the chapter, the reader should always remember the thesis
statement presented in section 1.2: design, build, use and test an IPC mechanism for a
persistent environment that is simple, general and realistic.

8.1 Summary of the Dissertation

Three IPC models were proposed in this thesis, implemented and used for building an ex-
ample application. In addition, a preliminary investigation of their usage and performance
was made. In this section, we point out the most important contributions of each model
followed by a joint description of usage experience.

Models Proposed

Here we briefly describe the models proposed in this thesis, giving particular emphasis to
the major features and limitations of each model: type-safe persistent RPQ migration by
substitution; and persistent spaces.

169

170

Type-safe Persistent RPC

CHAPTER 8. CONCLUSION

Our first IPC model, described in chapter 4, has two important features when compared
with more traditional RPC mechanisms.

1. Napier/RPC is strongly type-safe. Furthermore, type-safety is achieved without re-
quiring any extra effort from application programmers when compared with other
non-safe RPC systems.

2. The Napier/RPC implementation takes advantage of reflection and other features
of Napier88 to provide novel mechanisms such as run-time stub generation. As a
result, a simpler interface than other RPC systems can be presented to application
programmers.

It is very important to stress that the RPC mechanism was entirely built in Napier88; the
language was not extended nor was a separate language needed. As a consequence, the RPC
implementor was supported throughout the implementation work by type-safety and other
Napier88 features (see section 3.2.1) available to all persistent application programmers.

Napier88 also provided features not commonly available in other programming languages
that helped to implement the RPC. For example, Napier88 permits access to type infor-
mation at run-time and already supports (structural) equivalence comparison between two
types defined independently. As a result, strong type-safety can be enforced with minimum
effort, based on existing Napier88 technology.

Napier/RPC has a very simple interface. Programmers no longer have to write descrip-
tions of procedures in a different language such as IDL [BN84, Sun93b, OMG95, Sun96b].
Napier/RPC simply generates the client and server stubs from within the language during
normal program execution. Using run-time reflection, Napier/RPC discovers the signa-
ture, generates the code for the stub, compiles it and then uses persistence and first-class
procedures to install it in the store. Type-safe dynamic binding allows these compiled
stubs to be re-used at a later time.

It should be noted that it is also possible to avoid the need for a separate language like
IDL with a conventional programming language. For example, keywords or other language
mechanisms can be used to identify the remote procedures and the compiler changed to
generate the stubs automatically [KOMM93, KKM941. However, with a language like C
this requires access to the compiler source code and significant programming effort, while
in Napier88 this is possible by writing a conventional application in the standard language.

The key contribution was the demonstration that type-safety can be extended to the IPC
mechanism without requiring any extra effort from the application programmer. Another
contribution is the use of persistent features to support run-time stub generation within
the language itself.

8.1. SUMMARY OF THE DISSERTATION

Migration by Substitution

171

The basic Napier/RPC described in chapter 4 was still very restricted in the range of types
supported as arguments to remote procedures. For example, procedures cannot be passed
as arguments, although they are first-class values in Napier88. This restriction is imposed
not only because marshalling procedures is complicated -a problem that was solved with
more work -but especially because procedures typically have large transitive closures that
make eagerly passing arguments by copy inappropriate.

This limitation on argument types is not restricted to Napier88 or even to persistent
programming languages. The same problem arises in traditional languages that support
first-class procedures and other complex data types. However, persistence amplifies the
problem since the transitive closure of a procedure may include large collections of objects
in the stable store.

The problem with transitive closures can be avoided by restricting the class of migrat-
ing procedures to self-contained procedures (those without references to other objects) or
standard procedures (those guaranteed to exist in every application environment so that
copying them can always be avoided). For example, Java applets [AG96] have to inherit
from a special class called Applet and preferably should use only Sun's standard classes,
otherwise they cannot be transmitted or may fail remotely.

Migration by substitution is a first attempt to solve the much more difficult, but also
more rewarding, general case. Using simple primitives, application programmers can de-
fine procedures and other objects to be substituted by surrogates just before migration.
On arrival at the target, these surrogates are replaced by local versions of the objects sub-
stituted. Substitution then limits the transitive closure of objects reached from procedures
and makes marshalling them both feasible and worthwhile.

The mechanism guarantees that the local and remote copies have identical type signatures
since these have to be checked before any migration. However, substitution does not
compare their behaviour. Not only is the comparison difficult to perform, but this freedom
also lets programmers specialise objects to take advantage of local conditions.

Using substitution, we have successfully migrated a number of complex procedures not
possible before by declaring as substitutable all objects belonging to the Napier88 Standard
Library, the Glasgow Libraries and other libraries specific to the application. Free variables
are still copied to the target store, so procedures may carry with them data and other
procedures if needed.

The key contribution is that large objects, or objects that refer to large objects, can now
(virtually) migrate without compromising too much on store autonomy. Substitution only
needs coordination between the source and target stores at two well-defined periods of time:
for checking the types of the substitutable objects (only once per long-lived session) and for
migrating the objects themselves. After migration, each store can proceed autonomously
as with normal RPC-

172

Persistent Spaces

CHAPTER 8. CONCLUSION

Although substitution helps to solve a major problem with migration by copy in a persistent
environment, the basic parameter passing semantics is still by copy, i. e., duplicating the
value of the arguments remotely. Copy semantics works perfectly well for immutable types
(like integer and string) and may be acceptable for small, mutable data structures.

The remaining problem is that large, evolving data structures pose new challenges solved
neither by copying nor by substitution.

1. How to access remote objects without remote references
2. Once a copy is made, how to maintain coherence between the replica and the original

object ?

3. If part of the object has already migrated, how to rebuild the original sharing rela-
tionships in the target store ?

Persistent spaces are an attempt to answer all these questions in an integrated manner.
A persistent space is conceptually a repository of objects into which a publisher store can
put objects and from which any number of subscriber stores can retrieve copies of these
objects.

As the name indicates, persistent spaces use persistence to remember the values and rela-
tionships between objects and their sub-objects (object components). If a sub-object of a
large object has already been put into a persistent space, then only the new sub-objects
are copied to the space. Furthermore, the relationship between the new sub-objects and
other objects already in the space is maintained.

Persistent spaces have a number of other advantages compared with plain RPC, one of the
most interesting being incremental migration. By incremental we mean that large objects
do not need to be put into a persistent space entirely at once.

The key contributions of persistent spaces can now be described just by answering the
three questions above.

1. Remote objects can always be accessed directly by remote procedure call, but this is
a slow and unreliable operation. Persistent spaces provide a more flexible mechanism
to share the values of public objects with many other stores by creating remote copies.
They amortize the cost of marshalling, reduce coupling between client and server,
and provide a naming context.

2. Persistent spaces can also be used to propagate new values to remote stores, and
efficiently because only the difference with the previous version is copied.

3. The sharing relationships are rebuilt remotelY by re-using (instead of re-transmitting)
objects that are part of another (larger) object, most of which has not changed since
the previous migration.

8.1. SUMMARY OF THE DISSERTATION 173

It is of interest to note here that JavaSpaces [Wal96] -proposed by Sun in the context of
Java [AG96] - are similar to persistent spaces. Based on Linda [Fre96], JavaSpaces allow a
publisher to put tuples into a "space" similar to a persistent space. These spaces maintain
serialized (marshalled) values that may then be accessed by many clients repeatedly or
explicitly removed. The main difference from persistent spaces is that JavaSpaces and the
publisher are separate so that many publishers may use the same space.

Marimba, a new company formed by members of the original Java team, has very recently
announced a new product called Castanet [Mar961. Castanet proposes channels to dis-
tribute code (Java applets or full applications) and data (for example, the contents of a
Web site). A channel can be subscribed to and downloaded, and is automatically updated.
Like persistent spaces, channels cache code and data locally to avoid remote calls. There is
also a single publisher and many subscribers. Unlike persistent spaces, a subscriber always
has the last version of the contents of a channel it has subscribed to.

8.1.2 Usage Experience

In order to test the models proposed, we have implemented and used them in a number
of applications. In this section we present a summary of one of those applications and the
main conclusions regarding utility and performance.

Example Application

The example application for our proposed models extends the Library Explorer a's described
in chapter 7.

First, we used Napier/RPC for building a client/server version of the Explorer with all
user requests performing a remote procedure call. The simple interface made Napier/RPC
easy to use for the Explorer programmer.

In the second extension, called Distributed Explorer, we used both migration by substi-
tution and persistent spaces to cache the Explorer index at the client. As a result, most
queries now run locally without the need for a remote call.

The index is a complex and quite large data structure (500 KB) that includes two proce-
dures. Using migration by substitution we avoid copying these procedures, thus accelerat-
ing migration of the index, since copying procedures is particularly expensive. Persistent
spaces permit the index to be updated incrementally, with only the new parts of the index
having to be copied and re-built at the clients.

174

Performance Measurements

CHAPTER 8. CONCLUSION

The current implementation of all three mechanisms is unacceptably slow. For example,
the basic type-safe RPC takes 2.5 seconds for a minimal remote call.

These performance numbers are mainly a consequence of implementing Napier/RPC en-
tirely in Napier88. In order to abstract the performance of our mechanisms from the
implementation language, we also measured remote calls in other RPC systems and lo-
cal calls in their implementation languages. These measurements indicate that the relative
performance of Napier/RPC -that is, the ratio between remote calls when compared with
local procedure calls -is of the same order of magnitude as other RPC systems.

