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Abstract

The problem of determining whether a document is about a loosely defined topic is at the core of

text Information Retrieval (IR). An automatic IR system should be able to determine if a document

is likely to convey information on a topic. In most cases, it has to do it solely based on measure-

ments of the use of terms in the document (lexical measurements). In this work a novel scheme

for measuring and representing lexical information from text documents is proposed. This scheme

is inspired by the concept of ideal measurement as is described by Quantum Theory (QT). We

apply it to Information Retrieval through formal analogies between text processing and physical

measurements. The main contribution of this work is the development of a complete mathematical

scheme to describe lexical measurements. These measurements encompass current ways of repre-

senting text, but also completely new representation schemes for it. For example, this quantum-like

representation includes logical features such as non-Boolean behaviour that has been suggested to

be a fundamental issue when extracting information from natural language text. This scheme also

provides a formal unification of logical, probabilistic and geometric approaches to the IR problem.

From the concepts and structures in this scheme of lexical measurement, and using the principle of

uncertain conditional, an “Aboutness Witness” is defined as a transformation that can detect docu-

ments that are relevant to a query. Mathematical properties of the Aboutness Witness are described

in detail and related to other concepts from Information Retrieval. A practical application of this

concept is also developed for ad hoc retrieval tasks, and is evaluated with standard collections.

Even though the introduction of the model instantiated here does not lead to substantial perfor-

mance improvements, it is shown how it can be extended and improved, as well as how it can

generate a whole range of radically new models and methodologies. This work opens a number

of research possibilities both theoretical and experimental, like new representations for documents

in Hilbert spaces or other forms, methodologies for term weighting to be used either within the

proposed framework or independently, ways to extend existing methodologies, and a new range of

operator-based methods for several tasks in IR.
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A good poem is a tautology. It expands one word by adding a number which clarify

it, thus making a new word which has never before been spoken. The seed-word is

always so ordinary that hardly anyone perceives it. Classical odes grow from ’and’

or ’because’, romantic lyrics from ’but’ or ’if’. Immature verses expand a personal

pronoun ad nauseam, the greatest works bring glory to a common verb.

Alasdair Gray, “Prometheus” in “Unlikely Stories Mostly”, Canongate Books, 1983
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Chapter 1

Introduction

1.1 Representation of Documents in IR

Information Retrieval (IR) is a scientific discipline devoted to solving the problem of picking the

pieces of information that satisfy an information need. This is accomplished by retrieving infor-

mation units from large repositories (usually collections of documents) that fulfil that need. Since

a large amount of such units is usually involved, an efficient representation of documents stands as

a key requirement; information needs must also be represented as queries in a suitable way to be

matched with representations of documents [1].

The task of representing documents has always been central to IR. In the first library systems

this task was undertaken by human librarians. These specialists determined what a document “is

about” based on a set of keywords, and represented it in a classification scheme [2]. This worked

reasonably well, until the amounts of information grew too large [3] to be handled in such a manner.

Then it became obvious that, in order to work with big amounts of information, it was necessary

to automatise the process as much as possible. Formally describing what a document is about was

not trivial for humans, and it could be expected that devising an automatic way of doing it is even

more challenging; however, automatic schemes proved quite good at the task [4].

The need to assess aboutness was an important problem that appears when representing documents,

and it made it necessary to develop ways to formalise and extract meaning to a certain extent. Some
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1.1. Representation of Documents in IR Chapter 1. Introduction

techniques were developed for automatic indexing that produce good results and are reasonably

scalable1, but there is still the necessity to improve automatic indexing to make it more sensitive

to the subtleties of meaning [5], while remaining practically feasible [6].

In this work, meaning is not going to be defined formally; it is a strongly contextual and complex

concept, but we will refer to it as it is reflected in the use of language: meaning is what determines

the use of terms (within the rules of grammar). Concepts referring to meaning will be called

Semantic, mostly in the sense of lexical semantics [7] having to do basically with features of

natural language text that are determined with the subject the text is about.

A common feature of automatic document-representation techniques, is that they all rely on the

adoption of an intermediate level of abstraction bridging the raw data and the abstract mathemati-

cal representations used by the information systems. It has been stated that a geometrical level is

particularly appropriate to work as such a bridge [8]. This mediation between raw data and math-

ematical representation is in no way specific to IR; it can also be found in scientific disciplines

including physics. An important problem of Physics is producing a representation of the state of a

system from which all the information that can be obtained through a set of measurements can be

derived. In particular, Quantum Theory (QT) provides such a representation: the state of a system

and the measurements performed upon it are represented by mathematical concepts; the formal

characteristics of these concepts reflect those of the experimental settings that are used for their

physical study. QT was developed for the study of natural objects (i.e. photons, electrons, etc) that

are not observable directly. These objects seemed to resist a representation in terms of Newtonian

physics, and some decades after the theory was put together in its first version, von Neumann found

that it included a fundamental non-Boolean logical framework [9].

IR, on the other hand, is a science of quite visible artificial objects (i.e. text / documents) [10]

whose characteristics are not given by nature, but by their human creators, and even by their human

users. Some central concepts in it, like for example relevance have a contextual, measurement-

dependent nature that vaguely reminds of quantum concepts.

Is there a reason to apply such physical conceptual framework to such artificial objects? in both QT

1A procedure is scalable if applying it to larger and larger amounts of information, it still requires a reasonably
small amount of resources, like memory, time, processing power. Scalability is closely related to algorithmic com-
plexity (which is its purely mathematical aspect) and efficiency.
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and IR, the subject of description by the theory can be measurement itself, and the information

obtained from it, instead of the objects (particles and natural entities, on one hand, or documents

and artificial entities, on the other). This can seem like a non-intuitive approach to physics, but it

is precisely what is behind Landauer’s principle: “information is physical” [11]. With this catch-

phrase, Landauer calls attention on the importance of mathematical representations in Physics, and

how they are the main characters in any physical theory.

The relationship between concepts in QT and IR has been explored by van Rijsbergen [10], Do-

minich [12] and others, but there is certainly much to be studied in this area. This study does

not aim to provide an extensive exploration of them, but only taking a simple one and turning it

into an implementable framework for IR. This analogy will be introduced in the next section and

developed all along this thesis.

1.2 An Analogy of concepts in QT and IR

Figure 1.1: Basic analogy between IR and QT

In most text document retrieval tasks, a retrieval system relies on information about terms in order

to work: it checks term presence and usage in text to infer similarity or other relations that are

needed to assess relevance. This fact suggests the following analogy as a starting point (see figure

1.1):
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Documents (the raw material for IR) can be thought of as states of a physical system

(a primary concept in Physics) and their features (such as term occurrences) can be

viewed as physical observables to be measured in such system. If a suitable defini-

tion of the measurements to be performed on documents is used, then the powerful

theoretical machinery of QT can be engaged to represent and use the information

obtained. The main contribution of this work is to define suitable lexical measure-

ments which can be performed on text which will form the basis for a document

representation scheme.

Historically, quantum-inspired approaches in IR are better understood as coming from mathemat-

ical ideas than from physics analogies. Some of these mathematical ideas are:

1. The algebraic approach. It has been a recurring theme in the history of sciences that when

the knowledge in an area is deep and vast enough, attempts are made to systematise it, and

give it a coherent and encompassing structure. Examples of this have been the axiomatisa-

tion programs in mathematics and physics, taxonomical schemes in biology and chemistry,

or a number of analogous but less successful efforts in social sciences. The most comprehen-

sive systematisation program in IR is possibly Sandor Dominich’s algebraic approach [12].

According to Dominich:

Abstract structures with an intricate set of relations and no immediate relation to

concrete objects can (and do) bear few appeal to part of the IR community, but

the very detachedness from anything concrete and worldly is precisely what gives

them their flexibility and power

2. A logic foundation for IR. Logics has been at the core of IR methods since the discipline

was defined, and at the beginning, logic meant Boolean logic [13]. However, the necessity

of considering meaning in an explicit manner made the Boolean concepts problematic, and

called for a logic framework beyond Boole, as was pointed out by van Rijsbergen in 1984 [8].

The quest for the appropriate logic concepts (in particular, a conditional) able to deal with

meaning has led naturally to situation theory [14] and modal logics [15], but the complexity

of such approaches have prevented them from being tested properly in IR tasks. More re-

cently, van Rijsbergen also proposes a different approach [10]: Given that propositions about
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measurements on a system are intrinsically contextual in QT, the procedures and formalisms

used within this theory to represent these measurements and derive predictions from them,

can inspire similar methodologies in other areas where context-dependent measurement are

involved, like IR.

3. Vector Space Models (VSM) Representing documents as elements in a vector space, an

early idea in IR, is already something that is close to the representation of states in QT.

Salton, Wong and Yang proposed in 1975 to represent document as vectors of features, so

they could be compared by distance and similarity vector space measures [16]. Even though

the idea involves vector spaces like those used in QT to define vector representation of states,

this first VSM were not formulated with any mention or relation to QT. The use of some of

the concepts from Quantum Theory to link vector spaces to probabilities was proposed by

van Rijsbergen [10]. Widdows proposes in [17] another quantum-like use of vector space

representations through a quantum negation, and Bruza et al. proposes a quantum inter-

pretation of the relation between the meaning of different terms as spooky activaction at

distance [18], analogous to the way Einstein referred to quantum nonlocal effects (spooky

action at distance).

4. Probabilistic Models The principled approach to IR that has been more successful in IR

is probably formulating the problems in terms of probabilities, to allow the use of all the

mathematical machinery that has been developed to deal with them. One way of doing it

is for example describing occurrences of terms as basic observable events; a probability is

computed for them from a sampling on documents. The event of a particular document be-

ing relevant, on the other hand, is described as a more complex event whose probability is

strongly related to those of term-related (lexical) events. In the decade of 1970, the Binary

Independence Retrieval model was proposed [19], based on a simple estimation of the prob-

abilities of occurrences on terms in relevant and non-relevant documents. Recently more

complex models, called discriminative models have been also proposed, which translate the

problem of assessing relevance into a classification, most of them inspired in the Binary

Independence Model [20]. Other kind of models that have been developed are generative

models, which model text as patterns generated by random processes which would differ

according to the topic the text is about [21].
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This work was strongly inspired by all these mathematical ideas, and can actually be seen as an

attempt to apply them in a novel, unified way to IR. Abstract structures that are present in purely

algebraic approaches can also be found in this work, naturally arising from the description of

measurement. Elements are also given for the interpretation of the involved concepts in terms of

logics, probabilities and vector spaces; all these aspects of the description are naturally related in

the Quantum description of systems and measurements, and can also be related in the framework

proposed in this work.

1.3 Research Questions

The basic analogy relating QT and IR is a very general idea, and the overall objective of this work

is not only to fully develop it formally, but also to take it closer to the realm of practical tasks and

concrete applications of IR. Measurement will be the basic concept chosen to build upon, and the

formalism will be developed from it through addressing five basic research questions:

RQ1. How can basic lexical measurements on documents be defined to match in a very general

way the properties of a quantum measurement?

A basic lexical measurement is a procedure to obtain quantitative information

about the use of terms in text. This research question will be addressed by defining

a procedure performed on text documents that can be mathematically described

in a way similar to that for physical measurements.

RQ2. How can basic lexical measurements capture the features of text that convey meaning?

The use of the newly defined quantum-like measurement will be put to the test

first by analising the traditional features of text like term frequencies, but also

others that go beyond traditional methods, like burstiness and distances between

occurrences. To what point they convey meaning isa question that is not going to

be addressed, being a very complex matter of research on its own right; however,

simple sanity checks will be shown with a few examples.

RQ3. How to use this approach as a starting point to design better performing IR systems?
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This research question will be addressed by defining operations that allow to com-

bine basic lexical measurements in complex operations. These will be again ob-

tained from the analogy with QT, which makes use of a wealth of operations

neatly organised in algebraic structures. This question will be addressed in a

twofold way: on one hand, simple methods will be developed to obtain and rep-

resent information from text documents; on the other hand, an operation on text

documents will be built on lexical measurements that can be directly applied to

text retrieval.

RQ4. Does the point of view proposed (processing of lexical information as a physical measure-

ment) include existing accounts?

This question will be addressed by formulating the most usual IR approaches in

terms of the proposed lexical measurements. This question will also motivate an

exploration of relations between existing approaches through the formal elements

of the proposed approach.

RQ5. Does the point of view proposed go beyond existing accounts in a fundamental way?

This question will be addressed mainly by focusing on logical aspects of the ap-

proach like non-distributivity and the nature of uncertain conditional, that have

called for new kinds of model departing from Boolean logic.

1.4 Contributions of this Thesis to the Knowledge in IR

Addressing the research questions that are formulated in last section will produce concrete contri-

butions to the area of IR. They are the following:

• A fully developed scheme for the formal description of lexical measurements that resembles

quantum measurements. This can be found in chapter 4.

• A methodology for assessing aboutness based on the principle of uncertain conditional, that

makes use of lexical measurements in a way inspired by Quantum Theory.
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• An implementable scheme to approach Information Retrieval tasks (in particular, ad hoc

retrieval) based on simple processing of the proposed lexical measurements.

• Outlines of applications to various IR tasks, as well as hints on how to use them for problems

outside this area.

• Preliminary experimental tests of several of the proposed applications, performed and eval-

uated in standard collections.

1.5 Publications

A number of publications have arisen during the course of this thesis:

1. “Characterising Through Erasing: A Theoretical Framework for Representing Text

Documents, inspired by Quantum Theory ”

Proceedings 2nd AAAI Quantum Interaction Symposium, College publications, 2007, pages

160–163 (2008)

2. “Eraser Lattices and Semantic Contents: An Exploration of Semantic Contents in Or-

der Relations between Erasers”

Lecture Notes in Artificial Inteligence, vol. 5494, pages 266–275 (2009)

3. “Selective Erasers: A Theoretical Framework for Representing Documents Inspired

by Quantum Theory”

2nd BCS IRSG Symposium: Future Directions in Information Access, London, 2008

4. “Eraser Lattices for Documents and Sets of Documents”

Third BCS-IRSG Symposium on Future Directions in Information Access (FDIA 2009)

Padua, 2009

1.6 Outline of the thesis

The structure of the thesis is as follows

25



1.6. Outline of the thesis Chapter 1. Introduction

Chapter 2: Context

Brief description of the problems, tasks, and main methods of the discipline of IR, together with

some theoretical concepts that are used in them. This section is divided in five sections:

• Information Retrieval and its Theoretical Basis

Brief description of the general problems concerning IR, and the ways that have been used

to tackle them.

• The Scope of this Work in the Context of IR

Delimitation of the scope of IR problems with which the current work is concerned, and

some reasons to limit it.

• Basic Models in IR

Aspects of the usual models, methods and approaches of IR that are relevant to the current

work are mentioned, with an emphasis on their problematic features and

• Uncertain Conditional as a Unifying Concept

Definition of Uncertain Conditional with its characteristics and how it is used in IR. His

fundamental role in IR, and how it relates to the discussed approaches.

• What Quantum Theory has to offer to IR

Introduction to some concepts from Quantum Theory that have been proposed for IR, and

how they are going to be used in this work.

Chapter 3: Measurement

In this chapter the general problem of measurement is presented in its conceptual and logical

aspects, and the advantages of approaching IR from the measurement perspective are explored.

This subject is developed in three parts:

• The General Problem of Measurement
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The process of measurement is discussed from its mathematical foundations, and the paramount

that logic plays in it is described.

• Measurement as Filtering

A view of measurement based on the filtering of information is presented. Filtering as a

selection of the cases where a condition is fulfilled or not, will allow to relate measurement

to the logical assessment of propositions such as “condition x is fulfilled”, as well as the

composition of such propositions with logical connectors (and, or, etc). This will connect to

the approach of QT as formulated by von Neumann, highlighting the main differences with

the corresponding concepts as would be described by usual Boolean logics. Distributive law

is presented as a critical aspect of the logical formulation in which quantum and classical

descriptions divert.

• A Logic of Lexical Measurements for IR

The relevance of the problem of lexical measurement for IR is discussed. Theoretical, and

even practical possibilities brought by a change in the conception of Measurement to IR are

explored.

Chapter 4: Selective Erasers

The Selective Eraser, basic concept upon which the whole work is built, is presented in this chapter,

with a discussion and examination of its properties. Their description is developed in the following

sections:

1. Definition

2. How SEs fulfil the laws of measurement outlined in chapter 3

3. Norms from documents: getting numbers out of measurements with SEs

4. Examining text with SEs

5. Order relations between SEs: logics of measurements with SEs.

6. Representation of Documents with lexical measurements
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7. Non-Boolean algebra of SEs

8. SEs and probabilities

9. Linear Algebra for SEs

10. Uncertain Implication and SEs

11. Summary

Chapter 5: The Aboutness Witness

In this section we explore how Selective Erasers can we used to assess whether a document is

about a topic. Selective Erasers are combined to form a complex transformation called Aboutnes

Witness, which will be sensitive to semantic contents. The physical analogy that suggests its name

is explained, and some of the possibilities for defining it, as well as the properties obtained by

each, are explored.

An example: Ad Hoc Retrieval

A practical application of the Aboutness Witness is implemented and tested for a simple ad hoc

retrieval task, with several standard test collections. We discuss how the proposed approach is

equivalent to existing ones, but can generalise them to include features beyond single-term bag-of-

word schemes.

Conclusions and Future Perspectives

Finally, in this chapter the whole proposed framework is reviewed, emphasising the new possibil-

ities it brings, and how it goes beyond existing theoretical approaches. The practical applications

that have been tried and those that are suggested from preliminary explorations are discussed.

The fundamental character of the work is also examined, together with its place in current IR

research and its relations to other state-of-the-art approaches.
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Chapter 2

Context Survey

The present work attempts to introduce a novel way of representing lexical measurements which,

in turn, leads to a new approach in IR. In this chapter, some of the concepts that are subject to

this revision are presented, focusing on the problematic issues that can be recast or even clarified

by a new fundamental approach. Some of the theoretical basis of IR are described in section 2.1:

definition of the basic problem of IR (subsection 2.1.1), how the user and his or her context can be

considered in an implicit way (subsection 2.1.2), and basic components of an IR system (subsection

2.1.3). Since the scope of the basic problem is very wide and makes a formal approach difficult, a

simplification of the problem is proposed, by focusing in the aspects that are less user-dependent.

One of the aspects of this simplification will be to shift the focus from relevance to aboutness as

the main property to assess in a document. These concepts are both defined in section 2.2, where

the properties of aboutness are formulated, to be used later as a sanity check for the methodologies

we will devise to assess whether a document is about a topic. In section 2.3, the most important

classes of models that have been used in IR are briefly described, with some remarks on how the

present approach can unify them formally. The concrete retrieval methodology proposed in this

work is also situated in the scheme of IR techniques. In section 2.4 we discuss a concept from

logic that has been suggested to underly basic concepts in IR: the uncertain conditional. This

concept will be addressed also throughout the whole thesis, as one of the formal features of IR

that arises naturally from the measurement approach. In section 2.5, some previous works using

concepts from QT in IR are briefly described. Finally, in 2.6 the main challenges and tools left by

the current state of fundamental research in IR are reviewed.
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2.1 Information Retrieval and its Theoretical Basis

Even though in this work we will use analogies between IR and QT concepts, we should be careful

to keep their differences clear. IR is not too similar a science to physics. At a methodological

level, there are no obvious analogies between these two sciences. IR was developed as a collection

of ways of solving concrete problems [22], with occasional theoretical deep explorations on the

resulting solutions that give them a sound fundamental basis. A problem, for example the indexing

of documents in a library, leads to a solution: a system of automatic indexing. The solution can

then be embedded in a more general theory, for example probabilistic retrieval.

A general theory suggesting the nature of IR concepts was usually not the starting point, as it has

been the case for physics and other “hard” sciences. This experiment-first way of research has

been extremely fruitful: good solutions have been given to most of the initial problems, and the

solutions are so good that in early key papers on the field, like [23], methods and concepts can be

readily recognised that are still widely used. The way they are implemented and tested also looks

quite similar to current research in some cases. However, this work is motivated by the belief that

at this point IR would be greatly benefited by a principled approach, going from theory to reality,

after a long history of more heuristic approaches going from reality to theory.

The problem-oriented approach to IR has perhaps been a consequence of its applied nature [24],

which has modelled it as a fragmented discipline:

The real-world problem-solving focus of core specialism in IS1 (e.g. Information Re-

trieval, Information Behaviour), which disputes about which research problems are

most important. The research agenda is often driven by non-academic interests (pro-

fessional associations, practitioners, governments who want ‘useful’ research)

Cases of sciences other than IR are known where it has happened otherwise; theory can precede

the formulation of the problem itself. This is the case, for example, of superfluid He4 [25]: a theory

(quantum boson statistics) leads to the formulation of a problem (how quantum fluid and normal

fluid coexists?) for which a solution is found within the theory (Landau’s “second sound” model)].

1IS stands for Information Science
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The problem of coexistence would not even exist, were the concept of the involved phases not

introduced by the theory.

As has been stated in chapter 1, analogies to other sciences could help filling the gap of general

theories in IR; in particular, analogies to sciences whose theories were built in a very abstract way,

aiming to a very general range of application.

2.1.1 The Basic Problem of IR

From its very beginning, IR has been defined as a discipline by a single problem [26], easy to state

but very difficult to solve:

Within a large, possibly unstructured, collection of information objects (docu-

ments), retrieve those fulfilling a certain information need of a user.

Defining formally what an information need is can be very difficult and is generally not even

attempted, so it could be said that IR has been developed as a precise means to an imprecise goal.

The complex and problematic nature of this definition arises mostly from the involvement of a

human user embedded in a social context trying to accomplish a particular task. In this work, for

simplicity, we will avoid dealing directly with user-related issues, by considering only indirectly

his or her information needs only as they are formulated in machine-usable queries.

Definition 2.1 (Query)

A query is a formulation the user has produced about his or her information need as a sequence

of terms, that can be directly processed by the system without further human intervention.

We will keep in mind that this represents a contextual and potentially vague information need, but

will only address this fact by imposing certain requirements to the logic framework we are using

to process the query; however, we will consider the basic IR problem as approachable from two

different points of view: that of the user, and that of the system.
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2.1.2 System and User: the Two Sides of IR

In the first library systems the user was expected to provide precise and effective descriptions of

his or her information need, in terms of a precise code, an index table, keywords selected from

a standard set, or some kind of sophisticated but not necessarily simple classification scheme.

However, this expectation has proven quite difficult to fulfill; now it is in fact accepted that it

should not be the user who adapts him or herself to the system, but the other way around. IR

community is making important efforts to acquire a better understanding of the user and his or her

behaviour to teach the system how to adapt to it [27, chapter 3].

At the same time, the explosive growth of the IR knowledge in the last two decades has also pro-

duced a wealth of different specifically defined IR tasks that allow researches to limit the influence

of the specific circumstances of the user in retrieval scenarios, and study in depth the entities and

phenomena that are only involved in the processing of data that has fed to the retrieval system.

These two coexisting, complementary trends reflect two sides of IR that reinforce one another,

which we will call the system-oriented and user-oriented approach.

Definition 2.2 (System-Oriented approach)

The System-Oriented approach considers collections, documents, queries and their represen-

tations, as well as processes involving them, as the object of study, and takes the user simply

as a given entity that manifests itself by producing queries and requiring certain characteristics

(aspects of relevance) from the retrieved documents. The user’s nature, behaviour and context

is considered, just not as an object of study, but as part of the definition of a given problem.

Definition 2.3 (User-Oriented approach)

The User-Oriented approach considers the user as the object of study, as well as his or her

behaviour as an agent trying to perform a task, the way he or she interacts with the system, the

context relevant to the task and user, etc. It can consider the collection, documents, hardware,

methods, etc. as part of the problem under study, but, for simplicity, takes most of its elements

and characteristics as given.

In this work, we will adopt a system-oriented approach. This means that we are considering the

influence of the user indirectly, as acting through the following items:
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Figure 2.1: Scheme of the working of a basic IR system

1. The Query (definition 2.1).

2. Conditions required from a retrieved document. Both the task and the perception the user has

about a document can be complex and partially unknown, so they are best split into different

aspects for their study. Different aspects of relevance (like those described in subsection 2.2)

can be taken into account for different tasks.

3. The language he or she is assumed to use. Lexical information from the collection is assumed

to be an indication of the information the user would obtain from the text.

2.1.3 General Structure of an IR system

The basic problem that IR tries to solve involves two parts: a collection of information objects

and a user with an information need. The solution to this problem is, of course, an IR system

that mediates between the two, presenting the user with the relevant elements of the collection.

The elements and structure of this system can vary from one approach to another, but are usually

determined by a certain division of tasks.

Some of the key tasks that can be defined within the functioning of an IR system are the following:

Definition 2.4 (Indexing)

Indexing is the process of generating a suitable representation of documents, and organising
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it for an efficient processing. This representation (the index) should be easier to manage than

documents themselves, but have enough information about the subject they treat. The query also

needs to be also represented in a similar way, to be compared (matched) with the documents.

Definition 2.5 (Matching)

Matching is the process of assessing a certain kind of relation between the representation of

the query and the representation of each document. This relation is usually a query-document

similarity, but, as we will show later (section 2.4) can be of other kind. The result of this is

an amount that quantifies the degree of relevance (score) and allows to generate a list of the

documents ordered according to their scores (ranking).

2.2 The Scope of This Work in the Context of IR

As mentioned in the last section, in this work we adopt a system-oriented approach, which means

that we take a formulated query (instead of a user with an information need) as a starting point. It

has been pointed out by Ingwersen [28] that the implication of a human user in the IR framework

makes a drastic change of approach necessary: from one akin to “hard sciences” to another one

that is closer to humanities. However, there is still an important part of IR dealing with computer

systems and coded information. The restriction of the problem allows us to perform a deeper

exploration of the concepts and problems involved.

As one of the consequences of choosing a system-oriented approach, we will not be concerned

with some of the contextual aspects of relevance for a given task, but instead will adopt a concept

that is not centred on the user but on the document itself: aboutness. In the next two subsections

we define the two concepts.

Relevance

According to Saracevic in [29], relevance is a concept that, in spite of its ubiquity, has a rather

tacit meaning, and a large number of different definitions were produced when a formalisation was

attempted. Saracevic puts all these definition together in two ways: a minimal, abstract definition,

and a maximal, extensive definition:
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Definition 2.6 (Relevance (minimal))

Minimal definition of Relevance: Relevance is a measure of relatedness: it is the strength with

which a set of objects P are related with a set of objects Q.

Definition 2.7 (Relevance (maximal))

Maximal definition of Relevance: Relevance is the {A} of {B} existing between {C} and

{D} as determined by {E}

where:

• {A} = { measure, degree, estimate, . . .}

• {B} = { correspondence, utility, fit, . . .}

• {C} = { document, information provided, fact, . . .}

• {D} = { query, request, information requirement, . . .}

• {E} = { user, judge, information specialist, . . .}

Other aspects of relevance, like the genre of a document, its aesthetic characteristics, etc. can be

used to enhance IR [30], but are closely related with the context of the search and user, and are

therefore better accounted by a user-oriented approach than by a system-oriented one.

The definition of relevance, however concrete or abstract, necessarily includes a human user and

its context. Only some aspects of relevance can be explicitly used in a system-oriented approach;

namely those grouped by Mizzaro as one of the dimensions of relevance [31]. A system-oriented

approach faces classification and categorisation problems similar to those defining library science,

and can therefore adopt a concept borrowed from that field: aboutness

Aboutness

Aboutness was first defined in the realm of Information and Library Science, and has been closely

related to the task of summarisation: obtaining and representing the topic treated in a document.

Hutchins, in 1977, describes aboutness as a property of the documents including only the basic

and general semantic contents [32]:
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To summarise the essential features of this approach to document ’aboutness’, we

suggest that for the purposes of information systems a summary of the total semantic

content of a document is not what is needed. The primary aim of indexing is to provide

readers with points of contact, leading them from what they know to what they wish

to learn. In document analysis the most important parts of a document’s semantic

network are those elements that form the knowledge base upon which the writer builds

the ’new’ information he tends to convey.

Hutchins distinguishes two granularities in the use of particular terms: a “micro” usage that has to

do with phrases or sentences, and a “macro” use having to do with a whole document; he claims

that it is this macro semantic level, which he calls “theme”, what defines what the document is

about. To catch up with the current terminology, we will call it topic, and define it as follows.

Definition 2.8 (Topic)

A topic is a certain set of semantic relations that restrict the meaning of terms (or other in-

formation objects2). These relations are defined at a document, or set-of-documents level of

granularity, as oposed to a micro level.

This will allow us to define aboutness as follows:

Definition 2.9 (Aboutness)

aboutness is the degree to which the elements (e.g. terms) of a document are used according to

the restrictions imposed by a topic. This degree can also be defined as binary, so that a document

can be simply said to be about something or not. This relation will be represented as:

Document � Topic (2.1)

This definition complies with the formal characteristics that are required by formal accounts of IR

([33], [34]). Bruza et al. suggested to consider both documents and topics as sets of infons3, so

that aboutness becomes a binary relation with a number of convenient properties [36]:

2In this work we will be mainly concerned with terms as the minimum element, but the possibility remains open
of applying the framework to other kind of elements

3Infons are the basic units of information, and contain an assertion like “a property holds for the elements of a set”
[35]. The characteristics of infons that are relevant here, are that two things can be defined for them: a union operation
∪ and equivalence relation ≡. They are defined for infons in a similar way as they are for sets.
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1. Reflexivity

A � A (2.2)

2. Transitivity

[A � B] ∧ [B � C]⇒ [A � C] (2.3)

3. Set Equivalence (for a given equivalence relation ≡)

[A � B] ∧ [B ≡ C]⇒ [A � C] [A � B] ∧ [A ≡ C]⇒ [C � B] (2.4)

4. Left Monotonic Union (for a given operation of union of sets of infons ∪)

[A � B]⇒ [A ∪ C � B] (2.5)

5. Cut

[A ∪B � C] ∧ [A � B]⇒ [A � C] (2.6)

These properties can be used to check an aboutness assessment technique. They will be used with

that defined in chapter 5, as a sanity check for the method.