The preliminary measurements we made using migration by substitution indicate that a
dramatic performance increase can be achieved by avoiding the migration of large data
structures. However, the most important contribution of substitution is that objects con-
taining references to very large or immobile objects (that already exist remotely) can now
migrate.

We also measured persistent spaces. It takes a few seconds to transmit a small data
structure and minutes to migrate an Explorer index with 10,000 objects containing 500
KB of data.

These numbers are unacceptable. However, we have to take into consideration that
Napier/RPC is implemented in Napier88, an interpreted persistent programming language
3 orders of magnitude slower than C (see tables 7.1 and 7.3). It is probable that re-
implementation of these mechanisms within the Napier88 run-time system (i. e., in C) would
achieve an adequate performance. Similarly, re-implementation of these mechanisms for
some compiled strongly-typed language should also achieve acceptable performance.

More worrying is the time for packing and un-packing that grows quadratically with the
number of objects. The non-linearity of Napier/RPC can be explained by not having
access to a unique and stable object identifier at the Napier88 level. (This results in a
linear search to find out if an object has already been packed.) However, the time for
(un-)packing can be made proportional to N log(N) in the run-time system itself or at the
language level with low-level access to the run-time system (see Scalability of Persistent
Spaces in section 7.2.3).

Summary

The section presented our experience and that of other programmers with the models
proposed. The models and their respective implementations were simple enough to be
understood and useful for building a practical distributed persistent application.

There are problems with performance in the current implementation, but we have sketched
ways of solving it in section 7.2.3 and will describe these better in section 8.2.2.

8.2. FUTURE WORK 175

Overall, the initial goal of delivering programming models more adequate for building a
particular class of distributed persistent applications has been achieved.

8.2 Future Work

The dissertation has demonstrated that applications can be built which make use of both
persistence and distribution. However, the combination of these two (typically disjoint)
worlds is only possible by making a number of compromises. We have addressed three
specific areas where these compromises are most needed: higher-order migration, type-safe
computation, and autonomy between stores.

In the future this research can be taken in several directions, including: mobile object
systems; implementation issues; distributed persistent applications; and heterogeneity and
inter-operability.

8.2.1 Mobile Object Systems

A mobile object - also called network or mobile agent - is an active object that can mi-
grate between processes. Mobile object systems are run-time systems that support mobile
objects [BTV96]. By "active" we mean these objects are not composed solely of data but
should include code as well.

Mobile objects can be seen as representing a particular class of distributed persistent
application but they are becoming ever more important with the rise of the Internet - and
its slow, unreliable connections. They are now considered a separate research area; the
same is happening, for example, with digital libraries.

The research area of mobile objects shares many of the same topics developed within the
scope of this thesis, although addressing a broader range of issues. Below we give some
examples of crucial research issues.

Mobile objects should have "independent behaviour" (otherwise they would be just
like data structures) so migrating code is a major issue in object mobility. Should
the code be pre-installed in a central repository as in MOLE [SBH96], migrate on-
demand like Telescript [Whi94b, Whi94a] and Java [AG96], or be remotely executed
as Kato and others propose [KMK96, KTM+96] ?

0 Mobile objects refer to other objects, so there is always the problem of what to do
with free variables and references to the local environment. Should they be copied or
passed by reference ? If copied, should any replication protocol be enforced ? Should
they be automatically duplicated as proposed for Tycoon [MMS96] ?

9 Mobile objects execute remotely, so security issues are extremely important. Should

176 CHAPTER 8. CONCLUSION

agents have limited functionality like applets in Java [AG96] ? Should they execute
in a separate address space (from the host system) or even in another computer ?

Mobile objects need to contact and access other objects, so communication is an
important piece of the puzzle. How mobile objects indicate whether interaction is
with the local objects or with those on a "home" site ? Should mobile objects use
a name server, dynamic binding or static binding ? Should they be free to follow
references in the local store or should they have a well-defined, restricted "access list"
of objects they can talk to ?

Prograanming systems like Telescript [Whi94b, Whi94a] and Java -with its applets [AG96]
and servIets [Sun96d] - are early examples of the technology that will support these mobile
objects. Telescript was specifically designed as an agent language; while in the beginning
it was a proprietary environment, it has recently changed its focus to the Internet. Java is
a general programming language that includes some support for agents, namely to migrate
code to clients as applets and dynamically bind to them at run-time. ServIets are similar
to applets, but are designed to execute at the server without a user-interface.

Although both Java and Telescript are becoming popular as mobile object systems, none
supports orthogonal persistence. For example, an applet is a normal Java class (with
limited functionality for security reasons) so it cannot carry data with it except static
variables. Telescript has some support for persistence, but it is not an orthogonal persistent
programming language.

This is despite the fact that many agent applications require access to databases, carry data
with them, or even more likely need both. (If mobile objects are not accessing, collecting
and returning to their hosts with data, why do they need to travel between computers in
the first place ?) Built-in support for persistence would help enormously when writing this
kind of agent application.

The agent community is finally recognising this limitation. For example, the IBM Research
Lab in Tokyo is currently working on aglets [IBM96b]. An aglet is a mobile object written
in Java but carries its code as well as its state. The aglets framework also includes JoDax, a
data access library to support the development of distributed database applications based
on aglets.

The persistent community is particularly well positioned to contribute to this novel re-
search area. HIPPO [Con9G] is a new persistent programming system that will allow the
sharing of code over the Internet. PJava [AJDS96, ADJ+96] is an orthogonally persistent
version of Java that treats a class like any other object in the language; in particular, a
class can be made persistent and copied between PJava stores. We have also given our first
steps towards this goal by describing the main opportunities and challenges facing the inte-
gration between persistence and mobility [MdSA96a, MdS97, MdSRdS97, RdSMdSD97b,
RdSMdSD97a].

8.2. FUTURE WORK

8.2.2 Implementation Issues

177

The performance of Napier/RPC can be greatly improved. We separate the implementation
issues proposed as future work into several experiments.

1. Optimize the current implementation of Napier/RPC by following a detailed pursuit
of the sources of cost.

2. Re-implement the mechanisms proposed at the run-time system level below the type-
checked boundary of Napier88.

3. Re-design and re-implement the mechanisms at the language level in a compiled
(as opposed to interpreted) version of Napier88 or another persistent programming
language.

4. Re-invent persistent spaces with a different architecture.

The first approach re-uses the current implementation. For example, in the initial RPC
measured in section 7.2.1 the marshalling time is severe. By modifying the code to omit
everything else, it should be possible to measure precisely how much is it and where these
costs come from. One serious cost must be the access to each element of an object using
a function to circumvent the type system; another to manipulate the data structures used
to determine if an object has already been packed. These costs could be much reduced.

However, Napier88 is interpreted and its speed is 3 orders of magnitude slower than C (see
table 7.4). Using this approach, Napier/RPC would never have a performance comparable
with other RPC systems implemented in compiled languages.

The second approach -working at the run-time system level-avoids paying the price
for type-safety and orthogonal persistence. Writing Napier/RPC in C leads to a much
faster (roughly 400 times) and more efficient marshalling and unmarshalling (proportional
to N log(N), not N'). This would bring the 38 minutes for un-packing the Explorer index
presented in table 7.8 to half a second or even less.

However, the second approach has disadvantages as well. It makes the job of implementing
the RPC much harder and more unreliable because it loses the support of persistence and
type-safety. It also specialises the RPC to one particular implementation of Napier88; if the
language implementation later changes (likely in a research language) then the marshalling
and unmarshalling routines have to be re-written.

A promising compromise retaining type-checked support for most of the code would be
to define an application programming interface (API) to the Napier88 abstract machine
available to other system implementors. This API would offer a service similar to the
current version of the Napier88 special compiler that accepts low-level object manipula-
tion, extended with stable object identifiers and eventually other basic services-such as
configurable marshalling and unmarshalling executing at the speed of C. (This API could
be investigated as part of any of the experiments proposed.)

178 CHAPTER 8. CONCLUSION

The third approach is just taking advantage of a faster language implementation. From the
RPC point of view it has few opportunities for research on novel distribution techniques and
would be interesting only if the new implementation of the language brings also additional
features.

The fourth approach is to experiment with novel store architectures that facilitate or even
eliminate the need for marshalling and unmarshalling. For example, stores are first-class
language values in the Feynman system [BP93]. This means that new stores can be created
at run-time and become part of the existing store, forming an hierarchy of object stores
[HP90].

Stores have the advantage of being marshalled structures already. A store could be sent
as an argument to a remote procedure without requiring any marshalling at all [Bla95].
Instead, the marshalling cost is paid during normal program execution as happens already
to read/write objects from/to the stable store.

8.2.3 Example Applications

The extensions made to the Library Explorer were an interesting experiment. However,
a number of other distributed applications are needed to cover a wide spectrum of all
persistent applications. Here we only describe library installation, an application area that
is promising not only for testing the models proposed but also in its own right.

Library Installation

Software libraries for persistent stores, such as the Glasgow Libraries [WWP+95], are
currently installed in each user's store by running programs. Libraries are typically large,
for example, Glasgow Libraries needs 13 MB of store space and the Workshop [SWA+961

another 13 MB. Installation is slow, especially since the entire library has to be installed
for every update, even though the user is likely to use only a small part of it during its
lifetime.

It would be useful if users could install only those parts of each library they actually need.
This is currently very difficult because the relationships between each sub-part in a library
are very complex; the user prefers to install the entire library instead of understanding the
dependencies between them.

The Library Installer is a proposed tool for Napier88 that would extend the existing Dis-
tributed Explorer. Using the Installer, procedures could be found and installed on-demand
in the local store, without requiring any program to be explicitly executed.

Only the procedures installed and those required by these -that are not already present
and are not substitutable -would be copied to the user's store. New versions would be

propagated using a combination of substitution and persistent spaces. The crucial point is

8.2. FUTURE WORK 179

that the analysis of the call graph and the identification of which bindings to form would
be entirely automated.

A very first prototype of the Installer migrating one procedure was presented to the FIDE2
Final Review Meeting that took place in Glasgow during September 1995. In that demon-
stration, an application programmer used the Explorer to look for a procedure offering some
functionality. When the procedure was found, the programmer checked its documentation
and decided to download the value of the procedure itself to the local store.

The procedure used in the demonstration contained a number of references to other objects
in the store, including other procedures. Some of these objects were copied, but those that
already existed in the user store migrated by substitution. A general, fully automated
mechanism for library installation from a "Definitive Library Server" is a research topic. It
would need to be aware of versions and integrated with the configuration and build tools
[Sjo93, SWA+95].

8.2.4 Heterogeneity and Inter-operability

We now identify two compromises between what can be achieved by exploiting the features
in one system and what can be achieved by mixing different systems.

Heterogeneity is the ability to implement Napier/RPC, substitution and persistent spaces
in other persistent languages. For example, in Tycoon [MMM93, MMS94] or Persistent
Java [AJDS96, ADJ196]. In this context, the research work by Kato and Ohori with
multi-language persistent type systems [KO92] is highly relevant.

Inter-operability is the ability of the mechanisms proposed to communicate with other
(equivalent) mechanisms, eventually hosted by different programming languages. For ex-
ample, with Sun/RPC [Sun93b], Tycoon/RPC [Mat96] or the novel distribution mecha-
nisms proposed for Persistent Java [SA97, Spe97]. This would require to establish a sub-set
of minimum functionality for both mechanisms, eventually by negotiation.

8.2.5 Further Speculation

Network bandwidth and CPU power will continue to increase dramatically as they have
over the last few years. In contrast, network latency will always be limited by the speed
of light. The slowness of light [Car96] can be acceptable within a local axea network and
for many Internet applications (such as the Web). However, it is clearly not appropriate
for all world-wide distributed (global) applications and even less for "space applications"
(e. g., satellites) [Kat96].

In such large-scale, geographically distributed environments, applications will have to be

aware of locality. The number of round-trip communications will need to be reduced,
presumably by achieving more per trip (such as caching and pre-fetching). The Inter-

180 CHAPTER 8. CONCLUSION

net shows this trade-off very well: the most successful distributed applications are those
that exploit locality like electronic mail and newsgroups. Even the Web uses physical ma-
chine addresses, fire-walls against intruders, caching mechanisms and ways of organizing
information.

New models of global computation will have to be found and global prograinming systems
will eventually be built to support the development of global applications. The concept of
"site" and "domain" will be as important in these global systems as "object" and "class"
are today for object-oriented ones. First steps have already been made, including those of
Cardelli [Car96] and Connor [Con96]. Techniques like substitution and persistent spaces
will become more appropriate because they were designed for environments in which latency
dominates.

8.3 Goals Achieved

In this thesis we developed a number of extensions to the basic RPC mechanism. It is
interesting to compare this experience with our initial list of IPC design issues presented
in section 2.3. For each of these IPC issues we ask the following question: "Have we dealt
with this IPC issue T' If the answer is "yes", then we report how the models proposed
solved it.

" Understandability (page 21)-Yes. The models proposed are all based on simple
primitives that are easy to understand by typical application programmers. The
example application presented in section 7.1 shows how these were used to extend
an existing persistent application with support for distribution.

" Type-safety (page 22) -Yes. Type-safety is not only enforced between autonomous
stores but it also does not require any extra programmer effort. The kind of type-
safety we provide emphasizes autonomy because communicating stores only have to
cross type-check once per type session and sessions are typically long-lived.

" 7ýrpe-completeness (page 23) -Partly. Napier/RPC can pass almost all Napier88
data types, including procedures. However, for the purposes of this thesis we have ex-
cluded abstract data types (ADTs) and threads, implemented as an ADT in Napier88.
The problem is that, while we base our type-checking on structural equivalence,
ADTs are based on name equivalence and thus require a completely different ap-
proach. (This is part of future work; however, for reasons of space we have decided
to leave it out from section 8.2.)

" Synchronisation (page 24) -Yes. Napier/RPC provides this functionality strictly. A
more flexible synchronisation mechanism is provided by persistent spaces.

" Efficiency, Performance and Scalability (page 25) -Perhaps. Although the current
Napier/RPC has problems with performance as a consequence of the Napier88 per-
formance itself, there is nothing against an efficient implementation of the models

8.3. GOALS ACHIEVED 181

proposed in this thesis. We have described several ways of improving performance in
section 8.2.2 but their actual effectiveness can only be confirmed by (re-) implementing
the models proposed.

Replication and Caching (page 26) -Yes. Persistent spaces were explicitly designed
to provide a simple but flexible mechanism to maintain local copies of remote per-
sistent objects, although not to maintain their strict consistency. Replication can be
supported by using two spaces, one from a server to a client, another from the client
back to the server.

Heterogeneity (page 29) -No. Napier/RPC was designed and implemented for
Napier88 with persistence in mind. The models proposed can be implemented in
any other persistent language offering the same basic characteristics as Napier88.
Even though the models are still suitable for traditional (non-persistent) program-
ming languages, full advantage can only be taken in a persistent environment.

Fault-tolerance (page 30) - Yes. All three models proposed focus on autonomy above
all and thus provide a programmer interface and behaviour suitable for environments
with partial failures. For example, a failure is reported by Napier/RPC 2.2 if the
publisher store does not respond or if a type mismatch occurs; migration by substitu-
tion is based on long-lived type sessions with short set-up time; and persistent spaces
are intended to be used for occasional connections between otherwise independent
stores.

Furthermore, we have addressed two other goals that usually are not taken into consider-
ation as IPC design issues.

Persistence-Yes ! Persistence is not usually listed as an IPC design issue because
databases are supposed to solve that problem separately. However, as persistence
becomes more and more popular as part of the programming language, IPC mecha-
nisms will have to take into consideration the new opportunities and challenges posed
by persistence.

Higher-order- Yes! Modern programming languages such as Java [AG96] promote
code to first-class status. As a result, the possibility to migrate code like any other
data type will quickly become an issue for modern IPC mechanisms. Mobile agents
(see section 8.2.1) will introduce further pressure.

8.3.1 Thesis Statement Revisited

Overall the thesis statement of proposing and implementing models for higher-order, type-
safe, distributed computation over autonomous persistent stores that axe realistic, under-
standable and general (see section 1.2) has been achieved.

* Simple- The models are easy to understand and use.

182 CHAPTER 8. CONCLUSION

The source code examples presented throughout the thesis support this claim. In
addition, our own exprience and the experience of others with examples of distributed
persistent applications such as the Library Explorer further confirm the simplicity of
these models.

* General-The models are not specialised to any specific use.
Although we do make assumptions about the kind of application and its requirements,
other IPC mechanisms concentrate on more limiting "horizontal" characteristics of a
distributed application such as performance or heterogeneity. The models proposed
are also not intended for certain data types like the Web [Wor96], OLE DB to access
relational databases [Bla96b, Bla96a] or compound documents [App96].

Realistic -The models were used to build real distributed persistent applications by
typical programmers.
The overhead imposed by distribution seems acceptable compared with the original
application. Furthermore, there is nothing fundamental preventing a highly-efficient
implementation of these models.

The research work described in this thesis will become ever more important. The issues
listed as future work are clearly relevant, but others will no doubt arise. In any case, the
research we have pursued will prove essential to cope with the new kind of world-wide
persistent applications unimaginable even a few years ago.

Bibliography

[ABC+83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and R. Mor-
rison. An approach to persistent programming. The Computer Journal,
26(4): 360-365, November 1983.

[ABC90] R. Alonso, D. Barbara, and L. Cova. Using stashing to increase node
autonomy in distributed file systems. In Proceedings of the Ninth Sym-
posium on Reliable Distributed Systems (October 9-11,1990, Huntsville,
Alabama). IEEE Computer Society Press, 1990.

[ABC+93] M. P. Atkinson, P. J. Bailey, D. Christie, K. Cropper, and P. Philbrow.
Towards bulk type libraries for Napier88. Technical Report FIDE/93/78,
ESPRIT Basic Research Action, Project Number 6309-FIDE2,1993.

[ABG095] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An introduction to the
database programming language Fibonacci. VLDB Journal, 4(3), 1995.

[ABM88] M. P. Atkinson, O. P. Buneman, and R. Morrison. Binding and type check-
ing in database programming languages. The Computer Journal, 31(2): 99-
109, April 1988.

[ACC82] M. P. Atkinson, K. J. Chisholm, and W. P. Cockshott. PS-algol: An algol
with a persistent heap. ACM SIGPLAN Notices, 17(7): 24-31, July 1982.