2.3 Use of Lexical Information in IR

Every methodology in textual IR has to do with lexical measurements: criteria for aboutness or

relevance deal almost solely with the occurrence of particular terms in the text and the query. A

novel scheme of lexical measurement can then be related to all existing methodologies, and should

also suggest improvements to some of them. To give a brief outlook on how lexical information is

used in IR, we will classify the type of approaches by the way each quantifies this information.

To illustrate how different methodologies could benefit from a principled approach to lexical mea-

surements, let us present a rough classification of common IR methodologies. In figure 2.2 we

show a succinct map with different kinds of IR models, where the method proposed in this thesis

is situated.
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Figure 2.2: Overview of different approaches to IR. The one proposed in this work is labeled
“Quantum-Like Lexical Measurements”, and the soft lines to the others mean that they can be
considered as a particular version of this approach

2.3.1 Coordination Level Matching

There are a few methods for textual IR that do not use probabilistic considerations. The first

classifying criterion shown in figure 2.2 is whether the number of occurrences of a term is used

(quantify occurrences), or just its presence. Methodologies using just presence or absence are

referred to as boolean, and the most successful amongst those is coordination level matching.

Queries are taken as boolean expressions referring to the presence or absence of keywords, which

in turn define sets of documents fulfilling them (documents with the terms, documents without the

terms). Using the distributive law between intersection and union, the query is translated into the

intersection of several expressions, so documents can belong to the sets defined by a number of

them, and are then ranked according to how many of this sets they belong to. This method is one of

the earliest in IR, and was described in 1957 by Luhn [37], together with statistical improvements
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which inspired many posterior models. It is worth noting the role of propositions referring to term

usage in the document as the raw material for logic expressions, which is something we will also

consider in this work.

2.3.2 Purely Geometrical Methods

Some of the methods used in IR do not deal directly with uncertainty, but use similarity and/or

distance between representations instead. They all can be traced historically to the Vector Space

Model:

Vector Space Models (VSM)

In 1975 Salton proposed one of the most influential models for IR: the Vector Space Model [16].

The basic idea of this methodology is that documents can be represented as vectors in a term

space, so that a similarity function can be defined that measures how similar the term occurrences

distribution are between two documents. The simplest representation for a document would be:

|D〉 =
∑
i

f(Ni in D)|ti〉 (2.7)

where |D〉 is a vector representing the document (see appendix A for an explanation of this way

of denoting vectors, called Bra-Ket Notation or Dirac notation) f(Ni in D) is a real (usually non-

negative) number; a function of the number of occurrences of term ti in document D, and {|ti〉}

is a basis spanning a term space. In terms of vector spaces, this means that the space of terms

spanned by {|ti〉} is dual to the space of documents: each term can be regarded as a functional that

linearly assigns a real number to every document. This number can be interpreted as a contribution

to the term-vector to the representation of the document-vector. Similarities between documents

can be obtained from these numbers f(Ni inD), usually used as the L1 norm4

Some of the weighting functions that define a vector representation for a document can be seen

in table 2.1. With a sensible weight assignment scheme, this model gives good retrieval results,

4L1 norm consists simply on the sum of the entries of a vector [38].
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Scheme Formula Reference
TF Ni/LD [16]

BM25 (K1 + 1)Ni/(NiK1 + b+ (1− b)Lavg
LD

) [39]
TF·IDF (Ni/LD) · log(ND/ND with ti) [40]

Pivoted Normalisation Ni·log(ND/ND with ti
)

((1−slope)·pivot+pivot∗LD)
[41]

Table 2.1: Functions of the frequency of occurrence used to define vector-space representations of
documents. Ni is the number of occurrences of the term, LD is the length of the document, and
ND with t is the number of documents where term t is present. K1 is a free parameter characteristic
of the Okapi method, Lavg is the average length of the documents in the collection. slope and
pivot are also free parameters that need to be fitted in the pivoted normalisation method.

and the choice of these weighting schemes offers the possibility of taking it to the realm of statis-

tical models ([42], [43], [44]). Finding an appropriate weighting scheme for terms, however, is a

difficult problem, as is discussed in [45].

Kernel Models Based on Dimensionality Reduction

As a refinement of vector space models, schemes have been proposed to use the information of term

usage in a training set (that could consist of the whole collection) to get more information from

term occurrences. In the following sections we will show the basis on which some of these mod-

els are built, both for the case of bag-of-words approaches like the classical Vector Space Model

(VSM) and Latent Semantic Indexing, and for co-occurrence models, like Hyperspace Analogue

to Language and novel quantum-inspired approaches like Spanned Subspace Representations and

Aboutness Witness (this last one being proposed in this thesis).

In the original VSM term occurrences were assumed to be independent and geometrically equiva-

lent features to represent documents. This can be seen as an arbitrary deformation of the space: the

presence of two synonyms should tell less than the presence of two unrelated terms; the presence

of a noun brings more information than that of a preposition. There is a simple way to deform the

space where documents are represented to fit the particularities of the features used. The operator

that performs this deformation of the term space is called Kernel. In the Generalised Vector Space

model, a positive-definite kernel matrix weighting can be introduced in a similarity formula, to
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account for term weighting and relations between terms [46]:

S(D1, D2) =

∑
i,jKi,j〈D1|ti〉〈tj|D2〉√(∑

i,jKi,j〈D1|ti〉〈tj|D1〉
)(∑

i,jKi,j〈D2|ti〉〈tj|D2〉
) (2.8)

Where hermitian5 matrix Ki,j carries information about the importance of terms and the redun-

dancy between them. Vectors |D1〉 and |ti〉 are representation of documents and terms in their dual

spaces (the differenes between representing them as a bra 〈·| or a ket |·〉 is not important here; it

only becomes essential when complex vectors are used.

When the entries of a kernel Ki,j depend only on the sub-indices i and j, using it is equivalent to

expressing terms themselves as weighted combinations of a latent independent and unbiased basis:

|ti〉 =
∑
j

Li,j|λj〉 =
∑
j

|λj〉〈λj|ti〉 (2.9)

where kernel K is a quadratic form of the latent coefficients, plus some latent weights:

Ki,j =
∑
k

Li,kLj,kwk (2.10)

which would made the similarity function:

S(D1, D2) =

∑
i,j,k〈D1|ti〉〈ti|λk〉wk〈λk|tj〉〈tj|D2〉√(∑

i,j,k〈D1|ti〉〈ti|λk〉wk〈λk|tj〉〈tj|D1〉
)(∑

i,j〈D1|ti〉〈ti|λk〉wk〈λk|tj〉〈tj|D2〉
)

(2.11)

Since VSM relies on an inner product to define similarity for a matching scheme, different method-

ologies can be defined depending on the function defining the inner product, namely the kernel.

Kernels are defined by an optimal matrix Ki,j so that the product is defined as:

a •K b =
∑
i,j

aiKi,jbj (2.12)

The matrix K is optimal in the sense that its rank is less than the number of terms, while inner

products computed with it are still as similar as possible as computed with a simple entry-by-entry

5A hermitian matrix is one that is identical to its conjugate transpose. It is a generalisation of symmetric real
matrices to complex numbers
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inner product (noted simply as a product di•dj). Similarity is here represented as a similarity func-

tion between matrices ∆(x, y) with a real value that is maximum with xi,j = yi,j and diminishes

according to how different x and y are:

∀K ′ 6= K,∆(di •K dj, di • dj) > ∆(di •K′ dj, di • dj) (2.13)

Different functions, with different constrains for K produce a range of methods:

1. Latent Semantic Indexing (LSI) Consists in representing documents with vectors defined in

an optimal basis set. This basis set is computed to reproduce optimally a matrix of term-term

cosine similarities between terms, while limiting the size of the basis set. The kernel is in

this case a projector on an optimal subspace [47].

2. Non-Negative Matrix Factorisation (NMF): Defines a non-orthogonal basis for which all the

coefficients of the representation of single term will be non-negative. The basis are also

optimal to reproduce the matrix of term-term cosine similarities under the restriction of non-

negativity [48].

3. Probabilistic Latent Semantic Indexing (PLSI): A set of non-orthogonal basis are also de-

fined to keep non-negativity of the term coefficients, like in the case of NMF, only this

method aims to reproduce mutual information between occurrences of different terms, in-

stead of cosine similarities [49]. This method can also be considered in the category of

generative probabilistic models.

Hyperspace Analogue to Language

An attempt to use co-occurrence of terms in the text at a fine-grained level was made by Lund and

Burgess (see [50]). This approach is called Hyperspace Analogue to language (HAL). It consists in

sliding a window of fixed width through all the documents in a collection, and count co-occurrences

of all terms within this window. The result is a huge matrix of co-occurrence between all the terms,

which can be used to generate a term-term kernel. Dimensionality reduction techniques such as

eigenvalue decomposition [50] and random projection [51] have been used to remove noise and

produce a compact representation of the kernels.
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Aboutness Witness

One of the methods suggested by this work (developed in chapter 5) will be based on a scheme

to measure both occurrence and co-occurrence of terms. Operators representing this measurement

(called Selective Erasers) will be combined to define a witness operator that will assign real num-

bers (scores) to documents. This method will implicitly use co-occurrence information gathered

from a collection of corpus, which amounts to include a co-occurrence kernel. This method does

not require an explicit geometrical representation of either documents nor terms, but can support

it; it can also be related to logics through a suitable definition of uncertain conditional (a concept

that will be explained in section 2.4), and can also be given a probabilistic iterpretation, as well as

include elements from probabilistic techniques.

Subspace Models

Traditional VSM can be said to represent documents and queries with one-dimensional subspaces

within a total Hilbert Space6 However, QT suggests that higher dimensional subspaces can be also

used to represent objects, and this actually bring other desirable features to the representation.

Amongst the models following this idea, Mellucci proposed one where queries are represented as

a high-dimensional subspace while documents are one-dimensional [52], while Piwowarski and

Lalmas propose a scheme that allows high-dimensional representation of both [53].

2.3.3 Methods Involving Uncertainty

The first classifying question we can make about statistical models, is whether the statistics of the

whole collection are considered or not.

Fuzzy Logics Models

One way of not using statistics at all is with fuzzy logics models. They consist in using non-binary

term weights as degrees of pertinence to fuzzy sets, and apply the corresponding generalisation

6a Hilbert Space is a linear, decomposable vector space where an inner product is defined
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scheme to extend classical boolean methods [54]. Weights can be seen in fuzzy logics as valuations

of propositions replacing binary “false or true” with an ordered set (for example, numbers between

0 and 1). The method can be applied by defining an appropriate mapping from Boolean operations

to this set of valuations, for example:

w(P ∧Q) = min(w(P ), w(Q)) w(P ∨Q) = max(w(P ), w(Q)) (2.14)

where w(P ) is the continuous valuation (in an interval from 0 to 1) of a proposition P . In section

3.3.2 we will discuss valuations, and how a more general kind of valuations can introduce aspects

of quantum logics to this kind of models.

Probabilistic Boolean Retrieval

Not using the statistics of the whole collection, on the other hand, does not exclude the possibility

of using probabilistic reasoning to extend Boolean methods. In 1976, Robertson and Spärck-Jones

developed a simple probabilistic model usually called Binary Independence Retrieval (BIR) model

[19] which can be seen as a version of VSM that is not built on a notion of distance, but on

probabilistic grounds. In the simplest version of this model, a weight for terms is computed as

the logarithm of the odds for the presence in a relevant document, against that in a non-relevant

document:

w(t) = log

(
P (t in D|L)

P (t in D|¬L)

)
≈ log

(
r

R−r
n−r

N−n+R−r

)
(2.15)

where t is the term, D is the document, L is the event of a user marking the document as relevant.

r is the number of relevant documents with term t. R the number of total relevant documents, n the

number of documents with term t, and N the total number of documents. An assumption is made

of linked dependence [55] between occurrences of different terms, meaning that the log-likelihood

of a document being relevant can simply be obtained as the sum of the weights of the terms in it:

log

(
P (D|L)

P (D|¬L)

)
≈
∑
t in D

log

(
P (t in D|L)

P (t in D|¬L)

)
(2.16)
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Discriminative Models

Usage of terms in a whole collection gives valuable information about how the occurrences of a

term can be a clue of relevance. A simple way of using this information is assuming a sensible

form for the distributions of the occurrences of the term in both the set of relevant documents

(elite) and in the rest of the collection. Then the likelihood can be computed that a particular

sampling corresponds to the elite term distribution. [56] This amounts to compute a conditional

probability: given the sampling given by the document, what is the odds that the document is

relevant instead of non-relevant? This question gives rise to discriminative models. The first

model in this class was the two Poisson model proposed by Harter in 1975 [43], which assumes

a Poisson distribution for an elite set of relevant documents, and another Poisson distribution for

the others. Other discriminative models use multinomial distributions to approximate conditional

probabilities instead [57].

Generative Models

From the seminal work of Shannon on language as a random source of information [58], several

accounts of linguistics have tried to use a model of natural language text as generated by a random

process. This was an important influence in computational linguistics, and arrived into IR with

Ponte and Croft Language Model for IR [59] where a Language Model for IR is devised as non-

parametric models where the statistical regularities of the generating process are learned from text

itself: a probabilistic model is learned from the document, and the probability that the query is

generated with this model is computed, as an approximation to the probability of relevance. This

initial generative model did not include the notion of topics, but this has been introduced int newer

methods such as Latent Dirichlet Allocation [60], where a continuum of topics is defined, so that a

density of topics is found for a given document, and Probabilistic Latent Semantic Analysis [49],

where optimal topics are defined by a maximum likelihood criterion.
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2.4 Uncertain Conditional as a Unifying Approach

All the above mentioned methods point at computing the probability (or a monotonic function

of it, like likelihood) that the document is about a topic defined by a query. A topic would be

represented by a characteristic probability distribution of terms, so it can be recognised statistically

or otherwise. This definition has proved to be very useful, but is remarkably shallow in terms of

semantics and logics.. In 1976 van Rijsbergen proposed a much better starting point: casting

aboutness in terms of a certain logical conditional: if a document implies the query, then it is

about underlying topic.

(D � Q) ⇐⇒ (R(D)→ R(Q)) (2.17)

where � is the aboutness relation and R(·) is a representation in terms of objects in which

implication→ relations are defined. Since the necessity of a non-crisp quantification of aboutness

has been both experimentally and theoretically found, van Rijsbergen also proposed that it should

be possible to put this relation in terms of a conditional probability, such that:

P(D � Q) = P(R(Q)|R(D)) (2.18)

This statement restricts enormously what the formal representation of aboutness is, but still does

not specify it completely, because what imply would mean is not yet specified. This approach

was the root of a wealth in logic-oriented IR research, and can be also related to the other kinds

of methods: geometric (vector spaces, via projector-oriented logic) [61] and probabilistic (via

inference) [62].

2.4.1 Logics, Semantics and Implication

Logic deals with propositions, and most importantly, their relations; while semantics deals with

the relation between those propositions and the subject they are dealing; with something external

they are representing (their meaning). Since a logic is an extremely abstract construct, it can be

built on rules alone, without any necessary relation with a useful meaning.
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2.4.2 Information in the Document vs. Information in the Query

In this work we will stick to Dretske’s definition of information [63]. Dretske tries to represent

knowledge as the flow of information, and claims that for this ends, it is convenient to define infor-

mation as an objective commodity, something whose existence is independent of the interpretative

activities of conscious agents. His definition is:

Definition 2.10 (Information)

A signal r carries the information that a R b when

P (a R b|r) = 1 (2.19)

where R is a relation.

We could put the problem of aboutness in terms of presence of information; we can say that a

document is about a topic when it carrries information about particular relations between some of

the concepts that define the topic, and also between these concepts and others that do not belong

to the topic.

Observe that what was defined above is information about a proposition (a R b). It has to be

noted that the quantification of information is a different problem altogether, and is not related to

particular messages, but is statistical in nature.

Shannon and Weaver’s definition involves an average on the possible transmitted messages [58]. In

their theory of communication, the measure of information “produced” in a possible measurement

process should be proportional to minus the logarithm of the shrinkage ratio of the set of possible

states, and should be averaged on the possible measurements. Since a probability can be thought

itself as the inverse of a shrinkage ratio of the number of possibilities, the measure proposed for a

set of mutually excluding messages would be:

Pi =
|{possibilities after choosing i}|

|{all possibilities}|
H({Pi}) =

∑
i

−Pi log(Pi) (2.20)

Quantity H is usually called Shannon Entropy (or simply entropy) and is actually a decreasing

measure of the amount of information; it decreases as certainty increases. A measure of the amount
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of information would be best described as

I({Pi}) = H(uniform)−H({Pi}) (2.21)

When a document satisfies an information need, it should provide some information that was not

present when the query was formulated. So far, Shannon account is enough. But the information

should be also about the topic at hand; this requires to go further and use Dretske’s definition. The

fact, for example, that a retrieved text is presented in one font or another is indeed information, but

is not information about the topic. Note that this is closely related to Hutchins remark mentioned

in 2.2, picked in this work as one of the arguments in favour of the use of the concept of aboutness.

We could think of both query and document as descriptions that define sets of possible situations7,

or, better, adequately describe situations from such set. In this way, a definition of relevant docu-

ments consistent with relation (2.17) can be that a relevant document describes only situations

that are also described by the query (although it describes them in more detail).

The query has little information, so it could be said that describes situations very partially, and the

set of situations that are adequately described by the query is large. It is reasonable to think that

the user has some idea of the situations in this set when he formulates the query. Then, he gets

a document, and the information in it makes him discard some of the situations he had in mind,

thus increasing his amount of information. However, the document could also make him think of

situations he did not think when he formulate the query first. This case is, in terms of Shannon

information, a bit problematic, as is shown in figure 2.3.

The problem of managing partial relevance, a central one in IR, can be tacked by using a different

kind of conditional, as we will show in the next subsection.
7A situation, is a complex of entities and relations that restricts only incompletely a state of affairs, or possible

world (or, equivalently, is compatible to several of them). The reader can, however, find a definition more oriented to
IR in [64]
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Figure 2.3: Restriction of the set of possible situations consistent adequately describable with the
knowledge of the user

The case in the middle appears intuitively as a partially relevant document,
but is something problematic in terms of information, because the document
bring into consideration states that were not initially considered, and usual
measurement of information deals only with discarding of possibitlities.

2.4.3 Evaluating an Uncertain Conditional

Intuitively, we could say that reading a document, the user could revise its initial idea of the

possible situations, and consider, in the light of the new information, a wider initial set of possible

situations, to contrast with the final set. This amounts to perform what is called the Ramsey Test.

This is defined in [65, page 29]

Definition 2.11 (Ramsey Test)

Ramsey Test: To evaluate [A→ B]

1. Take my present system of beliefs, and add to it so as to make P(A) = 1.

2. Allow this addition to influence the rest of the system in the most natural, conservative

manner

3. See whether doing so results in a higher probability P(B)

In the case of the query and the semi-relevant document, a similar procedure was proposed by van

Rijsbergen in [66] for quantifying relevance: enlarge the set of possible situations described by

the query in a natural, conservative way8 until every situation described by the document is also in

the enlarged set (P(s(D)|s(Q)) = 1, where s(x) means “situation s is partially described by x”)

8just as Bennet in [65], we do not specify for the moment what the natural, conservative way of augmenting a set
of situations is, because that is one of the outcomes we expect from this work
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and check how much the set of possible situations had to be enlarged. The definition made by van

Rijsbergen is:

Definition 2.12 (Logical Uncertainty Principle)

Logical Uncertainty Principle: Given any sentences x and y: a measure of the uncertainty of

y → x relative to a given data set is determined by the minimal extent to which we have to add

information to the data set, to establish the truth of y → x [67].

This principle is ilustrated in figure 2.4.

Figure 2.4: Using a Ramsey-like test to assess relevance s(D)→ s(Q)
The set of possible situations describable by the query is augmented until ev-
ery situation describable by the document fits in. The three different figures
illustrate that there could be several ways of doing it. The shape of the en-
closing set of additional situations will depend on the geometry of the space of
situations defined: the addition should not be arbitrary.

Numerically, this evaluation should behave like a conditional probability [66], so it would be com-

patible with the usual operational assumption that for a given topic there is a characteristic proba-

bility distribution of document important features (like keyword occurrences).

The Uncertain Conditional, in conclusion, may provide a unifying backbone for IR theory, but

imposes nontrivial demand on the logical aspects of the theory. These conditions have been part

of the motivation to turn to QT for useful analogies [10] and have been a source of inspiration for

this work itself.

2.5 What QT has to offer to IR

QT provides a number of concepts that are potentially useful for a better description of concepts in

areas outside physics. They are an extension, or generalisation, of existing concepts of probability
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theory or even logic. In this section we are going to divide them according to which extension to

the boolean or classical notions they are based on: Some are based in taking probability amplitudes

as the basic magnitudes from which probabilities are defined; some are based on the non-local de-

scription of quantum systems which is particularly well-suited to describe correlation; and finally,

some are based in the features of logic itself that are suggested by the quantum description of

reality.

Most of this models are beyond the scope of this work, but are worth mentioning because they are

also inspired in QT. The last category of models, however, which is referred to as “Relations be-

tween Lexical Measurements”, is in fact the main contribution of this work. It is briefly described

here, but will be fully developed in chapters 4 and 5.

2.5.1 From Probabilities to Amplitudes

One of the key features of QT is the impossibility of getting a complete information of the state

of a physical system, a consequence of the intrinsic incompatibility of some observables. The

usual example of this is the impossibility of determining the position and velocity of an elemen-

tary particle. Any measurement of the position would necessarily destroy the information about

velocity, and vice versa. Representing a state of knowledge that is complete in some observables

but uncertain in others led directly to the use of probability amplitudes. We define them as follows:

Definition 2.13 (Probability Amplitude)

A Probability Amplitude is a complex number with norm less or equal to 1. Its interpreta-

tion can be explained considering the probabilities of two independent possible outcomes of a

common initial state, with the possibility of intermediate states between them. How they can be

computed is dictated by Feynman’s Rules [68]:

1. Probabilities are secondary quantities. They are squared norm of complex Amplitudes,

which are the primary quantities.

2. When it is possible to tell the intermediate steps, you sum probabilities

3. When it is not possible to tell the intermediate steps, you sum amplitudes
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Complex amplitudes allow the possibility to save (or hide) probabilistic unavailable information in

the phase, which can manifest itself indirectly through interference when the third law of Feynman

is applied. An extremelly interesting discussion of the necessity of doing so (together with a

equally interesting alternative) was proposed by Wooters in [69]. When it is accepted that the

probabilistic information about an incompatible observable has to be encoded in the representation,

the minimum formal requirements clearly suggest to do it with complex numbers, as was shown

by Goyal et al. [70].

This fact was the inspiration of a successful attempt to overcome the main limitation of PRP:

document relevance independence. Zuccon et al. proposed in [71] a Quantum Probability Rank-

ing Principle (QPRP) where amplitudes are assigned to the possibility of relevance of a document,

which are computed according to the third law of Feynman, modelling the effect of previous judge-

ments on a current one through interference.

Other attempts to use similar concepts for IR, without explicitly regarding them as related to QT.

Park et al. suggest in [72] a method for using information about the position of terms that makes

use of this. A Fourier transform of the sequence representation of the document provides an ef-

ficient and elegant way of representing information about positions of the occurrences of terms

within the sequence of text. The square of the amplitude of the coefficients of such representation

can be interpreted as weighted probabilities, and the phase bears information about a frequency of

occurrence. Fourier transform is a particular case of Wavelet transforms, and other kinds of encod-

ing can be performed with other wavelets, so this proposal offers a huge variety of methodologies

to explore. Park’s method is largely heuristic, but can be interpreted in terms of non-compatible

observables and their quantum-like representation.

2.5.2 From Correlation to Entanglement

In 1935 Einstein, Podolsky and Rosen [73] presented what has been called the EPR paradox,

claiming that QT was not a complete physical theory. What they meant, is that “Every element of

the physical reality does not have a counterpart in the theory”; there were magnitudes whose value

could not be determined in certain states of a physical system: not because they were not known,

but because, according to QT, the magnitude itself did not make sense in the experimental setting
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at hand.

In an elegant analysis of the particular Gedankenexperiment proposed by Einstein et al., John

S. Bell showed in [74] that the paradox went further than first thought: it implied that in some

cases the only magnitudes that made sense were not abscribed to a certain point at a certain time,

but were spread in different places, in a way he dubbed non-local. These non-local magnitudes,

strangely enough, do not mess with causality, but do imply correlations beyond those describable

by Newtonian physics, and even call for a certain kind of holistic description [75].

There has been in the last decades a clear interest in using this correlation-beyond-Newtonian

to describe relations in cognitive sciences and linguistics. Some of the early works were on a

quantum-like description of the decision process [76], a problem that has been developed further

by Busemayer et al. in [77] and [78]. Cognitive states have also been described with quantum

concepts in some works by Khrennikov et al. ([79], [80]) and

In an area that is closer to IR, some semantic effects have also been described as quantum-like.

Peter Bruza et al. explored in [18] some relations between terms through the concept they called

“spooky action-at-distance” in the human mental lexicon,

2.5.3 From Boolean Logic to Quantum Logic

A different approach to IR than those described up to this point, is to take it near to the domain of

databases. Even though databases address a different problem, the need to bring them closer to the

necessities of a human user has led researches to experiment with deviations of Boolean logic that

are highly scalable and distributable, two conditions that are present in IR but acute in database

praxis. This has inspired Schmidt et al. ([81] and [82]) to build a database query languages that

include logical connectors that behave like those in quantum logics. In this work, the concepts

from classical databases are mapped to quantum counterparts, obtaining in this way a natural and

robust framework to use also probabilities that is missing in purely Boolean methods. A similar

mapping could be used in diverse schemes of fuzzy logics, but it is shown that this brings about

issues of robustness and error-proneness.
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Relations between Lexical Measurements

In this category of Quantum-Logical models we can also situate those developed in this thesis: they

are all based on relations between lexical measurements. Lexical measurements themselves can

be defined as sharing key mathematical properties of quantum measurements, and can therefore be

represented as such. The results of these measurements define propositions, and these propositions

of the form measurement X produced result Y can be used as elements of a logic, together with

relations and operations between them. The information contained in a document, according to

definition 2.10, can be relations between lexical measurements, and used to define aboutness with

(2.17).

2.6 Summary

In this chapter, we have very briefly outlined the state of the art of IR in the aspects that are

relevant to the proposed approach. We stated the restrictions on the basic problem of IR that

we have imposed to reach a level of simplicity that is treatable in depth. These involve mostly

focusing on the system side of the IR problem, and dealing with aboutness instead of relevance.

Then, we have shown some of the relevant features of current and past models of IR, showing

how some of them can be generalised with concepts from QT, and how the use of concepts from

QT suggests tthe development of new models as well, including those based on relations between

lexical measurements developed in this thesis. Then, concept that brings some theoretical unity

to all of these methods as also presented: the logical uncertainty principle, which plays be an

important role in the basis of this work. Finally, the basic aspects in which concepts from QT can

be used to extend existing models are briefly described, including the logical motivation of those

proposed in this thesis.

In the next chapter, a very general theoretical view is presented, that will revisit some of the

concepts discussed so far, and will point at the way they could be used to build a new theoretical

account of lexical measurements for IR.
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Chapter 3

Measurements and Information Retrieval

The approach to lexical measurements followed in this thesis is an ab initio approach: it starts from

first principles. Measurement is taken as the fundamental concept on which the rest is built, and

measurement itself is studied from a general and abstract mathematical (and logical) perspective.

In this chapter, the notion of measurement is presented formally and in detail, with an emphasis

on characteristics and conditions that are important for a lexical description of text. In particular,

the importance of order relations and how measurement is related to logics will be discussed.

These characteristics and conditions will be the basis on which we will build a scheme for lexical

measurement in chapter 4.

In section 3.1, the motivation for the choice of measurement as the fundamental concept of this

work is explained. In section 3.2, we explain the basic ideas about measurement from a formal

point of view, which will be developed further for section 3.3. In section 3.4 we show how the ex-

istence of incompatible measurements can be accounted in terms of logics, and what consequences

it has on descriptions of measurement events. Finaly, in section 3.5 we outline how all these con-

cepts can be applied to Information Retrieval, and how they can provide a new starting point for

the development of both theory and practical applications. These outlines will be developed in the

following chapters. A concluding summary of the concepts introduced in this chapter can be found

in 3.6.
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3.1 Why Measurement?

When a person takes a newspaper without the intention to read it thoroughly, she or he will take a

quick and shallow look at it, so anything interesting, recognised as some picture or word, can call

for the attention of the reader. This way of reading has been called scanning [83], and is thought

to be very usual when reading web pages [84]. In the early stages of library science, retrieval

schemes were intensive in human work and could not rely on powerful processing resources, so a

thorough reading of the documents by a librarian was necessary to produce a highly informative

index. The selection of keywords proved to be a task that was difficult to automate. However, the

advent of full-text search [85] brought about more machine-intensive methodologies that do not

require a human annotator anymore. A machine is probably faster than a human to process large

amounts of text, but is in most cases less precise at extracting meaning from it. When a human is

presented a text in a language she or he understands, every word will appear to him as potentially

charged with meaning since the first stages of perception, while in most automatic text processing

schemes, any assignation of meaning occurs very late in the process.

The proposal of a new approach to lexical measurement as starting point of an IR system, is mainly

motivated by the following assumption:

Assumption 1

The occurrence of a particular word in a document, when meaningful for a reader with a certain

interest, will call his attention to the surrounding text. A lexical measurement can be defined

to reproduce this phenomenon. Making an automatic system work in this way will enhance its

ability to capture evidence about what the topic the text can be relevant to.