[ADG+89] A. Albano, A. Dearle, G. Ghelli, C. Marlin, R. Morrison, R. Orsini, and
D. Stemple. A framework for comparing type systems for database pro-
gramming languages. In R. Hull, R. Morrison, and D. Stemple, editors,
Proceedings of the Second International Workshop on Database Program-
ming Languages (Salishan Lodge, Gleneden Beach, Oregon, June 1989),
pages 170-178. Morgan Kaufmann Publishers, 1989.

[ADJ+96] M. P. Atkinson, L. Daynes, M. Jordan, T. Printezis, and S. Spence. An
orthogonally persistent Java. SIGMOD Record, December 1996.

[AE90] M. P. Atkinson and A. England. Towards new architectures for distributed
autonomous database applications. In Rosenberg and Keedy [RK90],
pages 356-377.

[AG96] K. Arnold and J. Gosling. The Java Programming Language. The Java
Series. Addison Wesley, 1996. ISBN 0-201-63455-4.

183

184 BIBLIOGRAPHY

[AGLM95] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient optimistic
concurrency control using loosely synchronized clocks. In Michael J. Carey
and Donovan A. Schneider, editors, Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data (San Jose, Cali-
fornia, May 22-25,1995), SIGMOD Record, pages 23-34, June 1995.

[AJDS96] M. P. Atkinson, M. Jordan, L. Daynýs, and S. Spence. Design issues for
persistent Java: A type-safe, object-oriented, orthogonally persistent sys-
tem. In Atkinson et al. [AMB96].

[AKP+94] M. P. Atkinson, G. Kirby, P. Philbrow, J. W. Schmidt, C. A. Waite, R. C.
Welland, and 1. Wetzel. Deliverable FD5: Persistent workbench research.
Technical report, ESPRIT Basic Research Action, Project Number 6309 -
FIDE2, August 1994.

[AM85] M. P. Atkinson and R. Morrison. Procedures as persistent data objects.
ACM Transactions on Programming Languages and Systems, 4(7): 539-
559, October 1985.

[AM86] M. P. Atkinson and R. Morrison. Integrated persistent programming sys-
tems. In B. D. Shriver, editor, Proceedings of the Nineteenth Annual Hawaii
International Conference on System Sciences, IIA Software Track (7th-
10th January 1986), pages 842-854,1986.

[AM88] M. P. Atkinson and R. Morrison. Types, bindings and parameters in a
persistent environment. In M. P. Atkinson, O. P. Buneman, and R. Morri-
son, editors, Data Types and Persistence, Topics in Information Systems,
series editors M. L. Brodie, J. Mylopoulos and Schmidt, J. W., chapter 1,
pages 3-20. Springer-Verlag, 1988. Edited Papers from the Proceedings
of the First Workshop on Persistent Object Systems (Appin, Scotland,
August 1985).

[AM90] M. P. Atkinson and R. Morrison. Polymorphic names and iterations. In
F. Bancilhon and O. P. Buneman, editors, Advances in Database Program-
ming Languages, ACM Press, Frontier Series, pages 241-256. Addison-
Wesley Publishing Company and ACM Press, 1990. Edited Proceedings
of the Workshop on Database Programming Languages (Roscoff, Brittany,
France, September 1987).

[AM951 M. P. Atkinson and R. Morrison. Orthogonal persistent object systems.
VLDB Journal, 4(3): 319-401,1995.

[AMB96] M. P. Atkinson, D. Maier, and V. Benzaken, editors. Proceedings of the
Seventh International Workshop on Persistent Object Systems (Cape May,
New Jersey, USA, May 29-31,1996). Morgan Kaufmann Publishers, 1996.

[AMP87] M. P. Atkinson, R. Morrison, and G. D. Pratten. PISA: A persistent in-
formation space architecture. ICL Technical Journal, 5(3): 477-491, May
1987.

BIBLIOGRAPHY 185

[APM89) APM -Architecture Projects Management Limited. The ANSA Refer-
ence Alanual, Release 01.01, July 1989.

[App96] Apple Computer, Inc. Welcome to OpenDoc Webtl 1996. http: //www. -
opendoc. apple. com/.

[AT96] Paolo Atzeni and Val Tannen, editors. Proceedings of the Fifth Inter-
national Workshop on Database Programming Languages (Gubbio, Um-
bria, Italy, 6th-8th September 1995), Electronic Workshops in Computing.
Springer-Verlag, 1996.

[ATK92a] A. L. Ananda, B. H. Tay, and E. K. Koh. A survey of asynchronous remote
procedure calls. Operating Systems Review, 26(2): 92-109, April 1992.

[Atk92b] M. P. Atkinson. Persistent foundations for scalable multi-paradigmal sys-
tems. In 6zsu et al. [(5DV92]. Invited paper.

[BALL89] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy.
Lightweight remote procedure call. Operating Systems Review, 23(5): 102-
113, December 1989.

[BC95a] K. Bharat and L. Cardelli. Distributed applications in a multimedia set-
ting. In Proceedings of the First International Workshop on Hypermedia
Design (Montpelier, France, 1995), pages 185-192,1995.

[BC95b] K. Bharat and L. Cardelli. Migratory applications. In Proceedings of A CM
Symposium on User Interface Software and Technology '95 (Pittsbu?! Y(h,
PA, Nov 1995), pages 133-142,1995.

[BCL+87] B. N. Bershad, D. T. Ching, E. D. Lazowska, J. Sanislo, and M. Schwartz. A
remote procedure call facility for interconnecting heterogeneous operating
systems. IEEE Transactions on Software Engineering, SE-13(8): 880-894,
August 1987.

[Ben87] J. K. Bennett. The design and implementation of distributed smalltalk.
In Proceedings of the Second Annual Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (Orlando, Florida, Oct.
1987), 1987.

[Ben90] J. K. Bennett. Experience with Distributed Smalltalk. Software Practice
and Experience, 20(2): 157-180, February 1990.

[BHJ+87] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and
abstract types in Emerald. IEEE Transactions on Software Engineering,
SE-13(l): 65-76, January 1987.

[BHL95] B. Blakeley, H. Harris, and J. R. T. Lewis. Messaging and Queuing Using
the MQL Concepts and Analysis, Design and Development. McGraw-Hill,
1995. ISBN 0-07-005730-3.

186 BIBLIOGRAPHY

[Bir88] A. Birrell. Position paper. In Proceedings of the 1988 ACM SIGOPS
European Workshop, 1988.

[Bir93a] K. Birman. The process group approach to reliable distributed computing.
Communications of the A CM, 36(12): 37-53,103, December 1993.

[Bir93b] K. Birman. A response to Cheriton and Skeen's criticism of casual and
totally ordered communication. Technical Report Cornell TR 93-1390,
Dept. of Computer Science, Cornell University, October 1993.

[BJW87] A. Birrell, M. Jones, and E. Wobber. A simple and efficient implementa-
tion for small databases. In Proceedings of the Eleventh A CM Symposium
on Operating Systems Principles, November 1987.

[Bla95] D. Blakeman. Private communication, 1995.

[Bla96a] Jos6 A. Blakeley. Data access for the masses through OLE DB. In Jagadish
and Mumick [JM961, pages 161-172.

[Bla96b] Jos6 A. Blakeley. OLE DB: A component DBMS architecture. In Su
[Su96], pages 203-204.

[BLL+88] A. Black, E. Lazowska, H. Levy, D. Notkin, J. Sanislo, and J. Zahorjan.
Interconnecting heterogeneous computer systems. Communications of the
A CM, March 1988.

[BN84] A. Birrell and B. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(l): 39-59, February 1984.

[BNOW93] A. Birrell, G. Nelson, S. Owidd, and E. Wobber. Network objects. In
Proceedings of the 14 th A CM Symposium on Operating Systems Principles,
pages 217-230, December 1993.

[BP93] D. Blakeman and M. Powell. The Feynman persistent application sup-
port environment. Technical report, Software Engineering Tools Group,
Department of Computation, UMIST, 1993.

[BR90] A. L. Brown and J. Rosenberg. Persistent object stores: An implementa-
tion technique. In Dearle et al. [DSZ90].

[Bro88] A. L. Brown. Persistent Object Stores. PhD thesis, University of St An-
drews, 1988.

[Bro93] J. C. Brown. A library explorer for the Napier88 Glasgow Libraries. Mas-
ter's thesis, Department of Computing Science, University of Glasgow,
September 1993.

[BTV961 J. Baumann, C. Tschudin, and I Vitek, editors. Proceedings of the 2nd
ECOOP Workshop on Mobile Object Systems (Linz, Austria, July 8-9,
1996). dpunkt, 1996.

BIBLIOGRAPHY 187

[Bul96] BulletProof Corporation. MarketPage from BulletProof, 1996.
http: //www. bulletproof. com/Marketpage/.

[CAL+94] R. Cooper, M. P. Atkinson, D. Lavery, M. Mira da Silva, G. Montgomery,
P. Philbrow, A. Pirmohamed, T. Printezis, A. Serrano, C. A. Waite, and
R. C. Welland. The Glasgow Libraries Reference Manual Version 1.1. De-
partment of Computing Science, University of Glasgow, December 1994.
Compatible with Napier88 Release 2.0.

[Car95a] L. Cardelli. A language with distributed scope. Computing Systems,
8(l): 27-59, January 1995. A preliminary version appeared in Proceedings
of the 22nd ACM Symposium on Principles of Programming Languages.

[Car95b] L. Cardelli. Mobile computation. In ARPAINSF Workshop on Foun-
dational Studies for Software Engineering (Stanford, September, 1995),
1995. Position paper.

[Car96] L. Cardelli. Global Computation. Digital Equipment Corporation, Systems
Research Center, 1996.

[CBC+90a] R. C. H. Connor, A. L. Brown, R. Carrick, A. Dearle, and R. Morrison. The
persistent abstract machine. In J. Rosenberg and D. M. Koch, editors,
Persistent Object Systems, pages 353-366. Springer-Verlag, 1990.

[CBC+90b] R. C. H. Connor, A. L. Brown, Q. I. Cutts, A. Dearle, R. Morrison, and
J. Rosenberg. Type equivalence checking in persistent object systems. In
Dearle et al. [DSZ901, pages 154-167.

[CBM96] R. C. H. Connor, D. Balasubramaniam, and R. Morrison. Investigating
extension polymorphism. In Atzeni and Tannen [AT96].

[CC911 R. S. Chin and S. T. Chanson. Distributed object-based programming sys-
tems. ACM Computing Surveys, 23(l), March 1991.

[CCM95] Q. I. Cutts, R. C. H. Connor, and R. Morrison. The PamCase machine. In
M. P. Atkinson, editor, Fully Integrated Data Environments, chapter 2.1.3.
Springer-Verlag, 1995.

[CDK94] G. Colouris, J. Dollimore, and T. Kindberg. Distributed Systems: Con-
cepts and Design. Addison-Wesley, second edition, 1994.

[CDKM89] Q. I. Cutts, A. Dearle, G. N. C. Kirby, and C. D. Marlin. WIN: A persistent
window management system. Technical Report PPRR-73-89, Universities
of Glasgow and St Andrews, 1989.

[CDMB901 R. C. H. Connor, A. Dearle, R. Morrison, and A. L. Brown. Existentially
quantified types as a database viewing mechanism. In F. Bancilhon,
C. Thanos, and D. Tsichritzis, editors, Proceedings of the Second In-
ternational Conference on Extending Database Technology (Venice, Italy,
March 1990), number 416 in Lecture Notes in Computer Science, pages
301-315. Springer-Verlag, 1990.

188 BIBLIOGRAPHY

[Che93] W. K. Cheng. Distributed object database management systems. Journal
of Object-Oriented Programming, March-April 1993.

[CKW96] Oliver Ciupke, Dietmar Kottmann, and Hans-Dirk Walter. Object migra-
tion in non-monolithic distributed applications. In ICDCS-96 [ICD96].

[CMM91] R. C. H. Connor, D. McNally, and R. Morrison. Subtyping and assign-
ment in database programming languages. In Kanellakis and Schmidt
[KS91], pages 305-324. Proceedings of the Third International Workshop
on Database Programming Languages (Nafplion, Greece, 27th-30th Au-
gust 1991).

[C094] S. C. Crawley and M. J. Oudshoorn. Orthogonal persistence and Ada. In
Proceedings TRI-Ada'94 Nov 6-11 1994, pages 298-308. Association for
Computing Machinery, 1994.

[Coh961 Norman H Cohen. Ada as a second language. McGraw-Hill, 1996.

[Con9l] R. C. H. Connor. Types and Polymorphism in Persistent Programming Sys-
tems. PhD thesis, University of St Andrews, 1991.

[Con961 R. C. H. Connor. Welcome to the HIPPO home page. University of St
Andrews, 1996. http: //grappa. dcs. st-and. ac. uk/HIPPO/.

[C0096] Proceedings of the 2nd Conference on Object-Oriented Technologies and
Systems (June 17-21,1996, Toronto, Ontario, Canada), 1996.

[Cra93] D. H. Craft. A study of pielding. Journal of Object- Oriented Programming,
January 1993.

[Cut93] Q. 1. Cutts. Delivering the Benefits of Persistence to System Construction
and Execution. PhD thesis, University of St Andrews, 1993.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and
polymorphism. A CM Computing Surveys, 17(4): 471-523, December 1985.

[Dan951 J. Daniels. Position paper. In Proceedings of the OOPSLA'95 Work-shop
on Building Large Distributed Software Systems Using Objects, 1995.

[DC93] J. Daniels and S. Cook. Strategies for sharing objects in distributed sys-
tems. Journal of Object-Oriented Programming, January 1993.

[DdBF+94] A. Dearle, R. di Bona, J. Farrow, F. Henskens, A. Lindstr6m, and
J. Rosenberg. Grasshopper: An orthogonally persistent operating sys-
tem. Computer Systems, 7(3): 289-312,1994.

[Dea89] A. Dearle. Environments: A flexible binding mechanism to support Sys-
tem evolution. In B. H. Shriver, editor, Proceedings of the Twenty-Second
Annual Hawaii International Conference on System Sciences, Volume 11
Software Track (January 1989), pages 46-45,1989.

BIBLIOGRAPHY 189

[Deu9l] 0. Deux. The 02 system. Communications of the ACM, 34(10): 34-48,
October 1991.

[DG92] L. Daynýs and 0. Gruber. Nested actions in Eos. In A. Albano and
R. Morrison, editors, Proceedings of the Fifth International Workshop on
Persistent Object Systems (San Miniato, Italy, 1st-4th September 1992),
Workshops in Computing, pages 144-163. Springer-Verlag in collaboration
with the British Computer Society, 1992.

[DH93] J. P. Deschrevel. and A. J. Herbert. The ANSA Model of Federation and
Rading. Architecture Projects Management Ltd., Cambridge (UK),
February 1993.

[DiJ68] E. W. Dijkstra. Cooperating sequential processes. In Genyus, editor, Pro-
gramming Languages. Academic Press, New York, 1968.

[DPS+94] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and
B. Welch. The Bayou architecture: Support for data sharing among mo-
bile users. In Proceedings of the Workshop on Mobile Computing Systems
and Applications (Santa Cruz, California, December 1994), pages 2-7.
IEEE Computer Society Press, 1994.

[DRV91] A. Dearle, J. Rosenberg, and F. Vaughan. A remote execution mechanism
for distributed homogeneous stable stores. In Kanellakis and Schmidt
[KS91]. Proceedings of the Third International Workshop on Database
Programming Languages (Nafplion, Greece, 27th-30th August 1991).

[DSZ90] A. Dearle, G. M. Shaw, and S. B. Zdonik, editors. Proceedings of the Fourth
International Work-shop on Persistent Object Systems, Their Design, Im-
plementation and Use (Martha's Vineyard, USA, September 1990). Mor-
gan Kaufmann Publishers, 1990.

[ESS91] J. L. Eppinger, N. Saxena, and A. Z. Spector. Ransactional RPC. Transarc
Corporation, 1991.

[Eva96) Huw Evans. Private communication, 1996.

[FD93] A. Farkas and A. Dearle. Octopus: A reflective mechanism for object ma-
ilipulation. In C. Beeri, A. Ohori, and D. E. Shasha, editors, Proceedings of
the Fourth International Work-shop on Database Programming Languages:
Object Models and Languages (Manhattan, New York City, USA, 30th
August-Ist September 1993). Springer-Verlag in collaboration with the
British Computer Society, 1993.

[FD941 A. Farkas and A. Dearle. The Octopus model and its implementation.
Australian Computer Science Communications, 16(l), 1994.

[Fre96] E. Reeman. Linda Group. Department of Computer Science, Univer-
sity of Yale, 1996. http: //www. cs. yale. edu/HTML/YALE/CS/Linda/-
linda. html.

190 BIBLIOGRAPHY

[Gib87] P. B. Gibbons. A stub generator for multilanguage RPC in heterogeneous
environments. IEEE Ransactions on Software Engineering, 13(l): 77-87,
January 1987.

[GNSP94] Y-S. Gutfreund, J. Nicol, R. Sasnett, and V. Phuah. WWWinda: An or-
chestration service for WWW browsers and accessories. In Proceedings of
the Second International WWW Conference: Mosaic and the Web, 1994.

[Gru92] 0. Gruber. Eos, an Environment for Persistent and Distributed Applica-
tions over a Shared Object Space. PhD thesis, Universit6 Pierre et Marie
Curie, Paris VI, France, December 1992.

[Ham84] K. G. Hamilton. A Remote Procedure Call System. PhD thesis, University
of Cambridge Computer Laboratory, 1984.

[Han72] P. Brinch Hansen. Distributed processes, a concurrent programming con-
cept. Communications of the ACM, 21(11): 934-941,1972.

[Han73] P. Brinch Hansen. Operating System Principles. Prentice Hall, 1973.

[Han75] P. Brinch Hansen. The programming language Concurrent Pascal. IEEE
Trunsactions on Software Engineering, 1(2): 199-207,1975.

[Har92] Samuel P. Harbison. Modula-3. Prentice Hall, 1992.

[HKM+881 J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,
R. N. Sidebotham, and M. J. West. Scale and performance in a distributed
file system. ACM Transactions on Computer Systems, 6(l), February
1988.

[HL821 M. Herlihy and B. Liskov. A value transmission method for abstract
data types. ACM Transactions on Programming Languages and Systems,
4(4): 527-551, October 1982.

[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept. Com-
munications of the A CM, 17(10): 549-557, October 1974.

[HP90] C. Harrison and M. Powell. A modular persistent store. In Dearle et al.
[DSZ901.