The fact that in an IR context the user is expected to read a potentially relevant document with a

topic in mind [86], makes it reasonable to assume that a representation should reflect the existence

of different topical points of view. These points of view might, furthermore, be incompatible to

each other. Intuitively, it is this incompatibility that suggests adopting a quantum analogy: for

a given physical system, QT allows the description of multiple sets of measurements that are

internally compatible, but incompatible1 to each other [61].

1incompatible measurements here means measurement that interfere introducing uncertainty in each other’s out-
come. This will be defined thoroughly in section 3.4
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3.2 The General Problem of Measurement

Measurement is, as Kelvin pointed out in [87] (cited in [88]) a fundamental and key point of

any scientific activity. However, its fundamental character is rarely discussed, except perhaps in

the case of Quantum Theory, where its problematic nature makes discussion necessary. A very

loose definition of measurement would be the assignation of a certain value to a characteristic

(observable) of a considered system.

According to Carnap in [89], there are three kinds of scientific concepts: classificatory, compara-

tive and quantitative. Classificatory concepts are exclusively descriptive characteristics of objects

or states of objects that allow to compare them in a qualitative manner as similar or different only.

Comparative concepts introduce also order relations between characteristics, so that object X could

be more α than object Z, where α is a comparative characteristic (for example, X can be heavier,

harder, bigger, etc. than Z). Quantitative characteristics are endorsed with a richer structure, where

addition and subtraction are defined, and differences, for example, can also be compared. Mea-

surement is usually related only to this third kind of concepts, even though sometimes it is more

useful to define it as comparative or classificatory.

Norbert Robert Campbell, one of the first and most important theoreticians of measurement [90]

seems to restrict his definition of measurement to the third kind of scientific concepts: quantita-

tive [91]. According to Campbell, a measurement is the assignation of a numeric value to a certain

observable, where mathematical relations within the set of numbers correspond to empirical rela-

tions within the set of values of the observable. He states three laws of measurement, and three

corresponding rules that must be followed:

1. Law: Ordering Measurement involves order relations Rule: Order relations between

magnitudes correspond to order relations of the numeric values assigned.

What is referred to as order relations is a transitive, anti-symmetric relation such as “bigger-

smaller than”, “is ancestor-descendant of ”, "predecessor-successor of", etc.

2. Law: Additivity Measurement involves additive quantities. Rule: When a standard

value for an additive magnitude is chosen, a scale can be built by putting together indepen-

dent systems with the same value of the (additive) magnitude. In Figure 3.1 a scale made
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with systems of equal length is shown, and how this scale is used to establish the length of

an object within that scale.

1cm

1cm 1cm

1cm 1cm 1cm

1cm

1cm 1cm

1cm 1cm

1cm 1cm 1cm

1cm
3cm < L < 4cm

Figure 3.1: A scale for length made with standard systems of 1cm. The length (L) of an unknown
object is found to lie between 3cm and 4cm; it is usually said to be simply 3cm, and is understood
that it lies between this value and the next (here no rounding is done, since it is not known whether
it is closer to 3cm or to 4cm)

3. Law: Multiple Scales For every standard chosen to build a scale, a sub-standard can be

found that allows to build a finer scale that includes the values on the initial scale.

This third law does not, as Campbell notes, necessarily hold for every measurement. It

implies that the scale can be split indefinitely in finer and finer scales, just as the set of

rational numbers. This law should hold, then, for magnitudes that can vary continuously.

In Campbell’s book [91] there is no mention of a third rule of measurement. However, the

discussion about changing standards through multiplication in page 54 can be considered as

the corresponding third rule of measurement: that a change from standard A to standard B

would be, operationally, carried through the choice of a sub-standard X that includes the

scales of both A and B. This is explained in example 1.

Example 1

If standard A is 1cm and standard B is 1in, sub-standardX can be chosen to be a common

divisor of these quantities. It should fulfill the following relations

N1X 61cm 6 (N1 + 1)X (3.1)

N2X 61in 6 (N2 + 1)X (3.2)

where N1 and N2 are natural numbers. When a length is found to be, for example, be-
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tween 3cm and 4cm (like that in picture 3.1), this would mean:

3N1X 6 L 6 4(N1 + 1)X

⇒ (3N1in 6 (N2 + 1)L) ∧ (N2L 6 4(N1 + 1)in) (3.3)

Note that this relation involves only natural numbers, but if L is not to be measured

against standard 1in but computed in inches from the measurement 1cm, a division must

be performed:

3
N1

N2 + 1
in 6 L 6 4

N1 + 1

N2

in (3.4)

As a smaller sub-standard X is chosen, numbers N1 and N2 will become bigger, and the

range where L is located will approach a minimum width asymptotically.

3.2.1 Logical Aspects of Measurement: Subsumption Relations between Re-

sults

Campbell’s third law (3) refers to a relation between scales: some scales include others. This

relation can be used to define subsumption relations; this can be done by considering measurements

as partitions of the set of all possible measurements into subsets.

In the case depicted in Figure 3.1, two of the elements of the scale (3cm and 4cm) define the

following sets:

S3cm+ = {l|l > 3cm} (3.5)

S4cm− = {l|l 6 4cm} (3.6)

These two sets are clearly overlapping, and their conjunction is precisely the set where L can be

found according to the measurement. A proposition P (L, cm) can be defined, referring to length

L and the standard cm:

P (L, cm) = (L ∈ S3cm+ ∩ S4cm−) (3.7)

If a smaller standard is chosen to measure against, then a different relation is found for L, for

example 33mm 6 L 6 34mm. The set obtained with this sub-standard mm would be included

59



3.2. The General Problem of Measurement Chapter 3. Measurement

in the set obtained by the initial standard cm, and we can say that this measurement implies the

former. A proposition similar to P (L, cm) can be stated about standard mm:

P (L,mm) = (L ∈ S33mm+ ∩ S34mm−) (3.8)

It is easy to show that the subset defined with the standard cm includes that defined with sub-

standard mm, so one of the propositions subsumes the other. Formally :

((S33mm+ ∩ S34mm−) ⊂ (S3cm+ ∩ S4cm−)) ⇐⇒ (P (L,mm) ⊃ P (L, cm)) (3.9)

Where we use the same symbol ⊃ that is used as an inclusion relation between sets; here it sym-

bolises subsumption between propositions, or, as is also called in logics, material implication [65,

page 20].

The partition of the set of possible results (in the example, all the possible lengths) in subsets

defines a partially ordered structure, since inclusion is an order relation. Adding an empty set, and

a set that contains every possible result, a structure called a lattice [92] is obtained. And since it is

possible to define a subsumption relation within this lattice that we can regard as an implication,

this is also a logic. Such sets-based logic is, in fact, a Boolean logic [61]. Figure 3.2 shows an

example of such lattice.

0 ≤ L ≤ 100cm 

(L=33cm)∧(L=67cm)

0 ≤ L ≤ 33cm 33cm ≤ L ≤ 67cm 67cm ≤ L ≤ 100cm 

0 ≤ L ≤ 67cm 33cm ≤ L ≤ 100cm ¬(33cm ≤ L ≤ 67cm) 

Figure 3.2: Boolean Lattice made with propositions involving three elementary length measure-
ments. Arrows→ represent inclusion ⊂. Note that the lower proposition is a contradiction; it can
never be true, but is a proper proposition.
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3.2.2 Magnitudes with and without Order Relations

The general characteristics of measurements described in subsection 3.2 are intended to describe

physical measurements in general, most of which are assumed to refer to magnitudes with contin-

uously varying values. In this work, however, the focus is going to be put on finite sets of discrete

outcomes, which, regardless of their importance in experimental physics (which is major, accord-

ing to some authors like Friedkin [93]) covers most of the lexical measurements on which text IR

is based.

Campbell’s strict conception of measurement proves to be very limited when applied to social

sciences, and is therefore not very popular in academic communities outside physics. In [94], for

example, Joel Michell examines the history of such conception in psychology, with an emphasis

on resolved and unresolved issues it has caused. Social sciences have pushed the development of

radically new methodologies, motivated by the need to preserve qualitative measurement whilst

overcoming its limitations. These methodologies differ substantially from those used in physics

or “hard” sciences, because they are designed to make as few assumptions about the nature of

empirical data as possible. In Grounded Theory [95], for example, the procedure begins with

collection of data, and only similarity relations are needed amongst the collected observations

(called codes) to build the structure of concepts, categories, and finally theory.

In this chapter totally qualitative measurements are not considered, since the proposed approach

limits itself to the direct measurement of lexical attributes, and indirect determination of semantic

attributes. The former can be stated in terms of natural numbers, and the second calls for more

sophisticated mathematical concepts. In this work, we look for these concepts with more general

relations in Quantum Theory, and, in particular, in the conception of measurement that has been

developed to fit the logical requirements of this theory.

3.3 Measurement as Selection

In section 3.2.1, a description of the measurement process is finally described as definition of

subsets of a set of all possible states: a subset for each outcome. They can overlap, and even some

elements of the universal set can be in none of the subsets defined by measurements.
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This description of measurement in terms of sets is already very powerful, and can in fact ac-

count for all measurement in classical mechanics [96]. However, there are still some problematic

characteristics of semantic concepts that require further refinement for their adequate description.

Logically problematic aspects of cognition [97] or the use of language by humans [18], amongst

others, have been suggested to be more correctly described with concepts borrowed from Quantum

Theory, which cannot be put in terms of sets and subsets, but in terms of Hilbert spaces and their

subspaces.

To go beyond the set-theoretical description of measurement, it is useful to go one step back before,

to a concept that Boole himself used, but abandoned in favour of a description in terms of classes

(closely related to the one that is here referred to as set-theoretical) [98]

3.3.1 Boole’s Selection Operators

A Selection Operator acts on a set of things, and selects only those fulfilling a condition. In the

words of Boole himself ([99] , cited in [98])

Let us conceive a class of symbols x, y, z possessed of the following character. The

symbol x operating upon any subject comprehending individuals or classes, shall be

supposed to select from that subject all the Xs which it contains2.

An outcome of a measurement, then, can be represented as a proposition, and as such, it can define

a selection operator, which in turn could produce a set by selecting elements. However, a selec-

tion operators can be defined in a slightly different way, so they can support certain non-Boolean

features like measurements that interfere with one another. This takes us to a new formulation of

measurement provided by Quantum Theory. This is not possible just working with sets, but using

a more general version of what selection operators can generate, and a way for these more general

operators to produce numeric outcomes from a measurement.

2Xs being defined as the elements having a common quality, or, equivalently, as we could say now, for whom a
certain proposition holds as true.

62



3.3. Measurement as Selection Chapter 3. Measurement

3.3.2 The Concept of Measure

Formulating measurement in terms of propositions gives a formal logical framework ground to it,

but for practical uses, we usually expect to get numbers from it. The concept that allows us to do

so is measure

A Measure, in mathematics, is a systematic way of assigning numbers to a structure with a partial

order relation (the subsets of a set is an example), such that the order relations are reflected in the

numbers. This concept is the fundamental basis of the modern definitions of probability, and plays

a paramount role in geometry and other branches of mathematics. Measure is also at the core of

any definition of comparative and quantitative measurements, since it provides the formal bridge

between the sets defined by selection operators and the numbers (or other ordered entities, in the

case of comparative measurements) we use to represent the results.
Definition 3.1 (Measure)

A measure is a map µ from a lattice L1 to a (usually simpler) lattice L2, which preserves order

relations.
µ : L1 → L2

(a > b)⇒ (µ(a) > µ(b))
(3.10)

The second lattice L2 is usually taken to be a completely ordered set, for example a set of real

numbers.

Example 2

Measure: Let us consider all the subsets of a set {a, b, c, d}. Taking “is included in” ⊂ and

“includes” ⊃ as order relations, we obtain a lattice. We can define a measure by assigning an

integer number to each subset, by assigning positive numeric weights {wa = 1, wb = 2, wc =

3, wd = 4} to the elements, and define a function µ that assigns a sum of weights of present

elements to each subset:

µ(S) =
∑

element iin S

wi (3.11)

where S is a subset of {a, b, c, d}. For every pair of subsets S1 and S2 the order is preserved by

the measure, meaning that

∀S1 ⊃ S2, µ(S1) > µ(S2) (3.12)

This example is shown in figure 3.3
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Figure 3.3: Example of a measure for a set of subsets of a set

The measure is defined as the sum of weights for the elements present:
wA = 1, wB = 2, wC = 3, wD = 4. Each blue bar corresponds to a
value of the mesure, and thick lines show inclusion relations. Relation
(3.12) can be verified in this example, meaning that the sum of weights
define a well-behaved measure

From the definition and example of measurement, it is clear that the assignation of a rational

number (the magnitude of the measured observable) to the elements of the scale defined in law 2

of measurement, is in fact a measure.

There are two particular measures that have a paramount practical importance: valuations and

probabilities.

Definition 3.2 (Valuation)

A valuation for a lattice is a map that assigns to each element, an element of another lattice

of valuations3 [92] (for example {true, false, true > false}) such that the order relations are

preserved (a lattice homomorphism [101]). Some examples are shown in figure 3.4 for boolean

lattices of propositions.

Definition 3.3 (Probability Measure)

A Probability Measure is a measure whose image set is the interval of real numbers between 0

and 1. The infimum is mapped into 0 and the supremum is mapped into 1.
3In other works the definition of valuation is narrower than ours; the maps assigns elements from a particular class

of lattices: a chain, which has complete order (there is an order relation between any pair). Some authors even define
valuation as a map to the set of real numbers [100].
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Figure 3.4: Some examples of valuation of lattices

The upper two are the usual true/false valuation. The lower two are multi-
valuations. These have also to comply with rules of the operations and and
or: for example, in the left-hand graphic maybe and true = maybe,
and maybe or false = maybe. Note that in the four-valued case,
the lattice of valuations implies that perhaps and maybe = false and
perhaps or maybe = true, which sounds intuitively strange, but is formally
coherent.

As we have shown in section 2.3 one of the ways of avoiding the rigidity of Boolean formulas for

IR have been using probabilities and using fuzzy logics. Exotic non-distributive valuations have

not been used yet in IR, but they might have a place in approaches where indeterminacy is allowed

on truth values, as is the case in subjective logics [102, 103].

3.3.3 Boolean Algebras

In section 3.2.1 we used operations between propositions like and ∧, or ∨ and not ¬ to de-

scribe outcomes of measurements. These elements, together with a lattice of propositions, form a

Boolean algebra [92]. The elements and properties of this algebra correspond one-to-one to those

of a similar algebra defined for sets, whose operations are the join, the meet and the complement

with respect an universal set. Operations between sets can be defined in terms of elements x of the

sets defined by the propositions as follows:

Definition 3.4 (Meet)

Meet of two sets:

[x ∈ (A ∩B)] ⇐⇒ [(x ∈ A) ∧ (x ∈ B)] (3.13)
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Definition 3.5 (Join)

Join of two sets:

[x ∈ (A ∪B)] ⇐⇒ [(x ∈ A) ∨ (x ∈ B)] (3.14)

Definition 3.6 (Complement)

Complement of a set with respect to a universal set U :

[x ∈ (U\A)] ⇐⇒ [(x ∈ U) ∧ ¬(x ∈ A)] (3.15)

These operations are closely related to the order relations ⊃ that define the lattice of sets, by the

following relations:

(A ∪B) ⊃ B (A ∩B) ⊂ B (3.16)

3.4 Non Compatible Measurements and Quantum Logics

A key characteristic of Quantum Theory is that it can deal with some observables whose observa-

tion inevitably introduces noise on the posterior results of the measurement of other observables.

Let us suppose that A and B are binary observables, and they are incompatible. Measuring A

would allow to assess the truthfulness of propositions asserting the two possible results a1 and a2.

One is false, and the other is true. After having done so, however, the corresponding propositions

about the observables of B cannot be said to be true or false. However, it still must be the case

that b1 ∨ b2 is true (B is still a binary observable) and b1 ∧ b2 is false (they are still mutually exclu-

sive) [104]. This property lead Birkhoff and von Neumann in 1936 [105] to point at a particular

logical law as the weakest link of Boolean logic as a basis for physics: distributive law.

3.4.1 Quantum Ideal Measurements and Distributive Law

Distributive law is a relation between two binary operations, that is probably most known as hold-

ing between multiplication and sum:

A · (B + C) = A ·B + A · C (3.17)
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where A,B and C are numbers, vectors or matrices, and (·) is any product defined between them.

The operations of Boolean algebras defined in subsection 3.3.3 fulfill a similar form of distributive

law [92]:

A ∨ (B ∧ C) = (A ∧B) ∨ (A ∧ C) (3.18)

Since the failure to fulfill distributive law seems to be such a fundamental feature of incompatible

observables, van Rijsbergen [10] uses the failure to comply to this law to actually define incompat-

ibility:

Definition 3.7 (Compatibility)

measurement MA is compatible to measurement MB iff: The proposition that an outcome B

was obtained in MB can be decomposed in the case when any outcome A is obtained from MA,

and the case when an outcome excluding A (¬A) is obtained.

B = B ∧ (A ∨ ¬A) = (A ∧B) ∨ (¬A ∧B) (3.19)

.

All observables that can be represented as operators partitioning sets will turn out to be compatible,

since propositions about their results will fulfill distributive law [106]. When performing one

measurement erases information from the other, they cannot be represented as simple partition of

sets, and it becomes necessary to adopt a formal representation that allows for this non-distributive

behaviour. However, it is also desirable to keep boolean logic as holding in a simple way in limited

conditions (compatibility), and provide also a theoretically and operationally simple way of dealing

with data. These goals are both accomplished by a view of measurement proposed within Quantum

Theory, that is going to be discussed in next subsection.

3.4.2 Ideal Measurements according to Quantum Theory

To develop his axiomatisation of Quantum Theory, Lucien Hardy [107] proposed a view of mea-

surement that is very appropriate for the purposes of this work. This scheme is based in three key

concepts that are hereby defined:
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Definition 3.8 (System)

System: is a part of the universe that is (conceptually or physically) isolated to be considered

as the subject of any measurement. It is usually necessary to either have a fair amount of such

systems to perform different procedures on them, or be able to use the same system again and

again for a number of experiments.

Definition 3.9 (Ensemble)

Ensemble: is a large collection of systems that are composed of the same elements and prepared

in the same way, but are otherwise independent to each other.

Definition 3.10 (State)

State: is a condition of a given system that is the result of a certain preparation, and produces

results that are determined (up to a bounded statistical uncertainty). If two states are the same,

the probability distribution for the results of every measurement on them should be the same.

Definition 3.11 (Measurement)

Measurement: Is the procedure where the value of a certain observable is assessed. This

concept is going to be defined with more detail in this section.

Having defined the concepts involved, Hardy’s scheme for measuring consists in the following

steps:

1. An ensemble of a large number of similar copies of a physical system is obtained. The

systems are assumed to be totally similar to each other, but the states of them can be allowed

to be different to each other to a certain extent.

2. Some preparation procedure is performed on each system ({Si} in Figure 3.5) defining there-

fore a state.

The state is defined only by the selections, transformations, etc. used in the preparation

procedure. It can be, therefore, very vaguely defined, and is, for most theories, represented

statistically.

3. Measurements ({Mi} in Figure 3.5) are sets of detectors that act as selection operators,

letting only a system that possesses a certain value for the measured characteristic pass, or

rejecting it otherwise.
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Figure 3.5: Hardy’s scheme of measurement. In this example, measurements are sets of three detectors
(selection operators). In the graphic, each state is allowed by exactly one filter, which is not always neces-
sarily the case. At the right of the figure, the small arrows indicate which detector allowed which state, and
the numbers indicate the fraction of the systems involved in the measurement that were preserved (chosen)
by each one of the three filters

3.4.3 An Operator-Valued Measure

The mathematical object that represents this selection operators in Quantum Theory is the projector

defined on a Hilbert space. A Hilbert Space is a vector space defined on the field of complex

numbers, with an inner product.

Definition 3.12 (Projector)

A projector is a linear operator Π acting on a Hilbert space that fulfills the following conditions:

∀|ψ〉,〈Ψ|Π|Ψ〉 ∈ R (3.20)

∀|ψ〉,0 6 〈Ψ|Π|Ψ〉 6 〈Ψ|Ψ〉 (3.21)

Π2 = Π (3.22)

Every projector defines a subspace. When a vector lies on a subspace, it is an eigenvector of the

corresponding projector with eigenvalue 1:

(|Ψ〉 ∈ S) ⇐⇒ (〈Ψ|ΠS|Ψ〉 = 〈Ψ|Ψ〉) (3.23)
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When a vector is orthogonal to a subspace, it is an eigenvector of the corresponding projector with

eigenvalue 0:

(|Ψ〉 ⊥ S) ⇐⇒ (〈Ψ|ΠS|Ψ〉 = 0) (3.24)

The size (number of dimensions) of a subspace is to the rank of the corresponding projector:

Definition 3.13 (Rank)

The number of orthogonal vectors that are left invariant by a projector is its rank. The rank of

a projector can be computed as its trace, which is always integer.

The trace, on the other hand, is defined as follows:

Definition 3.14 (Trace)

Given any basis set |i〉 that spans the whole space, the trace (Tr(·)) is a linear functional that

assigns a number to any linear operator. It is defined as follows:

Tr(A) =
∑
i

〈i|A|i〉 (3.25)

where {|i〉} is a set of orthogonal vectors with norm one.

Sets can be represented with a set of commuting projectors and their corresponding subspaces.

To represent a universal set U and its elements {ei}, an equal number of orthonormal vectors

{|i〉}, 〈i|i〉 = 1,∀(i 6= j), 〈i|j〉 = 0, is chosen. The whole set would be represented by the whole

space, and projectors would be operators that erase some of the elements if present. A projector

representing subset S would be defined as follows:

ΠS =
∑
ei∈S

|i〉〈i| (3.26)

In the same way that there can a relation between elements and sets, there can be one between

vectors and subspaces. This can be put in terms of projectors: if the vector remains unchanged

under the action the projector (3.23), then it belongs to the subspace. When a vector is neither

orthogonal nor contained in a subspace, we say that part of it lies on the subspace, or that there

is an overlap between the vector and the subspace. Overlap is something that do not have an

equivalent in sets: an element either belongs to a set, or to its complement; however, a vector can

have a nonzero overlap both with a subspace and in its orthogonal complement.
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3.4.4 Boolean-Like Algebras with Projectors

In the same way that in section 3.3.3 binary operations between sets can be put in terms of propo-

sitions about the membership of an element to a set x ∈ A, we can define them in a similar way

with propositions about inclusion of a vector in a subspace:

Definition 3.15 (Meet of Projectors)

meet of two projectors

(〈ψ|[A ∩B]|ψ〉 = 〈ψ|ψ〉) ⇐⇒ (〈ψ|AB|ψ〉 = 〈ψ|ψ〉) (3.27)

where |ψ〉 is any complex vector in the space where projectors A and B operate.

Definition 3.16 (Join of Projectors)

Joinof two projectors

(〈ψ|[A ∪B]|ψ〉 = 〈ψ|ψ〉) ⇐⇒ (〈ψ|[A+B − AB]|ψ〉 = 〈ψ|ψ〉) (3.28)

where |ψ〉 is any complex vector in the space where projectors A and B operate.

Definition 3.17 (Complement of Projectors)

Complement of two projectors

(〈ψ|[A\B]|ψ〉 = 〈ψ|ψ〉) ⇐⇒ (〈ψ|[A−B]|ψ〉 = 〈ψ|ψ〉) (3.29)

where |ψ〉 is any vector in the space where projectors A and B operate. A is usually taken to

be as the whole subspace, and in that case, the complement with respect to A is simply called

“complement”.

For rank-one projectors that are not equal, the meet is always the null operator, since there is no

vector that is contained in both one-dimensional subspaces, and the join is a rank two projector,

that can be computed by the formula derived in appendix B:

|a〉〈a| ∪ |b〉〈b| = (|a〉〈a| − |b〉〈b|)2

1− 〈a|b〉〈b|a〉
(3.30)
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The cases when the meet of projectors cannot be taken as the product, and the join cannot be taken

as the sum minus the meet, can be recognised by the means of a logical relation between these two

operations called distributive law

Definition 3.18 (Distributive Law)

Distributive law is fulfilled between two binary operations ∪ and ∩ when for any three objects

A, B and C:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩B) (3.31)

In the next section, we will discuss why distributive law is something that can (and perhaps should)

be dropped in the logical framework of a lexical measurements scheme that aims to capture seman-

tic contents.

3.5 A Logic of Projectors for Information Retrieval

Even though non-distributivity means that logics are not Boolean, it is easy to think in examples

when it is violated when dealing with aboutness. Consider, for example, how a human would

gather documents given some complex directions that combine assessment of the following topics:

A = D is about trees

B = D is about computers

C = D is about apple

(3.32)

The left-hand side of equation (3.31) would read:

A ∪ (B ∩ C) =“D is either about trees or computers and apple”

while the right-hand side, would be:

(A ∪B) ∩ (A ∪B) =“D is both about tree or computers and about trees or apple”

Even though the expressions are equivalent in terms of sets, the way our subjects would look for

the documents is likely to produce different results: forA∪(B∩C) they would look for documents

on apple computers, and then they would look for documents about trees, probably introducing a

bias towards trees as a data structure coming from the previous query. For (A∪B)∩(A∪B), on the
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other hand, they would independently look for a set of documents about trees and computers, and

a different set of documents about apple trees; in this case the set query about apple trees would

not be affected by any bias.

A suspicious reader will probably notice in this example that we are writing sentences like “(D

is about A) and (D is about B)” as “D is about A and B”, assuming that there is a map from the

sets of documents D and the sets of topics A and B, that allows to translate an “and” operation

between propositions about documents to an “and” relation between topics. That is, in fact, a basic

assumption of this work, namely:

Assumption 2

Aboutness is a relation that maps a set of documents to a topic. Topics are not representable as

sets themselves, because meaningful logical operations between them would not be distributive,

but can be represented as subspaces. Assessments of aboutness do not behave as partitions of

a set of documents as Boolean selection operators, but as quantum ideal measurements, and

lexical measurements on them should reflect this fact.

3.6 Conclusions: How the introduced concepts will be

used

In this chapter, we have presented a formal account of measurement, and what its logical basis

is. This basis, is a propositional logic (understood as a lattice of relations, plus a set of binary

operations and an interpretation scheme) is presented in its Boolean (classic) form, showing how

this can be different whenever incompatible measurements are considered. This paves the way

to build a quantum-like logic of lexical measurements, that can be used to describe and retrieve

natural language text documents. In the next chapter such lexical measurement is proposed, its

properties are discussed, and some practical applications of the concepts are outlined.
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Chapter 4

The Selective Eraser (SE)

In chapter 3, we showed how the notion of measurement is conceived and described in QT. We

proposed a way in which sets of measurements and propositions about their outcomes can be given

a logical structure, and how this structure can be slightly different to that accounted for by Boolean

logics, but coincides with that used in QT. In this chapter, we introduce a transformation that

mimics ideal quantum measurements in its mathematical properties: the Selective Eraser (SE).

We start by defining SEs in section 4.1. In section 4.2 the behaviour of SEs is examined from the

point of view of Campbell’s three laws of measurement (introduced in section 3.2). As these laws

call for a mapping from measurements to numbers, in section 4.2.2 we define different kinds of

norms for documents, which can be used to define similarity measures for them. In 4.3 we outline

several ways of examining text documents with SEs, and interesting links are found with existing

techniques to process text for IR. In section 4.4, order relations between SEs are further explored,

together with the elements they provide for the description of text. In section 4.5 we discuss how

exhaustively a document can be represented by the lexical measurements introduced, and how

this representation can be more exhaustive than that used in bag-of-words approaches. In section

4.6 we show how the proposed measurement scheme deviates from Boolean logic, and how the

obtained non-Boolean relations are similar to those found in Quantum Logics. In section 4.7, the

role of probabilities on the proposed scheme is discussed. In section 4.8 we develop the parallel

between text transformations (SEs) and abstract linear operators, to define a linear algebra that

allows us to build quantum-like operators acting on text that behave like linear operators acting on
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a Hilbert space. Representations of both measurements (SEs) and states (documents and queries)

are discussed in section 4.9, where a link is established to the logical uncertainty principle, wich

could lead to a new formulation of non-boolean, logic-based IR systems. Finally, in section 4.10

the contents of the chapter are summed up.

4.1 Definition

Chapter 3 began with a remark on how, when browsing a newspaper, a user’s attention would

be captured by a handful of keywords, and ten the user is likely to select the surrounding text to

examine it more closely. Then, in section 3.3 whe showed how measurement can be seen as a

selection procedure. These two ideas lead quite directly to a definition of a lexical measurement

that we will call the Selective Eraser (SE).

SEs, first of all, are operators that select part of a text document. The definition of a SE that we

will use is one of the published results of this work [108]:

Definition 4.1 (Selective Eraser)

A Selective Eraser (or simply Eraser) is a transformation E(t, w) which erases

every token that does not fall within any window of w positions around an oc-

currence of term t in a text document. These Erasers act as transformations on

documents producing a modified document with some erased tokens, much as

projectors act on vectors or other operators. Erased tokens will have an unde-

fined identity: they could be any term but t (the central term).

This concept was first introduced in [109]. Here some of its properties are shown, specially those

that resemble ideal measurements as described in Quantum Theory. The concept of SE is here

presented in a more elaborated way, introducing tokens whose identity is not fully determined.

There are two key aspects of SE that allow to build a powerful lexical scheme upon them:

• They select part of the text in the document which is close to occurrences of a term. This

preserved text is likely to be part of information units in which the concept represented by
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the central term is involved in some way; some SEs could capture complete information

units (like sentences)

• When they are applied for the first time, information outside their scope is lost, but no further

information is lost when applied for a second time. This is called idempotency, and can be

expressed as:

∀D,E(t, w)[E(t, w) ·D] = E(t, w) ·D or simply E(t, w)2 = E(t, w) (4.1)

Figure 4.1: Action of different Selective Erasers on a text sequence (document) D

The lower sequence represents the transformed sequence. The letters with a
tilde represent an undetermined letter that can be anything but the central letter

To understand the action of a SE on a sequence of terms, it is useful to consider for each position,

the probability distribution that a particular term occupies the position. We can consider the initial

text as having a defined term occupying every position, so all of the distributions would have only

one non-zero entry; a probability of 1 for a term. After the application of the SE, the unerased text

would remain completely determined, but in other positions the term that is there becomes uncer-

tain; now the only thing that is known is that the term is not the central term (this is represented in

figure 4.1 by a term with a tilde on top, meaning “not this term”. The distributions of probabilities

for the positions occupied by “not this term” are almost flat: i.e. they are flat except for a one term

(the central term of the SE) with probability of 0. The non-zero probabilities in this almost flat

distributions are 1
NV −1

where NV is the size of the vocabulary.
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4.2 SEs and the Laws of Measurement

In section 3.2 we discussed the laws of measurement. These laws can be seen as requirements

a formal definition of measurement should fulfil. Campbell’s three laws deal, respectively, with

Ordering (definition 3.1), Additivity (definition 3.2) and Changes of Scale (definition 3.3).

To address the first law (ordering), we will relate SEs to the set relations involved in measurements,

including Boolean join (union) meet (intersection) and set inclusion, which will allow the definition

of order relations between SEs. The second law (additivity) has to do with counting, and we

will approach this issue through the quantification of information in the sequence of terms of a

document. Finally, the issue of scales (third law) will be considered by discussing the fine-grained

or coarse-grained character of lexical measurements.

4.2.1 First Law: Boolean Operations and SEs

In chapter 3 the results of measurements were represented as propositions, in order to build a math-

ematical representation of measurements. Our first step to describe the action of SEs in documents

as the results of measurements, will be to consider propositions referring to every token on the

transformed document as: Ot(Di) = “token i in D is t” or ¬Ot(Di) = “token i in D is not t”. We

can then define Boolean meet ∩B and join ∪B of two SEs, defining them as:

Definition 4.2 (Boolean Meet (Intersection))

The Boolean Meet (intersection) of two SEs is the transformation that preserves the informa-

tion preserved by both SEs:

∀t, Ot(([E(a, wa) ∩B E(b, wb)]D)i) = Ot((E(a, wa) ·D)i) ∧Ot((E(b, wb) ·D)i) (4.2)

This means that two propositions are equivalent: one is “a term is in a particular position after

applying the Boolean meet” and te other is “the term is in that particular position after applying

one SE, and it is in that position after applying the other” Positions of the document erased by

this operation would be undetermined, except for the fact that they cannot be either of the central

terms.

77



4.2. SEs and the Laws of Measurement Chapter 4. The Selective Eraser (SE)

Definition 4.3 (Eraser Boolean Join (Union))

The Boolean Join (union) of two SEs is the transformation that preserves the information

preserved by any of the SEs:

∀t, Ot(([E(a, wa) ∪B E(b, wb)]D)i) = Ot((E(a, wa) ·D)i) ∨Ot((E(b, wb) ·D)i) (4.3)

This means that two propositions are equivalent: “a term is in a particular position after apply-

ing the Boolean join” and “the term is in that particular position after applying one SE, or it is

in that position after applying the other”

As it is also the case with the Boolean meet, positions erased by the Boolean join are undeter-

mined except for the fact that they cannot be either of the central terms.

Another Boolean operation that can be defined is the complement of a SE.

Definition 4.4 (Eraser Complement)

complement of a SE ¬E(t, w): Is the transformation that erases every token that is preserved

by the SE, and preserves every token that is erased by the SE.

Terms erased by this operation are left totally undetermined; they could be any term at all,

including the central term of the eraser t.

Figure 4.2: Boolean Meet and Join of two SEs

Text with light background remains unchanged; tokens with lightly-dark (or
blue if in colour) background are indetermined but different to A, tokens with
heavy-dark (or red if in colour) background are undetermined but different
to B. Tokens with medium-dark (or magenta if in colour) background are
undetermined but different to both A and B, and tokens with dark magenta
background are totally undetermined.

In figure 4.2 we can see, in an example, how there can be two kinds of undetermined terms in the

case of the meet: those that are not one of the central terms, and those that are not any of the two
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central terms. In terms of the probability distribution of terms, the maximum probability in the

distributions for some positions will be 1, in others 1
NV −1

and in others 1
NV −2

.

Intuitively, we can imagine how a SE will erase more than other, when the windows of text pre-

served by one are contained in the windows preserved by the other. When the text preserved by

E(t1, w1) is also preserved by another E(t2, w2), then we can say that the second includes the first

E(t2, w2) > E(t1, w1).

If we can compare unerased text in documents, we can define inclusion in terms of the join (union)

of SEs:

Definition 4.5 (Inclusion Relation Between Erasers)

Inclusion relation between two SEs: A SE includes another, when the text preserved by the

first is the same that is preserved by their join, when applied to the documents in a set C:

(E(t1, w1) >C E(t2, w2)) ⇐⇒ (∀D ∈ C, [E(t1, w1) ∪B E(t2, w2)] D =u E(t1, w1) D)

(4.4)

where partial equality holds between two transformed documentsD1 =u D2 when their unerased

tokens are equal. When the relation holds for any possible document, the relation is not referred

to a set of documents C (as in >C) but is simply an absolute relation >.

Figure 4.3: A SE including another.

E(A, 4) preserves everything that is preserved by E(B, 2). The join preserves
the same text as E(A, 4), but the unpreserved text is slightly different: for
E(A, 4) is constituted by tokens that are “not A” (magenta+blue) while for
E(A, 4) ∪B E(B, 2) it is constituted by tokens that are “neither A nor B”
(magenta).

This order relation can play the role of the inequalities involved in length measurements in section

3.2. A first parallel between SEs and measurements, could be as follows:

Consider the following result of a length measurement: 4cm > L > 3cm. The result is defined

by an order relation between two standards (4cm and 3cm) and a measured length L. In the same
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way, we can situate a lexical measurementE(t, w) in a measurements order between two standards

E(a, wa) and E(b, wb) for a set of documents D. such that E(a, wa) >D E(t, w) >D E(b, wb)

This is not immediately useful, but in section 4.4 some applications will be discussed.

4.2.2 Second Law: Information and the Number of Unerased Terms

The parallel drawn between the measurement of length with a ruler and a measurement on a doc-

ument with SEs is already a valid one, but it has some issues. The Second law of Measurement

(definition 3.2) states that measurement should involve additive quantities. Additivity is used to

define scales: adding units of a standard, an integer-numbered scale is made. In the last section,

order relations are established between SEs, not between documents. If we want to define the

usual lexical measurements, like counting occurrences on a document, we need to define a map

that takes from documents to numbers. Maps like this are called norms.

Since what an eraser does on a document is precisely erasing information, it is quite a natural

choice to define Shannon information (defined in section 2.4.2) as a measure for documents. For

a given position in the text, the least informative situation would be not having a clue about which

term occupies it; This will be not having any information about the identity of that term. This

would correspond to a flat probability distribution through all the vocabulary; one where every

probability is 1
NV

(where NV is the size of the vocabulary). The largest amount of information

we can have about this position in the text is knowing exactly which term occupies it; this would

correspond to a distribution where one term has probability 1 and the rest have probability 0. If

we adopt a scale for information where every determined position has 1 unit, and an undetermined

position has 0 units, we define information as follows:

Iposition x =
log(NV ) +

∑
t P (t is in position x) log(P (t is in position x))

log(NV )
(4.5)

Considering all the positions of a document as independent, the total information of the document

in these information units would be precisely the length when all of its terms are determined.

However, when a SE has acted on it, some of the positions would have an undetermined term, so

that the only thing we know about them is that the term occupying them is not the central term of
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the SE. This means that the amount of information is:

Ierased position =
log(NV ) + (NV − 1) 1

NV −1
log( 1

NV −1
)

log(NV )
= 1− log(NV − 1)

log(NV )
(4.6)

The total information in a document after applying a SE would then be simply:

I(E(t, w)D) = Nu + (LD −Nu)

(
1− log(NV − 1)

log(NV )

)
=

= Nu

(
log(NV − 1)

log(NV )

)
+ (LD −Nu)

(
1− log(NV − 1)

log(NV )

)
(4.7)

where LD is the length of the document, NV is the size of the vocabulary and Nu is the number of

unerased tokens.

Fraction log(NV −1)
log(NV )

is almost 1 for medium to large vocabularies, so information is almost a pre-

served token count. For a vocabulary of only 10 terms, it would be 0.0458, for 100 terms it would

be 2.10 × 10−3 and for a typical vocabulary of 105 terms, it would be 8.69 × 10−7. As a good

approximation, we can say that information counting in this scale is almost equivalent to a simple

count of the unerased tokens:
Definition 4.6 (Unerased Token Counting)

Unerased Token Counting is the number of tokens that have not been erased by a SE, i. e.

whose identity is still determined. It is represented by vertical bars on the sides | · |.

The length L of a document D that has not been transformed by any SE would be precisely LD =

|D|. An occurrence count of a term t can be obtained with this norm as well:

Nt in D = |E(t, 0) ·D| (4.8)

It is clear that any token could be used as a unit, and a scale can be produced adding repetitions

of it, for example D1 =“unit”, D2 =“unit unit”, D3 =“unit unit unit” and so on. Comparison

of the norms with a scale {Di} would be the formal way of defining token counting. It is also

possible to define other kinds of norms. If, for example, the occurrence of different terms brings

a different amount of information (an intuitive assumption) extra considerations can be included

that are additional (and perhaps independent) than that of whether the term in a particular position

is determined or not. Norms coming from this consideration are explored in section 4.2.2
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As it was mentioned before, a norm | · | is a systematic assignation of a real number to an object

(e.g, for documents |D| ∈ R) and can provide the link between a measurement procedure and a

numeric result.

A natural information-based measure was defined for documents, which considered all terms

equally important and independent, and how it would be desirable to relax these assumptions.

With that in mind, is possible to make use of SE to define a family of norms, called Term-Weighted

Norms:
Definition 4.7 (Weighted Norm)

Given a set of term weights {αt}, the corresponding Term-Weigthed Norm | · |{αt} is defined

as:

|D|{αt} =
∑
t

αt|E(t, 0) ·D| (4.9)

This norm can be defined with any term weighting scheme. A key principle in indexing is some key

terms that convey more information about the topic of a document than others, and this has been

formalised in concepts such as term specificity [42]. Some approximations to the quantification of

term specificity can also be expressed in terms of SEs, like IDF:

IDF (t) = log

(
|D|∑

D∈C
|E(t,∞)·D|
|D|

)
(4.10)

A problem that arises when using this norm, is how to evaluate the norm of a term that has been

transformed by a SE (for example |E(t, w)D|{αi}) is that the evaluation implies that two SEs are

applied one after another:

|E(t, w)D|{αi} =
∑
ti

αi|E(t, 0)[E(i, w)D]| (4.11)

To this point, this composition of SEs (applying one after another) has not been defined, but it

suffices to say that there is nothing to it that can make the definition of these norms problematic.

Definition 4.8 (Product of Erasers)

The Product of two SEs is the transformation that results of applying the first and then the

second. The application of the first SE will mark some tokens of the document as erased, and

for the second eraser only unerased occurrences of its central term are clear-cut; erased tokens

could be its central term of the second eraser with a probability of 1
NV

. The second SE will
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then mark further tokens as erased. This product is, in general non-commutative as is shown in

figure 4.4.

[E(t2, w2) ◦ E(t1, w1)] ·D = E(t2, w2) · n[E(t1, w1) ·D] (4.12)

Figure 4.4: Products of two SEs in different orders.

Applying EB first, as in the first product EAEB , all occurrences of A are
preserved, but if EA is applied first, as in EBEA, one of the occurrences of B
is erased, resulting in the end in the erasure of the nearby occurrence of A as
well. Areas in blue represent in determined tokens that are not A, and areas in
red represent undetermined tokens that are not B. The difference between the
product in two different orders is the area coloured in gray where the tokens
could be either A or B, because there is a probability of 1

NV −1 that they were
not erased.

In the figure it is also shown that when a SE finds a token that could be its central term with a

certain probability, it would also erase with that probability, producing a zone where terms are

semi-determined. If two SE are applied, for example [E(a, wa)◦E(b, wb)]D then SE E(b, wb) will

erase first, and will leave positions where it is only known that term b does not occur, but a could

occur, with a probability of 1
NV −1

. SE E(a, tw) can find unerased text that is in the vicinity of these

undetermined terms, and would then erase with a probability of
(

1− 1
NV −1

)
. In the positions

where this happens, the probabilities of different terms will have the following values:

• NV +1
(NV −1)2

for the term that was initially in that position

•
(

NV
NV −1

)(
NV −3

(NV −2)(NV −1)

)
for all terms different to the initial term but also to b

• 0 for b.

The information in these positions will be an intermediate one between the almost flat probability

with two values, and the certain probability. However, the information it contributes for large
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vocabularies is very similar to that of the totally undetermined: almost none. Some values of the

information are shown in table 4.1 Since preserved terms contribute with 1, and terms erased by

NV Iundetermined Isemi-undetermined

10 4.5757× 10−2 4.7020× 10−2

102 4.5757× 10−2 4.7020× 10−2

103 2.1824× 10−3 2.1829× 10−3

104 1.4484× 10−4 1.4484× 10−4

105 8.6859× 10−7 8.6859× 10−7

Table 4.1: Contribution of a semi-determined position in the text to overall document information
NV is the size of the vocabulary, Iundetermined is the information contained in a totally undetermined
token, and Isemi-undetermined is the information contained in a position that would be preserved with a
probability of 1

NV −1
and erased with a probability of NV

NV −1
.

one or both SEs in a product would contribute with nearly zero, definition 4.7 of weighted norm

will be almost equivalent to just counting occurrences of a document and summing them with

term-dependent weights.

4.2.3 Third Law: Scales and Units of Measure

Since occurrence count involve a quite natural unit of measure (the preserved token), natural num-

bers are enough to describe such count. The definition given of a norm for documents in the last

section was devised to comply with this intuitive characteristic, taking the unerased token as the

unit of occurrence. However, for more sophisticated lexical measurements on text documents,

there is a wealth of analysis power that can be gained by considering diverse levels of coarse or

fine-graining. One potentially useful aspect of the scheme of measurement proposed by this work

has to do with the width factor w in SEs: it determines the size of the segments of the document

sequence that are going to be preserved around occurrences of the central term. Considering fam-

ilies of SEs with different width factors introduces a rich structure of inclusion relations between

SEs, and useful measurements of the sequence structure can arise from these relations, as will be

discussed in section 4.3.1 for families of SEs with the same central term, and in section 4.4 the link

of this with the analysis of co-occurrences of different terms will be established.

Ordering relations between SEs centred on different terms form a structure called lattice (to be

defined and explained in section 4.4.2. These structures resemble those formed by different scales
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(discussed previously in section 3.2.1) but differ in a subtle but key aspect. This key aspect, non-

distributivity, will suggest the use of a mathematical representation brought from QT, called Posi-

tive Operator Valued Measure (POVM). This will be discussed in section 4.4.

4.3 Examining text with Erasers

With the definitions given up to this point, it is already possible to use SEs to obtain useful infor-

mation from text. It is possible to put lexical measurements on the number of occurrences of terms

in collections, as well as on relative positions of some occurrences with respect to others, in terms

of different schemes based on SEs.

4.3.1 Term Frequency and Burstiness

Term frequencies can be obtained in a very simple way by applying SEs to a document:

TF (t in D) = |E(t, 0)D| (4.13)

Just as in the case of the document norm, there is a family of modified term frequencies that

can be defined with non-null width factors. These would be approximately proportional to term

frequency for small w, but will increase at a sub-linear pace for higher values of w, because terms

in the overlap between n windows will not be counted n times, but only one. This quantity can be

bounded from above and below by considering two extreme cases: that with all the occurrences

together, and that with all the ocurrences maximally and equally spaced in the document:

2w + |E(t, 0)D| 6 |E(t, w)D| 6 (2w + 1)|E(t, 0)D| (4.14)

Some probabilistic document rankings are logarithms of a ratio of probabilities: that of the oc-

currences being a sampling of a distribution that is characteristic of elite documents (documents

about the topic), and that of occurrences being a sampling of a distribution characteristic of non-

elite documents (documents not about the topic). If all subsequent occurrences of documents are

independent, then such ranking would have the form:
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R(D, topic) =
∑
t in D

log

( ∏
occurrences P (t in elite )∏

occurrences P (t in non-elite)

)

independence
=

∑
t in D

TF (t in D)︸ ︷︷ ︸
document

log

 P (t in elite )

P (t in non-elite)︸ ︷︷ ︸
topic and collection

 (4.15)

In this way, for each term in the document there is a logarithmic factor that depends on the collec-

tion and topic distributions, and term frequency appears as a linear factor. This makes computation

much easier, but the independence assumption is well known not to be valid in natural language,

where terms are known to appear in bursts (the tendency to do so is called burstiness) [110].

An even simpler approach is to assume that the simple presence of a term is as good evidence of a

document being about a subject, as is done in the so-called binary models; in these, term frequency

is simply replaced by a 1 if the term is present or a 0 if it is not. This model, in spite of its naïve

simplicity, has also a reasonable performance [19]. However, common sense seems to suggest that

something in the middle ground between these two extreme models could probably work better.

It was noted by Wu and Roellecke [111] that considering only presence or absence amounts to

subsume all subsequent occurrences of a term into a less restrictive event like “the term occurred”.

It is also possible to regard subsequent occurrences of a term as semi-subsumed events. In this

way, Wu and Roellecke obtain an expression for documents with a fixed length that is formally

very similar to that of the successful model BM25, proposed by Robertson and Walker as a rather

heuristic twist of the 2-Poisson model in [112].

Rsemi−subsumed(D, topic) =
∑

t in D
2 TF (t in D)

TF (t in D) + 1︸ ︷︷ ︸
document

log

 P (t in elite )

P (t in non-elite)︸ ︷︷ ︸
topic and collection



RBM25(D, topic) =
∑

t in D
(K1 + 1)TF (t in D)

TF (t in D) +K1
L

Lavg︸ ︷︷ ︸
document

log

 P (t in elite )

P (t in non-elite)︸ ︷︷ ︸
topic and collection


(4.16)
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where L is the length of the document and Lavg is the average length of the documents in the

collection (they are the same if the length is fixed).

In quantitative terms, it could be said that the overlap between windows limiting the value of

|E(t, w) · D| in equation (4.14) is a form of semi-subsumption, since part of the token counting

can be attributed to several occurrences of the central term t when w is large enough.

Just as the semi-subsumption model would reproduce a BM25 term frequency factor with K1 = 1,

a wide-window token count would reproduce it with a different constant. To check this possible

similarity between the functional dependence of BM25 ranking and that of wide-window mea-

surements on term frequency, it is possible to translate the former to a linear dependence with

a transformation of variables. Taking the inverses of term frequencies and the inverse of wide-

window measurement will do the trick: let x = |E(t, 0) ·D| and y = |E(w,t)·D|
2w+1

. The linear relation

between the inverses is as follows:

1

y
≈ a+ b

1

x
⇒ y ≈

(
1

a+ b

)(( b
a

+ 1
)
x

x+ b
a

)
(4.17)

Comparing with BM25 term-frequency-in-document function, the parallel becomes clear:

FBM25(t in D) = c

(
(k1 + 1)x

x+ k1

)
(4.18)

where x is the term frequency, c is an irrelevant proportionality factor, and k1 is an adjustable

constant.

An analogy to BM25 constant k1 can be then obtained from a simple linear regression between the

inverse of normalised wide-width count |E(w,t)·D|
2w+1

, and term frequency |E(t, 0) ·D|.

In graphic 4.5 values for K1 can be seen for chapter 2 of “The Origin of Species by Means of

Natural Selection” [113], a text with 12323 tokens that are occurrences of 2104 different terms, for

width factors from 0 to 1000. The relation between the computed k1 and w is nearly a power law

with negative exponent, with some deviation of this form for low values of w.
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Figure 4.5: Values of constant k1 for a BM25-like term function formula defined with SEs, as a
function of width parameter w (on the right, in logarithmic co-ordinates).

This was obtained by linear regression between the values of 1
|E(t,0)·D| and

2w+1
|E(t,w)·D| . Squared correlation coefficients are shown as well. Data was ob-
tained from chapter 2 of Darwin’s “The Origin of Species by Means of Natural
Selection”

4.3.2 Distribution of Distances between Occurrences of a Term

Comparing the preserved terms counting for different widths is a way of finding out the distances

between occurrences of the terms. To explain how this can be done, let us first consider a text so

long that its borders will not influence the counting at all. In this document, each occurrence of

a term T is much further from the borders than from any other occurrence. In such a document,

|E(t, w+1)D will be counting of tokens within the windows around every occurrence of T , minus

the overlaps (since each token can only be counted once):

|E(T,w) D| = (2w + 1)|E(T, 0) ·D| −Overlap(T,w) (4.19)

For two windows centred in different occurrences of T to overlap, it is necessary that the distance

between the two occurrences is less than w, as is shown in figure 4.6

As we increase w from zero, the overlap increases in the number of distances between occurrence
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With respect to what I have called the in direct action of changed conditions namely through the reproductive system of being affected we may infer that variability is
thus induced partly from the fact of this system being extremely sensitive to any change in the conditions and partly from the similarity as Kolreuter and others have
remarked between the variability which follows from the crossing of distinct species and that which may be observed with plants and animals when reared under new
or unnatural conditions

Overlap on [E(conditions, w) D]:
w = 14 xxxxxxxxxxxxxTxxxxxxxxxxxxxx xxx xxxxxxxxxxxxxxTxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxxxxxxxxT

w = 15 xxxxxxxxxxxxxTxxxxxxxxxxxxxxx x xxxxxxxxxxxxxxxTxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxT

w = 16 xxxxxxxxxxxxxTxxxxxxxxxxxxxxx x xxxxxxTxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxT

w = 17 xxxxxxxxxxxxxTxxxxxxxxxxxxxx xxx xxxxxTxxxxxxxxxxxxxxxxxxxxxxxxxx xxxx xxxxxxxxxxxxxxxxxT

w = 18 xxxxxxxxxxxxxTxxxxxxxxxxxxx xxxxx xxxxTxxxxxxxxxxxxxxxxxxxxxxxxxxx xx xxxxxxxxxxxxxxxxxxT

w = 19 xxxxxxxxxxxxxTxxxxxxxxxxxx xxxxxxx xxxTxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxT

w = 20 xxxxxxxxxxxxxTxxxxxxxxxxx xxxxxxxxx xxTxxxxxxxxxxxxxxxxxxxxxxxxxxx xx xxxxxxxxxxxxxxxxxxT

w = 21 xxxxxxxxxxxxxTxxxxxxxxxx xxxxxxxxxxx xTxxxxxxxxxxxxxxxxxxxxxxxxxx xxxx xxxxxxxxxxxxxxxxxT

Figure 4.6: Overlap between windows centred on occurrence of term T

The distances between occurrences are 31 and 38 tokens. When 2w 6
31 there is no overlap; when 31 < 2w 6 38 there is one growing
overlapping region, and when 38 < 2w there are two growing regions
of overlap

that are less than w

Overlap(T,w)−Overlap(T,w − 1) =
∑
di

σ(2w − di) (4.20)

where σ(x) is the step function, with a value of 0 for x < 0 and a value of 1 for x > 0. This allows

us to obtain an expression for the overlap at any value of w:

Overlap(T,w) =
∑
di<w

(2w − di) (4.21)

The exact token counting after applying E(T,w) would be:

|E(T,w) D| = (2w + 1)|E(T, 0) ·D| −
∑
di<w

(2w − di) (4.22)

To include border effects, the distances between each border and the closest occurrence of the

term has to be included, but multiplied by 2. This is because while erased sections between two

occurrences of the term decrease by two (one window at each side), erased sections in the border
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decrease just by one (one growing window on one side, the fixed border of the document in the

other.

The rate of change of |E(T,w) · D| with w is changed by 2 when one of the distances between

occurrences di is surpassed by 2w. For (2w+ 1) < length, the number of distances lower than 2w

can then be computed as:

N(d < 2w) = ((2w + 1)|E(T, 0) ·D| − |E(T,w) ·D|) /2 (4.23)

Figure 4.7: Distribution of distances between occurrences of a topic-related term

It is a known fact in natural language, that subsequent occurrences of terms at different distances

show two opposite tendencies in different scales: in short scales, syntax and style tend to separate

occurrences, but in long scales, topical coherence tends to keep them together [114]. A distribu-

tion of distances should then present the form shown in figure 4.7. Such form of the cumulative

distribution can be compatible with a relation similar to (4.17), namely:

(
1

|E(T,w) ·D|

)αT
≈
(

2w

(2w + 1)length

)αT
+

(
1

(2w + 1)|E(T, 0) ·D|

)αT
(4.24)

where αT is a parameter that will presumably be different for each term. It has the effect of making

the curve approach the flat asymptote faster (for large values of α).

Substituting (4.24) in (4.23), an expected form for the cumulative distribution of distances between
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occurrences of term T is found:

N(dT < (x− 1)) ≈ NTx

(
1− length

αT

√
((x− 1)NT )αT + lengthαT

)
(4.25)

where NT = |E(T, 0) · D| is the number of occurrences, αT is a parameter to be found for each

term, and x = 2w + 1 is a dummy variable arising from the width of the SE used.

4.3.3 Choosing Keywords

According to several studies, like [115] and [116], distances between terms can be the used as a

criterion for finding keywords. Using a modified version of (4.27) it is possible to select terms

with inter-occurrence distance in a particular interval:

N(2wmin < d < 2wmax) = (2(wmax − wmin)|E(T, 0) ·D| − |E(T,wmax) ·D|+ |E(T,wmin) ·D|) /2

(4.26)

A score for documents could be given by the percentage of neighbouring term occurrences are

separated by a distance in the desired interval, normalised by the total number of occurrences. The

score would be:

% d in [0,10] % d in [10,20] % d in [90,100]
predominant 36 the 18 and 9

red 36 of 17 in 9
tails 31 and 15 of 9
the 27 breadth 13 the 9
year 27 bud 13 to 8

monstrosities 24 flowers 13 a 7
began 22 generic 13 flowers 7

dissimilar 18 in 13 leaves 7
of 17 limit 13 limit 7

causes 15 pear 13 relative 7

Table 4.2: Terms with most inter-occurrence distances between 10 and 40 tokens in chapter 2 of
“The Origin of Species”

S(T ) =
(2(wmax − wmin)|E(T, 0) ·D|+ |E(T,wmax) ·D| − |E(T,wmin) ·D|)

(length|E(T, 0) ·D| − |E(T, (length− 1)/2) ·D|)
(4.27)
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Scoring terms with this counting, for wmin = 5, wmax = 20 for the chapter of “The Origin of

Species” used as an example in section 4.3.1. The highest scoring terms are shown in table 4.2

Another way of scoring terms within a document, is defining a critical width above which every

token in the document is preserved, but below which something is erased: we will call it Covering

Width:
Definition 4.9 (Covering Width)

Covering Width w∗t,D is the minimum value of w for which E(t, w) will preserve the whole

document D. This can only be defined if t occurs in D:

(|E(t, w∗t,D) ·D| = |D|) ∧ (|E(t, (w∗t,D − 1)) ·D| < |D|) (4.28)

If a term appears uniformly spread through the sequence of the text, there will be little overlap, and

the whole document will be covered by the windows around the central term with a relatively small

width. Stopwords are expected to behave in this way. But if a term is frequent in the document,

but its occurrences appear concentrated in part of the document, its covering width will be larger.

This suggests another way of scoring terms within a document:

S(t in D) =
2w∗t,D
|D|
|E(t, 0) ·D| (4.29)

TERM SCORE
selection 12.75
breeds 12.49

rockpigeon 6.59
flowers 6.18
plants 6.15

descended 5.90
wild 5.82
fruit 5.59

improved 5.14
savages 5.08

Table 4.3: Terms with best product [normalised term frequency]·[covering width] for chapter 2 of
“The Origin of Species”

The procedure to obtain the score is much slower than choosing an interval of distances (specially
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for a long document), but the results for the chapter of “The Origin of Species” shown in table 4.3

are intuitively much better than those of 4.2

4.4 Order Relations Between Erasers

When the parameter w is increased in a SE, the windows of preserved text will grow. Order

relations are left unchanged when the windows of the including SE are expanded in the same

amount or more than those in the included SE:

((E(a, wa,1) > E(b, wb,1)) ∧ ((wa,2 − wa,1) > (wb,2 − wb,1) > 0)

⇒ (E(a, wa,2) > E(b, wb,2)) (4.30)

Since some order relations are trivially implied by others, it is useful to consider only those from

which the other can be derived. Let us then define those that are tight, in the sense that they cannot

be obtained from others. They can be defined as follows:

Definition 4.10 (Tight Inclusion)

Tight inclusion relation between two SEs: (<C) An inclusion relation that ceases to hold if

the width of the including SE is decreased, or if the width of the included SE is increased:

(E(a, wa) <C E(b, wb))

⇐⇒ ((E(a, wa) >C E(b, wb)) ∧ ((E(a, wa − 1) �C E(b, wb)) ∧ (E(a, wa) �C E(b, wb + 1))))

(4.31)

Order relations provide a way of grouping SEs into classes of equivalence, that is, sets of SEs that

are equivalent when applied to a set if documents:

Definition 4.11 (Equivalence Between Erasers)

Equivalence relation between two SEs: Two SEs are equivalent when they include each other.