[HPM93] G. Hamilton, M. L. Powell, and J. G. Mitchell. Subcontract: A flexible
base for distributed programming. Technical Report SMLI TR-93-13, Sun
Microsystems Laboratories, 1993.

[IBM94] IBM. MQSeries: Distributed Queue Management Guide, third edition,
June 1994.

[IBM95] IBM. MQSeries: Application Programming Guide, third edition, February
1995.

BIBLIOGRAPHY 191

[IBM96a] IBM Corporation. IBM MQSeries product family home page: Commercial
Messaging Software, 1996. http: //www. hursley. ibm. com/mqseries/.

[IBM96b] IBM Tokyo Research Lab. Aglets Workbench: Programming Mobile Agents
in Java, 1996. http: //www. trl. ibm. co. jp/aglets/.

[ICD96] Proceedings of the 16th International Conference on Distributed Comput-
ing Systems (Hong-Kong, May, 1996). IEEE Computer Society Press,
1996.

[JLHB88] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility
in the Emerald system. ACM Transactions on Computer Systems, 6(l),
February 1988.

[JM96] H. V. Jagadish and I. S. Mumick, editors. Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data (Montreal,
Quebec, Canada, June 4-6,1996), SIGMOD Record, June 1996.

[JSS94] B. Janssen, D. Severson, and M. Spreitzer. ILU 1.6.4 Reference Manual.
Xerox Corporation, May 1994.

[JV95] M. Jordan and M. Van De Vanter. Software configuration management in
an object-oriented database. In Proceedings USENIX 1995 Conference on
Object-Oriented Technologies (Monterey, California, June 26-29,1995),
1995.

[Kap95] Frank Kappe. A scalable architecture for maintaining referential integrity
in distributed information systems. The Journal of Universal Computer
Science, 1(2), February 1995.

[Kat961 K. Kato. Private communication, 1996.

[KBC+94] G. N. C. Kirby, A. L. Brown, R. C. H. Connor, Q. I. Cutts, A. Dearle, V. S.
Moore, R. Morrison, and D. S. Munro. The Napier88 standard library
reference manual version 2.2. Technical Report FIDE/94/105, ESPRIT
Basic Research Action, Project Number 6309-FIDE2,1994.

[Kir931 G. N. C. Kirby. Reflection and Hyper-Programming in Persistent Program-
ming Systems. PhD thesis, University of St Andrews, 1993.

[KKM94] K. Kono, K. Kato, and T. Masuda. Smart remote procedure calls: Trans-
parent treatment of remote pointers. In Proceedings of the 14th Inter-
national Conference on Distributed Computing Systems (Poznan, Poland,
June 21-24,1994). IEEE Computer Society Press, 1994.

[KMK961 K. Kono, T. Masuda, and K. Kato. An Implementation method of mi-
gratable distributed objects using an RPC technique integrated with vir-
tual memory management. In P. Cointe, editor, Proceedings of the 10th
European Conference on Object-Oriented Programming (ECOOP) (Linz,
Austria, July 10-12,1996), Lecture Notes in Computer Science, pages
295-315. Springer-Verlag, 199G.

192 BIBLIOGRAPHY

[Kna94] F. Knabe. Function transmission for a distributed higher-order language.
Extended Abstract, November 1994.

[Kna95] F. Knabe. Language Support for Mobile Agents. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA 15213, USA, December 1995.

[KO92] K. Kato and A. Ohori. An approach to multilanguage persistent type sys-
tem. In R. Morrison and M. P. Atkinson (minitrack coordinators), editors,
Proceedings of the Twenty-Fifth Hawaii International Conference on Sys-
tem Sciences, Volume 11, Software Technology, Persistent Object Systems,
pages 810-819,1992.

[KOMM93] K. Kato, A. Ohori, T. Murakami, and T. Masuda. Distributed C language
based on a higher-order RPC technique. JSSST, 5: 119-143,1993.

[KS91] P. Kanellakis and J. W. Schmidt, editors. Database Programming Lan-
guages: Bulk npes and Persistent Data. Morgan Kaufmann Publishers,
1991. Proceedings of the Third International Workshop on Database Pro-
gramming Languages (Nafplion, Greece, 27th-30th August 1991).

[KSD+90] B. Koch, T. Schunke, A. Dearle, F. Vaughan, C. Marlin, R. Fazakerley,
and C. Barter. Cache coherency and storage management in a persistent
object system. In Dearle et al. [DSZ90].

[KTM+961 K. Kato, K. Toumura, K. Matsubara, S. Aikawa, J. Yoshida, K. Kono,
K. Taura, and T. Sekiguchi. Protected and secure mobile object computing
in PLANET. In Baumann et al. [BTV961.

[LAC+96] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Ma-
heshwari, A. Myers, and L. Shrira. Safe and efficient sharing of persistent
objects in Thor. In Jagadish and Mumick [JM96].

[Lar96] P. Larsson. TkWin: A modern GUI for Napier88. Master's thesis, De-
partment of Computing Science, University of Goteb8rg, Sweden, 1996.
Performed at Department of Computing Science, University of Glasgow.

[Lav95a] D. Lavery. The design of effective software visualizations for persistent
programming languages. Technical Report FIDE/95/116, ESPRIT Basic
Research Action, Project Number 6309-FIDE2,1995.

[Lav95b] D. Lavery. Towards visualizing persistent stores. Technical Report
FIDE/95/122, ESPRIT Basic Research Action, Project Number 6309-
FIDE2) 1995.

[LBG+88] B. Liskov, T. Bloom, D. Gifford, R. Scheifier, and W. E. Weihl. Commu-
nication in the Mercury system. In Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988.

[LDS921 B. Liskov, M. Day, and L. Shrira. Distributed object management in Thor.
In 6zsu et al. [6DV921.

BIBLIOGRAPHY 193

[Lie93] J. Liedtke. Improving IPC by kernel design. In Proceedings of the 14th
ACM Symposium on Operating Systems Principles, pages 175-188. Asso-
ciation for Computing Machinery, 1993.

[Lis84] B. Liskov. Overview of the Argus language and system. MIT Programming
Methodology Group Memo 40, MIT, February 1984.

[Lis88] B. Liskov. Distributed programming in Argus. Communications of the
A CM, 31(3): 300-312, March 1988.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. ObjectStore. Com-
munications of the ACM, 34(10): 51-63, October 1991.

[Loo93] M. Loomis. Distributed object databases. Jour7zal of Object-Oriented
Programming, March-April 1993.

[Lop95] C. Lopes. Graph-based optimizations for parameter passing in remote
invocations. In Proceeding of the 4th International Workshop on Object
Orientation in Operating Systems (Lund, Sweden, August 1995). IEEE
Computer Society Press, 1995.

[Lop96] C. Lopes. Adaptive parameter passing. In Proceedings of the 2nd In-
ternational Symposium on Object Technologies for Advanced Software
(Kanazawa, Japan, Mar. 11-15,1996), volume 1049 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

[Lot96) Lotus. Notes: The Best in Messaging, Groupware, Internet Products and
More, 1996. http: //www. lotus. com/allnotes/.

[LS831 B. Liskov and R. Scheifier. Guardians and actions: Linguistic support
for robust, distributed programs. ACM Transactions on Programming
Languages and Systems, 5(3): 381-404, July 1983.

[LS88] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Proceedings of the
SIGPLAN'88 Conference on Programming Lnaguage Design and Imple-
mentation, pages 260-267,1988.

[Mar961 Marimba. Castanet, 1996. http: //www. marimba. com/products/eastanet. -
html.

[Mat96] Bernd Mathiske. Mobility in Persistent Object Systems. PhD thesis, Com-
puter Science Department, Hamburg University, Germany, May 1996. In
German.

[MBC+90) R. Morrison, A. L. Brown, R. C. H. Connor, Q. I. Cutts, A. Dearle, G. N. C.
Kirby, J. Rosenberg, and D. Stemple. Protection in persistent object
systems. In Rosenberg and Keedy [RK90], pages 48-66.

194 BIBLIOGRAPHY

[MBC+94] R. Morrison, A. L. Brown, R. C. H. Connor, Q. I. Cutts, A. Dearle, G. N. C.
Kirby, and D. S. Munro. The Napier88 reference manual release 2.0.
Technical Report FIDE/94/104, ESPRIT Basic Research Action, Project
Number 6309-FIDE2,1994.

[MBCD89] R. Morrison, A. L. Brown, R. C. H. Connor, and A. Dearle. The Napier88
reference manual. Technical Report PPRR-77-89, Universities of Glasgow
and St Andrews, 1989.

[MdS95a] ý1. Mira da Silva. Automating type-safe RPC. In O. A. Bukhres, M. T.
Ozsu, and M. C. Shan, editors, Proceedings of The Fifth International
Workshop on Research Issues on Data Engineering: Distributed Object
Management (Taipei, Taiwan, 6th-7th March 1995), pages 100-107. IEEE
Computer Society Press, 1995.

[MdS95b] M. Mira da Silva. Programmer's manual to Napier88/RPC 2.2. Technical
Report FIDE/95/133, ESPRIT Basic Research Action, Project Number
6309-FIDE2,1995.

[MdS97] M. Mira da Silva. Mobile Object Systems, chapter Mobility and Persis-
tence. Number 1222 in Lecture Notes in Computer Science. Springer-
Verlag, 1997.