((E(t2, w2) 6C E(t1, w1)) ∧ (E(t2, w2) >C E(t1, w1))) ⇐⇒ (E(t2, w2) ≡C E(t1, w1))

(4.32)
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An important property of a class of equivalence, is that if an element of one class of equivalence

includes another, then any member of the first will include any member of the other:

∀ (EA1 ≡C EA2, EB1 ≡C EB2) ,

(EA1 >C EB1) ⇐⇒ (EA1 >C EB2) ⇐⇒ (EA2 >C EB1) ⇐⇒ (EA2 >C EB2) (4.33)

Two SEs in a class of equivalence will always preserve the same number of tokens, but the same

number of tokens is not a sufficient criterion for equivalence:

(E1 ≡C E2)⇒ (∀D ∈ C, |E1 ·D| = |E2 ·D|) (4.34)

Yet another possible relation between SEs is disjointedness.

Definition 4.12 (Disjointedness of Erasers)

Disjointness relation between two SEs: Two SEs are disjoint when, while neither of them

erases everything in the document, their product does:

(E(t1, w1) ⊥C E(t2, w2))

⇐⇒ (∀D ∈ C, (|E(t2, w2) ◦ E(t1, w1) ·D| = 0) ∧ (|E(t1, w1) ·D| · |E(t2, w2) ·D| > 0))

(4.35)

The symbol⊥C has been chosen to represent disjointedness because this relation is very similar

to the geometrical relation of orthogonality (also called perpendicularity). Three of its proper-

ties are:

• Anti-reflexive ¬(E1 ⊥C E1)

• Symmetric (E1 ⊥C E2) ⇐⇒ (E2 ⊥C E1)

• Non-transitive ((E1 ⊥C E2) ∧ (E2 ⊥C E3)) ; (E1 ⊥C E3)
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4.4.1 Necessary Order Relations Between Erasers

Some relations between SEs will hold for any imaginable text document. For example, a wider

window SE centred in an occurrence of a term will always include another SE with narrower

window centred on the same term

(w1 > w2)⇒ (E(t, w1) > E(t, w2)) (4.36)

Another important relation is that every pair of SEs with w = 0 centred on different terms, are

disjoint.

∀(D, t1 6= t2), |E(t1, 0) ◦ E(t2, 0) ·D| = 0 (4.37)

4.4.2 Contingent Order Relations Between Erasers

Some of the order relations between erasers will only hold for a limited set of documents. We will

call these relations contingent. Some of these will arise from the presence or absence of terms in

the set of documents considered:

• Within a set of documents, all SEs centred in non-present terms will be equivalent, because

all of them will simply erase all the text.

∀Di ∈ C, (|E(t1, 0) ·Di| = 0) ∧ (|E(t2, 0) ·Di| = 0)

⇒ (∀(w1, w2), E(t1, w1) ≡C E(t2, w2)) (4.38)

• For terms that are present in all documents within a set, on the other hand, there will be a

threshold w∗t,C above which all SEs will be equivalent, because they will preserve the whole

text and erase no token. We are going to call this threshold covering width for term t in set

C:
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∀D ∈ C, (|E(t, 0) ·D| > 0)

⇒
(
∃w∗t,C ,∀w > w∗t,C , |E(t, w) ·Di| = |D|

)
(4.39)

(|E(t1, 0) ·D| > 0) ∧ (|E(t2, 0) ·D| > 0)

∀(w1 > w∗t1,C , w2 > w∗t2,C), E(t1, w1) ≡C E(t2, w2) (4.40)

The most important kind of contingent relations is, however, that of inclusion of SEs centred in

different terms that neither erase nor preserve the whole document. They are closely related to

maximal and minimal distances between neighbouring term occurrences, and therefore are very

sensitive to co-occurrence tendencies.

4.4.3 Occurrence Distances and Inclusion

Obtaining an expression for the distribution of distances between occurrences of two different

terms is even simpler than obtaining one for distances between occurrences of the same term. The

expression emerges in a trivial way when we consider that every occurrence of a given term T1 in

the windows defined by E(T2, w) (with w > 0) cannot be separated from an occurrence of T2 by

more than w − 1 tokens, that is, the maximum distance there could be between these preserved T1

and T2 is w:

N(d(t1, closest t2) 6 w) = |E(t2, 0) ◦ E(t1, w) ·D| (4.41a)

N(d(t2, closest t1) 6 w) = |E(t1, 0) ◦ E(t2, w) ·D| (4.41b)

These relations are, of course, related to inclusion relations, since, when one of two SE has w = 0

the following relation holds:

(|E(t2, 0) ◦ E(t1, w) ·D| = |E(t2, 0) ·D|) ⇒ (E(t1, w) >{D} E(t2, 0)) (4.42)
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The difference between the two distances defined in (4.41a) and (4.41b) can be subtle. To explain

it, let us consider two terms that allow to produce a disjointed pair of SEs and two different couples

of SEs with opposite including relations, like those represented in figure 4.8

Figure 4.8: maximal and minimal distances determining the values of parameter w for which
relations between SEs hold.

Note that the maximum distances between an occurrence of A and the clos-
est occurrence B is not the same maximum distance between an occurrence
of B and the closest occurrence of A, because they can be different pairs of
occurrences.

Let us suppose that terms t1 and t2 occur in every document in textual context C. If dmin is

the minimum number of tokens between neighbour occurrences and dmax(t1,t2) is the maximum

number of tokens between any occurrence of t1 and the nearest occurrence of t2, we have already

some nontrivial relations that hold this document:

E(t1, w1) ⊥D E(t2, w2) ⇐⇒ (w1 + w2) 6 dmin (4.43)

E(t1, w1) > E(t2, w2) ⇐⇒ w1 + 1 > (w2 + dmax) (4.44)

E(t1, w1) 6 E(t2, w2) ⇐⇒ w2 + 1 > (w1 + dmax) (4.45)

Distances between neighbouring occurrences of different terms are not totally independent from

distances between re-occurrences of a same term, like those considered in section 4.3.1. Distances

between A and B cannot be largeger than the maximum distance between a A and a border or

another A, or than the maximum distance between a B and a border or another B.
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For example: in sequence x x x A x x A x x B x x x A x x x B x x x x x x x x , no distance can be

larger than 8, which is the maximal distance between one of the considered terms (B) and a border

or another occurrence of itself. However, no lower bond is imposed on distances between occur-

rences of different terms: occurrences of A and B could appear together without being restricted

by distances A-border, B-border, A-A or B-B.

The expected distribution of distances from A to the closest B in a totally random case can be

obtained from that of A and B alone, by adding all the uniform distributions between 0 and a

maximal distance determined by the individual pairs of distances between occurrences of A and

B:

N(dA,B 6 x) = min(NA + 1, NB + 1)

length∑
x=1

1

x

(
N(dA 6 x)N(dB 6 x)

(NA + 1)(NB + 1)

)
(4.46)

4.4.4 Eraser Lattices

Any set of equivalence classes of erasers, together with their order relations, constitute a Partially

Order Set (poset). Relation > fulfils the requirements of an order relation: it is reflexive, anti-

symmetric and transitive. The set of equivalence classes of SEs is not totally ordered but partially,

because it is not the case that every pair of Erasers are orderly related to each other in one way or

the opposite (¬(∀(E1, E2) (E1 > E2) ∨ (E2 > E1))) [92]. If every SE is considered, the poset

is also a lattice, because there is a class of SEs that erase everything, and is therefore included by

any other (called the infimum and there is a class of transformations that do not erase anything, and

therefore includes any other (called the supremum).

These order relations can be defined on documents alone, or in sets of documents (textual contexts).

Let us first examine how they look like for individual documents, and then for sets of documents.

4.4.5 Equivalence of SEs for a document

Equivalence relations can be a very simple way of representing information about the usage of

terms beyond bag-of-words. All erasers E(t, w) will be equivalent whenever w > w∗t,D. As widths
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Figure 4.9: Hasse diagram for the similarity classes of letter SE as they behave on the word “H A
S S E”

Horizontal rows correspond to the preserved token (letter) count, and vertical
lines correspond to order relations. Yellow boxes are similarity classes of letter
SEs, defined by their action on the word. The lower class corresponds to all
the SEs centred on letters not appearing on HASSE, and the upper class will
include the enumerated SEs, plus any other resulting by increasing factor w to
any of those.

decrease from that value, some SEs centred in different terms cease to be equivalent.

The number of classes of equivalence for a single given document can be bounded in a simple way.

If a document contains ND different terms, then it should at least have the classes of equivalence

corresponding to the 0-width SEs E(t, 0), plus supremum and infimum; that is, ND + 2 classes of

equivalence. The maximum number of classes that it could have, on the other hand, is limited not

only by the number of distinct terms, but also by its length; for any term t present in the document,

any E(t, w) will be in the equivalence class of the supremum if 2w + 1 > length. This means:

ND + 2 6 Nclasses 6 length ·ND + 2 (4.47)

This, together with the fact that every element in a SE class of equivalence will produce the same

preserved token count (shown in (4.34)) suggests a representation for lattices in a 2-dimensional

array, as follows:

• Each central term is assigned a column

• Each possible token counting (from 0 to length) is assigned a row
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Figure 4.10: Diagrams representing SEs centred on different letters of the word “R E P R E S E N
T A T I O N”.

On the left, a binary array with rows representing the number of preserved letters, and
columns representing the central letter, with order relations represented as lines (horizontal
lines are equivalence relations, in order relations the higher point includes the lower). On
the right, a tree showing the classes of equivalence. They start being one for the covering
width and split in several as width decreases.

• SEs are represented by dots (or circles) in the appropriate sites of the array

• Lines between the dots represent order relations. If the line is horizontal, it represents equiv-

alence, otherwise, it means that the upper includes the lower.

• A rectangle in the lower row (0 preserved tokens) represents the class of SEs centred on

absent terms.

This can be thought as a more elaborate version of the lattice represented in figure 4.9. A more

complex one is shown in figure 4.11, this one with letter-erasers for the word “REPRESENTA-

TION”.

Some features of the usage of terms in the document can be easily seen in the lattice representation,

for example:

• The row where lowest-lying dot in a column is, will show the occurrence counting of the

corresponding term |E(t, 0) ·D|.

• If occurrences of the term are evenly distributed in the document sequence, the dots on its

corresponding column will have gaps between them. If, on the contrary, the occurrences

appear mostly in a small part of the document, the dots will be closer together, and there will

be more of them.
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• If two terms tend to co-occur, the corresponding columns will appear as connected by a large

number of lines.

• Equivalence classes of SEs will indicate parts of the document where terms in a subset occur

together. Every SE in an equivalence class will preserve the same portion of text, and this

portion will contain the occurrences of the central terms corresponding to other SEs in the

class within it. The token count of the class (the row where they are) will indicate the

size of these clusters, that could also be composed of several disconnected areas along the

document.

4.4.6 Representing the Lattice

Figure 4.11 suggests a way to represent eraser token counting in a document with a sparse binary

array:

Definition 4.13 (Erasers Array)

Erasers Array of a document: with a column index corresponding to a term, and a row index

corresponding to a token counting that can vary from 1 to |D| − 1. Its entries are binary: 0 if no

SE centred in the term produces the corresponding token counting, and 1 if it does.

The value of w∗t,D would be simply the number of 1s in the column corresponding to t. Erasers

for the chapter of “The Origin of Species” are represented in figure 4.11 for the 500 most frequent

terms.

The erasers array is very easy to approximate by relations like 4.24, or an even simpler scheme, like

simply adjusting the relation between |E(t, w) · D| = f(|E(t, 0) · D|, w) by only measuring, for

example, the width for which half of the text is preserved, plus the width for which all of the text

is preserved (covering width). This amounts to assuming a form for the distribution of distances,

as was shown in section 4.3.2

As for the order relations between SEs centred on different terms, equivalence relations capture

most of the information for large fractions of preserved text (as can be seen in figure ). All SEs

preserving the whole document will belong to the same equivalence class, but this equivalence
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Figure 4.11: Left: Binary Array representing the useful SEs in chapter 2 of “The Origin of Species”
centred on 500 of the most frequent terms. Right: Covering widths for terms, from more frequent
to less frequent (is also the density of each column in the graphic on the left)

In the graph on the left, each column (axis x corresponds the set of 500 most frequent terms,
ordered from most frequent to less frequent (“the” appears 828 times, while the last term,
“subspecies” appears only 4 times). Each row corresponds to a token counting, and goes
from 4 (only 4 token preserved) to 12323 (all the tokens in the whole text). Because of the
scale, it is hard to appreciate the density of points; in the right graph the number of points
for each column (which corresponds to the covering width) is shown for each term.

class splits progressively as the number of preserved tokens decreases, and classes are smaller and

smaller, until they consist of only 1 element for small fractions of preserved text.

4.4.7 Eraser Lattices for a Set of Documents

The conditions for any order relation between SEs are more strict in a set of documents than

they are in a single one, because they have to be fulfilled for all of them. This means that the

overall number of order relations will decrease. Relations involving token counting for a set of

documents will still hold, provided that the sum of counts over all documents in the set replace

single document counts:

Inclusion >C :

(
∑
D∈C

|E(t2, 0) ◦ E(t1, w) ·D| =
∑
D∈C

|E(t2, 0) ·D|) ⇒ (E(t1, w) >C E(t2, 0)) (4.48a)
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Figure 4.12: Lattice of term SEs for two words: “H A S S E” and “R E P R E S E N T A T I O N”

Only letters common to both, (A, S and E) can be in the top row, as part of the
supremum equivalence class

Equivalence ≡C :

(E1 ≡C E2) ⇒ (
∑
D∈C

|E1 ·D| =
∑
D∈C

|E2 ·D) (4.48b)

Covering width w∗t,C :

∀t|
∏
D∈C

|E(t, 0) ·D| > 0,∃w∗t,C ,
∑
D∈C

|E(t, w∗t,C) ·D| =
∑
D∈C

|D| (4.48c)

The disappearance of some order relations when adding documents to the set will be reflected

also in the splitting of the equivalence classes: there are more of them, and smaller, for a set of

documents than for one alone.

There is a further qualitative difference with the case of one single document: a SE preserving all

text in the set of documents can only have a central term occurring in every document in the set.

In the graphic, this means that not all columns will have dots in the upper row, corresponding to

the sum of lengths.

All these effects can be seen in figure 4.12
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4.5 Representation of Documents with Lexical Measure-

ments

Bag of words representations are very compact, but they capture semantic content in a remarkable

way. A document represented by the set of frequencies {Nt} can represent a very large number

of possible scrambled documents. In fact, the number of possible text sequences represented by a

vector of term frequencies is:

Nsequences =
(
∑

tNt)!∏
t(Nt!)

(4.49)

To take an example, document AP880121-001 from TREC collections, has 249 distinct terms and

is a sequence of 383 tokens. The distribution of numbers of occurrences is as follows:

Nt

terms with Nt

25 15 8 7 6 5 4 3 2 1

1 1 2 1 3 6 5 9 38 149

Applying this, we find that the TF vector for this documents would be the same for a huge number

of possible sequences:

Nsequences =
383!

(25!)(15!)(8!)2(7!)(6!)3(5!)3(4!)5(3!)9(2!)38
≈ 4.47× 10738 (4.50)

Most of these sequences will neither make any sense, nor comply with syntax rules that exist in

natural language. It is, indeed, extremely difficult to compute the fraction of sequences that make

any sense, but intuitively we can think of some permutations of words that will still produce a text

dealing with the same topic, and others that will produce a text dealing about something else. For

example, permutations of synonym words will probably not affect semantic contents much, and

permutations of terms surrounding a preposition is likely to change the meaning of the sentences

(“X of the Y” is likely to have a different meaning than “Y of the X”).
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4.5.1 Comparison of Documents

The operations and relations between SEs introduced so far allow us to formally define an operative

notion of identity between documents:

Definition 4.14 (Equality of Erasers)

Two documents are measured equal when every product of SEs preserves the same number of

tokens in both.

(D1 = D2) ⇐⇒ ∀{(t1, w1), (t2, w2), · · · , (tN , wN)}|(
N∏
i=0

E(ti, wi))·D1| = |(
N∏
i=0

E(ti, wi))·D2|

(4.51)

For most products of SEs, the number of preserved tokens will be 0, but there is an interesting set

for which this number is different. For a given document, it is possible to define a set of optimally

discriminating products. These products will impose the most rigid restrictions to the preserved

text, while still preserving a number of tokens larger than 0.

Definition 4.15 (Optimally Discriminating Product)

An Optimally preserving product is a product of SE that fulfills the following conditions:

1. Includes the highest possible number of SEs with different central terms.

2. The sum of the widths is minimal.

It is possible also to define optimally discriminating products with a fixed number of SEs. In this

case, condition 1 of the definition would be changed.

As an example of maximally discriminating products, let us consider the sentence D1 =“To be
or not to be, that is the question”. This sentence has 8 terms and 10 tokens. 10 products Pi
containing SEs centred in every term present in the sentences can be built to preserve one token in
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different places of the text sequence:

P1 = E(to,0)E(be,1)E(or,2)E(not,3)E(that,6)E(is,7)E(the,8)E(question,9)

P2 = E(be,0)E(or,1)E(to,2)E(not,3)E(that,6)E(is,7)E(the,8)E(question,9)

P3 = E(or,0)E(not,1)E(be,2)E(to,3)E(that,6)E(is,7)E(the,8)E(question,9)

P4 = E(not,0)E(to,1)E(or,2)E(be,3)E(that,5)E(is,7)E(the,8)E(question,9)

P5 = E(to,0)E(be,1)E(not,2)E(that,3)E(or,4)E(is,5)E(the,7)E(question,9)

P6 = E(be,0)E(that,1)E(to,2)E(is,3)E(not,4)E(the,5)E(or,6)E(question,7)

P7 = E(that,0)E(is,1)E(be,2)E(the,3)E(to,4)E(question,5)E(not,6)E(or,7)

P8 = E(is,0)E(the,1)E(that,2)E(question,3)E(be,4)E(to,5)E(not,6)E(or,7)

P9 = E(the,0)E(question,1)E(is,2)E(that,3)E(be,4)E(to,5)E(not,6)E(or,7)

P10 = E(question,0)E(the,1)E(is,2)E(that,3)E(be,4)E(to,5)E(not,6)E(or,7)

If these products are applied to a sentence that is very similar in lexical terms but has a different

meaning, D2 = “The question is, to be or not to be that”, the counts of preserved tokens would

be all null, because some of the factors would be orthogonal for this permuted sentence:

|P1D1| = 1 |P1D2| = 0 |E(that, 6) ◦ E(the, 8) ·D2| = 0

|P2D1| = 1 |P2D2| = 0 |E(that, 6) ◦ E(the, 8) ·D2| = 0

|P3D1| = 1 |P3D2| = 0 |E(that, 6) ◦ E(the, 8) ·D2| = 0

|P4D1| = 1 |P4D2| = 0 |E(that, 5) ◦ E(the, 8) ·D2| = 0

|P5D1| = 1 |P5D2| = 0 |E(that, 3) ◦ E(the, 7) ·D2| = 0

|P6D1| = 1 |P6D2| = 0 |E(that, 1) ◦ E(the, 5) ·D2| = 0

|P7D1| = 1 |P7D2| = 0 |E(that, 0) ◦ E(is, 1) ·D2| = 0

|P8D1| = 1 |P8D2| = 0 |E(is, 6) ◦ E(the, 1) ·D2| = 0

|P9D1| = 1 |P9D2| = 0 |E(question, 1) ◦ E(that, 3) ·D2| = 0

|P10D1| = 1 |P10D2| = 0 |E(question, 0) ◦ E(that, 3) ·D2| = 0

Neither the problem of finding maximally discriminating products, nor the uniqueness of a set of

them, are solved in this work. However, a simple approximate procedure to produce a set of such

products for a particular document D is proposed in appendix D.

4.5.2 Vector-Space Similarity between Documents, and SEs

Representing a document by a vector containing term frequencies, or some function of them, is

one of the oldest ideas in IR that still remains fruitful. As was shown in section 2.3.2, a document
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is represented by a vector in a space whose natural basis consists in a set or orthonormal vectors

corresponding to a term each.

With a weighted norm scheme like that defined in 4.2.2, it is possible to reproduce precisely the

similarity measure as it is developed in vector space models (see section 2.3.2), just by estimating

some of the representation coefficients:

〈ti|D〉 = |E(ti, 0) ·D| |λj〉 = |tj〉 (4.52)

Similarity between documents would be computed as it is shown in 2.8. Including SEs the relation

would be:

~D1 · ~D2 =
∑
ti

|E(ti, 0)D1| × |E(ti, 0)D2| (4.53)

where ~D is the vector bag-of-words representation of a document. This is precisely part of a known

measure of similarity: the cosine similarity [46]. In section 2.3.2 we mentioned that in Vector

Space Models terms are considered as elements of a dual space to documents, so that a numeric

coefficient corresponds to every term-document pair. In this new definition of inner product with

SEs, an eraser corresponds to every term, forming an operator valued measure, or more explicitly

an eraser valued measure. This is analogous to the concept of Positive-defined Operator-Valued

Measure (POVM) [117]

The equivalence classes tree shown in figure 4.11 gives some information that can be approx-

imately encoded in differences between the phases of entries corresponding to different terms.

From the tree, we can define distances between terms, and assign phases whose differences reflect

distances between terms in the tree.

〈A|D〉〈D|B〉 ≈
(√

NA in DNB in D

length

)
e
iπ
(
dA,B
dmax

)
(4.54)

where i =
√
−1, dA,B is the distance between terms in the tree, and NX in D is the frequency of

term X in document D. If we take terms as an orthonormal basis {|tj〉}, and distances as anti-

symmetric quantities dA,B = −dB,A, equation (4.54) gives us the expected entries of the matrix

representing the rank-one projector |D〉〈D| in this basis.
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〈tj|D〉〈D|tk〉 ≈Mj,k =

(√
Ntj in DNtk in D

length

)
e

2πi

(
dtj ,tk
dmax

)
(4.55)

The resulting matrix will not be, in general, a rank-one projector, but will have the mathematical

characteristics of a density operator (normalised, positive-defined). Two ways of defining similar-

ity between density operators are fidelity and normalised frobenius product:
Definition 4.16 (fidelity)

Fidelity measures how the probabilities of any measurement given a state represented by a

density operator, are reproduced by the probabilities of the same measurements by a state rep-

resented by another density operator [118]. The mathematical definition is:

F (ρ1, ρ2) = Trace
(

(ρ1)
1
4 (ρ2)

1
2 (ρ1)

1
4

)
(4.56)

Fidelity seems to be a very natural choice to compare density matrices, but calculating it can be

computationally demanding. An alternative is a normalised frobenius product, which is equivalent

when density operators are rank-one projectors:
Definition 4.17 (Frobenius Normalised Product)

Frobenius Normalised Product is a measure of similarity between matrices that is defined as

a generalisation of the cosine product for vectors. The formal definition is:

FNP (ρ1, ρ2) = 4

√
Trace(ρ1(ρ2)2ρ1)

Trace ((ρ1)2) Trace ((ρ2)2)
(4.57)

If a vector representation of documents is needed (for example, for LSI), it can also be derived in an

approximate way from the matrix M. Vector |D〉 can be computed by maximising 〈D|M |D〉; this

amounts to taking the eigenvector of M with the highest eigenvalue. This is a way of producing a

basic vector space approach including information beyond the bag-of-words approach.

4.6 Non-Boolean Algebra on Erasers

In the definitions of the Boolean operations (4.3, 4.2, and 4.4) it is implied that the central terms

to define each SE are “visible”, even if they have been erased by another SE before. If the analogy
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with quantum measurement is to be followed, however, the possibility that they are overlooked has

to be considered. For this, it is necessary to use successive application (products) of SEs.

Definition 4.18 (Quantum Meet (intersection))

q-meet of two SEs E(t1, w1) ∧q E(t2, w2) : Is the transformation that erases the tokens that

are erased by the successive application of both SE in any order:

E(t1, w1) ∧q E(t2, w2) ≡ (E(t1, w1) ◦ E(t2, w2)) ∧ (E(t2, w2) ◦ E(t1, w1)) (4.58)

A q-join cannot be defined in a similar manner, asE(t1, w1)∨q∗E(t2, w2) ≡ (E(t1, w1)◦E(t2, w2))∨

(E(t2, w2) ◦ E(t1, w1)) because this could preserve less tokens than each of the SEs, producing

therefore monstrous order relations. It is desirable to define a q-join that is just as prone to preserve

tokens as the q-meet is to erase them, producing therefore an algebra whose relations are in a way

equally valid when dealing with the negation of every element. This symmetry of the algebra can

be formulated as the de Morgan’s law:

Definition 4.19 (De Morgan’s Law)

De Morgan’s law :

A ∧B = ¬(¬A ∨ ¬B) (4.59)

The de Morgan’s law can be used to define a q-join that preserves this symmetric character of the

algebra:

Definition 4.20 (Quantum Join (Union))

q-join of two SEs E(t1, w1) ∨q E(t2, w2) : Is the transformation that fulfils the de Morgan’s

Law with the q-meet:

E(t1, w1) ∨q E(t2, w2) ≡ ¬(¬E(t1, w1) ∧q ¬E(t2, w2)) (4.60)

Finite Quantum Logics are known to fulfil de Morgan’s law [119], so this definition seems appro-

priate to continue the parallel with the quantum-theoretical notions of measurement.
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4.6.1 Is a Logic of Erasers distributive?

As was mentioned in section 3.4, a key property of Quantum Logics is that distributive law

is not universally fulfilled. It can be shown that this law can also be violated by the algebra

{E(ti, wi),¬,∧q,∨q}. One example is enough for that:

Example 3

Suppose the document is a sequence of terms:

D = A xxB xxC xA B xxB xC xxA xxx .

We define E(A, 2), E(B, 2) and E(C, 3), and check wether the following equality holds:

E(A, 2)∧q(E(B, 2)∨qE(C, 3))·D =? (E(A, 2)∧qE(B, 2))∨q(E(A, 2)∧qE(C, 3))·D (4.61)

To check this, we translate it to products and Boolean operations ∧. This results in a rather long

expression.

On the left side, everything boils down to the meet of products of three transformations on the

left side (involving E(A, 2), ¬E(B, 2) and ¬E(C, 3)). On the right side, there are products

of complements of products, involving ¬(E(A, 2)E(B, 2)), ¬(E(A, 2)E(C, 3)), and the same

products in opposite order.

In the end, the left-hand side transformation turns out to preserve less of the sequence than the

right-hand side

Tleft sideD = A xx- - - - - - - - - - - - - - - xx-

Tright sideD = A xxB xxC - - - - - - xC - - - xxx
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4.7 Erasers and Probabilities

Up to this point, we have considered distribution of probabilities that different terms occupy a cer-

tain position in the sequence of a text document. This allows to quantify the information contained

before and after erasure. However, probabilities defined in this way are not too useful. In this

section, we will consider probabilities that are more close to the actual reading of documents, even

though they will be considered from an abstract point of view.

In section 4.2.2 it was shown that it is possible to define a measure for documents with SEs. To

define probabilistic spaces, it is necessary to impose more conditions on this measure (these are

explained in depth in [120]). To move in that direction, we will now, instead of defining a measure

for documents with SEs, use documents to provide a measure for SEs. Having defined a join and

a meet, and shown that SEs and the transformations formed with them constitute a lattice, we can

enunciate the requirements of a probability measure for SEs.

Definition 4.21 (Probability Measure)

A Probability Measure for SEs would be a function that assigns a real number between 0 and

1 to every SE, M : E → [0, 1], such that:

1. M(E1 ∧q E2) 6M(E1)

2. M(E1 ∧q E2) 6M(E2)

3. (M(E1 ∧q E2) = 0)⇒ (M(E1 ∨q E2) = M(E1) +M(E2))

4. M(¬E) = 1−M(E)

It can be proven that the counting of preserved tokens of a document that has been transformed

by the SE is indeed a probability measure, when appropriately normalised by the token

counting of the document. An intuitive way of seeing this probability measure in terms of a

random process is as the answer to the following question: If we pick a token at random (with no

bias) from a document, what is the probability that the considered SE will preserve this token?

MD(E) ≡ |E ·D|
|D|

(4.62)
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A probability distribution of documents ρ{Di,Pi} (where
∑

i Pi = 1) can also be a probability

measure for SEs, if defined as follows:

Mρ{Di,Pi}
(E) ≡

∑
i

Pi
|E ·Di|
|Di|

(4.63)

This bears an obvious resemblance to density operators, which can be thought of as a probabil-

ity distribution of vectors. Density operators constitute probability measures for projectors, as is

stated by Gleason’s Theorem [121]. The correspondence between documents and density opera-

tors completes then the formal parallel between the Quantum Theoretical representation of ideal

measurement outcomes (projectors) plus system states (density operators), and SEs as lexical mea-

surements plus documents (or distributions of them).

This can sound very theoretical and abstract, but particular formulations of these eraser-document

probabilities correspond to concepts that are already very useful in different Natural Language Pro-

cessing techniques, like Term Frequency, Document Frequency, and Co-Occurrence probability:

• Term Frequency. This can be defined with a null-width SE E(t, 0):

TF (ti) = P (token preserved in document D by eraserE(ti, 0)) =
|E(t, 0) ·D|
|D|

(4.64)

where TF (ti) represents the frequency of term ti, normalised with the total number of terms

in the document.

• Document Frequency. This can be defined with very wide SE:

DF (t) =
∑
i

P (token preserved in document Di by eraserE(t, w)) =

=
∑
i

|E(t, w) ·Di|
|Di|

(4.65)

where DF (ti) is the number of documents where the term occurrs. Width factor w must

equal or surpass the maximum length of documents in the considered collection, to ensure

the preservation of the whole text when the central term is present.
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• Co-occurrence probability. This can be defined using products of Erasers:

P (t1closer than w to t2 in D) =
|E(t2, 0) ◦ E(t1, w) ·D|

|D|
(4.66)

or as a conditional probability:

P (t1|t2 is at a distance of w or less) =
|E(t1, 0)E(t2, w)D|
|E(t2, w)D|

(4.67)

If the positions of tokens in a document are considered as elements in a set, the action of a SE on

this document can be seen splitting this set in the set of preserved positions and the set of erased

positions. These sets can be combined by the usual set operations, and the propositions that define

them with the corresponding Boolean logical operations: the union (join, conjunction) intersection

(meet, disjunction) or complement (negation).

4.8 A Linear Algebra for Erasers

Equation (4.63) for a probabilistic measure defined on SEs with a distribution of documents, can

be expressed in a more elegant way if we are able to put the SE apart from the rest of the factors

as follows:

P{Pi,Di}(E) =
∑
i

Pi
E ·Di

|Di|
= |E

(∑
i

PiDi

|Di|

)
| = |E · ρ{Pi,Di}| (4.68)

This is a more formal way of obtaining the positive-defined, hermitian density operator ρPi,Di that

was mentioned in section 4.5.1.

To be able to define operators like that in equation (4.68), we need some operations, like these:

1. Multiplication by a scalar

|E · (αD)| = α|E ·D| |(αE) ·D| = α|E ·D| (4.69)
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2. Sum

|E(D1 +D2)| = |ED1|+ |ED2| |(E1 + E2)D| = |E1D|+ |E2D| (4.70)

Note that the sum of SEs is equivalent to the join, provided that they do not overlap.

Using the mathematical properties of SE as operators, it is possible to derive from them composite

operators in a number of ways. In the next chapter, we will use these mathematical tools to build

a transformation that can be engineered to be sensitive to high-level attributes of the text, like the

topic that it is about.

4.8.1 Term Co-Occurrences and Kernels from SEs

Limiting the description of texts to frequency of occurrences of terms has been a useful but largely

criticised approach; and to avoid it was a main motivation for the Generalised Vector Space model

proposed by Wong et al in 1985 [46]. The use of term co-occurrence in vector space models has

been shown to be an example of a concept that is known in Machine Learning as the Kernel trick

[47]. It consists in using a set of features to define a similarity between objects. This trick avoids

some of the problems that complex dependencies amongst the features may cause.

4.8.2 Linear Algebra, and something more on Kernels

The features of a vector-space representation can sometimes be redundant or ill-scaled, leading

to inefficiency and error-prone results; an optimal representation should be unbiased and made of

features that perfectly complement each other. If information is available on a large collection,

a representation that is unbiased and as uniform as possible for the particular collection can be

built. The first step is to find a way of converting the average density matrix representation into the

maximally uninformative one:

〈j|ρany document in C|k〉 =
1

ND

δj,k (4.71)
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This means that the representation of the least informative density operator in an optimal vector

space would be a normalised density matrix1. The relation of the raw term representation to the

optimal representation can be obtained from the relation of the uninformative density operator and

the identity:
1

ND

I = Mρany document in cM (4.72)

where M is a coordinate transformation. With a spectral decomposition of the density operator,

this transformation can be easily computed

ρany document in C =
Rank∑
i=1

Pi|ψi〉〈ψi|

M =
Rank∑
i=1

√
1

Pi
|i〉〈ψi| (4.73)

The term-term kernel for the collection would then be:

Kt1,t2 = (M †M)t1,t2 =
rank∑
i=1

1

Pi
〈t1|ψi〉〈ψi|t2〉 (4.74)

In this optimal representation the average document density operator is forced to be non-informative:

a normalised identity with maximum von Neumann entropy.

The transformation M that turns into a normalised identity can be interpreted as latent features

constituted as term combinations, while terms themselves are not represented by orthogonal or

normalised basis anymore, but by vectors whose product is given by the kernel:

〈t1|t2〉 = Kt1,t2 (4.75)

SEs can then be used in a number of ways to compute kernels; their use can give way to a number

of mathematical techniques that start from a bag-of-words representation of documents, or from

more complex approaches. However, to exploit the full power of the proposed scheme, more of

the rich formal structure of relations and properties of SE is needed, like the definition of logic (or

1A normalised identity is the density operator with a maximum von Neumann entropy, so it is, in fact, the most
uninformative density operator.
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otherwise) binary operations, that are usually referred as constituting elements of an algebra [12]

4.9 Uncertain Conditional and Quantum Representations

One of the most suggestive ideas in IR has been to estimate aboutness as the probability of a

logical relation: the document implying the query [8]. As it was mentioned in 3.5, the idea has led

to most logic-based models in IR [122], and was also the first call for methods beyond Boolean

logics, in particular, using quantum-like logics [10]. Representing both documents and queries as

states where relations between SEs hold or not leads quite naturally not only to establish logical

relations between them, but also to assess the probability of a logical relation given an incomplete

knowledge.

In this work, the problem of assessing the degree to which a document implies a query is ap-

proached as the problem of how much lexical features of the document imply lexical features

of the query. A quantum-like projector logic provides both a way to understand that question and

a natural way to answer it,

4.9.1 A Vector Space for Erasers

Representing a set of SEs is, unsurprisingly, a bit more complicated than simply representing terms

in a bag-of-words approach. Instead of defining a set of vectors, each corresponding to a term, a set

of orthogonal basis sets must be defined. To represent the SEs centred on each term, an orthogonal

basis {|tj, k〉} has to be chosen, and projectors Π(t,w) to represent SEs in the space spanned by

these basis are defined the following way:

E(tj, k)→ Π(tj ,k) =
2k+1∑
l=1

|tj, l〉〈tj, l| (4.76)

With this formula, a projector representing E(tj, k) will have a rank of 2k + 1. It is easy to verify

that necessary order relations hold:
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∀(k > l),

Π(tj ,k) = Π(tj ,l) +
2k+1∑

m=2l+2

|tj,m〉〈tj,m|︸ ︷︷ ︸
orthogonal to Π(tj ,l)

⇒
(
Π(tj ,l)Π(tj ,k) = Π(tj ,l)

)
(4.77)

In vector space models, a starting point is usually a non-collection-dependent representation of

terms: for example, as members of an orthogonal basis (basic vector space) or as random vectors

in a high-dimensional space (Random Projection [123]). Then, information about the collection

can be used to generate a better representation (usually as a non-orthogonal set of vectors, where

the mutual overlap reflects statistical correlation in their occurrence). A starting point for repre-

senting SEs would be a set where no relations hold between projectors representing SEs centred

on different terms, as is expected in a large corpus.

This can be achieved by imposing a mutual overlap condition to the basis sets representing vectors:

Definition 4.22 (Mutual Overlap)

Two basis sets {|tj, k〉} and {|tl,m〉} present mutual overlap when no member of one is or-

thogonal to a member of the other:

∀(k,m), |〈tj, k|tl,m〉|2 > 0 (4.78)

Two sets of projectors {Π(a,j)} and {Π(b,k)} built with mutually overlapping basis will not present

any crossed order relation like Π(a,j) > Π(b,k). However, order relations relative to one vector can

exist. Primitive inclusion relations relative to a vector would be defined as follows:

(
Π(a,j) <|ψ〉 Π(b,k)

)
⇐⇒

(〈ψ|Π(a,j)Π(b,k)Π(a,j)|ψ〉 = 〈ψ|Π(b,k)|ψ〉)∧

(〈ψ|Π(a,j−1)Π(b,k)Π(a,j−1)|ψ〉 < 〈ψ|Π(b,k)|ψ〉)

∧ (〈ψ|Π(a,j)Π(b,k+1)Π(a,j)|ψ〉 < 〈ψ|Π(b,k+1)|ψ〉) (4.79)
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Vectors for which a primitive inclusion relation holds span a subspace, which can be represented

by a projector Π(a,j)<(b,k), defined as follows:

(
Π(a,j) <|ψ〉 Π(b,k)

)
⇐⇒ (Π(a,j)<(b,k)|Ψ〉 = |Ψ〉)

Π(a,j)<(b,k) =
(
1−Π(a,j−1)

) (4.80)

4.9.2 Quantum Representation of Documents

If we stick to the analogy with Quantum Theory, documents would be represented by positively

defined hermitian operators with unitary trace. The meaning of the density operator can be derived

from Gleason’s theorem [121], and it is that of a probability measure: that is, a function assigning

a number between 0 and 1 to every projector that can be interpreted as the probability of a certain

measurement outcome, given a certain preparation procedure (state) of a physical system.

If SEs are represented as projectors Π(t,w), a document would be represented by a density operator

ρD that gives the right probabilities of preservation, however they are defined. One way is, for

example, taking the probability of preserving a position of a given document chosen at random

with a particular a priori bias. If the bias is determined by the identity of the term, there is an

a priori probability P0(t) of picking a term t, and this would define a weighted norm like those

defined in 4.7:

P (t preserved by E(t∗, w∗)) =
|E(t∗, w∗) ·D|{P0(ti)}

|D|{P0(ti)}
=

∑
i P (ti)|E(ti, 0)E(t∗, w∗) ·D|∑

i P (ti)|E(ti, 0) ·D|
(4.81)

(ρD)j,k =

√
P0(ti)P0(tj)|([(1 + i)E(tj, wtj) ◦ E(tk, wtk) + (1− i)E(tk, wtk) ◦ E(tj, wtj)] ·D|)

2
∑

t P0(t)|E(t, wt) ·D|
(4.82)

It has to be noted that expression 4.82 cannot be immediately expressed in terms of dependence

on latent variables as was discussed in section 2.3.2 (equation (2.11)), since the dependence of two

different terms is in the product of SEs; co-occurrence is here included in a more direct way.
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4.10 Summary

In this chapter, the notion of Selective Eraser (SE) was defined as a way of considering lexical

measurements in a similar way that measurements of physical quantities are performed on physical

systems. From the very definition, two ways of applying this concept were presented:

• Definition of a family of norms for documents (section 4.2.2). This rather formal and the-

oretical concept was revisited in 4.5.1, and 4.8.2 as part of the information given by the

term-term kernels that can be obtained from lexical measurements with SEs.

• Extraction of useful features from natural language text that are used in several techniques.

In particular in section 4.3, a novel kind of lexical measurements is introduced, based on

relations between SEs as they operate on text: critical widths. These are explored as a

way of representing text documents that go beyond bag-of-words approaches, and is closely

related to methodologies based in distances between occurrences.

• Some ways of using SEs to obtain and process information about co-occurrence of different

terms is also explored in section 4.5.1.

• The relation of SE-based measurements with probabilistic concepts is explained in section

4.7.

• Mathematical relations between SEs were also explored in different sections of this chapter,

which will be used to define transformations in next chapter. In section 4.6 non-Boolean

logical relations are defined and explored, and in section 4.8.2 the foundations are laid for a

linear algebra of SEs, wich will be the starting point for the definition of further concepts.
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Chapter 5

The Aboutness Witness (AW)

In chapter 4 a scheme for lexical measurements was proposed that is inspired in measurement as

it is described in physics, and some applications of this scheme for examining and characterising

natural language text were outlined. However, up to this point, no concrete proposal has been put

forward on how to build a tool for retrieval tasks based on these considerations. In this chapter, we

attempt the definition and characterisation of operators that will be sensitive to semantic contents,

and can be thus used for retrieval tasks. In section 5.1, the nature of this operator is briefly presented

as an analogy to the Entanglement Witness defined an used in QT (a deeper discussion of the

quantum case can be found in appendix E). Operators and documents are here represented in

a Hilbert space for illustrative reasons, so the analogy to QT can be clear. In section 5.2 we

introduce the concept of Lexical Neighbourhood, as a way to apply linear combinations of SEs to

match particular patterns in the use of terms. In section 5.3 we propose a simple way to build AW

from a text query and a text repository. In section 5.4 we examine wether the witness defined in

the last section reflects the characteristics of aboutness outlined in section 2.2. Finally, in section

5.5 we summarise the characteristics of the witness defined and outline further developments and

applications.
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5.1 Discriminating Operators from a Quantum Analogy

After having shaped a measurement scheme after that described by QT and adopted the mathe-

matical tools this theory uses (linear algebra, Hilbert spaces), the idea and name of the witness is

comparatively a small loan. The analogy that leads to name it is not as deep and far-reaching as

those from measurement, so the focus in this chapter will be on the derivation of the concepts and

not in the analogy itself. However, let us start with some words about the idea that motivated the

name of the Aboutness Witness.

In Quantum Information Theory there is no such concept as aboutness, or anything similar, but we

have taken the name “Witness” from an operator that is defined to recognise entangled states of a

composite system (as opposed to separable states) [124] (see an explanation of entanglement and

entanglement witnesses in appendix E). We do not claim any further analogies beyond that of a lin-

ear operator tailored to perform a classification task, so the nature of the problem of distinguishing

entangled states is not relevant for this work.

An operator is defined as a transformation on the elements of a vector space. Linear operators, are

a particular kind of transformations for which operations such as multiplication by scalars, sum,

and therefore linear combination are defined. The use of linear operators follows then naturally

from the analogy of considering documents as elements in a vector space, and measurements as

transformations acting on them. To introduce the use of a linear operator as a classifying device, it

is important to revisit the possibility of defining a linear algebra of SEs introduced in section 4.8.

A linear operator can be said to scale an object if it changes its norm. We can define a combination

of SEs as acting in a linear way on documents, as follows:

|(αE(t1, w1) + βE(t2, w2))D| = α|E(t1, w1)D|+ β|E(t2, w2)D| (5.1)

Operator-based classification is not a new idea; there is a whole class of linear classifiers that

can be expressed as an operator [125] (Support Vector Machines are perhaps the most known

representative of this class [126]). What is new in this work is that we will not use an explicit

vector representation for the objects to be classified (documents) but will compute a score from the
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application of a witness.

The basic idea of an AW Wtopic is that it can be used in a simple way to assess the degree to which

a document D is about the topic:

A(D � [topic]) ∝ |WtopicD| (5.2)

where A(D � [topic]) is the degree of aboutness and ∝ means “proportional to”.

In the next section, it will be shown that a particular linear combination W of SEs can indeed

assess the degree of aboutness of a document to another. Then, in the next section, we will discuss

how to build an AW from a few query terms, instead of from a document.

5.2 Lexical Neighbourhood of a Keyword

Let us focus on an ad hoc retrieval task where the user provides a few keywords chosen to define

a particular topic, perhaps in an incomplete and loose way. The classifying operator that will be

defined here is designed to perceive not only occurrences of terms, but also tendencies of different

terms to occur at certain distances. In section 4.3 we showed that distances between occurrences

can be determined by measurements with SEs with different window widths; now we will extend

that to define a profile for the neighbourhood of a term where a keyword is likely to be. The precise

definition of this profile is:

Definition 5.1 (Lexical Neighbouring Profile)

The Lexical Neighbouring Profile Φ of a term t is a function that assigns a number φ(w) to each

position in a text sequence, according to its distance w to the closest occurrence of t. It will be

noted as Φ(t).

It is worth stressing that the assignation of numbers to places in the sequence does not take the

positions as absolute, but relative to the nearest occurrence of the central term. For that reason, it

is length-independent, and local in nature, which means that how it works on an interval of the text

sequence of the document only depends on the nearby terms. This rules out direct dependences on

the length of the document.
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In section 4.3.2 a way of finding a distribution of distances was discussed, and this turns out to be a

particular case of lexical neighbouring profile. Note that operator E(t, w)− (1− δw,0)E(t, w− 1)

(where δa,b is the Kronecker delta, that is 1 if a = b and 0 otherwise) preserves precisely the terms

that are at a distance of exactly w from the closest occurrence of term t, so we can use it to give

Φ(t) an explicit expression in terms of SEs:

Φ(t) =
wmax∑
w=0

φt(w)(E(t, w)−(1−δw,0)E(t, w−1)) = φ(0)E(t, 0)+
wmax∑
w=1

φt(w)(E(t, w)−E(t, w−1))

(5.3)

The way how a profile is matched by a combination of SEs is shown with an example in figure 5.1.

Figure 5.1: Combination of SEs that match a lexical neighbourhood profile. A combination of six
SEs with the appropriate weights can reproduce the profile shown in the upper part of the graph.
The combination W = −5E(t, 0)−3E(t, 1)+E(t, 2)+2E(t, 3)+E(t, 4)+4E(t, 5) would scale
the different positions around t in 0, 5, 8, 7, 5 and 4 according to the distance to the central term.

To build the AW with the profiles, we will use, again, a linear combination:

W =
∑
t

αtφ(t) =
∑
t

αtφt(w)

(
wmax∑
w=0

φt(w)(E(t, w)− (1− δw,0)E(t, w − 1))

)
(5.4)
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where αt is a weight assigned to term t. Note that this term weight αt must only be considered

separately if the profiles are normalised.

How the profile itself is built, is open to different possibilities. The most obvious way is statistical:

the profile can be simply the probability that the keyword actually appears at a given length. It can

also be weighted by the probability that a term related to the topic appear at a given distance, with

a given probability for some terms to be related to the topic. It can also be weighted by distances,

giving a different scaling factor to different distances (for example, to favour smaller distances).

There are, however, other typses of profiles we can use, including term-dependent, position-

dependent. To use the full power of a quantum-inspired approach, a scheme can be build based on

the use of complex profiles (this is outlined in appendix F).

5.3 Procedure to Obtain an AW for a Query

The simplest witness we may think of is that made with zero-width SEs centred on keywords. This

is equivalent to make a TF scoring of documents, and with an appropriate term-weighting scheme

like those described in section 4.2.2, it can become TFIDF. We can go one step further, and start

including other terms that are associated to the keywords, reproducing their lexical neighbourhood

profile, with combinations of SEs like those described in section 5.2. Whatever the evaluation of

the norm, the steps to build the witness are:

1. Find the best set of ancillary terms

2. Evaluate the lexical neighbouring profile for each

3. Implement a way of measuring in how much of the document the different profiles and

possibly the keyword terms coincide (this can be a nonlinear procedure, but has to do with

the norm and not with the application of the witness).
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5.3.1 Terms to Build an AW

Given our starting point of a text query submitted by the user, we have a set of keywords (query) to

start building the AW. They should describe the topic, but it is possible that a document that treats

the topic does not contain any of them. It is convenient to add more terms (which we will call

ancillary terms) to the description, choosing those who would tend to co-occur with the keywords

but are not too common in the collection. The best procedure to choose them is to compute their

profiles first as is suggested in the next subsection, and then take the sum of the profiles for all

widths as an overall score for each term:

αt =
∑
w

φt(w) (5.5)

Observe that we have used the same symbol αt as the weight in the witness; this amounts to

claiming that we compute a huge witness with all of the terms co-occurring with the keywords, but

then truncate it taking the most important terms.

5.3.2 Lexical Profiles

A simple way of obtaining suitable lexical profiles from a whole collection or corpus is assigning

to each keyword a score, and compute the fraction between a weighted token counting for that

distance, and a total token counting:

φt(w) =
1

N

 ∑
(|E(t,w)D|−δw,0|E(t,w−1)D|)>0

|E(t, w)D|{qi} − δw,0|E(t, w − 1)D|{qi}
|E(t, w)D| − δw,0|E(t, w − 1)D|

 (5.6)

where the sum is made over all documents where (|E(t, w)D|−δw,0|E(t, w−1)D|) > 0, andN is

the number of documents that were taken into account. | · |{qi} denotes a weighted norm, like those

defined in section 4.2.2; a weight zero is assigned to every non-keyword term, and some sensible

weights {qi} are assigned to query terms. These weights are discussed in the next subsection.
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5.3.3 Norms and Term Weights for AW

For the values of the profile in (5.6) to be between 0 and 1, we only need to ensure that the query

weights {qi} are between 0 qnd 1. We can also fix these weights with simple conditions, such as

φki(0) = qi for keyword terms. This condition is met when

qi =

∑
Dj with ki |E(ki, 0)Dj|

|E(, 0)Dj|max over all kNdocs with ki
(5.7)

With a set of term weights and profiles, a witness can be built easily. Profile coefficients cannot be

used directly on SEs, because what the SEs count is cumulative, as can be seen in figure 5.1. For

that reason, every SE will be assigned a different factor that is the difference between the weight

assigned to this value of w, and the sum that all the profile weights corresponding to larger values

of w:

W =
∑
t

St

(
wmax∑
w=0

(
φt(w)−

wmax∑
w′=w+1

φt(w
′)

)
E(t, w)

)
(5.8)

5.4 From Uncertain Conditional to Aboutness

Let us first consider the behaviour and relations of SEs alone, and look for concepts that allow us

to define uncertain conditional, so we can obtain a way of relating the AW with aboutness, and

check if its characteristics comply with what an AW measures. It was shown that a SE can include

another; we can jump from there to a definition of uncertain conditional between SEs.

A version of the Ramsey test (section 2.11) can be defined to assess the degree implication between

SEs. The Ramsey test consists in measuring how much information has to be added in order to

make an implication certain; for SEs it would be as follows:

Definition 5.2 (Uncertain Conditional of SEs within a document)

The degree I of implication between two SE I(E(a, wa)→
D
P (E(b, wb))) within a documentD,

where a and b occur is the fraction of the term preserved by a minimal SEE(c, wc) that includes
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both, that is also presrved by E(a, wa).

I(E(a, wa)→
D
E(b, wb)) = max

E(c,wc)>E(b,wb),E(c,wc)>E(a,wa)

|E(a, wa)D|
|E(c, wc)D|

(5.9)

where inclusion relation is defined by (E1 >D E2) ⇐⇒ (|[E2 ◦ E1]D| = |E2D|) where ◦

denotes the composition of SEs. To get rid of the order relation as a constraint, another formula

can be used:

I(E(a, wa)→
D
E(b, wb)) = max

E(c,wc)

|[E(a, wa) ◦ E(c, wc)]D| × |[E(b, wb) ◦ E(c, wc)]D|
|E(c, wc)D| × |E(b, wb)D|

(5.10)

5.4.1 Implication between AWs

For combinations of SEs such as the AW, this relation cannot be used like it is, because reflex-

ive implications such as W → W would fail to produce a 1, because they are not necessarily

idempotent. However, a simple modification makes it compliant with the reflexive rule:

I(Wa →
D
Wb) = max

Wc

|[Wc ◦Wa]D| × |[Wc ◦Wb]D|
|[Wc ◦Wc]D| × |[Wb ◦Wb]D|

(5.11)

Intuitively, what an implication W1 → W2 means within a document D, is basically that the posi-

tions of the document that contribute to |W1D| will tend to include the positions of the document

that contribute to |W2D|. The formula can only refer to AWs that produce nonzero values of |WD|;

otherwise, the degree of implication W1 →
D
W2 should be zero when only |W2D| = 0, one when

only |W1 = 0| and undetermined when both are zero.

5.4.2 Aboutness and Implication between Documents

At this point, these relations define a kind of uncertain conditional for witnesses, but to relate

them to aboutness it is necessary to be able to establish relations of implication between docu-

ments. This arises from the view that an implication can be used to define aboutness (see 2.17):

(A � B) ⇐⇒ (R(A)→ R(B)) where R(·) is some kind of representation where implication
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can be defined: in this case, it will be an operator ρD; a linear combination of SEs. We assume that

Figure 5.2: Schematic representation of some of the concepts. The measure, a map to a number,
mediates between dual objects: things on the side of the erasers are dual to the things on the side of
the documents. The document defines a combination of SEs which represent it in the dual space,
and SE acts on document to produce a transformed SE which is also in the side of documents.

(D1 � 
C

D2) ⇐⇒ ∀D ∈ C, ρD1 →
D
ρD2 (5.12)

where C is a collection of documents. Since we are quantifying a degree of implication, we can

also quantify the degree of aboutness A, as follows:

A(D1 � 
C

D2) = min
D∈C

I(ρD1 →
D
ρD2) (5.13)

To translate the definition of implication from the realm of witnesses to that of documents, we

can use the concept of duality. Duality consists in that documents can be seen as functionals that

assign a number to every witness, just as witnesses are considered as functionals that assign a

number (score) to every document. A simple scheme of the how documents, erasers, measure and

duality are related can be seen in figure 5.2 We can also assign to every document an operator, by

a simple formula:

ρD =
∑
i

χi
|D|
|EiD|

× Ei (5.14)
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where {Ei} is a set of SEs. Note that ρD is an combination of SEs, and can be considered as an

AW: one that detects documents that are about document D. If the coefficients are normalised,

then this operator has the nice property that

|ρDD| =
∑
i

χi
|D|
|EiD|

|EiD| = |D|
∑
i

χi = |D| (5.15)

This may suggest that |ρDDx||Dx| is a suitable definition of a degree of aboutness, but we cannot check

the properties of this one unless we determine how the coefficients {χi} are chosen. Instead,

we can check the properties of an aboutness degree by using an analogy of equation (5.11) for

documents. We would assume that a third document Dc (which we will call covering vector) can

be chosen to maximise the value, and evaluate it on an arbitrary document D, as follows:

A(Da � 
D

Db) = max
Dc

|[ρc ◦ ρa]D| × |[ρc ◦ ρb]D|
|[ρc ◦ ρc]D| × |[ρb ◦ ρb]D|

(5.16)

This can be used precisely as a criterion to choose coefficients {χi} by imposing the condition:

|ρaDb|
|Db|

= min
D

(
max
Dc

|[ρc ◦ ρa]D| × |[ρc ◦ ρb]D|
|[ρc ◦ ρc]D| × |[ρb ◦ ρb]D|

)
(5.17)

which is linear in the coefficients {χx} for document Da, but quadratic on those of document Db

and Dc. The evaluation of this expression would, besides, imply a maximisation-minimisation

over every pair (D,Dc) of the collection, so its interest is purely theoretical: it shows that with a

suitable way of assigning {χx} operator 1
|D|ρD is a valid aboutness witness that can determine in

the way suggested in whether a problem document is about D.

1. Reflexivity A � A (2.2)

Every document is about itself. Relation (5.16) gives an implication degree of 1 when all the

covering documents documents involved are the same.

2. Transitivity [A � B] ∧ [B � C]⇒ [A � C] (2.3)

Since the aboutness relation defined here is not binary (about or not about) but fuzzy, a strict
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way of interpreting transitivity is by stating that implication degrees are multiplicative:

A(D1 � 
D

D2) = A(D1 � 
C

D2)A(D2 � 
C

D3) (5.18)

It can be verified that this condition is fulfilled whenever the covering document that max-

imises I for both implications is the intermediate D2 (represented by ρ2):

A(D1 � 
C

D2)A(D2 � 
C

D3) =

(
|[ρ2 ◦ ρ1]D| × |[ρ2 ◦ ρ2]D|
|[ρ2 ◦ ρ2]D| × |[ρ2 ◦ ρ2]D|

)(
|[ρ2 ◦ ρ2]D| × |[ρ2 ◦ ρ3]D|
|[ρ2 ◦ ρ2]D| × |[ρ3 ◦ ρ3]D|

)
=
|[ρ2 ◦ ρ1]D| × |[ρ2 ◦ ρ2]D|
|[ρ2 ◦ ρ2]D| × |[ρ3 ◦ ρ3]D|

= A(D1 � 
C

D3) (5.19)

Implication is also transitive whenever the operators representing the covering vectors for

the two implications ρc and ρd are related through the following expression:

[|ρc ◦ ρ2]D| × |[ρd ◦ ρ2]D|
[|ρ2 ◦ ρ2]D| × |[ρd ◦ ρd]D|

= 1 (5.20)

This may suggest that the transitive rule does not in general hold for optimal implication

degrees, but can hold for suboptimal. For the optimal values of the degree of implication, a

weaker relation holds always:

max(A(D1 � 
C

D2),A(D2 � 
C

D3)) > A(D1 � 
C

D3) > A(D1 � 
C

D2)A(D2 � 
C

D3)

(5.21)

3. Set Equivalence (for a given equivalence relation ≡) (2.4)

[A � B] ∧ [B ≡ C]⇒ [A � C] [A � B] ∧ [A ≡ C]⇒ [C � B] (5.22)

This relation is fulfilled trivially if the following definition is adopted for equivalence:

(D1 ≡D D2) ⇐⇒ (|[ρ1 ◦ ρ2]D| = |[ρ1 ◦ ρ1]D| = |[ρ2 ◦ ρ2]D|) (5.23)

4. Left Monotonic Union (for a given operation of union of sets of infons ∪) (2.5) and Cut (also
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for a union) (2.6)

[A � B]⇒ [A ∪ C � B] [A ∪B � C] ∧ [A � B]⇒ [A � C] (5.24)

These two expressions can be used to actually define the operator representing the union of

documents

5.5 Summary

In this chapter the Aboutness Witness was defined: an operator that scores a document according

to the degree in which it is about a topic. This is developed from the idea of uncertain conditional

discussed in 2.4 as an operator that checks if a document is about another document; then, a

methodology is proposed to build it from a small set of query terms representing a topic. The

properties of aboutness presented in section 2.2 are reviewed to ensure that the AW complies with

them, making a case for its theoretical correctness.

An AW should be sensitive to lexical features of the use of terms in documents, like occurrences

and distances between them. To achieve this, two aspects are considered in the construction of

an AW: term weighting, and a lexical profile. The latter is the most practically innovative part of

the methodology: it consists in a weighting of positions around the occurrence of a set of central

terms, according to their distance. This is assumed to catch the lexical features that can account at

least in part for the degree of aboutness.

This chapter has two most important outcomes: the first is a formal definition of the degree of

aboutness between documents within a collection that follows from the idea of measurement, and

uses some concepts of linear algebra and the notion of uncertain conditional. This definition comes

from considering the linear space of SEs (the space spanned by their linear combinations) as a dual

space to that of documents: an appealing idea that will probably trigger more research on both the

theoretical and the experimental aspects of its use. The second outcome is a practical, concrete

proposal to apply this idea to a retrieval scenario of an ad hoc task.
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Chapter 6

Ad hoc retrieval with Aboutness Witness

In order to check the applicability of some of the ideas developed in this work, we will perform

some standard evaluations of the Aboutness Witness in an ad hoc retrieval scenario. 50 assessed

topics and five collections of the TREC-1 initiative were used for this evaluation.

6.1 Scenario and Task

The basic scenario consists in a constant collection that is queried with a series of ad hoc queries

submitted by the user in the form of a set of a few terms [26, page 137]. From these queries, an

AW is built and used to score the documents and generate a ranking.