[MdSA96a] M. Mira da Silva and M. Atkinson. Combining mobile agents with persis-
tent systems: Opportunities and challenges. In Baumann et al. [BTV961.

[MdSA96b) M. Mira da Silva and M. P. Atkinson. Higher-order distributed computa-
tion over autonomous persistent stores. In Atkinson et al. [AMB96].

[MdSAB96] M. Mira da Silva, M. P. Atkinson, and A. Black. Semantics for parameter
passing in a type-complete persistent RPC. In ICDCS-96 [ICD961.

[MdSRdS971 M. Mira da Silva and A. Rodrigues da Silva. Insisting on persistent mo-
bile agent systems. In R. Popescu-Zeletin and K. Rothermel, editors,
Proceedings of the First International Workshop on Mobile Agents (Berlin,
Germany, April 7-8,1997), Lecture Notes in Computer Science. Springer-
Verlag, 1997.

[Mel96] Jim Melton. SQU update. In Su [Su96], pages 666-G72.

[MMM931 B. Mathiske, F. Matthes, and S. Mussig. The Tycoon system and library
manual. Technical Report DBIS Tycoon Report 212-93, Computer Science
Department, University of Hamburg, December 1993.

[MMS94] F. Matthes, S. MilBig, and J. W. Schmidt. Persistent polymorphic pro-
gramming in Tycoon: An introduction. Technical Report FIDE/94/106,
ESPRIT Basic Research Action, Project Number 6309-FIDE2,1994.

[MMS95] B. Mathiske, F. Matthes, and J. W. Schmidt. On migrating threads. In
Proceedings of the Second International Work-shop on Next Generation
Information Technologies and Systems (Naharia, Israel, June 1995), 1995.

BIBLIOGRAPHY 195

[MMS96] B. Mathiske, F. Matthes, and J. W. Schmidt. Scaling database languages
to higher-order distributed programming. In Atzeni and Tannen [AT96].

[MP85] J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. In
Proceedings of the Twelfth A CM Symposium on Principles of Programming
Languages, pages 37-51, New Orleans, January 1985.

[MT86] S. J. Mullender and A. S. Tanenbaum. The design of a capability-based dis-
tributed operating system. The Computer Journal, 29(4): 289-300,1986.

[Mul93] S. J. Mullender, editor. Distributed Systems. ACM Press, 2nd edition,
1993.

[Mun93] D. S. Munro. On the Integration of Concurrency, Distribution and Persis-
tence. PhD thesis, University of St Andrews, 1993.

[Nel8l] B. Nelson. Remote Procedure Call. PhD thesis, Department of Computer
Science, Carnegie-Mellon University, 1981.

[Net96] Netscape Communications Corporation. Netscape Home Page, 1996.
http: //www. netscape. com/.

[ODI96] ODI -Object Design, Inc. ObjectStore for Smalitalk, March 1996.

[(5DV92] M. T. (5zsu, U. Dayal, and P. Valduriez, editors. Proceedings of the Interna-
tional Work-shop on Distributed Object Management (Edmonton, Canada,
18th-21st August 1992), 1992.

[OK93] A. Ohori and K. Kato. Semantics for communication primitives in a poly-
morphic language. In Conference Re-cord of the Twentieth Symposium
on Principles of Programming Languages, pages 99-112. Association for
Computing Machinery, 1993.

[OMG951 OMG- Object Management Group. The Common Object Request Bro-
ker: Architecture and Specification (CORBA), 1995.

[OSF911 OSF-Open Software Foundation. Remote Procedure Call in a Dis-
tributed Computing Environment: A White Paper, 1991.

[Phi96] P. Philbrow. Private communication, 1996.

[Pre96] Premenos. EDI Standards, 1996. http: //www. premenos. com/standards/.

[PS95] David Plainfosse and Marc Shapiro. A survey of distributed garbage collec-
tion techniques. In Proceedings of the International Work-shop on Memory
Management, (Kinross, UK, September 1995), 1995.

[RdSMdSD97a] A. Rodrigues da Silva, M. Mira da Silva, and Jos6 Delgado. AgentSpace:
A framework for developing agent programming systems. In Proceedings of
the 4th International Conference on Intelligence in Services and Networks
(Cernobbio, Como, Italy, May 27-29,1997), 1997.

196 BIBLIOGRAPHY

[RdSMdSD97b] A. Rodrigues da Silva, M. Mira da Silva, and Jos6 Delgado. Conceptual
frameworks for Web information systems development. In Proceedings of
the 7th MINI EURO Conference (Bruges, March 24-27,1997), 1997.

[RK90] J. Rosenberg and J. L. Keedy, editors. Security and Persistence. Proceed-
ings of the International Workshop on Computer Architectures to Support
Security and Persistence of Information (Bremen, West Germany, 8-11
May 1990), Workshops in Computing. Springer-Verlag in collaboration
with the British Computer Society, 1990.

[Ros9O] John Rosenberg. The MONADS architecture: A layered view. In Dearle
et al. [DSZ90], pages 215-225.

[Ros96] Davide Rossi. Jada: multiple tuple spaces for Java a la Linda. Department
of Computer Science, University of Bologna, 1996. http: //www. es. unibo. -
it/-rossi/jada/.

[RS87] L. A. Rowe and M. Stonebraker. The Postgres data model. In Proceed-
ings of the Thirteenth International Conference on Very Large Data Bases
(Brighton, England, 1987), pages 83-96,1987.

[RWW96] R. Riggs, J. Waldo, and A. Wollrath. Pickling state in the Java system.
In COOTS-96 [COO961.

[SA97] S. Spence and M. Atkinson. A scalable model of distribution promoting
autonomy of and cooperation between PJava object stores. In Proceed-
ings of the Thirtieth Hawaii International Conference on System Sciences
(Hawaii, USA, January 1997), 1997. To be published.

[SB89] Michael D. Schroeder and Michael Burrows. Performance of firefly RPC.
Operating Systems Review, 23(5): 83-90, December 1989.

[SBG+91] R. E. Strom, D. F. Bacon, A. P. Goldberg, A. Lowry, D. M. Yellin, and S. A.
Yemini. HERMES. A Language for Distributed Computing. Series in
Innovative Technology. Prentice Hall, 1991.

[SBH961 M. Strasser, J. Baumann, and F. Hohl. MOLE: A Java based mobile agent
system. In Baumann et al. [BTV96].

[Sch77] J. W. Schmidt. Some high level language constructs for data of type rela-
tion. ACM Transactions on Database Systems, 2(3): 247-261, September
1977.

[SCWA94) D. I. K. Sjoberg, Q. Cutts, R. Welland, and M. Atkinson. Analysing persis-
tent language applications. In M. P. Atkinson, V. Benzaken, and D. Maier,
editors, Proceedings of the Sixth International Workshop on Persistent Ob-
ject Systems. Springer-Verlag in collaboration with the British Computer
Society, 1994.

[SG90] J. W. Stamos and D. K. Gifford. Remote evaluation. ACM Transactions
on Programming Languages and Systems, 4(12): 537-565, October 1990.

BIBLIOGRAPHY 197

[Sjo93] D. I. K. Sjoberg. Thesaurus-Based Methodologies and Tools for Maintaining
Persistent Application Systems. PhD thesis, University of Glasgow, July
1993.

[SJO96] D. I. K. Sjoberg. Private communication, 1996.

[SM86] R. J. Souza and S. P. Miller. Unix and remote procedure calls: A peaceful
coexistence ? In Proc. of the 6th Int. Conf. on Distributed Computing
Systems (Cambridge, Massachusetts, May 19-23,1986), pages 268-277,
1986.

[Spe82] A. Spector. Performing remote operations efficiently on a local computer
network. Communications of the ACM, 25(4): 246-259, April 1982.

[Spe97] S. Spence. Distribution strategies for Persistent Java. In M. P. Atkinson
and M. Jordan, editors, Proceedings of the First International Work-shop
on Persistence and Java (Drymen, Scotland, September 1996), 1997. To
be published as a Sun Technical Report.

[SR86] M. Stonebraker and L. A. Rowe. The design of Postgres. In Proceedings of
the A CM SIGMOD 1986 Conference on the Management of Data (Wash-
ington, DC, May), pages 340-355,1986.

[Sta821 J. Staunstrup. Message passing communication versus procedure call com-
munication. Software Practice and Experience, 12: 223-234,1982.

[Su96] Stanley Y. W. Su, editor. Proceedings of the Twelfth International Con-
ference on Data Engineering (February 26 - March 1,1996, New Orleans,
Louisiana). IEEE Computer Society Press, 1996.

[Sun93a] Sun Microsystems. External Data Representation Standard: Protocol Spec-
ification, 1993.

[Sun93b) Sun Microsystems. RPC Programming Guide, 1993.

[Sun93c] Sun Microsystems. Transport Level Interface Programming, 1993.

[Sun96a] Sun Microsystems. Remote Method Invocation, 1996. http: //chatsubo. -
javasoft. com/current/rmi/.

[Sun96b] Sun Microsystems Inc. Java IDL, 1996. http: //splash. javasoft. com/-
JavaIDL/pages/.

[Sun96c] Sun Microsystems Inc. JDBC. - A Java SQL API, 1996. http: //splash. -
javasoft. com/jdbc/.

[Sun96d] Sun Microsystems, Inc. JEE VES: Java-powered Internet server and frame-
work, 1996. http: //www. javasoft. com/products/J*eeves/.