The AW is built by completing the set of query terms with a number of ancillary terms chosen from

the collection, assigning the SEs centred on all the terms coefficients that will be determined from

with co-occurrence information. This information is gathered from the from the whole collection

without any ranking of documents involved.

Since terms with a non-topical role in language (stopwords) account for most of the occurrences in

a given document, we removed them at indexing time, so the sequences of text examined at retrieval

time did not contain stopwords. This is also likely to shorten the distances between occurrences,

letting more of them fall within a limited set of distances below a fixed maximum width.

For each collection, a list of stopwords was made based on number of occurrences in the whole
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collection Nt in C (should be high for a stopword) and average covering width Wt inD (see defini-

tion 4.9) as a scoreNt in C/ ¯Wt in D, and then selected by hand. This is based on an assumption on

distribution of occurrences in text made in section 4.3.2. Keywords in queries were also removed.

6.1.1 Methodology and Evaluation

Two main parameters were fixed for each run of the method: number of terms, and window width.

All queries had to be augmented in order to take advantage of co-occurrence information, up to

10 and 15 terms (fixing a number that is smaller than the length of some of the queries may cause

trouble). A maximum width was fixed for the witness, so that the profiles were considered from

width zero to that maximum.

The steps followed by the program to produce the ranking of documents for a topic were the

following:

1. Assign preliminary weights to query terms. This would help favouring terms that co-occur

with rare query terms, to compensate for the potential absence of these rare terms in relevant

documents.

2. Gather a large set of term lexical profiles, as weighted distributions of probabilities that

a query term appears at a given distance for the considered term. Profiles are obtained

for all terms co-occurring with the query terms within the distances considered. A weight

is assigned to every distance between nearby occurrences from distance 0 to a maximum

distance wmax. Weighted Co-occurrence counts are used both for building a lexical profile

and for adding up a score for the term.

3. Choose the higher scoring terms, together with their profiles. In the set of chosen Terms,

scores are normalised over the whole set such that the highest is one, and profiles are nor-

malised for each term to sum up to one.

4. Compute the score by applying the witness to each document. The witness will assign a

number to each position, cumulating score from all the lexical profiles. Then, a power of

this cumulated score was summed to the overall score. The exponent of this power was

chosen to give more weight to overlap.
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For sets of terms with similar scores, the highest scored positions will be those falling in the

overlap of several SEs from the AW, whil for sets of terms with very dissimilar scores, the

highest scores will tend to simply reflect the presence of a highly scored term. In the first

case, using alarge exponent for the cumulated score will give more importance to overlap,

while in the second case, a high power would simply increase the importance of the presence

of an already highly scored term. For this reason, the chosen exponent was the sum of scores:

since the highest is fixed to 1, this exponent will be high for sets of terms with similar scores,

and low when the scores are dissimilar.

The contribution of each position in the document would come from formula (5.8) and would be:

|WD|(position i) =
∑
t

St

(
wmax∑
w=0

(
φt(w)−

wmax∑
w′=w+1

φt(w
′)

)
|E(t, w)D|position i

)
(6.1)

where St are individual term weights, and φt(w) are the lexical profiles. The overall score is:

|WD| =
∑

position i

(|WD|(position i))(
∑
t St) (6.2)

Two main performance measures were used to assess the performance of the method: Mean Av-

erage Precision and BPref, described in the next subsection. Mean Average Precision (MAP) is

computed by scanning the ranking of documents top down, and computing the precision value for

the interval of documents from the top 1 to each occurrence of a relevant document. For a given

set of rankings for relevant documents {Ri} the expression for MAP will be:

MAP ({Ri}) =

NR∑
i=1

i

RiNR

(6.3)

where NR is the total number of relevant documents. MAP is the most used performance measure.

MAP will show very low values for topics with small numbers of assessed documents, because

it assumes that every non-assessed document is non-relevant. For that reason, in those cases it is

useful to use other measure. We will use BPref, which is similar to MAP but counts only assessed

terms. For a ranking of documents with the relevant documents in positions {ARi} and assessed
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collection AP89 WSJ8789

No. documents (x 1000) 84.68 98.73
No. terms (x 1000) 207.62 169.34

No. tokens (x 1 000 000) 41.80 43.68
avg. length 493.66 442.44

avg. covering width 432.27 661.75
avg. covering % 72.71 70.33

avg. docs with term 104.289 127.79
avg. occurrences 1.38 1.46

After stopword removal
Stopwords used 123 94

No. terms (x 1000) 207.49 169.24
No. tokens (x 1 000 000) 24.25 26.85

avg. length 286.45 271.99
avg. covering width 81.91 534.11

avg. covering % 75.39 91.65
avg. docs with term 81.31 105.30

avg. occurrences 1.28 1.46

Table 6.1: Collections Used for the experiments. Covering width is the minimum width of a SE
centred in the term that preserve a whole document, and percentage of covering (covering %) is
the covering width as a percentage of the length of the document. T

documents in positions {Ai}, the formula is:

BPref({Ai}, {ARi}) =

NR∑
i=1

iARi

min(Ri, ARi −Ri)NR

(6.4)

where Ri is the number of relevant documents in ranks higher or equal to i, and {ARi} is a set of

binary numbers, each corresponding to and assessed document i: 1 when it is relevant, and 0 when

it is non-relevant.

Collections used

Two collections were used to asses the method, both from the TREC-1 dataset gathered and as-

sessed by NIST [127].

1. Informal Notes on the Associated Press Newswire, 1989 (AP89) The material includes

copyrighted stories from the AP Newswire, as collected by AT & T Bell Laboratories. The
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stories are all from 1989.

2. Informal Notes on the Wall Street Journal 1987 to 1989 (WSJ 87-89)

The material includes copyrighted stories from the Wall Street Journal, mostly from years

1987 and 1988, but also some from 1989 and has been provided courtesy of Dow Jones

Information Services.

6.2 results

The method for ad hoc retrieval based on AW outlined in chapter 5 and described in a more con-

crete way in section 6.1 had, in general, a performance that falls in the same interval of measures

defined by the four considered baseline methods (TF, TFIDF, BM25 and Language Model). A

summary of the results can be found in table 6.2

Collection AP89 WSJ8789
Widths 4 10 avg. 4 10 avg.

bpref for AW (10 terms) 26.88% 27.19% 26.79% 25.48% 24.97 25.06%
bpref for AW (15 terms) 26.86% 27.40% 26.80% 24.20% 23.60% 23.83%

bpref with TF 23.81% 20.42%
bpref with TFIDF 29.96% 29.98%
bpref with BM25 29.96% 29.98%
bpref with LMDP 28.86% 24.09%

MAP for AW (10 terms) 13.46% 13.65% 14.15% 13.67% 13.54% 12.80%
MAP for AW (15 terms) 13.66% 13.52% 13.75% 14.15% 13.85% 13.04%

MAP for TF 9.88% 7.16%
MAP with TFIDF 14.54% 13.99%
MAP for BM25 18.94% 16.79%
MAP for LMDP 14.33% 13.09%

Table 6.2: General results for the evaluation of the AW as a method for ad hoc retrieval

6.2.1 Comparison between the AW and baseline methods topic by topic

To the initial terms provided by the queries, a new set was added to complete 10 terms. The AW

outperformed all the baseline methods in most of the topics, as can be seen for bpref in figure 6.1
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Figure 6.1: Comparison of bpref values obtained with the AW with baseline methods topic-by-
topic, for collection AP89. Axis x corresponds to the bprefs obtained by the baseline method, and
axis y to that obtained with the AW

for collection AP88, and in figure 6.2 for collection WSJ8789. For collection AP89 a remarkable

correlation can be seen with method BM25. The reason for this could be the similarity of the

BM25 ranking function and that of a wide-window SE, discussed in section 4.3.1. The fact that

the correlation is less strong for collection WSJ8789 supports that statement, since covering width

is much larger in the latter (534.11 for WSJ8789 vs 81.91 for AP89 in average). This means that

overlap is probably more prevalent (or is prevalent at smaller distances) for AP89, making the

resemblance between BM25 and a wide-width SE measurement closer.

Variation of the maximum width for the witness does not introduce an important change in perfor-
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Figure 6.2: Comparison of bpref values obtained with the AW with baseline methods topic-by-
topic, for collection WSJ8789. Axis x corresponds to the bprefs obtained by the baseline method,
and axis y to that obtained with the AW

mance. In figure 6.3 the change of performance both in bpref and in MAP is shown for different

values of maximum width. For collection AP89 there seem to be an optimal range of widths be-

tween 2 and 5, while for WSJ8789 performance increases in a more or less monotonic way while

increasing maximum width.

6.2.2 Effect of the number of terms used

Since we are using a fixed number of terms to build the AW, it is necessary to check how the

number used affects the results. The comparison between the results for 10 and 15 terms, suggests

138



6.2. results Chapter 6. Ad hoc retrieval

Figure 6.3: Variation of bpref and MAP (averaged on all topics and on all number of terms) with
window width for both collections. Note that the scale is quite stretched in axis y to make the
variation visible.

that performance is quite robust with respect to this parameter. A linear regression run on all bpref

values for topic and collection defining variable x as the value for 10 terms and y the value for 15

terms, show an almost perfect correlation both for bpref and MAP. The results can be seen in table

6.2.2, and the points are plotted in figure 6.4.

Figure 6.4: Performance with 10 terms vs performance with 15 terms. The outlier point is topic
78 as evaluated in collection WSJ 87-89.

Topic 78 when evaluated in collection WSJ 87-89 seems to have a peculiar behaviour, since aug-

menting maximum width does increase the retrieval performance notably. The query for the topic

is “Greenpeace”. The Aboutness Witness obtained for it with maximum width 5 is decribed in

table 6.2.2 for 15 and for 20 terms. The difference between the AW for 10 and 15 terms is not

dramatic, and amounts to adding terms with a very simple profile: one counting only distance 1
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Measure bpref MAP

Correlation (r2) 99.71% 99.27%
slope 0.9943 1.0071

cut with 0 0.0020 0.0003

Table 6.3: Results of a linear regression between topic-collection performance values for 10 terms
and 15 terms.

from the term. There are only 4 documents marked as relevant for this topic: WSJ861203-0100,

WSJ870911-0086, WSJ870924-0017 and WSJ870928-0092. The text surrounding the new terms

(those added by the 15-term setting as compared with 10-term) could tell us something about the

improvement of performance (hyphens separate different chunks taken from the documents):

For “stopped:”

has been limited or stopped greenpeace the environmental group

For “officials”

of dioxin discharges epa officials said they are moving – that direction currently epa

officials said a dow chemical – year convicted two senior officials of one of the – fed-

eral investigation waste management officials also called the los – determine whether

corporate level officials at waste management and – waste management or its officials

going all the way

Term “stopped” co-occurred very closed in the text with the query term (“greenpeace”) and with

other terms used in the AW; this is something the method scores quite high. Term “officials” does

not co-occur with important terms, but all the terms that surround its occurrences seem to be quite

particular of this topic; they might as well be used as central terms.

6.2.3 Topics where the method outperformed baselines

In figure 6.5 the difference in average performances both in bpref and MAP are shown for all the

topics, ordered by the difference itself. It is clear in the graphics that the method outperformed
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Term α φ(0) φ(1) φ(2) φ(3) φ(4)
with 10 terms

greenpeace 1.00 1 0 0 0 0
group 0.50 0 0.65 0.20 0.15 0

environmental 0.43 0 0.23 0.67 0.10 0
usa 0.30 0 1 0 0 0
ship 0.19 0 0.45 0 0.23 0.33

council 0.17 0 0.81 0 0.19 0
past 0.14 0 0.75 0 0 0.25

protest 0.14 0 0 0 1 0
flustered 0.13 0 1 0 0 0

with 15 terms
greenpeace 1.00 1 0 0 0 0

group 0.50 0 0.65 0.20 0.15 0
environmental 0.43 0 0.23 0.67 0.10 0

usa 0.30 0 1 0 0 0
ship 0.19 0 0.45 0 0.23 0.33

council 0.17 0 0.81 0 0.19 0
past 0.14 0 0.75 0 0 0.25

protest 0.14 0 0 0 1 0
stopped (*) 0.13 0 1 0 0 0

flustered 0.13 0 1 0 0 0
sane (*) 0.13 0 1 0 0 0

protested (*) 0.13 0 1 0 0 0
washington (*) 0. 13 0 1 0 0 0

officials (*) 0.13 0 1 0 0 0

Table 6.4: Witness for topic 78 (greenpeace) in collection WSJ 87-89 with maximum width 4. The
terms marked with (*) are not in the AW made with 10 terms.

the baselines in roughly half of the topics. The average baseline was outperformed for 3 topics

with more than 15% of difference in bpref, and the average baseline outperformed our method in 5

topics by more than 15%. In terms of MAP, the average baseline was outperformed by more than

15% also in the same topics, and outperformed our method by more than 15% in only two topics.

Topics for Best Comparative Performance

Four of the topics where the AW outperformed the average baseline by more than 20% were:

1. Topic 79 (difference of 29.12% in bpref, 2.52% in MAP) “frg political party positions”
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Figure 6.5: Difference of performance between AW (averaged over maximum widths and number
of terms) and the average of the baselines (TF, IDF, BM25 and Language Model with Dirichlet
prior). The boxes at the sides show with how many of the topics the differences are more than
15%.

“FRG” appears only twice in AP89 and none in WSJ 87-89, while the other keywords are

very frequent: the least frequent from them is “positions”, which occurs in 1903 documents

in AP89 and in 3050 documents in WSJ 87-89. “Party” tends to occur an average of 3.14

times in documents that contain it in AP89, and 2.4870 times in WSJ 87-89, so it will provide

rich co-occurrence information.

2. Topic 64 (difference of 13.99% in bpref, 16.51% in MAP) “hostage taking”
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This query is composed of a quite rare term “hostage” (1111 docs in AP89, 339 in WSJ

87-89). The term “hostage”, however, occurs an average of 2.01 times per document in

AP89, and 1.49 times in WSJ 87-89. allowing to gather co-occurrence with other terms to

compensate its scarcity.

3. Topic 90 (difference of 24.39% in bpref, -4.14% in MAP) “data proven reserves oil natural

gas”

For this topic, there are 122 documents The keywords describing this topic are also terms

that tend to occur several times in the documents that contain them (except for “proven”). Oil

tends to occur 3.68 times in AP89 and 3.14 times in WSJ 87-89. “Gas” and “Reserves” can

be expected to be associated also with the former, thus co-occurring an important number of

times.

4. Topic 85 (difference of 16.53% in bpref, 25.93% in MAP) “official corruption”

This case is slightly more difficult to explain than the others, since the terms occur an average

number of times of respectively 1.60 and 1.59 in AP89, and 1.53 and 1.39 in WSJ 87-

89. Both are below the average for query terms, which is 1.69. An explanation of the

good performance of a method based on co-occurrence could be the ambiguous character

of the term “official”, which can be used with different meanings. Information from the

surroundings of the term will probably disambiguate it better than counting of terms in the

whole document.

6.2.4 Some characteristics of the obtained AWs

The scoring procedure for this method, including short-range co-occurrences, is certainly worth

examining, but since this is a prototype version, its more non-standard features are more important

and interesting. For that reason, in the next subsection only the most novel aspect of the method

will be examined: the lexical profiles. The way lexical profiles were generated is quite simple, and

can surely be improved greatly, but the obtained profiles already show interesting features.
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Lexical Profiles

Lexical profiles are defined in such a way that they score each distance from an ancillary term

(from distance 0 to a maximum) according to three factors, each depending on:

1. The identity of the terms found at such distance. Query terms were already assigned a score

that was counted every time the query term appeared at the considered distance

2. The distribution of the term found at such distance within the document. Terms in a cluster

where their density was higher counted with more weight than occurrence of the term that

were evenly distributed through the document.

3. A decaying factor that prevents longer distances to have too large a share in the profile (the

further from the occurrence, the more noise can be expected) [110]

The profile averaged on all ancillary terms for collection AP89 and WSJ8789 can be seen in figure

6.6. The most interesting feature found in the profiles, is that in spite of a damping factor that

Figure 6.6: Lexical Profiles for ancillary terms as assigned from collections AP89 and WSJ 87-89
with topics 51-100 from TREC-1.

forces the values to go down as distance increases, there is a consistent tendency to form a peak

around distance three. This is consistent with earlier studies in co-occurrence, where it has been

found that the most semantically significant co-occurrences are within windows of five to eight
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terms [50]. The fact that the two profiles for different collections are so similar and that their

features are so clear suggest that there is a natural shape for the profile, coming probably from the

structure of language itself.

This suggest that the painstaking process of gathering co-occurrence information can be both sim-

plified and perfected by using a universal prior profile, to be modified by the experimental data.

6.3 Summary

Preliminary tests were ran for a methodology based on the Aboutness Witness, an operator defined

as a linear combination of SEs that directly assigns a score to every document. There was no

substantial improvement in performance with respect to baseline methodologies, but the method

proved to be robust with respect to parameter change, as well as sensitive to features of text that

are not caught by bag-of-words approaches.

Among the methods used as baselines, the one that behaved in a more similar way to AW was

BM25. This joins the evidence gathered in section 4.3 about a close relation between semi-

subsumption of occurrence events and measures with wide-width SEs. All the scoring procedures

used by the other methods can be adapted to the AW, with some care. A TF version of the method

would not use any global weighting of terms, just features from the text sequence and the counts

of preserved tokens. TFIDF could assign ancillary terms a factor depending on the number of

documents where they co-occur with one of the query terms. BM25 has a scoring function that is

intrinsically separated term-by-term, making it difficult to use it with co-occurrences. However,

a semi-subsumption analysis ([111]) could mark the way to a generalisation of BM25 to include

co-occurrence. For Language Models, the link to AW could come from considering SEs as a

very economical representation of n-gram distributions, and treat them as such. The connection

to BM25 and Language Models is a whole work in itself, and remains as one of the interesting

possibilities that were left aside as a methodological choice.
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6.3.1 Strengths of the Method

The AW is not only sensitive to the presence of terms or their counting, but also to the sequence

of the text, and the distances between neighbouring occurrences of terms. While co-occurrence in

the whole document can be a source of noise, and sliding windows gathering co-occurrences can

be quite costly to use, methodologies based on SE are less prone to noise and faster to use at the

same time.

Sensitivity to the term sequence in the text can be an advantage for certain tasks where access to a

whole collection is restricted leaving the system with very little information to work with, or when

the pieces of information to be retrieved are not neatly separated as documents (for example, in

passage retrieval).

There are also situations when the problem is not the scarcity of information, but its excess; the

method based in AW works with additional criteria to evaluate whether terms are noise or not,

and these do not depend on an exhaustive information of the whole collection, or from a large

number of documents. This is the case for tasks where entire documents are used as samples along

with the queries. In these cases, the AW has an additional advantage: the procedure for obtaining

an AW from a document is clearly derivable from the theory, and, as was shown in chapter 5, a

document-based AW complies with the conditions of an appropriate quantifier of the degree of

aboutness.

6.3.2 Future directions for development of the method

Being a radically new approach, this method can give rise to different new paths for research. Let

us mention three of them:

Use of Known Scoring Schemes to Build the AW

It is possible to implement weighting schemes that are known to behave well for retrieval tasks.

The methods used here as baselines provide four examples. All these are term-by-term scoring
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functions: they split the total score into contribution of the single query terms. An adaptation of

the methodology proposed here would be:

W =
∑
t

Wt =
∑
t

(
wmax∑
w=0

αt,wE(t, w)

)
(6.5)

Four ways of combining the scores produced by the different groups of SEs were implemented,

mimicking simple IR methodologies:

1. Term-Frequency:

Score =
∑
t

|WtD| (6.6)

2. Term-Frequency, Inverse-Document-Frequency (TFIDF)

Score =
∑
t

Xt|WtD| where Xt = log

(
Nd −Nd,t + 0.5

Nd,t + 0.5

)
(6.7)

where Nd is the total number of documents in the collection, and Nd,t is the number of

documents containing the term t.

3. Okapi BM25

Score =
∑
t

Xt
|WtD|(K1 + 1)

|WtD|K1 + b+ (1− b) Ld
Lavg

where Xt = log

(
Nd −Nd,t + 0.5

Nd,t + 0.5

)
(6.8)

Ld is the length of the document, Lavg is the average document length in the collection,

and parameters K1 and b are free. In this work they were used with the default values

K1 = 2.0, b = 0.75.

4. Unigram Language Model with Dirichlet Prior

Score =
∑
t

log(|WtD|+ µ |WtDi|
averaged in collection

)

log(|D|+ µ)
(6.9)

A problem that arises with these schemes is that there is no way of enhancing the contribution of

overlap: there is no way of enhancing it position-by-position because the score is not partitioned
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in this way, but term-by-term. This is a problem that remains unsolved, and will be the subject of

future research.

Acquisition of Lexical Profiles

The sparsity of co-occurrence data in any collection is a serious problem for most methodologies

trying to use it for retrieval, and it is an issue as well for the construction of effective AWs. How-

ever, as it can be seen in figure 6.6, it seems that the shape of the profile for topical terms can

be quite universal, and it would be possible to use a reasonable prior to enhance enormously our

method by a more sophisticated scheme for inference of the parameters.

The study of the profiles themselves seem an interesting subject of research by itself, and there are

already a number of studies on the distribution of distances. However, it would be quite useful to

perform such studies only on limited sets of terms, like those semantically related to a topic.
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Chapter 7

Conclusions

This chapter is a guide to the milestones of the work; a review of the thoughts to take home as

a general impression of the thesis. It will be divided in three sections: a short set of remarks

on the nature of the work, where its theoretical and fundamental character is briefly discussed.

Subsequently, a section where the research questions are revisited, and their answers summarised.

Finally, in the third section we describe what is the current status of this work by the end of the

thesis, and how it can be expected to go on.

7.1 Remarks about the nature of this work

As it is the case of most Ph. D. projects, in this work several measures were taken to limit the scope

of it subject; but thanks to the fundamental character of its basic concepts its nature remained quite

general. Some of the conclusions are then very general and even fundamental, but there is also a

variety of particular subjects where the development of the overall theme brought quite concrete

insights.

The starting point of the work was quite a simple idea: that perhaps the quantum account of

measurement and observation is not so strange to humans after all, and can actually be a good way

of describing our way of acquiring and processing information in everyday matters. Over time the

work took a more concrete and complex shape, and ended up as a fairly large conglomerate of

definitions and theoretical results.
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As a novel point of view sitting at the basic level of measurement, the proposed approach aims

to shed light on operational problems of text retrieval as well as on their theoretical formulation.

The work was aimed at this theoretical level, and it is there where most of its results lie. Even

though the work is in a sense an ab initio (from first principles) endeavour, it provided bridges

to connect different kinds of existing models: an example of this are binary relations resembling

boolean union, intersection and complement being introduced in Vector Space Models (up to now,

quite logics-free) through the lattice of subspaces,

At the same time that abstract motivations guided most of the research, a concrete intent of includ-

ing co-occurrence of terms into IR in a computationally affordable way was an important driving

force, especially for the practical implementations of the work.

7.2 Research Question and their Answers

To sum up the conclusions of this work, let us review the research questions presented in section

1.3. Simple answers were found for most of them, although the mathematics behind of the these

answers is less simple.

7.2.1 The Nature of the Lexical Measurement

RQ1 How can basic lexical measurements on documents be defined to match in a very general way

the properties of a quantum measurement?

As operators acting on documents. The solution obtained to this question is the con-

cept of SE, an operator that acts on text focusing on a particular part of it (tokens

surrounding the occurrences of a central term) and erases the information from the

rest. Selective Erasers are defined in 4.1.

As an additional asset, SEs are very well suited to relate a number of functions of the occurrence

frequencies and distances between occurrences. This is shown in section 4.3 to be useful to extract
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a wealth of lexical features from a document, most of them lying beyond the reach of bag-of-words

approaches.

Their quantum-inspired origin leaves SEs the definition of several operations involving them, like

composition, sum, multiplication by numbers. These linear-algebraic concepts provide the tools to

build complex entities with them; and this entities will have perfectly well defined properties and

relations (see section 4.8). This fact is used to build operators that can capture lexical features in

documents, and represent them numerically.

SEs are related to probabilities through two distinct directions: one operational, through consid-

erations of what their action on documents would produce in different cases (quantification of

information erased in section 4.1). Another way to probabilities is more abstract: trhough proba-

bilistic spaces and the concept of measure (see section 4.7).

7.2.2 Measuring

RQ2 How can basic lexical measurements capture the features of text that convey meaning?

By the use of a complete and coherent mathematical framework to combine basic

lexical measurements. In this work, a path is shown leading from a very basic descrip-

tion of the process of measurement (chapter 3) to an IR methodology. Measurement

dictates the properties of SEs (defined and explored in chapter 4), and these proper-

ties (together with some inspiration and wisdom from mathematics, physics and, of

course, IR) determine how these concepts can be used to build more complex ones

that are suitable for use in IR. The fundamental character of the chosen point of view

provides the possibility of generate completely new methods (like, for example, the

representation of documents with linear combinations of SE in section 5.4) or put

together disparate theories an models in a common general framework.

A wealth of more or less complex lexical measurements that can be performed on documents is

shown in section 4.3, giving quite interesting insights about the use of terms win written docu-

ments, and establishing links to existing methodologies that use lexical measurements for IR.
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7.2.3 Linear Operators for IR

RQ3 How to use this approach as a starting point to design better performing IR systems?

By summing and multiplying. SEs constitute a large set of quite variate building blocks,

and linear algebra (see section 4.8) provides a set of rules that are flexible enough to

produce an enormous amount of different composite operations, while being also strin-

gent enough to keep clear relations and expression for those operations. How these

rules and procedures can be used to produce a concept with an immediate application

to IR is explained in chapter 5, and can be seen working in chapter 6.

Linear algebra also provides powerful representation techniques, which have been used extensively

in IR in a rather heuristic way. Existing schemes such as Vector Space Models are linked to SEs

through linear algebra (see section 4.5.2) This link also unifies a number of different approaches,

now interpretable as versions of a Selective Eraser approach (for example, co-occurrence based

kernels), and suggest new forms of such models. Theere are two fronts where the erasers approach

can contribute to IR: representation of documents, and retrieval.

Representation of Documents

In this work, four different and new ways of representing documents have been proposed:

1. By specifying the lattice of SEs: a document would be represented by a set of SEs, plus their

order relations (see section 4.4). A particularly simple representation based on that is with

a tree of classification of terms based on equivalence classes of increasingly wide SEs (see

section 4.4.5. This idea was not developed much further, but bears a relation with uncertain

conditional between SEs, and could be revisited with that view.

2. Using a vector space with a measure defined by a kernel built on SEs (see 4.5.2). This

representation is close related, but distictly different, than other proposals to use operators

acting on Hilbert spaces to represent documents and queries [53].
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3. Represenging Documents as Combinations of SEs. This representation was developed in

chapter 5 as a way to introduce a formal aboutness relation between documents. This is

perhaps the most radically new concept developed in this thesis, and can lead to a wide

research field within Information Retrieval but also in related areas like Natural Language

Processing.

Retrieval

The concrete method developed for retrieval in this work is the Aboutness Witness, subject of

chapter 5. It is a quite general and flexible technique, which can be implemented in a myriad

of different ways. In this thesis one implementation was developed and tested. The preliminary

evaluation of a working IR methodology in chapter 6 shows that the concepts developed can in

fact be applied, and even though the results obtained were not something exceptional, give some

additional insight on the way the proposed concepts work in the “real world” of retrieval.

7.2.4 An Encompassing and Unifying Approach

RQ4 Does the point of view proposed (processing of lexical information as a physical measure-

ment) include existing accounts?

Indeed. All term frequency counts can be seen as a special case of the application of

SEs plus unerased token count (see 4.3.1). Vector space methods are also quite close

to the proposed approach, which can include most of them but also goes far beyond,

in terms of both deriving them from basic principles, and including concepts that are

absent in them (see 4.5.2). The relation to probabilistic models was discussed in the

answer to research question RQ1, and the relation with logical models, perhaps the

most fruitful of them all, is threefold: on one hand, it relates to measure and valuation

(concepts introduced in section 3.3.1, but used all along the work, especially in 4.7 and

4.2); it also includes extensions of Boolean operations such as “and”, “or” and “not”,

and, finally, provides a starting point for exploring inference-like schemes based on

these.
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7.2.5 Departing From Classical Logics

RQ5 Does the point of view proposed go beyond existing accounts in a fundamental way?

Some of the foundations of this and other approaches to IR are still under research and

examination, but from the evidence that was gathered throughout this work, we can

answer with a yes. Even though we know of proposals to abandon Boolean logic and

other well-known defoult frameworks of normal science from more than two decades

ago, the research programs that emerged from those calls are few and, in most cases,

aim at different targets than this one. Besides, some revolutionary ideas like that of

the uncertain conditional were infused new life in the scheme developed.

Aspects of this work that can be considered innovative have been mentioned on the answer to

other research questions, but the most fundamental level in which something new can be found, is

probably that of three concepts:

• measure, and its relation to duality: how an object of one class can assign an object of

another class to a number.

• uncertain conditional, considered as a relation between operators, and accompanied by a

functional that assigns a number to this relation: the degree of implication.

• the treatment of transformations on text as operators, and the assignation of mathematical

operations and structures to them, like algebras, partial order, and, once again, measures.

This allows to combine the former two into a concept that can be applied to IR: the Aboutness

Witness.

7.3 The Way Ahead

Being this a very fundamental approach, the new directions it suggests for research are quite wide.

A complete scheme of lexical measurement was put together and explored, but there are still a

number of theoretical and experimental aspects of the scheme that are still to be studied.
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7.3.1 Directions for Theoretical Research

Semi-Subsumption: In section 4.3 an interpretation of the BM25 scoring formula was suggested

which used the concept of semi-subsumption [111]: some term occurrences can be considered

as being events that are semi-subsumed in other occurrence events. This turned out to have an

immediate interpretation in terms of SE. Semi-Subsumption is a new and powerful concept, whose

nature is still a matter of research, so it seems a worthwhile subject to continue extending this

work. On the other hand, the operator approach also provided a new way of using another similar

relation: the uncertain conditional. Yet another possible direction of research could be to explore

the relation between these two.

Interference Between Occurrences: This work was inspired on an analogy between lexical and

ideal quantum measurements and even used another analogy to name the Aboutness Witness, but

that is far from exhaust the possible inspiring features of QT for other sciences. Another quantum

feature that has been tried for IR is interference, which was quite successfully used for relaxing

the independence assumptions of the probabilistic ranking model [71]. Interference also underlies

some approaches to IR that try to go beyond bag-of-words and analyse the sequence of terms in a

document, like Fourier Domain Scoring [72]. In appendix F we can find a very brief outline of how

a complex-valued witness could be defined and used for retrieval. This is still a quite immature

idea, but has the potential of giving rise to the formulation of an interesting class of quadratic

(instead of linear) witnesses.

7.3.2 Directions for Experimental Research

Inference of Profile Parameters: In chapter 6 a simple way of obtaining information from co-

occurrences was used for building the AW. However, in some cases co-occurrence data is quite

scarce, and this could limit the performance of a co-occurrence method severely. This suggests

the use of more sophisticated inference methods to determine the profiles to build the AW. On the

other hand, a consistent tendency was found in the average lexical profiles for terms associated

with query terms.

Other IR tasks: The AW can also be used in a range of different IR tasks, and it is probably
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better suited for those tasks than it is for ad hoc retrieval. In the filtering task, for example, the

access to documents is restricted, and a stream of documents that are provided to the system, which

accumulates information from them at the same time that it has to reject them as non-relevant or

accept them relevant [128]. This task would provide the perfect occasion to test the document-

defined witnesses ρ that were defined in section 5.4.2 to asses the degree of aboutness between

documents.
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Appendix A

Dirac Notation

In 1939, for a re-edition of his influencial book The Principles of Quantum Mechanics [129],

Dirac introduced an elegant notation for vectors and operators on the Hilbert space, that came to

be known as Bra-Ket Notation or simply Dirac Notation. It was thought to bring clarity to the

formulation of Quantum Theory, in which it clearly succeeded [130], and is now ubuquitous in

physics, especially in the area of Quantum Information and Quantum Computation.

Vectors are described in Dirac notation as a label enclosed between a vertical line and an angle, a

graphical remanence of earlier representations as arrows. Vector a is then represented as |a〉. This

representation is called ket. Operations like the sum and multiplication by numbers in a field are

defined to be associative and distributive:

(|a〉+ |b〉) + |c〉 = |a〉+ (|b〉+ |c〉)

α(β|a〉) = (αβ)|a〉
(A.1)

α(|a〉+ |b〉) = α|a〉+ α|b〉 (A.2)

Another product can be defined with other vectors: the inner product. Since Dirac notation was

invented for Quantum Mechanics, where the number field chosen was the complex, an extra con-

cept is defined together with the inner product: the dual vector. The dual of a vector is represented

as the same label enclosed by the opposite angle and the vertical line, so that the dual of |a〉 is 〈a|.

This representation is called bra. There is a unary transformation that turns a vector into its dual,
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called Hermitian conjugation, which is represented by a dagger †:

(α|a〉)† = α∗〈a| (A.3)

where ∗ means complex conjugacy.

The dual is defined through another operation: the inner product. The inner product of two

vectors is a number, and this product is also distributive with respect to the sum and associative

with respect to multiplication by a number:

|b〉 � (α|a〉) = (|b〉)†(α|a〉) = 〈b|(α|a〉) = α〈b|a〉 (A.4)

〈c|(|a〉+ |b〉) = 〈c|a〉+ 〈c|b〉 (A.5)

Dirac notation was developed to work with numbers in the complex field, so complex conjugation

(denoted ∗) has its place in it, closely related to Hermitian conjugation. The complex conjugate of

an inner product, is the inner product of the Hermitian Conjugates:

(|a〉)†(〈b|)† = 〈a|b〉 = (〈b|a〉)∗ (A.6)

From relation (A.6) it follows that the inner product of a vector with itself is a real number. If a

vector is decomposed in its components of an orthonormal basis {|ei〉} where 〈ei|ej〉 = δi,j , then

the inner product with itself will be the sum of the square norm of the coefficients:

|a〉 =
∑

i ai|ei〉

〈a|a〉 =
∑

i(ai) ∗ ai =
∑

i |ai|2
(A.7)

The positive square root of the inner product of the vector with itself is called the norm of the

vector, and is denoted by the label surrounded by double vertical bars:

||a|| =
√
〈a|a〉 (A.8)

In the same way that the inner product assigns a scalar to every pair of vectors, there is another that

assigns a transformation: the external product. It is represented as a product of a ket and a bra, in
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the order opposite to that of an inner space. How the external product of two vectors transforms a

third one, is determined by the inner product:

Tb→a = |a〉〈b|

Tb→a|c〉 = (|a〉〈b|)|c〉 = |a〉〈b|c〉 = 〈b|c〉|a〉
(A.9)
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Join of Two Rank-One Projectors

Given two vectors |a〉 and |b〉, we can decompose the second in a part that is parallel to the first

and a part that is orthogonal:

|b〉 = |a〉〈a|b〉+
√

1− 〈a|b〉〈b|a〉| |b〉 − |a〉〈a|b〉√
1− 〈a|b〉〈b|a〉

(B.1)

The projector on the minimal subspace containing both vectors (the join subspace) can be obtained

by taking the projector on one of the vectors, and adding a projector on the part of the other that is

orthogonal to it:

|a〉〈a| ∪ |b〉〈b| = |a〉〈a|+ (|b〉 − |a〉〈a|b〉)(〈b| − 〈b|a〉〈a|)
1− 〈a|b〉〈b|a〉

(B.2)

It can be easily seen that when the two vectors are both equal (up to an overall phase) or orthogonal,

the formula produces the right result. When the two vectors are not the same, a bit of manipulation

allows to put this formula as:

|a〉〈a| ∪ |b〉〈b| = (|a〉〈a| − |b〉〈b|)2

1− 〈a|b〉〈b|a〉
(B.3)

The symmetric character of this expression (a and b can be permuted with no change in the for-

mula) shows that choosing one or the other vector does not affect the outcome. However, it is

worth noting that this formula does not give a definite result when the vectors are equal up to

overall phase.
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The Meet as a Function of the Sum

The limit of a power of products has been suggested as a means to compute the meet of two

projectors in an practical way [61]. However, in some cases, the product of two projectors is not

even a hermitian operator, and its power only become one in the infinite exponent limit. Here,

another formula is proposed that behaves better. It is always a hermitian operator, even though it

is not a projector until the infinite exponent limit. The proposed definition is:

A ∩B = lim
n→∞

(
1

2
(A+B)

)n
(C.1)

The formula has to fulfil two conditions to be considered as a meet:

1. It has to preserve completely any vector that is preserved by both of the individual projectors.

This is already fulfiled for n = 1:

((A|ψ〉 = |ψ〉) ∧ (B|ψ〉 = |ψ〉))⇒
(

1

2
(A+B)|ψ〉 =

1

2
(|ψ〉+ |ψ〉) = |ψ〉

)
(C.2)

Factorising
(

1
2
(A+B)

)n it can be shown that the relation can be obtained from lesser pow-
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ers, all the way down to power 1.

(
1

2
(A+B)|ψ〉 = |ψ〉

)
⇒(

1

2
(A+B)

)n
|ψ〉 =

(
1

2
(A+B)

)n−1(
1

2
(A+B)|ψ〉

)
=

(
1

2
(A+B)

)n−1

|ψ〉

=

((
1

2
(A+B)

)n
|ψ〉 = |ψ〉

)
(C.3)

2. It has to anihilate any vector that is anihilated by any of the two projectors. Let us supose,

for example, that a vector is anihilated by B:

〈ψ|B|ψ〉 = 0 (C.4)

. In that case, the effect of applying this average of the projectors is:

〈ψ|1
2

(A+B)|ψ〉 =
1

2
〈ψ|A|ψ〉 (C.5)

Since any term where B is applied to the vector becomes zero, Applying the square would

result in:

〈ψ|
(

1

2
(A+B)

)2

|ψ〉 =

(
1

2

)2

〈ψ|A(A+B)|ψ〉 =

(
1

2

)2

〈ψ|A2|ψ〉 =

(
1

2

)2

〈ψ|A|ψ〉

(C.6)

If we consider higher powers in the same way, all the terms with B will be anihilated, so for

power n the result will be:

〈ψ|
(

1

2
(A+B)

)n
|ψ〉 =

(
1

2

)n
〈ψ|A|ψ〉 (C.7)

The limit of this expression when n tends to infinity, is clearly zero, since limn→∞
(

1
2

)n
= 0

The join is usually defined from the meet by the de Morgan’s law:

A ∪B = 1− ((1− A) ∩ (1−B)) (C.8)

where 1 is the identity operator.
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However, there is an alternative way of defining the join, also with the sum of projectors, that does

not imply a limit:

A ∪B = (A+B)(A+B)−1 (C.9)

where (A+B)−1 means the Penrose Generalised Inverse. This function is defined as the operator

that fulfils the following relation:

XX−1X = X (C.10)
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Discriminating Products of SEs

Building an optimally discriminating product can be seen as a two-step problem: first, a sequence

of central terms is chosen, and then the widths are determined to fulfil the conditions.

The optimal choice of a sequence of central terms can be made by trying every sequence and

choosing the best, but the number of possible sequences is astronomical, and this is not a viable

procedure. Instead, a greedy search can be done, which starts from a particular term for the SE to

be applied first (that on the right end of the product) and chooses the next so as to minimise width,

then the next as to minimise widht, and so on, as is explained in the following subsection:

D.0.3 Greedy choice of term sequence

Given a term t1 to be applied first, a minimum width w∗ can be found for any other term tx such

that |E(t1, 0)E(tx, w
∗) D| > 0. Then, chose amongst the terms with the lowest w∗. With chosen

term t2, find the minimum width w1 such that

|E(t2, 0) ◦ E(t1, w1) D| > 0. (D.1)

The order-two resulting discriminating product would then be:

E(t2, 0) ◦ E(t1, w1). (D.2)
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Then, a minimum width w∗ is found for each of the remaining terms tx, such that

E|(tx, w∗) ◦ E(t2, 0) ◦ E(t1, w1) D| > 0. (D.3)

Term t2 is then chosen amongst those with a lowest w∗, and then minimum width w2 is chosen

such that

|E(t3, 0) ◦ E(t2, w2) ◦ E(t1, w1 + w2) D| > 0. (D.4)

Then, we have an order-three discriminating product:

E(t3, 0) ◦ E(t2, w2) ◦ E(t1, w1 + w2). (D.5)

This way, it is possible to obtain an order-n product:

E(tn, 0) ◦ E(tn−1, wn−1) ◦ E(tn−2, wn−1 + wn−2) ◦ · · · ◦ E(t1,
n−1∑
i=1

wi) (D.6)
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Appendix E

Entanglement and the Entanglement

Witness

Entanglement was described by Feynman as the one and only mystery in Quantum Mechan-

ics [68] and is generally considered as the most fundamental difference between Quantum and

Newtonian mechanics. The possibility of entanglement arises when a physical system is composed

of several subsystems. Let us consider two systems A and B, whose states can be represented in

Hilbert spacesHA andHB respectively. Their joint state would then be represented in the product

space, denotedHA ⊗HB.

Definition E.1 (Product of Hilbert Spaces)

A Product of two Hilbert spaces HA and HB is the space spanned by all the tensor products

of the orthonormal basis on both spaces {|ai〉 ⊗ |bj〉}. If we represent the space itself by the

projector on it, the product can be defined as follows:

HA =
⋃
i |ai〉〈ai|

HB =
⋃
j |bj〉〈bj|

HA ⊗HB =
⋃
i,j (|ai〉 ⊗ |bj〉) (〈ai| ⊗ 〈bi|) =

⋃
i,j (|ai〉〈ai|)⊗ (|bj〉〈bi|)

(E.1)

The concept of product space is quite intuitive: if subsystem A can be in states a1, a2 and a3;

subsystem B can be in states b1 and b2, then the whole system composed by A and B can clearly

be in six states: (a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b1) and (a3, b2). A Boolean representation
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of these states would be as partitions of a total set, as is shown in figure E.1.

Figure E.1: States of a system composed by two subsystems A and B. The size of each area
can represent probability. On the left-hand side, uncorrelated states are found, and on the right,
correlated ones (a1 tends to coincide with b2, and a3 tends to coincide with b1).

When events are independent, their probabilities can be factored out; otherwise, they are said to be

correlated. A correlation can always be put as a dependence on a common hidden variable:

P (ai, bj) =
∑
ck

P (ai|ck)P (bj|ck)P (ck) 6= P (ai)P (bi) (E.2)

where ck is a particular value of a hidden variable C that is present in both subsystems with the

same distribution.

In Quantum Theory, however, there could be correlated subsystems that cannot be put in terms

of local hidden variables; this is called entanglement. To define it we need to define a number of

classes of states:

Definition E.2 (Uncorrelated State)

An Uncorrelated State is a state of a composite system that can be expressed as the product of

the states of the subsystems. For a system with N subsystems it would be:

ρuncorrelated = ρsubsystem 1 ⊗ ρsubsystem 2 ⊗ · · · ⊗ ρsubsystem N =
⊗∏

subsystem j

ρ(subsystem j) (E.3)

The uncorrelated state is totally equivalent to a classical uncorrelated state, where all probabilities

are a product of those corresponding to the subsystems.

Definition E.3 (Correlated State)

A Correlated State is one that cannot be expressed as a product states, but can be expressed as
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a mixture of product states.

ρproduct =
∑

product i

Pi

⊗∏
subsystem j

ρ(state (i,j),subsystem j) (E.4)

Correlated states are also equivalent to their classical counterparts, because they can be represented

by correlated probability distributions.

Definition E.4 (Entangled State)

An Entangled State is one that cannot be expressed as a sum of product states.

∀({(ρA)i}, {(ρB)i}, {Pi}), ρentangled 6=
∑
i

Pi ((ρA)i ⊗ (ρB)i) (E.5)

A dramatic example of entanglement is the so-called Greenberger-Horne-Zeilinger (GHZ) para-

dox [131]. This consists in a system composed of three subsystems with three binary observables

A, B, C each. The whole system is prepared in a superposition state called GHZ state, defined as

follows:

|ghz〉 =
1√
2

((|0〉A ⊗ |0〉B ⊗ |0〉C) + (|1〉A ⊗ |1〉B ⊗ |1〉C) (E.6)

If local measurements are made (that is, measurements that only discriminate results of a sub-

system) are used, a strange table of results would be obtained. Let us define a set of two binary

observables that give an outcome ±1 for a couple of particular states:

X = |0〉〈1|+ |1〉〈0| = |x+〉〈x+| − |x−〉〈x−|

Y = i(|0〉〈1| − |1〉〈0|) = |y+〉〈y+| − |y−〉〈y−|
(E.7)

where the eigenvalues of these operators are:

|x±〉 =
1√
2

(|0〉 ± |1〉) |y±〉 =
1√
2

(|0〉 ± i|1〉) (E.8)

Supose, now, that we have a device to measure X and two devices to measure Y, for a system in a

GHZ state. The results are shown in table E.1.

If we assume that there are simultaneous values for X and Y on every subsystem ready to be

measured with whatever correlation, then we could represent them by variables xA, yA, xB, yB, xC
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A B C result
X Y Y 〈ghz|(X ⊗ Y ⊗ Y )|ghz〉 = −1
Y X Y 〈ghz|(Y ⊗X ⊗ Y )|ghz〉 = −1
Y Y X 〈ghz|(Y ⊗ Y ⊗X)|ghz〉 = −1

Table E.1: Results for local measurements with one X and two Y on a GHZ state

and yB, and we could put the results as the following equations:

xA yB yC = −1

yA xB yC = −1

yA yB xC = −1

(E.9)

Since every one of these has the value ±1, then their square is 1, and multiplying the three equa-

tions we would obtain:

(xA(yA)2)(xB(yB)2)(xC(yC)2) = xAxBxC = −1 (E.10)

It seems to be clear that the product of the values of X for the three subsystems would be −1.

However, computing this product directly, we obtain:

〈ghz|(X ⊗X ⊗X)|ghz〉 = 1 (E.11)

which is actually the opposite result. Furthermore, there is no assignation of probabilities to values

of x and y in the subsystems that can produce these results, no matter how correlated they are.

This is known as the GHZ paradox [131]. Quantum Theory solves the paradox, in the sense that

it reduces its paradoxical nature to the fact that some properties are taken as not having a defined

value.

All this means that GHZ is not either an uncorrelated state, or a correlated state, but something

different. To clarify the difference, let us define the quantum concept of separability:

Definition E.5 (Separable State)

A quantum state is said to be separable if the expected value of every global observable can be

expressed as a probabilistic mixture of the product of the expected values of local observables.

∃{Pk({i}k)}, {|φi〉}), 〈ψ|
⊗∏
i

Ôi|ψ〉 =
∑
k

Pk({i}k)
∏
j∈{i}k

〈φj|Ôj|φj〉 (E.12)
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In the case of GHZ states, a separate state would be determined by assigning probabilities to every

value of x and y for each of the subsystems, that is, assigning P (xA, yA, xB, yB, xC , yC). Since the

possible values of these variables are ±1, there are 26 = 64 possible situations. Some probability

distributions over these situations are highly correlated: for example, if P (+1,+1,+1,+1,+1,+1) =

1
2

= P (−1,−1,−1,−1,−1,−1), there would be no information on the value a variable would

take for a particular subsystem, but there would be certainty about all the variables having the

same value.

For a given quantum system |Ψ〉, assigning probabilities to all possible values of internal varables

based on the expected value of observables on that state, can be seen as a linear problem:

〈Ψ|Ôi|Ψ〉 =
∑

(xA,yA,xB ,yB ,xC ,yC)

PΨ(xA, yA, xB, yB, xC , yC) ·Oi(xA, yA, xB, yB, xC , yC) (E.13)

where {Ôi} is the set of measured observables and Oi(xA, yA, xB, yB, xC , yC) is the outcome of

its measurement for a given value of the internal variables.

The condition that we can express a particular set of results by assigning probabilities to local

values, cuts the space of states in two, and can therefore be represented by an operator which gives

negative expected values for states that can be probabilistically described, and positive values for

states that cannot. This operator is called entanglement witness.

A very important characteristic of the set of entangled states is that it is not a convex set. This

comes from the fact that there are several possible sets of measurements for which states can

produce results impossible to obtain by assigning probabilities to local variables. Each of this

set of states would impose a linear restriction that cuts the set of states in two (and therefore

define an entanglement witness). However, a separable state must be separable for any possible

measurement, so a family of entanglement witnesses must be used to assess its separability.

This can be illustrated with a family of GHZ-like states with a varying phase:

|GHZ(θ)〉 =
1√
2

(|000〉+ (cos(θ) + i ∗ sin(θ))|111〉) (E.14)

The Entanglement Witness for this family corresponding to the choice of measurements (XYY,

YXY, YYX and XXX) is:
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W ({xyy, yxy, yyx, xxx}) = |GHZ(θ = 0)〉〈GHZ(θ = 0)| − 3|GHZ(θ = π)〉〈GHZ(θ = π)|

(E.15)

Note that the witness is defined with a state |GHZ(θ = 0)〉 for which the value is maximum (1)

and other |GHZ(θ = π)〉 that determines where it starts being negative.

This witness refers only to a particular choice of observables: (XYY, YXY, YYX and XXX).

However, for a state to be separable, it should be separable for any set if neasyrents. To show

this, we can generate a family of sets of observables by transforming the local observables with an

unitary transformation defined localy by:

uφ = cos(φ)I2×2 + i sin(φ)σz

Uφ = uφ ⊗ uφ ⊗ uφ (E.16)

The witness corresponding to a set of transformed operators {U(φ)OiU(−φ)} would be trans-

formed in the same way as the operators:

W ({UφOiU−φ}) = UφW ({Oi})U−φ (E.17)

in the particular case defined in (E.15) the transformed witness is:

W ({UφOiU−φ}) = |GHZ(θ = ψ)〉〈GHZ(θ = ψ)| − 3|GHZ(θ = ψ + π)〉〈GHZ(θ = ψ + π)|

(E.18)

In figure E.2 this family of states is represented (in the circumference), together with their proba-

bilistic mixtures (which appear in the area within). An entanglement witness will divide this circle

in two with a line, separating a small region of non-separable states and a larger region of separable

states. The family of witnesses generated by transforming the observables with Uψ will also divide

the space of states with a straight line, only rotated by φ. This is shown in figure E.2. It is impor-

tant to note that there is a convex set of separable mixed states (represented by the small circle in

the middle), but the set of non-separable (entangled) states is non-convex: its representation has a

circular hole in the middle.
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Figure E.2: Parametrised family of GHZ states represented in a circle, Points on the circumference
represent pure states, and points within the circle represent mixed states. The grey rectangle shows
the area where negative probabilities are necessary to reproduce the results for (XYY, YXY, YYX,
XXX). Rotated rectangles show the area where negative probabilities are necessary to reproduce
results for observables rotated by a transformation generated by σz

Let |Ψ〉 be a quantum state of a system with N subsystems. We want to check whether |Ψ〉 admits

a probabilistic description, which would mean it is separable. Given a set of local observables

{Ôi} acting on the subsystems, we define:

Vi1,i2,··· ,is = 〈Ψ|Ôi1 ⊗ Ôi2 ⊗ · · · ⊗ Ôis|Ψ〉 (E.19)

where s is the number of subsystems. Let us suppose that the value Λi of an operator Ôi depends

on internal values of variables xi associated to a subsystem in a known way:

((〈φ|X1|φ〉 = x1) ∧ (〈φ|X2|φ〉 = x2) ∧ · · · ∧ (〈φ|Xs|φ〉 = xs))⇒ 〈φ|Ôi|φ〉 = Λi({xj})

(E.20)

where |φ〉 is a state of the subsystem, not to be confused with |Ψ〉 which is the state of the total

system that we want to check for separability.
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The problem of finding a probability representation of the system consists in relating these values

Λ to the expected values found by computing the probabilities that fulfill the following equation:

∑
all values of

{xi}1, {xi}2, · · · , {xi}s

Λk1({xi}1)Λk2({xi}2) · · ·Λks({xi}s)

P ({xi}1, {xi}2, · · · , {xi}s) =

= 〈Ψ|Ôk1 ⊗ Ôk2 ⊗ · · · ⊗ Ôks|Ψ〉 (E.21)

This is a simple problem of linear algebra, and can be put in terms of matrices:
M(var1,obs1) M(var2,obs1) · · · M(varN ,obs1)

M(var1,obs2) M(var2,obs2) · · · M(varN ,obs2)

...
... . . . ...

M(var1,obsn) M(var2,obsn) · · · M(varN ,obsn)




Pvar1

Pvar2
...

PvarN

 =


Vobs1

Vobs2
...

Vobsn

 (E.22)

or, in Dirac notation,

M |P 〉 = |V 〉 (E.23)

where vari is a set of values for the internal variables {{xi}1, {xi}2, · · · , {xi}s}, and obsj is a set

of choices {k1, k2, · · · , ks} of the local operators {Ôk} for all the subsystems. For a given set of

internal variables for each subsystem and a given set of operators for the different subsystems, the

involved matrices are defined:

M(var,obs) = Λk1({xi}1)Λk2({xi}2) · · ·Λks({xi}s)

Pvar = P ({xi}1, {x2}2, · · · , {xs})

Vobs = 〈Ψ|Ôk1 ⊗ Ôk2 ⊗ · · · ⊗ Ôks|Ψ〉

(E.24)

Since the number of possible values of the internal values is normally much larger than that of

possible combinations of observables, equation (E.22) is under-determined, and probabilities can-

not be found by inverting matrix M . However, a set of probabilities can be found using Penrose
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generalised inverse [132]. Penrose inverse M−1P of M can be defined so that:

M ·M−1P ·M = M

M−1P ·M ·M−1P = M−1P
(E.25)

Matrix M−1P · M is a projector on the space spanned by the rows of M, and we can use it to

separate the probabilities vector in a component within that subspace, and the component in the

complementary subspace:

|P 〉 = α|P1〉+ (1− α)|P2〉 = (M−1P ·M)|P 〉+ (IN − (M−1P ·M))|P 〉 (E.26)

It is only |P1〉 that can be determined with equation (E.22) just by the formula:

α|P1〉 = M1P |V 〉 (E.27)

the other part can be obtained from an a priori distribution, for example the uniform, by projecting

it on the complementary subspace and normalising with norm L1:

|P2〉 =
1∑

i〈i|(IN − (M−1P ·M))|P0〉
(IN − (M−1P ·M))|P0〉 (E.28)

where P0 is an a priori probability distribution.

The criterion for separability would be, then, that |P 〉 = (1−α)|P1〉+α|P2〉 is a proper probability

distribution for some positive value of α. If it has entries that are negative or bigger than 1, it means

that the state cannot be described probabilistically in terms of local variables.

E.0.4 An Example

In the case of the GHZ paradox described in section 5.1, two local operators are measured σx and

σy, and six internal variables (x, y for each one of three subsystems) are assigned, combined as

(σx ⊗ σy ⊗ σy), (σy ⊗ σx ⊗ σy), (σy ⊗ σy ⊗ σx) and (σx ⊗ σx ⊗ σx). Given that local variables x

and y for each subsystem can only have a value of ±1, the matrix M of results will also have only

values ±1, coming from products of the local results.
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This choice of measurements is neat as an example, because the matrix M of results has a very

simple generalised inverse: its transpose, divided by 64:

(MGHZ)−1P =
1

64
(MGHZ)t MGHZ(MGHZ)tMGHZ = 64MGHZ (E.29)

It is also good because the uniform probability distribution is totally in the complementary sub-

space:

(M−1P
GHZ paradox ·MGHZ paradox)|Puniform〉 = 0|Puniform〉 (E.30)

This means that a probability distribution can be found as:

|P (xA, xB, xC , yA, yB, yC)〉 =
1

64
(MGHZ)t|V (OA ⊗OB ⊗OC)〉+ (1− α)|Puniform〉 (E.31)

Since all the entries of |Puniform〉 are 1
64

, two conditions are then imposed:

1. Lower Bound:

min((MGHZ)t|V (OA ⊗OB ⊗OC)〉i) > −1 (E.32)

2. Upper Bound:

max((MGHZ)t|V (OA ⊗OB ⊗OC)〉i) 6 1 (E.33)

GHZ state will produce a vector ((MGHZ)t|V (OA ⊗ OB ⊗ OC)〉 whose entries are ±2, clearly

violating the conditions for every entry.

A family of parametrised GHZ states will produce different values in the vector |V 〉 of results. In

particular, it is interesting to examine the following family with a varying phase:

|GHZ(θ)〉 =
1√
2

(|000〉+ (cos(θ) + i ∗ sin(θ))|111〉) (E.34)

It can be seen that the values of the values vector all vary in a very simple way with the phase,
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simply scaled by a factor of cos(θ)


〈GHZ(θ)|(σx ⊗ σy ⊗ σy)|GHZ(θ)〉

〈GHZ(θ)|(σy ⊗ σx ⊗ σy)|GHZ(θ)〉

〈GHZ(θ)|(σy ⊗ σy ⊗ σx)|GHZ(θ)〉

〈GHZ(θ)|(σx ⊗ σx ⊗ σx)|GHZ(θ)〉

 = cos(θ)


−1

−1

−1

1

 (E.35)

With those results, the conditions of positivity become in this case simply −1
2
6 cos(θ) 6 1

2
. The

following operator would then produce a negative expected value for a state that is separable for

these measurements, and positive for a state that is not:

W = |GHZ(θ = 0)〉〈GHZ(θ = 0)| − 3|GHZ(θ = π)〉〈GHZ(θ = π)|

= (|000〉〈111|+ |111〉〈000|)− 2(|000〉〈000|+ |111〉〈111|) (E.36)
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Appendix F

Building Witnesses with Complex

Coefficients

The final result of a lexical measurement has to be a real number. The use of complex numbers in

the representation needs to have a way of hiding imaginary numbers when describing outcomes.

Supose, for example, that the lexical profile we want to use is complex-value, because we wont it

to include interference between different distances to the central term.

A complex valued witness built with a given set of SEs {Ei} can be defined by the value it assigns

to a document, as a quadratic function of its the norms of the document transformed by the different

SEs:

|WD| =
∑
i,j

αi,j|EiD| × |EjD| (F.1)

The coefficients αi,j can be complex, but must comply with a condition:

αi,j = (αj,i)
∗ (F.2)

where α∗ stands for the complex conjugate of α. If α = ar + ai
√
−1 then the complex conjugate

is the same number with its imaginary part switched sign α∗ = ar− ai
√
−1. It can also be defined

α∗ = ||α||2
α

where ||α|| is the complex norm of the number, a generalisation of the absolute value
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Chapter F. Building Witnesses with Complex Coefficients

of real numbers. When α = ar + ai
√
−1, the norm is defined ||α|| =

√
(ar)2 + (ai)2

A very simple example of complex AW can be built with a complex profile φt(w) 6= (φt(w))∗, as

a product of a combination and its conjugate:

|WD| =
∑
t

αt

(∑
w

(φt(w))∗|E(t, w)|

)(∑
w′

φt(w
′)|E(t, w′)|

)
(F.3)

The resulting value of |WD| will include three different kind of terms:

• diagonal: |WD|diag =
∑

t,w αt||φt(w)||2|E(t, w)D|2

• non-diagonal |WD|non−diag =
∑

t,w 6=w′ αt((φt(w))∗φt(w
′) + (φt(w))∗φt(w

′))|E(t, w)D| ×

|E(t, w′)D|

The first one resembles the usual Witness, but with square counts of nonerased terms (only positive

numbers), while the second can inclue negative interference terms between counts at different

widths.
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