[SWA+95] D. I. K. Sjoberg, R. C. Welland, M. P. Atkinson, P. Philbrow, and C. A.
Waite. Exploiting persistence in build management. Technical Report 6,
University of Oslo, Department of Informatics, 1995.

198 BIBLIOGRAPHY

[SWA+96] D. I. K. Sjoberg, R. C. Welland, M. P. Atkinson, P. Philbrow, C. A. Waite,
and S. D. Macneill. The persistent workshop: A programming environment
for Napier88. In Proceedings of the 7th Nordic Workshop on Programming
Environment Research (Aalborg, Denmark, 29-31 May, 1996), 1996.

[TA90] B. H. Tay and A. L. Ananda. A survey of remote procedure calls. ACM
Operating Systems Review, 24(3), July 1990.

[TD94] I. Toyn and A. J. Dix. Efficient binary transfer of pointer structures.
Software Practice and Experience, 24(11): 1001-1023,1994.

[THM+96] P. Trinder, K. Hammond, J. Mattson, A. Partridge, and S. Peyton Jones.
CUM: A portable parallel implementation of Haskell. In Proceedings of the
1996 Conference on Programming Language Design and Implementation
(Philadelphia, USA, 1996), 1996.

[rfta93a] Transarc Corporation. Encina for the Solaris Operating Environment:
Product Overview, 1993.

[TYa93b] Transarc Corporation. Encina for the Solaris Operating Environment:
Recoverable Queuing Service, 1993.

[1ý05] P. Trinder. Private communication, 1995.

[Wai88] F. Wai. Distributed Concurrent Persistent Programming Languages: An
Experimental Design and Implementation. PhD thesis, University of Glas-
gow, April 1988.

[WA196] J. Waldo. Distributed computing and persistence. JavaOne: Sun's World-
wide Java Developer Conference, 1996. Collection of slides.

[WB871 S. Wilbur and B. Bacarisse. Building distributed systems with remote
procedure call. Software Engineering Journal, September 1987.

[WFN90] E. F. Walker, R. Floyd, and P. Neves. Asynchronous remote operation
execution in distributed systems. In Proceedings of the 10th International
Conference on Distributed Computing Systems, pages 253-259. IEEE,
1990.

[Whi94a] J. E. White. Telescript Tecnhology: Scenes from the Electronic Market-
place. General Magic, 1994.

[Whi94b] J. E. White. Telescript Tecnhology: The Foundation for the Electronic
Marketplace. General Magic, 1994.

[Wik94] C. Wikstr6m. Distributed programming in Erlang. In Proceedings of
the First International Symposium on Parallel Computation (PASCO'94),
1994.

[Wor9G] World Wide Web Consortium. HyperText Markup Language (HTML),
1996. http: //www. w3. org/pub/WWW/MarkUp/MarkUp. html.

BIBLIOGRAPHY 199

[WPA+95] C. A. Waite, P. Philbrow, M. P. Atkinson, R. C. Welland, D. Lavery, S. D.
Macneill, T. Printezis, and R. C. Cooper. Programmer's Persistent Work-
shop: Principles and User Guide. Technical Report FIDE/95/125, ES-
PRIT Basic Research Action, Project Number 6309-FIDE2,1995,

[WRW96] A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the
Java system. In COOTS-96 [CO096].

[WWP+95] C. A. Waite, R. C. Welland, T. Printezis, A. Pirmohamed, P. Philbrow,
G. Montgomery, M. Mira da Silva, S. D. Macneill, D. Lavery, C. Hertzig,
A. Froggatt, R. L. Cooper, and M. P. Atkinson. Glasgow libraries for
orthogonally persistent systems: Philosophy, organisation and contents.
Technical Report FIDE/95/132, ESPRIT Basic Research Action, Project
Number 6309-FIDE2,1995.

[WWWK94] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed
computing. Technical Report TR-94-29, Sun Microsystems Laboratories,
1994.

200 BIBLIOGRAPHY

Index

Binding
Binding service, 46
Procedure binding, 66
Server binding, 66
Type sessions, 66

Caching, 28

Data representation, 52
Common data format, 52
Source data format, 53

Dispatching, see Napier/RPC, Transport
protocol, Dispatching

Dissertation structure, 10
Distribution, 3

Distributed applications, 11
Advantages, 11
Classes, 14
Disadvantages, 12
Features, 3

Models, 4,15
Federated, 18
One-world, 16

Evaluation, see Explorer, see Performance
Example applications, see Explorer, 178
Explorer, 153,173

Client/Server, 154
Distributed, 155

Failures
Failure model, see RPC, Failure model
Partial failures, 31

Federated model of distribution, see Dis-
tribution, Models, Federated

Fingerprinting, 29,47,64
Future work, 175

Example applications, 178
Library installation, 178

Heterogeneity and inter-operability, 179

Implementation issues, 177
Mobile object systems, 175

Goals achieved, 180

Heterogeneity and inter-operability, 179
Higher-order migration, 110

Applicability, 114
Data format, 111
Example, 111

Hyper-program, 40

Implementation
Future work, 177
Migration by copy, 94
Migration by reference, 89
Migration by substitution, 105
Napier88,39
Persistence, 35
Persistent spaces, 138

Inter-process communication
Motivation, 5

Inter-process communication, 5
Design issues, 6,20,180
Efficiency, 25
Fault-tolerance, 30
Heterogeneity, 29
Motivation, 20
Performance, 25
Replication, 26
Scalability, 25
Synchronisation, 24
Type-completeness, 23
Type-safety, 22
Understandability, 21

Library Explorer, see Explorer

Marshalling
Napier/RPC, 79

202

Persistent spaces, 140
Message passing, 54

Relationship with persistent spaces, 148
Migration by copy, 49,78,93

Advantages, 95
Examples, 94
Implementation, 94
Marshalling, 79
Problems, 96

Migration by reference, 49,87
Advantages, 90
Examples, 88
Implementation, 89
Problems, 91

Migration by substitution, 8,101,171
Algorithm, 104
Applicability, 114
Design, 101
Example, 113,155
Implementation, 105
Interaction with persistent spaces, 128
Model, 102
Partitioned object space, 103
Programmer interface

Explorer, 155
Related work, 108

Mobile object systems, 175

Napier/RPC, 8,63,170
Binding

Binding service, 67
Capabilities, 67
Parameter semantics, 77

Argument types, 79
Marshalling complex types, 79

Procedure binding, 65
Programmer interface, 71

Calling remote procedures, 76
Server binding, 65
Stub generation, 71

Client stubs, 72,73
Server stubs, 74,76

Transport protocol, 83
Dispatching, 84

Type sessions, 66
Type-checking, 66

INDEX

Type-safety, 63
Example of the problem, 63
Type-checking, 64

Napier88,2,36
Features, 36
Implementation, 39
Limitations and challenges, 41
Programming environment, 40
Related languages, 42
Type system, 38

One-world model of distribution, see Dis-
tribution, Models, One-world

Paddng, see Marshalling
Parallel systems, 13
Performance

Measurements, 158,174
Migration by substitution, 164
Napier/RPC, 159
Persistent spaces, 165

Explorer, 167
Incrementality, 165

RPC
Data transmission, 160
Explorer, 163
Minimal call, 159
Relative performance, 161

Persistence, 1,33
Benefits, 34
Features, 2
Implementation, 35
Persistent programming language, 1,

33
Napier88, see Napier88

Persistent RPC, 57
Challenges, 59
Need for Compromises, 61
Opportunities, 57

Persistent RPC, see Napier/RPC
Persistent spaces, 9,117,121,172

Example, 155
Implementation, 138

Marshalling, 140
Unmarshalling, 144

Other mechanisms, 127
Distributed transactions, 128

INDEX

Garbage collection, 127
Interaction with substitution, 128
Local transactions, 128
More than two stores, 130
Multiple spaces per store, 129

Programmer interface
API, 130
Class of applications, 118
Explorer, 155

Related work, 146

Related work
Migration by substitution, 108
Napier88,42
Persistent spaces, 146

Replication
As an IPC design issue, 26
Change propagation, 28
Coherency protocols, 27
Relationship with persistent spaces, 149

RPC, 44
Application programming interface, 46
Architecture, 44
Asynchronous, 54
Call semantics, 48
Combined with Persistence, see Per-

sistence, Persistent RPC
Extensibility, 56
Failure model, 53
Heterogeneity, 54
Object orientation, 56
Parameter semantics, 48

Argument types, 50
By copy, see Migration by copy
By reference, see Migration by ref-

erence
Performance, 55
Server binding, 46
Transactional, 55
Transport protocol, 51

Data representation, see Data rep-
resentation

Type-checking, 47

Sessions, see Type sessions
Spaces

Persistent, see Persistent spaces

203

Tuples, see Miple spaces
Stashing, 27
Structure of the Dissertation, 10
Substitution, see Migration by Substitu-

tion

Thesis statement, 7
Revisited, 181

Transactions, 30
Transactional RPC, see RPC, IYans-

actional
Tuple spaces, 148
Type safety

IPC, see IPC, Type-safety
Type sessions, 66
Type-checking

Binding, 66
Napier/RPC, 64
RPC, 47
Type sessions, 66

Un-packing, see Unmarshalling
Unmarshalling

Napier/RPC, 79
Persistent spaces, 144

